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We study the stabilizing effect of rotational forcing in the nonlinear setting of

two-dimensional shallow-water and Euler equations. We prove that when rotational

force dominates the pressure, it prolongs the life-span of smooth solutions for t .
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measuring the amplitude of pressure, relative to the (inverse of) Rossby number,

measuring the dominant rotational force. The strong rotation also imposes certain

periodicity to the flow in the sense that there exists a “nearby” periodic-in-time

approximation of the exact solution. In the opposite regime of large δ’s, the flow

is dispersive so that the divergence field substantially decays in finite time and

therefore periodicity is not retained.
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Chapter 1

Introduction

We are concerned here with a family of 2D compressible rotating Eulerian

equations such as the Rotational Shallow Water (RSW) equations. Our main re-

sult shows that the rotational forcing, commonly referred to as the Coriolis forcing

in Geophysics, has a stabilizing effect within a scaling regime that is rotationally

dominant. In other words, breakdown of classical solutions – namely blow-up of the

velocity gradients – is postponed until after O(| ln(δ)|), the single parameter δ(� 1)

closely related to the relative dominance of the rotational forcing. The underlying

flow is shown to exhibit the so called “approximate periodicity” which characterizes

the flow with a time-periodic approximation that is O(δ) apart measured in terms

of certain Sobolev norms.

To get a flavor of our main theorem, consider the following RSW equations

∂th + u·∇h + (
1

σ
+ h)∇·u = 0,

∂tu + u·∇u +
1

σ
∇h − 1

τ
u⊥ = 0,

where the unknowns are height h and 2D velocity u defined on a 2D torus T2.

Parameters σ and τ respectively denote the Froude number and the Rossby number

in Geophysics ( [39]). Define

δ =
τ

σ2

measuring the relative strength of the rotational forcing. Consider a rotationally
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dominant regime δ � 1. Then, for a large set of subcritical data in Hm(T2), there

exists a globally smooth, 2πτ -periodic approximation (h2(t, ·),u2(t, ·)) such that,

‖h(t, ·) − h2(t, ·)‖Hm−3 + ‖u(t, ·) − u2(t, ·)‖Hm−3 . eC0tδ

(1 − eC0tδ)2
,

for t . tδ := ln(δ−1) where constant C0 only depends on m and the size of the initial

data. In particular, when δ ↓ 0, the life span of classical RSW solution tδ ↑ ∞.

We comment that the formal notation “approximate periodicity” emphasizes on the

existence of a periodic approximation (h2,u2) nearby the actual flow (h,u) with the

error up-bounded by O(δ) � 1 for sufficiently long time.

This result is understood in the context of previous results:

1. In the absence of rotation, classical solutions lose C1 smoothness in finite

time for generic initial data. This is the well-known shock theory for nonlinear

hyperbolic systems, starting from Peter Lax’s celebrated book [30].

2. In the mere presence of rotation as the only external forcing mechanism,

Liu and Tadmor has shown in [33] that the solution either blows up in finite time or

stays smooth (and time-periodic) for global time, depending on whether or not the

initial data cross a non-trivial critical threshold. As a corollary, the solution stays

smooth for global time if the rotational forcing is “stronger” than a O(1) critical

value that only depends on the initial data.

3. For the RSW equations, when the rotational forcing is of the same order

as the pressure gradient forcing – commonly known as the “geostrophic balance”,

the underlying flow is approximately dictated by the so called “quasi-geostrophic

equations” upon which fast gravity waves are superimposed ( [13]).
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A natural question hinted by these results is that: how does the relative signif-

icance of rotational forcing affect the behavior of underlying flows? One postulates

from the previous results that the stronger the rotation, the longer the flow stays

stable away from breakdown. To this end, we introduce the new parameter δ to

measure the relative significance of rotational forcing over other forcing such as

pressure forcing. The scaling regime of interest, δ � 1, corresponds to the relative

dominance of rotation.

However, the main difficulties in dealing with compressible Euler equations

rise from two factors and their interaction: nonlinearity in the advection terms and

singularity in the forcing terms. Nonlinear advection terms such as u∇u are ubiq-

uitous in Eulerian models of fluids. Fully understanding its mechanism in various

settings has drawn enormous attention. On the other hand, singular parameters

that serve as scales of external forces plays an essential role in determining prop-

erties of underlying flows. It enriches flow structures, which in turn increases the

problem’s complexity.

We use novel approaches to tackle these difficulties and to gain insightful

knowledge of rotationally dominant flows (that is when δ � 1). Two successive

approximations are constructed. We start with the purely rotational case δ = 0 and

show global stability and periodicity under mild assumptions. Then we linearize

the system around the first approximation and make careful adjustment so that this

second approximate system admits global and periodic solutions as well. Finally

we use energy methods (given in the preliminary Chapter 2) to estimate the error

introduced by the second approximation. The parameter δ appears naturally in this
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process. It is the smallness of δ that prolongs the life span of classical solutions

to O(ln δ) as well as imposes approximate periodicity to the dynamics. The RSW

equations, simple yet typical, are analyzed in Chapter 3 with detail proofs. Then,

in Chapter 4, we give natural extension of our result to general Euler flows governed

by e.g. isentropic gas equations and ideal gasdynamics equations so long as they

are equipped with corresponding energy principles. Our methodology and results

remain valid in various other settings. In Chapter 5, we will discuss parameter

regimes that are complementary to δ � 1. We use Strichartz estimate to study

the time decay of solutions’ L∞ norm (in R2 domain), which turns out to be fast

enough to contradict periodicity if δ is large. Thus, δ is the critical parameter

that characterizes the relative significance of two competing dynamics: dispersion

vs periodicity. Some possible future works will be outlined in Chapter 6.

The rest of this chapter provides an overview of this thesis regarding both its

content and structure. In Section 1.1, I will give the formulation of our problem with

relevant scaling parameters; in Section 1.2, I will sketch the proof of our main results;

then Section 1.3 will regard our results in a broader mathematical and geophysical

contexts.

1.1 Formulations and Definitions

We’ll start with the basic physical laws, describe their formulation and derive

the nondimensional version which is more adapted for mathematical analysis.
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§. Three Fluid Models and Their Pressure Laws. The Eulerian formu-

lation of fluids such as air and water is widely used in science and engineering,

∂tu + u∇·u + F[u] = 0 (1.1)

where the velocity field u := (u1, u2, ...)
T depends on time variable t and spatial

variables x := (x1, x2, ...). The operator ∇ takes the spatial gradients. The external

forcing term F[u], distinguishing one model from another, is a formal generalization

which may depend on u, its derivatives and quantities driven by u.

The rotational models in our study will be mainly 2D, that is, u = (u1, u2)
T .

Thus the rotational forcing is written as

fJu where J :=

(
0 1

−1 0

)
.

Here scalar f denotes effective frequency of the rotation – commonly referred to as

the Coriolis frequency in Geophysics – and J is called the rotational matrix since

‖Ju‖ = ‖u‖ and Ju · u = 0.

Strictly speaking, one should use −J for motions in the Southern Hemisphere and,

thanks to symmetry, our analysis still remains valid in this case.

The rotational forcing appears widely in fluid modeling in areas such as Geo-

physics (e.g. [39]) and Magnetohydrodynamics (e.g. [11]). In large scale geophys-

ical motions, the Coriolis force plays one of the essential roles that determine the

nature of weather system. For instance, it forces a full 3D flow to behave closely as

a 2D one (stratification), which is rigorously argued in [9]. In our paper, rotational

forcing is further explored for 2D models.
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We will then specify the other forcing terms in F[u] of (1.1) as pressure forcing

so that,

F[u] = ∇p̆ − fJu

where p̆ – up to a density factor – denotes the pressure that depends on various

quantities (the dependence relation called “pressure law”). A typical example is the

Rotational Shallow Water (RSW) equations

∂th + ∇ · (hu) = 0 (1.2a)

∂tu + u · ∇u + g∇h = fJu (1.2b)

where g is the gravitational constant and scalar variable h = h(t, x, y) denotes the

height. This system models a thin layer of homogeneous fluid moving in vertical

columns (the so called Taylor column [39]) driven by the gravitational force g∇h

and the rotational force fJu which are given in the momentum equations (1.2b).

Notice h denotes the height of these moving columns. Therefore the pressure law

p̆ = gh corresponds to, up to a density factor, the hydro pressure asserted by the

fluid column of height h. Equation (1.2a) simply follows the conservation of mass.

Remark 1.1 If the RSW equations (1.2) are derived as the vertical mean of the

flow of an isentropic atmosphere with a free upper boundary, the pressure law p̆ =

gh has to be replaced by p̆ = gh
γ−1

γ where γ is the gas constant. If the flow is

restricted between rigid upper and lower boundaries, the pressure law becomes p̆ =

ghγ−1 (consult e.g. [10]). These cases are covered by the next model – the isentropic

gas equations.
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The isentropic model assumes that pressure depends on density only. In the

special case of polytropic gas, the pressure obeys the following gamma-power law,

∂tρ + ∇ · (ρu) = 0 (1.3a)

∂tu + u∇·u + ρ−1∇p̂(ρ) = fJu (1.3b)

The physical pressure p̂ = p̂(ρ) in the momentum equations (1.3b) is given by

p̂ := Aργ ,

where A, γ are gas-specific constants. The special case γ = 2, A = g/2 corresponds

the RSW equations. Thus, our discussion on the RSW system facilitates a natural

generalization to isentropic gas in 2D.

In the third model of ideal gasdynamics, the pressure depends on both density

and entropy. The system is equipped with an additional balance law for the entropy

S,

∂tρ + ∇ · (ρu) = 0, (1.4a)

∂tu + u∇·u + ρ−1∇p̂(ρ, S) = fJu, (1.4b)

∂tS + u · ∇S = 0. (1.4c)

Here the physical pressure law p̂ = p̂(ρ, S) takes various forms, among which poly-

tropic gas obeys

S = ln(p̂ρ−γ) ↔ p̂ = eSργ.

Thus, the isentropic model is a special case with constant entropy S.

§. Nondimensional Form and Scaling Parameters. We aim to make

the above formulation independent of physical units – the so called nondimensional
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form. First for the RSW system (1.2), we introduce the horizontal length scale L,

the velocity scale U , the back ground height H, the height perturbation scale D.

Then the derived time scale L/U comes up as a natural choice. Rewrite the variables

according to the following rules,

h(t,x) → H + Dh(t
¯

L

U
,x
¯
L), u(t,x) → u

¯
(t
¯

L

U
,x
¯
L),

and rewrite derivatives according to

∇ → 1

L
∇x

¯
∂t →

U

L
∂t
¯
.

Then discarding all the underlines, we arrive at a nondimensional RSW system,

∂th + u · ∇h +

(
H

D
+ h

)
∇·u = 0, (1.5a)

∂tu + u · ∇u +
gD

U2
∇h − fL

U
u⊥ = 0. (1.5b)

We are here concerned with the scaling regime where compressibility in (1.5a) and

the pressure gradient in (1.5b) are of the same order, gD
U2 ≈ H

D
(see e.g. [34]). Thus,

we arrive at the very RSW system of our study,

∂th + u·∇h + (
1

σ
+ h)∇·u = 0 (1.6a)

∂tu + u·∇u +
1

σ
∇h − 1

τ
Ju = 0 (1.6b)

Here the scaling parameters, defined as,

τ :=
U

fL
, σ :=

U√
gH

(1.7)

are respectively the Rossby number measuring the (inverse) rotational forcing and

the Froude number measuring the (inverse) pressure forcing. More precisely they

measure the ratio of the inertia force (U) relative to these two forces ( [39]).
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For the isentropic gas equations (1.3), we obtain a similar form

∂tρ + u·∇ρ + (
1

σ
+ ρ)∇·u = 0 (1.8a)

∂tu + u·∇u +
1

σ2
∇p̂ − 1

τ
Ju = 0 (1.8b)

where σ should be understood as the Mach number, measuring the ratio of fluid

velocity to sound speed. Here the rescaled pressure variable p̂ satisfies 1 + σp̂ =

(1 + σρ)γ−1.

The ideal gasdynamics equations will be discussed at the end of the next

section.

1.2 Main Results and Method of Iterative Approximations.

To trace their long-time behavior, we approximate the RSW equations (1.6)

with the following successive iterations,

∂thj + uj−1 ·∇hj +

(
1

σ
+ hj

)
∇ · uj−1 = 0, j = 2, 3, . . . (1.9a)

∂tuj + uj ·∇uj +
1

σ
∇hj −

1

τ
Juj = 0, j = 1, 2, . . . , (1.9b)

subject to initial conditions, hj(0, ·) = h1(·) and uj(0, ·) = u0(·). Observe that, given

j, (1.9) are only weakly coupled through the dependence of uj on hj, so that we only

need to specify the initial height h1. For σ � τ , the momentum equations (1.5b) are

“approximately decoupled” from the mass equation (1.5a) since rotational forcing

is substantially dominant over pressure forcing. Therefore a first approximation of

constant height function will enforce this decoupling, serving as the starting point
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of the above iterative scheme,

h1 ≡ constant.

This, in turn, leads to the first approximate velocity field, u1, satisfying the pres-

sureless equations,

∂tu1 + u1 ·∇u1 −
1

τ
Ju1 = 0, u1(0, ·) = u0(·). (1.10)

Liu and Tadmor [33] have shown that there is a “large set” of so-called sub-critical

initial configurations u0, for which the pressureless equations (1.10) admit global

smooth solutions. Moreover, the pressureless velocity u1(t, ·) is in fact 2πτ -periodic

in time. The regularity of u1 is discussed in Section 3.1.

Having the pressureless solution, (h1 ≡ constant,u1) as a first approximation

for the RSW solution (h,u), in Section 3.2 we introduce an improved approxima-

tion of the RSW equations, (h2,u2), which solves an “adapted” version of the second

iteration (j = 2) of (1.9). This improved approximation satisfies a specific lineariza-

tion of the RSW equations around the pressureless velocity u1, with only a one-way

coupling between the momentum and the mass equations. Building on the regular-

ity and periodicity of the pressureless velocity u1, we show that the solution of this

linearized system subject to sub-critical initial data (h0,u0), is globally smooth; in

fact, both h2(t, ·) and u2(t, ·) retain 2πτ -periodicity in time.

Next, we turn to estimate the deviation between the solution of the linearized

RSW system, (h2,u2), and the solution of the full RSW system, (h,u). To this end,
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we introduce a new non-dimensional parameter

δ :=
τ

σ2
=

gH

fLU
,

measuring the relative strength of rotation vs. the pressure forcing and we assume

that rotation is the dominant forcing in the sense that δ � 1. Using the standard

energy method we show in theorem 3.3 that, starting with Hm initial data, the

RSW solution
(
h(t, ·),u(t, ·)

)
remains sufficiently close to

(
h2(t, ·),u2(t, ·)

)
in the

sense that,

‖h(t, ·) − h2(t, ·)‖Hm−3 + ‖u(t, ·) − u2(t, ·)‖Hm−3 . eC0tδ

(1 − eC0tδ)2
, (1.11)

where constant C0 = Ĉ0(m, |∇u0|∞, |h0|∞) · ‖u0, h0‖m. In particular, we conclude

that for a large set of sub-critical initial data, the RSW equations (1.6) admit

smooth, “approximately periodic” solutions for large time, t ≤ tδ := 1 + ln(δ−1), in

the rotationally dominant regime δ � 1. Here, we introduce,

Definition 1.1 A function f(t, ·) is δ-approximately periodic regarding certain norm

‖ · ‖ over time period [t1, t2] if there exist a periodic approximation f̃(t, ·) such that

max
t∈[t1 ,t2]

‖f(t, ·) − f̃(t, ·)‖ ≤ C(t)δ,

for some bounded function C(t).

We comment that this notation emphasizes on the existence of a periodic approxi-

mation (h2,u2) nearby the actual flow (h,u) with the error up-bounded by O(δ) � 1

for sufficiently long time. Therefore, strong rotation stabilizes the flow by imposing
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approximate periodicity to the flow, which in turn postpones finite time breakdown

of classical solutions to long time.

We generalize our result to Euler systems describing e.g. the isentropic gas

dynamics and ideal gas dynamics in Chapter 4. We regard these two systems as

successive generalizations of the RSW system under the framework,

∂tρ + ∇·(ρu) = 0 (1.12a)

∂tu + u·∇u + ρ−1∇p̂(ρ, S) = fJu (1.12b)

∂tS + u·∇S = 0, (1.12c)

For the ideal gas dynamics, the pressure law is given by p̂ := AργeS where A, γ

are two gas-specific physical constants. The isentropic gas equations correspond

to S ≡ constant and thus, the entropy equation (1.12c) becomes redundant. One

more specification of setting A = g, γ = 2 yields the RSW equation (with height h

playing the same role as density ρ). Due to such analogue, these systems can all be

symmetrized by introducing a “normalized” pressure function,

p := Cp̂
γ−1
2γ (ρ, S),

and thus, replacing the density equation by a pressure equation,

∂tp + u·∇p + Cp∇·u = 0. (1.12d)

We then nondemsionalize the above system (1.12b), (1.12c) and (1.12d) into

∂tp + u·∇p +
γ − 1

2

(
1

σ
+ p

)
∇·u = 0

∂tu + u·∇u +
γ − 1

2

(
1

σ
+ p

)
eσS∇p =

1

τ
Ju

∂tS + u·∇S = 0
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Our methodology, independent of the pressure law, still applies to the above system.

In particular, our first approximation, the pressureless system, remains the same as

in (1.10) since it ignores any effect of pressure. We then obtain the second approx-

imation (p2,u2, S2) (or (p2,u2) in the isentropic case) from a specific linearization

around the pressureless velocity u1. The similar mechanism governing h, p and S as

passive scalars transported by u allows us to apply the same regularity and period-

icity argument for (p2,u2, S2) as in the RSW case. The energy estimate, however,

needs careful modification for the ideal gas equations due to additional nonlinearity

in such terms as ( 1
σ

+ p)eσS∇p. Finally, we conclude in Theorem 4.1 and Theorem

4.2 that, in the rotationally dominant regime δ � 1, the globally smooth, 2πτ -

periodic approximation (p2,u2, S2) stays “close” to the exact solution for long time

in the sense that, starting with Hm data, the following estimate holds true for time

t . 1 + ln δ−1,

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 <
eC0tδ

1 − eC0tδ
.

1.3 Mathematical and Geophysical Significance

Our results confirm the stabilization effect of rotation in the nonlinear setting,

when it interacts with the slow components of the system, which otherwise tends to

destabilize the dynamics. The study of such interaction is essential to the under-

standing of rotating dynamics, primarily to geophysical flows. We can mention only

few works from the vast literature available on this topic, and we refer the reader to

the recent book of Chemin et. al., [6] and the references therein, for a state-of-the
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art of the mathematical theory for rapidly rotating flows. Embid and Majda [13, 14]

studied the singular limit of RSW equations under two regimes τ−1 ∼ σ−1 ↑ ∞ and

τ−1 ∼ O(1), σ−1 ↑ ∞. Extensions to more general skew-symmetric perturbations

can be found in the work of Gallagher, e.g. [16]. The series of works of Babin, Ma-

halov and Nicolaenko, consult [2, 3, 4] and references therein, establish long term

stability effects of the rapidly rotating 3D Euler, Navier-Stokes and primitive equa-

tions. On the geophysical side, Zeitlin, Reznik and Ben Jelloul give categorization

and asymptotic analysis of various scaling regimes in the context of Rossby adjust-

ment ([47, 48]). There are also asymptotic results of RSW on bounded domains

(e.g. [21]).

Along another direction, the dispersive nature of fast acoustic waves in the

whole space also stabilizes compressible Euler flows. Strichartz proved in [43]

the decay properties of linear wave equations. These decay properties also yields

smoothing effects, which have been the beginning of a long series of works, in e.g.

[7, 24, 1, 19, 42]. Consult [6] for particular discussion in the geophysical equa-

tions. In our setting of periodic domains, however, the dispersive mechanism is not

available and nevertheless, as shown in Section 3.4 for the whole plane R2, strong

rotation “entraps” the flow so locally that even fast pressure waves are kept from

escaping to farfield. We also note by passing the local smoothing effects of high or-

der dispersive terms (e.g. [8]) in such cases as the KdV equations and Schrödinger’s

equations but generally not available for the wave equations. Another stabilizing

mechanism absent from our model is the viscosity. Consult the work of e.g. Lions

and Masmoudi in [31, 35] and references therein.
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We comment here that the approach employed in the above literature relies on

identifying the limiting system as τ ↓ 0, which filters out fast scales. The full system

is then approximated to a first order, by this slowly evolving limiting system. A

rigorous mathematical foundation along these lines was developed by Schochet [41],

which can be traced back to the earlier works of Klainerman and Majda [26, 27]

(see also [28], [44]). The key point was the separation of (linear) fast oscillations

from the slow scales. The novelty of our approach, inspired by the critical threshold

phenomena [33], is to adapt the rapidly oscillating and fully nonlinear pressureless

system as a first approximation and then consider the full system as a perturbation

of this fast scale. This enables us to preserve both slow and fast dynamics, and

especially, the rotation-induced time periodicity.

We also note that the smallness of the new parameter δ in our result corre-

sponds the relative dominant of rotation, that is, 1
τ
� 1

σ2 . Previous literature, on

the other hand, deals with absolute singularity in the form of 1
τ
∼ 1

σ
� O(1) or

1
σ
� O(1) ∼ 1

τ
. The missing regime between these cases is 1

σ2 . 1
τ

. 1, which we

have not fully explored. Partial results shown in Chapter 5, however, confirms that

approximate periodicity in the small δ case becomes invalid if δ is large. In such

sense, our result in the regime of δ � 1 is optimal.

Geophysically our result is supported by observations of the so called “near

inertial oscillation” (NIO) in oceanography (e.g. [46]). These NIOs are mostly seen

after a storm blows over the oceans. They exhibit almost periodic dynamics with a

period consistent with the Coriolis force and stay stable for about 20 days which is

a long time scale relative to many oceanic processes such as the storm itself. This
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observation agrees with our theoretical result regarding the stability and periodicity

of RSW solutions. Written in terms of physical parameters, our result requires

δ =
gH

fLU
� 1 which is consistent with the fact that NIOs are triggered when

storms pass by (large U ’s) and only a thin layer of the oceans is reactive (small

aspect ratio H/L). An even more interesting argument is that cyclonic storms

on the Northern Hemisphere rotates counterclockwise, generating negative vorticity

(i.e. ∂yu
(1)−∂xu

(2) < 0) which is a preferred scenario in favor of the critical threshold

condition (3.4). We also note by passing that the rotationally dominant regime

differs from the geostrophically balanced regime where Rossby adjustment (consult

e.g. the textbook of E. Kalnay [22] and references therein) leads to fast dispersion

that would quickly destroy the abovementioned circular pattern of motions.

Outside the Earth, the giant and fast rotating Jovian planets provide parame-

ter settings that suits our result even better. For instance, the Jupiter rotates two

times fast as the earth ([17]) and the scale of motions is also much larger – the Great

Red Spot alone can contain 2 to 3 Earth’s diameters. Therefore, hypothetically, the

large scale motion on these planets should be more stable and less chaotic (not ex-

cluding turbulence over smaller scales). In fact, consistent flow patterns have been

long observed in the Jupiter atmosphere, including the famous long lasting Great

Red Spot.
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Chapter 2

Preliminary: Energy Method

In this chapter, we will give some review of the standard energy methods for

symmetric (more generally, symmetrizable) hyperbolic PDEs in the form of

A0(v)∂tv +

d∑

j=1

Aj(v)∂xj
v = 0. (2.1)

Here and below, we use v = v(t, x1, ..., xd) ∈ RN to denote the unknown variables

and use N × N matrices A0, A1, ..., Ad to denote the coefficients that depend on

the unknowns v. We are concerned with symmetric Aj’s, in particular symmetric

positive definite A0.

The energy method has been extensively used to study PDE solutions – consult

e.g. the textbooks [37], [15]. It was originally (and is still largely) based on the

establishment of the Sobolev inequality and its generalizations, e.g. the Gagliardo-

Nirenberg inequality. The basic methodology is to obtain estimates on functional

norms of quantities that are linked by the PDE. In the center of such analysis lies

the interplay among the structure of the PDE, the choice of functional norms and

various embedding properties of these norms.

In this writing, we will use the Hm Sobolev norms of periodic functions defined

on torus domain. The L2 nature of such argument is the very reason for its name,

“energy” method. In a more specific setting of hyperbolic PDE system (2.1), our

goal is to upper-bound the energy growth rate d
dt
‖v(t, ·)‖m using the PDE relation so
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that the Hm regularity of v readily follows from solving a Grownwell inequality. To

this end, the basic Sobolev type inequalities regarding Hm are introduced in section

1. Then in section 2, we will specifically explore the symmetric structure of PDE

system (2.1) and together with the embedding theorems, give a general framework

of energy arguments.

2.1 The Hm Norm and Sobolev Type Inequalities

Here and below, let Ω be R2, T2 or a bounded domain in R2.

Definition 2.1 The (spatial) Sobolev norm ‖ · ‖m of function v : Ω 7→ RN is

‖v‖m :=

√√√√
m∑

|k|=0

〈v,v〉k,

where the inner product 〈·, ·〉k is defined as usual,

〈v,w〉k :=

∫

Ω

Dkv(x) · Dkw(x) dx.

We use multi-index k := (k1, ..., kd) with |k| := k1 + ...+ kd for the spatial derivative

so that Dkv = ∂k1
x1

...∂kd
xd

v.

We use the same notation for time-dependent v(t, ·) and sometimes use a compact

notation ‖v‖m := ‖v(t, ·)‖m.

The basic Sobolev inequality ( [37], [15]) states that, for v(·) defined on Ω

with periodic or vanishing boundary condition,

‖v‖Lp∗ . ‖∇v‖Lp for
1

p∗
=

1

p
− 1

d
≥ 0. (2.2)
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As a corollary, the Sobolev embedding theorem claims that,

|v|∞ . ‖v‖m for m >
d

2
(2.3)

which can also be proved using e.g. the Fourier representation of v. Combining

(2.2) with the popular Holder inequality

‖vw‖L1 ≤ ‖v‖Lp‖w‖
L

p
p−1

,

one can prove the Gagliardo-Nirenberg inequality,

‖v‖Lr . ‖∇v‖θ
Lp‖v‖1−θ

Lq ,

for suitable r, p, q, θ. We will, however, solely use a corollary regarding products of

two functions (which is the main form of nonlinearity in our study),

Proposition 2.1 Consider two functions v,w ∈ Hm(Ω) with periodic or vanishing

boundary condition. Then for any |k| ≤ m,

‖Dk(vw)‖0 . ‖v‖m|w|∞ + |v|∞‖w‖m,

‖Dk(vw) − vDkw‖0 . ‖∇v‖m−1|w|∞ + |∇v|∞‖w‖m−1.

Combining the first inequality with the Sobolev embedding theorem in (2.3), we

conclude that for any m > d
2
, Hm(T2) is an algebra, in particular, it is closed under

multiplication, ‖vw‖m . ‖v‖m‖w‖m. The second inequality gives estimates on

commutator terms in the form of [Dk,v]w := Dk(vw) − vDkw.

2.2 Energy Method for Symmetric Hyperbolic PDEs: A Framework

We now turn to the PDE system (2.1) subject to initial data v0 and periodic

boundary condition, that is, Ω = T2. Our discussion still remains valid for un-
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bounded or bounded domain with vanishing boundary condition. Let’s start with

taking inner product 〈·, ·〉k of v with (2.1) and sum it over |k| ≤ m, giving rise to

nonlinear terms in the form

〈A0(v)∂tv,v〉k and 〈Aj(v)∂xj
v,v〉k,

which introduces higher order derivatives such as Dk∇v. This section is devoted to

obtain nonlinear estimates on these high order derivatives upon which a local-in-time

existence result is based.

§. Nonlinear estimate on spatial derivatives. We rewrite a typical term

〈A(v)∂xv,v〉k as

〈Dk(A∂xv), Dkv〉 = 〈ADk∂xv, Dkv〉 + 〈[Dk, A]∂xv, Dkv〉

= 〈Dk∂xv, ADkv〉 + I (by the symmetry of A)

= −〈Dkv, ∂x(ADkv)〉 + I (by the skew symmetry of ∂x)

= −〈Dkv, ADk∂xv〉 − 〈Dkv, [∂x, A]Dkv〉 + I .........(∗)

= −〈Dkv, Dk(A∂xv)〉 − 〈Dkv, [A, Dk]∂x〉 + II + I

(2.4)

⇒
〈A∂xv,v〉k = 1

2
(I + II + III)

. (|∇xA|∞‖∇xv‖m−1 + |∇xv|∞‖∇xA‖m−1)‖v‖m,

(2.5)

where we used Proposition 2.1 to obtain sharp estimates on the commutator terms

I, II, III so that no derivatives higher than m enter the upper bound. Combining

this estimate with the Sobolev embedding theorem 2.3, we arrive at

Proposition 2.2 Consider v ∈ Hm(T2) with m > d
2

+ 1. Assume A ∈ Hm(T2) is
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a matrix-valued function that not necessarily depends on v. Then for any |k| ≤ m,

|〈A∂xj
v,v〉k| . ‖A‖m‖v‖2

m.

This provides a way of closure in the sense that the m+1-th order derivatives

of v are up-bounded in terms of its Hm norms.

§. Nonlinear estimates on time derivatives. Now, we turn to a more

difficult term 〈A0(v)∂tv,v〉k. We replace in (2.4) every ∂x with ∂t and proceed as

before, that is, use the symmetry of A0 and use commutator terms to control the

highest derivatives. However, we can not use the skew-symmetry of ∂x. Instead,

there will be an extra term ∂t〈A0D
kv, Dkv〉 in the line (*). In short, we get an

estimate similar to (2.5) with this extra term and with all ∇x replaced with ∇t,x

d

dt
〈A0D

kv, Dkv〉−2〈A0∂tv,v〉k . (|∇t,xA0|∞‖∇t,xv‖m−1+|∇t,xv|∞‖∇t,xA0‖m−1)‖v‖m.

Since ∂tv is given in the PDE system (2.1) in terms of Aj, v and ∂xv, its Hm−1

(with m > d
2

+ 1) norm will be up-bounded by products of Hm−1 norms of these

terms – notice Hm−1 is an algebra. Thus, we arrive that

Proposition 2.3 Consider a solution to the system (2.1) v ∈ Hm(T2) with m < d
2
+

1. Assume A0, A1, ..., Ad are matrix-valued functions such that ∇t,xAj ∈ Hm−1(T2).

Then for any |k| ≤ m,

d

dt
〈A0D

kv, Dkv〉 . 〈A0∂tv,v〉k +

(∑

j=1,d

‖∇xAj‖m−1

)
‖∇t,xA0‖m−1‖v‖2

m.

§. Local existence of classical solutions. The above estimates imply clas-

sical results of finite time existence for symmetric hyperbolic systems. For simplicity,
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we consider (2.1) with constant A0 so that ∇t,xA0 vanishes. We also assume Aj(v)

depends linearly on v so that ∇Aj ∝ ∇v. Taking inner products
∑m

|k|=0〈·, ·〉k of

(2.1) with v and applying Property 2.2, we arrive at,

Proposition 2.4 The symmetric hyperbolic PDE system (2.1) with constant A0 and

linear Aj(v) satisfies an energy inequality for ‖v‖m = ‖v(t, ·)‖m (with m > d
2

+ 1),

d

dt
‖v‖m . ‖v‖2

m, (2.6)

and thus, starting with Hm initial data v0 := v(0, ·) ∈ Hm(T2), the solution v stay

smooth – that is, in Hm(T2) – for a finite time O
(

1
‖v0‖m

)
.

The more complicated case of variable A0 and nonlinear Aj’s follows the same

line. One should add regularity assumptions on ∇vAj(v) (j = 0, 1, ..., d) for esti-

mates on ∇t,xAj(v). The additional nonlinearity in turn adds more growth on the

energy inequality than just quadratic in (2.6),

d

dt
‖v‖m ≤ P (‖v‖m),

where P (·) is a positive and continuous function, typically a polynomial function.

The finite time existence result then readily follows.
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Chapter 3

Rotationally Dominant Shallow Water Equations

– Long Time Stability and Approximate Periodicity

We will now give the detail proof of the main result (1.11) on rotationally

dominant shallow water equations

∂th + u·∇h + (
1

σ
+ h)∇·u = 0 (3.1a)

∂tu + u·∇u +
1

σ
∇h − 1

τ
Ju = 0 (3.1b)

in the rotationally dominant regime δ = τ
σ2 � 1. Recall that in Section 1.2, a series

of successive iterations (1.9) are suggested to serve as approximation of the RSW

system. For the reader’s convenience, they are duplicated here,

∂thj + uj−1 ·∇hj + (
1

σ
+ hj)∇·uj−1 = 0, j = 2, 3, ... (3.2a)

∂tuj + uj ·∇uj +
1

σ
∇hj −

1

τ
u⊥

j = 0, j = 1, 2, ... (3.2b)

Therefore we will start with the first approximation (j = 1) – the pressureless

system – in Section 3.1, proving the Critical Threshold theorem of Liu and Tadmor

in [33]. A new argument is used, however, to derive higher order regularity results on

u1. Then the second approximation (that is, j = 2) is carried out in Section 3.2 with

careful adaptation of the original form in (3.2) so that the resulting approximate

RSW solution (h2,u2) is 2πτ -periodic and globally smooth while still staying close

to the exact solution. Section 3.3 completes the proof by employing the energy
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method to estimate the error (h,u) − (h2,u2).

Remark 3.1 We point out that the above approximate equation (3.2b) for j = 2 will

be not be exactly solved. In other words, the actual approximation u2, committing

abuse of notation, solves an adapted system (see (3.18b) below) that is “close” to

(3.2b).

Notations. Here and below, ‖ · ‖m denotes the usual Hm-Sobolev norm over the 2D

torus T2. And |·|∞ denotes the L∞ norm. We abbreviate a .m b for a ≤ cb whenever

the constant c only depends on the dimension m. We let Ĉ0 denote constants that

depend (nonlinearly) on m as well as the initial data |h0|∞ and |∇u0|∞. Then

a universal constant C0 := Ĉ0 · ‖(h0,u0)‖m will be used for estimates on Sobolev

regularity.

3.1 First Approximation: Pressureless System

The first iteration in (3.2) solely consists of a momentum equation while im-

plicitly setting h1 ≡ constant. The approximate equation (3.2b) for j = 1 therefore

contains no pressure term and is decoupled from the mass equation,

∂tu1 + u1 ·∇u1 −
1

τ
Ju1 = 0. (3.3)

Liu and Tadmor studied the global regularity of (3.3) in [33] and proved

Theorem 3.1 The pressureless system (3.3) admits C1 solution for all time if and

only if the initial data satisfy the critical threshold condition,

τω0(x) +
τ 2

2
η2

0(x) < 1, for all x ∈ T2. (3.4)
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Here, ω0 = ∂yu
(1)
0 − ∂xu

(2)
0 is the initial vorticity and η0 := λ1 − λ2 is the (possibly

complex-valued) spectral gap associated with the eigenvalues of gradient matrix ∇u0.

Moreover, these globally smooth solutions u1(t, ·) are 2πτ -periodic in time.

The authors gave two different proofs of (3.4) in [33]. One was based on the

spectral dynamics of λj(∇u1). Another was based on the flow map associated with

(3.3). Here we will note yet another version of the latter, from which not only the

C1 regularity but also the Sobolev Hm regularity will readily follow.

Taking gradient on the pressureless equation (3.3), we obtain a Riccatti-type

equation satisfied by the gradient matrix M := ∇u1,

M ′ + M2 =
1

τ
JM. (3.5)

Here {·}′ := ∂t + u1 ·∇ denotes differentiation along the particle trajectories

Γ0 := {(t,x) | ẋ(t) = u1(t,x(t)), x(t0) = x0}. (3.6)

Starting with M0 = M(t0,x0), the solution of the M equation (3.5) along the

corresponding trajectory Γ0 is given by

M = etJ/τ

(
I +

1

τ
J
(
I − etJ/τ

)
M0

)−1

M0, (3.7)

as long as the matrix I + 1
τ
J
(
I − etJ/τ

)
M0 is invertible. A straightforward calcu-

lation shows the determinant of this matrix is given by 1 − τω0 − τ2

2
η2

0 and (3.4)

follows.

The periodicity of the pressureless velocity u1 also relies on the Lagrangian

dynamics of (3.3): u′
1 = J

τ
u1 along Γ0 as defined in (3.6), yielding u1(t,x(t)) =
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etJ/τu0(x0) and therefore u1 is 2πτ -periodic along Γ0, that is u1(t+2πτ,x(t+2πτ)) =

u1(t,x(t)). On the other hand, we integrate x′ = u1 to find,

x(2πτ) = x(0), (3.8)

namely, the trajectories are also 2πτ -periodic in the sense that they come back to

their initial position at time t = 2πτ . Combining these facts, we conclude that

u1(t, ·) is 2πτ -periodic in time.

Since the C1 regularity of u1 is equivalent to the boundedness of its gradient

matrix M , it is worthwhile to expand the expression in (3.7) and compute its L∞

norm. Based on the Cayley-Hamilton theorem, we have,

max
t,x

|∇u1| = max
t,x

|M | = max
t,x

∣∣∣∣∣
polynomial(τ, etJ/τ ,∇u0)

(1 − τω0 − τ2

2
η2

0)+

∣∣∣∣∣ . (3.9)

This leads to the following corollary on the criticality of the Rossby number τ .

Corollary 3.1 Consider the pressureless system (3.3) subject to initial data u1(0, ·) =

u0(·). Then there exists a critical value τc = τc(∇u0) such that

|∇u1|∞ ≤ Ĉ0 for τ ∈ (0, τc), (3.10)

where Ĉ0 only depends on the initial gradient matrix ∇u0.

Proof. A simply continuity argument shows there exists a value τc := τc(ω0, η
2
0) such

that

1 − τω0 −
τ 2

2
η2

0 >
1

2
for τ ∈ (0, τc).

This estimate, combined with (3.9), immediately proves the corollary with constant

Ĉ0 := 2 · Polynomial(τc,∇u0). �
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Thus we find another weaker yet more intuitive characterization of the critical

threshold condition (3.4), that is, stronger rotation tends to stabilize the flow more

since 1
τ

indicates the magnitude of the rotational forcing. Observe, nevertheless,

that the critical threshold τc need not be small. In fact, regarding 1− τω0 − τ2

2
η0 as

a quadrature of τ , one finds, using the same idea of the above proof, that

τc = +∞ iff η2
0 < 0, ω0 <

√
−2η2

0 ,

which essentially corresponds to rotational initial data. We shall always limit our-

selves, however, to a finite value of τc.

The C1 regularity of u1, obtained without using energy method, provides a

closure to its Hm regularity estimates under the framework of the standard energy

method described in Chapter 2. Noticing the rotational term 1
τ
u⊥

1 on the RHS of

the pressureless system (3.3) does not contribute to the energy growth of u1, we

apply estimate 2.5 to (3.3),

d

dt
‖u1(t, ·)‖m ≤ Cm|∇u1(t, ·)|∞‖u1(t, ·)‖m.

Since u1 is 2πτ -periodic in time, it suffices to consider its energy growth over t ∈

[0, 2πτ). Solving the above Grownwell inequality for t < 2πτ and combining it with

Corollary 3.1, we arrive at the next corollary,

Corollary 3.2 Consider the pressureless system (3.3). Let m ≥ 0 be a fixed integer.

There exists a critical value τc such that we have, uniformly in time,

‖u1(t, ·)‖m ≤ e2πτĈ0‖u0‖m ≤ e2πτcĈ0‖u0‖m = C0 for all τ ∈ (0, τc). (3.11)
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3.2 Second Approximation: Linearized System

Once we established the global properties of the pressureless velocity u1, it is

then used as the starting point for the second iteration (3.2) with j = 2.

§. The Approximate Height h1. The approximate height equation (3.2a)

with j = 2 is given by

∂th2 + u1 ·∇h2 + (
1

σ
+ h2)∇·u1 = 0. (3.12)

Its formality suggests us to study functions transported by u1. Thus we give the

following lemma regarding the periodicity of such functions which is essentially

determined by the periodicity of u1.

Lemma 3.1 Let scalar function w(t, ·) be governed by

∂tw + ∇·(wu1) = 0, (3.13)

where u1(t, ·) is a globally smooth, 2πτ -periodic solution of (3.3). Then w(t, ·) is

2πτ -periodic in time.

Proof. Let φ := ∇ × u1 + 1
τ

denote the so called relative vorticity. By (3.3), it

satisfies the same equation as w, namely,

∂tφ + ∇·(φu1) = 0.

Coupled with (3.13), it is easy to show that the ratio w
φ

satisfies a transport equation

(∂t + u1 ·∇)
w

φ
= 0,
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which in turn implies that w
φ

remains constant along the trajectories Γ0 in (3.6).

We invoke the same argument used for the periodicity of u1, in particular, the

periodicity of Γ0 in (3.8). Hence w
φ
(t, ·) is also 2πτ -periodic . The conclusion follows

from the periodicity of u1(t, ·) and thus the periodicity of φ(t, ·). �

Equipped with this lemma, we conclude,

Theorem 3.2 Consider the mass equation (3.12) on a 2D torus, T2, linearized

around the pressureless velocity field u1 and subject to sub-critical initial data (h0,u0) ∈

Hm(T2) with m > 5. It admits a globally smooth solutions, h2(t, ·) ∈ Hm−1(T2)

which is 2πτ -periodic in time, and the following upper bounds hold uniform in time,

|h2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
, (3.14a)

‖h2(t, ·)‖m−1 ≤ C0

(
1 +

τ

σ

)
. (3.14b)

Proof. Apply Lemma 3.1 with w := σ−1+h2 to (3.12) to conclude that h2 is also 2πτ -

periodic. We turn to the examine the regularity of h2. First, its L∞ bound (3.14a) is

studied using the Maximum principle for (linear) Hyperbolic systems ( [20]) which

yields an inequality for |h2|∞ = |h2(t, ·)|∞,

d

dt
|h2|∞ ≤ |∇ · u1|∞(σ−1 + |h2|∞).

Combined with the L∞ estimate of ∇u1 in (3.10), this Grownwell inequality implies

|h2|∞ ≤ eĈ0t|h0|∞ +
1

σ

(
eĈ0t − 1

)
.

Just like before, due to the 2πτ -periodicity of h2 and the subcritical condition τ ≤ τc,

we replace the first t with τc and the second t with 2πτ in the above estimate and
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therefore conclude (3.14a).

For the Hm−1 estimate (3.14b), we use the energy method – in particular,

estimate (2.5) – to obtain a similar inequality for |h2|m−1 = |h2(t, ·)|m−1,

d

dt
‖h2‖m−1 .m |∇u1|∞‖h2‖m−1 +

(
1

σ
+ |h2|∞

)
‖u1‖m.

Applying the estimates on u1 in (3.10), (3.11) and the L∞ estimate on h2 in (3.14a),

we find the above inequality shares a similar form as the previous one. Thus the

estimate (3.14b) follows by the same periodicity and subcriticality argument as for

(3.14a). �

§. The Approximate Velocity Field u2. To continue with the second

approximation, we turn to the approximate momentum equation (3.2b) with j = 2.

∂tu2 + u2 ·∇u2 +
1

σ
∇h2 −

1

τ
u2 = 0. (3.15)

The following splitting approach will lead to a simplified linearization of (3.15) which

is “close” to (3.15) and still maintains the nature of our methodology. The idea is

to treat the nonlinear term and the pressure term in (3.15) separately, resulting in

two systems for ṽ ≈ u2 and v̂ ≈ u2,

∂tṽ + ṽ∇·ṽ − 1

τ
J ṽ = 0, (3.16a)

∂tv̂ +
1

σ
∇h2 −

1

τ
J v̂ = 0, (3.16b)

subject to the same initial data ṽ(0, ·) = v̂(0, ·) = u0(·).

The first system (3.16a), ignoring the pressure term, is identified as the pres-

sureless system (3.3) and therefore is solved as

ṽ = u1,
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while the second system (3.16b), ignoring the nonlinear advection term, is solved

using the Duhamel’s principle,

v̂(t, ·) = etJ/τ
(
u0(·) −

∫ t

0
e−sJ/σ

σ
∇h2(s, ·) ds

)

≈ etJ/τ
(
u0(·) −

∫ t

0
e−sJ/σ

σ
∇h2(t, ·) ds

)

= etJ/τu0(·) + τ
σ
J(I − etJ/τ )∇h2(t, ·).

Here, we make an approximation by replacing h2(s, ·) with h2(t, ·) in the integrand,

which introduces an error of order τ , taking into account the 2πτ period of h(t, ·).

Now synthesizing the two solutions listed above, we make a correction to v̂

by replacing etJ/τu0 with u1. This gives the very form of our approximate velocity

field u2 (with tolerable abuse of notations)

u2 := u1 +
τ

σ
J(I − etJ/τ )∇h2(t, ·). (3.18a)

A straightforward computation shows that this velocity field, u2, satisfies the fol-

lowing approximate momentum equation,

∂tu2 + u1 ·∇u2 +
1

σ
∇h2 −

1

τ
u⊥

2 = R (3.18b)

where R := τ
σ
J(I − etJ/τ )(∂t + u1 ·∇)∇h2(t, ·)

(by (3.12)) = − τ
σ
J(I − etJ/τ )

[
(∇u1)

>∇h2 + ∇(( 1
σ

+ h2)∇·u1)
]
.

(3.18c)

The Sobolev regularity and 2πτ -periodicity of h2(t, ·) lead to similar properties

of u2.

Corollary 3.3 Consider the velocity field u2 in (3.18b) subject to sub-critical initial

data (h0,u0) ∈ Hm(T2) with m > 5. Then, u2(t, ·) is a 2πτ -periodic in time, and

the following upper bound, uniformly in time, holds,

‖u2 − u1‖m−2 ≤ C0
τ

σ

(
1 +

τ

σ

)
. (3.19a)
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In particular, since ‖u1‖m ≤ C0 for subcritical τ , we conclude that u2(t, ·) has the

Sobolev regularity,

‖u2‖m−2 ≤ C0

(
1 +

τ

σ
+

τ 2

σ2

)
. (3.19b)

Remark 3.2 The estimate (3.19a) actually suggests a small difference ∼ O( τ
σ
) � 1

between u1 and u2 in terms of their spatial regularity. The improvement of u2 over

u1, however, should be understood in terms of their time derivatives. By (3.18a),

∂tu2 − ∂tu1 =
1

σ
J∇h2 + ...

whose leading term of order O( 1
σ
) is not bounded in the scaling regime of our study.

In other words, control of time derivatives plays an essential role in the presence of

fast oscillation brought by singular forcing such as pressure forcing 1
σ
∇h. This is

the subject of so called “bounded derivative method” (see [5] and references there

in).

We close this section by noting that the second iteration led to an approximate

RSW system linearized around the pressureless velocity field, u1, (3.12),(3.18b),

which governs our improved, 2πτ -periodic approximation, (h2(t, ·),u2(t, ·)) ∈ Hm−1(T2)×

Hm−2(T2).

3.3 Error Estimate: Energy Method

How close is (h2(t, ·),u2(t, ·)) to the exact solution (h(t, ·),u(t, ·))? Below we

shall show that their distance, measured in Hm−3(T2), does not exceed eC0tδ
(1−eC0tδ)2

.

Thus, for sufficiently small δ, the RSW solution (h,u) is “almost periodic” which in

turn implies its long time stability. This is the content of our main result.
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Theorem 3.3 Consider the rotational shallow water (RSW) equations on a fixed

2D torus,

∂th + u · ∇h +

(
1

σ
+ h

)
∇ · u = 0 (3.20a)

∂tu + u · ∇u +
1

σ
∇h − 1

τ
Ju = 0 (3.20b)

subject to initial data (h0,u0) ∈ Hm(T2) with m > 5 and α0 := min(1+σh0(·)) > 0.

Let

δ =
τ

σ2

denote the ratio between the Rossby number τ and the squared Froude number σ,

and assume the subcritical condition τ ≤ τc so that (3.4) holds. Assume σ ≤ 1 for

substantial amount of pressure forcing in (3.20b). Then, there exists a constant C0,

depending only on m, τc, α0 and in particular depending linearly on ‖(h0,u0)‖m,

such that the RSW equations admit a smooth, “δ-approximately periodic” solution

in the sense that there exists a near-by 2πτ -periodic solution, (h2(t, ·),u2(t, ·)) such

that

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤
eC0tδ

1 − eC0tδ
, (3.21)

where p is the “normalized height” such that 1+ 1
2
σp =

√
1 + σh and correspondingly

p2 satisfies 1 + 1
2
σp2 =

√
1 + σh2.

It follows that the life span of the RSW solution, t . tδ := 1 + ln(δ−1) is

prolonged due to the rapid rotation δ � 1, and in particular, it tends to infinity

when δ ↓ 0.

Corollary 3.4 The estimate on the actual height function h follows by applying the

Gagliardo-Nirenberg inequality in Proposition 2.1 to h−h2 = p(1+σ
4
p)−p2(1+σ

4
p2) =
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(p − p2)(1 + σ
4
(p − p2) + σ

2
p2),

‖h(t, ·) − h2(t, ·)‖m−3 . eC0tδ

(1 − eC0tδ)2
.

Proof of Theorem 3.3. We compare the solution of the RSW system (3.20a),(3.20b)

with the solution, (h2,u2), of approximate RSW system (3.12),(3.18b). To this end,

we rewrite the latter in the equivalent form,

∂th2 + u2 ·∇h2 +

(
1

σ
+ h2

)
∇ · u2 = (u2 − u1)·∇h2 +

(
1

σ
+ h2

)
∇ · (u2 − u1) (3.22a)

∂tu2 + u2 ·∇u2 +
1

σ
∇h2 −

1

τ
Ju2 = (u2 − u1)·∇u2 + R. (3.22b)

The approximate system differs from the exact one, (3.20a),(3.20b), in the

residuals on the RHS of (3.22a),(3.22b). We will show that they have an amplitude

of order δ. In particular, the comparison in the rotationally dominant regime, δ � 1

leads to a long-time existence of a smooth RSW solution, “nearby” the time-periodic

solution (h2,u2). To show that (h2,u2) is indeed an approximate solution for the

RSW equations, we proceed as follows.

We first symmetrize the both systems so that we can employ the standard

energy method for nonlinear hyperbolic PDEs. To this end, We set the new variable

(“normalized height”) p such that 1+ 1
2
σp =

√
1 + σh. Compressing notations with

U := (p,u)>, we transform (3.20a),(3.20b) into the symmetric hyperbolic quasilinear

system

∂tU + B(U,∇U) + K[U] = 0. (3.23)
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Here B(F,∇G) := A1(F)Gx + A2(F)Gy where A1, A2 are bounded linear functions

with values being symmetric matrices, and K[F] is a skew-symmetric linear operator

so that 〈K[F],F〉 = 0. By Proposition 2.4 that uses standard energy arguments,

e.g. [23], (or the more recent treatments in [26], [29]), the symmetry form of (3.23)

yields an exact RSW solution U, which stays smooth for finite time t . 1. The

essence of our main theorem is that for small δ’s, rotation prolongs the life span of

classical solutions up to t ∼ O(ln δ−1). To this end, we symmetrize the approximate

system (3.22a), (3.22b), using a new variable p2 such that 1 + 1
2
σp2 =

√
1 + σh2.

Compressing notation with U2 := (p2,u2)
>, we have

∂tU2 + B(U2,∇U2) + K(U2) = R (3.24)

where the residual R is given by

R :=




(u2 − u1)·∇p2 +
(

2
σ

+ p2

)
∇ · (u2 − u1)

(u2 − u1)·∇u2 − R


 ,

with R defined in (3.18c). We will show R is small which in turn, using the symmetry

of (3.23) and (3.24), implies that ‖U − U2‖m−3 is equally small. Indeed, thanks to

the fact that Hm−3(T) is an algebra for m > 5, every term in the above expression is

up-bounded in Hm−3 by the quadratic products of ‖u1‖m, ‖p2‖m−1, ‖u2‖m−2, ‖u2 −

u1‖m−2 up to a factor of O(1+ 1
σ
). We use previous results on the Sobolev regularity

of u1,u2 in Theorem 3.2, Corollary 3.3 and for p2, we use the non-vacuum condition,

1 + σh0 ≥ α0 > 0, to find that 1 + σh2 remains uniformly bounded from below,

and by standard arguments (carried out in Appendix A) ‖p2‖m−2 ≤ C0(1 + τ/σ).
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Summing up, the residual R does not exceed

‖R‖m−3 ≤ C2
0

(
δ +

τ

σ
+ ... +

τ 4

σ4

)
≤ C2

0δ, (3.25)

under sub-critical assumption τ ∈ (0, τc) and scaling assumptions δ < 1, σ < 1.

We now claim that the same upper bound holds for the error W := U2 − U

up to a factor increasing with time. Indeed, subtracting (3.23) from (3.24), we find

the error equation

∂tW + B(W,∇W) + K[W] = −B(U2,∇W) − B(W,∇U2) + R.

By the standard energy method using integration by parts and Sobolev inequalities

while utilizing the symmetric structure of B and the skew-symmetry of K, we arrive

at

d

dt
‖W‖2

m−3 .m ‖W‖3
m−3 + ‖U2‖m−2‖W‖2

m−3 + ‖R‖m−3‖W‖m−3.

Using the regularity estimates of U2 = (p2,u2)
> and the upper bounds on R

in (3.25), we end up with an energy inequality for ‖W(t, ·)‖m−3,

d

dt
‖W‖m−3 .m ‖W‖2

m−3 + C0‖W‖m−3 + C2
0δ, ‖W(0, ·)‖m−3 = 0.

A straightforward integration of the forced Ricatti equation (consult for example,

[32, §5]), shows that the error ‖W‖m−3 does not exceed

‖U(t, ·) − U2(t, ·)‖m−3 ≤
eC0tδ

1 − eC0tδ
. (3.26)

In particular, the RSW equations admits an “almost periodic” Hm−3(T2)-smooth

solutions for t ≤ 1
C0

ln 1
δ

for δ � 1. �
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3.4 Extension to Other Domains

Torus domains (that is period-in-space) are less likely to resemble the reality

as is the entire space R2 or bounded domain Ω ∈ R2, which leads to distinguishable

methodology in existing literature. In the rotationally dominant regime, however,

we make the following observation: the approximate solution (h2,u2) is 2πτ -periodic

and stays local in space without causing significant boundary effects or dispersive

effects. The exact solution (h,u), being O(δ) � 1 away, is therefore “entrapped”

around this approximate solution with little sensitivity to boundary conditions. To

be more precise, we state the following corollary for the case of R2 with compactly

supported initial data while leaving open the more subtle case of bounded domain

Ω ∈ R2.

Corollary 3.5 Consider the RSW equations (3.1) subject to Cauchy initial data

u0 ∈ Hm(R2) with m > 5. Suppose u0 is compactly supported. Then Theorem 3.3

holds true. In particular, the exact RSW solution stays close to a globally smooth,

2πτ -periodic approximation (h2,u2) such that, for t . ln(δ−1),

‖h(t, ·) − h2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 . eC0tδ

(1 − eC0tδ)2
. (3.27)

The proof follows exactly the same line as in previous sections since all the Sobolev-

Gagliardo-Nirenberg inequalities we have used are still valid for R2 and so is the

energy method. The only addition work is to verify the vanishing boundary con-

dition for the exact and approximate solutions. Clearly, it suffices to show finite

speed of wave propagation since the initial data is compactly supported. This is
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true according to the standard hyperbolic theory. Indeed, using that fact that

waves propagate at speeds u − 1
σ
,u,u + 1

σ
and the maximum principle for u, we

finish the proof.

Remark 3.3 The Hm estimate (3.27) implies that there is only O( eC0tδ
(1−eC0tδ)2

) amount

of energy in the exact solution (h,u) leaking out of supp(h2,u2), which is only O(τ)

away from supp(h0,u0) due to its 2πτ periodicity. This phenomenon differs from

the standard hyperbolic theory, that is, local waves propagate at one of the speeds

u − 1
σ
,u,u + 1

σ
and “carry away” substantial amount of energy over a fairly short

time scale 1
σ
.
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Chapter 4

Rotational Euler Equations with General Pressure Laws

We extend the method in last chapter to general Euler equations, in partic-

ular, the isentropic gas equations and ideal gas equations. As described in Section

1.2, these two systems are successive generalizations of the RSW equations and

share similar formality in such a way that our method of iterative approximation

remains effective for these general systems. In particular, the first approximation,

the pressureless system in terms of u1, is exactly the same due to it independence

of any pressure law. The second approximation, regarded as a specific linearization

around the pressureless velocity u1, extends naturally to general Euler systems. In

particular, we take advantage of the similar role of entropy S and density ρ (or h in

the RSW system) as passive scalars driven by u. One major complication, however,

is the energy method for the ideal gasdynamics due to increased nonlinearity in the

equations. Careful modification is carried out in Section 4.2 and we arrive at the

same conclusion of long time existence of approximately periodic solutions.
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4.1 Isentropic Gas Dynamics

In this section we extend the main theorem 3.3 to rotational 2D Euler equations

for isentropic gas,

∂tρ + u·∇ρ +

(
1

σ
+ ρ

)
∇ · u = 0 (4.1a)

∂tu + u·∇u +
1

σ2
∇(1 + σρ)γ−1 − 1

τ
Ju = 0 (4.1b)

where the Mach number σ plays the same role as the Froude number in the RSW

equation. In order to utilize the technique developed in the previous chapter, we

introduce a new variable h so that it satisfies 1 + σh = (1 + σρ)γ−1, so that the new

variables (h, u) satisfy

∂th + u·∇h + (γ − 1)

(
1

σ
+ h

)
∇ · u = 0 (4.2a)

∂tu + u·∇u +
1

σ
∇h − 1

τ
Ju = 0. (4.2b)

This is an analog to the RSW equations (3.20a),(3.20b) except for the additional

factor (γ − 1) in the mass equation (4.2a). We can therefore duplicate the steps

which led to Theorem 3.3 to obtain a long time existence for the rotational Euler

equations (4.2a),(4.2b). We proceed as follows.

An approximate solution is constructed in two steps. First, we use the 2πτ -

periodic pressureless solution, (h1 ≡ 0,u1(t, ·)) for sub-critical initial data, (h0,u0).

Second, we construct a 2πτ -periodic solution (h2(t, ·),u2(t·)) as the solution to an

approximate system of the isentropic equations, linearized around the pressureless
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velocity u1,

∂th2 + u1 · ∇h2 + (γ − 1)

(
1

σ
+ h2

)
∇ · u1 = 0,

u2 := u1 +
τ

σ
J
(
I − etJ/τ

)
∇h2(t, ·).

In the final step, we compare (h,u) with the 2πτ -periodic approximate solution,

(h2,u2). To this end, we symmetrize the corresponding systems using U = (p,u)>

with the normalized density function p satisfying 1 + 1
2

√
1

γ−1
σp =

√
1 + σh. Simi-

larly, the approximate system is symmetrized with the variables U2 = (p2,u2) where

1 + 1
2

√
1

γ−1
σp2 =

√
1 + σh2. We conclude

Theorem 4.1 Consider the rotational isentropic equations on a fixed 2D torus,

(4.1) subject to initial data (ρ0,u0) ∈ Hm(T2) with m > 5 and α0 := min(1 +

σρ0(·)) > 0.

Let

δ =
τ

σ2

denote the ratio between the Rossby and the squared Mach numbers, and assume

the subcritical condition τ ≤ τc so that (3.4) holds. Assume σ < 1 for substantial

amount of pressure in (4.1b). Then, there exists a constant C0, depending only

on m, ‖(ρ0,u0)‖m, τc, such that the RSW equations admit a smooth, “approximate

periodic” solution in the sense that there exists a near-by 2πτ -periodic solution,

(ρ2(t, ·),u2(t, ·)) such that

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 ≤
eC0tδ

1 − eC0tδ
(4.3)
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where p is the normalized density function satisfying 1 + σp = (1 + σρ)
γ−1

2 and p2

results from the same normalization for ρ2.

It follows that the life span of the isentropic solution, t . tδ := 1 + ln(δ−1)

is prolonged due to the rapid rotation δ � 1, and in particular, it tends to infinity

when δ → 0.

4.2 Ideal Gasdynamics

We turn our attention to the full Euler equations in a 2D torus,

∂tρ + ∇·(ρu) = 0

∂tu + u·∇u + ρ−1∇p̂(ρ, S) = fJu

∂tS + u·∇S = 0,

where the pressure law is given as a function of the density, ρ and the specific

entropy S, p̂(ρ, S) := ργeS. It can be symmetrized by defining a new variable – the

“normalized” pressure function,

p :=

√
γ

γ − 1
p̂

γ−1
2γ

and by replacing the density equation (4.4a) by a (normalized) pressure equation so

that the above system is recast into an equivalent and symmetric form,

eS∂tp + eSu·∇p + Cγe
Sp∇·u = 0

∂tu + u·∇u + Cγe
Sp∇p = fJu

∂tS + u·∇S = 0
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where constant Cγ := γ−1
2

. Here, it is the exponential function eS and triple products

such as eSp∇p that make the ideal gas system a nontrivial generalization of the RSW

and isentropic gas equations.

We then proceed to the nondimensional form by substitution,

u → Uu′, p → P(1 + σp′), S = ln(pρ−γ) → ln(PR−γ) + σS ′

After discarding all the primes, we arrive at a nondimensional system

eσS∂tp + eσSu·∇p + Cγ

(
eσS − 1

σ
+ eσSp

)
∇·u = −Cγ

1

σ
∇·u (4.5a)

∂tu + u·∇u + Cγ

(
eσS − 1

σ
+ eσSp

)
∇p = −Cγ

1

σ
∇p +

1

τ
Ju (4.5b)

∂tS + u·∇S = 0, (4.5c)

where σ is the Mach number and τ is the Rossby number. With abbreviated notation

U := (p,u, S)>, the above system is written in a compact form,

A0(S)∂tU + A1(U)∂xU + A2(U)∂yU = K[U]. (4.6)

Here, Ai(i = 0, 1, 2) are symmetric-matrix-valued functions, nonlinear in U and in

particular A0 is always positive definite. The linear operator K is skew-symmetric

such that 〈K[U],U〉 = 0.

Two successive approximations are then constructed based on the iterations

(1.9), starting with j = 1,

p1 ≡ constant

∂tu1 + u1 ·∇u1 =
1

τ
Ju1

S1 ≡ constant.
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Identified as the pressureless solution, u1 is used to linearize the system, resulting

in the following approximation

∂tp2 + u1 ·∇p2 + Cγp2∇·u2 = −Cγ
1

σ
∇·u2 (4.7a)

u2 − u1 =
τ

σ
J(I − etJ/τ )Cγe

σS2(1 + σp2)∇p2 (4.7b)

∂tS2 + u1 ·∇S2 = 0 (4.7c)

The 2πτ -periodicity and global regularity of U2 := (p2,u2, S2)
> comes from

the same line of argument as for the RSW equations in Section 3.2 together with

the following nonlinear estimate for exponential functions such as eσS ,

‖ef − 1‖m = ‖
∑∞

j=1
fj

j!
‖m

.m

∑∞
j=1

(Cm |f |∞)j−1

j!
‖f‖m

= eCm|f |∞−1
Cm|f |∞ ‖f‖m

where we recursively apply the Gagliardo-Nirenberg inequality to such terms as

‖f j‖m. Notice the entropy variable (both the exact and approximate ones) always

satisfies a transport equation and therefore is conserved along particle trajectories,

which implies that the L∞ norm of the entropy variable is an invariant. Thus, we

arrive at an estimate

‖eσS − 1‖m ≤ σĈ0‖S‖m. (4.8)

And the same type of estimate holds true for S2.

Finally, we subtract the approximate system (4.7) from the exact system (4.6),

arriving at an error equation for W := U−U2 that shares the form as for the RSW

system in Section 3.3, except that Ai(U)−Ai(U2) 6= Ai(U−U2) due to nonlinearity

which is essentially quadratic in the sense that,
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Proposition 4.1 Fix any number n > 2. Then, for any U,U2 ∈ Hn(T2) that

satisfy

‖A0(U) − A0(U2)‖n . ‖S − S2‖n,

‖Ai(U) − Ai(U2)‖n . ‖U − U2‖2
n + ‖U − U2‖n, i = 1, 2,

Proof. Consider a typical term of Ai, e.g. eσSp. Applying (4.8) together with

Gagliardo-Nirenberg inequality to eσS −eσS2 = eσS2(eσ(S−S2)−1), we can show ‖eσS −

eσS2‖n . ‖S − S2‖n. The estimate on ‖eσSp − eσS2p2‖n then follows by applying

identity ab−a2b2 = (a−a2)(b−b2)+(a−a2)b2 +a2(b−b2) together with the triangle

inequality and the G-N inequality. Here regularity of S2 and p2 is a priori known.

�

Yet another nonlinearity comes from ∇t,xA0 – consult Proposition 2.3. For-

mally, we have ∇t,xA0 ∼ σeσS∇t,xS ∼ σeσS(u·∇xS + ∇xS) which manifests as two

more multiplications in the energy estimate,

d

dt
‖W‖m−3 . ‖W‖5

m−3 + ... + ‖W‖m−3 + δ, ‖W(0, ·)‖m−3 = 0,

for which the solution has the same (asymptotic) behavior as for the quadratic

Riccati equations derived in the previous sections.

Theorem 4.2 Consider the (symmetrized) rotational Euler equations on a fixed 2D

torus (4.5) subject to initial data (p0,u0, S0) ∈ Hm(T2) with m > 5.

Let

δ =
τ

σ2
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denote the ratio between the Rossby and the squared Mach numbers, and assume

the subcritical condition τ ≤ τc so that (3.4) holds. Assume σ < 1 for substantial

amount of pressure forcing in (4.5b).

Then, there exists a constant C0, depending only on m, ‖(p0,u0, S0)‖m, τc, such

that the ideal gas equations admit a smooth, “approximate periodic” solution in the

sense that there exists a near-by 2πτ -periodic solution, (p2(t, ·),u2(t, ·), S2(t, ·)) such

that

‖p(t, ·) − p2(t, ·)‖m−3 + ‖u(t, ·) − u2(t, ·)‖m−3 + ‖S(t, ·) − S2(t, ·)‖m−3 ≤
eC0tδ

1 − eC0tδ
.

(4.9)

It follows that the life span of the ideal gas solution, t . tδ := 1+ln(δ−1) is prolonged

due to the rapid rotation δ � 1, and in particular, it tends to infinity when δ ↓ 0.
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Chapter 5

Significance of δ: Periodicity vs. Dispersion

Is the new parameter δ =
τ

σ2
a random choice just for convenience of analysis

or is it mathematically significant? In this chapter, we will discuss the role of δ in

determining how fast the flow disperses away to farfield versus how close the flow

retains its time-periodicity. To be precise, we show that, in the R2 domain, the

divergence field ∇·u(t, x) decays as

|∇·u| .





√
1/δ t−3/4, for τ ≤ σ

√
σ t−3/4, for τ ≥ σ

with an additional nonlinear growth of order O(et) over time scale t . O(1). There-

fore, when both δ and σ−1 approaches infinity, the divergence disperses so fast that

any approximate periodicity is not retained. This asymptotic regime corresponds

large pressure (σ−1 � 1) and less dominant rotation δ � 1. We remark that

rewriting the above estimate in the form

|∇·u| . σ√
min{τ, σ}

t−3/4

reveals the fact that the dispersive property is determined by the winner of the

competition between rotation (∼ 1
τ
) and pressure (∼ 1

σ
). In such a sense, our

new parameter δ serves a critical parameter that indicates whether the dynamics is

periodic or dispersive.

In the center of our analysis is Strichartz type estimate in the spirit of [43]
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regarding decay properties of linear wave equations in unbounded domains. The

book of Chemin etc. [6] reexamines this approach in the context of geophysical

equations. The starting point is the linearized RSW equations

∂th +
1

σ
∇·u = 0, (5.1a)

∂tu +
1

σ
∇h − 1

τ
Ju = 0. (5.1b)

Straightforward calculation shows that the divergence f := ∇·u satisfies the Klein-

Gordon equation

∂ttf − 1

σ2
∆f +

1

τ 2
f = 0, (5.2)

subject to initial data f |t=0 = ∇·u0, ∂tf |t=0 = − 1
σ
∆h0+

1
τ
∇×u0. This equation shows

two competing mechanism: wave propagator ∂tt −
1

σ2
∆ and harmonic oscillator

∂tt +
1

τ 2
. Regarding the K-G equation (5.2) as a perturbation of harmonic oscillation

∂ttf +
1

τ 2
f = 0, we use Fourier transform to obtain their dispersion relations,

$(ξ) = ±
√

1

τ 2
+

1

σ2
|ξ|2 and $0(ξ) = ±1

τ
, (5.3)

which implies the difference of their solution phases, increasing with time, is

t$ − t$0 =
t

τ

(√
1 +

σ2

τ 2
|ξ|2 − 1

)
∼ t |ξ| τ

σ2
.

This hand-waving argument suggests that it is necessary to require δ = τ
σ2 � 1

instead of τ
σ
� 1 for the harmonic oscillator to dominate the wave dynamics. This

intuition is also related to ∇ξ$ whose behavior essentially decides the L∞ decay

rate of the K-G equation. Indeed, the previous computation amounts to estimating,

t$(ξ)− t$0(ξ) = t($(ξ) − $(0)) ∼ t|ξ|∇ξ$(ξ)
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This chapter is organized as following. In Section 5.1, we will use Strichartz

estimate to derive the L∞ decay rate for f(t, ·) in the linear K-G equation (5.2)

in R2 domain. There are existing work of Klainerman [25] for the R3 case and

Hömander [20] for the harder case of R2. Our argument below, however, takes

a different perspective on various regimes of physical parameters τ, σ and δ upon

which the nature of underlying flow hinges. We then discuss in Section 5.2 the fully

nonlinear RSW equations using energy estimate on nonlinear terms which are O(1)

in finite time.

We comment here that the decay of divergence field corresponds to the “Rossby

adjustment” in geophysical sciences. It has been long established that the at-

mosphere and ocean are in a permanent process of filtering out compressible waves

and approaching the state of geostrophic balance (consult e.g. the textbooks of

[39], [22]). Our analytical result shows that the parameter δ plays the very role

of determining how fast the dynamics converges to the incompressible, geostrophic

balance. We note by passing that the drastic effects of nonlinearity, especially in the

long term, shall not be underestimated – consult Zeitlin, etc. [47, 48] for multiple

time scale analysis of nonlinear geostrophic adjustment.

5.1 Linear Theory: Strichartz Estimate

Let f̂(t, ξ) denote the Fourier form of f(t, x). Consider a wave propagator

associated with phase function φ(ξ, x/t) so that, starting with initial data f0(·), the
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wave solution is given by

f(t, x) = ∼
∫

R2

eitφ(ξ,x/t)f̂0(ξ) dξ (5.4)

where ∼
∫

denotes integral with a constant prefactor. The phase function for the K-G

equation is

φ±(ξ, x/t) := ±$(ξ) − x

t
= ±

√
1

τ 2
+

1

σ2
|ξ|2 − ξ · x

t
(5.5)

with the dispersion relation $(ξ) given in (5.3). Observe there are two phase func-

tions with opposite signs. The corresponding amplitude functions f̂±
0 (ξ) are deter-

mined from initial data f0 and ∂tf0 by

f̂±
0 (ξ) =

1

2

(
f̂0(ξ) ±

∂̂tf 0(ξ)

i$(ξ)

)
. (5.6)

The following lemma gives estimates on growth of f̂±
0 (ξ) at farfield in terms

of the RSW initial data (h0,u0).

Lemma 5.1 Consider f̂±
0 (ξ) in (5.6) with f0(x), ∂tf0(x) given under (5.2). Then

for any integer α > 0,

∥∥∥|ξ|αf̂±
0

∥∥∥
L∞

. ‖(h0,u0)‖W 1,α+1

∥∥∥|ξ|α∇ξf̂
±
0

∥∥∥
L∞

. ‖(h0,u0, xh0, xu0)‖W 1,α+1

Here and below, the hidden constant behind “.” is independent of parameter τ, σ

and initial data.

Proof. By (5.6), it suffices to prove these bounds for f̂0 and ∂̂tf0/$. Observe from

f0(x) = ∇·u0(x), ∂tf0(x) = − 1
σ
∆h0(x) + 1

τ
∇× u0(x) that

f̂0(ξ) = ξ · û0, ∂̂tf0 =
1

σ
|ξ|2ĥ0 +

i

τ
ξ × û0
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and in particular,

|∂̂tf0| . $ · |ξ ̂(h0,u0)|.

Upon using standard Fourier argument, we arrive at the first estimate regarding f̂±
0 .

For the case of ∇ξf̂
±
0 , we differentiate to get

∇ξf̂0 = û0 + ξ ·∇ξû0, ∇ξ
∂̂tf0

$
=

∇ξ∂̂tf0

$
− ∇xi$

$

∂̂tf0

$
.

It is easy to check that

|∇ξ∂̂tf0| . $ · (| ̂(h0,u0)| + |ξ∇ξ
̂(h0,u0)|)

and
∣∣∣∣
∇ξ$

$

∣∣∣∣ . 1.

The second estimate then readily follows. �

Therefore, we consider f̂0 = f̂+
0 in the following argument unless specified

otherwise.

§. Integration by Parts. We aim to obtain L∞ bound on f given in the form

(5.4). Fast oscillation, caused by eitφ for large t, effectively leads to cancelation in L∞

type of estimates – consider a heuristic example

∣∣∣∣
1∫
0

eiNxf(x) dx

∣∣∣∣ .
1

N
|f ′|∞. To this

end, we apply integration by parts to (5.4) with the help of identity
−iS ·∇ξ

|S|2t
eitφ =

eitφ where the phase gradient S = S(ξ, x/t) := ∇ξφ(ξ, x/t),

f(t, x) = ∼
∫

R2

eitφf̂0 dξ

= ∼
∫

R2

[
1 − iS ·∇ξ

1 + |S|2t
eitφ

]
f̂0 dξ

= ∼
∫

R2

eitφ

[
f̂0

1 + |S|2t +
i∇·(Sf̂0)

1 + |S|2t −
i(S ·∇|S|2)tf̂0

(1 + |S|2t)2

]
dξ
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Here, there is no contribution from boundary integral under mild growth conditions,

e.g. S ∼ |ξ| and f̂0 . |ξ|−1 as |ξ| → ∞. Upon a straightforward estimation on the

right hand side, we arrive at the following lemma,

Lemma 5.2 Consider a wave solution f(t, x) give in (5.4). Define the phase gra-

dient

S(ξ, x/t) := ∇ξφ(ξ, x/t).

Assume growth condition S ∼ |ξ| and f̂0 . |ξ|−1 as |ξ| → ∞. Then,

|f(t, x)| .

∥∥∥∥∥
f̂0

1 + |S|2t

∥∥∥∥∥
L1

+

∥∥∥∥∥
|∇ξS|f̂0

1 + |S|2t

∥∥∥∥∥
L1

+

∥∥∥∥∥
|S|∇ξf̂0

1 + |S|2t

∥∥∥∥∥
L1

.

Here, the RHS depends on t and x/t. This lemma suggests that the time decay of

f(t, x) be associated with the behavior of |S(ξ, x/t)|, in particular, the stationary

set in which |S(ξ, x/t)| = 0.

§. L∞ Estimate of linear K-G solution. Now we turn to the specific case

of K-G equation (5.2) in 2D with phase function given in (5.5). The phase gradient

is therefore given by

S(ξ, t) =
σ−2ξ√

τ−2 + σ−2|ξ|2
− x

t
= a(|ξ|)ξ − x

t
(5.7)

where the auxiliary function a(r) is given by

a(r) :=
σ−2

√
τ−2 + σ−2r2

Multiplying min{τ, σ}/ min{τ, σ} to the RHS gives

Lemma 5.3

a(r) =
σ−2 min{τ, σ}√

min2{1, σ/τ} + min2{τ/σ, 1}r2
≥ κ√

1 + r2
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where the auxiliary parameter

κ := min{δ, σ−1} =





δ, if τ ≤ σ

σ−1, if τ ≥ σ

This lemma reveals the role of δ in the strong rotation regime τ ≤ σ. On the other

hand, when pressure is stronger, i.e. τ ≥ σ, the key parameter turns to σ−1.

We then compute ∇ξS,

∇ξS(ξ, x/t) = a(|ξ|)I − σ2a3(|ξ|)ξ ⊗ ξ.

Since |ξ ⊗ ξ| . |ξ|2 . σ−2a−2, we have estimate

|∇ξS(ξ, x/t)| . a(|ξ|). (5.8)

Lemma 5.2 and the formality of S,∇ξS in (5.7), (5.8) suggests us to use polar

representation. To this end, we introduce the following lemma regarding integration

with respect to angular variable.

Lemma 5.4 Consider S given by (5.7) in polar coordinates, S = S(r, θ, x/t). Then

∫ 2π

0

1

1 + |S|2t dθ . 1/
√

1 + 2t(a2r2 + z2) + t2(a2r2 − z2)2,

where z := |x/t|.

Proof. Assume x/t = (z, 0) for simplicity since the following proof is invariant under

rotation. Then rewrite |S|2 as

|S|2 = (a r cos θ − z)2 + (a r sin θ)2

= a2r2 + z2 − 2a rz cos θ
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and therefore the integral

∫ 2π

0

1

1 + |S|2t
dt is of the elliptic type and can be calcu-

lated using e.g. Mathematica (an online version [36]). Indeed, it is easy to verify

that
∫

1

α + β sin θ
dθ =

2√
α2 − β2

arctan

(√
α − β

α + β
tan(θ/2)

)
,

where arctan function is always bounded by π/2. �

We remark that this lemma indicates the time decay of angular integral at

rate ∼ O(1/t) that degenerates to O(1/
√

t) when ar = z ↔ aξ = x/t ↔ |S| = 0,

namely, in the stationary set.

We will now prove the main result of this chapter,

Theorem 5.1 Consider the linear RSW equations (5.1) subject to compactly sup-

ported, Hm(R2) initial data with m > 5. Let

κ := min{δ, σ−1} =
1

σ2
min{τ, σ}.

Assume κ ≥ 1 for substantial amount of pressure (σ−1 ≥ 1) and avoidance of

dominant rotation (δ 6< 1). Then the divergence field satisfies estimate,

|∇·u(t, x)| .
1√
κ

(
1

t1/2
+

1

t3/4

)

for t ≥ 2/κ, |x/t| ≤
√

κ/2. In particular, when κ ↑ ∞, the divergence field ∇·u(t, x)

approaches zero at any fixed time-space point (t, x) (for t > 0).

Proof. Combining Lemma 5.2, 5.4 with the definition of S in (5.7) and estimate on

∇ξS in (5.8), it suffices to consider

|f(t, x)| .
∫ ∞

0

1 + a + ar + z√
1 + 2t(a2r2 + z2) + t2(a2r2 − z2)2

g(r) r dr (5.9)
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where z = |x/t| and g(r) := maxθ{|f̂0(r, θ)| + |∇ξf̂0(r, θ)|}.

We then use the standard decomposition technique to split the above integral

into frequency intervals of r. The choice of these intervals relies on the stationary

set of S which, after angular integration, translates to a2r2 = z2 as suggested by

the leading term on the denominator of the integrand in (5.9). Since by assumption

z ≤
√

κ/2, it is reasonable to consider a low frequency intervals IL := [0, 1/
√

κ] and

a high frequency IH := (1/
√

κ,∞). The latter interval is high enough so that by

Lemma 5.3 and the scaling assumption κ ≥ 1,

r ∈ IH ; a2r2 ≥ κ2

1 + r2
r2 >

κ2

1 + 1/κ

1

κ
≥ κ

2
≥ 2z2, (5.10)

namely IH is far away from the stationary set {S = 0}.

On the low frequency interval IL = [0, 1/
√

κ]. The shortness of this interval

allows us not to rely on the possibly degenerate leading term on the denominator of

the integrand in (5.9). Thus, we discard this (positive) leading term,

∫

IL

1 + a + ar + z√
1 + 2t(a2r2 + z2) + t2(a2r2 − z2)2

g(r) r dr

≤
∫

IL

1 + a + ar + z√
1 + 2t(a2r2 + z2)

g(r)r dr

.
∫

IL

1 + a + ar + z

1 +
√

t(ar + z)
g(r)r dr

=

∫

IL

{
1

1 +
√

t(ar + z)
+

1

a−1 +
√

t(r + a−1z)
+

1

(ar + z)−1 +
√

t

}
g(r)r dr

<

∫

IL

{
1√
tar

+
1√
tr

+
1√
t

}
g(r)r dr

. 1√
κt

‖g‖L∞.

In the last step we used Lemma 5.3 together with scaling assumption κ ≥ 1 and the
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range of IL = [0, 1/
√

κ].

On the high frequency interval IH = (1/
√

κ,∞). As we argued in (5.10), the

leading term t2(a2r2−z2)2 does not vanish and is bounded from below by t2(a2r2/2)2.

Therefore,

∫

IH

1 + a + ar + z√
1 + 2t(a2r2 + z2) + t2(a2r2 − z2)2

g(r) r dr

.
∫

IH

1 + a + ar + z

1 + ta2r2
g(r) r dr

=:

∫

IH

F (a(r), r)g(r)r dr.

Considering F as a function of two independent variables, we will show F (a, r) ≤

F (κ/
√

1 + r2, r). Indeed, since Lemma 5.3 claims that a ≥ κ/
√

1 + r2, it suffices to

prove ∂aF (a, r) ≤ 0 which leads to proving

∂

∂a

a

1 + ta2r2
=

1 − ta2r2

(1 + ta2r2)2
≤ 0.

This is true due to the assumption t ≥ 2/κ and the estimate (5.10). We then carry

on previous computation

∫

IH

F (a(r), r)g(r)r dr ≤
∫

IH

F (κ/
√

1 + r2, r)

=

∫

IH

(1 + z)(1 + r2) + κ
√

1 + r2(1 + r)

1 + r2 + κ2tr2
g(r)r dr

.
∫

IH

κ(1 + r2)

1 + κ2tr2
rg(r) dr

≤
∥∥∥∥

r

[1 + κ2tr2]5/4

∥∥∥∥
L1

· ‖κ(1 + r2)g(r)[1 + κ2tr2]1/4‖L∞

. 1

κ2t
‖κ(1 + r2)g(r)[1 + κ2tr2]1/4‖L∞

. 1

κ1/2t3/4
‖(1 + r2)5/4g(r)‖L∞,
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where we repeatedly use scaling assumptions κ ≥ 1, t ≥ 2/κ, z ≤
√

κ/2 to simplify

the computation.

Combining these two intervals, we arrive at an estimate for f(t, x),

|f(t, x)| . 1√
κ

(
1

t1/2
+

1

t3/4

)
‖(1 + r2)5/4g(r)‖L∞.

In the final step, we apply Lemma 5.1 to estimate growth of g(r) = maxθ{|f̂0(r, θ)|+

|∇ξf̂0(r, θ)|}, which turns out to be bounded by the W 1,4 norm of (h0,u0) and

(xh0, xu0). Since the initial data is compactly supported and in Hm(R2) (m > 5), a

simple Sobolev estimate shows that ‖(1 + r2)5/4g(r)‖L∞ is bounded. Therefore, we

reach the conclusion. �

We remark here that the above proof emphasizes on effects of parameter

regimes and therefore does not yield the usual O(1/t) decay rate for large time

([20]).

5.2 Nonlinear System

We now turn to the fully nonlinear RSW (with a different notation from pre-

vious chapters)

∂th1 +
1

σ
∇·u1 = −∇·(h1u1) (5.11a)

∂tu1 +
1

σ
h1 −

1

τ
Ju1 = −u1 ·∇u1 (5.11b)

By the standard energy method (e.g. Proposition 2.4), starting with Hm (m > 2)

initial data, ‖(h1(t, ·),u1(t, ·)‖Hm) stays bounded for finite time. Thus, the nonlinear

terms on the RHS of the above system stays bounded for finite time also. We then
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regard it as a perturbed system of the linear RSW equations (5.1) and take the

difference, resulting as a linear system with an O(1) RHS for finite time. By the

energy method for linear system, we obtain

Corollary 5.1 Consider the nonlinear RSW equations (5.11). Under the same

assumptions as for Theorem 5.1, there exists a constant C such that starting with

smooth initial data ‖(h0,u0)‖Hm ≤ C,

|∇·u1(t, x)| . 1√
κ

1

t3/4
+ t

for t ∈ [2/κ, 1] and |x/t| <
√

κ/2. In particular, |∇·u1(2/
√

κ, 0)| . 1/κ1/8 ↓ 0 when

κ ↑ ∞.
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Chapter 6

Future Works

There are several open questions raised in this thesis. One regards effects

of boundary on rotationally dominant flows. Because strong rotation restraints

most of the energy locally, we conjecture that the flow stays almost local even

in the presence of boundary and thus our main result on long time existence of

approximately periodic solutions still remains valid. Another question is on the

dispersive phenomenon on periodic domains. Even though energy can not escape to

farfield in periodic settings, dispersion in short time may still happen provided the

support of initial data is localized enough.

For inertial oscillations governed by the pressureless system, there are motions

other than circular motion in various settings. For instance, background flow may

lead to elliptic oscillations. Earth geometry plays an important role especially in

large scales ([38]). Periodicity, nevertheless, appears in many cases. The question

is therefore: can we extend our methodology if the pressureless flow is non-circular

but periodic? The averaging methods ([40]), originally applied to dynamic systems,

provide possible approaches to deal with general periodic or near periodic dynamics.

In Chapter 5, we discussed the dispersion phenomenon of linear RSW equa-

tions but didn’t fully explore the nonlinear case. Given existing results on fast wave

averaging/filtering in the regime τ ∼ σ ↓ 0 and τ ∼ O(1), σ ↓ 0 for fully nonlinear
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systems, can we obtain similar asymptotic results for the δ ↑ ∞ case? In geo-

physical terms, how does the nonlinear Rossby adjustment affect the flow dynamics

when δ � 1 rather than σ−1 � 1? It will also be interesting to study the limiting

dynamics in the large δ regime.
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Chapter A

Appendix. Staying away from vaccum

We will show the following proposition on the new variable p2 defined in Section

3.3.

Proposition A.1 Let p2 satisfies

1 +
1

2
σp2 =

√
1 + σh2 (A.1)

where h2 is defined as in (3.12), that is,

∂th2 + u1 ·∇h2 +

(
1

σ
+ h2

)
∇·u1 = 0 (A.2)

subject to initial data h2(0, ·) = h0(·) that satisfies the non-vacumm condition 1 +

σh0(·) ≥ α0 > 0. Then,

|p2|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2‖n ≤ C0

(
1 +

τ

σ

)
.

The proof of this proposition follows two steps. First, we show that the L∞ and

Hn norms of p2(0, ·) are dominated by h2(0, ·) due to the non-vacumm condition.

Second, we derive the equation for p2 and obtain regularity estimates using similar

techniques from Section 3.2.

Step 1. For simplicity, we use p := p2(0, ·) and h := h2(0, ·).

Solving (A.1) and differentiation yield

p =
2h√

1 + σh + 1
, ∇p =

∇h√
1 + σh

.
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Apparently |p|∞ ≤ |h|∞.

The above identities, together with the non-vacumm condition imply

‖p‖1 ≤ 2‖h‖1 and |∇p|L∞ ≤ |∇h|L∞
√

α0
.

For higher derivatives of p, we use the following recursive relation. Rewrite

(A.1) as p + 1
4
σp2 = h and then take the k-th derivative on both sides

Dkp +
1

4
σ2pDkp +

1

4
σ
(
Dk(q2) − 2pDkp

)
= Dkh

so that taking L2 norm of this equation yields

I − II :=

∥∥∥∥(1 +
1

2
σp)Dkp

∥∥∥∥
0

− 1

4
σ
∥∥Dk(q2) − 2pDkp

∥∥
0
≤ ‖Dkh‖0.

Furthermore, we find I ≥ √
α0‖Dkp‖0 by (A.1) and the non-vacumm condition. We

also find II .n |∇p|∞‖p‖|k|−1 by Gargliado-Nirenberg inequalities. Thus we arrive

at a recursive relation

‖p‖|k| ≤ Ĉ0(‖p‖|k|−1 + ‖h‖|k|)

which implies that the Hn norm of p2(0, ·) = p is dominated by ‖h2(0, ·)‖n = ‖h‖n.

Step 2. We derive an equation for p2 using relation (A.1) and equation (A.2),

∂tp2 + 2u1 ·∇p2 +

(
1

σ
+ p2

)
∇·u1 = 0.

This equation resembles the formality of the approximate mass equation (3.12) for

h2 and thus we apply similar technique to arrive at the same regularity estimate for

p2,

|p2(t, ·)|∞ ≤ Ĉ0

(
1 +

τ

σ

)
,

‖p2(t, ·)‖n ≤ C0

(
1 +

τ

σ

)
.
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