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1 Introduction

Environmental regulations such as the Clean Airsat lead to large air quality changes
which cover wide areas and affect many residert@hmunities. These types of
widespread non-marginal improvements in air qualtly have significant equilibrium
welfare effects across local jurisdictions as hbotds re-evaluate their residential
location choices and equilibrium housing pricesuatlj Traditional approaches to
evaluating the impacts of air quality regulatiorvéaelied on direct welfare measures.
These welfare measures are recovered directly thenestimated preference function of
consumers using either the hedonic framework (Ro6i4) or the discrete choice
framework (McFadden, 1973, 1978). However, theskkanee measures do not explicitly
account for the adjustments in housing prices whvih occur when widespread non-
marginal changes lead households to re-sort imdlsing market. As a result, they will
generally underestimate the full, i.e. equilibriumelfare gains from regulations that
result in widespread non-marginal improvemérits environmental amenities (Bartik,
1988).

Recent studies by Sieg et al. (2004) and Smithl.e(2804) have shown that
incorporating equilibrium price effects can sigcafntly alter the estimates of welfare
benefits from large environmental improvements. stance, Sieg et al. (2004) find
that the reductions in ozone levels during the fiears following the implementation of
the 1990 Clean Air Act Amendments led to equilibrigrice increases ranging from

11% to 20% in the Los Angeles Metropolitan areaeskhprice changes resulted in

! These are changes that are large enough to ledtetdck of environmental quality in the market.aks
example, consider the cleanup of all toxic wadtessihn the Los Angeles metropolitan area.



equilibrium welfare gains that were 13 percent bigtihan the direct benefits estimates
that do not account for equilibrium adjustments.

This dissertation develops a discrete choice lonatiequilibrium model to evaluate
the benefits of the 1990 Clean Air Act AmendmerTAAA) to Los Angeles area
households. The study makes two empirical contiobstto public economics. First, the
study provides the first application of the diserehoice equilibrium framework (Anas,
1980, 1982) to the valuation of large environmerdhhnges. Households’ location
choices are modeled according to the random ufitaynework of McFadden (1978).
The equilibrium model is closely related to the mlodf Bayer et al. (2005). This, more
recent, discrete choice equilibrium model follows differentiated product specification
of Berry, Levinsohn and Pakes (1995), henceforti® Bhy incorporating unobserved
attributes of residential locations in the housdhaiility function. The discrete choice
equilibrium framework provides an alternative te finamework proposed by Sieg et al.
(2004) for evaluating the welfare impacts of laggevironmental improvements. It also
allows for a richer characterization of householsisbstitution patterns and preference
heterogeneity.

Second, the study provides new evidence for theilgigional benefits of the CAAA
in the Los Angeles area. Using the changes in ozewss that occurred in the Los
Angeles area between 1990 and 2000 we estimatageverelfare benefits as well as the
distribution of welfare gains across income groupscently, Sieg et al (2004) have
provided estimates of the benefits of the CAAA lobse the changes in ozone levels that
took place between 1990 and 1995. With the avdithatlmf air quality monitoring data

for the year 2000, we are able to evaluate theflierd the CAAA from 1990 to 2000.



Little is known about the distribution of the beit@bmong households from the 1990
CAAA regulations. The only attempts at such an ysialhave focused on the spatial
distribution of welfare gain$.In other words, welfare gains in predominantly Hhig
income neighborhoods are compared with those init@meme neighborhoods. This
approach, however, fails to capture the distributod welfare gains and losses across
household characteristics such as income and lacely provides a comparison of the
welfare gains across neighborhoods.

The study also sheds new lights on the performahdbe representative consumer
approach to approximating expected compensatingtiar ECV) welfare measures in
discrete choice random utility models. A generalseld form expression f&CV does
not exist since the compensating variati@V) measure can be a nonlinear function of
the stochastic component of the utility. Two nuro@riapproaches have been suggested
for recoveringECV. Morey et al. (1993) suggested approximatiBGV by simply
computing theCV for a representative consumer. McFadden (1999)estgd a Markov
chain Monte-Carlo simulation approach for recowgritne ECV of each individual
consumer. McFadden argues that the representaiiv@umer approximation tBCV is
biased when large changes are considered. Howievarstudy of fishing mode choices
by California anglers, Herriges and Kling (1999dithat the two approaches lead to
similar welfare results. We provide additional erngal evidence on the relative
performance of these two approaches in the comtexteasuring equilibrium welfare

impacts.

2 See for example Shadbegian et al. (2004). Smith é2004) investigate the distributional impastshe
1990 CAAA using the projected air quality chandeghe Los Angeles Area for the year 2000, from the
EPA's 1999 prospective study. However, the actirajality changes between 1990 and 2000
significantly differ from the EPA projections.



Household preferences are estimated using a datéseh includes households and
housing units from the 1990 Census Public Use Miata Sample (PUMS), annual
ozone summaries from the California Air Resourcarpschool performance data from
the California Department of Education, and criméides from the California Criminal
Justice Statistics Center. Households’ residefd@dtion choices are characterized by a
discrete choice model in which equilibrium conditoare enforced. The model captures
the heterogeneity of household preferences fortilmzaamenities by incorporating
observed household characteristics in the utiliynction. Observed household
characteristics include household income, houselsitd, employment location and
educational attainment of the household head.

Estimation of the equilibrium welfare impacts ingorates price adjustments that
result from the fact that households alter thesidential location choice after the
changes in air quality throughout the Los Angelesad Computation of the equilibrium
price adjustments is obtained via simulation. UsI®§0 as a benchmark we simulate
market clearing prices for the counterfactual lmeetl equilibrium that would have
resulted in 1990 if air quality levels were ideatito those observed in 2000, while all
other housing attributes remained at their 199@I&vThe counterfactual equilibrium
reflects the changes in air quality that occurrethe Los Angeles area between 1990 and
2000. Other factors characterizing the Los Angedesa housing market, such as
population, household income and housing suppé/aasumed fixed in the simulation.

The empirical analysis focuses on the four countiethe Los Angeles area which
makeup the South Coast Air Quality Management [BistiThis area experienced

significant improvements in air quality during thdecade that followed the



implementation of the 1990 CAAA. Figure 1 providesegional map of the area. The
neighborhood average ozone concentration fell laripn1 percent between 1990 and
1995. By the year 2000, the average reduction oneZevels was close to 40 percent.
The changes in ozone levels also varied widely sscrihe area. The largest ozone
reductions occurred in the most polluted neighbodsolocated in the south-central and
south-eastern portions of Los Angeles County, dreldwestern portions of Riverside
County and San Bernardino County. On the other héredcostal neighborhoods of Los
Angeles County and Orange County, which already haa levels of ozone

concentrations, experienced minor ozone reductions.

Figure 1.1: The South Coast Air Quality ManagemenDistrict
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The empirical analysis suggests that the reductionszone concentrations across

Los Angeles, Orange, Riverside and San Bernardmuntees, provided an average



equilibrium benefit of $1,800 to households. In trast, average benefits are $1,400
when equilibrium price adjustments are not accalintemonstrating that ignoring
equilibrium effects will likely underestimate therefits of large environmental changes.
We find that the equilibrium welfare impacts of th890 CAAA, in the Los Angeles
area, varied significantly across income groupsudeébolds in the highest income
guartile experienced equilibrium benefits of appmmately $3,600 as compared to only
$400 for households in the lowest income quaniife. also find that ignoring equilibrium
adjustments in housing prices can significantlgrathe distribution of relative welfare
gains (i.e. welfare gains as a proportion of hoakemcome). Indeed, welfare impacts
that do not account for equilibrium effects suggstt high-income households have
larger relative welfare gains compared to low-ineoimouseholds. However, when
accounting for equilibrium adjustments, we findtthi@e distribution of relative welfare
gains from the 1990 CAAA is fairly even across imebgroups.

The remainder of this dissertation is organizedolews. Chapter 2 provides some
background information on the 1990 CAAA and thenges in air quality that occurred
in the Los Angeles area. Chapter 3 reviews thesatitvody of literature on the valuation
of housing amenities. Chapter 4 characterizesatetibnal equilibrium model. Chapter 5
describes the various datasets used to estimatemp@ical model. Chapter 6 estimates
the parameters of households’ preferences. Chaptdiscusses the measurement of

welfare impacts and reports the welfare resultapBdr 8 concludes the analysis.



2 Background and Policy Setting

This chapter discusses the main policy contexttha study, the 1990 Clean Air Act
Amendments (CAAA). The chapter also presents samekdround information on ozone
air pollution, and provides an overview of theauality changes that occurred in the Los

Angeles area between 1990 and 2000.

2.1 The 1990 Clean Act Amendments

The Clean Air Act Amendments of 1990 addressedetinnajor environmental issues in
the United States: acid rain, urban air pollutiang toxic air emissions. The amendments
are organized in seven titles. Title | establisihesv provisions for the attainment and
maintenance of the National Ambient Air Quality @tards (NAAQS). Title Il
introduced new provisions regarding air pollutioronh mobile sources. Title IlI
expanded the regulation of hazardous air pollufamitée Title IV set new requirements
for power plant emissions to control for acid rafitle V mandated the use of tradable
pollution permits to reduce pollution from majorusces and Title VI implemented new
provisions for the protection of the ozone layemaly, Title VIl introduced new
provisions expanding the authority of the U.S. Emwimental Protection Agency (EPA)
in the enforcement of air pollution regulations.

Titles | and Il of the amendments provide the nmaiovisions relating to air quality
regulation. Title | addresses the urban air palugproblems arising from ozone, carbon
monoxide and particulate matter (PM-10). Areas Widrich ambient levels of these

pollutants were above the target levels were dasgghas non-attainment areas by EPA.

% Based on U.S. Environmental Protection Agency 6200



Non-attainment areas for ozone were divided inte ftategories: marginal, moderate,
serious, severe and extreme. These areas wererd¢gaired to implement control
measures that vary with the severity of the noawattent status. For carbon monoxide
and particulate matter, areas that did not meefeitheral health standards were classified
into either moderate or serious non-attainmentstaireas exceeding carbon monoxide
standards were required to introduce oxygenateds fpeograms and/or implement
enhanced emission inspections. Depending on therigewf their status, particulate
matter non-attainment counties were either requicetnplement reasonably available
control measures (RACM) or best available contrebsures (BACM).

Title 1l tightened emission standards from autortesband trucks, two of the major
sources for ozone and carbon monoxide emissionshianized areas. The new standards
intended to curb tailpipe emissions of hydrocarba@bon monoxide, and nitrogen
oxide on a phased-in basis starting with 1994 nsod@&ldditional provisions for
improving fuel quality were also introduced. A negformulated gasoline program was
to be initiated in 1995 for the nine cities withetivorst ozone problems. In addition,
higher levels of alcohol-based oxygenated fuelsewer be introduced during winter
months in the 41 areas that exceeded the fedaradatds for carbon monoxide. The new
regulation also introduced a clean fuel car pilodgobam in California, calling for the
establishment of tighter emission controls for 089,&ehicles in model year 1996 and

300,000 by the model year 1999.



2.2 Ground-level Ozone Air Pollution*

Ozone (Q) is a gas which is found in the earth’s atmosphiésechemical configuration

is made of three oxygen atoms. The chemical streaifiozone is the same regardless of
whether it occurs miles above the earth surfac ground-level. However, the function
of ozone will depend on where it occurs in the aph@re. When it occurs in the in the
stratosphere, approximately 10 to 30 miles aboeeefwrth’s surface, ozone forms the
layer that protects all life forms from the sunlgaviolet (UV) rays. When ozone occurs
in the troposphere, the lowest portion of the ésudbtmosphere, it is a major air pollutant
that can have damaging effects on human respirdteglth, as well as plants and
ecosystems.

While stratospheric ozone occurs naturally in ttmasphere, tropospheric or ground-
level ozone is generally the result of urban atgtiiEmissions from industrial facilities,
motor vehicle exhaust, and chemical solvents prediicogen oxide (N¢&) and volatile
organic compounds (VOCs). The chemical reactiowbeh NQ and VOCs in the
presence of sunlight produces ground-level ozoneough ground-level ozone is
primarily an urban air pollutant, it may also ocauiess populated areas when Nand
VOCs are transported over long distances by priegaiinds.

Ground-level ozone can irritate the human respiyagystem, causing chest pain,
throat irritation, and coughing. Repeated shomtexposure in children can lead to
reduced lung function in adulthood. Ground-levebroz can also aggravate asthma and
other chronic lung diseases, such as emphysemarandhitis, and reduce the immune

system’s response to bacterial infections in tispiratory system.

“ Based on U.S. Environmental Protection Agency 7300



In addition to its effect on respiratory healthognd-level ozone can damage plants
and ecosystems. It can limit the ability of certagnsitive plants to produce and store
food, making them more vulnerable to diseasesctaseompetition, and harsh weather.
Ground-level ozone can also damage the leavesaafphnd trees, negatively impacting
the appearance of urban vegetation, national pask&] recreation areas. High
concentration of ground-level ozone can also redtrop yields and forest growth,

thereby impacting species diversity in ecosystems.

2.3 Air Quality Standards for Ground-level Ozone”

Under the Clean Air Act, EPA is required to setibia&l Ambient Air Quality Standards
(NAAQS) for pollutants that are considered to benifal to public health and the
environment. The Clean Air Act established primangd secondary national air quality
standards. Primary standards were designed to gporabe health of the general
population, as well as the health of sensitive gsosuch as asthmatics, children and the
elderly. Secondary standards, on the other hande weended to preserve public
welfare. They set limits to protect against deadagisibility and damage to animals,
crops, vegetation, and buildings.

Currently, two primary standards are used to régutaone levels in the U.S. The
national 1-hour standard for ozone, set at 0.18&gaar million (ppm) by volume, was
established in 1979. It is achieved when the exggenumber of days per calendar year
with maximum hourly concentrations above 0.12 ppasdnot exceed 1. In 1996, EPA

established a new national 8-hour ozone standarchwias set at 0.08 ppm by volume.

® Based on U.S. Environmental Protection Agency 6200
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This standard is attained when the 3-year averatgeedourth highest daily maximum 8-
hour ozone concentration measured at each monitioinvan area is less than 0.08 ppm.

On June 15, 2005 the 1-hour ozone standard wagedvno all areas and replaced by
the 8-hour standard, except in the fourteen 8-lozone non-attainment areas that were
part of EPA’s Early Action Compacts program. EaAgtion Compacts give local
communities the flexibility to develop their ownpapach to meeting the 8-hour ozone
standard, provided the communities control emissioom local sources earlier than the
Clean Air Act would otherwise require.

In addition to setting the NAAQS, EPA designatesaaras either non-attainment,
attainment or unclassified. The designation progelsys an important part in the
implementation of air pollution control measures $&tates and local governments.
Currently, an area is designated as non-attainrhé@ntiolates the national 8-hour ozone
standard over a three-year period. An area wildeésignated as attainment if it has air
quality monitoring data showing that the area hatsviolated the ozone standard over a
period of three years. Areas are designated dassifed if there is not enough data to

determine ozone levels.

2.4 Air Quality Improvements in the Los Angeles Area

The South Coast Air Quality Management District (AR) is the main regulatory body
for air pollution in the Los Angeles area. It enquamses Orange County and the urban
areas of Los Angeles, Riverside and San Bernat@dounty. The area is the most densely
populated urban center of the state of Califormid ia home to over 16 million people.
The South Coast Air Quality Management District hasorically exhibited some of the

worst ambient levels of air quality in the natiamdas currently designated by EPA as a

11



severe ozone non-attainment area (U.S. EPA, 2086e)y three years AQMD develops
an air quality management plan which identifies lenpentation measures designed to
bring the area in compliance of state and federajuality standards. Figure 2.1 provides
maps of ozone concentrations in 1990 and 2000hfifdur counties which makeup the
South Coast AQMD. The 1990 map shows a wide vanai ozone levels across the
area. Specifically, ozone concentrations were lbwethe coastal areas of Los Angeles
and Orange County. Average 1-hour ground-level ezammcentrations, in those areas,
were below the federal 1-hour standard (0.12 pgg»m)the other hand, the areas east of
the San Bernardino Mountains and south of the Sabri@l Mountains exhibited the
highest ozone concentrations in 1990. Average X-pmund-level ozone concentrations
in these areas ranged from 0.185 ppm to as higt2as ppm.

The South Coast AQMD counties experienced sigmficeeductions in ozone
concentrations between 1990 and 2000. Table 2drtseepverage ozone concentrations
from monitoring stations across the area. The @eelahour ground-level ozone reading
in 2000 was roughly 0.10 ppm, compared to 0.14 ppk®90. In addition, the number of
days exceeding the federal 1-hour standard sigmifig decreased between 1990 and
2000. The average number of recorded exceedengessdbe area was about 3.5 days in
2000, compared to nearly 36 days in 1990. Figufe &#so shows that the ozone
reductions were highest in areas with the worsumgddevel ozone concentrations in
1990. Average ozone concentrations fell by nea2lypércent at monitoring stations with
a recorded 1990 ozone level above the federal t4tandard (0.12 ppm). On the other
hand, monitors with a recorded 1990 ozone levebwelhe federal 1-hour standard

experienced an average reduction of only 28 percent

12



Figure 2.1: 1990 and 2000 Ozofi€€oncentrations for the Greater Los Angeles Area
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Table 2.1: Averagé Monitor Readings for Ground-Level Ozone

Study area Los Angeles Orange Riverside San Bernardino
County County County County
Ozone 1990 0.144 0.15 0.116 0.137 0.154
concentration | 2000 0.097 0.089 0.078 0.111 0.109
Ozone 1990 35.7 37.1 11.2 33.2 46.9
exceedencés | 2000 35 2 0.3 5.4 6

" Average top 30 1-hour daily maximum readings atitoos (parts per million).

™ Average number of days exceeding the federal 1-bpome standard at monitors.
" 3-year centered average.

Source: California Ambient Air Quality Data. 2004ta CD
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3 Valuing Amenities in Housing Markets: A Review

The idea that urban amenities will be capitalizatb iproperty values has provided
economists with a powerful tool for valuing locallghc goods. (Cropper, 1999) The
empirical evidence on this approach goes back tkdéRiand Henning (1967) who
estimate the willingness to pay for sulphate aitypion in St Louis, Missouri during the
1960s using house values across Census tracte B, a large number of studies have
investigated the benefits of various types of atyechanges using observed household
decisions in housing markets. This class of moddisown as property value models.
This chapter reviews the current empirical evidemtéhe property value approach to
valuing changes in environmental quality. The cbaf organized in three parts. Section
3.1 provides a review of the behavioral approacdiwed are used in property value
models. In Section 3.2 we discuss the various ambres to valuing changes in local
housing amenities. This discussion will also highti the types of datasets that are
required to carry out these methods. Section 3r8ega a special class of models,
referred as locational equilibrium models, whichvénvdbeen used to value large and
spatially dispersed amenity changes. A more congm&kie exposition of the theory and
methods presented in this chapter can be foundiimduist (2006) (see also Freeman,

2003 and Bockstael and McConnell, 2007).

3.1 Behavioral Approaches to Modeling Housing Choice

Property value models are generally concerned withracterizing the behavior of
households in a residential housing market. In éhe®dels the housing good or

residential location is treated as a differentigbealduct, i.e. a bundle of characteristics.
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Two behavioral frameworks have been used to chenaet households’ residential
location choice. The hedonic framework (Rosen, )Stharacterizes the household’s
decision in terms of choosing the optimal levels dontinuous characteristics of the
housing location. On the other hand, the discrét@ce or random utility framework

(McFadden, 1978) characterizes the household tmtatiecision as a choice among
discrete housing bundles.

The Hedonic Framework

The hedonic framework postulates that a householotsnal housing choice will reveal

their demand for environmental quality as well atheo location amenities. In

equilibrium, the price of each housing bundle isfuaction of the levels of the

characteristics which make up the bundle. The nmasiieal representation of this
mapping is referred as the hedonic price functidPK). The formal treatment of the
theory behind the hedonic approach is due to R@s&m).

Consider a consumer with inconyeand idiosyncratic taste choosing a housing
location with vector of continuous characteristi¥s=(x,,..,X;). These characteristics
will include housing attributes such as numberedrooms, age, as well as neighborhood
attributes such as air quality, school quality, gneblic safety. Letu=u(X,b;a)

represent the value that the consumer derives tlmmconsumption of a non-housing
good b) and the housing characteristicX).( The consumer chooses the optimal
combination ofX and the consumption of the non-housing goodt¢ maximize her

utility,

u=u(X,....X;,b;a), (3.1)
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subject to the budget constraint

y=P(X)+b. (3.2)

Where, P(X) represents the equilibrium HPF for the housingkearTheprice of the
non-housing good is normalized to $1. Lettingepresent the marginal utility of income,

the first order necessary conditions for an intesimution are given by

ou/ox; = A [BP/0ox;, =1,...,n (3.3)
ou/db=2A1, (3.4)
y-P(X)-b=0. (3.5)

Combining equations (3.3), (3.4) and (3.5) yields

ou(X,y—P(X))/0x;
ou(X,y—P(X))/db

=P/ ox, , i=1,..., 3 (3.6)

The left hand side of equation (3.6) is the margiage of substitution between th
characteristic and the numeraire non-housing gddiks marginal rate of substitution
represents the implicit price or the marginal wiiness to pay (MWTP) for characteristic
j in the housing market equilibrium. Equation (3iBjplies that, in equilibrium, the
implicit price of a characteristicis given by the slope of the HPF. It also chandmts

the marginal willingness to pay function for theeanity x;.
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We can also characterize Rosen’s bid function whiepresents a household’s

willingness to pay for a housing location with & secharacteristicsX = (x;,..,X, .)This

willingness to pay will be function of the charat$éc vector, the household’s income,
the household’s taste, and the level of utilityyided by the housing location. It will
later be used to characterize the household’s tiafuaf a non-marginal amenity change.

The household’s bid functiorf] = (X, U, y;a), is implicitly defined as:
uX,y-6;a)=u. (3.7

Implicit differentiation of equation (3.7) provideslditional insights on the shape of the
household bid function. Differentiating the bid &fion with respect to amenity holding

other characteristics constant, yields:

ﬂ_ﬁﬁzo_ (3.8)
axj db axj

Rearranging equation (3.8) we obtain the slopecamdature of the bid function in the

price-amenity space:

00 _ aulax]. _dP(X) >0
ox. du/ab ox. ’

J J

(3.9)

2 2
uj;uy Uy Ui —ugu,u; <0. (3.10)

18



Equation (3.9) holds from the first order condigort implies that the household bid
function has a positive slope in the bid-amenitacgpy Holding income constant, an
increase in the quantity of one characteristic waBult in a higher bid. Equation (3.9)

also implies that the household bid function igy&nt to the HPF at the chosen amenity

level, xJ Equation (3.10) says that the household’s bicttion is quasi-concave in the

bid-amenity space, suggesting that the marginalfbidan amenity decreases as the
guantity of the amenity increases.

From equation (3.7) we can also obtain additiongdrmation on the functional form
of the bid function. Differentiating the bid funati with respect to income we obtain that

the slope of the bid function in the price-incormpace is given by:

06 _auldb _,

A= Setulihtat=Y, | (3.11)
dy du/adb

This suggests that the household’s bid functicadiditively separable in the income level
y. A direct implication of this result is that thedbfunction can be redefined in the

following form:

O(X,u,y,a) =8 (X,U;a)+y, (3.12)

Where 8 (X,U;a) is simply the indifference surface which yields tevel of utility T .

6 can also be interpreted as the household’s expeadin the numeraire non-housing

good b, holding the level of utility constant. The spemtion of the bid function in
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equation (3.12) implies that the marginal bid fumictd &/0x; will be independent of the

household’s income.

Structural parameters for the household’s utilitpndtion can be recovered by

estimating the marginal willingness to pay functioR(X)/0x;, in (3.6). Rosen (1974)

suggested a two-stage approach for estimating tWel'®lfunction. In the first stage one

estimates the HPF via a regression of housing grae housing characteristics and
neighborhood amenities, and obtains the impliditepfor each amenity as the gradient of
the estimated HPF. The MWTP function for a housamgenity is then estimated by

regressing its implicit price on housing attribuéesl a set of household characteristics.

The majority of applications of the hedonic properalue approach have used the
first stage estimation of the HPF. Estimation of tHPF requires data on the prices,
characteristics and neighborhood amenities of dedupousing units. These data are
generally easy to obtain. This estimation doesregtiire information on the households
residing in the housing units. However, estimatafrthe marginal willingness to pay
function via the second stage does require theosochomic characteristics of the
household choosing each housing unit. These datadartypically available, and are not
contained in housing transactions data.

Two types of datasets are generally available lier éstimation of property value
models. These are Census public-use microdata andirty transactions microdata.
Census public-use microdata are generally aggrédatiarge spatial units to protect the
confidentiality of households. The main advantaQ€ensus public-use microdata is that
they are free and they also provide a detailedosetharacteristics of the household

choosing each occupied housing unit, which is dsdefor estimating the marginal
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willingness to pay functions in the second stag&ko$en’s (1974) approach. The main
limitation of these data is that the value of amewoccupied housing unit is given by
the owner's assessment instead of the actual whosaprice. In addition, they only
provide a limited set of characteristics for theisiag unit.

Most property value applications of the hedonistfistage estimation have used
housing transactions microdata. These data arebpalisaggregated and provide actual
sale prices of housing units. Housing transacttata also provide a comprehensive set
of characteristics for the housing units. Howevbese data typically do not include
household socioeconomic characteristics which areessary for the estimation of
marginal willingness to pay functions. Transactialeta are generally obtainable by
purchase from private companies which specializeah estate data.

The implementation of the two-stage hedonic estonas complicated by a number
of econometric issues which arise in the secongestaéhe first issue has to do with the
identification of the parameters of the marginallimgness to pay function. In general,
identification of the amenity demands can be a@udesither viaa priori restrictions on
the functional forms of the hedonic price functiand demand equations, or data from
multiple distinct housing markets. Palmquist (20p&)vides an extended discussion of
identification strategies that have been used & émpirical literature. Additional
identification strategies are proposed by Ecklahdle(2004) and Bajari and Benkard
(2002). An endogeneity problem also arises from fhet that implicit prices and
guantities of amenities are simultaneously deteechim the hedonic equilibrium. As a
result amenity prices and quantities will be catedtl with the structural errors in the

amenity demand functions. The correlation occursabse the structural errors contain
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omitted characteristics which, by virtue of the twid equilibrium, are correlated with

the observed prices and quantities. This means dhdihary least-squares (OLS)
estimation of the amenity demand functions will guoe bias estimates. A number of
strategies for valid instruments have been propaseke literature and are summarized
by Palmquist (2006).

The Discrete Choice Framework

An alternative to the hedonic property value apphog the discrete choice random
utility (RUM) framework (McFadden, 1978). Unlike géhhedonic approach, where
households choose continuous characteristics asihguwnits, this framework assumes
that households make discrete housing location cesoiand their preferences for
amenities are known up to an error term. Followthg notation introduced in the

hedonic approach, the consumer’s utility for chngs hous& is given by:

U =u(X,.,b,&;a), (3.13)

where the error termax characterizes the fact the true specification had ttility is

unknown. Since the choice of the house is a bimgision, the budget constraint is

reduced to:

y=R +h,. (3.14)

The consumer then chooses the house which prowielesvith the highest value. The

indirect utility for the chosen house is given by
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V(X ,y-p.&;a)=maxu(X,, y-P,&;a),.u(X,,y-P,&;:a)}. (3.15)

The probability that the household chooses a gnmrsek can also be obtained as

Prk) = Prlu(X,,y-PR.,&;a) >u(X,,y-PR,&;a)] Ok #1 . (3.16)

Prk) can be viewed as the household’'s expected defoaride housing locatiok. The
final expression of the choice probability will aem on the functional assumption about
the error ternz. For a given expression of the choice probabditg can estimate the set
of structural parameters characterizing the houd&ha@andom utility function. The
expected population demand for housing locakiaa obtained by summing the choice
probabilities across the household population.

Estimation of the random utility model is not witliceconometric issues. In order to
estimate household preference parameters, one readsume a functional form for the
error term which enters the indirect utility furati The estimation is greatly simplified
when the errors are assumed independently andadiytdistributed as Type | Extreme
Value (EV). This error structure however givesri® the multinomial logit model,
which assumes Independence from Irrelevant Alterest(lIA). More general error
structures can be used but with a greater computdticost. The nested logit model
provides a partial relaxation of the IIA assumptlmnassuming a Generalized Extreme
Value (GEV) distribution for the error term. A fulktlaxation of the IIA assumption can

be achieved with the random parameter or mixed logidel. In this model, the error
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term is assumed EV but the parameters of theyuéili¢ allowed to vary randomly across
individuals.

Identification of the parameters of the householdisdom utility function requires
housing prices as well as housing characterisndsreeighborhood amenities. These can
be obtained either from housing transactions met@ar Census public-use microdata.
When the random utility function includes househoidteraction parameters,
identification will also require household socioromic characteristics. Currently the
most spatially disaggregated microdata which caomemodate this requirement are the
Census long form files. Unfortunately, these datacnfidential and generally difficult
to obtain. An alternative is to use the Census iPdilide Microdata Sample (PUMS)
which contain the same information as the long féites but are spatially aggregated to

protect the confidentiality of the households.

3.2 Valuing Amenity Changes Using Property Value Models

The goal of most property value studies is to véloesing amenities. However, there are
a number of ways that this goal may be achievedt,Ehe researcher might be interested
in estimating the marginal value from an amenitarade. Second, the researcher may
want to estimate the willingness to pay of houseésdbr a non-marginal amenity change
at their residential location. Finally, the resdmrcmight be interested in measuring the
welfare impact from a policy or exogenous eventalhresults in a non-marginal
amenity change. Each of these questions requirdi$fexent empirical approach. We
discuss these approaches and their applicationth@éovaluation of environmental

amenities.
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3.2.1 Estimating the Marginal Value for an Amenity Change

Given equation (3.4) the valuation of a marginaraye in an amenityis a simple task.

It amounts to estimating the first stage of Rosdii'874) two-stage estimation. The
MWTP an for amenity is given by the gradient the estimated HIBIS(X)Iaxj. The
willingness to pay (WTP) for a marginal changyg is then obtained by multiplying the
MWTP, 9P(X)/dx; , by 4%.

Applications of Rosen’s first-stage hedonic apphoagerwhelmingly dominate the
empirical evidence on the valuation of environmeimgrovements. The majority of the
applications to air quality valuation were summadizn the meta-analysis of Smith and
Huang (1995). Empirical estimates of the MWTP far guality vary widely across
studies. The MWTP for a one percent change in aality ranges from $18 to $181.
More recent applications of Rosen’s first stagenestion to environmental valuation
include Beron et al. (2001) and Banzhaf (2005). fdmner study evaluates the benefits
of visibility improvements in the Los Angeles megiatitan area using residential housing
sales between 1980 and 1995. Banzhaf (2005) essnast-of-living indices for air
guality and other local public goods in the Los Aleg area using estimates of implicit
prices from a hedonic price function.

A potential limitation of the hedonic price estinoat in the context of air quality
valuation is due to an omitted variables bias. &entelevant neighborhood attributes can
be omitted from the hedonic price regression asesult of insufficient data. In
equilibrium, the provision of such attributes iselly to be correlated with air quality and
other observed public goods. As a result the estidhanplicit price of air quality will

generally be biased and highly sensitive to theiaghof functional form for the HPF.
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Recently, Chay and Greenstone (2005) have estinthedNVTP for total suspended
particulates (TSP) from a hedonic price regressian makes use of the non attainment
status of counties as an instrumental variable.(MWe study finds that IV estimates of

the WTP for air quality are more robust to varigpecifications of the HPF.

3.2.2 Estimating the WTP for a Non-Marginal Change

Valuing Non-Marginal Changes

Though the valuation of marginal changes is gehesasimple task, most environmental
policies lead to non-marginal amenity changes. kéninarginal changes, non-marginal
changes do alter the distribution of an amenitythe housing market. As a result
households may adjust their residential locatiooiahwhich may cause the equilibrium
HPF to shift. Following Bockstael and McConnell @Z), two non-marginal welfare
measures can be defined. The first welfare measheracterizes the household’s
willingness to pay for the change in amenity atirtmesidential location. This welfare
measure, termed “pure” WTP by Bockstael and McClnoaptures the direct welfare
impact of a non-marginal change on households wigleoring the fact that the
equilibrium HPF may shift. The full, i.e. equilibm, welfare impact from a non-
marginal amenity change must account for the sigiftif the HPF. This welfare measure
can be used to characterize the welfare gainsaasg$ from a policy or exogenous event
which leads to a non-marginal change in environadequiality.

Estimating the “Pure” WTP via the Hedonic Approach

Measuring the household’s willingness to pay foma@n-marginal change requires
estimating the parameters of the household’s hidtfan. Knowledge of the gradient of

the HPF is no longer sufficient as the non-margotange would lead to a movement
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along the household bid curve. The household’singiless to pay for a non-marginal
improvement in an amenifyat its current housing location can be definethaschange
in income which allows the household to consumestrae level of the numeraire non-
housing goodb as before the improvement. Because the bid fumasoseparable in
income, the WTP can be directly obtained as thaghan the household’s expenditures

on the numeraire (see equation 3.12):

WTP=6"(x;,x%;,u%a) -6 (X}, X%, ,u%a). (3.17)

The willingness to pay in equation (3.17) can &salefined in terms of the household’s

marginal bid function as:

o X, X2 ula
wWTP= | 06,5, 050) o

., 3.18
T , (3.18)

The “pure” willingness to pay can be empiricallgogered by estimating the marginal

willingness to pay function,

0P _ 0du/ox,
ox, duldb’

The marginal willingness to pay function is recackrvia the two-stage estimation

procedure suggested by Rosen (1974), which is itbeskin the previous section.
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Applications of the hedonic demand estimation te W#aluation of environmental
amenities are limited. Cropper et al. (1993) esEm& TP for non-marginal changes in
housing amenities using data from a simulated Imgusiarket. The welfare estimates are
then compared to those from a discrete choice mathel amenity demand functions are
identified via a linear box-cox hedonic price funot Chattopadyay (1999) uses data
from the Chicago area housing market to estimageWHP for clean air in terms of
particulate matter (PM-10) and sulfur dioxide ¢BOThe identification of the second
stage is achieved via functional form restrictians the hedonic price equation and
consumer preferences. A multi-market hedonic estimais used by Palmquist and
Israngkura (1999). The study uses housing data trorteen metropolitan areas in the
United States to value particulates (TSP), nitrogeide (NQ) and sulfur dioxide (S&
air pollution.

Estimating the “Pure” WTP via the Random Utility Agroach

The random utility framework can also be used @ratterize households’ willingness to
pay for a non-marginal amenity change at theirdesstial location. The willingness to
pay defined in equation (3.17) can be equivalestbted in terms of the change in
income necessary to bring the household to theinal utility level after an exogenous
change in an amenity (Bockstael and McConnell, 2005) Noting that thais merely

the indifference surfacei(x;, x

_;,b;a)=U solved for the numerairb =y - ¢, and

inverting equation (3.17) yields:

u(x?,x%,y=-pia) =u(x;,x%,y-pd -WTP.a). (3.19)
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The willingness to pay in equation (3.19) is comigaeferred as the compensating
variation (CV). Given estimated parameters of tbedehold’s random utility function in
equation (3.15) the WTP in (3.19) can be estimated.

Like the hedonic demand approach, the discretecehapproach to valuing non-
marginal changes has seen few applications todheation of environmental amenities.
One of the earliest applications was by Croppeaal.ef1993), who estimate preferences
for housing attributes using a multinomial logit deb and compare the WTP for non-
marginal changes with the hedonic demand apprdaalmquist and Israngkura (1999)
also compare benefit estimates, for air pollutieduction, from a multinomial logit with
hedonic demand estimates. However, the comparissnuesuccessful as they could not
obtain reliable welfare estimates from the multimainogit model. Chattopadyay (2000)
uses a nested logit model to value PM-10 air piolfuin the Chicago area. He finds that
benefit estimates from the discrete choice modeéreshconsistently lower than the
estimates from the two-stage hedonic approach. Mecently, Bayer, Keohane and
Timmins (2007) use a discrete choice model, whittoiiporates unobserved housing
attributes and household mobility constraints, tovgle an estimate of the WTP for

reductions in PM-10 concentrations.

3.2.3 Measuring the Welfare Impact from a Policy or Exog@ous Event

The “pure” willingness to pay measure will reveabhmuch households are willing to

pay for a non-marginal amenity change at theirdesste, all other things held constant.
While this is an important question, it does naiviie an answer to the broader welfare
guestion that is the welfare impact on househotdsnfa policy or exogenous event

which results in a non-marginal amenity change ssitwousing locations. The welfare
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impact from such a change may not coincide with “n&e” WTP measure. This is
because households are likely to re-evaluate theation choice, which may lead to a
shifting of the equilibrium HPF. Household choigeay change because the underlying
distribution of the amenity across housing locatiamll change when large changes
occur. As a result, the “pure” WTP measure, whisksutheex-anteequilibrium HPF,
will be misleading. The “pure” WTP measure from tlamdom utility framework will
also be incorrect as it still relies er-antehousing prices.

Bartik (1988) shows that the “pure” WTP will undstienate the welfare impact from
non-marginal policy changes. This is because tH&awmemeasure restricts households to
choose the same housing location in éxepostequilibrium. The full, i.e. equilibrium,
welfare impact of the improvement allows the how$eto re-optimizing their choice. In
the absence of mobility constraints, householdsheiimade at least better off as a result
of this adjustment. This follows from the LeChateloptimization principle (Bockstael
and McConnell, 2007). Hence the “pure” WTP providdewer bound to the full welfare
impact. It will generally underestimate the welfayains and overestimate the welfare
losses from a non-marginal improvement.

There is a special case when evaluation of theanelimpact from a non-marginal
amenity change can be carried out in a simple veygutheex-anteequilibrium HPF.
This occurs when the amenity change is localizesl, ¢onfined to a small set of
neighboring houses. For such a change the equitibHPF will not change since only a
small number of houses are affected. The implicat® that the gains and losses to
renters will be pecuniary. Assuming costless mghilienters will move along the HPF

until the marginal WTP for the change equals therease in rent. Any welfare gains
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(losses) resulting from the amenity change willoffset by an increase (decrease) in the
housing price. As a result, the welfare impact frin@ localized amenity change will be
confined to landowners and is given by sum of thenges in housing prices at each of
the affected housing locations. A complete concpfuwoof of this result appears in
Bartik (1988). Bockstael and McConnell (2007) pd®siadditional intuition on this
result.

To evaluate the welfare gains or losses from lammenity changes affecting many
housing locations within a market, we need to @ibji account for theex-postchanges
in equilibrium housing prices that would resultrfradhe re-sorting of households. The
two-stage hedonic estimation and random utility eledare only able to recover
household preferences and characterizeethanteequilibrium in the housing market.
Recently, models have been developed to expligittprporate equilibrium concepts
with the estimation of household preferences. Tlass of models, referred as locational

equilibrium models, is discussed in the next sectio

3.3 Locational Equilibrium Models

In contrast to the standard hedonic and discretgcehmodels, locational equilibrium
models are able to incorporate price adjustmends tbsult from the re-sorting of
households across housing locations in responsepolicy change. These models use
estimated structural housing demands to simulateuaterfactual equilibrium outcome
for a policy change. The concept of locationalqorting) equilibrium can be traced back
to the early work of Tiebout (1956). Tiebout was first to postulate that households
take account of the tax and expenditure policie®adl jurisdictions when making their

residential location choice. (Epple and Sieg, 1998jvever, until recently, there have
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been very few empirical attempts to estimate |locati equilibrium models. (Ferreyra,
2003)

Currently two classes of locational equilibrium retsl appear in the empirical
literature. One class of models is derived from thigan sorting equilibrium model of
Epple and Sieg (1999). This class of equilibriundele has been recently applied to the
evaluation of welfare impacts from non-marginal iemvmental changes by Sieg et al.
(2004). The second class of locational equilibriorodels is derived from stochastic
discrete choice models of housing demand (McFadt@n3 and Quigley, 1976). These
models have been mostly applied to evaluate urbantr@nsportation policy problems.
Anas (1982) developed the first locational equilibr model based on the discrete choice

theory of housing demand.

3.3.1 The Epple-Sieg Equilibrium Approach

Epple and Sieg (1999) provide a unified framewdrkheory and empirics for estimating
urban equilibrium models that arise from the sgrtoi households in a system of local
jurisdictions. The housing market is formed by xefl set of communities, i.e. local
jurisdictions, which constitute a metropolitan ar&ach community provides housing
services and local public goods including schodlligy public safety and environmental
amenities. The price and quantity of housing inheaommunity is determined by a
competitive market equilibrium. Provision of thebioa goods is financed by a local tax
on housing, and households are assumed to movg &&®ss local jurisdictions.
Households have preferences over a private gaod,local housing goodh, and a
local public good indexy which is assumed to be a composite function cayguall

locally provided public goods. In other words, ogiven community, g; = g(X;) where
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X; is a vector of community-specific public goods.udeholds differ in their income
endowment,y, and their tastex for the public goodg. The Epple-Sieg framework
incorporates aspects of the hedonic and the desctetice framework. Households make
discrete choices among communities differentiatgdhleir provision of the public good
g. Conditional on their community choice, househatésect housing as a continuous,
homogeneous good. Given the community-specific gralstax housing price, the

household maximizes its utility

u=u(a,qg,h,b) (3.10)
subject to the budget constraint

ph=y-b. (3.11)

The indirect utility derived from the householdgtionization problem is given by

V(a,g,p,y) =u(a,g,h(p,y,g(X);a),y- ph(p,y,9(X);a)) . (3.12)

It is assumed that the slope of the household’gf@rdnce curves in they( p) plane is
globally monotonically increasing i andy.” As a result, indifference curves in thg (
p) plane satisfy the single crossing property. insuout that a sorting equilibrium
emerging from preferences that satisfy the singtessing property will exhibit three
properties which are: boundary indifference, dicatiion, and ascending bundles. These

three properties will characterize the necessanglitions for the locational equilibrium.

" The slope of the indifference curve in tige) is defined asg—gp‘v:\7 .
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The following proposition outlines the necessarndibons which characterize the

locational equilibrium. Epple and Sieg (1999) pow/a proof.

Proposition 3.1 (Epple and Sieg, 1999):

Consider an equilibrium allocation in which no te@mmunities have the same housing
prices. For such an allocation to be a locationaildrium there must be an ordering of
community pairs, {@1, p1), ---, @, ps)}, such that the following conditions hold:

(i) Boundary indifference: Individuals on the “berd between any two communities are

indifferent between the two communities. The seheke individuals is characterized by
the following expression:

Iy ={(a,y)IV(a,9;,p;,y) =V(@, 0.1, P Y}, j=1,...,J1 (3.13)

(i) Stratification: Lety; () be the implicit function defined by equation @)1Then, for
eacha, the residents of communifyonsist of those with incomg given by:

yia(@) <y<y(a). (3.14)
(iii) Increasing bundles: Consider two communifi@ndk such thap; > px. Theng; > g«
if and only ify(a) > y(a).
The necessary conditions for the locational equilib are used to estimate a
parameterized version of the household indireclityutiunction. Estimation of the
preference parameters can be carried out usingifgpusansactions microdata. The
Epple-Sieg equilibrium model allows one to evaluhie welfare impact of policies that
lead to non-marginal changes in local public gootisis is because the estimated
household indirect utility function can be usedstimulate a new sorting equilibrium in
which households adjust their locations and equilib housing prices change.

The main advantage of the Epple-Sieg model is tih@testimation of preference
parameters does not require household socioecondnaiacteristics. In addition, the

computational burden required by the estimatiomusation and welfare computation is
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relatively low. However, these advantages come @ish. The necessary conditions for
the locational equilibrium require a very tight pareterization of the indirect utility
function. The main limitations of the framework uésfrom the fact that housing
amenities enter the utility via a single indgyand preference heterogeneity for housing
amenities is represented by the single paramet®ve discuss these limitations in the
context of an application to environmental valuatio

Valuing Non-Marginal Environmental Changes in the jgple-Sieg Framework

Sieg, Smith, Banzhaf and Walsh (2004) apply Eppid &ieg’s (1999) locational
equilibrium model to environmental valuation. Theidy provides the first empirical
analysis of the equilibrium welfare impacts of noarginal environmental
improvement$. The set of communities is characterized by 91 ekhdistricts.
Communities differ in their provision of the publjood indexg, which is a function of
community-specific amenities (including air qualjtand housing. The properties of the
locational equilibrium defined in proposition 3.lreathen used to estimate a
parameterized version of the household indiredityifunction, which is in turn used to
simulate alternative equilibrium outcomes for ches@n air quality at the school district
level.

The estimation of the model relies on a specifi@peeterization of the indirect utility
function. The specification of the indirect utilisges a Constant Elasticity of Substitution
(CES) functional form which is separable in the lpugood @) and the market goodh,(
b). In addition, the optimal housing consumptiorassumed to be log-linear in income

and housing price. The local public good indeis assumed to be a linear function of the

8 See also Smith et al. (2004) and Walsh (2003pfleer environmental applications of the Epple-Sieg
equilibrium approach.

35



community-specific amenities. The CES separablenfallows the housing demand to
have constant non-unitary income and price elasci Indifference curves from this

indirect utility are monotonically increasing i andy and hence satisfy the single
crossing property. This allows the characterizatodnthe three necessary conditions
(boundary indifference, stratification and ascegdibundles) for the locational

equilibrium defined by proposition 3.1.

Using the parameterized version of the househaldlant utility, one can characterize
the distribution of household inconyethe provision of the public good indgxand the
demand for housing within each community in the sorting equilibrium. The
stratification property is used to define the deh@useholds residing in each community
] in the sorting equilibrium. The distribution of dgehold income within communifyis
obtained by integrating the joint distribution aficome and tastes over the set of
households residing in By ordering the communities with respect to tleiding price,
the ascending bundle property can be used to defirepublic good indexy; in
communityj as a function of the community size, its own hogsprice p;, and the
housing pricep;+1 and public good levedj+1 in communityj+1. By normalizing the
public good index in the lowest community, the iragllevels of the public good index
in the remainingl-1 communities can be computed numerically via anseea algorithm
similar to the contraction mapping proposed by Retevinsohn and Pakes (1995). The
consumption of housing by a household with inconh@cated in community is derived
via Roy’'s identity. The distribution of housing camption within communityj is
obtained by integrating the individual householdndads over the marginal distribution

of income in community.
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Household preference parameters are estimated videwmeralized Method of
Moments (GMM) approach. The estimation makes udeabing transactions microdata
from five counties in southern California: Los Amgg Orange, Riverside, San
Bernardino and Ventura. The GMM estimation procedentails searching for the values
of the preference parameters that minimize the htedydistance between the between
the moments predicted by the model and the corneBpg sample moments observed in
the data. Given the distribution of household inegmthe provision of the public good
index g, and the demand for housing within each commupityiree sets of moment
conditions are formed. The first set of moment d¢tims matches the 550" and 7%’
guantiles of the parameterized distribution of lehudd income in each community, i.e.
school districtj with those observed in the housing sample. Engliguantiles of the
income distribution for each school district areamfeed from the 1990 U.S. Census. The
second set of moments matches th& Z5" and 78' quantiles of the parameterized
distribution of housing expenditures in each schd@trict with their empirical
counterparts. The final set of moments matchedeawels of the public good index, in
each community, implied by the locational equililoni with the value predicted by the
parameterized functional form. The parameterizedhfof the public good index is given
by a linear function of the air quality, school dtygand crime level in each community.

The estimated indirect utility function is usedewealuate the welfare impacts of the
changes in air quality between 1990 and 1995. Gémngair quality are converted into
changes in the public good indgxvia the estimated linear functional form for the
community public good index. The new community peiiglood indices are then used to

simulate a counterfactual locational equilibriunmn $®95. For a given exogenous change
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in the public good index g, Sieg et al. define tmertial and general equilibrium
willingness to pay of a household located in a camity j. The partial equilibrium WTP
is computed by holding prices and household looatiwices at their 1990 levels. This is
the “pure” WTP measure defined in section 3.2.ilt eharacterize the household’'s WTP
for the change in air quality in communjtyThe general equilibrium WTP makes use of
the new housing prices and household locations fi@nsimulated counterfactual
equilibrium. This measure represents the welfar@aieh, on the household, of the
changes in air quality across the communities. Thenmunity-level mean WTP
measures are obtained by integrating the housdeedd-WTP measures over the joint
distribution of income and tastes for the set afdeholds residing in each community.
Sieg et al. (2004) apply this framework to investegthe welfare benefits of the 1990
CAAA in the Los Angeles area. They find that eduilim benefits that account for
adjustments in housing prices differ substantidityn direct benefit estimates. The
average equilibrium welfare gain from the redudion ozone concentrations, which
occurred between 1990 and 1995 in the Los Angekss avas estimated at $1,371. This
compares with the average direct benefit of $1,2h0addition, the study finds a
significant amount of heterogeneity in welfare gadicross counties. Equilibrium benefits
were found to be highest in Los Angeles County3$8) and lowest in San Bernardino
County ($367). The study also finds considerablgatian in benefits across school
districts, within each county. For example, the idgium benefits in Los Angeles
County ranged from $486 in the Compton Unified sthtistrict to $9,000 in the Beverly

Hills school district.
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In a subsequent study, Smith et al. (2004) evatutite benefits of the 1990 CAAA
in the Los Angeles area for 2000 and 2010. UsiegBRA'’s projected changes in ozone
levels for 2000 and 2010 together with the estichdeusehold preferences from Sieg et
al. (2004), the study measures the equilibrium WadiPthe policy scenarios developed
for EPA’s prospective study (EPA, 1999) as thewteelto the households of the Los
Angeles area. The study also investigates theildigion of equilibrium benefits across
income groups. They present the benefits associaitbdthe 25", 50" and 75" income
percentile, for selected school districts in thesLAngeles Area. The estimated
equilibrium welfare estimates vary significantly re€s the household income
distribution. The distribution of the welfare estites also varies across school districts.
In the lowest income community, San Juacinto Udifechool district, the welfare
estimates are -$59 annually at thd 25come percentile as compared to -$28 at tHe 75
percentile. The welfare estimates in Beverly Halshool district, the highest income
community, are $3899 at the ®%ncome percentile as compared to $7406 at the 75
percentile.

Sieg et al. (2004) provide a major contributiorthie valuation of large widespread
changes in environmental amenities. The study gesvthe first explicit characterization
of the equilibrium impact of non-marginal amenityanges on household choices and
housing prices. Also, because it is based on th@eEpieg framework, the Sieg et al.
model is quite simple to implement empirically. Hower the specification of household
preferences, which is needed to ensure that theseary conditions for the equilibrium

are met, gives rise to a number of limitations.
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First, the characterization of the public good deads to patterns of substitution
across location amenities that are somewhat reég&id his is because location amenities
enter the household’s indirect utility function dligh the single indey. This can be
shown by looking at the marginal rate of substntbetween community characteristics.
For the sake of simplicity, let's assume that theme two community characteristics (i.e.

X =[xy, X2]). Taking the total differential of the utility fiiction in the X3, X2) Space we get

oU ag oU dg 99 4

-0. 3.13
B9 ox, 2" ag o, (3.13)

The slope of a household’s indifference curve #agx§) space is then given by

ag
dx _
- 14
o (3.14)

=,

Equation (3.14) defines the marginal rate of ststn (MRS) between the two
amenities. It is clear from equation (3.14) that MRS between the two community
amenities does not depend on either households, tasr the household incomg, As

a result, households are forced to have the sanmk@ngaof communities in the amenity
space. This vertical differentiation of communitg@splifies the estimation of preference
parameters and the computation of the locationailibgum. However, one would
generally expect households to have differentikaaireferences for community-specific

amenities such as air quality, education, and crifoe instance, other things equal, one
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would expect that households with children enroliech secondary public school will
have higher preferences for communities with gaammbedary public schools.

A second limitation of the Sieg et al. model redate the characterization of the
heterogeneity in households’ preference for locaimenities such as air quality, school
guality and crime. Heterogeneity in householdsfgnence for the public good index is
characterized by the single taste parametekyhose marginal distribution is assumed
normal. Hence a household’s marginal valuatiorafgiven community amenity is only
a function of the household’s income and does ngpedd on other household
characteristics. Households’ preferences for comtywspecific attributes are, however,
likely to vary across other household charactesssuch as household size, the presence
of children and educational attainment. For insanitighly educated household are
likely to have a higher marginal valuation for schquality. As a result, a preference
specification which incorporates an interactionnsn neighborhood school quality and
household educational attainment would allow thedehdo better fit the data. In
addition, when investigating welfare gains fromaanenity change, a researcher is able
to provide an analysis of the distributional imgaatross household characteristics other
than income. For instance, one may investigatelifiierential impact of an improvement

in air quality on senior households.

3.3.2 The Discrete Choice Equilibrium Approach

An alternative to the Epple-Sieg equilibrium franwelwvis the discrete choice equilibrium
framework. This is the equilibrium approach adoptedhis dissertation. Anas (1980,
1982) developed a theory of locational housing mequilibrium based on the discrete

housing choice model of McFadden (1978). In reggzdrs this framework has been
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extended to incorporate advances in urban economimd empirical industrial

organization. One such model was proposed by BayerTimmins (2005). Their model
incorporates endogeneous social interaction effastswell as unobserved location
attributes.

The discrete choice equilibrium approach providasd richer characterization of
preference heterogeneity and more general pattdrsabstitution. The discrete-choice
modeling of the housing choice allows communityesfoe amenities to enter directly the
utility function. This provides for more generabstitution patterns across communities.
In addition, the researcher can provide a richearatterization of the observed
heterogeneity in households’ tastes for locatiorities by incorporating interactions of
household characteristics and location amenitiés the utility function. This would
allow the researcher to evaluate the impact ofl&@yohange on various socio-economic
subgroups of the household population.

To date, discrete choice equilibrium models havenb@ostly used to analyze urban
and transportation policy changes. Anas (1982) uatat the impact of public
transportation projects proposed for the Chicagga an the early 1980s. Bayer et al.
(2005) use an equilibrium model similar to the Bagad Timmins (2005) model to
investigate the impacts of an increase in inconeguiality in the San Francisco bay area.
Timmins (2007) applies the equilibrium concept fr@ayer and Timmins (2005) to
evaluate the welfare costs of rainfall changes razB using labor market data. The
equilibrium model in this dissertation is basedlo® specification of Bayer et al. (2005).

Two main distinctions arise between our equilibriomdel and the model used by

Sieg et al. (2004). First, according to the Siegaletspecification households value
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community amenities through a single public goodein As a result, households will
have the same preference ordering of communitighenamenity space. This type of
preference structure generates substitution pattehat can be restrictive since
households are forced to have the same rankingrohwinities in the amenity space. In
our specification, substitution patterns are deteech by the interaction of household
characteristics and location attributes. Hence,sbbalds will have different relative
preferences for community-specific amenities suchiaquality, education, and crime.
Second, the interaction of household charactesistind location attributes also
provide a richer characterization of the heteroggnm household preferences for
location amenities. The taste heterogeneity widpeet to the community air quality
level is captured by interaction with the househaltbme. Heterogeneity in preferences
for school quality is captured via interaction wikie household’s educational attainment.
This approach differs from the Sieg et al. (2004pdei where heterogeneity in

preferences for amenities is characterized by@eumnobserved taste parameter,
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4 A Locational Equilibrium Model for the Los AngelesArea

This chapter develops the discrete choice equilibrmodel used to evaluate the welfare
impacts of the 1990 Clean Air Act amendments in lthe Angeles area. We model
households’ location decisions according to thenéaork of Bayer et al. (2005). The
characterization of the locational equilibrium @alls Anas (1982). Section 4.1 models
the residential location choice of households. iBec4.2 defines the locational

equilibrium.

4.1 Modeling Households’ Location Choice

The location model postulates that households @tusr residential locatioh from a
discrete set of housing typds)( A housing type is defined as a collection of $esiwith
identical observed characteristics and locatediwititle same neighborhood. The utility

that a householdderives from a residential locatibris given by:
Vin =alog(y' - P,) + )i, +thk:8ik +& &, (4.1)
k

wherey represents househoit monthly income angb, is the monthly rental price of
househ. di, is a dummy variable which equals 1 if the resi@dérnbcation is within the
household’'s employment zone. It is intended to wa&pthe household’s preference for
housing locations that are closer to its workplatee K" element of the vector of
observed attributes for residential locatioms given byx.. These are the housing and

neighborhood attributes that are present in theareber’s data. Housing characteristics
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include bedrooms, age, dwelling type, and tenuagust Neighborhood characteristics
include ozone concentration™ §rade math score, crime index, elevation, proxirtut
the pacific coastline, housing density and propoarof Hispanics. Other attributes of the
residential location that are observed by the hiooisebut not observed in the data enter
the household’s utility via the location-specifica term¢,. This term will capture the
household’s average valuation of the unobserveitbates. The last term;,, is a mean-
zero stochastic error which captures the unobsertgsie heterogeneity among
households.

Each household chooses the residential locatiorchwprovides it with the highest

utility. The household’s indirect utility deriveddim this maximization problem is given

by:

Vi, = MD%X alog(y' - p,) + W, +thk:8ik +&, + €&, (4.1a)
K

wherea, y andg; are parameters of the household’s preferenceiumet characterizes
the household’s marginal utility of the log of ima& while i captures the household’s

taste for location attributk The parameter characterizes the household’s disutility for
commuting to work. We explicitly account for the té@geneity in households’

preferences for location characteristics by allgvithe taste parameters to vary
systematically across households. The specificatidhe heterogeneous taste parameters
uses interactions between location characteristingd observed characteristics of

households. These observed household characterigtidude household income,

® So that the marginal utility of income is givendy(y; - pr).
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household size, the presence of children undeagieeof 18, and whether the household

head is college educated. The functional form fe& household’'s tastegsif) for an

attributek is given by:

Bi =B+ z Z, By (4.2)

wherez, represents the" characteristic of householdThe first term captures the mean

component of the household’'s taste for the atteidytwhich is common across all

households. The second term is intended to capystematic differences in tastes which

can be attributed to the household’s observed ctarstics.
The final form of the indirect utility function isbtained by substituting equation

(4.2) into equation (4.1a) for the chosen locatiors given by:

V,, =6, +alog(y' - p,) + ud;, +thkzir:81kr t &, (4.3)
kr
where,
0, = z XoiBok + S - (4.4)
K

Equation (4.3) outlines the two main componentghaf household’s valuation of its

chosen location. The first component, representedhb constant termdy), captures
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households’ common valuation of location attributd$is valuation is shared by
households regardless of their characteristics. ifstance, all else equal, households
would prefer a house with more bedrooms, less potiubetter schools, less crime, etc.
This common valuation represents the average yttiat households derive from the
residential locationh. The second component captures the householdwidodl
valuation of the location attributes. These indiatvaluations are assumed to arise from
differences in the observed characteristics of @bakls. For instance, all other things
equal, households of larger size are likely to sledmouses with more bedrooms.

As in Bayer et al. (2005) and Berry et al. (199Bg specification of the indirect
utility in equation (4.3) assumes that householdsehthe same valuation for the
unobserved attributes. Hence, we are not abledotiig heterogeneous preferences for
unobserved location attributes. Bayer et al. (20905)gest a two-stage approach to
estimate the parameters of the household locatoice model in equation (4.3). In the
first stage, one would recover the household-sjgetabte parameters;(y, f1) and the
location-specific constantgy. This stage can be implemented by maximum liloelth
estimation. Because of the large number of houstpgs the alternative constants are
estimated using the contraction mapping proposeBdiyy et al. (1995). The details of
the estimation are provided in Chapter 6. The s@&sbage then estimates the mean taste
parametersfp) from the regression specification provided by aopn (4.4) using the
location constants estimated in the first stage.

The household utility in equation (4.3) closelyambles the utility specification in
Bayer et al. (2005). However, there are two diffiees between our specification and

that of Bayer et al. (2005). One difference arigem the characterization of the non-
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housing good. We characterize the household’s eopsan of the composite non-

housing good using the terag(y; - p,). This allows the model to capture income effects

that are present in the household’s choice problemso allows us to derive Hicksian
welfare measures that are consistent with the ald's utility maximization problem.
In the Bayer et al. model the indirect utility doest incorporate the composite non-
housing good. The household income enters thetyutis a linear interaction with
location attributes, and the housing price enteesutility linearly as an attribute of the
residential location.

The second difference between our model and theemmd by Bayer et al. (2005)
is that we do not incorporate endogenous sociaraction effects. Social interaction
effects emerge from the fact that households mag abhout the average socioeconomic
characteristics of their neighborhoods. These &actaraction effects are likely to be
endogenously determined in the sorting equilibriuwhen households have
heterogeneous preferences. This is because thegavesocioeconomic makeup of
neighborhoods changes each time households résoour utility function the social
interaction effect is a result of households’ hoemgpus tastes for the proportion of
Hispanics in their neighborhood. Hence the socitdraction effect is exogenous since
the neighborhood proportion of Hispanics will nbiange as households resort. This is
due to the fact that households’ preferences, fa meighborhood proportion of
Hispanics, are assumed homogeneous.

Our specification of the household’s indirect tyildiffers fundamentally from Sieg
et al. (2004). Sieg et al. specify the indirectlitytiof a household residing in a

communityj as:
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Vij :[agjp +h(y;, pj)p]llp, (4.5)

where g; is the public good index for communifyand h(e) is a non-linear function
characterizing the household’s expenditures on ihguy; represents the household’'s
income whileq; is a parameter characterizing the heterogeneityhef household’s
valuation for the public good indeg; represents the housing price index for community
j.

Two main distinctions arise between our equilibriomdel and the model used by
Sieg et al. (2004). First, according to the Siegaletspecification, households value
community amenities through the single public gowtexg. As a result, households will
have the same preference ordering of communitighenamenity space. This type of
preference structure generates substitution pattéhat can be restrictive since
households are forced to have the same rankingrohwinities in the amenity space. In
our specification, substitution patterns are deteech by the interaction of household
characteristics and location attributes. Hence,sbbalds will have different relative
preferences for community-specific amenities suchiaquality, education, and crime.

Second, the interaction of household charactesiséind location attributes also
provide a richer characterization of the heteroggne household preferences for
location amenities. The taste heterogeneity widpeet to the community air quality
level is captured by interaction with householdome. Heterogeneity in preferences for

school quality is captured via interaction with theusehold’s educational attainment.
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This approach differs from the Sieg et al. modetrehheterogeneity in preferences for

amenities is characterized by the single unobseiavsd parameted,

4.2 Characterizing the Locational Equilibrium

We now turn to the characterization of the localcequilibrium for the housing market.
We first derive the predicted demand for each hausype. The demand side of the
market is made o heterogeneous households. The supply side ofdheitg market
comprisesN occupied housing units classified irtiohousing types. The supply of each
housing typeh is defined as the measure of housing units of typethe study area and
is assumed fixed. The locational equilibrium dedirreset of market clearing pricgs)
and household choice probabilitieB;{}.

Characterizing the Housing Demand

We will assume that the idiosyncratic error compune;, is identically and
independently distributed and has a Type | Extr&fakie (EV) distribution. Given this

assumption, the probability that a household che@seesidential locatioh is defined

by:

expd, +alog(y, = p,) + Wy + D X Z, Buc
kr

P(P,Z,X) =PrV, >V, g1 =
> expld,, +a10g(y; = Py) + Wi + D XuZi Bue]
kr

m=1

, (4.6)

The predicted aggregate demand for housing tygeobtained by summing the choice

probabilities P;,) over the household population.
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dh(p)ZZRh(plzilx)’ 4.7)

wherep is a vector of housing prices,is a vector of housing characteristics, and a
matrix of location attributes whose columns aye

Equation (4.6) characterizes a multinomial logit NM) choice structure. An
implication of the MNL choice structure is the ipdgmdence from irrelevant alternatives
(IA) property, which has been the subject of muziticism in the discrete choice
literature. Using equation (4.6) the ratio of thwice probabilities for two alternativés

and! will be given by:

expld, +alog(y, = p,) + Wy + D X2, Buc
_ih kr
P expld +log(y, = p)+dy +> %, Z By
kr

=expV, -V 1. (4.8)

ih
i

This implies that, for a given household, the ratidhe choice probabilities for any two
alternatives is independent of the household’sesyatic valuation of the remaining other
alternatives in the household’s choice set.

The IIA property gives rise to household choicetgras that are somewhat
unrealistic. This can be seen from the followingraple. Suppose that a town has two
restaurants, named Big-M and Big-K. Also, suppdsat the two restaurants have
identical characteristics except that Big-M onlyves beef while Big-K only serves
chicken. Furthermore, assume that the householiceharobabilities are given by:

Pr[choose Big-NEPr[choose Big-k=1/2. Now suppose that a new restaurant, Bigsh al
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serving only chicken is built in the town. All otheharacteristics of the new restaurant
are identical to the existing ones. Under the MNioice structure, the new choice
probabilities would be: Pechoose Big-M= Pr[choose Big-K= Pr[choose BigJ= 1/3.
But this is somewhat unrealistic as on would exmpestomers to treat the two chicken
serving restaurants as the same choice. This imfiiet the new choice probabilities are
likely to be: PrEhoose Big-N1= 1/2 and Prghoose Big-K= Pr[choose Big-P= 1/4.

It should be noted that while 1A is a property tbe individual household choice
probabilities in our model, it is not a propertytbé housing demands. This can be easily

seen by looking at the ratio of the predicted dessdor housing alternativésandl:

mzh

|
d, (p) in“ i Zy(gZexpM]} |

m#|

da(P) _ Z o izl/(H 2, 4PN

(4.9)

It is clear that this ratio is not independent lné remaining housing alternatives in the
choice set. The only instance when this ratio canirllependent of the remaining
alternatives is when households have identicaladtaristics. In this case the ratio equals
one. Hence, the inclusion of household characiesish the indirect utility function
ensures that the housing demands derived from tbhdeimwill exhibit realistic
substitution patterns.

Defining the Locational Equilibrium

The supply of housing units of types,, is assumed fixed and is given by the number of

housing units of typé in the data. The locational equilibrium is suchttthe demand for
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each housing type equals its supply. It is charaeté by a vector oH housing pricep
and a set oNH household location choice probabilitieB;f. More specifically, the

vector of market-clearing pricgsis defined by:
d.(p) =s, h=1,.., H. (4.10)

Equation (4.10) defines a systemtbequations irH variables.

Existence and Uniqueness of the Locational Equilibm

The existence of a unique vector of market-cleapriges follows under fairly general
conditions. The following proposition establishé® tuniqueness and stability of the

equilibrium price vector.

Proposition 4.1 (Anas, 1982).
Let ed (p)=d,(p)-s,define the excess demand for each residentialtitocai.e.

housing typeh. The vector of housing pricep*) which solves the system in (4.10) is
unique and satisfies Hicksian stability conditidgif®r eachh,

ded, [<O0 for h=m, -oco<p, <+o0
apm_>0 for h#m, -0 < p, < +oo

andlim, ., &h = (for eachh = 1,..., H In other words, all residential locations arécstr
gross substitutes in the allowable range of manais.

Proposition 4.1 is a well-known result in Walraseguilibrium analysis. Mas-Colell
et al. (1995, chapter 17) provide an extensivetrineat of general equilibrium theory. It

can be shown that the excess demand funceof(p safisfies the strict gross

substitution property provided that the househalcation choice probabilitieBy, are
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strictly decreasing in the housing pripg This will occur when the estimate for the

parameten is positive.
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5 Data Sources

This chapter describes the various datasets usetheanestimation of household
preferences. The focus of this study is on the tmumties that make up the South Coast
Air Quality Management District (AQMD): Los Angele€ounty, Orange County,
Riverside County and San Bernardino County. Theliegqum model incorporates a
discrete choice model of housing demand. Househaidsse their residential locations
from a discrete set of housing alternatives. Hoalslshhave heterogeneous preferences
for the housing characteristics as well as the himghood amenities of residential
locations. We estimate the parameters of househaileferences from a cross-section of
1990 microdata which includes household charatiesjs housing characteristics,
neighborhood air quality, neighborhood school dualineighborhood crime rate,
neighborhood racial composition, neighborhood haysidensity, neighborhood
elevation, and proximity of the neighborhood to Beeific coastline.

The chapter is organized in four sections. Sechdh describes the household and
housing microdata. In section 5.2 we describe tloequure used to compute the rental
price of housing across owner-occupied and rertemjgied housing units. Section 5.3
describes the neighborhood variables. In sectich e characterize the housing

alternatives. The STATA codes used to generatddteeare provided in Appendix A.
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5.1 Household and Housing Characteristics

Households and housing characteristics are obtdnoed the 1990 Census Public Use
Microdata 5-percent Sample (PUMS)These are records containing a 5-percent sample
of all housing units in the United States. The rds@rovide an extensive description of
the housing stock and the households in the ocdugheelling units. The PUMS are
extracts from the actual decennial Census long fguestionnaire, which are taken in a
way that protects the confidentiality of householdslike the confidential long form
files, which identify each household’s Census bldak area of approximately 100
people), the 5% PUMS sample only identifies theatmn of households in a PUMA
(Public Use Microdata Area), which is a Census ga&olgic area containing
approximately 100,000 people. The PUMS also idgrtife employment location of
household members by their workplace PUMA.

The 1990 PUMS 5-percent sample for the Los Angelesopolitan area comprises
224,565 occupied housing units. The original hoakksample consists of the 224,565
households that occupy those housing units. Oulysisafocuses on the households
occupying single and multi-family dwelling unitd4obile homes and group quarters are
excluded from the sample. In addition, we restoat sample to households that have a
monthly income of at least five hundred 1990 dsllaFinally, we dropped the
observations where the household’s reported moiitisyme was less than the imputed

monthly rental value of the housing unit. The fisample, which is used to represent the

% These data are publicly available from the U.SsDe bureau (www.Census.gov), or at
www.ipums.umn.edu/usa/vars.html.

' We describe the method for imputing the rentaligalf housing, as well the various issues with the
housing prices provided in the Census data, iméhx section.
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population of households and housing units in 8tisdy, consists of approximately
171,000 observations.

Sieg et al. (2004) estimate household preferenceanpgters using housing
transactions microdata from 1989 to 1991 in Los&eg, Riverside, Orange and Ventura
County. These data identify the Census tract irclviai housing unit is located. Sieg et al.
characterize residential communities using 1990oakldistrict boundaries. Housing
transactions data provide a more comprehensivefsebusing characteristics than the
Census long form. However, these data do not peoinébrmation on the households
occupying the houses. As a result they do not albow to estimate richer preference
specifications, such as those used Bayer et a05)2@vhere preferences for location
amenities vary across household characteristics.

Table 5.1 provides mean values for selected holgemal housing characteristics in
our 1990 PUMS sample. The microdata sample congrisgl,000 observations
describing households and their occupied housints.ulhe vast majority (nearly 70
percent) of the households in the sample resideosAngeles County. Orange County
has the second most households in the sample (1fthgwed by San Bernardino
County (10%) and Riverside County (3%).

The average number of bedrooms for houses in timplsais 2.25. We follow the
approach of Bayer et al. (2005) to compute an iegbunhonthly rental housing price
across tenure. A detailed description of the meibqatovided in the next sectidhThe

mean monthly rental housing price is $749. Montidysing prices are highest in Orange

12 \We construct a single price vector for owned amdal housing units by estimating a hedonic price
regression for each of the 3 metropolitan statsticeas in the PUMS sample (Los Angeles-Long Beach
Orange County, and Riverside-San Bernardino). €geasssions provide an estimate of the averageahtio
housing values to monthly rents in each metropobktatistical area. The average ratio for the sarég is
316.1. The average ratios are then used to cohwering values to their corresponding rental rates.

57



County ($956) and lowest in San Bernardino Couig0f). Half of the housing units in
the sample are owner-occupied. Riverside and SanaB#ino County have the largest
owner-occupied housing shares (0.63). Overall tbhesimg stock is quite young.
Nineteen percent of the houses in the sample waledfter 1980; 37 percent were built

in the 1960s and 70s.

Table 5.1: Mean Household and Housing Characterists in the 1990 PUMS

Study Los Angeles Orange Riverside San Bernardino
Area County County County County
Number of observations 170,955 119,726 28,209 5,642 17,378
Housing characteristics
Monthly housing price ($) 749 709 956 725 707
1 if unit owned 0.51 0.47 0.58 0.63 0.63
Bedrooms 2.25 2.09 2.58 271 2.66
1 if built in 80s or 90s 0.19 0.15 0.24 0.43 0.32
1 if built in 60s or 70s 0.37 0.33 0.56 0.33 0.39
1 if single family dwelling 0.62 0.58 0.66 0.77 6.7
1 if unit is within householder’s 0.505 0.529 0.444 0.447 0.466
employment zone
Household characteristics
Monthly income ($) 4,098 3,943 4,945 3,860 3,926
1 if Asian and non-Hispanic 0.082 0.089 0.075 0.041 0.055
1 if Black and non-Hispanic 0.091 0.111 0.015 0.072 0.080
1 if Hispanic 0.237 0.262 0.147 0.189 0.224
1 if White and non-Hispanic 0.585 0.533 0.758 0.689 0.633
1 if children under 18 0.417 0.405 0.396 0.505 R.50
1 if married and has children under 1 0.015 0.014 0.015 0.014 0.017
1 if householder is 65 or older 0.16 0.17 0.13 0.12 0.13
1 if householder has college degree 0.35 0.33 0.44 0.29 0.32
Household size 2.99 2.97 2.95 3.14 3.16

A household’s preference for housing locations trat closer to its workplace is
captured by a dummy variable which equals 1 if sidential location is within the
household’s employment zone. The household’s emmdoy zone is defined as the
PUMA of the household head’s workplace. Other gisidsee e.g. Bayer et. al, 2005 and
Takeuchi et al., 2005) have instead used the distém the householder’'s employment
location. However, in the PUMS data, the househtddemployment location is given by
the workplace PUMA. Hence the distance to the huooisler's employment location

cannot be calculated. Because the workplace PUM&reatively large geographic area
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we prefer using a dummy variable for whether th&dential location is within the
workplace PUMA, instead of the distance from th&dential location to the workplace
PUMA. The later turns out to be a noisier measRaighly half of the households in the
sample choose housing units which are located mitieir employment zone.

The lower half of Table 5.1 provides a summary afams for selected household
characteristics. The average monthly householdniecm the sample is $4,098. Orange
County has the highest average monthly income 4%}, @hile Riverside County has the
lowest average ($3,860). The racial profile of tmeisehold is given by the race of the
household head. The sample comprises 8 percentispanic Asian and 9 percent non-
Hispanic Black households. 58 percent of the hanlgishin the sample are non-Hispanic
Whites. Households of Hispanic origin make up 2B@et of the sample. The share of
Hispanic households is highest in Los Angeles CpA6%) and lowest in Orange
County (15%). Married couples with children undez age of 18 make up 1.5 percent of
the households in the sample. In addition, 16 pe¢roethe households in the sample are
headed by a senior person, while 35 percent of dimlds are headed by a college

graduate.

5.2 Computing the Rental Price of Housing across Units

The housing price is a key characteristic whicleraines the sorting of households in
our model. In the Census data the price of a husgported as the owner’'s assessment
of the market value, in the case of an owner-o@ipnit, or the monthly rent in the case
of a renter-occupied unit. To arrive at one priegiable which will characterize both
owner and renter-occupied units we follow the apphoof Bayer et al. (2005) by

converting the market value of owner-occupied utitsa monthly rental rate. Before
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describing this procedure we address some poteissakes with the reported market
value and monthly rent. The procedures describethig section were performed in
STATA. All the codes, as well as the regressionultss are contained in the data

appendix (Appendix A) provided at the end of thesdrtation.

5.2.1 Value of Owner-Occupied Housing

A number of issues must be addressed when usingptie value reported in the Census
long form. The first issue relates to the fact ting&t housing price reported in the Census
long form is based on the owner’s own assessmethteofmarket value. This assessment
may not always reflect the true market value of hbeise, as most owners may either
report the price of the house at the time of pusehar simply misrepresent the true
market value of the house. The second issue redghed$act that the housing values
reported in the 1990 Census are top-coded at $800,Because housing prices in
California are generally higher than the remainafethe United States, we would expect
to see a higher occurrence of binding top-coédesording to the 2000 Census 11.4
percent of houses in California where reported alae of $500,000 or more compared
to only 2 percent for the overall United States.our 1990 sample approximately 8
percent of the houses have top-coded values.

To address these issues, we construct a prediatad for each house by making use
of the property tax payment reported for each ovaoeupied housing unit. The
predicted value makes use of the fact that Calidolaw (Proposition 13) requires the
property tax to equal either 1 percent of the taatien price of the house at the time the
current owner bought the property or the value h&f house in 1978. The predicted

market value of each owner-occupied house is ofdaloy regressing the log of the
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reported house value on the estimated transactios,p.e. 100 times the property tax,
and a set of dummy variables for the year thaththese was purchased. The regression

specification is given by:

log(p,) = a,log(T,) +a,y, +&,. (5.1)

Where py, represents the reported market valligrepresents the estimated transaction
price andy;, is a set of year dummies.

If the reported values were true, and all house® wdentical except for the year of
sale, therw; would equal 1 and, would represent how much the house has appreciated
in value. If, on the other hand, long time ownessdt to underreport the value of their
house thenx, would underrepresent the appreciation of the haugbe market. In this
case, the predicted value of the house from equgfol) should be a conservative
estimate of the true market value. We replace ¢pented value for each house with our
computed estimate whenever the latter exceedotheef, which would represent a case
of significant underreporting on the part of thenan In the actual implementation we
allow the parameters to vary across sub-region®uwf study area by running the
regression in (5.1) for each of the three metrdaolstatistical areas (MSA) in the study
area. These are, Los Angeles-Long Beach, OrangetZand Riverside-San Bernardino.

To correct for the bias in the house values, ragultrom top coding, we use the
following procedure. First, we estimate equatiorl)iusing only the sample of houses
whose values do not equal the top-code. We therthesestimated parameters to predict

the market value for the houses with reported tmged values.
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5.2.2 Reported Housing Rents

As in the case of reported owner-occupied houseegabne may expect that reported
monthly rents of renter-occupied units may not espnt a fair assessment of the true
market rent. This is likely to be true when theidest has lived in the house for a long
period of time. In this case, we may expect that teported rent will be an

understatement of the true market rent. This cdeaceither a result of rent controls or
implicit tenure discounts. To correct this issue seenpute an adjusted market rent by
regressing the log of the reported market rent aetaof dummies characterizing the
tenure of the current owner as well as a vectdraofsing characteristics. The regression

specification is given by:

|Og(ph) = ,31 Yh +:32Xh+a41 . (5.2)

Wherey, is a dummy variable representing the year theeotirrenter moved into the
unit, andX; is a set of housing and neighborhood charactesiftir the house. As in the
case of housing values we run this specificationgach of the three MSAs in our
sample. The paramet@i in equation (5.2) represents the tenure disconra igiven

PUMA. The corrected rent is then obtained as:

corrected

Py =expllog(p,) = B.Y.] -
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5.2.3 Imputing the Rental Value of Housing across Units

In order to arrive at a comparable measure of Imguprice for both owner and renter-
occupied units, we convert owner-occupied houseeglinto monthly rents using the
approach described in Bayer et al. (2005). Potdd®®92) provides the theoretical
foundation for this approach. Sieg et al. (2004palse this approach to develop a price
index for each housing unit in their sample. Towh housing values into monthly
rents, we regress the log of the housing price geaalue or monthly rent) on a dummy
variable Qp), indicating whether the unit is owner occupiedd aa set of structural

housing characteristicXy).

log(p,,) = 11 Oy, + Vo, X U, (5.3)

We run this specification for each of the three MSJRos Angeles-Long Beach, Orange
County and Riverside-San Bernardino) in our samplee parametey; represents the
ratio of house values to rents for each MSA, cdlitigp for structural characteristics of
housing units. This is the user-cost of owner-o@iphousing as defined by Poterba
(1992). We use this ratio to convert owner-occugdiedse values to a corresponding
monthly rent.

To summarize, there are three sets of adjustméatsare used to characterize the
price of housing across owner-occupied and rertetymed units. The first adjustment
accounts for the fact that the house values coedaiim the Census data are self reported

and top coded. The second adjustment addresséacthinat housing rents contained in
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the Census data may misrepresent the true mankietTriee final adjustment deals with

converting owner-occupied housing values into migrénts.

5.3 Neighborhood Variables

Table 5.2 reports average values for the neighlmotfattributes used in the model. We
use the 1990 Census PUMA boundaries to characteeighborhood geography. This is
because the PUMS identify the geographic locatibma @welling unit as the Census
PUMA. A Census PUMA is a geographic area containapproximately 100,000

individuals. Sieg et al. (2004) characterize residd communities using 1990 school
district boundaries. They were able to do so bexdwmising transactions microdata
identify the census tract as well as the schodtididor each housing unit. Because they
had access to the 1990 Census long form files, Bayeal. (2005) were able to use
Census block boundaries to characterize neighbdsodhe census block is a

geographic area of approximately 100 individuals.

Table 5.2: Mean Neighborhood (PUMA) Characteristicdn 1990

Studv Area Los Angeles Orange Riverside San Bernardino
Y County County County County

Number of observations 79 55 11 3 10
8" grade math scofe 34.0 31.6 45.1 34.3 34.8
Crime (FBI index) 786.5 843.3 604.2 831.6 661.2
Elevation (meters) 200.7 172.9 63.2 345.6 461.8
PUMA is on pacific coastline 0.114 0.091 0.364 - -
Housing density (sg. km) 1,061.7 1,116.2 1,056.9 0222 479.4
Ozoné (ppm) 0.146 0.143 0.109 0.177 0.198
Exceedences national 1hr ozone standard 32.94 829.5 12.11 51.46 68.80
PM-10 annual averagad/nr) 55.51 51.87 60.45 68.72 66.12

TSchool district average for 1994 CLAS. Math tesires have been normalized so they fall betweerd(L80.
¥ Annual average of top 30 daily 1hr maximum reasii)JMA is assigned the 3-year centered average the closest monitor.
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The study area comprised a total of 87 PUMAs in(019%Bhis compares with
approximately 150 school districts and 2400 Centracds. The average PUMA in 1990
had approximately 3000 housing units. To reducesomeaent errors in characterizing
neighborhood attributes, the estimation only udg¢sRs whose boundaries are mutually
exclusive. PUMAs that are enveloped by other PUM®e excluded from the sample.
This reduces the number of PUMAs to 79. A map &f skudy area with the PUMA

boundaries is shown in Figure 5.1.

Figure 5.1: PUMA Bouwaries with Ozone and PM10 Monitors

| San Bernardino

T 5
iy \ t 'y
! — o |
Los Angeles 1 ¢ ¢
\E e

+ 1990 Ozone Monitors
4 1990 PM10 Monitors
| PUMA Boundaries

s

o 125 25 50 75 100

PUMAs are relatively large geographic units comgat@ Census tracts or school
districts. However, for the main attributes ugedhe estimation, the variation within

PUMAs is significantly small compared to the vanatacross PUMASs. Table 5.3 shows

65



within and between PUMA standard deviations forestd characteristics. For math
score, ozone and PM-10 values, the variation adPbHdAs is nearly five times larger
than the within PUMA variation. The difference maller though still significant for the
crime measure. The standard deviation of crime egsmlacross PUMAs is 20 percent
higher than the mean standard deviation within PidMWe therefore conclude that the

PUMA boundaries provide a good characterizationefjhborhood school quality, crime

and air quality.

Table 5.3: Within and Between Variation for Selectd PUMA Characteristics In 1990

Mean of PUMA Std. of PUMA Mean of within PUMA

values Means Std.
8" grade math score 34.0 35.5 5.7
Crime (FBI index) 786.5 770.1 631.9
Ozoné 0.146 0.040 -
Ozoné 0.148 0.031 0.006
PM-10' 55.5 11.0 -
PM-10 53.2 7.4 1.4

T Interpolation method: PUMA is assigned closest itoomeading.
*Interpolation method: PUMA is assigned distanceghd average of readings from 3 closest monitor.

5.3.1 Air Quality Data

The air quality data used in this study was obthifiem the California Air Resources
Board (CARB). CARB provides California ambient quality data for criteria and toxic
pollutants from 1980 through 2002. The data inclbdarly and daily values as well as
annual summaries collected from a large networknohitors dispersed throughout the
state of California. Annual averages for 1990, 198% 2000, are obtained for two major
primary criteria pollutants: ozone and particulatatter (PM-10). These pollutants have

been shown to have a significant impact on houpnges (Sieg et al., 2004). Ozone is
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measured as the average of the top 30 daily maximeadings at a monitor, while
particulate matter (PM-10) is measured by the ahge@metric mean.

Tables 5.4 and 5.5 provide descriptive statistiche monitor air quality data in the
study area. Average ozone concentrations in 199@ Wweghest in Los Angeles County
and lowest in Orange County. Ozone concentratietisbf/ nearly 40 percent between
1990 and 2000, with the largest reductions recomdélde worst areas. Monitor readings
tend to be strongly correlated across pollutangéhld 5.6 shows the correlation between
ozone, PM-10, nitrogen oxide (NOx) and sulfur dd=i(SQ). The correlation

coefficient for ozone and PM-10 at monitor locaaneasuring both pollutants is 0.44.

Table 5.4: Active Monitors Measuring Ozone and PM-Q in the Los Angeles Area

Study area Los Angeles Orange Riverside | San Bernardino
County County County County
Ozone | 1989-1991 50 20 6 11 13
1999-2001 43 18 6 6 13
PM10 | 1989-1991 18 6 2 5 5
1999-2001 19 6 3 5 5

Table 5.5: Average Monitor Reading for Ozone and PM-16°

Study area Los Angeles Orange Riverside | San Bernardino
County County County County

Ozone 1990 0.144 0.150 0.116 0.137 0.154

2000 0.097 0.089 0.078 0.111 0.109
Ozone 1990 36 37 11 33 47
Exceedances | 2000 3 2 0 5 6
PM-10"" 1990 55.4 51.5 42.3 61.1 59.5

2000 44.1 41.6 34.5 44.8 52.2

" Average top 30 1-hour daily maximum readings @mioaitor during a year (parts per million).

™ Number of days with a recorded violation the opesmational standard for ozone.

" Annual geometric mean (ugin

" The yearly reading for each monitor is obtainedtbymputing a 3-year centered average. For instaned,990 reading for monitor
x is computed by averaging the readings for 198901and 1991 at monitor x.

13 Source: California Ambient Air Quality Data. 20D4ta CD
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Ozone and PM-10 levels are also strongly correlatiéd secondary pollutants such as
nitrogen oxide and sulfur dioxide. The correlatooefficient between ozone and NOX is

0.47; for ozone and St is -0.56.

Table 5.6: Correlation between Primary and Secondar Pollutants In 1990

Ozone PM-10 Nitrogen Oxide Sulfur Dioxide
(NOx) (SO)
Ozone - 0.44 0.47 -0.56
PM-10 0.44 - 0.52 -0.54

Note:" Significant at 5 percent levél. Significant at 1 percent level.

The study area had a total of 50 active monitorasueng ozone between 1989 and
1991 (See Table 5.4). This compared with 18 mositeeasuring PM-10 concentrations.
We use two interpolation approaches to determimghberhood air pollution levels. The
first approach assigns to each PUMA the centergdaB-average of readings from the
closest monitor. If more than one monitor fallshiita PUMA, the PUMA is assigned
the average from these monitors. Sieg et al. (2084) a similar approach to assign air
guality levels to each house in their sample. Titeyn approximate the neighborhood air
quality level using the averages for the housed sokach school district. One potential
issue with this approach is that it may assignsdrae monitor readings to a collection of
neighborhoods, regardless of how far they are émt&tom the monitor. Hence, it does
not account for the fact that pollution concentmasi are likely to dissipate with distance.

The second interpolation approach uses a distaeoghted method. We generate a
pollution surface for the entire study area usifg ineter-by-100 meter grid cells. We
then assign to each grid cell a distance-weightextage of the readings from the 3

closest monitors. The neighborhood air quality raemass then computed by averaging
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the grid values within each PUMA. The two intergma approaches lead to similar
neighborhood ozone and PM-10 concentrations. Wewdbieg et al. (2004) and use the
pollution levels from the closest monitor intergaa approach in the estimation of
household preferences and the computation of veelfanefits.

Figure 5.2 shows a map of the neighborhood airityubdvels in 1990 across the
study area. The coastal communities of Los AngatesOrange counties had the highest
air quality levels in the area. On the other haaidguality was the worst in the inland
areas of Los Angeles, Riverside and San Bernambuaties. It is interesting to note that
the distribution of ozone levels does not appedirsit glance to be correlated with the
distribution of average household income acrosght@irhoods, shown in Figure 5.3. It
is not clear that higher air quality areas are tedan high income neighborhoods and
vice versa. In fact, some of the lower income siseich as Inglewood and Long Beach
are located in areas with very good air quality,ilevthigher income cities such as
Pasadena and Santa Clarita are in poor air quakiys.

The relationship between air quality and incomeeleumplied by the raw data is
merely reflecting the fact that households in tlos IAngeles area might care more about
other public goods (such as school and crime) thay do about air quality. It turns out
that the distribution of income is highly correldteith the distribution of school quality.
This also suggests that a more rigorous analysigesled to disentangle the relationship

between neighborhood air quality and householdnreco
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Figure 5.2: 1990 Neighborhood Ozone Levels
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Figure 5.3: 1990 Neighborhood Average Household Inme Levels
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5.3.2 Other Neighborhood Data

In addition to air quality, we collect data on atheeighborhood amenities that
households may value. These include school qualitgne and racial composition. The
racial composition of the PUMA is characterizedthg proportion of Hispanics. Finally,
three variables are used to control for unobsefaetbrs that may affect the level of air
pollution in a neighborhood. These are, mean el@vabf the neighborhood, the
proximity of the neighborhood to the Pacific com&t) and the housing density of the
neighborhood.

School Quality

Because California State law limits expendituretooél school districts, a more reliable
measure of school quality would be one that is thaseacademic performance outcomes
rather than expenditures (Sieg et al. 2004). Thifddaa Department of Education
(CDE) administers standardized tests that are tssetbnitor the academic performance
of public schools. In the early 1990s the Califarbhearning Assessment System (CLAS)
was administered to public schools throughout ttegeSof California. The 1994 CLAS
provides a measure of students’ academic perforenamanath, reading and writing.
More recent academic performance test scores aeAdademic Performance Index
(API1) and the STAR report.

We use the school district averad® grade math score from the 1994 CLAS as our
measures of school quality in 1990. Ideally onaiavant to use the 1989 CLAS data.
Unfortunately this dataset is no longer availabl&e neighborhood school quality
variable is computed by using a weighted averagbeotcores for all the school districts

that intersect the PUMA. We use the area of thedcHistrict which intersects the
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PUMA as weight. For instance, suppose PUM#Aas total area A and overlaps aaa)
of school districtx and areaa(y) of school districty. Then the school quality level for
PUMA j is computed aa(x)-score(x)/A + a(y) -score(y)/A

Figure 5.4 provides a map of the neighborhood leelbol quality data. The large
cluster of neighborhoods with the worst school duaévels is part of the Los Angeles
unified school district (LAUSD). The LAUSD is oné the largest school districts in the

United States and the largest in the State of @aild.

Figure 5.4: 1990 Neighborhood School Quality Levels
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Crime Rate
Currently, the most disaggregated crime data fdif@@aia is provided by the Criminal
Justice Statistics Center (CJSC) from the Officgéhef California Attorney General. The

CJSC compiles statewide, county and city crimassted and publishes them every year
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in the Criminal Justice Profiles. The crime varebised in this study is the FBI crime
index for each jurisdiction in 1990. The FBI crinmelex reports the number of crime
occurrences per 10,000 populations. The neighbarlcdme rate is computed using the
same weighting average method used to computedigdbbornood school quality. The
crime data is not as reliable as the school qualdta since it is only provided at the
jurisdiction level and not all of the study areansorporated. A map of the neighborhood

crime levels in 1990 is shown in Figure 5.5.

Figure 5.5: 1990 Neighborhood Crime Levels
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Elevation, Proximity to Pacific Coastline, HousinDensity
A number of factors may determine the level of @oflution in a neighborhood. For
example all other things equals, air pollution wdenerally be less in coastal

communities because of the prevailing west winisaddition, local climate conditions
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are likely to have a significant impact on the camtcation of air pollutants. Also, densely
populated urban areas generally tend to have momobution because of higher road
congestion. To account for these factors we addetmeighborhood variables to the
household preference specification. These aremi@n elevation of the neighborhood,
the neighborhood’s proximity to the Pacific coamsdli and the housing density of the
neighborhood.

The National Elevation Dataset (NED) is a producthe US Geological Survey. It
was developed by merging the highest resolutiontzesd quality elevation data across
the United States into a seamless raster formad.d&a is provided at a resolution of 1
arc second with the unit of elevation in meters. ¥8e the NED to calculate the average
elevation of each PUMA. The neighborhood’s proxymib the Pacific coastline is
measured by a binary variable which equals one [fodion of the neighborhood’s
boundary is on the Pacific coastline. The housiegsdy of the PUMA is given by the

number of housing units per square kilometer.

5.4 Characterizing the Residential Location

We characterize the household’s residential looatimoice alternatives in terms of 4037
discrete housing types. These are also referrédd@sing products. Each housing type is
a collection of housing units that are located imitthe same neighborhood and have
identical observed characteristics. Housing typesdefined in terms of six variables:
ownership status, number of bedrooms, dwelling ,typelt after 1980, built during the
1960s or 70s, and PUMA. The first five variablggresent the housing characteristics for
each housing type. We characterize the rental mica given housing typé as the

average of the rental prices for all units of typ&his is similar to the approach used by
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Berry et al. (1995) to obtain average prices of panducts. The neighborhood
characteristics for each housing type are givenhleycharacteristics of the PUMA (see
Table 5.2).

The ownership status is defined as either rentetymed or owner-occupied. The
number of bedrooms ranges from O to 5, giving @s$yprhe dwelling type is defined as
either single-family or multi-family. The variablébuilt after 1980” and “built during
1960s or 70s” are binary variables that equal ériei¢ and zero otherwise. Lastly, the
study area contains 79 neighborhoods. These segoaés provide a total of 7584 +(B+
2+ 2+ 2+ 79) possible housing types. The actual numbepoflinations that exist in the
study area is much smaller. We obtain a total &74@istinct housing products. This is
because some of the 7584 possible housing typestdexist in the data. For example, in
a given neighborhood there are eight possible tgbdésur-bedroom multi-family units.
However, some neighborhoods contain no multi-farfolyr-bedroom units. As a result
these neighborhoods will have zero, instead oftetghes of four-bedroom multi-family
units.

Using housing types rather than housing units taradterize residential locations
significantly reduces the number of alternativestl® housing market while still
providing a complete span of the product spaces Hais a direct implication for the
identification of preference parameters in thetfstage of the estimation. Indeed, a
necessary requirement for the identificationf the first stage is that the number of
observations be larger than the number of altareatpecific constants plus the number

of interaction parameters. This requirement is met when housing units are used to

14 A discussion of identification issues is providedection 6.3.

75



characterize residential locations, as the numlbeybservations (i.e. households) will

equal the number housing alternatives.
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6 Estimation Strategy

This chapter describes the estimation of the patensef the household’s indirect utility

in equations (4.3) and (4.4). In section 6.1 weratigrize the sampling framework used
to generate the household sample and the choic# saempled households. Section 6.2
discusses the details of the estimation strateggti®@ 6.3 discusses the properties of the
estimated preference parameters. Section 6.4 pgetdenresults of the estimation. The
estimation is done in MATLAB. All the codes usedire estimation are contained in the

estimation appendix (Appendix B) provided at thd efthe dissertation.

6.1 Sampling Framework

Two issues arise in the empirical estimation oftbasehold location choice model. The
first issue regards how to draw the sample of hooigls to be used in the estimation of
the model. The sampling of households is necedsecguse it is not computationally
feasible to estimate the model from the populatbéri71,000 households. The second
issue pertains to the relevant choice set for #rmepéed households. This is a classical
issue in the estimation of discrete choice modeée(for example McFadden, 1978 and

Quigley, 1985).

6.1.1 Drawing the Household Sample

We devise a sampling scheme that allows us to sseadler yet representative sample of
the households in the data. The sampling framewrsds a stratified, choice-based

sampling design. In particular, we draw a 10 percandom sample of the households

15 Ben-Akiva and Lerman (1985) provide a review ahping theory and applications to the estimation of
discrete choice models.

77



who choose each housing type. This produces thédample of 17,894 households used
to estimate the location choice model.

The choice-based sampling design does not proddodlyarandom sample of the
household population. Indeed, it is easy to showt tthe average household
characteristics from this sample will be biasedinestes of the mean household
characteristics in the population. An alternatieethe choice-based sampling design
would be to use a simple random sampling schemeleVdhsimple random sampling
design produces independent observations, it doeguarantee that every housing type
will be represented in the sample. This will likélg the case for housing alternatives that
are chosen by very few households. In other wdlssrandom sample may not produce
households from those residential locations. In a@tempt to provide a full
characterization of the housing market, we opteg@reserve the product space at the
expense of the independence of household obsemgatie correct for the bias in the
first stage estimation, resulting from the choiesdd sampling design, using the
approach of Manski and McFadden (1981). This ctioeds explained below in the

details of the estimation.

6.1.2 Determining the Choice Set of Sampled Households

The household’s relevant choice set or feasible cdetlternatives is an essential
component of the estimation. A sampling approachlss used to construct the choice
set. Potentially, one could set the household’'scehset as the 4037 housing types in the
sample. However, this would render the estimatiomputationally intractable. The
reason is that the computational burden of thenagton grows linearly with the size of

the household’'s choice set (Ben-Akiva and Lerm@&85). An alternative is to construct
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the choice set by sampling a few alternatives fthenfull set of available alternatives. In
particular, the household’s choice set includestiig household’s chosen residential
location and (ii) a random sample of 20 resideribahtions from the remaining non-
chosen alternatives. McFadden (1978) has showrstitdit a scheme will yield consistent
parameter estimates for the multinomial logit modielsection 6.4.2 we investigate the

robustness of our estimates with respect to treecdithe choice set.

6.2 Estimation of Household Preference Parameters

The parametersa( y, fo, p1) of the household indirect utility function defoheby
equations (4.3) and (4.4) are estimated from ainwuttial logit model. The estimation
follows the two-stage approach proposed by Bayeal.e(2005). In the first stage we
estimate K-1) alternative-specific constarfts(d,) and the household-specific taste
parametersd y, 1) in equation (4.3). The second stage estimateveltor of mean

taste parametergd) using the estimated vector of alternative cortstas the dependent

variable in the regression specification given yaion (4.4).

6.2.1 Recovering the Household-Specific Taste Paramete(Birst Stage)

The alternative-specific constant)(and the household-specific taste parameters, (
f1) are obtain via maximum likelihood estimation (MLEhe indirect utility in equation

(4.3) defines the household-specific multinomiadick probabilities given by:

16 Note: TheH™ alternative constant is set to zero.
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eXp[a-h + alog(yi - ph) + }'dih + Z Xk Gir ﬂlkr]
kr

P.(p.z,xd,a,y,8) = (6.1)

> expld,, + alog(y, = Pp) + Wy + D XuZ By
mC; kr

where C; represents the choice set of househbldGiven the household choice
probabilities, the log-likelihood for the househalabices observed in the data is defined

as:

L(d,a,y.3) =)D 1ulogR.(p.7.%3,a,y./3), (6.2)

i hOC;

wherelj, is a dummy that equals 1 whenever househgliboses locatioh in the data.
The estimates for the preference parameters, (31) and the choice-specific constants
(o) are then obtained via maximization of the logelikoodL (4, «, y, f1).

The closing conditions of the equilibrium model aimplicitly enforced via
maximization of the log-likelihood. As pointed ooy Bayer et al (2005), this can be

observed from the first order condition of the nmaiziation problem. Differentiating the

log-likelihood in (6.2) with respect t5h yields:

6|: ZZ(l_éh)-l_Z(_éh):zl_zI%h_zlsi'h:%_Zéhzo’ (6.3)

o, i ich ich  ich ich

where ﬁh is the estimated choice probabiligs,represents the sample housing supply for

alternativeh, and i Oh indicates that householdchooses housing typge Notice that

80



equation (6.3) closely resembles the equilibriumdition in equation (4.10). It is indeed
the sample equivalent of equation (4.10). Hence, ‘hctor of alternative-specific
constants which maximizes the log-likelihood alssurres that the equilibrium condition
in equation (4.8) holds for the sample.

The maximization of the log-likelihood in equati($2) with respect to the full set of
parameters «, y, 1) is computationally demanding. This is becausediheension ot
(the vector of location-specific constants) is gatlg large. In this study, the housing
market comprises a total of 4037 housing altereativlhis requires estimating 4036
alternative-specific constants in the first stafge.a result, maximizing the log-likelihood
using standard search algorithms (i.e. Newton-Raphguasi-Newton or direct search)
can be extremely slow and inefficient. A contragtimapping proposed by Berry et al.
(1995) allows one to circumvent this computatidmaiden by solving for the alternative-
specific constants separately using the first ocdedition in equation (6.3).

Equation (6.3) implicitly defines the vector ofahative-specific constants)(as a
function of the household-specific taste paramefers, 1) and the vector of housing-
type suppliesd). This allows one to derive a concentrated versiothe log-likelihood as

a function of &, y, f1). The concentrated log-likelihood is given by:

L.(@.y.5)=2. > 1nlogR,(8(a.y.B).a.y.53). (6.4)

i hC;

For given values ofef y, 1) that maximize the concentrated log-likeliholog we can
obtain estimates of the alternative constants byirgpthe system in equation (6.3). The

contraction mapping of Berry et al. (1995) providesjuick numerical solution to this
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system. It suggests solving iteratively for theali@n constants using the following

recursive algorithm:
87 =5,-1og YA, 8 @y ) 5, | ©5)

Berry et al. (1995) prove that the algorithm in &ipn (6.5) is a contraction mapping,
which means that it is guaranteed to converge figrsarting value 06. Convergence
generally occurs quickly. In our estimation, comesrce of the contraction mapping
usually occurs after 20 to 30 iterations. The cotimgutime is usually between 5 and 10
seconds on Pentium 4 2Ghz PC stations.

The first stage estimation can be summarized &sasi

i. Set an initial guess far.
ii. Given s, maximize the constrained log-likelihood in (6wijh respect tod, y, 51).
iii. Given the estimates o#( y, 1), solve foré using the contraction mapping in (6.5).

iv. Repeat (ii) and (iii) until the estimates conye.

It is easy to see that the above steps solve thierayof first order conditions for the
unconstrained log-likelihood in equation (6.2). Siinplies that the estimates produced
by this sequential estimation are indeed the MLtimedes of §, «, y, 1), which are

unique given the global concavity of the multinohhigit log-likelihood.
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6.2.2 Correcting for the Sampling Design

As discussed previously, the choice-based samplapgoach does not produce a random
sample from the household population. As a regdltlitional steps need to be taken to
ensure that the first stage MLE estimates are stergi It turns out that the log-
likelihood in equation (6.2) represents a speciec which requires only a minor
correction to achieve consistency. In fact, it baen shown (McFadden and Manski,
1981) that the MLE estimates af, ¢, 1) are consistent as long as (i) the choice model is
a multinomial logit and (ii) the model containsudl set of alternative-specific constants.
(Ben-Akiva and Lerman, 1985) Both of these condsgioare satisfied by the log-
likelihood in equation (6.2). In addition, a minaorrection will ensure the consistency of
the alternative constants when the sampling dasigach that each choice alternative is
a stratum and the population share of each stregudtnown. The consistent estimate of

Jn IS obtained as:

= G — (w/ ) (6.6)

wherew, is the fraction of the sample drawn from stratmand W, represents the
population share of stratum For the sampling design described in the prevsagtion,
each housing type represents a stratwm.is therefore the ratio of the number of
households drawn from housing type¢o the total number of households in the sample.

W is the proportion of the household population ciog each housing tyge
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6.2.3 Estimating the Mean Taste Parameters (Second Stage)

In the second stage, the mean taste paramgigrare estimated via ordinary least-
squares (OLS). We regress the vector of alternaipeeific constants estimated in the
first stage on the housing and neighborhood ateguThe regression specification is

given by:
5-h =thkﬁ0k +&,. (6.7)
k

The underlying assumption of the second stage semne is that the housing and
neighborhood attributes i®, are uncorrelated with the unobserved attributeghef
residential location. That is, they must be exogesnor at least determined prior to the
revelation of the household’s valuation for the los®rved attribute (Nevo, 2000). A
potential endogeneity problem may be due to thé tfat unobservable neighborhood
attributes may be correlated with neighborhoodyjaality. Bayer, Keohane and Timmins
(2007) address this issue by constructing an insni for neighborhood PM-10 air
pollution that uses panel data. In particular, tloeynpute the PM-10 measure, for a
location j, using changes in PM-10 levels originating fronurses outside locatiop
Though we recognize the potential endogeneity efrittighborhood ozone measure, the
fact that we have a small number of neighborhod@@3 [imits our ability to construct
reliable instruments. However, robustness checkgest that the endogeneity of the
PUMA-level ozone measure is not a severe problemr&turn to this issue below in the

estimation results.
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Differentiated product models (see e.g. Berry gtl#8195 and Bayer et al., 2005) have
used an instrumental variable (IV) approach to dedh the potential endogeneity
problem that arises when the housing price entersécond stage. This endogeneity is
caused by the fact that housing prices are likelybé correlated with unobserved
characteristics of residential locations. Howeve,do not instrument for housing prices
as they do not enter the second stage regressiwomm@del does not treat housing prices
as attributes of residential locations. Rather shayprices enter the first stage estimation
as part of the household’s budget constraint. Tigt Stage maximum likelihood
estimation does, however, assume that the housshelpenditure on non-housing

goods, i.e. the terrfy-p), is uncorrelated with the household-specific randaror term

(¢in)-

6.3 Properties of Parameter Estimates

6.3.1 Identification

We briefly discuss the identification of the paraens of the household’s indirect utility
function. Specifically, we ask what features of ta¢a allow for the identification of the
estimated parameters. A separate, though not tedelalentification argument can be
given for the each of the stages of the estimation.

A necessary data requirement for identificatiothef first stage parameters is that the
number of observations be larger than the numbaittefnative-specific constantisl-()
plus the number of interaction parametdgdst¢ be estimated. In particular Istbe the
number of households in the sample. Then we must treatN > H + k — 1 Note that

this condition has a direct implication for the dterization of residential locations and
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the household sample. First, it implies that thadetold sample used in the estimation
must be at least of siz¢ + k — 1 Second, characterizing the residential locatiass
individual housing units would imply th&t < H + k — 1 As a result, the alternative
constants may not be identified. Hence the neethdaoacterize residential locations using
housing products rather than individual houses.

Given that the data satisfies the necessary regame for identification, the
heterogeneous taste (i.e. interaction) parametdérbenvidentified, provided that there are
sufficient differences in the attributes of houdebb location choices across each
dimension of the household characteristics. Foraimse, suppose we hypothesize that
college educated households have a higher willisgte pay for school quality relative
the remainder of the population. Then, for the rextBon parameter between school
guality and college education to be identified, weed to observe a sufficient difference
(in this case positive) in the school quality levelf residential locations chosen by
college educated households compared to the reeranidhouseholds.

The alternative-specific constants, which will derize the mean utility from each
residential location, are identified by the vaoatiin the market sharbsof residential
locations. Simply put, if residential location A @ average preferred to residential

location B (i.e.0, > ;) then, all other things equal, we should obsereeenmouseholds

choosing A over B in the data.
The mean taste parameters in the second stagessiegreare identified from the
variation in the market shares of residential lmcet across housing and neighborhood

attributes. Notice that a necessary condition & the alternative-specific constants are

" The market share of a housing product is defirgeithe proportion of households choosing the housing
product in the 1990 PUMS data.
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identified in the first stage estimation. This slabobviously be the case, since the second
stage regression cannot be defined without thenalftiee-specific constants. We can
illustrate the second stage identification argunanfollows. Suppose, for example, that
we hypothesize that households place, on averagegative value on air pollution. Then
in order to identify the negative mean taste patantfer air pollution we must observe
that, holding all other attributes equal, residantcations in highly polluted areas have

a lower market share compared to residential lonati the least polluted areas.

6.3.2 Consistency and Asymptotic Normality

Similar to the identification argument, the asyntigt@roperties of the estimates can be
discussed in terms of the first and second statyma&tson. An in-depth discussion of the
asymptotic properties of the two-stage estimatorkmafound in Bayer et al. (2005). The
consistency and asymptotic normality of the fitspe estimates follow in the same spirit
as in the traditional multinomial logit estimatioBiven identification of the first stage,
the estimated alternative-specific constants andrbgeneous taste parameters will be
consistent and asymptotically normal as long asntiimaber of households\) in the
sample grows large (Bayer et al., 2005).

The argument for consistency of the second stggeoisever, less straightforward.
The complication arises because the dependentlaiimthe second stage regression is
the estimated vector of alternative-specific comstdrom the first stage. Hence a large
number of housing products is not sufficient to rgnéee consistency and asymptotic
normality. A formal proof is given in Berry, Lintcend Pakes (2004). They show that the
second stage estimates will be consistent as legi)athe number of housing

alternativesH, grows large and (iiH log H/N goes to zero. That is, not only mut
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grow large but the number of households in the $ammust also grow faster thah In
addition, asymptotic normality at a ratéH requires thatH/N be bounded. In other

words,N must grow at a rate faster thidf

6.4 Estimation Results

We estimate the specification of the householddiregct utility function in equations
(4.3) and (4.4). The study area had a total of&i¥@ monitors measuring ozone between
1989 and 1991 (see Table 5.4). This is compareld avity 18 monitors measuring PM-
10 concentrations. We use ozone concentrationisaiacterize air pollution in 1990. Due
to the high correlation among the household charestics we only estimate a limited set

of interaction parameters in the first stage.

6.4.1 Parameter Estimates

Table 6.1 summarizes the results of the estimafibodel 1 estimates the benchmark
specification which is used in the welfare estimati The other models provide
robustness checks which are described below. Theeold-specific taste parameters
estimated in first stage are all significant. Timeraction parameters also have the
expected signs except for the interaction paranieteveen crime and household income.
We find that households with higher income levaséa higher willingness to pay for
air quality, which is in accordance with the hypegtis that air quality is a normal good.
We also find that larger households are willingptioy more for additional bedrooms.
Households with college educated heads tend to hasteonger preference for school
quality. This is in accordance with the hypothasiat educated people place a higher

value on the quality of their children’s educatidfiouseholds also prefer residential
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locations that are within their employment zone.isThupports the hypothesis that

households dislike commuting.

Table 6.1: Estimation Results

Model 1 Model 1a Model 2 Model 3 Model 4
First Stage
Log(y-p) 1.475 - 1.499 1.649 2.057"
Ozone * Log(y-p) -0.01% - -0.020° -0.028 0.01"
Bedrooms * Household size 0.066 - 0.066 0.066" 0.064"
Single family * Children under 18 0.227 - 0.227 0.227" 0.165
Math * college 0.309 - 0.31" 0.244 0.337"
Log crime * Log(y-p) 0.00% - - -0.01% 0.026"
Within household’s employment zone 1.889 - 1.989" - 2.194
Log-Likelihood -37,072 - -37,072 -40,719 -47,733
Likelihood Ratio statistic (5 5=0) 25,996 - 26,009 26,857 5,541
Likelihood Ratio p-value (i =0) 0.000 - 0.000 0.000 0.999
McFadden pseudo®R 0.319 - 0.319 0.252 0.124
Observations 17,894 - 17,894 17,894 17,89
Second Stage OLS
Bedrooms 0.04 0.041 0.04 0.044 0.155
Built after 1980 -0.59% -0.594" -0.594" -0.596" 0.267"
Built in 60s or 70s -0.172 -0.171 -0.17% -0.169 0.131
Single family dwelling 0.352 0.346" 0.353" 0.349" 0.185
Owned 0.054 0.057 0.053 0.04 0.044
Math test score 0.139 0.177 0.153" 0.086 0.097
Log FBI crime index 0.0005 -0.0005 - 0.003 -0.044"
Log Elevation 0.016 0.035 0.007 -0.018 0.066
PUMA is on Pacific coastline 0.342 0.378" 0.327" 0.315 0.167"
Log Density 0.079 0.075 0.068 0.001 0.188
Prop. of population Hispanic -0.380 - -0.32 -0.498" -0.611"
Ozone 0.161 0.120 0.17 0.211 -0.095
R? 0.054 0.053 0.054 0.052 0.302
Observations 4,037 4,037 4,037 4,037 17,89
Notes:

™ Significant at 1% level. Significant at 5% level. Standard errors are computed using White’s robmsiriance matrix.

*Model 1 : Benchmark specification used in the $ition and welfare analysis.

Model 1a: Estimates the second stage @fitSout the variable “proportion of Hispanics”. This igénded to check the

endogeneity of neighborhood ozone.

Model 2: Estimates the first and second staikeout the “crime” variable.
Model 3: Estimates the first stagéthout the “employment” variable.
Model 4: Characterizes residential locations ugmtvidual houses instead of discrete housing types
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The positive and significant interaction betweee tbg of crime and household
income is contrary to our intuition. We would tetwl expect that public safety is a
normal good. This means that households with adnigitcome would want to have more
public safety and hence be willing to pay more.siWwould imply a negative sign for the
interaction of crime with income. As described mapter 5, the crime variable is quite
noisy as crime rates are only available at theleigl. Also, as Table 5.3 shows, there is
not enough variation in the crime variable acrosgmborhoods. These factors may
contribute to the counterintuitive interaction effeetween crime and income.

The mean taste parameters estimated in the set¢agd also generally have the
expected signs. On average, households are founmefer more bedrooms, owner-
occupied dwellings, single family dwellings, bettasichool quality and coastal
communities. The second-stage ozone coefficienbtistatistically different from zero at
either the one, five or ten percent level. The meste for ozone can be obtain by
multiplying the ozone-income interaction coeffidierD.02, by the mean of Log(y-p) in
our sample, 8. The fact that the average tasteotamer-occupied dwellings is not
significant may be due to the positive correlatisetween single-family and owner-
occupied dwelling. The sample correlation coeffitibetween the two variables is 0.68

for the housing units in the study area.

6.4.2 Robustness Checks

Endogeneity of Neighborhood Air Pollution
As discussed in the previous section, the estimfateone pollution in the second stage
regression is likely to be endogenous as a neigiitool's ozone level may be correlated

with unobserved neighborhood socioeconomic vargatilat enter the error terry,). As
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a result the estimated mean taste parameter fompdalution may be biased and
inconsistent. The direction of this bias is to make coefficient less negative, as air
pollution will generally be positively correlatedittv neighborhood characteristics, such
share of low-income households and share of ethmiwrities, which are generally
disliked by households. This could explain the posiestimate of ozone pollution in the
second stage regression.

As explained previously, the small number of neahlbods in our data limits our
ability to construct reliable instruments. Howewse do a simple robustness check for
the endogeneity problem that would result from tberelation between neighborhood
ozone level and unobserved neighborhood charattsrighis involves estimating the
second stage OLS regression without the propodfdtispanics. The assumption is that
the unobserved neighborhood socioeconomic variaskesorrelated with the proportion
of Hispanics in the neighborhood. Hence, if theneztevel is correlated with unobserved
socioeconomic characteristics, removing the neiditmd proportion of Hispanics from
the second stage regression should significantigele the bias in the estimated ozone
mean taste parameter. Model @t Table 6.1 reports the results from the alternate
regression specification. We find that the estimateone coefficient remains positive
and insignificant. The magnitude of the coefficieglso roughly the same in Model 1
and Model la. We should again note that the meste far ozone remains negative, as
the ozone-income interaction coefficient is the saoross models 1 and la.

Robustness Checks with Respect to the Crime and lBympent Variables
As mentioned previously, the crime variable is guitoisy as crime rates are only

available at the city level. One may wonder whether noisiness in the crime variable
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may significantly affect the estimates of the tgsieameters for the other neighborhood
variables. Model 2 of Table 6.1 runs the estimatothout the crime variable in both
first and second stages. The estimated parametensthis model are very similar to the
estimates in Model 1.

The estimated taste parameter for the householéfenence for locations that are
within its employment zone is significantly largeabsolute value compared to the other
taste parameters. It is possible that the employrdemmy may also be capturing
household-specific preferences for other neighbmidh@haracteristics that are not
observed in the data. To the extent that thisescdse, one may wonder if the presence of
the employment dummy significantly distorts thermaated coefficient for ozone in both
the first and second stages. As a robustness chexkun the estimation without the
employment dummy in the first stage. The resulésraported in Model 3 of Table 6.1.
Except for the coefficients involving the crime e, the remaining of the estimated
parameters are similar to those in Model 1.

Alternative Characterization of Residential Locate

We explained in section 5.4 that the residentiahfions are characterized in terms of
housing types, rather individual housing units.sThot only reduces the computational
burden of the estimation, but also plays a key moléhe identification and asymptotic
properties of the estimates (see section 6.3). Wksdential locations are characterized
in terms of individual housing units, the altermatconstants may not be identified since
N < H + k — 1 One would essentially be trying to recover moreapeters than the

number of observations in the first stage estinmatio

18 HereH is the number of housing alternatives &ndpresents the number of interaction parametebs to
estimated in the first stage.
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Model 4 of Table 6.1 estimates the household peefsr parameters by
characterizing residential locations using housimgis. This is the approach used by
Bayer et al. (2005). The sample of housing altéraatis formed by taking a random
sub-sample oH (= 17,894) housing units from the 171,000 houseth@1990 PUMS
data for the study area. The household samplevendiy the households choosing the
sampled housing units (i.B. = H). This means that the first stage will involveimsiting
N-1 alternative-specific constants plkisteraction parameters from the location choices
of N households. Hence there are not enough obsersataxplain all the parameters in
the first stage estimation. This is reflected bg likelihood ratio test result for the first
stage estimation. The joint null hypothesis that ¢lstimated alternative constants are all
zero cannot be rejected.

Alternative Sampling Strategies

We also check the robustness of the estimatedrprefe parameters with respect to the
size of the household’s sampled choice set. Inigedd.1.1 we explained that the

household’s relevant choice set includes (i) theseh alternative and (ii) a random

sample of 20 non-chosen alternatives. Model 5aabld 6.2 re-estimates the preference
parameters using a choice set that includes (icHusen alternative and (ii) a random
sample of 10 non-chosen alternatives. Model 5b asesdom sample of 50 non-chosen
alternatives to form the household choice set. €kmated parameters from both

specifications have the same signs with the caeffts in Model 1. The magnitudes of

the estimated parameters are also very similasadre specifications.
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Table 6.2: Alternative Sampling Strategies

Model 1 Model 5a | Model 5b Model 6a | Model 6b
First Stage
Log(y-p) 1.475 1.394 1.536" 1.6" 1.56"
Ozone * Log(y-p) -0.01% -0.023 -0.019 -0.027" -0.021"
Bedrooms * Household size 0.066 0.07" 0.066" 0.067" 0.053"
Single family * Children under 18 0.227 0.271" 0.225 0.217 0.253"
Math * college 0.309 0.37" 03" 0.295 0.297
Log crime * Log(y-p) 0.004 0.001 0.006 0.006" 0.009"
Within household’s employment zone 1.589 | 1.986" 2.006 1.971" 1.961"
Log-Likelihood -37,072 -27,104 -51,690 -67,241 - 5B
Likelihood Ratio p-value (b & =0) 0.000 0.000 0.000 0.000 0.000
McFadden pseudo?R 0.319 0.368 0.265 0.353 0.365
Observations 17,894 17,894 17,894 34,13p 67,304
Second Stage OLS
Bedrooms 0.04 0.03 0.045 0.048 0.05"
Built after 1980 -0.594 -0.602 -0.588" -0.596" -0.59"
Built in 60s or 70s -0.172 -0.18" -0.168 -0.18" -0.175
Single family dwelling 0.352 0.359" 0.356" 0.351" 0.355
Owned 0.054 0.06 0.041 0.045 0.047
Math test score 0.139 0.13 0.14% 0.147" 0.138
Log FBI crime index 0.0005 0.001 0.0001 0.000 0.00(
Log Elevation 0.016 0.009 0.025 0.028 0.028
PUMA is on pacific coastline 0.342 0.341" 0.334 0.341" 0.349"
Log Density 0.079 0.07 0.089 0.09 0.094
Prop. of population Hispanic -0.38 -0.401 -0.387 -0.376 -0.41"
Ozone 0.161 0.19 0.148 0.151 0.141
R? 0.054 0.052 0.055 0.056 0.057
Observations 4,037 4,037 4,037 4,037 4,037

Notes:
™ Significant at 1% level. Significant at 5% level.Standard errors are computed using White’s robmgiriance matrix.
¥Model 1 : Benchmark specification used in the dattion and welfare analysis.
Model 2a: Characterizes the household’s relevaoicehset using 10, instead of 20, randomly samptedchosen alternatives.
Model 2b: Characterizes the household’s relevaaicehset using 50, instead of 20, randomly sampéedchosen alternatives.
Model 3a: household sample is form by drawing 86tdad of 10, percent of the households choosicly @gernative in the
1990 PUMS.
Model 3b: household sample is form by drawing #6téad of 10, percent of the households choosidy @&éernative in the
1990 PUMS.

We do a final robustness check of the estimate@drpeters with respect to the

sampling of the households. In section 6.1 we expththat the household sample is
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formed by drawing a 10 percent random sample ohtheseholds choosing each housing
type. We re-estimate the household parameters wsidgferent sample size for the
random draws. The results are reported in Modelsargh 6b of Table 6.2. Model 5a
reports the estimates from a household sample rdatadoy drawing 20 percent of the
households choosing each housing type. Model Srtethe estimates from a household
sample obtained by drawing 40 percent of the haldshchoosing each housing type.

The estimated coefficients are very similar to himssModel 1.

6.4.3 Implications of the Estimated Preference Parameters

The predictive power of the model can be seen bpping the neighborhood mean
valuations. Figure 6.1 maps the neighborhood (PUBMErages of the mean utilities)(
estimated in the first stage. This provides a spatepresentation of the model's
prediction of the relative rankings of neighborhedd 1990. The predicted rankings
generally concur with the distribution of other gi@orhood attributes across the study
area. The least preferred neighborhoods in 1990lcaaed in the south-central and
south-eastern portions of Los Angeles County, &edatestern portions of Riverside and
San Bernardino County. This encompasses areas asicCkast Los Angeles and
Inglewood. Those are areas which also possess gbthe highest neighborhood crime
rates (see Figure 5.5) and lowest school performaesults (see Figure 5.4). On the
other hand, the most preferred places are gendmllyd in Orange County, as well as
the central and north western neighborhoods ofAmgeles. This includes cities such as
Beverly Hills, Glendale, Pasadena, Anaheim andhé&viThese are also areas with the

lowest neighborhood crime rates and best schotbmpeance results.
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Figure 6.1: Neighborhood Average of Estimated Meabtilities (1990)
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Table 6.3 summarizes the marginal willingness tp @4WTP) estimates, in annual
dollar terms, for selected housing and neighborhdwtacteristics. The mean MWTP, in

annual dollar terms, for a housing attribxtés defined as:

(V,n /9%,) 012

6.8
al(y-p ¢

MWTP =

Where,\7ih is the estimated household indirect utility funoti@and 6\7ih /9%, represents

the marginal utility of xc evaluated at the mean of the household sample. The

multiplication by 12 converts the MWTP to an annuehtal rate. The term in the
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denominator represents the marginal utility of meoevaluated at the mean of the
household sample. The mean MWTP for a specific grouthe household population
(i.e. college graduates, households with annuainmec below $19,000) is obtained by

evaluating the marginal value and the marginaitytif income at the group mean.

Table 6.3: MWTP for Selected Housing and Neighborhad Attributes (1990 Annual Dollars)

Mean College Income < Income >
MWTP grads $19,600 $60,400
Bedrooms
(+1 bedroom) 1,143 - 150 2,426
Single-family dwelling 10.104 i 1326 21 450
(vs. Multi-family) ' ' '
Math test score 3,550 11,474 466 7,538

(+1 standard deviation)
PUMA is within household’s
employment zone 57,119 - 7,494 121,262
(vs. outside)

PUMA is on pacific coastline

: 9,821 - 1,289 20,850
(vs. inland)
Share Hispanics
(+0.01) -109 - -14 -232
Ozoné
(-1%) 62 - 8 131

Note: All values are in annual rental rates. Faregle, the average household is willing to pay 43 dnnually for an
additional bedroom while households with incometel 9,000 are only willing to $150. The annual meamtal housing
price in the study area is $9,000.

"MWTP for a one percent change in 1990 average.

" Math test score: mean = 34, standard deviatiord=rénge: 25 to 60.

All things equal, we find that households are wdlito pay an additional $1,100 in
annual housing rent for an extra bedroom in theurse. Households are willing to pay an
additional $10,000 annually or nearly twice therage annual rent to reside in a single-
family housing unit. Households are also willingoay an additional $9,800 annually for
a one standard deviation increase in neighborhadehad quality. The model also
predicts that households will pay nearly twice tweerage rent to live in coastal

communities. The estimated mean MWTP for locatithrag are within the household’s
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employment zone is very large. Households are emnage willing to pay roughly seven

times the average annual rent for locations thatvéthin their employment zone. As

explained earlier, this may be due to the fact thatemployment zone dummy may be
capturing unobserved neighborhood characteristict @re valued by households.
MWTP estimates also vary across household chaistatsr For instance, compared to
the average household, college graduates will pagx#ra $500 per year for a one-point
increase in the neighborhood schools’ average s@aile. Math scores range from 25 to
60 in the study area.

The estimated ozone coefficient implies a mean MWTR$62 for a one-percent
reduction in the 1990 average ozone concentrathm.follow Sieg et al. (2004) by
reporting the MWTP for a one-percent reductionha 1990 ozone levels. This allows
comparing the MWTP estimates with estimates froevious studies. We also find a
significant variation in MWTP across householdsr Erample, the MWTP for a one-
percent reduction in ozone for households in tighdst income quartile (top 25 percent)
is $130 compared to only $8 for households in tineekt income quartile.

Our estimate of the MWTP for a one-percent ozomkicgon compares well with
MWTP estimates for other air pollutants in therhtere. Sieg et al. (2004) report a
marginal willingness to pay of $61 for a one-petaexduction in the 1990 average ozone
concentration. Sieg et al. also report that MWTHregtes for other air pollutants in the
literature range from $18 to $181, for a one-perageduction. The Estimates of the
MWTP for bedrooms also vary in the literature. Bageal. (2005) find a mean MWTP
of $1,312, in annual 1990 dollars, for an additldsedroom. Quigley (1985) estimates a

nested logit model of household choice in the Butitgh metropolitan area, and finds that
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households are on average willing to pay $618 muah1990 dollars for an additional
bedroont:® Chattopadhyay (2000) estimates a similar modeRuaigley (1985), for the
Chicago area using four alternative nesting stnestuHe finds that the willingness to pay
for an additional bedroom ranges from $82 to $%33990 annual dollars.

Our estimate of the mean MWTP for a one standaxdatien increase in school
quality is very large compared to the estimate iabthby Bayer et al. (2005). Our mean
MWTP estimate for a one standard deviation incrdaséhe school quality level is
$3,550 in annual terms. This compares with the Bayal.’s estimate of $21.5. It should
be noted, however, that the two school quality messs are reported using different
scales. The mean school quality in the Bayer saalple is 527, while our school quality
measure has a mean of 34. As a result it make® seiadso compare the mean MWTP
for a one percent change in the annual 1990 mdwvokquality, as suggested by Sieg et
al. (2004) in the case of air quality. Our estimatehe mean MWTP for a one percent
increase in the mean school quality level is $18Bich is closer to the Bayer et al.
estimate of $18, but still quite high.

We would expect our MWTP estimate of school qualitybe relatively higher than
the estimate from Bayer et al. (2005). This is geain our model, school quality may
be correlated with unobserved neighborhood chaiatits captured by the error tedn
As result, the second stage OLS regression mayttenglerestimate the mean taste for
school quality. Bayer et al. control for this preil using school district boundary fixed
effects. It is not possible to apply this approaxbur data because the neighborhoods, ie.

PUMAs, are too large compared to school distritke neighborhoods in Bayer et al. are

9 The estimate reported in the paper is $13.18 paitimin 1967 dollars. This estimate is converted in
annual 1990 dollars.
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Census blocks, which are much smaller geographits wompared to school districts.
This facilitates the use of school district bourydéired effects because most census

blocks fall within the boundary of a school distrahile most PUMAS do not.
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7 The Benefits of the 1990 Clean Air Act Amendments

This chapter evaluates the equilibrium welfare iotpa@f the air quality changes brought
about by the implementation of the 1990 Clean Ast Amendments (CAAA) in the Los

Angeles area. Section 7.1 discusses the simulafidine equilibrium price changes that
emerge from the re-sorting of households as atre$suhe large changes in air quality.
Section 7.2 defines the welfare measures and $ettdiscusses their computation. We

conclude with a discussion of the welfare resultSéction 7.4.

7.1 Simulation of the counterfactual locational equilibrium

Induced price changes that result from the ressgrof households are obtained by
simulating the counterfactual equilibrium which Vethave emerged in 1990 if air
quality levels were identical to those observe@®0 while all other housing attributes
and household characteristics remained at theilO 189els. Our estimation of the
household preference parameters ensures that tienhgomarket is in equilibrium in
1990 (see section 6.2.1). The counterfactual dguim is given by the new set of
housing prices and the resulting household locatlorice probabilities which solve the
market equilibrium condition in equation (4.10). SRkential location demands are
calibrated using the estimates of the preferencanpeters entering the household
indirect utility function. The counterfactual edbiium only reflects the changes in the
air quality that occurred in the Los Angeles areameen 1990 and 2000. Other factors
characterizing the Los Angeles area housing markath as population, household

income and housing supply, are not allowed to ceanghis simulation.
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7.1.1 Calibrating the housing demand

The economic agents in this model are householdscdvisider the housing choices of
Ns (=17,894) households sampled from the overall fsdgmn of N, (=171,000)
households obtained from the 1990 Census PUMS. s@ingpling framework used to
generate the household sample is described inoseil. The housing market is
characterized by 4037 distinct housing types. Th@oe set of each sampled household
is characterized by the sampling framework in s&c6.1.

We could have each household facing the full setG#7 housing types. However,
this would not be consistent with the estimationhofusehold preference parameters.
Recall that the maximum likelihood estimation, whigses choice set sampling, ensures
that the market is in equilibrium in the 1990 banehk (see section 6.2.1). This
benchmark equilibrium, which is enforced via thstfiorder conditions of the maximum
likelihood estimation (see equation 6.3), will mmd¢ier hold when households face the
full set of alternative’ As a result significant errors arise in the corafion of the
predicted housing-type demands, and the countaedheguilibrium housing-type prices
may have undesiralffeproperties. Hence we prefer to maintain the che@esampling
framework, used during the estimation, in the calibn of housing-type demands. We
next discuss strategies for obtaining consistetiases of housing-type demands under
choice set sampling.

Obtaining an Appropriate Forecast of the Demand fbiousing Types
The computation of the counterfactual equilibriuegims with forecasting the predicted

demand for each housing type in the household ptipal under the new air quality

2|n order for the benchmark equilibrium to hold wi#l need to re-estimate the preference parameters
using the full choice set, which is not computadilbnfeasible.
2L Notably, some housing types may have negativegiit the counterfactual equilibrium.
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levels. Ben-Akiva and Lerman (1985) provide a dethbverview of various techniques
for obtaining appropriate forecasts of aggregatemaiels for choice alternatives in
discrete choice models. Our prediction of the agate demand for a residential location
h uses the method of sample enumeration. This tqabnis especially appropriate in
cases when (i) the household sample is drawn ndoraly’? from the population and (ii)

the choice set of the household is formed by takimgndom subsample of the full set of
alternatives. In both of these cases sample entioer@lows the researcher to obtain a
consisterf estimate of the share of the household populatiooosing a residential

locationh. For a stratified sample with= 1,..., Gstrata, Ben-Akiva and Lerman (1985)
define the sample enumeration estimate of the sbaréhe household population

choosing an alternatiieas:
1 S5 (sme &~
G (7.2)

where, N, is the household populatiol is the population size of stragg Ngg is the
sample size of stratg, and F3ih is the estimated household choice probability. fher

sampling design used in this study (see sectiorl);.@ach housing typle represents a
stratum. As a resulNg = Ny, Nsg = Nsp, the first summation term drops out and the

expression for the estimated population share becom

22 Our household sample is formed by drawing a 18grerrandom sample of the households choosing
each housing type.

% Consistency of the estimated population shareshaédong as the estimated preference parameters ar
consistent, which is the case in our estimation.
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(_thiﬁé G.6.7.5), (7.2)

Where,N;, is the number of households choosing locakiam the population antlg, the
number of households choosing locatiom the household sample. The population share
is then converted into the predicted population @sinfor a housing locatioh by
multiplying the estimated share by the householpugagion (). For a given housing

typeh the predicted population demand is given by:
N, W~ 2 o~ A
N—z P.(3,4.7,,) . (7.3)
=1

The main limitation of the sample enumeration eatan of the predicted population
demand, is that it is subject to sampling errore $ampling error is due to the sampling
of households and the sampling of the householdicehsets. However, in our
application, the sampling error is relatively sngilten the large size of our sample. The
sampling error in the predicted population shanmehousing typeh can be computed
using the weighted root mean square formula pravidg Ben-Akiva and Lerman
(1985), which is due to Koppelman (1975). For campling framework, the sampling

error in estimating the population shares for ta@Qlbenchmark is given by:
" R 2 1/2
ms— zmﬁ{m} | (7.4)
v N g,
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whereoy, represents the actual share of the household giopuichoosing housing type

which in our sampling framework turns out to eqd//N . The weighted root mean

square in our application is approximately*i@hich is fairly small. An alternative way
of assessing the sampling error is to computedbare root of the sum of squares of the
excess demands across housing types in the berchhmgs is because, by virtue of the
maximum likelihood estimation, the benchmark excesmand¥’ must equal zero if

there is no sampling error in the predicted popaatiemand. The sampling error in the

H /. 1/2
predicted population demand can then be obtained{Es(dh—sq)z} . In our

h=1
application the sampling error in the predicted yapon demand is roughly Towhich
is also small.

Computing the Predicted Population Demand under tRew Air Quality Levels

Using equation (7.3) we can now characterize tlkdipted population demand for each

housing type under the new air quality levelss lgiven by:

N N exp[5h +alog(y, - py) +id;, +Zxﬁkzirlélkr]
h Z k , (7.5)

N = < ~ ~ o
sh 1= ZeXp[a-i] +alog(yi - pm) +J'dih +lemkzir IBlkr]

mOC; k

di(p) =

A

where, P, has been defined explicitl; represents the choice set of householthe
superscript 1 is used to indicate market conditiafier the air quality changes have

occurred. x;, is the vector of attributes for housing typevhich includes the new air

% The excess demands are givendyys, , wheres, is the supply of housing units of type
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quality level. 5; represents the predicted mean utility for housypee h under the new

air quality levels. It is given by:
O = ZxakﬂOk +&h,
k

where g%h is the vector of residuals obtained in the secstabe OLS estimation

(Equation 6.7).3h characterizes the estimate of the mean valuatamn the unobserved

location attributes. The vector of residuals must ddded because the alternative

constants which characterize the benchmark 199{il@gqum are given by:
o, = Zxﬁkﬁok +&
k

The reader can note that this is the same equatianacterizing the mean utility in

equation (5.4). Hencé, is an key component of the functional formdyf.

7.1.2 Defining the Locational Equilibrium

The 171,000 housing units occupied by the populatibhouseholds in the 1990 Census
PUMS are classified into 4037 residential locatiohise housing supplg, is given by
the number of housing units at each residentiation h. We assume that the housing
supply is exogenous with respect to the changedr iquality. Given the housing supply

(s) and the predicted housing demam@ij)( the counterfactual equilibrium price vector is

defined by:
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ed,(p*) =di(p") -5, =0 h=1,.. H (7.6)

The counterfactual locational equilibrium defingddmuation (7.6) is unique and locally
stable. This follows from the fact that the paraenetstimated is positive and hence the

excess demaneld,(p) satisfies the strict gross substitution propei®eg Proposition 4.1)

7.1.3 Implementation

A numerical solution to the system bff equations inH variables, which defines the
counterfactual locational equilibrium, is obtainad an efficiently convergent algorithm
suggested by Anas (1982). The equilibrium pricetarers found iteratively via a price
adjustment process that starts with the benchm@# Price vectop® and adjusts the
location prices until the adjusted price vectoaibitrarily close to the equilibrium price
vectorp*.

Lett =1, ..., Tdefine a sequence ®fiterations such thap” = p .*The price vector

at iterationt + 1 is given by the Newton step:

p'™ = p' —[ded(p')/dp] {ed(p)]. (7.7)

ed(p) represents the system of excess demands foH aksidential locations, and
[ed(p')/dp]is the Jacobian matrix ofd(p) evaluated atp'. Computation of the

Newton step defined in (7.7) requires evaluating averting the Jacobian which has

dimensionH = 4037. The computational cost of this algorithm is cdesably large. The
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evaluation of the Jacobian alone takes approxima&@lminutes on a Pentium 4 2Ghz
PC station.

Anas (1982) suggests a less costly iteration staphnis obtained by ignoring the off
diagonal element of the Jacobian matrix. In thisectne iteration step+ 1 is defined

independently for each residential locatioas:

p." = p, —ed,(p') /[ded,(p")/ap] , h=1,.,H (7.7a)
The computational cost of the iteration step ifdy is significantly less than that of (7.7)
since it only requires computing the diagonal veaib the Jacobian matrix and its
element inverse. This alternate Newton step witivesge to the equilibrium price vector
p* as long as the off-diagonal elements of the Jaroare significantly small in absolute
value compared to the diagonal elements. Conveggsnachieved when the price vector
p' at iterationT is “sufficiently” close top*. In our counterfactual simulatiop’ is

considered “sufficiently” close tp* if

ed (p")/s, <10° h=1,..,H (7.8)

In other words, the absolute absolute value oketteess demand for each location is less
than 0.001% of the housing supply.

A computational issue arises from the fact thatedge ofH-1 housing-type excess
demands is sufficient to characterize the systek excess demands. This is because we

assume that the housing market is a closed econatmgh implies that no household
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relocates outside the study area. A direct impboadf the closedness assumption is that
the housing-type demands always sum to the totallpton (N) of households. This
means that the system &f housing-type excess demands has di§ degrees of
freedom. As a result, we fix one of the prices wkelving for the numerical solution.
This normalization guarantees that any startingievalill lead to the same market
clearing prices. The normalization also guarantbes the counterfactual equilibrium

prices are within the samid-dimensional simplex as the benchmark price veatat

hence lies in the positive quadrant'* .

7.1.4 Simulation Results: Impact of Air Quality Changes m Housing Rents

We discuss the extent of the equilibrium price efethat result from the air quality
improvements brought about by the 1990 CAAA. Thesailibrium price effects are the
result of the re-sorting of households across mgus$ocations. Figure 7.1 maps the
changes in ozone levels for the neighborhoods i@ #$tudy area. The lowest
improvements in air quality occurred in the coastaighborhoods of Los Angeles and
Orange counties. These were also areas that hdaeshair quality levels in 1990. On the
other hand, air quality improvements were highasthe inland areas of Los Angeles,
Riverside and San Bernardino counties. Those wereateas with the worst air quality
levels in 1990.

Figure 7.2 shows the PUMA-level average housingceprichanges in the
counterfactual 2000 equilibrium. We find that hagsiprices are lower, in the
counterfactual equilibrium, in the areas with belawerage air quality improvements.
These were also areas with the highest air quéiels in 1990 (see Figure 4.2).

Average housing prices fell by as much as 13 pe¢ioghose areas. On the other hand
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Figure 7.1: Percent Change in Ozone Levels (1990420)

A
A2
%

e
W S

F : i L4 i
e . :
gl : ‘Jem:’eno Valley
Adagrreim
¢ + Major Cities
% Chg. in Ozone Levels (1990-2000)

52 - 40

™ Bl -39 - 27
g I 26- 0
Y =1 1 - 30

Coastline
1990 PUMA Boundaries

Figure 7.2: Percent Housing Price Changes in Countiactual Simulation (PUMA average)
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housing prices, in the counterfactual equilibriiare higher in the areas that experienced
above average air quality improvements. These waezas with the highest ozone levels
in 1990. Housing prices rose by as much as 8 penc¢hose areas.

The equilibrium price effects observed across rmghoods were conceptually
predicted by Bartik (1988). The intuition is as lég¥s. The large air quality
improvements are likely to have two effects on hieelonic equilibrium. First, the fact
that a larger proportion of residential locatiomsvrhave good air quality implies that the
hedonic housing rent differentials between high & air quality areas would be
significantly reduced. Table 7.1 shows the proportof locations with ozone levels

below the federal one-hour ozone standard (0.12) ppd©90 and 2000.

Table 7.1: Proportion of Residential Locations belw the Federal 1-Hr Ozone Standard (0.12 Ppm)

Study area Los Angeles Orange County, Riverside San Bernarding
(mean) County County County
1990 29.5 32.3 48.7 0.0 0.0
2000 92.7 98.1 100.0 100.0 51.3

The second effect is that, because the supplyrofjuality has gone up, rents are
likely to fall for any given amenity level but rélely more for high air quality areas
since the air quality price premium is now lowehisTeffect is characterized by a shift in
the hedonic function. The result of these two d@ffes that high air quality locations that
experience relatively little improvement are likely experience rent declines. This is
because the rent increase from the air quality avgament at these locations is not
enough to offset the rent decline from the secaifiece On the other hand, low air

quality areas that experience large improvementsriguality would likely have higher
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rents. This is due to the fact that the rent premftom the air quality improvement at

each location is large enough to offset the shithe hedonic function.

7.2 Welfare Measurement in Locational Equilibrium Models

The measurement of welfare in the Epple and Si8§9q)L equilibrium framework was
first implemented by Sieg et al. (2005). The stwdyo provides the first empirical
analysis of the welfare impacts of non-marginal aityechanges in the context of the
Epple-Sieg equilibrium approach. Because the haldeltility is deterministic in this

framework, the derivation of Hicksian welfare measuis straightforward. Given the
estimated household preference parameters, onelefare the Hicksian compensating
variation CV) for an amenity change as the reduction in incosaeh that the

household’s maximized utility after the change dgjuhae maximized utility before the
change.

The earliest empirical evidence on the welfare iobpaf non-marginal amenity
changes in the context of the discrete choice imcak equilibrium framework can be
traced back to Anas (1982). The study does not hemwderive a Hicksian welfare
measure that is consistent with the random utifitgdel. An approximation of the
Hicksian CV measure for an amenity change is obtained asxpected change in the
household’s maximized utility. This is the approasiggested by Small and Rosen
(1977). Timmins (2007) adopts a similar approximatof the Hicksian welfare measure
when evaluating the welfare cost of rainfall change Brazil using a discrete choice
locational equilibrium model of the labor markety@r et al. (2005) do not conduct a
welfare analysis. Instead, they investigate theaichpf changes in income inequality on

equilibrium housing prices.
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Defining the Welfare Measure
We characterize and estimate Hicksian welfare mreaswhich are derived from a
random utility function with non-linear income efts. The household-level Hicksian
welfare measure for an air quality change is defias the reduction in the household’s
income which is such that the household’s maximtifityuafter the change equals the
maximum utility before the change. Hence, by débni, the compensating variation will
be negative for an air quality improvement and {pessifor a reduction in air quality.

For the utility function ¥,) defined by equation (4.1), the household comperga
variation for the air quality improvements that oaed in the Angeles area is implicitly

defined by:

\/ih(yi - pr?’)(fh’xgh"g]h) :\/ij (Yi - p} _C\/i’xilj’xgj’gij)) (7.9)

whereV, = Mﬁa\x{vih}. The superscript zero indicates the 1990 marketlitons, and the

superscript one indicates the market conditionsr dfte air quality changes. For ease of
exposition, the attribute vector is broken into temmponentsx;,, represents the air
quality level at locationh, and x,,, is a vector capturing all other attributes of the
residential location.

Direct vs. Equilibrium Welfare Measures

For the purpose of evaluating the benefits of thenges in air quality across the Los
Angeles area two welfare measures are of interBlse first measure asks what

households are willing to pay for the change incuielity at their residence, holding
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housing prices and all other attributes fixed. Tikithe “pure” WTP measure defined in
chapter 3. We will refer to this welfare measuréhesdirect WTP measur€Y") since it
can be recovered directly from the indirect utifiijmction. For our random utility model,

C\ is implicitly defined by:

Vin (Y, = Prs Xth XonEn) =Vin (Y, = Pr _Cvidixllhixgh’gih)’ (7.10)

where the notation is similar to that used in eiguat7.9).

The direct willingness to pay measure does not,dvew provide a complete picture
of the welfare impact of the changes in air quadityoss the Los Angeles area. Bartik
(1988) shows thaE\ provides a lower bound to the full, i.e. equilibri, welfare impact
of the air quality changes. We define the equilibriwelfare measureC{) as the WTP
measure which takes into account the induced clsamgéousing prices that occur as

households change their residential location chdigs given by:

\/ih(yi - pr?’xfh’xgh’gih) :\/ij (yi - p} _C\/ie’xilj ’ng ’gij)- (7.11)

The household’s residential location chojde the ex-postequilibrium differs from the
locationh in the benchmark equilibrium. This indicates ttied household might change
its residential location choice as a result ofchange in air quality.

Assumptions about the Equilibrium Welfare Measure

The characterization of the equilibrium welfare anofs of the 1990 CAAA only accounts

for air quality changes and induced price changesilting from the re-sorting of
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households across locations. In reality, howevee, could expect other changes to take
place. First, in addition to induced price changeduced changes in the housing supply
may occur as developers respond to the price ckaM@reover, exogenous changes in
the model’s primitives may occur between 1990 ad@02 These would include changes
in household income, population, and economic dawdi. Our equilibrium model
cannot account for either induced changes in thesihg supply or other exogenous
changes in market conditions. As a result we doatteimpt to replicate the real market
conditions that prevail after the air quality chesgRather, we simulate a counterfactual
market equilibrium in which induced price changesw while all other factors are held
to their 1990 levels.

One might wonder about how accounting for thesesrothctors would affect the
equilibrium welfare measure. Using the higher hbos® income levels in 2000 would
likely lead to higher benefit estimates as higheime households would have a higher
marginal willingness to pay for air quality. If tiseipply of housing is elastic with respect
to price, accounting for housing supply adjustmemtaild likely increase equilibrium
benefits as the influx of new housing units woutdyide more choices to households.
An increase in population is likely to reduce etdpiibm welfare gains to the extent that
the increased demand for housing results in highees. This effect is however likely to
vanish in the long run as the supply of housingistdj Hence, it is likely that accounting
for the other exogenous changes in the housingehavitl result in higher equilibrium

benefit estimates.
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7.3 Computing Compensating Variation in a Random Utility Model

The household levelV measure defined by equation (7.9) is a randonabkias it is a
function of the unobserved taste ertoHence the welfare measure that is of interest to
policy analysis is the expected value of the hookklevel compensating variation over

the distribution of the unobserved taste estde define this expectation as:

ECV=E[CV|(y,p° p", X% X", &)] (7.12)

The expectatiorECV will characterize the household’s expected wiliags to pay
(WTP for the air quality changes across the Los Argjalea.

A general closed form expression fBCV does not exist for the indirect utility
function in equation (4.3). This is because in aaricases th€V measure may be a
nonlinear function of the stochastic error teemAs a result its expectation, which
requires integrating out the nonlinear error tecamnot be characterized explicitly. Two
empirical approaches have been suggested for reagvECV. Morey et al. (1993)
suggested approximatingCV as the income reduction which equates the expected
maximum utility after the change with the expecteaximum utility before the change.
This approach gets around the computational prolm&mmtegrating out the nonlinear
error term by defining CV as the income compensatm a representative household.
Hence it is known as the representative consumprogpnation of ECV. McFadden
(1999) suggested a general simulation approachetmvering the exad&CV. We adopt
the simulation approach of McFadden to obtain therage and income distributional

welfare impacts of the 1990 CAAA.
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We compare the mean and income distributional weifapacts from the simulation
and representative consumer approach. McFadde®)Egues that the representative
consumer approximation ©CV is biased when large changes are considered. Howev
in a study of fishing mode choices by Californiglans, Herriges and Kling (1999) find
that the two approaches do not lead to substantigfierent welfare results. We attempt
to provide additional empirical evidence on theatigk performance of these two

approaches in the context of measuring equilibnetfare impacts.

7.3.1 A Representative Consumer Approximation ofECV

Morey et al. (1993) suggested approximatiBCV by computing the income
compensation that equates the expected maximuity wfl a representative consumer

before and after the air quality and price changes approximation t&ECV, denoted

CV, is defined implicitly as:

EIV,, (Y, = p; -CV, Xans €)1 = EIVG (V= Pro X €)1 (7.13)

A closed for expression for the expected maximuitityute[Vi,] can be obtained when
the unobserved household taste esrenters the utility additively and is drawn from an
extreme value (EV) distribution. Both of these asptions are satisfied by the indirect

utility function in equation (5.3). The expectedximaum utility is given by:

EVL (Y = P X, 2.6)] = |OQZEXF{5h +alog(y' - p,) +d;, +thkzir181kr +c, (7.14)
h kr
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wherec is Euler’s constant. This constant term cancetbthe computation dECV as

it appears on both sides of equation (7.13). Tmepzdgation ofCV is achieved via a
simple one dimensional search algorithm. Our comtprts use the Fzero function in
MATLAB. The direct and equilibrium WTP measures al#ained for a random sample
of 1,674 households from the household populatiaihe study area.

The advantage of the representative consumer agprathat it is simple and
relatively easy to implement. In addition, the cargpional burden of the one-
dimensional search is minimal. The search will galtye converge in a fraction of a

second on most standard personal computers. The limatation of the representative

consumer approximation approach is that, for laggelity improvementsCV may
provide a biased measure of the true expectatidheohousehold’s CV measure defined

by equation (7.9). McFadden (1999) showed evidasfcthis bias using an analytical

example which compares the exact measufe®f with the approximatiorCV .

7.3.2 A Simulation Approach to Recovering the ExacECV

For each household, a random sample of $iaze drawn from the distribution of the

unobserved taste errer For every drawt the household levelV measure defined in

equation (7.9) is computed. The householBBV, denotedCV', is obtained as the

average of th€V measures across the draws:

.
CV' :EZCVt : (7.15)
T
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This is the simulation estimator suggested by Mdea (1999). It has been shown that

CV' is a consistent estimate &CV. McFadden (1997) has shown th@v' almost

surely converges t&CV, and JT (CVt - ECV) is asymptotically distributed as a normal

with mean zero and variana® . A consistent estimate af* can be obtained given=

1,..., Rindependent replications of the random samplenafbserved taste errors. It is

defined by:

=231y ev- Ly Sev (7.16)
RE[TE T TREE | |

r=

where CV' is the household levélV measure computed for each random drawsing

equation (7.9).
The complete simulation procedure was outlined lafFdiden (1999) for the general
case of an unobserved taste error term with a gkred extreme value (GEV)

distribution. The following simulation steps aretlmed by Herriges and Kling (1999):

Simulation algorithm:

Step 1: At iteration t (t = 1,..., T) a pseudorandoomber generator is used to
draw the vectorg' from the hypothesized GEV distributioreof

Step 2: For each drawé, a numerical algorithm is then used to search

iteratively for theCV" defined by:
Max Vi, (% = Prs X Xon &) = IVIhaX Vi (¥ = P ~CV', %0, %0, &)

Step 3: A consistent estimateEiCV | (y, p°, p*, x°, x%,£)] is obtained as:
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1J
CV'==)>CV'.
L=

Steps 2 and 3 of the simulation algorithm are retht easy to evaluate. The numerical
search in Step 2 is achieved via a simple one dineal search algorithm. The main
computational task of the simulation algorithm melgathe evaluation of Step 1.
Generating the random sample from the GEV distidiouican be a fairly complex
exercise. McFadden (1999) outlines a Markov Chaontd Carlo (MCMC) algorithm

for generating draws from a GEV distribution. TheCMC algorithm uses an

independence Metropolis-Hasting sampler. The dlgori which McFadden termed a

GEV sampler, is as follows:

GEV sampler: At step t draw J+1 independent vaﬂalﬂ} (t=1,..., J) andp'from a

uniform (0, 1) distribution. Form J extreme valuendom variables
using the transformationz; = —log(-log({;)) . The GEV draw'is

obtained from the following Markov chain:

. £(2Y)/g(2)
g ifnts—2 —

2o T = ED 9@
e otherwise

where f and g are the GEV and EV density functiespectively.

In their empirical applications, McFadden (1999 &terriges and Kling (1999) find
that the computational burden of the GEV samplerdases significantly alsdeparts
from the EV distribution. When the unobserved tastee distributed as EV, i.e. the
choice model is multinomial logit, the GEV samplerunbiased and Step 1 can be

evaluating using a EV pseudorandom generator fitamdgird statistical packages. In our
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application we used the EV pseudorandom generaton fMATLAB’s Statistical
Toolbox.

The direct and equilibrium WTP measures are obthfoea random sample of 1,674
households from the household population in theystarea. Step 1 of the simulation
algorithm is implemented by generatingg=  10@dependent vectors of 4,037
pseudorandom EV variables. The numerical sear&tap 2 is achieved via MATLAB'’s
Fzero function. The computation of tB€V simulation estimate takes an average of 4.5
hours on a Pentium 4 2Ghz PC station. This comp@ares average time of about 5
minutes for the computation of the representatoressomer ECV estimate.

The size ofT was selected on the basis of a Monte Carlo expatirauggested by
Herriges and Kling (1999). The estimationE€V usingT iterations was repeated 100
times. We found that aftef = 5@he estimated mean compensating variations were
very similar over the 100 trials. The standard dgon was roughly 4 percent of the
mean value across the 100 trials fbo= .58y T =100 the standard deviation was

reduced to roughly 1 percent of the mean compeargsadriation across the 100 trials.

7.4 Welfare Impacts of the 1990 CAAA

Our analysis of the benefits of the 1990 CAAA foesi®n the changes in neighborhood
ozone levels between 1990 and 2000. The neighbdsh@d the Los Angeles area
experienced significant reductions in ozone ledelsng the years that followed the 1990
CAAA. Table 7.2 summarizes the changes in ozoneldefor the neighborhoods in our
sample. The neighborhood average ozone concemtfalidy nearly 21 percent between
1990 and 1995. By the year 2000, the average neduict ozone levels was close to 40

percent. The changes in ozone levels also variemkai¢he area. The neighborhoods of
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Los Angeles and San Bernardino counties experieticedgreatest ozone reductions
between 1990 and 2000, while Orange and Riversidetes had the smallest average

fall in ozone levels.

Table 7.2: Changes in Neighborhood Ozone Levels axss the Los Angeles Area

% A %A % A
1990 1995 2000 1990-95 1_990-95 1990-2000
(Sieg et al.)

Study area 0.146 0.116 0.089 -20.8 -19.3 -38.9
Los Angeles County 0.143 0.110 0.08p -22.6 -20.8 9.83
Orange County 0.109 0.094 0.076 -13.8 -18 -29.8
Riverside County 0.177 0.140 0.11% -20.6 -20.7 235.
San Bernardino County 0.198 0.162 0.115 -18. -16.3 -41.9

The neighborhood ozone changes for our sampler difightly from the changes in
ozone levels used by Sieg et al. (2002). In Or&genty, for instance, our neighborhood
ozone reductions between 1990 and 1995 were 4 ngelower than the reductions
observed by Sieg et al. The slight divergence ionezchanges can be attributed to the
differences in neighborhood geography. This stubgracterizes neighborhoods with
PUMA boundaries while Sieg et al. use school distboundaries to characterize

neighborhoods.

7.4.1 Results

The direct and equilibrium WTP measures, definecegyations (7.10) and (7.11), are
computed for a random sample of 1,674 househotss the household population in the
study area. This sample represents one-percehedidusehold population in our study
area. The random sampling allows us to derive wabianeans for the distribution of

WTP.
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Unlike in the simulation model, households facefthieset of housing alternatives in
the housing market. While there are strategiesofataining consistefit estimates of
preference parameters and housing-type demands ohdee set sampling (see Ben-
Akiva and Lerman, 1985), we do not know of any tsigees for obtaining consistent
estimates of the Hicksian welfare measure undes#nmepling of choice sets. Hence we
allow households to face the full set of alternadiin the welfare estimation.

Mean Welfare Impacts

Table 7.3 presents the mean welfare impacts o€Hh&A from 1990 to 2000. These are
the exact welfare measures obtained via McFaddsmalation approach. The first row
provides the overall results for the study areae $hcond group of rows provides the
county-level results. The last two groups of rowsovple results for selected
neighborhoods. In the third set of rows, neighbodsoare ranked by their average 1990
income level and we present the mean welfare urtthe ¥, 50" and 99" percentile.

In the last set of rows we rank neighborhoods leyrth990 ozone level and present the
mean welfare results for th&, 550" and 94' percentile.

The welfare results suggest that, on average, ithguality improvements provided
significant benefits to the households of the Lagyédles metropolitan area. We estimate
that the reductions in ozone levels between 1990 2000 provided an average
equilibrium welfare benefit of $1,829 to the houslels of the Los Angeles Area. This
benefit represents 4 percent of the annual avehagesehold income in 1990. As
conceptually predicted by Bartik (1988) and dem@tet by Sieg et al. (2004), direct

welfare benefits, which do not account for induceldanges in housing prices,

% Here consistent estimate implies an estimateishetymptotically equivalent to the estimate wtigch
computed using the full set of housing alternatives
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underestimate the benefits of the air quality impraents. On average, equilibrium

benefits were 32 percent higher than the direcéfieestimates.

Table 7.3: Mean Direct (D) and Equilibrium (E) WTP" for the CAAA (1990-2000)

1990 1990
AVQ. 1990 | o ohe | A ag | 22 | wTpy | WTR: | WTR o
Income Ozone - Price
Price
Study area (mean) 49,197 0.14p -36/1 748 0.14 1,384,829 1.32
Counties
Los Angeles County 47,152 0.14 -37.6 728 0.147 8,32 1,757 1.33
Orange County 60,924 0.109 -23. 926 -4.10 1,659 132, 1.29
Riverside County 47,374 0.177 -34.4 687 1.0p 1,2991,764 1.36
San Bernardino County 48,096 0.198 -4119 68p 4.35 ,3841 1,836 1.33
Neighborhoods by income levels
1% percentile (lowest) 24,657 0.103 -46.8 454 -1.14 823 704 1.84
50" percentile 47,331 0.119 -40.4 805 -1.3B 1,157 53,66 1.44
99" percentile (highest) 92,708 0.148 -48.Y 982 2.537 ,372 2,837 1.19
Neighborhoods by ozone levels
1% percentile (lowest) 65,135 0.054 30.d 1,000 -12/9322,018 2,434 121
50" percentile 54,568 0.148 -43.7 822 141 1,462 1,832 1.25
99" percentile (highest) 39,979 0.212 -43.9 58 5.22 ,109 1,492 1.35

" Note: WTP is computed as the expected compensetirigtion ECV). Al WTP estimates are computed using McFadden’s
simulation approach. WTP estimates are in annug0 t®llars.

The estimated mean welfare gains vary across thaties in the sample. Average
benefits are highest in Orange County and lowedtas Angeles County. The mean
equilibrium WTP for the ozone changes between 1&2@d 2000 was $2,134 in Orange
County. This compares with an average equilibrivendfit of $1,757 in Los Angeles
County. The distribution of welfare gains acrossird@es tends to reflect equilibrium
price effects across the counties. Orange Countychwexperienced a fall in housing
prices, has a significantly larger average equiiiorWTP.

We find a significant variation in welfare gainsr@gs neighborhoods. The mean
equilibrium benefit in the neighborhoods with thghest average income is nearly four
times the mean equilibrium benefit in the pooresghborhoods. This variation can be

attributed to the fact that richer households hav&gnificantly higher MWTP for air
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guality compared to low-income households in oudetoHowever, relative equilibrium
gains are higher in the low-income neighborhoodses&glenced by the ratio of
equilibrium to direct benefits. Indeed, equilibriunenefits are 84 percent higher than
direct benefits in the poorest neighborhoods, aspawed to only 19 percent in the
richest neighborhoods.

We also find that households originally locatedhe most polluted neighborhoods
have on average lower equilibrium benefits thanskbolds originally located in the least
polluted neighborhoods. This variation can belatted to the fact that the most polluted
neighborhoods, which had above average ozone iedagctexperienced an increase in
housing prices. On the other hand, housing pricesredised in the least polluted
neighborhoods as they generally had below averageeoreduction (an ozone increase
in the case of the cleanest neighborhood).

Income Distributional Welfare Impacts of the 1990/AA

Table 7.4 presents the distribution of equilibrinvelfare estimates across household
income quartiles. The lowest income quartile is posed of households with 1990
annual 1990 income below $20,000 dollars, while Highest income quartile includes
households with annual income above $60,000. Incalis&ibutional benefits are
provided for the study area as well as countiesraghborhoods. The WTP estimates
are obtained using McFadden’s simulation approach.

Equilibrium benefits vary significantly across hebsld income groups. Specifically
we find that richer households generally have $iggmtly higher benefits compared to
households in the lower income groups. This is tanghe overall study area as well as

within counties and neighborhoods. The variatiowalifare gains across income groups
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is to be expected as the higher income househalds & significantly higher MWTP for

air quality in our model.

Table 7.4: Distribution of Equilibrium WTP ~ for the CAAA (1990-2000)

Avg. 1990 %A % A Income | Income Income Income
Income Ozone Price <20k | 20k-37k | 37k - 60k > 60k

Study area (mean) 49,197 -36.1 0.14 441 1,019 1,706 3,634
Counties

Los Angeles County 47,152 -37.6 0.17 433 1,009 2,68 3,638
Orange County 60,924 -23.8 -4.1 518 1,058 1,7Q7 7748,
Riverside County 47,374 -34 .4 1.02 384 1,05 1,796 3,133
San Bernardino County 48,096 -41.9 4.35 438 1,037 812 3,510
Neighborhoods by income levels

1% percentile (lowest) 24,657 -46.8 -1.14 409 850 39,4 2,325
50" percentile 47,331 -40.4 -1.33 392 1,075 1,69p @,56
99" percentile (highest) 92,708 -48.7 2.57 479 909 9a.,5 4,505
Neighborhoods by ozone levels

1% percentile (lowest) 65,135 30.0 -12.93 571 1,090 759 4,015
50" percentile 54,568 -43.7 141 388 964 1,790 4,341
99" percentile (highest) 39,979 -43.9 5.27 541 845 215 2,761

" Note: WTP is computed as tf&CV. All WTP estimates are computed using McFaddeimsiktion approach. WTP
estimates are in annual 1990 dollars.

We also find a somewhat significant variation infae gains across neighborhoods
within each income group. For instance, high-incdmeseholds who were located in
neighborhoods with low and median air quality lsviel 1990 have significantly higher
benefits than the average high-income household.tt@nother hand, high-income
households who resided in the dirtiest neighborBoerperience significantly lower
benefits than the average high-income househotlderstudy area. This disparity can be
attributed to the fact that housing prices incrdasethe neighborhoods with the highest
ozone levels in 1990 as a result of the above geear quality improvements in those

neighborhoods.
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Comparing Relative Welfare Gains across Income Gpsu

Figure 7.3 shows the mean WTP as a proportionehtiusehold’s income in 1990. The
bar graphs characterize the distribution of retativelfare gains across income groups.
The WTP estimates are obtained using McFadden’sulatan approach. The
distributional findings seem to differ between tdeect and equilibrium welfare
measures. While the direct welfare measure suggemsts the richer households
experienced higher relative welfare gains, the ldgiim welfare measure suggests that
the distribution of relative benefits is fairly evacross income groups. This implies that
ignoring equilibrium price effects can significantalter the distribution of relative

welfare gains.

Figure 7.3:
Relative Welfare Gains Across Income Groups
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The divergence between the distribution of relativafare gains in the direct and
equilibrium approach can be explained from theedéhce between the two welfare
measures which is also show in Figure 7.3. Thifedihce can be interpreted as the
household’s relative welfare gain from adjustingatmew location after the air quality
changes. Figure 7.3 shows that the welfare gams fihe equilibrium adjustments are
regressive in the sense that the gains represkangjer share of income for low-income
household. On the other hand, the direct welfanesgare progressive since high-income
households are willing to pay more for a marginabiovement in air quality. Hence the
direct benefit measure will tend misrepresent tiséridution of the equilibrium welfare

impacts from large air quality changes.

7.4.2 Alternative Welfare Estimations

The welfare results presented in the previous geaise McFadden’s (1998) simulation
approach (see section 7.3). We compare these axalfire estimates with the
approximations obtained from the representativesgorer approach suggested by Morey
et al. (1993). McFadden (1999) argues that theesgmtative consumer approach leads to
biased estimates &CV when improvements are large. Herriges and Klirgp@) revisit
this issue in a study of fishing mode choices bjif@aia anglers. The study estimates
the WTP of the fishermen for a policy regime tresids to a doubling of the catch rate.
They find that the two approaches lead to quiteilamestimates of th&eCV. The
exercise in this section is intended to shed furtight on this issue. That is, whether
welfare estimates from the complex simulation apphoare substantially different from
the simpler representative consumer approximat&msas to justify the significantly

higher computational cost.
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Comparing the ECV Estimates

Table 7.5 presents the direct and equilibrium welfaneasures for the two estimation
procedures. As suggested by McFadden, we findtheestimate of the overall mean
WTP from the representative consumer approximatitiars significantly from the exact
welfare estimate obtained from the simulation appho The representative consumer
approach severely overestimates the mean welfgradtof the air quality changes that
occurred in the Los Angeles area between 1990 &00.2The direct and equilibrium
benefits from the representative consumer appraeelalmost twice the size of the exact

welfare estimate obtained from the simulation appho

Table 7.5: Comparing Alternative Welfare Estimateg1990-2000)

WTP, WTP: | WTPe/p WTP, WTP: WTP: o
(Exact) (Exact) (Exact) (Approximation) | (Approximation) | (Approximation)

Study area (mean) 1,386 1,829 1.32 2,152 2,289 1.06

Household Incorre

< 20,000 196 441 2.25 223 300 1.35
20,000 - 37,000 546 1,019 1.87 853 1,000 1.17
37,000 - 60,000 1,216 1,706 1.40 1,918 2,067 1.0
> 60,000 3,137 3,634 1.16 4,889 5,041 1.03

Note: 11990 $. WTP is computed as tBEV. Exact welfare measure is computed via the sinauapproach of McFadden (1999).
Approximation of ECV uses the approach suggesteddney et al. (1993)

The results also suggest that the representatimeuaoer approximation severely
underestimates households’ welfare gains from tp@librium adjustments that take
place as a result of the large air quality chan@es. mean equilibrium benefit estimate
from the representative consumer approximationnly 6 percent larger that the direct
benefit estimate, which would suggest that the ldgjwim adjustments that result from
the air quality changes do not have a significergdct on households’ benefits. On the

other hand, the exact welfare estimate of the meanlibrium benefit is 32 percent
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larger than the direct benefit measure, implyingt tthe equilibrium adjustments do

provide significant additional benefits to houseisol

7.4.3 Comparing with previous studies

To provide a comparison of our results with tho6&ieg et al. (2004) we simulate the
counterfactual equilibrium that would have resulfensin the changes in ozone levels
between 1990 and 1995. This is because, in theniraal analysis, Sieg et al. use the
changes in ozone levels that occurred between #9801995. Table 7.6 reports the
welfare results for the changes in ozone levels/den 1990 and 1995. We find that the
reductions in ozone pollution between 1990 and 1®@%ided an average equilibrium

benefit of $896 to the households of the Los Angéleea. Similar to the welfare benefits
from 1990 to 2000, there is a significant variatianthe equilibrium benefits for 1995

across counties.

Table 7.6: Direct and Equilibrium WTP for the CAAA (1990-1995)

Discrete Choice equilibrium Epple-Sieg equilibrium
approach approach (Sieg et al, 2004)

WTP, WTP: | WTP:,p | WTP, WTP: | WTP:,p
Study area 589 896 1.52 1,21( 1,371 1.13
Counties
Los Angeles County 568 866 1.52 1,472 1,556 1.0p
Orange County 698 1,029 1.47 901 1,391 1.54
Riverside County 526 858 1.63 834 372 0.45
San Bernardino County 576 891 1.55 734 36 0.50

The last three columns of Table 7.6 report the @l@and county-level mean benefit
estimates from Sieg et al. (2004). Our overallaisnd equilibrium benefit estimates are

substantially lower than the Sieg et al. estimaié& county-level benefit estimates also
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differ significantly. The county-level direct WTFstemates are consistently lower than
the Sieg et al. estimates. The relationship betwkerequilibrium benefit estimates is,
however, more complex. The equilibrium welfare rasties from this study are higher
than the Sieg et al. benefit measures in Los Asgeled Orange counties. The
relationship between the welfare measures is reders Riverside and San Bernardino
counties. Sieg et al. also find that equilibriumuatiments in the 1995 counterfactual
equilibrium resulted in average welfare losses Households in Riverside and San
Bernardino counties. Our results, on the other hanagygest that on average the
equilibrium adjustments resulted in welfare gamshouseholds in all four counties.

The disparity between our welfare estimates andeliound by Sieg et al. can be due
to a number of factors. First, the differences darherge as a result of differences in the
data. The fact that the two studies use a diffeaaracterization of neighborhoods
(PUMA vs. school district) is likely to affect tiveelfare results. In addition, Sieg et al.’s
average welfare benefit for the Los Angeles aredudes Ventura County while ours
does not. We excluded Ventura County from our sani@cause the 1990 PUMA
boundaries for that county were not mutually exgisand hence did not meet our
selection criteria (See section 5.3).

Second, our welfare results are likely to divengerf the Sieg et al. results because of
the differences in the specification of householdsation choices. The discrete choice
characterization of households’ location choicebved us to estimate household
preferences for that vary across income groupseshatational levels. Our preference
estimates suggest that high-income households $taveger preferences for air quality

relative to the average population. We also finak tihe average household population
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has a lower preference for school quality companecbllege educated households. This
contrasts with the Sieg et al. framework in whicdus$eholds are restricted to have the
same preference ordering of neighborhoods withe@sjp neighborhood amenities. This
is due to the fact that the marginal rate of sunsbn between community amenities is
independent of the household’s income and taste €s@ation 3.14 in Chapter 3). In
addition, the preference specification in this gtadturally captures the geography of the
housing market by allowing household preferences lécations to depend on the
proximity to their employment location. We find th&ouseholds have stronger

preferences for housing alternatives that are éataiithin their employment zone.
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8 Conclusions

This dissertation has developed a discrete chomeelilerium model to evaluate the
benefits of the air quality improvements that ocedrin the Los Angeles area between
1990 and 2000 as a result of the implementatich@fLl990 Clean Air Act Amendments.
The study has two main objectives. The first igpply the discrete choice equilibrium
framework (Anas, 1980, Bayer et al., 2005) to tluation of large environmental
changes. The second objective is to evaluate thteilditional welfare impacts of the
1990 CAAA in the Los Angeles area.

Main Findings

The empirical analysis suggests that the reductiorszone concentrations across Los
Angeles, Orange, Riverside and San Bernardino @msjntprovided an average
equilibrium benefit of $1,800 to households. In trast, average benefits are $1,400
when equilibrium price effects are not accounte@madnstrating that ignoring
equilibrium effects will likely underestimate therefits of large environmental changes.
We find that the equilibrium welfare impacts of th890 CAAA, in the Los Angeles
area, varied significantly across income groupsugeébolds in the highest income
quartile experienced equilibrium benefits of appmetely $3,600 as compared to only
$400 for households in the lowest income quaniife. also find that ignoring equilibrium
adjustments in housing prices can significantlgrathe distribution of relative welfare
gains (i.e. welfare gains as a proportion of hoakkincome). Indeed, welfare impacts
that do not account for equilibrium adjustmentsgasg that high-income households

have larger relative welfare gains compared to iloeome households. However, when
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accounting for equilibrium adjustments, we findttki@e distribution of relative welfare
gains from the 1990 CAAA is fairly even across imsgroups.

Potential Limitations

We now discuss some limitations of the equilibriwlifare measures developed in this
dissertation. The equilibrium welfare estimateshis study are based on the simulation
of a counterfactual equilibrium which only accoufds air quality changes and induced
housing price changes that result from the resprtihhouseholds. The actual welfare
impacts of the 1990 CAAA would also account for dpas in the housing supply,
household income, and household population. Théssges will likely affect the
welfare benefits of the 1990 CAAA.

Using the higher household income levels in 2000ldidikely lead to higher benefit
estimates as high-income households have a highegimal willingness to pay for air
quality. If the supply of housing is elastic witbspect to price, accounting for housing
supply adjustments would likely increase equilibritbenefits as the influx of new
housing units would provide more choices to houklEhoAn increase in population is
likely to reduce equilibrium welfare gains to thetent that the increased demand for
housing result in higher prices. This effect is kwer likely to vanish in the long run as
the supply of housing adjusts.

The estimated equilibrium welfare measures couldsémesitive to the geographic
definition of the housing market. We assume in thiwk that the Los Angeles area
housing market comprises four counties: Los Ang€lesnty, Orange County, Riverside
County and San Bernardino County. One could argsan Sieg et al. (2004), that the

Los Angeles area housing market also includes Varf@ounty. All else equal a larger
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geographic area is likely to lead to higher welfaenefits as it would provide more
choices to households.

The equilibrium welfare measures could also be iBeasto the geographic
characterization of neighborhoods. This study u#es 1990 Census Public Use
Microdata Areas (PUMA) to characterize neighbort®ddn the other hand, Sieg et al.
(2004) use the 1990 school district boundariesetind neighborhoods. One could also
characterize neighborhoods using smaller geographits such Census tracts, Census
blocks groups or Census blocks. Altering the geglgadefinition of neighborhoods is
less likely to significantly affect the air qualitpeasures as they generally do not vary
much across small areas. As a result welfare inspafcair quality changes are likely to
be less sensitive to the characterization of neagidods.

The random utility model defined by equation (4&sumes that the household-
specific unobserved tastes are independently loiged as Type | Extreme Value. This
assumption gives rise to the multinomial logit (MNfodel. A major limitation of the
MNL model is the IIA assumption, which generatedividual household demands with
limited substitution patterns. In Section 4.2 wecdssed that the use of household
interactions will produce residential location dewmis that possess rich substitution
patterns. However, it is still the case that redgxthe IIA assumption would provide
much richer substitution patterns across residelutéations. The extent to which these
richer substitution patterns affect the equilibriwmlfare results is an empirical issue that
will be addressed in future extensions of this aese

The random utility specification in equation (4&¥s0 assumes away endogenous

social interaction effects. Social interaction efseeemerge from the fact that households

135



may care about the average socioeconomic charstatsrof their neighborhoods. These
social interaction effects are likely to be endagesly determined in the sorting
equilibrium when households have heterogeneousemameées. This is because the
average socioeconomic makeup of neighborhoods elsagmrh time households resort.

Our utility function incorporates an exogenous abanteraction effect. The social
interaction effect is a result of households’ hoemgpus tastes for the proportion of
Hispanics in the neighborhood. Incorporating endoge social interactions in the
household’s utility could affect the equilibrium Mare estimates. For example, low-
income renters could suffer welfare losses as as&e in housing prices in their original
neighborhoods force them to relocate to neighbatbawith less desirable attributes. An
avenue for future research would be to explore aoghiy the extent to which the overall
and distributional impacts of the 1990 CAAA areeafed when endogenous social
interactions are incorporated in the householdisloan utility function.
Future Research
We discuss two extensions of this work to be exgaan future research. One extension
involves relaxing the assumption about the housogply. The current framework
assumes an exogenously determined housing suppever, in the long run, the
housing supply is likely to respond to large chanigeair quality and housing prices. The
guestion from a policy perspective is whether thelsenges substantially change the
overall and distributional welfare impacts of tH#90 CAAA.

Sieg et al. (2004) try to address this questionisigig different predetermined supply
elasticities in the counterfactual simulation. Thieyl that the changes in housing supply

elasticities do not lead to significant changewe@ifare predictions. However, the Sieg et
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al. conclusions rely on ad-hoc, instead of endogenchanges in the housing supply.
Walsh (2003) evaluates the equilibrium welfare iotpaof open space policies, in the
Epple-Sieg equilibrium framework, by incorporatiag endogenous housing supply. To
our knowledge, no one has yet investigated theliegum welfare impacts of policy
changes using a discrete choice equilibrium modheichv incorporates endogenous
housing supply adjustments.

Another extension of this work would consider aadletl investigation of the
implications of alternative specifications of holskl preferences on equilibrium welfare
impacts. The question of policy interest here igthbr the estimates of the equilibrium
welfare impacts of the 1990 CAAA differ substaritiadcross alternative specifications
of the household utility function. Our welfare résusuggest that the specification of
household preferences could play a rather sigmificale in equilibrium welfare
predictions. This is evidenced by the significantedgence between the county-level
equilibrium benefit estimates from this study ahd estimates from Sieg et al. (2004)
(see Table 7.6). A clean comparison of the two aggnes would, however, require
estimating the Sieg et al. (2004) model using @tadThis investigation would compare
the benefit estimates from the Epple-Sieg and éiscchoice equilibrium approaches
using the same data. The analysis would also caartpa equilibrium welfare impacts
from two alternative specifications of the housefsrandom utility, which relax the 1A
assumption. These are the nested logit model anchtidom coefficient logit model. The
nested logit allows a partial relaxation of the IBssumption, whereas the random
coefficient logit fully relaxes the IIA assumptioihis type of investigation has been

tried in the empirical industrial organization tagure by Berry, Levinsohn and Pakes
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(1995, 2004), and Petrin (2002). However, theséistuwere only interested in the

implications for estimates of price elasticitiest welfare predictions.
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Appendix A: Generating the Data

Al. Regression output from computation of the rentBhousing price

Table Al. Regression Used for Correcting House &alu

Los Angeles — Orange County Riverside -
Long Beach MSA San Bernardino
MSA MSA
Log Transaction price (10 times property tax) 335 .349" 4407
Moved in 1985 to 1988 (compared to 1989-90) -07013 0.017" -0.060
Moved in 1980 to 1984 0.037 0.075 -0.077
Moved in 1970 to 1979 0.182 0.309 0.040"
Moved in 1960 to 1969 0.253 0.395 0.097"
Moved in 1959 or earlier 0.201 0.307" 0.088
R? 0.325 0.263 0.431
Observations 138,181 39,550 33,891

Note:" Significant at the 5 percent levél Significant at the 1 percent level. Dependentaldsi is log of house value.

Regression includes a full set of PUMA dummies.
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Table A2. Regression Used for Correcting MonthlyRe

Los Angeles — Orange County Riverside -
Long Beach MSA San Bernardino
MSA MSA

Moved in 1985 to 1988 (compared to 1989-90) -0.082 -0.062 -0.081"
Moved in 1980 to 1984 -0.207 -0.193 -0.234
Moved in 1970 to 1979 -0.329 -0.298 -0.328
Moved in 1960 to 1969 -0.410 -0.439" -0.295"
Moved in 1959 or earlier -0.421 -0.310° -0.459
Rooms 0.027 0.014 0.043
Bedrooms 0.154" 0.144 0.121"
(compared One.family aiached) 0056 0.028 -0.080
?cﬁr?l?)grllingnce?gmﬁ; attached) -0.008 0.128 -0.187
3-4 Apartments complex -0.128 -0.137 -0.168
5-9 Apartments complex -0.144 -0.168 -0.174
10-19 Apartments complex -0.142 -0.166 -0.133
20-49 Apartments complex -0.113 -0.13¢" -0.143
50 or more apartments complex -0.145 -0.170° -0.148
ot 1565 0199
Built in 1980 to 1984 -0.089 -0.073 -0.139"
Built in 1970 to 1979 -0.078 -0.045 -0.158"
Built in 1960 to 1969 -0.068 -0.072 -0.211
Built in 1950 to 1959 -0.105 -0.103 -0.257"
Built in 1940 to 1949 -0.122 -0.149 -0.291"
Built in 1939 or earlier -0.146 -0.161 -0.327
R? 0.368 0.410 0.395
Observations 138,181 39,550 33,891

Note:™ Significant at the 5 percent levél Significant at the 1 percent level. Dependentalse is monthly rent.
Regression includes a full set of PUMA dummies.
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Table A3. Regression Used for Converting House &alo Rental Rates

Los Angeles — Orange County Rverside -
Long Beach MSA San Bernardino
MSA MSA

Owner-occupied 5.654 5.830 5.474
Rooms 0.049 0.047 0.090"
Bedrooms 0.057" 0.080" 0.036'
Cnesamly e stecred ous | oo | oms
?cﬁr?l?)grllingnce?gmﬁ; attached) 0.217 -0.143 -0.160
3-4 Apartments complex -0.210 -0.179 -0.130
5-9 Apartments complex -0.232 -0.207 -0.138"
10-19 Apartments complex -0.229 -0.204 -0.108
20-49 Apartments complex -0.201 -0.166 -0.111
50 or more apartments complex -0.234 -0.188 -0.119
st sgsn i
Built in 1980 to 1984 -0.083 -0.158 -0.147
Built in 1970 to 1979 -0.105 -0.191" -0.200
Built in 1960 to 1969 -0.182 -0.239 -0.303
Built in 1950 to 1959 -0.247 -0.293 -0.387
Built in 1940 to 1949 -0.255 -0.316 -0.407"
Built in 1939 or earlier -0.257 -0.319 -0.409
R? 0.992 0.987 0.986
Observations 138,181 39,550 33,891

Note:™ Significant at the 5 percent levél.Significant at the 1 percent level. Dependentaldé is log of corrected
house value if owned, otherwise, log of correctemhtnly rent. Regression includes a full set of PUBWAMmies.
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A2. STATA Codes Used to Generate the Data

Main Code

/* generates household sample from original CA pums
capture log close

cd "H:\dissert_files\datasets\sata_data\pums"
*cd "E:\research\data\"

log using gen_pumsdata90.log, replace

set more off

/* preliminaries:

1. generate unit and person record from pums origin
2. generate puma pollution data

3. generate puma distance data

4. generate puma elevation data

5. generate puma crime and school data

(2-5: pums90_attr.dta)

*

* housing unit record
use pumsah90, clear
keep rectype serialno sample state puma msapmsa hou

bedrooms yrbuilt condo oneacre proptax rgrent rren
"6000" | msapmsa=="4480" | msapm
"6780" | msapms

gen pmsaname="."

replace pmsaname="Orange County" if msapmsa=="0360
replace pmsaname="Los Angeles - Long Beach" if msa
*replace pmsaname="Ventura" if msapmsa=="6000"
replace pmsaname="Riverside - San Bernardino" if m
drop if msapmsa=="6000" /*drop ventura cnty*/

* cleanup

drop if units1=="00" | units1=="01" | units1=="10"

drop if tenure=="0" | tenure=="4"

sort serialno

save pumsah90_socal, replace

* person record

clear

set mem 500m

use pumsap90.dta, clear

keep serialno relatl sex race age marital ragechld
disabll disabl2 powstate powpuma travtime

* racial characteristics

destring hispanic, replace

gen hispanicl=(hispanic!=0 & hispanic!=199)

gen mexic_org=(hispanic==1 | (hispanic>=210 & hispa
drop hispanic

ren hispanicl hispanic

destring race, replace

gen black=(hispanic==0 & race==2)

gen white=(hispanic==0 & race==1)

gen asianpi=(hispanic==0 & (race>=6 & race <=36))
* keep household headers

keep if relat1=="00" /*NOTE: this implies that only

* merge person and unit record

sort serialno

merge serialno using pumsah90_socal
tab _merge

keep if _merge==3

drop _merge

sort serialno

save pumsah90_socal, replace
clear
set mem 250m

* generate price variable
do generate_price

* merge price variable with master dataset
use pumsah90_socal, clear

merge serialno using pums90price

tab _merge

keep if _merge==3

drop _merge

sort serialno

* drop non-contiguous pumas (see file puma_list.xls
drop if puma=="04808" | puma=="06420" | puma=="
puma=="07207"

save pumsah90_socal, replace

* generate hsld and location data for estimation
do gen_hsld_hsg90

*

al files (pumsah90)

swgt persons gqtype units1 rooms tenure acreage val ue rentl yrmoved

tunt rvalunt rhhinc rhhfamtp r18undr ré5over
'6780" | msapmsa=="0360"
360"

&

pmsa=="4480"

sapmsa=="6780"

hispanic poverty pob school yearsch mobility migrst at migpuma ///
nic<=220))

*

)

4" | puma=="06901" | puma=="06904" | puma=="06905" | puma=="07201" |
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log close

Sub-Code for Generating the Housing Price Variable

/* do-file to generate adjusted home value and rent
values to rental rates.*/

/*Partl: 1990 Pums housing sample*/

/*

use value1990pums, clear

gen value2=value

tostring value, replace format(%02.0f)
sort value

save value1990pums, replace

* add tax amounts

use proptax1990pums, clear

gen proptax2=proptax

tostring proptax, replace format(%02.0f)
sort proptax

save proptax1990pums, replace

*

/* cleanup housing values in pums using tax data*/

use pumsah90_socal, clear

* evaluate how many values or rents are top coded
gen topcoded=(value=="25" | rgrent>=1500)

sum topcoded

tab topcoded

* add value amounts

sort value

merge value using value1990pums, keep(valuel)
tab _merge

drop if _merge==2

drop _merge

* add tax amounts

sort proptax

merge proptax using proptax1990pums, keep(taxamtl)
tab _merge

drop if _merge==2

drop _merge

* begin cleanup
tab msapmsa, gen(msa_dum)

gen In_val=log( valuel)

gen In_tax=log( taxamt1)

drop if valuel!=. & In_tax==. /* drop owner occupie
destring value, replace

* compute predicted value

xi: regress In_val In_tax i.puma i.yrmoved if valu
predict pred_Invall

xi: regress In_val In_tax i.puma i.yrmoved if valu
predict pred_Inval2

xi: regress In_val In_tax i.puma i.yrmoved if valu
predict pred_Inval3

gen pred_Inval= pred_Invall if msa_dumi1==1
replace pred_Inval= pred_Inval2 if msa_dum2==1
replace pred_Inval= pred_Inval3 if msa_dum3==1

* replace reported value with predicted value if p
gen val_low=.

replace val_low=1 if pred_Invall=. & In_val!=. & p
replace val_low=0 if pred_Invall=. & In_val!=. & p
tab val_low,m

tab val_low if value==25m

tab val_low if value==25 & pred_Inval==.,m

gen val_adj= valuel if val_low==0

replace val_adj= exp(pred_Inval) if val_low==1

* regress adjust rents to market values

gen In_rent=log(rgrent)

*replace In_rent=. if tenure=="4"

destring rooms bedrooms condo oneacre units1, repla

* adjust reported rents based on year moved

xi: regress In_rent i.yrmoved rooms bedrooms i.unit

gen In_rent_a= In_rent + _b[_lyrmoved_2]*_lyrmoved_
_b[_lyrmoved_5]*_lyrmoved_5 + _b[_lyrmoved_6]*_lyrm
xi: regress In_rent i.yrmoved rooms bedrooms i.unit
replace In_rent_a= In_rent + _b[_lyrmoved_2]*_lyrmo
_b[_lyrmoved_5]*_lyrmoved_5 + _b[_lyrmoved_6]*_lyrm
xi: regress In_rent i.yrmoved rooms bedrooms i.unit

. Also converts home

Fdk kR ok ko ko k kR okk

d units with no reported property tax*/

e>0 & value<25 & msa_dum1==1 [fw= houswgt]
e>0 & value<25 & msa_dum2==1 [fw= houswgt]

e>0 & value<25 & msa_dum3==1 [fw= houswgt]

redicted value greater than reported value

red_Inval> In_val
red_Inval< In_val

ce

s1 i.yrbuilt i.puma if msa_dum1==1 [fw= houswgt]

2 + _b[_lyrmoved_3]*_lyrmoved_3 + _b[_lyrmoved_4]*_
oved_6 if msa_duml==1

s1 i.yrbuilt i.puma if msa_dum2==1 [fw= houswgt]

ved_2 + _b[_lyrmoved_3]*_lyrmoved_3 + _b[_lyrmoved_

oved_6 if msa_dum2==1
s1 i.yrbuilt i.puma if msa_dum3==1 [fw= houswgt]
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replace In_rent_a= In_rent + _b[_lyrmoved_2]*_lyrmo
_b[_lyrmoved_5]*_lyrmoved_5 + _b[_lyrmoved_6]*_lyrm
gen rent_adj=exp(In_rent_a)

* generate price variable using values and rents
gen pricel=.

replace pricel=val_adj if tenure=="1"|tenure=="2"
replace pricel =rent_adj if tenure=="3
tab tenure if pricel==.,m

gen In_pricel=log(pricel)

drop if pricel==.

* regress log prices on owner dummy to get coeffic
gen owned=(tenure=="1"|tenure=="2")

*xi: regress In_pricel owned rooms bedrooms oneacre
xi: regress In_pricel owned rooms bedrooms i.units1
gen coef901=exp(_b[owned])

regressions*/

xi: regress In_pricel owned rooms bedrooms i.units1
gen coef902=exp(_b[owned])

xi: regress In_pricel owned rooms bedrooms i.units1
gen coef903=exp(_b[owned])

gen coef90=.

replace coef90=coef901 if owned==1 & msa_dum1==1
replace coef90=coef902 if owned==1 & msa_dum2==1
replace coef90=coef903 if owned==1 & msa_dum3==1
tab coef90,m

tab tenure if coef90 ==.

* convert values to rental rates

gen rt_pricel=pricel/coef90 if owned==1
replace rt_pricel=pricel if owned==0
replace In_pricel=log(rt_pricel)

*keep serialno pricel rt_pricel In_pricel

*ren pricel price

keep serialno rt_pricel In_pricel coef90 topcoded
ren rt_pricel rt_price90

ren In_pricel In_price

sort serialno

save pums90price, replace

ved_2 + _b[_lyrmoved_3]*_lyrmoved_3 + _b[_lyrmoved_
oved_6 if msa_dum3==1

ient for conversion of values to gross rents

i.units i.yrbuilt i.puma [fw= houswagt]

i.yrbuilt i.puma if msa_dum1==1 [fw= houswgt]
/* use value from

i.yrbuilt i.puma if msa_dum2==1 [fw= houswgt]

i.yrbuilt i.puma if msa_dum3==1 [fw= houswgt]

4]*_lyrmoved_4 +

previous

Sub-Code for Generating Household and Housing-TypPata used in MATLAB Estimation

/* This do-file generates (1) housing types dataset

cd "H:\dissert_files\datasets\sata_data\pums"
set more off

[rrsxkiiakik ganerate 1990 housing types and their
use pumsah90_socal, clear

* drop hslds with monthly inc less than 500 or rent
gen hincm90=rhhinc/12

drop if hincm90<500

drop if hincm90<=rt_price90 /*drop hslds who canno

* merge 3-digit puma coordinates
generate str pumal = substr(puma,1,3)
gen a="00"

egen puma3dg = concat(pumal a)

drop pumal a

sort puma3dg

merge puma3dg using work_puma, keep(pow_x pow_y)
tab _merge

keep if _merge==3

drop _merge

ren pow_x puma3dg_x

ren pow_y puma3dg_y

* merge place of work puma coordinates
ren puma3dg puma3dg_a

gen puma3dg=powpuma

sort puma3dg

merge puma3dg using work_puma, keep(pow_x pow_y)
tab _merge

keep if _merge==3

drop _merge

ren pow_x powrk_x

ren pow_y powrk_y

replace powrk_x=0 if powrk_x==.
replace powrk_y=0 if powrk_y==.

gen workplace=(powrk_x!=0)

save pumsah90_socall, replace
* generate puma indices

gena=1

rename a numhses
destring msapmsa, gen(pmsa)

and (2) household population dataset*/

attributes for matlab ****¥kiekiony

al hsg price

t affort their hsg unit*/
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destring puma3dg_a, replace

collapse (mean) pmsa hispanic mexic_org black white
numhses,by(puma)

ren puma3dg_a puma3dg

egen int pumaindl = seq()

*tostring pumaind1, generate(pumaind2) format(%03.0
*gen year="1990"

*egen pumaind = concat(year pumaind2)

tostring pumaind1, generate(pumaind) format(%02.0f)
ren hispanic shrhisp

ren black shrblack

ren white shrwhite

ren asianpi shrasian

ren rhhinc avginc

sort puma

save puma9o0ind, replace

* merge puma indices and average demographics to ma
use pumsah90_socall, clear

sort puma

merge puma using puma90ind , keep(pumaind pumaind1)
tab _merge

keep if _merge==3

drop _merge

* generate new variables

tab yrbuilt

gen blt80s90s=(yrbuilt=="1" | yrbuilt=="
gen blt60s70s=(yrbuilt=="4" | yrbuilt=
tab unitsl

gen singlefam=( units=="02" | units=="03")

gen owned=(tenure=="1"|tenure=="2")

destring bedrooms, replace

replace bedrooms=bedrooms-1 /*number of bedrooms in
egen hsid = concat(pumaind owned bedrooms blt80s90s
sort hsid

egen pricetype=mean(rt_price90), by(hsid)

drop if hincm90<=pricetype /*drop hslds who cannot
save pumsah90_socall, replace

2" | yrbuil
5)

* generate location types

gena=1

collapse (mean) pricetype owned bedrooms blt80s90s
pumaindl (count) a [fw= houswgt], by( hsid)

gen rt_price90=pricetype

* generate housing units by location type

ren a agrgdem_w

egen totmkt=sum( agrgdem_w)

gen mktsh= agrgdem_w / totmkt

* generate indices for location types
sort hsid

egen int altid = seq()

sort hsid

*save pums90_discr, replace

* merge puma demographics
save pums90altlb, replace
use puma9oind, clear

sort pumaindl

save puma9oind , replace
use pums90altlb, clear

sort pumaindl

merge pumaindl using puma90ind , keep(pmsa shrblack
tab _merge

keep if _merge==3

drop _merge

* merge puma attributes

sort puma

*merge puma using puma90_attr, keep(math crime elev
merge puma using puma90_attr, keep(math crime elev
tab _merge

keep if _merge==3

drop _merge

sort puma

merge puma using pollution, keep(cntyid 0zo89_91 oz
pm99_01 pm8991mean pm9496mean pm9901mean)
tab _merge

keep if _merge==3

drop _merge

/* merge ozone 3-yr centered averages
destring puma, gen(pumal)

sort pumal

merge pumal using 0zone89t01p5, keep(0zo99_01 0z094
tab _merge

keep if _merge==3

drop _merge

*

/*

* merge 3-digit puma coordinates
generate str pumal = substr(puma,1,3)

asianpi rhhinc puma3dg_a puma3dg_x puma3dg_y (coun

ster dataset

=="3")

census starts at 1 instead of 0%/
blt60s70s singlefam)

affort their hsg type*/

blt60s70s singlefam ///

shrhisp shrasian shrwhite avginc puma puma3dg puma

ozmean ozexmean pm10 hdens_km dist_coast coast5km
hdens_km dist_coast coast5km)

094_96 0z099_01 0z8991mean 0z9496mean 0z9901mean pm

_96 0z089_91 cntyname)
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gen a="00"

egen puma3dg = concat(pumal a)

drop pumal a

sort puma3dg

merge puma3dg using work_puma, keep(pow_x pow_y)
tab _merge

keep if _merge==3

drop _merge

ren pow_x puma3dg_x

ren pow_y puma3dg_y

* merge place of work puma coordinates

drop puma3dg

gen puma3dg=powpuma

sort puma3dg

merge puma3dg using work_puma, keep(powrk_x powrk_y
tab _merge

keep if _merge==3

drop _merge

gen workplace=(powrk_x!=.)

*

drop hsid puma
sort altid
save pums90altlc, replace

[Frmwmirisink ganerate 1990 household data for matl

* add location indices to household data
use pumsah90_socall, clear

sort hsid

merge hsid using pums90altlb, keep( altid)
tab _merge

drop _merge

ren altid altind

ren serialno hhid

destring msapmsa, gen(pmsahh)

1
* merge puma coordinates for place of work

egen pumal=concat(powstate powpuma)

destring pumal, replace

sort pumal

merge pumal using pums90dist_cor, keep( point_x poi
tab _merge

keep if _merge==3

drop _merge

ren point_x powpuma_x

ren point_y powpuma_y

*

* create cnty and pmsa dummies

destring puma, gen(pumal)

sort pumal

merge pumal using 0zone89t01p5, keep(cntyname)
tab _merge

keep if _merge==3

drop _merge

gen cntyhh=37

replace cntyhh=59 if cntyname=="Orange
replace cntyhh=65 if cntyname=
replace cntyhh=71 if cntyname=="San Bernardino"
*tab cntyname, gen(cntyid)

*tab pmsaname, gen(pmsaid)

gen age65=(age>=65)

ren persons hsld_size
gen female=(sex=="1")
gen mwkids=(rhhfamtp=
gen mwkids6=(rhhfamtp:
gen kids=(r18undr=="1")
destring yearsch, replace
gen college=(yearsch>=12)
gen hincm_price=hincm90 - rt_price90
*keep hincm90 houswgt year hsld_size female age mwk
hispanic asianpi college pumaind hsid ///
age65 cntyid1-cntyid4 pmsaid1l-pmsaid3 hhid altind
keep hincm90 houswgt year hsld_size female age kids
hispanic asianpi college pumaind hsid puma3dg_a po
age65 cntyhh pmsahh hhid altind
destring pumaind hhid puma3dg_a powpuma , replace
ren puma3dg_a puma3dg_hh
drop hsid
sort altind

"01" & (ragechld=="1" | ragec
01" & ragechld=="1")

save pumshh1990c, replace

* cleanup temporary files
erase pumsah90_socall.dta
erase puma90ind.dta

erase value1990pums.dta

ab FrrmkrER Rk

nt_y)

hid=="2"))

ids mwkids6 white black ///

mwkids mwkids6 white black ///
wpuma workplace powrk_x powrk_y ///
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Appendix B: Matlab Codes for Estimation

B1. Main Code for Maximum Likelihood Estimation

% PURPOSE: 2-step ML estimation of residential loca

% Angeles area

% Constant Tra, March 2006.

% University of Maryland, College Park
% ctra@arec.umd.edu

clear all

global zbi n ky prob12 meanvalue ii nj nprod wg it

% get data

load zbi89010z_wkd_k20aa2 % sample affordable alter

zbi=zhi8991;

nprod=size(wg,1);

[

% FIRST STAGE: MAXIMUM LIKELIHOOD ESTIMATION OF MUL

[

theta2=.001*ones(size(zbi,2),1);

xtol=5e-3; dtol=1e-1; ftol=1e-5; maxiter=100;
coefs=zeros(size(theta2,1),100);

iter=1;

totfuneval=0;

tot_iter=0;

converit=[1;1;1];

df=1;

% initialize delta_h

mvalold=full(sparse(ii,jj,1,nprod,1));
oldt2=1;
save mvalold_a mvalold oldt2

delta=log(mvalold);
delta = delta(prob12(:,2)); % this assigns the delt
meanvalue=delta;

tic; like=mlogit_likedhla(theta2); toc

tic % Initialize computing time

while any(convcrit > 0) && (maxiter > iter)
options=optimset('Display’,iter','Diagnostics'
‘off','GradObj','on’,'Maxlter', 5000);
disp(' )
disp(
disp([' OUTER ITERATION # ' num2st
oldtheta2=theta2;
olddelta=delta;
oldlike=mlogit_likedhla(theta2);
oldfuneval=totfuneval;
olditer=tot_iter;

disp(' )
disp('Starting optimization ...")
disp(' ")
[theta2, like, exitflag, output] = fminunc(
coefs(:,iter)=theta2;
disp(' ")
disp(['....Optimization Completed. Exitflag

condition=: ' num2str(output.firstorderopt)])

disp(' ‘)
delta=meanval_a(theta2);
meanvalue=delta;

if max(isnan(delta)) ==
disp(‘error: mean value not a number’)
break

else
dtheta2= theta2 - oldtheta2;
dxcrit=max(abs(dtheta2) - xtol);
ddelta= delta - olddelta;
ddcrit=max(abs(ddelta) - dtol);
df=(oldlike - like)/oldlike;
convcrit=[(ddcrit);(dxcrit); (abs(df)-ftol)]
disp("’)

disp([ 'Relative Chg. in Obj. Func.= ' num2
disp(' ")

disp(['.... End of Outer Iteration # ' num2
tot_iter=output.iterations + olditer;

tion model for Los

er xtol

natives, k=50, translog utility

TINOMIAL LOGIT %

as to the n*(k+1)-by-1 individual probabilities cho

,'off''LargeScale’,...

r(iter)])

‘mlogit_likedhla',theta2,options);

= ' num2str(exitflag) ' Obj. Fun.= ' num2str(like)

str(df) *. Infinity Norm of dX="' num2str(max(abs(

str(iter)])
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totfuneval=output.funcCount + oldfuneval;
iter=iter+1;
end
end

comp_t = toc/60; % Get Computing time in minutes

disp(' )
disp(’
disp(FINAL RUN")
[theta2, like, exitflag, output] = fminunc(‘mlogit_
delta=meanval_a(theta2);
meanvalue=delta;
coefs(:,iter)=theta2;
clear coefs
disp(' )
% Write a message about why it stopped
if all(convcrit <= 0)
critmsg ='Convergence Tolerance Achieved';
else
critmsg = 'Maximum lterations Reached’;
end

likedhla',theta2,options);

% COMPUTE COVARIANCE MATRICES FOR HOUSEHOLD INTERNON PARAMETERS

clear zbi8991 zbi9496 zbi9901 dinc3q dinc4q pmsahh

load delta

hgl=hg./sum(hg);
wgl=wg./sum(wg);
deltal=deltall-log(hgl./wgl);
delta = deltal(prob12(:,2));
mval=exp(delta);

% compute cov of theta2
m=k+1; K=size(theta2,1); T=size(hg,1); grad=zeros(K
covbeta=zeros(K,K);
% covdelta=zeros(T,T);
for j=1:n
xi=zbi(m*(j-1)+1:m*},:);
yi=y(m*(-1)+1:m*);
prob3i=prob3(m*(j-1)+1:m*j);
gradi=xi*(yi - prob3i);
grad=grad + gradi;
covbeta=covbeta + gradi*gradi;
%  covdelta=covdelta + (yi - prob3i)*(yi - prob
end
% save covbeta covbeta
setheta=sqrt(diag(inv(covbeta)));
tstats=theta2./setheta;
% clear covdelta

fprintfCOPTIMIZATION TERMINATED: %s\n',critmsg);
disp(’
disp(' ")

% basic specification testing;
thetaO=zeros(size(theta2));

lik=-like;

Ir1 = -mlogit_likedhla(theta0); % restricted log-li
meanvalue=zeros(size(delta));

Ir = -mlogit_likedhla(thetaO); % restricted log-lik
Ir2 = -mlogit_likedhla(theta2); % restricted log-I
Iratio = -2*(Ir - lik);

Iratiol = -2*(Ir1 - lik);

Iratio2 = -2*(Ir2 - lik);

% Iratio_p=; % likelihood ratio p-value

rsgr = 1 - (lik / Ir); % McFadden pseudo-R"2

disp(MULTINOMIAL LOGIT MAXIMUM LIKELIHOOD ESTIMATE
fprintf('Nobs, Nprods, Nvars 1%

disp(['Log-Likelihood :

disp(['# of func. iterations

disp(['# of obj. func. evaluations

disp(['run time (minutes) :

disp(['Likelihood ratio statistic (all=0)

fprintf(LR p-value (all=0) 1 9%9.4f\
fprintf(LR p-value (deltas=0) 1 %9.4f\
fprintf(LR p-value (slopes=0) 1 909.4f\

disp(['McFadden pseudo-R"2 :'num2
disp(' )

disp('FIRST STAGE ESTIMATES')
out=[theta2 tstats]

S — %
% SECOND STAGE OLS ESTIMATION %
7 — %

vnames_a=strvcat('delta’,'const’','bedrooms’,'built8
‘'math’,'logcrime’,'logelev','coast5km’,'logdens
‘shrhisp','owned', 'ozone’);

vnames_b=strvcat('delta’,'const','bedrooms’,'built8

olddelta hhind hhid cntyhh ddelta hhinc

3i);

kelihood: intercepts only

elihood: all estimates
ikelihood: constants only

S: 1990 OZONE AVG. Model’)
6d,%6d,%6d \n',n,nprod,size(theta2,1));
* num2str(lik)])

' num2str(tot_iter)])

' num2str(totfuneval)])

' num2str(comp_t)])

' num2str(Iratio)])
n',1-chi2cdf(Iratio,size(theta2,1)+ nprod - 1));
n',1-chi2cdf(Iratio2,nprod - 1));
n',1-chi2cdf(Iratiol,size(theta2,1)));
str(rsqr)])

0a','builté0s70s', ‘Singlefam',...
K, ...

0a','builté0s70s', ‘Singlefam',...
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‘math’,'logcrime’,'logelev','coastskm’,'logdens
‘owned', ‘ozone');

disp(' )

disp(SECOND STAGE ESTIMATES (OLS)")
disp(' ")

deltala=deltal - min(deltal)+1;
deltala=log(deltala);

z1 = [ones(size(zmat,1),1) zmat(:,2:end)];
results=hwhite(deltal,z1); % control for heterosked
prt_reg(results,vnames_a)

disp(" ")

disp('SECOND STAGE ESTIMATES (OLS w/o prop. hispani

z1(:,end-2)=[];
results=hwhite(deltal,z1); % control for heterosked
prt_reg(results,vnames_b)

asticity using White's Robust covariance estimate

cs))

asticity using White's Robust covariance estimate

B2. Code for Computation of Log-Likelihood Function

function [like,grad] = mlogit_likedhla(beta)
% PURPOSE: Computes value of log likelihood functio
% estimation of Los Angeles area residential locati

% Constant Tra, March 2006.
% University of Maryland, College Park
% ctra@arec.umd.edu

global zbi n k y meanvalue prob12

% compute choice vector of choice probabilities
ezb=exp(meanvalue + zbi*beta); % n*(k+1)-by-1
ezbl=reshape(ezb,k+1,n); % (k+1) by n
sumezbl=sum(ezbl)’; % nby 1

probi=ezb./(sumezb1(prob12(:,1)));

% compute likelihood of household and update po
if all(probi)<1
like=-1e10;
else
like=y"*log(probi);
end

like=-like;

if nargout>1 % compute gradient
grad=zbi*(y - probi);
grad=-grad;

end

n for multinomial logit
on model.

for household

pulation likelihood

B3. Code for Computation of Alternative Constants ia Contraction Mapping

function delta = meanval_a(theta2)
% This function computes the mean utility level giv
% household interaction parameters

% Constant Tra, March 2006.

% University of Maryland, College Park

% ctra@arec.umd.edu

% Based on code by:

% Aviv Nevo, May 1998.Source: "A Research Assistant
% Choice Models of Demand," NBER technical paper #2
% Market Power in the Ready-to-Eat Cereal Industry,
global prob12 nj iter xtol

load mvalold_a

if max(abs(theta2-oldt2)) < xtol;

tol = 1le-9;
flag = 0;
else
tol = le-1;
flag = 1;
end
norm = 1;
avgnorm = 1;
i=1;

while norm > max(tol*10”(-flag*floor(iter/2)),1e-9)

alpha= suni pr obi _a(theta2,mvalold);
mval= mvalold.*nj./alpha;

t = abs(log(mvalold) - log(mval));

en estimates of the

's Guide to Discrete
21, and "Measuring
" NBER WP #6387.

&& avgnorm > max(1le-1*tol*107(-flag*floor(iter/2))

%this returns the vector housing-type demands (see B4)
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norm = max(t);

avgnorm = mean(t);

disp([iteration # ' num2str(i) ' mval(4): '
num2str(min(norm,avgnorm))])

mvalold = mval;

izi+1;
end
disp(['  # of iterations for delta convergence:

oldt2=theta2;
save mvalold_a mvalold oldt2

deltall=log(mvalold);
deltall=deltall-deltall(1); % normalize delta: firs

delta = deltall(probl12(:,2)); % this assigns the de
save delta deltall alpha

num2str(mval(4)) ' aplha(4): ' num2str(alpha(2)) *

" numa2str(i)])

t element is set to zero

ltas to the n*(k+1)-by-1 individual probabilities ¢

B4. Code for Computation of the sample Housing-Typ®emands

function [f,prob3] = sumiprobi_a(beta,mvalold)

% PURPOSE: Computes sample housing-type demands use

% alternative constants

% Constant Tra, March 2006.
% University of Maryland, College Park
% ctra@arec.umd.edu

global zbi n k prob12

deltall=log(mvalold);
delta = deltall(probl12(:,2)); % this assigns the de

% compute choice vector of choice probabilities
ezb=exp(delta + zbi*beta); % n*(k+1)-by-1
ezbl=reshape(ezb,k+1,n); % (k+1) by n
sumezbl=sum(ezbl)’; % nby 1

prob3=ezb./(sumezbl(prob12(:,1))); % vector of
f=full(sum(sparse(prob12(:,1),prob12(:,2),prob3

d in computation of

ltas to the n*(k+1)-by-1 individual probabilities ¢

for household

choice probabilities

N
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