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This thesis is concerned with the solution of large-scale eigenvalue prob-

lems. Although there are good algorithms for solving small dense eigenvalue

problems, the large-scale eigenproblem has many open issues. The major

difficulty faced by existing algorithms is the tradeoff of precision and time,

especially when one is looking for interior or clustered eigenvalues.

In this thesis, we present a new method called the residual Arnoldi
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the theoretical background of the residual Arnoldi method. In the second

part, we describe RAPACK, a numerical package implementing the residual

Arnoldi method. In the last part, numerical experiments illustrate the use

of the package and show the practicality of the method.
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Chapter 1. Introduction

This chapter gives an overview of the entire thesis, as well as the necessary
background. Section 1.1 is the synopsis of the thesis. Section 1.2 introduces
the eigenvalue problem and related definitions and theorems. Section 1.3 and
1.4 describe the basic techniques used for solving large eigenvalue problems.
Section 1.5 presents the residual Arnoldi method and illustrates its numerical
properties via some simple examples. Related work that has appeared in the
literature will be discussed in the last section.

1.1 Synopsis

In scientific computing matrix eigenvalue problems arise naturally from many
sources; for example, numerical methods for solving the finite element for-
mulation of the wave equation [10]. A number of problems in statistic and
stability analysis can be also reduced to matrix eigenvalue problems; for
example, the total least square problem and Markov chain models.

When the matrices in problem are large, methods for dense matrices, such
as the QR method [41], may be impractical. First, many large matrices are
sparse, and therefore are stored in compact data structures. The methods
for dense eigenvalue problems are designed to compute the full eigensystem,
which includes all the eigenvalues and eigenvectors. In general, the computed
eigenvectors are dense, and therefore it is impractical to store and manipulate
them. Second, in some applications, matrices are not even formed explicitly.
They are represented by formulas or functions, and the only operation that
can be performed on them is matrix-vector multiplication. The decomposi-
tions that are required by methods for dense matrices are not suitable for
such matrices.

To solve large-scale eigenvalue problems, subspace methods are usually
preferable. The idea of a subspace method is to generate a subspace, and
extract individual eigenvector approximations from an associated small eigen-
problem.
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In subspace methods, Krylov subspaces are frequently used. They have
two properties that make them popular. First, a Krylov subspace can be
generated by using only matrix-vector multiplications. Specifically, given a
matrix A and a unit vector u, a Krylov subspace of dimension k is a subspace
spanned by vector

u,Au, A2u, . . . , Ak−1u.

Second, a Krylov subspace usually contains good eigenvector approximations,
especially to those whose eigenvalues are on the periphery of the spectrum.

To compute interior eigenvalues (and corresponding eigenvectors), people
use a technique called shift-invert enhancement to transform the spectrum
of a matrix A. Specifically, consider the matrix

S = (A− σI)−1.

This matrix has the same eigenvectors as A, but the eigenvalues near σ in A
appear on the periphery of the spectrum of S. Note that S does not have to
be formed explicitly. Instead, every matrix-vector multiplication v = Su can
be effected by solving a linear system (A− σI)v = u.

One drawback of Krylov subspace methods is that the matrix-vector prod-
uct or solutions of a linear equation need be computed exactly. This is an
undesirable property because in several applications [8, 34, 43], the cost of
matrix-vector multiplication is proportional to the required precision, which
means that the more the required accuracy, the more expensive the com-
putation will be. In the case of shift-invert enhancement, this means that
the linear systems must be solved to the same accuracy as the desired accu-
racy of the final eigenpair approximations. If iterative methods such as CG
or GMRES [31], are used in solving the linear system, an accurate solution
implies a large number of iterations.

In this thesis, we consider a new subspace method for solving large-scale
eigenvalue problems, the residual Arnoldi method. This method has numer-
ical properties similar to those of Krylov subspace methods when matrix-
vector products are computed exactly. However, when there are errors in the
computation, classical Krylov subspace methods can fail to find any good
approximations, while the residual Arnoldi method can still compute certain
target eigenpairs to full accuracy. Moreover, the residual Arnoldi method
possesses some special properties which are not shared by ordinary Krylov
subspace methods. For example, the residual Arnoldi method can work when
starting with an arbitrary subspace.
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We also consider an algorithm that integrates shift-invert enhancement
and the residual Arnoldi method, called the SIRA method. After computing
the residual of a target eigenpair, the SIRA method solves the shifted linear
system with the residual as the right hand side. In this case, the linear
systems can be solved to a relatively low accuracy, and the target eigenpair
approximation will still converge to desired precision.

The goal of this thesis is to get a better understanding of the residual
Arnoldi method. In Chapter 2, we supply the theoretical explanation for
understanding the special properties of the residual Arnoldi method and the
SIRA method. First, we show that there exists an error matrix Ek at iter-
ation k of the algorithm, such that the subspace generated by the residual
Arnoldi method with error is the same as a Krylov subspace of the matrix
A + Ek. Unfortunately, Ek is not small, and we cannot use standard per-
turbation theory to obtain a convergence proof. However, under reasonable
assumptions, it is possible to show that the the norm of the product Ekx,
where x is the target eigenvector, is proportional to the norm of residual.
From this, we can prove the convergence of the residual Arnoldi method.

Chapter 3 describes a numerical package, RAPACK, that implements the
residual Arnoldi method and the SIRA method for solving large-scale eigen-
value problems. Besides its ability to tolerate errors in the computation,
RAPACK has several desirable features, which come from a combination
of techniques such as subspace restarting and reverse communication. The
implementation of RAPACK raises additional questions, such as selecting
candidate eigenpairs corresponding to the target and the treatment of com-
plex eigenpairs. We will treat these topics along with the analysis of time
and storage complexity of RAPACK.

To have better understanding of the performance of the residual Arnoldi
method, we have designed several experiments that compare RAPACK with
other packages. These results are in Chapter 4. The benchmarks in our
experiments are generated by a novel matrix generator, Eigentest, which is
specially developed to test software for solving large eigenvalue problems.
We compare RAPACK with ARPACK and SRRIT. When compared with
ARPACK, RAPACK shows a slight disadvantage in the RA mode, but is
much better than ARPACK in the SIRA mode. RAPACK also outperforms
SRRIT when we compare the ability of using existing subspace to initial the
process. Other experiments, concerning inexact matrix-vector multiplication
and complex shift-invert enhancement, are also included in this chapter.

This thesis, of course, has not solved all problems about this method.
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Many special properties of the residual Arnoldi method need further inves-
tigation. In addition, several new directions for future work have emerged
from this study. We summarize them in the last chapter.

1.2 Eigenvalue problems

Let A be an n × n matrix. A pair (λ, x) that consists of a scalar λ and a
nonzero vector x is called a right eigenpair of A if it satisfies

Ax = λx. (1.1)

The scalar λ is called an eigenvalue of A, and x is the corresponding eigen-
vector. Similarly, a left eigenpair (λ, y) of A is defined by the equation

y∗A = λy∗, (1.2)

where y∗ is the conjugate transpose of y. Unless otherwise stated, the term
eigenpair will indicate a right eigenpair. In addition, all eigenvectors are
assumed to be normalized. In this thesis, the norm used is 2-norm.

If A has n linearly independent eigenvectors, we can write

A = XΛX−1, (1.3)

where X contains n eigenvectors of A in its columns and Λ is a diagonal
matrix containing the corresponding eigenvalues [41, p.9]. If A is Hermitian,
i.e. A = A∗, then X can be taken to be a unitary matrix, so that the
eigenvectors of A are pairwise orthogonal.

The set of eigenvalues of a matrix A is called the spectrum of A, denoted
by Λ(A). Eigenvalues need not be distinct. A distinct eigenvalue is called a
simple eigenvalue, while a repeated eigenvalue is called a multiple eigenvalue.
In the latter case, the eigenvectors of repeated eigenvalues are not necessarily
unique, but the subspace they span is.

A similarity transformation of A is a mapping that transforms A into
another matrix B = U−1AU , where U is a nonsingular matrix. The matrices
A and B are said to be similar. The matrix B has the same spectrum as A;
and for each eigenvector x of A, B has a corresponding eigenvector U−1x.

It can be shown that for any matrix A, there exists a unitary matrix U ,
such that U∗AU is an upper triangular matrix T [41]. This relation

A = UTU∗ (1.4)
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is called a Schur decomposition. The columns of U are called Schur vectors
and the diagonal elements of T are called Schur values. The Schur decom-
position of a matrix is not unique, because the diagonal elements of T can
be made to appear in any order of the diagonal of T .

A real nonsymmetric matrix can have complex eigenpairs. If (λ, x) is a
complex eigenpair of A, then its conjugate (λ̄, x̄) is also an eigenpair of A.
On the other hand, all eigenvalues of a real symmetric matrix A are real.

1.2.1 Perturbation theory

In this subsection, we will introduce the first order perturbation theory of a
simple eigenpair - i.e. an eigenpair whose eigenvalue has multiplicity one.

Let Ã = A + E be the perturbed matrix for some error matrix E. Let
(λ, x) be a simple eigenpair of A and (λ, y) be the corresponding left eigenpair.
According to [42, chapter4, theorem 2.3], for all sufficiently small E, there
exists a unique eigenvalue λ̃ of Ã such that

λ̃ = λ +
y∗Ex

y∗x
+ O(‖E‖2). (1.5)

It follows that

|λ̃− λ| ≤ ‖y‖‖x‖‖E‖
|y∗x| + O(‖E‖2).

The quantity
‖y‖‖x‖
|y∗x| (1.6)

is called the condition number of the eigenvalue λ, because it indicates the
sensitivity of λ to a small perturbation of A.

Let x̃ be the eigenvector of Ã corresponding to λ̃. We will measure the
difference of x and x̃ by the angle between them. The first order perturbation
theory of eigenvectors [41] shows that

| sin ∠(x, x̃)| ≤ ‖E‖
sep(λ̃, L)

. (1.7)

Here L is the matrix defined by

L = X∗
⊥AX⊥, (1.8)
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where X⊥ is an orthonormal basis for the orthogonal complement of the space
spanned by x and

sep(λ̃, L) = ‖(λ̃I − L)−1‖−1. (1.9)

The function sep(µ, L) is a lower bound on the separation of µ and the
spectrum of L. Specifically, in [41, Theorem 3.14]

sep(µ, L) ≤ min
λ∈Λ(L)

|µ− λ|. (1.10)

From (2.9) it is not hard to see that the sep function is continuous with
respect to its arguments. In fact, one can prove that [41, p.54]

|sep(µ + ε, L + F )− sep(µ, L)| ≤ |ε|+ ‖F‖.
Equation (1.7) shows that sep(λ̃, L)−1 defines the condition number for

the eigenvector x.

1.3 Krylov Subspace methods

Krylov subspace methods are frequently used to compute a few selected eigen-
pairs of a large matrix [41, 31]. The advantage of such methods is that no
decomposition of the original matrix required. A typical Krylov subspace
method consists of three steps: subspace expansion, Rayleigh–Ritz approxi-
mation, and convergence testing. We will discuss each in the following sub-
sections.

1.3.1 Krylov subspaces

Given a matrix A and a nonzero vector u1, the k-th order Krylov subspace
Kk(A, u1) is span{u1, Au1, A

2u1, · · · , Ak−1u1}. As can be seen, the genera-
tion of a Krylov subspace only needs matrix-vector multiplications, which is
computationally desirable for large and sparse matrix.

An important property of Krylov subspaces is that the sequence of sub-
spaces may contain increasingly accurate approximations to certain eigen-
vectors of A. In [30] Saad gives a convergence theory for these eigenvectors
when their eigenvalues lie on the periphery of the spectrum. Specifically, the
tangent of the angle between an eigenvector x and its best approximation
contained in Kk(A, u1) is shown to decrease at least linearly with the expan-
sion of subspaces. The proof uses the fact that any vector v in Kk(A, u1)

6



can be represented as pk−1(A)u1 for some k − 1th order polynomial pk−1.
Therefore, the problem of identifying the best approximation of an eigenvec-
tor x in the subspace Kk(A, u1) is the same as finding a polynomial pk−1 such
that | tan ∠(x, pk−1(A)u1)| is minimized. Equivalently, if λ is the eigenvalue
corresponding to x, the polynomial pk−1 satisfying

min
deg(pk)≤k
pk(λi)=1

max
µ∈Λ(A)

µ6=λ

|pk(µ)| (1.11)

produces the best approximation pk(A)u1 to x.
The solution of this minimization problem does not have a simple analyt-

ical form in general. However, upper bounds can be obtained using Cheby-
shev polynomials. To simplify the discussion, we only present the result for
the dominant eigenpair here. Let A be a symmetric matrix of order n with
eigenvalues

λ1 > λ2 ≥ · · · ≥ λn,

and corresponding eigenvectors x1, x2, · · · , xn. Let

η =
λ1 − λ2

λ2 − λn

.

Let v be the best approximation of x1 in Kk(A, u1). Then

tan ∠(x1, v) ≤ tan ∠(x1, u1)

ck−1(1 + 2η)
, (1.12)

where ck−1 is the Chebyshev polynomial of degree k − 1.
It can be shown that when |t| > 1,

ck(t) = (1 +
√

t2 − 1)k + (1 +
√

t2 − 1)−k. (1.13)

Therefore, equation (1.12) implies at least the linear convergence of the best
approximation in Kk(A, u1) to the dominant eigenvector of A. In practice,
the convergence is often mildly superlinear.

The classical algorithm for Krylov subspace expansion is the Arnoldi pro-
cess, which generates orthonormal bases for the sequence of Krylov subspaces.
Suppose Uk = (u1 u2 · · · uk) is an orthogonal basis for Kk(A, u1). The follow-
ing algorithm explains how the Arnoldi process expands Uk+1 for Kk+1(A, u1)
from Uk.
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Algorithm 1.1 One step of the Arnoldi process

1. Compute vk = Auk.

2. Orthogonalize vk against Uk and normalize the result to uk+1.

3. Uk+1 =
(

Uk uk+1

)
.

In the above algorithm the orthogonalization step can be represented as

Auk = Ukhk + βkuk+1, (1.14)

where hk = U∗
kAuk and βk = ‖(Ik − UkU

∗
k )Auk‖. If we let

ĥi =




hi

βi

0k−i−1


 ,

and Hk =
(

ĥ1 · · · ĥk−1 hk

)
, then we have the Arnoldi relation [41,

ch.5]:
AUk = UkHk + βkuk+1e

∗
k. (1.15)

Note that Hk is an upper Hessenberg matrix of order k. In fact, Hk is a
special matrix, called Rayleigh quotient. We will discuss its properties in the
next subsection.

1.3.2 Rayleigh–Ritz method

The Rayleigh–Ritz method is the most commonly used method for extract-
ing eigenvector approximations from a subspace U . Algorithm 1.2 describes
Rayleigh–Ritz method for obtaining an approximation to the eigenpair (λ, x)
of A.

The matrix H is called the Rayleigh quotient. If the dimension of U is
k, then H is a k × k matrix. When k is much smaller than the order of A,
the eigenvalue problem of H can be easily solved by dense matrix algorithms,
such as the QR algorithm [41]. The eigenpair approximation (µ, Uy) is called
a Ritz pair. Specifically, the scalar µ is called a Ritz value, and the vector Uy
is called a Ritz vector. The method can be justified informally by observing
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Algorithm 1.2 The Rayleigh–Ritz method for approximation extraction.

1. Let U be an orthogonal basis of U .

2. Compute H = U∗AU .

3. Compute an eigenpair (µ, y) of H such that µ ∼ λ.

4. Return (µ, Uy) as the approximation.

that if U contains x then H will have eigenpair (λ, U∗x) and the Ritz pair
(λ, UU∗x) = (λ, x) recovers the eigenpair of A.

In [20], Jia and Stewart provided a perturbation analysis of Ritz pairs,
which explains under what circumstances this method works. As long as the
subspace U contains good eigenvector approximations, the Rayleigh–Ritz
method will produce accurate eigenvalue approximations. Specifically, the
eigenvalue λ of A is an eigenvalue of the matrix H + E for some matrix E
bounded by

‖E‖2 ≤ tan θ‖A‖2, (1.16)

where θ is the angle of the eigenvector x and the best approximation in U .
By a theorem of Elsense [11], as θ converges to zero, an eigenvalue of H will
converge to λ.

The bound for the Ritz vector is more complicated. A theorem in [39]
says

sin ∠(x, Uy) ≤ sin θ

√
1 +

‖h‖2

sep(λ,N)2
, (1.17)

where h and N are defined in the equation
(

y
Y⊥

)
H(y, Y⊥) =

(
µ h
0 N

)
.

Equation (1.17) implies the Ritz vector may fail to be accurate when sep(λ, N)
is small, even when the best approximation in U is close to x.

When the subspace U is a Krylov subspace generated by the Arnoldi
process, the Rayleigh quotient can be constructed implicitly [31]. From the
Arnoldi relation,

AUk = UkHk + βkuk+1,

9



it can be shown that the Rayleigh quotient is

U∗
kAUk = U∗

k (UkHk + βkuk+1)

= Hk.

As will be shown in (2.13), Hk can be obtained from the orthogonalization
process.

1.3.3 The residual

The quality of an approximate eigenpair is usually measured by its residuals.
Let (µ, z) be an approximation to an eigenpair (λ, x) of A, with ‖z‖ = 1.
The residual of (µ, z) is defined as

r = Az − µz. (1.18)

If (µ, z) is an eigenpair of A, r is a zero vector and conversely. Otherwise,
the norm of r represents the size of a backward error. Specifically, in [41,
Theorem 1.3], it is shown that there is a matrix E = rz∗ whose norm is ‖r‖
such that (µ, z) is an eigenpair of the matrix A− E. In other word, a small
residual implies that (µ, z) is an eigenpair of a small perturbation of A.

When the approximation is computed by the Rayleigh–Ritz method, and
the subspace is generated by the Arnoldi method, the residual can be ob-
tained from the Arnoldi relation. Let (µk, Ukyk) be a Ritz pair computed
from an orthogonal basis Uk of Kk(A, u1). The Arnoldi relation for A and Uk

is
AUk = UkHk + βkuk+1e

∗
k.

Hence,

rk = AUkyk − µkUkyk

= (UkHk + βkuk+1e
∗
k)yk − µkUkyk

= Uk(Hkyk − µkyk) + βkuk+1e
∗
kyk

= βkηkuk+1,

where ηk is the last element of yk. Therefore, the norm of the residual can be
estimated by βk|ηk|. Note that this estimation can diverge significantly from
the actual value, ‖AUkyk − µkUkyk‖, because of the truncation error [7].
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1.4 Shift-invert enhancement and subspace restarting

In this section, we will introduce two common techniques in the solution of
large-scale eigenvalue problems. The first is shift-invert enhancement, which
speeds up convergence by transforming the spectrum of the original matrix in
such as way that the desired eigenvalue is well separated from its neighbors.
The second technique, used for memory management, is subspace restarting,
which shrinks the dimension of the subspace when it reaches a prescribed
limit.

1.4.1 Shift-invert enhancement

Shift-invert enhancement [41, p.66] replaces the original matrix A with a
shifted and inverted matrix S = (A − σI)−1. This matrix S has the same
eigenvectors as A, but differs in its eigenvalues. Specifically, (λ, x) is an
eigenpair of A if and only if ((λ− ν)−1, x) is an eigenpair of S.

The choice of σ depends on which eigenvalues are desired. When σ is
chosen to be near a particular eigenvalue λ, the transformed eigenvalue λ̂ =
(λ−σ)−1 will be large. Moreover, if σ is close enough to λ, then λ̂ will be well
separated in the transformed spectrum, which will speed up the convergence
of the Arnoldi process.

A problem arises when shift-invert enhancement is used to find complex
eigenvalues of real nonsymmetric matrices. A complex shift value will convert
the arithmetic from real plane to complex plane. In [28], Parlett and Saad
proved that the real part or the imaginary part of a complex shift-inverted
matrix can be used alone for subspace expansion. Let σ = α+iβ be a complex
shift value. Then the shift-inverted matrix S is complex. Let S = Sr + iSi,
where Sr and Si are real matrices. They proved that

Sr = (A− αI)(A− σI)−1(A− σ̄I)−1

Si = β(A− σI)−1(A− σ̄I)−1.

Although Sr differs from [(A − σI)(A − σ̄I)]−1, empirically, both matrices
have similar performance.

1.4.2 Subspace restarting

Memory management is critical for Krylov subspace methods. As the sub-
space is expanded, the required storage may exhaust the available memory.
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At some point, therefore, one must restart the Krylov sequence. The problem
here is to truncate the basis while preserving information required for con-
tinuing convergence. This subsection will introduce two subspace restarting
algorithms that overcome this difficulty.

The first algorithm is the implicitly restarted Arnoldi method (IRAM)
[36], which uses the implicit-shift QR algorithm [41] on the Rayleigh quotient
to filter out unwanted approximations. At the same time, it maintains the
Arnoldi relation for the restarted subspace so that the Arnoldi process can
be continued. Algorithm 1.3 sketches its process.

Algorithm 1.3 The implicitly restarted Arnoldi method (IRAM).

1. Let Um be the subspace to be restarted that satisfies the Arnoldi rela-
tion.

AUm = UmHm + βmum+1e
∗
m.

2. Let µ1, µ2, · · · , µm be the eigenvalues of Hm and assume µ1, µ2, · · · , µk

are desired.

3. Let p be the filtering polynomial such that p(µj) is small for j = k+1..m
compared to p(µ1), · · · p(µk).

4. Run the implicit-shift QR (ISQR) algorithm to produce p(Hm) = QR
such that

(a) p(Hm) is upper Hessenberg and

(b) the first k subdiagonal elements of p(Hm) are not too small.

5. The restarted subspace Uk = UmQ(:, 1 : k).

Morgan [26, Theorem 3] points out that the subspace, generated by
IRAM, contains the Krylov subspace Kk(A, zi) for each desired Ritz vector
zi. This nice property keeps all the desired approximations converging in the
new subspace. Recently, Lehoucq showed a connection between IRAM and
subspace iteration [24]. The convergence of IRAM has also been established
[5, 6].

The second algorithm is Krylov–Schur restarting, proposed by Stewart
[40], which employs the Krylov decomposition, a generalization of the Arnoldi
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relation, and the Schur decomposition in the construction of restarting sub-
space. A Krylov decomposition of order k is defined by

AUk = UkBk + uk+1b
∗
k+1, (1.19)

where Uk is an orthogonal basis of a subspace and Bk is the Rayleigh quo-
tient. Equation (1.19) generalizes the Arnoldi relation by allowing Bk and
b∗k+1 to be arbitrary. This generalization makes the Krylov decomposition of
a subspace invariant under two transformations: similarity transformations
and translations. A similarity translation is obtained by postmultiplying
(1.19) by a nonsingular matrix Q,

A(UkQ) = (UkQ)(Q−1BkQ) + uk+1(b
∗
k+1Q). (1.20)

A translation shifts uk+1 by a vector Uka,

AUk = Uk(Bk + ab∗k+1) + ũk+1(γb∗k), (1.21)

where γ and ũk+1 are defined by

γũk+1 = uk+1 − Uka,

and ũk+1 is orthonormal to Uk.
The algorithm of the Krylov-Schur restarting is sketched in algorithm 1.4

Algorithm 1.4 The Krylov-Schur restarting algorithm.

1. Given a Krylov-Schur decomposition

AUm = UmBm + um+1b
∗
m+1.

2. Compute a Schur decomposition of Bm, Bm = Q∗
mTmQm such that the

desired Ritz values are the first k diagonal elements of Tm.

3. The restarted subspace is Uk = UmQm(:, 1 : k).

A block version of the Krylov-Schur restarting algorithm has also been
proposed by Zhou and Saad [46].
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1.5 The residual Arnoldi method

Under certain circumstance, the Krylov approximations may stop converging.
This situation is called the stagnation. For example, when an error ε in uk+1

is introduced at an early stage of computation, the convergence will stagnate
at the precision level of ε. In other words, Krylov subspace methods demand
computations to be full accuracy, at least at the beginning of process.

This precision requirement is undesirable in many occasions, especially
when the cost of matrix vector multiplication increases with the desired pre-
cision. This happens, for instance, when shift-invert enhancement is applied.
In many applications, the linear system may be too large to solve directly. In
that case, iterative methods, like CG or GMRES [29, 16], are used. As can
be imagined, the cost of these iterative methods increases with the required
precision.

The residual Arnoldi (RA) method1 uses the residuals of a selected ap-
proximate eigenpair in subspace generation. The algorithm that expands a
given orthonormal basis Uk is sketched in Algorithm 1.5.

Algorithm 1.5 The subspace expansion step of the residual Arnoldi method.

1. Compute the Rayleigh quotient, Hk = U∗
kAUk, and its eigendecompo-

sition.

2. Select an eigenpair (µk, yk) from Hk and compute the Ritz pair
(µk, Ukyk).

3. Compute the residual rk = AUkyk − µkUkyk.

4. Orthogonalize rk against Uk and normalize the result to be uk+1.

5. Uk+1 = (Uk uk+1).

The approximation (µk, Ukyk) selected in step 2 is called a candidate,
and the eigenpair that candidate approximates is called a target. Theoreti-
cally, the subspace generated by the residual Arnoldi method is identical to
that generated by the Arnoldi process. However, when there are errors, the

1The phenomena underlying the residual Arnoldi method were discovered by Sleipen,
Stewart and Van der Vorst in 2001.
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convergence of the candidates do not stagnate.
In this section, we will illustrate the numerical properties of the RA

method by examples. The first example compares the RA method and the
Arnoldi process with and without errors. The second example illustrates how
shift-invert enhancement can be integrated into the RA method. The third
example demonstrates the ability of the RA method to converge from an
initial subspace that contains good Ritz approximations. The last example
discusses the effects of the size of the errors.

1.5.1 Errors in subspace expansion

Let A be a 100×100 general matrix with eigenvalues (1, 0.95, · · · , 0.9599) and
randomly generated eigenvectors2. Four different subspaces are expanded
with the same random initial vector. The first two subspaces are generated
by the Arnoldi process, but the second subspace has relative errors 10−3 in
each vector used to expand the subspace. The third and fourth subspaces are
expanded by the residual Arnoldi method. Similarly, relative errors 10−3 are
added in each iteration in the fourth case. For the residual Arnoldi method,
the dominant Ritz pair is selected as a candidate.

Figure 1.1 shows convergence results for these four subspaces. The y-axis
represents the projected error, which is defined as ‖x − UkU

∗
kx‖ where x is

the dominant eigenvector and Uk is the orthogonal basis of the generated
subspace. The solid line in the figure is for the dominant eigenpair; the
dashed line is for the subdominant eigenpair.

In figure 1.1(a), both approximations converge to machine precision. When
errors are added, in figure 1.1(b), both approximations stagnate around 10−3.
Figure 1.1(c) displays essentially the same convergence as figure 1.1(a), ex-
cept that the subdominant eigenvector levels off toward the end of process.
The reason is that the residual used in subspace expansion becomes nothing
but rounding errors once the dominant approximation reaches machine pre-
cision. In figure 1.1(d), the subdominant approximation stagnates as it does
in figure 1.1(b); however, the dominant approximation converges to machine
precision as it does when no errors are added.

2The examples given here are from the private communication of G.W. Stewart.

15



0 10 20 30 40
10

−15

10
−10

10
−5

10
0

(a) Arnoldi process without error
0 10 20 30 40

10
−15

10
−10

10
−5

10
0

(b) Arnoldi process with error

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

(c) Residual Krylov method without error
0 10 20 30 40

10
−15

10
−10

10
−5

10
0

(d) Residual Krylov method with error

Figure 1.1: The convergence in four different subspaces. The x-axis denotes
iterations, and the y-axis is the projected error ‖x− UkU

∗
kx‖.

1.5.2 Shift-invert enhancement

The example suggests the possibility that in shift-invert enhancement the
resulting linear system can be solved to less than full accuracy. Let S =
(A− σI)−1. The residual of a candidate (ν, z) from RA applied to S is

rS = Sz − νz = (A− σI)−1z − νz. (1.22)

Let ε be the error in rS; i.e., the precision of the computed r is bounded by
ε‖r‖. At the beginning, when ‖r‖ is large, the linear system (A− σI)v = z
can be solved with low accuracy. However, as the approximation converges,
‖r‖ becomes smaller and smaller, and the system must be solved to higher
and higher accuracy. Thus, the direct application of the RA method does
little to reduce the computational costs.
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Here we consider an alterative approach to integrate shift-invert enhance-
ment with the residual Arnoldi method. First, we compute a candidate
Ritz pair using the original matrix A, say (µ, Uy), and its residual rA =
AUy − µUy. Then we solve the equation

(A− σI)v = rA (1.23)

and use v in subspace expansion.
This method works because v is equivalent to the residual rS in (1.22),

up to a scalar. First, it is easy to show that if (µ, Uy) is an eigenpair ap-
proximation of A, then

(ν, z) =

(
1

µ− σ
, Uy

)

is an eigenpair approximation to an eigenpair of S (though (µ, Uy) is not a
Ritz pair of S). Specifically,

v = SrA

= S(AUy − µUy)

= S[(A− σI)Uy + (σ − µ)Uy] (1.24)

= Uy + (σ − µ)SUy

= (σ − µ)[SUy − (µ− σ)−1Uy]

= (σ − µ)rS.

Mathematically, v should be parallel to the vector generated by the rS.
However, this method has the advantage that the linear systems can be
solved imprecisely, because the error produced from this system is always
proportional to ‖r‖. Therefore, no matter how small the residual is, the
system can be solved to a constant precision. This method is called the
shift-invert residual Arnoldi method (SIRA).

Figure 1.2 plots the course of a run of the SIRA method. The experimen-
tal setting is the same as before, and the shift value is 1.3 in the shift-invert
enhancement. The linear systems are solved to relative precision 10−3 in ev-
ery iteration. As can be seen, the convergence of the selected approximation,
the dominant one, is speeded up by the shift-invert enhancement, but the
subdominant approximation, owing to the imprecise solutions, stagnates at
the level around 10−3.
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Figure 1.2: The residual Arnoldi method with shift-invert enhancement

1.5.3 Switching targets

In the previous experiments, the residual Arnoldi method exhibited con-
vergence only for the candidate when errors are introduced. The following
example will examine the situation when the candidate is changed in the
middle of the process. The same example is used in the experiment. First,
we choose the approximations to the dominant eigenpair as a candidate, and
add errors of size 10−3 during the computation. At iteration 30, we switch the
candidate to the approximation of the subdominant eigenpair, and observe
the change of convergence.

Figure 1.3 displays the experimental result, in which the approximation
of the subdominant eigenpair stagnates at the level slightly below 10−3 be-
fore iteration 30. However, after the switching, the new candidate starts to
converge. On the other hand, the approximation of the dominant eigenpair
starts to level off after iteration 30.

1.5.4 Error control

The size of relative error in the residual Arnoldi method influences the con-
vergence rate of the selected approximation, at least up to a point. If the
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Figure 1.3: residual Arnoldi method with target switch.

relative error is large, the convergence will be slow. As the error decreases,
the convergence rate increases — up to a certain point, after which reducing
the error has no effect on the convergence. Figure 1.4 compares the conver-
gence of three different error levels: 1, 10−1 and 10−3. As can be seen, when
the relative error is 1, the convergence is slow; when the error decreases, the
convergence becomes faster. But after the error reaches 10−3, the conver-
gence remains the same. Even we decrease the error size, the convergence
cannot be made faster.

1.6 Related work

In this section, we will survey some related methods. First, the technique
called preconditioning [25] is introduced. Then the Jacobi-Davidson method
[35, 14] for solving large eigenvalue problems will be discussed. Finally, a
method that relaxes the precision requirement of the Arnoldi process, the
inexact Krylov method, is presented in our discussion.
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1.6.1 Preconditioning

Preconditioning is a widely used technique for solving linear systems and
eigenvalue problems that transforms the original problem to an easier one.
To be meaningful, the transformation itself should be simple and the trans-
formed problem should be in the same solution space.

For large eigenvalue problems, the commonly used preconditioning is the
Cayley transformation, which transforms the original matrix A to a matrix
Tc,

Tc = (A− σI)−1(A− µI), (1.25)

where σ is called the pole and µ is the zero. The Cayley transformation
changes each eigenvalue λi of A to the eigenvalue

ζi =
λi − µ

λi − σ
,

of Tc. The pole can be chosen so that the ζi corresponding to the desired
eigenvector is large compared to others. In this transformation, one must
solve a linear equation for (A − σI)−1. This linear system, however, can be
solved inexactly and still get some desired eigenpairs converging. The pre-
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conditioning that uses the Cayley transformation with inexact linear solving
is called the inexact Cayley transformation.

The inexact Cayley transformation has been used in many algorithms [2].
For instance, in the integration with the Arnoldi process, the transformed
matrix Tc is multiplied to the last generated basis vector instead of A.

The inexact Cayley transformation for the Arnoldi process has many sim-
ilarities with the shift-invert residual Arnoldi method, which uses the vector
v, generated from (A − σI)v = (A − µI)Uy, in subspace expansion. First,
both methods use some kind of shift-invert enhancement on a shifted ma-
trix, and the linear system can be solved inexactly. Second, the convergence
for both methods is local, which means only one or few eigenpairs, whose
eigenvalue is in proximity to σ, can converge at a time. Other eigenpairs will
stagnate at the level of the precision used in solving linear systems.

However, there are significant differences between these two methods.
First, the pole and zero defined in the inexact Cayley transformation can-
not be changed without totally restarting the subspace, because the Arnoldi
process requires to keep a Krylov subspace for Tc. Second, the choice of the
pole and zero must satisfy a lot of constraints to make the inexact Cayley
transformation work, as described in [2, chapter 11]. These problems do not
occur in the SIRA method.

1.6.2 The Jacobi-Davidson method

The Jacobi-Davidson method, proposed by Sleijpen and Van der Vorst [35], is
a Newton–based method, which improves the existing approximation, gener-
ated from the Rayleigh–Ritz method, by orthogonal corrections. Specifically,
let (µ, z) be the current approximation and r be its residual. The orthogonal
correction v is computed by solving the following equation,

(I − zz∗)(Ã− µI)(I − zz∗)v = −r, (1.26)

where Ã is a perturbation of A. The orthogonal correction v is then used in
the subspace expansion.

The Jacobi-Davidson method and the shift-invert residual Krylov method
are alike in certain aspects. Algorithmically, both methods select an approx-
imation and use its residual in subspace expansion. Moreover, the residual
in each method is enhanced by some sort of shift-invert matrix. Numerically,
both methods allow only one eigenpair to converge at a time when errors
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are introduced, and the candidate can be switched at any time without fully
restarting the subspace.

The most significant differences between these two methods is the Jacobi-
Davidson method requires an orthogonal correction for the current approx-
imation. Analytically, the convergence of the Jacobi-Davidson method is
supported by the analysis of Newton’s method, while the shift-invert residual
Arnoldi method is studied through the classical analysis of Krylov subspace,
as we shall see in Chapter 2.

1.6.3 The inexact Krylov method

Recently, the inexact Krylov method, which relaxes the precision requirement
of the Arnoldi process, has been studied in [13, 34, 18]. In the inexact Krylov
method, the matrix-vector multiplication can be computed more and more
inaccurately as approximations converge. Although this property has been
analyzed and applied to solving large linear system, the similar phenomenon
has been observed in solving eigenvalue problems [18].

In [34] and [13], the inexact Krylov method for linear system solvers, such
as the Generalized Minimal Residual Method (GMRES) [32], is analyzed
through the the concept of the residual gap. The residual of a linear system
Ax = b is defined as r = b − Az, where z is the computed solution. The
residual gap compares two kinds of residuals: One is the true residual rm,
given from the definition; another is the computed residual r̃m, produced by
the inexact Krylov method. The definition of the residual gap δ is given as
follows,

δ = ‖rm − r̃m‖. (1.27)

It is easy to show that the norm of the computed residual is bounded by
‖rm‖ + δ. As long as δ is small, the convergence of the exact method will
guarantee a small computed residual. On the other hand, if δ is large, even
when the real residual converges to zero, the computed residual need not.

The conclusion is that as the process converges, matrix-vector multipli-
cation may be computed with decreasing accuracy without increasing the
residual gap.

The convergence properties of the inexact Krylov method look very dif-
ferent from those of the residual Arnoldi method’s. In the inexact Krylov
method the relative error decreases as the approximations converge; in the
residual Arnoldi method it increases.
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Chapter 2. Theory

As shown in the examples in Chapter 1, the residual Arnoldi (RA) method
and the shift-invert residual Arnoldi (SIRA) method have many nice numer-
ical properties, especially when there are errors in the computation. This
chapter is devoted to the convergence theory of these two methods. First,
the algorithms for both methods and some preliminary results are presented
in section 2.1. Section 2.2 derives the residual Arnoldi relation, which re-
veals some basic properties of the RA method. In addition, a backward error
analysis is provided. Section 2.3 discusses the numerical properties of the
backward error though a special example. Section 2.4 completes the analysis
with the convergence theorem for the RA method; and a similar result for
the SIRA is given in section 2.5.

2.1 Preliminary

In this section, we will introduce the RA and the SIRA algorithms, as well as
the notation that will be used in this chapter. In addition, some preliminary
results about the residual and the approximation and assumptions needed
for the analysis will be presented.

The problem that we are concerned with is the eigenproblem of a non-
symmetric matrix A. We assume that the norm of A is always one, and that
all eigenvectors and eigenvector approximations are normalized. Without
further specification, the norm used in this Chapter will be the 2-norm.

2.1.1 The RA method

We begin with the RA method. Algorithm 2.1 sketches the procedure of
one iteration of the RA method, which takes an orthonormal basis U , and
expands it into a one dimension larger orthonormal basis.

The first two steps are just the standard Rayleigh–Ritz procedure. In
step 2, the selected Ritz pair is called a candidate, and the eigenpair of A
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Algorithm 2.1 The RA iteration.

1. Compute the Rayleigh quotient, H = U∗AU , and its eigendecomposi-
tion.

2. Select an eigenpair (µ, y) from H and compute the Ritz pair (µ, Uy).

3. Compute the residual r = AUy − µUy.

4. Orthogonalize r against U and normalize the result to be u.

5. U = (U u).

that candidates approximate is called a target. In what follows symbols with
the subscript k denote the variables in the kth iteration. We use (µk, zk) =
(µk, Ukyk) to represent the candidate pair in the kth iteration, and use (λ, x)
for the target. The pair (µk, yk) is called the primitive Ritz pair.

It can be shown that Algorithm 2.1 generates the same subspace as the
classical Arnoldi process when every step is computed exactly. (A simple
justification for this argument will be given in the next section.) Here, we
are concerned with the convergence of the candidate when relatively large
errors are introduced in the computation. Specifically, let rk be the exact
residual, and r̃k be the one used in subspace expansion. The introduced error
is defined as

fk = r̃k − rk.

Empirically, we have observed that fk can be as large as 10−3‖rk‖, and the
candidate approximations can still converge to the target with rate similar
to the rate without error.

In the analysis, we say fi satisfies the relative error condition if

‖fi‖ ≤ ε‖rk‖, (2.1)

for ε ∈ (0, 1). This condition is always assumed in what follows.

2.1.2 The SIRA method

The second method, SIRA, is presented in Algorithm 2.2. The first three
steps are identical to the RA method. In step 4, it applies shift-invert en-
hancement to the computed residual. Let S = (A− σI)−1. (Here we always
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assume that (A− σI) is invertible.) Then, the solution vk = Srk, called the
enhanced vector, is used in subspace expansion.

Algorithm 2.2 The SIRA iteration.

1. Compute the Rayleigh quotient, H = U∗AU , and its eigendecomposi-
tion.

2. Select an eigenpair (µ, y) from H and compute the Ritz pair (µ, Uy).

3. Compute the residual r = AUy − µUy.

4. Solve the linear system (A− σI)v = r.

5. Orthogonalize v against U and normalize the result to be u.

6. U = (U u).

Note that this algorithm is different from the RA method for matrix S,
which is just Algorithm 2.1 with A replaced by S. The first difference is
the SIRA computes the Ritz pair from the Rayleigh quotient of A, not of
S. Second, the SIRA solves the linear system after the residual is computed,
instead of solving it to compute the residual. However, it can be shown
that when the same initial vector is used in exact arithmetic both methods
generate the same subspace. A complete proof of this argument can be
justified by induction. Here we only show that the bases generated by the
SIRA satisfy the recursion

span{Uk+1} = span{Uk} ∪ span{SUk}.

Starting with a simple identity

SA = (A− σI)−1A

= (A− σI)−1((A− σI) + σI) (2.2)

= I + σS,

we have
vk = Srk = S(Azk − µkzk) = zk + (σ − µk)Szk, (2.3)
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which is a linear combination of zk and Szk. Since zk = Ukyk, span{Uk+1} =
span{Uk} ∪ span{vk} = span{Uk} ∪ span{SUk}.

The key property of SIRA is that the linear system can be solved to low
accuracy, and the candidate approximations will still converge to the correct
target, with the rate accelerated by shift-invert enhancement. Specifically,
let ṽi be the computed approximate solution. The low accuracy requirement
means the relative residual [29, 1.13.2],

ε =
‖(A− σI)ṽi − ri‖

‖ri‖ , (2.4)

can be relatively large, say 10−3. If we let vi be the exact solution, vi = Sri,
and fi be the error, fi = ṽi − vi, one can show that

‖fi‖ = ‖ṽi − vi‖
= ‖S(A− σI)(ṽi − vi)‖
≤ ‖S‖‖(A− σI)ṽi − ri‖ (2.5)

= ‖S‖‖ri‖‖(A− σI)ṽi − ri‖
‖ri‖

= ‖S‖‖ri‖ε.
If ‖S‖ε < 1, the error fi satisfies the relative error condition (2.1). In the
discussion of the SIRA, ‖S‖ε < 1 is always assumed. Also, we assume that fi

is produced entirely from solving the linear system. Other steps are computed
exactly.

2.1.3 Residual and approximation

In this subsection, we are concerned with the relations of residual and eigen-
pair approximation. Let z be an approximation to an eigenvector x (z is not
necessarily a Rayleigh–Ritz approximation). The eigenvalue approximation
µ can be computed by

µ = z∗Az. (2.6)

The residual of the approximation (µ, z) is defined as

r = Az − µz.

It can be shown that the eigenvalue approximation µ, computed in (2.6),
minimizes ‖r‖ [41, pg.63].
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In practical computations, ‖r‖ is usually taken to reflect the error. Let
e = z − x be the error of the eigenvector approximation. The following
inequality shows a large residual implies a poor eigenvector approximation.

‖r‖ ≤ ‖Az − λz‖ (optimality of µ)
= ‖Ae− λe‖ (Ax = λx)
≤ 2‖e‖ (‖A‖, λ ≤ 1)
= 2‖z − x‖

(2.7)

In practice, the concern is more about when a small residual implies a good
approximation. Unfortunately, this may not be true. Let (x X⊥) be unitary
and let (

x∗

X∗
⊥

)
A

(
x X⊥

)
=

(
λ h∗

0 L

)
.

Then in [20], it has been shown that

1√
2
‖z − x‖ ≤ | sin ∠(x, z)| ≤ ‖r‖

sep(µ, L)
, (2.8)

where
sep(µ, L) = ‖(µI − L)−1‖−1. (2.9)

The quantity sep(µ, L) is bounded above by the distance between µ and the
spectrum of L; however, it can be much smaller. In that case, a small residual
does not imply a good eigenvector approximation.

In our analysis, the eigenpair approximation comes from the Rayleigh–
Ritz approximation, in which the relevant value of sep is sep(µk, L). To
simplify the proofs, we only consider the cases that the target eigenvector
and its approximations are well conditioned. A few assumptions are made
for the convergence analyses.

Assumption 1. The target eigenpair (λ, x) is simple (i.e., λ is of multiplicity
one).

Hence, sep(λ, L) > 0.

Assumption 2. There is a constant C1 > 0 such that sep(µk, L) ≥ C1.

The second assumption requires, in addition to Assumption 1, the Ritz
value µk to be sufficiently near λ. Since the Ritz value µk satisfies (2.6), a
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converging Ritz vector zk, and a large enough k suffices for this assumption
to hold.

Now we consider the perturbed matrix Ã = A+E. From the fundamental
perturbation theory, we have the following lemma [42].

Lemma 2.1. There are positive constants C2, C3 and C4 such that if

‖E‖ ≤ C2 (2.10)

then there is a unique eigenpair (λ̃, x̃) of Ã = A + E such that

‖x̃− x‖ ≤ C3‖E‖ (2.11)

and
sep(λ, L̃) ≥ C4 (2.12)

The goal of our analysis is not to build a new convergence theory from
scratch. Instead, we will build the analysis based on the convergence of
the Ritz vectors of perturbed systems. To this end, we make the following
assumption about the candidate vectors z̃k of the perturbed system.

Assumption 3. There is a positive constant C5 ≤ C2 such that if

‖E‖ ≤ C5

then there are constants κ̃1, κ̃2, . . ., independent of E, with limk κ̃k = 0 such
that

‖z̃k − x̃‖ ≤ κ̃k.

This assumption is called the uniform convergence of the z̃k, which is
reasonable for the targets well separated from the rest of spectrum.

2.2 Residual Arnoldi relations

In this section, the residual Arnoldi relation is derived to characterize certain
numerical properties of the RA method. The derivation begins with the
orthogonalization step. Let ri be the exact residual, and r̃i = ri + fi be the
computed one. The orthogonalization of r̃i against Ui can be written

(I − UiU
∗
i )r̃i = (I − UiU

∗
i )(ri + fi)

= ri − Uigi + f⊥i
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where gi = U∗
i ri, and f⊥i = (I − UiU

∗
i )fi. Let ρi = ‖(I − UiU

∗
i )r̃i‖ and let

ui+1 = ρ−1
i (I − UiU

∗
i )r̃i. Then, the above equation becomes

ρiui+1 = ri − Uigi + f⊥i . (2.13)

By substituting ri = AUiyi − µiUiyi in (2.13), we have

ρiui+1 = (AUiyi − µiUiyi)− Uigi + f⊥i .

Equivalently,
AUiyi = Ui(µiyi + gi) + ρiui+1 − f⊥i . (2.14)

Now, let

ĝi =




gi

ρi

0k−i−1


 ,

Gk = (ĝ1 · · · ĝk−1 gk), (2.15)

and let Yk be the upper triangular matrix consisting of yi. We can combine
the individual equations (2.14) to get

AUkYk = Uk(YkMk + Gk) + ρkuk+1e
∗
k + F⊥

k , (2.16)

where F⊥
k = (f⊥1 · · · f⊥k ), and Mk = diag(µ1, . . . , µk).

Post-multiplying Y −1
k in (2.16), we get the residual Arnoldi relation,

AUk = Uk(YkMk + Gk)Y
−1
k +

ρk

ηk

uk+1e
∗
k − F⊥

k Y −1
k , (2.17)

where ηk is the last element of yk.
When there is no error, it can be shown that (2.17) is an Arnoldi relation.

According to the uniqueness of Arnoldi relations [41, Theorem 5.1], the only
thing to verify is (YkMk + Gk)Y

−1
k is an upper Hessenberg matrix, which is

easily seen because Yk and Y −1
k are upper triangular, Mk is diagonal, and Gk

is upper Hessenberg.
In fact, by just moving F⊥

k Y −1
k to the left hand side, one can obtain an

Arnoldi relation,

(A + F⊥
k Y −1

k U∗
k )Uk = Uk(YkMk + Gk)Y

−1
k +

ρk

ηk

uk+1e
∗
k, (2.18)
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The above equation gives us the backward error expression, in which Uk spans
a Krylov subspace of a perturbed matrix Ãk = A + Ek, where

Ek = F⊥
k Y −1

k U∗
k . (2.19)

According to the theory of Krylov subspaces [41], Uk contains good ap-
proximations to the eigenvectors of Ãk. The candidate approximation is
common to both, as the following theorem shows.

Theorem 2.2. Let H̃k be the Rayleigh quotient of Ã and Hk be the Rayleigh
quotient of A. The eigenpair (µk, yk) of Hk is an eigenpair of H̃k.

Proof. From (2.18), the Rayleigh quotient of Ã is H̃k = (YiMi + Gi)Y
−1
i .

Similarly, the Rayleigh quotient of A can be derived from (2.17),

Hk = U∗
kAUk

= (YkMk + Gk)Y
−1
k − U∗

kF⊥
k Y −1

k . (2.20)

The matrix U∗
kF⊥

k is strictly lower triangular, since the ith column of F⊥
k is

orthogonal to the first i columns of Uk. Consequently, the last column of
U∗

kF⊥
k is zero. Therefore,

µkyk = Hkyk

= ((YkMk + Gk)Y
−1
k + U∗

kF⊥
k Y −1

k )yk

= (YkMk + Gk)Y
−1
k yk + U∗

kF⊥
k ek

= H̃kyk.

It follows that,
zk = Ukyk = Ukỹk = z̃k. (2.21)

2.3 The error matrix

The error matrix Ek plays an important role in the convergence analysis. As
stated in Lemma 2.1, if ‖Ek‖ is smaller than a constant C2, then the target
vector of Ã will be similar to A’s. Empirically, ‖Ek‖ is around the level of ε.
Unfortunately, owing to our limited knowledge, no satisfactory proof could
be made for the validation of this property. Here we make some heuristic
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justifications for a very special case. First, we assume that in the coordinate
system of Uk, x is of the form

√
1− |β|2(1, β, β2, . . .)∗, for some |β| < 1.

Second, we assume that the primitive Ritz vector yi is in the same direction
as U∗

i x,

yi = γi




1
β
...

βi−1


 ,

where γi =
√

(1− |β|2)/(1− |β|2i).
As a result, the matrix Yk can be decomposed as

Yk =




1 1 · · · 1
β β

. . .
...
βk−1







γ1

γ2

. . .

γk


 ,

and its inverse is

Y −1
k =




γ−1
1

γ−1
2

. . .

γ−1
k







1 −β−1

β−1 −β−2

. . .

β−(k−1)


 .

Therefore, the first column of F⊥
k Y −1

k is f⊥1 ; and the ith column, i > 1, is

1

γiβi−1
f⊥i −

1

γi−1βi−1
f⊥i−1,

whose norm can be bounded by
√

1− |β|2i|‖f⊥i ‖+
√

1− |β|2(i−1)‖f⊥i−1‖√
1− |β|2|β|i−1

≤ ‖f⊥i ‖+ ‖f⊥i−1‖√
1− |β|2|β|i−1

. (2.22)

According to the relative error condition (2.1), ‖fi‖ ≤ ε‖ri‖. In addition,
by (2.7), ‖ri‖ ≤ 2‖x− zi‖. In the U-coordinate system,

‖x− zi‖2 = (γi −
√

1− |β|2)2(1 + β2 + · · ·+ β2(i−1)) +

(1− |β|2)(β2i + β2(i+1) + · · · )
= (1/

√
1− |β|2i − 1)2 + |β|2i. (2.23)
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Because |β| < 1,

1√
1− |β|2i

− 1 =
1−

√
1− |β|2i

√
1− |β|2i

≤ 1− (1− |β|i)√
1− |β|2i

≤ |β|i√
1− |β|2 .

Equation (2.23) can be further bounded ‖x− zi‖ ≤
√

2|β|i/
√

1− |β|2. Con-
sequently,

‖f⊥i ‖ ≤ ‖fi‖ ≤ ε‖ri‖ ≤ 2
√

2
ε|β|i√
1− |β|2 . (2.24)

With (3.16), (2.22) can be further bounded

‖f⊥i ‖+ ‖f⊥i−1‖√
1− |β|2|β|i−1

≤ 2‖f⊥i−1‖√
1− |β|2|β|i−1

≤ 4
√

2ε

1− |β|2 . (2.25)

Therefore, ‖Ek‖ can be bounded by 4
√

2nε/(1− |β|2).
Although this justification is just made for a very special case, it captures

two important features of Ek. First, when Y −1
k is scaled so that its diagonal

elements are one, its large elements tend to lie near the diagonal. Second,
the last element ηk of the primitive Ritz vector yk is roughly in the size of
the norm of residual ‖rk‖, which makes ‖fk‖/|ηk| in the order of ε.

In the following analysis, we assume that

Assumption 4. There exist a constant C6, such that ‖Ek‖ ≤ εC6 for all k.

2.4 Convergence of the RA method

In this section, a convergence theorem is derived for the RA method, which
shows the candidate residual approaches zero as the process goes. In the
proof, we assume that ε ≤ C5/C6. Hence from Assumption 4 and the relative
error condition (2.1), ‖Ek‖ ≤ C5 ≤ C2.

The proof starts with the relation between the target pair (λ, x) of A and
the eigenpair (λ̃k, x̃k) of Ãk that the Ritz pair (µ̃k, z̃k) approximates. From
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(2.8),

1√
2
‖x− x̃k‖ ≤ sin ∠(x, x̃k)

≤ ‖Ãkx− λx‖
sep(λ, L̃k)

=
‖(A + Ek)x− λx‖

sep(λ, L̃k)
(2.26)

=
‖Ekx‖

sep(λ, L̃k)

By Lemma 2.1, sep(λ, L̃k)
−1 < 1/C4, so

‖x− x̃k‖ ≤
√

2‖Ekx‖/C4.

The following lemma proves that Ekx decreases along with the residual rk.

Lemma 2.3. Let (λ, x) be the target of A, (µk, zk) be the candidate, and rk

be the candidate residual. If the relative error condition holds, then

‖Ekx‖ ≤ ε‖rk‖
(

1 +
C6

C1

)
. (2.27)

Proof. Let x = αkzk + qk, where αk = z∗kx is the cosine of ∠(zk, x). Conse-
quently, ‖qk‖ is | sin ∠(zk, x)|. From (2.8),

‖qk‖ ≤ ‖rk‖
sep(µk, L)

.

Hence,

Ekx = αkEkzk + Ekqk

= αkF
⊥
k Y −1

k U∗
kzk + Ekqk.

Since zk = Ukyk, the first term becomes αkF
⊥
k ek = αkf

⊥
k . Therefore, ‖Ekx‖

can be bounded by

‖Ekx‖ ≤ |αk|‖f⊥k ‖+ ‖Ek‖‖qk‖
≤ ε‖rk‖+ ‖Ek‖ ‖rk‖

sep(µk, L)

≤ ε‖rk‖+ εC6
‖rk‖

sep(µk, L)

= ε‖rk‖
(

1 +
C6

sep(µk, L)

)
.
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From Assumption 2 sep(µk, L) ≥ C1 > 0, we have

‖Ekx‖ ≤ ε‖rk‖
(

1 +
C6

C1

)
.

Substituting (2.27) into (2.26), we get

‖x− x̃k‖ ≤ ε‖rk‖
√

2

C4

(
1 +

C6

C1

)
.

To simplify the notation, we set

C7 =
√

2(1 + C6/C1)/C4. (2.28)

The above inequality can then be written as

‖x− x̃k‖ ≤ ε‖rk‖C7. (2.29)

The second step of the proof is to build the relation of the Ritz vector
zk and perturbed eigenvector x̃k. According to the uniform convergence
assumption,

‖zk − x̃k‖ = ‖z̃k − x̃k‖ ≤ κ̃k. (2.30)

Finally, the convergence theory of the RA method is given in the following
theorem.

Theorem 2.4. If ε < 1/(2C7),

‖rk‖ ≤ 2κ̃k

1− 2C7ε
, (2.31)

where rk is the residual computed by the residual Arnoldi method.

Proof. From (2.29) and (2.30), one has

‖zk − x‖ ≤ ‖zk − x̃k‖+ ‖x̃k − x‖
≤ κ̃k + C7‖rk‖ε.

Also, (2.7) gives

‖rk‖ ≤ 2‖zk − x‖ ≤ 2(κ̃k + C7‖rk‖ε).
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If 2C7ε < 1, we can solve this inequality for ‖rk‖ to get

‖rk‖ ≤ 2κ̃k

1− 2C7ε
.

When the error is small, ‖rk‖ converges in the rate similar to the RA
method without errors. However, as ε grows, (1−2C7ε) approaches zero and
the convergence slows. This prediction is born out by Figure 1.1.

2.5 Convergence of the SIRA method

In this section, we will derive a convergence theory for the SIRA method.
First, we derive the shift-invert residual Arnoldi (SIRA) relation. The back-
ward error relation is used to construct the convergence theory for the can-
didate approximations.

The derivation of the SIRA relation starts from the orthogonalization
process. Let vi be the exact enhanced vector, and ṽi be the computed one.
Step 5 in Algorithm 2.2 can be expressed as

(I − UiU
∗
i )ṽi = (I − UiU

∗
i )(vi + fi)

= vi − Uigi + f⊥i ,

where gi = U∗vi and f⊥i = (I − UiU
∗
i )fi. If we let the orthogonalized vector

be ρiui+1, the above equation can be expressed as

vi = Uigi + ρiui+1 − f⊥i .

By combining (2.3) and above equation, we have

vi = Uigi + ρiui+1 − f⊥i
= zk + (σ − µk)Szk

= Uiyi + (σ − µi)SUiyi

Equivalently,

(σ − µi)SUiyi = Ui(gi − yi) + ρiui+1 − f⊥i . (2.32)
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Using the same definition of Gk and Yk in (2.15), we can combine (2.32)
to get,

SUkYk(σI −Mk) = Uk(Gk − Yk) + ρkuk+1e
∗
k − F⊥

k , (2.33)

where Mk = diag(µi), and F⊥
k = (f⊥1 f⊥1 · · · f⊥k ) . The SIRA relation

can be obtained by post-multiplying (σI −Mk)
−1Y −1

k on both sides,

SUk (2.34)

= Uk(Gk − Yk)(σI −Mk)
−1Y −1

k +
ρkuk+1e

∗
k

(σ − µk)ηk

− F⊥
k (σI −Mk)

−1Y −1
k ,

where ηk is the last element of yk.
The backward error expression can be obtained by moving F⊥

k (σI −
Mk)

−1Y −1
k to the left hand side,

(S + F⊥
k (σI −Mk)

−1Y −1
k U∗

k )Uk (2.35)

= Uk(Gk − Yk)(σI −Mk)
−1Y −1

k +
ρk

(σ − µk)ηk

uk+1e
∗
k.

From it, one can define the error matrix

Ek = F⊥
k (σI −Mk)

−1Y −1
k U∗

k . (2.36)

It can be shown that when F⊥
k = 0, the subspace generated by SIRA method

is identical to the Krylov subspace Kk(S, u1), since (Gk−Yk)(σI−Mk)
−1Y −1

k

is upper Hessenberg.
By letting F̂⊥

k = F⊥
k (σI −Mk)

−1, we see that Ek has a structure similar

to the error matrix in (2.19). Let f̂⊥i be the ith column of F̂⊥
k . From (2.5),

‖f̂⊥i ‖ ≤
‖fi‖

|σ − µi| ≤
‖S‖‖ri‖ε
|σ − µi| . (2.37)

The value of ‖S‖ and |σ − µi|−1 is controlled by the selection of σ. If σ is
extremely close to λ, then both bounds can be enormous. To avoid that, we
make the following assumption.

Assumption 5. There is a constant C8 such that ‖S‖ ≤ C8 and |σ−µk|−1 ≤
C8.

With Assumption 5, ‖f̂⊥i ‖ can be bounded by C2
8‖ri‖ε.

For the error matrix Ek, we cannot give a formal proof to bound its norm.
Empirically, we had found that ‖Ek‖ is proportional to ε. A justification for
the special case of Ek can be done as we did in Section 2.3. Here, we just
simply make an assumption for the norm of Ek.
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Assumption 6. There is a constant C9 such that ‖Ek‖ ≤ εC9 for all k.

Let’s assume that ‖Ek‖ ≤ εC9 ≤ C5, where C5 is the constant in Assump-
tion 3. According to the uniform convergence assumption of the perturbed
matrix, Uk should contain good approximations to the eigenvectors of S̃k.
However, in the computation, the Ritz approximation zk is generated for A,
not for S or S̃k. Here, by assuming that S̃k is invertible, we define

Ãk = S̃−1
k + σI. (2.38)

Equivalently,
S̃ = S + Ek = (Ãk − σI)−1.

By cross-multiplying S−1 and S̃−1
k , the above equation becomes

(A− σI) = (Ãk − σI) + (Ãk − σI)Ek(A− σI).

After some algebraic operations,

Ãk = A− (Ãk − σI)Ek(A− σI). (2.39)

Let Êk = Ãk −A = −(Ãk − σI)Ek(A− σI). The norm of Êk is bounded
by ‖Ãk − σI‖‖Ek‖‖A − σI‖. Individually, ‖Ek‖ is assumed to be less than
εC9; the norm of A−σI can be bounded by 1+ |σ|. To bound the first term,
we use (2.39),

‖Ãk − σI‖ = ‖A− σI − (Ãk − σI)Ek(A− σI)‖
≤ ‖A− σI‖+ ‖Ãk − σI‖‖Ek‖‖A− σI‖
≤ ‖A− σI‖+ ‖Ãk − σI‖εC8(1 + |σ|).

If ε < 1/((1 + |σ|)C9), then

‖Ãk − σI‖ ≤ ‖A− σI‖
1− (1 + |σ|)C9ε

. (2.40)

Consequently,

‖Êk‖ ≤ ‖A− σI‖2C9ε

1− (1 + |σ|)C9ε
. (2.41)

With these properties, we can now consider the Ritz approximations of
A and Ãk. The following theorem shows the relation of the primitive Ritz
vectors.
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Theorem 2.5. Let Hk = U∗
kAUk and H̃k = U∗

k ÃkUk; and let yk be an eigen-
vector of Hk, ỹk be an eigenvector of Ãk. Then

| sin ∠(yk, ỹk)| ≤ ε‖rk‖‖Ãk − σI‖
sep(µk, L̃)

, (2.42)

where sep function is defined as in (2.9).

Proof. From (2.39), H̃k can be derived

H̃k = U∗
k ÃkUk

= U∗
kAUk − U∗

k (Ãk − σI)Ek(A− σI)Uk

= Hk − U∗
k (Ãk − σI)Ek(A− σI)Uk.

Let (µk, yk) be an eigenpair approximation to H̃k, and pk be its residual.

pk = H̃kyk − µkyk

= Hkyk − U∗
k (Ãk − σI)Ek(A− σI)Ukyk − µkyk

= −U∗
k (Ãk − σI)Ek(A− σI)Ukyk

Now, Ek = F⊥
k (σI −Mk)

−1Y −1
k U∗

k . Therefore,

Ek(A− σI)Ukyk = F⊥
k (σI −Mk)

−1Y −1
k U∗

k (A− σI)Ukyk

= F⊥
k (σI −Mk)

−1Y −1
k (Hk − σI)yk

= F⊥
k (σI −Mk)

−1Y −1
k (µk − σI)yk

= −F⊥
k ek = −f⊥k

From (2.8),

sin ∠(yk, ỹk)| ≤ ‖pk‖
sep(µk, L̃)

≤ ‖U∗
k (Ãk − σI)Ek(A− σI)Ukyk‖

sep(µk, L̃)

≤ ‖Ãk − σI‖‖f⊥k ‖
sep(µk, L̃)

≤ ε‖Ãk − σI‖‖rk‖
sep(µk, L̃)

38



If ε is small enough, it can be shown that

‖yk − ỹk‖ ≤ ε‖rk‖C10, (2.43)

for a constant C10.
A proof for the convergence of the SIRA method, similar to the one in

section 2.4, proceeds as follows. Let x be the target eigenvector of A, and
x̃k be the eigenvector of Ãk that zk approximates. Note that x is also an
eigenvector of S, and x̃k is also an eigenvector of S̃k. First, we derive a
bound on ‖x− x̃‖. Let θ = 1/(λ− σ), the target eigenvalue of S. Equation
(2.8) implies

1√
2
‖x− x̃k‖ ≤ sin ∠(x, x̃k)

≤ ‖S̃kx− θx‖
sep(θ, Ñk)

=
‖(S + Ek)x− θx‖

sep(θ, Ñk)
(2.44)

=
‖Ekx‖

sep(θ, Ñk)
,

where Ñk is defined as follows,
(

x̃∗k
X̃∗

k

)
S̃k

(
x̃k X̃k

)
=

(
θ̃k h̃∗k
0 Ñk

)
,

in which (x̃k, X̃k) is unitary.
Here we assume that ε is small enough that ‖Ek‖ is smaller than C2, the

condition for Assumption 3. Then, Lemma 2.1 guarantees

‖x− x̃k‖ ≤
√

2‖Ekx‖
C4

. (2.45)

The following lemma shows that ‖Ekx‖ goes to zero along with ‖rk‖.
Lemma 2.6. Let (λ, x) be the target, (µk, zk) be the candidate, and rk be the
candidate residual. If the relative error condition holds, then

‖Ekx‖ ≤ ε‖rk‖
(

C2
8 +

C9

C1

)
, (2.46)

where C1, C8, C9 are constants defined in Assumption 2, Assumption 5 and
Assumption 6.
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Proof. In this proof, we treat zk and x as the eigenvector approximation and
eigenvector of A (not S). Let x = αkzk + qk, where αk = z∗kx = cos ∠(zk, x).
Therefore, ‖qk‖ = | sin ∠(zk, x)|. From (2.8),

‖qk‖ ≤ ‖rk‖
sep(µk, L)

.

Therefore, Ekx can be expressed as

Ekx = αkEkzk + Ekqk

= αkF
⊥
k (σI −Mk)

−1Y −1
k U∗

kzk + Ekqk

=
αk

σ − µk

f⊥k + Ekqk.

Its norm can be bounded as follows.

‖Ekx‖ ≤ |αk|
|σ − µk|‖f

⊥
k ‖+ ‖Ek‖‖qk‖

≤ ε‖Sk‖
|σ − µk|‖rk‖+ ‖Ek‖ ‖rk‖

sep(µk, L)

≤ εC2
8‖rk‖+ εC9

‖rk‖
sep(µk, L)

≤ ε‖rk‖
(

C2
8 +

C9

C1

)
.

Combining (2.45) and Lemma 2.6, we could give the following bound

‖x− x̃k‖ ≤
√

2ε‖rk‖
C4

(
C2

8 +
C9

C1

)
.

If we let C11 =
√

2(C2
8 + C9/C1)/C4, the above inequality can be written as

‖x− x̃k‖ ≤ ε‖rk‖C11. (2.47)

The next step is to show the convergence of the Ritz vector zk to the
perturbed eigenpair x̃k. From (2.43),

‖zk − z̃k‖ = ‖Ukyk − Ukỹk‖ ≤ ε‖rk‖C10.
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By the uniform convergence assumption,

‖z̃k − x̃k‖ ≤ κ̃k.

By the triangle inequality,

‖zk − x̃k‖ ≤ ‖zk − z̃k‖+ ‖z̃k − x̃k‖ ≤ ε‖rk‖C10 + κ̃k. (2.48)

The following theorem completes the convergence proof.

Theorem 2.7. If ε < 1/2(C10 + C11),

‖rk‖ ≤ 2κ̃k

1− 2(C10 + C11)ε
. (2.49)

Proof. From (2.47) and (2.48), one has

‖zk − x‖ ≤ ‖zk − x̃k‖+ ‖x̃k − x‖
≤ κ̃k + ε‖rk‖C10 + ε‖rk‖C11.

From (2.7),

‖rk‖ ≤ 2‖zk − x‖ ≤ 2(κ̃k + ε‖rk‖(C10 + C11)).

If 2(C10 + C11)ε < 1, ‖rk‖ can be bounded by

‖rk‖ ≤ 2κ̃k

1− 2ε(C10 + C11)
.
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Chapter 3. RAPACK

RAPACK is a numerical package which employs the residual Arnoldi method
to solve large eigenproblems. The package is implemented in Fortran 95. Here
are some of its features.

• Two computational methods, RA and SIRA, are implemented in RA-
PACK.

• RAPACK allows the computation to start with an arbitrary subspace
that contains proper eigenvector approximations.

• The SIRA mode allows imprecise results of shift-invert enhancement.

• The storage requirement of RAPACK is moderate. Users can adjust
the memory usage according to their computational resources.

• The package is independent of the format of the matrix. RAPACK
permits any representation of matrix, but requires user to provide the
necessary matrix operations.

• RAPACK provides several commonly used criteria for spectrum selec-
tion. Users may also define their own criteria.

• Users can inspect intermediate results during the computation and
adaptively reconfigure certain parameters.

• In the computation of real nonsymmetric eigenproblems, RAPACK
works in real arithmetic when dealing with complex eigenpairs.

In this chapter, we will treat the design and the implementation of RA-
PACK. Section 3.1 gives an overview of the algorithms used by RAPACK.
Section 3.2 addresses some implementation details, including candidate se-
lection, deflation, and subspace restarting. Section 3.3 discuss the process
of handling complex eigenpairs of real matrices. Section 3.4 analyzes the
time complexity and the storage requirement of the algorithm. Section 3.5
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discusses the design decisions made in RAPACK. Section 3.6 shows how RA-
PACK can be used to implement other algorithms for eigenvalue problems,
for example the inexact Krylov method.

3.1 Algorithms

RAPACK has two computational modes, RA mode and SIRA mode, corre-
sponding to two residual Arnoldi algorithms. The RA mode, requiring only
matrix vector multiplication, is suitable for computing the eigenvalues on the
periphery of the spectrum. The SIRA mode applies shift-invert enhancement
to the computed residual. As we have seen, the linear systems can be solved
imprecisely. Table 3.1 compares some aspects of the two modes. Since the
SIRA mode must work with shift-invert enhancement, we also present the
RA mode with shift-invert enhancement to contrast the difference between
the two. In the table, A denotes the original matrix; and S denotes the
shift-inverted matrix (A − σI)−1. In addition, rA represents the residual of
A and rS is the residual of S.

RA mode for A RA mode for S SIRA mode

Spectrum of matrix A S A
Subspace expanded by rA rS SrA

Appr. converges to eigenpair of A eigenpair of S eigenpair of A
Matrix multiplication required not required required
Solving linear system not required required required
Precision requirement
for solving linear N/A high low
system

Table 3.1: Algorithmic difference of computational modes

3.1.1 Algorithm for the RA mode

The RA mode, as shown in Algorithm 3.1, consists of two stages. The first
stage is designed to generate a list of candidates. If an initial subspace is
available, then it will be used to obtain the candidates. Otherwise, candidates
will be generated by the Arnoldi process. The second stage of the algorithm
implements the residual Arnoldi method. First, it computes the Rayleigh
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quotient from the subspace and the eigendecomposition of the Rayleigh quo-
tient. Then, the algorithm selects a Ritz pair as the candidate and computes
its residual. If the residual is small enough, the candidate is considered to
be a converged eigenpair approximation. After that, the algorithm either
selects another candidate or stops, depending on how many converged ap-
proximations have been computed. If the residual is not small enough, then
the algorithm continues the subspace expansion by residuals. Algorithm 3.1
describes the entire process, except for the details of candidate selection, de-
flation and subspace restarting, which will be discussed in the next section.

An iteration in RAPACK consists of a single subspace expansion. The
first stage has a maximum number of iterations, the maximum dimension m
of the subspace. The maximum number of iterations for the second stage
is t −m, so that the total number of iterations does not exceed t. Later in
this chapter, variables will be indexed with the iteration counter iter when
necessary.

In the implementation, the Rayleigh quotient H = U∗AU is computed
cumulatively; i.e. the Rayleigh quotient in the current iteration, denoted
Hk, is calculated by updating the Rayleigh quotient from previous iteration
Hk−1. Although the Rayleigh quotient is not required in the first stage, it
is still computed for use in the second stage. If the process starts with a
single vector, the generated subspace is a Krylov subspace. According to the
Arnoldi relation, we have AUk = Uk+1Ĥk where

Ĥk =

(
Ĥk−1 hk

0 βk

)
(3.1)

is a (k + 1) × k Hessenberg matrix and hk and βk are computed during
the orthogonalization process: namely vk = Ukhk + βkuk+1. The Rayleigh
quotient Hk is the upper square matrix of Ĥ; i.e., Hk = Ĥk(1:k, 1:k).

If the subspace is not Krylov, Hk cannot be computed from (3.1). How-
ever, it can be still computed cumulatively.

Hk = U∗
kAUk =

(
U∗

k−1

u∗k

)
A (Uk−1, uk) =

(
Hk−1 U∗

k−1Auk

u∗kAUk−1 u∗kAuk

)
. (3.2)

To avoid the computation of AUk−1 in every iteration, RAPACK accumulates
Auk in a variable Vk. This matrix Vk is also used in the computation of
the residual. Hence, only one matrix vector multiplication is required per
iteration.

44



Algorithm 3.1 The basic algorithm for the RA mode in RAPACK.

Input: Matrix A; Initial subspace U1; The maximum dimension of the
subspace m; The maximum number of iterations t; Required
precision for computed eigenpair τ ; The number of desired
eigenpairs s.

Output: a list of eigenpair approximations L.
(The initialization stage)

1. Let U = U1, u = U(:, 1), V = [].
2. for k = 1 to m.
3. Compute v = Au and let V = [V, v].
4. if dim(U) > dim(V )
5. Let u = U(:, k)
6. else
7. u =Orthogonalize(U, v); U = [U, u].
8. end if.
9. end for.

(The residual Arnoldi stage)
10. for k = m + 1 to t.
11. Compute Rayleigh quotient H and its eigendecomposition.
12. do
13. Select an eigenpair (µ, y) of H.
14. Compute the residual r = V y − µUy for the Ritz pair (µ, Uy).
15. if (‖r‖ ≤ τ)
16. if (Number of converged approximations ≥ s)
17. return L.
18. else
19. Add (µ, Uy) to L.
20. end if
21. end if
22. while (‖r‖ ≤ τ)
23. Deflate all new converged µ from the spectrum of H.
24. u =Orthogonalize(U, r).
25. if (dim(U) ≥ m)
26. Restart the subspace.
27. end if
28. Compute v = Au and let U = [U, u] and V = [V, v].
29. end for
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3.1.2 Algorithms for the SIRA mode

The SIRA mode is similar to Algorithm 3.1, except one additional step is
required before step 24: namely to solve the linear system (A−σI)v = r and
use v in the orthogonalization of the step 24.

3.2 Candidate selection, deflation and subspace restart-

ing

It is well known that the Rayleigh Ritz method can produce spurious eigen-
value approximations when the subspace contains converged eigenvectors,
and this is the reason for deflation [2]. In RAPACK, the subspace U is
divided into two subspaces U1 and U2, U = (U1 U2), where U1 spans the sub-
space that contains all converged eigenvectors and U2 spans the rest space
of U . This complicates the algorithms for candidate selection, deflation, and
restarting. We will describe each of them in this section.

3.2.1 Candidate selection

According to the partition of the subspaces, the Rayleigh quotient H can be
decomposed into blocks.

H = U∗AU =

(
U∗

1

U∗
2

)
A(U1 U2) =

(
U∗

1 AU1 U∗
1 AU2

U∗
2 AU1 U∗

2 AU2

)
=

(
H11 H12

H21 H22

)
.

Since U1 spans the subspace that contains converged eigenvectors, U1 can
be treated as an invariant subspace. Therefore, for some matrix M1, AU1 =
U1M1, up to the convergence precision τ , and hence H21 = U∗

2 AU1 = U∗
2 U1M1 =

0. The Rayleigh quotient then becomes

H =

(
H11 H12

0 H22

)
, (3.3)

or

H =

(
H11 0
0 H22

)
(3.4)

if A is Hermitian.
The above decomposition separates the spectrum of H into two disjoint

parts: the spectrum of H11 and the spectrum of H22. It is obvious that
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candidates should be selected only from the spectrum of H22. Let (µ, y2) be
an eigenpair of H22, in which µ is the candidate Ritz value. We assume µ is
a simple eigenvalue of H22. If the matrix A is Hermitian, the Ritz vector is
U2y2 because it is orthogonal to U1. If A is not Hermitian, the Ritz vector
needs to be computed from the eigenvector of the entire matrix H. Let

y =

(
y1

ŷ2

)
,

be the eigenvector of H corresponding to the eigenvalue µ, Hy = µy.

Hy =

(
H11 H12

0 H22

)(
y1

ŷ2

)
= µ

(
y1

ŷ2

)
.

The above equation is equivalent to the following equations.

H11y1 + H12ŷ2 = µy1 (3.5)

H22ŷ2 = µŷ2 (3.6)

The second equation implies ŷ2 = y2, and the first equation gives a formula
to compute y1.

y1 = −(H11 − µI)−1H12y2 = (µI −H11)
−1H12y2. (3.7)

Thus, the eigenvector y can be constructed by concatenating y1 and y2 and
the Ritz vector can be computed directly in the form U1y1 + U2y2.

The only problem with this method is that µ may also be an eigenvalue of
H11. In that case, matrix (µI−H11) is not invertible. In the implementation
of RAPACK, this problem is avoidable by adding some perturbation, less
than τ , to the matrix (µI − H11). Algorithm 3.2 sketches the process of
candidate computation.

3.2.2 Deflation

The major task of deflation is to expand the subspace U1 by the converged
eigenvectors and to shrink the subspace U2 by removing these vectors. The
deflation algorithm in RAPACK can deflate all converged eigenpairs in an
iteration.

The algorithm is described as follows. Suppose

(µ(1), Uy(1)), (µ(2), Uy(2)), · · · , (µ(j), Uy(j))
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Algorithm 3.2 The algorithm for candidate computation.

Input: Rayleigh quotient H.
Tolerance τ .

Output: An eigenpair (µ, y) of H.

1. Let H =

(
H11 H12

0 H22

)
.

Compute the eigendecomposition of H22 = Y2M2Y
−1
2 .

2. Select an eigenpair of H22, (µ, y2).
3. Compute the pivoted LU decomposition of −(H11 − µI) = PLU .
4. If any diagonal element of L is of magnitude less than τ ,

replace it with τ .
5. Solve the system PLUy1 = H12y2.

6. Let y =

(
y1

y2

)
.

are the converged approximations to be deflated. First, the Schur decompo-
sition of H22 is computed,

H22 = WTW ∗,

where W is unitary and T is upper triangular. Next, the eigenvalues of T
are reordered so that the first j diagonal entries of T are µ(1), µ(2), · · · , µ(j).
The reordering can be achieved by a unitary matrix Q,

H22 = WQQ∗TQQ∗W ∗ = Ŵ T̂ Ŵ ∗,

where Ŵ = WQ and T̂ = Q∗TQ. Finally, the Rayleigh quotient and the
subspaces are updated by Ŵ and T̂ . The Rayleigh quotient after deflation is

H =

(
H11 H12Ŵ

0 T̂

)
.

The subspaces U and V are updated by post-multiplying a matrix B,

B =

(
I 0

0 Ŵ

)
.
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Algorithm 3.3 The deflation algorithm in RAPACK.

Input: Eigenvalue approximations µ(1), µ(2), · · · , µ(j);
Rayleigh quotient H and subspace U and V .

Output: Updated Rayleigh quotient Ĥ and subspaces Û and V̂ .

1. H =

(
H11 H12

0 H22

)
.

Compute the Schur decomposition of H22 = WTW ∗.
2. Reorder the eigenvalues of T .

Ŵ = WQ and T̂ = Q∗TQ such that

µ(1), µ(2), · · · , µ(j) are the first j diagonal elements of T̂ .

3. Let Ĥ =

(
H11 H12Ŵ

0 T̂

)
,

and V̂ = V B and Û = UB, where B =

(
I 0

0 Ŵ

)
.

Let Ŵ =
(

W1 W2

)
, where W1 consists of the first j columns of Ŵ

and W2 has the remaining columns of Ŵ . The subspace U1 after deflation
becomes

(
U1 U2W1

)
and the updated subspace U2 is U2W2.

To verify the correctness of the algorithm, we need to prove two things.
First, every eigenvector approximation Uy(i) is contained in the subspace(

U1 U2W1

)
after deflation. Second, the updates on Rayleigh quotient

and subspaces are correct. The proof of the first argument starts with the
decomposition of a converged eigenvector Uy(i) = U1y

(i)
1 + U2y

(i)
2 . Since y

(i)
2

is an eigenvector of H22 corresponding to µ(i), y
(i)
2 will be contained in W1.

Therefore, the vector U1y
(i)
1 + U2y

(i)
2 is in the subspace

(
U1 U2W1

)
.

The validity of the updated Rayleigh quotient and subspaces is shown
as follows. Since Ŵ is unitary, matrix B is also unitary. The updated
matrix Û = UB therefore remains orthogonal. The updated matrix V̂ is
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V B = AUB = AÛ . The updated Rayleigh quotient equals

Û∗AÛ = B∗U∗AUB = B∗HB

=

(
I 0

0 Ŵ ∗

)(
H11 H12

0 H22

)(
I 0

0 Ŵ

)

=

(
H11 H12Ŵ

0 Ŵ ∗H22Ŵ

)

=

(
H11 H12Ŵ

0 T̂

)
.

3.2.3 Subspace restarting

RAPACK uses the Krylov Schur method [40] in subspace restarting. The
Krylov Schur method, as introduced in Chapter 1, consists of three steps.

1. Select the Ritz pairs that are to be retained.

2. Compute the Schur decomposition of the Rayleigh quotient and reorder
the Schur vectors such that the desired Ritz pairs are in the front of
the Schur decomposition.

3. Update the subspace and Rayleigh quotient.

The algorithm is similar to the deflation algorithm. The difference is that in
the deflation algorithm the selected Ritz pairs are converged approximations
and the dimension of the subspace remains the same. In subspace restarting,
the selected eigenpairs are the eigenpairs to be kept in the restarted subspace,
and the unselected eigenpairs will be discarded. The process of subspace
restarting is given in Algorithm 3.4.

3.3 Complex eigenpairs in real nonsymmetric matrices

For real nonsymmetric matrices, complex conjugate eigenvalues pose prob-
lems for the residual Arnoldi method. If a candidate is complex, so is its
residual, and eventually every operation will be in complex arithmetic, since
the residual Arnoldi method uses residuals in subspace expansion. One way
to solve this problem is to use the complex arithmetic in the beginning. How-
ever, if all the targets are real, that is inefficient. In this section, we describe
how RAPACK circumvents complex arithmetic for complex targets.
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Algorithm 3.4 The algorithm of subspace restarting.

Input: Dimension of restarted subspace j;
Rayleigh quotient H and subspace U and V .

Output: Updated Rayleigh quotient Ĥ and subspaces Û and V̂ .

1. H =

(
H11 H12

0 H22

)
.

Compute the Schur decomposition of H22 = WTW ∗.
2. Let ̂ = j − dim(H11).

Select desired eigenvalues µ(1), µ(2), · · · , µ(̂) from H22.
3. Reorder the eigenvalues of T .

Ŵ = WQ and T̂ = Q∗TQ such that

µ(1), µ(2), · · · , µ(̂) are the first ̂ diagonal elements of T̂ .

4. Let Ŵ1 = Ŵ (:, 1:̂) and T̂11 = T̂ (1:̂, 1:̂).

5. Let Ĥ =

(
H11 H12Ŵ1

0 T̂11

)
,

and V̂ = V B and Û = UB, where B =

(
I 0

0 Ŵ1

)
.

3.3.1 Subspace expansion

In the Arnoldi process, the subspace generated for a real matrix is real,
because the vectors used in subspace expansion are always real. The only
problem for computing a complex target is when a complex shift is used
in the shift-invert enhancement. In that case, the shift-inverted matrix is
complex, and so is the generated subspace.

Several methods have been proposed to avoid this problem. One is the
double shift strategy. Let σ = α + iβ be a complex shift. The double shift
strategy solves the following equation

(A− σI)(A− σ̄I)v = uk, (3.8)

and uses v in subspace expansion. Since the matrix

(A− σI)(A− σ̄I) = A2 − 2αA + σσ̄I

is real, the generated subspace remains real.
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In [28], Parlett and Saad proposed a method, which solves the complex
linear system (A−σI)v = uk, and uses the real part (or the imaginary part)
of the solution in subspace expansion. It can be shown that the real part of
v is equivalent to

vreal = (A− αI)(A− σ̄I)−1(A− σI)−1uk,

and the imaginary part equals

vimag = β(A− σ̄I)−1(A− σI)−1uk.

This can be verified easily by computing

v = vreal + ivimag

= [(A− αI) + iβI](A− σ̄I)−1(A− σI)−1uk

= [A− (α− iβ)I](A− σ̄I)−1(A− σI)−1uk

= (A− σ̄)(A− σ̄I)−1(A− σI)−1uk

= (A− σI)−1uk

If the real part is used, the generated subspace is a Krylov subspace for
the matrix (A − αI)(A − σ̄I)−1(A − σI)−1; if the imaginary part is used,
the subspace is Krylov for the matrix β(A − σ̄I)−1(A − σI)−1. Thus, both
matrices are real and contain some information about the double shifted
matrix.

The residual Arnoldi method has more problems with complex targets
than the ordinary Arnoldi method. First, a complex candidate generates a
complex residual. This complex residual has parallel real and imaginary parts
if the generated subspace is a Krylov subspace of a real matrix. However,
this property is not valid in general. Second, when a complex shift is used in
the shift-invert enhancement, Parlett and Saad’s algorithm cannot be applied
directly, because neither part of the solution alone is a useful vector.

In RAPACK, the generated subspace cannot be assumed to be a Krylov
subspace, because of errors and the fact that the initial subspace can be
arbitrary. A double vector method that generates a real subspace for possibly
complex candidates is given in Algorithm 3.5. It uses both parts of a complex
vector in subspace expansion if necessary. Although up to twice the storage
for the subspace may be required, this method guarantees the convergence
of complex approximations.
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Let vreal and vimag be vectors for the real part and the imaginary part
of the complex vector that is used for subspace expansion. The decision of
whether to use both vectors is made by checking their linear dependence.
Instead of measuring their angle, the normalized difference of vectors vreal

and vimag,

δ = min

{∣∣∣∣
vreal

‖vreal‖ −
vimag

‖vimag‖

∣∣∣∣ ,

∣∣∣∣
vreal

‖vreal‖ +
vimag

‖vimag‖

∣∣∣∣
}

, (3.9)

is evaluated. When δ is small enough, only one vector, whichever has the
larger magnitude, is used in subspace expansion. Otherwise, both vectors
are added into subspace one by one. The order is decided by their norm, the
larger one first.

Algorithm 3.5 The double vector method in the subspace expansion.

Input: z = zreal + izimag the complex vector to be used;
Required precision ε for solving linear system;
Subspace U and V .

Output: Updated subspaces U and V .

1. Let zmax = arg max(‖zreal‖, ‖zimag‖)
and zmin = arg min(‖zreal‖, ‖zimag‖).

2. Let u1 be the normalized result of orthogonalizing
zmax against U .

3. U = [U, u1].

4. δ = min
{∣∣∣ zmax

‖zmax‖ − zmin

‖zmin‖

∣∣∣ ,
∣∣∣ zmax

‖zmax‖ + zmin

‖zmin‖

∣∣∣
}

.

5. if ( δ < ε) then
/* zreal and zimag are nearly parallel.*/

6. Compute v1 = Au1 and let V = [V, v1].
7. else
8. Let u2 be the normalized result of orthogonalizing

zmin against U .
9. U = [U, u2].

10. Compute (v1, v2) = A(u1, u2) and let V = [V, v1, v2].
11. end if

Note that the algorithms maintain the subspace V = AU in step 6 and
10. If both vectors are used, two matrix vector multiplications are invoked
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to match the dimension of subspace U . The matrix V is required to be
real, which means matrix A must be real. Thus, a complex shift-inverted
matrix S = (A−σI)−1 cannot be plugged into the RA mode directly. When
a complex shift is considered in the RA mode, user should use either the
double shift strategy, or Parlett and Saad’s method. In section 3.6.3, we will
demonstrate how it is implemented.

This limitation does not apply to the SIRA mode because the Rayleigh
quotient is for A not for S. And the shift value does not need to be a constant
in the SIRA mode. If user wants to solve a real nonsymmetric eigenproblem
with a complex shift, the SIRA mode is a better choice.

3.3.2 Computation of Ritz vectors and residuals

Complex eigenpairs also cause some problems in the computation of Ritz
vectors and residuals. In order to process them, RAPACK must provide
storage and procedures to handle these complex vectors. One way is to
use complex data type for all cases, no matter whether the Ritz pair is
real or complex. However, when it is real, unnecessary cost will be paid.
Remember that complex arithmetic requires twice storage and four times
computation compared to real arithmetic. Another solution is to create two
sets of variables: one is real and another is complex. During the computation,
decision on which one should be used is dynamically made. One obvious
drawback for this method is the waste of storage if only one kind of data
type is needed in computation. The third way to treat this problem, which
is used in RAPACK, is to put everything in real arithmetic. When the
Ritz pair is complex, RAPACK just replaces it with an identical real matrix
representation.

In Algorithm 3.2, the candidate computation starts by computing the
eigenpairs of H22, which is a submatrix of the Rayleigh quotient that contains
non-converged Ritz values. Suppose (µ, y2) = (α+iβ, w2+iz2) is an eigenpair
of H22 that is picked by RAPACK. To compute the Ritz vector, one must
solve the linear equation

−(H11 − µI)y1 = H12y2 (3.10)

and use (yT
1 yT

2 )T as primitive Ritz vector. It is a complex linear system since
µ and y2 are complex. A real linear system equivalent to (3.10) is described
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as follows.
(

αI −H11 −βI
βI αI −H11

)(
w1

z1

)
=

(
H22w2

H22z2

)
, (3.11)

where y1 = w1 + iz1.
The residual computation can be converted to real arithmetic in the same

way. Let (µ, Uy) = (α+iβ, Uw+iUz) be the complex candidate. Its residual
is

r = AUy − Uyµ

= A(Uw + iUz)− (Uw + iUz)(α + iβ)

=

[
AU(w, z)− U(w, z)

(
α β
−β α

)](
1
i

)
.

Without multiplication by the vector (1 i)T , the residual r can be represented
in a two column matrix, one column for the real part and another for its
imaginary part.

3.3.3 Deflation and subspace restarting

Since the complex eigenpairs in a real matrix are always conjugate, when
one complex eigenpair approximation is converged, its conjugate one must
be converged too. In this case, RAPACK will deflate both approximations
from the subspace, even if the conjugate one is not a desired eigenpair. The
same scenario happens in subspace restarting. If a complex eigenvector is
selected into restarting subspace, its conjugate pair will be in the restarting
subspace too.

The algorithm to achieve this goal is quite simple, because RAPACK use
real Schur decomposition to compute the eigenvalues of H22. The reordering
algorithm for the real Schur decomposition will keep conjugated eigenpairs
together when reordering them.

3.4 Time complexity and memory requirement

In this section, we analyze the time complexity and the memory requirements
for RAPACK. As usual, we start with the algorithm for the normal mode,
and then discuss one for the SIRA mode.
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3.4.1 Time complexity

Since most calculations in RAPACK consist of paired additions and multipli-
cations, we will call such a pair a flam. Other operations, such as searching
and sorting, are denoted by a flcm, a floating point comparison. The time
complexity analysis for memory allocation and data transfer will not be cov-
ered in this section.

Here is the notation used in the analysis. The scalar n is the order of the
matrix A; m is the maximum dimension of the subspace; s is the number of
desired eigenpairs, which is also the dimension of the restarted subspace. The
function f(n) denotes the time complexity for matrix vector multiplication.
Similarly, g(n, ε), denotes the average time complexity for solving a linear
system to the accuracy ε.

In the analysis, we employ the O-notation [44] to simplify the results, such
that only the dominant cost is addressed. The O-notation, the asymptotic
upper bound, for a function g(n) is defined as

O(g(n)) = f(n) if there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. (3.12)

We also assume that n À m > s, since in practice, we are only concerned
with the large matrices.

An iteration is defined to be a single expansion at the subspace. The
scalar k denotes the total number of iterations that performed. An epoch is
defined as the period between two consecutive restarting steps. The integer
p will be the total number of epochs, which roughly equals k/m.

In the first stage of Algorithm 3.1, the major cost is the orthogonalization,
O(nm3) flam, and matrix vector multiplication, O(mf(n)) flam. In the sec-
ond stage, the computation is divided into several operations: Rayleigh quo-
tient computation, eigenvalue computation, target selection, residual com-
putation, deflation, subspace restarting, and orthogonalization. Here, we
first consider the time complexity of one epoch. Then we compute the time
complexity for the entire process.

The computation of the Rayleigh quotient, in each iteration, takes 2nm+n
flam for U∗v, u∗V and u∗v. This adds up to 2nm2 + nm flam in one epoch.
The eigenvalue decomposition of the Rayleigh quotient requires O(l3) flam
for the Rayleigh quotient of order l. In one epoch, the time complexity will
be O(m4). To compute Ritz vector and residual, an additional 2nm will be
needed. The target selection sorts the Ritz values in each iteration, which
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takes O(m3) flcm in one epoch. The residual computation requires nm2+nm
flam in one epoch. And the orthogonalization, same with the workload in
the first stage, takes nm2 + mf(n) flam in one epoch.

Subspace restarting is performed once per epoch. The first step, selecting
desired Ritz pairs, does not cost anything because the Ritz pairs are already
ranked by the process of the target selection. The second step, computing
Schur decomposition and reordering the Schur pairs, takes O(m3) flam. The
third step, updating subspaces and Rayleigh quotient, takes nsm+ sm flam,
because the dimension of the restarted subspace is s.

The deflation is executed at most s times during the entire process, be-
cause more than one converged eigenpairs may be deflated together. Like
the subspace restarting, the major cost of deflation is Schur decomposi-
tion, reordering and subspace updating, which takes O(m3) + nm2 + m2

flam. In the case of deflating conjugate eigenpairs, it requires additional
O(m) flcm for searching the conjugate pair. The overall cost is bounded by
sO(m3) + snm2 + sm2 flam and sO(m) flcm.

Since there are p epoches, the overall cost, including the operations in the
first stage, is sO(m3)+snm2+sm2+p[O(m4)+2nm3+O(nsm)+mf(n)] flam
and sO(m) + pO(m3) flcm. With the estimation of p = k/m, the complexity
for Algorithm 3.1 becomes

(s + k)O(m3) + (s + k)O(nm2) + kO(ns) + kf(n) flam
and kO(m2) flcm

Moreover, because RAPACK requires s < m ≤ k and m ≤ n, the above
complexity can be further simplified

kO(nm2) + kf(n) flam
kO(m2) flcm.

(3.13)

The detail time complexity of each task is listed in Table 3.2.
From (3.13) and Table 3.2, we see that the most time consuming tasks

are matrix-vector multiplication, kf(n), and orthogonalization, kO(nm2).
A naive implementation of matrix-vector multiplication will cost n2, which
could make the matrix-vector multiplication be the most time consuming
task of all. However, in many cases, such as a sparse matrix [27, 9] or a
structure matrix [43], the matrix-vector multiplication can be done faster
than O(n2). In that case, the orthogonalization may become the task that
dominates the computation.
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Task Time complexity

Matrix-vector multiplication kf(n) flam
Orthogonalization kO(nm2) flam
Ritz pair computation k[O(nm) + O(m3)] flam
Residual computation kO(nm) flam
Candidate selection kO(m2) flcm
Restarting k

m
[O(nms) + O(m3)] flam

Deflation s[O(nm2) + O(m3)] flam

Table 3.2: Time complexity for each task in the RA mode.

The above observation may suggest that we shrink the subspace size m to
reduce the cost of orthogonalization. However, there are many tradeoffs in the
setting of these parameters. For example, a large subspace size m may, but
not necessarily [12], reduce the number of iterations k, which could accelerate
total processing time. But the time complexity of orthogonalization grows
quadratically with m and the time complexity of Ritz pair computation,
restarting, and deflation grows cubically with m. How to choose a proper m
is still an interesting research topic.

3.4.2 The SIRA mode

The SIRA mode requires an additional step in the algorithm, the residual
enhancement. Therefore, except for the original cost of the algorithm, it
requires extra g(n, ε) in each iteration of the second stage. Also, when the
targets are complex, it doubles the workloads of the residual computation
and orthogonalization. The overall time complexity for the SIRA mode is

kO(nm2) + kf(n) + (k −m)g(n, ε) flam
kO(m2) flcm

(3.14)

At the first glance, one might find the SIRA mode is more expensive
than the RA mode because of the additional term (k −m)g(n, ε). However,
this may not be true since the SIRA mode usually has smaller k if a shift
is correctly selected. The beauty of the SIRA mode is the function g(n, ε)
can be very small, because the require precision ε is low. We will see some
experimental results in the next chapter for this point.
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3.4.3 Memory requirements

In RAPACK, the different computational modes have the same memory re-
quirement. In the beginning of the process, RAPACK allocates the maximum
required storage, which can be known from the order of the matrix n and
the maximum dimension of the subspace m. The major storage requirement
is for the two subspace matrices U and V , each of which is a n × (m + 1)
array. The reason for the extra column is for the case when the last target
is complex.

Beside that, RAPACK allocates several n × 2 arrays, U1, V1,R, Z and
one n × 1 array r. Matrix U1 is the orthogonalization result and V1 is for
holding Au. Matrix R is for the residual, and Z is a scratch array used
in orthogonalization and residual computation. The reason for the double
columns is also to handle complex eigenpairs. The vector r is a scratch array
that is used in the CSI method.

Three (m+1)× (m+1) real arrays are also allocated in RAPACK. They
are designed for storing the Rayleigh quotient H, the eigendecomposition for
H and the Schur decomposition for H. Two complex arrays, sized (m+1)×1,
are used in holding the eigenvalues. An integer array with the same size is
for the sorting result.

Overall, the storage requirement of RAPACK is n× (2m + 11) + 3(m +
1)× (m + 1) real, 2m + 2 complex and m + 1 integer.

3.5 Implementation

RAPACK, implemented in Fortran 95, consists of five modules. RAcontrol

defines the parameters and the variables that regulate the action of data
flow and the iteration between functions. RAutil includes all the auxiliary
subroutines and functions used by all the package. RAsubspace consists
of a set of subroutines for subspace operations. RAtarget performs target
management. RAnsreal, the major module that should be included in user
programs, provides all the required subroutines for solving real nonsymmetric
eigenproblems.

In this section, the details of implementation and the design philosophy
of RAPACK will be discussed. First, we treat reverse communication, a
technique for obtaining the assistance from the user’s calling program. Then,
the design of the main subroutine, RA, will be treated. Next, we will discuss
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the program configuration and candidate. Several functions that help users
to obtain information about computational results will be treated in the last
subsection.

3.5.1 Reverse communication

Reverse communication is needed because of the diverse representation of
large matrices and the need for RAPACK to have the result of a variety
of matrix operations. RAPACK also uses reverse communication in target
selection and error handling.

The mechanism of the reverse communication simulates function invoca-
tion in general programming languages, except in the reverse direction. In
the normal situation, when a program makes a function call, the system will
push the current content of the program and the return address into stack,
and then jump to the beginning of function when the function returns, the
program will continue the execution from the return address. In reverse com-
munication, the caller itself is a subroutine, and the callee is the main pro-
gram. The function invocation is replaced by the return statement, and the
return takes place when the subroutine is called again. When a subroutine
initiates a reverse communication, it must specify which function the main
program should perform before returning and pass the necessary arguments
to the main program. This information can be communicated through the
returned values or the global variables. During the reverse communication,
the content of the subroutine and the return address is stored in variables in
caller’s scope or static local variables so that when the subroutine is called
again, its content can be retained and the execution can be continued in the
right place.

It is critical in the reverse communication process to ensure the correct-
ness of the calling sequence. Unlike a normal function call, the caller, which
is a subroutine, does not have any control on the callee, the main program.
Therefore, the correct operation and the expected action on the arguments
cannot be guaranteed. The user program could misuse variables or even de-
stroy the content of the caller during the reverse communication. RAPACK
employs two mechanisms to guard against these potential problems. First,
all variables used in the computation are declared private. Actions on these
variables can be only performed through predefined function calls. Second,
RAPACK defines a standard calling sequence for reverse communication,
which is as follows
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1. The user program calls QueryRequest to obtain the request from RA-
PACK.

2. According to the request, the user program calls GetRequest to retrieve
the arguments.

3. The user program performs the requested computation on the argu-
ments.

4. After the computation, the user program calls ReturnRequest to return
the computed results.

5. The user program calls the main subroutine RA.

Here QueryRequest, GetRequest, ReturnRequest and RA are subroutines
defined in RAnsreal.

This calling sequence is guarded in two ways. First, during the re-
verse communication, the variable request_state keeps track of the ac-
tions that user programs perform. In the RA subroutine, request_state is
equal to REQUEST_NONE. When user program calls QueryRequest, it becomes
REQUEST_ISSUED. After user program gets the arguments from GetRequest,
it turns to REQUEST_SET; and after the user program returns the result by
calling ReturnRequest, request_state is set to REQUEST_DONE. Once the
RA subroutine is called, it changes back to REQUEST_NONE. During the calling
sequence, if request_state does not have correct values, RAPACK will give
an error message and stops the program.

Another safeguard is that GetRequest and ReturnRequest check the
data types of the arguments. For example, if RAPACK requests a real
matrix vector multiplication, but user program passes a complex vector in
ReturnRequest, RAPACK will regard it as an fatal error and stop the pro-
gram.

3.5.2 The RA subroutine

The main subroutine in RAPACK, the RA subroutine, is implemented as a
finite state machine. This implementation has several advantages. First, the
reverse communication fits in the scheme naturally, because the next state
serves the the return address in reverse communication. Second, the program
in the subroutine is divided into into small blocks, each with a meaningful
state label,which gives a clear overview of the algorithm.
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The important decision for this design is how the program is partitioned.
Figure 3.1 shows the states and the state transition diagram of RA subroutine.
The state transition diagram in RAPACK can be viewed as a data flow graph,
in which the nodes represent computation and the edges represent control
flow [1]. The state transition diagram gives a simple overview of the entire
process.

3.5.3 Program configuration

RAPACK provides two kinds of methods to configure system parameters.
One sets the configurations through a function call; another uses a configu-
ration file. The latter option has the advantage that users can change the
configuration as without recompiling the program. The ability to change
program parameters at run time is useful in many applications, as well as
testing and tuning. Some programming languages, like Java, utilize the sys-
tem properties to configure runtime parameters. Unfortunately, Fortran does
not support such a mechanism. Instead, program configuration must be done
before invoking the RA subroutine. This sequence of actions is enforced by
RAPACK, through a technique similar to that used in reverse communica-
tion. An additional state is added to monitor whether package has been
configured before the RA subroutine is entered. A failure to have configured
will cause the termination of the program.

3.5.4 Candidate management

A candidate in RAPACK is not just a Ritz pair; it is an object with many
attributes. Besides the Ritz value and the corresponding eigenvector of the
Rayleigh quotient, it includes the norm of the residual of the Ritz pair.
It also has the ranking attribute that represents the preference made by
the candidate selection algorithm. Moreover, a candidate has some logical
markers that indicate whether it has converged, or if it is to be kept in the
restart subspace.

The RAtarget module is designed to manage the candidates. Instead
of defining a data type for individual candidates and forming an array of
that type for all the candidates, RAtarget stores each attribute separately.
This allows RAPACK to manipulate each attribute more efficiently, as in the
computation of primitive Ritz vectors or the sorting of Ritz values. Under
this scheme, each candidate is identified by an index which indicates its
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Figure 3.1: The state transition diagram of the RA subroutine.
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location in the arrays where its attributes are stored. Unfortunately, this
kind of implementation makes access to the attributes of each candidate
more complicated. To mitigate the inconvenience of data access, RAPACK
provides functions or subroutines for data retrieval, so that the caller need
not worry about the underlying implementation.

3.5.5 Computational information

Intermediate computational results can be valuable for programs using RA-
PACK. For example, users should not have to wait for the termination of a
run, which may take days or longer, to find out that convergence has stag-
nated. Instead, they should be able to stop the run or change parameters
dynamically once problems are detected.

RAPACK offers several kinds of information about the course of the com-
putation: the current configuration, intermediate results, debugging informa-
tion, and some statistics. The current configuration can be acquired by the
functions QueryIntegerParameter, QueryTolerance and QueryShiftValue.
It is needed if parameters are configured dynamically. Intermediate results
can be used not only to monitor the progress of the run, but also in adap-
tive algorithms that make computational decisions depending on the current
computed results. Such information is supplied by the subroutine GetResult.
Debugging information, a trace of computational results, can be output to a
file by setting the parameter DEBUG_FILE to the name of the file. Operation
counts, such as the number of reverse communications, may be obtained by
using the function GetStatistic.

3.6 Integration with other methods

RAPACK can cooperate in the implementation of other methods. In this
section, we will consider three such methods. The first one is the inexact
Krylov method, which relaxes the precision required of matrix operations
as the approximation converges. The second is the successive inner-outer
residual Arnoldi process, which utilizes the convergence properties of Krylov
subspaces to reduce the total cost. The third is the complex shift-invert
method proposed by Parlett and Saad [28]. Each method will be discussed
in an individual subsection. Experiments will be presented in Chapter 4.
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3.6.1 Inexact Krylov method

The inexact Krylov method is an Arnoldi-like method that allows matrix-
vector multiplication to be performed with decreasing accuracy as the ap-
proximation converges. The inexact Krylov method for solving linear systems
has been studied in several places [8, 34, 13]. For eigenproblems, some results
can also be found in [18, 34].

In RAPACK, matrix-vector multiplication is performed every time that
the subspace is expanded by a vector. RAPACK maintains two subspace
matrices, U and V . Matrix U is the orthonormal basis of the generated
subspace; and matrix V is equal to AU , which means for every column ui

in U , there is a corresponding vi = Aui. Matrix V serves two purposes: the
computation of Rayleigh quotient and the computation of residual, as we
have presented in section 3.1.

Now, if the matrix-vector multiplication is computed inexactly in every
iteration, say vi = Aui + fi, then V = AU + F , where F = (f1, f2, · · · ). The
introduced errors will perturb the Ritz pairs and its residual. Let (µ̃, ỹ) be
an eigenpair of computed Rayleigh quotient U∗V = U∗AU + U∗F . The first
order perturbation theory of eigenvalue [41] shows there is a corresponding
eigenpair (µ, y) of the actual Rayleigh quotient U∗AU , such that

‖ỹ − y‖ ≤ κ(y)‖Fy‖
|µ̃− µ| ≤ κ(µ)‖Fy‖,

where κ(y) and κ(µ) are condition numbers of y and µ respectively. Here we
assume that κ(y) and κ(µ) are bounded by some constant C1 and write

ỹ = y + ∆y

µ̃ = µ + ∆µ,

in which ‖∆y‖ ≤ C1‖Fy‖ and |∆µ| ≤ C1‖Fy‖. Then, the residual that used
in subspace expansion can be expressed as

r̃ = V ỹ − µ̃Uỹ

= (AU + F )(y + ∆y)− (µ + ∆µ)U(y + ∆y)

= (AUy − µUy) + Fy + V ∆y + ∆µUỹ

= r + Fy + V ∆y + ∆µUỹ

The vector r = AUy − µUy is the exact residual. Therefore

‖r̃ − r‖ ≤ C2‖Fy‖+ O(‖Fy‖2),
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for some constant C2. From the theory in Chapter 2, if the relative error

‖r̃ − r‖
‖r‖ ≤ ε

for some constant ε ≤ 1, the residual Arnoldi method can converge. Here
we assume O(‖Fy‖2) is small enough to be ignored. A sufficient condition
for the convergence is ‖Fy‖ ≤ εC−1

2 ‖r‖. Since this condition has to hold
for every iteration, if it takes k iterations for the residual Arnoldi method to
converge to the precision τ , the condition can be more specifically rewritten

‖Fkyk‖ ≤ εC−1
2 τ, (3.15)

where Fk = (f1, f2, · · · , fk) and yk = (η1, η2, · · · , ηk)
T is the actual primitive

Ritz vector in the kth iteration. If we evenly divide the error εC−1
2 τ into k

iterations, the bound for the error

‖fi‖ ≤ ετ

C2|ηi|k (3.16)

is sufficient to make (3.15) hold.
The above equation does not give a practical formula, since the number

of iterations k to reach the precision τ is unknown, and yk is also unavail-
able. Let θ1, θ2, · · · be the tolerable errors of matrix-vector multiplication
for iteration 1, 2, · · · . As reported in [18], the convergence of inexact Krylov
method is very sensitive to θi. A large θi could prolong the entire process or
even cause stagnation. But small θi do not benefit the process much. Here
we give a heuristic bound for ‖fi‖

θi = max{τ, δτ

‖ri‖m}, (3.17)

where δ is some constant. Comparing the above bound to (3.16), we estimate
ηi by the norm of the residual of current candidate, ‖ri‖; and replace k by
the maximum dimension of the subspace m which is used in the subspace
restarting algorithm. Constant ε/C2 is estimated by δ. In the next chapter,
we will see how well this formula works.

When more than one eigenpair is desired, the situation becomes even more
complex, because the errors valid for one eigenpair approximation may cause
stagnation for other eigenpairs. Fortunately, this problem can be resolved by

66



the residual Arnoldi method, since it can make the approximation converge as
long as the corresponding eigenvectors of the perturbed matrix can still have
converging Ritz vectors. Therefore, the strategy is simple: we only consider
one Ritz pair at a time, the candidate. We just estimate the tolerable error for
current candidate. Although these errors may cause other approximations
to stagnate, the stagnation is temporary. When candidates are switched,
the new one will start the convergence. If the number of desired eigenpairs
increases, the parameter δ should be set smaller to safeguard the convergence.

3.6.2 Successive inner-outer residual Arnoldi process

The successive inner-outer Krylov (or Lanczos) method is based on three
observations [18].

1. If we compute matrix-vector multiplication to precision τ every time in
Krylov subspace methods, the achievable accuracy of computed eigen-
pairs will be roughly equal to τ .

2. Suppose we are given two different precisions requirements τ1 and τ2

with τ1 > τ2. If we run the Arnoldi process first with precision τ1 and
then with precision τ2, then the convergence curve of the approxima-
tions corresponding to τ2 will be almost identical to those corresponding
to τ1 before they reach τ1.

3. The approximations in Krylov methods converge superlinearly.

The successive inner-outer Krylov (or Lanczos) method divides a run into
a sequence of stages. Each stage computes using an increasing precision. For
example, if the final precision required is 10−12, then we could divide the
process into four stages, and compute with precision 10−3, 10−6, 10−9 and
10−12. In each stage, the subspace is restarted with the best eigenvector ap-
proximation as an initial vector. In the early stage, we could compute the
matrix-vector multiplication to a low accuracy, since the required precision
is low. Then, we increase the precision requirement of matrix-vector multi-
plication as we proceed to next stage. Since the approximations in Krylov
methods converge superlinearly, one can expect the latter stages take fewer
iterations to complete. Therefore, even though the latter stage needs more
time to compute matrix-vector multiplication more precisely, the total time
is reduced.
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The matrices used in each stage can be also viewed as a parameterized
matrix,

Ã(τi) = A + E(τi), (3.18)

where E(τi) is a random matrix with norm no greater than τi.
The drawback of this process is the convergence is local, which means

this process can only compute one eigenpair at a time. When the subspace is
restarted, even though it may contain good approximations for many eigen-
pairs, only one approximation is kept in the restarting subspace. The reason
is that the Krylov subspace for Ã(τi) is not a Krylov subspace for Ã(τi+1).
And if we give up the property of Krylov subspace, which means we recom-
pute the Rayleigh quotient for Ã(τi+1), and start the Arnoldi process from the
last column of the subspace, the convergence property in the second obser-
vation above will not hold. The convergence curve will look like a staircase,
in which the superlinear convergence property is also lost.

This problem can be solved easily in RAPACK because the RA method
use an arbitrary subspace to start.

3.6.3 The complex shift-invert method

In [28], Parlett and Saad showed that either the real part or the imaginary
part of a complex shift-inverted matrix can be used for subspace expansion.
Let σ = α + iβ be a complex shift value. Then the shift-inverted matrix
S = (A − σI)−1 is complex. Let S = Sr + iSi, where Sr and Si are real
matrices. Parlett and Saad proved that

Sr = (A− αI)(A− σ̄I)−1(A− σI)−1

Si = β(A− σ̄I)−1(A− σI)−1.

Therefore, one can use either the real part or the imaginary part in the
subspace expansion.

In RAPACK, this algorithm can be integrated into the RA mode. Specif-
ically, whenever a matrix-vector multiplication request is made, the user
program solves a complex linear system, and returns only the real part or
the imaginary part as the answer. In the RA mode, RAPACK only requests
matrix vector multiplication for a real vector and accepts a real vector as
result. It does not care how the vector is generated.

The algorithm is briefly described as follows
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1. Solve the complex linear system (A − σI)v = u when a matrix vector
multiplication is requested in the RA mode.

2. Return the real part (or the imaginary part) of v.

One must consistently use the real or the imaginary part throughout the
process. Otherwise the Rayleigh quotient, which is a cumulated result of a
series of matrix-vector multiplication, cannot be computed correctly, since
the matrix itself is not consistent.

The only difficulty with this method is to recover the original eigenvalue
approximations from the current approximations. Assume the imaginary
part is used in subspace expansion and (µ, z) is an eigenpair approximation
of the matrix Si where σ = α + iβ is the shift value. The relation of µ and
the corresponding eigenvalue λ of A is

µ =
β

(λ− σ)(λ− σ̄)
,

or equivalently

λ = α±
√

β

µ
− β2.

The two formula for λ are not conjugate. Only one of them is the correct
eigenvalue approximation, and there is no simple way to tell. There are
two possibilities. The first one is to select the solution that is close to the
shift. It is simple, but can fail. The second is to compute the eigenvalue
approximations as the Rayleigh quotient of the approximated eigenvector
λ = z∗Az, which is more expensive but more reliable.
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Chapter 4. Experiments

This chapter contains several experiments designed to compare RAPACK
with other packages. Section 4.1 introduces the package Eigentest, which
generates some of the test matrices we will use to evaluate RAPACK. Section
4.2 compares the performance of RAPACK and ARPACK [22]. Section 4.3
evaluates the effect of using an arbitrary starting subspace for solving eigen-
value problems. Here we will compare RAPACK and SRRIT [3]. Section 4.4
contrasts the SIRA mode in RAPACK with the inexact Krylov method, since
both methods can tolerate errors in the computation. Section 4.5 conducts
experiments on different strategies that can be used with a complex shift in
shift-invert enhancement for real matrices.

4.1 Eigentest

Eigentest is a package that generates matrices for testing large eigenprob-
lems, and provides subroutines for related operations [21]. The test matrices
have good scalability because their storage and the time complexity of the
operations increase linearly with the order. Eigentest also allows users to
manipulate the condition of individual eigenpairs or a group of eigenpairs of
the test matrices. Currently, Eigentest is implemented in Fortran 77, Fortran
95, C, and Matlab.

The test matrices generated by Eigentest are called eigenmats. They are
generated in factored form, which we will now describe. First, an eigenmat
A of order n is produced from the factorization,

A = XLX−1,

where L is a (block) diagonal matrix containing eigenvalues of A, and X
contains its eigenvectors. The matrix X is in turn a product of two matrices,
Y and Z,

X = Y Z,
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which are used to control the condition of eigenpairs. Specifically, matrix Y
is generated from a singular value decomposition,

Y = UΣV ∗, (4.1)

in which Σ is diagonal with nonnegative singular values of Y as its diagonal
elements, and U and V are Householder transformations,

U = I − 2uu∗ and V = I − 2vv∗,

where u and v can be either unit vectors or zero vectors, and I represents
the identity matrix.

The matrix Z is a block diagonal matrix,

Z =




Z1

Z2

. . .

Zk


 .

Each block Zi is constructed as in (4.1). Each Zi corresponds to one or
more blocks of L and is used to control the condition of individual groups of
eigenvalues.

The operations supported in Eigentest includes (A− sI)B, (A− sI)T B,
(A − sI)−1B, and (A − sI)−T B, where s is a shift, B is a matrix (or a
vector if B has only one column). These routines are usually invoked by
the subspace methods based on matrix vector multiplication. Eigentest also
provides a function to extract a specific eigenvector, both left and right, and
to compute the condition of its eigenvalue.

4.2 ARPACK and RAPACK

ARPACK is a numerical package for solving large eigenvalue problems, which
implements the Implicitly Restarted Arnoldi Method (IRAM) [36]. The
package is well designed and its typical performance is quite satisfactory.
It provides functions not only for solving the standard eigenproblem, but
also for solving generalized eigenproblem, and computing singular value de-
compositions. In addition, the package includes all subroutines designed to
handle symmetric, nonsymmetric and complex. The recent development of
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PARPACK and ARPACK++ [23] makes it an extensive and popular pack-
age.

To simplify the comparison, only two computational modes, mode 1 and
mode 3, of ARPACK, corresponding to the RA mode and the SIRA mode of
RAPACK, are treated. The following subsections present each experimental
setting and results separately.

4.2.1 Mode 1 and the RA mode

There are many similarities between the mode 1 of ARPACK and the RA
mode of RAPACK. First, both methods are designed to compute eigenpairs
whose eigenvalues are on the periphery of the spectrum. Second, both meth-
ods requires only matrix vector multiplication. In fact, restarting strategies
aside, if they use the same starting vector, they generate the same subspaces,
at least mathematically [Chapter 2].

The experiment uses a real nonsymmetric eigenmat A of order 10000,
whose first 100 eigenvalues are 1, 0.95, 0.952, · · · , 0.9599, and the rest are
randomly distributed in (0.25, 0.75). The eigenvectors of A are determined
by matrices Y and Z, as described in the previous section. The matrix Y
is randomly generated with singular values uniformly distributed in (0, 1).
The matrix Z is consisted of three diagonal blocks: the first block and the
third block, corresponding to the ten largest eigenvalues and the ten smallest
eigenvalues respectively, have condition number 105. The second block is an
identity matrix. This choice will tend to increase the ill-conditioning of the
eigenvalues on the periphery of the spectrum.

The problem is to find the six largest eigenvalues of A. We measure
two aspects of the calculation. One is the elapsed time in seconds, denoted
ETIME, and the other is the total number of matrix-vector multiplications,
denoted TMVM [18]. For both packages, we let the maximum dimension of
subspaces be 20, and the convergence criterion be 10−13, which means the
norms of the residuals of computed eigenpairs must be less than 10−13. Both
packages start with the same initial vector, which is a randomly generated
unit vector.

Table 4.1 displays the experimental results for both methods. It is not
surprising that RAPACK spends more time than ARPACK; in each subspace
expansion RAPACK needs extra time to compute Ritz vectors and residuals.
For real-world problems, the cost of residual computation is usually much
less than the cost of matrix-vector multiplication, and both packages would
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Mode 1 of ARPACK Mode RA of RAPACK

ETime 4.6860 8.4242
TMVM 113 138

Table 4.1: Mode 1 of ARPACK and mode RA of RAPACK.

achieve similar performance.
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Figure 4.1: The projection error of approximated subspace.

The more interesting problem is that RAPACK requires more matrix-
vector multiplication than ARPACK, since theoretically, both methods gen-
erate the same subspace. Of course, more than one factor influences this
phenomenon, since the entire process involves restarting, deflation and other
computations. Figure 4.1 illustrates this phenomenon, in which we measure
‖(I − UkU

∗
k )x‖, where Uk is an orthonormal basis for the current subspace

and x is the target eigenvector. The six solid lines represents the projection
errors in the subspaces generated by ARPACK, while the dotted lines are
for the subspaces generated by RAPACK. As can be seen, the convergence
of the first three eigenvectors is almost identical. But the remaining curves
stagnate once the third one reaches a level of around 10−13. After the can-
didate is switched, convergence resumes. Therefore, there are some staircase
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phenomena on the convergence of latter approximations.
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Figure 4.2: The projection error of approximated subspace.

If we lower our precision requirement to 10−10, then the projection error
of desired eigenpair in the generated subspaces are as in figure 4.2. Before it-
eration 50, approximations in two subspaces have similar convergence. After
the deflation of the third eigenpair approximation, all the projection errors
that are originally lower than 10−10 rise to 10−10. However, the staircase
phenomena disappear. Every approximation converges smoothly.

The reason for this problem is fundamental. In ARPACK, the subspace
is expanded by Auk, where uk is the last vector of Uk. The Arnoldi relation

AUk−1 = Uk−1Hk−1 + βk−1uke
∗
k−1

indicates that uk is in the direction parallel to all the residuals of eigenvector
approximations. The error only comes from orthogonalization process. For
the RAPACK, the subspace is expanded by the residual. As the candidate
residual diminishes, the error from residual computation becomes relatively
large, which destroys the Arnoldi relation. When the accumulated error ex-
ceeds the tolerable range of an approximation, it will stagnate, as shown in
Figure 4.1. However, when the stagnated approximation becomes a candi-
date, most errors will not affect the convergence, as we have seen in Chapter
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2. Hence, the convergence can be restarted. If the accumulated error is never
large enough to affect the convergence of desired approximations, the resid-
ual Arnoldi method will have almost the same performance as the Arnoldi
process, as the case in Figure 4.2.

4.2.2 Mode 3 and the SIRA mode

ARPACK and RAPACK differ significantly when shift-invert enhancement is
applied. In ARPACK, linear systems must be solved to the required precision
of desired eigenpairs. Direct methods, such as LU or Cholesky[38, 16, 33, 9],
give satisfactory accuracy. But they are expensive when the order of the
matrix is large. On the other hand, RAPACK allows imprecise solutions
of linear systems, which can substantially reduce the cost when iterative
methods for linear systems are used.

In this subsection, the mode 3 of ARPACK and the SIRA mode of RA-
PACK are compared. The test case is the same as the previous subsection,
in which the maximum dimension of subspace is 20, and the dimension of
restarting subspace is 6. The difference is we request the 6 smallest eigen-
values this time. The linear systems are solved by restarted GMRES [32],
which is implemented in the library for the book: Template for the Solution
of Linear Systems [4].2 The restarting subspace for the linear solver is set
to 40. The shift is zero. The only different setting is the precision require-
ment for linear system solving. In ARPACK, it is set 10−13, and it is 10−3

in RAPACK.

Mode 3 of ARPACK Mode SIRA of RAPACK

Etime 378 168
TMVM 11842 4606
OUTER-ITER 68 144
AVG-INNER-ITER 174 33

Table 4.2: Mode 3 of ARPACK and mode SIRA of RAPACK.

Table 4.2 lists the experimental results. The table gives the elapsed time
(ETIME) in seconds and the total number of matrix vector multiplication

2The GMRES code was modified for this experiment, because the original program has
several serious bugs.
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(TMVM). The outer iteration3 (OUTER-ITER) represents the total number
of reverse communications invoked by ARPACK or RAPACK to perform the
linear system solving. The average inner iteration (AVG-INNER-ITER) is
the average number of matrix vector multiplications spent in solving each
linear system. For ARPACK,

TMVM = OUTER-ITER × AVG-INNER-ITER.

For RAPACK,

TMVM = OUTER-ITER + OUTER-ITER × AVG-INNER-ITER,

because in each outer iteration, RAPACK also needs one matrix vector mul-
tiplication.
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Figure 4.3: The number of matrix-vector multiplications for mode 3 and the
SIRA mode.

The number of matrix-vector multiplication required by each iteration is
displayed in Figure 4.3. The area represents the total number of matrix-
vector multiplications. Although SIRA mode does need more iterations to

3RAPACK and ARPACK have different definition of iterations. One iteration defined
in ARPACK is the process between implicit restarting. The total number of iterations in
ARPACK corresponds to the number of subspace restartings in RAPACK. Here we use
the definition of RAPACK.
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computed the required eigenpairs, the cost for each iteration is relatively
cheap. This result shows the superiority of RAPACK when shift-invert en-
hancement is applied. On the average, the required matrix-vector multipli-
cations in one iteration of RAPACK is less than one-fifth that of ARPACK.
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Figure 4.4: The convergence of mode 3 and the SIRA mode.

Figure 4.4 shows the convergence of both methods, which is also mea-
sured by the projected error ‖(I − UkU

∗
k )x‖. The solid line represents the

convergence of mode 3, and the dotted line is for the SIRA mode. Since we
explicitly allow 10−3 errors in the SIRA mode, approximations that are not
targeted stop converging around the level of error, until they are selected to
be candidate.

4.3 SRRIT and RAPACK

As shown before, the RA mode of RAPACK is not as good as the existing
package. However, its ability to use a subspace, not necessary Krylov, that
contains certain eigenvector approximations as its initial basis is not usually
found in Krylov based methods. To our knowledge, only SRRIT [3, 37] has
similar ability. In this section, we will compare these two packages.
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The test problem is the same as before: a 10000× 10000 Eigenmat where
the first 100 eigenvalues are 1, 0.95, 0.952, · · · , 0.9599 with the rest uniformly
distributed in (0.25, 0.75). As previously, we still compute the 6 smallest
eigenvalues of it. The difference is that, in this experiment, we use both
packages to implement the successive inner-outer strategy [18]. As briefly
described in Chapter 3, this method divides the process into stages, and
the successive stages have increasing precision requirements. Except for the
first stage, in which the subspace is created afresh, each package will use the
subspace computed in the previous stage as an initial subspace for the current
stage. The ratio of the precision requirement between two consecutive stages
is called the step ratio. In this experiment, we use constant step ratios. To
make the experiment interesting, we let the final precision requirement be
10−12, so that we could compare the effect of various step ratios: 10−2, 10−3,
10−4, 10−6 and 10−12.

The setting of each package is described as follows. For RAPACK, the RA
mode is used, but when the request for a matrix vector multiplication arrives,
we solve the shifted linear system, (A− σI)x = b, to the precision of current
stage. In this experiment, the linear systems are not solved by GMRES.
Instead, the corresponding function in Eigentest is used, because the purpose
of this experiment is to compare the ability to reuse existing subspaces. The
remaining settings of RAPACK, such as the maximum subspace size, are
the same as before. For SRRIT, we also use the shift-inverted matrix. The
dimension of the subspace is 20.

Figure 4.5 displays one of the experimental results of RAPACK, in which
the step ratio is 10−3. The entire process contains four stages with precision
requirement 10−3, 10−6, 10−9 and 10−12. The y-axis in the figure denotes the
norm of residuals, and the x-axis is for the number of iterations. The line
segments in each group stands for the convergence of six targeted eigenpairs
in the computed order. As can be seen, these line segment can be partitioned
into four groups, each of which represents a stage. The last four lines in the
first group are shorter than in the others, because the subspace in the first
stage is a Krylov subspace of the original matrix, for which approximations
can converge simultaneously. This global convergence property does not
apply to the approximations of other stages.

Table 4.3 summarizes all the experimental results for RAPACK and SR-
RIT. Each column represents the result of a specific step ratio. The items
inside table indicate the number of iteration taken to finish a stage. For
example, in the first table, which is for the result of RAPACK, the data in
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Figure 4.5: Experimental result of RA mode with the successive inner-outer
process. (step=10−3)

the second column (step = 10−3), 39, 40, 40 34, represent the number of
iterations spent in the four stages. One can compare this result to Figure
4.5.

The data in Table 4.3 verifies that both methods can take advantage
of reusing the existing subspace. On the average, RAPACK outperforms
SRRIT for this particular problem, because it requires much fewer iterations
in each stage. It should be noted that the number of iterations does not
reflect the total effort in the computation, since the cost of one iteration in
the latter stage would be more expensive than that of the early stage.

4.4 Inexact Krylov method and the SIRA mode

In this section, we want to compare the SIRA mode with another subspace
method that is also capable of tolerating errors, the inexact Krylov method.
For the SIRA mode, the tolerable error is a constant. For the inexact Krylov
method, the allowed error is increasing as approximations are converging.
Note that, unlike the SIRA mode in RAPACK, the inexact Krylov method
can tolerate errors not just from linear system solving, but also from matrix
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No of Stages 6 4 3 2 1
Step 10−2 10−3 10−4 10−6 10−12

10−2 27
10−3 39
10−4 31 32
10−6 31 40 39
10−8 31 53
10−9 40
10−10 31
10−12 32 34 52 68 60
total 183 153 140 107 60

(a) Experimental result of RAPACK

No of Stages 6 4 3 2 1
Step 10−2 10−3 10−4 10−6 10−12

10−2 275
10−3 305
10−4 120 360
10−6 120 120 432
10−8 120 200
10−9 152
10−10 120
10−12 120 213 217 320 784
total 875 783 777 752 784

(b) Experimental result of SRRIT

Table 4.3: Comparison of RAPACK and SRRIT for successive inner-outer
process with various number of stages.
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vector multiplication, which appears in many applications [43, 45].
The problem setting is identical to the one in previous section, in which

the matrix A is a 10000× 10000 real nonsymmetric matrix with exponential
declining eigenvalues 1, 0.95, 0.952, . . . , 0.9599, and others are just randomly
generated in (0.25, 0.75). The targeted spectrum consists of the six smallest
eigenvalues. Both methods employ shift-invert enhancement with shift = 0.
The required precision for computed eigenpairs is 10−13.

The inexact Krylov method can be easily implemented in RAPACK. The
reason is that RAPACK uses reverse communication to obtain the results of
matrix related operations, which gives user program the flexibility to control
the quality of matrix-vector multiplication. In addition, RAPACK provides
the residual information which can be used to set the current precision.

Here, the inexact Krylov method is implemented in the RA mode. The
precision requirement θ for solving linear system, as defined in (2.4), is given
as

θ = max{τ, ετ

m‖r‖}, (4.2)

where τ is the desired precision of computed eigenpair, ‖r‖ is the norm of
current residual, m is the maximum dimension of the subspace, and ε < 1 is
a fudge factor. We take τ = 10−12, m = 50 and ε = 10−3. Hence

θ = max{10−12,
10−3 × 10−12

50‖r‖ } = max{10−12,
2× 10−17

‖r‖ }.

Inexact method Mode 3 SIRA mode

Etime 80 106 48
TMVM 5240 7083 2829
OUTER-ITER 43 50 89
AVG-INNER-ITER 122 142 32

Table 4.4: Inexact Krylov method, mode 3 of ARPACK, and mode SIRA of
RAPACK.

Table 4.4 presents the experimental results. The inexact Krylov method
works nicely. It converges to six smallest eigenvalues within 37 outer iter-
ations, and the total number of matrix vector multiplication is 5240. Al-
though it is not as good as the SIRA mode, it still outperforms the mode 3
of ARPACK. Therefore, if some fast matrix-vector multiplication methods,
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whose cost is proportional to required precision, are applicable, the inexact
Krylov is definitely preferable.
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Figure 4.6: The precision requirements for the inexact Krylov method, the
SIRA mode and the mode 3 of ARPACK.

Figure 4.6 exhibits the number of matrix-vector multiplications required
by the inexact Krylov method, as well as those by the SIRA mode and
by the mode 3 of ARPACK. In the beginning, the inexact Krylov method
demands a similar number of matrix-vector multiplications as ARPACK. As
the candidate approximation converges, the precision requirement is relaxed,
and the cost of solving linear systems drops. Note this inexactness does not
affect the convergence much. Figure 4.7 presents the projection errors of the
six eigenvectors with the subspaces generated by the inexact Krylov method
and by the mode 3. For an eigenvector x and an orthonormal basis U of a
subspace, the projection error is ‖x − UU∗x‖. In the figure, the solid lines
are for the inexact Krylov method and the dotted lines are for mode 3. The
approximations for both methods converge smoothly. The inexact Krylov
method just uses less computation to achieve the same performance.
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Figure 4.7: The convergence of the inexact Krylov method and the mode 3
of ARPACK.

4.5 Complex shift-invert for real eigenproblem

Occasionally, a complex shift is required in shift-invert enhancement for solv-
ing real eigenproblems. In this section, two methods that are able to fulfill
this requirement are considered. Let σ be a complex shift value. The first
method, proposed by Parlett and Saad [28], solves the linear system

(A− σI)v = u,

where u is the latest Krylov vector, and uses the real part or the imaginary
part of the solution v in subspace expansion. The second method is the SIRA
mode of RAPACK, which solves the linear system

(A− σI)v = r,

with the residual r as right hand side, and uses both real part and imaginary
part of v in subspace expansion. Parlett and Saad’s algorithm has been
implemented in ARPACK as mode 3 and mode 4. Mode 3 uses the real part of
the complex solution in subspace expansion, and mode 4 uses the imaginary
part. Although they can be easily realized in RAPACK also [Chapter 3], the
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performance will not be as good as that in ARPACK. In this experiment,
we will compare the mode 3, mode 4 of ARPACK with the SIRA mode of
RAPACK.
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Figure 4.8: The spectrum of the problem.

The testing case used in the experiment is a 1000×1000 real nonsymmetric
matrix whose first 100 eigenvalues are of the form λ± i sin(λπ). The value λ
is sampled in (0, 1), λi = (2i−1)/101 for i = 1, · · · , 50. The reset eigenvalues
are real, randomly distributed in (0, 1). Figure 4.8 shows the spectrum of
the problem. The eigenvalues we are interested in are those near the point
0.5+1.0i, which cannot be enhanced by any real shift. Therefore, a complex
shift 0.5 + 1.5i is used, as marked the cross point in the figure.

The experimental settings are as follows. For each computation mode, the
maximum dimension of subspace is 40. The desired precision of computed
eigenpair is 10−11. The complex GMRES algorithm will be used to solve the
linear systems. For mode 3 and mode 4 of ARPACK, the linear systems are
asked to be solved to the accuracy 10−11; and for SIRA mode of RAPACK, it
is 10−3. The maximum dimension of the subspace used in GMRES, ARPACK
and RAPACK is 40.

Table 4.5 compares the performance of these three methods. Basically,
the mode 3 and mode 4 of ARPACK give similar results. Again, the SIRA

84



Methods Mode 3 Mode 4 SIRA mode

TMVM 66003 66707 34870
OUTER-ITER 242 242 469
AVG-INNER-ITER 273 275 74

Table 4.5: Result of complex shift invert methods.
‘

mode of RAPACK shows better performance, in which the total number of
matrix-vector multiplications is only half of the other methods, although it
takes more iterations to finish the task.
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Figure 4.9: Convergence of mode 3 and SIRA mode.

Figure 4.9 compares the projection errors of mode 3 (dotted lines) and the
SIRA mode (solid lines). It shows the first approximations for both methods
have similar convergence. The second and the third approximations of mode
3 converges simultaneously with the first approximation, while those of the
SIRA mode start their convergence after becoming candidates. Figure 4.10
displays the numbers of matrix-vector multiplications required by mode 3
and the SIRA mode for each iteration.

One thing should be mentioned is these three methods do not compute the
same results. Table 4.6 lists computed eigenvalues for these three methods.
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Figure 4.10: Number of matrix vector multiplications required by mode 3
and SIRA mode.

As it shows, only SIRA mode computes the correct answers, which are three
eigenvalues closest to 0.5+ i. Mode 3 and mode 4 only find partial solutions.
This phenomenon requires further investigation.

4.5.1 Discussion

There are many tradeoffs when the SIRA mode is used. Although we usually
specify 10−3 as the required precision for solving linear systems, it may not be
the optimal value for all the cases. Sometimes, a smaller precision could re-
duce the number of outer iterations. But it also means more inner-iterations

Eigenvalue Mode 3 Mode 4 SIRA mode

0.465± 0.994i
√

0.485± 0.999i
√ √

0.505± 0.999i
√ √ √

0.525± 0.997i
√ √

0.545± 0.990i
√

Table 4.6: Computed eigenvalues of complex shift invert methods.
‘
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are required to solve linear systems. How to choose a proper precision for
linear system solving so that the overall cost could be minimized is still a
research problem.

Another tradeoff is the choice of shift. In the above case, the best shift
is 0.5 + 1.0i, for which both methods can compute six desired eigenvalues
within 50 outer iterations. However, with such a close shift, the linear system
is almost unsolvable by iterative methods like GMRES. In general, a shift
close to desired targets can accelerate the outer process, but it is an obstacle
for the inner procedure.
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Chapter 5. Conclusions

This chapter provides a brief summary of the results in this thesis and pro-
poses some possible directions for the future research. The summary is given
in section 5.1, and the future works, including new algorithms and extensions
of RAPACK, are presented in section 5.2.

5.1 Summary

As mentioned in Chapter 1, the residual Arnoldi method has some unique
numerical properties that can be used not only to design more efficient al-
gorithms but also help to have a better understanding of Krylov subspace
methods. Here we enumerate some important properties.

1. The residual Arnoldi method generates a Krylov subspace when no
errors are introduced.

2. When errors are introduced in the computation, the candidate approx-
imation will converge, while the other eigenpair approximations stag-
nate.

3. The residual Arnoldi method can start with a non-Krylov subspace
that contains eigenvector approximations.

4. The shift-inverted enhancement can be effectively applied to the resid-
ual Arnoldi method with low cost.

These properties are analyzed by the study of the residuals. We first
derived the residual Arnoldi relation, which characterizes the subspace gen-
erated by the residual Arnoldi method with and without error. From this
relation, we extracted the the backward error of the generated subspace. Al-
though the backward error Ek itself may not be small, its product with the
eigenvector Ekx is converging along with the residuals. Using this property,
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we could establish the convergence theory of the residual Arnoldi method un-
der some reasonable assumptions. A similar approach applied to the theory
of the residual Arnoldi method with shift-invert enhancement.

The residual Arnoldi method has been implemented in RAPACK, a nu-
merical package for solving real nonsymmetric eigenproblems. RAPACK
contains two computational modes, RA and SIRA, which implement the
residual Arnoldi method and the residual Arnoldi method with shift-invert
enhancement respectively. RAPACK uses reverse communication to work
with various matrix formats. It also implements the Krylov–Schur restarting
algorithm to manage memory so that only moderate memory is required.
The time complexity for the RA mode is kO(nm2) + kf(n), where n is the
order of the original matrix, m is the maximum dimension of the generated
subspace, k is the total number of iterations, and f(n) is the time complexity
for matrix-vector multiplication. The time complexity for the SIRA mode is
similar, kO(nm2)+ kf(n)+ kg(n, ε), where g(n, ε) is the time complexity for
solving linear systems to the precision ε. The storage requirement for both
modes are n× (2m + 11) + 3(m + 1)× (m + 1).

The efficiency and versatility of RAPACK has been evaluated and tested
through experiments. In the experiments, RAPACK was compared with
two existing eigensolvers, ARPACK [22] and SRRIT [3]. RAPACK outper-
forms ARPACK significantly when shift-invert enhancement is applied, and
achieves similar performance for other cases. The comparison with SRRIT
is part of an experiment that reuses existing subspace to refine the solutions.
The results indicate the superiority of using RAPACK when few eigenpairs
are sought. In addition, we also implemented the inexact Krylov method in
the RA mode of RAPACK to compare with the SIRA mode of RAPACK.
Experimental result shows the SIRA mode is still faster than the inexact
Krylov method, but the inexact Krylov method has its advantage when the
matrix-vector products can be computed inexactly. The last category of
experiments compares the algorithms that use complex shift in shift-invert
enhancement in solving real nonsymmetric eigenproblems. The mode 3 and
mode 4 of ARPACK is compared with the SIRA mode of RAPACK. Again,
the SIRA mode shows its advantage of allowing inexactness in solving linear
systems.
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5.2 Ongoing and future research

5.2.1 The harmonic residual Arnoldi method and the refined
residual Arnoldi method

Sometimes, the Rayleigh-Ritz method may fail to compute accurate eigenvec-
tor approximations [41], especially when the corresponding eigenvalues are
interior and clustered. Several methods, such as the harmonic Ritz method
[26] and the refined Ritz method [19], can improve the quality of the eigen-
vector approximations.

The harmonic Ritz method extracts the approximations from the eigen-
pairs of a general eigenvalue problem that protects the eigenvectors near a
shift against impersonators. Let A be the matrix, U be the generated sub-
space, and κ be a shift value. The harmonic Ritz method uses the solution
(δ, w) of the general eigenvalue problem

U∗(A− κI)∗(A− κI)Uw = δU∗(A− κI)∗Uw, (5.1)

to extract an eigenpair approximation, (κ + δ, Uw), of A.
The refined Ritz vector is computed from the following optimization pro-

cess,
min

z∈span{U},‖z‖=1
‖Az − µz‖, (5.2)

where µ is an eigenvalue approximation. Computationally, the solution x
has the form Uz where z is the right singular vector corresponding to the
smallest singular value of the matrix AU − µU .

We test the combination of these two methods with the residual Arnoldi
method through the following experiment. As before, we use a 100 × 100
matrix A which has eigenvalues 1, 0.95, · · · , 0.9599 and randomly generated
eigenvectors in the experiment. The 30th eigenvalue, 0.2259, is targeted for
each method. The harmonic Ritz method uses 0.222 as the shift value. For
comparison, the residual Arnoldi method is also included in the study. The
trials for each method have two cases: one is without error and another with
error 10−5 in each iteration. All experiments employ the same initial vector.

Figure 5.1 summarized the experimental results. The top two are for the
residual Arnoldi method. The solid line is for the targeted eigenvalue 0.2259;
and the dashed line is for the next one 0.2146. The convergence is measured
by the projection error, ‖x−UU∗x‖, in which x is the actual eigenvector and
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Figure 5.1: The residual Arnoldi method, the harmonic residual Krylov
method and the refined residual Arnoldi method. The x-axis represent the
number of iterations, and y-axis is for projected error.
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U is the generated subspace matrix. The graph, labeled rk 1, is for the case
without errors; and graph rk 2 is the result when errors are introduced.

Graphs in the middle display the results for the harmonic residual Krylov
method, without and with error. Without errors (harmonic 1), the candidate
approximation converges as the residual Arnoldi method, but other approxi-
mation levels off around 10−5. This phenomenon is similar to the case when
the shift-invert enhancement is applied to a Krylov sequence [41, page 305-
206]. In the other case (harmonic 2), the convergence gets worse. Not only
the second eigenpair stagnates, but the convergence of the targeted approx-
imation is also postponed.

The experimental results for the refined residual Arnoldi method are
shown in the bottom two graphs. Refined 1 demonstrates the convergence in
the without error. As can be seen, the second eigenvector stagnates before
the targeted approximation reaches the machine precision, although not se-
riously. In figure refined 2, as error interfered, both approximations converge
as they do in the residual Krylov method. However, one can observes that
the second eigenvector does not reach the same precision level as it does in
figure rk 2.

These experimental results confirm the idea that the precise eigenvector
approximations may not result a more desirable subspace when their resid-
uals are used. The Rayleigh Ritz method may generate poor eigenvector
approximations, but the residuals of them works well in the subspace ex-
pansion. As for the unexpected behaviors of the harmonic method and the
refined method, more studies are needed for better understanding.

5.2.2 The block residual Arnoldi method

Many subspace methods can be generalized to the block versions by initialing
and expanding the subspace with a block, which is a matrix of multiple
columns. For example, the block Krylov subspace method [30] expands its
subspace with vectors

b1, b2, · · · , bp, Ab1, Ab2, · · · , Abp, · · · , Ak−1b1, A
k−1b2, · · · , Ak−1bp, · · · ,

where p is the block size, and [b1, b2, · · · , bp] is the initial block. Several
advantages of this generalization have been established in literatures. For
example, block methods usually have better convergence properties [30], and
they improve the robustness of computing multiple or clustered eigenvalues.
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The block residual Arnoldi method follows this extension naturally. In
each iteration, in stead of selecting a candidate and computing its residual,
the block method chooses p candidates and uses their residual in subspace
expansion. The method is outlined in Algorithm 5.1.

Algorithm 5.1 The block residual Arnoldi method.

1. Let U = [b1, b2, · · · , bp] be a n× p orthonormal matrix.

2. Compute the Rayleigh quotient M = U∗AU and its eigendecomposi-
tion.

3. Select p eigenpairs of M , (µ1, y1), (µ2, y2), · · · (µp, yp), and compute the
residuals of their corresponding Ritz pair ri = AUyi − µiUyi for i =
1 · · · p.

4. Expand U by r1, r2, · · · , rp.

5. Go to step 2 until all desired eigenpairs converged.

We have tested this algorithm and compared it with the Arnoldi process
and the residual Arnoldi method. The block size p is set to be 3. Matrix in
problem is of order 100, with eigenvalue 1, 1, 0.95, · · · , 0.9598 and randomly
generated eigenvectors. Note that the first two eigenvalues are multiple. For
each method, two versions of experiments are evaluated, one without error
and another with error 10−3 in each iteration.

Figure 5.2 displays the experimental results. Each subplot has four lines,
representing the convergence of four dominant eigenvectors. The convergence
is measured by the angle between the actual eigenvectors and the subspace.
When the eigenvector x is corresponding to a simple eigenvalue, the mea-
surement is made by ‖(I −UU∗)x‖, where U is the orthonormal basis of the
subspace. For multiple eigenvalues, the eigenvectors can be any vectors in
the subspace span{x1, x2, · · · , xi}, where x1, x2, · · · , xi are the original eigen-
vectors. The sine of the angles of span{U} and span{x1, x2, · · · , xi} are the
singular values of the the matrix (I−UU∗)V [41], where V is the orthonormal
basis of span{x1, x2, · · · , xi}.

The plot on the left top represents the convergence of the Arnoldi process
without error. The solid line and the dashed line are for the dominant eigen-
vectors; and the dashed-dotted line and the dotted line are for the third and
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Figure 5.2: The block residual Arnoldi method. The x-axis represent the
number of iterations, and y-axis is for projected error.
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fourth eigenvectors. As can be seen, the second eigenvector, which also has
eigenvalue 1, does not start its convergence until the dominant one reaches
the machine precision. Plot on the right top is the case when error 10−3 are
added to the subspace in each iteration. Unsurprisingly, all approximations
stagnate at the level of 10−3.

Plot in the middle are the results for the residual Arnoldi method without
and with errors. In both cases, the dominant and subdominant eigenvector
converge as they do in the Arnoldi process, and the remaining eigenvectors
stagnate when errors are introduced.

Results of the block residual Arnoldi method are plotted in the bottom
two graphs. Unlike the previous two methods, the convergence is slower.
(The x axis is the dimension of the subspace, not the number of iterations.)
However, the subdominant eigenvector starts its convergence with others.
In addition, when errors are introduced, the three dominant eigenvector still
converge, since their approximations are the candidates for the process (block
size is 3), but fourth one stagnates.

5.2.3 Other research directions

Here are some related research directions.

1. Inexact subspace methods for eigenvalue problems: Recently
study on eigenvalue problems is centered at algorithms that could tol-
erate errors, such as the Jacobi–Davidson method [35], the inexact
Krylov subspace methods [8, 17, 34, 13] and inexact Rayleigh quotient
iteration [15]. Our research on the perturbation theory of residual
Arnoldi method could lead to better understanding of these algorithms
and help the design of new ones.

2. Extensions of RAPACK: We propose to include suites for real sym-
metric and complex matrices in RAPACK. Later we may implement
suites for generalized eigenvalue problems and the singular value de-
composition of large matrices. The wrapper modules that provide easy
usage are also considered, for example, the subroutine that user can
call without reverse communication.
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