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To date we have completed 34 of the planned 64inspections. Our preliminary results challenge certainlong-held beliefs about the most cost-e�ective ways toconduct inspections and raise some questions aboutthe feasibility of recently proposed methods.1 IntroductionFor almost twenty years, software inspections havebeen promoted as a cost-e�ective way to improve soft-ware quality. Although the bene�ts of inspectionshave been well studied, their costs are often justi�edby simply observing that the longer a defect remainsin a system, the more expensive it is to repair, andtherefore the future cost of �xing defects is greaterthan the present cost of �nding them.However, this reasoning is naive because inspectioncosts are signi�cantly higher than many people real-ize. In practice, large projects perform hundreds ofinspections, each requiring �ve or more participants.Besides the obvious labor costs, holding such a largenumber of meetings can also cause delays which maysigni�cantly lengthen the development interval (cal-endar time to completion).1 Since long developmentintervals risk substantial economic penalties, this hid-den cost must be considered.We hypothesize that di�erent inspection ap-proaches involve di�erent tradeo�s between minimuminterval, minimum e�ort and maximum e�ectiveness.But until now there have been no empirical studiesto evaluate these tradeo�s. We are conducting sucha study, and our results indicate that the choice ofapproach signi�cantly a�ects the cost-e�ectiveness ofthe inspection.Below, we review the relevant research literature,describe the various inspection approaches we exam-1As developer's calendars �ll up, it becomes increasinglydi�cult to schedule meetings. This pushes meeting dates far-ther and farther into the future, increasing the developmentinterval.1



ined, and present our experimental design, analysis,and conclusions.1.1 Literature ReviewTo eliminate defects, many organizations use an iter-ative, three-step inspection procedure: Preparation,Collection, Repair[9] . First, a team of reviewers eachreads the artifact separately, detecting as many de-fects as possible. Next, these newly discovered defectsare collected, usually at a team meeting. They arethen sent to the artifact's author for repair. Undersome conditions the entire process may be repeatedone or more times.Many articles have been written about inspec-tions. Most, however, are case studies describingtheir successful use [6, 7, 17, 15, 20, 10, 1] . Few criti-cally analyze inspections or rigorously evaluate alter-native inspection approaches. We believe that addi-tional critical studies are necessary because the cost-e�ectiveness of inspections may well depend on suchvariables as team size, number of inspection sessions,and the ratio of individual contributions versus groupe�orts.Team Size: Inspections are usually carried out by ateam of four to six reviewers. Buck[2] provides data(from an uncontrolled experiment) that showed nodi�erence in the e�ectiveness of three, four, and �ve-person teams. However, no studies have measuredthe e�ect of team size on inspection interval.Single-Session vs. Multiple-Session Inspec-tions: Traditionally, inspections are carried out ina single session. Additional sessions occur only if theoriginal artifact or the inspection itself is believed tobe seriously 
awed. But some authors have arguedthat multiple session inspections might be more ef-fective.Tsai et al.[16] developed the N-fold inspection pro-cess, in which N teams each carry out independentinspections of the entire artifact. The results of eachinspection are collated by a single moderator, whoremoves duplicate defect reports. N-fold inspectionswill �nd more defects than regular inspections as longas the teams don't completely duplicate each other'swork. However, they are far more expensive than asingle team inspection.Parnas and Weiss' active design reviews (ADR)[12]and Knight and Myers' phased inspections (PI)[11]are also multiple-session inspection procedures. Eachinspection is divided into several mini-inspections or\phases". ADR phases are independent, while PI

phases are executed sequentially and all known de-fects are repaired after each phase. Usually eachphase is carried out by one or more reviewers con-centrating on a single type of defect.The proponents of multiple-session inspections be-lieve they will be much more e�ective than single-session inspections, but they have not shown this em-pirically, nor have they considered its e�ect on inspec-tion interval.Group-centered vs. Individual-centered In-spections: It is widely believed that most defectsare �rst identi�ed during the collection meeting asa result of group interaction[5] . Consequently, mostresearch has focused on streamlining the collectionmeeting by determining who should attend, whatroles they should play, how long the meeting shouldlast, etc.On the other hand, several recent studies have con-cluded that most defects are actually found by indi-viduals prior to the collection meeting. Humphrey [8]claims that the percentage of defects �rst discoveredat the collection meeting (\meeting gain rate") aver-ages about 25%. In an industrial case study of 50 de-sign inspections, Votta [18] found far lower meetinggain rates (about 5%). Porter et al.[14] conducteda controlled experiment in which graduate studentsin computer science inspected several requirementsspeci�cations. Their results show meeting gain ratesconsistent with Votta's. They also show that thesegains are o�set by "meeting losses" (defects �rst dis-covered during preparation but never reported at thecollection meeting). Again, since this issue clearly af-fects both the research and practice of inspections,additional studies are needed.Defect Detection Methods. Preparation, the�rst step of the inspection process, is accomplishedthrough the application of defect detection methods.These methods are composed of defect detection tech-niques, individual reviewer responsibilities, and a pol-icy for coordinating responsibilities among the reviewteam.Defect detection techniques range in prescriptive-ness from intuitive, nonsystematic procedures (suchas ad hoc or checklist techniques) to explicit andhighly systematic procedures (such as correctnessproofs).A reviewer's individual responsibility may be gen-eral, to identify as many defects as possible, or spe-ci�c, to focus on a limited set of issues (such as ensur-ing appropriate use of hardware interfaces, identify-ing untestable requirements, or checking conformityto coding standards).2



Individual responsibilities may or may not be co-ordinated among the review team members. Whenthey are not coordinated, all reviewers have identicalresponsibilities. In contrast, the reviewers in coordi-nated teams have distinct responsibilities.The most frequently used detection methods (AdHoc and Checklist) rely on nonsystematic techniques.Reviewer responsibilities are general and identical.Multiple-session inspection approaches normally re-quire reviewers to carry out speci�c and distinct re-sponsibilities. One reason these approaches are rarelyused may be that many practitioners consider it toorisky to remove the redundancy of general and iden-tical responsibilities and to focus reviewers on narrowsets of issues that may or may not be present. Clearly,the advantages and disadvantages of alternative de-fect detection methods need to be understood beforenew methods can be safely applied.1.2 HypothesesInspection approaches are usually evaluated accord-ing to the number of defects they �nd. As a result,some information has been collected about the e�ec-tiveness of di�erent approaches, but very little abouttheir costs. We believe that cost is as important ase�ectiveness, and we hypothesize that di�erent ap-proaches have signi�cantly di�erent tradeo�s betweendevelopment interval, development e�ort, and detec-tion e�ectiveness. Speci�cally, we hypothesize that� inspections with large teams have longer inspec-tion intervals, but �nd no more defects thansmaller teams;� collection meetings do not signi�cantly increasedetection e�ectiveness;� multiple-session inspections are more e�ectivethan single-session inspections, but signi�cantlyincrease inspection interval.2 The ExperimentTo evaluate these hypotheses we designed and areconducting a controlled experiment. Our purpose isto compare the tradeo�s between minimum interval,minimum e�ort, and maximum e�ectiveness of sev-eral inspection approaches.2.1 Experimental SettingWe are currently running this experiment at AT&Ton a project that is developing a compiler and envi-ronment to support developers of the AT&T 5ESS R


telephone switching system. The �nished system isexpected to contain 30K new lines of C++ code, plus6K which will be reused from a prototype.Our inspector pool consists of 11 experienced devel-opers, each of which has received inspection trainingin the last 5 years. The project began coding duringJune, 1994, and will perform 64 code inspections bythe middle of 1995.2.2 Operational ModelTo test our hypotheses we must measure both the in-terval and the e�ectiveness of every inspection. Webegan by constructing two models; one for calculat-ing inspection interval and e�ort, and another for es-timating the number of defects in a code unit.2.2.1 Modeling the Inspection Interval Theinspection process begins when a code unit is readyfor inspection and ends when the author �nishes re-pairing the defects found in the code. The elapsedtime between these events is called the inspection in-terval.The length of this interval depends on the timespent working (preparing, attending collection meet-ings, and repairing defects) and the time spentwaiting (time during which the inspection does notprogress due to process dependencies, higher prioritywork, scheduling con
icts, etc).In order to measure inspection interval and its vari-ous subintervals, we devised an inspection time modelbased on visible inspection events [19] . Wheneverone of these events occurs it is timestamped and theevent's participants are recorded. (In most cases thisinformation is manually recorded on the forms de-scribed in Section 2.4.1.) These events occur, for ex-ample, when code is ready for inspection, or when areviewer starts or �nishes his or her preparation. Thisinformation is entered into a database, and inspec-tion intervals are reconstructed by performing queriesagainst the database.Inspection e�ort can be calculated by summing theappropriate subintervals. At this time, however, wehaven't fully analyzed the e�ort data. Instead we areconcentrating on inspection interval as our primarycost measure because of its schedule implications.2.2.2 Modeling the Defect Detection RatioOne important measure of an inspection's e�ective-ness is its defect detection ratio { the number of de-fects found during the inspection divided by the totalnumber of defects in the code. Because we never knowexactly how many defects an artifact contains, it isimpossible to make this measurement directly, andtherefore we are forced to approximate it.3



The estimation procedure must be (a) as accurateas possible and (b) available throughout the studybecause we are experimenting with a live project andmust identify and eliminate dangerously ine�ectiveapproaches as soon as possible.We found no single approximation that met bothcriteria. Therefore we will use three methods.� Observed detection ratio: We assume thattotal defect density is constant for all code unitsand that we can compare the number of defectsfound per KNCSL. This is always available, butmay be very inaccurate.� Partial estimation of detection ratio: Weuse capture-recapture methods to estimate pre-inspection defect content. This estimation canbe performed when there are at least two re-viewers and they discover some defects in com-mon. Under these conditions this method ismore accurate than the observed detection ratioand is available immediately after every inspec-tion. Since capture-recapture techniques makethat strong statistical assumptions, we are cur-rently testing our data to see whether or not thistechnique will be appropriate. (See Eick et al.[4] for more details.)� Complete estimation of detection ratio:We will track the code through testing and �elddeployment, recording new defects as they arefound. This is the most accurate method, but isnot available until well after the project is com-pleted.2.3 Experimental Design2.3.1 Variables The experiment manipulates 3independent variables:1. the number of reviewers per team (one, two, orfour reviewers, in addition to the author),2. the number of inspection sessions (one session ortwo sessions),3. the coordination between sessions (in two-sessioninspections the author does or does not repairknown defects between sessions).These variables re
ect many (but not all) of the dif-ferences between Fagan inspections, N-Fold inspec-tions, Active Design Reviews, and Phased Inspec-tions. One very important di�erence that is not cap-tured in our experiment is the choice of defect detec-tion methods. The methods used in Active DesignReviews and Phased Inspections involve systematic

Number of Sessions Totals1 2Reviewers With Repair No Repair1 19 19 19 132 19 19 19 134 13 0 0 13Totals 59 29 29 1Table 1: This table gives the proportion of inspectionsallocated to each setting of the independent variables.techniques, with speci�c and distinct responsibilities,while Fagan and N-fold inspection normally use non-systematic techniques with general and identical re-sponsibilities.The treatment distributions are shown in Table 1.For each inspection we measured 5 dependent vari-ables:1. inspection interval,2. inspection e�ort,3. estimated defect detection ratio,4. the percentage of defects �rst identi�ed at thecollection meeting (meeting gain rate),5. the percentage of potential defects reported byan individual, that are determined not to be de-fects during the collection meeting (meeting sup-pression rate).We also capture repair statistics for every defect (SeeSection 2.4.2). This information is used to discardcertain defect reports from the analysis { i.e., thoseregarding defects that required no changes to �x themor concerned coding style rather than incorrect func-tionality.2.3.2 Design This experiment uses a 22 � 3 par-tial factorial design to compare the interval, e�ort,and e�ectiveness of inspections with di�erent teamsizes, number of inspection sessions, and coordina-tion strategies. We chose a partial factorial designbecause some treatment combinations were consid-ered too expensive (e.g., two-session-four-person in-spections with and without repair).2.3.3 Threats to Internal Validity Threats tointernal validity are in
uences that can a�ect the de-pendent variable without the researcher's knowledge.We considered three such in
uences: (1) selection ef-fects, (2) maturation e�ects, and (3) instrumentatione�ects.4



Selection e�ects are due to natural variation in hu-man performance. For example, if one-person in-spections are done only by highly experienced people,then their greater than average skill can be mistakenfor a di�erence in the e�ectiveness of the treatments.We limited this e�ect by randomly assigning teammembers for each inspection. This way individualdi�erences are spread across all treatments.Maturation e�ects result from the participants'skills improving with experience. Again we randomlyassigned the treatment for each inspection to spreadany performance improvements across all treatments.Instrumentation e�ects are caused by the code tobe inspected, by di�erences in the data collectionforms, or by other experimental materials. In thisstudy, one set of data collection forms was used forall treatments. Since we could not control code qual-ity or code size, we randomly assigned the treatmentfor each inspection.2.3.4 Threats to External Validity Threats toexternal validity are conditions that limit our abilityto generalize the results of our experiment to indus-trial practice. We considered three sources of suchthreats: (1) experimental scale, (2) subject general-izability, and (3) subject representativeness.Experimental scale becomes a threat when the ex-perimental setting or the materials are not repre-sentative of industrial practice. We avoided thisthreat by conducting the experiment on a live soft-ware project.A threat to subject generalizability may exist whenthe subject population is not drawn from the indus-trial population. This is not a concern here becauseour subjects are software professionals.Threats regarding subject representativeness arisewhen the subject population is not representative ofthe industrial population. This may endanger ourstudy because our subjects are members of a devel-opment team, not a random sample of the entire de-velopment population.2.3.5 Analysis Strategy Our strategy for an-alyzing the experiment has three steps: resolutionanalysis, calibration, and hypothesis testing.Resolution Analysis. An experiment's resolutionis the minimum di�erence in the e�ectiveness of twotreatments that can be reliably detected.We performed the resolution analysis using aMonte Carlo simulation. The simulation indicatesthat with as few as 5 observations per treatment theexperiment can reliably detect a di�erence as smallas .075 in the defect detection rate of any two treat-ments. The strongest in
uence on the experiment's

resolution is the standard deviation of the code units'defect content { the smaller the standard deviationthe �ner the resolution. See Porter et al. [13] formore details.Calibration. We continuously calibrate the exper-iment by monitoring the sample mean and variance ofeach treatment's detection ratio and inspection inter-val, and the number of observed inspections. Basedon this information we may discontinue some treat-ments (1) if their e�ectiveness is so low or if theirinterval is so long that it puts the project at risk, or(2) if it is determined that the current distributionswill produce too few data points to identify statis-tically signi�cant di�erences in their performances2.In fact, we are planning to discontinue at least threetreatments in the remainder of the study. (See Sec-tion 5.)Hypothesis Testing. Once the data are collectedwe analyze the combined e�ect of the independentvariables on the dependent variables to evaluate ourhypotheses. Once the signi�cant explanatory vari-ables are discovered and their magnitude estimated,we will examine subsets of the data to study our spe-ci�c hypotheses.2.4 Experimental InstrumentationWe designed several instruments for this experiment:preparation and meeting forms, author repair forms,and participant reference cards.2.4.1 Data Collection Forms We designed twodata collection forms, one for preparation and an-other for the collection meeting.The meeting form is �lled in at the collection meet-ing. When completed, it gives the time during whichthe meeting was held, and a page number, a line num-ber, and an ID for each defect.The preparation form is �lled in during both prepa-ration and collection. During preparation, the re-viewer records the times during which he or she re-viewed, and the page and line number of each issue(\suspected" defect). During the collection meetingthe team will decide which of the reviewer's issuesare, in fact, real defects. At this time, real defectsare recorded on the meeting form and given an ID.If a reviewer had discovered this defect during prepa-ration then they record this ID on their preparationform.2For example, if two treatments have little within-treatmentvariance and very di�erent mean performance, then few datapoints are needed to statistically establish the di�erence. Oth-erwise, more observations are necessary. If the number of datapoints needed is more than the number of inspections to bedone, we will have to consider removing some of the treatments.5



2.4.2 Author Repair Forms The author repairform captures information about each defect identi-�ed during the inspection. This information includesDefect Disposition (no change required, repaired, de-ferred); Repair E�ort (� 1hr , � 4hr , � 8hr, or> 8hr ), Repair Locality (whether the repair was iso-lated to the inspected code unit), Repair Responsibil-ity (whether the repair required other developers tochange their code), Related Defect Flag (whether therepair triggered the detection of new defects), and De-fect Characteristics (whether the defect required anychange in the code, was changed to improve readabil-ity or to conform to coding standards, was changedto correct violations of requirements or design, or waschanged to improve e�ciency).2.4.3 Participant Reference Cards Each par-ticipant received a set of reference cards containinga concise description of the experimental proceduresand the responsibilities of the authors and reviewers.2.5 Conducting the ExperimentTo support the experiment, Mr. Harvey Siy, a doc-toral student working with Dr. Porter at the Univer-sity of Maryland, joined the development team in therole of inspection quality engineer (IQE). The IQEis responsible for tracking the experiment's progress,capturing and validating data, and observing all in-spections. The IQE also attends the developmentteam's meetings, but has no development responsi-bilities.When a code unit is ready for inspection, its authorsends an inspection request to the IQE. The IQE thenrandomly assigns a treatment (based on the treat-ment distributions given in Table 1) and randomlydraws a review team from the reviewer pool.3 Thesenames are then given to the author, who schedulesthe collection meeting. Once the meeting is sched-uled, the IQE puts together the team's inspectionpackets.4The inspection process used in this environment issimilar to a Fagan inspection, but there are some dif-ferences. During preparation, reviewers analyze thecode in order to �nd defects, not just to acquaintthemselves with the code. During preparation review-ers have no speci�c technical roles ( i.e., tester, or end-user) and have no checklists or other defect detectionaids. All suspected defects are recorded on the prepa-ration form. The experiment places no time limit on3We do not allow any single reviewer to be assigned to bothteams in a two-session inspection.4The inspection packet contains the code to be inspected,all required data collection forms and instructions, and a noticegiving the time and location of the collection meeting.

preparation, but a organizational limit of 300 LOCover a maximum of 2 hours is generally observed.For the collection meeting one reviewer is selectedto be the reader. This reviewer paraphrases each lineof code. During this paraphrasing activity, reviewersmay bring up any issues found during preparation ordiscuss new issues. The code unit's author compilesthe master list of all defects. One reviewer is alsoassigned to be the moderator.The IQE also attends the collection meeting to en-sure that all the procedures are followed correctly.After the collection meeting he gives the preparationforms to the author, who then repairs the defects,�lls out the author repair form, and returns all formsto the IQE. After the forms are returned, the IQEinterviews the author to validate the data.3 Data and AnalysisFour sets of data are important for this study: theteam defect summaries, the individual defect sum-maries, the interval summaries, and the author re-pair summaries. This information is captured on thepreparation, meeting, and repair forms.The team defect summary forms show all the de-fects discovered by each team. This form is �lled outby the author during the collection meeting and isused to assess the e�ectiveness of each treatment. Itis also used to measure the added bene�ts of a secondinspection session by comparing the meeting reportsfrom both halves of two-session inspections with norepair.The individual defect summary forms showwhether or not a reviewer discovered a particular de-fect. This form is �lled out during preparation torecord all suspected defects. The data is gatheredfrom the preparation form and is compiled duringthe collection meeting when reviewers cross-referencetheir suspected defects with those that are recordedon the meeting form. This information, together withthe team summaries, is used to calculate the capture-recapture estimates and to measure the bene�ts ofcollection meetings.The interval summaries describe the amount of cal-endar time that was needed to complete the inspec-tion process. This information is used to comparethe average inspection interval and the distributionof subintervals for each treatment.The author repair summaries characterize all thedefects and provide information about the e�ort re-quired to repair them.At this time 34 inspections have been completed.Consequently, we do not yet have enough data to6



de�nitively evaluate our hypotheses. However, wecan look at the apparent trends in our preliminarydata, explore the implications of this data for ourhypotheses, and discuss how the resolution of thesehypotheses at the completion of the experiment willhelp us answer several open research questions.3.1 Data ReductionData reduction is the manipulation of data after itscollection. We have reduced our data in order to (1)remove data that is not pertinent to our study, andto (2) adjust for systematic measurement errors.3.1.1 Reducing the Defect Data The prepara-tion and meeting forms capture the set of issues thatwere raised during each inspection. The reduction wemade was to remove duplicate reports from 2-session-without-repair inspections. This task is performed bythe IQE and the code unit's author.Another reduction was made because, in practice,many issues, even if they went unrepaired, would notlead to incorrect system behavior, and they are there-fore of no interest to our analysis.Although defect classi�cations are usually madeduring the collection meeting, we feel that authors un-derstand the issues better after they have attemptedto repair them, and therefore, can make more reli-able classi�cations. consequently, we use informationin the repair form and interviews with each author toclassify the issues into one of three categories:� False Positives (issues for which no changes weremade),� Soft Maintenance (issues for which changes weremade only to improve readability or enforce cod-ing standards),� True Defects (issues for which changes were madeto �x requirements or design violations, or to im-prove system e�ciency).The distribution of defect classi�cations for eachtreatment appears in Figure 1. Across all inspections,24% of the issues are False Positives, 55% involve SoftMaintenance, and 21% are True Defects. We consideronly True Defects in our analysis of estimated defectdetection ratio (a dependent variable).55We observed that most of the soft maintenance issues arecaused by con
icts between the coding style or conventionsused by di�erent reviewers. In and of themselves, these arenot true defects. We feel these issues might be more e�cientlyhandled outside of the inspection process with automated toolsor standards.
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Figure 4: Pre-meeting Interval by Treatment.This plot shows the observed pre-meeting interval foreach inspection treatment. Across all treatments, themedian interval is 8.5 days.1-session inspections. However, we also note thatthe intervals of 2-session inspections have much morevariance than do 1-session inspections.The cost of serializing two inspection sessions issuggested by comparing 2-session-with-repair inspec-tions to 2-session-without-repair inspections (2sX2pNand 2sX1pN with 2sX2pR and 2sX1pR inspections).When the teams have only 1 reviewer we �nd nodi�erence in interval, but di�erence is found for 2-reviewer teams. This may indicate that requiring re-pair between sessions only increases interval as theteam size grows.We can draw other observations from this data.For instance, except for the 2sX2pR treatment (20days), all treatments have similar median intervals(7.5 days).3.4 Analysis of E�ectiveness DataThe primary bene�t of inspections is that they �nddefects. This bene�t will vary with the di�erent in-spection treatments. Figure 5 shows the observed de-fect density for all inspections and for each treatmentseparately.The e�ect of increasing team size is suggested bynoting that there is no di�erence in the e�ectivenessof any 1-session inspection (1sX1p, 1sX2p, and 1sX4pinspections). Although the median defect detectionrate increases with the number of reviewers, the vari-ance increases also.The e�ective of having multiple sessions is sug-gested by comparing 1-session inspections with 2-session-without-repair inspections (1sX2p and 1sX1pwith 2sX2pN and 2sX1pN inspections). 2-session in-spections are more e�ective than 1-session inspectiononly when there are two reviewers on the team.
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Figure 5: Observed Defect Density by Treat-ment. This plot shows the observed defect densityfor each inspection treatment. Across all inspections,the median defect detection rate was 24 defects perKNCSL.The e�ect of serializing multiple sessions is sug-gested by comparing 2-session-with-repair inspectionsto 2-session-without-repair inspections (2sX2pN and2sX1pN with 2sX2pR and 2sX1pR inspections). Thedata show that repairing defects between multiple ses-sions doesn't increase e�ectiveness.Several other trends appear in the preliminarydata. First, 2sX2p inspections are more e�ective than1sX4p, suggesting that 4 people will be more e�ec-tive as 2 small groups than as 1 larger group. On theother hand 2sX1p inspections aren't more e�ectivethan 1sX2p inspections.3.5 Meeting E�ectsDuring preparation, reviewers analyze the code unitsto discover defects. After all reviewers are �nishedpreparing, a collection meeting is held. These meet-ings are believed to serve at least two important func-tions: (1) suppressing unimportant or incorrect defectreports, and (2) �nding new defects. In this sectionwe analyze the e�ect collection meetings on inspec-tion performance.Analysis of Preparation Reports. One input tothe collection meeting is the list of defects found byeach reviewer during his or her preparation. Figure6 shows the percentage of defects reported by eachreviewer that are eventually determined to be truedefects. Across all 88 preparation reports, only 15%of all issues turn out to true defects.The only di�erences we see are that 2sX2pN in-spections have more true reports than 1sX1p, 1sX4p,2sX1pN and 2sX1pR inspections, and 2sX2pR in-spections have more true reports than 2sX1pN and9
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Figure 6: True Defect Rate per ReviewerPreparation Report by Treatment. This box-plot shows the rate at which defects found duringpreparation are eventually considered to be true de-fects. Across all treatments, only 15% of the reportsturn out to be true defects.2sX1pR inspections. There is no di�erence betweenany 2-person method. The largest di�ference is be-tween 2sX2pN inspections (20% true reports) and2sX1pN inspections (8% true reports).Analysis of Suppression. It is generally assumedthat collection meetings suppress unimportant or in-correct defect reports, and that without these meet-ings, authors would have to process many spuriousreports during repair. As we showed in the previoussection an average of 85% of reviewer reports do notinvolve true defects.Figure 7 shows the suppression rates for all 88 re-viewer reports. Across all inspections about 25% ofissues are suppressed. One trend in the preliminarydata is that suppression appears to be independentof the treatment.Analysis of Meeting Gains Another function ofthe collection meeting is to �nd new defects in ad-dition to those discovered by the individual review-ers. Defects that are �rst discovered at the collectionmeeting are called meeting gains.Figure 8 shows the meeting gain rates for all 51collection meetings. Across all inspections, 33% ofall defects discovered are meeting gains. The datasuggests meeting gains are independent of treatment.4 ConclusionsWe are in the midst of a long term experiment inwhich we apply di�erent software inspection methods
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Figure 7: Meeting Suppression Rate by Treat-ment. These boxplots show the suppression rate foreach reviewer by treatment. The suppression rate fora reviewer is the number of defects detected duringpreparation but not included in the collection meet-ing defect report, divided by the total number of de-fects recorded by the reviewer in his/her preparation.Across all inspections, 25% of the preparation reportsare suppressed.
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Figure 8: Meeting Gain Rate by Treatment.These boxplots shows the meeting gain rates for allinspections and for each treatment. The average ratewas 33%.to all the code units produced during a professionalsoftware development. We are assessing the methodsby randomly assigning di�erent team sizes, numbersof inspection sessions, author repair activities, andreviewers to each code unit. To date we have com-pleted 34 of the planned 64 inspections. We expectto �nish the remaining 30 inspections by the middleof 1995.Our preliminary results challenge certain long-heldbeliefs about the most cost-e�ective ways to conductinspections. It also raises some questions about thefeasibility of recently proposed methods.In this section we summarize our preliminary re-10



sults and discuss their implications from points ofview of both practitioners and researchers.Individual Preparation. Our data indicate thatalmost one-half of the issues reported during prepara-tion turn out to be false positives, Another 35% per-tain to nonfunctional style and maintenance issues.Finally, only 15% concern defects that will compro-mise the functionality of the delivered system.For practitioners this suggests that a good dealof e�ort is currently being expended on issues thatmight better be handled by automated tools or stan-dards.For researchers this suggests that developing betterdefect detection techniques may be muchmore impor-tant than any of the organizational issues discussedin this article [14] .Meeting Gains. On the average 33% of defectswere meeting gains.One implication of this result is that it may beworthwhile to study the cost-bene�ts of meeting-lessinspections. For example, 2sX2pN inspections aremore than 33% more e�ective than 1sX4p inspec-tions. Without a collection meeting 2sX2pN inspec-tions would still be more e�ective, but might requireless total e�ort and have a shorter interval.These meeting gain rates are higher than those re-ported by Votta[18] (5%). Since meetings withoutmeeting gains are a large, unnecessary expense, it'simportant for researchers to better understand thisissue. Some possible explanations for this are (1)Votta's study focused on design inspections ratherthan code inspections, (2) the average team size for adesign inspection is considerably larger than for codeinspections, or (3) design reviewers may prepare muchmore thoroughly since design defects are likely to bemore damaging than code defects. We will be exam-ining this issue more closely in the remainder of theexperiment.Team Size. We found no di�erence in the intervalor e�ectiveness of inspections with 1, 2, or 4-reviewerteams. The e�ectiveness of 1-reviewer teams was con-sidered poorer than that of larger teams with a con-�dence level of about .2. Although this di�erenceis not normally considered statistically signi�cant, itdoes suggest that 1-reviewer teams are not as e�ectiveas 2 or 4-reviewer teams.For practitioners this suggests that reducing thedefault number of reviewers from 4 to 2 may signi�-cantly reduce e�ort without increasing interval or re-ducing e�ectiveness.

The implications of this result for researchers is un-clear. We need to develop a better understanding ofwhy 4-reviewer teams weren't more e�ective than 2-reviewer teams. We will explore this issue furtherduring the remainder of the experiment.Multiple Sessions. We found that 2, 2-personteams were more e�ective than 1, 4-person team, but2, 1-person teams weren't more e�ective than 1, 2-person team. We also found that 2-session inspectionswithout repair have the same interval as 1-session in-spections.In practice this indicates that 2-session-without-repair inspections should be used if their increasede�ectiveness is considered to be worth the extra ef-fort (not interval).These results are signi�cant for researchers as well.Multiple session methods such as active design re-views (ADR) and phased inspections (PI) rely on theassumption that several one person teams using spe-cially developed defect detection techniques can bemore e�ective than a single large team without spe-cial techniques. Some of our experimental treatmentsmimic the ADR and PI methods (without special de-fect detection techniques). This suggests that any im-provement o�ered by these techniques will not comejust from the structural organization of the inspec-tion, but will depend heavily on the development ofdefect detection techniques.The performance of 2sX2pN inspections partiallysupports use of multiple sessions methods such as N-fold inspections. Of course, our data doesn't indicateto what degree these methods will scale up (i.e., asthe number of sessions grows beyond 2).SerializingMultiple Sessions. We found that re-pairing defects in between multiple sessions had noe�ect on defect detection rate, but in some cases in-creased interval dramatically.In practice, we see no reason to repair defects be-tween multiple sessions. Furthermore, some of thedevelopers in our study felt that the 2-session-with-repair treatments caused the greatest disruption intheir schedule. For example, they had to explicitlyschedule their repairs although they would normallyhave used repair to �ll slow work periods.This result raises several research questions aswell. Why aren't more defects found relative to thewithout-repair inspections? Is it because di�erent de-fects are found in the 2 sessions of without-repair in-spections? Is it because the defect detection tech-niques being used are �nding all the defects they can�nd (producing an upper bound on any treatment'se�ectiveness)?11



This result also provides some information aboutthe recently proposed phased inspection method.This method requires small teams each using speciallydefect detection techniques to perform several inspec-tions in serial, repairing defects between each session.Our data shows no improvement due solely to thepresence of repair. Consequently, without special de-fect detection techniques this approach in unlikely tobe e�ective.5 Future WorkDuring the remainder of this experiment we willbe making several changes to the experimental de-sign. In particular we will remove treatments thatrequire defect repair in between a 2-session inspec-tion (2sX2pR and 2sX1pR). As discussed previously,these treatments are no more e�ective than the with-out repair variety, but can a�ect interval considerably.We are also considering removing the 1sX1p treat-ment. As discussed above, this treatment is poten-tially the poorest performing treatment and contin-uing to use it poses some threats to the projects.Therefore, we will be monitoring it closely as the ex-periment continues.We will also deepen our data analysis. For example,we will explore the following questions.� How much variation in the observed performancecan be explained by natural variation in the codebeing inspected?� How much variation in the observed performancecan be explained by natural variation in the in-dividual inspectors?� How many defects are found in common by bothteams in a 2-session inspection?� Why are 2-sessions better than 1? Is it becausethere is little overlap between the 2 teams or isit because with 2 teams there is a greater chanceof selecting a high performance team?Finally, we feel it is important that others attemptto replicate our work, and we are preparing mate-rials to facilitate this. Although we have rigorouslyde�ned our experiment and tried to remove the exter-nal threats to validity, it is only through replicationthat we can be sure all of them have been addressed.AcknowledgmentsWe would like to recognize the e�orts of the experi-mental participants { an excellent job is being done
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