
ABSTRACT

Title of dissertation: Visual Tracking of Human Hand and
Head Movements and Its Applications

Afshin Sepehri
Doctor of Philosophy, 2007

Dissertation directed by: Professor Rama Chellappa
Department of Electrical Engineering

Tracking of human body movements is an important problem in computer

vision with applications in visual surveillance and human-computer interaction.

Tracking of a single hand moving in space is addressed and a set of applications

in human-computer interaction are presented. In this approach, a disparity map

and motion fields extracted from a stereo camera set are modelled using a robust

estimation method. Then, the absolute position and orientation of the hand in

space are estimated and the central region of the hand is tracked over time. Virtual

drawing in space, a virtual marble game, and 3D object construction are shown as

the applications of the single hand tracking.

Algorithms are presented for tracking the hands and head of a person or several

interacting people viewed by a set of cameras in 3D. The problem is first defined as

a general multiple object tracking problem in a multiple sensor environment and a

two layered solution is proposed. The proposed solution includes a low-level particle

filtering layer to track individual targets in parallel, and a finite state machine to

analyze the interactions between the targets and apply application specific heuristics.

A set of activity recognition experiments in visual surveillance show the usefulness

of the system. The recognized activities involve interactions between the hands and

head of people and objects. A color analysis scheme and a technique for combining

information from different cameras are presented. They are used to detect carried

objects and exchanges between the hands.

Visual Tracking of Human Hand and

Head Movements and Its Applications

by

Afshin Sepehri

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry S. Davis, Co-Advisor
Dr. Yaser Yacoob, Co-Advisor
Professor Min Wu
Professor Nuno C. Martins

c© Copyright by

Afshin Sepehri
2007

Preface

Since about 40 years ago, when a project entitled ”Solve the vision problem”

was defined as a summer project in MIT, and since scientists and scholars such

as Prof. Azriel Rosenfeld wrote several books and papers to introduce this field,

there have been many significant advances and achievements. Many vision-based

systems are now working smoothly and reliably in industry. Surveillance cameras

being used on roads to control traffic, inspection and quality control systems in

the assembly lines, and even fun applications in the area of computer games and

animation production, are just a few examples. In all these systems, the idea of

replacing the human eyes and brain with a set of cameras and a computer-based

system is achieved successfully. The expectation is generally to obtain a system

which can perform the job of a human being satisfactorily; however there have been

several cases in which the computer-based system does a substantially better job

than a human. This is due to higher resolution of cameras, and the increasing

computational power of computer systems. Also, a human being is susceptible to

fatigue and physical and emotional degradations which a computer system is not.

However, the question of how to build a comprehensive vision system in the

general sense is still open. While the computational power of computers still grows

rapidly, there has been little success in modelling the core vision capabilities of

humans. Therefore, creating artificial systems which can work reliably under com-

plicated and unpredictable real world conditions is still far from being realized.

Computer vision is an exceptionally challenging field. Thousands of papers and dis-

ii

sertations have been written to address its problems and challenges. I hope I have

written one of these thousands!

iii

Dedication

To the three ladies in my life:

My Mother

My Wife

My Daughter

iv

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Rama Chellappa

and my co-advisors Prof. Larry Davis and Dr. Yaser Yacoob for their support and

guidance during my studies. They introduced me to the fascinating field of computer

vision and gave me the opportunity to work on several interesting problems in this

field. I was especially blessed to have the opportunity of learning from these three

scholars simultaneously during my research and study. I really appreciate the time

and attention they gave my work which was sometime beyond my expectation. I

would like to thank my committee members, Prof. Wu and Prof. Martins for their

time and valuable feedbacks. I would like to thank the faculty and staff of the

department of electrical and computer engineering, computer science, and institute

for advanced computer studies for their constant support and help.

During my studies, I had the opportunity of having a lot of great scientific

discussions with some of my friends in the computer vision laboratory and beyond.

I thank them all. I am especially thankful to my friend, Dr. Mehdi Kalantari who

assisted me in better understanding of some of the concepts in the area of signal pro-

cessing and random processes. I am also thankful to my friends, Shabnam Shafiee,

Melody Djam, Amirali Sharifi and Kamiar Kordari who helped me in collecting the

required video clips for this dissertation.

My sincere gratitude goes to my family for all they gave me during my life; my

father who taught me a lot and encouraged me to pursue my studies to the higher

levels, my mother who did the outmost sacrifices for me, my brothers who were very

v

reliable and consistently supportive to me, my wife Farangis, who gave me her love,

patience and support and my little daughter Nusha, whose birth added so much joy

to my life and extended the duration of my study!

My social life in Maryland was also quite a pleasant experience. I found

numerous friends who helped me whenever I needed them. I am afraid I cannot

name them here as they are too many. I would like to thank them all and wish

them success wherever they are.

vi

Table of Contents

List of Figures ix

1 Introduction 1

2 Visual Tracking of a Single Hand 3
2.1 Introduction . 3

2.1.1 Previous Work . 4
2.1.2 Hand Tracking System Overview 6

2.2 Region of Interest Segmentation . 9
2.2.1 Hand Region Segmentation 9

2.2.1.1 Background Subtraction Module 10
2.2.1.2 Color Detection Module 11

2.2.2 Palm Region Segmentation . 13
2.3 Parametric Disparity Map Estimation 14

2.3.1 Disparity Map Estimation . 15
2.3.2 Disparity Map Modeling . 16

2.4 Parametric Motion Field Estimation 18
2.4.1 Motion Field Estimation . 19
2.4.2 Motion Field Modeling . 19
2.4.3 Motion Field Adjustment based on the Disparity 21

2.5 Estimating 3D Palm Position and Orientation 22
2.5.1 Experiments and Results . 25

2.6 Tracking a Reference Point in 3D . 29
2.7 Application: Virtual Drawing . 31

2.7.1 Introduction . 31
2.7.2 Approach . 34
2.7.3 Extracting the Drawn Segment 35

2.7.3.1 3D to 2D Conversion 35
2.7.3.2 On-Plane vs. Off-Plane 36
2.7.3.3 Algorithm . 37

2.7.4 Multi-Segment Drawing with Feedback 40
2.7.5 Experimental Results . 43

2.8 Application: Virtual Marble Game 48
2.9 Application: 3D Construction . 50
2.10 Summary . 52

3 Multiple Hand/Head Tracking using Multiple Cameras 54
3.1 Introduction . 54

3.1.1 Previous Work . 54
3.2 Overview of the Tracking Method . 56
3.3 Single Target Tracking Using Particle Filters 57

3.3.1 Bayesian Target Tracking . 57
3.3.2 Particle Filtering Methods . 59

vii

3.3.2.1 Sequantial Importance Sampling 59
3.3.2.2 Sampling Importance Resampling 62

3.4 Multiple Target Tracking . 63
3.4.1 Observation Prior Probability Estimation 66
3.4.2 High Level Tracking Layer . 68

3.5 Multiple Hand/Head Tracking . 72
3.5.1 Pre-processing Steps . 74

3.5.1.1 Camera Calibration 74
3.5.1.2 Background Modeling 77
3.5.1.3 Skin-Colored Regions Segmentation 78

3.5.2 Image Observations and Accuracy Problem 78
3.5.3 Computing 3D Candidate Points 80
3.5.4 Prior Probability Estimation for 3D Candidate Points 82

3.6 Application: Activity Recognition for Visual Surveillance 84
3.6.1 Activity Classification based on Limb Interactions 86
3.6.2 Carrying Object Detection . 87

3.6.2.1 Hand Region Selection 90
3.6.2.2 Color Histogram Modes Extraction 93

3.6.3 Estimating the Relative Hand Position 93
3.6.3.1 Object Exchange Detection 96

3.7 Experimental Results . 98
3.8 Summary . 108

4 Conclusion 111
4.1 Future Work . 114
4.2 Final Word . 117

Bibliography 118

viii

List of Figures

2.1 Block diagram of the system. 7

2.2 Sample stereo input images . 7

2.3 Hand region segmentation . 10

2.4 Segmented palm regions and largest interior circles 14

2.5 Disparity Map of a Pair of Images . 16

2.6 A sample image with markers . 25

2.7 Experimental results . 26

2.8 Distribution of the error of disparity values 27

2.9 Experimental results: Input frames and estimated models 28

2.10 Experimental results: Sample frames 29

2.11 Block diagram of the virtual drawing system 34

2.12 Off-plane mode detection . 37

2.13 Drawing multi-segmented shapes in 3D 40

2.14 Evaluating performance of the vision-based estimation 43

2.15 Input and output of some sample frames 44

2.16 Histogram of the distance measure of all pixels 46

2.17 Output of the program for English letters 47

2.18 Sample frames of writing in the air 47

2.19 A sample frame of the sequence drawing a face 48

2.20 Sample frames of a virtual marble game 49

2.21 Sample maze maps for virtual marble game 50

2.22 Sample frames of a virtual marble game 50

2.23 Sample Frames of the hand traversing sides of a box 51

ix

2.24 The tracked box and defined measurement parameters. 52

3.1 Finite state machine for multiple target tracking 69

3.2 Sample input images from a single human subject 73

3.3 Sample input images from two interacting human subjects 73

3.4 Camera calibration using vanishing points and an accessory structure 76

3.5 Background subtraction results . 77

3.6 Skin-colored regions segmentation and sources of inaccuracy 79

3.7 Filtering 3D candidate points through prior probability 85

3.8 The selected regions for color analysis 89

3.9 The normalized color histogram after kernel density estimation. . . . 91

3.10 The modes of the histogram after connectivity verification 92

3.11 Reliability measurement of the selected regions 95

3.12 Performance evaluation of the tracking system 100

3.13 Performance evaluation of the tracking system 101

3.14 Sample frames of a sample sequence 102

3.15 Sample frames of a sample sequence 103

3.16 Sample frames of the hand clapping sequence 104

3.17 Sample frames of two people do the hand shaking 106

3.18 Weighted average distributions at two decision Points 107

3.19 Sample frames of the object exchange sequence 109

x

Chapter 1

Introduction

One of the major subjects of research in the field of computer vision is un-

derstanding the human movement. Extensive work has been performed on tracking

the entire body to estimate motion paths or body gestures. This is especially use-

ful in the area of visual surveillance to recognize activities. Recent work in this

area involve [1–9]. On the other hand, much research has focused on a single or a

few body limbs. The most important limbs are the hands and head. Most work

on visual analysis of the head focuses on modeling the face and its parts for face

recognition, but head gaze tracking is also an important problem that has received

considerable attention. For a comprehensive overview of the major works in this

area, refer to [10].

The hand is the limb which performs most of people’s physical interactions

with the world. These interactions could be cooperative and be used in the field of

human computer interaction (HCI) or non-cooperative, which is the subject of visual

surveillance. In the HCI realm, a person or several people move their hands in space

in a controlled way or create different gestures with their hands to communicate

commands to a computer. They can even interact with virtual devices to control

a computer system. In the visual surveillance area, the hand interacts with other

people and physical objects. In this dissertation, we address some of the problems

1

in the area of hand tracking and demonstrate a few applications in both the areas

of human computer interaction and visual surveillance.

This dissertation is mainly divided into two parts. In the first part which

is covered in chapter 2, a single hand is tracked while being viewed by a stereo

camera. The disparity map and motion fields of the acquired images are estimated

and modelled to enable tracking of the hand as a region in space. Three applications

in the area of HCI are introduced and several experiments show the effectiveness of

the method. The main contribution in this chapter is in accurate estimation of the

position and orientation of the hand in space and also the novel applications.

In the second part, which is contained in chapter 3, both the hands and the

head of a person or several people are tracked in space. The people are viewed by

multiple cameras distributed around the scene. Activity recognition is presented

as an application of the proposed system in the area of visual surveillance. The

contribution of this part is in the proposed two-level tracking scheme which involves

particle filters and a finite state machine. Also, the likelihood estimation approach

performed by re-projection of the observations from the image space to the 3D space

and analyzing the 3D candidate points is novel. In addition, a new technique for

combining the results of the color analysis of different images is proposed, which is

based on the quality of the hand view in each image. The result of the color analysis

is deployed in detecting carried objects as well as object exchanges.

2

Chapter 2

Visual Tracking of a Single Hand

2.1 Introduction

The human hand serves a dual purpose as a communication and manipulation

device. This chapter is focused on employing a single hand as an interface device to

a computer. It presents applications that require accurate estimation of the position

and orientation of the hand in space with respect to a camera system. We describe

a real-time stereo system to estimate the position and orientation of the hand in

the camera and world coordinate systems and also track its spatial trajectory over

time. We also demonstrate the utility of our system in virtual and real spaces using

three applications:

1. A virtual drawing application, in which a user can write letters or draw on a

virtual plane in space.

2. A 3D model construction application, in which the user runs his hand along

the edges of a physical polyhedral object, and the system constructs a 3D

model of that object, and

3. A 3D virtual marble game, in which the user controls the inclination of a

virtual plane through hand motions to manipulate the movement of a ball

through a maze.

3

The first two applications demonstrate the accuracy of the position and orien-

tation estimation algorithms, while the third demonstrates the real time capabilities

of our algorithms.

2.1.1 Previous Work

Modeling the human body as an articulated object has been extensively stud-

ied during the last decade (For a review, see [11]). Hand modeling is typically done

with a device such as an instrumented glove to measure direct parameters of the

hand [12] or the placement of colored-markers on a hand to simplify visual track-

ing [13]. These devices or markers may be reasonable for highly specialized applica-

tion domains such as surgery in a virtual reality environment, but can be impractical

in many consumer applications. The limitations of employing these auxiliary devices

has motivated research on bare-hand approaches. This research has been focused

on either static hand gestures (i.e. postures) or dynamic characteristics of gesture.

In the former case, a still image is analyzed with the goal of finding some

predetermined parameters of hands (e.g. palm position and orientation, finger joint

angles). A variety of models has been utilized for that purpose. Images of hands,

geometric moments, contours, silhouettes, and 3D hand skeleton models are a few

examples [13–17].

One of the earliest works on modeling a bare hand was performed by Rehg and

Kanade [18] where they model the hand and fingers with a set of lines and points.

They start tracking from a predefined state and performed a local search at each

4

frame for the new configuration. They used a modified Gauss-Newton algorithm to

minimize the error. As an application, they presented a 3D graphical mouse. In

another work [19], they took into consideration the problem of self-occlusion, which

usually occurs with the fingers. They addressed the issue by defining visibility order

and employing an occlusion graph. They registered overlapping templates using a

window function to block the occluded templates.

Kuch and Huang in [16] defined a 26 degree of freedom (DOF) hand model

and by considering a set of static and dynamic constraints reduced it to 15 DOF.

A generic model was calibrated using three specific views and joint length and joint

angles were selected manually. The system Started from a predefined orientation in

a solid background, rendered a model at each frame, XORed 2D model projection

with the real image and locally perturbed the model to minimize error.

Lee and Kunii in [13] employed torque minimization to estimate the hand

parameters and used inverse kinematics to calculate joint angles. They assumed

zero hollowness (planarity) of the palm and the position of the characteristic points

were measured through a color-coded glove using two cameras. They defined two

types of driving forces: models internal constraints and the external forces derived

from images and concluded that the posture of the whole hand could be determined

by the position of seven characteristic points, including 5 fingertips.

In [20], Heap and Dogg estimates 6 DOF hand position and orientation (lim-

ited) as well as deformation using a 3D version of the Point Distribution Model

(PDM) and a surface mesh model. They used a set of training images with 3D

landmark points captured semi-automatically and a reasonable initial guess to com-

5

pute the twelve model parameters including translation, rotation , scale, and five

significant deformation parameters. An orthographic projection was used to project

3D mesh vertices to 2D image and model parameters were updated by finding the

local movement for individual landmarks and statistical voting.

Delamarre and Faugeras [21] used a sequence of stereo images to estimate the

pose of the hand. They proposed a 3D articulated model of the hand and tracked

the forces that would attract the model.

Athitsos, Rosales, and Sclaroff took database-oriented approach to classify

hand gestures [22–24]. Training data was obtained using a CyberGlove which moni-

tors the angular motions of the palm and fingers [22] or was produced using synthetic

hand views [23]. Different functions such as chamfer distance were used for likelihood

measurement.

2.1.2 Hand Tracking System Overview

Figure 2.1 shows the block diagram of the system; Its main steps are as follows:

1. Images are grabbed from a stereo camera with a baseline comparable to the

distance between the human eyes. Figure 2.2 shows a sample pair of input

images. Since in some applications we need to give real-time feedback to

the user, image acquisition should be performed at a reasonably high rate to

provide an interactive system. Our implementation for the sample drawing

application (explained in section 2.7) works up to 12 frames per second on an

Intel 3.2GHz processor. Input images are rectified to make the disparity map

6

Figure 2.1: Block diagram of the system.

estimation faster.

(a) (b)

Figure 2.2: Sample stereo input images: (a) Left image, (b) Right image.

2. Background subtraction and skin color detection are employed to segment the

hand. Also, for reliable tracking, the fingers and the arm are removed from

the hand area so only the central region of the hand (i.e. palm, back of the

hand) remains. This is discussed in section 2.2.

7

3. A disparity map is estimated from the two images taken at each time instant

using a parametric planar model to cope with the nearly textureless surface

of the hand. Section 2.3 discusses the details of this process.

4. A monocular motion field is estimated from two consecutive frames. It is

modeled similarly to the disparity map. Parameters of the motion model are

then adjusted to comply with the disparity model. The motion field is used

for tracking selected points throughout a sequence. Section 2.4 addresses the

steps.

5. At each time instant, the X, Y and Z coordinates of the position and the

orientation angles yaw, pitch, and roll are calculated for a coordinate frame

attached to the palm. The 3D plane parameters are calculated from the dis-

parity plane as discussed in section 2.5.

6. For tracking the hand over time, a set of 2D image points are extracted from

the images of one of the two cameras (e.g. left) and its motion model. Then

using disparity models at different times, the points are mapped to the 3D

world to provide the trajectory of the hand in space, as explained in section

2.6.

Based on the application, some extra steps may be employed. The following

sections discuss the details of the process and the applications of the system are

presented.

8

2.2 Region of Interest Segmentation

The central region of the hand (i.e. palm or back of the hand depending on

the user’s preference) is modeled and tracked in 3D. That region is segmented in two

steps: Segmenting the entire hand from the image, and then selecting the central

region from the segmented hand region. The following two subsections discuss these

steps.

2.2.1 Hand Region Segmentation

Segmenting the hand from the image is performed by removing the background

and moving objects other than the hand. Two cues are used:

• Motion Cues including background subtraction and motion-less region sub-

traction.

• Color cues which take advantage of the fact that human skin color is localized

in the color space.

We use fusion of color and background subtraction to extract the hand with

the color analysis applied to the results of background subtraction. Figures 2.3(b)

and 2.3(c) show the background and foreground images of a sample input image

2.3(a) and figures 2.3(d) and 2.3(e) show the output of the color detector without

and with the background subtraction module respectively. Background subtraction

is simply implemented using a unimodal background model, followed by color skin

detection and finally a flood-fill step. Figure 2.3(f) shows the final hand region after

9

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Hand region segmentation: (a) Input image, (b) Background image,
(c) Foreground image, (d) Color detector output without background subtraction ,
(e) Color detector output with background subtraction. (f) Final segmented hand
region

flood-fill filtering.

2.2.1.1 Background Subtraction Module

There are many challenges in estimating and maintaining a background model

including gradual or sudden illumination changes, camera oscillations and high fre-

quency background objects. Different methods have been proposed to cope with

these challenges: Median or Average Filtering [25, 26], Running Gaussian Aver-

age [27], Mixture of Gaussians [28, 29], Kernel Density Estimation [30], Mean-Shift

based Estimation [31], and Eignbackgrounds [32].

10

However, in our case since we have an extra filtering stage which relies on the

skin color, some inaccuracy and noise in the background subtraction process can be

tolerated. Therefore, the background image is stored once in the beginning and a

simple difference operator picks the foreground pixels.

In the latter case a temporal median filter can be employed. In case of deal-

ing with a moving camera, a camera stabilization step precedes the above process.

Motion-less region subtraction is based on the assumption that the object of inter-

est has the dominant motion in the image. This cue can be only used in a filtering

manner to eliminate the spurious regions as it is useless in case of a still hand.

2.2.1.2 Color Detection Module

It is well known that human skin color is localized in color space. In [33], it is

shown that, the distribution of skin color tones is more localized in HSL color space

than RGB. So, as a first step in our implementation, we convert pixel values from

the RGB domain to the HSL domain using

H =

θ G ≥ B

2π − θ G < B

S = 1 − 3min(R,G,B)
R+G+B

L = 1√
3
(R +G+B)

(2.1)

where

11

θ = arccos

{

1
2
[(R−G) + (R− B)]

√

(R−G)2 + (R− B)(G−B)

}

The next step is to devise a skin model to discriminate between skin and non-

skin pixels. There are different models used including parametric and nonparametric

skin distribution models as well as explicit defining skin color region. We choose

the explicit definition of the skin region in color space due to its speed. A survey

on different modeling methods can be found in [34].

We divide the process into two steps. In the first step, a superset of the real

skin area is selected by limiting the hue component of the color. The selected range

should be large enough to tolerate the lighting conditions and variance of human

skin colors. Hence we allow pixels in the range of 1 < hue < 25 to be included.

Even though the outcome covers skin area fairly good, it also contains some spurious

pixels. If we narrow down the hue range, we might lose some legitimate skin pixels,

so we delay additional filtering to the next step.

In the next step, candidate pixels are analyzed one by one using a neural

network already trained with some sample skin colors to rule out spurious pixels.

The training set is collected from two series of pixels in some sample sequences.

The first series contain skin points and the second one contain non-skin points with

similar color which the neural network failed to distinguish. The trained network

covers a volume in HSL space consisting of a set of spheres each supported by a

single neuron. For more details see [33].

12

2.2.2 Palm Region Segmentation

To extract the palm from the segmented hand region, we rely on the obser-

vation that the area of the palm is usually the widest part of the hand with the

exception of some of the upper areas of the arm. Also, due to the presence of the

fingers, the number of curvature maxima in the neighborhood of the palm is more

than the arm areas. These facts allow us to model the area of the palm as a union

of a set of intersecting circles.

The following summarizes the estimation process:

1. Segment the area of the hand as explained in section 2.2.1.

2. Find the largest interior circle (LIC) of the segmented area using the distance

transform. This circle is likely to be located on the palm. However to avoid

circles in the area of the arm, we find the center of gravity of the curvature

maxima of the hand contour and consider only those circles that contain this

point. Since the fingers create more curvature maxima than the smooth edges

of the straight arm, this tends to place the center point on the palm.

3. Find other large interior circles with a radius larger than a given threshold

(e.g. 0.8 of the radius of the LIC). The fingers inherently will not belong to a

circle with such a radius even if a few of them are joined; To avoid including

circles on the arm, we discard circles that do not intersect the LIC.

4. Compute the union of the area of all the obtained circles and consider it as

the estimated area of the palm. We do not expect this area to cover the palm

13

perfectly. Also, the largest interior circles in the two images may not exactly

correspond to the same actual hand region. Nevertheless, they will have a

high percentage of overlap. Figure 2.4(a) shows the large interior circles for

the image of the left camera shown in figure 2.2 and figure 2.4(b) shows the

final region of interest as the union of the circles.

(a) (b)

Figure 2.4: Segmented palm regions and largest interior circles of input images of
Figure 2.2: (a) Largest interior circles, (b) Final region of interest.

An alternative approach for segmenting the central region of the hand is mod-

eling it with a square as discussed in [35].

2.3 Parametric Disparity Map Estimation

To reconstruct the position of the hand in 3D, we estimate the disparity map

from a stereo. There are different sources of noise in the disparity estimation process.

The two cameras usually have different levels of brightness, white balance, and

contrast which makes the matching process challenging. Also, the low texture of

the hand adds to this problem. The rectification process also causes some deviations

14

in the pixel values. To cope with noise issues, we perform this estimation in two

distinct steps. First, we estimate the disparity map using a sample stereo method,

and second, we model the estimated disparity map as a parametric plane to eliminate

outliers. The following subsections discuss these two steps.

2.3.1 Disparity Map Estimation

There are many different methods to estimate the disparity map which can be

categorized to some general approaches. Local methods, global optimization meth-

ods, dynamic programming, and cooperative algorithms are main categories [36].

We find the disparity map using a correlation-based method where the conjugate

point pairs are detected. We identify and remove some incorrectly matched points

by relying on the uniqueness of the matching and left to right consistency of the

corresponding points. Uniqueness means each point in the left image should match

one and only one point in the right image and vice versa. Consistency of the corre-

sponding points means that if a point pr in the right image is the best match to point

pl in the left image, point pl should also be the best match for pr. Applying these

filtering criteria, we find a sparse disparity map. Note that the hand’s low texture

results in significant mismatching. Moreover, after all the filtering steps, we may

still get a number of pixels with their disparity wrongly estimated. To overcome

these problems, we parametrically model the disparity as explained next. Figure

2.5 shows the estimated disparity map for the sample image pair after the filtering

steps.

15

Figure 2.5: Disparity Map of the Pair of Images in Figure 2.2.

2.3.2 Disparity Map Modeling

We model the palm as a 3D plane

Z = C1X + C2Y + C3 = C1(
x

f
Z) + C2(

y

f
Z) + C3 (2.2)

where P (X, Y, Z) is a point on the plane and p(x, y, f) is the image of point P on

the image plane with f denoting the focal length of the camera. Since Z is inversely

proportional to the disparity value d (i.e. Z = α
d

for some value α)

d =
α

C3
+ (−C1α

fC3
)x+ (−C2α

fC3
)y = c1x+ c2y + c3 (2.3)

which means that points (x, y, d) obtained from the disparity map should also lie on

a plane.

An important issue is that we need a set of disparity values distributed uni-

formly over the area of interest. This is due to the need of giving equal opportunity

to both high-textured and low-textured areas to participate in planar fitting. So we

pick up points from a disparity map through a uniform grid or a uniform random

sampler.

To cope with outliers, we employ robust estimation to find the parameters of

16

the planar model. M-estimation [37] is a robust method of estimating the regression

plane which works well in the presence of significant outliers. Considering the plane

model

di = c1xi + c2yi + c3 + ei = xT
i c + ei (2.4)

with xi = (xi, yi, 1)T and c = (c1, c2, c3)
T , the general M-estimator which corre-

sponds to the maximum-likelihood estimator [37], minimizes the objective function

n
∑

i=1

ρ(ei) =

n
∑

i=1

ρ(di − xT
i c) (2.5)

where n is the number of points and ρ is the influence function [38].

Let ψ = ρ′ be the derivative of ρ. To minimize (2.5), we need to solve the

system of three equations
n

∑

i=1

ψ(di − xT
i c)xT

i = 0 (2.6)

Defining the weight coefficients wi = ψ(ei)/ei, the estimating equations may

be rewritten as
n

∑

i=1

wi(di − xT
i c)xT

i = 0 (2.7)

The solution c to (2.7) can be found using the iteratively reweighted least-squares,

IRLS as follows [38]:

1. Select initial estimates c(0) such as the least-square estimates.

2. At each iteration t, calculate residuals e
(t−1)
i and associated weights w

(t−1)
i from

the previous iteration.

3. Solve for the new weighted-least-squares estimates

c(t) = [XTW(t−1)X]−1XTW(t−1)d (2.8)

17

where X is the matrix of points with xT
i as the ith row and W(t−1) = diag{w(t−1)

i }

is the weight matrix.

For fitting the 3D plane to our disparity data, we choose the Geman-McClure

function for ρ [39]

ρ(x, σ) =
x2

σ + x2
(2.9)

Since this function has a differentiable ψ-function, it provides a more gradual

transition between inliers and outliers than some other influence functions [40].

To achieve fast convergence as well as to avoid local minima, we initialize

weights w
(0)
i with values proportional to the confidence of each point in the disparity

calculation process. This confidence can be defined as the reciprocal of the sum of

the differences of the pixel values in the correlation windows.

2.4 Parametric Motion Field Estimation

Calculating the disparity map and modeling it at each frame enables us to

estimate the hand plane in space instantaneously; however, it does not provide a

one to one mapping of the points on the planes in consecutive frames, which is

required for tracking. Motion analysis is employed to recover this information.

Computing the motion field between two images taken in two consecutive time

instants, corresponding points between the two images can be found. The same

process can be performed for each one of the two cameras. However, due to the

low-textured nature of the hand, outliers may appear in the same way as disparity

18

map. To remove these outliers, we model the motion elements as discussed in section

2.4.2.

2.4.1 Motion Field Estimation

To estimate the motion field, we exploit an optical flow estimation method.

Some of the common methods are Horn-Schunck [41], Lucas-Kanade [42], and block

matching method [43]. Through our experiments, we found block matching to be

more robust and less noisy than the other two. However, this could change with

lighting conditions, size of the motion, and parameters used in each method (e.g.

block size, search space and etc.). Also to shrink the search space, thereby reducing

spurious results, the hand region, segmented as explained in section 2.2.1, is clipped

as a new image and used as an input image to block matching algorithm. In this

way, we can shorten the size of the search yet keep it applicable to large motions.

2.4.2 Motion Field Modeling

The motion field is modeled using a similar approach to that used for disparity

modeling. Let π be a moving plane in space with translational velocity t and angular

velocity ω. It is well known [44] that components of the motion field v = (u, v)T

can be computed as

u = 1
fd

(a1x
2 + a2xy + a3fx+ a4fy + a5f

2)

v = 1
fd

(a1xy + a2y
2 + a6fy + a7fx+ a8f

2)

(2.10)

19

where f is the focal length, d is the distance between π and the origin (the center

of projection) and

ai = gi(t, ω, d,n) 1 ≤ i ≤ 8

where gi(.) is a known function and the unit vector normal to π denoted as n.

Defining the new coefficients bi as

b1 = a1

fd
b2 = a2

fd
b3 = a3

d
b4 = a4

d

b5 = a5f

d
b6 = a6

d
b7 = a7

d
b8 = a8f

d
(2.11)

equation (2.10) can be rewritten as

u = b1x
2 + b2xy + b3x+ b4y + b5

v = b1xy + b2y
2 + b6y + b7x+ b8

(2.12)

If we define a new matrix X and a new vector b as

X =

x2 xy x y 1 0 0 0

xy y2 0 0 0 y x 1

(2.13)

b = (b1, b2, b3, b4, b5, b6, b7, b8)
T

equation (2.12) can be rewritten as

v = Xb (2.14)

Now, having a set of n points pi = (xi, yi) and their calculated motion vectors

vi = (ui, vi)
T , we can compute Xis thereafter defining the new vector vall and the

new matrix Xall as a combination of vis and Xis respectively:

Xall =

[

XT
1 XT

2 ... XT
n

]T

vall =

[

vT
1 vT

2 ... vT
n

]T (2.15)

20

Equation (2.14) can be now generalized as:

vall = Xallb (2.16)

Using M-Estimation in a similar way as in section 2.3.2, we can find the coefficient

vector b.

2.4.3 Motion Field Adjustment based on the Disparity

If we define image I as a function of spatial variables x and y and temporal

integer variable t, the motion field in a stereo system can be written as:

Il(x, y, t) = Il(x+ ul, y + vl, t+ 1)

Ir(x, y, t) = Ir(x+ ur, y + vr, t+ 1)

(2.17)

where indices l and r distinguish left and right cameras.

Meanwhile from stereo constraints in the rectified image pairs we know:

Il(x, y, t) = Ir(x− d, y, t)

Il(x+ ul, y + vl, t+ 1) = Ir(x+ ul − d′, y + vl, t+ 1)

(2.18)

with d and d′ showing disparity values at times t and t+ 1 respectively.

From (2.17) and (2.18) we can deduce:

ul + d− d′ = ur vl = vr (2.19)

The parameters of the motion model (2.10) were estimated for each camera

individually as described in section 2.4.2. Due to mismatching and inherent devi-

ation of the palm from a plane, the conditions in (2.19) are not exactly satisfied.

21

We modify the motion vectors to satisfy (2.19) to the best prior to calculating the

motion coefficients as follows:

We select n sample points pt
il from the region of interest on the left image at

time t, find conjugate points pt
ir on the right image using the disparity model and

the corresponding points pt+1
il and pt+1

ir at time t + 1 for the left and right images

respectively using the modeled motion fields. Then, we compute a new set of points

qt+1
ir using pt+1

il and the disparity model at time t+ 1. Now, points pt+1
ir are replaced

by a weighted average of pt+1
ir and qt+1

ir based on their fitness as measured by window

intensity matching. We then repeat all the measurements exchanging the roles of

the left and right cameras, and continue until points reach stable locations.

Using the motion vectors found by the new point locations, we can estimate

more accurate motion coefficient vectors br and br. It is worth noting that even

though the above algorithm can enhance the quality of the motion vectors, it requires

additional processing time. Therefore for applications where the accuracy of the

initial estimation is sufficient, we skip this optimization step.

2.5 Estimating 3D Palm Position and Orientation

The disparity plane can be mapped onto the palm plane. By locating a coordi-

nate frame on this plane, the position and orientation of the palm can be calculated.

Initially, we assume that there is no motion information provided. In section 2.6, we

show how the motion information improves this coordinate frame assignment and

palm pose estimation.

22

We find the palm plane in 3D using the calibration information and the dis-

parity plane. Having found the coefficients (c1, c2, c3) of the disparity plane, we can

use (2.3) to find (C1, C2, C3) the coefficients of the hand plane in 3D as defined in

(2.2), when we have rectified images. A simple method for performing this mapping

for unrectified images is to find three points lying on this plane in 3D and then fit a

plane to these three points. To find points in 3D, we identify corresponding points

from the disparity plane and use a simple triangulation process with the camera

calibration information [44].

We define the palm plane as the transformed plane found after two rotations

and one translation applied to the camera X-Y plane. Specifically, we rotate the

X-Y plane with equation Z = 0 first about the X axis and then about the Y axis

(i.e., yaw and pitch) to transform it to Z = C1X + C2Y . Then, we translate the

plane along the Z axis by a constant value C3 which makes the plane equation

Z = C1X + C2Y + C3. Coefficient values for C1, C2 which were already found

through the plane fitting process, are used to determine the two rotation angles ψ

and θ corresponding to yaw and pitch respectively as follows:

ψ = tan−1(C2√
1+C2

1

) θ = tan−1(−C1)
(2.20)

Using the two rotation angles ψ and θ, and the translation vector (0, 0, C3)
T ,

we compute the transformation matrix P , which transforms the X-Y plane to the

23

hand plane

P =

cos(θ) sin(θ)sin(ψ) sin(θ)cos(ψ) 0

0 cos(ψ) −sin(ψ) 0

−sin(θ) cos(θ)sin(ψ) cos(θ)cos(ψ) C3

0 0 0 1

(2.21)

This matrix will be used in later stages of processing.

The next step is to assign a coordinate frame to the palm where the X-Y

plane of this frame resides on the model plane. This coordinate frame provides the

6 parameters required to determine the position and orientation of the hand in 3D.

To determine the position of the hand, we need to assign the origin of the frame

to a fixed point on the palm. A good point is the center of the palm which can be

approximated by the center of mass of the estimated area of the palm, built as the

union of the set of circles as explained in section 2.2.2. The position of the origin

O = (OX , OY , OZ)T in 3D is calculated through a simple triangulation process.

The rotation of the hand about the Z axis of the palm frame, the roll, can

be computed using the orientation of the 2D silhouette points of the hand in the

X-Y plane. Ignoring some infrequent cases where the arm is hidden and all fingers

but the thumb are bent, roll can be computed as the angle of the axis of the least

moment of inertia [45] and is calculated as

φ =
1

2
tan−1(

2µ1,1

µ2,0 − µ0,2

) (2.22)

where

µp,q =
∑

(x,y)

∑

∈R

(x− x)p(y − y)q

24

and

x =
1

n

∑

(x,y)

∑

∈R

x

y =
1

n

∑

(x,y)

∑

∈R

y

R includes the whole segmented region of the hand. This provides us with the

direction of the arm or the rough direction of the fingers in case the arm is missing,

and is a good approximation of true hand roll.

2.5.1 Experiments and Results

To measure the accuracy of the proposed technique, we compare it with a

hand model computed using a set of markers on the palm, finding their positions on

the images manually. We compute the coordinates of those points in 3D and fit a

plane to them. Figure 2.6 shows a sample image with markers. As depicted in the

figure, the positions of the markers are selected so that they cover the area of the

palm uniformly. This provides us a better comparison as the region-based method

picks points uniformly.

Figure 2.6: A sample image with markers.

25

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

40

50

Frame Number

O
x

(M
ill

im
et

er
)

Region−Based
Marker−Based

(a)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Frame Number

O
y

(M
ill

im
et

er
)

Region−Based
Marker−Based

(b)

0 5 10 15 20 25 30
460

470

480

490

500

510

520

530

540

550

560

Frame Number

O
z

(M
ill

im
et

er
)

Region−Based
Marker−Based

(c)

0 5 10 15 20 25 30
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frame Number

Y
aw

 A
ng

le
 (

D
eg

re
e)

Region−Based
Marker−Based

(d)

0 5 10 15 20 25 30
−20

−10

0

10

20

30

40

Frame Number

P
itc

h
A

ng
le

 (
D

eg
re

e)

Region−Based
Marker−Based

(e)

0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

Frame Number

R
ol

l A
ng

le
 (

D
eg

re
e)

Region−Based
Marker−Based

(f)

Figure 2.7: Experimental results. Top: Marker and region-based position values:
(a) X, (b) Y, (c) Z, Bottom: Marker and region-based orientation values: (d) Yaw,
(e) Pitch, (f) Roll.

Figure 2.7 shows the position coordinates OX, OY and OZ and orientation

angles yaw, pitch and roll denoted as ψ, θ, and φ of this marker-based plane as well

as the region-based plane estimated through disparity analysis. A sequence of 30

frames was used for this experiment. The results are shown in table 2.1.

Although, the marker-based plane passes through a set of reliable points, this

plane may not be the optimal plane as the shape of the palm is not exactly a plane.

For this reason we do not regard the marker-based plane as a ground truth plane;

In fact, we believe that the plane estimated through disparity analysis is a better

approximation, giving us more reliable position and orientation parameters.

26

mean absolute standard deviation
difference of the absolute difference

OZ 1.8135mm 0.9215mm
OY 1.0514mm 0.4740mm
OZ 2.0792mm 4.0983mm
ψ 5.1570◦ 3.2986◦

θ 6.9515◦ 5.3280◦

φ 3.3571◦ 1.9242◦

Table 2.1: Statistical Results

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Disparity Error

P
op

ul
at

io
n

R
at

io

Figure 2.8: Distribution of the error of disparity values with respect to disparity
plane. (Averaged over 30 frames)

Another useful parameter that assesses the accuracy of our algorithm captures

the distribution of the disparity errors which measures how far the disparity points

are from the fitted disparity plane. In other words how many of the points are

outliers. This is an important issue because the M-estimation algorithm breaks down

if the percentage of outliers is too high and then it diverges from the optimal plane

drastically. Figure 2.8 shows the distribution of the errors measured by averaging

the corresponding distributions over a 30 frame sequence. It is a normal distribution

with mean 0.0050 and standard deviation 0.0237 which gives us a 35% rate of outliers

if we define inlier-outlier threshold 1.5 and 9% if threshold is 2.5 levels of disparity.

Therefore, the M-estimation algorithm is convergent.

Figures 2.9 shows sample frames selected from different image sequences show-

27

ing a hand in motion. The left image of the image-pairs along with the corresponding

models built based on the estimated position and orientation of the hand are de-

picted in the figures. Different frames show a variety of cases to which the proposed

method is applicable. There are frames where the fingers moving freely, and we still

track the palm. Hands from different people in figure 2.10 also shows the applica-

bility of the method in low-textured as well as high-textured cases. It also indicates

that our algorithm works on front of the hand as well as the back of the hand.

Figure 2.9: Experimental results: Sample input frames along with corresponding
estimated models.

28

Figure 2.10: Experimental results: Sample frames showing front and back of the
hands as well as high-textured and low-textured hands.

2.6 Tracking a Reference Point in 3D

Following the method discussed in the previous section over time, we can

track the hand motion in 3D. However, since the location of the center of the hand

is not determined accurately, the two center points in consecutive frames are not

necessarily images of the same 3D point on the hand. This causes jumps in the

hand trajectory. Instead, we track a fixed 3D reference point with the help of the

modeled motion field to measure the trajectory of the hand in space. The choice of

such a reference point is not critical; however, tracking a point in the center of the

segmented region is more reliable than points on the boundary, since we might lose

the boundary points as a consequence of hand rotation. Also, given the physical

axes of the hand, the effect of rotation on the location of a point is smallest near the

hand center. This point is tracked indirectly by employing the parameterized planar

29

hand region tracking. We estimate the motion model of the whole central region of

the hand and reduce the impact of outliers using the method discussed in section

2.4. The new position of the reference point is computed from the motion model

and is mapped to a 3D point in space using the parametric model of the disparity

map. The algorithm to find the 3D position of the reference point throughout a

sequence follows:

1. In the first frame, the reference point in the left image, p1
l = (x1

l , y
1
l) is chosen

as the center of mass of the central region of the hand.

2. At time t, the position of the reference point pt
l = (xt

l , y
t
l) is computed using

the motion model estimated in section 2.4.2:

xt
l = xt−1

l + ut
l

yt
l = yt−1

l + vt
l

(2.23)

where ut
l and vt

l are calculated using motion model coefficients b and equation

(2.12). If the size of the motion or the variance of the motion field components

is larger than a threshold (e.g. a couple of pixels), we reject the new estimated

position of the reference point and recalculate it as for the first frame. This

might cause an instantaneous error, but does avoid error accumulation.

3. The disparity map is estimated at each time t.

4. The spatial location of the reference point P t = (X t, Y t, Zt) corresponding to

the image point pt
l is estimated using disparity model and calibration informa-

tion:

30

Zt = bfl/d
t

X t = (xt
l − Olx)Z

t/fl

Y t = (yt
l − Oly)Z

t/fl

(2.24)

where fl, Olx and Oly are focal length and principle point coordinates of the

left camera and b is the baseline of the stereo set, all found through camera

calibration process. The disparity value at point pt
l calculated using the model

is denoted as dt.

In the following sections, we show three applications of hand tracking using

3D tracking of the palm.

2.7 Application: Virtual Drawing

2.7.1 Introduction

Employing the hand as a means for human-computer interaction has been ex-

plored extensively in the past few years. Using the hand as a 3D mouse [18, 46],

a virtual gun [16], and a remote controller [47] are just a few examples. Commu-

nicating alphabets to a computer through hand movements is a powerful way for

entering information. Much research has been performed to interpret hand gestures

as sign language alphabets [48], a method useful mostly for people with disability.

However, people typically input information through writing natural language and

typing at a keyboard if it is available. Using a keyboard requires a virtual visible

keyboard so that user can move the hand to press a desired letter. However, writing

31

letters does not need such visual feedback. Moreover, shapes other than alphabets

can be specified in the same way.

In [49] it is shown how to use paper and the fingertip as a panel and pointer to

draw sketches and writings. Tracking the 3D position and orientation of the panel

makes it a flexible tool for writing. Nam and Wohn [50] showed how to use Hidden

Markov models can be used to recognize drawings made by moving the hand in

space. They used a one-hand VPL Dataglove and an attached Polhemus tracker to

record the angles of the fingers as well as the 3D absolute position of the hand in

space. They assume that there is no hand posture or orientation change while the

hand is drawing. In [35], two cameras looking at the hand from the top and the side

model the back of the hand as a square to estimate the direction of the hand and

then the index finger tip is tracked in 3D.

In our approach, we employ parametric models for fitting both disparity in

stereo pairs and motion in monocular video for tracking the hand region in 3D. We

do not require the user to maintain her hand in any particular pose (e.g., stretched

and separated finger), but track the hand in natural poses that people typically

use while writing, for example. We take advantage of the observation that when a

person writes (especially using large fonts such as writing on a board), she usually

keeps her hand almost rigid and maintain a constant hand pose throughout the

writing. As a result, the transformation between a particular point on the hand

and the pen point is almost constant. Hence, we can track a fixed point (in 3D)

on the hand to determine what the person is writing or drawing. We describe a

vision-based system for virtual drawing in space without pen and paper (or board).

32

Due to the low-textured nature of the hand, fixing and tracking a point on the

hand is challenging. A silhouette or contour-based method is not adequate since the

hand motion is in 3D space (consider that the hand motion may not be parallel to

the image plane). As a result, we need a 3D model for estimation of hand motion.

Our approach includes tracking the central region of the hand over time using a

combination of parametric models of disparity and motion.

Writing is mostly a 2D activity, except when the hand is lifted off the writ-

ing plane. Letters or drawings are sketched on a planar piece of paper as a well-

connected series of points. However, writing in space and tracking the hand in a

frame-based manner using stereo provides a set of unconnected 3D points. The dis-

tance between two consecutive points is determined by the speed of the hand, which

is normally not constant. Converting the set of 3D points to a 2D continuous con-

tour is an important component of the application. We develop uniform sampling

and planar modeling that allows us to derive an accurate 2D continuous contour.

Writing involves two types of pose and motion of the hand: on-plane when

the hand is writing, and transient off-plane motions performed as gaps between

letters or figures. Differentiating between these two activities is essential to virtual

writing. We use incremental planar modeling to detect on-plane termination. For

initialization, cooperation from the user is expected.

33

Figure 2.11: Block diagram of the virtual drawing system.

2.7.2 Approach

Figure 2.11 which is an extended version of figure 2.1 shows the block diagram

of the drawing system. Different steps of the process follow:

1. Images are obtained from the stereo camera set, the central region of the hand

is segmented, the disparity map and motion field are estimated and modeled

and the center of the hand region is tracked as a fixed reference point to provide

a set of 3D points which determines the hand trajectory in space. All these

steps were discussed in detail in previous sections.

2. At each time instant, the set of calculated 3D points are fitted with a plane

and the states on-plane (when the hand writes) and off-plane (when the hand

is in transition between letters or shapes) are detected. The set of points in

the last on-plane state is projected to a plane parallel to the image plane and

34

a 2D point set is constructed. Section 2.7.3 explains the algorithm in detail.

3. If the user intends to draw a multi-segment figure, an extra step including

some orthographic and perspective projection is required to retain the relative

size and displacement of the disjoint segments. Section 2.7.4 has more details.

2.7.3 Extracting the Drawn Segment

2.7.3.1 3D to 2D Conversion

Tracking the reference point in 3D over time gives us a set of points:

L3 = {P t = (X t, Y t, Zt)|1 ≤ t ≤ T} (2.25)

with no guaranteed connectivity. In fact the distance between two consecutive points

is determined by the speed of the hand, which is not uniform. Also, we cannot

expect the user to move exactly on a plane while she is writing virtually in space.

In addition, OCR (Optical Character Recognition) programs expect a set of two

dimensional inputs:

L2 = {pi = (xi, yi)|1 ≤ i ≤ N} (2.26)

which should be well connected. On the other hand, we need:

∀i ∈ [2, N] : ‖pi − pi−1‖ < δ (2.27)

to recognize the written letter. Therefore we need to convert the set of 3D points

L3 to the best approximated set L2 in 2D. We use the robust estimation method

defined in section 2.3.2 for this. This allows the user’s hand to shake or move in an

unexpected way.

35

As mentioned earlier, the distribution of the reference points on the plane is

non-uniform due to variable speed of the hand motion. This might bias the plane

toward locations where the hand is moving more slowly. To cope with this variation,

a re-sampling of the points in L3 is performed. Neighboring points are connected

using a straight line and then the resulting edge image is sampled uniformly to make

a set of points Lu
3 with uniform distances in 3D.

2.7.3.2 On-Plane vs. Off-Plane

An essential part of our virtual writing system is to distinguish between on-

plane and off-plane states. The on-plane finishing frame is recognized automatically

whereas the on-plane starting frame requires the cooperation of the user. The user

needs to hold her hand still for a few frames so that the system can detect it as a

sign of the start of writing. Thereafter, the system starts fitting planes to the point

set Lu
3 and incrementally fits the plane in subsequent frames. When it detects a

significant deviation from the fitted plane for the last few frames, it recognizes it

as a sign of drawing termination. The user usually lifts the hand from the board

after writing a letter or drawing a shape; however this action needs to be more

conspicuous in virtual writing than when writing on a real plane. To achieve better

performance, we fit a planar model to all the points except the last few (to prevent

off-plane points from deviating the plane from its true position and causing off-

plane detection failure - See figure 2.12). It is worth noting that a similar test could

be used to recognize on-plane starting point, where the tracked point resides on a

36

plane for a few frames; however this needs more cooperation from the user with

more controlled movements. Informal testing indicated that users found it more

natural to remain still for a few frames.

Figure 2.12: Off-plane mode detection: Last N2 points are supposed to be out of
the plane.

2.7.3.3 Algorithm

To extract the user’s drawing from the set of points L3, the following steps are

taken at each time instant:

1. The points in the set L3 are connected sequentially using straight lines and

the resulting edge shape is re-sampled uniformly to produce the point set

Lu
3 = {Pi = (Xi, Yi, Zi)|1 ≤ i ≤M}

where M depends on the sampling rate and is preferably larger than T .

2. If the system is in the off-plane state (which is the initial state), it checks

whether there has been any significant displacement in the last N1 points. For

this purpose, the parameter D1 is calculated:

D1 = max(‖Pi − Pi−1‖) M −N1 ≤ i ≤ M

37

and we switch to on-plane state and reset the index t to one if D1 is less than

a certain threshold.

3. Otherwise, if the system is in the on-plane state, we fit the best plane to a

subset Lon
3 of points in Lu

3

Lon
3 = {Pi = (Xi, Yi, Zi)|Pi ∈ Lu

3 , 1 ≤ i ≤M −N2}

using M-Estimation as discussed in section 2.3.2. As mentioned earlier, the

reason for excluding the last N2 points is that we do not want the potential

off-plane points to bias the plane (See figure 2.12). The fitted plane is

Z = α1X + α2Y + α3 (2.28)

4. Parameter D2 is calculated based on the distance of the last N2 points to the

plane:

D2 = min(‖Pi − P proj
i ‖) M −N2 < i ≤M

where P proj
i is the projection of point Pi on the estimated plane computed as

P proj
i = Pi + λ(α1, α2,−1)

with λ calculated as

38

λ = −α1Xi + α2Yi + α3 − Zi

α2
1 + α2

2 + 1

If parameter D2 is larger than a threshold, then we switch to the off-plane

state showing that the drawing of one segment is over. Reset the index t to

one.

5. If a segment of drawing is just recognized (i.e. Lon
3), rotate it such that it

resides on a plane parallel to the image plane and denote the new point set as

Lrot
3

Lrot
3 = {Pi = (Xrot

i , Y rot
i , Zrot

i)|1 ≤ i ≤M −N2}

The points in this set should satisfy the condition

Zrot
1 = Zrot

2 = ... = Zrot
M−N2

6. Define the new set of 2D points L2 as

Lun
2 = {pi = (Xrot

i , Y rot
i)|1 ≤ i ≤M −N2}

7. Normalize the size and location of the point set Lun
2 to obtain the final output

point set L2 as defined in (2.26). We can now determine that N = M −N2

39

(a) (b)

Figure 2.13: Drawing multi-segmented shapes in 3D: (a) desired shapes and output
of the system, (b) The 3D scene.

2.7.4 Multi-Segment Drawing with Feedback

Even though the system discussed so far works well for writing alphanumeric

characters, where most letters can be drawn using one segment (no off-plane state

in the middle), for drawing shapes, the hand moves between off-plane and on-plane

states. Therefore, disjoint segments need to be positioned and sized correctly relative

to each other. In virtual writing in space, the user does not need to have any visual

reference and the system does not consider the location and size of the letters, as

these are all normalized in the recognition module. However, when we are dealing

40

with more than one segment of drawing, the user needs a display which we call an

output board where the system provides visual feedback about the current position

of the user’s hand with respect to the already drawn shapes. Also, the user needs

to see all the drawn segments to adjust the size and position. The system works

as follows: After drawing each segment and fitting the imaginary plane in 3D, the

drawn segment is rotated to reside on a plane parallel to the image plane. Also, to

keep the size of all the segments proportional to the first one, each rotated segment is

projected orthographically to the first projected plane so that the same perspective

ratios are applied to all segments while the picture shown on the output board is

created. As a specific example, assume we would like to draw two overlapping circles

with different sizes as shown in figure 2.13(a). The steps involved in creating this

drawing are as follows:

1. The user starts drawing the bigger circle (shown as dashed and outlined in

figure 2.13(b)) on an imaginary plane. According to the algorithm in section

2.7.3.1, the best plane in 3D is fitted to the points. The drawn circle and the

fitted plane are called C1 and π1 respectively.

2. C1 is rotated into C ′
1 which resides on plane π′

1, a plane parallel to an output

board we place on image plane πi.

3. The circle C ′
1 is now projected on πi through a perspective transformation.

4. Finishing the drawing of the first circle and moving away from the estimated

plane π1, the user switches to the off-plane state where his hand moves freely

41

in space to prepare for the next segment. During this period, the reference

point on the central region of the hand is projected orthographically to the

plane π′
1 and thereafter perspectively to πi. This gives the user instantaneous

feedback of the starting point of the next circle. The reason for using an

orthographic projection is that the user does not require perspective projection

while drawing in space. On the other hand, the user does not adjust the size of

the desired shape with respect to its distance to the camera. Getting real-time

feedback from the system, the user moves the hand so that its projection on

the board goes to the desired location.

5. The hand stops at point S; its orthographic projection on plane π′
1 is denoted

as S ′. The perspective projection of S ′ goes to s on the board where the user

observes the result. Thereafter, the user remains still for a few frames to let

the system know that a new segment is starting.

6. The user draws the second circle C2 and the second fitting plane π2 is estimated

in the same way as the previous circle. It is worth noting that there is no

relationship between planes π1 and π2 as they are both imaginary planes in

space and the user need not keep their positions in mind.

7. Circle C2 rotates about point S such that rotated circle C ′
2 resides on plane

π′
2 parallel to π′

1 and πi. The reason for using S as the center of rotation is

that its position on the rotated shape remains the same, and consequently, its

position with respect to circle C ′
1 is unaltered.

42

8. Applying orthographic projection to circle C ′
2 we obtain circle C ′′

2 on plane π′
1.

9. Perspective projection is performed for circle ′′
2 to add it to the output board

where the projection of C ′
1 already resides. The result is two overlapped circles

with the desired size ratio, as shown in figure 2.13(a).

An example of drawing a multi-segment shape is shown in the next section.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2.14: (Top Row) Vision-based estimation, (Middle Row) Paper-based output
(Bottom Row) overlay of vision-based estimation on paper output.

2.7.5 Experimental Results

To measure the accuracy of the method, sequences were taken where a person

was actually writing on paper using a pen. Comparison of the letters extracted from

our vision-based system and the real letters written on the paper shows how well our

43

tracking method corresponds reference points on the hand to the pen point tracks.

In figure 2.14, the outputs of our system, as well as the letters on the paper scanned

as digital images, are shown. Figure 2.15 shows frames picked from the beginning,

middle and end of the writing for the sample letter Z.

Figure 2.15: Input and output of some sample frames: (Left) Beginning, (Middle)
Middle, (Right) End.

The Chamfer distance is used to measure the similarity of the two shapes. It

is a well-known method to measure the distance between two edge images X and

Y:

c(X,Y) =
1

| X |
∑

x∈X

min
y∈Y

‖ x− y ‖ (2.29)

To make the measure independent of the size of the image, the distance is

normalized by dividing it by the largest dimension of the shape (i.e., the distance

of the two furthest points):

cn(X,Y) =
c(X,Y)

maxx1,x2∈X ‖ x1 − x2 ‖
(2.30)

44

A more accurate measure, bidirectional Chamfer distance [51], is defined as:

Cn(X,Y) =
cn(X,Y) + cn(Y,X)

2
(2.31)

As the two shapes extracted from the two different methods might be in dif-

ferent position, orientation and scale, we need to find the best translation vector

t = (tx, ty), rotation angle θ and scaling factors s = (sx, sy) which minimize the

distance thereby maximize the similarity of the two shapes:

Cns = min
t,θ,s

Cn(TX,Y) (2.32)

The distance measures Cns for the letters shown in figure 2.14 are listed in

Table 2.2.

Letter Cns(.) ∆ψ (Degree) ∆θ (Degree)
M 0.0081 -3.90 0.72
R 0.0140 3.19 0.43
S 0.0147 -1.78 4.39
Z 0.0062 -1.98 0.95

Table 2.2: Chamfer distance results

Figure 2.16 also shows the histogram of the distance measure for all the pixels

of the shapes.

We employ a second measure for the accuracy of the estimation: The orienta-

tion of the paper in 3D is estimated through 4 marker points (see Figure 2.15) drawn

on the paper and is then compared with the orientation of the estimated plane (i.e.

the final fitted plane to the set of reference points). The orientation angles yaw and

pitch for the two planes denoted as ψ and θ respectively are computed from the 3D

45

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 2.16: Histogram of the distance measure of all pixels: (a) M, (b) R, (c) S,
(d) Z.

plane equation (2.28) as:

ψ = tan−1(
α3

√

1 + α2
2

)

θ = tan−1(−α2)

Table 2.2 shows the difference of the orientation angles for the two planes in

degree.

We applied our virtual writing method to all of the English alphabet letters

as well as digits in a continuous writing process (i.e., writing consecutively from A

to Z) in space. The quality of the results was good and we anticipate that an OCR

algorithm which recognizes handwritten letters can convert the images into coded

characters. Figure 2.17 shows output of the program for English letters. Figure 2.18

also shows a few frames of a video sequence for writing the letter B in space and

the output of our system.

Next, we illustrate drawing a multi-segment face enhanced by the real-time

feedback to the user as explained in section 2.7.4. The user is also provided with

three virtual buttons so he can choose the pen color by moving his hand to the area

46

Figure 2.17: Output of the program for English letters.

Figure 2.18: Sample frames of writing letter B in space.

of the buttons added to the output board. Figure 2.19 shows a sample frame and

the output drawn face. It also shows how the user obtains real-time feedback from

the system through the monitor. In fact, he can see the live images taken by the

cameras as well as the current state of the output board. He also observes the color

buttons in the left side of the output board so he can select the pen color.

Our virtual drawing system requires minimal cooperation from the user. How-

ever, we have not conducted user studies to assess the performance and fatigue that

may occur in long term use. Nevertheless, we established the feasibility and deter-

mined the performance accuracy of our proposed system.

47

Figure 2.19: A sample frame of the sequence drawing a face showing how user gets
real-time visual feedback

2.8 Application: Virtual Marble Game

Visual tracking of human body parts is being used in the game industry [52,53].

Also, manipulating virtual objects not only eliminates the need for constructing

expensive physical simulators, but can also support more flexibility. Virtual marble,

which resembles a physical toy marble game, is an example of such a virtual object.

In this game, the user moves a ball through the hallways of a maze to reach a

predefined goal location. The user performs this by moving the hand thereby making

a suitable ramp for the ball which moves using virtual gravity. In a virtual marble

game, the user rotates her hand while the system tracks the hand orientation and

simulates the marble board tilts. The system also provides visual feedback of the

virtual marble board and the current position of the ball so that the user can adjust

48

Figure 2.20: Sample frames of a virtual marble game

her hand orientation to navigate the virtual ball toward the goal. Figure 2.20 shows

different frames of a sample virtual marble game where both the hand images taken

by the camera and the visual scene the user sees are shown.

Our implementation of the virtual marble game estimates the absolute orien-

tation of the hand at each frame and applies it to the model, as shown in figure

2.22. To make the game more intuitive to the user, the initial frame is considered

as a reference so that at each frame the model is rotated as much as the difference

between orientations in the current frame and the reference frame. Tracking and

visual feedback at a rate of about 10 frames per second enables the user to see the

current state, decide and tilt the hand to navigate the ball comfortably. To make the

game more attractive, physical parameters such as bouncing as a result of collision

and inertia could also be modeled.

The flexibility of this virtual game comes from the ability to change the map

of the maze easily. Our system modifies it using a random maze generator. Figure

49

2.21 shows a few sample maze maps. We can also manipulate the coefficient of

friction to adjust the level of difficulty of the game and make the navigation more

challenging. This friction parameter cannot be easily changed in the physical world.

Figure 2.22 shows another example of the virtual marble game.

Figure 2.21: Sample maze maps for virtual marble game.

Figure 2.22: Sample frames of a virtual marble game.

2.9 Application: 3D Construction

Tracking the hand trajectory in space as presented in this chapter can open up

the opportunity to draw 3D objects in space and communicate them to a computer

system where they can be rendered as 3D object models.

In the 3D construction application, a user moves her hand over the edges of a

50

Figure 2.23: Sample Frames of the hand traversing three orthogonal sides of a box.

physical 3D object and the system tracks the hand to measure the dimensions of the

object and to render the object virtually. We assume that the user’s hand is held

rigid with respect to the edges of the object and the back of the hand remains visible

throughout. Figure 2.23 shows sample frames in which a user moves his hand along

three orthogonal sides of a box. Measurements performed demonstrate the accuracy

of the hand tracking method. A few parameters calculated from hand tracking in

the sequence were compared with the ground truth measured from the actual box

and the results are summarized in Table 2.9. The measured parameters include the

angle between the two planes p1 and p2, the angles between the lines l1 and l2 and

the lines l2 and l3, and the length of the lines l1, l2 and l3 as defined in figure 2.24.

As indicated, the relative errors are small and are mostly due to camera calibration

inaccuracy as well as shaking of the hand holding the box.

51

Parameter Nominal Val. Measured Val. Rel. Error
Angle(p1, p2) 90◦ 88.25◦ 1.94%
Angle(l1, l2) 90◦ 93.19◦ 3.33%
Angle(l2, l3) 90◦ 92.95◦ 2.22%
Length(l1) 238mm 208mm 12.18%
Length(l2) 132mm 127mm 3.79%
Length(l3) 120mm 106mm 10.83%

Table 2.3: Parameter Comparison between hand tracking approach and actual box
measurements

Figure 2.24: The tracked box and defined measurement parameters.

2.10 Summary

In this chapter, a method for tracking the hand in 3D space was presented.

Based on a stereo camera set, a sequence of image pairs is acquired and analyzed to

estimate the position and orientation of the hand in 3D. Since due to low-textured

nature of the hand, point matching algorithms provide noisy data, we estimate the

disparity map and motion field and model them to reduce the impact of the low-

textured hand and noise. Planar modeling of the hand requires disparity values to

reside on a plane too. A plane in motion defines a quadratic model for the motion

field, where model parameters are estimated using robust estimation and adjusted

to comply with the disparity model. Virtual drawing in space, virtual marble game,

52

and 3D object construction were presented as three sample applications.

53

Chapter 3

Multiple Hand/Head Tracking using Multiple Cameras

3.1 Introduction

In this chapter, we address the problem of tracking the hands and head of a

person or multiple people interacting with each other in a scene viewed by a set

of cameras. We pose a multiple target tracking problem and propose a two-layer

solution consisting of a particle filtering layer and a finite state machine. Also,

we discuss the activity recognition problem for the set of activities involving heads

and hands of human subjects. Color analysis of the area surrounding the hands is

presented to determine whether a person holds an object or not. A new approach

is suggested to determine the reliability of each image and to combine the color

information extracted from different cameras.

3.1.1 Previous Work

The problem of tracking hands and heads of people in space can be posed as an

instance of the Multiple Target Tracking (MTT) problem which has been extensively

studied in the fields of radar and signal processing [54,55]. The main challenge is the

assignment of observations to the multiple targets [56] to simultaneously solve the

two distinct problems of data association and target location estimation. Multiple

hypothesis tracking [57], probabilistic multiple hypothesis tracking [58], and joint

54

probability data association [59] are the classical approaches for data association

used in the literature.

The problem of target tracking becomes more challenging when interactions

between the targets need to be addressed. Khan et al. [60] showed how a Markov

random field motion prior can substantially improve tracking when targets interact.

They also incorporated Markov chain Monte Carlo sampling to improve efficiency.

In some applications, the number of targets in the scene is unknown and even

variable over time. Särkkä et al. proposed Rao-Blackwellized Monte Carlo data

association [61] and extended it to track an unknown and time varying number of

targets [62]. They modeled both the target states and the data associations and

also the births and deaths of the targets as hidden stochastic processes observed

through measurements.

Employing particle filtering for multiple target tracking has received much

attention in the last decade [54, 56, 62]. Avitzour [63] and Gordon [64] investigated

the feasibility of this technique for MTT from a theoretical perspective. Morelande

and Musicki showed that the use of particle filtering is particularly advantageous in

scenarios where targets are in close proximity [65]. In such scenarios, the posterior

distribution is multi-modal and tracking multiple modes becomes more effective.

Inherent characteristics of particle filters makes this approach feasible.

In the field of computer vision, particle filtering is used for multiple target

tracking. Yang et al. [66] modeled multiple objects using color and edge orientation

histogram features and applied a particle filtering algorithm for tracking. They

tracked the objects in a 2D image space using a single camera. In other work,

55

Isard and MacCormick [67] proposed a likelihood function for tracking multiple

blobs. They used a particle filter to infer the number of objects as well as their

configurations. Qian el al. [68] employed singular value decomposition to cluster the

samples related to different moving targets and tracked the posterior distribution of

the motion parameters using particle filters. Shan et al. [69] employed a combination

of a particle filter and mean shift for 2D hand tracking in image space.

In most work considering target coincidence, the consistency of the behavior

or appearance of the targets are the main cues to distinguish the targets after they

separate [60,70]; however, in the application addressed in this chapter, none of these

assumptions hold. In fact, the targets being tracked (hands and head) occupy a very

small portion of the image and also change their appearances constantly (especially

the hands). Meanwhile, after coincidence, the hands usually do not continue their

motions in the same direction, so the motion continuity assumption is also violated.

In fact, the behavior of the limbs after an interaction is determined by the activity

they are involved in.

3.2 Overview of the Tracking Method

The proposed tracking algorithm consists of two layers:

1. Low level layer : Here, a set of parallel particle filters are deployed. Each

particle filter tracks an individual target in the tracking space. In this layer, no

interaction is considered between these filters. The only relationship between

the filters is through the shared observation space where a set of common

56

observations are made.

2. High level layer : Here, the particle filters are assigned a state based on their

likelihood levels as well as their interactions. Each particle filter can be in

one of the following states: Uninitialized, unlabelled, normal, combined, or

lost. Assigning a state to each target enables handling situations where a few

targets join and separate or disappear and reappear in the scene. The identity

of the targets being tracked are also determined in this layer. Labelling the

targets in the scene is essential in activity recognition as addressed in this

chapter.

3.3 Single Target Tracking Using Particle Filters

Particle filtering [71, 72] is a powerful method for target tracking. In this

section, we discuss how a particle filter is deployed for tracking a single target.

3.3.1 Bayesian Target Tracking

Consider a system with dynamic equation

xk = fk(xk−1, vk−1) (3.1)

where xk is a n-tuple state vector in the state space, vk−1 is an i.i.d. noise process

and fk : ℜn × ℜn → ℜn is a non-linear function. Also, consider an observation

space, where each observation vector zk is related to the state vector xk through a

non-linear function

zk = hk(xk, nk) (3.2)

57

where nk is also an i.i.d. process independent from vk. The tracking problem is to

estimate the state variable xk from the set of all the observations z1:k measured from

the beginning to the current time instant k.

According to the Bayesian approach, the best estimation for xk is performed

through a recursive process including the following two steps:

1. At time k, the prior pdf of the state vector is predicted using the Chapman-

Kolmogorov equation [73] and the Markov property [74] of the process:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.3)

where p(xk|xk−1) can be computed using equation (3.1).

2. When the observation zk becomes available at time k, the prior can be updated

using Bayes’ rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.4)

Different methods and algorithms have been proposed to solve the above equa-

tions in an optimal or sub-optimal way; however, each one of these solutions is based

on a set of limiting conditions and assumptions.

Kalman filtering [75] is an approach to finding the optimal posterior density

assuming that the posterior density and the noise processes all have Gaussian models

and the dynamical model of equation 3.1 defines a linear function of xk−1 and vk−1.

Another set of methods, called Grid-based methods [76], assume that the state

space is discrete and consists of a finite number of states. Relying on these assump-

tions, finding the optimal solutions becomes possible.

58

Sometimes, the above assumptions do not hold and approximations must be

made to use some sub-optimal methods:

If the functions fk(.) in equation 3.1 are non-linear, a local linearization may

be sufficient. The Extended Kalman Filter [75] is based on such an approximation.

Note that it still makes the Gaussian model assumption.

If the state space is inherently continuous but can be dicretized by grouping

the states into cells, an approximate Grid-based method [76] can be applied. Hidden

Markov Model (HMM) filters [77] are an application of such a method.

Particle filtering methods are also another way of approximating the optimal

solutions while relaxing the linearity of the state dynamics and the Gaussian models.

We explain particle filtering methods in the next section.

3.3.2 Particle Filtering Methods

3.3.2.1 Sequantial Importance Sampling

Estimating probability density functions using Monte Carlo simulations is one

of the approximations to analytical solutions. This approach is usually used when

the underlying density is complex and not necessarily parametric. The Sequential

Importance Sampling (SIS) Algorithm [71,72] referred to as bootstrap filtering [64],

the condensation algorithm [78, 79], and particle filtering [80] is a Monte Carlo

method which represents the posterior density function by a set of random samples

each having a weight proportional to its likelihood.

Let {xi
0:k, w

i
k}Ns

i=1 denote the vectors of sample points from the posterior density

59

function p(x0:k|z1:k) at time instants 0 to k (p(x0) is actually the prior) and their

corresponding weights. Then, at time k, the posterior density can be approximated

as

p(x0:k|z1:k) ≈
Ns
∑

i=1

wi
kδ(x0:k − xi

0:k) (3.5)

with δ(.) defining the unit impulse function. Note that the weights need to be

normalized to represent the probability density function.

The goal of all particle filtering approaches is to determine good values for

the weights wi
k. In the SIS algorithm, these weights are estimated based on the Im-

portance Sampling Principle [81]. According to this principle, if the desired density

function p(.) is difficult to draw sample from, yet is calculable at any single point,

the samples xi are instead sampled from another distribution q(.), the Importance

density and the weights of the samples are determined as

wi =
p(xi)

q(xi)
(3.6)

It can be shown [76] that using the importance sampling principle and the

Markov property of the process, the weights in equation (3.5) are updated at each

time frame using

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, zk)
(3.7)

and the posterior density p(xk|z1:k) is approximated as

p(xk|z1:k) ≈
Ns
∑

i=1

wi
kδ(xk − xi

k) (3.8)

This approximation converges to the true posterior density as the number of

samples, Ns increases.

60

Based on the above arguments, the SIS algorithm is summarized as follows:

At each time instant k, a set of Ns samples are drawn from the importance

density q(xk|xi
k−1, zk) and weights are assigned to them according to 3.7.

Even though the above algorithm works effectively in approximating the true

posterior density without having prior knowledge about its shape, it faces some

common problems:

1. In [82], it has been shown that the variance of the weights wi
k increase over

time. This makes the degeneracy problem inevitable where all except a few of

the particles have negligible weights. To avoid this, a resampling mechanism

is deployed to replace the low-weight samples with ones with higher weights.

In fact, the probability of selecting xi
k for the new set equals its normalized

weight wi
k. The weights of all the particles are now reset to wi

k = 1/Ns. Also, a

qualitative measure Neff is defined to determine when the resampling process

is required:

Neff =
1

∑Ns

i=1(w
i
k)

2
(3.9)

A small value of Neff indicates severe degeneracy and the need for resampling.

2. The weight formula of equation (3.7) shows that the variance of the weights

wi
k increases as the two density functions p(.) and q(.) deviate from each other.

This means that if the importance density q(xk|xi
k−1, zk) is not selected prop-

erly, the chance of degeneracy problem increases. This requires us to choose

the importance density as close to the true density p(xk|xi
k−1, zk) as possible.

61

One convenient choice for the importance density is the prior density function:

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (3.10)

Making this choice, the weight update equation (3.7) can be rewritten as

wi
k ∝ wi

k−1p(zk|xi
k) (3.11)

The Sequential Importance Sampling algorithm explained above is the basis for

most of the particle filtering methods; however there are some other algorithms used

in the literature, which can be considered as special cases for SIS. Sampling Impor-

tance Resampling (SIR) filter, Auxiliary Sampling Importance Resampling (ASIR)

filter, and Regularized Particle filter (RPF) are some examples of these methods.

Sampling Importance Resampling is discussed in the following section. For learn-

ing about different particle filtering methods and also a comparison between all the

methods discussed in this section, refer to [76].

3.3.2.2 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) filter is another Monte Carlo

method for solving recursive Bayesian filtering problems. The algorithm is obtained

by making the following modifications to the SIS algorithm:

1. The prior density p(xk|xi
k−1) is chosen as the importance density q(xk|xi

k−1, zk).

This choice eliminates the need for involving the observations in the sampling

step. This eases the sampling process and importance weight calculation and

is useful especially in cases where observations have a complex nature.

62

2. The resampling step is applied at every time instant. This means that wi
k−1 =

1/Ns ∀i and therefore

wi
k = λp(zk|xi

k) (3.12)

where λ is the normalizing factor.

The independence of the sampling step from the observations zk results in ex-

ploring the state space without observation, which may cause inefficiency or sensi-

tivity to outliers. Also, the resampling step may reduce the diversity of the particles.

Therefore, some further steps may be taken and some application-based heuristics

be applied to improve the performance of the SIR algorithm. The extra steps and

heuristics for our particular problem will be discussed later.

3.4 Multiple Target Tracking

The goal of a multiple target tracking system is to track a set of N moving

targets in an n-dimensional space called the tracking space, while being observed by

M sensors. The motions of the targets are considered independent from each other

and follow dynamical models with variable accelerations. Along their trajectory in

space, some of these targets may pass near each other or even join each other and

move together for a while; our assumption is that no more than two targets join

or become very close to each other at the same time. Even though removing this

assumption is not theoretically hard, it is beyond the scope of this dissertation.

One particular property of the problem addressed here is that the multiple

deployed sensors make their observations in a space which is different (and usually

63

of lower dimension) than the tracking space. This space is called the observation

space. One important point to notice is that the difference between the two spaces we

are working with implies that no target can be tracked merely using the information

acquired by a single sensor. It is assumed that any target must be detected by at

least two sensors to be trackable. A situation where a single target is detected by

fewer than two sensors is referred to as a lost track.

As mentioned in section 3.2, the tracking process consists of two steps. In

the first step, each target is tracked using a particle filter as explained in section

3.3.2. We focus on the Sampling Importance Resampling (SIR) method and its

corresponding equations; however, other particle filtering methods can also be used.

According to equation (3.12), the likelihood function p(zk|xi
k) needs to be

computed to determine the particle weights. Applying Bayes’ rule, the likelihood

function can be rewritten as

p(zk|xi
k) = λ′p(xi

k|zk)p(zk) (3.13)

with λ′ being the normalizing factor. In a multiple object environment, there are

multiple observations zk = {zj
k|j = 1, ..., Nc}. Therefore, equation (3.13) can be

rewritten as

p(zk|xi
k) = λ′

Nc
∑

j=1

ψ(zj
k)p(x

i
k|zj

k)p(z
j
k) (3.14)

where ψ(zj
k) ∈ [0, 1] is an indicator function with the property that

Nc
∑

j=1

ψ(zj
k) = 1 (3.15)

In our multiple target tracking problem, the likelihood and indicator functions

should be calculated for all the parallel particle filters. The problem of determining

64

the set of indicator functions ψn(zj
k) for n = 1, ..., Nc turns into the data association

problem for multiple target tracking. There are several methods for data associa-

tion which can be divided into two main classes: Unique-neighbor data association

methods which associate each observation with one target track and all-neighbors

data association methods which exploit all the observations for updating all the

target track estimates [62]. In the former class, for any target n and at any time

instant k, all the ψn(zj
k) values are zeros except one. Multiple hypothesis tracking

(MHT) [57] which is one of the methods of this class, calculates the likelihood of

the observations and the posterior probability of the hypotheses and stores only the

most probable hypothesis. Probabilistic multiple hypothesis tracking (PMHT) [58]

is a modification of the MHT, where by assuming independence between the data

associations and the target tracks, it reduces the computational complexity.

In joint probability data association (JPDA) [59] which is one of the methods

of the second class, each of the target estimates gets updated using every observation

with weights that depend on the predicated probabilities of the associations [62].

Since, in our problem, the number of observations is considerably more than the

number of targets and each target might correspond to several observations, a similar

approach is taken for the association. In fact, by assigning ψn(zj
k) = 1 ∀j, k, n, the

likelihood p(xi
k|zj

k) determines how much each of the observation prior probability

p(zj
k) should be involved in the target posterior density estimation.

65

3.4.1 Observation Prior Probability Estimation

In this section, we discuss how to determine p(zj
k), the prior probability of

the observations. As mentioned earlier, it is assumed that the observation space

is different from the tracking space; however, to evaluate p(xi
k|zj

k) as required in

equation (3.14), xi
k and zj

k need to be compared in a common space. There are two

options:

1. All the particles from the tracking space can be projected to the observation

space of each sensor, which is usually of a lower dimension, and then be com-

pared to the available observations of that sensor. All the likelihoods need to

be aggregated to make the final likelihood measure.

2. As an alternative, the observations may be re-projected to the tracking space;

however, since we assumed lower dimensionality for the observation space, no

single observation can determine a single point in the tracking space. There-

fore, observations from different sensors should be combined to construct

points in the tracking space, which we call candidate points. Consequently,

based on equation (3.14), for each particle, the posterior probability of each

particle is a combination of its likelihood for all the candidate points multiplied

by the prior probability of the candidate points.

Each of these approaches has disadvantages. In the former method, all the

particles of all the filters need to be projected to all the sensor spaces, which is a

computationally-intensive process. Also, since some of the targets might not have

been detected by some sensors, trying to find likelihoods in those observation spaces

66

is futile. On the other hand, in the latter approach, combining two observations

corresponding to two different targets will result in an invalid candidate point in

the tracking space. However, since there are ways to evaluate the validity of each

candidate points, this approach is selected.

Let zj
km denote the jth observation made by the mth sensor at time k where

j = 1, ..., Nom and m = 1, ...,M . As mentioned earlier, it is assumed that having the

information of a target point acquired by two sensors, we are able to re-project this

information to the tracking space. This re-projection is defined using a function R

as

Zc
k = R(zj

km, z
j′

km′) (3.16)

where Zc
k denotes the cth re-projected observation point, called the candidate point

in the tracking space. Using candidate points in the tracking space, equation (3.14)

can be rewritten as

p(zk|xi
k) = λ′

Nc
∑

c=1

p(xi
k|Zc

k)p(Z
c
k) (3.17)

Note that, as mentioned earlier, we assign ψ(Zc
k) = 1 for c = 1, ..., Nc and remove

them from the formula.

Combining all the pairs of observation points acquired by different sensors, Nc

candidate points are obtained where Nc can be computed as

Nc =
M

∑

m=1

M
∑

m′=m+1

NomNom′ (3.18)

with Nom and Nom′ being the number of observations made by sensors m and m′

respectively; however, it is clear that not all of these candidate points correspond

to valid targets. For example, if observations associated with two different targets

67

made by two different sensors make a pair and are re-projected to the tracking space

using equation (3.16), the result will be an invalid point and should be treated as a

false alarm; therefore we need to devise a scheme to determine these points. This

scheme uses the prior probability measurement in a way that small p(Zc
k) values are

assigned to the invalid points. Also, due to noise, some of the observations may not

be as accurate and they should also be penalized in the same way.

To evaluate how good a candidate point is, the prior measure p(Zc
k) is con-

structed with three terms:

p(Zc
k) = po(Zc

k)p
t(Zc

k)p
b(Zc

k) (3.19)

where po(Zc
k) is a means for evaluating the quality of the measurements in the

observations space, pt(Zc
k) is a function depending on the error of the re-projection

from the observation space to the tracking space and pb(Zc
k) is a function of the

error in projecting the candidate points back to the observation space. It is worth

noting that in some applications, some of these terms may be redundant and would

therefore be removed, but as it will be shown in section 3.5.4, we estimate and use

all these terms in the hand/head tracking application.

3.4.2 High Level Tracking Layer

Finite State Machine (FSM) can be used to model the functionality of a system

based on inputs. In fact, it can be considered as a high-level module to interpret

and control the behavior of the low-level modules of a system. In our multiple target

tracking problem, a Finite State Machine (FSM) is deployed to detect events such

68

Uninitialized Unlabelled Normal

Combined

Lost

Figure 3.1: Finite state machine for multiple target tracking.

as when track of a target is lost or targets join and follow the same track. Figure

3.1 shows the states and transitions of the FSM. Note that the states are assigned

to each of the trackers; therefore at a certain time, two different trackers may be in

different states.

The states of the FSM are defined as follow:

Uninitialized State: In the beginning, all trackers are in the uninitialized

state. As time passes, observations are made by the sensors and candidate points

are defined. As the prior probability p(Zc
k) becomes larger than a threshold, a new

tracker is initialized and the likelihood evaluation is performed using equation (3.17).

The initialized tracker then moves to the unlabelled state.

Unlabelled State: In this state, the location of the tracker in the tracking

space is initialized and tracking via a particle filter is in progress; however, the

type of the target is not determined. This is only an issue in applications where

targets are of variant types. For example, in the hand/head tracking application,

69

the targets are head, left hand, and right hand of a person or a group of people.

Activity recognition applications heavily depend on the types of the targets. In

such applications, it is important to find cues for target type recognition so that a

target is labelled properly. When a target under track is labelled, the tracker makes

transition to the normal state.

Normal State: When a target tracker is initialized and labelled, it moves to

the normal state. In this state, the target can be tracked efficiently by a particle filter

through prior and likelihood measurements and posterior probability estimation as

explained in section 3.3.2.

Combined State: As two sample targets T i and T i′ get close to each other,

independently tracking them becomes difficult. This is due to the fact that the

observations corresponding to the two targets may join in some sensors. Also, the

error of re-projecting zj
m and zj′

m′ corresponding respectively to T i and T i′ in sensors

m and m′ becomes smaller and even comparable to the error for the true candidate

points representing T i and T i′. In this situation, some of the particles may assign

higher likelihood to the invalid candidate points or even the other valid candidate

points. This makes the posterior probability p(zk|xi
k) a multi-modal distribution

with modes becoming similar in a probabilistic sense. As a result, individual tracking

of the targets loses accuracy. The proposed action in such situation is to combine

the two trackers and track them using a single particle filter. This is done when

the maximum likelihood points of the two distributions have a distance less than a

threshold. Recognizing this moment also helps in activity recognition as shown in

section 3.6.

70

As long as the two trackers are in the combined state, the modes of the pos-

terior probability p(zk|xi
k) should be extracted and monitored. As the two targets

move, the positions of these modes change accordingly. They move apart when

the targets move away from each other. This trend finally results in separation of

the two targets, which can be detected by thresholding the distances between the

modes. At this time, the two target trackers each receive a mode and both change

their states to the unlabelled state, where they need to be assigned correct labels

corresponding to their types. The cues for labelling the targets at this stage are

application dependent; the hand/head tracking based cues will be discussed later.

Lost State: As mentioned earlier, it is assumed that to re-project a target

to the tracking space, it should be observed by at least two sensors; however, there

might be cases where a particular target is detected by fewer than two sensors at

the same time. In this scenario, no candidate point will represent the desired target

and the corresponding tracker should move to the lost state; however detection of

this situation is challenging. When a desired candidate point is not available, the

particles tend to approach other candidate points which represent other targets.

The proposed solution is to test the posterior probabilities against a threshold. The

lost state is similar to the uninitialized state with the difference that it tries to use

prior information of the target position to retrieve the track.

71

3.5 Multiple Hand/Head Tracking

Based on the algorithms presented in the previous sections, we now address the

problem of tracking multiple human hands and heads viewed by multiple cameras.

As shown later, this tracking can have various applications.

Since, the target detection in this problem is preformed via color segmenta-

tion of the images, we assume that heads and hands are the only major body parts

with skin color and the only other skin-color regions in the foreground are randomly

appearing noise. Even though we rely on the assumption that no other body part

is unclothed and the dresses of the subjects do not contain any region of skin-like

color, there are some methods in the literature to generalize our color-segmentation

approach for better detection of the desired targets. For example, shape analysis

and modeling of the body parts can help us to locate hands or heads in the im-

ages; however as several people interact in the scene, this approach also becomes

challenging. Also, modeling the body would make the algorithm more complex and

time consuming.

Figures 3.2 and 3.3 show two indoor scenes with one and two human subjects

respectively. For our experiments, four color cameras are used which look at the

scene from different directions. Increasing the number of cameras will naturally

increase the quality of tracking; however it also makes the tracking more computa-

tionally intense. Using fewer cameras increases the chance of losing track of targets

as some of the limbs often get occluded in some cameras and so cannot be detected.

72

Figure 3.2: Sample input images taken by four cameras from a single human subject.

Figure 3.3: Sample input images taken by four cameras from two interacting human
subjects.

73

3.5.1 Pre-processing Steps

Before starting the tracking process, we perform several pre-processing steps.

These steps include camera calibration, background modeling and training of the

color segmentation module. These steps need not be repeated as long as the cam-

eras stay still and the scene illumination does not change significantly. For outdoor

scenes, some further modules for image stabilization and dynamic background mod-

eling would be required.

3.5.1.1 Camera Calibration

All the cameras must be calibrated with respect to a common world coordinate

frame and a set of projection matrices need to be computed [83]:

Pm =

[

p1
m p2

m p3
m p4

m

]

(3.20)

pl
m = (p1l

m, p
2l
m, p

3l
m)T for l = 1, 2, 3, 4 and m = 1, ...,M define the columns of the M

projection matrices with M showing the number of cameras. Knowing the matrices

Pm, the relationship between a 3D point Z = (X, Y, Z, 1)T in homogenous space

and its 2D projection zm = (um, vm, 1)T on the mth camera with images coordinates

(um, vm) in pixel satisfies:

um

vm

1

= Pm

X

Y

Z

1

(3.21)

74

Therefore, any 2D point zm can be projected into a 3D line which is defined

as the intersection of two planes satisfying

Qm

X

Y

Z

= qm (3.22)

where

Qm =

ump
31
m − p11

m ump
32
m − p12

m ump
33
m − p13

m

vmp
31
m − p21

m vmp
32
m − p22

m vmp
33
m − p23

m

(3.23)

and

qm =

p14
m − ump

34
m

p24
m − vmp

44
m

(3.24)

A 3D line can be defined by a 3D vector v(vx, vy, vz) and a 3D point p(px, py, pz),

therefore, finding the two planes B10 +B11X +B12Y +B13Z = 0 and B20 +B21X +

B22Y +B23Z = 0, the 3D line (v,p) intersecting the two planes can be defined by

v =

B11

B12

B13

×

B21

B22

B23

(3.25)

and

p =

χ

B10B23−B20B13+(B11B23−B21B13)χ
B22B13−B12B23

B10B22−B20B12+(B11B22−B21B12)χ
B23B12−B13B22

(3.26)

with χ being an arbitrary real value and × defining the cross product of two vectors.

This 3D line will be used later in the re-projection process to find the 3D candidate

points.

75

Figure 3.4: Camera calibration using vanishing points method and an accessory
structure.

The important issue in the calibration process is the relative accuracy between

the cameras. In fact, it is very important that the two 3D line of sights corresponding

to a single 3D point and two cameras, pass nearby each other in 3D space. If some of

the cameras are not well calibrated, the accuracy of the candidate points would be

reduced and the number of candidate points in 3D space would increase; this would

degrade tracking performance. The calibration method used is based on vanishing

points [83,84] and requires a set of parallel lines in the three directions X, Y and Z

and also a few 2D image points with known spatial coordinates.

76

Figure 3.5: Background subtraction results for a sample frame.

3.5.1.2 Background Modeling

Another preprocessing step is background modeling which is needed for the

background subtraction module. Even though this is not an essential step in the

process, it helps in reducing the clutter and eliminating background objects with

similar color to skin . Also, by removing the background from the scene, we can

obtain the silhouettes of human subjects in the scene and use them as a cue in

estimating the prior probability of the candidate points as explained in section 3.5.4.

We deploy the color code book method for background modeling and subtraction [85].

Figure 3.5 shows the outputs of the background subtraction module for a sample

frame after applying some morphological and flood-fill filtering.

77

3.5.1.3 Skin-Colored Regions Segmentation

The next pre-processing step is to train a module for segmenting the skin-

colored regions from the images. For this purpose, we employ the same module as

the one explained in section 2.2.1.2 [33]. Note that we may need to train a separate

skin color detection module for each camera, because different cameras may have

different internal parameters such as brightness, contrast, white balance and so on.

In fact, in spite of the stereo camera case, we do not make any attempt to capture

similar images from the cameras. The reason is that there is no need to find similar

regions across the cameras and the information extracted from various cameras are

aggregated only in 3D space using the 3D reconstruction process.

3.5.2 Image Observations and Accuracy Problem

Images are captured simultaneously from all the cameras at 15 fps. Each

image is then processed separately and blobs are segmented. If the images are

captured from a scene in which Nh human subjects are present, we ideally expect

to extract 3Nh regions from each image corresponding to the hands and heads of

the subjects; however, due to a variety of reasons, the number of extracted regions

usually deviates from this ideal number:

1. Due to occlusion, some limbs are invisible in some images. The occlusion

problem is especially severe when multiple people are in the scene. Also,

shadows and lighting conditions might change the color of some limbs, thereby

78

(a) (b)

(c) (d)

Figure 3.6: Skin-colored regions segmentation and sources of inaccuracy: (a) Occlu-
sion and false alarm, (b) Unsegmented region and false alarm, (c) False alarm, (d)
Joined regions.

leave them unsegmented in some images. These cases are shown in figures

3.6(a) and 3.6(b). In figure 3.6(a), the left hand is occluded by the body and

in figure 3.6(b), the right hand is undetected due to shadow and its small size.

2. Some of the limbs may be too close to each other or reside on the same line of

sight from the camera so that they join and make a single region in the image.

Figure 3.6(d) shows a case where a hand and head are segmented as a single

region.

79

3. Even though the background subtraction module filters all the skin-colored

objects in the background, there is possibility that some regions other than

the hands and head are segmented from the foreground area. These spurious

regions may appear on any part of the person’s body. Figures 3.6(a), 3.6(b)

and 3.6(c) show examples of such regions. Fortunately, these undesired blobs

usually appear in non-consistent regions across the images, therefore they are

likely to be assigned negligible weights when re-projected to 3D space.

Due to these problems, the actual number of detected blobs is usually different

from the ideal number, therefore we retain the ⌈3ηNh⌉ largest blobs with η > 1

to increase the change of including all desired blobs and discard the remaining

segmented blobs. Finally, the blobs with sizes smaller than a certain threshold are

filtered and removed. For the mth camera, this leaves Nom blobs which will be used

in the re-projection process as explained in the following section.

3.5.3 Computing 3D Candidate Points

To re-project the extracted blobs to 3D space, every blob should be represented

by a single point. We select the center of mass of the blob as the representative

point. This selection however, adds another source of inaccuracy as the center of

mass of the objects in different cameras are not generally the projection of the same

3D point. This is especially true for the head, which is a larger object. A person’s

hair also increases the error as it may cover large portions of the head from some

viewpoints, effecting the skin-color based segmentation.

80

As explained in section 3.5.1.1, having a calibrated camera, we find the 3D line

of sight in our tracking space corresponding to any single point in the image acquired

by a camera. A pair of lines corresponding to the images of a 3D point projected

in two cameras are used to reconstruct the point in space. In fact, the point ideally

lies on both lines and therefore on the intersection of them in space; however, due

to the noise terms introduced earlier as well as digitization effects, the lines will not

actually meet in space. As a result, the 3D point is approximated by the closest

point in space with respect to the two lines. This point is the midpoint of a line

segment which is orthogonal to both lines. Let (vj
m,p

j
m) and (vj′

m′ ,p
j′

m′) denote two

3D lines corresponding, respectively, to the projections of the jth selected point on

the mth camera and the j′th point on the m′th one and v and p be computed using

equations 3.25 and 3.26. Therefore, the 3D point Z(X, Y, Z) can be approximated

as

Z = (pj
m + vj

mc1 + p
j′

m′ + v
j′

m′c2)/2 (3.27)

where c = (c1, c2)
T can be computed as

[vj
m − v

j′

m′ (vj
m × v

j′

m′)]c = pj
m − p

j′

m′ (3.28)

Also, the distance between the 3D reconstructed point Z and each one of the 3D

lines can be computed as

djj′

mm′ = ‖pj
m + vj

mc1 − p
j′

m′ − v
j′

m′c2‖/2 (3.29)

The distance djj′

mm′ is a measure of the accuracy of the 3D reconstruction process.

For example, if the jth selected point on the mth camera and the j′th point on the

81

m′th camera do not actually represent the same 3D point in space, this error would

be large, whereas for image points representing the same point, the error would be

small. Also, the more accurate the image observations are, the smaller this measure

would be. As a result, djj′

mm′ is included in the prior probability estimation of the

3D candidate points as explained in the next section.

3.5.4 Prior Probability Estimation for 3D Candidate Points

In this section, we discuss how to assign a prior probability to all the 3D

candidate points computed in the previous section. These prior probabilities will

be then used in the likelihood estimation for the particles according to equation

(3.17). Let Zc = R(zj
m, z

j′

m′) denote the re-projection (reconstruction) of the cth 3D

candidate point being observed as the two image points zj
m and zj′

m′ in the mth and

m′th cameras respectively. According to equation (3.19), the prior probability for

Zc is comprised of three terms corresponding to the image space, 3D reconstruction

and its back projection to the image space. All these terms are defined as zero-mean

Gaussain functions with some error terms as the variables and tune the variances

based on a set of training videos.

The first term, which evaluates the compatibility of a pair of observations, is

based on a function Dv(z
j
m) which measures the relative v coordinate of an image

point with respect to the range of v coordinates of the silhouette of the person in

the image. The prior probability term po(Zc) is defined as

po(Zc) = exp(
−(Dv(z

j
m) −Dv(z

j′

m′))2

2σ2
v

) (3.30)

82

based on the fact that the relative v coordinates of zj
m and zj′

m′ should be close if

the two points correspond to the same 3D candidate point. Note that this relies on

the assumption that all the cameras are located such that 3D points with larger Z

coordinates will have smaller v coordinates in all the images. Different configuration

of the cameras requires modifying this term.

The second term, pt(Zc) measures the accuracy of the 3D re-projection and is

a function of the distance djj′

mm′ computed in equation (3.29). pt(Zc) is defined as

pt(Zc) = exp(
−(djj′

mm′)2

2σ2
d

) (3.31)

which decays exponentially as the re-projection error djj′

mm′ grows. Even though

pt(Zc) seems a reasonable means to rule out invalid points; cases remain where

the image points corresponding to two different objects in the scene reconstruct a

candidate point with small distance error djj′

mm′ . For example, when two limbs lie

along the same line of sight from the perspective of one of the cameras. To detect

such points, we rely on the other two terms po(Zc) and pb(Zc) which are based on

information in the image domain.

The last prior probability term, pb(Zc) is a function of Ds(z
′c
m), the distance

of z′cm , the projection of the candidate point Zc on the mth camera image to the

silhouette of the person segmented by the background subtraction module and is

defined as

pb(Zc) =
M
∏

m=1

exp(
−(Ds(z

′c
m))2

2σ2
s

) (3.32)

This term is especially useful to identify those candidate points which relate two

inconsistent image points, yet make a small distance error in 3D space.

83

Figure 3.7(a) shows all the 3D candidate points projected into one of the

camera images for a sample frame. As can be noticed, the number of candidate

points is more than desired. The reason is that the combination of all pairs of points

are considered. One way to filter most of these points is through thresholding the

prior probabilities. For example, figures 3.7(b),(c),(d) show the points which pass a

threshold of 0.1 for po(Zc), pt(Zc) and pb(Zc) respectively. Figure 3.7(e) also show

the points with final prior probability p(Zc) larger than 0.1.

Since the re-projection process only considers pairs of image points and there

are usually more than two cameras involved in the tracking, it is very common

to have several candidate points representing a target. Close candidate points are

combined to save redundant computations by eliminating the weaker point and boost

the prior probability of the other one. The rate of boosting is a fraction of the prior

probability of the eliminated point. Figure 3.18(f) shows the final three candidate

points after filtering the points based on the prior probabilities and joining close

points. It is worth noting that in spite of the effectiveness of the prior probability

estimation, some spurious 3D candidate points may appear in some of the frames;

however, the particle filtering method and the history it creates for the trajectories

is usually robust enough to avoid the confusion caused by these points.

3.6 Application: Activity Recognition for Visual Surveillance

The proposed hand/head tracking system can be applied to visual surveillance

and human-computer interaction. In visual surveillance applications, we are usually

84

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: 3D candidate points projected back to the image: (a) All the candidate
points, (b) Candidate points passing the po(Zc) threshold, (c) Candidate points
passing the pt(Zc) threshold, (d) Candidate points passing the pb(Zc) threshold, (e)
Candidate points passing the p(Zc) threshold, (f) Candidate points after filtering
by p(Zc) and joining close ones.

85

interested in recognizing the type of activities happening in the scene. Even though

solving this problem in general is an extremely difficult problem, in this section it is

shown how to use the information generated by the system to recognize and classify

a certain class of activities. Our goal is to classify activities merely by knowing the

trajectory of the hand and head motions throughout the sequence, estimated using

our tracking method.

There are two classes of activities we are interested in: the first class includes

activities which involve only the motions of the hands and/or the head and inter-

actions between them. Examples of these activities are clapping and hand shaking

and are discussed in section 3.6.1. The second class of activities involves carrying

objects with the hand. Examples are object exchanges between hands of a person

or two people, picking up an object from the scene, and placing an object in the

scene and those discussed in section 3.6.2. For the activities of this class, we need

to detect at certain time instants during the act whether the person holds an object

or not.

3.6.1 Activity Classification based on Limb Interactions

To classify the activities which involve interaction between the limbs, we detect

the moments two or more limbs coincide or separate as well as the type of limbs

involved in that coincidence. This information is provided by the proposed tracking

system. Coincidence of two limbs happens when the trackers associated with them

make the transition from the normal state to the combined state (see section 3.4.2).

86

Also, they separate when the trackers make the transition from the combined state

to the unlabelled state. In the unlabelled state, the problem is how to label the

targets so they can return to the normal state. As explained in section 3.4.2, some

application based cues are required to label the targets in the unlabelled state. All

the activities considered in this section share the property that the coincident limbs

subsequently separate from each other. Therefore, by computing the angle between

the two 3D vectors connecting the two targets before joining and after separation,

the targets can be labelled.

Knowing the type of the interacting limbs, we can limit the list of possible

activities. For example, if two hands of the same person join and separate, this

is a cue for clapping or object exchange between the hands. Also, if two hands of

two different people join and separate, it could be a hand shake or object exchange.

To choose the right activity from these alternatives, we detect if any of the hands

holds an object and whether this object moves from one hand to another after the

separation.

3.6.2 Carrying Object Detection

The proposed technique for detecting whether the person carries an object or

not is through color analysis of the pixels around the hand region. The detection

steps are as follows:

1. As a first step, it is determined for each hand whether it is visible in a camera

or not. the 3D estimated location of the hand to each camera is back projected

87

and verified whether the projected point resides within the boundary of any

segmented skin-colored blob in the image. If a blob is detected, it is considered

as the region of the desired hand.

2. For each visible hand in an image, an appropriate region around the corre-

sponding blob is selected for color analysis. The color histogram of the pixels

in that selected region is constructed and normalized. The modes of the color

histogram are extracted and, for each mode, it is verified whether it corre-

sponds to a connected region in the image. If such a region is found, the mode

is retained, otherwise it is eliminated.

3. The modes of all the histograms acquired at different times by different cam-

eras are combined and a weighted average distribution is constructed. The

weight of each histogram depends on the quality of the selected region and is

determined base on the relative position of the hand with respect to the body.

4. The weighted average distributions of different hands are compared at two

different time instants, called decision points, to detect the carried object, its

color and the potential exchange. The first time instant is when the hands

coincide with each other and the possible object exchange occurs. The second

time instant is when the hands separate above a minimum pre-defined dis-

tance. This usually creates a few frames of delay which is required to collect

enough data for updating the color histogram of the hands, thereby identifying

whether an exchange has occurred or not.

The following subsections explain these steps in detail.

88

Hue

Hue

(a) (b)

(c)

Right Left

Left

Right

Figure 3.8: The selected regions for color analysis: (a) Input image and silhou-
ette and the selected circular regions, (b) The selected regions after filtering, (c)
Normalized color histogram of the two selected regions..

89

3.6.2.1 Hand Region Selection

At each image acquired by the cameras, if a skin-colored blob corresponds to

a tracked hand, a circular region around that blob is selected to be used in the color

analysis. These circular regions are then filtered using the silhouette of the body

generated using the background subtraction module. Also, if the area inside the

circle contains more than one connected foreground region, the region containing the

skin-colored blob is preserved and the others are eliminated. The skin-colored blob

is also excluded from the region and the remaining pixels presumably correspond to

an object, the sleeve or dress of the person (depending on the relative position of

the hand to the body) and noise pixels. Next, the color histogram of the remaining

region is generated and analyzed. The hue is used as the color indicator.

Figure 3.8(a), depicts the regions selected for the two hands in a sample frame

image in which the person holds a small green object in his left hand. The region

of the pant which is pointed to by arrow is eliminated as it is not connected to the

hand. Figure 3.8(b) shows the filtered version of the two selected regions in 3.8(a).

Figure 3.8(c) shows the normalized color histogram of the two selected regions. As

can be seen, the histogram of the left hand shows large values around the green

color (e.g. hue ≈ 65◦). Also note that although the detected skin-colored region is

filtered, the amount of skin-colored values in the histogram is still significant due to

failure of the color detection module.

90

Figure 3.9: The normalized color histogram of the selected regions in figure 3.8 after
kernel density estimation and the location of the modes.

91

Hue

Hue

Left

Right

Figure 3.10: The modes of the histogram in figure 3.9 after connectivity verification.

92

3.6.2.2 Color Histogram Modes Extraction

To detect the modes of the distribution, kernel density estimation with a

gaussian kernel is applied to the histogram and local maxima are selected. Several

modes may be found in the histogram; however most of these modes appear due to

scattered noise. To remove these, the modes of the histogram are back projected to

the image to determine whether they form a connected region or not. If a connected

region of minimum n pixels (e.g. n = 10) is found in which all the pixels have

the hue value in the range [hue − α, hue + α] with α ≈ 3◦, then the mode hue is

retained otherwise it is eliminated. It is worth noting that after all the filtering,

there may still be modes which appear due to noise. These modes will be filtered

by the subsequent step. Figure 3.9 shows the histograms of figure 3.8(c) and the

position of the modes after kernel density estimation. Figure 3.10 shows the retained

modes after the connectivity verification process.

3.6.3 Estimating the Relative Hand Position

The modes of the color histograms extracted from the individual cameras are

combined to increase the reliability of the process. However, at each time instant,

some cameras are located in a better position with respect to the person and collect

more reliable data. By detecting those cameras, a larger weights can be assigned to

them in the weighted average distribution.

A selected region around a hand is considered more reliable when the number

of pixels not belonging to potential object is minimal. This occurs when the hand

93

is stretched out from the body and the camera views the body from an appropriate

angle. To determine the reliability of a selected region, the pixels of the body

silhouette which lie on the bounding circle (see figure 3.11) are extracted and a

n-tuple vector vc of 0’s and 1’s is created. Values 0 and 1 correspond to foreground

and background pixels respectively. The reliability factor µ is then defined as

µ =
n− ∑n

i=1 vci

n
+ µmin (3.33)

where µmin is a constant positive number to be used as the minimum reliability

factor. The larger the value µ is, the more reliable the selected region would be. For

instance, in the case of figure 3.11(a), the majority of the undesired pixels belong to

the sleeve of the person’s dress which does not constitute a big portion of the region.

Also, knowing the location of the sleeve from the 1’s in the vector vc, we are able to

remove them. As a result, the selected region in figure 3.11(a) can be considered a

reliable selection. This consideration is reflected in the large value of µ. In contrast,

in the case of figure 3.11(c) with the hand residing inside the silhouette of the body,

many pixels belonging to the person’s dress may be contained in the region inside

the circle. This reduces the utility of the color analysis, therefore, a small value µ

is assigned to this region.

Another point to note is that an iterative process can be added to determine

the appropriate radius of the circle. In fact, we can start from a small circle, which

merely covers the skin-colored blob and grow the circle gradually until a sufficiently

small or large value for µ is measured or the circle reaches a pre-defined maximum

94

vc

(a)

(b)

(c)

=0.92+ min

=0.5+ min

= min

vc

vc

Figure 3.11: Reliability measurement of the selected regions: (a) Hand outside the
body, (b) Hand in in-out position (c) Hand inside the body.

95

size. When the value µ is determined, the circle size is modified accordingly; for

example, if µ is very small (the hand is inside the silhouette), the circle size is

modified to the smallest possible size to exclude as many pixels of the person’s dress

as possible.

3.6.3.1 Object Exchange Detection

To detect the exchange of an object between two hands or gaining or ceasing

to carry an object in case of pick and place actions, the weighted average color

histograms are analyzed at two different time instants called the decision points.

The first time instant called the climax point is when two hands coincide or when a

hand stops moving for a few moments to pick up or place an object. The exchange

moment can be detected using the FSM used for tracking. To recognize the climax

point of the pick and place activities, which are categorized as ballistic movements

[86], motion field estimation is deployed. The second decision point in which the

histograms need to be examined is when the hands are separated by a minimum

pre-defined distance from each other. This is usually a few frames after separation

of the two hands or after the still moment for pick and place cases. From the modes

of the averaged color histograms of the hands, it is determined whether the hand

holds an object or not. Also, comparing the modes of the hands at the two decision

points, we can recognize whether the objects has been transferred from a hand to

another or not. This information can consequently lead us to the recognition of the

type of activity. Table 3.1 shows this categorization for a set of activities involving

96

the interaction of two hands. For example, if there is no object in either of the two

hands (indicated by 0 in the table) before of after the climax point, the activity is

either a hand shake or a clap depending on the number of involved people. Or, if an

object is detected in one hand before the climax point and in another one afterwards,

an exchange has happened. If there is only one hand involved in the activity, the

presence of an object in the hand before or after the climax point distinguishes the

two pick and place activities.

First Hand Second Hand First Hand Second Hand Activity
(Before) (Before) (After) (After) Type

0 0 0 0 Hand Shake or Clap
0 1 1 0 Exchange
1 0 0 1 Exchange
0 - 1 - Pick
1 - 0 - Place

Table 3.1: Activity Recognition based on the Object Location Before and After the
Climax Point

To determine whether a hand holds an object or not, the modes of the color

histograms detected in section 3.6.2.2 from different images are combined. This is

useful due to the observation that the hand or the carried object may be invisible

or partially visible in one camera or another. The fusion method used here is

the Beamforming method [87] which asserts that if a signal is transmitted over

several noisy channels, the optimal way of combining the outputs of the channels

is computing the weighted average of all the channels such that the weight of each

channel is inversely proportional to the variance of noise of the channel. If pj
mk(c)

denotes the pdf of the modes of the color distribution for the selected region around

the jth limb on the mth camera at time instant k, a weighted average pdf pj(c) is

97

defined as

pj(c) =

∑K ′

k=K

∑M

m=1 µ
j
mkp

j
mk(c)

∑K ′

k=K

∑M

m=1 µ
j
mk

(3.34)

with µj
mk denoting the reliability measure µ for the jth limb as computed in section

3.6.3. The reliability factor µj
mk can be considered inversely proportional to the noise

of the channel (i.e. camera). The time period k = [K,K ′] is a period before the

decision point. Also the period begins after or ends prior to the instant the circular

regions of the two limbs intersect. This avoids the case in which the object appears

in both selected regions. Another possible enhancement is to attenuate the noise

level of the distribution by subtracting the distributions of the two hands of the

same person from each other and removing the negative distribution components.

This can be especially effective to remove the color of the dress from the histogram.

Performing the above process on the two interacting hands at the two decision points

and comparing the modes of the distributions, it can be determined if there has been

any object in a hand and whether it has changed its position between the hands.

An example is shown in the experimental results section.

3.7 Experimental Results

The performance of the tracking method was measured with a set of video

sequences including one person or two interacting people. Our system processes

around 4 frames per second on a 3GHz PC. To measure the accuracy of the particle

filtering technique deployed for tracking, the estimated 3D coordinates of the two

98

hands and the head of a person were compared with ground truth values. The ground

truth measurements were obtained by selecting the locations of the limbs manually

in all the images of sample frames and projecting them to 3D space. Figures 3.12

and 3.13 compare the X, Y and Z coordinates of the 3D limbs obtained by the

two methods in two different video sequences. As seen in the graphs, the tracking

error is always less than 100mm. The two sequences used for this evaluation show

a person moving hands and head in space while standing or sitting behind a desk.

The average distance error in the standing sequence for the head, left and right

hands are 52.5, 37.4 and 43.9 millimeters respectively. For the sequence with a

person doing normal activities while sitting at a desk, the average distance error for

the head, left and right hands are 45.0, 37.9 and 33.9 millimeters respectively. The

larger errors for the head are expected as the head is a larger object and is often

partially occluded by the hair from certain directions. Figures 3.14 and 3.15 show a

few selected frames from the two video sequences. The analysis of the desk sequence

shows that the moment the person picks up a cup to drink can be detected by color

analysis of the frames before and after that moment.

In another experiment, the two hands of a person were tracked when the person

clapped. Utilizing the finite state machine and heuristics for labelling the targets

after separation, the system successfully retains the tracks and distinguishes the two

hands before and after the clapping point. Figure 3.16 shows three sample frames

before, during and after the clapping.

99

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Right Hand

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Right Hand

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Right Hand

Figure 3.12: Performance evaluation of the tracking system. The tracking error is
shown as the difference between the ground truth values and the actual estimated
values.

100

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Head

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Left Hand

0 50 100 150 200 250
0

50

100

Time Index

X
 E

rro
r(m

m
)

Right Hand

0 50 100 150 200 250
0

50

100

Time Index

Y
 E

rro
r(m

m
)

Right Hand

0 50 100 150 200 250
0

50

100

Time Index

Z
 E

rro
r(m

m
)

Right Hand

Figure 3.13: Performance evaluation of the tracking system. The tracking error is
shown as the difference between the ground truth values and the actual estimated
values.

101

Figure 3.14: Sample frames of a sample sequence.

102

Figure 3.15: Sample frames of a sample sequence with a person working at a desk.

103

Figure 3.16: Sample frames of the hand clapping sequence.

104

Several videos with two interacting people were also evaluated. One expected

problem in this type of scene is the high rate of occlusion. The occlusion becomes

worse when the two subjects approach each other. Increasing the number of cam-

eras in the scene and uniformly distributing them around the room can reduce the

occlusion significantly; however these improvements will also increase the required

computation. Also, having six targets in the scene instead of three (four hands and

two heads) increases the number of candidate points in the tracking space, thereby

increasing the number of false alarms. However, our system worked well in most

cases. The only inevitable problem is the occasional track loss due to a shortage of

observations. Figure 3.17 shows sample frames of the video of the subjects shaking

hands. The colored markers show the location of the tracked limbs back-projected

to the images. As depicted in the last row, the two shaking hands were distinguished

and labelled successfully after separation. Meanwhile, as can be seen, the left hand

of a person is lost in the 2nd and 3rd rows due to the shortage of observations. Table

3.2 shows the states of the tracked limbs at each row of the figure 3.17. The letters

H, L and R stand for head and left and right hands respectively. The indices are

used to indicate the two subjects.

Row Normal Combined Lost
Top L1, R1, L2, R2, H1, H2 - -

Middle L1, H1, H2 R1, R2 L2

Bottom L1, R1, L2, R2, H1, H2 - L2

Table 3.2: The state of the hands and heads in different rows of figure 3.17: H, L
and R stand for head and left and right hands respectively. The indices are used to
indicate the two subjects.

To test the performance of the proposed object exchange detection scheme, a

105

Figure 3.17: Sample frames of two people do the hand shaking. The white markers
show the estimated location of the limbs. Left hand of a person is lost in the 2nd
and 3rd rows due to shortage of observations

106

Left

Right

Left

Right

(a)

(b)

Hue

Hue

Hue

Hue

Figure 3.18: Weighted average distributions at two decision Points: (a) At the
climax point, (b) A few frames after after the climax point.

107

sequence was examined in which a person exchanged a small green object between

the two hands. Figure 3.18 shows the pj(c) for the two hands at two time instants.

Figure 3.18(a) shows the average histograms for the two hands at the moment

they join. Figure 3.18(b) shows the same histograms a few frames after the hands

separate. By looking at this figure, it is clear that the green object (e.g. hue ≈ 60◦)

has been moved from the left hand to the right hand at the time the hands met. This

can be inferred easily using analysis of the modes of the four distributions. Figure

3.19 shows several frames of the same video sequence. The average histograms of

3.18(a) and 3.18(b) are measured at the frames of the 3rd and 5th rows.

3.8 Summary

In this chapter, a general approach for multiple target tracking using multiple

sensors was presented. The approach includes a low-level particle filtering layer for

tracking individual targets and a high-level finite state machine for analyzing the

interaction between the targets as well as appearance and disappearance of each

target. A multiple hand/head tracking system was then designed based on this two-

level tracking method. Some application specific heuristics were added to improve

the performance of the system. An object detection scheme was also presented based

on the color analysis of regions around the hands. It was shown that fusion of the

information acquired by all the cameras improves the quality of object detection. As

an application, a set of activities involving interaction between people and objects

were investigated.

108

Figure 3.19: Sample frames of the object exchange sequence.

109

The set of experiments performed show the potential and also limitations of

the approach. In fact, the proposed system can be effective in tracking the hands and

heads of people and detecting the objects they may carry. This can be very helpful

in visual surveillance applications; however, adding some modeling and detection

modules focusing on the body structure of the people can increase the quality of the

system.

110

Chapter 4

Conclusion

In the previous two chapters, we addressed two different problems in the area

of human body tracking. Both chapters discussed hand tracking while in chapter 3,

head tracking was also added.

In Chapter 2, the absolute position and orientation of a hand were estimated

while the hand was viewed by a stereo camera set. Theses parameters were extracted

from a planar model created based on disparity map. It was then shown how

modeling the motion components of the hand can be used to fix a 3D coordinate

frame on the hand thereby tracking the hand over time. It was explained that these

modelings are critical for hand tracking as the hand is a low-textured object and

classical disparity and motion estimation methods are very inaccurate.

In chapter 3, a two-layer tracking method was proposed for the problem of

tracking hands and heads of one or several human subjects while they are viewed

by multiple cameras. The novel approach included a set of parallel particle filters

for tracking the desired limbs and a finite state machine to model the interaction

between the limbs. Also, a color analysis method for detecting objects carried by the

hands and their exchange between the hands was presented and a novel approach

for combining the color information gathered by different cameras was proposed.

The color combination method was based on the reliability factor of each camera

111

and the position of the hand with respect to the body.

As explained in this dissertation, visual tracking of the human body has two

major sets of applications. The first set includes human-computer interaction in

which a person or a group of people move in view of a single or a set of cameras

with the goal of communicating some commands to a computer system. Several

applications have been proposed and developed on this subject. In chapter 2, three

sample applications in this area were described. In these applications, the 3D posi-

tion and orientation of a hand were estimated and used. The first one introduced

virtual drawing in space in which a user communicates letters and drawings in the

same way as when she draws them on a piece of paper. This application eliminates

the need for using a limited vocabulary as required in similar tools such as sign

language. It shows how a vision-based system can allow people to use a system in a

natural manner. In fact, one of the goals in human-computer interaction systems is

to comply with the way people prefer to interact with machines and this application

tried to fulfill that goal.

By monitoring and interpreting the actions of a user, a system can create the

possibility of working with virtual devices instead of real ones. This adds flexibility

in a variety of aspects. The marble game application presented in chapter 2 demon-

strates some of these flexibilities. It enables the user to play with a new maze and a

new map every time she plays with the virtual game. Also, changing the coefficient

of friction shows how vision-enabled virtual devices can provide features which are

not easily made available with physical devices.

Finally, we presented a 3D object construction application in which a user can

112

track the edges of a physical or virtual object and create its 3D model.

One important point to note is that almost all the human-computer interaction

systems assume some degree of cooperation from the user. In the applications

presented in this dissertation, if the motion of the hand is beyond certain limits, the

system cannot track it reliably. In fact, as the system models the palm or the back

of the hand as a single plane and estimates its position and orientation, if the hand

is too tilted and a sufficient portion of the hand is not visible, modeling fails and

the system does not respond appropriately.

Visual surveillance is another application of human body tracking which was

addressed in this dissertation. In this application, the movements of people in

front of the cameras are measured to categorize their activities. Chapter 3 showed

how the hands and heads of human subjects can be tracked and used for activity

classification. Using multiple cameras made the system more robust and effective,

allowing us to measure human movements over a broad range of viewing conditions.

Also, 3D tracking helps in classifying the actions more accurately. However, action

classification only based on the movements of hands and heads is not sufficient -

additional analysis is required. For example, by detecting the presence of an object

in the hand, an action like hand clapping can be distinguished from similar hand

movements associated with an object exchange between hands. Information about

limbs of the body can expand the range of activities that can be classified.

113

4.1 Future Work

As future work on the topics addressed in chapter 2, the following directions

may be taken:

1. Modeling the hand with more complex surfaces than a plane. This can result

in more accurate estimation of the position and orientation of the hand, which

is especially helpful for cases in which the hand makes complicated shapes and

gestures. For instance, when the hand is closed as a fist, a quadratic surface

can model its surface more accurately. Also, if the hand is very tilted, most

of the pixels in the region of the hand are projection of points on the side of

the hand. In this case, if the system can model the curvature of the hand

region, it can effectively use all the pixels instead of considering most of them

as outliers.

2. Adding extra sources of information to the model. These sources may include

the silhouette of the hand, the edge map of the hand region and information

from the fingers. For example, in some applications, it is important to detect

if the region is from the back of the hand or the palm. The lines appearing

in the palm region and the curvature of the hand can help in this decision.

In addition, if it is known whether the person uses the left or right hand,

the information from the fingers can also help to distinguish the palm from

the back of the hand. Depending on the application, this process may be

reversed and information from the fingers along with the side of the hand can

be deployed to distinguish right hand from the left.

114

3. Creating new applications using the information provided by the hand tracking

method. A useful application could be a virtual panel with a set of push

buttons, turning knobs and sliding sliders being controlled by a hand. This

virtual device can eliminate the need for carrying physical devices. Also, the

type, position and purpose of the buttons and knobs can be modified instantly

depending on the application or context.

4. Using the hand position and orientation to recognize the hand gesture more

accurately. One of the common approaches in hand gesture recognition is

extracting a set of features from the image and comparing them with the

entries of a database to find the best matched gesture. However, due to the

complexity of the hand shape and the degrees of freedom, this approach can be

highly ambiguous. By including the information of the position and orientation

of the hand, the range of the potential gestures is narrowed and the probability

of finding the correct match could be improved.

Also, the work done in chapter 3 can be extended in the following directions:

1. Deploying cues other than skin color to segment the hand and head regions.

This can be helpful in cases where a person wears a glove or the lighting

condition causes the skin detection module to fail. These cues may include

the shape of the hand and the position of the other body parts. Note that if

the distance between the cameras and the subjects is large (as it was in our

experiments), then shape analysis may not be a reliable source of information.

115

2. Adding information about the elbow and shoulder to the model. This can

increase the accuracy of the tracking and can be helpful for cases where hands

are not visible. One way to deploy this information is to augment the state

vectors in particles to include them. Also, the dimensions of the limbs can be

estimated from the height of a person. This information can be used to rule

out some of the candidate positions and physically impossible body poses.

3. Including a broader range of activities to classify and increasing data sources

to make their classification possible. Classifying the type of the object a person

carries can be helpful in expanding the range of classified activities. For in-

stance, in the desk example shown in chapter 3, recognizing the cup, paper and

pan can be used to classify drinking and writing applications. Adding shape

analysis to the presented color analysis can be useful in object recognition too.

4. Taking a hybrid approach for limb tracking. As explained in chapter 3, as the

number of people in the scene increase, the probability of occlusion increases

drastically. Therefore, tracking of the limbs, especially the hands, becomes

very hard as their visibility diminishes. Using some parallel methods such

as body modeling can help in increasing the level of accuracy. Also, some

strategies should be developed to re-detect and label the limbs which lose their

tracks. Proximity between the old and new positions as well as the similarity

between appearances can be used as cues.

5. Complex activity classifications using the trajectories of the hands and heads

tracked using our method. For instance, in a store scenario, the cashier or

116

the customer may be expected to perform some particular actions or interact

with particular devices such as a credit card reader or a bag of goods. The

information extracted from our system may be used for anomaly detection in

such scenarios.

4.2 Final Word

Computer vision, along with other fields of technology, can provide easier

and more convenient methods of using machines and devices thereby increasing the

power and comfort of people. These technologies can also create safer and more

secure environments to live. Any scientific discovery and innovation is a step in this

direction.

117

Bibliography

[1] Kyungnam Kim and Larry S. Davis. Multi-camera tracking and segmentation
of occluded people on ground plane using search-guided particle filtering. In
ECCV (3), pages 98–109, 2006.

[2] Aravind Sundaresan and Rama Chellappa. Multi-camera tracking of articulated
human motion using motion and shape cues. In ACCV (2), pages 131–140,
2006.

[3] Z. Yue and R. Chellappa. Pose-normalized view synthesis from silhouettes.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), March
2005.

[4] Dimitrios Tsoumakos, Konstantinos Bitsakos, Yiannis Aloimonos, and Nick
Roussopoulos. A framework for distributed human tracking. In PDPTA, pages
863–868, 2005.

[5] Jian Li, Shaohua Kevin Zhou, and Rama Chellappa. Appearance modeling
under geometric context. iccv, 2:1252–1259, 2005.

[6] Vinay D. Shet, V. Shiv Naga Prasad, Ahmed M. Elgammal, Yaser Yacoob, and
Larry S. Davis. Multi-cue exemplar-based nonparametric model for gesture
recognition. In ICVGIP, pages 656–662, 2004.

[7] A Sundaresan, A RoyChowdhury, and R Chellappa. Multiple view tracking
of human motion modelled by kinematic chains. International Conference on
Image Processing, 2004.

[8] Larry S. Davis, Vasanth Philomin, and Ramani Duraiswami. Tracking humans
from a moving platform. In ICPR, pages 4171–4178, 2000.

[9] Ismail Haritaoglu, David Harwood, and Larry S. Davis. An appearance-based
body model for multiple people tracking. In ICPR, pages 4184–4187, 2000.

[10] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A
literature survey. ACM Comput. Surv., 35(4):399–458, 2003.

[11] Ying Wu and Thomas S. Huang. Vision-based gesture recognition: A review.
Lecture Notes in Computer Science, 1739:103+, 1999.

[12] D. J. Sturman and D. Zeltzer. A survey of glove-based input. IEEE Computer
Graphics and Applciations, 14:30–39, 1994.

[13] J. Lee and T.L. Kunii. Model-based analysis of hand posture. IEEE Computer
Graphics and Applications, pages 77–86, September 1995.

118

[14] V. Pavlovic, R. Sharma, and T. Huang. Gestural interface to a visual computing
environment for molecular biologists, 1996.

[15] J. Segen. Controlling computers with gloveless gestures. Proc.of Virtual Reality
Systems, 1993.

[16] J. J. Kuch and T. S. Huang. Vision based hand modeling and tracking for vir-
tual teleconferencing and telecollaboration. International Conference on Com-
puter Vision and Pattern Recognition, pages 666–671, 1995.

[17] Vladimir Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual interpreta-
tion of hand gestures for human-computer interaction: A review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(7):677–695, 1997.

[18] J. M. Rehg and T. Kanade. Digiteyes: Vision-based hand tracking for human-
computer interaction. IEEE Workshop on Motion of Non-Rigid and Articulated
Objects, 1994.

[19] J. M. Rehg and T. Kanade. Visual tracking of high dof articulated structures:
an application to human hand tracking. 3rd ECCV, volume II, May 1994.

[20] T. Heap and D. Hogg. Towards 3d hand tracking using a deformable model.
International Conference on Automatic Face and Gesture Recognition, 1996.

[21] Q. Delamarre and O. Faugeras. Finding pose of hand in video images: a stereo-
based approach. Proceedings of FG’98, April 1998.

[22] R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff. 3d hand pose estimation using
specialized mappings. Technical report, Los Alamitos, CA, July 9–12 2001.

[23] Vassilis Athitsos and Stan Sclaroff. 3D Hand Pose Estimation by Finding
Appearance-Based Matches in a Large Database of Training Views. Technical
Report BUCS-TR-2001-021, CS Department, Boston University, October 22
2001.

[24] V. Athitsos and S. Sclaroff. Estimating 3d hand pose from a cluttered image.
IEEE Conference on Computer Vision and Pattern Recognition, 2(18-20):II–
432–9, June 2003.

[25] B.P.L. Lo and S.A. Velastin. Automatic congestion detection system for under-
ground platforms. Proc. of 2001 Int. Symp. on Intell. Multimedia, Video and
Speech Processing, pages 158–161, 2000.

[26] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects,
ghosts and shadows in video streams. IEEE Trans. on Patt. Anal. and Machine
Intell., 25(10):1337–1342, October 2003.

[27] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder:real-time track-
ing of the human body. IEEE Trans. on Patt. Anal. and Machine Intell.,
19(7):780–785, 1997.

119

[28] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-ime
tracking. IEEE Trans. on Patt. Anal. and Machine Intell., 22(8):747–757, 2000.

[29] S. Zhou J. Shao and R. Chellappa. Simultaneous background and foreground
modeling for tracking in surveillance video. Proc. Intl. Conf. on Image Pro-
cessing, October 2004.

[30] A. Elgammal, D. Harwood, and L.S. Davis. Non-parametric model for back-
ground subtraction. Proc. of ICCV ’99 FRAME-RATE Workshop, 1999.

[31] B. Han, D. Comaniciu, and L. Davis. Sequential kernel density approximation
through mode propagation: applications to background modeling. Proc. ACCV
-Asian Conf. on Computer Vision, 2004.

[32] N. M. Oliver, B. Rosario, and A. P. Pentland. A bayesian computer vision
system for modeling human interactions. IEEE Trans. on Patt. Anal. and
Machine Intell., 22(8):831–843, 2000.

[33] X. Yin, D. Guo, and M. Xie. Hand image segmentation using color and rce
neural network. IJRAS, 34:235–250, March 2001.

[34] V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on pixel-based skin color
detection techniques. Proc. Graphicon-2003, pages 85–92, September 2003.

[35] K. Abe, H. Saito, and S. Ozawa. 3d drawing system via hand motion recogni-
tion from two cameras. Proceeding of the 6th Korea-Japan Joint Workshop on
Computer Vision, pages 138–143, January 2000.

[36] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms, 2001.

[37] Peter J. Huber. Robust statistics. John Wiley and Sons, 1981.

[38] John Fox. Robust Regression: Appendix to An R and S-PLUS Companion to
Applied Regression. SAGE Publications, 2002.

[39] S. Geman and D. E. McClure. Statistical methods for tomographic image
reconstruction. Proc. of the 46-th Session of the ISI, Bulletin of the ISI, 52:5–
21, 1987.

[40] Michael J. Black and P. Anandan. The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields. CVIU, 63(1):75–104, Jan 1996.

[41] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981.

[42] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. Proc. of 7th International Joint Conference on
Artificial Intelligence (IJCAI), pages 674–679, 1981.

120

[43] A. M. Takalp. Digital Video Processing. Prentice Hall, 1995.

[44] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Com-
puter Vision. Prentice Hall, 1998.

[45] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[46] L. Bretzner and T. Lindeberg. Use your hand as a 3-d mouse ... European
Conference on Computer Vision, 1998.

[47] N. Jojic, B. Brumitt, B. Meyers, S. Harris, and T. Huang. Detection and esti-
mation of pointing gestures in dense disparity maps. International Conference
on Automatic Face and Gesture Recognition, 2000.

[48] Y. Cui and J. Weng. A learning-based prediction-and-verification segmentation
scheme for hand sign image sequence. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1999.

[49] Z. Zhang, Y. Wu, Y. Shan, and S. Shafer. Visual panel: Virtual mouse, key-
board and 3d controller with an ordinary piece of paper. Workshop on Percep-
tive User Interfaces, 2001.

[50] Y. Nam and K. Wohn. Recognition of space-time hand-gestures using hidden
markov model. ACM Symposium on Virtual Reality Software and Technology,
1996.

[51] D. Huttenlocher, D. Klanderman, and A. Rucklige. Comparing images using
the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):850–863, September 1993.

[52] Shuo Wang, Xiaocao Xiong, Yan Xu, Chao Wang, Weiwei Zhang, Xiaofeng
Dai, and Dongmei Zhang. Face-tracking as an augmented input in video games:
enhancing presence, role-playing and control. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, New York, NY,
USA, 2006. ACM Press.

[53] Tollmar Konrad, David Demirdjian, and Trevor Darrell. Gesture + play: full-
body interaction for virtual environments. In CHI ’03: Proceedings of the
SIGCHI conference on Human Factors in computing systems, New York, NY,
USA, 2003. ACM Press.

[54] R. Karlsson and F. Gustafsson. Monte carlo data association for multiple target
tracking, 2001.

[55] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple moving
targets with a mobile robot using particle filters and statistical data association,
2001.

121

[56] C. Hue, J. Le Cadre, and P. Perez. Tracking multiple objects with particle
filtering, 2000.

[57] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems.
Artech House Radar Library, 1999.

[58] R. L. Streit and T. E. Luginbuhl. Maximum likelihood method for probabilistic
multi-hypothesis tracking. Proceedings of Signal and Data Processing of Small
targets, 2235:394–405, 1994.

[59] Yaakov Bar-Shalom and William Dale Blair. Multitarget-Multisensor Tracking
Applications and Advances - Volume III. Artech House, 2000.

[60] Zia Khan, Tucker R. Balch, and Frank Dellaert. An mcmc-based particle filter
for tracking multiple interacting targets. In ECCV (4), pages 279–290, 2004.

[61] Simo Särkkä, Aki Vehtari, and Jouko Lampinen. Rao-blackwellized monte carlo
data association for multiple target tracking, 2004.

[62] Simo Särkkä, Aki Vehtari, and Jouko Lampinen. Rao-blackwellized particle fil-
ter for multiple target tracking. Preprint submitted to Elsevier Science, Septem-
ber ”2005”.

[63] Avitzour D. Stochastic simulation bayesian approach to multitarget tracking.
IEE Proceedings - Radar, Sonar and Navigation, 142.

[64] N. Gordon. A hybrid bootstrap filter for target tracking in clutter, 1997.

[65] Mark Morelande and Darko Musicki. Fast multiple target tracking using par-
ticle filters, December 2005.

[66] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Fast multiple object
tracking via a hierarchical particle filter. iccv, 1:212–219, 2005.

[67] Michael Isard and John MacCormick. BraMBLe: A bayesian Multiple-Blob
tracker. pages 34–41.

[68] G Qian, R Chellappa, and Q Zheng. Bayesian algorithms for simultaneous
structure from motion estimation of multiple independently moving objects,
2005.

[69] Caifeng Shan, Yucheng Wei, Tieniu Tan, and Ojardias Ojardias. Real time
hand tracking by combining particle filtering and mean shift. Face and Gesture
Recognition, 00:669, 2004.

[70] Carine Hue, Jean-Pierre Le Cadre, and Patrick Perez. A particle filter to track
multiple objects. womot, 00:0061, 2001.

122

[71] Arnaud Doucet, Nando De Freitas, and Neil Gordon. Sequential Monte
Carlo Methods in Practice (Statistics for Engineering and Information Science.
Springer, 2005.

[72] A. Doucet, S.J. Godsill, and C. Andrieu. On sequential simulation-based meth-
ods for bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

[73] A. Papoulis. Probability, Random Variables, and Stochastic Processes, 2nd
Edition. McGraw-Hill, 1984.

[74] A. T. Bharucha-Reid. Elements of the Theory of Markov Processes and Their
Applications. McGraw-Hill, 1960.

[75] Peter S. Maybeck. Stochastic models, estimation, and control. Volume 1. Aca-
demic Press, 1979.

[76] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle
filters for on-line non-linear/non-gaussian bayesian tracking, 2002.

[77] L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[78] John MacCormick and Andrew Blake. A probabilistic exclusion principle for
tracking multiple objects. International Journal of Computer Vision, 39(1):57–
71, 2000.

[79] Michael Isard and Andrew Blake. Condensation – conditional density propaga-
tion for visual tracking. International Journal of Computer Vision, 29(1):5–28,
1998.

[80] S. Zhou, R. Chellappa, and B. Moghaddam. Visual tracking and recognition
using appearance-based modeling in particle filters, 2003.

[81] Niclas Bergman. Recursive Bayesian estimation : navigation and tracking ap-
plications. Link¨ping, 1999.

[82] A. Doucet. On sequential monte carlo sampling methods for bayesian filtering,
1998.

[83] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[84] Antonio Criminisi, Ian D. Reid, and Andrew Zisserman. Single view metrology.
International Journal of Computer Vision, 40(2):123–148, 2000.

[85] Kyungnam Kim, Thanarat H. Chalidabhongse, David Harwood, and Larry S.
Davis. Real-time foreground-background segmentation using codebook model.
Real-Time Imaging, 11(3):172–185, 2005.

123

[86] V. S. N. Prasad, V. Kellokumpu, and L. S. Davis. Ballistic hand move-
ments. Proceeding of Conference of Articulated Motion and Deformable Objects
(AMDO), July 2006.

[87] Andrea Goldsmith. Wireless Communications. Cambridge, 2005.

124

