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Abstract

Traditional control systems have been designed to exercise control at regularly spaced time

instants. When a discrete version of the system dynamics is used, a constant sampling interval is

assumed and a new control value is calculated and exercised at each time instant. In this paper

we formulate a new control scheme, temporal control, in which we not only calculate the control

value but also decide the time instants when the new values are to be used. Taking a discrete,

linear, time-invariant system, and a cost function which re
ects a cost for computation of the

control values, as an example, we show the feasibility of using this scheme. We formulate the

temporal control scheme as a feedback scheme and, through a numerical example, demonstrate

the signi�cant reduction in cost through the use of temporal control.
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1 Introduction

Control systems have been used for the control of dynamic systems by generating and exercising

control signals. Traditional approach for feedback controls has been to de�ne the control signals,

u(t), as a function of the current state of the system, x(t). As the state of the system changes

continuously the controls change continuously, i.e. they are de�ned as functions of time, t, such

that time is treated as a continuous variable. When computers are used for implementing the

control systems, due to the discrete nature of computations, time is treated as a discrete variable

obtained by regularly spaced sampling of the time axis at � seconds. Many standard control

formulations are de�ned for the discrete version of the system, with system dynamics expressed at

discrete time instants. In these formulations the system dynamics and the control are expressed as

sequences, x(k) and u(k).

Most of the traditional control systems were designed for dedicated controllers which had only

one function, to accept the state values, x(k) and generate the control, u(k). However, when a

general purpose computer is used as a controller, it has the capabilities, and may, therefore, be

used for other functions. Thus, it may be desirable to take into account the cost of computations

and consider control laws which do not compute the new value of the control at every instant.

When no control is to be exercised, the computer may be used for other functions. In this paper

we formulate such a control law and show how it can be used for control of systems, achieving the

same degree of control as traditional control systems while reducing computation costs by changing

the control at a few, speci�c time instants. We term this temporal control.

To the best of our knowledge this approach to the design and implementation of controls has not

been studied in the past. However, taking computation time delay into consideration for real-time

computer control has been studied in several research papers [1, 5, 6, 9, 11, 13]. But, all of these

papers concentrated on examining computation time delay e�ects and compensating them while

maintaining the assumption of exercising controls at regularly spaced time instants.

The basic idea of temporal control is to determine not only the values for u but also the time

instants at which the values are to be calculated and changed. The control values are assumed

to remain constant between changes. By exercising control over the time instants of changes the

designer has an additional degree of freedom for optimization. In this paper we present the idea and

demonstrate its feasibility through an example using a discrete, linear, and time invariant system.

Clearly, the same idea can be extended to continuous time as well as non-linear system.

The paper is organized as follows. In Section 2, we formulate the temporal control problem and

introduce computation cost into performance index function. The solution approach for temporal

control scheme is discussed in Section 3. In Section 4, implementation issues are addressed. We
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provide an example of controlling rigid body satellite in Section 5 . In this example, an optimal

temporal controller is designed. Results show that the temporal control approach performs better

than the traditional sampled data control approach with the same number of control exercises.

Section 6 deals with the application of temporal controls to the design of real-time control systems.

Finally, Section 7, we present our conclusions.

2 Problem Formulation

In temporal control, the number of control changes and their exercising time instants within the

controlling interval [0; T

f

] is decided to minimize a cost function. To formulate the temporal control

problem for a discrete, linear time-invariant system, we �rst discretize the time interval [0; T

f

] into

M subintervals of length � = T

f

=M . Let D

M

= f0;�; 2�; : : : ; (M � 1)�g which denote M time

instants which are regularly spaced. Here, control exercising time instants are restricted within

D

M

for the purpose of simplicity. The linear time-invariant controlled process is described by the

di�erence equation:

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k)

where k is the time index. One unit of time represents the subinterval �, whereas x 2 R

n

and

u 2 R

l

are the state and input vectors respectively.

It is well known that there exists an optimal control law [4]

u

o

(i) = f [x(i)] i = 0; 1; :::;M � 1 (2)

that minimizes the quadratic performance index function (Cost)

J

M

=

M�1

X

k=0

[x

T

(k)Qx(k) + u

T

(k)Ru(k)] + x

T

(M)Qx(M) (3)

where Q 2 R

n�n

is positive semi-de�nite and R 2 R

l�l

is positive de�nite.

As we can see, traditional controller exercises control at every time instant in D

M

. However,

in temporal control, we are no longer constrained to exercise control at every time instant in D

M

.

Therefore, we want to �nd an optimal control law, � and g for i = 0; 1; :::;M � 1:

u

o

(i) = u

o

(i� 1) if �(i) = 0 (4)

u

o

(i) = g[x(i)] if �(i) = 1
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that minimizes a new performance index function

J

0

M

=

M�1

X

k=0

[x

T

(k)Qx(k) + u

T

(k)Ru(k)] + x

T

(M)Qx(M) +

M�1

X

k=0

�(k)� (5)

= J

M

+ C

M

Here, � is the computation cost of getting a new control value at a time instant, and C

M

=

P

M�1

k=0

�(k)� denotes the total computation cost. Note that � =

P

M�1

k=0

�(k) is the number of

control changes. Also, let D

�

= ft

0

; t

1

; t

2

; : : : ; t

��1

g consist of control changing time instants where

t

0

= 0, t

1

= n

1

�, : : :, t

��1

= n

��1

�. That is, n

0

; n

1

; n

2

; : : : ; n

��1

are the indices for control

changing time instants and �(n

i

) = 1 for i = 0; 1; 2; : : :� � 1.

With this new setting we need to choose �, D

�

, and control input values to �nd an optimal

controller which minimizes J

0

M

. This new cost function is di�erent from J

M

in two aspects. First,

the concept of computational cost is introduced in J

0

M

as C

M

term to regulate the number of control

changes chosen. If we do not take this computation cost into consideration � is likely to become

M . If computation cost is high (i.e., � has a large value) then � is likely to be small in order to

minimize the total cost function. Second, in temporal control, not only do we seek optimal control

law u(x(t)), but also the control exercising time instants and the number of control changes. In the

next section, we present in detail speci�c techniques for �nding an optimal temporal control law.

3 Temporal Control

We develop a three-step procedure for �nding an optimal temporal controller.

Step 1. Find an optimal control law given � and D

�

Step 2. Find best D

�

given �

Step 3. Find best �

First, in the following two subsections(3.1 and 3.2) we derive a temporal control law which

minimizes the cost function J

0

M

when D

�

is given, i.e., both time instants and number of controls

are �xed. Since � and D

�

are �xed we can use J

M

de�ned in ( 5) as a cost function instead of

J

0

M

. Secondly, assume that � is �xed but D

�

can vary. Then we present an algorithm in section

3.3 to �nd a D

o

�

such that J

M

(and J

0

M

) is minimized. Finally, we will vary � from 1 to �

max

to search an optimal D

o

�

at which temporal control should be exercised. Section 3.4 presents this

iteration procedure. Section 3.5 explains how to incorporate terminal state constraints into the

above procedure of getting an optimal temporal control law. And a complete algorithm of the
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above procedure is described in Section 3.6. Finally, in Section 3.7 we explain how to get optimal

temporal controllers over an initial state space.

3.1 Closed-loop Temporal Control with D

�

Given

Assume that � and D

�

are given. Then a new control input calculated at t

i

will be applied to the

actuator for the next time interval from t

i

to t

i+1

. Our objective here is to determine the optimal

control law

u

o

(n

i

) = g[x(n

i

)] i = 0; 1; :::; � � 1 (6)

that minimizes the quadratic performance index function (Cost) J

M

which is de�ned in ( 5).

Control Input Cost

State Cost

time
1 2 3 ν -m ν -m+1 ν -1

0

m+1

-1

...... ... .... ...

...... ... .... ...

u
o
(

u
o
(

n n

n
n

n
-mν n

Fν

Fν

Fν -1

ν

-1ν

S

-m

-m

n +1

)
)

n ν

Figure 1: Decomposition of J

M

into F

i

.

The principle of optimality, developed by Richard Bellman[2, 3] is the approach used here. That

is, if a closed loop control u

o

(n

i

) = g[x(n

i

)] is optimal over the interval t

0

� t � t

�

, then it is also

optimal over any sub-interval t

m

� t � t

�

, where 0 � m � �. As it can be seen from Figure 1, the
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total cost J

M

can be decomposed into F

i

s for 0 � i � � where

F

i

= x

T

(n

i

)Qx(n

i

) + x

T

(n

i

+ 1)Qx(n

i

+ 1) (7)

+ x

T

(n

i

+ 2)Qx(n

i

+ 2) + :::+ x

T

(n

i+1

� 1)Qx(n

i+1

� 1)

+ (n

i+1

� n

i

)u

T

(n

i

)Ru(n

i

)

That is, from ( 1),

F

i

= x

T

(n

i

)Qx(n

i

) + (Ax(n

i

) +Bu(n

i

))

T

Q(Ax(n

i

) + Bu(n

i

)) (8)

+ (A

2

x(n

i

) +ABu(n

i

) + Bu(n

i

))

T

Q(A

2

x(n

i

) + ABu(n

i

) +Bu(n

i

))

+ :::+ (A

n

i+1

�n

i

�1

x(n

i

) +A

n

i+1

�n

i

�2

Bu(n

i

) + :::+ABu(n

i

) +Bu(n

i

))

T

Q

(A

n

i+1

�n

i

�1

x(n

i

) +A

n

i+1

�n

i

�2

Bu(n

i

) + :::+ ABu(n

i

) +Bu(n

i

))

+ (n

i+1

� n

i

)u

T

(n

i

)Ru(n

i

)

This can be rewritten as

F

i

= x

T

(n

i

)Qx(n

i

) +

n

i+1

�n

i

�1

X

j=1

[A

j

x(n

i

) +B

j

u(n

i

)]

T

Q[A

j

x(n

i

) +B

j

u(n

i

)] (9)

+ (n

i+1

� n

i

)u

T

(n

i

)Ru(n

i

)

where A

j

= A

j

and B

j

=

P

j�1

k=0

A

k

B.

Then J

M

can be expressed as

J

M

= F

0

+ F

1

+ F

2

+ :::+ F

�

: (10)

Let S

m

be the cost from i = � �m+ 1 to i = �:

S

m

= F

��m+1

+ F

��m+2

+ :::+ F

��1

+ F

�

; 1 � m � � + 1: (11)

These cost terms are well illustrated in the above Figure 1.

Therefore, by applying the principle of optimality, we can �rst minimize S

1

= F

�

, then choose

F

��1

to minimize S

2

= F

��1

+ F

�

= S

o

1

+ F

��1

where S

o

1

is the optimal cost occurred at t

�

. We

can continue choosing F

��2

to minimize S

3

= F

��2

+ F

��1

+ F

�

= F

��2

+ S

o

2

and so on until

S

�+1

= J

M

is minimized. Note that S

1

= F

�

= x

T

(n

�

)Qx(n

�

) is determined only from x(n

�

) which

is independent of any other control inputs.
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3.2 Inductive Construction of an Optimal Control Law with D

�

Given

We inductively derive an optimal controller which changes its control at � time instants t

0

; t

1

,

: : :, t

��1

. As we showed in the previous section, the inductive procedure goes backwards in time

from S

o

1

to S

o

�+1

. Since S

1

= F

�

= x

T

(n

�

)Qx(n

�

) + u

T

(n

�

)Ru(n

�

) and x(n

�

) is independent of

u(n

�

), we can let u

o

(n

�

) = u

o

(M) = 0 and S

o

1

= x

T

(n

�

)Qx(n

�

) where Q is symmetric and positive

semi-de�nite.

Induction Basis: S

o

1

= x

T

(n

�

)Qx(n

�

) where Q is symmetric.

Inductive Assumption: Suppose that

S

o

m

= x

T

(n

��m+1

)P (� �m+ 1)x(n

��m+1

)

holds for some m where 1 � m � � and P (� �m+ 1) is symmetric.

We can write S

o

m

as

S

o

m

= [A

(n

��m+1

�n

��m

)

x(n

��m

) + B

(n

��m+1

�n

��m

)

u(n

��m

)]

T

P (� �m+ 1) (12)

[A

(n

��m+1

�n

��m

)

x(n

��m

) + B

(n

��m+1

�n

��m

)

u(n

��m

)]

From the de�nition of S

m

and ( 9),

S

m+1

= S

o

m

+ F

��m

= S

o

m

+ x

T

(n

��m

)Qx(n

��m

) (13)

+

n

��m+1

�n

��m

�1

X

j=1

[A

j

x(n

��m

) + B

j

u(n

��m

)]

T

Q[A

j

x(n

��m

) + B

j

u(n

��m

)]

+ (n

��m+1

� n

��m

)u

T

(n

��m

)Ru(n

��m

)

And the above equation becomes

S

m+1

= [A

n

��m+1

�n

��m

x(n

��m

) +B

n

��m+1

�n

��m

u(n

��m

)]

T

P (� �m+ 1) (14)

[A

n

��m+1

�n

��m

x(n

��m

) +B

n

��m+1

�n

��m

u(n

��m

)]

+ x

T

(n

��m

)Qx(n

��m

)

+

n

��m+1

�n

��m

�1

X

j=1

[A

j

x(n

��m

) + B

j

u(n

��m

)]

T

Q[A

j

x(n

��m

) + B

j

u(n

��m

)]

+ (n

��m+1

� n

��m

)u

T

(n

��m

)Ru(n

��m

)

6



If we di�erentiate S

m+1

with respect to u(n

��m

), then

@S

m+1

@u(n

��m

)

= B

T

n

��m+1

�n

��m

P (� �m+ 1)A

n

��m+1

�n

��m

x(n

��m

) (15)

+ (A

T

n

��m+1

�n

��m

P (� �m+ 1)B

n

��m+1

�n

��m

)

T

x(n

��m

)

+ 2B

T

n

��m+1

�n

��m

P (� �m+ 1)B

n

��m+1

�n

��m

u(n

��m

)

+

n

��m+1

�n

��m

�1

X

j=1

[2B

T

j

QA

j

x(n

��m

) + 2B

T

j

QB

j

u(n

��m

)]

+ 2(n

��m+1

� n

��m

)Ru(n

��m

)

= 2fB

T

n

��m+1

�n

��m

P (� �m+ 1)A

n

��m+1

�n

��m

(16)

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QA

j

gx(n

��m

)

+ 2fB

T

n

��m+1

�n

��m

P (� �m+ 1)B

n

��m+1

�n

��m

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QB

j

+ (n

��m+1

� n

��m

)Rgu(n

��m

)

Note that P (��m+1) is symmetric and the following three rules are applied to di�erentiate S

m+1

above.

@

@x

(x

T

Qx) = 2Qx

@

@x

(x

T

Qy) = Qy

@

@y

(x

T

Qy) = Q

T

x

Let

@S

m+1

@u(n

��m

)

= 0, from Lemma 1 and Lemma 2 given later we can obtain u

o

(n

��m

) which

minimizes S

m+1

and thus obtain S

o

m+1

.

u

o

(n

��m

) = �fB

T

n

��m+1

�n

��m

P (� �m+ 1)B

n

��m+1

�n

��m

(17)

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QB

j

+ (n

��m+1

� n

��m

)Rg

�1

fB

T

n

��m+1

�n

��m

P (� �m+ 1)A

n

��m+1

�n

��m

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QA

j

gx(n

��m

)

= �K(� �m)x(n

��m

)

where K(� �m) is de�ned in ( 17).
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Therefore, we can write

A

n

��m+1

�n

��m

x(n

��m

) + B

n

��m+1

�n

��m

u

o

(n

��m

) = (18)

[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]x(n

��m

)

If we use ( 17) and ( 18), we have

S

o

m+1

= f[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]x(n

��m

)g

T

P (� �m+ 1) (19)

f[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]x(n

��m

)g

+ x

T

(n

��m

)Qx(n

��m

)

+

n

��m+1

�n

��m

�1

X

j=1

f[A

j

�B

j

K(� �m)]x(n

��m

)g

T

Qf[A

j

� B

j

K(� �m)]x(n

��m

)g

+ (n

��m+1

� n

��m

)[K(� �m)x(n

��m

)]

T

R[K(� �m)x(n

��m

)]

This equation can be rewritten as

S

o

m+1

= x

T

(n

��m

)f[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]

T

P (� �m+ 1) (20)

[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]

+ Q

+

n

��m+1

�n

��m

�1

X

j=1

[A

j

� B

j

K(� �m)]

T

Q[A

j

�B

j

K(� �m)]

+ (n

��m+1

� n

��m

)K

T

(n

��m

)RK(� �m)gx(n

��m

):

= x

T

(n

��m

)P (� �m)x(n

��m

)

where P (� �m) is obtained from K(� �m) and P (� �m+ 1) as in ( 20). Also note that knowing

P (� �m+ 1) is enough to compute K(� �m) because other terms of ( 17) are known a priori.

Therefore, we �nd a symmetric matrix P (��m) satisfying S

o

m+1

= x

T

(n

��m

)P (��m)x(n

��m

).

From ( 17) and ( 20), we have the following recursive equations for obtaining P (� � m) from

P (� �m+ 1) where m = 1; 2; :::; �.

K(� �m) = fB

T

n

��m+1

�n

��m

P (� �m+ 1)B

n

��m+1

�n

��m

(21)

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QB

j

+ (n

��m+1

� n

��m

)Rg

�1

fB

T

n

��m+1

�n

��m

P (� �m+ 1)A

n

��m+1

�n

��m

+

n

��m+1

�n

��m

�1

X

j=1

B

T

j

QA

j

g
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P (� �m) = [A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]

T

P (� �m+ 1) (22)

[A

n

��m+1

�n

��m

� B

n

��m+1

�n

��m

K(� �m)]

+ Q

+

n

��m+1

�n

��m

�1

X

j=1

[A

j

�B

j

K(� �m)]

T

Q[A

j

�B

j

K(� �m)]

+ (n

��m+1

� n

��m

)K

T

(� �m)RK(� �m)

Also, we know that at each time instant n

��m

�

u

o

(n

��m

) = �K(� �m)x(n

��m

) (23)

Hence, with P (�) = Q, we can obtain K(i) and P (i) for i = � � 1; � � 2; :::; 0 recursively using

( 21) and ( 22). At each time instant n

i

�; i = 0; 1; 2; :::; � � 1 the new control input value will be

obtained using ( 23) by multiplying K(i) by x(n

i

) where x(n

i

) is the estimate of the system state

at n

i

�. Also, note that the optimal control cost is J

o

M

= S

o

�+1

= x

T

(0)P (0)x(0) where P (0) is

found from the above procedure.

To prove the optimality of this control law we need the following lemmas.

Lemma 1 If Q is positive semi-de�nite and R is positive de�nite, then P (i); i = �; ��1; ��2; :::; 0;

matrices are positive semi-de�nite. Hence, P (i)s are symmetric from the de�nition of a positive

semi-de�nite matrix.

Proof Since P (�) = Q , from assumption P (�) is positive semi-de�nite. Assume that for

k = i+1, P (k) is positive semi-de�nite. We use induction to prove that P (i) is semi-de�nite. Note

that Q is positive semi-de�nite and R is positive de�nite. From ( 22) we have

P (i) = [A

n

i+1

�n

i

�B

n

i+1

�n

i

K(i)]

T

P (i+ 1) (24)

[A

n

i+1

�n

i

�B

n

i+1

�n

i

K(i)]

+ Q

+

n

i+1

�n

i

�1

X

j=1

[A

j

� B

j

K(i)]

T

Q[A

j

� B

j

K(i)]

+ (n

i+1

� n

i

)K

T

(i)RK(i)

9



Since P (i + 1) and Q are positive semi-de�nite, R is positive de�nite, and (n

i+1

� n

i

) > 0, it

is easy to verify that for 8y 2 R

m

: y

T

P (i)y � 0. This means that P (i) is positive semi-de�nite.

This inductive procedure proves the lemma.

Lemma 2 Given D

�

, the inverse matrix in ( 21) always exists.

Proof Let V = B

T

n

��m+1

�n

��m

P (� � m + 1)B

n

��m+1

�n

��m

+

P

n

��m+1

�n

��m

�1

j=1

B

T

j

QB

j

+

(n

��m+1

� n

��m

)R. From Lemma 1, P (� �m+ 1) is positive semi-de�nite. Therefore, 8y 2 R

m

:

y

T

V y > 0 because Q is positive semi-de�nite, R is positive de�nite and n

��m+1

� n

��m

> 0. This

implies that V is positive de�nite. Hence the inverse matrix exists.

Theorem 1 Given D

�

, K(i) (i = 0; 1; 2; :::; ��1) obtained from the above procedure are the optimal

feedback gains which minimize the cost function J

M

(and J

0

M

) on [0;M�].

Proof Note that given D

�

, J

M

is a convex function of u(n

i

); i = 0; 1; :::; � � 1. Thus the

above feedback control law is optimal.

Lemma 3 If p � q and D

p

� D

q

, then J

o

M

p

� J

o

M

q

where J

o

M

p

and J

o

M

q

are the optimal costs of

controls which change controls at time instants in D

p

and D

q

respectively.

Proof Suppose that J

o

M

p

< J

o

M

q

, then, in controlling the system with D

q

, if we do not

change controls at time instants in D

q

�D

p

and change controls at time instants in D

p

to the same

control inputs that were exercised to get J

o

M

p

with D

p

, we obtain

^

J

M

q

which is equal to J

o

M

p

. This

contradicts the fact that J

o

M

q

is the minimum cost obtainable with D

q

since we have found

^

J

M

q

which is equal to J

o

M

p

and therefore less than J

o

M

q

. Hence, J

o

M

p

� J

o

M

q

.

This lemma implies that if we do not take computation cost, �, into consideration, then the

more control exercising points, the better the controller is (less cost). With the computation cost

being included in the cost function, the statement above is no longer true. Therefore we need to

search for an optimal D

�

which minimizes the cost function J

0

M

. The following sections provide a

detailed discussion on searching for such an optimal solution. Note that if we let D

�

= D

M

then

the optimal temporal control law is the same as the traditional linear feedback optimal control law.

10



3.3 Optimal Temporal Control Law over D

�

Space with � Given

When the number of control changing points, �, and an initial system state x(0) are given, we

search over a set of possible D

�

s and u(D

�

)s such that the cost function J

M

is minimized. This

can be done by varying � � 1 control changing time instants, t

i

; i = 1; 2; :::; � � 1 (since t

0

= 0)

over the discrete set, D

M

= f0;�; 2�; : : : ; (M � 1)�g and applying the technique developed in the

previous section for each given D

�

. Let us denote such a D

�

which minimizes J

M

as D

o

�

. Note

that when � is given, minimizing J

M

is equivalent to minimizing J

0

M

. Since both D

�

and u(D

�

)

are control variates, to be able to �nd a global optimal solution, either an exhaustive search or

some global search methods like Genetic Algorithm or Simulated Annealing should be considered.

Later we present a numerical example in which an exhaustive search with Steepest Descent Search

method is used. Searching for a globally optimal solution for a temporal controller calls for further

research.

3.4 Optimal Temporal Control Law

Assume that a maximum number of control changing points, �

max

, is given. By varying � from

1 to �

max

we can �nd D

o

�

�

to obtain a globally optimal temporal controller which minimizes J

0

M

.

This can be done by �rst searching for D

o

�

for each given � and then comparing the cost function

J

0

M

= J

M

+ �� at each D

o

�

; � = 1; 2; : : : ; �

max

. That is, let J

0

o

M

�

= x

T

(0)P (0)x(0) + �� where

P (0) is calculated at D

o

�

as in the previous section. Then we can obtain a global minimum cost

J

0

o

M

= min

1����

max

fJ

0

o

M

�

g and an optimal number of control changes, �

o

, at which J

0

o

M

�

o

= J

0

o

M

.

3.5 Terminal State Constraints

The terminal state constraints may be used to check if the optimal temporal controller with D

o

�

�

can drive the system state to a permissible �nal state within a given time. Let X

f

be a set of

allowed terminal states, if x(n

�

) 2 X

f

, then the control law is said to be stable in terms of the

terminal state constraints and not stable if x(n

�

) 62 X

f

. If the globally optimal temporal controller

obtained from the above procedure is not stable, �

�

should be increased until a stable one is found.

One way of specifying terminal state constraints for regulators might be j x(M)

i

j� �

i

where x(M)

i

is the ith element of x(M) state vector.

11



3.6 Algorithm to Derive an Optimal Temporal Controller

To summarize the above discussion, we provide in Figure 2 a complete algorithm to search for a

globally optimal temporal controller under the assumption that the initial state x(0) is given.

In the algorithm, a neighbor of D

�

= fn

0

�; n

1

�; n

2

�; : : : ; n

��1

�g is de�ned to be any member

of a set N(D

�

) = ffn

0

0

�; n

0

1

�; : : : ; n

0

��1

�g j j n

0

i

� n

i

j � 1; i = 1; 2; : : : ; � � 1g.

3.7 Optimal Temporal Controllers over an Initial State Space

Note that D

o

�

might become di�erent if a new initial system state x̂(0) is used instead of x(0) when

the state vector is in R

m�1

where m � 2. This is because the cost function J

M

= x

T

(0)P (0)x(0)

depends on x(0) as well as P (0). Thus, D

o

�

is dependent on the initial state x(0). However, when

m = 1 it can be shown thatD

o

�

is independent of any initial state. To see this let x(0) = kx̂(0) 2 R

1

and P (0) and

^

P (0) be the optimal matrices with initial states x(0) and x̂(0), respectively. i.e.,

J

M

(x(0)) = x(0)P (0)x(0)

J

M

(x̂(0)) = x̂(0)

^

P (0)x̂(0)

From the optimality of

^

P (0) with respect to x̂(0),

x̂

T

(0)P (0)x̂(0) � x̂

T

(0)

^

P(0)x̂(0) (25)

Multiplying the above inequality by k

2

we have

k

2

x̂

T

(0)P (0)x̂(0) = x

T

(0)P (0)x(0)

� k

2

x̂

T

(0)

^

P (0)x̂(0)

= x

T

(0)

^

P(0)x(0) (26)

On the other hand, due to the optimality of P (0) we have

x

T

(0)

^

P (0)x(0) � x

T

(0)P (0)x(0) (27)

Therefore,

^

P (0) = P (0). This implies the optimality of

^

P (0) and

^

D

o

�

for any initial state

x(0) 2 R

1

.

Generally speaking, the above result will not hold for m � 2 cases. However, using the same

argument discussed above we can prove that for any initial state x(0) = kx̂(0), x(0) and x̂(0) will

have the same D

o

�

as well as the same P (0).
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�

o

= 1

J

0

o

M

=1

for � = 1 to �

max

f

/* Several di�erent search starting points */

for i = 1 to NumInitP ts

�

f

D

�

= D

init;i

�

/* Iterate until a local minimum is found { Steepest Descent Search */

while (MinimumFound != True) f

Find optimal costs for neighboring points of D

�

using theorem 1

if ( J

0

M

has a Local Minimum at D

�

)

then f

MinimumFound = True

J

0

i

M

�

= Cost(J

0

M

) at D

�

g

else

D

�

= a neighbor of D

�

with the smallest J

0

M

g

g

J

0

o

M

�

= min

1�i�NumInitP ts

�

fJ

0

i

M

�

g

if ( J

0

o

M

�

< J

0

o

M

)

then f

�

o

= �

J

0

o

M

= J

0

o

M

�

g

g

Figure 2: Complete algorithm to �nd an optimal temporal controller.
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4 Implementation

To implement temporal control, we need to calculate and store K(i) matrices in ( 22) and use them

when controlling the system utilizing ( 23). Note that in traditional optimal linear control a similar

matrix is obtained and used at every time instant in D

M

to generate control input value. While

the feedback gain matrices for traditional linear optimal controller are independent of initial states,

the number of control exercises, �, and K(i) matrices are dependent on initial states for temporal

control systems. But, if the possible set of initial states is in R

1

they are independent of the initial

states. E�ective deployment of temporal control requires that we know the range of initial state

values and generate K(i) matrices for each group. A sensitivity analysis is required to determine

how many distinct matrices need to be stored.

In order to implement temporal control we require an operating system that supports scheduling

control computations at speci�c time instants. The Maruti system developed at the University of

Maryland is a suitable host for the implementation of temporal control [10, 8, 7]. In Maruti, all

executions are scheduled in time and the time of execution can be modi�ed dynamically, if so

desired. This is in contrast with traditional cyclic executives often used in real-time systems, which

have a �xed, cyclic operation and which are well suited only for the sampled data control systems

operating in a static environment. It is the availability of the system such as Maruti that allows

us to consider the notion of temporal control, in which time becomes an emergent property of the

system.

5 Example

To illustrate the advantages of a temporal control scheme let us consider a simple example of rigid

body satellite control problem [12]. The system state equations are as follows:

x(k + 1) =

2

4

0 1

�1 2

3

5

x(k) +

2

4

0

0:00125

3

5

u(k)

y(k) =

h

1 1

i

x(k)

where k represents the time index and one unit of time is the discretized subinterval of length

� = 0:05. The linear quadratic performance index J

0

M

in ( 5) is used here with the following

parameters.

Q =

2

4

1 0

0 1

3

5
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0.4

0.6

0.8

1

Figure 3: Optimal Linear Control with � = 0:05.

R = 0:0001

� = 0:02 & 0:01

M = 40

� = 0:05

�

i

= 0:01; i = 1; 2

x(0) =

2

4

0:5

0:5

3

5

(28)

The objective of the control is to drive the satellite to the zero position and the desired goal

state is x

f

= [0; 0]

T

. The terminal state constraint is j x

i

(40) j� �

i

i = 1; 2. With the equal

sampling interval � = 0:05 and M = 40 the optimal linear feedback control of this system has cost

function J

M

= 0:984678 (without computational cost) and J

0

M

= 1:784678 (with computational

cost) and is shown in Figure 3. The terminal state constraint is satis�ed at 0:8sec.

If we apply the temporal control scheme presented above to this problem with � = 0:02 we �nd

that the optimal number of control changes for this example is 3 and D

o

3

= f0; 2�; 10�g with a

cost J

0

M

= 1:08388. Note that the 40 step optimal linear feedback controller given above has a cost

J

0

M

= 1:784678 when computation cost is considered. Table 1 shows how this optimal controller

is obtained when we set �

max

= 7. Figure 4(a) shows the system trajectory when this three-step

optimal temporal controller is used to control the system. This trajectory satis�es the terminal

state constraint at 0:8sec as well. Also, the maximum control input magnitudes, j u j

max

, in both
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n D

o

�

Cost(J

0

M

) with � = 0:02 Cost(J

0

M

) with � = 0:01

1 f0g 4:63089+ � = 4:65089 4:63089 + � = 4:64089

2 f0; 1g 1:44603+ 2� = 1:48603 1:44603+ 2� = 1:46603

3 f0; 2; 10g 1:02388+ 3� = 1:08388 1:02388+ 3� = 1:05388

4 f0; 2; 9; 11g 1:02224+ 4� = 1:10224 1:02224+ 4� = 1:06224

5 f0; 1; 3; 8; 11g 0:996968+ 5� = 1:096968 0:996968+ 5� = 1:046968

6 f0; 1; 3; 8; 11; 24g 0:996746+ 6� = 1:116746 0:996746+ 6� = 1:056746

7 f0; 1; 3; 8; 11; 23; 25g 0:996745+ 7� = 1:136745 0:996745+ 7� = 1:066745

Table 1: Calculating optimal temporal controllers.

controllers lie within the same bound B = 50, which may be another constraint on control.

The optimal temporal controller found with � = 0:01 has � = 5 and D

o

5

= f0;�; 3�; 8�; 11�g

with a cost J

M

= 0:996968. Note that this cost is even less than 1:01269 which is obtained from

the optimal controller with equal sampling period 0:1sec and 20 control changes.

If we change control values only at three time instants with equal sampling period, 13M =

0:65sec, the total cost incurred is 2:2823(without computational cost) on the time interval [0; 2].

The cost is more than twice that of our optimal temporal controller and the terminal state constraint

is not satis�ed even at the end of the controlling interval of 2:0sec. Figure 4(b) clearly shows the

advantages of using an optimal temporal controller over using an optimal controller of equidistant

samplings. Their performances are noticeably di�erent though both of them are changing controls

at three time instants. It is clear that the optimal temporal control with three control changes

performs almost the same as 40 step linear optimal controller does. This implies that enforcing the

constant sampling rate throughout the entire controlling interval may simply waste computational

power which otherwise could be used for other concurrent controlling tasks in critical systems.

Obtaining D

o

3

for this example was simple since J

40

has only one minimum over the entire set

of possible D

3

s on [0; 40�]. Figure 5(a) and Figure 5(b) show that J

40

has only one local(global)

minimum at D

o

3

= f0; 2�; 10�g. We got this optimal D

3

by doing steepest descent search with the

starting point D

init

3

= f0;�; 10�g after searching for only three points, f0;�; 10�g, f0; 2�; 10�g,

f0; 3�; 10�g. Also, Figure 5(a) shows that choosing n

1

has greater in
uence on the total cost than

n

2

since the cost varies more radically along the n

1

axis in the �gure. This means that the initial

stage of the control needs more attention than the later stage in this linear control problem.

But, if we change one of the parameters of performance index function, R, from 0:0001 to 0:001

we get two local minima at D

1

3

= f0;�; 2�g and D

2

3

= f0; 3�; 19�g, among which D

2

3

is the
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Figure 4: Control trajectories with 3 control changes. (a)Optimal temporal control with D

o

3

=

f0; 2�; 10�g. (b)Optimal linear control with 13� (0:65sec) period.
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Figure 5: Cost function distribution over (n

1

; n

2

). (a)Costs on D

3

space. (b)Costs near D

o

3

=

f0; 2�; 10�g.
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Figure 6: Costs near D

1

3

and D

2

3

with R = 0:001.

optimal one with less cost. Figure 6 shows this fact. In this case we need to use steepest descent

search method at least twice with di�erent search starting points to get an optimal solution. We

implemented this steepest descent search algorithm in Mathematica and used it to generate D

o

�

for

several examples by varying �. For our examples of linear time invariant system control problems

the number of local minima was not so large that we could e�ciently apply this search method

just a few times with di�erent initial D

init

�

s to get a global minimum without doing an exhaustive

search over the entire D

�

space.

6 Discussion

Employing the temporal control methodology in concurrent real-time embedded systems will have

a signi�cant impact on the way computational resources are utilized by control tasks. A minimal

amount of control computations can be obtained for a given regulator by which we can achieve

almost the same control performance compared to that of traditional controller with equal sampling

period. This signi�cantly reduces the CPU times for each controlling task and thus increases the

number of real-time control functions which can be accommodated concurrently in one embedded

system. Particularly, in a hierarchical control system if temporal controllers can be employed for

lower level controllers the higher level controllers will have a great degree of 
exibility in managing

resource usages by adjusting computational requirements of each lower level controller. For example,

in emergency situations the higher level controller may force the lower level controller to run as
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infrequently as they possibly can (thus freeing computational resources for handling the emergency).

In contrast, during normal operations the temporal control tasks may run as necessary, and the

additional computation time can be used for higher level functions such as monitoring and planning,

etc.

In addition, the method developed in Section 3.2, which calculates an optimal controller when

control changing time instants are given, can be applied to the case in which the control computing

time instants cannot be periodic. For example, when a small embedded controller is used to

control several functions, it may be a lot better to design a temporal controller for each function

such that the required computational resources are appropriately scheduled while retaining the

required degree of control for each function.

7 Conclusion

In this paper we proposed a temporal control technique based on a new cost function which takes

into account computational cost as well as state and input cost. In this scheme new control input

values are de�ned at time instants which are not necessarily regularly spaced. For the linear

control problem we showed that almost the same quality of control can be achieved while much less

computations are used than in a traditional controller.

The proposed formulation of temporal control is likely to have a signi�cant impact on the

way concurrent embedded real-time systems are designed. In hierarchical control environment,

this approach is likely to result in designs which are signi�cantly more e�cient and 
exible than

traditional control schemes. As it uses less computational resources, the lower level temporal

controllers will make the resources available to the higher level controllers without compromising

the quality of control.
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