
Interprocedural Partial Redundancy Elimination and Its Application ToDistributed Memory Compilation �Gagan Agrawal and Joel Saltz and Raja DasUMIACS and Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742(301)-405-2756fgagan, saltz,rajag@cs.umd.eduAbstractPartial Redundancy Elimination (PRE) is a generalscheme for suppressing partial redundancies which en-compasses traditional optimizations like loop invariantcode motion and redundant code elimination. In thispaper we address the problem of performing this op-timization interprocedurally. We use interproceduralpartial redundancy elimination for placement of com-munication and communication preprocessing state-ments while compiling for distributed memory parallelmachines.1 IntroductionPartial Redundancy Elimination (PRE) is a well knowntechnique for optimizing code by suppressing partiallyredundant computations. It encompasses traditionaloptimizations like invariant code motion and redun-dant computation elimination. It is widely used inoptimizing compilers for performing common subex-pression elimination and strength reduction. More re-cently, it has been used for more complex code place-ment tasks like placement of communication state-ments while compiling for parallel machines [12, 15].A number of schemes for partial redundancy elimina-tion have been proposed in literature [10, 11, 20, 19, 25],but are largely restricted to optimizing code within asingle procedure. All these schemes perform data owanalysis on Control Flow Graph (CFG) of the proce-dure. In this paper, we address the problem of per-forming partial redundancy elimination interprocedu-rally. There are several di�culties in extending the ex-isting intraprocedural algorithms for application on afull program, rather than a single procedure. First, afull program representation is required which will allowe�cient data ow analysis, while maintaining su�cient�This work was supported by NSF under grant No. ASC9213821 and by ONR under contract No. N00014-93-1-0158.The authors assume all responsibility for the contents of thepaper.

precision to allow useful transformations and to ensuresafety and correctness of transformations. Renaming offormal parameters across procedures must be correctlydone while propagating data ow information. Call-ing context of procedures must be correctly accountedfor, also correctness and safety must be maintained if aprocedure is called at multiple sites with di�erent setsof parameters.We have developed an Interprocedural Partial Re-dundancy Elimination algorithm (IPRE). Our methodis applicable to arbitrary recursive programs and arbi-trary control ow within each procedure.We have used interprocedural partial redundancyelimination for optimizing placement of communicationstatements and communication preprocessing state-ments in distributed memory compilation. We haveimplemented our scheme using the the existing For-tran D compilation system [17] as infrastructure. Wehave shown signi�cant performance gains by optimizingplacement of communication preprocessing statements.The rest of this paper is organized as follows. InSection 2, we discuss how interprocedural partial re-dundancy elimination is required for placement of com-munication statements and communication preprocess-ing statements while compiling for distributed memoryparallel machines. In Section 3, we briey review an in-traprocedural partial redundancy elimination scheme.The program representation used in interproceduraldata ow analysis is stated in Section 4. Interprocedu-ral partial redundancy elimination is presented in Sec-tion 5. In Section 6, we present experimental results toevaluate the e�ectiveness and cost of our scheme. InSection 7, we mention related work. We conclude inSection 8. Intraprocedural partial redundancy schemeis presented in the appendix.2 Distributed Memory CompilationIn compiling programs for execution on distributedmemory parallel machines, an important considera-tion is optimizing communication between processors.Since the existing machines have relatively large com-munication latencies, communication overhead can bereduced if message aggregation is done, i.e. each pro-cessor sends a small number of large messages. Thereare several cases in which the set of data elements to becommunicated between the processors cannot be deter-mined at compile-time. This can happen because data

Real X(m), Y(m) ! data arraysInteger IA(n) ! indirection arrayforall i = 1, nX(i) = X(i) + Y(IA(i)) C Build the required scheduleDS = Sched(.. parameters ..)C Communicate data using the schedule build aboveCall Data Move(Y,DS)do 10 i = 1, n localX(i) = X(i) + Y(IA local(i))Figure 1: Compiling an parallel loop which accesses data through an indirection array. Sequential code is shownin the left and SPMD code is shown in the right.is accessed using indirection arrays, data distributionmay not be known at compile-time, number of proces-sors on which the program is to be run is not knowntill runtime or due to the presence of symbolic loopbounds and strides in a parallel loop. In these cases,communication can be optimized by placing a prepro-cessing statement, which determines the set of dataelements to be communicated between the processorsat runtime. The preprocessing statement stores thisinformation in a data-structure called communicationschedule [24]. A collective communication routine thenperforms the data movement, using the information inthe communication schedule. This ensures that for aparallel loop, each processor packages the set of dataelements it wants to send to any other processor in asingle message.In Figure 1, we show how SPMD code can be gen-erated for the given loop in which data is accessedthrough an indirection array (IA). A communicationschedule is generated by a call to Sched, which ana-lyzes the contents of array IA to determine the exactcommunication required. The required data elementsare sent or received by the Data Move primitive.The reason for separation of these two phases ofcommunication is that the result of preprocessing canbe used for communicating several times. Compileranalysis has been developed for analyzing the dataaccess patterns associated with a given parallel loopand inserting calls to appropriate communication pre-processing routines and collective communication rou-tines [2, 3, 9]. After such an initial analysis at a sin-gle parallel loop or a single procedure level, placementof these statements must be optimized interprocedu-rally. Large scienti�c and engineering applications of-ten present opportunities for reusing communicationschedule several times and it is important to do thisoptimization to obtain reasonable performance. We,therefore, identify two optimization problems, commu-nication schedule generation placement and communi-cation placement. Partial redundancy elimination canbe applied interprocedurally for solving both these op-timization problems. Partial redundancy eliminationencompasses loop invariant code motion and redundantcode elimination and has been widely used intraproce-durally to improve the runtime performance of codes.We believe that it can be applied interprocedurallyto optimize placement of communication preprocessingstatements and communication statements.

3 Intraprocedural RedundancyEliminationThe details of interprocedural redundancy eliminationwe present are derived from the intraprocedural nodebased method of Dhamdhere [10], also referred toas Modi�ed Morel Renvoise Algorithm (MMRA). De-tailed data ow equations and the meaning of the termsused are given in the appendix. All terms used are for aparticular computation, e.g AVINC(i) is the availabil-ity of the computation C at the beginning of node i.Whenever there is no scope for ambiguity, the subscriptis dropped (as in the equations given in this paper).PRE considers subexpressions or computations ascandidates for placement. Transparency of a basicblock means that the none of variables involved in thecomputation are modi�ed in the basic block. Basedupon transparency, two properties, availability and par-tial availability are computed for beginning and endof each basic block (denoted respectively as AVIN,PAVIN, AVOUT and PAVOUT for each basic block).Availability of a computation at a point p in a proce-dure means that this computation is currently placedat all the paths leading to p and if this computation isplaced at p, it will have the same result as the last com-putation on any of the paths. Partial availability is aweaker property, which means that the computation iscurrently placed on at least one control ow path lead-ing to p and if it is placed at p, it will have the sameresult as the last computation on at least one of thepaths. A computation placed at p is partially redun-dant if it is partially available at p.Next, for each basic block in the program, proper-ties PPIN (possible placement at the beginning) andPPOUT(possible placement at the end) are computed.PPIN reects the fact that it is feasible and pro�tableto hoist the computation occuring in this node (or acomputation which has been hoisted into this node).PPOUT indicates that it is safe to place the computa-tion at the exit of this node. INSERT determines if acomputation is to be inserted at the end of the a blockas a result of the optimization and DEL determines ifthe computation in this node has become redundantand can be deleted.4 Program Representation4.1 De�nitionWe assume that a variable is either global to the entireprogram or is local to a single procedure. We further

assume that all parameters are passed by reference. Wedo not consider the possibility of aliasing in our discus-sion.Each procedure has one or more return statements,which end the invocation of this procedure. We de�nea basic block to consist of consecutive statements inthe program text without any procedure calls or returnstatements, and no branching except at the beginningand end. A procedure can then be partitioned into aset of basic blocks, a set of call statements and a set ofreturn statements. Each call statement is a call site ofthe procedure invoked there. In general, a procedurecan be invoked at several call sites in the program.For the purpose of performing interprocedural PREon the full program, we have de�ned the following rep-resentation. Intuitively, the idea is to construct blocksof code within each procedure. A block of code com-prises of basic blocks which do not have any call state-ment between them. In the directed graph we de�nebelow, each edge e corresponds to a block of code B(e).The nodes of the graph help clarify the control ow re-lationships between the blocks of code.Full Program Representation: (FPR) is a di-rected multigraph G = (V;E), where the set of nodesV consists of an entry node and a return node for eachprocedure in the program. For procedure i, the entrynode is denoted by si and the return node is denotedby ri. Edges are inserted in the following cases:1. Procedures i and j are invoked by procedure k atcall sites cs1 and cs2 respectively and there is a path inCFG of k from cs1 to cs2 which does not include anyother call statements. Edge (ri; sj) exists in this case.This edge is said to be associated with call site cs1 atits start and with call site cs2 at its end. The block ofcode B(e) consists of basic blocks of procedure k whichmay be visited in any control ow path p from cs1 tocs2, such that the path p does not include any othercall statements.2. Procedure i invokes procedure j at call site cs andthere is a path in CFG of i from the start node ofprocedure i to cs which does not include any other callstatements. In this case, edge (si; sj) exists. This edgeis said to be associated with call site cs at its end. Theblock of code B(e) consists of basic blocks of procedurei which may be visited in any control ow path p fromstart of i to cs, such that the path p does not includeany other call statement.3. Procedure j invokes procedure i at call site cs andthere is a path in CFG of j from call site cs to a returnstatement within procedure j which does not includeany other call statements. In this case, edge (ri; rj) ex-ists. This edge is said to be associated with call site csat its start. The block of code B(e) consists of basicblocks of procedure j which may be visited in any con-trol ow path p from cs to a return statement of j, suchthat the path p does not include any call statements.4. In a procedure i, there is a possible ow of controlfrom start node to a return statement, without anycall statements. In this case, edge (si; ri) exists. The

Program Fooa = 1Do i = 1, 100Call P(a,b) ...cs1Call Q(c) ...cs2EnddoCall Q(a) ...cs3Call P(a,c) ...cs4if cond thenCall Q(a) ...cs5EndifCall R(a,c) ...cs6EndProcedure P(x,y)Sched(x,y)..other computations ..EndProcedure Q(z)z = ...z...EndProcedure R(y,z)Sched(y,z)..other computations ..EndFigure 2: An Example Program. A call site number ismarked for each call siteblock of code B(e) consists of basic blocks of procedurei which may be visited in any control ow path p fromstart of i to a return statement in i, such that the pathp does not include any call statements.An example program and its FPR are shown in Fig-ures 2 and 3 respectively. In Figure 3, the blocksof codes B(4), B(9) and B(11) comprise of all basicblocks in procedures P, Q and R respectively. Block ofcode corresponding to all other edges comprise of basicblocks from the main procedure. e.g. B(1) comprisesof statement \a = 1" and the loop header, B(2) com-prises of the end of the do loop and the loop header.A block of code is a unit of placement in our anal-ysis, i.e. we initially consider placement only at thebeginning and end of a block of code1. Note that a ba-sic block in a block of code may or may not be visitedalong a given control ow path from source to sink ofthe edge, and similarly, a basic block may belong toseveral blocks of code. This is taken into account dur-ing intraprocedural analysis done for determining �nallocal placement, which we discuss in Section 5.5.The availability of the following information is as-sumed during our interprocedural analysis phase. Foreach edge in FPR, we compute all the variables whichare modi�ed in the block of code corresponding to thisedge. This information is used by the TRANSe func-1This is di�erent from intraprocedural PRE in which place-ment is considered at beginning and end of node (basic block) ofthe graph.

Foo

Foo

P

P Q

R

 R

Q

1
2

3

5

6

4 9 7

10

11

12

cs1
cs1

cs4

cs2

cs3

cs1

cs4
cs4

cs6

cs6

cs6

cs2

cs3
cs2

cs5

8

cs5

Procedure Entry Node

Procedure Return Node Figure 3: FPR for Program in Left. Edge numbers andcall sites at which edges start/end (whenever applica-ble) are marked in the Figure.

tion de�ned later. For each procedure in the program,we also compute the list of variables modi�ed by theprocedure or any of the procedures invoked by this pro-cedure. In absence of aliasing, this information caneasily be computed by ow-insensitive interproceduralanalysis in time linear to the size of call graph of theprogram [7]. This information is used by the CMODcsfunction de�ned later.4.2 Candidates for PlacementWe consider only the placement of pure functions. Apure function takes a number of parameters as inputand produces a single result or output, without anyside-e�ects or change in the value of inputs. In gen-eral, any subexpression can also be viewed as a purefunction. In practice, one may want to focus on place-ment of only certain high cost functions, like commu-nication statements and communication preprocessingstatements in the case of distributed memory compila-tion.A particular invocation of a pure function is consid-ered for hoisting out of the procedure only if none of theparameters of the pure function is modi�ed along anypath from the start of the procedure to this invocationof the pure function and the invocation of pure functionis not enclosed by any conditional or loop. (This canbe generalized by considering slice of the pure function,but we do not discuss this possibility here). A particu-lar invocation of a pure function is referred to as can-didate if it is considered for interprocedural placement.We refer to the list of parameters of this pure functionas the list of inuencers of the candidate.5 Interprocedural Partial RedundancyEliminationWe now present the IPRE scheme we have developed.We use the terms edge and the block of code corre-sponding to it interchangeably in this section.Given the full program representation we describedin Section 4, the major di�culties in applying dataow analysis for PRE are:1. A procedure having a candidate for placement (ora procedure invoking such a procedure) may be invokedat multiple call sites with di�erent sets of actual pa-rameters, leading to di�erent sets of inuencers. (e.g.in the code shown in Figure 2, procedure P is invokesat two call sites with di�erent parameters). While con-sidering placement of the candidate outside the pro-cedure it is originally placed, it must be ensured thatonly the computation of the candidate with correct setof inuencers is visible during each invocation of theprocedure.2. For placement of a candidate at a certain point ina certain procedure, besides safety and pro�tability ofthe placement, it is also required that all inuencersof the candidate are visible inside that procedure, i.e.each of them is either a global variable, a formal pa-rameter or a local variable. (e.g. in the code shown inFigure 2, no placement will be possible inside proce-dure Q).

Infl1 Infl2 Inflm..........Figure 4: Lattice used in the data ow problems3. If a procedure is invoked at several call sites inthe program, our program representation shows pathsfrom edges ending at a call site calling this procedure tothe edges starting at other call sites for this procedure.(e.g. in Figure 3 there is a path from edge 6 to edge 9to edge 2. Edge 6 ends at call site cs5 whereas edge 2starts at call site cs2). These paths are never taken andthe data ow analysis must not lose accuracy becauseof such paths in the graph.4. Transparency of blocks of code cannot be deter-mined before starting the solution of data ow equa-tions, since it is not known what are the local variableswhich need to be unmodi�ed for the propagation ofdata ow information.5.1 Lattice for Data Flow ProblemsWe assume that the result of the computation of a can-didate is always placed in a global store, i.e. it is notpassed along as an actual parameter at the call sites.Consider a procedure p which has a candidate C forplacement and is invoked at call sites cs1 and cs2 withdi�erent sets of parameters. Our scheme cannot placethis candidate at a point from which there are pathsleading to cs1 and cs2 and these paths do not haveany further computation of C. This restriction must beincorporated while propagating availability and whileconsidering locations for possible placement (PPIN andPPOUT). If a candidate is available or if its placementis possible, it is always with a list of inuencers, whichwill be used in placing the computation (i.e. if it isdecided that the candidate is to be placed at this loca-tion).For this purpose, we use a three-level lattice for thedata ow problems. The lattice is shown in Figure 4.Each middle element in the lattice refers to a list ofinuencers, i.e. Ini = < v1; v2; : : : ; vn >. We de�nethe following functions on this lattice: _ and ^ arestandard binary join and meet operators. For ease in

presenting our data ow equations, we use W and V asconuence join and meet operators i.e. for computingjoin and meet respectively over a set of elements. : isa unary operator which returns > when applied to alist of inuencers and ? when applied to > or ?.] isa binary non-commutative operators whose de�nitionis as follows: >] x = >Ini] x = Ini?] x = x5.2 TerminologyWe further use the following terms to describe the dataow equations in this paper. We had de�ned our pro-gram represenation earlier in Section 4. In our FullProgram Representation (FPR), the entry node corre-sponding to the main procedure is referred to as beginnode in the graph and similarly, the return node cor-responding to the main is referred to as the end nodein the graph.The set of procedure return nodes is represented byR and the set of procedure entry nodes is representedby E . Consider an edge e = (v; w). The source nodeof e (i.e. the node v) is also referred to as So(e) andthe sink node of e (i.e. the node w) is also referred toas Si(e). We use pred(e) to refer to the set of edgeswhose sink node is v. We denote by succ(e) the set ofedges whose source node is w.If the sink of the edge e is a procedure entry node,then the call site with which the edge e is associated atits end is denoted by Si0(e). We use succ0(e) to referto the set of edges which are associated with the callsite Si0(e) at their start. Alternatively, if the sourceof the edge e is a procedure return node, then the callsite with which the edge e is associated at the startis denoted by So0(e). We refer by pred0(e) the set of

edges which are associated with the call site So0(e) attheir end.Consider any edge e whose source is a procedure en-try node. The set cobeg(e) comprises of edges whosesource is the same as the source of edge e. If an edgee has a procedure return node as the source and if csis the call site with which the edge e is associated atits start, then the set cobeg(e) comprises of the edgeswhich are associated with the call site cs at their start.Next, consider any edge e whose sink is a procedurereturn node. The set coend(e) comprises of the edgeswhose sink is the same as the sink of the edge e. If anedge e has a procedure entry node as the source and ifcs is the call site with which the edge e is associated atits end, then the set coend(e) comprises of edges whichare associated with the call site cs at their end.The sets pred(e), pred0(e), succ(e), succ0(e), cobeg(e)and coend(e) for edges in the Graph shown in Figure 3are shown in Figure 5.At any call site cs, the set of actual parameterspassed is apcs and the jth actual parameter is apcs(j).The set of formal parameters of the procedure invokedat the call site cs is fpcs. (Clearly, this set is the samefor all call sites which invoke this procedure). The jthformal parameter is denoted by fpcs(j). The set ofglobal variables in the program is gv.5.3 Availability and Partial AvailabilityThe equations for computing availability and partialavailability are given in Figure 7. In computing avail-ability, all unknowns are initialized with >. This statemeans that the candidate may be available, but we donot yet know what will be the list of inuencers if itis available. Bottom element in the lattice means thatthe candidate is not available.Initially, the local data ow property ANTLOC(i)of the edges in the graph is determined. (For a blockof code, ANTLOC means that there is a de�nition ofthis candidate inside the block.) In Section 4.2, we haddiscussed how procedures are marked with candidatesfor placement. Consider an edge i whose source is aprocedure entry node sp. If a candidate C is markedfor placement from the procedure p with the list ofinuencers Inc, we setANTLOCC(i) = IncIn all other cases, ANTLOC(i) is set to ?.The following functions are used in our data owequations. TRANSe[Ini] of an edge e in the graph re-turns the list Ini if none of the inuencers in the listIni is modi�ed in the block of code associated withthis edge. If any of these inuencers is modi�ed, thisfunction returns ?. TRANSe[>] and TRANSe[?] arede�ned to be > and ? respectively. For a call site cswhich invokes procedure p, CMODcs[Ini] returns thelist Ini if none of the inuencers in the list Ini is mod-i�ed by the procedure p (or by a procedure invoked byp). Otherwise CMODcs[Ini] returns ?. CMODcs[>]always returns > and CMODcs[?] always returns ?.OCRC(cs) determine if the procedure p (or any proce-dure invoked by p) includes any occurrence of the can-didate C. (Clearly, this will be the same for all call siteswhich call procedure p). Whenever there is no scope forambiguity, we drop the subscript C. OCR(cs) returns> or true when there is an occurrence of the candidate

in the procedure p and ? (or false) when there is nooccurrence of the candidate at procedure p.For renaming of formal parameters at call sites, wede�ne two functions RNM1cs and RNM2cs (see Fig-ure 6). Suppose a candidate is available at a call sitecs with a list of inuencers Ini. The function RNM1csdetermines if this candidate can be available inside theprocedure invoked at cs, and if so, with what list of in-uencers. If any of inuencers is neither a global vari-able nor an actual parameters at cs, RNM1cs returns?, otherwise, each actual parameter in the list is re-placed by corresponding formal parameter. RNM1cs[>]and RNM1cs[?] are de�ned to be > and ? respectively.Suppose a candidate is available at the return of a pro-cedure and let cs be one of the call sites which invokethis procedure. RNM2cs determines if this candidatewill be available after the entry of the edges which startat call site cs. If any of the inuencers of the candi-date inside the procedure is neither a global variable,nor a formal parameter, then RNM2cs returns ?. Oth-erwise, each formal parameter is replaced by the actualparameter at call site cs.The equations for propagation of availability can beexplained as follows (see Figure 7). Consider an edgee whose source is a procedure entry node. A candi-date will be available at the entry of this edge e if thefollowing holds: This candidate should be available atthe exit of any edge p which ends at this procedureentry node (i.e. p 2 pred(e)), and furthermore, afterrenaming (i.e. applying RNM1Si0(p)), the list of inu-encers with which the candidate is available should bethe same for all such edges.If an edge e has a procedure return node So(e) assource, e is associated with call site So0(e) at its start.The set pred(e) comprises of edges whose sink is nodeSo(e) and the set pred0(e) comprises of edges which areassociated with the call site So0(e) at their end. Notethat even if the candidate is available at the end of allthe edges p0 (p0 2 pred0(e)) and none of the inuencersis modi�ed inside the procedure, the candidate may notbe available inside the procedure. This can happen fortwo reasons, all inuencers of the candidate may notbe visible inside the procedure, or the procedure maybe invoked at multiple call sites and the candidate maynot be available at other call sites.If there is no de�nition of the candidate in the pro-cedure (CMODSo0(e) does not return ?), then AVIN(e)is determined by AVOUT at the edges belonging topred0(e). If there is any de�nition of the candidate inthe procedure, then AVIN(e) is determined by AVOUTat the edges belonging to pred(e). Note that this steppreserves calling context of the procedure, i.e. accu-racy in data ow analysis is not lost if a procedure isinvoked at multiple call sites.Equation 4 determines availability of a candidate atthe end of an edge or block of code. If there is a com-putation of the candidate in the edge with list of inu-encers Ini, then AVOUT is Ini if none of the inu-encers is modi�ed along this edge. If there is no com-putation inside the edge (i.e. ANTLOC is ?), then thecomputation is available at the exit of the edge only ifit is available at the entry of the edge and if none ofthe inuencers is modi�ed along the edge.In computing partial availability, all unknowns are

e pred(e) pred0(e) succ(e) succ0(e) cobeg(e) coend(e)1 - - 4 5 1 1,22 9 5 4 5 2,7 1,23 9 7 4 6,10 3 34 1,2,3 - 5,6,10 - 4 45 4 1,2 9 2,7 5 56 4 3 9 8 6,10 67 9 5 9 3 2,7 78 9 6 11 12 8 8,109 5,6,7 - 2,3,7 - 9 910 4 3 11 12 6,10 8,1011 8,10 - 12 - 11 1112 11 8,10 - - 12 12Figure 5: pred(e), pred0(e), succ(e) and succ0(e) sets for Graph in Figure 3T1(vi) = � vi if vi 2 gvfpcs(j) if vi = apcs(j)RNM1cs[< v1; : : : ; vn >] = � ? if 9i; (vi =2 gv) ^ (8j ; vi 6= apcs(j))< T1(v1); : : : ;T1(vn) > otherwise (1)T2(vi) = � vi if vi 2 gvapcs(j) if vi = fpcs(j)RNM2cs[< v1; : : : ; vn >] = � ? if 9i; (vi =2 gv) ^ (8j ; vi 6= fpcs(j))< T2(v1); : : : ;T2(vn) > otherwise (2)Figure 6: Renaming functionsinitialized with ?. The equations for computing par-tial availability (Equations 5 and 6) are very similarto corresponding equations for computing availability,except that join operator is used instead of meet oper-ator.The role of partial availability is to suggest pro�tabil-ity of transformations, it does not e�ect correctness andsafety of transformations. Partial availability does notalways guarantee that redundant code motion will notoccur. We have therefore, used a simple method for de-termining partial availability, which may not always beaccurate. Inaccuracy comes in for two reasons. CMODand TRANSe functions return ? whenever one of theinuencers is modi�ed in one of the basic blocks, thisbasic block may not occur in all the control ow pathstaken. Secondly, calling context is not always preservedin propagating partial availability information. Precisecomputation of partial availability can be expensive, itwill require a detailed representation like Myer's Super-Graph [22] and use of stacks and/or graph reachabilityfor preserving calling context [23]. Our computationof partial availability still allows loop invariant codemotion and redundant computation elimination. Someother optimizations which can be obtained by suppres-sion of partially redundant computations may not beachieved because of this simple solution.
5.4 Data Flow Analysis for PlacementThe data ow equations for determining placement ofcomputations are shown in Figure 8. We briey explainsome of the key terms in these equations.In computing PPIN in the intraprocedural case, theproduct term PPOUT + AVOUT ensures availabilityof the candidate at the entry of the node in the op-timized program. PPOUT means that the candidatewill be available as a result of the placements deter-mined by the scheme. AVOUT means that the candi-date is available in the original program. In the inter-procedural case, the same candidate can be availablewith more than one list of inuencers. In computingPPIN in the interprocedural scheme, we use the termPPOUT] AVOUT (Equation 8). If PPOUT is setto a list of inuencers Ini then, after the placementdetermined by the scheme, the candidate will be avail-able with set of inuencers Ini, even if it is availablewith a di�erent list of inuencers before the optimizedplacements. If PPOUT is ? and AVOUT is Inj , thenthe candidate will be available with the same set of in-uencers Inj even after the placement.The rational behind the equation for determiningINSERT is as follows. We decide to insert a candidatewith the set of inuencers Ini at the end of a block ofcode e, if PPOUT(e) is Ini, AVOUT(e) is not Ini andeither PPIN(e) is not Ini or one of the inuencers inthe list Ini is modi�ed in this block of code. The term

AVIN(e) = 8>><>>: ? if So(e) is begin nodeVp2pred(e) (RNM1Si0(p) [AVOUT(p)]) if So(e) 2 ECMODSo0(e)[Vp02pred0(e)AVOUT(p0)] if (So(e) 2 R) ^ (:OCR(So0(e)))RNM2So0(e)[Vp2pred(e)AVOUT(p)] if (So(e) 2 R) ^ (OCR (So0(e))) (3)AVOUT(e) = Vc2coend(e) (TRANSc[ANTLOC(c)] AVIN(c)]) (4)PAVIN(e) = 8>><>>: ? if So(e) is begin nodeWp2pred(e) (RNM1Si0(p) [PAVOUT(p)]) if So(e) 2 ECMODSo0(e)[Wp02pred0(e)PAVOUT(p0)] if (So(e) 2 R) ^ (:OCR(So0(e)))RNM2So0(e)[Wp2pred(e) PAVOUT(p)] if (So(e) 2 R) ^ (OCR (So0(e))) (5)PAVOUT(e) = TRANSe[ANTLOC(e)] PAVIN(e)] (6)Figure 7: Data Flow Equations for Availability and Partial AvailabilityPPOUT(e) = 8>><>>: ? if Si(e) is end nodeVs2succ(e) (RNM2So0(s) [PPIN(s)]) if Si(e) 2 RCMODSi0(e)[Vs02succ0(e)PPIN(s0)] if (Si(e) 2 E) ^ (:OCR(Si0(e)))RNM1Si0(e)[Vs2succ(e)PPIN(s)] if (Si(e) 2 E) ^ (OCR(Si0(e))) (7)TEMP1(i) = Vc2cobeg(e) (ANTLOC(c)] TRANSc[PPOUT(c)])TEMP2(i) = PPOUT(i)] AVOUT(i)PPIN(e) = 8>>>>>>><>>>>>>>: ? if So(e) is begin nodePAVIN(e) ^ TEMP1(e) ^Vp2pred(e) (RNM1Si0(p) [TEMP2(p)]) if So(e) 2 EPAVIN(e) ^ TEMP1(e) ^((CMODSo0(e)[Vp02pred0(e) TEMP2(p0)]) if (So(e) 2 R) ^ (:OCR(So0(e)))PAVIN(e) ^ TEMP1(e) ^(RNM2So0(e)[Vp2pred(e) TEMP2(p)])) if (So(e) 2 R) ^ (OCR (So0(e))) (8)INSERT(e) = PPOUT(e) ^ :(PPOUT(e) ^AVOUT(e)) ^ (9)(:(PPIN(e) ^ PPOUT(e)) _ :TRANSe[PPOUT(e)])DEL(e) = ANTLOC(e) ^ PPIN(e) (10)Figure 8: Data Flow Equations for Placement: (PPOUT(e) ^ AVOUT(e)) will return > wheneverPPOUT(e) and AVOUT(e) are not set to the same listof inuencers Ini.In determining placement (PPIN and PPOUT), wepreserve the calling context of the procedures by usinga simple method, the same that we used for computingavailability. It can be shown that the safety of place-ment is maintained through this method.Lemma 1 Consider any procedure p such that the pro-cedure p or any of the procedures invoked by it do nothave any occurrence of the candidate C. Let cs be one of the call sites which call procedure p. Let PPIN beIni for any edge starting at call site cs and, further,let there be no modi�cation to any of the inuencers inthe call to procedure p. Then, no placement of the can-didate will be done in any block of code inside call toprocedure p.The initial value of the PPIN and PPOUT are set to>. The desired solution is the largest solution and canbe found by iterative method.

5.5 Final Local PlacementWe have so far considered the block of code associatedwith a single edge of FPR as the unit of placement.The �nal placement of the candidates which have to beinserted depends upon further intraprocedural analysisand is not necessarily at the end of blocks of code.Consider an edge e for which INSERT(e) is true. Anumber of edges end the same procedure return node orthe same call site as the edge e and INSERTmay not betrue for all of them. Since all these edges have the samesucc(e) and succ0(e) sets, they have the same value ofPPOUT(e) and AVOUT(e). Therefore, the di�erencein the value of INSERT(e) comes because of the di�er-ence in the value of PPIN(e) or TRANSe[PPOUT(e)].For determining the �nal placement, the control owgraph is traversed backwards from the call site cs or theprocedure return statement. Along any such traversalpath, we identify the �rst basic block which belongs tothe blocks of code for which INSERT is true but doesnot belong to the blocks of code for which INSERT isnot true. Let b1 be such a basic block and let b2 be itssuccessor which belongs to the block of code for whichINSERT is true. A new basic block is inserted betweenthe basic blocks b1 and b2 and the candidate is insertedin this new basic block. It can be shown that the fol-lowing property is maintained by this scheme.Lemma 2 No insertion is made in any block of codefor which INSERT is ?.Using the above two lemmas, the correctness andsafety properties of the interprocedural scheme can beestablished in the same way as the correctness andsafety of the original intraprocedural scheme [20].Theorem 1 (Correctness) After insertion of newcomputations, the computation of the candidate C be-comes redundant in an edge satisfying ANTLOCC =Ini and PPINC = Ini.Theorem 2 (Safety) Consider any edge of FPR inwhich a new computation C is inserted. Every pathstarting from sink of this edge includes a computationwhich will be deleted, before including any edge in whicha new occurrence of this computation will be added.The solution of data ow properties for the programshown in Figure 2 is shown in Figure 9. The optimizedprogram is shown in Figure 10.6 Discussion6.1 E�ectiveness of the SchemeWe have implemented a preliminary version of ourscheme using the existing Fortran D compilation sys-tem developed at Rice University [17] as the neces-sary infrastructure. We studied the e�ectiveness of ourscheme in compiling an Euler solver for unstructuredgrids [8], a code which accesses data through indirec-tion arrays in parallel loops. The existing compiler forirregular applications [9, 14] generated calls to PARTIroutines for communication preprocessing and collec-tive communication [24], but did not perform any in-terprocedural placement of these statements.

The performance achieved by the compiled code (be-fore interprocedural optimizations) and the code af-ter interprocedural optimizations is presented in Fig-ure 11. The experimental results show that interproce-dural placement of communication preprocessing state-ments is a must for obtaining reasonable performance.When the program is run on a small number of proces-sors, the communication cost is small and therefore, theperformance di�erence made by interprocedural place-ment of communication statements is small. However,when the same data is distributed over a large numberof processors, the communication time becomes a sig-ni�cant part of the total execution time of the program.Then, performing interprocedural placement of com-munication statements also makes a substantial di�er-ence on the total execution time of the program.6.2 Cost of the SchemeThere are two issues in evaluating the cost of ourscheme: the number of edges in the graph constructed,and the number of iterations required for data owequations to be solved. In the worst case, each proce-dure may contribute edges quadratic in the number ofstatements in the program. In practice, we expect thisto be much smaller than the number of basic blocks infull program, e.g. the Euler code we experimented withhad 9 procedures, and a total of 1400 lines of code. Theresulting graph had 16 edges, whereas the total numberof basic blocks in the program was 117. In future, weplan to do this measurement for a number of di�erentcodes.The number of iterations required for data ow equa-tions to converge is, in the worst case, proportional tothe number of edges in the graph. If the number ofegdes in the graph is small, the time required for solu-tion will be small.7 Related WorkWe are aware of two e�orts on performing interproce-dural partial redundancy elimination. Morel and Ren-voise briey discuss how their scheme can be extendedinterprocedurally [21]. Their solution is hueristic innature, and no formal details are available for their in-terprocedural scheme. Their work is restricted to theprograms whose call graph is acyclic. They also donot consider the possibility that the procedure havinga candidate for placement may be invoked at multiplecall sites with di�erent set of parameters and do notmaintain accuracy of solutions when procedures are in-voked at multiple call sites.Knoop et al. extend a scheme for performing ear-liest possible code motion interprocedurally [18]. Themain limitation of their work is that if any of the inu-encers of a candidate is a formal parameter, then thecandidate is not considered for placement outside pro-cedure boundary (since no renaming of inuencers isdone). In the example presented in this paper, as wellas in the Euler code we used for our experiments, theirscheme will not perform any code motion. They donot consider the possibility of using any compact rep-resentation for the full program. Also, we believe thatour e�ort is the �rst one to report an implementationand application of interprocedural partial redundancyelimination. In our earlier work, we had outlined usinginterprocedural partial redundancy elimination for dis-

Edge AVIN AVOUT PAVIN PAVOUT PPOUT PPIN DEL INSERT1 ? ? ? ? < a; b > ? ? < a; b >2 < a; b > ? < a; b > < a; b > < a; b > < a; b > ? ?3 ? ? ? ? < a; c > ? ? < a; c >4 ? < x; y > < x; y > < x; y > < x; y > < x; y > < x; y > ?5 < a; b > < a; b > < a; b > < a; b > < a; b > < a; b > ? ?6 < a; c > < a; c > < a; c > < a; c > ? < a; c > ? ?7 < a; b > < a; b > < a; b > < a; b > < a; b > < a; b > ? ?8 ? ? ? ? < a; c > ? ? < a; c >9 ? ? ? ? ? ? ? ?10 < a; c > ? < a; c > < a; c > < a; c > < a; c > ? ?11 ? < y; z > < y; z > < y; z > < y; z > < y; z > < y; z > ?12 < a; c > < a; c > < a; c > < a; c > ? < a; c > ? ?Figure 9: Solution of Data Flow Properties for the GraphProgram Foo Procedure P(x,y)a = 1 ..other computations ..Sched(a,b) EndDo i = 1, 100Call P(a,b)Call Q(c) Procedure Q(z)Enddo z = ...z...Call Q(a) EndSched(a,c)Call P(a,c)If cond thenCall Q(c) Procedure R(y,z)Sched(a,c) ..other computations ..Endif EndCall R(a,c)EndFigure 10: Optimized Version of Program. Note that further Intraprocedural Analysis is required at call sites cs1and cs6 to determine �nal placementtributed memory compilation [1], but no formal detailsof the scheme or empirical evaluation was presented.We compare our work with e�orts on other ow-sensitive interprocedural problems. Several di�erentprogram representations have been used for di�erentow-sensitive interprocedural problems. Myer has sug-gested concept of SuperGraph [22] which is constructedby linking control ow graphs of subroutines by insert-ing edges from call site in the caller to start node incallee. The total number of nodes in SuperGraph canget very large and consequently the solution may takemuch longer time to converge. Several ideas in the de-sign of our representation are similar to the ideas usedin Callahan's Program Summary Graph [6] and Inter-procedural Flow Graph used by So�a et al. [16]. FIAThas been introduced as a general framework for per-forming interprocedural analysis [13], but is more tar-geted towards ow-insensitive problems. Interval basedapproach for solving interprocedural data ow equa-tions has been investigated in [4]. Recompilation in acompiler performing interprocedural analysis has beeninvestigated in [5].
8 ConclusionsIn this paper we have addressed the problem of per-forming partial redundancy elimination interprocedu-rally. This problem was initially motivated by theproblem of placement of communication preprocess-ing statements in distributed memory compilation. Wehave developed an interprocedural partial redundancyelimination (IPRE). Our algorithm is applicable on ar-bitrary recursive programs.AcknowledgementsWe thank Bill Pugh for critically reading earlier ver-sions of this paper and suggesting several improve-ments to the scheme and its presentation. We haveimplemented this scheme as a part of the D system be-ing developed under the leadership of Ken Kennedy atRice university. We gratefully acknowledge our debt tothe implementers of the interprocedural infrastructure(FIAT) and the existing Fortran D compiler.References[1] Gagan Agrawal and Joel Saltz. Interprocedural com-

Euler Solver on 10K mesh: 20 iterationsNo. of No IP opt. IP opt. IP opt.Procs. preproc. stmts. comm. stmt.2 47.74 30.26 29.754 26.77 14.99 14.278 17.45 9.85 8.5116 12.35 7.41 5.5632 12.72 8.92 5.09Figure 11: E�ectiveness of Interprocedural placement schemes. All numbers are in Seconds, on Intel Paragonmunication optimizations for distributed memory com-pilation. In Proceedings of the 7th Workshop on Lan-guages and Compilers for Parallel Computing, pages283{299, August 1994. Also available as University ofMaryland Technical Report CS-TR-3264.[2] Gagan Agrawal, Alan Sussman, and Joel Saltz. Com-piler and runtime support for structured and blockstructured applications. In Proceedings Supercomput-ing '93, pages 578{587. IEEE Computer Society Press,November 1993.[3] Gagan Agrawal, Alan Sussman, and Joel Saltz. An in-tegrated runtime and compile-time approach for paral-lelizing structured and block structured applications.IEEE Transactions on Parallel and Distributed Sys-tems, 1994. To appear. Also available as Univer-sity of Maryland Technical Report CS-TR-3143 andUMIACS-TR-93-94.[4] Michael Burke. An interval-based approach to exhaus-tive and incremental interprocedural data-ow anal-ysis. ACM Transactions on Programming Languagesand Systems, 12(3):341{395, July 1990.[5] Michael Burke and Linda Torczon. Interproceduraloptimization: Eliminating unnecessary recompilation.ACM Transactions on Programming Languages andSystems, 15(3):367{399, July 1993.[6] D. Callahan. The program summary graph and ow-sensitive interprocedural data ow analysis. In Pro-ceedings of the SIGPLAN '88 Conference on ProgramLanguage Design and Implementation, Atlanta, GA,June 1988.[7] K. Cooper and K. Kennedy. Interprocedural side-e�ectanalysis in linear time. In Proceedings of the SIGPLAN'88 Conference on Program Language Design and Im-plementation, Atlanta, GA, June 1988.[8] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Pon-nusamy. The design and implementation of a paral-lel unstructured Euler solver using software primitives.AIAA Journal, 32(3):489{496, March 1994.[9] Raja Das, Joel Saltz, and Reinhard von Hanxleden.Slicing analysis and indirect access to distributed ar-rays. In Proceedings of the 6th Workshop on Languagesand Compilers for Parallel Computing, pages 152{168.Springer-Verlag, August 1993. Also available as Uni-versity of Maryland Technical Report CS-TR-3076 andUMIACS-TR-93-42.

[10] D.M. Dhamdhere and H. Patil. An elimination algo-rithm for bidirectional data ow problems using edgeplacement. ACM Transactions on Programming Lan-guages and Systems, 15(2):312{336, April 1993.[11] K. Drechsler and M. Stadel. A solution to a prob-lem with Morel and Renvoise's \Global optimiza-tion by suppression of partial redundancies". ACMTransactions on Programming Languages and Systems,10(4):635{640, October 1988.[12] Manish Gupta, Edith Schonberg, and Harini Srini-vasan. A uni�ed data ow framework for optimiz-ing communication. In Proceedings of Languages andCompilers for Parallel Computing, August 1994.[13] Mary Hall, John M Mellor Crummey, Alan Carle, andRene G Rodriguez. FIAT: A framework for interpro-cedural analysis and transformations. In Proceedingsof the 6th Workshop on Languages and Compilers forParallel Computing, pages 522{545. Springer-Verlag,August 1993.[14] Reinhard v. Hanxleden. Handling irregular problemswith Fortran D - a preliminary report. In Proceed-ings of the Fourth Workshop on Compilers for ParallelComputers, Delft, The Netherlands, December 1993.Also available as CRPC Technical Report CRPC-TR93339-S.[15] Reinhard von Hanxleden and Ken Kennedy. Give-n-take { a balanced code placement framework. In Pro-ceedings of the SIGPLAN '94 Conference on Program-ming Language Design and Implementation, pages107{120. ACM Press, June 1994. ACM SIGPLAN No-tices, Vol. 29, No. 6.[16] Mary Jean Harrold and Mary Lou So�a. E�cient com-putation of interprocedural de�nition-use chains. ACMTransactions on Programming Languages and Systems,16(2):175{204, March 1994.[17] Seema Hiranandani, Ken Kennedy, and Chau-WenTseng. Compiling Fortran D for MIMD distributed-memory machines. Communications of the ACM,35(8):66{80, August 1992.[18] J. Knoop and Ste�an B. E�cient interprocedural bit-vector data ow analyses: A uniform interproceduralframework. Technical report, Dept. of Computer Sci-ence, University of Kiel, September 1993.

[19] J. Knoop, O. R�uthing, and B. Ste�en. Lazy code mo-tion. In Proceedings of the ACM SIGPLAN '92 Con-ference on Program Language Design and Implemen-tation, San Francisco, CA, June 1992.[20] E. Morel and C. Renvoise. Global optimization bysuppression of partial redundancies. Communicationsof the ACM, 22(2):96{103, February 1979.[21] E. Morel and C. Renvoise. Interprocedural elimina-tion of partial redundancies. In Program Flow Anal-ysis: Theory and Applications. Prentice Hall, Engle-wood Cli�s, NJ, 1981.[22] E. Myers. A precise interprocedural data ow algo-rithm. In Conference Record of the Eighth ACM Sym-posium on the Principles of Programming Languages,pages 219{230, January 1981.[23] Thomas Reps, Susan Horowitz, and Mooly Sagiv. Pre-cise interprocedural dataow analysis via graph reach-ability. In Conference Record of the Fourteenth AnnualACM SIGACT/SIGPLAN Symposium on Principlesof Programming Languages, January 1995.[24] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, andHarry Berryman. Run-time scheduling and executionof loops on message passing machines. Journal of Par-allel and Distributed Computing, 8(4):303{312, April1990.[25] A. Sorkin. Some comments on \A solution to aproblem with Morel and Renvoise's `Global optimiza-tion by suppression of partial redundancies' ". ACMTransactions on Programming Languages and Systems,11(4):666{668, October 1989.AppendixA.1 Intraprocedural Partial RedundancyEliminationThe �rst partial redundancy elimination scheme waspresented by Morel and Renvoise [20]. This scheme hasbeen further extended and re�ned by Dhamdhere [10],Drechsler [11], Knoop et. al. [19] and Sorkin [25].The details of interprocedural redundancy eliminationwe present are derived from the intraprocedural nodebased method of Dhamdhere [10], also referred to asModi�ed Morel Renvoise Algorithm (MMRA). Thedata ow equations used in the scheme are presented inFigure 12. The terms used in the data ow equationsare explained below.Local data ow properties:ANTLOC(i): Node i contains an occurrence of com-putation C not preceded by a de�nition of any of itsoperands.COMP(i): Node i contains an occurrence of compu-tation C not followed by a de�nition of any of itsoperands.TRANS(i): Node i does not contain a de�nition of anyoperand of computation C.Global data ow properties:AVIN(i)/AVOUT(i): Computation C is available at theentry/exit of node i.PAVIN(i)/PAVOUT(i): Computation C is partiallyavailable at the entry/exit of node i.PPIN(i)/PPOUT(i): Computation of C may be placedat entry/exit of node i.

AVIN(i) = � false if i is entry blockQp2pred(i)AVOUT(p) otherwiseAVOUT(i) = COMP(i) + TRANS(i):AVIN(i))PAVIN(i) = � false if i is entry blockPp2pred(i)PAVOUT(p) otherwisePAVOUT(i) = COMP(i) + TRANS(i):PAVIN(i)PPIN(i) = PAVIN(i): (ANTLOC(i) +TRANS(i) : PPOUT(i))Qp2pred(i)(PPOUT(p) + AVOUT(p)):PPOUT(i) = � false if i is exit blockQs2succ(i)PPIN(s)) otherwiseINSERT(i) = PPOUT(i) : :AVOUT(i):(:PPIN(i) + :TRANS(i))DEL(i) = ANTLOC(i):PPIN(i)Figure 12: MMRA scheme for Intraprocedural PartialRedundancy EliminationDEL(i): Occurrence of C in node i is redundantINSERT(i): A computation of C should be placed atthe exit of node i.We now briey explain the rational behind the keyequations. A computation is available at the entry of abasic block if it is available at the exit of all the prede-cessor basic blocks. A computation is available at theend of a basic block if it is available at the beginningof the basic block and none of the operands are mod-i�ed in the basic block, or, alternatively, there is anoccurrence of this computation in this basic block, notfollowed by any de�nition of the operands. A compu-tation is partially available at the entry of a basic blockif it is partially available at the exit of at least one pre-decessor block. The equations for placement can be ex-plained as follows. In computing PPOUT, the Q termensures safety in placing an expression at the exit of thenode. The Q term in computing PPIN ensures avail-ability of the expression at the entry of this node inthe optimized program. The term PAVIN determinesthe pro�tability of hoisting a computation out of thisnode. This term avoids redundant code hoisting for al-most all cases for any real program, however, it doesnot guarantee. In the original MMRA scheme [10], anadditional term is used to further prevent redundantcode hoisting, this term still does not guarantee thatno redundant code hoisting occurs. For simplicity, wedo not include this additional term in our presentation.

