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Hyperspectral imagery provides the ability to detect targets that are smaller 

than the size of a pixel. They provide this ability by measuring the reflection and 

absorption of light at different wavelengths creating a spectral signature for each pixel 

in the image. This spectral signature contains information about the different 

materials within the pixel; therefore, the challenge in subpixel target detection lies in 

separating the target’s spectral signature from competing background signatures. 

Most research has approached this problem in a purely statistical manner. Our 

approach fuses statistical signal processing techniques with the physics of reflectance 

spectroscopy and radiative transfer theory.  Using this approach, we provide novel 

algorithms for all aspects of subpixel detection from parameter estimation to 

threshold determination. 



  

Characterization of the target and background spectral signatures is a key part 

of subpixel detection. We develop an algorithm to generate target signatures based on 

radiative transfer theory using only the image and a reference signature without the 

need for calibration, weather information, or source-target-receiver geometries. For 

background signatures, our work identifies that even slight estimation errors in the 

number of background signatures can severely degrade detection performance. To 

this end, we present a new method to estimate the number of background signatures 

specifically for subpixel target detection.  

At the core of the dissertation is the development of two hybrid detectors 

which fuse spectroscopy with statistical hypothesis testing. Our results show that the 

hybrid detectors provide improved performance in three different ways: insensitivity 

to the number of background signatures, improved detection performance, and 

consistent performance across multiple images leading to improved receiver 

operating characteristic curves. 

Lastly, we present a novel adaptive threshold estimate via extreme value 

theory. The method can be used on any detector type – not just those that are constant 

false alarm rate (CFAR) detectors. Even on CFAR detectors our proposed method can 

estimate thresholds that are better than theoretical predictions due to the inherent 

mismatch between the CFAR model assumptions and real data. Additionally, our 

method works in the presence of target detections while still estimating an accurate 

threshold for a desired false alarm rate.  
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Preface 

The data used in this dissertation comes from the RDECOM CERDEC Night 

Vision & Electronic Sensors Directorate (NVESD) of the U.S. Army. The data was 

collected at significant expense by NVESD and therefore they reserved the right to 

approve all publications containing their data. Because the NVESD data contains 

some of the best examples of subpixel target images available, the NVESD imagery is 

used throughout this dissertation. In order to use their imagery, we had to receive 

approval from NVESD to publish this dissertation – a ten week process. To help 

minimize the approval process which dictates that any publication changes must be 

approved by NVESD, we rewrote the dissertation such that it contains a data chapter. 

NVESD only requires that this data chapter be approved per e-mail of Mr. David 

Hicks (NVESD). Fortunately, the addition of this data chapter has provided the added 

benefit of providing a good explanation of hyperspectral imagery and its 

idiosyncrasies to motivate the rest of the dissertation.  
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Chapter 1: Introduction 

1.1.  A Brief History of Imaging Spectroscopy 

The study of a material’s spectral properties grew out of the field of 

reflectance spectroscopy introduced in the 1920s. Reflectance spectroscopy identified 

the component chemicals in a sample by studying the reflective properties of the 

material [40]. By the 1930s and 1940s, spectrophotometers were introduced and the 

field of spectroscopy grew more popular. This work led to radiative transfer theory 

that was able to measure the reflective properties of a sample and identify the 

underlying physical mechanisms in such measurements. Radiative transfer theory 

ultimately led to the development of spectral imagers in the early 1970s [54].  

Spectral imagery is, however, not a new concept. Color imagery is the most 

basic and widely recognized spectral imagery. In spectral imagery, each spatial point 

or pixel is represented by multiple measurements of different wavelengths in the 

electromagnetic spectrum. In the case of color imagery, each pixel contains 

information for the red, green, and blue wavelengths in the visible portion of the 

electromagnetic spectrum. This idea of measuring the energy in different wavelengths 

of the spectrum along with radiative transfer theory led to the development of 

multispectral imagery.  

In July 1972, the first space-based multispectral imager was launched under 

the LANDSAT program [63]. The imager contained four bands across the visible 

(VIS) to near-infrared (NIR) wavelengths. The LANDSAT program was so 

successful that the program continues today utilizing new multispectral sensors that 

are capable of measuring seven bands of the electromagnetic spectrum. The success 
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of these multispectral sensors led to the development of the hyperspectral sensor in 

the mid-1980s and its corresponding field of imaging spectroscopy.  

Hyperspectral imagery (HSI) differs from its earlier counterpart, multispectral 

imagery, in two key ways. The first difference is the number of spectral bands 

collected by hyperspectral sensors. Multispectral sensors typically collect less than 

ten bands of spectral information per pixel. Hyperspectral imagery contains hundreds 

of bands of spectral information per pixel. The second difference is that multispectral 

imagery having so few bands, selects wavelengths that are considered the most 

informative for a particular application; thus, the bands are non-contiguous. 

Hyperspectral sensors sample the spectrum creating hundreds of contiguous spectral 

bands. The result is a spectral signature at every pixel location that can be used to 

identify the materials imaged within the pixel. The spectral signature can also be 

decomposed to identify different materials present in the same pixel.  

For this dissertation, we focus on hyperspectral sensors that measure energy in 

the reflectance wavelengths of the electromagnetic spectrum. Reflectance is defined 

as “the ratio of reflected radiance to incident irradiance” [93]. Simply, reflectance is a 

measure of the energy reflected from the surface of an object. Therefore, 

hyperspectral sensors in the reflective wavelengths are passive instruments measuring 

the light reflected in a scene – typically sunlight. The reflectance wavelengths in the 

electromagnetic spectrum are composed of three spectral bands: the Visible (VIS) 

from 400 nm to 700 nm, the Near Infrared (NIR) from 700 nm to 1100 nm, and the 

Short Wave Infrared (SWIR) from 1100 nm to 2500 nm. Figure 1 displays these three 

spectral bands and provides three typical materials in a hyperspectral image: road, 
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soil, and vegetation. This shows figure demonstrates the spectral resolution available 

in hyperspectral imagery.  
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Figure 1: Hyperspectral Signatures of Common Materials 

 
Figure 1 also displays a few of the effects caused by light passing through the 

atmosphere. Therefore, hyperspectral sensors do not directly measure the reflectance 

properties of a material. Instead, hyperspectral sensors measure the radiance at each 

wavelength. Radiance is defined as “radiant flux per unit area per unit solid angle per 

unit wavelength” [93]. The radiance values not only contain the reflectance properties 

of the object being imaged, but also contain all of the environmental effects that arise 

between the imager and the object being imaged. Thus, the hyperspectral sensor not 

only records the materials in the pixel, but also the spectral signatures due to sunlight 

and the atmosphere such as the absorption bands shown in Figure 1.  

Despite the effects of the atmosphere masking the true reflective signatures of 

the materials being imaged, a number of applications have been developed to utilize 
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hyperspectral imagery such as mineral identification [76][77], land cover 

classification [34], vegetation studies [66], and atmospheric studies [72]. This 

dissertation focuses on target detection applications – specifically, subpixel detection 

where the target is literally smaller than the area imaged by a single pixel. This field 

of study has broad reaching applications from obvious military applications to search 

and rescue operations [106] to forensic investigations for the space shuttle Columbia 

incident [78]. The last application is perhaps the most well known use of 

hyperspectral sensors to perform broad-area searches and find parts of the Columbia 

that were only one inch long from an altitude of 2000 ft.  

1.2.  Subpixel Detection 

Detection can be considered a special two class case of pattern recognition; 

however, it differs from classification in a number of ways [69]. In classification, the 

objective is to minimize the total error across all classes of data [24]. In detection, we 

only want to identify our desired target class amongst a larger background class. This 

reasoning fundamentally assumes that the target class is rare and that most pixels are 

from the background class. Thus, if we minimized the total error as in classification, 

we could simply identify every pixel as background. Of course, we are interested in 

maximizing the detection of targets while minimizing Type I errors – identifying 

background pixels as targets (false alarms) [18]. This maximization of target 

detection and minimization of false alarms is the fundamental difference between 

detection and standard pattern recognition.  

Spectral subpixel detection in hyperspectral image (HSI) data aims to identify 

a target smaller than the size of a pixel using only spectral information [71]. Thus, the 

challenge in detecting subpixel targets lies in separating the target’s spectral signature 
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from other competing signatures within the pixel. To accomplish this “unmixing” of 

signatures, the field of reflectance spectroscopy provides a model of how these 

multiple spectra interact with one another [40]. The most common model assumes 

that the spectra are represented by unique spatially non-overlapping materials. This 

model is called the linear mixing model and it is the cornerstone for most subpixel 

detection algorithms. 

The linear mixing model assumes that a pixel is made up of endmembers, 

each with its own abundance. Endmembers are the spectra representing the unique 

materials in a given image. For instance, in an image that contains soil, vegetation, 

and road, the endmembers would be the corresponding unique spectral signatures for 

each of these materials as shown in Figure 1. Abundances are the percentage of each 

material within a given pixel. Mathematically, the linear mixing model is written as 

 ∑
=

=≥=
M

i
ii aa

1
1,0,Eax  (1) 

where x is an L×1 vector that represents the spectral signature of the current pixel, M 

is the number of endmembers within the image, E is an L×M matrix where each 

column represents the ith endmember, and a is an M×1 vector where the ith entry 

represents the abundance value ai. Note that the linear mixing model includes two 

constraints on the abundance values: non-negativity and sum-to-one. These 

constraints place physical limitations on the abundances making sure they represent 

the percentage of each material present in the pixel.  

1.3.  Thesis 

The interesting part of subpixel detection is not the linear mixing model itself, 

but the parameters of the linear mixing model. These parameters have been 
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historically treated only in a statistical sense. The parameters are typically found 

using maximum likelihood estimates (MLE). This is, of course, a natural way to 

proceed in solving detection problems since such estimates are guaranteed to be 

consistent and asymptotically efficient [18]. However, Prof. David Landgrebe, a 

pioneer in remote sensing, argues in his paper that the improvement in hyperspectral 

image analysis will not be made by using different statistical algorithms, but by 

properly modeling the physics of the problem [64]. Instead of using statistical 

estimates of the parameters, we could use physics-based estimates of the parameters 

within statistical hypothesis tests to improve subpixel detection.  

Some research has already been devoted to this type of physics-based 

detection approach. The most notable is from Thai and Healey [109]. They present an 

algorithm that creates a subpixel detector that is invariant to atmospheric effects. 

They project the desired target reflectance signature to radiance signatures for 

thousands of different atmospheric profiles using the computational physics model 

MODTRAN (MODerate TRANsmission) [3]. From these thousands of possible target 

radiance signatures, they use singular value decomposition (SVD) to extract a set of 

target singular vectors that minimize atmospheric and illumination effects; however, 

they only use physics to derive the target signature. The background signatures and 

detector are still estimated using purely statistical arguments. This has the negative 

effect of generating abundances that cannot meet the linear mixing model constraints.  

Schott [94] and Lee [65] take a slightly different approach to physics-based 

subpixel detection. From the thousands of different target radiance signatures 

generated with MODTRAN, Lee uses a simplex method to identify the target 
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signatures that span the space of all possible target signatures generated. These target 

“endmembers” are concatenated to the image data and a simplex method such as N-

FINDR is used to extract the endmembers [115][116] – some of which they argue 

will be target signatures. This has the result of creating both target and background 

endmembers that are physically meaningful. Unfortunately, they too use least squares 

estimates of the abundances even though physically meaningful abundances could be 

estimated from their endmember signatures.  

Our physics-based subpixel detection approach uses physically meaningful 

estimates of both the endmembers and their abundances. We show this approach 

leads to not only improved detection performance over previous approaches, but also 

provides a level of insensitivity to estimation errors and provides contextual 

information not obtainable with other methods. Additionally, we propose new 

algorithms for nearly all facets of subpixel detection (shown in Figure 2) from 

parameter characterization to threshold estimation. 

 
Figure 2: Subpixel Detection Block Diagram 
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hyperspectral image. This chapter provides an overview of radiative transfer theory 

and how MODTRAN and other methods use this theory to estimate radiance 

signatures from reflectance measurements. We explain how MODTRAN can be used 

with proper weather, topographic, and geometric data to generate a target signature 

for a specific hyperspectral image. From this, we develop a new in-scene algorithm 

that performs similarly to MODTRAN, but uses only a target and reference 

reflectance signature along with the hyperspectral image to estimate a target radiance 

signature for subpixel detection.  

In Chapter 4, we present a new method to estimate the number of endmembers 

that maximize subpixel detection performance. The chapter gives a brief overview of 

endmember extraction techniques and identifies the algorithms we use in this 

dissertation to obtain physically meaningful endmembers. The chapter documents the 

sensitivity of subpixel target detection to the number of endmembers showing how 

slight errors in estimating the number of endmembers can cause severe losses in 

performance. From this result, we compare a number of different algorithms to 

estimate the number of endmembers and compare them to our proposed methods 

relative to subpixel detection performance.  

In Chapter 5, we present our physics-based hybrid subpixel detectors [12]. 

Unlike the subpixel detectors proposed by [41], [49], [58], and [71], we develop a 

detector that uses all of the linear mixing model constraints including the non-

negativity and sum-to-one constraints of the abundances. Our work differs from 

previous work because of how it models the data. The assumption in the literature is 

that the error between the linear mixing model and HSI data can be modeled by zero-
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mean noise with a covariance matrix of σ2I. This has been shown to be erroneous in 

[71]. Using this result, we model the remaining noise using a full covariance matrix to 

account for sensor artifacts and nonlinear mixing effects not represented by the linear 

mixing model. This results in a subpixel detector that has improved performance and 

is partially insensitive to the number of background endmembers used.  

In Chapter 6, we present a new algorithm to estimate a detection threshold for 

a desired false alarm rate for any detector. One of the disadvantages of the hybrid 

subpixel detectors is the use of the non-negativity constraints of the linear mixing 

model. These constraints disallow a closed-form solution for the detector making 

derivation of the target and background conditional distributions difficult at best. To 

overcome this shortfall, we develop an adaptive threshold technique based on 

Extreme Value Theory (EVT). We show the proposed technique outperforms both 

theoretical estimates for Constant False Alarm Rate (CFAR) detectors as well as non-

parametric methods such as Monte Carlo estimates – especially when targets are 

present in the imagery.  

In Chapter 7, we summarize our work and present an example of the proposed 

algorithms working together in a subpixel detection process. Besides providing 

excellent detection of subpixel targets, the result shows the ability of these methods to 

provide near real-time results using a minimal amount of ancillary information. This 

result is important to transitioning hyperspectral subpixel detection algorithms from 

research to practice.  
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Chapter 2: Hyperspectral Data 

In this dissertation, we use hyperspectral imagery from two sensors: the 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and the U.S. Army 

RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) 

Sensor X. The chapter is therefore broken into two sections. Each section contains 

information about the hyperspectral sensor, its images, available target reflectance 

signatures, and corresponding ground truth information.  

2.1.  AVIRIS 

2.1.1.  Sensor Details 

The AVIRIS imagery comes from the National Aeronautics and Space 

Administration (NASA) Jet Propulsion Laboratory (JPL) at the California Institute of 

Technology [111]. This sensor collects 224 contiguous spectral bands spanning the 

wavelengths from 400 to 2500 nm. The sensor was primarily designed for 

environmental remote sensing applications; therefore, the imagery collected has not 

been focused on subpixel detection applications. Nevertheless, the AVIRIS sensor has 

been well calibrated and does not contain any low SNR bands allowing us to use all 

224 spectral bands for processing.  

2.1.2.  Imagery 

We chose one image to use from the AVIRIS data sets: the Cuprite, Nevada 

image [107]. From the Cuprite data set, we chose a sub-image containing a small 

town shown in Figure 3. The image itself covers a 10.4 km by 5.1 km swath of area 

with each pixel measuring 17 m per side. While the AVIRIS imagery has not been 

focused on subpixel detection applications, it can be useful to demonstrate the 
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atmospheric compensation techniques in Chapter 3. AVIRIS images are delivered as 

two images: the original radiance image collected by the sensor and another image 

which is an estimate of the reflectance signatures at each pixel in the image using 

known ground materials. These reflectance estimates will be used to identify how 

well our proposed target characterization method identifies radiance signatures 

generated from flat reflectance signatures.  
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Figure 3: AVIRIS Image of Cuprite, Nevada 

 
2.2.  Sensor X 

2.2.1.  Sensor Details 

The Sensor X imagery comes from the U. S. Army RDECOM CERDEC 

Night Vision & Electronic Sensors Directorate (NVESD). The sensor collects 256 

contiguous spectral bands spanning the wavelengths from 400 to 2500 nm. Along 

with the sensor specifications, we received a spreadsheet containing information 

about the sensor’s spectral bands. For example, the absorption bands for oxygen, 

carbon dioxide, and water were well documented. The spreadsheet also identified low 
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SNR bands in the imagery due to sensor artifacts. For our target detection application, 

these bands are non-informative and only serve to increase processing time without 

providing any benefits. Because of this, we did not use these bands as is typically 

done in target detection applications [41],[70],[71]. After removing these bands, we 

are left with 169 spectral bands for our subpixel detection experiments. 

2.2.2.  Imagery 

We chose seven images to use in this dissertation. The first six images were 

chosen because of their small fill factors (e.g., percentage of a pixel that is comprised 

of target) and the difficult background in which the targets lie. The most difficult of 

these areas is the tall grass site. At this site, the grass is high enough to partially 

obscure the target causing the pixel fill factors to be smaller than expected. The other 

two areas are easier since the targets are not obscured. Figure 4 shows the six images 

with corresponding target locations.  

The seventh image is shown in Figure 5. This image was chosen because the 

targets were full or multi-pixel. This image was selected because the true target 

radiance signatures could be extracted from the image. These signatures can be 

compared to the target radiance estimates described in Chapter 3.. Without this 

image, we would not know how well the target characterization algorithms were 

performing. The image is only used for Chapter 3. Table 1 identifies each of the 

images, the type of area imaged, the amount of area imaged, and the spatial resolution 

of an individual pixel. 

Unfortunately, the imagery we received was collected with an uncalibrated 

sensor. This posed a significant problem. Some of the algorithms within this 

dissertation use the physics-based model MODTRAN that calculates the radiance of 
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an object from its corresponding reflectance signature. The radiance signature 

generated by the model assumes the sensor is calibrated. When the sensor is not 

calibrated, the model will predict signatures that will not match those in the imagery. 

This mismatch is severe enough to render a target detection algorithm useless.  
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Figure 4: Sensor X 1200m Imagery 

(Target 1 ‘+’, Target 2, ‘o’, Target 3 ‘x’, Target 4 ‘*’) 
 

To overcome this problem, we worked with Dr. Marc Kolodner of the Johns 

Hopkins University Applied Physics Laboratory (JHU/APL). Using MODTRAN, we 

generated radiance signatures for known background materials in the imagery. We 
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compared the model-based signatures to the known signatures in the imagery. From 

these comparisons, an offset and gain vector was created. This offset and gain was 

applied to each image to vicariously calibrate the image. These new vicariously 

calibrated images were then used for the experiments in this dissertation.  
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Figure 5: Sensor X 300m Imagery 

(Target 3 ‘x’, Target 4 ‘*’) 
 

Table 1: Description of Sensor X Imagery 
Image Background Clutter 

Density 
Altitude 

(m) 
Area (m2) Pixel Size 

(m2) 
1 Short & Tall Grass High 1220 18811 0.1823 
2 Sparse Grass Medium 1220 18811 0.1823 
3 Sparse Grass Medium 1220 19464 0.1823 
4 Short Grass Medium 1216 18815 0.1815 
5 Sparse Grass Medium 1215 18542 0.1806 
6 Sparse Grass Medium 1213 19097 0.1806 
7 Sparse Grass Medium 313 7400 0.0241 

 
2.2.3.  Spectral Signatures 

Besides the imagery, we received spectral libraries containing reflectance 

signatures for both the targets and background materials. All signatures were 

collected using hand-held spectrometers in the field. Due to this in-field data capture, 

multiple signatures were created for each target and background material. These 

signatures were averaged to form a signature for each material. This method was 

chosen because the averaged spectral signature reduced variations that occurred when 

measuring with the hand-held spectrometer.  
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For the background, numerous signatures were collected. These ranged from 

different types of vegetation to fiducial markers placed in the field for spatial 

registration purposes. This information is typically not available in real-world 

applications, but allows us to vicariously calibrate the images. The signatures are also 

used as reference signatures to help estimate the amplitude of the target signature as 

explained in Chapter 3. 

From the target signatures, we chose four different targets. The targets were 

chosen to provide a wide variety of spectral signatures. The targets are typically 

pieces of metal or plastic small enough to achieve subpixel sizes at 1200m altitudes. 

Additionally, the targets have different paints which cause the reflectance signatures 

to vary from very strong (Target 1) to very weak (Target 4) as shown in Figure 6. 

Table 2 provides a description of each target’s geometry, size, material, color, and 

symbol used in figures throughout the dissertation.  

Table 2: Description of Targets 
Target Geometry Size (m2) Material Color Symbol 

1 Circle 0.0182 Plastic White + 
2 Circle 0.0869 Metal Green o 
3 Square 0.1090 Plastic Green x 
4 Circle 0.0869 Metal Dark Green * 

 
Target 3 was an interesting case as that particular target had two spectral 

signatures. The two signatures existed because it was discovered later that the targets 

were made of slightly different plastics. The difference was very slight as can be seen 

in Figure 6, but was significant enough that it was decided two signatures should be 

used. We chose to use this target because it is the only case where we have multiple 

target signatures for a single target type.  
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Figure 6: Target Reflectance Signatures 

 
2.2.4.  Ground Truth 

Along with the imagery and signatures we received from NVESD, we 

received ground truth information identifying the target locations in the imagery. The 

ground truth data contained object-level location information. Unlike pixel-level truth 

which identifies the location of the targets for each pixel and their corresponding 

abundances, object-level truth specifies an area in the image where the targets are 

located. Therefore, the ground truth identifies the center of the target even though it 

may span multiple pixels. Note that this statement is true even with subpixel targets 

as the target could be located on pixel borders. Table 3 details how many targets are 

in the seven images arranged by target type and image. The locations of each target in 

the Sensor X imagery can be seen in Figure 4 and Figure 5.  

Given object-level ground truth, we had to cluster the detector outputs to form 

objects as pixel level analysis was not possible. To obtain these objects, a clustering 
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threshold is applied to each image. This clustering threshold refers to a threshold that 

combines adjacent pixels together to form an object which will be classified as either 

target or clutter. Typically this threshold is chosen to include no more than 1% to 5% 

of the pixels in the image depending on the application. In our analysis, we chose 1% 

as we knew the number of targets was far less than 1% of the pixels in any one image. 

Each cluster is assigned the maximum detection score from all the pixels that make 

up the cluster. Along with the maximum detection score, each cluster is identified as 

either target or clutter based on their location relative to the object-level ground truth. 

This information can then be used to identify how well a detector performs. 

Table 3: Target Ground Truth 
Image Target 1 Target 2 Target 3 Target 4 All 

1 20 42 0 0 62 
2 0 0 12 9 21 
3 0 0 25 23 48 
4 20 30 0 0 50 
5 0 0 15 12 27 
6 0 0 28 25 53 
7 0 0 24 24 48 

All 40 72 104 93 309 
 

From the ground truth information, we were able to extract target radiance 

signatures from Image 7 due to the targets spanning multiple pixels. These “true” 

target radiance signatures will be used in Chapter 3 to compare the estimated target 

radiance signatures with the ones shown in Figure 7 andFigure 8. Each figure 

contains all of the target radiance signatures found in the image (in gray) and their 

spectral average (in black). Note the wide variability of target signatures in either 

case. Despite our best efforts, some background signatures leaked into our “true” 

target signatures. This occurred because even with four pixels on target, some small 
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amounts of background signatures may still be present. This is especially the case for 

Target 4 where the targets spanned on average 3.6 pixels.  
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Figure 7: Target 3 Radiance Signatures in Image 7 

(Gray lines represent individual targets and black line represents the mean) 
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Figure 8: Target 4 Radiance Signatures in Image 7 

(Gray lines represent individual targets and black line represents the mean) 
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Chapter 3: Target Signature Characterization 

An important part of subpixel detection is the correct characterization of the 

target signature. As explained in Chapter 1, target characterization is especially 

important for hyperspectral detection because the images are collected in terms of 

radiance while the target signatures are measured in terms of reflectance. The reason 

for this mismatch is due to the fact that target signatures are typically measured in 

laboratories or in the field with hand-held spectrometers that are at most a few inches 

from the target surface. Hyperspectral images, however, are collected hundred to 

thousands of meters away from the target and have significant atmospheric effects 

present. Therefore, a transfer function between radiance and reflectance must be 

obtained. This transfer function is known as atmospheric compensation.  

A number of algorithms have been developed to compensate for atmospheric 

effects. The algorithms can be classified into two primary types: radiance inversion 

methods and radiance projection methods. Radiance inversion methods were first 

developed for spectral analysis purposes. Originally, hyperspectral imagery was used 

to classify images into different natural phenomenon for applications such as mineral 

mapping [59],[98],[107]. In order to accomplish this type of classification, the logical 

path was to invert the image from radiance to reflectance and compare the resulting 

corrected image to known spectral reflectance libraries. The idea in these programs 

was not to identify a certain material, but to identify the constituent materials in the 

image for mapping purposes. One such algorithm is FLAASH [3].  

While this may be ideal for image analysts wanting to investigate spectral 

signatures, it is not the best method for detecting subpixel targets. First, the 
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algorithms process every pixel in the image requiring significant processing time. 

Second, the algorithms have to make simplifying assumptions to perform the 

inversion because it is intrinsically an ill-posed problem [75]. So, while these 

programs have enjoyed some success in target detection applications, they are better 

suited for spectral analysis by operators that can make informed judgments.  

The other class of atmospheric compensation algorithms is based on radiance 

projection methods. These methods project a reflectance signature into a radiance 

signature for a particular hyperspectral image. Murphy and Kolodner have one of the 

most direct approaches: calculate the radiance of a target signature at the sensor using 

real-time weather predictions and the known source-target-receiver geometry [75]. 

This type of atmospheric compensation algorithm makes good use of computational 

physics using the MODTRAN atmospheric model [3]. It also provides different 

shading conditions so targets can be modeled in both full sun and full shade (such as 

in the shade of a tree or cloud). Although this approach is the most direct and 

computationally simple, it also requires the most ancillary information to work 

properly. Weather data must be timely and the source-target-receiver geometry 

known precisely. For new data collections, this is usually not hard information to 

obtain; however, for past data collections, this method typically cannot be used 

Healey and Slater simultaneously developed another forward projection model 

that was designed to be atmospheric invariant [45]. Based on Healey’s earlier work 

with color imagery, they developed an algorithm that projected a target reflectance 

signature into approximately 17,000 different environments. From these 17,000 

radiance signatures, they used SVD to create a nine-dimensional subspace that could 
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be used in any environment. Results show that this method works well, but requires a 

significant amount of pre-processing to create the invariant subspace.  

A final set of methods use in-scene information to calculate the target radiance 

signature. These approaches directly estimate atmospheric effects by using 

information present in the imagery. The most popular of these is the Empirical Line 

Method [26]. This method uses an adaptive background estimator to find any 

vegetation in the imagery. Vegetation is used because it is typically ubiquitous and 

has a well-known reflectance signature. Using the estimated vegetation signature 

from the image and the known vegetation reflectance signature allows a direct 

calculation of the transfer function without MODTRAN or any other physical 

modeling technique. The only issue with such an approach is that certain 

environments may not have vegetation in the image such as urban environments, 

winter scenes, or desert scenes.  

This chapter presents our work and analysis of model-based and in-scene 

based radiance projection methods. To begin, we describe in some detail the 

atmospheric transfer function and the simplifying assumptions made for estimation 

purposes. We next describe two current methods for atmospheric compensation: an 

in-scene method developed by Piech and Walker [80] and a model-based method 

using MODTRAN with radiosonde information. . We then present our own in-scene 

method for target characterization called Average Relative Radiance Transform 

(ARRT). The final sections of the chapter compare ARRT to MODTRAN. It will be 

these two methods which we will use throughout the dissertation for target signature 

characterization.  
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3.1.  A Review of Radiometry 

Radiometry is the measurement of electromagnetic fields typically in the 

visible and infrared wavelengths [93]. To understand the measurements at an optical 

sensor, radiometry (or radiative transfer theory) has produced a model of how 

photons (light) propagate from the sun and through the atmosphere. By understanding 

this model, we can understand which parts of the radiance signature measured at the 

sensor are produced by the target of interest and which are produced by the 

surrounding environment. We can also understand which parts of the model are more 

critical than others for target characterization.  

For this dissertation, we only cover the most basic radiometric principles; 

however, there are two excellent books available by Schott [93] and Hapke [40] that 

provide greater details about this interesting theory. Schott’s book is meant primarily 

for the general scientist and engineer interested in remote sensing. Hapke’s book 

provides a more thorough analysis of the governing equations of light. Both are 

excellent resources and much of the material in this section is derived from both of 

these texts.  

For this dissertation, we are concerned only with those photons that can be 

collected by a hyperspectral sensor in the reflectance domain. The reflectance domain 

identifies a range of electromagnetic wavelengths from 400 nm to 2500 nm where 

light is primarily reflected from objects. As the wavelengths increase, the dominant 

effect becomes self emittance of photons (such as heat). While this is an interesting 

regime, our data is all collected in the reflectance wavelengths and as such, we will 

restrict our analysis to these wavelengths.  
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Figure 9: The five sources of light in the reflective wavelengths 

(A: Direct Sunlight, B: Sky Light, C: Upwelled Radiance, D: Multipath Effect, E: 
Adjacency Effect) 

 
In the reflectance domain, there are five main sources of light collected by a 

sensor: direct sun light, sky light, upwelled radiance, multipath effect, and the 

adjacency effect. These multiple sources of light are shown in Figure 9. Sun light is 

the light generated by the sun that passes through the atmosphere, reflects off the area 

being imaged, and is collected at the sensor. Sky light is the light that is scattered in 

the atmosphere which reflects off the area being imaged and back to the sensor. 

Upwelled radiance is the light that is scattered in the atmosphere that never reaches 

the area being imaged. Instead, this light is scattered directly into the optical path of 

the sensor. Multipath effects are due to light that reflects off of multiple objects in a 

scene before arriving at the sensor. The adjacency effect occurs when light scatters 

off of other background objects near the area being imaged into the optical path of the 

sensor [52]. The last two sources of light are very small compared to the first three 
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and are typically not computed in most models. Because of these reasons, only the 

first three light sources will be treated in greater detail.  

3.1.1.  Sun Light 

The most obvious source of light is the sun. Photons are generated at the sun 

and pass through the atmosphere onto the object being imaged and back to the sensor. 

Along the way, the spectral properties of the light are changed as the photons are 

absorbed and scattered through the atmosphere. These effects can be mathematically 

modeled as  

 0000 cos)(),,,(),,(),,,,(),,( ϑλλφϑλλφϑλ EzTyxRzzKTyxL gdvvugusun =  (1) 

where Lsun is the radiance seen at the sensor generated from sun light, K is the amount 

of energy at the top of the atmosphere, Tu is the upward atmospheric transmittance, R 

is the reflectance of the object being imaged, Td is the downward atmospheric 

transmittance, and E0 is the exoatmospheric spectral signature of the sun. All of these 

quantities are a function of the spectral wavelength λ and most of the quantities are 

based on the geometry of the source (sun), target (object being imaged), and receiver 

(camera) geometry as shown in Figure 10. The geometries are based on cylindrical 

coordinates where zg is the elevation of the sun, zu is the elevation of the camera, θv  is 

the declination of the camera from a normal vector to the surface, θ0  is the 

declination of the sun from the same normal vector, φ0 is the azimuth of the sun and 

φv is the azimuth of the camera.  
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Figure 10: Source-Target-Receiver Geometry 
 

3.1.1.1.  Solar Spectral Signature E0 

For light to reach the sensor, light must first be generated. Ideally, the light 

source should be spectrally flat equally distributing the energy across all wavelengths. 

This can be accomplished in a laboratory setting, but in hyperspectral applications, 

the light source is typically the sun which has its own spectral signature. The sun’s 

atmosphere is made of 73.46% hydrogen, 24.85% helium (by-product of the fusion of 

hydrogen atoms), and a fraction of other naturally occurring elements. These gases 

absorb certain wavelengths of light causing the documented Fraunhofer Absorption 

Lines [55]. Additionally, the fusion reaction produces more energy in the visible 

wavelengths. When these two effects are combined, it produces the typical solar 

spectrum seen in Figure 11. Thus, all images are colored with this solar spectrum. 

The amount of sun light that reaches an object is a function of the sun 

declination angle and the downward atmospheric transmittance. The declination angle 

determines how much sun light directly hits an object. For example, when the sun is 
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directly overhead, the declination angle is zero and all the sun light reaches the object 

(cos(0°) = 1). When the declination angle is 60°, the amount of energy is only half of 

the energy when the sun is directly overhead. The interesting result of this effect is 

that the declination angle can be caused by either the sun being lower in the sky or the 

object sitting on a non-level surface. Thus, besides the angle of the sun relative to the 

horizon, even minor changes in topography can change the overall amount of sun 

light an object receives.  
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Figure 11: The Solar Spectrum 

 
3.1.1.2.  Downwelled Atmospheric Transmittance Td 

The other effect that reduces the sun light reaching an object is the 

downwelled atmospheric transmittance. The downwelled atmospheric transmittance 

quantifies the scattering and absorption effects that occur as light passes through the 

atmosphere. Scattering disperses the photons out of the direct path of the object 

thereby reducing the amount of light reaching the ground. The other dominant effect 
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is absorption which reduces the energy in certain wavelengths due to such molecules 

as water and carbon dioxide. By the time the light reaches the object being imaged, it 

has both the spectral properties of the sun and the intervening atmosphere as shown in 

Figure 11.  

We can model how the atmosphere affects the sun light using a number of 

cylinders stacked on top of one another representing different altitudes. Each of these 

cylinders has a certain temperature, pressure, and humidity. These measurements 

dictate the amount of absorption and scattering that occurs within each cylinder and at 

each wavelength. Near the top of the atmosphere, there are very few particles and 

hence the three measurements are not as critical as near the bottom of the atmosphere. 

Thus, the cylinders are tall at the top of the atmosphere and become smaller as they 

reach the surface. This occurs because the dense atmosphere is located near the 

surface and causes a significant portion of the transmittance effects. This dense 

atmosphere is also the most variable as weather changes occur mostly in this region 

making signatures vary from one location to another.  

3.1.1.3.  Reflectance R 

Once the sun light reaches the object, the reflectance of the object dictates 

which wavelengths of light are absorbed and which are reflected in various directions. 

The spatial reflectance attributes of a material are described by its bidirectional 

reflectance distribution function (BRDF). This function measures the reflectance for 

all wavelengths and input-output angles. A full BRDF characterization of a material 

is rare; so, materials are typically classified into gross categories ranging from 

specular reflectors to diffuse reflectors (also known as Lambertian). Specular 

materials reflect light in one direction such as mirrors. Diffuse reflectors reflect light 
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in all directions equally such as flat paint. Most materials fall between these two 

categories, but tend to be more diffuse then specular. Because BRDF 

characterizations are rare and most materials can be treated as diffuse, we assume 

diffuse reflectors for the remainder of this dissertation.  

3.1.1.4.  Upwelled Atmospheric Transmittance Tu 

After the light has been reflected from the object being imaged, it passes back 

through the atmosphere to the sensor. The upwelled atmospheric transmittance 

quantifies these atmospheric effects. Upwelled atmospheric transmittance is very 

similar to downwelled atmospheric transmittance. The real difference between the 

two transmittances is upwelled transmittance only affects light between the object and 

the sensor. Therefore for low altitudes (e.g. 300m), this effect is minimized. On the 

other hand, the sensor could be space-borne in which case the light passes through the 

entire atmosphere. Either way, Tu is modeled the same way as Td using cylinders of 

the atmosphere along the light path to quantify the scattering and absorption effects. 

As described in (1), the light reaches the sensor after being affected by the solar 

spectral signature, downwelled atmospheric effects, reflectance of the object being 

imaged, and upwelled atmospheric effects.  

3.1.2.  Sky Light 

In the previous sections about atmospheric transmittance, scattering played an 

important part of how the spectral signature of the sun light was changed. This 

scattering of light has another side effect causing a secondary light source called sky 

light. Sky light can be mathematically modeled as 
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where Lsky is the sky light radiance at the sensor, R is the reflectance of the object 

being imaged, Tu is the upwelled atmospheric transmittance, and Es is the amount of 

energy scattered by the atmosphere.  

Sky light takes a very similar path to sun light. Once the light reaches the 

object being imaged, it reflects the same as the sun light (assuming a diffuse 

material), and is reflected back up through the atmosphere to the sensor along the 

same path as the sun light. The main difference between sky light and sun light is the 

source of sky light is the scattering of photons in the atmosphere. These scattered 

photons arrive at the object being imaged from all directions. Therefore, these 

different patches of sky light are integrated over the hemisphere above the object 

being imaged. This produces the two integrals seen in (2) replacing the 

0000 cos)(),,,( ϑλλφϑ EzT gd  term in (1).  

There are three types of scattering that take place. The most well known 

scattering effect is Rayleigh scattering as explained by Lord Rayleigh to answer why 

the sky was blue [67]. Rayleigh scattering occurs when light interacts with the very 

small molecules that make up the atmosphere. The scattering occurs mostly in the 

blue wavelengths while other wavelengths are absorbed creating the blue color of the 

sky.  

The other well known scattering effect is Mie Scattering [105]. This type of 

scattering occurs when photons interact with particles that are roughly the same size. 

These particles are typically composed of aerosols, combustible by-products, and 

small dust particles. This effect causes the scattered light around cities to be much 

different from the light scattered in rural areas.  
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The final effect is called non-selective scattering. This type of scattering 

occurs when the particles are much larger than the photons of light. Examples of such 

particles are water droplets and ice crystals that are due to cloud formations. Thus, 

scattered light can be affected by the amount and types of cloud cover in the image. 

Theses different scattering effects explain why images taken of rural areas on 

cloudless days can be very different from images taken of cities on partially cloudy 

days.  

3.1.3.  Upwelled Radiance 

While some light is scattered so that it illuminates the object, other light is 

scattered directly towards the sensor. Unlike all the previous sources of light, 

upwelled radiance, Lup, never reaches the object being imaged. This light is scattered 

directly into the sensor’s optical path from the atmosphere. Like sky light, it 

undergoes the same three scattering processes making it vary based on location and 

weather conditions. This has two effects on the imagery. The first effect reduces the 

overall contrast of the image. The second effect causes a blue shift (an increase in 

energy at the blue wavelengths) as the upwelled radiance term is typically dominated 

by Rayleigh scattering.  

A good example of upwelled radiance is fog. As fog settles in, our eyes cannot 

see objects far away because they are obscured by the scattering of light towards our 

eyes from the water vapor particles (Mie and non-selective scattering). The effect is 

those objects disappear in a haze of gray. This effect is always present except it 

typically scatters such a small amount of photons relative to sun and sky light to make 

it undetectable in most situations.  
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The same can be said about the upwelled radiance reaching a sensor. In 

normal environmental conditions, upwelled radiance has a very small effect relative 

to the other sources of light. However, as the sensor is placed higher in altitude, the 

scattering effect becomes more predominant and can start to reduce the contrast of the 

image at the sensor. This occurs because there are more particles and thus more 

opportunities for scattering to occur.  

3.1.4.  Atmospheric Transfer Function 

We can now mathematically define the radiance L reaching a sensor from an 

object with reflectance R as 
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The radiance equation in (3) states that the radiance at the sensor is a linear 

combination of the sun light, sky light, and upwelled radiance contributions. 

Although the final equation is a linear combination, the previous sub-sections detail 

how complex the atmospheric transfer function is to compute. Detailed weather 

information, source-target-receiver geometries, topography, and BDRFs are required 

to solve all the necessary functions. Typically, all of this information is not available 

and algorithms have to make simplifying assumptions. What assumptions are made 

depends on the type of algorithm.  

3.2.  Current Target Characterization Algorithms 

Nearly all algorithms that convert reflectance to radiance or vice-versa are 

based on (3). The difference between these algorithms is the simplifying assumptions 
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they make and how they estimate each of the light sources. These algorithms can be 

broken down into two general methods: model-based methods and in-scene based 

methods.  

3.2.1.  Model-Based Methods 

Model-based methods attempt to solve (3) directly. This type of solution 

requires a wealth of ancillary information besides the image. From Figure 10, the 

exact locations of the source, target, and receiver are required. This information is 

easy to obtain from the Global Positioning System (GPS). The location of the sun 

relative to a ground location is also well understood and can easily be found on the 

internet for a given location and time.  

The information that is not as easy to obtain is weather data. In the modeling 

of atmospheric transmittance, the temperature, humidity, and pressure at varying 

levels of altitude need to be measured (i.e, the cylinders of the atmosphere). 

Typically, this is done using radiosondes. Radiosondes are weather sensors attached 

to balloons that measure all the needed weather information. Unfortunately, 

radiosonde information is not always available or applicable. For example, 

radiosondes are collected at certain locations which may be too far from the area 

being imaged to be applicable. If radiosonde data is available, the information is 

typically collected only twice a day and may describe the atmospheric profile that 

occurred hours in the past.  

Murphy and Kolodner developed another way to get the requisite weather data 

[75]. If radiosonde data is not present or is inaccurate due to the aforementioned 

issues, weather maps generated from weather stations can be used. These weather 

maps produce an atmospheric profile that can be estimated via interpolation between 
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weather stations. This information is fused with satellite imagery to produce an 

accurate atmospheric profile at any location on the planet. This information is then 

used as the model inputs.  

Once the ancillary information has been collected, a computational model can 

calculate the radiance for a given reflectance at any angle, source-target-receiver 

geometry, and wavelength via (3). MODTRAN is arguably the most used 

computational model [3]. It produces an estimate for every function in (3) and can 

make estimates for large declination angles as well as areas with variable topography. 

For most of the functions, it performs a direct calculation, but for the atmospheric 

transmittance functions, it has to make a simplifying assumption.  

The scattering and absorption is not only a function of humidity, temperature, 

and pressure, but also of the constituent particles in the atmosphere. To model these 

particles in the atmosphere, MODTRAN uses one of many atmospheric profiles for 

urban, desert, or rain forest areas to name a few. Each profile uses a lookup table to 

provide an estimate of how light is scattered based on the types of particles found 

above each area type. Unfortunately, real world situations can vary significantly from 

the atmospheric profiles included with MODTRAN. While this may not greatly effect 

the radiance estimate, such assumptions can be very important when estimating weak 

target signatures such as Target 4.  

Model-based methods have become the standard for atmospheric 

compensation techniques. They can make estimates for every parameter and function 

in the atmospheric transfer function. These estimates can take into account any type 

of topography and source-target-receiver geometry – even when the sensor may be on 
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or near the ground. To accomplish this calculation, they require a significant amount 

of ancillary information about source-target-receiver geometry, weather, and 

atmospheric profile type.  

3.2.2.  In-Scene Methods 

The problem with model-based methods is that we sometimes lack all of the 

necessary ancillary information (or any estimate thereof). This is especially true with 

images collected in the past where such information was simply not collected. 

Because the information is either inaccurate or not available, another way to estimate 

the atmospheric transfer function was created using only the image data. These 

methods are called in-scene methods.  

In-scene methods have to make a number of simplifying assumptions as well. 

The first assumption is that the area being imaged is small enough that the 

atmospheric profile (azimuths, altitudes, declination angles, etc.) is the same for all 

pixels even though this may not be true in a number of cases (e.g. water vapor [32]). 

The second assumption is that the pixels being used to estimate the atmospheric 

transfer function have Lambertian scattering properties. This assumption again is not 

necessarily true [89], but materials can be found that have near Lambertian properties 

that are acceptable for in-scene methods. Third, pixels that contain only one material 

(pure pixels) must exist in the image. Thus, in-scene methods are best for aerial 

images that cover a small amount of ground area.  

3.2.2.1.  Piech and Walker Shadow Method 

One of the earliest and most accurate in-scene methods was developed by 

Piech and Walker [80]. They noted that shadow regions could be used to estimate the 

three main light sources in the atmospheric transfer function. Instead of estimating 
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detailed functions such as atmospheric transmittance, the atmospheric transfer 

function was simplified to  

 )()()()()()( λλλλλλ upskysun LFLRLRL ++=  (4) 

where F is the fraction of the sky above the area being imaged (i.e., in shadow zones 

the amount of sky not blocked by the object creating the shadow). All x,y coordinates 

have been removed since we assume Lambertian scattering with equal amounts of 

light at each pixel.  

The key to this method is realizing that in shadow zones, (4) becomes  

 )()()()( λλλλ upskyshade LFLRL +=  (5) 

since the sun light term has been reduced to zero. The algorithm therefore requires a 

material that is in both direct sun and shade conditions. When this occurs, the sunlight 

term can be easily calculated by taking the difference between (4) and (5) and solving 

for the sun light term to obtain  
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To isolate the upwelled radiance term, equations (4) through (6) can be 

combined so the total radiance term is a linear regression of the shade radiance term 

as 
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Using multiple materials with varying reflectance signatures, (7) can be solved to 

obtain the m and b terms at each wavelength. Rearranging these terms provides the 

upwelled radiance estimate 



 36 
 

 
)(1

)()(
λ

λλ
m

bLup −
= . (8) 

Equations (6) and (8) provide a way to establish the last light source such that 
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This algorithm provides estimates of each light source within the atmospheric 

transfer function. The algorithm requires a shadow area which contains numerous 

pixels of the same material in both full sun and full shade conditions. Additionally, 

the algorithm requires multiple materials to be identified (historically by hand) to 

make estimates of the upwelled radiance term. In cases where these constraints 

cannot be met, we must rely on other methods.  

3.2.2.2.  Empirical Line Method 

The empirical line method (ELM) is simpler than the shadow method and 

does not require any shadows in the imagery. ELM also does not estimate all of the 

light sources in the atmospheric transfer function. Instead, ELM makes the following 

simplification  

 )()()()( λλλλ upskysun LLRL += +  (10) 

where the Lsun+sky term combines the sun light and sky light into a single term 

assuming F = 1 due to the lack of shadows. Equation (10) identifies that the total 

radiance term is a linear combination of the upwelled radiance, the combined sun and 

sky light terms, and the reflectance. Thus, a linear relationship could be established 

by identifying a material with known reflectance in the scene. From this knowledge, 

the combined sun and sky light and upwelled radiance terms could be calculated for 
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each wavelength via linear regression. The linear regression is performed to estimate 

reflectance signatures from the radiance measurements in the image.  

Various papers have identified numerous ways ELM can be implemented. All 

perform linear regression, but vary the number of materials required to estimate the 

parameters. The simplest implementations use one material and assume zero 

reflectance objects have zero radiance [26],[73]. This, of course, is not true as it 

assumes the upwelled radiance term simply does not exist. Not surprisingly, studies 

show errors of up to 20% in the predicted reflectance when compared to the true 

reflectance signature. Further studies used multiple known materials [26],[83] which 

show that four materials make the best estimates varying only a few percent from the 

actual reflectance signature.  

While ELM has removed the need to have shadows, it does still require a 

significant number of known materials exist in the image. In cases where the study 

area is well documented or panels of known reflectance are placed in the scene, ELM 

performs very well. However, in images where only one material is well known, 

another method called dark object subtraction may be more applicable.  

3.2.2.3.  Dark Object Subtraction 

Dark object subtraction is very simple. The idea is to find the minimum 

radiance values for each band in the image. These minimum values should represent 

the upwelled radiance assuming that the dark pixels have near-zero reflectivity. Using 

this dark object estimate as the upwelled radiance term allows the linear regression in 

ELM to take place without needing more than one known material. 

This assumption holds in the NIR and SWIR bands, but the visible bands can 

have significant errors. The errors are especially troublesome when working with 
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subpixel targets which have low reflectance signatures. These low reflectance values 

from the targets inadvertently become part of the estimated upwelled radiance 

estimate. The overall effect in such cases is a corruption of the atmospheric transfer 

function and thus it is not well suited for subpixel detection.  

3.3.  Average Relative Radiance Transform 

Another way to estimate the atmospheric transfer function is to use detection 

theory. There are a few reasons for approaching target characterization in this 

manner. First, the imagery does not have all the necessary ancillary information 

required by model-based methods. Second, the in-scene methods require user 

interaction to identify the materials with known reflectance in the image. This can be 

a time consuming process requiring a person with significant knowledge of remote 

sensing. Third, the simpler in-scene methods requiring the least amount of 

information are the most variable making them inappropriate for subpixel detection. 

Fourth, both in-scene and model-based methods were developed for analysis 

purposes. The idea was to map the radiances measured in the image back to 

reflectance values for comparison against spectral libraries for environmental 

research such as land class mapping and deforestation studies.  

These reasons led us to develop a new atmospheric compensation algorithm 

for subpixel detection applications. To make subpixel detection applications 

accessible to a wide variety of users, the target characterization algorithm should 

automatically generate a target signature that can be used by a detector with little or 

no user intervention. The method should also use as little ancillary information as 

possible because this data may not always be available (e.g. historical image 

collections or analysis of areas for which information is not available). Finally, the 
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target characterization algorithm needs to provide enough fidelity that a detector can 

identify the target even among materials with similar spectral signatures.  

The aforementioned constraints led us to develop the Average Relative 

Radiance Transform (ARRT). ARRT has a number of advantages. First, the algorithm 

is computationally efficient. Instead of projecting thousands (possibly millions) of 

pixels from radiance to reflectance, ARRT projects a few target reflectance signatures 

to radiance – a thousand or more so improvement in processing time. Second, ARRT 

is an in-scene atmospheric compensation technique requiring very little ancillary 

information. The algorithm only requires the image, the desired target reflectance 

signature, and a reference background reflectance signature. Source-target-receiver 

geometries and detailed weather information are not required. Third, ARRT is fully 

automated requiring only the aforementioned input signatures and image. Fourth, 

since ARRT is an in-scene method, the sensor need not be calibrated. As long as the 

errors in the sensor are uniform across the image, ARRT will account for the 

calibration errors where model-based methods cannot.  

The original ARRT idea is based on the Internal Average Relative Reflectance 

algorithm (IARR) [59]. The IARR algorithm uses the spectral mean of an image as 

the atmospheric transfer function (ignoring upwelled radiance effects). The 

fundamental idea assumes that the image is comprised of many different underlying 

reflectance signatures that cancel one another when averaged together. The end result 

is the average spectral signature has a flat reflectance with some unknown 

multiplying factor K. Our early work demonstrated that applying IARR to generate 

target radiance signatures could work for subpixel detection algorithms [15]. The 
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drawback of the method is the assumption that the reflectance signatures cancel one 

another. Typically, the spectral mean still contains some of the reflectance 

characteristics of the dominant material. For example, if vegetation dominates the 

image, the spectral mean will have characteristics of the vegetation making it 

ineffective for certain targets.  

This drawback led us to an updated ARRT algorithm that uses a two-pass 

detection method. The first detection pass identifies pixels with radiance values that 

most likely contain flat reflectances. This is very much like the underlying idea in 

IARR; however, ARRT directly detects these radiance signatures in the image instead 

of relying on the spectral mean.  

To detect these highly probable flat reflectance materials in the image, a band 

ratio technique is employed. Band ratio techniques have been used in other analyses 

to identify vegetation, soil types, and other materials [48],[88]. For this application, 

we use a ratio between bands located on either side of the red-edge wavelength (700 

nm). The red-edge effect causes a significant increase in reflectivity near 700 nm that 

corresponds to chlorophyll content (Figure 1) [90]. For radiance signatures generated 

from flat reflectance materials, the radiance drops slightly from 550 nm to 730 nm 

causing a band ratio less then one. Empirically, we found the value 0.8 to work best at 

identifying flat radiance signatures using both real-world HSI data and flat reflectance 

signatures generated by MODTRAN. Using this band ratio, radiance signatures with 

highly probable flat reflectances are found in the image and averaged together. As 

with IARR, the average reduces material and sensor variability to provide a better 

estimate of the flat reflectance than any single pixel found in the image.  
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To demonstrate the band ratio technique, we use the AVIRIS image in 

Chapter 2. For this data, we have two images with one being the true radiance 

measurement at the AVIRIS sensor and the other image being the estimated 

reflectance signatures for each pixel. The reflectance signatures were generated using 

model-based atmospheric compensation techniques validated by ground 

measurements of the scene [21]. Therefore, we will assume the reflectance estimates 

are accurate.  

Figure 12 shows the results of the first stage of the ARRT algorithm on the 

AVIRIS data. In the top sub-figure, the mean spectrum of the radiance signatures 

chosen by ARRT to have highly likely flat reflectances is plotted. Using those pixel 

locations, we calculate the mean reflectance signature from the AVIRIS data in the 

second sub-figure. The reflectance is nearly flat across the spectrum except for some 

slight nonlinear effects near the lowest wavelengths. This slight decrease in 

reflectance is most likely an artifact of the AVIRIS reflectance estimation model. For 

example throughout the entire AVIRIS image, no one signature has a flat reflectance 

despite the presence of concrete in the image – a material with a known flat 

reflectance. Nevertheless, ARRT is finding radiance signatures that have a nearly flat 

reflectance signature.  

The result of the first detection pass determines the spectral shape, but not 

amplitude. The average flat radiance signature is mathematically expressed as 

 )()()( λλλ upskysunflat LRLL += +  (11) 

where Lflat is the flat radiance signature estimated from the image. Because we 

assume the reflectance is flat, the reflectance term R should be constant for all 
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wavelengths. Additionally, Lflat includes the upwelled radiance term which causes a 

blue shift and loss of contrast as detailed in Section 3.1.3.  Nevertheless, the Lflat term 

contains most of the spectral shape characteristics. Therefore, multiplying a 

reflectance signature by Lflat obtains a good representation of the spectral shape of the 

target material; however, the amplitude is still unknown as we do not have an 

estimate for R.  
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Figure 12: Comparison of Mean Radiance and Reflectance Estimates Using ARRT 
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It has been proposed that the amplitude mismatch is not problematic for 

detection applications. This statement is true in full pixel detection algorithms which 

use a replacement model (i.e., the pixel is either background or target, but not both). 

For full pixel target detection, the detectors normalize the pixels and desired target 

signature by their L2 norm (see Spectral Angle Mapper [54],[95]). The result of such 

a normalization procedure makes the shape of the spectral signature the important 

determining factor as opposed to the amplitude. For replacement models, this is a 

desired result.  

In subpixel target detection, the model is additive (i.e., the pixel is background 

or background plus target). To understand what happens if we divide a pixel by its L2 

norm, we describe a pixel using the linear mixing model introduced in Chapter 1: 

 .

1
2

1

2
1

1 1

1

21

1

2 ∑

∑

∑∑

∑

∑

∑

=

=

= =

=

=

= ≠

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=== M

i
ii

M

i
ii

M

j

M

i
i

T
jij

M

i
ii

M

i
ii

M

i
ii

norm

e

e

ee

e

e

e

x
xx

α

α

αα

α

α

α
 (12) 

Unlike full pixel targets, subpixel targets contain a number of background 

endmembers that are not a simple linear combination of their norms (i.e., cross terms 

exist in the solution). Therefore, normalizing the pixel, the background endmembers, 

and target spectra independently does not achieve the same result as full pixel target 

detection.  

Because of this result, subpixel target detection requires a signature that is 

correct both in shape and amplitude. To estimate the amplitude, a second detection 

pass is required with a known reference material. Known reference materials refer to 

signatures within the image for which their reflectance signature is known. For 
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example, some ELM implementations use vegetation as a reference material. ARRT 

has no restriction on the reference material except that it has a moderate to strong 

reflectance signature and occurs as a pure pixel in the image.  

A number of methods exist to choose a proper reference material. For 

example, reference signatures can be found based on the geographic region where the 

image was collected. If the image was collected over a desert region, sand would be 

an excellent reference signature while in forests, certain deciduous tree varieties 

would be a better match. All of these signatures are freely available from the United 

States Geological Survey (USGS) website (http://speclab.cr.usgs.gov/). Additionally, 

the USGS and other organizations have land class databases that describe the natural 

attributes of any area on the planet. From these two sources, a reference material for 

any image can be found.  

Once a reference material and its corresponding spectral signature have been 

identified for the image of interest, the ARRT algorithm uses the Spectral Angle 

Mapper (SAM) algorithm to find the corresponding reference radiance signatures in 

the image [54]. Those pixels that pass a detection threshold are then ranked by their 

detection score. The top N detection scores are averaged to obtain the corresponding 

reference radiance signature for the image. Note we do not use the top N detection 

scores directly; instead we use the top N detection scores above a detection threshold. 

The reasoning behind this decision is that a given reference signature may not 

actually be within the image and the algorithm should not blindly use detection scores 

that fail to pass a minimum threshold. If there are no detections found in the image, 
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ARRT will inform the user and ask for another reference signature that better matches 

what is available in the image.  

If a reference radiance signature is found, it is used to calculate the unknown 

reflectance R value in (11). The solution is 
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where Rref is the reflectance signature of the reference material and Lref is the radiance 

signature estimated from the image for the reference material. R can be estimated 

assuming the reference signature has a high reflectance signature thus minimizing the 

effect of the upwelled radiance term.  

An estimate of the upwelled radiance term can also be calculated as  
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The estimated upwelled radiance term is the difference between the estimated 

radiance signature and the detected radiance signature of the reference material in the 

visible wavelengths. In the near infrared and short-wave infrared wavelengths, errors 

due to noise dominate the signature. In the visible wavelengths, the Rayleigh and Mie 

scattering effects dominate, being significantly stronger than the error terms; thus, we 

clip the estimated upwelled radiance to only affect the visible wavelengths.  

The final estimated target radiance signature can be calculated as 
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where RT is the reflectance signature of the desired target. To help clarify the ARRT 

algorithm, Figure 13 provides a block diagram describing the two-pass detection 

process and what inputs are necessary at each stage to arrive at (15).  

 
Figure 13: ARRT Block Diagram 
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valid for certain conditions. First, ARRT was designed for aerial imagery where the 

upwelled radiance terms are small compared to the sun light and sky light terms. 

Second, ARRT requires a reference signature that has moderate to high reflectivity 

and has at least one pure pixel in the image. Currently, ARRT does not handle 

Amplitude Shape 

Find “Flat” 
Radiances 

Hyperspectral 
Image 

Target 
Reflectance 

Reference 
Reflectance 

Find Reference 
Radiances 

Found? 

Error 

Found? 

Calculate 
Amplitude 

Atmospheric 
Compensation 

Target Radiance 
Signature 

Y

YN

N



 47 
 

shadow zones, but this can be addressed in another version that merges these 

techniques with Piech and Walker’s work [80]. This will be discussed in more detail 

in Chapter 7. 

3.4.  Experimental Results 

As with any atmospheric compensation algorithm, certain assumptions had to 

be made with ARRT. To validate whether these assumptions are valid and allow 

ARRT to produce useful target radiance signatures, we have designed two 

experiments. The first experiment uses Image 7 from Sensor X to directly compare 

target signatures generated by MODTRAN and ARRT to known target radiance 

signatures in the image. The second experiment compares target radiance signatures 

estimated using MODTRAN and ARRT relative to subpixel target detection 

performance.  

Besides the imagery used for these experiments, a wealth of ancillary data was 

also collected. Radiosonde information was available from a nearby airport; however, 

this data was six hours old by the time the imagery was collected. Source-target-

receiver geometry was also well documented as GPS was used on the airplane 

carrying the sensor. Numerous hand-held spectrometers were used on the ground to 

measure the reflectance of both target and background materials. While the sensor 

was not calibrated, the soil reflectance and radiance signatures were measured to 

correct for calibration errors via vicarious calibration as explained in Chapter 2. All of 

this ancillary data makes the following comparisons between MODTRAN and ARRT 

possible.  



 48 
 

3.4.1.  Comparison of Target Radiance Signatures 

This experiment was used to validate the ARRT algorithm produces target 

signatures that match the actual target radiance signatures in an image. Image 7 from 

Sensor X was used for this experiment. The image was flown at 313m altitude so that 

each pixel imaged 0.0241 m2 of area. The image contains Targets 3 and 4 with areas 

of 0.1090 m2 and 0.0869 m2 respectively. Targets thus spanned on average 4.5 and 3.6 

pixels respectively.  

Because the targets are multi-pixel, using the ground truth we received with 

the image, we were able to extract the true target radiance signatures from the image 

as shown in Figure 7 andFigure 8. These figures show the spectral variability of each 

target and their corresponding mean spectra. For Target 3, the mean spectrum is used 

in this experiment. For Target 4 however, we used only one signature pulled from a 

pixel that contained pure target spectra. Unfortunately, the smaller Target 4 only 

covers 3.6 pixels and thus has some background signature that “bleeds” into the target 

area as explained in Chapter 2. This minor corruption of the target signatures can be 

very serious when dealing with low reflectance targets. When the mean spectrum for 

Target 4 was used to test the subpixel detectors, it provided the worst detection 

performance supporting the hypothesis that many of the “true target” signatures were 

corrupted by background.  

ARRT and MODTRAN were used to estimate Target 3 and Target 4 radiance 

signatures for Image 7. In the case of ARRT, two variants were used: one version 

estimated the upwelled radiance term while the other did not. The three estimated 

radiances were plotted against the known Target 3 and 4 radiance signatures in Figure 

14 andFigure 15 respectively.  
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Figure 14: Comparison of Atmospheric Compensation Algorithms for Target 3  
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Figure 15: Comparison of Atmospheric Compensation Algorithms for Target 4 

 
In addition, quantitative measurements are presented in Table 4. For each 

algorithm and target, two metrics were created measuring the similarity in amplitude 
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and similarity in shape to the true target signature. The metric for measuring the 

amplitude similarity is 

 2ŜS −=α  (16) 

The metric for measuring the shape similarity is the angle between the spectral 

signatures  
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The estimated target radiance signature that minimizes the above metrics provides a 

better match to the true target radiance signature.  

Table 4: Quantitative Comparison of Atmospheric Compensation Algorithms 
Target Metric MODTRAN ARRT ARRT 

(No Lup) 
α 5664 2547 1888 3 
θ 5.86° 4.00° 2.98° 
α 1515 1648 2342 4 
θ 9.81° 7.83° 10.49° 

 
Comparing the signatures using Figure 14, Figure 15, and Table 4, ARRT 

estimates the target radiance signatures well. For Target 3, ARRT outperforms 

MODTRAN in matching the true target signature. The shape and amplitude is a better 

match and as such we expect to have better detection performance using the ARRT 

signature. Interestingly, the ARRT version without an upwelled radiance is 

marginally better than the standard ARRT algorithm.  

For Target 4, the results are mixed. MODTRAN estimates the amplitude very 

well, but does not do as well estimating the overall shape of the signature. The ARRT 

algorithm estimates the shape better than MODTRAN, but underestimates the 
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amplitude. The ARRT algorithm without the upwelled radiance term performs the 

worst of all the variants. All algorithms however underestimate the shape and 

amplitude of the SWIR bands including MODTRAN. In the next section we show 

that this underestimation will lead to poor detection performance. Thus, Target 4 is an 

interesting case for further research into ways to improve all atmospheric 

compensation techniques.  

Overall the ARRT algorithm performs as well as MODTRAN using only the 

target reflectance signature, reference signature, and imagery. MODTRAN requires 

radiosonde information, vicarious calibration, and GPS information to produce 

signatures that are at best only slightly better than ARRT. Considering the amount of 

time necessary to collect all this information and process it through MODTRAN, 

ARRT provides similar target estimates with significantly less ancillary data and in a 

fraction of the time.  

3.4.2.  Comparison of Target Signatures for Subpixel Detection 

While comparing the estimated radiance signatures to their true counterparts is 

important, it does not answer whether the estimated targets are a good match for 

subpixel target detection applications. This set of experiments was designed to answer 

the aforementioned question using the well known Adaptive Cosine Estimate (ACE) 

algorithm [58]. This detector is one of the better detectors available for subpixel 

detection in HSI data. Another reason for using this detector is the background is 

modeled entirely by a multivariate normal distribution; thus, no background 

endmembers are required. The algorithm’s performance is based solely on the image 

and the target signature. Thus, ACE makes an ideal algorithm to use for experiments 
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comparing algorithms that generate target radiance signatures. More information on 

the ACE algorithm is documented in Chapter 5.  

For all of these experiments, the ACE algorithm was processed in the 

following manner. Besides the target signature, a mean and covariance had to be 

estimated. There are two ways to estimate these parameters: globally or locally. We 

chose the global method for these experiments as this provided both the best 

performance and the fastest implementation. Typically, the SAM algorithm is used to 

detect obvious target detections and remove them from the image before calculating 

the global mean and covariance as was done for Image 7. In Images 1 through 6 

however, the targets are so small, they are not detected by the SAM algorithm and 

hence were not removed. While this may slightly degrade performance [27], it 

provides the most honest performance results as real-world applications will not have 

knowledge of the ground truth a-priori.  

Once the ACE detector was run, a detection image was generated. As 

mentioned in Chapter 2, the ground truth for Sensor X was for object level detection. 

To obtain objects from our detection images, a clustering threshold is applied. This 

clustering threshold refers to a threshold that combines adjacent pixels together to 

form an object which will be classified as either target or clutter. Typically this 

threshold is chosen to include no more than 1% to 5% of the pixels in the image 

depending on the application. In our analysis, we chose 1% as we knew the number 

of targets was far less than 1% of the pixel in any one image. Each cluster is assigned 

the maximum detection score from all the pixels that make up the cluster. Along with 

the maximum detection score, each cluster is identified as either target or clutter 
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based on their location relative to the object-level ground truth. This information can 

then be used to identify how well a detector performs.  

3.4.2.1.  Comparison of Full Pixel Detection Performance 

The first experiment applies ACE to Targets 3 and 4 in Image 7 from Sensor 

X using the target signatures generated in the previous set of experiments. For this 

experiment we use the MODTRAN algorithm and three variants of ARRT: the 

standard ARRT algorithm described in the previous sections, the ARRT algorithm 

without the upwelled radiance estimate (ARRT w/o Lup), and an adjusted ARRT 

algorithm where the amplitude has been matched perfectly to the extracted target 

signatures (ARRT Adj). The ARRT variants were added to identify the benefits of 

estimating the upwelled radiance term and to test the importance of obtaining a 

correct estimate of amplitude.  

Figure 16 shows the ACE detector results for the estimated target signatures. 

Each figure contains black and gray vertical bars. The black bars show the range of 

detection values for the background. The gray bars show the range of detection values 

for the targets. Ideally, these bars should not overlap indicating the targets are 

completely separable from the background. Above the black bar, a number is posted 

identifying how many false alarms occur above the minimum target detection score 

(i.e., the number of false alarms that are in or above the range of target detection 

scores). Above the gray bar, a number is posted indicating the percentage of target 

detected in the image.  

Results for Target 3 show all the target estimates are well matched to the 

targets in the image. The ARRT estimates achieve the ideal case separating the target 

from the background easily. The MODTRAN signature generated 4 false alarms, but 
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this was to be expected as it was not as accurate in both shape and amplitude as the 

ARRT signatures. Even with 4 false alarms, the performance is only marginally 

worse than using the ARRT signatures. 
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Figure 16: ACE Results for Image 7 

for (a) Target 3 and (b) Target 4 
 

Results for Target 4 are much more interesting. First, Target 4 is a difficult 

target to detect because of its low reflectance signature. Not surprisingly, the false 

alarm counts are significantly higher with this target than with Target 3. The 

MODTRAN signature provides the best performance outperforming the “true” 

signature estimated from the mean of the target detections in the image. ARRT 

provides good detection performance, but has 68% more false alarms. As expected, 
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the ARRT estimate without the upwelled radiance term performs the worst giving an 

abysmal 25% Pd providing evidence that the upwelled radiance term is important to 

subpixel detection applications. Another interesting result is the last set of bars. These 

results were generated using an ARRT signature that was corrected to have the same 

amplitude as the target signature taken from the image. The results for this signature 

rival the performance achieved with MODTRAN. Thus, amplitude plays a 

considerable role in achieving good subpixel detection performance.  

On a final note, the true target signature for Target 4 does not perform as well 

as most of the target radiance estimates. This is not surprising however given the size 

of Target 4 in Image 7. Since targets span only 3.6 pixels, most likely some “target” 

pixels were identified that contained some background materials as well. Thus, the 

“real” target signature is compromised and this leads to the degraded performance. 

Another result from this experiment is that even with multi-pixel targets that contain 

few pixels; atmospheric compensation algorithms may provide a better estimate of 

the target than can be drawn from the image with known ground truth.  

3.4.2.2.  Comparison of Subpixel Detection Performance 

Image 7 provided us the opportunity to compare target signatures generated 

using atmospheric compensation algorithms to their true signatures in an image. 

Unfortunately, the analysis could not provide performance estimates for actual 

subpixel targets. To provide this type of analysis, we compare the MODTRAN, 

ARRT, and ARRT without Lup on Images 1 through 6 from Sensor X. These images 

were collected at an altitude of 1220 m so that each pixel imaged approximately 

0.1820 m2 of area. The result of the higher altitude is that the targets have fill factors 
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(percent of the pixel occupied by target material) ranging from at most 60% to as low 

as 11%.  

As was done in the previous experiment, ACE was applied to the data for the 

various target types and target radiance estimates. A clustering threshold of 1% was 

used to form the objects that were identified as either target or clutter using the 

provided ground truth. Some target did span multiple pixels, but did so with smaller 

fill factors (e.g., Target 3 has a 60% fill factor that can be split across two pixels as 

20% and 40%).  

Instead of bar graphs to analyze performance, receiver operating characteristic 

(ROC) curves were used. These ROC curves were generated across all images so 

enough targets would be available to make a meaningful ROC curve. As is typical, 

the y-axis measures the Pd normalized to 1. The x-axis, however, is a measure of false 

alarm density. This metric is the number of false alarms divided by the total area 

imaged. Curves for detectors that achieve false alarm densities of 10-3 or lower with 

50% Pd are considered good performers.  

Figure 17,Figure 18, and Figure 19 display the ROC curves for Targets 1 

through 3 respectively. In all cases, ARRT performs as well as MODTRAN. This 

shows that an in-scene technique can perform as well as a complicated model-based 

technique for subpixel detection performance. This result is expected given the good 

results seen on Target 3 in the earlier experiments. Additionally, Targets 1 through 3 

have moderate to strong reflective signatures as shown in Figure 6. Because the 

signatures have good reflectance, the algorithms are less prone to small errors and 

provide good radiance estimates in all cases.  
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Figure 17: ROC Comparison of Target 1 Signatures 
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Figure 18: ROC Comparison of Target 2 Signatures 
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Figure 19: ROC Comparison of Target 3 Signatures 

 
Target 4 is the difficult target. As mentioned in the previous section, the target 

has a weak reflectance signature making it hard to detect at an altitude of 313m. At 

1220m altitudes, the target becomes very difficult to detect. None of the detectors 

with any target estimate perform well although MODTRAN performs the best as 

expected. Model-based methods are somewhat immune to sensor collection errors 

and tend to perform better with low reflectance targets [93]. In-scene methods tend to 

degrade with such targets as even small errors can seriously affect the shape and 

amplitude of the estimated target signature which leads to degraded detection 

performance. Therefore when dealing with weak target signatures, model-based 

methods still have an advantage over in-scene methods as has been previously 

documented [93]. This statement holds true for ARRT as well.  
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Figure 20: ROC Comparison of Target 4 Signatures 

 
3.5.  Summary 

Characterization of the target radiance signature is a key part of subpixel 

detection. Many ways have been developed over the years to estimate the 

atmospheric transfer function at the heart of target characterization. This work 

presents a new in-scene algorithm ARRT for characterizing target radiance signatures 

using only the image and a reference reflectance signature. The algorithm uses 

detection theory and radiative transfer theory to project a target reflectance signature 

into the radiance seen at the sensor.  

The ARRT algorithm provides a number of advantages over other methods. 

First, ARRT provides radiance signatures in a fraction of the time of model-based 

methods since ancillary information such as weather and source-target-receiver 

geometry are not used. Second, ARRT generates signatures that rival model-based 

methods. Third, the signatures generated by ARRT have been shown to provide good 



 60 
 

subpixel detection performance over a variety of targets. Finally, sensor calibration 

issues which are problematic for model-based methods pose no problem for in-scene 

methods such as ARRT. These traits make ARRT very attractive for applications 

where a model is simply not feasible and or the ancillary information cannot be 

obtained.  

While ARRT does have the aforementioned attractive properties, it also has its 

limitations. ARRT is meant for aerial imagery as opposed to satellite data or images 

taken at extreme oblique angles. Additionally, the imagery must contain pure 

background pixels with moderate to high reflectance signature to estimate the 

amplitude of the target radiance signature. As expected, ARRT like other in-scene 

methods has difficulty estimating signatures with low reflectance. However, even in 

this extreme case, model-based methods perform only marginally better.  
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Chapter 4: Background Signature Characterization 

Target characterization is an important aspect of any detection algorithm. In 

subpixel detection, however, characterization of the competing background signatures 

within the pixel is just as important. Unlike conventional full-pixel detection where 

the pixel contains target or background signatures, subpixel targets are a combination 

of the target and the competing background signatures as described by the linear 

mixing model in Chapter 1. Having developed a way to characterize the target 

signature, we must now focus our attention on characterizing the background 

signatures. 

Unlike target characterization where we have a known target signature, we do 

not know a-priori all of the background materials in an image. Instead, these 

background materials must be estimated. While one could use land class maps to 

identify the main background components in any area, these maps are typically coarse 

and cannot capture the material variability that may be in the scene. Thus, most 

subpixel detectors rely on endmember extraction methods which adaptively estimate 

the background endmembers from the image.  

This chapter begins by providing an overview of endmember extraction 

techniques. The first section describes some of the many endmember extraction 

techniques available to the community today. While this is not an exhaustive list, it 

does provide examples of the fundamentally different ways background endmembers 

can be estimated. From this list, we identify the two endmember extraction techniques 

we use for the remainder of the dissertation and motivate why we selected them.  
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In the following sections of the chapter, we discuss the importance of 

estimating the correct number of endmembers for subpixel target detection purposes. 

We argue that this topic has been largely ignored by the community based on the 

different ways researchers have estimated the number of endmembers. We introduce 

the various state-of-the-art methods from intrinsic dimensionality to virtual 

dimensionality statistics. We present two of our own proposed methods for estimating 

the number of endmembers arguing that the estimate should be based on both the 

endmember extraction algorithm and the desired target signature. We compare our 

methods to the current state-of-the-art methods showing appreciable gains in a 

number of experiments. Through these comparisons, we also show how important 

correct estimation of the number of endmembers is to subpixel detection 

performance.  

4.1.  A Review of Endmember Extraction Methods 

A number of algorithms have been developed to adaptively estimate the 

endmembers in an image. A review of the literature shows how many different 

algorithms exist including Pixel Purity Index (PPI) [9], N-FINDR [116], the 

Simulated Annealing Algorithm (SAA) [7], Optical Real-Time Spectral Identification 

System (ORASIS) [37], Iterative Error Analysis (IEA) [77], and Automated 

Morphological Endmember Extraction (AMEE) [81] to name just a few. A good 

review of various endmember extraction algorithms can be found in [82]. The intent 

of this section is to simply and quickly describe the different ways endmembers can 

be extracted from HSI data.  

The PPI, N-FINDR, and SAA algorithms are geometry-based methods. These 

algorithms project the HSI data into a smaller dimension d using methods such as the 
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Maximum Noise Fraction (MNF) transform [36]. After the transformation, the 

algorithms have slightly different approaches. PPI generates random lines onto which 

the transformed data is projected. The outliers on each line are counted and the 

process is repeated many times identifying those pixels that continue to be outliers as 

endmembers. An operator takes this result and uses a d-dimensional visualization tool 

to identify the final number of endmembers. N-FINDR finds the endmembers as the 

d+1 vertices of the simplex that contains the maximum amount of the transformed 

data. N-FINDR is computationally efficient and can be performed in near real-time 

without operator intervention. SAA is very similar to N-FINDR in that it also 

identifies endmembers as the vertices of a simplex enclosing the transformed data. 

Unlike N-FINDR though, SAA creates “virtual endmembers” when no pure pixels are 

present in the image. This generation of virtual endmembers using a simulated 

annealing algorithm guarantees endmembers that are pure material spectra. This is 

also an automatic extraction technique, but is more computationally expensive than 

N-FINDR due to the simulated annealing.  

ORASIS is both a vector quantization method and geometric method. This 

algorithm developed by the U.S. Naval Research Laboratory (NRL) operates in real-

time using a two step process. The first pass reduces the volume of the HSI data using 

a learning vector quantization (LVQ) process [10]. Using LVQ, exemplar signatures 

are adaptively found from the image using a distance metric (typically the SAM 

metric [54]). Once the exemplars are found, a modified Gram-Schmidt process called 

salient selection is used to project the exemplars onto a smaller dimensional 

orthogonal subspace. The algorithm identifies the endmembers as those that make up 
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the vertices of the simplex that encloses the projected data similar to N-FINDR and 

SAA; however because of the LVQ preprocessing step, this algorithm can run in real-

time. 

AMEE is a joint spatial and spectral morphological approach to endmember 

extraction. In this method, no subspace projection is necessary. Instead, the image is 

iteratively processed using spatial morphological kernels of various sizes. At each 

pixel location, the spectrally purest and spectrally most mixed pixels are found. The 

morphological eccentricity index (MEI) is calculated as the angles between these pure 

and mixed pixels. This is repeated for multiple kernel sizes until an MEI image is 

created. Segmentation takes place on the MEI image and the endmembers are those 

chosen from the image after a spatial and spectral growing procedure occurs which 

removes variability within each spectral class.  

The IEA algorithm extracts physically meaningful endmembers that are based 

on minimizing the mean squared error between the actual image and an unmixed 

image. The algorithm begins with the target signature and unmixes the image 

(estimates the endmembers and corresponding abundances) using the Fully 

Constrained Least Squares algorithm [46] (further details can be found in Chapter 5). 

An error image is created between the original image and the unmixed image 

generated using (1). The mean of the pixels that contain the largest mean squared 

error are chosen as the next endmember. Extraction continues until N number of 

endmembers is found.  

There is another class of endmember extraction methods based on statistical 

models. Parametric statistical models include the stochastic mixing models (SMM) 
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[104] based on expectation maximization methods and the Modified Spectral Mixture 

Analysis (MSMA) which is an approach similar to the SAA algorithm [110]. Non-

parametric statistical algorithms have also been used to extract endmembers such as 

K-Means clustering [29].  

4.2.  Selected Endmember Extraction Techniques 

To characterize the background for subpixel target detection, we are interested 

in finding an endmember extraction technique that 1) performs well, 2) produces 

physically meaningful endmembers, and 3) is fully automatic. Using the research 

from [77] and [82], we decided on a variant of the IEA algorithm for multiple 

reasons. First, the IEA algorithm produces physically meaningful endmembers that 

are well matched to the FCLS algorithm – an abundance estimation algorithm that 

will be used in our subpixel detectors described in Chapter 5. Second, the algorithm 

provides endmembers that are significantly different from the target signature 

minimizing the change of background signatures “bleeding” into the target subspace. 

Third, the algorithm runs quickly taking only a few minutes to extract 30 

endmembers. Fourth, the IEA algorithm was identified as one of the best performing 

endmember extraction techniques in [82]. Since the IEA algorithm is also fully 

automatic, it meets all of our criteria.  

We use another technique defined by the popular Adaptive Matched Subspace 

Detector (AMSD) – a baseline subpixel detector used in Chapter 5. We use this 

method because the AMSD algorithm specifically identifies this method be applied in 

its detector [71][109]. This technique does not extract physical endmembers. Instead 

it performs an eigenvector decomposition of the image correlation matrix. The 

resulting eigenvectors comprise the endmembers for the background. Note that while 
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these endmembers are not physically meaningful, they do minimize the mean squared 

error when used with the AMSD algorithm. We only use this method for the AMSD 

algorithm as it does not provide physically meaningful endmembers for our physics-

based approach.  

4.3.  Dimensionality of Hyperspectral Imagery 

In addition to the extraction of endmembers, a significant amount of research 

has gone into identifying the correct number of endmembers for a scene. Most 

algorithms have focused on what has been termed “intrinsic” dimensionality [19]. 

These dimensionality measures focus on identifying the unique spectral signatures in 

an image. For classification purposes, it is important to estimate the intrinsic 

dimensionality. For target detection applications, intrinsic dimensionality may not be 

the best measure. 

In target detection, the background must be characterized such that the 

probability of detecting the target is maximized while the probability of detecting a 

false alarm is minimized. In such cases, the number of endmembers required to 

characterize the background may be significantly more than the intrinsic 

dimensionality. The reasons are varied, but can be quickly summarized as the 

additional endmembers may be signatures due to shadowing effects, sensor artifacts, 

and finer material identification (e.g. coarse sand vs. fine sand). This has been noted 

in [19] where the best number of endmembers varied for different applications. This 

measure of dimensionality relative to detection performance has been termed virtual 

dimensionality [19].  

The next two sections describe the different metrics used to select the “best” 

number of endmembers from a scene. The intrinsic dimensionality measures are 
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energy, Akaike Information Criterion (AIC), Minimum Description Length (MDL), 

and Empirical Indicator Function (EIF). The virtual dimensionality measures are 

based on work by Chang and Du [19], Thai and Healey [109], and two we propose for 

subpixel detection applications.  

4.3.1.  Intrinsic Dimensionality Metrics 

4.3.1.1.  Energy Metric 

This metric is used by Manolakis, Siracusa, and Shaw for the AMSD 

algorithm [71]. In this paper, they characterize the background as the eigenvalue 

decomposition of the image correlation matrix. The resulting eigenvalues are sorted 

in decreasing order. The number of endmembers used is calculated using the sorted 

eigenvalues such that 
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where M is the total number of endmember extracted and λi is the ith ordered 

eigenvalue.  

4.3.1.2.  MDL Metric 

A set of metrics was developed to estimate the order of a statistical model. 

One of the first was the AIC published by Akaike in 1974 [2]. The AIC statistic was 

found to be inconsistent [51] and this led to other works by Rissanen using an 

information-theoretic criterion [87] and by Kashyap [50] and Schwartz [96] using a 

Bayesian framework. The researchers independently came to the same result: the 

Minimum Description Length (or Bayesian Information Criterion as Schwartz 

identified it). The criterion is 



 68 
 

 ( )NkxLm mm
log),(logminˆ 2

1+−= α  (19) 

where L(x,αm) is the statistical likelihood function parameterized by αm, k is the 

number of free parameters that must be estimated, N is the number of samples used to 

estimate the likelihood and its associated parameters, and m is the dimension of the 

parameters.  

Chang and Du used Wax and Kailath’s MDL criterion in their research [113]. 

The results showed poor performance because of two reasons. First, the Wax and 

Kailath work was designed for time series data where each sample came from an iid 

zero-mean Gaussian distribution; therefore, the combined likelihood could be 

expressed entirely in terms of the data covariance matrix. HSI data does not fit this 

assumption as mentioned in [71] and [103]. Second, Chang and Du used the equation 

directly from Wax and Kailath [113] which was designed for complex data. HSI data 

is real-valued and hence the equation they used was inappropriate. Instead, the 

equation should have been 
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where λi are the eigenvalues of the image covariance matrix, L is the number of 

spectral bands, and N is the number of pixels in the image. Nevertheless, in all of our 

experiments, the Wax/Kailath implementation never achieved a minimum (using Wax 

and Kailath’s original equation or (20)).  
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4.3.1.3.  EIF Metric 

Malinowski created a metric specifically designed to estimate the number of 

unique spectra in chemical spectroscopy studies [68]. Using empirical studies based 

on chemical factor analysis, he created an empirical indicator function (EIF) such that 
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where λi are the eigenvalues of the L×M endmember matrix, M is the total number of 

endmembers, L  is the number of spectral bands, and N is the number of pixels in the 

image.  

4.3.2.  Virtual Dimensionality Metrics 

4.3.2.1.  NSP Metric 

The term “virtual dimensionality” was coined by Chang and Du [19]. In this 

paper, they presented a new way to assess the dimensionality of HSI data relative to 

classification and detection performance. Interestingly, the Noise Subspace Projection 

(NSP) metric they developed uses no information about the target or the detector. 

They do, however, form a binary hypothesis test based on the eigenvalues of the 

whitened image covariance matrix.  

The algorithm begins by estimating the image covariance matrix from the 

data. The inverse of the covariance matrix is decomposed such that 

 DEDC =−1  (22) 
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where D is a diagonal matrix created from the square root of the diagonal elements of 

C-1 and E is a matrix of correlation coefficients of C-1. Using this decomposition, the 

whitening matrix is defined as 

 1−= DW . (23) 

Using (23), the image covariance matrix is whitened such that 

 .WCWCW =  (24) 

The whitening is performed to reduce the correlations inherent between spectral 

bands. The whitened matrix is analyzed using Principal Component Analysis (PCA) 

to extract the eigenvalues for the binary hypothesis test. The hypotheses are 
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for each ith eigenvalue. The likelihood function for the null hypothesis is simplied to  

 ( ).,1)( 2
Nio Np ≅λ  (26) 

Using (26), a threshold can be calculated for a given false alarm probability. Because 

(26) is independent of the index i, the same threshold can be applied to all 

eigenvalues. Using this information, the number of endmembers can be found using 
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where Φ-1(1-p) is the inverse of the standard normal cumulative density function (cdf) 

evaluated at probability 1-p. From [19], they recommend a value of 0.001 for p.  

4.3.2.2.  Thai/Healey Metric 

This metric was developed as an aside in Thai and Healey’s invariant subpixel 

detection paper [109]. The paper is another variant of the AMSD algorithm where the 
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target subspace is created using Healey and Slater’s invariant method [45]. Thai 

applied this invariant method to subpixel detection and independently derived the 

AMSD algorithm [71]. Unlike Manolakis, Siracusa, and Shaw [71]who depended on 

the energy estimate described earlier, Thai and Healey designed a new metric to 

choose the dimension of their background subspace.  

The basic idea is to find the number of endmembers that maximize target 

detection while minimizing the background. To accomplish this, they created a ratio 

of AMSD statistics such that 
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where δAMSD(x) is the AMSD statistic given in Chapter 5, S  is the mean of the target 

signatures, and μ is the adjusted spectral mean of the image. The adjusted spectral 

mean is calculated from all the pixels in the image except those whose matched filter 

score is near one. The set of M restricts the values of m based on the mean squared 

error between the original image and the PCA decomposition of the image. Thus, at 

least m1 eigenvectors are always used, but not more than m2 eigenvectors. The 

reasoning is that the number of eigenvectors that make up the background must be 

numerous enough to minimize the mean squared error, but not so numerous that the 

eigenvectors are pure “noise.”  No discussion is provided on how to derive these 

limits, or the threshold used in the matched filter.  

4.3.2.3.  AMSD MDL Metric 

The first proposed metric fuses the ideas from the AMSD detector and MDL 

criterion. The original MDL equation in (19) can be formed for any likelihood. The 

method used by Du and Chang in their paper assumed that the HSI data could be fully 
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modeled by the image covariance matrix following Wax and Kailath’s work. 

Unfortunately, this approach is not applicable to hyperspectral analysis as previously 

discussed in [19] 

Instead of the image covariance matrix, we propose using the AMSD 

likelihood directly in the MDL criterion. This would match the criterion to the 

specific detector and all of its implicit assumptions. However, with any detector, there 

are two likelihoods: one for the null hypothesis and one for the alternate hypothesis. 

For this criterion, we use the alternate hypothesis which includes the target 

signature(s). The reasoning is the alternate hypothesis includes information about the 

target signature as well as the detector. Therefore, combining the MDL criterion with 

the alternate AMSD likelihood is  
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where Em is the concatenation of the target and m background signatures, L is the 

number of spectral bands, and N is the number of pixels in the image.  

4.3.2.4.  Subpixel Dimensionality Metric 

In the MDL AMSD criterion, the idea was to identify the number of 

endmembers that minimized the likelihood of the denominator. This is only part of 

the optimization problem however. Ideally, the number of endmembers should also 

maximize the numerator. Interestingly, this is the same optimization done in detection 

theory; so, we can use the detector directly to estimate the number of endmembers. 

Following the approach of Thai and Healey [109], the subpixel dimensionality metric 

is 
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where the dimensionality is chosen by maximizing the AMSD detection score for a 

simulated pixel that is a linear combination of the desired target spectra and spectral 

mean from the image. The abundance a is calculated a-priori given the size of the 

target and the size of the pixels based on the altitude and the sensor’s field of view 

parameters.  

This approach has a number of advantages. First, like Thai and Healey’s 

method, the metric can be quickly calculated for all numbers of endmembers. Second, 

the statistic directly uses the detector accounting for application dependencies unlike 

the intrinsic dimensionality metrics. Third, the metric chooses the number of 

endmembers based on both the predicted size and spectral characteristics of the 

target.  

4.4.  Experimental Results 

Endmember extraction algorithms have been compared in a number of papers 

[81],[82],[116], but little experimentation has been performed on the impact of 

background dimensionality on subpixel target detection performance. This section 

compares the different methods of background dimensionality estimation and their 

impact on subpixel target detection. The goal is to identify which methods provide 

good dimensionality estimates for subpixel detection and under what conditions.  

The experiments are broken into two parts: individual image results and ROC 

results. The individual image results present Pd and Pfa results for each image and 

target type. The ROC performance provides results across all images including those 

that do not contain targets. All the experiments use the Sensor X data for Images 1 
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through 6 and Targets 1 through 4. As mentioned in Chapter 2, Targets 1 and 2 are 

relatively easy to identify. Target 3 is more difficult because of the inherent 

variability in the spectral signature. Target 4 is very difficult to detect due to its low 

reflectance.  

The detector used for these experiments is the AMSD detector described in 

Chapter 5. This is a standard structured subpixel detector in the literature that uses the 

eigenvectors of the image correlation matrix as the background endmembers. This 

type of detector allows us to apply all of the background dimensionality estimates on 

similar background information (image covariance or image correlation matrix).  

4.4.1.  Individual Image Results 

Tables 5 through 8 provide the results of the individual image experiments for 

Targets 1 through 4 respectively. In each table, the number of endmembers (m), the 

Pd, and the number of false alarms (FA) are provided for each of the background 

dimension estimates described in Section 4.3.  The ideal case is also provided in the 

last column. This case was found using the known ground truth to find the number of 

endmembers providing the highest Pd while minimizing the number of false alarms. 

Each table includes only the images in which targets are present.  

The results show some intriguing results. First, the energy metric does not 

perform well as expected. For this implementation, we required 99.9% of the energy 

be obtained leading to background estimates of 2 to 3 endmembers. Unfortunately in 

radiance space, these first few eigenvectors comprise most of the environmental 

effects. This has the effect of providing little separation between target and 

background for all target types. The Pd is typically low with high false alarm rates. 
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The impact of this finding shows that papers using this metric [60],[71] are biasing 

their results against the AMSD detector. 

Table 5: Comparison of Dimensionality Estimates for Target 1 
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1 3 103 97 12 11 121 68 m 
4 2 105 97 39 11 131 125 
1 0.15 1.00 1.00 0.95 1.00 1.00 1.00 Pd 4 0.05 1.00 1.00 1.00 1.00 1.00 1.00 
1 36 0 0 280 334 2 0 FA 
4 66 0 0 10 383 0 0 

 
Table 6: Comparison of Dimensionality Estimates for Target 2 
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1 3 103 97 5 11 111 11 m 
4 2 105 97 6 9 133 7 
1 0.74 1.00 1.00 0.71 1.00 1.00 1.00 Pd 4 0.90 1.00 1.00 1.00 1.00 1.00 1.00 
1 175 253 130 212 27 360 27 FA 
4 271 34 17 5 43 92 0 

 
The Thai/Healey and AMSD MDL metrics perform poorly as well. This is a 

surprising result as these metrics use knowledge of the target signature and detector 

type to estimate the background dimension. The Thai/Healey metric degrades 

significantly as the targets become more difficult to detect. Even on the simpler 

targets, the Pd is less than the other methods with higher false alarm densities. The 

reason this occurs is because the targets are truly subpixel, but the metric assumes a 

full pixel target. This causes a mismatch between what is being estimated and what is 

present in the data. We would expect the metric to perform well on full-pixel targets 

even though it was developed for subpixel target applications.  
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Table 7: Comparison of Dimensionality Estimates for Target 3 
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2 3 102 89 18 12 61 31 
3 3 104 89 1 4 82 108 
5 3 106 99 6 11 104 79 

m 

6 3 106 98 1 11 103 117 
2 0.00 1.00 1.00 0.92 0.75 0.92 1.00 
3 0.56 1.00 1.00 0.12 0.68 1.00 1.00 
5 0.20 0.93 0.93 0.67 0.73 0.93 1.00 

Pd 

6 0.57 0.96 0.93 0.07 0.96 0.96 1.00 
2 332 108 711 58 340 248 21 
3 492 3 9 44 112 17 0 
5 13 28 107 35 107 237 339 

FA 

6 139 6 5 55 81 4 0 
 

The AMSD MDL criterion also degrades significantly as the targets become 

more difficult to detect. For Target 1, the criterion does find all the targets, but also 

provides the highest false alarm numbers. For Target 2, AMSD MDL outperforms the 

other metrics obtaining estimates close to the ideal. On the last two targets, the 

AMSD MDL estimate degrades losing significant Pd and obtaining large false alarm 

densities. The estimates vary because the metric is only treating the denominator of 

the AMSD statistic without reference to the effect of the numerator. In Target 2, this 

is not a significant problem, but for all other target types, the numerator decreases as 

quickly as the denominator causing the metric to erroneously pick the wrong number 

of endmembers.  

The last three metrics (EIF, NSP, and SDD) perform well. The EIF criterion 

does well without any information about detector type or target signature. This is an 

interesting result as the other two methods are virtual dimensionality statistics. 

However, the EIF criterion was developed for identifying the number of spectral 
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signatures in chemical spectroscopy. This idea seems to have merit when applied to 

optical spectroscopy even with lack of target and detector knowledge.  

Table 8: Comparison of Dimensionality Estimates for Target 4 
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3 3 104 89 3 13 83 6 
5 3 106 99 6 10 87 134 

m 

6 3 106 98 1 11 85 70 
2 0.33 0.00 0.00 0.11 1.00 0.00 1.00 
3 0.00 0.22 0.43 0.00 0.00 0.09 0.52 
5 0.42 0.25 0.17 0.00 0.17 0.00 0.50 

Pd 

6 0.04 0.04 0.12 0.00 0.04 0.00 0.28 
2 279 786 766 186 234 721 230 
3 444 789 581 444 230 677 472 
5 109 649 623 429 450 661 898 

FA 

6 310 516 493 20 210 755 673 
 

The NSP algorithm which was developed for HSI data performs well. The 

estimate provides some of the lowest false alarm densities for Targets 1 and 2 while 

maintaining 100% Pd. As with the other methods, NSP breaks down as the targets 

become more difficult; however, it does not degrade as fast as energy or AMSD 

MDL. NSP, in fact, maintains the highest number of target detections on Target 4. 

The final algorithm is the proposed SDD metric. This metric performs 

similarly to the EIF and NSP metrics. As expected, the performance of this metric is 

directly linked to the detector performance. When the targets become more difficult 

for the detector to find, this metric degrades as well. The unfortunate outcome of this 

result is that is provides some of the worst performance on Target 4, but some of the 

best performance on Target 1.  
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The overall results of these experiments are mixed. The energy metric is not 

desirable due to its poor performance across images. The AMSD MDL metric is not 

desirable due to its variable performance that is uncorrelated with the difficulty of the 

target type. Thai and Healey’s metric which does not account for the subpixel nature 

of the target provides poor estimates as well. The EIF, NSP, and SDD metrics 

perform well and degrade gracefully as the target becomes more difficult to detect.  

4.4.2.  ROC Results 

The results from the first experiment show the EIF, NSP, and SDD estimates 

perform similarly well when applied to images with targets. To see if any separation 

exists between these methods, it is interesting to look at cases where images that do 

not contain targets are used. To measure the effect of such images, we use ROC 

curves.  

ROC curves show the average performance of the detector across all images. 

Ideally, the number of endmembers used should help suppress the background pixels 

into the same range of detection scores. This allows the ROC curve to apply the same 

threshold across each image and get similar results. When the background is not 

confined to the same range of detection scores, the background detection scores on 

one image may actually be higher than the target detection scores on another image. 

In such cases, the inconsistency of the detection scores will negatively impact ROC 

performance. Thus, the impact of images without targets can be assessed on the 

overall detector performance.  

Figures 21 through 24 provide the ROC curves for Targets 1 through 4 

respectively. In each figure, there are seven curves. The first curve represents the 

ideal based on ground truth information obtained with the imagery. The other six 
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curves represent the estimation algorithms defined in Section 4.3. Similar to the 

previous experiment, the ideal number of endmembers was selected as those that 

maximized Pd while minimizing the number of false alarms. In the images without 

targets, the ideal was chosen as the number of endmembers that suppressed the 

detection scores into ranges that were similar to the other images.  

As expected given the earlier experimental results, the energy, Thai/Healey, 

and AMSD MDL criterions did not perform well. While these results do not provide 

good performance, they do highlight the need for good background dimension 

estimates. The interesting exception to this rule is the AMSD MDL curve for Target 

4.  For this target, the AMSD MDL curve is one of the best, but this is most likely a 

coincidence as the estimate simply favors lower numbers of endmembers.  
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Figure 21: Comparison of Background Dimension Estimates for Target 1 

 
The interesting results occur with the EIF, NSP, and SDD methods. In the first 

set of experiments, these algorithms perform nearly equally well on the different 

targets and images. In these ROC experiments however, the algorithms respond 
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differently. The EIF and NSP methods performance is best with Targets 2 and 3. 

These targets are easy to moderately difficult to detect. For Target 1, the methods 

perform significantly worse than the ideal case. For Target 4, the NSP method 

performs nearly the best although this is again significantly less than the ideal. 

Nevertheless, both algorithms are consistently some of the best methods for 

background dimension estimation. 
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Figure 22: Comparison of Background Dimension Estimates for Target 2 

 
The SDD method demonstrates excellent performance when the target is easy 

and degrades as the targets become more difficult. This performance is expected 

given the method is based directly on the performance of the detector using a 

simulated subpixel target. For Target 1, the SDD method is nearly ideal and 

substantially better than any other method tested. For Target 2, the method matches 

the ideal case although the EIF and NSP methods have similar performance. For 

Target 3, the SDD method degrades slightly as this target is more difficult to detect 
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due to the spectral variability of the target. On this target, the EIF and NSP methods 

have a slight advantage. For Target 4 however, the SDD method performs poorly 

because the detector has difficulty finding such a weak target.  
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Figure 23: Comparison of Background Dimension Estimates for Target 3 
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Figure 24: Comparison of Background Dimension Estimates for Target 4 

 



 82 
 

4.4.3.  Conclusions 

The results of these experiments show that the SDD method has an advantage 

over the other estimates for all detectable targets. Since the method is based directly 

on the subpixel detector performance, this result is expected. The EIF and NSP 

methods are close competitors. These methods show good separation in both the 

single image and ROC experiments. Since these algorithms were intentionally 

designed for HSI data, these results are consistent with theory.  

The energy, Thai/Healey, and AMSD MDL methods are not good indicators 

of the background dimension. Energy is the worst indicator although it has been used 

in numerous papers. The Thai/Healey method does not perform well despite being 

designed for subpixel processing using the AMSD algorithm. This can most likely be 

traced to the fact that Thai and Healey used mostly targets that were not subpixel in 

their paper. For full pixel targets, the method should work well. Unfortunately, the 

AMSD MDL method did not perform well because it only uses the denominator of 

the AMSD detector to make its estimate.  

4.5.  Summary 

The estimation of the number of background endmembers for subpixel 

detection remains a challenging problem. Our work has shown that improvements can 

be made over the current methods, but these improvements are directly linked to the 

performance of the detector and the strength of the target signature. In cases where 

the target signature is well characterized and significantly different from the 

background, the SDD method we proposed works very well followed closely by the 

EIF and NSP methods. As the target becomes weaker (or the background becomes 

more complex), all of the methods degrade.  
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Further research should be continued to identify better ways to estimate the 

background dimension. The results clearly show the loss of performance when the 

background is not correctly identified. Such performance can be significant – 

especially in the case of weak targets like Target 4. The other direction is to develop 

detection algorithms that are partially invariant to the number of background 

endmembers. Such algorithms would show minimal loss in subpixel detection 

performance due to minor errors in background dimension estimation.  
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Chapter 5: Physics-Based Hybrid Detectors 

A number of different methods have been proposed to address subpixel 

detection. One of the earliest methods uses array processing techniques to nullify the 

background signatures as one would nullify an interfering signature when performing 

beamforming. The Orthogonal Subspace Projection (OSP) [41] and Constrained 

Energy Minimization (CEM) [20] algorithms are examples of such methods. In order 

to implement these detectors, the authors assume the noise to be a zero-mean 

multivariate normal distribution with covariance matrix σ2I. The idea behind this 

algorithm is that the background can be fully characterized by endmembers and that 

the remaining noise will meet the aforementioned σ2I assumption.  

Another approach uses the linear mixing model to directly estimate the 

abundance values and use the estimated target abundances for detection purposes. 

Two examples of this approach are the Non-Negativity Constrained Least Squares 

[20] and Fully Constrained Least Squares algorithms [46]. These methods can be 

considered physics-based methods since they attempt to address all of the 

phenomenological constraints in the linear mixing model. Others have also 

incorporated the constraint of a full covariance matrix into these methods which can 

be considered as the first use of a semi-structured approach [86]. Incorporation of 

covariance information addresses the fact that most of the spectral bands in HSI data 

are highly correlated. The estimated covariance is used for designing a whitening 

transform that decorrelates the bands making the HSI data fit the aforementioned 

assumption of σ2I. These physics-based methods perform well for both unsupervised 

estimation of background endmembers and the calculation of the corresponding 
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abundances; however, they do not provide a statistical hypothesis test – they only 

provide an estimate of the target abundance.  

To develop such a statistical test, a set of hypotheses must be generated to 

differentiate those pixels containing targets of interest from those pixels that 

exclusively contain background spectra. The set of hypotheses are 
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where x is the pixel under test, B is a L×Q matrix representing background 

endmembers, ab,0  and ab,1 are the abundances of the background endmembers under 

each hypothesis, S is a L×P matrix representing target endmembers, as are the 

abundances of the targets, and n is a noise model typically assumed to be a zero-mean 

multivariate normal distribution.  

Using this set of hypotheses, a set of detectors has been developed based on 

structured and unstructured backgrounds. A good example of a structured background 

detector is the Adaptive Matched Subspace Detector (AMSD) [71]. The AMSD 

algorithm models the background using the linear mixing model with endmembers 

and abundances. This statement is a misnomer however since the endmembers in the 

AMSD algorithm have no physical meaning. Instead the endmembers are the 

eigenvectors of the image correlation matrix. Thus the abundances are no longer 

measurements of area. They are simply magnitudes along the eigenvector directions 

which in general do not satisfy the non-negativity and sum-to-one constraints. So 

although the linear mixing model is used as the basis for AMSD, all physical 

considerations are ignored in favor of a purely statistical approach. While AMSD has 
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shown good performance, research has shown that a purely structured background 

model does not fully represent the background in real-world HSI data [71].  

An example of an unstructured detector is the Adaptive Cosine/Coherent 

Estimate (ACE) [58]. The ACE algorithm assumes no background signatures opting 

instead for modeling the background as a multivariate normal distribution. While this 

removes the need to extract and identify the proper number of background 

endmembers, it also removes the physical constraints of the linear mixing model. 

Despite this seemingly simple background model, the ACE detector is one of the 

more powerful subpixel detectors available for HSI data [70]. Unfortunately, research 

has shown that an unstructured detector which uses the multivariate normal 

distribution is not a good model of backgrounds in hyperspectral imagery [103].  

Another algorithm that uses the hypotheses in (31) is the Constrained Signal 

Detector (CSD) [49]. This algorithm was the one of the first to use some of the 

physical constraints of the linear mixing model within a statistical hypothesis test. 

The algorithm included the sum-to-one constraint on the abundances, but only 

required the target abundance to be non-negative arguing that proper estimation of the 

background abundances was not required for detection purposes. The algorithm was 

also designed assuming that the noise was zero-mean multivariate normal distribution 

with covariance σ2I. These assumptions made the algorithm very fast, but still do not 

account for all of the physical constraints in the linear mixing model or a full 

covariance for the background noise distribution.  

Therefore, we present two new hybrid subpixel detectors based on modeling 

the background using a physically meaningful linear mixing model within a statistical 
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hypothesis test. The idea is that the physically-based endmembers and abundances 

will account for the known physics of the problem while the statistical distribution 

accounts for unknown quantities due to such phenomena as nonlinear mixing effects 

and sensor noise. Our hypothesis is that the hybrid detectors which model the 

background both physically and statistically will provide improved performance over 

their purely statistical counterparts AMSD and ACE. Section 5.1 describes the FCLS, 

AMSD, and ACE algorithms that form the basis for our hybrid detectors. Section 5.2 

describes the two proposed hybrid detectors. Section 5.3 details the experiments used 

to test our hypothesis. Section 5.4 presents the results of the experiments showing the 

hybrid detectors excel in three areas: endmember insensitivity, target/background 

separation on an image by image basis, and improved ROC performance over 

multiple images. Section 5.5 summarizes the results and identifies future research 

directions.  

5.1.  Current Subpixel Algorithms 

This section details the FCLS, AMSD, and ACE algorithms. These algorithms 

are the foundation on which we derive the hybrid detectors. The FCLS algorithm 

provides a method to incorporate the sum-to-one and non-negativity constraints on 

the abundances. The AMSD algorithm provides a detector based on a structured 

background that uses endmembers to define the background B. The ACE algorithm 

provides a detector based on an unstructured background (i.e., a background modeled 

by a statistical distribution instead of endmembers).  

5.1.1.  Fully Constrained Least Squares (FCLS) 

The FCLS algorithm directly estimates the abundances in (31). While other 

algorithms have been developed that handle both the non-negativity and sum-to-one 
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constraints [4][8][98], these algorithms tend to be computationally intense as the 

number of endmembers increase. The FCLS algorithm meets both abundance 

constraints as well, but in an efficient manner that is optimal in terms of least squares 

error (LSE) [46]. Because of these reasons, we chose to use it in our algorithms. 

Unfortunately, FCLS does not allow a closed-form mathematical solution due to the 

non-negativity constraints. Instead, a numerical solution is required.  

To calculate the FCLS solution, we begin with the non-negativity constraints. 

The idea is to minimize the LSE by estimating the non-negative abundance values. 

Mathematically this is expressed as 

 ( ) iai
T

a
∀≥−− 0),(min EaxEax  (32) 

where E is the concatenation of the target S and background B signatures. Using 

Lagrange multipliers, a Lagrangian J is defined such that 

 ,)()(2
1 c)(aλEaxEax −+−−= TTJ  (33) 

where a = c, and each member of the unknown constant M×1 vector c is non-negative 

to enforce the non-negativity constraint. This construction allows the use of Lagrange 

multipliers because the non-negativity constraints have been substituted by equality 

constraints with the unknown vector c. To calculate the estimate of a, we take the 

partial derivative of J with respect to a to obtain 
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Equation (34) contains two unknowns: the abundance estimates and the Lagrange 

multipliers. Solving for these unknown results in  

 λE)(ExEE)(Ea 11ˆ −− −= TTT  (35) 



 89 
 

and 

 )aE(xEλ ˆ−= T . (36) 

Iterating through (35) and (36) provides the numerical solution for the non-

negativity constraints. To begin this iterative method, we set all the Lagrange 

multipliers to zero and calculate the abundance using (35). Note that this initial 

calculation is the unconstrained least squares solution for the abundance values. From 

this solution, we identify those abundance values that are greater than zero and place 

them in the passive set P. The remaining non-positive abundance values are placed in 

the active set R. Equations (35) and (36) are iterated until all Lagrange multipliers in 

the passive set are zero and all Lagrange multipliers in the active set are either zero or 

negative. At this point, the Kuhn-Tucker conditions have been met and an optimal 

solution for the abundance values has been found.  

One may note that this solution only accounts for the non-negativity 

constraints of (1). To handle the sum-to-one constraints, an easy modification of the 

aforementioned algorithm was developed to retain the optimality guaranteed under 

the Kuhn-Tucker conditions for numerical optimization on a finite computing 

machine [42]. In the modification, the endmember matrix and pixel signatures are 

extended such that  

 ⎥
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is the new endmember matrix and  
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is the new pixel signature where δ is a small number (typically 1×10-5). The δ 

variable controls how tightly the solution will sum to one so that smaller values 

provide a better solution, but may need longer convergence time. The new 

endmember matrix and pixel signature are then used in (35) and (36) to obtain an 

abundance solution that meets both the non-negativity and sum-to-one constraints.  

5.1.2.  Adaptive Matched Subspace Detector (AMSD) 

While the FCLS algorithm provides an elegant solution to calculating the 

abundance values in the linear mixing model, the algorithm does not provide a 

statistical hypothesis test to differentiate between a pixel that contains a target and a 

pixel that contains only the background. The AMSD algorithm provides such a 

statistical test using a Generalized Likelihood Ratio Test (GLRT) [71]; however, the 

non-negativity and sum-to-one constraints on the abundance estimates are in general 

not satisfied. Thus, the AMSD approach leads to a closed-form solution with CFAR 

optimality, but has to sacrifice the physical constraints on the abundance estimates.  

Since the AMSD algorithm is based on a GLRT, we can use the model in (31) 

assuming that the noise model is a zero-mean normal distribution with covariance 

matrix σ2I. Therefore, the AMSD hypotheses are 
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Under these assumptions, we can calculate the remaining unknown parameters using 

Maximum Likelihood Estimation (MLE) techniques. To do this, we calculate the 

likelihood equation for the null hypothesis as 
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Taking the derivative of the logarithm of (40) with respect to each of the unknown 

parameters and setting them equal to zero allows us to arrive at the MLE abundance 

estimate 

 xBBBa TT
b
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0, )(ˆ −=  (41) 

and the MLE noise variance estimate 

 )ˆ()ˆ(1ˆ 0,0,
2
0 b

T
bL

aBxaBx −−=σ . (42) 

Substituting (41) and (42) back into (40) provides the generalized likelihood equation 

under the null hypothesis 
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Similarly, the same can be done for the alternative hypothesis to arrive at  
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where E is again defined as the concatenation of the target and background 

signatures.  

Having calculated the likelihoods for each hypothesis and using some simple 

algebra, the GLRT takes the ratio of the two likelihoods to calculate the following 

detection statistic 
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Since E and B are related, it is difficult to identify the distribution of this detection 

statistic; so, a new detection statistic is created by subtracting one from (45) to obtain 
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Applying this mapping does not change the outcome of the decision statistic, but it 

does allow the new statistic to be distributed as 
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Under the null hypothesis (S = Ø and hence the signal to interference plus 

noise ratio (SINR) term in the parentheses of (47) is equal to zero), the AMSD 

statistic is based on the parameters P, L, and Q independent of any estimates. Because 

of this, the AMSD statistic enjoys the CFAR property and should allow a single 

threshold to determine the false alarm rate. Of course, the single threshold only holds 

if the underlying data has a multivariate normal distribution.  

5.1.3.  Adaptive Cosine/Coherent Detector 

The methods described earlier are detectors based on structured backgrounds. 

The ACE method uses a statistical distribution (namely the multivariate normal 

distribution) to model the background. Referring to (31), the ACE algorithm sets B = 

Ø thus removing any structured background information. In this algorithm, the 

background is entirely modeled as a zero-mean Gaussian distribution with scaled 

covariance σ2Г giving us the hypotheses 
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The scaling term σ2 is interesting as this term is not typically found 

empirically. The term is necessary theoretically however to make the ACE detector 

scale-invariant as will be shown later in this section. Since B does not exist in this 
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algorithm, the sum-to-one and non-negativity constraints of (1) cannot be met either 

as they require a background subspace. Despite these seemingly poor assumptions for 

hyperspectral data, the ACE detector is one of the more powerful subpixel detectors 

available [70].  

For this derivation, we follow the work by Kelly [53] and Kraut and Scharf 

[56][57][58]. Besides the information we have in (48), we also assume that we have 

an independent data set Y such that 

 { }NiNY ii ,,1),,0(~ K== Γyy . (49) 

Combining (48) and (49) provides the joint likelihood equation under the null 

hypothesis 
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and the joint likelihood equation under the alternate hypothesis 
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If we assume that N is very large, the covariance estimate from these likelihoods can 

be simplified to  
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which is a standard assumption made in the literature. Note that under this 

assumption, the covariance under the null hypothesis and alternate hypothesis are 

equal and greatly simplifying the following mathematics.  

Following the derivation of the covariance under each hypothesis using MLE, 

we obtain the abundance estimate as 

 xΓSS)Γ(Sa 111ˆ −−−= TT
s  (53) 

and the variance estimates under each hypothesis as 

 xΓx 112
0ˆ −= T

Lσ  (54) 

and 
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The estimates are substituted back into the original likelihood equations in 

(50) and (51). The updated likelihoods are taken as a ratio to obtain the GLRT as was 

done in the AMSD derivation. After some algebra and simplification, the ACE 

detector is 
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This is a CFAR detector and has the following distribution under the null 

hypothesis 
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where L is the number of spectral bands and P is the number of target signatures [57]. 

Therefore, the ACE statistic is based only on the parameters P and L independent of 

any estimates. Because of this, the ACE statistic also enjoys the CFAR property and 

should allow a single threshold to determine the false alarm rate. Again, the single 
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threshold only holds if the underlying data is a multivariate normal distribution (or 

any distribution in the family of elliptically contoured distributions) [57].  

5.2.  Hybrid Detectors 

Using the derivations and ideas in the previous section, we present two hybrid 

subpixel detectors that incorporate the HSI physical constraints directly into the 

detector derivation. The first detector uses a structured background and is similar to 

AMSD. The second detector uses an unstructured background and is similar to ACE.  

5.2.1.  Hybrid Structured Detector 

The hybrid structured detector (HSD) approaches the solution to (31) using a 

structured background like AMSD, but using physically meaningful endmembers and 

replacing the abundance estimates with their FCLS counterparts. The HSD 

hypotheses are 
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Since this derivation includes a full covariance matrix, we follow a similar derivation 

to ACE incorporating the background subspace B and its abundances ab as was done 

in AMSD. With this new information the likelihood equation under the null 

hypothesis is 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−−

−

×=

∑
=

−
−

−+−+−

N

i
i

T
i

b
T

b

LNNLHYL

1

1
2
0

0,
1

0,

2
0

)1()1(
0

2
1

2
)()(

exp

)(||)2()|,( 2
1

2
1

2
1

yΓy
BaxΓBax

Γx

σ

σπ
 (59) 

and the likelihood equation under the alternate hypothesis is 
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where Ea = Sas + Bab,1.  

The covariance estimate is the same as (52) given the assumption that N is 

large. Under this assumption, we obtain the variance estimates under each hypothesis 

as 
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and 
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Besides the covariance and variance estimates, the abundance estimates also 

need to be calculated. At this point instead of using the standard MLEs, we use a 

variant of the FCLS algorithm to estimate these parameters. Because of the 

covariance matrix, the variant of the FCLS algorithm attempts to minimize  

 ( ) iai
T

a
∀≥−− − 0),(min 1 EaxΓEax  (63) 

This update leads to a new Lagrangian J such that 

 c)λ(aEa)(xΓEa)(x −+−−= −1
2
1 TJ . (64) 

Therefore, the new equations that we iterate through to meet the Kuhn-Tucker 

conditions are 
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and 
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The rest of the algorithm proceeds as in Section 5.1.1 to obtain abundance estimates 

that incorporate the sum-to-one and non-negativity constraints with a full covariance 

matrix. While this prevents us from obtaining a closed-form solution for our detector, 

it enforces all of the known physical constraints. 

All of the estimates are substituted back into the original likelihood equations 

in (59) and (60). The generalized likelihoods are taken as a ratio to obtain the GLRT 

as was done in the AMSD derivation. After some algebra and simplification, the HSD 

is 

 
)aE(xΓ)aE(x

)aB(xΓ)aB(x
x

ˆˆ
ˆˆ

)( 1

1

−−
−−

= −

−

T
b

T
b

HSDD . (67) 

The HSD algorithm is similar to our original hybrid detector [16] except for the 

inclusion of the full covariance matrix.  

5.2.2.  Hybrid Unstructured Detector 

The Hybrid Unstructured Detector (HUD) models the background as a 

multivariate normal distribution similar to ACE. Since the ACE detector is already 

white, the HUD algorithm simply replaces the abundance estimates with their 

whitened FCLS counterparts. To accomplish this, we rewrite (56) such that 

 
xΓx

SaΓxx
1

1

ˆ
ˆ

)(
−

−

=
T

T

ACED  (68) 

where the abundance estimate a is taken from (53).  

To form the HUD algorithm, we simply replace the abundance with its 

whitened FCLS counterpart. Therefore, the new detector is 
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where the abundance estimate a is taken from (65) after the Kuhn-Tucker conditions 

have been satisfied. Note that this solution still requires the extraction of endmembers 

to define the abundance estimate, but these endmembers are not directly used within 

the decision statistic. They only serve to provide a better estimate of the target 

abundance based on the physical constraints of the linear mixing model.  

5.3.  Experimental Results 

Our hypothesis is that the hybrid detectors provide improved performance by 

taking advantage of the known physics of the linear mixing model within a statistical 

hypothesis test. To show whether this occurs or not in practice, we have implemented 

a number of experiments on hyperspectral imagery under real-world conditions. One 

of the major difficulties in doing such an analysis is being as unbiased as possible. 

This is a real concern when using real world hyperspectral data as many of the 

variables are simply out of our control. However, we can develop a series of tests that 

reduce this bias and provide meaningful results. We argue that these types of tests are 

more germane to detection performance as real world data collections have to 

encounter many of the same issues. This section will be devoted to identifying the 

issues related to data acquisition and the methods we used for each of our detectors. 

This is not meant to be a full comparison of all the different ways to process 

hyperspectral data. This comparison is only meant to help understand whether our 

hypothesis is valid. The following sections identify the experimental design and 

provide results for three experiments measuring endmember sensitivity, separation 

performance, and overall ROC performance. Table I summarizes these selections for 

each of the detectors (AMSD, ACE, HSD, and HUD) used in our experiments.  

 



 99 
 

Table 9: Subpixel Experiment Details 
Detector Background 

Model 
Background Signatures Target 

Signatures 
Abundance 
Constraints 

AMSD Structured Eigenvectors of the Image 
Correlation Matrix MODTRAN No 

ACE Unstructured Multivariate Normal with 
Global Covariance MODTRAN No 

HSD Structured Iterative Error Analysis & 
Global Covariance MODTRAN Yes 

HUD Unstructured Iterative Error Analysis & 
Global Covariance MODTRAN Yes 

 
5.3.1.  Experimental Design 

These experiments require imagery, background signatures, target signatures, 

and ground truth information. The imagery used for these experiments comes from 

the Sensor X data described in Chapter 2. From this sensor, we used Images 1 

through 6 because these images contain subpixel targets. The other images are full or 

multi-pixel targets which provide little challenge for the detectors.  

As indicated in Chapter 4, we used two background endmember extraction 

techniques. The most significant eigenvectors of the global image correlation matrix 

were used as the “endmembers” for the AMSD algorithm as documented in [71]. 

Since these do not produce physically meaningful endmembers, we used the IEA 

algorithm for the hybrid detectors [77]. Additionally, we used the image covariance 

matrix for the hybrid detectors to whiten the data. In all cases, the endmembers and 

covariance matrices were estimated from the entire image. We also tried local 

estimates, but these provided results no better than using global estimates.  

To choose the number of endmembers for each detector, we first extracted up 

to 150 endmembers for AMSD and 60 endmembers for the hybrid detectors. While 

we could have used our estimation techniques from Chapter 4, we decided to identify 
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the ideal cases for these results to present the best performance possible for each of 

the detectors. The concept of best performance turned out to be trickier than we first 

imagined. For images where we had targets, the best performance was defined as the 

number of endmembers that maximized the probability of detection while minimizing 

the number of false alarms. In cases where perfect separation was achieved between 

targets and false alarms, the best performance was defined using a minimax criterion 

where the clutter with the highest detection score was minimized. The same minimax 

criterion was applied to the cases where no targets were present. This method 

provided the best results independent of detector type both in terms of separation of 

targets and clutter and setting a fixed threshold for ROC curves.  

The target information we received from NVESD were measured in units of 

reflectance. As discussed in Chapter 3, the images are measured in terms of radiance. 

There are three approaches to overcome this mismatch: use target signatures directly 

from the image for the experiments, convert the images to reflectance, or convert the 

targets to radiance.  

Because the images only contained sub-pixel targets, we could not directly use 

target signatures from the image. If we did, the signatures would be corrupted with 

background and bias our results. Moreover, using target signatures from the image 

reduces the pool of targets. Those targets would have to be dropped from the analysis 

as any target pulled from the imagery would be guaranteed to be detected biasing the 

results.  

Because of these reasons we turned to the atmospheric compensation 

techniques documented in Chapter 3. For the analysis in this chapter, we relied on the 
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model-based method MODTRAN to generate the target signatures. We did this to 

remove variability that may have been introduced using the ARRT method. This was 

especially true for Target 4 where the low reflectance signature made estimation 

using in-scene methods difficult.  

Ground truth was used to create background and target objects. Following the 

procedures in Chapter 2, we applied a cluster threshold to each detector output to 

guarantee 1% of the pixels were above the threshold. This threshold was used 

knowing that the number of targets in the image was far less than 1% of the pixels in 

the image. Adjacent pixels above the threshold were assigned to the same cluster. In 

each cluster, the maximum detection score was assigned as the cluster detection 

score. These clusters’ positions were then compared to ground truth information to 

label the clusters as either target or false alarms.  

Fill factors for the experiment ranged from 10% to 60%. Fill factor describes 

the percent of the pixel that is occupied by target signature. Fill factors assume that 

the target lies exactly within the pixel. In numerous cases, subpixel targets can lie 

across pixel boundaries or be obscured by the competing environment (e.g. tall grass) 

generating fill factors in the image that are much smaller than expected.  

5.3.2.  Endmember Sensitivity Analysis 

This experiment measures how sensitive the AMSD, HSD, and HUD 

algorithms are to the number of endmembers. In our experiments, we have ground 

truth information and hence can determine the “best” number of endmembers as 

defined in the previous section. In real world applications, this knowledge is not 

available to us; hence, we have to rely on algorithms to estimate the correct number 

of endmembers without the associated ground truth. As shown in Chapter 4, these 
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algorithms can have significant errors. Therefore, detectors that are insensitive to 

these estimation errors are highly desirable.  

For this experiment, we measured the probability of detection and number of 

false alarms at varying numbers of endmembers from one to 60 across all images, 

targets, and detectors. We stopped at 60 endmembers because in all cases, the 

performance for all detectors on all targets degraded well before reaching this number 

and continued to degrade as will be shown in our results. The only exception to this 

rule was the number of endmembers used for AMSD. Additional experimentation 

showed that we needed to extract as many as 150 endmembers to provide good 

detection results.  

We present the results in two ways. First, we provide an example to show how 

the false alarm density varies with the number of endmembers and type of detector. 

The results for this experiment are in Figure 25 which shows the performance of the 

AMSD, HSD, and HUD algorithms on Image 1 and Target 2. We chose this image 

and target type because it is indicative of the entire set of results we produced. The 

figure shows the number of false alarms for varying numbers of endmembers on each 

detector. We did not include the Pd figures simply because all detectors were able to 

achieve nearly 100% Pd across all numbers of endmembers. Therefore, good 

performance on this test is achieved if a minimal number of false alarms are detected 

across multiple numbers of endmembers. This indicates that the detector is partially 

insensitive to the number of endmembers chosen.  
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Figure 25: Graphical Comparison of Endmember Sensitivity 

 
Figure 25 shows the hybrid algorithms are more insensitive to the number of 

endmembers than AMSD. The AMSD results are random and lack the general trend 

seen in the HSD and HUD results. When using AMSD, even slight changes in 

endmembers can produce dramatically different results varying from 27 false alarms 

to nearly 800. The HSD algorithm results show that endmembers numbering less than 

ten tend to produce better results. Also, the HSD results at higher number of 

endmembers do not vary as greatly as the AMSD figures. Instead, the worst case 

number of false alarms is limited to 50. HUD is the best in terms of being insensitive 

to the number of endmembers. This algorithm provides excellent performance 

regardless of the number of endmembers. The data shows that the hybrid detectors are 
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insensitive to the number of endmembers with HUD being nearly independent of 

them.  

Figure 25 only shows the results for one image and one target type. To verify 

that this occurs for all target types and images, we put together Table 10 that contains 

the number of times the best performance was achieved across the 60 endmembers 

for each detector. The more insensitive a detector is to the number of endmembers, 

the higher the number. Best performance is defined as the instances that achieve 

100% Pd with the lowest number of false alarms. Note that this could mean that the 

lowest number of false alarms is greater than zero. Results are only posted for images 

where the target is present.  

Table 10: Endmember Sensitivity Results 
Target Image AMSD HSD HUD 

1 54 35 60 1 
4 39 34 60 
1 1 8 37 2 
4 3 42 60 
2 2 36 59 
3 21 42 60 
5 1 1 2 

3 

6 1 1 59 
2 0 0 0 
3 0 0 0 
5 0 0 0 

4 

6 0 0 0 
 

The results in Table 10 support the results from the first experiment. Target 1 

is the easiest of the targets and this is demonstrated by the high numbers achieved 

with all the detectors. As the targets become more difficult to identify though, the 

results start to diverge. AMSD performance drops to single digits as target difficulty 

increases. HSD maintains good numbers until the hardest images where it too drops 
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to single digits. HUD fairs the best maintaining nearly perfect performance on all the 

images except a few. These experiments show the hybrid detectors are partially 

insensitive to the number of endmembers selected. Since the true number of 

endmembers is rarely if ever known, detectors with this insensitivity have a 

significant advantage over those that do not.  

The only exception to the rule is Target 4 where none of the detectors are able 

to achieve 100% Pd. In this case, the performance is poor independent of the number 

of endmembers. The most likely cause is the target is so weak that target 

characterization methods are not correctly modeling the signature. This mismatch 

causes all detectors to perform poorly.  

5.3.3.  Separability Analysis 

Having shown that the hybrid detectors are more insensitive to the number of 

endmembers selected, the question remains whether they provide improved detection 

performance over their AMSD and ACE counterparts. This set of experiments 

answers this question using figures that show the separability between target and 

background for each image and detector type. The figures were patterned after those 

found in [69]. These graphs are very useful because they can be used even when few 

targets are present. This allows us to measure the performance of the detectors on 

each image and target type.  

The figures for each target type are shown in Figure 26 through Figure 29. 

Each figure contains four sub-figures. Each sub-figure contains black and gray 

vertical bars. The black bars show the range of detection values for the background. 

The gray bars show the range of detection values for the targets. Ideally, these bars 

should not overlap indicating the targets are completely separable from the 
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background. In cases where overlaps do occur, a number is posted above the black 

bar. This is the number of false alarms that occur if all of the targets are detected. 

Within any sub-figure, the ranges of the targets and background can be compared 

across images to see the consistency of the detector. A good detector will consistently 

suppress the background into a similar range of values while separating the targets.  
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Figure 26: Separability Analysis for Target 1 

 
Figure 26 shows the results for Target 1. This is the easiest target due to its 

white color that makes it very different from the surrounding background. All the 

detectors perform well with only ACE picking up one false alarm on Image 4. The 

structured detectors however perform better than their unstructured counterparts. The 

ACE and HUD algorithms do separate the target from the background, but have 
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difficulty suppressing the background in the images where the targets are not present. 

The structured detectors do not suffer from this problem and suppress the background 

nearly equally across all images. AMSD has a slight advantage over HSD on Images 

3 and 6 where the background values have been compressed a bit farther than with 

HSD. Nevertheless, all detectors show good performance on this target.  
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Figure 27: Separability Analysis for Target 2 

 
Figure 27 shows the results for Target 2. This target is painted green and 

although larger than Target 1 is harder to separate from the green background. It is 

with this target that the hybrid detectors begin to show a slight performance 

advantage over the standard detectors. The hybrid detectors maintain zero false 

alarms across all images as was the case with Target 1. AMSD however picks up 27 
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false alarms on the first image and ACE picks up 2 false alarms on the same image. 

The hybrid detectors also do a better job of suppressing the background into similar 

ranges across the images. AMSD does as well but has the aforementioned 27 false 

alarms. ACE is the only detector where the background values vary significantly 

across the images.  
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Figure 28: Separability Analysis for Target 3 

 
Figure 28 shows the results for Target 3. This target has multiple reflectance 

signatures which indicate a significant variability of the spectral signature. Because of 

this variability, all the detectors have difficulties with this target. The background is 

no longer being compressed to the same range of values for any detector although the 

structured detectors do fair better than their unstructured counterparts. The key is the 
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number of false alarms. AMSD achieves 666 false alarms across all images. ACE 

drops this number to 29. HUD further reduces the number to 13 while HSD performs 

the best with only 10 false alarms. These numbers are remarkable in that the hybrid 

detectors have provided 66 times less false alarms than AMSD and 3 times less false 

alarms than ACE. When one considers that the hybrid detectors are also the most 

insensitive to the number of endmembers selected, the performance gains become 

much more significant.  
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Figure 29: Separability Analysis for Target 4 

 
Figure 29 shows the results for Target 4. As expected, all of the detectors have 

difficulty with this weak target. This is the only target where the hybrid detectors 
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show no improvement over the statistical detectors AMSD and ACE. The most likely 

cause of this result is the incorrect modeling of the target radiance signature as noted 

in Chapter 3. When the estimated target does not match the target signature in the 

image, no signature based detector is going to perform well. None of the detectors are 

able to detect 100% of Target 4 in any of the images. Therefore, this target is not a 

good example for comparing the different subpixel target detectors, but it does 

support the need for good target characterization.  

5.3.4.  Receiver Operating Characteristics 

In our separability analysis, we argued that some detectors did a better job 

consistently pushing the background values into a similar region across all the 

images. A good way to measure this consistency is to use a ROC curve. The ROC 

curves we generate are for a single detector and single target across all images. This 

provides enough target returns to make each ROC statistically significant. Note that a 

ROC measures the average performance for a fixed threshold across all images; 

therefore, detectors that consistently separate the targets and background into similar 

detection values across each image will perform better than those that do not. 

Theoretically, the CFAR algorithms AMSD and ACE should provide such 

performance. Our interest is whether the hybrid algorithms will meet or exceed the 

results of the CFAR algorithms thus giving them CFAR-like properties although this 

fact cannot be proved theoretically.  

Figure 30 shows the ROC curves for Target 1. As expected from our 

separability analysis, the structured detectors outperform the unstructured detectors. 

AMSD does have a slight performance improvement over HSD, but the results show 
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the hybrid detectors are achieving the same CFAR performance as the standard 

detectors. 
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Figure 30: Subpixel Detection ROC Curves for Target 1 
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Figure 31: Subpixel Detection ROC Curves for Target 2 
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Figure 32: Subpixel Detection ROC Curves for Target 3 
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Figure 33: Subpixel Detection ROC Curves for Target 4 

 
Figure 31 shows the ROC curves for Target 2. The hybrid detectors are 

slightly better than their standard counterparts. While the figure seems to show a great 
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improvement in performance, the range of Pd values is measured from 0.8 to 1.0. 

This gives the impression of much better performance. Nevertheless, the hybrid 

algorithms are again performing as well if not better than their CFAR counterparts.  

Figure 32 shows the ROC curves for Target 3. In the separability analysis, the 

hybrid algorithms showed great performance improvements over AMSD and ACE. 

What was noted in that section was that none of the detectors were able to suppress 

the background into a consistent range of values. The ROC curves show this fact. The 

hybrid algorithms are performing better than their CFAR counterparts, but the 

performance improvement is not as significant as in the separability analysis. The 

conclusion that can be drawn from this result is that the background and target are 

similar making the background harder to suppress. Nevertheless, the hybrid detectors 

are modeling the background better than AMSD and ACE which provides the gains 

in performance.  

Figure 33 shows the ROC curves for Target 4. As expected, none of the 

detectors perform well. This is the only target for which the acceptable performance 

criteria of 50% Pd at 10-3 false alarms/m2 is not met. As mentioned before, the reason 

is due to incorrect modeling of the target radiance signature.  

5.3.5.  Conclusions 

Our set of experiments demonstrates the usefulness of the hybrid detectors. 

These detectors have a three-fold gain over their standard counterparts. First, they are 

tolerant of slight errors in the number of endmembers. Second, they show greater 

separability between targets and background – especially as the target becomes more 

difficult to detect. Third, they maintain a slightly more consistent threshold across the 

images than the known CFAR detectors AMSD and ACE. This result argues the 
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hybrid detectors’ ability to better model the background and therefore detect subpixel 

targets.  

What has not been mentioned so far is the efficiency of the hybrid algorithms. 

The algorithms require very little extra processing time when compared to either 

AMSD or ACE. ACE was perhaps the fastest of the detectors since we estimated the 

covariance matrix from the entire image. Results were also generated for ACE using 

local neighborhoods, but the performance showed little to no improvement over using 

the entire image. AMSD was nearly as quick as ACE except for the extraction of 

endmembers using an eigenvalue decomposition of the image correlation matrix. The 

hybrid detectors took the longest, but only because of the IEA endmember extraction 

algorithm. Once the endmembers were extracted, the performance was no different 

than that achieved with AMSD. The reason for this is the efficient FCLS algorithm 

which only took ten minutes to process an image when using 60 endmembers. With 

endmembers less than 20, the FCLS algorithm took less than a minute. Since most of 

the hybrid detectors prefer endmembers numbering less than 20, the processing times 

were similar to AMSD.  

One final note is on the difference between the HSD and the HUD algorithms. 

Both of these algorithms performed well, but the HSD algorithm has a slight 

performance advantage. On all targets it was able to achieve false alarm densities 

smaller than HUD. HSD was also more consistent in suppressing the background into 

a similar range of detection values. The tradeoff is that the HSD algorithm is more 

sensitive to the number of endmembers. For example, the HSD algorithm requires an 

estimate of the number of endmembers that is close to the ideal. HUD on the other 
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hand can simply set the number of endmembers to some fixed number and achieve 

the same results for nearly all images. Therefore, the HUD algorithm is not as 

dependent on the number of endmembers, but has slightly lower performance than 

HSD because of this fact.  

5.4.  Summary 

In this chapter we argue that better characterization of the background through 

physics-based knowledge can improve subpixel detection performance. To this end, 

we develop two hybrid detectors which use physically meaningful endmembers and 

abundances within a statistical hypothesis test. We compare these detectors to their 

purely statistical counterparts AMSD and ACE.  

Our results show that the improved background models of the hybrid detectors 

provide improved performance in three different ways. First, the hybrid detectors are 

less sensitive to the number of endmembers used. Thus, endmember estimation 

algorithms can allow some error without significantly degrading subpixel detection 

performance. Second, the hybrid algorithms provide better separation between the 

targets and background per individual image. This is especially the case with weaker 

targets like Target 3 where AMSD and ACE have false alarm densities well over 30 

compared to 10 for the hybrid detectors. Finally, the hybrid detectors provide a more 

consistent separation of target and background that leads to improved ROC 

performance.  

While this research shows the importance of modeling the background on 

subpixel target detection algorithms, further research is required. On Target 3, the 

hybrid detectors did outperform their statistical counterparts, but Figure 28 shows that 

the background detection scores can still vary significantly from image to image. One 
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way to counteract this phenomenon is to better characterize the background using 

more appropriate density functions or non-parametric techniques in conjunction with 

physics-based knowledge. Another means to counteract this phenomenon is to use 

adaptive threshold techniques. Either way, our research suggests much more can be 

done to model and understand the complex background inherent in hyperspectral 

imagery to improve subpixel target detection performance.  
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Chapter 6:  Adaptive Detection Thresholds via Extreme Value Theory 

Subpixel detectors present a significant challenge in determining the detector 

threshold for a desired probability of false alarm. For example, the most common 

threshold estimation method is a theoretical calculation for used for CFAR detectors. 

CFAR detectors are designed such that the distribution of the detector given the 

background is independent of any estimates needed to derive the detector [70]; 

therefore, the conditional background distribution is independent of the data. This 

independence of the clutter distribution from the data allows a theoretical calculation 

of a fixed false alarm density α0. CFAR detectors achieve this goal by making an 

assumption about the underlying distribution of the data. Typically this assumption is 

that the underlying distribution is a normal distribution (or at least any zero-mean 

elliptically contoured distribution [57]), which makes the mathematics tractable 

enough to determine the detector’s statistical distribution. Additionally, CFAR 

detectors typically assume independent and identically distributed (iid) samples. For 

instance, a standard detector for HSI data is the Adaptive Cosine Estimate (ACE) 

detector which assumes the underlying distribution is multivariate normal [58]. ACE 

is a CFAR detector whose threshold can be calculated theoretically for a desired false 

alarm density. In practice though, HSI data has been shown to be rarely multivariate 

normal [103] and hence any theoretically calculated threshold for the ACE detector is 

most likely inaccurate. 

In recent publications, the use of elliptically contoured distributions has been 

explored to model the outputs of detectors [69]. This method is similar to the 

theoretical threshold calculations for CFAR detectors except the method models the 
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output of the detector as an elliptically contoured distribution. The detector data is 

then used to estimate parameters which in turn provide a distribution from which a 

detection threshold can be theoretically calculated. The usefulness of this method is 

currently being investigated, but its applications are limited to CFAR detectors. This 

prevents us from using these techniques for our hybrid detectors where the output 

distribution is difficult at best to determine due to the non-negativity constraints. 

Therefore, we must rely on methods that directly use the output detection statistics.  

A standard non-parametric approach for determining the desired detector 

threshold is to use order statistics. The detector output is sorted in descending order to 

create an ordered list. The number of detection values N is multiplied by the desired 

α0 and rounded to the nearest integer. This integer is used to identify the position in 

the ordered list that will be used as the detection threshold. The strength of this 

approach is that any detector output can be used – not just those that are CFAR. Even 

if the detection threshold varies significantly from image to image, the use of this 

method adjusts the threshold automatically to track such deviations. Unfortunately, 

the method is very sensitive to outliers when low false alarm densities are required. 

For example, a typical detection image will contain both targets and clutter. The order 

statistic algorithm will count the targets as clutter and this will skew the detection 

threshold. We can think of this as a Monte Carlo (MC) method where instead of 

estimating the probability of false alarm density from the detector samples, we use the 

samples to estimate the threshold for a desired false alarm density. In subsequent 

discussions, we will call this the MC method. 
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Another method of determining the detector threshold is based on importance 

sampling (IS). Importance sampling is a forced Monte Carlo method that is used to 

simulate rare events [101]. IS has been mostly used to test system responses to rare 

events in an efficient manner. There are a number of papers that prove its ability to 

provide unbiased estimates of rare event probabilities with low variance 

[91][99][102]. These rare events simulate the distribution tails of the system and 

hence are closely related to the design and measurement of detectors.  

Srinivasan showed that IS could be used to determine a detector threshold for 

a desired fixed false alarm probability α0 [101]. This method is called inverse 

importance sampling. Initially, these thresholds were determined for standard 

background distributions that a detector may encounter such as the normal, Rayleigh, 

or Weibull distributions. Bucklew extended this research to handle situations where 

the underlying probability density function was unknown [17]. Unfortunately, these 

methods are designed for sums of random variables. In [101], Srinivasan shows that 

blind importance sampling when applied to data from a single random variable 

provides no gains over MC methods. Since the detector output is from a single 

random variable, blind IS methods are not ideal. 

Therefore, we turn to the use of Extreme Value Theory (EVT). EVT concerns 

problems where the probability of a rare event must be estimated even if such a rare 

event has never occurred [39]. This type of research has wide applicability in such 

fields as climatology [100], detection theory [74], anomaly detection [89], and 

financial analysis [25]. It is in the last field where most of the theory has been applied 

to estimate stock market anomalies, insurance rates for catastrophic events, and 
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management of risk. These applications are very similar to our problem of estimating 

a threshold for rare events even if they have not occurred. This makes EVT a variance 

reduction technique similar to IS, but far more applicable to wider class of problems 

[38].  

In target detection, the presence of targets can significantly impact the 

performance of threshold estimates. A variety of methods have been developed to 

remove outliers (e.g., isolation of target returns from the background) [47]. These 

methods vary widely from simple sample statistics to advanced classification 

techniques based on Support Vector Domain Descriptions [108]. Interestingly, EVT 

theory can also be used to identify outliers in a data sample [89]. Thus, EVT can both 

estimate detection thresholds for a given false alarm density and simultaneously be 

used to remove the influence of outliers on the sample.  

Therefore, we present a novel adaptive threshold technique based on extreme 

value theory. The new technique is able to set thresholds for desired probabilities of 

false alarm densities similar to the MC technique. Unlike the MC technique, we 

develop an outlier rejection capability using the Generalized Pareto Distribution 

(GPD) that can identify samples that do not belong to the same distribution as the 

background. These outlier samples can be removed such that desired false alarm 

densities in the presence of target returns can be calculated with some confidence. 

The rest of the chapter is structured as follows. Section 6.1 presents an overview of 

Extreme Value Theory. Section 6.2 describes our adaptive threshold algorithm based 

on GPD estimates. Experimental results are given in Section 6.3. A summary 

concludes the chapter in Section 6.4   
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6.1.  Extreme Value Theory 

6.1.1.  The Fisher-Tippett Theorem 

Assume there is a set X = {x1, x2, …, xm} of m i.i.d. samples drawn from the 

same unknown and continuous cdf F(x).  Denote the maximum of the set X as 

 )max()( Xx m = . (70) 

with cdf 

 [ ]mxFxH )()( = . (71) 

Fisher and Tippett [28] show that if H(x) is stable in the limit as m → ∞, then an 

affine transformation exists such that 

 mm

d

m xx μσ +=)(  (72) 

for a given scale parameter σm and location parameter μm.  Equation (72) states that 

the maximum of the set X converges in distribution to the affine transform.  Using the 

affine transformation given, Fisher and Tippett show that 

 ))(()( 1
)( mm

d

m xHxxH μσ −=≤ −  (73) 

the normalized form is the only form for the limit distribution of x(m) given any F(x).   

Now assume that H(x) is a non-degenerate limit distribution for normalized 

maxima of the form )(1
mm x μσ −− , then H(x) is only one of three forms.  This theorem 

is the famous Fisher-Tippett theorem [28] and is the foundation for extreme value 

theory. Denoting )(1
mmm xy μσ −= − , the “reduced variate”, the three forms are 
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for α > 0 which are the Gumbel, Fréchet, and Weibull distributions respectively.  

What this theorem states is that as m → ∞, the maximal distribution H(x) is in the 

domain of attraction of one of the three limit forms in (74) for any F(x). Therefore, 

much like the central limit theorem for sums of random variables, the Fisher-Tippett 

theorem provides a known limiting distribution for the maxima from any set of i.i.d. 

samples.   

6.1.2.  EVT for the Exponential Class 

Most research has focused on the type I or Gumbel distribution.  This limiting 

distribution occurs for all samples that are drawn from a distribution in the 

exponential class [35][39] which contains such well-known distributions as the 

normal, lognormal, and K distributions.  A number of researchers have developed 

theory to identify whether data samples belong in the exponential class such as 

Gumbel [39], Gnedenko [35], and von Mises [112].  From this theory, Weinstein 

[114] introduced the generalized extreme value theory (GEVT) such that 
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where am > 0, v > 0, and 
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m

v
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When considering tail estimates based on data from the exponential class, the 

Gnedenko criterion states that (75) holds if and only if 



 123 
 

 ( )( ){ } yyycaFn v
n

v
nn

∀−=+−
∞→

),exp(1lim 1 . (77) 

Using (75) through (77), we can estimate the tail of the unknown exponential class 

F(x) by 
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Having defined the unknown tail probability, we need to estimate the four 

parameters: an, cn, v, and n. Guida, Iovino, and Longo present a way to find these 

parameters using numerical optimization of the maximum likelihood estimates [38]. 

These estimates are 

 
( )

( )∑

∑
∑

=

=

= −

−
−= L

i
n

v
in

L

i
n

v
in

v
inL

i

v
inn

cx

cxx
x

L
c

1

ˆ
)(

1

ˆ
)(

ˆ
)(

1

ˆ
)(

ˆexp

ˆexp
1ˆ , (79) 

 ( )⎟
⎠

⎞
⎜
⎝

⎛
−−= ∑

=

L

i
n

v
innn cx

L
ca

1

ˆ
)( ˆexp1lnˆˆ , (80) 

and 
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where xn(i) is the maximum value from the ith set of n samples. These can be 

iteratively solved using numerical techniques such as the Kimball procedure [39].  

The only other parameter to be estimated is n. Unfortunately, this parameter 

cannot be estimated using MLEs. Instead, Guida, Iovion, and Longo perform a 

number of trials to see the effect of this parameter on the final solution [38]. Their 

results show that n should be on the order of tens of samples to maximize the number 



 124 
 

of L sets. If n becomes to large, L decreases leading to poor estimates of the tail 

distribution.  

6.1.3.  Generalized Pareto Distribution 

Pickands [79] noted that classical EVT (Fisher-Tippett theorem) has a number 

of difficulties when applied in practice.  First, most research has focused on only one 

of the three limiting distributions – namely, the distribution for data from the 

exponential class as noted in the previous section.  Unfortunately, if the data does not 

come from the exponential class, a practitioner must use his/her intuition and 

subjective reasoning to choose the correct parametric model.  Second, classical EVT 

requires partitioning the data into n set of m samples.  As noted in [38], there is no 

direct way to identify the best partitioning a-priori.  To this end, Pickands [79] and 

Balkema and de Haan [5] introduce a new way to estimate the tail of a distribution 

based on modeling the distribution of samples above some high threshold.   

Following the work of Pickands [79], assume that we have n i.i.d. samples 

from a continuous and unknown distribution F(x).  Pickands assumes for some c, -∞ 

< c < ∞, there exists 
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where x∞ = greatest lower bound {x: F(x) = 1} = lowest upper bound {x: F(x) < 1}, 

and y+ = max(0,y).  For any u and x, the [1 – F(u+x)]/[1 – F(u)] is the conditional 

probability that an observation is greater than x+u where u is some high threshold.  

Therefore,  
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Von Mises [112] showed for EVT that the extremal distribution functions have the 

form 
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Therefore, P(X X ≥ u) is in the domain of attraction of the classical EVT distributions 

without having to partition the data into n sets of m samples.   

If F(x) is continuous, then G(x) is a generalized Pareto distribution (GPD) of 

the form  
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for all x such that 0 < x < ∞. Depending on the shape factor c, the GPD embeds a 

number of other distributions. When c = 0, the GPD is an exponential distribution. 

When c > 0, the GPD is the ordinary Pareto distribution. When c < 0, the GPD is the 

Pareto II distribution. Pickands also shows that the estimated GPD is consistent and 

converges in probability to the true tail distribution such that 
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Therefore, the GPD is a consistent estimate of the tail distribution based on samples 

above some high threshold u for an unknown F(x). The importance of this research is 
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that it removes the subjective selection of one of the extremal distributions in (74) and 

removes the need to partition the data set into n set of m samples.   

6.2.  EVT Adaptive Threshold Algorithm 

Having described the main theorems for extreme value theory, we now 

proceed to describe how this theory can be used to estimate detection thresholds.  

Detection thresholds are typically set by fixing the threshold at a desired probability 

of false alarm (α0). In CFAR detectors, this threshold can be calculated directly 

assuming the data fits the statistical distribution of the detector. In subpixel detection, 

the HSI data rarely fits the standard CFAR assumption of normal statistics. MC 

methods shown in (88) can be used to estimate the threshold from the data, but they 

are inaccurate for very small α0 and are sensitive to outliers.  

We can use the theory based on GPD to calculate the threshold for a tail 

distribution. Following the derivations in [33], we can redefine the unknown cdf as 

 )Pr()())Pr(1()( tXtxFtXxF t ≤+−≤−= . (87) 

where t is a sufficiently high threshold. The probability that the set of data is less than 

t is easy to find using MC methods. The estimate is 

 
N

nNtX −
=≤ )Pr(  (88) 

where N is the total number of samples and n is the number of samples above t. Thus, 

the threshold needs to be high enough such that the remaining samples are in the tail 

of the distribution, but not so high that very few samples exist above the threshold. A 

good rule of thumb is to use either a threshold that captures 90% or 95% of the data. 

Note that this metric is a simple MC method and will provide unbiased, consistent 

estimates as the number of samples increase.  
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The remaining term in (87) is the cdf of the tail of the distribution Ft(x-t). For 

this estimate, we use the GPD given in (85). To use the GPD, we must estimate the 

parameters a and c from the data. To perform this estimation, we calculate the log 

likelihood function from (85). To begin, we first calculate the probability density 

function (pdf) as the derivative with respect to x of (85) to obtain 
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If we assume i.i.d. samples from the distribution, the likelihood equation is 
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Taking the natural logarithm of (83), we obtain the log likelihood function 
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Unfortunately, the log likelihood equation is nonlinear and solving for each of 

the parameters results in coupled nonlinear equations. Therefore instead of trying to 

directly estimate the parameters using MLEs, we turn to the Nelder-Mead Simplex 

Method which is an implementation of unconstrained nonlinear optimization [62]. 

This method finds the minimum of a function; thus, instead of maximizing log g(X), 

we minimize –log g(X). Using this technique, we obtain estimates of a and c.  

Having calculated all the parameters, we can rewrite (87) for the tail samples 

such that 
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Conversely, we can rewrite (92) to find the threshold for a given cdf value to obtain 
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where tα is the threshold for a desired α0 = 1-F(x) beyond threshold t.  

This is a very useful result for our application. After setting a clustering 

threshold t, we can estimate a detection threshold tα from the data samples for a 

desired α0 value. The problem here as with the MC method is the GPD method 

assumes that all the data samples come from the same underlying distribution. In the 

case where targets are present, this assumption is invalid and suffers from the same 

problems as MC techniques. 

The GPD method, however, is based on the knowledge that the tails of a 

distribution will converge in probability to the generalized Pareto distribution [79]. 

This only occurs though if the data samples come from the same distribution. When 

the data contains samples from multiple distributions, the tail will not converge to a 

GPD. We can use this knowledge to identify when target samples are present in the 

data and remove them before estimating a threshold for a desired α0.  

To identify the presence of samples from two different distributions, we use 

the confidence bounds of the GPD. The idea is based on the fact that if the data comes 

from a single distribution, it should fall within the confidence bounds. Therefore, if 

we set 90% confidence bounds, 90% of the samples should fall between the bounds. 

If a higher percentage of samples fall outside these bounds, we hypothesize that the 

samples must come from multiple distributions.  
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To generate the confidence bounds, we rely on either numerical optimization 

or Monte Carlo simulation. Both provide reliable estimates of the GPD bounds, but 

we found the Monte Carlo simulations to be much quicker. To create these Monte 

Carlo estimates of the confidence bounds, we generate hundreds of random samples 

for each data sample of the GPD using the estimates found from (84). This provides a 

range of estimated F(x) values at each data sample. The estimated samples are 

ordered. The confidence bound for the particular data sample is then calculated by 

taking the two estimated samples such that 90% of the remaining samples fall 

between them. This is done at every data sample to calculate the confidence bounds.  

To help describe how we use the confidence bounds, we construct two simple 

examples. For the first example we generate 10,000 samples from a standard normal 

distribution. For the second example, we generate 9,900 samples from a standard 

normal distribution and 100 samples from a normal distribution with a mean value of 

6 as “target” detections. We fit a GPD to the top 10% of the data for both examples. 

From these points, we estimate the tail cdf according to (83). We compare the results 

to the cdf calculated using MC techniques in (88) (also called the Kaplan-Meier 

empirical cdf [22]).  

Figure 34 shows the estimated GPD with associated 90% confidence bounds 

compared to the empirical cdf for the first example. The solid gray red curves 

represent the 90% confidence bounds. The black points are the empirical cdf and the 

dashed gray line is the best fit using the GPD. The empirical cdf fits well between the 

confidence bounds having only 4 samples fall outside the bounds. This represents 

0.4% of the samples which is much less than the 10% limits enforced by the bounds.  
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Figure 34: Comparison of the GPD to the Empirical CDF for Example 1 

 
Figure 35 shows the estimated GPD with associated 90% confidence bounds 

compared to the empirical CDF for the second example. The empirical cdf falls well 

outside the bounds with over 30% of its samples beyond the 90% confidence limits. 

This example is therefore considered as having come from multiple distributions. 

This can be seen clearly in the empirical cdf. The 100 samples from the normal 

distribution with mean value 6 cause a hump in the cdf centered at 6. These are our 

fictional “target” detections. The challenge now is to identify these samples and 

remove them. 

Upon further examination of Figure 35, the empirical cdf curve does follow a 

GPD distribution until it begins flattening out near values of 3. At this point, it 

intersects the lower bound. Therefore, we can use the lower bound as a threshold for 

outlier rejection. Any samples in the empirical cdf beyond the lower bound are 

removed from the data sample. Because the GPD method is a variance reduction 
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method, it is acceptable to remove some of the non-target samples from the data. This 

allows us some flexibility in choosing which samples will be used to estimate the new 

generalized Pareto distribution.  
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Figure 35: Comparison of the GPD to the Empirical CDF for Example 2 
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Figure 36: Comparison of Corrected Samples    
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Using the lower bound to identify the samples to keep, we recalculate the 

GPD and display the results in Figure 36. Along with the edited empirical cdf and 

GPD estimates, we include the true cdf of a standard normal distribution. The edited 

samples now approximate the true normal cdf well –especially at lower samples. The 

results only diverge at the highest samples and even then, they differ only by 0.0005. 

This shows that the algorithm can identify samples with “targets”, prune the “target” 

samples, and then recompute a new tail distribution that is close to the original 

“background” samples. All of this can be done without any knowledge of the 

underlying background distribution or knowledge of the target samples. A block 

diagram of the proposed algorithm is given in Figure 37.   

 
Figure 37: Block Diagram of the EVT Adaptive Threshold Algorithm 

 
6.3.  Experimental Results 

Our hypothesis is we can detect and eliminate the influence of target samples 

to adaptively threshold detection results. Not only can we eliminate the influence of 

the target samples, but by using the generalized Pareto distribution, we can accurately 

estimate a threshold for a desired false alarm density. To show whether this occurs or 
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not in practice, we have implemented a number of experiments on both known 

distributions and on subpixel detector results from real-world hyperspectral imagery. 

The following sections describe the experimental design philosophy and provide 

results for two experiments measuring the accuracy of the GPD against known 

distributions and the ability of the EVT Adaptive Threshold algorithm to determine 

the thresholds for desired false alarm densities on subpixel detection results.  

6.3.1.  Experiments with Known Distributions 

The first set of experiments shows the ability of the GPD to accurately 

estimate thresholds on known distributions. We use three distributions for this 

experiment: the normal distribution, the chi-squared distribution with 169 degrees of 

freedom, and a beta distribution with parameters 0.5 and 84. The normal distribution 

was used as a statistical benchmark. The chi-squared distribution was used because it 

represents the detection output of the well-known RX anomaly detector [84]. Finally, 

the beta distribution represents the statistical output of the ACE detector introduced in 

Chapter 5.  

Another reason for using these distributions is because they all represent 

different ranges and limits. The normal distribution is valid for the entire real line. 

The chi-squared distribution is only valid for non-negative values of the real-line. The 

most limiting distribution is the beta distribution whose range is restricted between 0 

and 1. All of these distributions test the ability of the GPD estimate to adapt to 

different statistical properties. Again, the GPD knows nothing about the true 

underlying distribution – only that the various tails of the distributions should 

converge in probability to a generalized Pareto distribution. 
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For each of the distributions listed above, a set of experiments was conducted 

to measure the accuracy and precision of the MC and GPD methods. The experiments 

were developed to estimate thresholds for false alarm densities at 10-2, 10-3, and 10-4 

given 1000 samples from the distribution in question. Note that these experiments 

should task each of the methods by attempting to find thresholds as low as 10-4 with 

only 1000 samples – a threshold beyond the MC method’s abilities. At each of the 

thresholds, 1000 runs were performed to achieve reasonable measurements of the 

mean and variance. The results of these experiments are given in Table 11. The table 

includes estimates for the MC method, the GPD method with clustering threshold of 

10%, and the theoretical ideal for each false alarm probability α0. For the MC and 

GPD methods, the table includes the mean with the variance in parentheses for each 

α0.  

Table 11: Comparison of MC and GPD on Known Distributions 
Distribution α0 Ideal MC GPD 

10-2 2.326 2.348 
(0.016) 

2.331 
(0.009) 

10-3 3.090 3.233 
(0.125) 

3.038 
(0.053) N(0,1) 

10-4 3.719 3.239 
(0.122) 

3.517 
(0.205) 

10-2 187.5 187.8 
(5.967) 

187.6 
(3.556) 

10-3 203.4 206.9 
(56.83) 

202.3 
(24.57) 

2
169χ  

10-4 217.0 206.9 
(56.48) 

213.6 
(109.4) 

10-2 0.0386 0.0393 
(1.1·10-5) 

0.0384 
(0.6·10-5) 

10-3 0.0622 0.0675 
(1.6·10-4) 

0.0612 
(0.7·10-4) Beta(0.5,84) 

10-4 0.0859 0.0685 
(1.7·10-4) 

0.0875 
(5.1·10-4) 
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The results from these experiments demonstrate the theoretical gains of using 

the GPD method. For all distributions, the GPD method obtains a better estimate of 

the threshold with nearly half the variance of the MC method. This is expected given 

the variance reduction benefits of using the generalized Pareto distribution. The GPD 

is also able to provide an estimate for α0 = 10-4. While the estimate does have some 

bias, it shows the ability of the GPD to take advantage of its variance reduction 

property to estimate thresholds beyond that of MC methods.  

6.3.2.  Experiments on Subpixel Target Detectors 

The simulated results are good for comparing the GPD method with its MC 

counterpart, but these experiments do not take into account situations that occur in 

real HSI data. In these cases, the data may not be necessarily homogeneous and can 

contain numerous outliers. This is especially true when targets are present in the 

imagery. To measure the usefulness of the GPD-based EVT adaptive threshold 

method on such data, we applied it and a number of other well-known techniques to 

the ACE and HSD detector results from Chapter 5 on Target 2. The ACE results were 

chosen because ACE has a known output distribution (assuming normal statistics). 

We chose HSD because the detector’s output statistics cannot be easily quantified. 

Target 2 was chosen because it is not the strongest or weakest target signature and 

provides a good challenge for the algorithms.  

6.3.2.1.  ACE Threshold Results 

For the experiments with the ACE detector, we tested four different 

algorithms. The parameters for this experiment were set such that the desired false 

alarm density varied from 10-3 to 10-5, P is 1, and L is 169. The first algorithm is 

based on a theoretical calculation using (57). The second algorithm is a parametric 
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algorithm based on (57); however, instead of using the theoretical parameters, the 

parameters are estimated directly from the data. The third algorithm is the MC 

algorithm. The last algorithm is the proposed EVT method. For the EVT method, we 

use the clustering threshold of 1% to select the samples for estimation of the GPD 

parameters. On Images 2, 3, 5, and 6, no targets are present; therefore, the MC 

method should be ideal. On Images 1 and 4, however, where numerous targets are 

present in the data, we expect the EVT method to perform best. The results for the 

ACE detector are in Table 12 through Table 14. 

Table 12: Comparison of Threshold Estimates for ACE Results 
α0 Image Theoretical Parametric MC EVT Ideal 

1 0.0626 0.0664 0.1136 0.0736 0.0759 
2 0.0626 0.0610 0.0681 0.0695 0.0681 
3 0.0626 0.0668 0.0740 0.0751 0.0740 
4 0.0626 0.0656 0.0970 0.0711 0.0750 
5 0.0626 0.0600 0.0690 0.0707 0.0690 

10-3 

6 0.0626 0.0682 0.0804 0.0823 0.0804 
1 0.0864 0.0922 0.6428 0.1171 0.1146 
2 0.0864 0.0843 0.1111 0.1063 0.1111 
3 0.0864 0.0923 0.1161 0.1146 0.1161 
4 0.0864 0.0910 0.6951 0.1126 0.1203 
5 0.0864 0.0830 0.1449 0.1123 0.1449 

10-4 

6 0.0864 0.0944 0.1334 0.1305 0.1334 
1 0.1100 0.1177 0.7644 0.1737 0.1533 
2 0.1100 0.1075 0.2201 0.1515 0.2201 
3 0.1100 0.1175 0.1876 0.1630 0.1876 
4 0.1100 0.1162 0.8396 0.1710 0.1684 
5 0.1100 0.1057 0.2637 0.1669 0.2637 

10-5 

6 0.1100 0.1201 0.2435 0.1935 0.2435 
 

In each table, there are seven columns. The first column identifies the desired 

false alarm rate we want to achieve. The second column identifies the image that is 

being processed. The next four columns give the results for the theoretical, 

parametric, MC, and EVT methods. The last column presents the ideal results for the 
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desired false alarm rate. This ideal setting was found using the ground truth 

information to identify target clusters as described in Chapter 2. These target samples 

were then removed and the rest of the pixels were ordered by detection score. The 

MC method was then applied to this reduced set to identify the “ideal” threshold.  

Table 13: Comparison of Pd Estimates for ACE Results 
α0 Image Theoretical Parametric MC EVT Ideal 

1 1.00 1.00 1.00 1.00 1.00 
2 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 
4 1.00 1.00 1.00 1.00 1.00 
5 0.00 0.00 0.00 0.00 0.00 

10-3 

6 0.00 0.00 0.00 0.00 0.00 
1 1.00 1.00 0.24 1.00 1.00 
2 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 
4 1.00 1.00 0.33 1.00 1.00 
5 0.00 0.00 0.00 0.00 0.00 

10-4 

6 0.00 0.00 0.00 0.00 0.00 
1 1.00 1.00 0.02 0.98 1.00 
2 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 
4 1.00 1.00 0.03 1.00 1.00 
5 0.00 0.00 0.00 0.00 0.00 

10-5 

6 0.00 0.00 0.00 0.00 0.00 
 

The results show the usefulness of the EVT method even when the detector 

distribution can be assumed. The theoretical calculation using the beta distribution 

underestimates the thresholds consistently. This leads to false alarm rates that are 

significantly higher than the desired rates. In the most extreme case of 10-5, the false 

alarm rate is nearly an order of magnitude greater than the desired rate. While the 

ACE detector is a CFAR detector, the high false alarm rates occur because the 

underlying HSI data is rarely normally distributed [103]. This assumption of 
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normality leads to a mismatch between theory and real HSI data causing the higher 

false alarms and incorrect thresholds.  

The parametric method performs slightly better than the theoretical case. 

Instead of using the predicted parameters for the beta distribution, the parameters are 

estimated using the maximum likelihood technique. These estimates do improve the 

results, but the underlying assumption that the data comes from a normal distribution 

(thus leading to the beta distribution of the ACE detector) does not match the true 

distribution of the HSI data. Therefore even with estimated parameters, the 

parametric method does not perform well.  

Table 14: Comparison of False Alarms for ACE Results 
α0 Image Theoretical Parametric MC EVT Ideal 

1 256 202 11 120 102 
2 155 180 102 94 102 
3 226 169 102 95 102 
4 216 182 29 125 102 
5 147 181 102 91 102 

10-3 

6 327 220 102 96 102 
1 50 42 0 9 10 
2 26 29 10 11 10 
3 45 32 10 10 10 
4 55 38 0 13 10 
5 42 45 10 20 10 

10-4 

6 73 43 10 12 10 
1 13 8 0 0 1 
2 10 10 1 2 1 
3 11 9 1 2 1 
4 16 11 0 0 1 
5 22 23 1 5 1 

10-5 

6 22 14 1 4 1 
 

The MC estimates are more interesting. As expected, the MC estimates are 

ideal when no targets are present. If only a few targets are present, the MC estimates 

will continue to provide good thresholds for larger desired false alarm rates. In these 
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experiments however, the targets span tens of pixels. While this may not be 

significant at 10-2, it does affect the Pd and desired false alarm rates at 10-3 and below. 

Because the MC method has no mechanism to identify possible target samples, it 

degrades as the desired false alarm density becomes small.  This has the unfortunate 

effect of removing target detections first before removing clutter (assuming the 

detector has done an adequate job of separating the targets from the background). The 

final result is threshold estimates much higher than the ideal which penalize the Pd.  

The EVT method performs well in these experiments. The method was able to 

isolate the influence of the target signatures in Images 1 and 4 before calculating the 

threshold. The result is a threshold that is near ideal for false alarm rates of 10-3 and 

10-4. At these false alarm rates, the method provides Pd and false alarm numbers that 

are unmatched by any other algorithm when targets are present. At the 10-5 false 

alarm rate, the EVT method begins to diverge from the ideal cases; however, the EVT 

method still provides thresholds that exceed the ability of the MC method. This is an 

intriguing result as the EVT method is using less than 10,000 samples to estimate a 

10-5 desired false alarm rate with good accuracy. When targets are not present, the 

MC method provides the best results as expected; however, the EVT method provides 

results that are close to ideal. When considering the EVT method’s ability to estimate 

thresholds close to ideal in the presence or absence of targets, the slight errors in 

threshold level are acceptable to maintain good performance in all conditions.  

6.3.2.2.  HSD Threshold Results 

For the experiments with the HSD detector, we tested only two algorithms 

because HSD’s use of non-negativity constraints precludes the derivation of a 

theoretical distribution for the detector. The parameters for this experiment were set 
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such that the desired false alarm density varied from 10-3 to 10-5 as in the ACE 

experiment. The two algorithms tested are the MC and EVT methods. For the EVT 

method, we use the clustering threshold of 1% to select the samples for estimation of 

the GPD parameters. On Images 2, 3, 5, and 6, no targets are present; therefore, the 

MC method should be ideal. On Images 1 and 4, however, where numerous targets 

are present in the data, we expect the EVT method to perform best. The results for the 

HSD detector are in Table 15 through Table 17. 

Table 15: Comparison of Threshold Estimates for HSD Results 
α0 Image MC EVT Ideal 

1 1.0912 1.0540 1.0529 
2 1.0750 1.0738 1.0750 
3 1.0266 1.0207 1.0266 
4 1.1199 1.0884 1.0934 
5 1.0669 1.0668 1.0669 

10-3 

6 1.0706 1.0709 1.0706 
1 2.4647 1.1011 1.0912 
2 1.1061 1.1142 1.1061 
3 1.0455 1.0416 1.0455 
4 3.1925 1.1395 1.1491 
5 1.0898 1.0973 1.0898 

10-4 

6 1.1064 1.1131 1.1064 
1 3.7026 1.1759 1.1124 
2 1.1439 1.1632 1.1439 
3 1.0862 1.0773 1.0862 
4 6.5592 1.2100 1.2148 
5 1.1148 1.1312 1.1148 

10-5 

6 1.1614 1.1687 1.1614 
 

In each table, there are five columns. The first column identifies the desired 

false alarm rate we want to achieve. The second column identifies the image that is 

being processed. The next two columns give the results for the MC method and EVT 

method. The last column provides the ideal results for the desired false alarm rate. 

This ideal setting was found using the ground truth information to identify target 
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clusters as described in Chapter 2. These target samples were then removed and the 

rest of the pixels were ordered by detection score. The MC method was then applied 

to this reduced set to identify the “ideal” threshold.  

Table 16: Comparison of Pd Estimates for HSD Results 
α0 Image MC EVT Ideal 

1 1.00 1.00 1.00 
2 0.00 0.00 0.00 
3 0.00 0.00 0.00 
4 1.00 1.00 1.00 
5 0.00 0.00 0.00 

10-3 

6 0.00 0.00 0.00 
1 0.24 1.00 1.00 
2 0.00 0.00 0.00 
3 0.00 0.00 0.00 
4 0.33 1.00 1.00 
5 0.00 0.00 0.00 

10-4 

6 0.00 0.00 0.00 
1 0.02 0.93 1.00 
2 0.00 0.00 0.00 
3 0.00 0.00 0.00 
4 0.03 1.00 1.00 
5 0.00 0.00 0.00 

10-5 

6 0.00 0.00 0.00 
 

The results for this experiment support the results found using the ACE 

detector. In this case, however, the detector statistics are entirely unknown and have 

to be estimated from the data. As expected, the MC method is ideal when no targets 

are present in the imagery. Once target detections are present, the MC method 

performs poorly setting the threshold based on target detection scores. This effect, of 

course, removes targets while giving improper false alarm rates.  

The EVT method is able to isolate the target detections and provide good 

detection thresholds across all images. In images with targets, the EVT method is able 

to remove the influence of the target samples and calculate thresholds that are near 
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ideal. The corresponding Pd and false alarm statistics show good performance across 

all desired false alarm rates. When targets are not present, the EVT method achieves 

thresholds close to ideal. Again, the GPD method gives good performance across all 

images regardless of the detection of targets.  

Table 17: Comparison of False Alarm Rates for HSD Results 
α0 Image MC EVT Ideal 

1 10 95 102 
2 102 108 102 
3 102 201 102 
4 27 134 102 
5 102 104 102 

10-3 

6 102 99 102 
1 0 4 10 
2 10 5 10 
3 10 14 10 
4 0 13 10 
5 10 5 10 

10-4 

6 10 8 10 
1 0 0 1 
2 1 0 1 
3 1 1 1 
4 0 2 1 
5 1 0 1 

10-5 

6 1 0 1 
 

6.3.3.  Conclusions 

The EVT adaptive threshold method was developed to work well across all 

types of detectors and in the presence of targets. The experimental results 

demonstrate this ability across two different detectors and at multiple desired false 

alarm rates – even at rates lower than the number of samples present. Strikingly, the 

method also excels above the theoretical and parametric methods which are based on 

the known distribution of the detector (unless the data distribution matches the 

assumed detector distribution).   



 143 
 

The other benefit of the EVT method is the speed of calculation. The method 

takes less than a second to estimate a threshold given a 256x400 pixel image. The 

method is scalable to any size image and performs as quickly as any of the other 

methods. This makes the EVT method accessible to a wide range of target 

applications beyond subpixel detection.  

6.4.  Summary 

We present a new way to adaptively estimate detector thresholds via extreme 

value theory. The method can be used on any detector type – not just those that are 

CFAR algorithms. In most real-world cases, the EVT adaptive threshold algorithm 

can outperform CFAR algorithms due to the inherent mismatch between the model 

assumptions and the real data. Additionally, the EVT method can work in the 

presence of target detections while still estimating an accurate threshold for a desired 

false alarm rate. This ability makes it useful to any number of detection applications – 

not just physics-based subpixel target detection in HSI data.  
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Chapter 7: Summary 

In this dissertation, we have introduced a number of new algorithms for 

detection of subpixel targets in hyperspectral imagery. Our approach has been to 

incorporate the known physics of the problem while taking advantage of statistics to 

account for the unknown variables. Till this point, we have introduced each algorithm 

separately to isolate their performance. In this chapter, we introduce how these 

algorithms work together. From this analysis, we identify new areas of research for 

subpixel detection. We conclude this chapter by summarizing the new algorithms 

introduced in this dissertation.  

7.1.  Cumulative Performance Results 

In Chapter 1, we presented a block diagram for subpixel target detection in 

Figure 2. Using that block diagram, we identified the various areas of subpixel 

detection where we developed new algorithms. These algorithms were independently 

updated to identify their performance without the influence of the other algorithms.  

Unfortunately, this never allowed us to bring all the algorithms together to measure 

their cumulative performance. This section presents an experiment designed to test 

the cumulative performance of the proposed algorithms.  

Figure 38 presents the proposed subpixel detection system. For target 

characterization, we use the ARRT algorithm introduced in Chapter 3. For 

background characterization, we use the IEA algorithm and the SDD algorithms 

described in Chapter 4. The subpixel detector is the HSD algorithm introduced in 

Chapter 5. Finally, the EVT Adaptive Threshold Algorithm applies a detection 

threshold based on a desired false alarm density to the HSD detection scores.  
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Figure 38: Proposed Subpixel Detection Block Diagram 

 
To show how all of our proposed algorithms work together, we designed an 

experiment on Target 2. We chose Target 2 because it is not the easiest or hardest 

target to detect providing a moderate challenge for subpixel detection. We used 

Images 1 through 6 from Sensor X because these images contain true subpixel targets. 

The images were left uncalibrated for this experiment to test the ability of the ARRT 

algorithm to adjust to such conditions. For the target and background reflectance 

signatures, we used Target 2 and vegetation signatures measured in the field using 

hand-held spectrometers. No other information was needed to run the system.  

The results of the experiment are shown in Figure 39. For reference, we 

included the best case results for the HSD algorithm operating on Target 2 (as shown 

in Chapter 5). This best case result assumes the imagery has been vicariously 

calibrated and target signatures are generated using the MODTRAN algorithm. 

Additionally, the number of endmembers has been chosen to maximize performance 

based on ground truth information. This curve represents what a subpixel detector 

could achieve if all other variables were known.  
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The dashed gray line is the performance of the HSD algorithm using the EIF 

background dimension estimate. The EIF method provides consistently good results 

as shown in Chapter 4. We included this performance curve to show the need for 

good background dimension estimates even with HSD – a detector partially invariant 

to the number of background endmembers used.  
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Figure 39: Subpixel Detection System ROC Curves 

 
The solid gray line represents the results of our combined subpixel detector 

system in Figure 38. This curve shows the system achieves nearly ideal performance. 

Only two targets are missed at false alarm densities less than 10-5. Even though HSD 

is partially insensitive to the number of background endmembers chosen, the SDD 

algorithm is able to produce better results than the EIF algorithm.  

Perhaps the most impressive results are the two points calculated by using the 

EVT Adaptive Threshold Algorithm. The EVT algorithm was applied to the results of 

the HSD detector (gray line). As noted in Chapter 5, the HSD algorithm sometimes 
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does not suppress the background into similar ranges of values. The EVT algorithm 

automatically adapts the threshold for each image taking into account the different 

background ranges. The result of applying the EVT algorithm provides performance 

that almost perfectly matches the ideal case. Even though the EVT algorithm is not 

able to fix the false alarm density exactly, it provides estimates that are very close to 

the ideal.  

The final result is that the proposed combined subpixel detection system is 

able to obtain performance that is nearly identical to the case where all parameters are 

known. When one considers the proposed system only uses a target reflectance 

signature, a reference reflectance signature, and the hyperspectral image without any 

knowledge of ground truth, the combined performance result is striking. Moreover, 

the proposed subpixel detection system is able to process each image in less than five 

minutes making it applicable for near-real time applications.  

7.2.  Future Work 

While this work demonstrates good results for subpixel detection, there are 

many more interesting topics that spring from the research within this dissertation. 

Perhaps the most immediate need is improved characterization of target signatures as 

demonstrated by the subpixel detection results on Target 4. The ARRT and 

MODTRAN methods both have difficulty handling low reflectance targets. They both 

produced signatures for Target 4 that underestimated the actual target signature in the 

SWIR bands. Work should focus on providing better estimates of the upwelled 

radiance signature using shadow zones as indicated by [80]. These shadow zones can 

be automatically identified using [1]. Methods can also focus on improved estimates 
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of the aerosol content of the imagery to help characterize scattering loses at different 

altitudes.  

Estimation of the background dimension remains an active area of research. 

As shown in Chapter 4, this topic has been only partially treated in the literature. New 

methods that incorporate target, background, and detector characteristics need to be 

developed to help improve this area. While our research has produced an improved 

method to estimate the background dimension, much more could be done.  

Another interesting area of research is using the contextual information gained 

by using physically meaningful endmembers and abundances. For example, when 

looking for a white automobile, you can remove detections that are not on roads or 

parking lots. This information can be used to build site models that lead to improved 

spectral object level change detection (SOLCD) studies [44]. 

An interesting branch of subpixel detection was proposed by Kwon and 

Nasrabadi using kernel-based methods [60][61]. The reason for using kernel methods 

is to project the data into a space that can account for nonlinearities in the data not 

covered by first and second order moments. They show promising results although 

their work uses the energy algorithm to estimate the number of background 

endmembers for the AMSD algorithm [60]. Thus, we cannot identify how well the 

kernel methods improve detection performance because AMSD performance has 

been degraded unintentionally.    

Nevertheless, the kernel methods open up the possibility of physics-based 

kernel methods. Just as we created the hybrid detectors by incorporating the known 

physics of the linear mixing model, we can take the same approach with their kernel 
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counterparts. For example, research has proposed a new method to extract 

endmembers based on Support Vector Data Description [6]. This method extracts 

endmembers in the kernel space that identify the endmembers as the vertices of the 

enclosing hypersphere. From this work, we developed a Kernel FCLS method to 

accurately estimate the abundances of those endmembers in the kernel space allowing 

for the possibility of greater separation between similar spectral signatures [11]. The 

next step is to modify the Kernel AMSD and Kernel ACE detectors to use the new 

physics-based kernel parameters. This work will produce a Kernel Hybrid Structured 

Detector and Kernel Hybrid Unstructured Detector. These algorithms will then be 

assessed relative to their hybrid counterparts presented in [12]. Other interesting work 

in kernel methods is the development of algorithms to estimate the kernel parameters 

– a challenging subject in all kernel methods [92].  

While this dissertation focused on the reflective region of the electromagnetic 

spectrum, hyperspectral sensors have been developed for the Mid-Wave Infrared 

(MWIR) from 3.0 to 7.0 microns and the Long Wave Infrared (LWIR) from 7.0 to 

15.0 microns regions as well. At these wavelengths, emissivity dominates the spectral 

signature. Emissivity is “the ratio of the emission from [a] material to that of a 

blackbody at the same temperature” [93]. Therefore, emissivity is a measure of the 

energy an object emits instead of reflects. Initial work has already been finished 

applying the hybrid detectors to LWIR sensors [13]. However, target characterization 

is much more difficult in MWIR and LWIR because temperature has to be accounted 

for as well as the emissivity [93]. These topics should be pursued however because 

LWIR sensors provide the opportunity to work in either day or night conditions.  
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7.3.  Contributions 

In this dissertation, we present a physics-based approach to subpixel detection 

in hyperspectral imagery. This physics-based approach required the development of 

new techniques at all levels of subpixel detection from target characterization to 

threshold estimation. In this section, we summarize the contributions of this thesis: 

• We have developed a new target characterization method based on principles of 

radiative transfer theory and detection theory. Results show this method matches 

the results by model-based methods, but requires no ancillary data such as 

weather information, source-target-receiver information, or calibrated sensor 

responses.  

• We have developed a new method to estimate the number of endmembers for 

subpixel detection applications. We show that the proposed SDD method 

performs well when compared to the state-of-the-art methods.  

• More importantly, we show that for the first time how poor estimates of 

background dimension lead to significantly reduced subpixel detection 

performance. 

• We created two new physics-based subpixel detectors. The HSD and HUD 

detectors are the combination of physics-based knowledge to produce physically 

meaningful parameter estimates and detection theory to account for unknown 

quantities in the data. Results show these detectors have three advantages: 

insensitivity to the number of endmembers, improved performance on an image to 

image basis, and consistent performance across images better than that of known 

CFAR detectors.  
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• We developed an adaptive threshold technique based on extreme value theory. 

This technique is applicable to a wide variety of detectors – not just those that are 

CFAR. Additionally, the method is able to suppress the influence of target 

detections to make accurate estimates of the detection threshold without any 

knowledge of the underlying distribution of the data.  
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