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teachers maintained or altered the potential of problems to “make connections” as they 

led public discussions of these problems. An analysis of the transcripts of 82 problem 

implementations found that when teachers or students made connections during problem 

discussions they most frequently did so by addressing mathematical justification, 

examining concepts more deeply than simply recalling or applying them, and connecting 

representations. Teachers most frequently led such discussions by drawing conceptual 

connections, taking over challenging aspects of the problems, and stepping students 

through arguments. Teachers much less frequently developed generalizations, compared 

solution methods, built on student ideas, provided scaffolding, or pressed students for 



justification. When connections were lost, teachers most often took over challenging 

aspect of the problems or shifted the focus to procedures, answers, or superficial or vague 

treatment of concepts. Regardless of whether or not connections were made, in about half 

of all implementations, teachers did most of the mathematical work, in about 8% of 

implementations students did it, and in the remainder, the work was shared more or less 

equally. This study suggests that teachers in high performing countries often make 

connections using approaches American mathematics educators associate with traditional 

teaching. Teachers in other countries may not share the assumption held by some 

American educators that teacher-centered instruction is ineffective for improving 

students’ conceptual understanding and abilities in problem solving and mathematical 
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Chapter 1: Introduction 

Mathematics teaching in the U.S. has long been criticized for placing an emphasis 

on recall of isolated facts and procedural skills rather than conceptual understanding, 

mathematical reasoning, and problem solving (Brownell, 1935/1970; Hoetker & 

Ahlbrand, 1969; Schmidt et al., 1996). Evidence suggests that mathematics teaching in 

some other countries may more successfully develop students’ abilities to think 

mathematically and solve challenging problems through the way teachers use 

mathematics problems in class (Hiebert et al., 2003). The purpose of this study was to 

examine more closely how teachers in the U.S. and five countries with high scores on the 

mathematics achievement test of the Trends in International Mathematics and Science 

Study (TIMSS) implement mathematical problems in ways that may promote or inhibit 

higher-order thinking. 

Rationale 

The current wave of reform in mathematics education was at least in part 

provoked by the publication of A Nation At Risk by the National Commission on 

Excellence in Education (1983) and by the low achievement of American students 

compared to those in other nations in the Second International Mathematics Study 

(SIMS; McKnight et al., 1987). The SIMS researchers placed the blame on an 

“underachieving curriculum” (p. 85) characterized by less sophisticated content and more 

superficial coverage than that found in other countries. Subsequent calls for reform in the 

U.S. advocated for changed emphases in curriculum, teaching practices, and assessment 

so that they focused on “seeking solutions, not just memorizing procedures; exploring 
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patterns, not just memorizing formulas; formulating conjectures, not just doing exercises” 

(National Research Council [NRC], 1989, p. 84). The National Council of Teachers of 

Mathematics (NCTM) recommended that teachers assign their students tasks that 

“stimulate students to make connections and develop a coherent framework for 

mathematical ideas; call for problem formulation, problem solving, and mathematical 

reasoning; [and] promote communication about mathematics” (NCTM, 1991, p. 25). 

However, in spite of two decades of reform efforts since A Nation at Risk, recent 

international comparisons have continued to find disappointing levels of mathematics 

achievement among U.S. students (Mid-Atlantic Eisenhower Consortium for 

Mathematics and Science Education, 1998a, 1998b). Of particular concern is evidence 

that, compared with their peers in other countries, fewer American students achieve 

proficiency with problems requiring them to integrate representations, construct 

arguments, select strategies in unfamiliar situations, formulate generalizations, model 

complex phenomena, and demonstrate advanced thinking (Lemke et al., 2004). 

Reformers argue that these are the kinds of thinking that will be needed by students as 

they enter a workforce in which occupations increasingly require analytical thinking and 

problem solving, as they compete internationally with those educated in systems with 

higher expectations, and as they participate as citizens in a society progressively more 

influenced by technology, statistics, and quantitative argumentation (Mathematical 

Sciences Education Board, 1990; National Council of Teachers of Mathematics, 2000). 

Researchers trace the lack of improvement in U.S. student achievement to the fact 

that reform efforts seem to have had little widespread effect on classroom practice 

(Schmidt et al., 1996; Stigler & Hiebert, 1999). International studies continue to 
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characterize American curricula and teaching practices as unfocused and superficial, 

emphasizing recall of facts and mechanical use of memorized algorithms disconnected 

from meaning (Schmidt et al., 1996; Schmidt et al., 1997; Mid-Atlantic Eisenhower 

Consortium for Mathematics and Science Education, 1998a). For example, while 

Japanese and German teaching approaches have been described as “structured problem 

solving” and “developing advanced procedures” respectively, American teaching has 

been characterized as “learning terms and practicing procedures” (Stigler & Hiebert, 

1999). 

Thus, the NCTM (2000) continues to call for changes in curricula and teaching 

practices in order to emphasize problem solving, mathematical reasoning, 

communication, connections among ideas, and representations of concepts. In its vision 

for school mathematics, it focuses on the nature of tasks that teachers assign to their 

students, imagining that instead of practicing routine procedures demonstrated by their 

teachers, 

[s]tudents confidently engage in complex mathematical tasks chosen 

carefully by teachers. They draw on knowledge from a wide variety of 

mathematical topics, sometimes approaching the same problem from 

different mathematical perspectives or representing the mathematics in 

different ways until they find methods that enable them to make progress. 

Teachers help students make, refine, and explore conjectures on the basis 

of evidence and use a variety of reasoning and proof techniques to confirm 

or disprove those conjectures. Students are flexible and resourceful 

problem solvers. (p. 3) 
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The problems or exercises that teachers have students work on in class can 

emphasize either recall of facts and use of procedures they have been told how to 

perform, or conceptual understanding and mathematical reasoning. Evidence suggests 

that implementing the latter kind of problem can lead to significantly increased levels of 

achievement in the areas desired by reformers (Ben-Chaim et al., 1998; Boaler, 2004; 

Kilpatrick, Swafford, & Findell, 2001; Newmann, Marks, & Gamoran, 1995; Stein & 

Lane, 1996; Talbert & McLaughlin, 2002). 

Paradoxically, studies suggest that American curricula already include, and 

teachers assign, these kinds of problems at rates not dissimilar from those in other 

countries (Hiebert et al., 2003). Yet the achievement of U.S. students seems not to reflect 

this fact. Hiebert et al. (2003) suggest that the resolution of this apparent paradox can be 

found in how teachers and students actually work through these problems. According to 

the TIMSS 1999 Video Survey, in American eighth-grade classrooms, problems that 

appear to ask students to engage in special forms of mathematical reasoning—those 

called “making connections” problems—are almost always implemented in ways that 

require only the statement of answers, recall of facts, or use of routine skills (Hiebert et 

al., 2003). Although this also occurs in other countries, it does not occur at rates nearly as 

high as in the U.S.; at least some proportion of making connections problems are 

implemented in ways that preserve their original nature. In fact, in some countries, 

according to the TIMSS Video Survey, some exercises initially requiring only recall or 

the use of previously given procedures—that is, “non-making connections” problems—

are implemented in ways that “make connections.” 



5

However, little has been written about what this looks like in actual classrooms. 

What are typical teacher behaviors that occur in the U.S. and other countries that do or do 

not change the nature of problems in terms of their potential to engage students in more 

sophisticated thinking? Hiebert et al. (2003) did not systematically examine this question, 

and others who have done so have limited their work to American teachers undergoing 

intensive professional development programs specifically targeted at raising the cognitive 

level of tasks they give their students (Henningsen & Stein, 1997; Stein, Grover, & 

Henningsen, 1996). An examination of teaching in a wider sample of classrooms in the 

U.S. and abroad could suggest how teachers may commonly implement problems in ways 

that do not make full use of their power to develop student thinking. In addition, 

international studies of teaching can reveal alternative practices and assumptions about 

how to promote conceptual understanding and mathematical reasoning that may not 

otherwise occur to American teachers, researchers, and reformers (Hiebert et al., 2003). 

One reason in particular suggests that such an international perspective on 

teaching may be especially useful to American mathematics educators. Current reform 

efforts call for quite sweeping changes in teachers’ practice along with corresponding 

shifts in their understanding of mathematics as a field, how students learn it, and how it 

should be taught. Research on professional development has documented how difficult it 

is to achieve such changes (Spillane, 2004; Thompson & Zeuli, 1999). Teachers tend to 

re-interpret reform recommendations to fit their pre-existing understandings, then believe 

they are implementing reform ideas when in reality they have only changed surface 

features of their teaching (Hiebert et al., 2003; Spillane, 2004; Stigler & Hiebert, 1999).  
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On the other hand, most teaching in high performing countries does not conform 

to American reform recommendations (Hiebert et al., 2003; TIMSS Video Mathematics 

Research Group, 2003). This fact may challenge the assumption that reform practices are 

the only way to promote conceptual understanding and mathematical reasoning. While 

there may be contextual and cultural differences that underlie achievement differences or 

that could render instructional practices imported from high performing countries 

ineffective in American classrooms, there is no evidence to suggest that American 

educators could not learn from the practices found in other countries. By providing data 

regarding such practices, the study of classrooms in other countries may supplement the 

research on teaching in the U.S. Such information could be very valuable to researchers, 

policymakers, and professional development providers in their efforts to improve 

American mathematics teaching. 

Definitions of Terms 

To make it easier to describe the purposes, methods, and findings of this study, I 

now define the following terms which will be used throughout this paper: 

A problem is any question a teacher assigned to students that necessitated the use 

of a mathematical operation and required “some degree of thought by an eighth-grade 

student” (Jacobs et al., p. 91), and was therefore identified as a problem by the TIMSS 

Video Study researchers. This contrasts with the more restrictive use of the term in much 

of the mathematics education literature, where it refers only to a question for which 

students have not been specifically told how to find an answer. In this study, then, a 

problem refers to any exercise or question, regardless of whether students can rely on a 

previously known procedure to find an answer. 
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A making connections problem is a problem whose statement during class seemed 

to ask students to “engage in special forms of mathematical reasoning such as 

conjecturing, generalizing, and verifying” (Jacobs et al., 2003, p. 122) and was therefore 

classified as “making connections” by the TIMSS Video Study researchers.  

A non-making connections problem is a problem whose statement was not 

classified as “making connections;” that is, the TIMSS researchers interpreted it as asking 

students only to use “routine algorithms such as calculations, symbol manipulation, and 

practicing of formulae” or “recall information regarding a mathematical definition, 

formula, or property” (Jacobs et al., 2003, pp. 121-122). 

Problem implementation is defined as the public, whole-class discussion of a 

problem. It includes all teacher and student talk, as well as any actions taken by either.  

A making connections implementation, or an implementation that makes 

connections, is an implementation that was classified by either the TIMSS Video Study 

researchers or myself as “making connections” because it was judged to “include 

mathematically rich discussions” which for example may have “included describing 

connections between multiple representations, making and justifying generalizations, 

comparing the mathematics of different solution methods, and considering why a 

particular process was mathematically appropriate” (Jacobs et al., 2003, p. 124). Who the 

coder is will be apparent from the context.   

Similarly, a non-making connections implementation, or an implementation that 

does not make connections, is an implementation that was not classified as “making 

connections.” In general, that means it was judged to involve only the use of a routine 

algorithm, the recall and statement of concepts, or the statement of the answer. 



8

The combination of problem statement and implementation classifications yields 

an implementation trajectory. Only problems in three of the four possible trajectories 

were examined in this study: (a) maintaining connections: both problem statement and 

problem implementation were coded as making connections, (b) losing connections: the 

problem statement was coded as making connections but the implementation was not, 

and (c) gaining connections: the problem statement was not coded as making 

connections, but the problem implementation was. 

In describing teacher behaviors, I found it helpful to use Good and Brophy’s 

(1987) categories of product and process questions. Product questions are those that seek 

to elicit a single correct answer that can be expressed in a single word or short phrase. 

They usually begin with “what,” “where,” or “how much.” I further defined them in 

terms of the kind of thinking they require of students by specifying that they can be 

answered by memory, observation, or performing a procedure or step as instructed by the 

teacher.  

Process questions are those that seek to elicit an explanation which requires 

students to integrate information or show knowledge of their interrelationships. They 

usually begin with “why” or “how.” 

Statement of the Problem 

American reformers seem to assume that improving students’ conceptual 

understanding of mathematics and their abilities to engage in reasoning and problem 

solving requires drastic changes in teachers’ knowledge, beliefs, and practice—changes 

that are difficult to achieve on a widespread basis. However, teaching in other countries 

suggests the possibility that such changes may not be necessary to achieve significant 
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improvement in student learning. The TIMSS 1999 Video Survey implies that while 

teaching in the participating countries does not meet many of the standards of reform 

teaching, it does involve the implementation of problems in ways that may help students 

develop the abilities about which mathematics educators are concerned (Hiebert et al., 

2003). 

Although the video study gives us some idea of the frequency with which typical 

eighth grade teachers in the U.S. and five high performing countries make use of making 

connections problems, and the frequency with which the teachers do or do not implement 

them in ways that make connections, it does not provide a sense of what teachers actually 

do that may influence whether these connections are made. In addition, examining this in 

a systematic way is made difficult by the lack of a coding system specifically developed 

for this purpose. Currently available classroom observation instruments assess the extent 

to which the observed lessons exhibit elements of instruction recommended by American 

reformers, rather than on actions teachers take to implement problems in their classes—

actions that may not conform to American reform recommendations. Therefore, these 

instruments may not capture the ways that teachers in other countries promote conceptual 

understanding and mathematical reasoning through the implementation of problems. 

Research Questions 

The purpose of this study, then, is to address the following research questions 

with regard to eighth grade mathematics teaching in the U.S. and the five other countries 

participating in the TIMSS 1999 Video Study: 

1. What teacher behaviors are associated with making connections implementations? 
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2. What similarities and differences are there between these behaviors when teachers 

maintain connections versus when they add connections to non-making connections 

problems? 

3. What teacher behaviors are associated with losing connections? 

4. When implementing making connections problems, what similarities and differences 

are there between behaviors when teachers maintain connections versus when they 

lose connections? 

Overview of Research Design 

This study consisted of a re-analysis of data from the TIMSS 1999 Video Study, 

which was conducted by LessonLab, Inc. under contract to the U.S. Department of 

Education (Hiebert et al., 2003). That study involved the videotaping of 638 eighth-grade 

mathematics lessons from the United States and six countries with high scores on the 

TIMSS mathematics achievement test: Australia, the Czech Republic, Hong Kong, Japan, 

the Netherlands, and Switzerland. The lessons were randomly selected to be 

representative of teaching in those countries. My study used problems randomly selected 

from among all but four of the 54 videotaped lessons from Japan, and a randomly 

selected sub-sample of 20 lessons from each of the remaining countries except for 

Switzerland, whose transcripts had not been translated to English.  

In the original TIMSS Video Study, a “problem implementation team” analyzed 

the mathematics problems that were publicly completed during the videotaped lessons 

from all countries except Switzerland (Jacobs et al., 2003). Working from the videos and 

translated transcripts, members of this team coded each problem at two stages—first, 

according to how it was stated, and second, according to how it was implemented. At the 
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problem statement stage, a problem was classified as either “using procedures,” “stating 

concepts,” or “making connections,” depending on which it seemed to ask students to do. 

At the implementation stage, it was classified into one of the same categories, or as 

“giving answers only,” depending on how it was publicly completed by the students 

and/or teacher. 

The TIMSS Video Study did not describe the behavior of teachers as they 

implemented these problems in the various ways. Prior research in the U.S. has identified 

teacher behaviors, classroom norms, and task characteristics associated with 

implementing tasks at “high cognitive level” versus implementing tasks at “low cognitive 

level” (Henningsen, 2000; Henningsen & Stein, 1997). Teacher behaviors associated with 

high cognitive level implementations included scaffolding, pressing students for 

justification and explanation, and modeling high level performance. Behaviors associated 

with low cognitive level implementations included using inappropriate tasks, specifying 

procedures, and shifting the focus away from meaning and to accuracy of answers. In a 

similar manner, my study sought to identify such behaviors, as well as any others that 

may not have been noted in prior American research. 

However, the instrument used in the above-mentioned research and others that 

were available for observing classroom practice were inappropriate for the purposes of 

my study for two reasons. First, some of the factors they assessed were not observable in 

the TIMSS video data, such as the extent to which tasks aligned with students’ prior 

knowledge and interests (Henningsen & Stein, 1997). This was especially true since only 

transcripts translated to English were analyzed; due to legal restrictions, the original 

TIMSS videos were unavailable. Second, the instruments were tailored to assess the 
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presence of approaches advocated by American proponents of reform, and, in the case of 

Henningsen and Stein (1997), elicited by the professional development program related 

to the study. For example, many instruments assessed the extent to which teachers 

pressed students for justification and had them construct mathematical arguments, but not 

the extent to which teachers provided mathematical arguments or justifications, a much 

more common occurrence in the TIMSS videos, and one which TIMSS researchers 

interpreted as making connections implementations. Thus, such instruments might not 

have fully captured the ways that teachers in the TIMSS videos implemented problems. 

Therefore, an important part of my study was to develop a coding system for 

characterizing the nature of teacher behavior as problems were implemented. I used an 

iterative method to develop and refine this coding system. Each of three iterations 

involved examination of a successively larger sample of transcript segments constituting 

the implementation of problems from the video sample, with the goal of identifying 

important teacher behaviors that seemed to influence whether connections were made. 

Identification of behaviors to be coded was informed by relevant literature and 

observation instruments. During each iteration, I tested the previously developed set of 

codes on additional problem implementations from the video sample, and added, refined, 

or deleted codes as necessary. In addition, during each iteration, I selected transcripts for 

double coding to check for reliability, and worked with the other coder to resolve 

discrepancies and refine code definitions. 

Once I developed the set of codes and used them to characterize problem 

implementations in the corpus of lessons, I tabulated frequency counts for these codes in 

each of the three implementation trajectories relevant to this study: maintaining, losing, 
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and gaining connections. To address research question 1, I examined the sums of the 

frequency counts for maintaining connections and gaining connections implementations. 

To address question 2, I compared frequency counts for those two trajectories. To address 

research question 3, I examined frequency counts for those implementations that lost 

connections. To address question 4, I compared frequency counts for maintaining 

connections and losing connections implementations. In addition, I selected vignettes to 

illustrate each of the codes I had developed, and to show more concretely the ways in 

which teachers implemented problems in ways that did or did not make connections. 

Significance 

At present, we have data to suggest that while U.S. teachers give their students 

problems that have the potential to promote mathematical thinking and problem solving, 

they rarely implement these problems in ways that do so (Hiebert et al., 2003). Based on 

one research program (Henningsen & Stein, 1997), we have some idea of what teachers 

may do that may inhibit the potential of tasks to develop student reasoning ability and 

conceptual understanding. However, the teaching analyzed by those researchers cannot 

be said to be typical of that found in U.S. schools, since it was conducted in the context 

of intensive reform-oriented professional development. My study was based on lessons 

sampled to be more typical of teaching found in the U.S. and other countries. Therefore, 

it suggests how generalizable Henningsen and Stein’s (1997) findings may be beyond 

professional development classrooms, and outside the U.S. 

We also have data suggesting that teachers in high performing countries more 

often make connections as they implement problems with their students, but prior 

research has not shown how they do this. Again, their methods may or may not be similar 
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to those found in the limited research on American teachers when they implement tasks at 

a high cognitive level after undergoing professional development specifically designed to 

help them do so (Henningsen & Stein, 1997). This study attempted to fill in this gap. By 

providing an international perspective, it may suggest approaches not currently advocated 

by U.S. reformers. It may also suggest that educators in other countries may not adhere to 

American assumptions about teaching practices; for example, the assumption that 

teacher-centered direct instruction is primarily only effective at transmitting basic facts 

and skills, while student-centered reform approaches are required to effectively develop 

students’ higher-order thinking abilities (e.g., see Stein, Grover, & Henningsen, 1996, p. 

462). 

This study may also suggest important lines of research. Any alternative practices 

or assumptions it identifies may or may not be transportable to American education. 

Therefore, further research might be needed to determine whether changes in practice 

suggested by this study might be effective at developing American students’ conceptual 

understanding and mathematical reasoning abilities. If so, further research could also 

examine the factors influencing the realization of such improvements and whether 

professional development could help teachers carry them out. This research would need 

to examine what other contextual features (e.g., students, schools, community, or district) 

and teacher characteristics (e.g., knowledge, experience, beliefs, or attitudes) might also 

contribute to or hinder such changes. Professional developers, teacher educators, and 

curriculum developers would find the results of such research helpful as they work to 

support teachers in developing their students’ ability to engage in higher order thinking. 
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Limitations 

This study was limited by the data gathered and definitions used in the TIMSS 

1999 Video Study. Videos and transcripts cannot capture the individual thinking of 

students. In addition, the implementation of problems was defined by both TIMSS and 

this study as the way in which problems were publicly discussed by the teacher or 

students, rather than according to how students engaged with them on their own. My 

study did not examine student thinking as evidenced by their written work or other 

products, or by private or small group dialog they may have had with the teacher or other 

students. In fact, there were no data on student learning associated with any particular 

classrooms. Thus, I cannot make definitive conclusions about whether any particular 

teaching practices were effective at promoting student engagement in higher order 

thinking or increasing student learning. However, by examining the knowledge that 

teachers made public, this study can describe the kind of information to which all 

students were exposed, as well as some of the practices used by typical teachers in high 

performing countries to make that information public. 

Also, my study relied to a great extent on the coding by the TIMSS problem 

implementation team. I only examined problems that were stated and/or implemented as 

making connections according to the TIMSS problem implementation team; any other 

problems whose statements or implementations might have been coded as “making 

connections” or some other category of “higher order thinking” by myself or others was 

excluded from this study. Therefore, I can only make conclusions about problem 

statements and implementations identified by TIMSS researchers as involving the kinds 

of mathematical processes referred to in the TIMSS definition of “making connections,” 
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which excludes some practices advocated by reformers and which could have important 

implications for student learning (e.g., inventing algorithms and abstracting). In addition, 

although the process of analyzing problem implementations had the effect of 

reclassifying some of them according to whether or not they made connections, recoding 

initial problem statements was beyond the scope of this study. Therefore, answers to 

research questions 2 - 4, which depend on the coding of initial problem statements, reflect 

coding decisions made by the TIMSS problem implementation team. 

Factors that influence how teachers implement tasks also were not within the 

scope of this study. These include teacher characteristics such as knowledge, beliefs, 

attitudes, education, experiences with learning and teaching, or engagement with 

mathematics, as well as departmental and school culture, and district, state, and national-

level contextual factors. Similarly, factors that influence the ways in which students 

engage in tasks—such as students’ backgrounds and attitudes, and the social make-up 

and culture of the class, school, and community—were not considered. Furthermore, only 

one lesson was videotaped for each teacher, so this study did not examine what classroom 

norms were developed or established, how they were established, or how prior 

knowledge was developed among students—all factors that influence what the teacher 

can do and how it may impact students’ thinking. Thus, this study cannot make causal 

claims suggesting that if teachers tried to engage in certain behaviors, then students 

would engage in more sophisticated reasoning and gain deeper conceptual understanding. 

It may only point out the kinds of teacher behaviors that might warrant further research in 

terms of their potential to provide opportunities for students to engage in such thinking. 
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Although teachers and problems were selected randomly from each country and 

within problem statement and implementation types, the sample size was rather small. 

Code development was performed by people steeped in American culture, so this study 

may not have captured all of the important ways, or even the most important ways, that 

teachers implemented problems. In addition, student and teacher behavior may have been 

affected by the presence of videotaping. Although Hiebert et al. (2003) found that 

students’ reactions made it clear when class was conducted in a manner than was out of 

the ordinary, the possibility that subtle changes occurred cannot be ruled out.  

For these reasons, while the approaches to implementing problems described in 

this study can probably be seen as rather typical in the participating countries, frequency 

counts of behaviors can only suggest in a rough way how common they are. They cannot 

provide accurate estimates of how frequently such behaviors occur in classrooms beyond 

the sample, nor can they indicate the full range of teaching that exists in the countries 

participating in the TIMSS Video Study. The small sample does not allow us to 

determine that certain patterns of teaching are typical in certain countries or to compare 

teaching approaches in different countries. Because the study focused on eighth-grade 

mathematics teaching, it does not tell us how teachers implement tasks at the elementary 

or high school level. 

Despite these limitations, this study does show some of the behaviors exhibited by 

typical eighth-grade teachers in five high performing countries as they lead discussions of 

mathematics problems in ways that “make connections,” suggesting approaches that may 

merit further examination by American mathematics educators. It also shows behaviors 

exhibited by typical eighth-grade teachers in the U.S. and five other countries as they lead 
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discussions that fail to make these connections, providing mathematics educators with 

information about some common ways that teachers may overlook the potential for 

problems to promote higher order thinking in the classroom. 
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Chapter 2: Review of Literature 

American reform recommendations have been shaped by theories about what is 

often called “learning with understanding” as well as by current thinking about the nature 

of mathematics as a field. However, these two areas of thought do not imply that current 

recommendations constitute the only route to improvement. There is evidence that these 

ideas can inform other “non-reform” teaching practices, including those seen in other 

countries. We cannot rule out the possibility that such practices could result in 

improvements that may be less difficult to put into place than reform recommendations, 

although it is not settled how effective they would be.  

Therefore, this chapter begins by reviewing some of the literature on learning 

with understanding and on the nature of mathematics. Then it moves on to describing 

both reform and non-reform approaches as different ways of putting these ideas into 

practice, and reviews the evidence that they show promise for improving student 

learning. Descriptions of both kinds of instruction suggest potentially important teacher 

behaviors to look for and therefore inform the development of the coding system used in 

this study. Along the way, the review also describes the difficulties of implementing 

reform, which provide part of the rationale for this study. 

A common characteristic of both reform and non-reform teaching approaches 

discussed in this chapter is a focus on the kinds of problems teachers give their students 

and how teachers implement them in class. The academic task literature has much to say 

about this, and lies behind both the rationale and the design of this study in its 

examination of the ways that teachers implement mathematics problems. Therefore, the 

last part of this chapter reviews the academic task literature. 
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Learning with Understanding 

Reform recommendations are often based on current understandings of how 

students learn “with understanding”—perspectives that also contribute to knowledge 

about the nature of tasks teachers assign to students, how teachers implement them, and 

the kind of learning they promote (NCTM, 1991, 2000). Thus, these perspectives provide 

the rationale for the classification of problem statements and implementations according 

to whether they ask students to use procedures, state concepts, or make connections. 

Much of the literature on “learning with understanding” starts from a distinction 

between procedural and conceptual knowledge; that is, “knowing how” and “knowing 

what” (Hiebert & Carpenter, 1992; Hiebert & Lefevre, 1986). Conceptual knowledge is 

conceived of as knowledge that is rich in relationships. It can be thought of as a 

connected web of individual facts and propositions which are given meaning by their 

connections to other facts. Procedural knowledge, on the other hand, consists of rules, 

algorithms, and methods that are triggered by some recognizable input, and that produce 

some kind of result after a predetermined sequence of actions. 

Both kinds of knowledge are theorized as residing in long-term memory, a 

seemingly limitless repository of permanent knowledge and skills. Recalling information 

means moving it from long-term memory to working memory, where most cognitive 

operations—thinking—take place. Working memory also receives information from the 

senses. Learning occurs when information from both sources is combined, or when 

knowledge from long-term memory is reflected upon, and new knowledge 

representations are created or old ones are altered in working memory, then placed back 

into long-term memory for permanent storage. Learning, then, occurs not by direct 
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placement of information into long term memory, but by cognitive processes which 

combine and operate on new information and pre-existing information (Hiebert & 

Lefevre, 1986; Schoenfeld, 1992; Silver, 1987).  

 Both facts and procedures can be learned either with or without understanding. 

Learning without understanding involves acquiring new information with few 

connections to other information other than to the context in which it is learned. In fact, 

the new facts or procedures may be tied strongly only to the surface features of the 

context. Lacking connections to other knowledge, isolated procedures and facts have 

little meaning and are fragile and difficult to access, they tend to deteriorate quickly, and 

students cannot apply them to situations different from the original context (Carpenter & 

Lehrer, 1999; Hiebert & Lefevre, 1986). 

In contrast, learning with understanding is seen as making connections between 

the new facts or procedures and pre-existing conceptual knowledge. New facts become 

part of a more extended body of conceptual knowledge. New procedures gain strong 

connections with the conceptual knowledge on which they are based. Connections are 

paramount; the degree to which a person understands a fact, concept, or procedure is 

determined by the number and strength of connections it has with other facts, concepts, 

and procedures in the person’s internal mental representation (Hiebert & Carpenter, 

1992). Two kinds of connections are considered especially important for understanding: 

those that represent similarity and difference relations, and those that represent inclusion 

relations (e.g., the concepts of addition and subtraction are included within the part-whole 

concept). Inclusion relations are thought to be especially crucial in the development of 

structured, general, abstract knowledge. 
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This is not to say that students should never develop proficiency in using routine 

procedures, or that all learning tasks should involve the formation of new connections 

among concepts, procedures, and facts. The development of procedural proficiency is still 

important (Kilpatrick, Swafford, & Findell, 2001). However, the learning of procedures 

with understanding means that these procedures are closely connected to conceptual 

understanding. Instruction that focuses on procedures and facts without attention to 

conceptual connections and mathematical reasoning, which the TIMSS Video Study 

suggests is common in U.S. education, provides little opportunity for such learning.  

Researchers cite several reasons for working to develop the kind of connected 

understanding described above (Carpenter & Lehrer, 1999; Hiebert & Carpenter, 1992; 

Hiebert & Wearne, 2003; Hiebert et al., 1997; Kahan & Wyberg, 2003). First, it improves 

memory and at the same time reduces the amount of material that needs to be 

remembered. Second, it enhances the transfer of knowledge to new contexts. Third, it is 

generative and flexible; that is, it leads to more productive adaptation, invention, and 

learning of ideas and procedures in novel situations. Fourth, it improves the effectiveness 

of future learning by providing a more extensive mental network to which new concepts 

can be attached. Fifth, it leads to a more accurate and positive conception of mathematics. 

Finally, it is engaging and intellectually satisfying for students. 

The implication is that desirable learning results from students actively 

constructing an interconnected network of knowledge through integrating previous 

knowledge with new information, rather than by memorizing facts and practicing 

procedures demonstrated by the teacher. This implication underlies researchers’ and 

many professional leaders’ recommendations that curricula, teachers, and assessments 
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emphasize connections and relationships among ideas. The NCTM’s Connections 

Standard exhorts educators to “enable all students to recognize and use connections 

among mathematical ideas” and “understand how mathematical ideas interconnect and 

build on one another to produce a coherent whole” (NCTM, 2000, p. 64).  

Mathematics educators often also assert that students construct these relationships 

or connections in their minds by struggling with novel situations. Hiebert et al. (1996, 

1997) write that students should engage in tasks that are problematic for them—that is, 

that they see as interesting and having something they must figure out on their own. The 

NCTM’s Problem Solving Standard defines problem solving as “engaging in a task for 

which the solution method is not known in advance” and asserts that “students should 

have frequent opportunities to formulate, grapple with, and solve complex problems that 

require a significant amount of effort and should then be encouraged to reflect on their 

thinking” (NCTM, 2000, p. 52). Thus, reformers advocate a shift in emphasis from tasks 

that require memory of facts and use of routine procedures, to those that require students 

to solve novel problems, justify solution methods and assertions, construct arguments, 

and make connections among ideas. 

This literature motivates the distinctions among the three categories of problem 

statements and implementations used in the TIMSS Video Study and also suggests 

potentially important teacher behaviors. Problems that ask students to use procedures or 

state concepts do not necessitate (although for some students may still involve) the 

formation or use of the kind of conceptual understanding described above, as making 

connections problems are thought to do. The literature also suggests teacher behaviors 

that may promote the kind of understanding described above, such as drawing attention to 
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conceptual connections, using and connecting multiple representations, and developing, 

comparing, and justifying solution methods. 

The Nature of Mathematics 

Both reform recommendations and the definition of making connections 

developed by TIMSS and elaborated in this study include references to habits and 

dispositions that characterize the work of mathematicians, such as making generalizations 

and formulating mathematical arguments. They reflect the view that mathematics 

learning means taking on the kinds of collaborative discourse, thinking, activities, and 

perspectives that mathematicians do (Schoenfeld, 1992). According to this view, students 

learn mathematics when they come to see the world as the mathematician does, and when 

they “do mathematics” as the mathematician does. 

This raises the question of what it means to “do mathematics,” a question on 

which mathematicians and philosophers of mathematics have written extensively. 

According to Devlin (1994), mathematics is the science of abstract patterns (e.g., of 

number, shape, or motion) found in nature, in man-made creations, or in the human mind. 

Doing mathematics means discovering and investigating patterns, making initial 

simplifications, identifying and analyzing key concepts, using abstract notation, 

axiomatizing, increasing the level of abstraction, formulating and proving theorems, 

uncovering connections with other parts of mathematics, and generalizing theory.  

Similarly, Steen (1990) writes, “Seeing and revealing hidden patterns are what 

mathematicians do best” (p. 1). He describes mathematical thinking as investigating, 

visualizing, classifying, inferring (from both axioms and data), finding connections, 

developing and using algorithms, and applying the tools of mathematics to other fields. 
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Cuoco, Goldenberg, and Mark (1996) list 28 mathematical “habits of mind,” including 

such behaviors as experimenting, finding hidden patterns, describing, inventing, 

visualizing, conjecturing, guessing, generalizing, deducing, using functions, and using 

multiple points of view. 

Formulating arguments, or proofs, to establish truth and understanding is 

commonly seen as of central importance to doing mathematics. Philosophers Davis and 

Hersh (1981) write: 

Proof, in its best instances, increases understanding by revealing the heart 

of the matter. Proof suggests new mathematics. The novice who studies 

proofs gets closer to the creation of new mathematics. Proof is 

mathematical power, the electric voltage of the subject which vitalizes the 

static assertions of the theorems. (p. 151) 

They write that the ingredients of proof are abstraction, formalization, axiomatization, 

and deduction, but that “proof is subject to a constant process of criticism and 

revalidation” (p. 151). Mathematics is typically presented as a systematic list of 

definitions and axioms followed by theorems proved through the application of logic. 

However, the process of actually deciding on definitions and axioms, discovering 

theorems to prove, and finding proofs for them is quite messy. According to Hanna 

(1983), the creation of mathematics depends to a significant extent on creativity and 

intuition as forces which guide the generation of concepts, conjectures, and proofs. 

Lakatos (1976) describes what he calls the “quasi-empirical” nature of mathematics 

which involves a process of give and take whereby definitions, theorems, and proofs are 
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proposed, then successively refined by the consideration of counterexamples in the 

context of social interaction.  

Thus, reformers and researchers promote the use of curricula and pedagogy that 

give students the opportunity to interact with each other while “doing mathematics” 

(Cuoco, Goldenberg, & Mark, 1996; Hiebert et al., 1996; Hiebert et al., 1997; NCTM, 

2000; NRC, 1989 & 1990; Schoenfeld, 1992). Students should “make and investigate 

mathematical conjectures; [and] develop and evaluate mathematical arguments and 

proofs” (NCTM, 2000, p. 56). Furthermore, they should “communicate their 

mathematical thinking coherently and clearly to peers, teachers, and others; [and] analyze 

and evaluate the mathematical thinking and strategies of others” (NCTM, 2000, p. 60). 

Rather than the teacher (or textbook) being the authority who tells students what is 

correct or not, the class should arrive at agreement through negotiation and judgment of 

ideas against shared understandings of what constitutes mathematical validity. This 

implies that classroom tasks should engage students in exercising mathematical habits of 

mind and creating mathematics through interaction with others, rather than in practicing 

procedures given to them by the teacher. 

Like the literature on learning theory, this literature lies behind the inclusion of 

mathematical activities such as looking for patterns, making conjectures, generalizing, 

and justifying assertions in the definition of making connections. It also implies that the 

code development process used in this study should be sensitive to teacher behaviors that 

involve or contribute to such activities. 
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Reform Teaching 

Theories regarding learning with understanding and prevalent thinking on the 

nature of mathematics have contributed to the current reform vision for teaching. This 

section reviews the literature on reform teaching, including what it is, evidence of its 

effectiveness, classroom observation instruments that assess the extent to which it has 

been implemented, and difficulties that arise when attempting to implement it. 

Characterizing Reform Teaching 

Teaching models advocated by several researchers and reformers have been 

referred to as “teaching for understanding,” “teaching through problem solving,” or 

“problem-based teaching.” These instructional approaches attempt to improve student 

performance on assessments of problem solving and reasoning and to address the 

difficulty they have connecting skills with concepts—a difficulty which manifests itself 

in procedures that are flawed or easily forgotten, and that students cannot adapt to 

slightly different situations. They attempt to help students form well-connected mental 

networks of facts, concepts, and procedures by centering instruction around problems that 

are truly problematic—that is, problems for which students have not previously been 

taught solution procedures—but which they can approach by using knowledge and tools 

(perhaps in new ways) that they have at their disposal (Carpenter & Lehrer, 1999).  

The problems are structured so that they lead students through new and significant 

mathematical territory, illustrate new ideas, and cause students to develop new 

connections among these new ideas and their pre-existing knowledge. Activities require 

students to engage in reflection on and communication of their ideas, while the teacher 

provides information only when needed (Carpenter & Lehrer, 1999; Hiebert & Carpenter, 
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1992; Hiebert et al., 1996; Hiebert et al., 1997; Kahan & Wyberg, 2003; Romberg & 

Kaput, 1999). Students learn the mathematics by working through genuine problems that 

require them, rather than the teacher, to do the mathematical work. Students frequently 

discuss alternative strategies in order to make connections with other methods and 

concepts. They compare methods, explain why particular methods work and others do 

not, and justify their choice of approaches. Errors are conceived of as sites for learning 

rather than as events to avoid (Carpenter & Lehrer, 1999; Hiebert & Wearne, 2003; 

Hiebert et al., 1997). Thus, problem solving becomes the heart of the curriculum, not 

simply part of it. Rather than learning about problem solving, students learn through 

problem solving (Stein, Boaler, & Silver, 2003).  

Mathematics is seen as a mode of inquiry and a language for understanding 

patterns. According to this view, knowing mathematics means being able to investigate, 

understand, and express patterns and relationships among patterns, through the use of 

mathematical methods of inquiry: examining examples, abstracting common features, 

making conjectures, constructing logical arguments, making generalizations, devising 

solutions (Devlin, 1994; MSEB, 1990; NCTM, 2000). In this way, students engage in 

purposeful activities similar to those of actual creators or users of mathematics (Cuoco et 

al., 1996; Schoenfeld, 1992). 

This vision of teaching contrasts with much American teaching which is based on 

the assumption that knowing mathematics means being able to select the correct 

procedures and use them accurately to calculate the correct answers to certain types of 

exercises (MSEB, 1990; Schoenfeld, 1992). Such teaching consists of telling and 

showing students—through clear exposition and worked out examples—how to perform 
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these techniques, and having students practice them on extensive sets of stereotypical 

exercises. When problem solving is addressed, it is assumed to be an advanced skill that 

cannot be taught until students master simpler pre-requisite skills (Carpenter & Lehrer, 

1999). The literature in this area points to evidence contradicting this assumption. It also 

argues that traditional teaching seems to be especially ineffective with students from 

minority groups, who will continue to make up more and more of the American 

population (MSEB, 1990; Talbert & McLaughlin, 2002).  

Researchers describe several characteristics problems must possess in order to be 

effective as the centerpieces of instruction (Carpenter & Lehrer, 1999; Hiebert & Wearne, 

2003; Hiebert et al., 1997; Kahan & Wyberg, 2003; Marcus & Fey, 2003; Romberg & 

Kaput, 1999). First, they must be genuinely problematic to students—not amenable to 

solution by previously taught procedures—and the problematic aspect must be the 

mathematics. Second, they must be engaging to students. They must have something 

perplexing about them, or involve something that students want to make sense of or 

figure out. Third, they must be accessible to students. Although students should not have 

been told how to solve them, the problems must be just within their reach. They must 

connect to students’ prior knowledge (formal or informal), so that students have some 

way to approach them. Since the problems may be challenging, instruction should 

provide adequate scaffolding and hints so students don’t flounder, without removing the 

problematic aspect of the problem, short-circuiting students’ opportunities to think 

through the ideas (Hiebert et al., 1997; Hiebert & Wearne, 2003). Fourth, the problems 

must engage students in thinking about important mathematical ideas, so that students 

will be left with a “residue” of important concepts. That residue can be insights into 
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structure or relationships, techniques for solving certain kinds of problems, or general 

approaches for adapting or inventing procedures. The problems should involve 

significant mathematical processes, such as model building, invention, inquiry, 

justification, and/or abstracting essential features. 

Effects on Learning 

Preliminary research has found that instruction centered around problem solving 

can lead to higher achievement on conceptual understanding and more positive attitudes 

about mathematics, with little or no loss (even some gains) on procedural skills (Ben-

Chaim et al., 1998; Carpenter, Ansell, & Levi, 2001; Cobb, Wood, & Yackel, 1993; 

Hiebert & Wearne, 1993; Kilpatrick, Swafford, & Findell, 2001; Newmann, Marks, & 

Gamoran, 1995). When elementary school students are allowed to devise and refine their 

own algorithms for solving problems involving multi-digit computation, their methods 

are tightly connected to conceptual understanding and they can more easily extend them 

to a larger variety of problems than can students taught with low-level tasks (Kilpatrick, 

Swafford, & Findell, 2001). For example, Hiebert and Wearne (1993) observed six 

second-grade classrooms during 12 weeks of instruction on place value and multi-digit 

arithmetic. In two of the classrooms, students engaged in tasks that required them to 

develop and explain their own approaches and construct relationships between place 

value and computation methods. Compared with students in the other four classes, which 

emphasized practice of routine procedures explained by the teacher, these students 

showed higher gains in performance, especially on tasks assessing place value concepts 

and ability to solve story problems.  
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Hiebert and Wearne (1993) suggested that both the kinds of tasks given to 

students and the nature of classroom discourse influenced learning by affecting the kinds 

of cognitive processes in which students engaged. (However, the use of specially 

employed teachers for these two classes meant a Hawthorne effect could have occurred.) 

Similarly, Cobb, Wood, and Yackel (1993) studied a second grade classroom where 

students constructed their own understandings of arithmetic by developing and 

verbalizing their own solutions and resolving conflicting points of view, without the 

teacher expecting any particular pre-determined solution methods. These students 

outperformed (by one standard deviation) traditionally taught students with respect to 

conceptual understanding, and did as well in computation. 

Research conducted on Cognitively Guided Instruction (CGI) also supports the 

idea that work on novel tasks contributes to increased understanding among elementary 

students (Carpenter, Ansell, & Levi, 2001). CGI centers instruction on tasks that students 

are not told how to approach, but which encourage them to construct relationships, 

extend their knowledge, reflect on their experiences, and articulate what they know. A 

case study of two first-grade CGI classes found that most students became adept at 

calculations not usually expected until second or third grade, and that these skills were 

grounded in an understanding of base-ten concepts and operations. A three-year study of 

14 first- through third-grade teachers learning to implement CGI also found consistent 

increases in conceptual understanding and problem solving performance among students 

as compared with corresponding students before CGI was implemented (Fennema et al., 

1996). For students who remained in CGI classrooms for more than one year, such gains 

seemed to be cumulative. They also seemed to be tied to teachers’ increased use of CGI 
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tasks and approaches. However, it must be kept in mind that other aspects of instruction, 

besides the tasks themselves, differed from typical instruction—most notably learning 

goals that were individually tailored to students.  

At the middle school level, Ben-Chaim et al. (1998) found that a curriculum that 

encouraged seventh graders to construct their own conceptual and procedural knowledge 

of proportionality through the solving of novel, contextualized problems performed 

significantly better on an assessment of proportional thinking than students in traditional 

instruction. Mack (1990) studied eighth graders who originally had difficulty using 

symbolic algorithms to solve de-contextualized fraction problems. They were able to 

solve real-world versions of these problems using their own informal but conceptually-

based methods. Through instruction they were eventually able to connect their conceptual 

understanding to symbolic representations, but the previously taught isolated knowledge 

interfered with this process. 

In a large study involving teaching at several grade levels, Newmann, Marks, and 

Gamoran (1995) studied 23 schools (8 elementary, 7 middle, and 8 high schools) in the 

process of restructuring to examine links between what they called “authentic pedagogy” 

in mathematics and social studies, and student achievement on complex tasks. They 

defined authentic pedagogy as instruction that used tasks emphasizing higher-order 

thinking (organizing and synthesizing information, generalizing, explaining, 

hypothesizing, generating new meanings), alternative solutions, central ideas, and 

exploration of connections and relationships. They found that such instruction was 

associated with higher achievement on complex tasks across all grade levels, for both 

boys and girls, and for both white and African American students. However, their 
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measures of achievement were based on teacher-developed assessments, which therefore 

varied across classes, so that the performance of students whose teachers used less 

authentic pedagogy was limited by the assessments used. Other researchers have also 

found that formerly low-achieving students from minority and low socioeconomic groups 

develop significantly increased levels of ability in mathematical reasoning and problem 

solving when teachers implement tasks that require them to engage in such sophisticated 

mathematical thinking (Boaler, 2004; Talbert & McLaughlin, 2002). 

Assessing Implementation 

Several research projects have developed classroom observation instruments 

intended to assess the extent to which mathematics teaching conforms to the teaching 

approach described above. These instruments ask observers to look for teacher practices 

thought to promote or hinder higher-order thinking—behaviors that the coding system 

developed in this study needed to attend to. 

In a study of the relationship between reform teaching and mathematics 

achievement among middle-grade students, Milloy (2006) used an instrument that 

assessed the extent to which teachers engaged in teaching behaviors such as soliciting 

student solution ideas, making connections to other disciplines and the real world, 

providing a variety of representations, and having students critically assess procedures, 

challenge ideas constructively, and reflect on their learning. The instrument also 

examined whether teachers engaged students in mathematical processes such as testing 

hypotheses, making predictions, abstracting (symbolizing and building theory), 

generating conjectures, developing alternative solutions, and interpreting evidence. 
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Similarly, the Looking Inside the Classroom study of K-12 mathematics teaching 

across the United States used an instrument that examined the degree to which teachers 

connected material to students’ experience and knowledge, promoted sense-making, used 

higher-order questioning, solicited student-generated ideas, promoted interaction among 

students, had students conjecture, investigate, prove, justify, abstract, constructively 

challenge ideas, and make connections to other areas of mathematics, other fields, or the 

real world (Horizon Research, 2000). 

While the above instruments asked observers to rate the extensiveness of 

particular lesson characteristics at the end of the lesson, based on their general 

impressions, another approach has been to ask the observer to code the actions of the 

teacher repeatedly during the lesson, at regular times intervals. In its study of how 

teachers help struggling fourth and fifth graders succeed in mathematics, the High 

Quality Teaching Project (n.d.) used a computerized instrument which prompted the 

observer every three minutes to record whether the teacher was engaging in certain 

behaviors, such as having students reflect on their learning, soliciting alternative solution 

methods, elaborating on student responses, attending to student ideas, posing higher-

order (or routine) questions, elaborating on a previous higher-order (or routine) question, 

having students engage in self-assessment, evaluating a student answer, providing an 

extrinsic reward, redirecting the conversation, modeling a procedure, defining a term, 

posting a key idea, and lecturing on content. 

The Oregon Mathematics Leadership Institute’s five-year study of K-12 

mathematics teaching in ten Oregon school districts used an instrument that focused on 

student discourse rather than teacher behavior (Weaver, Dick, & Rigelman, 2005). It 
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required observers to code each “incident” of student mathematical discourse in real-

time. Only student talk was coded; teacher talk was not examined. Each incident was 

classified according to whether it was a short answer, the statement of an assertion, an 

explanation of how to perform a task, a question to clarify understanding, a challenge to 

the validity of an idea or procedure, the description of a relationship or connection to 

prior knowledge, a prediction or conjecture, a justification of an idea or procedure, or a 

generalization. 

Stein, Grover, and Henningsen (1996; see also Henningsen & Stein, 1997) 

developed an instrument specifically for identifying factors that previous literature had 

found may be correlated with the maintenance or lowering of cognitive level. Some of 

these were teacher actions that directly caused students to engage with tasks in certain 

ways, while others were task characteristics or student characteristics or behaviors. 

Teacher actions included the use of scaffolding vs. routinizing problematic aspects of the 

task; placing emphasis on meaning and understanding vs. accuracy, speed, or form of 

answer; providing an appropriate amount of time for students to work on the task; 

pressing students for justification and meaning; modeling higher-order thinking; 

encouraging students to engage in meta-cognition (self-monitoring, self-questioning); and 

implementing an appropriate accountability system. 

Henningsen (2000) expanded this instrument in her study of the implementation 

of tasks that took more than one day. She added the following to the list of teacher 

behaviors examined: making references to previous knowledge, clarifying the task, 

talking about social and sociomathematical norms (e.g., stating that learning requires time 

and persistence, indicating that students’ ideas are valued, discussing criteria for 
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mathematical solutions and justifications), establishing accountability for focusing on and 

articulating significant ideas and relationships, having students compare alternative 

solutions, asking them to draw connections, having students engage in argumentation or 

validation, recording and using student ideas, and encouraging students to reflect on their 

thinking. 

Difficulties of Implementation 

Studies using such instruments, as well as other surveys of teaching, consistently 

document the difficulty of implementing reform teaching on a widespread basis, or even 

among teachers involved in a professional development program intended to promote 

such reform (Stein, Grover, & Henningsen, 1996; Stigler & Hiebert, 1999; Weiss et al., 

2003). Calls for a style of teaching that replaces teacher telling and student practice with 

group work and whole class discourse during which students invent solutions, justify 

assertions, discover patterns, make conjectures, and construct arguments have had little 

widespread effect on classroom practice (Mid-Atlantic Eisenhower Consortium for 

Mathematics and Science Education, 1998a; Schmidt et al., 1996; Schmidt et al., 1997; 

Stigler & Hiebert, 1999). Several obstacles to implementing reforms have been identified, 

including inherent difficulties of the new style of teaching, teachers’ knowledge and 

beliefs, the cultural nature of teaching, teachers’ sense of efficacy, and a large number of 

contextual factors. 

Putnam and Reineke (1993) identify a fundamental difficulty that makes reform 

teaching decidedly more challenging than traditional teaching: the tension between 

centering instruction on students’ thinking and ensuring that they come to accept 

conventional understandings regarding content they are expected to cover. In order to 
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achieve the latter goal, teachers sometimes press for convergence and offer their own 

explanations, rather than eliciting students’ constructions and inventions. 

But before such tensions can even occur, reform teaching requires quite sweeping 

changes in teachers’ understanding of mathematics as a field, how students learn it, and 

how it should be taught. Several researchers have documented how teachers’ current 

knowledge and beliefs about teaching, learning, and the nature of mathematics have 

hindered their ability to have students invent and compare multiple solutions, make 

connections among concepts, and construct mathematical arguments (Borko et al., 1992; 

Cooney, 1985; Putnam et al., 1992; Silver et al., 2005). Research on professional 

development has documented how difficult it is to achieve the changes in teachers’ 

knowledge and beliefs necessary for teachers to implement such approaches (Spillane, 

2004; Thompson & Zeuli, 1999). As already indicated, teachers tend to believe they are 

implementing innovative ideas when in reality they have only changed surface features of 

their teaching (Hiebert et al., 2003; Stigler & Hiebert, 1999). 

Hiebert and Stigler (2000) argued that this difficulty is due to the fact that 

teaching is a cultural activity and therefore involves deeply ingrained practices based on 

implicit assumptions. Thus, due to the cultural assumption that good teaching consists of 

a set of particular techniques, American teachers may interpret recommendations for 

improvement as limited to practices such as cooperative group work, use of 

manipulatives, and use of real-life applications. Thus, lengthy and comprehensive 

professional development is essential for reforms to take root (Spillane & Thompson, 

1997). 
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It may not only be teachers’ perceptions about teaching that must be changed, but 

also their perceptions of themselves. Many teachers’ sense of efficacy rests on their own 

perceived ability to explain material in ways they believe are effective and thorough. 

Reform teaching threatens that source of their sense of efficacy, and requires teachers to 

find a new one (Smith, 1996). 

Not only must teachers’ knowledge, beliefs, and perceptions change in order for 

reforms to be implemented, but so must contextual factors that impact teachers’ practice. 

Such significant changes in teaching approaches require the alignment of all aspects of 

the educational system—policy documents, curriculum frameworks, instructional 

materials, and assessments (Cohen & Hill, 2001; Garet et al., 2001; O’Day and Smith, 

1993). In addition, this alignment must encompass all students, including minority and 

low socioeconomic status students (O’Day and Smith, 1993). To achieve such alignment, 

professional development must involve not only teachers, but all those involved in 

carrying out policies, including administrators and supervisors, in order to insure their 

understanding of, and commitment to, recommended changes in practice (Knapp, 1997; 

Spillane & Thompson, 1997).  

Such understanding and support require an extraordinary amount of learning by 

district administrators and teachers, but without them reform attempts are unlikely to 

succeed (Burch & Spillane, 2003; Spillane & Thompson, 1997). Spillane (2004) 

demonstrated how district policymakers and teachers can misinterpret reform policies 

when they are not given the time and opportunity to construct deeper understandings of 

the intended reforms. Lasting and widespread change also requires public support and the 

institutionalization of reforms. In summary, successful implementation of reform requires 
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substantial investment in human, social, and financial capital (Garet et al., 2001; Knapp, 

1997; O’Day and Smith, 1993; Putnam & Borko, 2000; Spillane & Thompson, 1997). 

Conceptual Non-Reform Teaching 

In light of the fact that changing teachers’ practice so dramatically and on a large 

scale is exceedingly difficult, it is important to ask whether the kind of learning desired 

by reformers necessarily requires such change. In the high performing countries that 

participated in the TIMSS Video Study (except for Japan), teaching did not seem to 

reflect the characteristics of “reform” teaching: most of class time was spent with 

students listening to the teacher’s explanations, listening and responding to the teacher’s 

questions, or working practice exercises (Hiebert et al., 2003). However, this kind of 

teaching did not necessarily conform to the presumed model of traditional teaching in 

which teachers’ explanations and student practice focused only on recalling facts and 

using procedures correctly (e.g., MSEB, 1990; Schoenfeld, 1992). In the high performing 

TIMSS countries, teachers implemented 37 to 52% of making connections problems in 

ways that actually made connections, while in the lower performing Australia and U.S., 

the corresponding figures were only 8 and 0%, respectively (TIMSS Video Mathematics 

Research Group, 2003).  

This suggests that it may be possible for teachers to discuss problems in ways that 

promote deeper conceptual understanding, problem solving abilities, and mathematical 

reasoning without as drastic a change in teachers’ practice as reformers recommend. In 

fact, several studies of teaching both abroad and in the U.S. have documented teaching 

practices that appear rather traditional in form, but whose content seem to involve ideas 
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similar to those suggested by theories of learning with understanding and the literature on 

the nature of mathematics. 

Characterizing Conceptual Non-Reform Teaching 

For example, Hiebert and Handa (2004) took a closer look at one Hong Kong 

lesson that was a part of the TIMSS Video Study, arguing that teaching that appears 

traditional to American researchers may actually promote conceptual understanding 

through the use of carefully selected and sequenced problems that systematically explore 

different areas of a mathematical terrain, making connections among them, and linking 

the ideas that arise back to basic definitions presented early in the lesson. In fact, the 

primary problems in this particular lesson were coded by TIMSS researchers as “using 

procedures” when stated, but as “making connections” when implemented.  

Some researchers analyzing Chinese teaching have made similar points. Huang 

and Leung (2004) tried to resolve what they called the “paradox of Chinese learners”—

the high performance of Chinese students in spite of teaching that appears to use 

traditional methods judged ineffective by American researchers. They argued that the 

perception that students are passive during instruction is inaccurate and results from the 

limitations of Western theoretical perspectives. They described how 19 eighth-grade 

teachers in Hong Kong and Shanghai used questioning to lead students through proofs of 

the Pythagorean Theorem, noting that four of the teachers in Shanghai used open-ended 

questioning to promote student-teacher dialog and student reflection as they constructed 

rather abstract symbolic proofs. Huang and Leung admitted that lessons were teacher-

dominated, but claimed that students were actually engaged in sophisticated thinking and 

problem solving, with the teacher strategically choosing to solicit student ideas at certain 
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times and choosing to assign more routine practice exercises at other times. Lopez-Real 

et al. (2004) made a similar argument in their case study of a Shanghai teacher who 

taught a coherent sequence of lessons on coordinate graphing and equations in two 

variables, varying his approach from exploratory to directive as necessary, and using both 

open-ended tasks and guided practice strategically. 

Similarly, Wang and Paine (2003) described a beginning sixth-grade teacher in 

China whose lesson looked much like direct instruction, with the teacher leading the 

whole class through a development of fraction multiplication, followed by a set of 

practice exercises. However, she developed the concept by leading the class through a 

problem which required students to engage in the kinds of processes recommended by 

American reformers: combining ideas they had previously learned about area and 

multiplication to discover the theorem for fraction multiplication, developing an 

alternative proof for the theorem, justifying each step in the proof, judging persuasiveness 

of an argument, developing alternative methods for solving problems, and comparing 

methods according to efficiency. In addition, one of the tasks students completed during 

practice exercises could not be done by simply following the procedure students learned, 

but required them to extend the procedure to a new situation. 

Effects on Learning 

Some of the older literature on effective direct instruction (i.e., instruction 

dominated by teacher explanations and student practice) in the U.S., although sparse, also 

suggests that non-reform methods of instruction can make use of some of the ideas of 

learning with understanding and improve student learning. Unfortunately, however, the 



42

measures of student learning have often been standardized tests which do not necessarily 

assess mathematical reasoning and problem solving abilities.  

Anderson (1989) wrote that direct instruction can be effective at developing 

conceptual understanding when it involves well-organized lessons that make clear to 

students the links among main ideas. Based on a six-year study of seven elementary 

school teachers identified by their students’ high growth scores on standardized tests, 

Leinhardt (1986) found that successful teachers emphasized building multiple 

representations for concepts or procedures, justifying procedures, and proving the 

legitimacy or consistency of concepts with those the students had already learned. 

Good, Grouws, and Ebmeier (1983) conducted a series of studies examining what 

they called “active mathematics teaching.” They began with a naturalistic study in which 

they compared the teaching of 41 effective and ineffective third- and fourth-grade 

teachers as defined by their students’ scores on standardized achievement tests. They 

found that effective teachers, among other things, spent more time on concept 

development through clear, whole-class explanations, and used more product (short 

answer) questions and fewer process (how and why) questions.  

Using a rather traditional model of instruction consisting of review, concept 

development, and practice, the researchers defined concept development to include 

teacher explanations and demonstrations that modeled procedures, described concepts, 

abstracted common features from concrete examples, made comparisons, helped students 

see patterns, pointed out relationships among concepts, attended to representations, and 

called attention to relevant attributes of objects and situations. Good et al. emphasized the 

importance of spending sufficient time on the development portion of the lesson to 
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promote conceptual understanding rather than memorization of isolated information. 

Again paradoxically, they cautioned teachers to use process questions sparingly, 

suggesting instead that teachers more frequently provide students with “process 

explanations” that describe procedures, integrate facts, and show relationships. Their 

rationale was that process questions are often ambiguous to students and can waste time 

when students have difficulty answering them. 

Good et al. devised a very short training program to help teachers implement their 

model, which they tested in 40 fourth-grade classrooms in 27 schools. Students in the 

treatment classes showed significantly higher gains on a standardized test than students in 

control classes, but there was no significant difference on a test of problem solving. The 

researchers then revised the program to include attention to problem solving as part of 

concept development, and conducted a similar experiment in 36 sixth-grade classrooms. 

They found higher gains among students in treatment classes than those in control classes 

on both a standardized test and a test of problem solving, but differences were not 

statistically significant. They attributed this to a failure to insure fidelity of 

implementation, and to contamination of the control group (school administrators began 

promoting active teaching among all teachers in the participating schools). A third 

experiment conducted with 19 eighth- and ninth-grade classrooms in 12 schools, with 

modification of the intervention for older students, found higher gains among students in 

the experimental group on both a test of problem solving and a standardized test, 

although while the former were statistically significant, the latter were not. 

Few studies have compared the effects of conceptually-oriented direct instruction 

with reform teaching. One study did so at the undergraduate level, in the context of a 
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mathematics course for pre-service elementary teachers (McLaren, 2005). It examined 

the effects of direct instruction where the teacher provided students with intuitive 

conceptual explanations, as compared with the effects of problem-based instruction 

where students worked on tasks in groups to develop their own solution methods and then 

explained them to the class. The study found no differences in the procedural or 

conceptual understanding of students at the end of the course. 

Thus, in terms of promoting higher-order thinking among students, while there is 

some research on the effectiveness of reform teaching, there is less U.S. research on the 

effectiveness of direct instruction that emphasizes conceptual understanding, or how its 

affects on learning compare with those of reform teaching. There is some evidence from 

research involving instruction in other countries that non-reform teaching can emphasize 

conceptual understanding in ways not ordinarily considered by American educators, and 

international studies of achievement raise the possibility that these approaches may 

contribute to high achievement on both routine skills and higher order thinking. However, 

a direct link between this kind of teaching and student achievement has not been 

established. It is also not known whether there are other instructional features or 

contextual or cultural factors that contribute to the higher achievement in other countries, 

or to the effectiveness of direct instruction in other countries that may not apply in the 

U.S. 

Mathematics Tasks 

Important characteristics of both reform and conceptually-oriented non-reform 

practices seem to include the kinds of tasks teachers give their students and how teachers 

use those tasks. This section will review the literature on mathematical tasks, examining 
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their role in student learning, how they can be characterized according to the type of 

thinking they engender, and how teachers implement tasks in ways that affect student 

learning. The characterization of tasks is relevant to the way in which the TIMSS Video 

Study and my study classified problems, and findings related to how teachers implement 

tasks form the basis for some of the coding categories I used. 

The Role of Tasks 

The tasks teachers assign to students are where curricula, pedagogy, and 

assessment intersect students’ experience. Tasks consist of products students are expected 

to produce (e.g., answers to questions, solutions to problems), operations they must 

perform to obtain those products (e.g., recalling information, applying a rule, inventing 

an algorithm), and resources they have at their disposal to perform those operations (e.g., 

notes, textbooks, sample solutions, peers; Doyle, 1988). Tasks can emphasize recall of 

memorized facts, use of previously provided procedures to obtain answers to exercises, 

guided exploration of new content, invention of solution strategies, or engagement in 

mathematical processes such as generalization and argumentation. 

Tasks influence what information students attend to and how they process it. 

Research in cognitive psychology suggests that the nature of tasks affects the cognitive 

processes in which students engage as they recognize how new information fits into or 

contradicts their existing schema, as they encode and store new information, as they 

reorganize pre-existing information, and as they rehearse information or procedures to 

make recall automatic (Anderson, 1989). Working through tasks not only teaches 

students specific mathematical concepts and techniques, but also strongly influences the 

ways in which students connect their learning to pre-existing knowledge, and how they 



46

come to view the discipline (Bennett & Desforges, 1988; Doyle, 1988; Schoenfeld, 

1992). 

Classifying Tasks 

Researchers, including those conducting the TIMSS Video Study, have developed 

various ways of characterizing tasks or problems according to the cognitive processes 

they involve or would be expected to involve. In his work examining classroom practice 

in a variety of subject areas, Doyle (1988) distinguished between two kinds of tasks: 

familiar and novel. The former are those that students carry out routinely by using 

methods specified by the teacher. They involve recall and rehearsal of previously 

acquired information and procedures. By contrast, novel tasks require students to make 

decisions regarding the methods and information they should use. Thus, they involve 

uncertainty, unpredictability, flexible application of knowledge from different sources, 

and nuanced judgment, making them much more cognitively and emotionally demanding 

than familiar routine tasks (Doyle, 1988; Resnick, 1987). 

In other work, Doyle (1983) has elaborated this distinction to obtain four 

classifications of tasks: 

• memory tasks, in which students are expected to recognize or reproduce previously 

encountered information; 

• procedural or routine tasks, in which students are expected to apply previously taught 

methods to generate answers; 

• comprehension or understanding tasks, in which students are expected to recognize 

transformed versions of previously encountered information, apply procedures to new 
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problems, decide from among several procedures those applicable in a particular 

situation, or draw inferences from previously encountered information; and 

• opinion tasks, in which students are expected to state preferences. 

He adds that memory tasks generally require students to attend to surface features of 

information, while comprehension tasks call attention to conceptual structure. 

Researchers and assessment designers have developed several other frameworks 

to characterize tasks according to the mathematical processes or cognitive levels they 

involve (College Board, 2002; Henningsen & Stein, 1997; Mullis et al., 2003; 

Organisation for Economic Co-operation and Development, 2003). These frameworks 

have generally been developed by expert consensus and tested for inter-rater reliability. 

They have been used to varying degrees to examine the cognitive level of tasks as 

intended by curriculum developers and implemented by teachers, to improve instruction 

through professional development, and to design assessments and report their results. 

The QUASAR project (Quantitative Understanding: Amplifying Student 

Achievement and Reasoning), based at the University of Pittsburgh, used a modified 

version of Doyle's categories in its professional development and research program in 

middle school mathematics teaching (Stein & Lane, 1996). Researchers tailored Doyle’s 

categories to mathematics, omitted his opinion category, and divided his comprehension 

category into two types, resulting in four of what they called “cognitive levels”: 

• memorization – reproducing previously learned facts, rules, formulas, or definitions; 

or committing them to memory; with no connection to underlying concepts or 

meaning 
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• procedures without connections – use of algorithmic procedures, either specified by 

the task or evident based on their placement in the curriculum or prior instruction; 

with no connection to underlying concepts or meaning; focused on producing correct 

answers rather than developing understanding; explanations, if required, involve only 

describing the procedures used  

• procedures with connections – use of suggested, broadly applicable procedures 

requiring attention to underlying concepts and meaning, for the purpose of developing 

deeper understanding; usually with multiple representations  

• doing mathematics – exploring situations, concepts, or procedures, without 

predictable or suggested approaches; requiring the analysis of tasks and constraints, 

selection of methods, understanding of relevant concepts and relationships, and self-

monitoring 

Although the second and third levels both involve procedures, from a cognitive 

perspective, levels 1 and 2 are more similar than are levels 2 and 3. They are considered 

to be low cognitive levels because they involve only remembering and repeating 

information with the goal of improving efficiency of recall, and are thought to promote 

only the acquisition of isolated facts and procedural skills, respectively. Although the 

third level involves procedures to the extent that students are told what to do and may 

perform previously learned procedures, the intent of such tasks is to help them construct 

new, meaningful understandings of the material—that is, well-connected conceptual 

knowledge. Level 4 is similar, except that the student is not told explicitly what to do. 

Tasks in both levels 3 and 4 have the potential to lead to procedural knowledge that is 
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well-connected to conceptual knowledge. Thus, they are considered to be high cognitive 

levels. 

The QUASAR framework has been integrated into the Instructional Quality 

Assessment (IQA) developed by the National Center for Research on Evaluation, 

Standards, and Student Testing (Junker et al., 2006), an instrument intended for rating 

instructional quality in elementary reading and mathematics based on classroom 

observation and examination of student work. The academic rigor portion used to rate 

mathematics instruction uses the QUASAR framework to rate tasks four times: (a) 

according to their potential to engage students in high level thinking, (b) according to 

how they are implemented (based on how students engage with them), (c) according to 

the expectations the teacher expresses for how students are to engage with the task, and 

(d) according to the expectations expressed by the students. The framework has also been 

used in teacher education and professional development programs for high school 

teachers to develop their abilities to choose and create worthwhile mathematical tasks 

(Arbaugh & Brown, 2004). 

Until recently, the National Assessment of Educational Progress (NAEP) 

classified items on its written test into one of three categories of “mathematical abilities”: 

procedural knowledge, conceptual understanding, and problem solving (College Board, 

2002). For the 2005 NAEP, these three categories were replaced by three levels of 

“mathematical complexity” (low, medium, and high) because “the dimension of 

mathematical abilities proved somewhat difficult for experts to agree upon, relying as it 

does on inferences about students’ approaches to each particular item” (Wilson, 2001, p. 

10). 
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Prior to 2003, TIMSS curriculum studies characterized cognitive complexity of 

tasks by classifying them into five categories of performance expectations:  knowing, 

using routine procedures, investigating and problem solving, mathematical reasoning, and 

communicating (Schmidt et al., 1996). The coding system allowed for multiple 

classifications for each item as necessary to capture its nature. Researchers used this 

framework to classify tasks found in textbooks and curriculum guides in a comparison of 

expectations in different countries (the intended curriculum), and to relate these findings 

to differences in achievement (the attained curriculum) (Schmidt et al., 1996; Schmidt et 

al., 1997). In 2003, TIMSS classified the items on its mathematics achievement tests into 

four “cognitive domains”: knowing facts and procedures, using concepts, solving routine 

problems, and reasoning (Mullis et al., 2003). 

For varying reasons, none of the frameworks described above were appropriate 

for the examination of classroom implementation of problems seen in the TIMSS 1999 

Video Study (M. Smith, personal communication, October 9, 2006). Frameworks used 

for NAEP and TIMSS achievement tests and curriculum studies attempted to characterize 

the ways students were expected to solve the problems in writing, while the main 

objective of the TIMSS Video Study and my study was to describe the discussion of 

problems in class. Although the QUASAR levels of cognitive demand were tailored to 

classroom implementation, the definition of implementation there was different, and their 

definition of cognitive level required knowledge of students and context (e.g., what had 

occurred in class during prior sessions) and thus was inappropriate for one-shot 

observations of a large number of classrooms.  
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Instead, through studying the problems as stated and publicly discussed in class, 

the TIMSS problem implementation team developed the three categories shown in Table 

1. The TIMSS researchers did not attempt to indicate “levels of cognitive demand,” but 

rather attempted to describe first the kind of mathematical behaviors implied by the 

problem statement, and second the kind of mathematical behaviors that actually 

transpired during problem implementation (Jacobs et al., 2003). 

Table 1: Categories Used by the TIMSS Problem Implementation Team 

Category Problem Statement Problem Implementation 
Using procedures Use a routine algorithm, 

process, or set of steps 
Use a routine algorithm; talk only 
about how to progress to find an 
answer 

Stating concepts Recall information regarding 
a mathematical definition, 
formula, or property 

Allude to a mathematical concept 
without describing mathematical 
relationships or noting why the 
concept is appropriate 

Making connections Engage in special forms of 
mathematical reasoning such 
as conjecturing, generalizing, 
and verifying; or think about, 
develop, or extend a 
mathematical concept 

Include mathematically rich 
discussions involving 
mathematical relationships, 
properties, concepts, or 
mathematical justification stated 
as logically necessary 
consequences 

 

The TIMSS definition of “making connections” for problem implementation was 

used in this study, although it was more precisely specified as needed to resolve coding 

issues, as will be explained in Chapter 3. 

Implementing Tasks 

The coding system developed by the TIMSS Video Study reflects the finding 

from the academic task literature that tasks are often not implemented in ways that reflect 
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how they are stated. As a result, simply classifying the problems teachers give students 

does not capture what actually happens in the classroom. For example, Doyle’s (1988) 

study of an average-ability eighth-grade class found that the teacher presented students 

with a variety of novel word problems involving fractions, decimals, and percents. 

However, she then proceeded to routinize their solutions by giving students several 

computational algorithms and telling them how to match the problems with the correct 

algorithm. In effect, she changed “comprehension or understanding” tasks into 

“procedural or routine” tasks. 

In a larger study, the QUASAR researchers observed the teaching of 12 urban 

middle school teachers who had participated in their professional development program 

focusing on the use of high-level tasks (Henningsen & Stein, 1997; Stein et al., 1996). 

The researchers examined only one task from each of 144 lessons—the task that took up 

the largest amount of time. They classified each task according to their categories of 

cognitive level twice: first according to how the teacher set it up, and second according to 

how students worked on it.  

They found that about 22% of all tasks were set up at low cognitive levels (most 

were “procedures without connections”), and that, not surprisingly, virtually all of those 

tasks remained at low levels when implemented by students. Probably due to the 

professional development the teachers had received, 74% of tasks were set up at high 

levels (slightly more “doing mathematics” than “procedures with connections”). 

However, almost 60% of these tasks declined to low levels when carried out by students. 

Not all of them could be classified as “memorization” or “procedures without 

connections”; researchers found it necessary to add two more low-level implementation 
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categories: “unsystematic exploration” (exploring around the edges of significant ideas 

but failing to make progress in developing understanding) and “no mathematical activity” 

(off-task behavior). 

The TIMSS Video Study examined more representative samples of eighth-grade 

mathematics teaching in the U.S. and other countries (Hiebert et al., 2003). Like the 

QUASAR researchers, the TIMSS researchers classified problems both as originally 

stated and as implemented. However, their approach differed from the QUASAR 

approach in two ways. First, they included in their analysis all problems assigned by the 

teacher whose solutions or answers were publicly discussed (Jacobs et al., 2003). Second, 

problems at the implementation stage were classified according to how the solutions or 

answers were publicly discussed by teacher or students, rather than according to how 

students appeared to work on the problems. An analysis of the 1995 TIMSS Video Study 

of eighth-grade mathematics lessons from the U.S., Japan, and Germany found that 40% 

of all problems in the U.S. were stated as “making connections”—more than in Germany 

(31%; Smith, 2000). However, only 5% of these problems were actually implemented as 

“making connections,” in contrast to Japan and Germany where the figures were 34% and 

15% respectively.  

The 1999 TIMSS Video Study of lessons in seven countries found even fewer 

“making connections” implementations in the United States. There, 17% of all problems 

were initially stated as “making connections,” which was in line with the figure for the 

high performing countries where the figure ranged from 13% to 24% (except in Japan, 

where it was 54%; Hiebert et al., 2003). Almost none (less than 0.5%) of those problems 

were implemented as making connections in the U.S., while in the high performing 
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countries the figure was between 37% and 52%. Fifty-nine percent of these problems in 

the U.S. were implemented as using procedures, while in the other countries the figure 

was between 16% and 20% (except Australia where it was 31%). 

Task Implementation and Learning 

Of course, concerns over the implementation of tasks or problems would be 

unwarranted if there were no relationship to student learning. Both theory and empirical 

research, however, suggests the existence of such a relationship. Researchers claim that 

recall and procedural tasks do not provide meaning for students, nor give them the 

cognitive structures to which they can attach new learning (Koehler & Grouws, 1992). 

Reliance on such tasks prevents students from developing an adequately connected 

network of concepts and methods based on them.  

That is, different types of problems and tasks cause students to engage in different 

cognitive processes, which in turn result in differences in learning. Anderson’s (1989) 

review of the literature from cognitive psychology supports the first part of this assertion. 

The second part is supported by research suggesting that students’ self-reports of 

cognitive processes (such as trying to understand the task and linking information to prior 

knowledge) is related more to achievement than is listening or time on task (Marx & 

Walsh, 1988; Peterson et al., 1984). Thus, the products that students produce while 

working on tasks would seem to be less important than the cognitive processes they 

engage in. 

The QUASAR research itself points to a strong relationship between cognitive 

level of tasks and student learning. In their study of twelve classrooms in four urban 

middle schools, the QUASAR project administered an assessment of reasoning and 
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problem solving based on NCTM reform recommendations and findings from cognitive 

psychology (Stein & Lane, 1996). They examined average gain scores on this assessment 

over the three-year period that a cohort of students went through middle school. They 

found that larger gains in student achievement were associated with larger percentages of 

tasks set up at a high cognitive level, and that gains tended to be even larger when more 

tasks were implemented at a high level. 

Changing the Nature of Tasks 

If the implementation of problems affects learning, then it is important to 

determine how and why teachers in the U.S. implement them in the way they do. How 

teachers implement tasks is a central focus of my study, so that findings from this 

literature shaped my code development process. Especially important were teacher 

behaviors identified by the QUASAR research (Stein, Grover, & Henningsen, 1996) 

involving middle school mathematics teachers undergoing professional development. In 

that study, teachers lowered the cognitive level of tasks by telling students what 

procedures to perform, performing them for students, or shifting the focus away from 

meaning to correct answers. 

Several researchers have pointed to various reasons that teachers may do this, 

including their beliefs and knowledge, time constraints, mismatches between tasks and 

students’ background, inappropriate assessment, the inherent difficulty students face in 

tackling high-level tasks, and general student resistance to engaging in such tasks. 

Teachers’ beliefs and knowledge about teaching and learning, mathematics content, and 

the nature of mathematics as a field can contribute to their tendency to change the nature 

of tasks (Putnam et al., 1992). Teachers may remove the task features that promote 
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higher-order thinking because they do not see their value for learning, because they 

believe that students are incapable of dealing with them, because they are unfamiliar with 

the mathematics content they explore, or because their conceptions of mathematics 

prevent them from seeing the significance of these features.  

The QUASAR research found a simpler reason was at work at least some of the 

time: declining cognitive levels were associated with the amount of time provided to 

complete tasks (Henningsen & Stein, 1997). When there was insufficient time, teachers 

tried to help students finish tasks by telling them what procedures to perform, solving the 

problems for the students, or simply focusing on answers to the exclusion of justifications 

and conceptual connections. Although this explanation may be a simple one, it can be 

difficult to rectify, for example, if it results from external pressure to cover curriculum in 

a short amount of time. 

Another culprit identified by the QUASAR Project was the inappropriateness of 

tasks in terms of students’ interests or prior knowledge. Inappropriate tasks caused 

students to fail to engage with them, a difficulty documented in other literature. In two 

studies involving a total of 57 elementary school teachers in Britain, Bennett and 

Desforges (1988) found that for high achievers, 41% of the tasks given to them 

underestimated their attainments, and for low achievers, 44 to 50% of the tasks 

overestimated their attainment. Both situations led to wasted time and low engagement 

with tasks. The researchers related this to teacher knowledge about teaching and learning, 

blaming the mismatch on teachers’ unawareness of student thinking due to teaching, 

assessment, and classroom management approaches that focused exclusively on the 
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products students produced rather than on their thinking, and that were oriented toward 

rapid responses by teachers to students’ answers.  

Bennett and Desforges (1988) also found that mismatches between task 

specifications and assessment methods contributed to the lowering of cognitive level. 

Although tasks might have asked for higher-order thinking, formal and informal (e.g., 

teacher praise) assessment often emphasized following procedures and using correct 

formats.  

While such mismatches could be due to teachers’ knowledge and beliefs, Doyle 

and Carter (1984) proposed another explanation (see also Doyle, 1988). They described a 

process whereby teachers negotiate with students to change the nature of tasks in several 

ways, including by changing the standards of assessment. This process results from the 

fact that novel tasks present considerable challenge not only for students, but for the 

teacher in terms of classroom management. Such tasks involve uncertainty, 

unpredictability, flexible application of knowledge from different sources, and nuanced 

judgment, making them much more cognitively and emotionally demanding for students 

than familiar routine tasks (Doyle, 1988; Resnick, 1987). This kind of thinking is non-

algorithmic, complex, and effortful; it involves self-regulation, the application of multiple 

criteria, and imposing meaning or order; and it often yields multiple solutions.  

These characteristics cause considerable difficulty for students, so they ask 

numerous questions to reduce ambiguity, unfamiliarity, and risk. Maintaining the flow of 

classroom activity becomes very difficult as student error rates are high and productivity 

is low. Students engage in off-task behavior, or they press the teacher to remove 

problematic aspects of the task and/or reduce grading standards. To restore order and 
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pace, the teacher reduces ambiguity by simplifying tasks, providing procedures connected 

to surface features of the task, and reducing accountability, for example, by easing 

grading standards or accepting answers without justification. This reduces risk for the 

students and encourages them to work, but it also reduces opportunities for students to 

engage in more sophisticated reasoning. From this perspective, this renegotiation of 

expectations is not due to teacher’s deficiencies in knowledge or classroom management, 

but rather to the inherent tension between teachers’ desire to engage students in higher-

order thinking and students’ desire for guidance and predictability. 

Powell, Farrar, and Cohen (1985) and Sedlak et al. (1986) provided lucid 

illustrations of this negotiation process based on extensive studies of American high 

schools and reviews of the literature on student engagement. They described the resulting 

“treaties” or “bargains”—some tacit, and some explicit—in which teachers agreed to 

limit their expectations of students to completing routine and undemanding tasks 

emphasizing recall of facts, in return for cooperative behavior from students: 

[S]tudents marshaled unimaginable resources to challenge incessantly, and 

often spuriously, their teachers’ authority to impose academic standards. 

Teachers accepted unacceptable work, forgave confusion, and struggled 

constantly with students determined to impose their own definitions of 

knowledge on the class or at least to demoralize teachers who sought to 

preserve the integrity of requirements and expectations…teachers often 

cope by making the acquisition of knowledge “easier,” less painful, and 

therefore less threatening, through unchallenging instructional methods: 

lecturing, assigning more seatwork, reducing complex conceptual 
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problems to factual lists, diluting or omitting essential content knowledge, 

refusing to challenge students seriously, requiring little reading, 

minimizing writing assignments, changing instructional and classroom 

goals on the spot by attending to personal matters, or conversing with 

students. (Sedlak et al., 1986, pp. 102-103) 

Powell et al. (1985) provided two motivations for teachers to enter into such 

treaties: a need to avoid conflict with disengaged, resistant, or defiant students, and a 

belief that demanding more from students would interfere with teachers’ therapeutic 

goals of helping students feel good about themselves and about school.  

Along with Sedlak et al. (1986), they painted a pessimistic picture, arguing that, at 

least at the high school level, this state of affairs was one aspect of the larger 

phenomenon of low academic expectations—a phenomenon that has resulted from 

fundamental American educational values. They traced students’ (and in some cases, 

teachers’) lack of interest in academics back to long-standing and widespread American 

attitudes that have placed a high value on social and “life adjustment” skills while 

devaluing academic work. Powell et al. (1985) cited literature from throughout the 

twentieth century showing that these attitudes have been common in the U.S. since the 

advent of mass schooling and have involved the belief that most students neither need nor 

are capable of serious academic work: “American educators quickly built a system 

around the assumption that most students didn’t have what it took to be serious about the 

great issues of human life, and that even if they had the wit, they had neither the will nor 

the futures that would support heavy-duty study (p. 245).” 
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Preserving the Nature of Tasks 

Yet the literature documents cases where teachers are able to strike bargains with 

students that include engagement with tasks in ways that maintain a high level of 

challenge or emphasis on conceptual understanding (Stein et al., 1996). How are they 

able to do this? Again, answers to this question in the literature shaped the code 

development process in my study. 

Based on a reading of the literature on cognitive psychology and instructional 

research, Anderson (1989) suggested ways that teachers can reduce ambiguity and risk 

for students without lowering the cognitive level of tasks. One way is through 

scaffolding; that is, providing information that serves as a resource for students to use as 

they approach tasks, without diminishing their problematic nature, so that the students 

will still perform cognitive operations that create conceptual connections and make 

decisions regarding selection of information and methods. Repeated use of scaffolding is 

thought to help students develop powers of metacognition as they internalize the 

scaffolding over time (Holton & Clarke, 2006).  

In addition, three teacher behaviors appear to help students handle challenging 

tasks and develop their problem solving abilities: (a) modeling, in which the teacher 

shows students how to think about problems by thinking out loud, pointing out crucial 

information, drawing conceptual links to clarify the relevant dimensions of the task, and 

calling attention to alternatives, (b) coaching, in which the teacher provides hints and 

cues, and (c) fading, in which the teacher provides less and less support over time. 

Confirming such claims, the QUASAR research found that factors associated with 

maintaining high cognitive level were high-level performance modeled by the teacher or 
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students, sustained press by the teacher for student explanations, and scaffolding by the 

teacher, as well as the use of tasks that built on students’ prior knowledge and an 

appropriate amount of time provided for students to complete the task (Henningsen & 

Stein, 1997). 

Anderson (1989) acknowledged the dilemma teachers face regarding 

accountability when implementing challenging or novel tasks. The literature on 

classroom management stresses the importance of holding students accountable for their 

performance on tasks in order to prevent disengagement. On the other hand, the literature 

on academic tasks shows that accountability can cause students to focus on extrinsic 

rewards and concentrate their energy on reducing the ambiguity and risk of tasks by 

pressing the teacher to lower expectations. Thus, based on the literature on motivation, 

she suggested ways teachers can refocus students’ attention on intrinsic rather than 

extrinsic sources of motivation in order to reduce their tendency to pressure the teacher to 

reduce ambiguity: communicating the assumption that students are eager learners, 

inducing curiosity or dissonance, and making content more personally meaningful or 

concrete. Teachers can also establish classroom environments that minimize performance 

anxiety and promote positive views by students of themselves in relation to the task by 

minimizing competition and by utilizing tasks that make use of a variety of student 

abilities and that are novel or challenging yet do not present too great a risk of failure. 

The role of teachers’ knowledge and beliefs in inhibiting their ability to maintain 

the level of challenge or conceptual emphasis of tasks has already been mentioned; the 

converse would suggest that an understanding of how such tasks promote learning, a 

belief that students can handle such tasks, and a sufficiently deep understanding of 
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mathematics may help teachers implement these tasks in ways that preserve their nature. 

Warfield (2001) presented the case study of a fifth-grade CGI teacher whose knowledge 

of research-based information on children’s thinking, along with deep understanding of 

the mathematics she taught, supported her in using tasks in ways that helped students 

make connections between solution strategies and their mathematical bases. Warfield 

argued that such knowledge helps teachers create tasks that enable students to extend 

their thinking to novel situations.  

Fennema et al. (1996) also identified several types of knowledge and beliefs that 

assisted CGI teachers as they implemented tasks: knowledge of problem classifications, 

the belief that students were capable of solving problems with their own strategies, an 

understanding of student thinking, and knowledge about how to build on that thinking. 

Carpenter, Ansell, and Levi (2001) also found that CGI teachers’ knowledge of learning 

trajectories for the content students were learning, and their ability to provide scaffolding, 

were essential. 

Some of the literature has focused on sociomathematical norms that support 

teachers in their efforts to help students develop conceptual understanding, construct 

mathematical arguments, and solve non-routine problems—again, the kinds of thinking 

involved when engaging in challenging or novel tasks. Based on their study of a second-

grade classroom using an inquiry approach to mathematics instruction, Yackel and Cobb 

(1996) noted that examining generic social norms (such as whether or not students 

challenged each other’s thinking, developed explanations, and justified their own 

thinking) was insufficient for understanding how effectively students and teachers dealt 

with tasks that promoted mathematical reasoning and conceptual understanding. Those 
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norms that are specific to mathematics—sociomathematical norms—influenced whether 

such tasks were implemented as intended. These included agreement as to what counts as 

a convincing justification, a complete explanation, a mathematically sophisticated 

solution, or an efficient or elegant solution. These norms determined learning 

opportunities, for example, by influencing the extent to which statements were justified 

mathematically versus accepted due to the social status of the speaker, or whether 

explanations were accepted because they were connected to actions on mathematical 

objects that were meaningful to students or because they simply relied on procedural 

instructions. Yackel and Cobb (1996) argued that these norms are continually constructed 

and modified through the interaction of the teacher and students, and they act to support 

or hinder problem solving and mathematical reasoning. 

In their study of four fourth and fifth-grade classrooms in three schools, Kazemi 

and Stipek (2001) identified four sociomathematical norms that contributed to a “press 

for conceptual learning.” While all four classrooms were characterized by the social 

norms of explaining strategies, finding multiple solutions, accepting errors as a part of 

learning, and working collaboratively, they did not have equal amounts of press for 

conceptual learning. Those classrooms that exhibited the most were characterized by the 

following sociomathematical norms: agreement that explanations go beyond procedural 

descriptions to include mathematical arguments, that mathematical thinking includes 

understanding connections among multiple strategies, that errors provide opportunities 

for developing deeper understanding and even reconceptualization of content, and that 

collaborative work involves individual accountability and mathematical justification. 
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Summary 

The literature described in this chapter shaped both the rationale for and method 

used in this study. Current thinking on how students “learn with understanding” and on 

the nature of mathematics provide perspectives on the kind of learning that mathematics 

educators wish to promote. The academic task literature shows that focusing on how 

teachers implement mathematics problems may yield understandings of how such 

learning can be supported. The literature on reform teaching provides a description of one 

way such understandings may be put into practice, but it also shows how difficult this 

approach is to implement. The literature on conceptually-oriented non-reform teaching 

suggests a possible alternative that seems to be commonly used in other countries, and 

which may be worthy of study. The literature on both reform teaching (including 

classroom observation instruments) and conceptually-oriented non-reform teaching 

describes problem characteristics and teacher actions thought to develop students’ 

problem-solving and mathematical reasoning abilities—factors that, along with behaviors 

identified in the academic task literature—influenced the development of coding 

categories as I carried out this study. Table 2 summarizes this literature. 
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Table 2: Summary of Literature on Reform and Conceptual Non-reform Teaching 

Authors Type & scope Claims/findings 
Schoenfeld, 1992; Cuoco et 
al., 1996 

Philosophical; 
Reform 

“Doing math” as mathematicians do 
(exploring, conjecturing, proving) helps 
students come to “know math.” 

Ben-Chaim et al., 1998; 
Carpenter & Lehrer, 1999; 
Carpenter et al., 2001; Cobb 
et al., 1993; Fennema et al., 
1996; Hiebert et al., 1997; 
Hiebert & Wearne, 1993; 
Kahan & Wyberg, 2003; 
Kilpatrick et al., 2001; 
Romberg & Kaput, 1999; 
Stein et al., 2003 

Theoretical & 
empirical; 
Reform; 
Primary grades 
& 7th grade 

Problem-based teaching (students 
invent, justify, and compare multiple 
solution methods) and scaffolding lead 
to improved problem-solving and 
reasoning abilities, conceptual 
understanding, and more robust and 
flexible procedural knowledge. 

Boaler, 2004; Talbert & 
McLaughlin, 2002 

Empirical; 
Reform; 
Minority HS 
students 

Traditional methods (teacher tells 
procedures, students practice) are 
ineffective; higher order tasks lead to 
increased reasoning and problem solving 
abilities. 

Mack, 1990 Empirical; 
Reform; 
8th grade 

Building on students’ informal methods 
leads to connected conceptual and 
procedural knowledge. 

Newmann et al., 1995 Empirical; 
Reform; 
elementary, 
middle, & high 
school 

Tasks emphasizing generalizing, 
explaining, hypothesizing, generating 
new meanings, alternative solutions, and 
exploration of connections and 
relationships leads to higher 
achievement on complex tasks. 

Stein & Lane, 1996 Empirical; 
Reform; 
8th grade 

Higher gains in problem solving and 
reasoning associated with use of high-
level tasks, especially when 
implemented at high level 

Anderson, 1989; 
Henningsen & Stein, 1997 

Empirical; 
Reform; 
8th grade 

Scaffolding, modeling, and press for 
explanation are associated with high-
level implementation of tasks 
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Authors Type & scope Claims/findings 
Hiebert et al., 2003 Empirical; 

Non-reform; 
8th grade 

TIMSS Video Study countries with 
higher achievement than the U.S. 
implement making connections 
problems as making connections more 
often, but most involve listening to 
teachers’ explanations and practicing 
exercises 

Hiebert and Handa, 2004; 
Huang and Leung, 2004; 
Lopez-Real et al., 2004; 
Wang & Paine, 2003 

Empirical; 
Non-reform; 
6th & 8th grades 

Chinese and Hong Kong lessons are 
teacher-dominated but lead students 
through carefully selected problems to 
systematically explore and connect 
ideas, construct arguments, develop 
concepts, develop and compare 
methods, and provide practice. Students 
are actively involved. 

Leinhardt, 1986; Good et 
al., 1983 

Empirical; 
Non-reform; 
Elementary 
through 9th 
grade 

Direct instruction with product questions 
emphasizing multiple representations, 
patterns, justifying procedures, concept 
development, clear explanations, and 
connecting concepts is associated with 
higher scores on standardized tests and 
sometimes tests of problem solving. 

McLaren, 2005 Empirical, 
Non-reform & 
reform; 
Undergraduates

When comparing problem-based 
instruction with direct instruction using 
conceptual explanations, there were no 
differences in procedural or conceptual 
understanding. 
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Chapter 3: Method 

I describe the method for my study in three sections. First, I describe the pool of 

problems from which I drew successively larger samples. Then I explain the procedure I 

used for developing the coding system and coding the data. Lastly, I present the method I 

used for analyzing the data. 

The Problems 

For the 1999 Video Study, TIMSS researchers selected a national random sample 

of 90 to 140 schools containing eighth-grade in each of Australia, Hong Kong, the Czech 

Republic, the Netherlands, Switzerland, and the United States (Jacobs et al., 2003). They 

randomly selected one eighth-grade mathematics teacher from each school, and one 

lesson was videotaped for each teacher.  In addition, the 54 Japanese lessons videotaped 

for the 1995 study (also randomly selected from across the country) were added to this 

sample for the 1999 study. This yielded a sample of 638 lessons intended to be 

representative of lessons in the participating countries.  

Because I could not obtain actual videos for this study, my analysis was based on 

lesson transcripts which had been translated to English. In the case of Japan, I obtained 

transcripts of 50 of the videotaped lessons. For each of Australia, the Czech Republic, the 

Netherlands, and the United States, I obtained transcripts of the 20 lessons that had been 

randomly selected for analysis by the TIMSS mathematics quality analysis group. In the 

case of Hong Kong, I obtained 19 of the 20 lessons used by that group, but two were 

missing lesson tables (to be described shortly), so I used 17. Transcripts from Switzerland 
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had not been translated to English and so could not be analyzed. This resulted in a total of 

147 lesson transcripts for this study. 

A TIMSS problem implementation team had examined all mathematics problems 

that were publicly discussed during the lessons. Each problem was coded at two stages—

first, according to how it was initially stated, and second, according to how it was 

implemented; that is, publicly discussed (Jacobs et al., 2003). At the initial problem 

statement stage, it was classified as using procedures, stating concepts, or making 

connections (as defined in Chapter 2), depending on what it seemed to ask students to do. 

In particular, making connections problem statements were defined as follows: 

Problem statements coded as making connections were those that asked 

students to engage in special forms of mathematical reasoning such as 

conjecturing, generalizing, and verifying. They were situations that asked 

students to think about mathematical concepts, develop mathematical 

ideas, or extend concepts and ideas...Some other examples of making 

connections problem statements included those that asked students to find 

a pattern, describe a relationships, generalize, compare results and 

methods, find examples of a mathematical principle, or write a problem 

with given conditions. (p. 122) 

At the implementation stage, each problem was classified into one of the same 

three categories, or alternatively as giving results only, depending on how it was publicly 

discussed by the students and teacher. The definition for a making connections 

implementation was slightly different from that for a making connections statement:  
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Problem implementations were coded as making connections when the 

completion of such problems included mathematically rich discussions. 

Such discussions might focus on mathematical relationships, and include 

descriptions of properties and concepts containing mathematical 

justifications that were not stated as rules but as logically necessary 

consequences. If applicable, relationships between examples and 

principles might be demonstrated. Moreover, these mathematical ideas and 

relationships needed to be made explicit for all members of the class to see 

and think about the connections.  

Some examples of making connections problem implementations 

included: describing connections between multiple representations (i.e., 

pictorial and numeric), making and justifying generalizations, comparing 

the mathematics of different solution methods, and considering why a 

particular process was mathematically appropriate. (p. 124) 

Along with transcripts, I obtained lesson tables for all countries except Japan. 

These tables indicated, for each problem assigned to students, the initial statement of the 

problem, the answer accepted or presented by the teacher (if available), the problem's 

starting time (when it was first assigned), its ending time (when its public discussion 

ended), and if publicly discussed, its statement and implementation codes (answers only, 

using procedures, stating concepts, or making connections). Each lesson table also 

included an outline of the lesson listing major actions by the teacher and ideas discussed. 

For Japan, I obtained a spreadsheet that listed start and end times for all problems 
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assigned in the lessons and statement and implementation codes for all publicly discussed 

problems. 

Altogether in the 147 lessons, there were 298 publicly discussed problems which 

were either stated or implemented as making connections. Based on the statement and 

implementation codes determined by the TIMSS researchers, they fell into the following 

three implementation trajectories: (a) in 69 problems connections were maintained, (b) in 

179 problems connections were lost, and (c) in 50 problems connections were gained. 

The unit of analysis for this study was the problem discussion segment of dialog; that is, 

the portion of transcript between problem start time and problem end time that 

constituted public discussion of the problem. 

Development of the Coding System 

My goal was to create a coding system that characterized important teacher 

behaviors during public discussion of a problem that influenced whether or not that 

discussion occurred in a way that made connections. This was to be done through a 

process that examined transcripts in light of the literature and instruments that examine 

teacher behaviors believed to either facilitate or inhibit higher-level thinking. I selected a 

subsample of problem discussions to develop a preliminary set of codes, which would 

then be used to code successively larger samples. During each stage, I calculated inter-

rater agreement as a measure of reliability. 

Initial Code Development 

For initial code development, I randomly selected 37 of the problems (12%) 

stratified by the three implementation trajectories and by country. In nine of the 
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implementations, connections were maintained, in 22 connections were lost, and in six 

connections were gained, according to the coding performed by the TIMSS problem 

implementation team. 

For each selected problem, I read the lesson table for the lesson in which it 

occurred to understand the context of the problem. In the case of Japanese lessons, since 

lesson tables were not available, I read the entire lesson transcripts. Then I read the 

portion of the transcript between the problem’s starting and ending times to gain 

familiarity with the problem and its implementation. I read it a second time, more 

carefully, to try to identify the important actions of the teacher that influenced whether or 

not the implementation made connections. 

 I hypothesized that some of the behaviors previously seen to affect cognitive 

level during task implementation (Henningsen & Stein, 1997) might be observable in the 

transcripts and seen to significantly affect implementation. In addition, I thought that 

behaviors listed in classroom observation instruments might be similarly significant (e.g., 

Horizon Research, 2000; Milloy, 2006; Weaver, Dick, & Rigelman, 2005). However, I 

also thought it important to be alert to other practices that may not have been noted in 

prior American research. In particular, I hypothesized that whereas many U.S. reformers 

recommend that the teacher have students engage in particular mathematical behaviors 

(e.g., formulating arguments or reflecting on their thinking), the teachers in this sample 

may instead have performed these behaviors themselves as students watched and listened. 

With these considerations in mind, I read transcript segments repeatedly with an 

eye toward identifying such key teacher behaviors and developing definitions for them. 
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The development of coding categories and definitions occurred simultaneously with the 

coding of the 37 transcript segments.  

Portions of some transcript segments between problem start and end times did not 

represent public discussion of the problems. Instead, teachers were sometimes circulating 

about the room, speaking with individual students as they worked. Much of this dialog 

was not understandable, as it was either inaudible or made reference to things students 

had written on their papers but could not be determined from the transcripts. In addition, 

this dialog was not part of the public discussion of the problems. Therefore, I excluded 

these portions from the coding. 

It became apparent that to identify the relevant teacher behaviors, it was necessary 

to understand more clearly what characteristics of a discussion qualified it as making 

connections. Through the reading of transcript segments and examination of the TIMSS 

definition of making connections implementations, I identified eight “making 

connections features”: 

• comparing solution methods 

• connecting representations 

• developing, extending, or thinking about a concept 

• describing a relationship between an example and a principle 

• describing a mathematical relationship or pattern 

• making a generalization 

• justifying an assertion or solution method 

• problem solving 
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Although the last feature (“problem solving”) was not found in the TIMSS definition, it 

seemed to characterize some making connections implementations that contained none of 

the other features. (Final definitions for each of these features will be given at the end of 

this section.) 

If any one of the above features was present in an implementation, I considered it 

to qualify as making connections, regardless of whether it was present in teacher or 

student talk. I considered the absence of all of them to mean that the implementation did 

not make connections. Thus, these feature codes essentially “unpacked” the TIMSS 

definition of making connections, and described features of a problem that teachers 

brought out in a making connections discussion. They were also frequently mentioned in 

reform documents and observation protocols (Horizon Research, 2000; Milloy, 2006; 

MSEB, 1990; NCTM, 2000; Weaver, Dick, & Rigelman, 2005). 

While these features gave a partial description of what teachers were doing to 

make connections (e.g., emphasizing justification), they did not present the whole picture. 

For example, how did teachers emphasize justification? Were they simply explaining a 

mathematical argument, or were they pressing students to formulate it? Therefore, I 

added a code to indicate who was doing most of the mathematical work during the 

discussion: teacher or students. However, in some implementations, the work seemed to 

be shared by both, and in others (some of the non-making connections implementations) 

there was no mathematical work being done; that is, only answers were given and/or non-

mathematical topics were discussed. This resulted in four possibilities for who did most 

of the mathematical work: teacher, students, both, or no mathematical work. 
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I still needed to describe what the teacher did to influence who was doing the 

mathematical work, as well as what the teacher did to bring out or inhibit the making 

connections features. Again, I read transcripts to identify such behaviors. At this point, 

some of the QUASAR Project's “classroom based factors” that influenced cognitive level 

of implementation seemed to provide explanatory power. I used those factors that were 

teacher behaviors and that I expected to be observable in transcripts (e.g., that did not 

require knowledge of unavailable contextual information) to create a list of teacher 

behavior codes. Some of these behaviors occurred with varying frequencies in the 

transcripts, and seemed to be key behaviors that affected the type of discussion that 

occurred. For two reasons, I also included potentially relevant behaviors that I did not see 

in this initial sample: I anticipated that I might see such behaviors in the larger sample, 

and I wanted to be able to compare some of my findings to those of Henningsen and 

Stein (1997). The resulting list of teacher behaviors included the following: 

• Lack of accountability for high level products or processes 

• Shifting the focus to the correct answer 

• Routinizing 

• Modeling high level performance 

• Pressing for justification and explanation 

• Drawing conceptual connections 

• Scaffolding 

Henningsen and Stein (1997) had found that the first three of these were associated with 

implementations of low cognitive level, while the remaining four were associated with 

implementations of high cognitive level.  
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It should be noted that my coding procedure differed from that of Henningsen and 

Stein (1997) in an important way. Those researchers used one set of classroom based 

factors to account for implementations classified as high cognitive level, and another for 

those classified as low cognitive level. After coding each implementation as either high 

or low cognitive level, they limited their coding to only those found in the corresponding 

list. However, in my study, behaviors of both kinds seemed to coexist in the same 

transcript. I found instances, for example, where teachers set the direction of the 

discussion by consistently routinizing the problem, but also drew important conceptual 

connections. This coexistence of such presumed contradictory behaviors was at least in 

part due to differing definitions of implementation; in Henningsen and Stein (1997), 

implementation referred to how students dealt with tasks as they worked on them, but in 

my study (constrained by the TIMSS Video Study) it referred to how the teacher and 

students publicly discussed problems. Therefore, in order to provide an accurately 

nuanced description of what was happening in the classroom, I considered all of the 

codes to be eligible for use whether or not an implementation was judged as making 

connections. 

In addition to the teacher behaviors taken from the QUASAR literature, I saw 

others in the transcripts that seemed to set or change the direction of implementation: 

• Failing to build on student contributions (both ideas and questions) 

• Skimming the mathematical surface 

• Shifting the focus to a procedure 

• Building on student contributions 
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This yielded a coding system consisting of 8 making connections features, 11 

teacher behaviors, and an indication of who did most of the mathematical work, which 

was to be applied to each problem implementation. As coding proceeded, I wrote 

definitions for both features and behaviors, and developed threshold criteria for both to 

determine when they were significant enough to code. I refined these definitions and 

criteria as new issues arose during the coding process, and their final versions will be 

presented at the end of this section. 

Because my goal was different from that of the original TIMSS Video Study, and 

because my coding relied only on transcripts and involved the interpretation of the 

TIMSS definition of making connections, the above process narrowed the sample to 32 

problem implementations. First, in the case of implementations where connections were 

maintained or gained, the sample included only those implementations in which I 

interpreted the transcripts to show evidence of the making connections features I had 

identified.  

Second, in the case of implementations that lost connections, the sample included 

only those implementations where I was able to determine the potential connections 

implied by the problem statement that were not followed up by the teacher, so that I 

could code teacher behaviors that seemed to be associated with the loss of connections. 

For example, in a lesson on area, after the teacher had students find areas of rectangles by 

multiplying length and width, and areas of irregular figures by superimposing them on 

grids, she drew an L-shaped region on the chalkboard and asked students, “Can anyone 

suggest how you might do something like that?” My assumption in this instance was that 

the problem statement implied that students would think about the concept of area to 
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develop a way of solving this new kind of problem, and my task was to determine what 

the teacher did to contribute to the lack of discussion that reflected that thinking.  

Once the preliminary coding system was established, I recruited a post-doctoral 

fellow and a doctoral student to perform reliability checks. I conducted a two and a half-

hour meeting with them in which we discussed the coding procedure and definitions, and 

I had each of them code a transcript segment individually. To help them understand the 

context of the problem implementation, I gave them a summary of what had transpired in 

the lesson prior to discussion of this particular problem. We then discussed the coding of 

this segment to resolve any disagreements. 

Then I assigned each of the two coders five problem implementation transcript 

segments to code independently over the next week. Again, each segment included a 

description of context. Upon completion, inter-coder agreement ranged from 66 to 94%, 

averaging 79%. We resolved discrepancies during two meetings, one with each coder, 

that lasted three to four hours. These discussions led to refined code definitions and 

threshold criteria. 

Coding of the Second Sample 

I randomly selected additional transcript segments in order to obtain a larger total 

sample containing ten problems from each country—five that were implemented as 

making connections, and five that were not. I had to make an exception for the U.S. 

problems since only one was implemented as making connections. This yielded a sample 

of 56 problems, and I proceeded to code the new problems according to the same 

procedure as before.  
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I selected five transcript segments (including two that were difficult to code) and 

had them additionally coded by the post-doctoral fellow. Agreement was 86% and 

discrepancies were resolved. This had the effect of further refining definitions and 

eliminating two codes: one making connections feature and one teacher behavior: 

• describing a relationship between an example and a principle 

• failing to build on student contributions 

These codes were eliminated due to an inability to develop definitions that could 

be applied reliably. In addition, removal of the making connections feature above did not 

in itself change the classification of any of the implementations in the current sample.  

I also added one code; a common way for teachers to enact the justification 

feature was to step students through a mathematical argument as opposed to pressing for 

justification—an approach noted in the literature on non-reform Chinese teaching (Huang 

& Leung, 2004; Wang & Paine, 2003).  

Coding of the Final Sample 

I randomly selected additional problems in an attempt to obtain a sample of 

roughly 100 problems approximately evenly distributed among countries and 

implementation trajectories.  In order to meet this condition, in four cases I included a 

pair of problems from the same teacher. I considered this as acceptable as long as they 

were not in the same implementation trajectory, which may have caused certain teachers 

to have more influence on the findings for a particular trajectory than others. After I had 

coded a total of 119 problem implementations, the narrowing process as described earlier 

resulted in a final sample of 82 problem implementations distributed as shown in Table 3. 
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Table 3: Distribution of Problems in Final Sample 

 
Country 

Maintaining 
Connections

Losing 
Connections

Gaining 
Connections Total

Australia 2 8 1 11
Czech Republic 5 5 3 13
Hong Kong 2 5 3 10
Japan 10 7 4 21
Netherlands 5 7 4 16
USA 0 10 1 11

Total 24 42 16 82

Finally, I identified four more difficult-to-code transcripts and had them coded by 

the post-doctoral fellow, and two more meetings occurred to discuss discrepancies and 

refine definitions. At this point, one making connections feature was eliminated—

discussion of mathematical relationships or patterns—because a workable definition of 

“mathematical relationship or pattern” could not be found, resulting in unreliable coding 

and disagreements which could not be resolved. This may have changed the classification 

with respect to making connections of only one problem implementation since all others 

that had been coded with this feature had also been coded with another making 

connections feature. 

In addition, I eliminated one teacher behavior from the coding system: modeling 

high level performance. Henningsen and Stein (1997) defined it as engaging in a high 

level performance such as the presentation of a solution using multiple representations or 

solution methods, meaningful exploration, or appropriate justification. Although 

transcripts often appeared to show teachers performing at what could perhaps be called a 

high level since they were well versed with the material—developing a proof or solving a 
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problem using multiple representations—it was too difficult to determine when this 

constituted “modeling,” especially considering the lack of contextual information. In 

addition, I felt that simply saying that a teacher was performing at a high level did not 

give me much information about what the teacher was actually doing. 

Once the coding system was finalized and applied to all transcript segments, I 

randomly selected five problem implementations for double coding in order to calculate 

inter-rater agreement. This resulted in a final inter-rater agreement of 88%. 

Final Coding System 

The final version of the coding system consisted of the two groups of codes for 

making connections features and teacher behaviors, and a code specifying who did most 

of the mathematical work. 

Making Connections Features 

Each making connections feature was coded only if it involved substantive 

mathematics as judged by the coders. If more than one feature occurred in a particular 

implementation, they were all coded. Final definitions of the features were as follows: 

• Comparison of the mathematics of solution methods. Either a relationship between 

solution methods is explained (e.g., why one solution method is more elegant than, or 

a general case of, another one), or a correspondence between steps or aspects of 

different solution methods is described (e.g., subtracting from both sides of an 

equation in the symbolic method corresponds to undoing the last addition step while 

working backwards in an informal method). 
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• Connection between representations. A representation is an algebraic symbol string, 

table, graph, diagram, or physical object(s) used to represent a problem situation, 

quantity, object, concept, or relationship among them. The representations must 

provide different perspectives of some common idea, situation, or object. A 

connection between representations means the way in which aspects of different 

representations correspond to each other. For example, “a negative linear coefficient 

in a linear equation corresponds to a downward slant in the graph.” 

• Examining a concept. A concept or property is examined more deeply than simply 

recalling or applying it. This may involve describing some component, aspect, 

representation, or example of the concept, or some connection to another concept. It 

may involve extending a concept or developing a new concept. 

• Generalization. There is explanation of a mathematical problem, assertion, solution 

method, concept, or argument that is more general than that previously stated or 

discussed; the object of the earlier discussion is a specific case of that of the later 

discussion. 

• Justification. Mathematical knowledge is used to explain why a solution method, 

step, problem-specific claim, or general mathematical assertion (e.g., theorem) is or is 

not correct, valid, or appropriate. Justification does not include procedural 

explanations, strategic reasons for choosing a particular solution step or approach, or 

non-mathematical rationales. 

• Problem-solving. There is explicit examination (not just carrying out) of an overall 

solution plan, not just pieces of a plan. This might include discussion of how one 

arrives at a solution plan, strategic justification of a plan (i.e., explanation of why the 
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overall plan is chosen), discussion of intermediate goals beyond those already stated 

in the problem, or monitoring progress toward meeting those goals. 

Teacher Behaviors 

Each teacher behavior code was coded only if it was consistently enacted or 

enacted at key moments, so that it seemed to set or change the direction of problem 

implementation. Again, if more than one teacher behavior was observed, all were coded: 

• Lack of accountability for high level product or processes. Student(s) contribute 

incorrect or insufficient (e.g., unclear or incomplete) answers, explanations, or ideas, 

but the teacher does not make a significant effort to probe them (i.e., ask for more 

detail or justification) or press for more adequate contributions. This definition was 

adapted from Henningsen and Stein (1997). It originally also included the teacher’s 

lack of expectation that students justify their methods, but in my study this would 

have resulted in this code being applied to all losing connections implementations by 

definition. Also, Henningsen and Stein’s (1997) original definition simply said that 

unclear or incorrect explanations were accepted; I interpreted the word “accepted” to 

mean that there was no press by the teacher for a more adequate contribution from the 

student. I did not consider the teacher simply correcting the student to be holding him 

or her accountable for high level processes. 

• Skims the mathematical surface. The original problem statement implies, or initial 

discussion includes, a focus on concepts, meaning, or understanding, but the teacher 

fails to delve sufficiently into the mathematics of the problem, resulting in a 

discussion which refers to a concept or meaning but only at a superficial or vague 

level. 
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• Shifts to focus on answer. The original problem statement implies, or initial 

discussion includes, a focus on meaning, concepts, or understanding, but the teacher 

shifts the focus away from it and to the accuracy or completeness of the answer. 

• Shifts to focus on procedure. The original problem statement implies, or initial 

discussion includes, a focus on meaning, concepts, or understanding, but the teacher 

shifts the focus away from it and to a procedure. 

• Routinizes problematic aspects. The teacher reduces ambiguity or complexity by 

specifying explicit procedures or steps to perform, or takes over challenging aspects 

by telling students how to perform them or performing them for students. The teacher 

takes away opportunities for students to discover and make progress on their own. 

This may occur from the beginning of problem implementation, or later in the 

discussion but soon enough to affect the direction of the discussion. This definition 

came from Henningsen and Stein (1997), and is somewhat different from the 

dictionary definition, which may align more with “shifts to focus on procedure.” The 

difference between these two codes will be elaborated in Chapter 4, where specific 

examples are given.  

• Steps through argument. The teacher steps students through an argument by telling or 

using product questions. An argument is a sequence of justified assertions leading to a 

mathematical claim. 

• Presses for justification. The teacher repeatedly asks students for justification, 

meaning, or explanation (beyond recounting a procedure) through questioning, 

comments, or feedback. Clear and consistent messages are sent to students that 
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explanations and justifications are as much a part of classroom mathematical activity 

as are correct answers. 

• Draws conceptual connections. The teacher draws attention to connections between a 

concept and a representation, procedure, or other concept. This does not include 

justification. 

• Scaffolds. The teacher provides assistance by providing information or asking a series 

of questions other than product questions that assists student(s) in answering a 

question or solving the problem without reducing complexity or challenge. Assistance 

is just enough to allow students to make progress. 

• Builds on student idea. The teacher builds on student contribution(s) (perhaps 

erroneous) by having the student explain more, asking student(s) questions about it, 

discussing it, relating it to other ideas, or otherwise using it in his or her teaching. 

This brings some new mathematics or higher level of understanding to the discussion 

that was present in neither the prior discussion nor the student's original contribution. 

Who Does the Mathematical Work 

In addition, each transcript segment was coded according to who did most of the 

mathematical work. The coder selected one of four choices: 

• The teacher did most of the mathematical work. 

• Students did most of the mathematical work. 

• The mathematical work was shared by both. 

• No mathematical work occurred (e.g., only the problem or answer were given and any 

other dialog was non-mathematical). 
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Method of Analysis 

My first research question asked what teacher behaviors were associated with 

implementations that made connections. I addressed this question by generating 

frequency counts for the three types of codes (making connections features, teacher 

behaviors, and who did the mathematical work) for all making connections 

implementations, regardless of whether or not the problems were originally stated as 

making connections. In addition, I chose example transcript excerpts to illustrate each 

feature and behavior to give the reader a clearer picture of what the codes meant teachers 

were doing. 

The second question asked what similarities and differences in behaviors existed 

between implementations that maintained connections and those that gained connections. 

To address this question, I tabulated and compared frequencies of the codes for those two 

implementation trajectories. 

The third question asked what teacher behaviors were associated with losing 

connections. I addressed this question by generating and reporting frequency counts for 

teacher behaviors and who did the mathematical work for such implementations. Again, I 

chose examples from the transcripts to illustrate each behavior. 

Finally, the last question asked what similarities and differences existed in teacher 

behaviors that occurred while maintaining versus losing connections. I addressed this by 

tabulating teacher behavior and mathematical work codes for the two implementation 

trajectories and comparing them. 
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Chapter 4: Results 

The purpose of this study was to describe what teachers in a small sample of 

eighth-grade classrooms from six countries did to lead the discussion of mathematics 

problems in ways that did or did not make connections. Results will be presented by 

research question. First, I will describe what teachers did during implementations that 

made connections: the features of the problems that teachers focused on, the behaviors 

they exhibited, and whether the teacher or students did most of the mathematical work. I 

will also provide excerpts from transcripts as examples. Then I will compare these results 

by problem statement type to determine whether there were any differences between 

maintaining and gaining connections.  

Then I will present results for implementations that lost connections—the 

behaviors teachers exhibited and who did the mathematical work—again providing 

examples from the transcripts. Finally, I will compare these results to the corresponding 

results for implementations that maintained connections to determine what differences in 

teacher behaviors may have contributed to whether connections were maintained or lost.  

It is important to remember that the sample of 82 problem implementations 

examined here is not representative of those that occur throughout the various countries, 

so generalizations can not be made beyond this sample. This study is meant to be 

exploratory and to suggest common ways teachers may implement problems. 
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Making Connections Implementations 

Features Exhibited 

Figure 1 shows the percent of making connections implementations that contained 

each feature identified through the code development process. Percents add up to more 

than 100 because some problem implementations exhibited more than one feature. 
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Figure 1: Features Observed in Making Connections Implementations (n = 40) 

The most common features occurring in this sample were justifying and 

examining concepts, each of which occurred in almost half of the implementations. 

Connecting representations occurred in about one third of the implementations. Problem 

solving, generalizing, and comparing solution methods were not very common. Each of 

these features will now be described in more detail and illustrated by excerpts from 

transcripts of implementations. 
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Justification 

Justification was defined as the use of mathematical knowledge to explain why a 

solution method, procedure, result specific to the problem, or general mathematical 

assertion was or was not correct, valid, or appropriate. Justification did not include 

descriptions of procedures, strategic reasons for choosing a particular solution step or 

approach, or non-mathematical rationales. Justification could occur at a particular point 

in the discussion, or throughout a discussion. It was coded as long as, and only if, it was 

judged as mathematically substantive. 

The excerpt below, taken from a Hong Kong lesson, illustrates how one teacher 

used justification to add connections to a problem whose statement had not been 

originally coded as making connections. The teacher had just reviewed squaring integers 

and had worked through problems asking students to find positive and negative integers 

given their squares. She explained the use of the radical sign and assigned several 

exercises where students had to find positive and negative square roots and solve 

equations similar to x2 = 25, where the number after the equal sign was a perfect square. 

After going over the answers to these exercises, she asked students to determine whether 

the square root of -4 is equal to 2 or -2, or there is no solution. 

25:02 T So, this uh square root of a- sorry, uh negative- sorry, square root of negative 

four.  Is it equal to two, or negative two, or no solution? 

25:13 Ss No solution, no solution. 

25:16 T Okay.  Who say that it is equal to two?   

25:19 Ss Hahaha. 

25:19 T Put up your hand.   
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25:24 T Why?  Because take square root means- what is the number times itself equal 

to negative four?  So two times two is four.   

25:33 T So it- it does not equals to negative four.  It is- it does not equal to negative 

four. 

25:38 T How about negative two?  So this answer is incorrect.  How about this?   

25:45 T Is it correct?   

25:46 Ss Haha. 

25:46 T Do you think this is correct?  Please put up your hand. 

25:49 T Why?  Because negative two times negative two ... equals to ... 

25:56 Ss Four. 

25:56 T Four.  So it does not equal to negative four. 

26:00 T So, there is ... //no solution. 

26:02 Ss //No solution. 

26:04 T Why?  Because uh, if you find that it is uh, just like that, A squared equal to 

negative four.   

26:11 T So which number times itself is equal to a negative number? 

26:15 Ss No. 

26:15 T No.  Because a number A, all number can be uh divides- or looked into three, 

uh, must be one of these.  One is positive. 

26:26 T One is ... 

26:27 Ss Negative.  

26:28 T Negative.  Or ... 

26:30 Ss No solution. 
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26:31 T No solution. 

26:33 T A number must be one of- one of- one of these.  Maybe it is a positive- 

maybe it is negative, or ... 

26:42 Ss Zero. 

26:43 T Zero, yes.  Very good. 

26:44 T So uh, if A squared- we see uh, by case- so if A is positive, then what is the 

value of A squared?  Positive?  Negative?  Or zero? 

26:58 Ss Positive. 

26:59 T Positive.  And then if it is negative, what is the result of the square of A? 

27:05 Ss Positive. 

27:05 T Positive.  If it is zero, then what is the squ- //square of zero?  

27:09 Ss //Zero. 

27:10 T Zero.  So is there any answer equal to negative?   

27:13 Ss No. 

27:14 T No.  So, this answer- this neg- uh negative four, you cannot find the answers.  

Okay?  Because, all the square ...  

27:24 T All the square, you cannot find the negative result. 

[HK-008, IP 20] 

The teacher repeatedly used mathematical knowledge to explain why a claim or 

assertion was valid (25:24-25:33, 25:49-26:00, 26:15-27:24). The last portion of dialog 

(beginning at 26:15) is particularly interesting; it constitutes a more general proof by 

cases that no negative number has a square root.  
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Although justification ran through much of the discussion of the problem above, 

the following excerpt from a Czech lesson illustrates how it could be limited to one point 

in the dialog but still be sufficiently significant to be coded. In this case, a step in a 

geometric construction procedure was justified. The problem asked students to construct 

triangle ABC, given that AB = 7 cm, BC = 4.5 cm, and the height measured along a 

segment perpendicular to AB was 3.5 cm. The teacher had a student describe the 

procedure: first construct segment AB 7 cm long, then make an arc with center B and 

radius 4.5 cm. The student's next step was to draw a parallel line 3.5 from segment AB, 

and the teacher asked her to justify that step: 

18:34 S Then we draw a line which is in the distance three and half centimeters from 

side AB and it is parallel to it. 

18:53 T Why should it be a line that is parallel?  Can you give a reason for it? 

19:01 T We search a set of points, of all points, that meets the property that their 

distance from line segment AB is three and half centimeters.  And we know 

that such a set of points is? 

19:18 T Well? 

19:19 S A triangle? 

19:21 T (   ) you sketched- sketched a line// 

19:23 S //A line.// 

19:23 T //A parallel line. 

[CZ-041 IP 31] 

Although the teacher asked the student to justify the step in the procedure, the 

teacher actually did the justification (19:01, 19:23). In fact, in both of the examples given 
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here, justification was accomplished primarily through teacher talk rather than student 

discourse. This was typical of the enactment of making connections features in this 

sample, a point that will be addressed further. 

Examining Concepts 

Most, if not all, mathematics problems involve one or more mathematical 

concepts in some way, whether these concepts are simply recalled and applied, or 

whether they exist in the background as the basis for a procedure that is to be executed. 

However, for this category to be coded, the discussion must have explicitly included the 

examination of a concept or property more deeply than simply recalling or applying it. 

The discussion had to have involved the examination of some component, aspect, or 

representation of a concept, the extension of the concept, or the development of a new 

concept. 

The following excerpt from a lesson in the Czech Republic illustrates the precise 

examination of the intuitive concept of the exterior of a circle through the use of distance. 

The problem was to describe one of the relative positions of a circle and a line. The 

teacher asked a student go to the chalkboard to draw one possibility, and the student drew 

a line p that did not intersect the circle (with center S). The teacher then proceeded as 

follows: 

18:17 T And now then, I would like us to draw there the distance of the straight line p 

-- I would mark it lower case p -- from the center S of the circle.  

18:30 T How will you do it? What will you use? 

18:32 Ss A perpendicular line.  
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18:34 T A perpendicular straight line, correct. So, then using the pivot of a right angle 

ruler.  

18:59 T I will mark the distance h, lower case h.  

19:05 T And now I will mark there for you the radius, I will mark it in green.  You 

can also use a colored pencil.  A radius r. 

19:17 T So we can see instantly that...that the h is longer than r.  But now we have to 

prove it.  So I'll mark this point P.   

19:34 T Do not forget to mark the foot of the perpendicular straight line, yes? 

19:41 T And the the right angle.  

19:51 T So, not to forget the right angle! So that it was sure that this is the shortest 

distance.  So.   

20:04 T So, the segment line SP is larger than the radius.  Our segment line SP, as you 

see, is larger than the radius r.   I can record that as...   

20:20 T The distance h is larger than r.  Now, we'll  also on the straight line p, find an 

arbit... or choose an arbitrary point X.  And add there the segment line SX.  

20:45 T What have these three points created for us? Points P, X, S or S, P, X? What 

have we got there? 

20:53 Ss A right angled triangle.  

20:53 T Len.  

20:54 SN A right angled triangle.  

20:55 T A right angled triangle. Ehm...The segment line SP, what function does it 

have in the right angled triangle?  

21:03 SN Cathetus. 
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21:04 T SP is a cathetus.  Excellent.  And what about the segment line SX,  Terri.  

21:11 SN A hypotenuse.  

21:12 T A hypotenuse, yes.  And what do you know about the sides in the right 

angled triangle? What is the relationship between a cathetus and a 

hypotenuse? Which one is the longer? Iris.  

21:25 SN A hypotenuse.  

21:25 T A hypotenuse.  A hypotenuse is the longest.  

21:28 T So definitely the point X as it is further from the center S and the circle k than 

the point P, then definitely with the circle also, actually...is further from the 

center S than the radius.  Is it so? 

21:45 T So, even the point...because it is, actually, a hypotenuse in the right angled 

triangle.   

21:53 T So we can state that the straight line p has no common point with the circle k 

. So zero common... 

22:06 T ...points.  

22:07 T  And how do we call such a straight line? It does not intersect the circle.  It 

has not have any common point with it.  

22:20 T How do we call such a straight line? It is an external straight line of a circle.  

p is an external straight line- write all this down, yes-  

22:39 B -of a circle k.  

22:48 T So by this we have exhausted one, the first possibility of the relative position 

of a straight line and a circle. 

[CZ-011, IP 3] 
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Although the teacher did not prove what she said she was going to prove since it 

was already given (namely, that h > r), she did work through a rather precise proof that in 

this case the line did not intersect the circle. It was her translation of the informal concept 

of “exterior” into a precise distance formulation that constituted examining a concept. 

The excerpt from the Hong Kong lesson given earlier also provides an example of 

examining a concept because the discussion involved development of an aspect of 

squares and square roots that had previously not been addressed; namely the fact that 

square roots of negative numbers do not exist (in the set of real numbers).  

Connecting Representations 

A representation was defined as an algebraic symbol string, table, graph, diagram, 

or physical object(s) used to represent a problem situation, quantity, object, concept, or 

relationship among them. To be considered “different” representations, they had to 

provide different perspectives of some common idea, situation, or object. Many problem 

discussions involve multiple representations, but this code required that a connection 

between those representations be explicitly discussed. A connection was defined as a 

description of the way in which aspects of the representations correspond to each other. 

A portion of dialog from a Dutch lesson illustrates this feature. The problem was 

to find an equation for y in terms of x, given the table of values shown in Figure 2, where 

x represented the number of months elapsed, and y represented the amount of money 

accumulated. 



96

x y
0 5
1 8
2 11
3 14

Figure 2: Finding an Equation for y in Terms of x. 

The teacher began by telling students that for this kind of problem, there is always 

a certain number that is added at each step. He explained that he would graph the points 

before generating the formula. The following dialog began after he set up axes for the 

graph: 

28:34 T And at the zero is an important point.  Because that's five, it is five high.   

28:40 T Well I'll make steps here too of one, two, three, four, five and at one it is 

eight, six, seven, eight.   

28:51 T Here, this is the line.  Are these two points enough to draw the rest of the 

line? 

28:57 SN Yes. 

28:57 SN Yes. 

28:57 T They're all on top of each other anyway and is that?  That's because these 

steps are the same every time.  How much is added per step every time? 

29:04 Ss Three. 

29:04 SN Thr//ee. 

29:05 SN //Three 

29:04 T Three. 

29:06 SN Oh, I thought that there were two. 

29:08 T Well almost.  Okay this line runs say continuously up like this.  And always a 

straight line.    
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[Students work.] 

29:56 T Boys, uh, a side issue, because we still have to look at the uh, formula a 

moment.   

30:03 T And the book says, and that's very important.  

30:06 T It says like what do we get per step, per one month, here, I'll just write this 

down for clarity, per one month, that is also per one added step. 

30:20 SN Can I explain it? 

30:20 T Yes, //definitely. 

30:21 S //Well, in at - um - if you still, um, the zero the month let's say then you 

already have five - uh - five guilders.   

30:30 S So - but also three guilders is added every time and so you have to do the 

number of months times three plus five. 

30:37 T That's a perfect explanation.  I try to tell it just as well.  It - he is five already 

at zero (times/months).   

30:46 T So you already have for example five thousand, Just saying something, in 

your bank account.  After one month how many thousand is added? 

30:54 SN Thr//ee. 

30:54 T //Three thousand. So per month every time... three is added. And that's why 

you have to multiply that with each other. 

[NL-002, IP 53] 

Representations were connected at three places in this portion of dialog. At 28:34 

the teacher connected the starting point in the table with the starting point (y-intercept) on 

the graph, at 28:57 he connected the pattern of increase seen in the table with the 
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alignment of the points on the graph, and in 30:06-30:54 he and a student connected this 

pattern with the coefficient in the equation they developed. In addition, because the 

concept of linearity was examined by studying its manifestation in three representations, 

examining concepts was coded for this dialog. 

Problem-Solving 

Although this study followed the TIMSS convention of using the word “problem” 

to refer to any mathematical question for which students were expected to find an answer, 

for the purposes of this code, problem solving was not defined simply as applying a 

procedure or method to find an answer to a question. This code was reserved for the 

explicit development or examination of an overall solution approach to a problem beyond 

recall and application of the method. It could include discussion of how one arrived at a 

solution plan, strategic justification of a plan (i.e., explanation of why the overall plan is 

chosen), setting intermediate goals beyond those already stated in the problem, or 

monitoring progress toward meeting those goals. Only six implementations exhibited this 

feature. 

The geometric construction problems found in some of the Czech lessons provide 

an interesting case in point. Three of the 13 Czech implementations in the sample 

involved construction of triangles or quadrilaterals given particular side lengths, angle 

measures, and/or altitudes. In these problems, teachers followed a standard four-part 

sequence: statement of the problem, analysis, construction, and conclusion. The analysis 

portion was presumably the point at which a solution method was to be developed. It 

consisted of drawing a rough sketch, developing a solution plan, and writing it down 

step-by-step, apparently according to a rather formal format.  
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In only one of the three cases did the analysis portion of the implementation meet 

the definition of problem solving used in this study, so that it constituted a case of 

gaining connections. The problem was to construct quadrilateral ABCD with a = 5.8 cm, 

b = 3.4 cm,  c = 3.8 cm,  angle B = 75 degrees, and angle C = 115 degrees. (It was 

understood that  a = AB,  b = BC,  and  c = CD.) The analysis began with the teacher 

sketching a figure: 

15:59 T Let's not try to choose, perhaps, the shape of a rectangle or of a square or of a 

trapezoid because the dimensions are such that it probably won't be any of the 

shapes I named.  

16:39 Ss (   ) 

16:41 T Well, exactly.  It is probably a consequence of a triangle construction, right? 

So ... side A is the segment AB.  

17:00 T Side B ... now is valid three point four tenths of a centimeter.  Side C ... three 

point eight tenths of a centimeter.  ...The angle beta at the vertex B ... //and 

angle 

17:25 SN Seventy- alfa- I mean gamma.  

17:28 T Gamma, or at the vertex C.  

17:36 T The whole point is in this that we have to cleverly divide the whole 

quadrangle by a diagonal into two triangles.  From the two triangles we'll be 

able to construct one and when we construct it we'll look for the last, the 

fourth vertex, right? 

17:57 T When we look at the dimensions and the data ... 

18:00 SN Then we can do the ABC - the triangle.  
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18:04 T Correct.  So mark this way that it is possible to construct the triangle ABC 

because we know its one side, //second side and the angle enclosed by them.  

18:15 SN //(   ) 

18:18 T We wrote it in an abbreviation ... uh ... when two sides //and an angle were 

given 

18:25 Ss //SUS 

18:26 T SUS, right? So, the procedure. How will we proceed? 

18:30 SN First we will draw the angle BC- D (  )  

18:35 SN AB.  

18:36 SN BCD- we have an angle and two sides.  

18:39 T That's an idea! Do you hear what he's saying? He noticed that we know the 

sides B and C and the angle gamma.  So he could easily construct in the first 

three steps the triangle BCD.   

18:53 T And he would construct it according to the same method, right? Because he 

also has a side, also an angle and also a side. I would rather stay with the 

triangle ABC because it seems to me more convenient, no? So, first ... 

19:12 SN AB.  

19:13 T AB.  

19:15 S //Five point eight.  

19:16 T //That's the A.  Five point eight tenths of a centimeter.  See- help, help!  

19:23 S The angle beta.  

19:24 T The angle beta ... seventy five degrees.  And right away we can put on the leg 

... 
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19:31 S BX.  

19:32 SN BC 

19:34 T No? 

19:35 SN Three point four.   

19:37 T //Because 

19:37 S //Three point four.  

19:38 T Well, you see.  That's the B, right? Three point four tenths of a centimeter.  

19:43 S (  ) 

19:47 T Now, let's imagine what we have already, yes? Come, take a look.  We have 

AB, angle beta and the vertex C already on the leg, right? So the triangle 

ABC is finished.  

19:57 S Uh-huh. 

19:58 T So, we need //only the vertex- D. 

19:59 S? D.  

20:00 S? (   ) make an angle one hundred fifty degrees.  

20:03 T Yes, this way, right ? Perhaps ... and on its //leg we'll lay 

20:09 Ss A circle 

20:12 T Three point //eight tenths and it is ready.  

20:13 S? // Eight ... three point 

20:14 T Well you see how you said it- the angle ... gamma, ... one hundred fifteen 

degrees and right on the side of the angle I will measure CD-  that's //the C.   

20:29 SN //Three point eight.  

20:30 T Three point eight tenths.  
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20:33 S (   ) 

20:35 T Yes, because by that we will get the vertex, right? So, ABCD ... it's ready.  ... 

So, we can perform the construction. 

[CZ-061, IP 3] 

This seemed to demonstrate the development of a solution method based on a 

general strategy given by the teacher at 17:36; namely partitioning the figure into two 

pieces, one of which could be constructed using a previously learned procedure. This 

strategy provided a rationale for the particular steps that would be developed, and was 

enough for a student to come up with a first step at 18:30. Although the teacher 

recognized the student's suggestion as valid, she chose instead to apply the strategy in a 

slightly different way. Constructing triangle ABC then became a subgoal, which the 

teacher noted was to be reached at the step described at 19:47. 

By contrast, the analysis portion of another Czech implementation did not qualify 

as problem solving (although as previously described, it contained justifying so that it 

was still coded as making connections) because the procedure seemed to be only recalled, 

without any development or strategic rationale. This was the problem described earlier, 

where students were to construct a triangle ABC where AB = 7 cm, BC = 4.5 cm, and the 

height perpendicular to AB was 3.5 cm. The “analysis” portion of the discussion 

proceeded as follows: 

17:42 S (We have) the side c ... the side a ... and the height vc.

17:59 T Correct, a height is a perpendicular dropped from a vertex to the opposite 

side so the foot of the perpendicular is denoted there. Yes.  
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18:06 T What we know is denoted by the color.  Excellent.  We will return back to the 

white chalk and we will start with the strategy of the construction. 

18:13 S I will (place the tip) on point B and I set the compass for four and half 

centimeters. 

18:16 T First we draw- what line segment?  Where do you have point B?  First it has 

to (arise).// 

18:24 S //(   ) AB, seven centimeters.  

18:26 T Yes.// 

18:27 S //Then we place the compass tip on point B, we will transfer four and half 

centimeters and we will circumscribe an arc.  

18:31 T Yes, the circumference K one will arise, correct. 

18:34 S Then we draw a line which is in the distance three and half centimeters from 

side AB and it is parallel to it. 

18:42 T Parallel, we will denote the parallelity.  

18:50 T It is not to be seen well. 

18:53 T Why should it be a line that is parallel?  Can you give a reason for it? 

19:01 T We search a set of points, of all points, that meets the property that their 

distance from line segment AB is three and half centimeters.  And we know 

that such a set of points is? 

19:18 T Well? 

19:19 S A triangle? 

19:21 T (   ) you sketched- sketched a line// 

19:23 S //A line.// 
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19:23 T //A parallel line.  Well.  What next?  How will point C arise?  You see it 

there, already.  

19:33 S By the intersection of the (   ) one and the (line), by (   ) and the line M. 

19:37 T Excellent.  Well, and how will we complete the triangle? 

19:44 S We will connect A and C. 

19:45 T Excellent.  Yes.  So this is the whole analysis. 

Generalizing 

Many mathematics problems involve the statement or use of mathematical 

generalizations. For this feature to be coded, however, there needed to be the 

development or explanation of a mathematical problem, assertion, example, solution 

method, concept, or argument that was a more general version of one that had been 

previously stated or discussed. That is, the object of the earlier discussion had to be a 

specific case of that of the later discussion. Generalizing in this way was relatively rare, 

occurring in only three problem implementations, all of which gained connections. 

In the following example, an Australian teacher implemented a non-making 

connections problem as making connections by having the class generalize examples 

students were giving to solve a problem, thus going beyond the original problem 

statement. The problem asked students to determine whether the following statement was 

sometimes, always, or never true: “The difference between two negative numbers is 

positive.” The excerpt begins where a student provided both an example and a 

counterexample to the statement to support his answer of “sometimes”: 

32:36 S Negative five, take negative two and you get negative three or you could go 

negative five take negative six and you get positive one. 



105

32:55 T Good, thank you, Norton.  Now, can anybody take that a step further? 

32:59 T Certainly Norton has shown us two separate cases where in the first instance 

the difference is negative and the second instance the difference is positive.   

33:12 T Can anybody take that a little bit further and give us a description of why or 

when you're going to get a positive response and when you're going to get a 

negative response.   

33:26 T Stan. 

33:27 SN When the number's smaller like five into two, you got five that's larger than 

negative two, but, that, and that will turn out to be negative three, but for the 

positive the number's smaller than six- 

33:41 SN So it would be a positive, it's still a negative, that's why it's positive. 

33:45 T No. 

33:45 Ss Ha ha ha. 

33:51 T Did you understand that (   )? 

33:53 SN No. 

33:54 Ss Ha ha ha. 

33:55 T I did, I did. 

33:56 SN I mean like five is a negative but it's smaller than the six. 

34:01 T Now I think one of the problems we're having is something that came up the 

other day.  Which number is bigger, three or negative five?   

34:15 T And I think if we answer that- that if we clearly state what we mean by 

bigger and smaller for positive and negative numbers it'll make Stan's answer 

a little clearer.   
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34:32 T Regina, you want to say something? 

34:34 SN Um, yeah, if the number on the right is a negative, um, no, it's smaller than 

the number on the left then it's gonna be a negative first (   ). 

34:44 T But what do we mean by smaller? 

34:47 S Um, like um//smaller than the number on the left (   ). 

34:50 T //Sh sh sh. 

34:57 T Smaller, we usually talk about less than.  When we talk about smaller we talk 

about less than.  But in this case we need a - a wider understanding of what 

smaller means.   

35:14 T Now somebody in here whispered something just now that I heard.  Bud?   

35:19 SN Closer to zero. 

35:21 T Nice and loud. 

35:22 S Closer to zero. 

35:23 T So the - the idea of which number is closer to zero comes into it.   

35:28 T Stan, if you were to explain your - give us your answer again and instead of 

using bigger and smaller you were to use the - the idea of closer to zero here - 

35:41 T I think you might be a little bit, little bit clearer.  You want to have another 

go? 

35:46 SN All right.  Okay, um, when it's negative, like you got negative three (   ) um 

negative two is closer to zero. 

35:58 T Than. 
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35:59 S And negative five is farther away zero so that means it would be a negative 

three and the positive the- it's the other way around the five is closer to the 

zero and the six is further away from the zero. 

36:15 T Okay, so when are we going to get a positive answer from a subtraction of 

two negatives?   

36:19 T Come straight to the point, when are we going to get a positive answer when 

we're subtracting one negative number from another negative number?  

Regina. 

36:30 SN When the number on the right is further away from zero. 

36:33 T Good. 

36:33 S And the number on the left (   ). 

36:35 T Good good, nice and succinct.  When the number that you're subtracting is 

further away from zero than the number you're subtracting from and don't get 

the giggles, Regina. 

[AU-030, CP 13] 

From the specific examples  -5 – -2 = -3  and  -5 – -6 = 1  the teacher led the class 

to make the generalization that, when subtracting negative numbers, if the number after 

the subtraction sign is closer to zero than the number before the subtraction sign, then the 

difference is negative, and if the number after the subtraction sign is farther from zero 

than the number before the subtraction sign, then the difference is positive. Note also that 

this dialog involved the development of the concept of absolute value (although it was 

not referred to by name), so that this excerpt also exemplified examining a concept. 
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Although in the example above, students seemed actively involved in the 

development of the generalization, a generalization could be developed primarily by the 

teacher. This can be seen in the discussion of the square root of negative numbers that 

occurred in the Hong Kong implementation given earlier (see p. 89). In that case, the 

teacher's proof in the second part of the dialog (beginning at 26:15) was coded as 

generalizing since it generalized the preceding argument (25:24-26:00). 

Comparing Solution Methods 

As previously noted, like generalizing, comparing solution methods was not a 

common way of making connections, occurring in only three implementations. As 

specified in the TIMSS definition of making connections, this required not only the 

presentation of more than one solution method, but also the comparison of the 

mathematics in them. This could have been done by explaining a relationship between 

solution methods or a correspondence between steps or aspects of different solution 

methods. 

One of the three implementations that included such a discussion was found in a 

Japanese lesson, where the implementation gained connections. The problem was to 

prove that three parallel lines divide two transversals proportionally (see Figure 3). 
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Figure 3: Two Ways of Proving AA’||BB’||CC’ Implies AB/BC = A’B’/B’C’ 

One solution method involved drawing an auxiliary line segment from A to C', 

while the other used an auxiliary segment drawn from A so that it was parallel to line 

A'C'. Both proofs relied on a theorem stating that a line segment drawn parallel to one 

side of a triangle (in this case segment BD) divides the other two sides of the triangle 

proportionally. In the excerpt below, the teacher summarized the first method (after 

noting that the ratio of AB to BC equaled the ratio of AD to DC' ), and then summarized 

the second approach (“the case of N”) by comparing it to the first: 

25:31 T Then next this triangle is inverted, but ... you just flip the other triangle, and 

if you were asked to find this over this it is equal to this over this.  Next ... 

this over this what this means is that ...  

25:52 T if you combine all three ... this over this is equal to this over this and this over 

this is equal to this over this ... therefore, this over this is equal to this over 

this ... and this expression is consistent.   

26:08 T It still is true, right?  So ... rather than write down this I want you to 

understand this with your eyes your sense ... this over this is equal to this 

over this ... this over this is equal to this over this ...  
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26:19 T therefore, please get a visual feel that this over this is equal to this over this.  

Thus, I won't be writing the reply all along here.  Okay, for the case of N ...  

26:29 T in the case of N we look at the triangle ACE just like before ... and in the 

same way we think of this over this.  AB over BC.   

26:42 T Just as before this time AB over BC is equal to AD over DE.   

26:53 T There seemed to be a lot of people who understood this so I won't ask 

everyone, but at this point two sets of the opposite sides are parallel to each 

other ... so it is a parallelogram.   

27:04 T This means the length of this segment and the length of this segment are 

equal, ... and the length of this segment and the length of this segment are 

equal,... this means ...  

27:14 T this over this is equal to this over this ... and this length is equal to this length, 

... this length is equal to this length so ... this over this is equal to this over 

this and so ...  

27:26 T this and this, and this and this are each equal ... and so this over this is finally 

equal to this over this.  Right? 

[JP-038 IP 2] 

Teacher Behaviors 

Although the implementation features described so far indicate the content of 

problem discussions that qualified them as making connections implementations, and to 

some extent the kinds of mathematical thinking the teacher emphasized, they do not fully 

explain how teachers accomplished these emphases. The teacher behavior codes provide 

more information. Figure 4 shows the percent of these implementations in which each 
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teacher behavior captured by the coding system occurred either consistently or at a key 

moment, so that it was deemed to have set or changed the direction of problem 

implementation. 
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Figure 4: Teacher Behaviors in Making Connections Implementations (n = 40) 

As can be seen from the figure, drawing conceptual connections was the most 

frequent teacher behavior during making connections implementations, followed by 

routinizing and stepping through arguments. Relatively rare were failing to hold students 

accountable, building on student ideas, scaffolding, and pressing students for 

justification. 

Drawing Conceptual Connections 

The most prevalent teacher behavior was drawing conceptual connections, taken 

from Henningsen and Stein (1997). It occurred in 18 out of the 40 making connections 

implementations. In these cases, teachers directed students' attention to a connection 

between a concept and a procedure, representation, or another concept. They did this by 

either explaining the connections or asking questions about them. 
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Most commonly, they made a connection between a concept and a representation, 

as in the Dutch lesson described earlier (NL-002, IP 53), where the teacher graphed data 

from a table where the y values increased by 3, described the resulting pattern in the 

graph, and developed the formula. In that discussion, the teacher drew connections 

between the concept of linearity and its manifestations in three representations: a constant 

increase in numeric values, a straight line graph, and a symbolic representation.  

The connection between linearity and its tabular representation was examined 

even more closely in the following implementation from a Japanese lesson in which 

connections were gained. The problem was to graph  y = 2x – 1.  After graphing the y-

intercept and the points (1, 1), (2, 3), (3, 5), and (4, 7), the teacher called attention to the 

role of the coefficient “2” in the equation: 

04:37 T When X increases by one ... how about Y? 

04:43 S Two. 

04:45 T Increases by two. When the difference [between X values] is one the 

difference here [between Y values] is two. 

04:54 T That's just because X is... multiplied by two the difference becomes doubled.   

05:05 T As a matter of fact if we multiply two [to X] zero remains the same, but one 

becomes two.  Two becomes four.  At this point the difference becomes 

doubled.   

05:16 T In lin- linear functions you multiply something and add something [to a 

function] but  

05:20 S Uh huh. 
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05:24 T what we have to add here after that is ... we have to add minus one.  So no 

matter what we add the difference does not change does it. 

05:35 S No. 

05:35 T Umm.  The fact that the difference spreads here depends on the number 

multiplied to X.  So this number and this number are the same. 

05:46 S Uh huh. 

05:46 T Um.  So this number ... on linear functions the number multiplied to X agrees 

with the difference. 

05:53 S Uh huh. 

[JP-024, IP 1] 

Here the teacher drew students' attention to the connection between the linear 

coefficient in the equation and the slope as seen in the difference between successive 

values in the y-coordinates. This was done by tracing the difference between x values as 

they are first multiplied by the coefficient (4:54-5:05, 5:35) then increased or decreased 

by the constant (5:24).  

In some cases, a connection was drawn between concepts and solution methods, 

as shown in the following excerpt from another Japanese lesson. The teacher presented 

students with a drawing of three points in the plane, and asked them, “We would like to 

find one more point and draw a parallelogram. What kinds of methods are there to 

determine the fourth point?” After students had time to develop their solutions, the 

teacher had some of them present them on the board. Altogether seven students presented 

different solution methods, and the teacher connected five of them to conditions for a 
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parallelogram by asking other students to identify the conditions that validated each 

method. The following excerpt shows two of the solution methods being addressed: 

30:24 T Umm then okay? [Please ] draw the second one- ... then, Itumo. Please 

introduce yours. 

30:43 S Umm. First measure the length from here to here with the compass, and ... 

that. That is the length, and we put a mark here.  

30:55 S Then we do over here in the same way, and we put mark here and  then I 

connected them. 

31:01 T Okay. Then the people who drew the quadrilateral ... in the same way. 

31:09 T Okay. That's good. Then if we say this in words what kind of quadrilateral 

did she draw? 

31:18 T Then, Okada Emi. 

31:21 S The parallelogram's sides that face- face each other are equal. 

31:26 T Oh. The sides that face each other are equal. Right? 

31:38 T Umm. Now then ... next umm this. Okano. 

32:09 S Well in the beginning, draw here a line like this and measure the  angle here, 

and this. It's the same angle as here, and ... draw a line here and in the same 

way measure the angle over here,  

32:25 S and put marks, and take the place where it intersects, and that's how I drew it. 

32:32 T Okay. Then the people who drew it like this please raise your hands. 

32:36 T One person two people three people fou-. 

32:39 T Okay. Well there is only few huh? Then for this of what kind of conditioned 

quadrilateral did she draw? 
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32:46 T Somebody is mumbling it. Who is it? ( One more time ) please raise your 

hand with confidence. Who is it? Okay. Terashima. 

32:54 S The alternate interior angles' 

32:56 T The alternate interior angle is 

32:57 S equal. 

32:58 T That's right huh? 

33:22 T She drew it with this idea right? 

33:03 T Hmm. Um then let's go to the next one. 

[JP-018 IP 1] 

Routinizing 

Perhaps surprising is the presence of routinizing—a behavior associated with 

lowered cognitive level (Henningsen & Stein, 1997)—in roughly one out of every three 

implementations judged as making connections. Routinizing meant that teachers removed 

the challenge of the problem by giving students explicit procedures or steps to perform, 

by telling them how to perform them, or by actually performing them for students. For 

this to occur, of course, the original problem must have had ambiguity or challenge; for 

example, there must have been evidence that a solution procedure had not been 

previously given to students. The teacher must have taken away opportunities for 

students to make progress on their own, and this must have occurred soon enough in the 

discussion to affect its direction. The teacher did this by telling or using product 

questions. 

There were two ways that this behavior could occur in an implementation that still 

made connections. First, a teacher could in one part of the dialog take over and tell 
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students what procedure to follow to solve a problem, but in another part of the dialog 

enact making connections features or behaviors, such as justifying or drawing conceptual 

connections. Second, both kinds of behavior could occur simultaneously. Teachers could 

make connections through telling or by asking product questions which implicitly made 

decisions for students about what procedure to follow. As a result, they enacted making 

connections features or behaviors while removing ambiguity and challenge from the 

problems. 

This latter approach can be seen in a Japanese implementation of a problem 

involving a trapezoid with horizontal bases 12 and 18 and height 16 (see Figure 5). The 

students were asked to find the area of the portion above the segment connecting the 

midpoints M and N of the non-parallel sides. 

 

Figure 5: Finding the Area of AMND 

12:13 T Uh, like the material we did before since it's one to one, one to one, the three 

lines are parallel. 

12:20 T Therefore, both the top and the bottom are trapezoids.   

12:22 T And, if it's like that in the top trapezoid (it's) the upper base plus the lower 

base; ... therefore, you want to know the length of MN. 

12:32 T With that you use the Midpoint Connection Theorem.   
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12:35 T Okay to continue. 

 [Students work] 

14:04 T Okay, well were you able to do about half?  Okay, stop.   

14:09 T If we draw the supplementary line we can use the Midpoint Connection 

Theorem.  There are various ways of drawing supplementary lines, for 

example, ... connect A and C. 

14:21 T After doing [that] the whole figure is divided it into two triangles, triangle 

ABC and triangle ACD,  uh again these are one to one; moreover, since 

they're parallel  

14:32 T uh, these ones also are one to one ... and so this is the midpoint and this is 

also the midpoint.  

14:38 T With that we can use the Midpoint Connection Theorem. 

14:42 T Okay, after getting that ... about how much is this?  Ninomiya. 

14:50 S Nine centimeters. 

14:52 T Right, half of eighteen is nine.   

14:55 T About how much is here. 

[JP-045, CP 3] 

The teacher removed problematic aspects of the problem by telling students how 

to solve it (12:22, 12:32, 14:09, 14:38) and leading them through the process (14:42-

14:55), but he also justified the claims (12:13, 12:20, 14:21, 14:32) that made his 

procedure mathematically valid. Therefore, the teacher both routinized and justified, and 

did so almost simultaneously. 
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Stepping Through an Argument 

The third most frequently coded teacher behavior, stepping through an argument, 

occurred in a little over one-fourth of the making connections implementations. In these 

cases, the teacher used telling or a series of product questions to lead students through a 

sequence of mathematically justified assertions to make a conclusion. This was the 

primary way teachers enacted justification, occurring in 61% of implementations that 

involved that feature. 

This approach can be seen in the Hong Kong excerpt given earlier, in which the 

teacher led students through an argument showing first that -4 had no square root, and 

then that no negative number has a square root in the set of real numbers. The second, 

more general argument is repeated here: 

26:33 T A number must be one of- one of- one of these.  Maybe it is a positive- 

maybe it is negative, or ... 

26:42 Ss Zero. 

26:43 T Zero, yes.  Very good. 

26:44 T So uh, if A squared- we see uh, by case- so if A is positive, then what is the 

value of A squared?  Positive?  Negative?  Or zero? 

26:58 Ss Positive. 

26:59 T Positive.  And then if it is negative, what is the result of the square of A? 

27:05 Ss Positive. 

27:05 T Positive.  If it is zero, then what is the squ- //square of zero?  

27:09 Ss //Zero. 

27:10 T Zero.  So is there any answer equal to negative?   
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27:13 Ss No. 

27:14 T No.  So, this answer- this neg- uh negative four, you cannot find the answers.  

Okay?  Because, all the square ...  

27:24 T All the square, you cannot find the negative result. 

[HK-008, IP 20] 

At 26:33, 26:44, 26:59, 27:05, and 27:10, the teacher provided steps of the argument but 

asked students to fill in pieces of information, then made the final conclusion at 27:14. 

Lack of Accountability 

In this study, lack of accountability meant that the teacher failed to ask a student 

for more detail, justification, or a more adequate contribution when the student provided 

an incorrect or insufficient answer or idea. As with routinizing, this is a behavior that 

would seem to reduce chances that connections would be made, but coexisted with other 

behaviors that did make connections. This occurred in four implementations.  

The following excerpt from an American lesson provides an example. The teacher 

had reviewed inequality symbols, talked about their use to describe real life situations, 

and had students translate English statements into simple algebraic inequalities (e.g.,  

p < 5). Then she posed the problem: “Give me a number that would make this statement, 

y ≥ -3, true.” After soliciting several correct answers, all integers, and asking the class if 

they were correct, she proceeded as follows: 

29:47 T How many numbers will make this a true statement?   

29:58 T Gary, what do you think? 

29:59 SN A lot. 

29:59 T A lot, okay.  Peter? 
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30:02 SN Six. 

30:03 T Six, okay.  Athena what are you thinking?  You look like you disagree.  All 

the numbers in the world.  Okay, you're getting on the right track.   

30:12 SN It's infinite. 

30:13 T Infinite number, there is what we're looking for.  Okay, any number- what's 

the smallest- how close can we get to this? 

30:13 SN Zero. 

30:20 T Okay. 

30:21 SN Negative two. 

30:22 Ss Negative three. 

30:22 T Negative three because this may- it can be equal to a negative three, so 

negative three is greater than or equal to a negative three.   

30:30 T So it can start at negative three, and everything that's greater than and then 

keep going on to infinity.   

30:36 T So it starts at negative three and it keeps on going.  If I wanted to show this 

answer on a piece of paper, I can't write numbers to infinity.   

30:47 T So what would be a way that you can think of to show this answer?  Can you 

think of one? 

30:54 SN (   ) numbers and then put some dots. 

30:56 T Okay, the numbers and put dots.  Okay, what's another way Karl? 

30:59 SN Um, draw a circle and equals negative three (   ). 

31:04 T Okay, so you're using this term for infinity.  Alright, those are all good ideas.  

Let's use a number line.   
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31:10 T And let me show you how to use it.  If I have um, if I take the number line ...   

31:19 T Okay.  And we said that it could be equal to- if it- if it can be equal to a 

negative three, I'm going to put a circle here and I'm going to color it in.   

31:31 T And when I color it in, that means that negative three is part of the answer.  

So it's negative three and everything to the right of it.   

31:40 T And I'm going to put an arrow there to show that it keeps on going and 

doesn't stop.  So the answer to this inequality is negative three and above.   

31:50 T So put a dot on negative three, draw an arrow going in the um, greater than 

direction, and color it in. 

[US-024 IP 11] 

The teacher seemed to consistently accept insufficient or incorrect answers as 

correct, without probing or challenging them; this occurred at 29:59-30:03, 30:13, and 

30:54-30:59. Although correct or complete answers were also given by other students or 

the teacher, the impression left was that all answers were correct. In spite of this, the 

discussion did involve the development of the concept of inequalities and the connection 

of symbolic and graphical representations, so it was coded as making connections. 

Building on Student Ideas 

In only three of the making connections implementations did the teacher build on 

student ideas. This means that the teacher responded to a student's contribution, whether 

it was mathematically correct or not, in some way that involved an idea beyond the 

student's original contribution. 

The following excerpt shows a rather simple way that a teacher in Hong Kong 

built on a student's thinking so that the problem gained connections: After having 
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students find the circumference of a circle given its diameter, the teacher asked them to 

find the circumference of another circle given that its radius was 33 cm. While going over 

this problem, the teacher used a student's solution to derive the formula  C = 2πr: 

12:45 T Now, this time we will try to- uh, we try to think about the special 

relationship between radius and diameter.  Now, for example here, radius is 

thirty-three and Sandy tried to times two here.  

12:59 T That means two radius- radius add another radius, but of course, uh, the same 

value- the same value.  Radius add radius is just like two R.  Radius add the 

same radius. 

13:13 T Two R represent to the D or we can say that this formula can change to 

circumference is equal to R or two times R and also times the pi.  

[HK-003 IP 2] 

Scaffolding 

Scaffolding by teachers was rare in this sample, occurring in only two 

implementations. This behavior was defined as the teacher providing information or 

asking questions that assisted students in answering a question without reducing 

complexity or challenge. The assistance needed to be just enough to allow students to 

make progress. In general, this meant that teachers asked questions that directed students' 

attention to the issue at hand, or that suggested general heuristics, without telling them 

what to do. Thus, the use of product questions was excluded since they implicitly told 

students what steps to take.  

The Australian discussion shown earlier (AU-030 CP 13) was one of the two 

implementations in which the teacher provided scaffolding. The teacher led the class in 
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generalizing about when the difference of two negative numbers is negative, and when it 

is positive. Only the portion of the discussion where the teacher scaffolded is given here. 

33:12 T Can anybody take that a little bit further and give us a description of why or 

when you're going to get a positive response and when you're going to get a 

negative response.   

33:26 T Stan. 

33:27 SN When the number's smaller like five into two, you got five that's larger than 

negative two, but, that, and that will turn out to be negative three, but for the 

positive the number's smaller than six- 

... 

34:01 T Now I think one of the problems we're having is something that came up the 

other day.  Which number is bigger, three or negative five?   

34:15 T And I think if we answer that- that if we clearly state what we mean by 

bigger and smaller for positive and negative numbers it'll make Stan's answer 

a little clearer.   

34:32 T Regina, you want to say something? 

34:34 SN Um, yeah, if the number on the right is a negative, um, no, it's smaller than 

the number on the left then it's gonna be a negative first (   ). 

34:44 T But what do we mean by smaller? 

34:47 S Um, like um//smaller than the number on the left (   ). 

34:57 T Smaller, we usually talk about less than.  When we talk about smaller we talk 

about less than.  But in this case we need a - a wider understanding of what 

smaller means.   
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35:14 T Now somebody in here whispered something just now that I heard.  Bud?   

35:19 SN Closer to zero. 

35:23 T So the - the idea of which number is closer to zero comes into it.   

35:28 T Stan, if you were to explain your - give us your answer again and instead of 

using bigger and smaller you were to use the - the idea of closer to zero here - 

35:41 T I think you might be a little bit, little bit clearer.  You want to have another 

go? 

35:46 SN All right.  Okay, um, when it's negative, like you got negative three (   ) um 

negative two is closer to zero. 

35:58 T Than. 

35:59 S And negative five is farther away zero so that means it would be a negative 

three and the positive the- it's the other way around the five is closer to the 

zero and the six is further away from the zero. 

36:15 T Okay, so...when are we going to get a positive answer when we're subtracting 

one negative number from another negative number?  Regina. 

36:30 SN When the number on the right is further away from zero. 

36:33 T Good. 

36:33 S And the number on the left (   ). 

36:35 T Good good, nice and succinct.  When the number that you're subtracting is 

further away from zero than the number you're subtracting from. 

The teacher's utterances were limited to managing the discourse (33:26, 34:32, 

35:14), pointing to a barrier that needed to be overcome in order to make progress (34:01, 

34:15, 34:44, 34:57), asking students to rephrase or clarify their ideas (35:28, 35:41, 
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35:58, 36:15), or emphasizing or repeating students' ideas (35:23, 36:33, 36:35). In this 

way, he helped students solve the problem (one that was more sophisticated than the one 

originally posed) without reducing the challenge of the task by doing any of the 

mathematical work for students. 

Pressing for Justification 

Even rarer than scaffolding was pressing for justification, which occurred in only 

one implementation in the entire sample. Pressing for justification referred to the teacher 

repeatedly asking students to justify or explain their reasoning beyond description of a 

procedure. To receive this code, the teacher, through her questions, comments, and 

feedback had to consistently communicate to students that explanations and justifications 

were as much a part of classroom mathematical activity as were correct answers. 

The single case of this behavior was a short discussion of a problem that occurred 

in a Dutch classroom. The problem statement asked students to determine, when rolling 

three dice, what outcome was just as likely as rolling a three. When a student replied, 

“eighteen,” the teacher began the following line of questioning: 

15:41 T Eighteen, because? 

15:43 SN (   ) three times six. 

15:46 T Eighteen you can only throw by throwing three times six.  Why is fifteen not 

correct? 

15:53 SN Because you (   ). 

15:54 T I can throw that by throwing three fives, can't I? 

15:56 SN I can two fives and then six... 

15:57 SN Six. 
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15:58 T I can also do that with two fives.  Well, two fives is not a good example then, 

eh? 

16:03 Ss Ha, ha, ha. 

16:05 T Because then I have to throw another five to get fifteen. 

16:08 SN Oh, yeah. 

16:09 T But I also can? 

16:10 Ss Five, four, six. 

16:11 T Throw five four six.  Or six five four.  There are more possibilities.  Yes?  

Well, that's exactly the point here.  Just get the hang of what is equally 

difficult as those other situations.   

16:28 T To throw three with three dice can be done in one way only.  There is one 

other number you can throw in only one way.  

The teacher began by asking the student to justify her answer (15:41), and when 

the response was rather short, the teacher rephrased it (15:46) and asked another question 

(15:54) to probe her understanding of the justification she just gave. When the student's 

explanation was inadequate, she pointed out that fact (15:58-16:05) and asked for a better 

explanation (16:09). Once it was obtained, the teacher elaborated on the explanation 

(16:11) and summarized the justification (16:28). 

Who Did the Mathematical Work 

Figure 6 shows the percent of making connections implementations in which 

teachers, students, or both did most of the mathematical work. In half of these 

implementations, the teachers did most of the mathematical work during the discussions; 

that is, they made most of the decisions and did most of the talking that brought out the 



127

making connections features. In only three of the implementations did students do most 

of the work. In the remaining 43% of implementations, the teacher and students shared in 

doing the bulk of the mathematical work. 

Both, 43%

Students, 
8%

Teacher, 
50%

Figure 6: Who Did the Work in Making Connections Implementations (n = 40) 

Maintaining vs. Gaining Connections 

The second research question in this study asked what kinds of differences might 

be seen between problem implementations where connections were maintained and those 

where connections were gained. In other words, did teachers make connections 

differently depending on whether or not the problem was originally stated as making 

connections? 

Features Exhibited 

Figure 7 compares the making connections features addressed by teachers in the 

two implementation trajectories. It shows that for the most part, the features brought out 

during discussions of problems were similar regardless of trajectory. This suggests that 
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when teachers “added” to non-making connections problems in order to implement them 

as making connections, what they added was similar to what they addressed when 

problems were originally stated as making connections.  
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Maintaining Connections (n = 24) Gaining Connections (n = 16)
 

Figure 7: Features Observed when Maintaining vs. Gaining Connections 

The only difference is that generalizing did not occur during discussion of any 

problems originally stated as making connections, but did occur during discussion of 

three of the problems where connections were gained. Therefore, in this sample, there 

were three instances in which teachers added to a problem by making (or having students 

make) generalizations beyond the original statement of the problem, but there were no 

instances in which teachers addressed generalization when problems were already stated 

as making connections. 
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Teacher Behaviors 

Figure 8 shows the corresponding results for teacher behaviors. Four of the 

behaviors seemed noticeably more common when connections were gained than when 

connections were maintained. Three of them are behaviors expected to contribute to 

making connections (drawing conceptual connections, stepping through arguments, and 

building on student ideas), while one would be expected to inhibit making connections, 

or at least contribute to the teacher doing most of the work (lack of accountability). 
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Figure 8: Teacher Behaviors when Maintaining vs. Gaining Connections 

Who Did the Mathematical Work 

Table 4 shows who did most of the mathematical work when connections were 

maintained and when connections were gained. Again, there are no drastic differences; in 

general, the teacher did most of the work in half the instances, and most of the rest of the 
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time the work was shared by both. Students never did most of the mathematical work for 

problems originally stated as non-making connections, although this did occur 

occasionally when problems were originally stated as making connections. 

Table 4: Who Did the Work when Maintaining vs. Gaining Connections 

Who Did Most of the 
Mathematical Work 

Maintaining 
Connections (n = 24) 

Gaining Connections 
(n = 16) 

Teacher 50% 50% 
Students 13% 0% 
Both 38% 50% 

 

Non-Making Connections Implementations 

Turning now to the 42 problems that were judged as having been set up as making 

connections but not implemented as such, the goal was to identify what teacher behaviors 

may have contributed to the apparent loss of connections. 

Teacher Behaviors 

Figure 9 shows the percent of these implementations that contained each teacher 

behavior coded in this study. The majority (60%) of implementations were characterized 

by the teacher routinizing the problem, and almost half involved the teacher shifting the 

focus of the discussion to a procedure. Less frequent were the teacher skimming the 

mathematical surface, shifting the focus to the answer, or failing to hold students 

accountable for high level thinking. Perhaps surprising was the fact that teacher 

scaffolding occurred in one implementation. 



131

48%

14% 14% 14%

2%

60%

0%

10%

20%

30%

40%

50%

60%

70%

Routinizing   Shifting  
Focus to

Procedure

Skimming
Mathematical

Surface

 Shifting  
Focus to
Answer

Lack of
Account-

ability

Scaffolding

 

Figure 9: Teacher Behaviors when Connections Were Lost (n = 42) 

Routinizing 

By far, the most common teacher behavior was routinizing, in which the teacher 

reduced ambiguity or complexity by specifying explicit procedures or steps to perform, 

or took over challenging aspects by telling students how to perform them or performing 

them for students. Earlier it was shown that routinizing could co-exist with other 

behaviors that made connections. In the cases here, none of these other behaviors 

occurred, resulting in implementations that did not make connections. This can be seen in 

the following Dutch implementation of a problem, considered to be making connections 

as stated, that asked students to find the measure of angle B1 given that angle C1

measures 20 degrees (see Figure 10). 
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Figure 10: Finding the Measure of Angle B1

18:05 T If  C one is twenty degrees, how much is angle E one then? 

18:10 SN Seventy. 

18:11 T Seventy, why? 

18:12 SN (  ) 

18:15 T Okay, look here, that triangle...//.which is positioned like this..  If this one 

equals twenty and here is a right angle, then we must have here seventy 

degrees. 

18:16 SN //Yes, okay. 

18:16 SN Coughs. 

18:22 T Okay?  How much is its neighbor then? 

18:26 S [Coughs.] 

18:26 T This one. 

18:27 SN One hundred eighty minus seventy. 

18:28 T Hence, this one is? 

18:29 SN One hundred and ten.  

18:30 T Hundred and ten degrees.  However, which angle was to be found? 

20ºC1

E1

B1
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18:32 S B. 

18:32 T (  ) B one. Okay, if we make now a triangle here which is isosceles, right?  

Then you have a hundred and eighty degrees minus that hundred and ten.... 

18:43 SN  Divided by two (  ) 

18:44 T .. that's seventy. 

18:45 T So how much is that..... (  ) angle B two, right?  Hence, that is seventy 

divided by two and that is?  Five and...? 

18:50 Ss Thirty. 

18:50 T Thirty-five....  Cecile, got it? ... Yes? 

[NL-049, IP 6] 

Rather than allowing students to make progress on their own, the teacher took 

over challenging aspects of the problem by using product questions to specify which 

angle measures to find in what order (18:05, 18:22, 18:30, 18:45). The teacher or students 

told how to find these angle measures, but the computations were not justified (18:15, 

18:27, 18:32, 18:43). In addition, no strategic rationale was given for the steps in the 

solution procedure. 

Shifting the Focus to a Procedure 

The second most common teacher behavior in implementations where 

connections were lost was a close relative of routinizing: shifting the focus away from 

concepts or meaning and onto a procedure, which occurred in almost half of the 

implementations. This can be seen in the following dialog from a lesson in the 

Netherlands. Earlier in the lesson, the teacher had students find volumes of beams 

(rectangular prisms) and cylinders, as well as solids formed by combining them. The 
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teacher had also had students find how the volume of a beam changed when one or two 

of its dimensions doubled. In this problem, students were to determine what happens to 

the volume when all three of its dimensions double. 

17:32 T Well, what do you think will happen then? 

17:34 SN But...but how is that possible -  or can the height be done also? 

17:36 T Yes, yes, so and the length, and the width and the height. 

17:40 SN  Yes, but it doesn't say (in the book). 

17:41 T No, but we will just add those together.  Because then we have all the 

possibilities together.  Well, what happens then?  

17:48 SN You get two times two times two. 

17:49 T Yes, two times two times two.  You have - this is not new to you, right? 

17:52 SN That is twelve... 

17:55 SN (...) 

17:56 T This is for a beam.  And this is actually also what they mean for assignment 

thirty-nine. 

[NL-027, IP 6] 

Although this problem could have led to a discussion of how doubling length, 

width, and height results in a prism made up of eight copies of the original, along with a 

diagram and a reference to the meaning of volume, the focus instead was on an arithmetic 

calculation. The key moment seemed to occur at 17:48, when the student responded to a 

rather open-ended question with a calculation. The teacher accepted this response, and as 

a result there was no explanation of why the twos should be multiplied together or why 

the product would imply any particular change in volume of the box. One could argue 
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that this may have been unnecessary if in fact the students were already familiar with the 

situation as the teacher suggested (17:49), but the fact remains that the resulting 

discussion focused on a calculational procedure without explicit reference to concepts or 

meaning. (There was however, an apparently incorrect conclusion drawn by a student at 

17:52, whose reasonableness could have been addressed by a conceptual discussion.) 

Routinizing vs. Shifting the Focus to a Procedure 

As defined in this study, there is a subtle difference between routinizing and 

shifting the focus to procedure. The former means that the original problem involved 

some kind of challenge (complexity or ambiguity) that the teacher removed by specifying 

procedures or steps or by performing them for students, while the latter means that the 

original problem (and perhaps initial part of the discussion) implied a focus on meaning 

or conceptual understanding but the discussion shifted to an almost exclusive 

concentration on a procedure.  

Although both often occurred together (such as in the Dutch discussion involving 

angle measures; NL-049, IP 6), one could occur without the other. Routinizing could 

occur without a shift in focus to a procedure if attention was paid to aspects of the 

problem other than a procedure. For example, in the illustration of routinizing given in 

the section on making connections implementations (JP-045, CP 3, where students were 

to find the area of a portion of a trapezoid), the teacher removed the problematic aspect of 

the question by telling students the steps they should perform to obtain the answer, but he 

provided justification so that the discussion did not focus on a procedure to the exclusion 

of conceptual meaning.  
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Conversely, a shift in focus to a procedure could occur without routinizing by the 

teacher. In the Dutch discussion of volume just described (NL-027, IP 6), the teacher 

allowed a student to shift attention to a procedure, but she did not remove the complexity 

of the problem by telling students what to do. In general, if such a shift in focus occurred, 

an implementation could not make connections, but if routinizing occurred without this 

shift, it was still possible for an implementation to make connections. 

Skimming the Mathematical Surface 

A less common way for teachers to implement a problem so it did not make 

connections was by failing to delve sufficiently into the mathematics of the problem, 

resulting in a discussion of a concept which remained at a superficial or vague level. This 

occurred in six of the 42 cases. It can be seen in the following U.S. implementation of a 

problem that asked students to draw a mapping diagram and a graph for the relation 

{(6,0), (6,-4), (4,-3), (5,-3)}. 

05:19 T Anybody have any questions on that one?  Jeremy? 

05:23 Sn On thirty-seven- 

05:25 T Oh, thirty-seven was a mapping. 

05:27 S Yeah. 

05:28 T Yeah? 

05:29 S (...) you didn't put the two sixes down or the two negative //threes. 

05:34 T //You only have to put six one //time.   

05:36 S //Okay. 

05:36 T You only have to put negative three one time in the circle. 

05:39 S Okay. 



137

05:40 T But when I draw the lines, I have a six going to a zero and a six going to a 

negative four.  So that means the six was used twice, right?   

05:48 T So if I'm listing from a mapping, wouldn't I list both ordered pairs?  Six zero 

and six negative four?  Same thing with the other one. 

[US-069 CP 11] 

Here, the teacher's approach to the student's question was to state a (seemingly 

arbitrary) rule regarding notation—a rather superficial aspect of the problem—rather than 

the mathematical meaning of the situation. This meaning would have involved at least 

two ideas. First, the mapping diagram is a representation of two sets, and in a set of 

numbers, there is only one “6”and one “3”. Second, the mapping diagram shows the 

structure of the relation; that is, the way in which elements in the first set are linked 

(“mapped”) to elements in the second set. In this case, the 6 is mapped to both 0 and -4, 

while both 4 and 5 are mapped to the same number: -3. This can be seen in the very way 

two different arrows have the same head or tail. This structure would not be shown if the 

diagram were drawn by simply copying down each coordinate as many times as it 

appeared in the list of ordered pairs, and linking each separate pair with an arrow. By not 

addressing these ideas, the teacher did not draw students attention to the fact that the 

ordered pairs, the coordinate graph, and the mapping diagram all provided a different 

perspective on the same mathematical object—the whole purpose of examining multiple 

representations. 

Shifting the Focus to the Answer 

Like shifting the focus to a procedure, this code meant that the original problem 

statement (and perhaps initial part of the discussion) focused on meaning or concepts, but 
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a shift in emphasis occurred. In this case, the result was that attention became focused on 

the accuracy or completeness of the answer, to the exclusion of conceptual meaning. This 

occurred in six of the implementations where connections were lost. 

The following dialog from an Australian lesson provides an illustration. The 

teacher had students work in groups to assemble interlinking blocks into a solid figure 

and draw four views of the result: top, bottom, left, and right sides. She selected 

volunteers to put their sets of four drawings on the board, and asked each group to choose 

one set (not their own) and reconstruct the figure with the interlinking blocks. The 

following dialog began when the teacher had students show their reconstructions to the 

class: 

38:45 T Who's made number one please?  Can you hold- whose was number one? 

38:53 Sn (              ) 

38:57 T Is that what it is? 

38:59 Ss No. 

39:00 Sn (            ) 

39:02 T But it's not the shape.  Alright, anyone else make number one?  Sam.  Who 

made number two? 

39:13 T Lee where is it?  Whose is number two?  Quiet.  Whose is number two?  

That's yours. 

39:23 Sn No it's ours. 

39:23 T Whose?  Yours.  Number two, is that it? 

39:28 Sn Yep. 

39:30 Sn Mr. (            ) 
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39:34 T So number two, here.  So they've actually got it correct. 

39:41 T What makes number two a bit easy?  You want to tell me what makes- 

39:45 Sn (              ) 

39:48 T Yes, that's right.  Left- it's sort of only, because it's only one block thick, the 

left or right is actually the shape, so it makes it a bit easier like that.  Alright, 

that's good. 

39:57 T Now, wait a moment, who's made number three?  Anyone done number 

three?  You haven't.  Hey.  No one's made number three at the moment?  

40:11 T  What did I do with the duster? 

40:14 T I'll rub two out.  Four?  No, who's made four?  You've done four? 

40:26 Sn Yeah. 

40:27 T Hold it up. 

40:28 Sn Wrong! 

40:28 Sn Wrong! 

40:29 Ss Why is everything wrong with, gosh I'm so. 

40:33 T Five? //Don't- 

40:35 Ss //(            ) 

40:38 T Hold it up if you've made number five please.  So we've got that right. 

[AU-064, IP 4]  

Although there was a brief discussion of what made one of the solids easy to determine 

(39:48), the overall focus was only on the answers, and there was no discussion of how 

the students arrived at them. 
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Lack of Accountability 

Also occurring in six of the implementations was the teacher's failure to respond 

to incorrect or insufficient student contributions by probing or pressing for more adequate 

responses. In the following example from Hong Kong, the teacher had first reviewed the 

right triangle definitions of cosine and had students use inverse cosine to find the measure 

of an angle in a right triangle. Then he presented the class with the following problem: 

A hot-air balloon, at a height of 80 meters, is fixed to the ground by a rope 

AB 96 meters long. If the rope makes an angle along the vertical side, find 

theta. (Make sure your answer is correct to three significant figures.) 

13:58 T How to find? 

14:00 SN Adjacent side. 

14:01 SN Adjacent side over. 

14:03 T Uh, Elaine? 

14:10 T You want to find the size of theta.  Is this theta in a right-angled triangle? 

14:19 Ss Yes. 

14:20 T Yes.  Okay.  So that means maybe we can make use of cosine ratio, okay, to 

find the size of theta.   

14:34 T Okay, C, B. A, theta.  Eighty M [meter], ninety-six M [meter].  Okay, you 

want to use cosine ratio to find the size of theta.  Then we must identify 

adjacent side and hypotenuse.  Elaine, tell me, which side is adjacent side? 

14:53 Ss AC.  

14:55 T AC is adjacent side, very good.  How about, uh, hypotenuse?   

15:00 Ss AB.  
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15:02 T AB, very good.  Okay, thank you, sit down.   

15:06 T Okay, Jenny, Jenny.  Okay, you tell me, how to make use of cosine ratio to 

find the size of theta?    

15:15 SN Adjacent side over hypotenuse. 

15:17 T So which side over which over? 

15:19 Ss AC over AB. 

15:20 T AC over? 

15:22 SN //AB. 

15:22 T //AB, very good.  Okay, so cosine theta, what is the length of AC? 

15:28 Ss Eighty. 

15:29 T Eighty.  Okay.  The length of AB? 

15:31 Ss //Ninety six. 

15:32 T //Ninety six.   

15:33 SN Isn't it thirty three? 

15:34 T Okay.  So theta, that is equal to the inverse of cosine, eighty over ninety six.  

Can you help me find the size of theta? 

15:44 Ss Three ... 

15:44 T //Correct to three significant figures. 

15:44 Ss //Thirty three. 

15:46 T  Uh, Kelly? 

15:49 SN Thirty three point six. 

[HK-044 IP 5] 



142

On two occasions, the teacher asked process questions (13:58 and 15:06); i.e., 

questions that sought an explanation requiring students to integrate information (Good & 

Brophy, 1987). Student responses, however, consisted of short definitions from memory. 

Rather than probing them or providing scaffolding to help them provide more coherent, 

complete responses, and thereby hold them accountable for higher level thinking, the 

teacher went on to use product questions to tell the class how to solve the problem.  

Interestingly, in five out of the six cases of non-making connections 

implementations where teachers failed to hold students accountable after insufficient or 

erroneous contributions, these contributions were responses to teachers' open-ended or 

process questions. Thus, teachers asked questions that could have led to connections 

being made, but failed to follow up when student responses were insufficient. This also 

happened in three out of four cases of making connections implementations, but 

connections were made in other ways. 

Who Did the Mathematical Work 

As can be seen from Figure 11, in slightly more than one-half of the 

implementations, teachers did most of the mathematical work, and students did so in only 

three of the implementations. In over a quarter, teacher and students shared the work. In 

10% (four) of the implementations, no mathematical work was done; all talk other than 

the problem statement and answer was non-mathematical in nature. 
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Figure 11: Who Did the Mathematical Work when Connections Were Lost 

Maintaining vs. Losing Connections 

When given a making connections problem, what did teachers do that seemed to 

make a difference between maintaining or losing those connections? Of course, focusing 

attention on making connections features is part of the answer; by definition, if a teacher 

did so in a mathematically substantive way, the implementation made connections. But 

what teacher behaviors seemed to be associated with focusing or not focusing on these 

features? Also, did it matter who did most of the mathematical work? For this section, 

only problems that were stated as making connections will be examined, and 

comparisons will be made between those implementations that made connections and 

those that did not. 

Teacher Behaviors 

Table 5 compares the relative frequencies of teacher behaviors for the two kinds 

of implementations. Even though some of these behaviors by definition led to features 
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being discussed (drawing conceptual connections, stepping through arguments, and 

pressing for justification) or not being discussed (shifting the focus to procedures or 

answers and skimming the mathematical surface), all are presented here to provide a 

complete picture of the behaviors that occurred. 

Table 5: Teacher Behaviors when Implementing Making Connections Problems 

 
Teacher behavior 

Maintaining 
connections (n = 24) 

Losing 
Connections (n = 42) 

Drawing conceptual connections 38%  
Stepping through arguments 21%  
Pressing for justification 4%  
Shifting focus to procedure  48% 
Skimming mathematical surface  14% 
Shifting focus to answer  14% 
Routinizing 33% 60% 
Lack of accountability 4% 14% 
Scaffolding 4% 2% 
Building on student ideas 4% 0% 

 

As seen earlier, the most frequent behaviors that maintained connections were 

drawing conceptual connections and stepping through arguments while the most frequent 

behavior that lost connections was shifting the focus to a procedure. There were four 

behaviors which theoretically could occur whether connections were maintained or lost, 

but only one occurred with significant frequency: routinizing, which occurred almost 

twice as often when implementations did not make connections as when they did. 

Similarly, although lack of accountability was not frequent, it occurred proportionally 

over three times as often when implementations did not make connections as when they 

did. Thus, it is important to note (again) that routinizing and lack of accountability did 

not necessarily prevent connections from being made. Conversely, scaffolding did not 
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necessarily lead to connections being maintained; it occurred in one case in which 

connections were lost. 

Who Did the Mathematical Work 

Table 6 shows that the person doing most of the mathematical work was not very 

different depending on whether or not the problem was implemented as making 

connections. In both cases, in at least half of the implementations, the teacher did most of 

the work. Problems that were implemented as making connections more frequently 

involved students doing most of the mathematical work, but in both cases the number of 

occurrences was small. Such implementations also slightly more frequently involved 

shared work by teacher and students. In four of the non-making connections 

implementations there was no mathematical work; of course this never occurred when 

connections were made. 

Table 6: Who Did the Work when Implementing Making Connections Problems 

Who did most of the 
mathematical work 

Maintaining 
connections (n = 24) 

Losing 
Connections (n = 42) 

Teacher  50%  55% 
Students  13%  7% 
Both  38%  29% 
No mathematical work   10% 
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Chapter 5:  Discussion 

The purpose of this study was to find out what teachers did to maintain, lose, or 

gain connections as they led the discussion of mathematics problems. When student 

learning is taken into account, this knowledge has implications for arguments about 

mathematics education reform in the U.S. and suggests directions for further research. 

Therefore, in this section I will discuss answers to the research questions suggested by 

this study, address their relationship to student learning, describe the implications of these 

findings for mathematics education reform, and describe avenues for further research. 

The Research Questions 

How did teachers make connections? 

The most common way that the class discussions seen here “made connections” 

(as defined by my interpretation of the TIMSS definition of “making connections”) was 

by including the justification of assertions and by developing or otherwise examining 

concepts more than simply recalling and applying them. Slightly less common was 

connecting representations, and relatively rare were focusing on problem solving, 

developing mathematical generalizations, and comparing solution methods. It may be that 

explicit attention to how solution methods are developed, developing generalizations, and 

comparing the mathematics of multiple methods are not part of the repertoire of many 

teachers in the countries in this study. It is perhaps noteworthy that while some of the 

making connections discussions were moderately long and in-depth, many were quite 

limited in duration and scope, especially by the standards of American reform 

recommendations (see for example the vignettes in NCTM, 1991). 
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Teachers most often led making connections discussions by drawing conceptual 

connections or stepping students through arguments, behaviors often accomplished by 

telling and using product questions. As previously mentioned, product questions are those 

that seek to elicit a single correct answer that can be expressed in a single word or short 

phrase (Good & Brophy, 1987) and can be answered by memory, observation, or 

performing a procedure or step as instructed by the teacher. These are probably the kinds 

of questions teachers feel the most comfortable using in their teaching. However, as 

teachers use them, they are implicitly making decisions about the solution path to be 

followed, rather than allowing students to do so. This was confirmed by the finding that it 

was rare for students to do most of the mathematical work and in half of the discussions, 

teachers did it. It also probably explains why routinizing and lack of accountability was 

found in 33% and 10% of making connections discussions, respectively.  

These findings contrast with those found by Stein and colleagues, where teachers 

undergoing extensive professional development drew conceptual connections in less than 

15% of “high cognitive level” implementations (Henningsen & Stein, 1997; Stein, 

Grover, & Henningsen, 1996). Instead, most high level implementations were associated 

with the teacher providing scaffolding and sustained press for justification and meaning, 

behaviors that rarely occurred in the sample studied here. This suggests that it may be 

quite difficult for teachers to learn to use these approaches without extensive professional 

development.  

These approaches tend to be those identified with reform teaching, while those 

associated with making connections implementations in this study can be associated with 

more traditional teaching, confirming others' findings that teaching in countries with high 
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achievement in mathematics appears rather traditional (Huang & Leung, 2004; Lopez-

Real et al., 2004; Wang & Paine, 2003). This should not be surprising; Stein and 

colleagues studied teachers undergoing professional development intended to help them 

implement reform ideas, while this study examined more typical teaching in the 

participating countries. 

In addition, the definition of implementation here differed significantly from that 

used in the QUASAR Project. In the latter, it was defined as the way in which students 

worked on tasks, whereas in this study it was defined as whole class discussions led by 

the teacher. Therefore, while routinizing and lack of accountability may have prevented 

student thinking at what Henningsen and Stein (1997) would call high cognitive level, 

these behaviors could have been part of teachers’ justifying and focusing on concepts. 

That is, while these behaviors lowered the cognitive level of implementation according to 

QUASAR’s definition, they merely transfered the work of making connections from 

student to teacher, so that implementations were still making connections according to 

the TIMSS definition.  

Thus, there are two dimensions at play here: the content of the implementation, 

defined by the making connections features, and the people who are enacting that 

content. One of the major differences between reform teaching and conceptually-oriented 

non-reform teaching may lie in who is enacting the making connections features. Some 

teacher behaviors as defined in this study—e.g., drawing conceptual connections—affect 

the content, while others—routinizing, lack of accountability, and scaffolding—affect 

who is enacting the content. Still others—stepping through arguments, pressing for 
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justification—affect both. Those teacher behaviors that affect who enacts the content 

seem to influence whether the teaching approach is considered reform or non-reform. 

Did teachers maintain and gain connections differently? 

With one exception, implementations gained connections by the teacher adding 

features similar to those they addressed when maintaining connections. The only 

exception was in the case of generalizing, which only occurred when connections were 

gained. It is not clear why this occurred; it may simply be an artifact of using a rather 

small sample of problem implementations. 

Similarly, teachers seemed to engage in the same behaviors whether connections 

were maintained or gained, although they used four of the five most common ones 

(drawing conceptual connections, stepping through arguments, lack of accountability, and 

building on student ideas) more frequently when the problems were not originally stated 

as making connections. It makes intuitive sense that teachers would more frequently have 

to engage in particular behaviors to add connections than when maintaining connections; 

in the latter case teachers could just implement the problem as written. For example, a 

problem that asked students to justify assertions or connect multiple representations may 

not require the teacher to draw conceptual connections or step through an argument in 

order to bring out these features. This would be compatible with the fact that the rate of 

routinizing was the same in both cases, but it would not explain the higher frequency of 

lack of accountability, which would not seem to contribute to gaining connections any 

more than maintaining them. The differences, again, may be an artifact of the small 

sample size. 
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Another reason for not reading too much into these differences is the possibly 

artifical distinction between maintaining and gaining connections. Determining whether 

connections are maintained or gained depends on classifying a problem statement as 

making connections or not, which is an inexact process. It is based on assumptions about 

what the problem seems to imply that students do to solve it, and on assumptions about 

the curriculum and previous instruction. Few problem statements classified as making 

connections actually told students to connect representations or examine a concept. For 

example, one might assume that for the Dutch problem asking how the volume of a prism 

would change if all its dimensions doubled, students would have to think about the 

concept of volume in a deeper way than they had before. However, if the curriculum or 

teacher has previously presented an algorithm for solving this type of problem, it would 

effectively be a “using procedures” (i.e., non-making connections) problem when 

originally stated. This difficulty is exacerbated by the international scope of TIMSS; what 

is a challenging non-routine problem in one country may be a routine procedural problem 

in another.  

Therefore, for the purposes of this study, it may not be helpful to assume that 

there is some inherent objective difference between those problems whose statements 

were classified as making connections and those whose statements were not. Apparent 

differences between teacher behaviors in maintaining and gaining connections may be 

spurious or unimportant. What is probably more important is the suggestion of these 

findings that regardless of how initial problem statements may be interpreted by coders, 

teachers may find it easier to make connections by connecting representations, drawing 

conceptual connections, and stepping students through arguments than by focusing on 
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problem solving, generalizing assertions or arguments, comparing solution methods, 

building on student ideas, scaffolding student thinking, and pressing students for 

justification. 

How did teachers fail to make connections? 

Turning now specifically to those problems that were not implemented as making 

connections, the single most common behavior was routinizing, although, as already 

mentioned, in this study routinizing did not necessarily lead to a lack of connections 

being made. The culprit seemed to be routinizing along with the lack of any of the other 

behaviors noted above, such as drawing conceptual connections or stepping students 

through arguments. In addition, a shift in focus to procedures or correct answers occurred 

in roughly 60% of the non-making connections implementations. This occurred when 

teachers primarily asked students to describe procedures or provide answers without 

justifications or connections to concepts. Skimming the mathematical surface also 

occurred as often as shifting the focus to the answer; this behavior can be seen as another 

kind of shift in focus, away from deeper conceptual meaning and to more superficial cues 

or vague statements. Altogether, then, these shifts in focus account for almost 80% of the 

non-making connections implementations. 

These findings are similar to those of Henningsen and Stein (1997) who found 

that routinizing, shifting focus to answers, and lack of accountability occurred frequently 

in association with low cognitive level implementations. However, in their study, lack of 

accountability encompassed a larger range of actions by the teacher than could be 

observed here (e.g., implying that students’ work on high-level tasks would not count). In 
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addition, in this study, lack of accountability, like routinizing, did not always lead to a 

non-making connections implementation. 

What made the difference between maintaining and losing connections? 

 When teachers discussed problems originally stated as making connections, what 

actions did they take that influenced whether the connections afforded by the problems 

were maintained or lost? By definition, of course, it depended on whether they addressed 

the making connections features; in this sample, that meant justifying, examining 

concepts, connecting representations, and less frequently, problem solving. As far as 

teacher behaviors were concerned, also by definition, if teachers drew conceptual 

connections or formed mathematical arguments and stepped students through them, the 

implementations made connections. But if teachers shifted the focus to procedures, 

superficial cues, vague formulations, or answers, then of course they did not.  

However, there were four additional behaviors coded in this study that did not by 

definition imply that connections were or were not made. Only two of them occurred 

with significant frequency: routinizing and failing to hold students accountable. Both of 

these behaviors seemed to increase the chance that connections would not be made, but 

did not guarantee it. They often shifted the mathematical work to the teacher, who made 

the connections rather than the students. Interestingly, in spite of the fact that these two 

behaviors were significantly more frequent when connections were lost than when they 

were maintained, the frequency with which the teacher did most of the work was only 

slightly higher. Perhaps when routinizing did not occur, the behaviors that made 

connections—stepping through procedures and drawing conceptual connections—shifted 

the work to the teacher to make up the difference. At any rate, having students do most of 
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the work, or sharing the work with the students, was only slightly associated with 

maintaining connections. In addition, scaffolding did not guarantee a making connections 

implementation; it occurred extremely infrequently whether connections were maintained 

or not, but it did occur in both cases. 

Student Learning 

Ultimately our interest is in what bearing these teacher behaviors have on student 

learning. In my study, the link is not altogether clear. Although Stein and colleagues 

observed student engagement with tasks (Henningsen & Stein, 1997; Stein, Grover, & 

Henningsen, 1996), my study focused on whole class discussions through examining 

transcripts, so little information was available about student work and student thinking. 

Teachers in my study often made connections by doing most of the mathematical work 

through telling and the use of product questions. When teachers used product questions, 

they implicitly made decisions about the solution path to be followed, rather than 

allowing students to do so. During such discussions, it may not have been at all clear to 

students in which direction the sequence of facts and questions being presented was 

going, and students may not have been integrating them to construct coherent 

understandings of the concepts or arguments under discussion.  

Furthermore, Stein and Lane (1996) had direct evidence that high-level task 

implementation was related to higher student achievement on an assessment of problem 

solving and reasoning. In the TIMSS study, there was no direct evidence that the 

achievement of students was higher in classrooms where making connections 

implementations were more frequent. In fact, we do not know whether teachers were 

consistent over the school year in the way they implemented problems. Furthermore, a 
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myriad of personal, contextual, and cultural factors could underly achievement 

differences.  

For all of these reasons, the link between teacher behavior, student thinking 

during instruction, and student achievement is less clear in this study. The only evidence 

we have is that, to the extent that the TIMSS videos were representative of teaching in the 

participating countries and the coding of problem implementation is valid, teachers in the 

other five countries made connections in ways that were rare in the U.S., and the 

achievement of students in those countries was higher than in the U.S. We do not know to 

what extent the relationship between these two findings was causal. 

However, the finding that U.S. teachers stand alone (as compared to those in the 

five other countries) in almost never implementing problems as making connections does 

suggest that the way that teachers discuss problems could be one factor that contributes to 

achievement differences. Implementations classified as making connections seem to be 

more mathematically substantive, and this additional substance seems to exist more 

frequently in classrooms in high performing countries. This possibility is supported by 

the TIMSS mathematics quality analysis group's study of 20 randomly selected lessons 

from each country,1 which rated the U.S. lessons lower than the other countries' lessons 

on most aspects of mathematical quality, and concluded that on average, the U.S. lessons 

provided students with the least opportunity to construct important mathematical 

understandings (Hiebert et al., 2003).  

Even instruction that is “traditional” in form but mathematically substantive may 

provide opportunities that would not otherwise be present for students to think 

mathematically. Both researchers in American and Chinese education have asserted that 
 
1 Data from Switzerland was included in this analysis, but not from Japan. 
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students may actively construct conceptual understandings in classrooms where teaching 

occurs primarily through explanations and product questions, if that instruction 

emphasizes concept development, justification of procedures, links among ideas, 

comparison of methods, multiple representations, and mathematical proof (Anderson, 

1989; Good, Grouws, & Ebmeier 1983; Huang & Leung, 2004; Leinhardt, 1986; Wang & 

Paine, 2003), some of which were seen in the problem implementations in this study. 

However, it is also possible that cultural and motivational factors, which vary across 

countries, could influence the effectiveness of such an approach, so that it might not be as 

effective in the U.S., particularly in light of the treaties that may operate between teachers 

and students in many American schools (Powell et al., 1985; Sedlak et al., 1986). 

Implications for Reform 

When teachers in this international sample made connections, they did it by 

providing explanations and using product questions, suggesting that these are behaviors 

that teachers not only in the U.S., but also in several other countries, may feel 

comfortable with and find less difficult to enact than those advocated by U.S. reformers, 

such as scaffolding, pressing for justification, and building on students’ ideas.  

Traditional and reform teaching are sometimes described in terms of both 

particular pedagogical approaches and particular kinds of mathematics that are 

emphasized (e.g., Stein, Grover, & Henningsen, 1996, p. 462). Traditional teaching 

presumably consists of teacher explanations and demonstrations of procedures followed 

by student practice of those procedures, with an emphasis on basic facts and skills. 

Reform teaching is described as consisting of cooperative group work and student-

formulated solutions and argumentation, with an emphasis on conceptual understanding 
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and more sophisticated mathematical reasoning. This study suggests that a more nuanced 

understanding may be more productive. Most of the making connections implementations 

seen in this study were centered around teacher explanations and demonstrations rather 

than group work or student explanations, yet they went beyond the statement of basic 

facts and execution of algorithmic procedures. Educators in other countries may not share 

the assumption that teacher-centered instruction is effective only for transmitting basic 

facts and skills and not for developing students’ higher-order thinking abilities. The goal 

of emphasiszing conceptual understanding and mathematical reasoning in itself may not 

necessarily imply the approaches currently advocated by the U.S. reform movement. 

Conversely, the findings of this study suggest that scaffolding and any other 

reform techniques intended to help students do more of the mathematical work may not 

necessarily lead to making connections, at least as defined by the TIMSS problem 

implementation team. Thus, it is important for researchers to examine how teachers use 

these techniques in ways that do and do not make connections. It may be just as 

important, if not more important, to help teachers develop an orientation that prioritizes 

those features that characterize making connections (such as justification, conceptual 

connections, connections among representations, and the development of solution 

methods) as it is to concentrate on such pedagogical practices. Certainly it seems 

unhelpful to concentrate on reform practices without helping teachers notice and bring 

out the important mathematical features of problems. 

 Further Research 

Results of this study suggest several lines of research. First, additional studies 

examining how teachers in other countries discuss mathematics problems might be in 
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order. This study was conducted from an American perspective, limited by lack of 

extensive knowledge of the teaching perspectives and approaches used in the countries 

being studied. As a result, it is quite possible that important behaviors were overlooked. 

Regardless, research is still needed to determine the extent to which problem 

implementation (especially outside the context of intensive professional development) is 

related to student learning with respect to problem solving, conceptual understanding, 

and mathematical reasoning. If relationships are found, then additional research could 

examine factors that affect problem implementation, such as teacher characteristics and 

contextual factors. In addition, professional development interventions could be devised 

to help teachers improve the way they lead discussion of problems in class, and 

evaluation studies could be conducted to determine their effectiveness. It might also be 

helpful to study how teachers’ use of reform techniques can still fail to address the 

features of problems that promote conceptual understanding, mathematical reasoning, 

and problem solving. 

Conclusion 

This study confirms the literature's findings regarding ways middle school 

teachers often change the nature of problems and limit students' opportunities to engage 

in reasoning and problem solving. It shows that teachers in the U.S. and other countries 

may do this by shifting the focus of the discussion to procedures, answers, and superficial 

aspects of the problems. It also suggests that using reform pedagogy may not necessarily 

lead to addressing these opportunities if teachers do not consciously concentrate on 

important features of the problems. 
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This study also suggests that teachers in other countries may attempt to develop 

concepts and provide opportunities for students to engage in mathematical reasoning by 

using what appear to be rather direct teaching approaches—doing much of the 

mathematical work by explaining and using short-answer closed-ended questions—while 

still emphasizing some of the important features of mathematics problems; e.g., 

justification, examination of concepts, and connections between representations. It also 

suggests that some features are more commonly emphasized than others; for example, in 

this sample, generalizing and developing and comparing solution methods were less 

common. 

Because this study was limited to examination of a small number of eighth grade 

classrooms, it cannot indicate the full range of teaching approaches that exists in any of 

the countries participating in the TIMSS Video Study. Neither can it describe certain 

ways of teaching that are typical in any particular country, or the ways in which teachers 

implement tasks at the elementary or high school level. Because it was conducted by an 

American, it may not have captured all of the important ways that teachers in other 

countries implement problems.  

This study instead suggests that, if additional research can address some important 

issues, American teachers might profit from learning to bring out the potential of the 

problems and exercises they assign to emphasize conceptual connections, justification, 

and connections among representations. 
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Appendix: Coding Instructions and Coding Form (Final Version) 

Part one: Making connections features

Read the transcript of public whole-class dialog, looking for any of the making 
connections features listed in the box below. 

• Code only those that involve substantive mathematics.

• Indicate where in the dialog you find each feature that you code. 

• If you feel like a feature is present, but you are somewhat unsure whether it 
involves substantive mathematics, code it with a question mark for later 
discussion. 

• If you feel that something is missing that is necessary to convince you that the 
feature is present or involves substantive mathematics, then do not code it. 

Codes for making connections features 

CMeth – Comparison of the mathematics of solution methods. This includes either of 
the following: 

• A relationship between solution methods is explained (e.g., why one solution 
method is more elegant than, or a general case of, another one), or 

• A correspondence between steps or aspects of different solution methods is 
described (e.g., subtracting from both sides of an equation in the symbolic 
method corresponds to undoing the last addition step while working backwards 
in an informal method). 

CRep – Connection between representations.  

• A representation is an algebraic symbol string, table, graph, diagram, or 
physical object(s) used to represent a problem situation, quantity, object, 
concept, or relationship among them. 

• The representations must provide different perspectives of some common idea, 
situation, or object. For example, exclude drawings of two triangles even if they 
are related in some way (e.g., congruent). 

• A connection between representations means the way in which aspects of 
different representations correspond to each other. For example, “a negative 
linear coefficient in a linear equation corresponds to a downward slant in the 
graph.” 
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Conc – Examining a concept. A concept or property is examined more deeply than 
simply recalling or applying it. This may involve describing some component, aspect, 
representation, or example of the concept, or some connection to another concept. It 
may involve extending a concept or developing a new concept. 

Gen – Generalization: a mathematical problem, assertion, solution method, concept, or 
argument that is more general than that previously stated or discussed; the latter is a 
specific case of the former. 

Jus – Justification: use of mathematical knowledge to explain why a solution method, 
step, problem-specific claim, or general mathematical assertion (e.g., theorem) is or is 
not correct, valid, or appropriate. Justification does not include:

• procedural explanations, 

• strategic reasons for choosing a particular solution step or approach, or 

• non-mathematical rationales 

PS - Problem-solving. Explicit examination (not just carrying out) of an overall solution 
plan, not just pieces of a plan. This includes explicit discussion or description of any of 
the following: 

• How one arrives at a solution path 

• Strategic justification of a plan (i.e., explanation of why the overall plan is 
chosen). 

• Intermediate goals beyond those already stated in the problem and/or monitoring 
progress toward meeting those goals 

Oth - Any other feature that suggests “making connections.” Specify what this behavior 
is. 

Part two: Who does the work

Indicate whether the mathematical work overall was done mostly by the teacher, the 
student(s), both, or there was no mathematical work done at all (e.g., during the entire 
dialog, only the problem and/or answer were given and any other dialog was non-
mathematical). 
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Part three: Teacher behaviors

Read the transcript of public whole-class dialog, looking for any of the teacher behaviors 
listed below, while referring to the definitions of question types below. Code only those 
behaviors that are either 

● consistently enacted, or 

● enacted at key moment(s); i.e., such  that they change or set the direction of the 
discussion. In this case, indicate where in the dialog this occurs. 

 
Question types 

Product question: a question that seeks to elicit a single correct answer that can be 
expressed in a single word or short phrase. Product questions usually begin with “what,” 
“where,” or “how much,” and can be answered by memory, observation, or performing 
a procedure or step as instructed by the teacher. They include questions such as, “What 
should you do next?” They also include statements that appear to be telling, but suggest 
that more information is to be supplied by the students, and to which students respond by 
doing so; for example, a teacher says, “A parallelogram has certain properties,” and a 
student responds, “Opposite sides are parallel.” 

Process question: a question that seeks to elicit an explanation which requires students 
to integrate information or show knowledge of their interrelationships. Process 
questions are usually “why” or “how” questions, and include those that ask for 
explanations of multi-step procedures. 

Open-ended question: a mathematical question that could have more than one valid 
answer, or is phrased in a way that suggests it has more than one valid answer, and for 
which students apparently have not previously been given the answer. 

Codes for teacher behaviors 

NA - No accountability on student for high-level product or processes: Students contribute 
incorrect or insufficient (e.g., unclear or incomplete) answers, explanations, or ideas, but the 
teacher does not make a significant effort to probe them (i.e., ask for more detail or 
justification) or press for more adequate contributions. 

• Check additional blank if student contributions are responses to teacher's open-ended 
or process questions. 

SK - Skim: The original problem statement implies, or initial discussion includes, a focus on 
concepts, meaning, or understanding, but the teacher fails to delve sufficiently into the 
mathematics of the problem, resulting in a discussion which refers to a concept or meaning but 
only at a superficial or vague level. Do not code this if there is no reference to any concept or 
meaning at all.
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SA - Shift to focus on answer: The original problem statement implies, or initial discussion 
includes, a focus on concepts, meaning, or understanding, but the teacher shifts the focus 
away from it and to the accuracy or completeness of the answer. 

SP - Shift to focus on procedure: The original problem statement implies, or initial 
discussion includes, a focus on concepts, meaning, or understanding, but the teacher shifts 
the focus away from it and to a procedure. 

RO - Routinization: The teacher routinizes problematic aspects through 

● reducing ambiguity or complexity by specifying explicit procedures or steps to 
perform, or 

● taking over challenging aspects by telling students how to perform them, or  

● taking over challenging aspects by performing them for students.  

The original problem must have ambiguity or challenge; e.g., a solution procedure must 
not previously have been given to students (consider the context). The teacher takes away 
opportunities for students to discover and make progress on their own. This must occur 
soon enough in the discussion to affect the direction of the discussion. It is usually done 
by telling and/or using product questions. 

● Check the additional blank if this is in response to student difficulty. 

ST - Step through argument: The teacher steps students through an argument by telling 
and/or using product questions. An argument is a sequence of justified assertions leading 
to a mathematical claim. 

PJ - Press for justification: The teacher repeatedly asks students for justification, 
meaning, or explanation beyond a procedure through questioning, comments, or 
feedback. Clear and consistent messages are sent to students that explanations and 
justifications are as much a part of classroom mathematical activity as are correct 
answers. 

CC - Conceptual connections: The teacher draws attention to a connection between a 
concept and a representation, procedure, or other concept. This does not include 
justification. 

SC - Scaffolding: The teacher provides assistance by providing information or asking a 
series of questions other than product questions that assists student(s) in answering a 
question or solving the problem without reducing complexity or challenge. Assistance 
is just enough to allow students to make progress.  

● Check the additional blank if this is done in response to student difficulty. 

BU - Builds: Teacher builds on student contribution(s) (perhaps erroneous) by having the 
student explain more, asking student(s) questions about it, discussing it, relating it to 
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other ideas, or otherwise using it in his or her teaching. This must bring some new 
mathematics or higher level of understanding to the discussion that wasn't there before 
the teacher did this. 

OT – Other noteworthy teacher behavior that impacts the direction of the discussion. 

Coding Sheet 

Lesson __________ Problem _________  Coder _____________________ 

Part one: Making connections features – mathematically substantive

___ CMeth – Comparison of solution methods 

___ CRep – Connection between representations 

___ Conc – Examining a concept 

___ Gen - Generalization 

___ Jus – Justification 

___ PS - Problem solving 

___ Oth - Other. Specify: __________________________________________________ 

Part two: Who does most of the mathematical work?

___ T  ___ S  ___ both ___ no mathematical work 

Part three: Pedagogical behaviors – consistent or at key moment

___ NA - No accountability ___ S contribution is response to T's open/process question 

___ SK - Skims mathematical surface 

___ SA - Shift to focus on answer 

___ SP - Shift to focus on procedure 

___ RO – Routinization ___ In response to S difficulty 

___ ST – Step through argument 

___ PJ - Press for justification 

___ CC - Drawing conceptual connections 
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___ SC – Scaffolding ___ In response to S difficulty 

___ BU - Building on S contribution 

___ OT - Other. Specify: ___________________________________________________ 
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