
ABSTRACT

Title of Dissertation: DISTRIBUTED MULTIDIMENSIONAL INDEXING FOR

SCIENTIFIC DATA ANALYSIS APPLICATIONS

Beomseok Nam, Doctor of Philosophy, 2007

Dissertation directed by: Professor Alan Sussman
Department of Computer Science

Scientific data analysis applications require large scale computing power to effec-

tively service client queries and also require large storage repositories for datasets that

are generated continually from sensors and simulations. These scientific datasets are

growing in size every day, and are becoming truly enormous. The goal of this disserta-

tion is to provide efficient multidimensional indexing techniques that aid in navigating

distributed scientific datasets. In this dissertation, we show significant improvements in

accessing distributed large scientific datasets.

The first approach we took to improve access to subsets of large multidimensional

scientific datasets, was data chunking. The contents of scientific data files typically are

a collection of multidimensional arrays, along with the corresponding metadata. Data

chunking groups data elements into small chunks of a fixed, but data-specific, size to

take advantage of spatio-temporal locality since it is not efficient to index individual

data elements of large scientific datasets.

The second approach was the design of an efficient multidimensional index for sci-

entific datasets. This work investigates how existing multidimensional indexing struc-

tures perform on chunked scientific datasets, and compares their performance with that

of our own indexing structure, SH-trees. Since R-trees were proposed, various multidi-

mensional indexing structures have been proposed. However, there are a relatively small

number of studies focused on improving the performance of indexing geographically

distributed datasets, especially across heterogeneous machines. As a third approach,

in an attempt to accelerate indexing performance for distributed datasets, we proposed

several distributed multidimensional indexing schemes: replicated centralized indexing,

hierarchical two level indexing, and decentralized two level indexing.

Our thorough experimental results show that great performance improvements are

gained from distribution of multidimensional index. However, the design choices for

distributed indexing, such as replication, partitioning, and decentralization, must be

carefully considered since they may decrease the overall performance in certain situ-

ations. Therefore, this work provides performance guidelines to aid in selecting the best

distributed multidimensional indexing scheme for various systems and applications. Fi-

nally, we describe how a distributed multidimensional indexing scheme can be used by

a distributed multiple query optimization middleware as a case-study application to gen-

erate better query plans by leveraging information about the contents of remote caches.

DISTRIBUTED MULTIDIMENSIONAL INDEXING FOR

SCIENTIFIC DATA ANALYSIS APPLICATIONS

by

Beomseok Nam

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Alan Sussman, Chairman/Advisor
Professor William D. Dorland
Professor Jeffrey K. Hollingsworth
Professor Joseph F. JáJá
Professor David M. Mount
Dr. Henrique C. M. Andrade, IBM T.J. Watson

c
�

Copyright by

Beomseok Nam

2007

DEDICATION

To my parents – Jasoon Goo and Kyung-Won Nam for their

love and support.

ii

ACKNOWLEDGEMENTS

Acknowledgements

My gratitude to those who have helped me complete this dissertation can-

not be adequately expressed here. Please accept my apologies if you find

yourself unjustly missing of find your contribution inadequately credited. I

am truly grateful to all those who supported me one way or another.

I have been very fortunate to work with my thesis advisor, Dr. Alan Suss-

man, whose suggestions led me throughout this thesis. He has encouraged

me in all the time of research and has guided me on the right track with his

penetrating insight to all the problems I had. I am indebted to my former

colleague, Henrique Andrade, who assisted me with small and big things

and always had his doors and ears open for whatever I wanted.

Several faculty provided me with their guidance about my proposal and

feedback about this work, including Dr. Jeff Hollingsworth, Dr. Joseph

Ja’Ja’, Dr. David Mount, and Dr. William Dorland. I am very grateful

to Dr. Kern Koh, my M.S. degree advisor at Seoul National University,

iii

who introduced me how to do research and encouraged me to come to the

United States for advanced education. Hyokyung Bahn, who studied with

me during the M.S. courses, also incited me to decide studying in the united

states.

My close friends in Korea, who have made the life in graduate school bear-

able by chatting through email, messenger, cyworld, or whatever, deserve

all the credit for making me keep working. Also, I am grateful to my friends

in College Park and KGCS members for spending their spare time with me.

Without them I couldn’t have completed such a long journey of graduate

school. Especially I was fortunate to have friends, Jae-Yong Lee and Young-

min Kim, who struggled together not to starve in College Park everyday.

Finally, I would like to give my special thanks to my parents, family, and

Su Ryoun for their love.

April 17, 2007

iv

TABLE OF CONTENTS

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivating Applications . 5

1.2 Thesis and Contributions . 8

1.3 Thesis Organization . 10

2 Related Work 11

2.1 Indexing Scientific Datasets . 11

2.2 Parallel and Distributed Multidimensional Index 12

2.3 Distributed Query Processing . 16

2.4 Indexing Services in the Computational Grid 17

3 Case Study Applications 19

3.1 Satellite Data Processing: Kronos . 19

3.2 Volumetric Reconstruction . 21

3.3 Synthetic Query Workload Generator 23

4 Data Chunking 24

v

4.1 Overview . 24

4.2 Scientific Data Format: HDF . 25

4.2.1 Data chunking in HDF . 26

4.2.2 Potential problems with HDF data chunking 28

4.2.3 H5Xread . 29

4.3 Indexing with Data Chunking . 31

4.3.1 GMIL: Generic Multidimensional Indexing Library 32

4.3.2 Case study: HDF-EOS vs GMIL 34

4.4 Summary . 44

5 Indexing Structures for Scientific Datasets 46

5.1 Spatial Indexing Structures for Scientific Datasets 47

5.1.1 Space Partitioning Methods 48

5.1.2 Data Partitioning Methods . 50

5.2 Spatial-Hybrid Tree . 51

5.2.1 Insertion . 52

5.2.2 Node Splitting . 55

5.2.3 Object Deletion: Live Space Bounding Box 58

5.3 Experiments . 60

5.3.1 AVHRR Dataset . 61

5.3.2 Synthetic Dataset . 64

5.4 Summary . 68

6 Distributed Indexing for Scientific Datasets 72

6.1 Centralized Indexing . 73

6.2 Hierarchical Two Level Indexing . 75

vi

6.3 Replication Management . 77

6.4 Performance Model . 79

6.5 Performance Evaluation of the Distributed Indexing Schemes 81

6.5.1 Storage Resource Broker . 81

6.5.2 Experimental Environment . 83

6.5.3 Experimental Results . 83

6.6 Decentralized Two Level Indexing . 90

6.7 Experiments: Distributed Indexing . 98

6.7.1 Experimental Environment . 98

6.7.2 Experimental Results . 99

6.8 Design Choices for Distributed Multidimensional Indexing 110

7 Case Study: Multidimensional Indexing for Query Processing Middleware 115

7.1 Multiple Query Processing Middleware 118

7.1.1 Semantic Cache Indexing Issues 120

7.1.2 Cache Replacement Priority Queue 122

7.1.3 An Integrated Approach – Merging the Indices 124

7.1.4 Improving Cached Object Deletion 125

7.2 Experiments: Cache Index . 127

7.2.1 Experimental Environment . 129

7.2.2 Experimental Results . 132

7.3 MQO in Grid environment . 139

7.4 Distributed Indexing for Query Optimization 142

7.5 Multiple Query Scheduling Policies 144

7.6 Experiments: Distributed Multiple Query Optimization 147

7.6.1 Experimental Environment . 147

vii

7.6.2 Experimental Results . 152

7.7 Summary . 158

8 Conclusions and Future Work 160

8.1 Thesis and Contributions . 160

8.2 Future Work . 163

Bibliography 165

viii

LIST OF TABLES

6.1 Description of variables used to model distributed indexing 113

6.2 Design criteria of distributed multidimensional indexing 114

ix

LIST OF FIGURES

3.1 A Kronos data product. A 7-day (January 1-7, 1992) composite us-

ing Maximum NDVI (normalized difference vegetation index) as the

compositing criteria and Rayleigh/Ozone as the atmospheric correction

method. (Courtesy of H. Andrade) . 20

3.2 View of a volume from one perspective over 3 frames. (Courtesy of H.

Andrade) . 22

4.1 The ordering problem for H5Dread with a chunked layout 27

4.2 Time to read selected regions of the dataset 30

4.3 Generic spatial indexing library . 33

4.4 Data read for a range query . 36

4.5 Three types of range query . 38

4.6 Time to create an index file, varying the chunk size and the data layout . 38

4.7 Time for range queries with HDF-EOS5 40

4.8 Time for range query with HDF-EOS4 43

5.1 Dataset with nine chunks and corresponding bounding boxes in problem

space . 47

5.2 Disjoint partitioning is not possible due to a hot spot 49

5.3 KD-tree representation of an internal node of an SH-tree 52

x

5.4 Dynamic adjustment of overlapping sub-regions in an internal node of

an SH-tree . 56

5.5 Dead space elimination: live space bounding box vs. live space encoding 57

5.6 Index Creation for AVHRR Dataset . 61

5.7 Index Search for AVHRR Dataset . 62

5.8 Index Creation for Synthetic Datasets 65

5.9 Index Search for Synthetic Datasets 66

6.1 Searching with Centralized Indexing 74

6.2 Searching with Two Level Hierarchical Indexing 76

6.3 Insertion Time without Replication. 84

6.4 Insertion Time with Replication. 85

6.5 Search Time without Replication. 86

6.6 Search Time with Replication. 87

6.7 The Effect of Number of Data Servers. 88

6.8 The Effect of Query Selectivity (���). 89

6.9 Decentralized DiST Indexing . 90

6.10 Node Join in DiST . 91

6.11 Query Routing in DiST . 93

6.12 A partial global index may cause additional messages for searches . . . 95

6.13 Point Transformation . 96

6.14 Search performance varying the number of clients 99

6.15 Search performance varying the number of clients (cont’d) 100

6.16 Search performance varying the number of servers 102

6.17 Search performance varying the number of servers (cont’d) 103

6.18 Simulation Results . 106

xi

6.19 Search performance with declustered datasets 107

6.20 Search performance with declustered datasets (cont’d) 108

6.21 Insertion performance . 109

7.1 A Grid-enabled MQO system configuration 118

7.2 Example for the query execution process in a Virtual Microscope ap-

plication – an MQO-based application for analyzing digital microscopy

collections. MQO reuses a cached object (���), performs a data transfor-

mation by automatically decreasing the image resolution, and spawns

subqueries (�����	� , �
��� � , �
���
 , and ����� �) to generate ��� . (Courtesy of H.

Andrade) . 121

7.3 Cache Index with Cache Replacement Priority Queue 125

7.4 Merging an underutilized node. Instead of reinserting dangling children

(g1-g4) from root node, they are inserted directly into their parent’s sib-

ling nodes (C2 or C3). 128

7.5 Average Cache Index Access Time for a Query with Various Page Sizes . 130

7.6 Average Cache Index Access Time for a Query with Various Page Sizes

(cont’d) . 131

7.7 Average Cache Index Access Time for a Query with Various Cache Sizes 134

7.8 Average Cache Index Access Time for a Query with Various Cache Sizes

(cont’d) . 135

7.9 Average Cache Index Access Time for a Query with Various Dimensions 137

7.10 Average Cache Index Access Time for a Query with Various Dimensions

(cont’d) . 138

7.11 Application Servers with different parallel configurations. (a) shared

memory, (b) distributed shared memory, or (c) distributed memory . . . 140

xii

7.12 Minimum distance policy . 147

7.13 The Effect of Number of Servers . 148

7.14 The Effect of Number of Servers . 149

7.15 The Effect of Semantic Cache Size . 151

7.16 The Effect of Octree Depth . 154

7.17 Workload Comparison . 155

xiii

Chapter 1

Introduction

This dissertation investigates the problem of indexing distributed large scientific datasets

for computation–intensive and/or data–intensive applications. Increasingly powerful

computers have made it possible for computational scientists and engineers to model

physical phenomena in great detail. Scientific applications are not only computationally

demanding, but also they generate and process very large datasets (terabytes to petabytes

today) that are geographically distributed due to the limited storage capacity of a single

site, or to either organizational or technical issues so that datasets are stored where they

are produced.

As more storage capacity has become required to store large datasets, recent Data

Grid research has focused on developing more scalable distributed storage systems [12,

52]. Large scale distributed storage systems require a data discovery mechanism to lo-

cate a specific data item, based on centralized directory services, such as MCAT (meta-

data catalog) for the Storage Resource Broker [12].

Many scientific datasets are made up of collections of multidimensional data items

(i.e. having space and time attributes). In order to accelerate direct access to subsets of

a dataset within a multidimensional range (a so-called multidimensional range query),

numerous multidimensional indexing structures have been designed, starting with the

1

seminal work on R-trees [40]. In this dissertation, we focus on multidimensional range

queries for distributed scientific datasets. Many scientific applications that process range

queries can employ multidimensional indexes to improve overall performance, other-

wise they have to scan the entire distributed dataset to find the subset of data that falls

within the given range of values for each dimension in the query. Multidimensional

range query is one of the most common type of retrieval patterns on multidimensional

datasets.

In the past few decades, an enormous amount of research has been done to create

efficient multidimensional indexing data structures including R-trees [40], R*-trees [13],

Hybrid-trees [22], and so on. While most of them focus on low dimensional geographic

information systems (GIS) or high dimensional multimedia retrieval systems, our target

applications are scientific data analysis applications, which have different characteristics

from images or multimedia data.

First of all, in some scientific applications such as NASA’s EOSDIS, satellites con-

tinue to send a collection of data at the rate of 3-5 MB/sec. In order to index the data

ingested at such fast rate, we must consider the performance of indexing structures in

terms of not only searching but also updates. In the database community, most of recent

research focus on the performance of index search, thus they sacrifice the update per-

formance in order to accelerate the search performance. Since the index creation time

is critical in some scientific applications, we need multidimensional indexing structures

that are fast both for searching and updating. However, it is not enough to design an ef-

ficient indexing structure for insertion, since the number of data elements to be inserted

into the index with a unique geographic location and time value for a single day is ap-

proximately 12 million in EOSDIS dataset. This means that we need to store 138 data

elements into the index per second. It is very difficult for any existing multidimensional

2

indexing structure to index data at such fast rate. Therefore, we need an alternative way

of indexing such huge datasets.

Second, scientific datasets are being generated continually and they are not likely to

be deleted or changed afterward, therefore the size of datasets becomes truly enormous,

which makes it difficult to keep the datasets in a single disk storage. Because of the the

demand for large storage capacity, the datasets are often stored in distributed parallel

storage systems. However, in practice, there is still a limitation in disk storage capacity

of cluster machines. Therefore, while recent datasets are stored on disk storage, old

datasets are moved to removable storage devices such as tape drives. Another reason

why datasets are distributed across multiple machines is that geographically distributed

sensor devices attached to satellites, aircraft, telescopes, etc, will store the datasets on

their local machines, and large datasets generated by simulations will be stored near

where they are produced. For both organizational and technical reasons, it is often not

desirable to move or replicate huge datasets onto remote machines.

In order to index such large distributed datasets, distributing the index would max-

imize parallelism and range query performance instead of having a single centralized

index. In database community, some research was done to design distributed index-

ing structures such as Master R-trees [50] and Master Client R-trees [88]. However,

they assume that they can control the placement of the datasets for load balancing, thus

datasets are declustered using a space filling curve. However due to the nature of sci-

entific datasets, it is not always feasible to move around huge datasets as I pointed out.

Thus, it is hard to guarantee load balancing for scientific datasets using declustering

algorithms. In this dissertation, I will show that distributed indexing techniques sig-

nificantly improves access to distributed scientific datasets, even when datasets are not

evenly declustered to get the performance benefit of maximizing parallelism,

3

In a distributed environment, although the size of the indexing structure is much

smaller than that of the input datasets, an index can become a performance bottleneck

since the index tends to be accessed much more frequently than the input data [67].

However, not much is known about the overhead incurred by an index server. Distribut-

ing the index across multiple servers would alleviate the overhead from an overloaded

index server and make the index scheme more scalable.

In order to distribute the index, I present and compare three different approaches:

replication, hierarchy, and decentralization [67, 68]. One way of distributing the index is

replicating the whole index file onto multiple servers, which will make the index search

faster. However, replication has some overhead for maintaining the consistency among

replicas. Another way of distributing the index is making the index hierarchical and

storing small portions of the index onto multiple servers. Hierarchical indexing allows

us to distribute the index without considering consistency issues. However, still we need

a centralized index server at the top level, which can be a performance bottleneck as in

a centralized index. As an alternative way of distributing the index, I propose a fully

decentralized index, called DiST, which operates in a fully distributed environment with

no centralized control as in peer-to-peer techniques. Compared to the replicated index

and two-level index, the benefit of a decentralized index is that there is no potential re-

source bottleneck. In this work, I compare these three distributed indexing schemes and

describe how distributed indexing techniques can be used to improve the performance

of query processing for the scientific data analysis applications.

4

1.1 Motivating Applications

The efficient information retrieval of large datasets is important in many fields of sci-

ence, engineering, and business. Scientists and engineers as well as business managers

often need to access, explore, and analyze datasets to gain insight into the problem and

to draw meaningful conclusions about the huge and fuzzy information. Indexing is the

fundamental method to solve the problem, employed by a large number of applications

in various domains. A few examples of motivating applications and generated datasets

that would benefit from indexing techniques that I investigated in this work are as fol-

lows:

Remotely Sensed Satellite Dataset Processing Applications

The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band, four or five

channel scanner, sensing in the visible, near-infrared, and thermal infrared portions of

the electromagnetic spectrum. [72] This sensor is carried on NOAA’s satellites (from

NOAA-6 to NOAA-14) beginning with TIROS-N in 1978. As a satellite moves along

a ground track on the earth, AVHRR sensor devices scan across the satellite’s ground

track, and gather datasets to form an instantaneous field of view (IFOV) at regular inter-

vals. Each scan line has a time value, and each array element in the scan line has latitude

and longitude values, hence it comprises a 3 dimensional dataset (Latitude, Longitude,

and Time). The size of these datasets is truly enormous, thus we need efficient scalable

systems to manage this kind of datasets.

Geographically Distributed Datasets

The datasets generated at multiple scientific laboratories such as tens of thousands of

weather stations around the world are used to model and predict weather patterns or

5

storms, hurricanes, etc. The collection of such huge amounts of data would need more

scalable and sophisticated indexing services than just a single index file. Also, nu-

merous scientific simulation applications such as oil reservoir simulation [53] generate

spatio-temporal datasets that describe physical scenarios. These simulations can lead to

unmanageably large volumes of output data, stored on distributed data storage servers

at multiple institutions.

Geographic Information Systems

Large number of Geographic Information Systems (GIS) datasets are managed by mul-

tiple private and public agencies, such as the U.S. Geological Survey (USGS), Maryland

Department of Transportation (MDOT), etc. While many of the current GIS applications

exploit a centralized data repository, some of recently developed GIS systems such as

Geotechnical Information Management and Exchange (GIME) [112] targets a multitude

of remote datasets under different administrative control.

Computer Vision Applications

Modern computer vision systems employs multiple cameras shooting the same scene

from various perspectives. Using the images obtained from the cameras, computer vi-

sion applications perform virtual view rendering, complex shape and movement analy-

sis, multi-person tracking, and so on [20, 21]. Basically these multi-perspective com-

puter vision systems with more cameras (more views) can deliver more information

about scenes, and reconstruct 3 dimensional features with more accuracy. However, a

large number of cameras can produce huge volumes of image or video data unmanage-

able in a single storage device.

6

Distributed Query Processing Framework

Scientific datasets can be stored and processed on a cluster of parallel machines with

ADR (Active Data Repository) [24, 54] or across a distributed set of machines (the Grid)

with DataCutter [17, 18, 16]. DataCutter is a middleware infrastructure that enables

processing of scientific datasets stored in archival storage systems across a wide-area

network. DataCutter provides support for subsetting of datasets through multidimen-

sional range queries, and application specific aggregation on scientific datasets stored in

an archival storage system. DataCutter provides a core set of services, on top of which

application developers can implement more application-specific services. One of the

goals of DataCutter is to provide common support for subsetting large datasets through

multidimensional indexing.

Multiple query optimization has been extensively studied in various contexts in-

cluding relational databases and data analysis applications. [31, 37, 91, 107, 62, 35] The

objective is to exploit subexpression commonality of multiple queries across a set of

concurrently executing queries and reduce execution time by reusing cached outputs.

MQO developed by Andrade et al. [9, 10] is a multiple query optimization framework

for scientific data analysis applications. MQO stores query results in distributed buffer

caches in order to reuse them for the incoming queries. In current version of MQO,

there is no way of knowing the contents of distributed caches, thus whenever a new

query arrives MQO performs linear scanning of distributed caches, which is obviously

inefficient. Distributed indexing techniques can be applied to the cache look-up ser-

vice of MQO in order to accelerate the performance. For the distributed cache look-up

service, we must consider the update performance of index as in satellite data analysis

applications since whenever a new query is received, we need not only to search the

cache but also to update the content of the cache with the new query results.

7

1.2 Thesis and Contributions

In this dissertation, I support the following thesis: distributed multidimensional index-

ing can greatly improve access to distributed large scientific datasets. To support this

thesis, I develop, apply, and evaluate a set of techniques for efficiently access subsets of

scientific datasets of particular interest.

More specifically, this dissertation makes the following contributions not discussed

in previous indexing research such as:

1. An approach to increase the efficiency of index via data chunking

Due to very large size of scientific datasets, indexing individual data elements of

scientific datasets seems to be almost infeasible or at best inefficient because the

size of multidimensional indexing structures would be very large and expensive

to query and manipulate. Due to the way of storing datasets from sensor devices,

most scientific datasets have spatio-temporal locality, whereby data elements can

be grouped and a single bounding box for each chunk is stored in order to reduce

the index size for better performance. By grouping data elements into chunks,

we can get a relatively tight bounding box for the spatio-temporal coordinates.

There has not been prior research about exploiting spatial locality to improve the

performance of indexing large scientific datasets.

2. A design of an efficient indexing structure for chunked datasets

Data chunking requires an indexing structure that can index rectangular bounding

box of each chunk. This dissertation discusses the problem of indexing rectan-

gular data objects (chunked datasets) and presents an efficient multidimensional

indexing structure for chunked datasets, which support fast insertion/deletion as

well as fast search. Fast index update is as important as fast search in some sci-

8

entific data analysis applications. To the best of my knowledge, none of prior

indexing research was concerned about the index update performance. Most of

existing indexing structures sacrifice index update performance for search per-

formance. But I developed an indexing structure that has no trade-offs between

update and search.

3. A set of techniques for distributing index for distributed datasets

This work provided three distributed multidimensional indexing schemes for highly

scalable systems. First, I discuss the problem of centralized indexing and present

its potential scalability problem and how replication improves the performance.

Second, I present a hierarchical two level indexing which partitions a whole index

into small local indexes and distributes clients’ queries over multiple local index

servers. Third, I introduce a decentralized two level indexing that eliminates any

central resource bottleneck for highly scalable but static systems.

4. Analyzing the design choices that affect the performance of distributed in-

dexing

This work explores and compares the designs, challenges, and problems for dis-

tributed multidimensional indexing schemes, and provides a comprehensive per-

formance study of distributed indexing to provide guidelines to choose a dis-

tributed multidimensional index for a specific application. Also, I show how a dis-

tributed query processing framework can employ a distributed multidimensional

indexing scheme based on the guideline that I present, and its performance bene-

fits in terms of query response time.

9

1.3 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, I summarize the

main research areas related to our work and discusses many relevant previous works.

Chapter 3 elaborates on representative data analysis applications that I used to evaluate

the performance of proposed indexes. In Chapter 4, I discuss data chunking, which

helps generating more efficient indexes by reducing the number of objects in the index.

Chapter 5 compares several multidimensional indexing structures with chunked datasets

and proposes a new multidimensional indexing structure, called Spatial Hybrid trees

(SH-trees). In Chapter 6, I explore a few different indexing techniques for distributed

multidimensional datasets, including DiST, a fully decentralized indexing scheme. In

Chapter 7, I show how a distributed query processing framework takes an advantage of

a distributed indexing scheme as a case study. Finally Chapter 8 presents conclusions,

summarizes the work, and points out possible directions for future work.

10

Chapter 2

Related Work

2.1 Indexing Scientific Datasets

Scientific instruments and simulations are creating data volumes that almost double

each year, and new computing methods that analyze and organize such huge datasets

have become necessary, but data analysis tools have not kept pace with them. Jim

Gray et al [39] pointed out “Scientists need a way (1) to use intelligent indices and

data organizations to subset the search, (2) to use parallel processing and data access

to search huge datasets within seconds, and (3) to have powerful analysis tools that

they can apply to the subset of data being analyzed”. Many scientific applications

use their own proprietary index and formats such as raw binary, ASCII, etc. Although

there has been little research to devise generic index for scientific datasets, some efforts

have been made to develop self-describing scientific data formats such as FITS [30],

netCDF [70], HDF4 [33], and HDF5 [82]. Since we integrated indexing functionality

into self-describing scientific data formats [65] as a seminal work, which we will dis-

cuss in Chapter 4, Gosink et al [38] accommodated bitmap index into HDF5 library

and showed that they have improved the search performance compared to our R-tree

based indexing structures. However, the limitation of the bitmap index is that it doesn’t

11

support indexing distributed datasets.

2.2 Parallel and Distributed Multidimensional Index

Since the R-tree was introduced in 1984 for indexing multidimensional objects, little

work was done on parallelizing R-tree operations until Kamel and Faloutsos [46] pro-

posed the first parallel R-trees (Multiplexed R-trees) in 1992, for a machine with a sin-

gle CPU and multiple disks. They investigated various declustering methods that decide

how to distribute the leaves of an R-tree across multiple disks. Since that paper several

parallel multidimensional indexing structures have been studied to extend Multiplexed

R-trees, such as Master R-trees [50] and Master Client R-trees [88].

The Master R-tree was designed for a shared nothing environment (i.e. distributed

memory parallel machine) by Koudas et al. [50]. A single server maintains all the inter-

nal nodes of the R-tree except the leaf level data nodes, which are declustered across the

other servers. A Master Client R-tree, proposed by Schnitzer et al. [88], is a two-level

distributed R-tree that has a single master index on a master server and local client in-

dexes on the other servers. The Master Client R-tree is similar to the Master R-tree in

the sense that it declusters leaf level nodes across data servers. However each data server

creates its own local index using the leaf level nodes that are assigned to it. Therefore,

the master index does not have to keep the pointers to the data objects in its master in-

dex. Instead, it contains the server address where its local index must be searched again

in order to get pointers to the data objects. The authors claim that the overhead of the

master server can be reduced by maintaining a smaller master index file.

Liebeherr et al. [57] evaluated the performance benefits of partitioned B+-tree in-

dexes for a single relation in distributed relational databases. The single relation is par-

12

titioned across all servers and the ranges for each fragment do not overlap each other.

They introduced a partitioned global index (PGI) scheme and compared it with the clas-

sical partitioned index scheme (PI), in which each server indexes its own data but does

not know about the global status, therefore a broadcast message must be sent to all the

servers for each request. In PGI, each server has a master index, hence can forward

range queries to the servers that have the requested data. However, since PGI has sev-

eral serious problems in terms of index update, that work assumed that there will be no

index update.

Master R-trees and Master Client R-trees require at least one dedicated server to

maintain global status information about the distributed index, which is a potential bot-

tleneck. To avoid centralized accesses, several fully decentralized indexing structures

have been proposed, and are collectively called SDDS (Scalable Distributed Data Struc-

tures). These include LH � [58], which generalizes Linear Hashing to distributed sys-

tems, and distributed random trees (DRT) [51]. Our decentralized indexing scheme is

similar to DRT in that we are using KD-trees as the basic indexing data structure and that

each server maintains some part of the overall global KD-tree, which we will describe

in Chapter 6.

Decentralized indexing has been a hot topic since P2P overlay networks had emerged.

Recently Mondal et al. [64] proposed P2PR-trees, a variant of R-trees that targets P2P

networks. They showed in a simulation study that P2PR-trees show better scalabil-

ity than two-level Master Client R-trees, since they do not suffer from the central server

bottleneck. However, the P2PR-tree is not fully decentralized, because it requires a large

number of dedicated servers that maintain part of a static partitioning of the index. Thus,

the P2PR-tree is similar to a replicated version of the Master-Client R-tree [67, 88], and

has several other problems related to its static partitioning strategy, which may make it

13

perform poorly for data non-uniformly distributed in the multidimensional space.

In fully distributed systems (i.e., pure P2P systems) peers are directly addressed,

typically via a hashing scheme, to return the data objects they contain. The Chord [98]

and CAN [80] systems implement distributed hash tables to provide efficient lookup of

a given key value. These systems assign a unique key to each data object (i.e., a file) and

forward queries to specific servers based on a hash function. Although these systems

guarantee locating a data object within a bounded number of network hops, they require

tight control over data placement and the topology of the overlay network that they

create. In a Grid environment, arbitrary data placement is not always feasible due to both

organizational and technical issues (e.g., the size of the datasets). In broadcast-based

P2P systems (also called unstructured P2P systems) such as Gnutella [36], message

flooding is employed to forward queries, since each peer does not have data placement

information. Message flooding does not guarantee accurate query results, thus is not

feasible for typical requests in a Grid environment that require accurate query results.

The recently developed P-tree, a fully decentralized B+-tree, enables one dimen-

sional range queries in a pure P2P network [29]. The P-tree assumes that a peer stores

only a single data object, thus in order to store more than one data object each peer needs

to be mapped to by multiple virtual peers. The routing algorithm in a P-tree is based on

virtual peers, thus a peer may be accessed multiple times while routing to virtual peers.

For this reason, the P-tree is not suitable for a system that stores many data objects. Also

a one dimensional range query is not adequate for scientific data analysis applications

that access and process multidimensional data.

Ganesan et al. [34] proposed MURK (Multidimensional Rectangulation with KD-

trees), which uses KD-trees to break up the data space into rectangles. MURK is sim-

ilar to the space partitioning of CAN [80], except that MURK tries to split the load

14

across the servers equally using KD-trees instead of partitioning the data space equally.

MURK supports multidimensional range queries in structured peer-to-peer systems, but

its query routing algorithm is based on that of CAN; visit neighboring servers recur-

sively until reaching the destination server, because there is no tree structured index,

although MURK uses a space partitioning strategy as do KD-trees.

SkipNet and SkipIndex are distributed indexing overlay networks that use the Skip

Graph data structure [42, 108]. While SkipNet supports one dimensional range queries,

SkipIndex supports multidimensional queries in P2P networks [108]. SkipIndex is a dis-

tributed indexing overlay network that uses the Skip Graph data structure [108]. Since

Skip Graph only works for one dimensional data, SkipIndex first builds a KD-tree for

multidimensional data, then builds the 1D Skip Graph on the leaves of the KD-tree.

These P2P DHT based approaches are similar to our decentralized indexing scheme

(DiST), however DiST targets stable dynamic systems. Hence DiST stores significant

amounts of information in a server about neighboring servers in the overlay network. In

addition, DiST assumes that each data server has its own index for locally stored data,

and the DiST algorithms work on top of those local indexes (i.e. a two level index). As

we will show in Chapter 6, the greedy collection of peer information limits scalability

but improves search performance. Since most P2P DHTs target large scale P2P overlay

networks, they limit the number of remote peers that can be directly accessed by a given

peer. If the number of peers directly accessible by a single peer is limited, the number

of routing hops generally increases. Since our main concern is range query performance

rather than an arbitrarily scalable P2P overlay network, we do not limit the number of

peers directly accessible by a single peer.

15

2.3 Distributed Query Processing

Optimizations for the execution of multiple queries have been extensively investigated

in the context of relational databases [45, 47, 85, 94], deductive databases [23], and

agent applications [75]. Other researchers have designed and deployed run-time support

and examined strategies for efficient execution of queries in data analysis applications

on distributed-memory parallel machines with a disk farm [24, 54] and in distributed,

heterogeneous environments [3, 18]. Our work is different from these works in that we

optimize multiple query executions by taking advantage of distributed index. Although

none of these prior efforts is directly related to distributed indexing, we highlight some

of these works related to multiple query optimization framework that we integrated dis-

tributed multidimensional indexing into.

For distributed query processing, Rodrı́guez-Martı́nez and Roussopoulos [84] pro-

posed database middleware (MOCHA) designed to interconnect distributed data sources.

The system handles data reduction operators by code-shipping, which moves the code

required to process the query to the location where the data resides and data inflation

operators by data-shipping, which moves the input data to the client. In many cases,

however, data-shipping is not an option due to the size of datasets. For these situations,

several highly distributed applications have employed proxy front-ends to great benefit.

Beynon et. al. [16] proposed a proxy-based infrastructure for handling data intensive

applications, which was shown to reduce the utilization of wide-area network connec-

tions, reduce query response time, and improve system scalability. On the other hand,

Beynon’s approach as well as other proxy-based approaches, including earlier imple-

mentations of web proxies [103], rely on a single locally available cache. This approach

is inherently less scalable than relying on a collection of cache structures available at

multiple backend servers, assuming one can efficiently use them.

16

In order to effectively leverage multiple backend servers for query processing, meth-

ods for load balancing must be considered [109]. In other words, the savings resulting

from reusing a cached result has to be weighed against the service time and extra load

imposed on the server where the cached result is located. One study in this area was con-

ducted by Mondal et al., where workload is shifted from heavily loaded servers to lightly

loaded servers in shared nothing environments [63]. The master server in their scheme

controls all other second level servers and maintains information about the second level

index. The second level index servers periodically send messages concerning their load

status to the master server so that the master server can migrate data from heavily loaded

servers. In a wide area network, dynamic data migration may not be useful, especially

when the size of data is very large. In the scientific applications we target, we cannot

migrate the data chunks, which are typically small subarrays of large multidimensional

arrays. In general, solutions to this problem are influenced by application and workload

characteristics, and substantially more experimental characterization is required.

2.4 Indexing Services in the Computational Grid

OGSA-DAI (Open Grid Service Architecture-Database Access and Integration) is Grid

middleware that allows data resources, such as relational or XML databases, to be ac-

cessed via web services [6]. OGSA-DQP (Open Grid Services Architecture-Distributed

Query Processor) [6] is an extension of OGSA-DAI that provides a service-based dis-

tributed query processor. OGSA-DQP allows queries to be evaluated over multiple dis-

tributed relational databases, where the queries may include calls to web services. How-

ever, most of scientific datasets are not stored in relational databases for performance

reasons and data size. Instead, several self-describing scientific data formats have been

17

developed for scientific datasets, such as HDF4, HDF5, and netCDF [70, 71, 82]. Thus,

our work is different from OGSA-DQP in that our target applications are data intensive

scientific data analysis applications, but we believe OGSA-DQP can adopt our indexing

schemes into its framework so that it can support scientific datasets.

Federated MCAT (metadata catalog), also known as SRB zones, is a distributed re-

source discovery service for Storage Resource Broker. A single MCAT service has been

known as a serious performance bottleneck. SRB zones improve MCAT performance

in wide area network, by allowing various configurations in distributed environment,

including replicated catalog. Although MCAT service supports dataset name, data loca-

tion, and access control list, it does not support multidimensional range query into the

contents of datasets, which is our main concern in this work.

Recently Zhang et al. compared the scalability performance of some MIS (Monitor-

ing and Information Systems) systems, MDS2, R-GMA, and Hawkeye [110]. MDS is a

Globus Toolkit monitoring and discovery service, R-GMA is a European DataGrid Re-

lational Grid Monitoring Architecture, and Hawkeye is a monitoring and management

system that uses Condor. MIS systems have commonality with our distributed indexing

schemes in that they enable resource discovery. But none of them support multidimen-

sional range queries as in OGSAI-DAI and MCAT.

18

Chapter 3

Case Study Applications

In most of our work, we deployed real software tools and employed real applications

and datasets in order to make a comprehensive experimental performance characteriza-

tion. I chose representative applications from different domains, namely, satellite data

processing and computer vision.

3.1 Satellite Data Processing: Kronos

”Remote Sensing is the technology that is now the principal modus operandi (tool) by

which (as targets or objects of surveillance) the Earth’s surface and atmosphere, the

planets, and the entire Universe are being observed, measured, and interpreted from

such vantage points as the terrestrial surface, earth-orbit, and outer space.” [96].

Among many remote satellite sensors, AVHRR (Advanced Very High Resolution

Radiometer) has been widely used for a long time since the first 4-channel radiometer

was carried on TIROS-N in 1978. It has been improved since then and now the latest

version with 6 channels was carried on NOAA-18 launched in 2005 [73, 100]. The satel-

lites orbiting the Earth gather remotely sensed AVHRR GAC (Global Area Coverage)

level 1B datasets [69], stored as a set of arrays. Satellite datasets include geo-location

19

Figure 3.1: A Kronos data product. A 7-day (January 1-7, 1992) composite using Max-

imum NDVI (normalized difference vegetation index) as the compositing criteria and

Rayleigh/Ozone as the atmospheric correction method. (Courtesy of H. Andrade)

fields, time fields, and some additional metadata. As the satellite moves along a ground

track over the Earth, it records longitude, latitude, and time values, as well as sensor

values. Because the sensor swings across the ground track, the sensor values and meta

values are stored as two dimensional arrays of structures that contain sensor values and

metadata. The raw data collected by satellite sensors can be post-processed to generate

satellite images. Kronos [111] is an example of such a class of applications. Kronos al-

lows scientists to carry out Earth system modeling or analysis through a Java interface,

using AVHRR GAC data.

20

NOAA’s satellites continue to send raw sensor data at a very high rate, with the

volume of data for a single day about 1GB. The dataset used for our experiments in this

thesis was collected over one month (January 1992), and has a total size of more than

30GB. An AVHRR GAC dataset consists of a set of Instantaneous Field of View (IFOV)

records, angular cones of visibility of the sensor, which corresponds to the surface on

the Earth [72]. Each sensor reading is associated with a position (longitude and latitude)

and the time the reading was recorded. Additionally, resolution information is stored

with the raw data.

3.2 Volumetric Reconstruction

The multi-perspective vision studio is a volumetric reconstruction application used for

multi-perspective imaging. In an environment where multiple cameras are used for si-

multaneously shooting scenes from various perspectives, more views can deliver more

information about the scene and potentially allow recovery of interesting 3-dimensional

features with high accuracy and minimal intrusion into the scene [20, 21]. The cameras

shoot a scene over a period of time (a sequence of frames) from multiple perspectives

and post-processing algorithms are used to develop volumetric representations. Multiple

video streams generate very large amounts of image data that can become unmanageable

unless there is an efficient way to store, catalog and process them.

The Keck Lab at the University of Maryland [20] is a multi-perspective imaging

laboratory, consisting of 64 digital gray-scale cameras that synchronously capture video

streams at frame rates up to 85 fps(frames per second). The resolution of the images

is 648x484 gray scale with a depth of 8 bits per pixel. The size of one minute uncom-

pressed multi-perspective video is approximately 100GB. From the captured images, a

21

Figure 3.2: View of a volume from one perspective over 3 frames. (Courtesy of H.

Andrade)

single frame 3D volume is reconstructed as an occupancy map encoded with an octree

representation [86].

Users interact with the application by submitting queries. A query computes a set

of volumetric representations of objects that fall inside a 3-dimensional box – one per

frame – using a subset of the available cameras. The query result is a reconstruction of

the foreground objects lying within the multidimensional query region (a pre-processing

step removes background objects from the stored images, producing silhouettes). The

reconstructed volume for a frame, i.e., the query result, is represented by an octree,

which is computed to a requested depth
�
. Deeper octrees represent the resulting volume

at higher resolutions.

A Volumetric Reconstruction query request specifies a dataset name, 3D region of

interest within the dataset, a frame range with a constant stride, a depth (number of edges

from the root to the leaf nodes) of the octree to represent the volume, which specifies

the resolution of the reconstruction, and a set of cameras to use. The 3D OpenGL client

renders the 3D volume of a frame at any time step, and a user can browse the sequence

of 3D volumes, as shown in Figure 3.2. The client allows volume to be viewed from any

point of view via mouse dragging.

22

3.3 Synthetic Query Workload Generator

In order to create workloads of range queries, we employed a variation of the Customer

Behavior Model Graph (CBMG) technique to make query workloads realistic. CBMG

has also been utilized by researchers analyzing performance of e-business applications

and website capacity planning [61]. A CBMG can be characterized by an ����� matrix

of transition probabilities between the � states,
����� 	 � � ��
 , where each state represents

a stage in an e-business transaction. Similarly, a sequence of data visualization queries

in a data analysis application can be seen as moving through different states. Examples

of state transitions for Kronos include re-scaling a data product and panning in either

direction through a dimension (e.g., in space or time).

In our query model, the first query in a batch specifies a multidimensional point

and a set of ranges for each dimension (a geographical region and a set of temporal

coordinates, i.e. a continuous period of days). The subsequent queries in the batch are

generated based on the following operations: a new point of interest, spatial movement,

temporal movement, resolution increase or decrease. We have previously selected hot

points of interest where an initial query will be centered (e.g., the Amazon rain forest for

a hypothetical deforestation-related query). These points are defined in terms of spatio-

temporal coordinates. In this way, subsequent queries after the first one in the batch

may either remain around that point (moving around its neighborhood) or move on to

a different point altogether. These transitions are controlled by the CBMG probability

matrix.

23

Chapter 4

Data Chunking

4.1 Overview

Data chunking logically partitions a dataset into coarse-grained blocks to reduce disk

access time when accessing large amounts of data in a file. Most self describing sci-

entific data formats store data as multidimensional arrays, to ease access from within

scientific programs. Scientific applications access multidimensional arrays with various

access patterns. Some applications read sub-arrays in row major order, or in column

major order. Others read sub-arrays specified as regular sections [43]. Scientific data

format libraries support reading sub-arrays with various access patterns, but most of

them do not show good I/O performance along every dimension. Only a few libraries,

which support data chunking, achieve similar performance for any kind of access pat-

tern. For datasets consisting of data arrays, each data chunk can be viewed as a con-

tiguous sub-array within the dataset. The order of data accesses into a multidimensional

array critically affects the I/O performance. To achieve maximum I/O performance by

minimizing disk seek operations, each chunk should be a single contiguous sequence

in the file. We use the term physical chunk to refer to a sub-array that is a physically

contiguous single sequence within a file on disk. Depending on the data access pattern,

24

physical chunking can provide much higher I/O performance than other data organiza-

tions [99]. A logical chunk, on the other hand, is a conceptual partitioning of a dataset

on disk. A multidimensional dataset can be partitioned into logical chunks whether it

is a single contiguous array or a physically chunked array. When a dataset is stored as

a single array on disk, disk seek operations are required to access each row of a logical

chunk. On the other hand, when a dataset is partitioned and ordered as physical chunks,

the layout of the physical chunking can also be viewed as the logical chunking. How-

ever, logical chunking does not necessarily have to use the same partition as physical

chunking, (i.e. a logical chunk in a physically chunked dataset can contain several phys-

ical chunks, and could even be a subset of a physical chunk). Logical chunking by itself

does not improve I/O performance, but is necessary to create an index into the data.

4.2 Scientific Data Format: HDF

In order to help in navigating through large scientific datasets, many self-describing sci-

entific data file formats have been developed such as Planetary Data System (PDS) [2],

Network Common Data Format (NetCDF) [82], and Hierarchical Data Format (HDF4

and HDF5) [70, 33]. Self-describing data formats contain structural metadata that is

used by a corresponding runtime library to navigate through the file to improve I/O per-

formance, by allowing for direct access (once the metadata is read) to particular datasets

within a file, or to parts of the dataset. Files in these self-describing formats may also

contain application-specific metadata, which provides semantic information about the

contents of the file [33]. The contents of scientific data files typically are a collection of

multidimensional arrays, which we will refer to as datasets, along with the correspond-

ing metadata.

25

Hierarchical Data Format (HDF) is a self-describing scientific data file format and

runtime library developed at the National Center for Supercomputing Applications (NCSA)

to store and serve heterogeneous scientific data. A file stored in HDF contains support-

ing metadata that describes the contents of the file in detail, including information for

each multidimensional array stored, such as the file offset, array size and the data type

of array elements. HDF also allows application-specific metadata to be stored. Thus,

the metadata within a file make HDF an essentially machine independent format. The

most recent version of HDF is HDF5. Although HDF5 was designed to overcome some

deficiencies of the older HDF4, HDF5 has a totally different internal representation of

data objects from previous HDF versions.

4.2.1 Data chunking in HDF

To improve I/O performance, HDF supports two different storage layouts. The default

storage layout is a contiguous layout, in which the elements of a multidimensional array

are stored in either row-major order or column-major order. The second choice is a

chunked layout, in which data is stored as physical chunks, small coarse-grained blocks

of the sub-array, with each chunk stored in row-major or column-major order.

In HDF5, a chunked layout has several advantages over a contiguous layout. In par-

ticular, a chunked storage layout allows extending the size of a stored multidimensional

array in any dimension, not just the slowest varying array dimension (outermost in row-

major order, innermost in column-major order). In addition, disk space for a chunk does

not have to be allocated on disk until data is written into that chunk, which can decrease

disk storage requirements. HDF4, on the other hand, provides only some of the advan-

tages of a chunked layout. In HDF4, extending the size of an array dimension is allowed

only for the slowest varying dimension, but not for any other dimensions.

26

miss
miss

hitmiss
miss hit

hithit miss
miss

hit
hit

hit
hit

0 1 2 3 4 5 6 7 8

hit

Selected region to read

hit hit hit
0
1
2

3
4

5

(a) H5Dread. A chunked layout can cause unnecessary

cache misses.

miss
hit

hitmiss
hit hit

hithit miss
hit

hit
hit

hit
hit

0 1 2 3 4 5 6 7 8

hit

Selected region to read

hit hit hit
0
1
2

3
4
5

(b) H5Xread. The H5Xread function reads data elements in

chunk order to minimize cache misses.

Figure 4.1: The ordering problem for H5Dread with a chunked layout

In accessing a subset of a large dataset, data chunking reduces expensive disk seek

times and improves overall I/O performance by taking advantage of spatial locality in

any array dimension [99]. On the other hand, the contiguous storage layout can exploit

spatial locality only in the dimension that varies fastest in storage order.

However, a chunked layout does not always provide better performance than a con-

tiguous layout. One case in which data chunking may hurt I/O performance occurs when

the size of a chunk is very large and the region selected to read is smaller than the size

of a chunk, causing unnecessary data to be read from disk, since disk I/O is always done

in units of complete chunks.

27

4.2.2 Potential problems with HDF data chunking

Both the HDF4 and HDF5 libraries cache data in a data chunk cache to improve I/O

performance. However, the functions that read datasets in both libraries are designed as

if the size of the data chunk cache is infinite, potentially causing significant performance

problems. Because the read functions in the HDF libraries read arrays in row major (or

column major) order, whether the array has a chunked layout or contiguous layout, that

ordering does not match the ordering of data with a chunked storage layout, potentially

leading to many data chunk cache misses.

Suppose we want to read two rows of a dataset stored with a chunked layout. The

standard HDF library read function, H5Dread, reads the data in row major order, as

shown in Figure 4.1(a). When the first row of the array is read, all array elements in

the chunks that contain the first row are cached in the data chunk cache, along with the

rest of the chunks. When the next row is read, the library searches in the cache, but

will not find the chunk needed, because the default chunk cache size is 1MB. If the total

size of the chunks that contain one row of a dataset is greater than 1MB, the data chunk

cache will not be able to hold all the chunks and will evict the chunks in the cache using

an LRU replacement policy. Therefore when the library reads the second row of array

elements, the first element in the second row will not be found in the cache, as shown

in Figure 4.1(a). So the chunk containing that array element must be read from disk

again, and the same problem will occur for all other data chunks both in that row and

in subsequent rows. The HDF library developers have recognized this problem, and

warn of severe performance penalties in the HDF User’s Guide [70]. Their solution to

the problem is to add a function to the HDF5 API that increases the size of the data

chunk cache, placing the burden of selecting the appropriate data chunk cache size on

the application developer. We now propose another solution.

28

4.2.3 H5Xread

We have added new functionality to the HDF5 library, in the form of a function called

H5Xread with the same interface as H5Dread, to read multidimensional array datasets

from disk in the same order they are stored with a chunked storage layout. Such a strat-

egy avoids unnecessary cache misses and reading the same chunk from disk multiple

times. After chunks are retrieved from disk, they are reorganized in memory to pro-

duce the desired contiguous array layout. For arrays stored with a contiguous layout,

H5Xread reads the data from disk in the same order as H5Dread. Figure 4.1 shows the

difference in data accesses between the H5Xread and H5Dread functions. The array

read function in the HDF4 library has the same performance problem as H5Dread, and

the same functionality as in H5Xread can be implemented for that library.

Performance evaluation of H5Xread

We now present the results of a performance evaluation of the standard HDF5 dataset

read function, H5Dread, with our H5Xread function, for chunked storage layouts. In the

experiment, we partitioned a two-dimensional 64MB AVHRR HDF5 dataset, containing

an array of 4000x1000 elements, each of which is 16 bytes. The array was partitioned

into 160 KB logical chunks, each of which contains 100x100 elements. For the chunked

layout, we made the physical chunk size the same as the logical chunk size. The ex-

periments were run on a SunBlade 100 workstation with a 500MHz Sparcv9 processor,

256MB memory, and a 7200RPM IDE disk with a seek time of 9ms.

Figure 4.2 shows the time to read two different shaped subarrays from the dataset.

We measured the wall clock time, varying the number of rows read in in Figure 4.2(a),

and varying the number of columns read in Figure 4.2(b). Figure 4.2(a) shows that

the chunked storage layout provides better I/O performance than the contiguous layout

29

Time to read subarray

0

100

200

300

400

500

600

700

800

100x500 200x500 300x500 400x500 500x500 600x500 700x500 800x500 900x500

Size of subarray

m
se

c

contiguous(Dread,Xread)

chunked(Dread)

chunked(Xread)

(a) The selected region has a fixed number of

columns, and the number of rows increases.

Time to read subarray

0

1000

2000

3000

4000

5000

6000

7000

8000

700x100 700x200 700x300 700x400 700x500 700x600 700x700 700x800 700x900

Size of subarray

m
se

c

contiguous(Dread,Xread)

chunked(Dread)

chunked(Xread)

(b) The selected region has a fixed number of rows,

and the number of columns increases.

Figure 4.2: Time to read selected regions of the dataset

30

in most cases. The performance gap between the chunked layout and the contiguous

layout increases as the number of rows increases. This is because as the size of a column

grows, even more disk seek operations are needed for the contiguous layout than for the

chunked layout.

For these experiments, we used the HDF library default sized data chunk cache of

1MB, so the chunk cache holds six of the 160KB chunks. In Figure 4.2(b), when the

number of columns in the selected subarray is less than or equal to 600, the H5Xread

function shows similar performance to that of H5Dread for a chunked layout, but as

the number of columns increases, so that the size of each row increases, the cache fills

up before reading an entire row - in this experiment when the row size reaches 700

elements, at which point the H5Dread function suffers from many cache misses, while

H5Xread continues to provide stable I/O performance. The performance difference can

be a large factor, here up to a factor of 9, as is seen in the right side of the figure.

The H5Xread functionality also provides stable performance characteristics for higher

dimensional datasets. We have evaluated performance for three-dimensional datasets,

and the results are essentially the same as those for the two-dimensional experiments,

meaning that the H5Xread function with a chunked layout provides better performance

than H5Dread with either a chunked or a contiguous layout.

4.3 Indexing with Data Chunking

A large number of indexing techniques have been proposed to improve the performance

of range queries and nearest neighbor queries for multidimensional datasets. Techniques

for speeding up searches into high-dimensional datasets have been researched exten-

sively [19, 26]. The most common multidimensional indexing structure, the R-tree, is

31

a height-balanced tree similar to the well-known B-tree [40]. When point data is in-

serted into a leaf node of an R-tree, the minimum bounding boxes of the internal nodes

are enlarged to cover the child nodes, sometimes requiring that internal nodes be split

to maintain the balance criteria. For a given multidimensional range query, a search

into an R-tree traverses all nodes in the tree with minimum bounding boxes that over-

lap the range. The R*-tree is an optimized R-tree extension that minimizes overlap of

nodes [13].

The goal of using a spatial index is to avoid searching all the elements in a multi-

dimensional dataset to perform a spatial range query. If the dataset is partitioned into

coarse-grained chunks, and the bounding box for each chunk (i.e. the minimum and

maximum values for each dimension) is placed in an index structure, not all elements

within the dataset must be searched, but only elements in the chunks with bounding

boxes that overlap the query range. This effectively reduces the amount of data retrieved

from disk, and should improve query response time. The performance comparison of

various indexing structures for data chunking will be discussed shortly in Chapter 5.

4.3.1 GMIL: Generic Multidimensional Indexing Library

We have designed and implemented a generic indexing library for various multidimen-

sional scientific data formats using an R*-tree. The R*-tree provides better performance

and storage utilization than an R-tree, especially for high-dimensional data. Figure 4.3

shows the design of the indexing library. A new multidimensional scientific data format

can utilize the services of the indexing library by implementing three functions that (1)

create an index file, (2) search the index file for a range query, and (3) read a subset of

the dataset using the information returned from searching the index. The generic index-

ing library provides an API for these functions. In order to read data files in a specific

32

Indexing utility library

Scientific data format library 1 Scientific data format library N

New API
range query

New API
range query

. . .

Index
creation

Index
search

Resolution
interpolation

Filtering

Dataset Read

Dataset read function Dataset read function

Figure 4.3: Generic spatial indexing library

scientific data format, the indexing library read function must call a read function from

the particular scientific data format library. The name of the read function, and some

additional information about various parameters, must be obtained from the scientific

data format library.

The generic indexing library has an index creation module, an index searching

module, a resolution interpolation module, and a filtering module. Multi-dimensional

datasets, in particular ones with spatial and/or temporal dimensions, may contain data

elements at different granularities. For example, multiple sensors on the same orbiting

satellite may have different resolutions. Hence some sensor datasets may have arrays

that are several times larger than the corresponding geographic datasets that allow for

determining the spatio-temporal locations of the data elements. The generic indexing

library addresses this problem by providing an interpolation mechanism. The last func-

tion that the indexing utility library provides is data filtering. Because data is stored as

chunks, a range query can return all the chunks that overlap the given range query. How-

ever, not all data elements in those chunks will overlap the query range, so the library

33

supports data filtering to return only those data elements that fall within the query range.

If the application can accept extra elements (i.e. perform its own filtering), the library

can also return the unfiltered chunks.

4.3.2 Case study: HDF-EOS vs GMIL

NASA’s Earth Observing System Data and Information System (EOSDIS) is a system

that acquires, stores, and distributes sensor data acquired from orbiting satellites. HDF

was selected as the standard data format by the EOSDIS project, and a metadata schema

was specified to store Earth Observing System (EOS) data [56]. In addition, a library

was implemented on top of the HDF library, called HDF-EOS, to extend the capabilities

of the HDF library to allow for the construction of special data structures, called grids,

swaths, and points [56]. We focus on swaths, because that is the way most HDF-EOS

data is stored [56, 81]. A grid structure is produced using a projection operation via a

given mathematical transformation between the rows and columns of an array and the

latitude/longitude information stored with the EOS data, and is used to store the results

of such projection operations. The latitude/longitude information for each array element

can be computed based on the array offset using map projections such as Mercator or

Goode. A point structure is a table that contains data records taken at irregular time

intervals and across scattered geographic locations. A swath structure is based on the

way a typical satellite sensor acquires data, whereby an instrument takes a series of

scans perpendicular to the ground track of the satellite as it moves along that ground

track.

The HDF-EOS library has versions both for HDF4 and HDF5, called HDF-EOS4

and HDF-EOS5. Despite HDF4 and HDF5 being quite different data formats, the HDF-

EOS4 and HDF-EOS5 libraries have essentially the same basic features for the HDF-

34

EOS data structures. Both versions of the HDF-EOS library allow a user to specify a

range query, by specifying the data to retrieve as a box in latitude and longitude. Once a

query region is defined, by the defboxregion() function, the user reads the data from that

query region with an extractregion() function.

In an HDF-EOS swath structure, the latitude, longitude, and temporal information

for the dataset is stored as separate arrays from the sensor value arrays. To retrieve

the geographic information for a data element in a sensor value array, the elements

in the geographic datasets that have the same offsets as the sensor element must be

retrieved. The HDF-EOS library does not support spatial indexing structures. To read

the sensor values that fall within a query range, the defboxregion function must scan

every geographic dataset to obtain the location(s) of the region within the file, because

the geographic information for the EOS datasets is not evenly distributed through the

spatial domain (i.e. it has spatial irregularity) [95]. Once a region is defined with the

defboxregion function, the corresponding extractregion function can be called to read

the desired sensor data from the file. It is an expensive operation to scan all elements

in a geographic dataset, so HDF-EOS provides several approximation options. First, an

application can retrieve the set of scanlines that have any single element that overlaps

the query range. In this any-point mode, all geographic data must still be searched.

Second, if the mid-point of a scanline overlaps the query range, that scanline can be

read in mid-point mode. In this mode, the defboxregion function reads only one column

of the geographic dataset (the one for the middle element in the scanline). Finally, if

both end points of a scanline overlap the query range, the entire scanline will be read

in end-point mode. Mid-point and end-point selection are much faster than any-point

selection, but there is a tradeoff between response time and accuracy in retrieving the

desired data.

35

defined query region

Data that would be extracted

(a) EOS range query

Data that would be extracted

defined query range

(b) Range query with data chunking

Figure 4.4: Data read for a range query

For our indexing library, creating the index requires reading all the geographic in-

formation for a swath to obtain minimum and maximum location (latitude/longitude)

values for each logical/physical chunk. It is less expensive to build an index for a chun-

ked storage layout than for a contiguous storage layout that uses logical chunks for the

index, because reading each logical chunk from disk may require multiple disk seeks.

For reading subsets of a dataset using the indexing library, all elements in chunks that

intersect the query range are read, while the HDF-EOS library returns all elements in

any scanline that overlaps the query range. Therefore the number of elements read by the

two libraries may be different. The range query functions return the query result in the

form of a one dimensional array of data elements, but with EOS data each element in the

array is associated with two-dimensional geographic coordinate information (latitude

and longitude). However, some of the returned elements may not be in the query range,

but the application cannot determine which elements should be discarded without the

geographic coordinate information. Therefore the range query function in the indexing

library returns the geographic information corresponding to each sensor value. Using

this geographic information, applications can filter out sensor values that do not overlap

36

the query range. If the chunk size is large, the R*-tree search may end up reading more

unnecessary data than the HDF-EOS extractregion function, but it is much more likely

that the HDF-EOS function will read more unnecessary data.

Performance evaluation of GMIL

We evaluate performance for reading HDF-EOS data via range queries. We have im-

plemented versions of the HDF-EOS4 and HDF-EOS5 range query APIs that call the

indexing library. The test datasets range in size from 16MB with 30 chunks, to 128MB

with 800 chunks. In our experiments we used H5Xread, to read data from the file,

instead of the HDF library H5Dread, since it provides better performance.

In the experiments, we have measured both the time to create an R*-tree index file

for various numbers of chunks, and the time to perform range queries using the index.

For range query performance, we have measured the time to read a subarray for three

different shapes of the selected region within a two-dimensional array. The first query

selects a region that spans many columns, but relatively few rows. For this kind of query,

the HDF-EOS defboxregion function reads the data that exactly matches the query range

in any-point or mid-point mode. However, our indexing library read function may read

extra elements that are not in query range, but are in chunks that overlap the query

range. The second query selects a mostly square region from the 2D array. For this

case, the HDF-EOS functions will usually read a much larger number of elements than

our indexing library function. The third query selects a region that spans many rows,

but relatively few columns. For the second and third queries, the HDF-EOS library

reads many more elements than our indexing library does, since HDF-EOS reads all the

elements in any scanline (row) that overlaps the query region,

All the results presented measure elapsed wall clock time. The size of the test dataset

37

Query 2
Selected region is almost square

Query 1
Selected region is long in row major order

Query 3
Selected region is long in column major order

Figure 4.5: Three types of range query

Index creation time

0

20

40

60

80

100

120

16MB 32MB 48MB 64MB 80MB 96MB 112MB 128MB

Geographical dataset size

se
c

80KB contiguous
160KB contiguous
320KB contiguous
80KB chunked
160KB chunked
320KB chunked

Figure 4.6: Time to create an index file, varying the chunk size and the data layout

38

for measuring range query performance is 4000x1000 elements, with each logical or

physical chunk containing 100x100 elements of type double, for a total of 80KB per

chunk. For measuring R*-tree index creation time, we created logical and physical

chunk sizes of 0.8KB, 80KB, 160KB, and 320KB. Because the HDF-EOS4 library does

not support data chunking, we measured performance only with a contiguous storage

layout, and partitioned the arrays into logical chunks for indexing. The number of array

elements requested for the first query is 200x900, for the second query 1000x500, and

for the third query 2000x200. We ran the experiments on the same SunBlade 100 used

for the data chunking experiments.

Figure 4.6 shows the time to create the R*-tree index file for various dataset and

chunk sizes. The figure shows that the time to create the index depends linearly on the

number of chunks, which is determined by the chunk size for a fixed size dataset. The

question to answer then, is what is the best chunk size? There is a tradeoff between

index creation time and disk access time for range queries. When the chunk size is

small, the number of chunks is large and it takes a long time to create the index, as

seen in Figure 4.6. On the other hand, a small chunk size will causes range queries

to read less extra data. The most important decision criterion is that the index will be

used for all searches, but once an index file is created it will not be changed unless the

dataset is updated. Although the index is not likely to change often, the time to create

the index file should not be ignored. For example, when the number of chunks becomes

very large, for example 50,000, it takes several hours to create the index file on the

experimental machine. Most of time to create the index file is spent building the R*-

tree, performing operations to maintain the desired tree properties. Also, as shown in

Figure 4.6, it is faster to create the index for a chunked layout compared to a contiguous

layout, because reading the geographic dataset is more expensive for the logical chunks

39

HDF-EOS5 Range query latency (Query 200x900)

75.2

137.8

0

1

2

3

4

5

6

7

8

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS5

Size of Logical/Physical Chunk

se
c

defboxregion (cont)

read data (cont)

defboxregion(chunk)

read data (chunk)

(a) 200x900 query

HDF-EOS5 Range query latency (Query 1000x500)

79.3

131.3

0

1

2

3

4

5

6

7

8

9

10

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS

Size of Logical/Physical Chunk

se
c

defboxregion (cont)

read data (cont)

defboxregion(chunk)

read data (chunk)

(b) 1000x500 query

HDF-EOS5 Range query latency (Query 2000x200)

78.4

132.4

0

2

4

6

8

10

12

14

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS

Size of Logical/Physical Chunk

se
c

defboxregion (cont)

read data (cont)

defboxregion(chunk)

read data (chunk)

(c) 2000x200 query

Figure 4.7: Time for range queries with HDF-EOS5

in the contiguous layout.

For the experimental dataset, and for 800 chunks, the R*-tree library1 created a

73KB index file, while the size of the dataset is 128MB. Also, an HDF file can contain

several swath structures, each with its own latitude, longitude and time information, and

a swath can contain several multidimensional datasets with sensor values. An index is

therefore needed for each swath, not for every dataset. Therefore, the index file does

not require a significant amount of disk storage compared to the size of the dataset it is

1We employ the HnRStar library, version 1.0 [48]

40

indexing.

Because the performance results were very similar for both the HDF-EOS5 and

HDF-EOS4 libraries, we only show results for the HDF-EOS5 library. Figure 4.7 shows

the time to read a subset of the dataset for the three queries, using both the indexing

library range query function and the HDF-EOS5 standard range query functions. The

time for the indexing library includes both searching into the R*-tree and reading the

geographic and sensor value data from disk. As we described earlier, the HDF-EOS

library has two separate functions to perform a range query, so there are two bars in the

graph for each data layout (contiguous and chunked).

For a single query, the extractregion functions in HDF-EOS5 and HDF-EOS4 read

only a subset of the sensor value dataset. But the corresponding defboxregion functions

read every element in the geographic datasets to determine the file location informa-

tion for the requested region in any-point mode, and read either one or two columns of

the geographic data in mid-point mode or end-point mode, respectively. For the three

queries in the experiments, the HDF-EOS defboxregion function returns an empty re-

gion in end-point mode, so no results are shown.

The indexing library range query function reads the R*-tree index file (if the index

has not already been read into memory), and the chunks of the sensor value and geo-

graphic dataset returned by the R*-tree search. The geographic data can be used to filter

the sensor data that is returned, but does not lie in the query range. As seen in Figure 4.7,

the time to perform the extractregion operation in the HDF library is less than the index-

ing library query time in most cases, but that is because the extractregion function only

reads data from the sensor value dataset, and does not read the geographic information.

The location information to determine which sensor values to read is computed by the

defboxregion function, and when we look at the time to execute that function, we see

41

that using the index library to perform the range query provides enormous performance

benefits. Comparing the time to read the data in HDF-EOS5 any-point mode to that of

the indexing library, for all queries the indexing library time was less than 7% of the

defboxregion time. If the HDF library is used to select a region in mid-point mode, the

performance is about the same or somewhat worse than that of the indexing library, but

the indexing library should return a better approximation to the data that actually falls

within the query range. Also, the indexing library is guaranteed to return all data ele-

ments that fall within the query region, but the HDF-EOS library in mid-point mode will

not return a scanline with a mid-point element that does not fall within the query range.

As Figure 4.7(a) shows, the performance of the indexing library for reading a region

with many columns and relatively few rows decreases as the chunk size grows, because

the indexing library range query function reads more unneeded data from disk. For this

kind of query, the contiguous layout performs best because it does not cause many disk

seeks, so gives about the same or even slightly better I/O performance than a chunked

layout. The defboxregion function reads the geographic dataset one scanline (row) at a

time, and that is very inefficient, since it will cause many disk seek operations to read

each scanline. Therefore defining a region takes much longer with a chunked layout

than a contiguous layout for this type of range query. For this type of query, the number

of extracted elements is the same for both the indexing library range query function the

and the HDF-EOS query function.

We see from Figure 4.7(b) that for the second query that covers a mostly square

region, the performance of the HDF-EOS extractregion function is worse than for the

first query with many columns and few rows, because extractregion reads the entire

scanline for every one that overlaps the query range, not just the elements in the query

range.

42

HDF-EOS4 Range query latency (Query 200x900)

23.4

0

1

2

3

4

5

6

7

8

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS

Size of Logical Chunk

se
c

defboxregion (cont)

read data (cont)

(a) Query 1. Many columns, few rows

(200x900)

HDF-EOS4 Range query latency (Query 1000x500)

19.8

0

1

2

3

4

5

6

7

8

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS

Size of Logical Chunk

se
c

defboxregion (cont)

read data (cont)

(b) Query 2. Mostly square region (1000x500)

HDF-EOS4 Range query latency (Query 2000x200)

16.6

0

1

2

3

4

5

6

7

8

40KB 80KB 160KB 320KB 640KB ANYPOINT MIDPOINT

R*-tree index query HDF-EOS

Size of Logical Chunk

se
c

defboxregion (cont)

read data (cont)

(c) Query 3. Many rows, few columns

(2000x200)

Figure 4.8: Time for range query with HDF-EOS4

43

For the third query with many rows and few columns, we see from Figure 4.7(c)

that as the chunk size grows the time to read data for the indexing library decreases,

because of fewer disk seek operations. In the best case, even though the indexing library

function must also read the geographic dataset, which is done by the defboxregion func-

tion in the HDF-EOS library, the indexing library function takes about the same time as

extractregion for a chunked layout. This is because extractregion reads a large amount

of unneeded data, as was the case for the second query. For the third query, the amount

of unneeded data read by extractregion is even larger than for the second query.

Even though the amount of unneeded data read by the indexing library is usually

less than for the HDF-EOS library, it is still necessary to filter the unneeded data. When

the size of the chunks is small, filtering is not expensive, but the R*-tree search time will

be long because of the large number of leaf nodes in the tree. However, R*-tree search

time is very small compared to the time to read the datasets from disk.

In our experiments, as the chunk size grows larger, performance decreases because

the indexing library reads extra data that is outside of the query range. And if the chunk

size is too small, performance also decreases because of additional disk seeks. However,

overall the indexing library shows much higher performance than HDF-EOS any-point

mode, and better performance than mid-point mode for many queries, despite the index-

ing library performing the filtering needed to remove unnecessary data using geographic

information, which is not provided by the HDF-EOS library.

4.4 Summary

We have shown that I/O performance can be improved with the use of both multidimen-

sional indexing structures and data chunking, for navigating through multi-dimensional

44

self-describing scientific datasets. Indexing individual data elements of large scientific

datasets makes the size of index even larger than input dataset, thus it would lead to

poor performance. Due to the way of storing datasets from sensor devices, most sci-

entific datasets have spatio-temporal locality, whereby we can group data elements and

store a single bounding box for each chunk in order to reduce the index size for better

performance.

Our generic indexing tool targets scientific data formats such as netCDF, HDF, and

SILO, which contain structural metadata. Data stored in such self-describing formats

may be easily accessed across heterogeneous platforms using the runtime library API

for each format. Data stored in these formats contain application-specific semantic in-

formation about the contents of the file, so that no other information is necessary to in-

terpret the data. Experimental results, on NASA Earth observing satellite datasets, have

shown that the generic scientific indexing library greatly improves the performance of

range queries, as compared to using the format-specific runtime libraries.

45

Chapter 5

Indexing Structures for Scientific Datasets

In this chapter, we discuss a few widely used multidimensional indexing tree structures,

concentrating on issues related to performance for indexing chunked scientific datasets.

As we have shown in Chapter 4, many scientific libraries perform a brute force range

query operation inefficiently, but multidimensional indexing structures allow performing

range queries efficiently.

In the past couple of decades, extensive research has been carried out on multi-

dimensional indexing structures, to enable efficient range queries and nearest neigh-

bor searches. However, most of the recent studies have focused on high-dimensional

feature-based similarity searches into a relatively small number of point data items.

Many scientific instruments, ranging from sensors on Earth orbiting satellites to

light microscopes, can produce hundred of gigabytes of spatio-temporal daily, consisting

of billions of individual data elements. Storing each data element in a huge scientific

dataset into a multidimensional indexing tree is impractical, because the size of the index

could be even larger than the raw dataset, and the performance of queries would be poor

due to the size of the index. The data chunking optimization described in Chapter 4

solves this performance problem.

In this chapter, we focus on the problem of indexing rectangular objects (multidi-

46

&KXQN�� &KXQN��

&KXQN��&KXQN��&KXQN��

&KXQN��&KXQN��

&KXQN� &KXQN� &KXQN�

&KXQN����
&KXQN�

&KXQN����
&KXQN� &KXQN�

&KXQN�

&KXQN��

&KXQN��

Figure 5.1: Dataset with nine chunks and corresponding bounding boxes in problem

space

mensional bounding boxes), introducing the Spatial Hybrid tree (SH-tree), an extension

of the Hybrid-tree [22], and perform a comparative study of SH-trees against other in-

dexing techniques for multidimensional rectangular datasets.

5.1 Spatial Indexing Structures for Scientific Datasets

Multidimensional indexing trees can be classified into two categories: space partition-

ing methods and data partitioning methods. Data partitioning methods such as R-trees

split an overflow node by grouping its child nodes into two sub-sets. However space

partitioning methods such as KDB-tree split an overflow node by partitioning its data

space into two sub-spaces. This classification is also based on the data structures of

internal tree nodes. In space partitioning methods, the internal tree node is represented

by a binary KD-tree (i.e., split dimensions and split positions.) Each leaf node of the

binary KD-tree points to a child tree node. However, in data partitioning methods, the

internal tree node is represented by a list of bounding boxes of child nodes. Therefore,

the number of fan-outs in data partitioning methods is dimension dependent, while it is

dimension independent in space partitioning methods.

47

5.1.1 Space Partitioning Methods

KDB-tree: Robinson has developed a balanced B-tree version of the binary KD-tree [14],

the KDB-tree [83]. Unfortunately, minimum node utilization is not guaranteed for KDB-

trees because of the downward cascading split problem. A KDB-tree does not allow

overlapping partitions, as does the standard KD-tree, but when a tree node must be split

it is not always possible to find disjoint partitions in a KDB-tree. In such cases, some

sub-partitions must be split at the same split value as for the parent node, even if the

sub-partitions do not meet the minimum storage utilization requirement for a node. The

split can propagate all the way down to the leaf nodes, which can make range query

performance poor.

Spatial KD-tree: A Spatial KD-tree (SKD-tree) [74] is another variant of the bi-

nary KD-tree designed for non-point spatial objects. An SKD-tree allows sub-partitions

to overlap, by having two split positions in one split dimension. Each split position

represents the boundary of the lower or upper sub-region, respectively. However, the

SKD-tree is a memory-based, not a disk based data structure, which means that it is a

binary tree that does not consider disk page size unlike B-tree. Hence it is not suitable

for very large databases.

Object duplication methods: Matsuyama’s KD-tree [60] is another variant of the

binary KD-tree for non-point spatial data. In Matsuyama’s KD-tree, an extensive object

duplication strategy is used, hence objects can be stored in multiple leaf nodes. The

R+-tree [93] is a disk based indexing method that uses the object duplication strategy.

However, object duplication methods may create infinite recursive loops when inserting

rectangles into the tree, if there is at least one non-point region, denoted as a hot spot,

that falls completely inside all the child partitions of a node, as shown in Figure 5.2. In

such a case, no matter what split dimension or split position is selected, either or both of

48

Hot Spot

Figure 5.2: Disjoint partitioning is not possible due to a hot spot

the two resulting nodes will overflow again because the hot spot will belong to at least

one of the resulting sub-partitions, so the resulting nodes must duplicate all the child

bounding boxes that cover the hot spot. For this reason, disjoint partitioning methods

based on the object duplication strategy are not feasible for non-point data.

Hybrid-tree: To solve the downward cascading split problem for KDB-trees, sev-

eral variants have been proposed, such as hB-trees [59] and Hybrid-trees [22]. The

Hybrid-tree solves the downward cascading split problem by allowing overlap of the

two sub-regions after a node is split, as in data partitioning methods [22]. While the in-

ternal nodes for the data partitioning methods are lists of bounding boxes and pointers to

child nodes, each internal node for the disk based space partitioning methods is a binary

KD-tree, with each leaf of the KD-tree containing the sub-partition of a child internal

node in the top-level tree and a pointer to the child node in the top-level tree. An internal

node in a Hybrid-tree is also a binary KD-tree, whose nodes contain both a splitting di-

mension and two splitting positions in that dimension. By having two splitting positions

instead of one, the Hybrid-tree allows overlapping regions when a downward cascading

split is unavoidable. However, the Hybrid-tree allows overlap only in non-leaf nodes,

and the overlapping region is created or extended only when a node overflows during

49

object insertion, so must be split. Therefore, non-point spatial objects cannot be indexed

in a Hybrid-tree.

5.1.2 Data Partitioning Methods

R-tree and R*-tree: Instead of duplicating objects, spatial objects can be indexed by

allowing overlapping regions, as in R-tree based index structures [40]. Although R-trees

can be used for non-point data, a large amount of overlap between internal nodes in R-

trees leads to search performance problems. To reduce overlapping regions for R-trees,

Beckmann et al. proposed an optimized version of R-trees, called R*-trees [13]. The

R*-tree insertion algorithm reinserts elements from a node that overflows, instead of

splitting the node. This forced reinsertion feature of R*-trees improves search perfor-

mance, but insertion can become very expensive.

X-tree: Berchtold et al. developed another variant of the R-tree, called an X-

tree [15], which avoids highly overlapping bounding boxes via the use of supernodes.

A supernode is a tree node that spans multiple pages on disk, thus has a larger capacity

than a normal node. When a node must be split and a large amount of overlap between

sub-partitions is unavoidable, the X-tree algorithm increases the capacity of the node

instead of splitting it. If there would be a large amount of overlap between two nodes

after a split, the probability that both nodes would be accessed by a search operation is

high. Hence, sequential access to supernodes should be faster than random access to two

separate nodes. However, supernodes have the overhead of additional disk management

costs at index creation time. Therefore, before the X-tree insertion algorithm creates

a supernode, it tries to find an overlap-free split based on past split history. For more

details on supernodes, see [15]. However, split history is not useful for non-point spatial

objects, because an overlap-free split is not always possible for non-point data. Even if

50

an overlap-free split can be found, in most cases it will not be acceptable since it will

not meet minimum node utilization requirements.

5.2 Spatial-Hybrid Tree

Although the most important performance evaluation criteria often is searching the in-

dex, we can not ignore index creation performance since scientific applications can

generate datasets very quickly. Most of the existing variants of R-trees sacrifice cre-

ation/insertion performance in order to make searches faster, which we want to avoid.

Thus, we propose a new multidimensional indexing structure that performs fast index

searches without a high cost for index creation. Also our new index structure needs to

support rectangular bounding boxes, created from data chunking.

In this section we introduce the Spatial Hybrid-tree (SH-tree), a new multidimen-

sional indexing structure that supports efficient range queries on non-point data objects,

in both low and high dimensional spaces [66]. The SH-tree combines the properties

of the SKD-tree and the Hybrid tree, both of which are based on space partitioning

methods, and allows overlapping sub-regions by having two split positions in one split

dimension. The SKD-tree allows overlapping sub-regions only when a mutually dis-

joint partition is not possible because of the volumes of the data objects, whereas the

Hybrid-tree allows overlapping sub-regions when a downward cascading split is un-

avoidable [22]. In other words, the Hybrid-tree creates a new overlapping region when

a node that overflows must be split, while the SKD-tree adjusts overlapping regions so

that one region will fully contain a new object that is to be inserted. The SH-tree em-

ploys the node splitting algorithm of the Hybrid-tree and the insertion algorithm of the

SKD-tree.

51

Split S1
(dimension,
minU, maxL)

Split S2
(dimension,
minU, maxL) empty

S2 S3

empty

C1 C2

Live space bounding box of current node

S1

S2

S3

S1

S2 S3

C1
C3

C2 C4
C1 C2 C3 C4

Split S3
(dimension,
minU, maxL)

C3 C4

Figure 5.3: KD-tree representation of an internal node of an SH-tree

5.2.1 Insertion

Figure 5.3 depicts an internal node of an SH-tree. An internal node for a balanced space

partitioning method such as a KDB-tree [83] is represented as a binary KD-tree, not a

list of bounding rectangles as for R-trees. In SH-trees, one split dimension and two split

positions are required for each child node in order to allow overlapping regions between

child nodes. One split position represents the minimum boundary of the upper (right)

region (� � ���) and the other the maximum boundary of the lower (left) region (�����	�)

in the split dimension.

When a new data object is inserted into a node in the SH-tree, the insertion algorithm

compares the MBR of the object with the split information in the root node of the internal

KD-tree. If the object is completely inside one of two sub partitions in the root level,

the algorithm repeats the same comparison in the next lower level in the KD-tree of the

node until the object reaches a leaf node, which points to a child node in the SH-tree.

52

However if the object does not fit completely inside either of the two sub-partitions,

either � � ��� or �����	� for the node must be adjusted to include the object. Which one

is adjusted is determined based on which sub-partition causes less enlargement of the

region, to minimize the size of the overlapping region (�����	��� � � � �). Figure 5.4(a)

shows an example. This internal node has four child nodes, with each of their sub-

regions represented by the bold outlined rectangles. When a new data object that does

not fit completely inside any of the four children is inserted into the node, the algorithm

must compare the object with the split positions of each level in the KD-tree of the node,

and adjust the positions accordingly.

Algorithm 1 shows one way to extend the sub-regions, which is similar to how it

is done in the SKD-tree insertion algorithm [74]. Suppose we are inserting an object

� whose boundary is (��� � �����
	 	�� ��
�� � ��� , ����� ����� �
	 	�� ��
�� � ���) in the split dimension

(splitDim). If ��� � �����
	 	�� ��
�� � ��� is less than � � ��� and ����� ����� ��	 	�� ��
�� � ��� is greater

than �����	� , as seen in the root level node of Figure 5.4(a), either � � ��� or �����	� must

be updated to minimize the increase in the overlapping region.

However this algorithm has a potential performance problem, since when a split

position is changed it not only has an effect on the boundaries of the child node that

contains the inserted object, but may also increase the boundaries of the other child sub-

regions. If the split information to be updated is in the leaf level of the KD-trees, it only

increases the region of the one child that will contain the object. However, if a split

position in a higher level of the KD-tree is shifted, it increases size of the region of the

more than one child node. We refer to this problem as the cascading overlap problem.

While a basic property of KD-trees causes the cascading overlap problem for non-point

data, which is that split positions are shared among child sub-regions, the benefit of

sharing split positions is to allow the node fan-out to be independent of the number of

53

Algorithm 1

SH-tree MBR Insertion algorithm
procedure
���������	��
���
������������ � �	����� � ���������������	���! ��������"�	#

1: if
 ����$���"�

is a leaf node then

2: return
 %�&�$���"��' �)(�+* � �-, ���������$���"�

3: if object is inside the left sub-region then

4: �����������	
���
��������.� � ����$�/���"��' * ��0��1#
5: else if object is inside the right sub-region then

6: �����������	
���
��������.� � ������	���"' � ��2 (3�1#
7: else if object is not inside left nor right sub-region then

8: if left sub-region requires less enlargement then

9: ��������"�"' 465"798;: <=��' , ��2 (>�� %�&�$���"��'
1? * � �1� � 46#
10: return

���������	��
���
��������.� � ��������"�"' * �	03�1#
11: else if right sub-region requires less enlargement then

12: ��������"�"' 4 � ��@A: <B�&' 8!�	C��. ��������"�"'
D? * � �1� � 4E#
13: return

���������	��
���
��������.� � ��������"�"' � ��2 (3�1#

end procedure

procedure

�-, �����	��
���
������������ � �	���3� � �-, �����	�	�����"�F
�(G�����"�	#

1: if

�(H�$���"�

is a leaf node then

2: if

�(G���	���

is full then

3: return � ? * � �1�$���"����#
4: else

5: store
�

in an empty slot

6: return NULL

7: �)(9��
�����IJ(�+* �������"�J: <B�����������	
���
��������.� � ��������	�	KL�	�	�1#
8:
)�M5��+NH
O: < �!, �����	��
"�>
���������� � ��(9��
����>IJ(��* �����	���	#
9: if

)�M5��+NH
P<O< �RQ 8F
�� then

10: // store split information into kd-tree of

�(G���	���

11: if S �"��IJ(��* ����
��M5"�+N/
�'
D? * � �M
���03� �
��M5"�+N/
�' �>��CO���	���	#R<O<B��TVUVKLWO8F��X
then

12: return � ? * � �1�$���"����#

end procedure

dimensions of the bounding boxes.

One of the benefits of the KD-tree internal node representation is reduced insertion

54

algorithm complexity. R-tree based indexing structures use a list of bounding rectan-

gles in an internal node. Therefore, in order to determine which child node should be

assigned a newly inserted object, the R-tree insertion algorithm must compare the query

with the MBRs of all child nodes, which requires � � � ��� � 	 � � � 	 � � comparisons of

real numbers, where � is the node capacity (number of children). On the other hand, the

SH-tree insertion algorithm performs only ����� � comparisons when the internal KD-tree

is balanced, but � comparisons in the worst case (when the tree is highly skewed), which

is still faster than the R-tree insertion algorithm.

5.2.2 Node Splitting

The � � � � and �����	� values, and the split dimension, are locally optimized to re-

duce the overlap when a node that overflows must be split. The goal of the node

split algorithm for SH-trees is to minimize the distance between the two split positions

� �����	� � � � ��� � for better search performance. For an � -dimensional dataset, only one

of the dimensions is used as a split dimension. For each dimension, the bounding boxes

of the child sub-regions of the node to be split are sorted twice, based on their lower and

upper boundaries in the split dimension. The sub-region with the lowest upper bound

and the sub-region with the highest lower bound are selected and put into the lower

and upper resulting regions respectively, until the minimum required node utilization

is reached. When the minimum required node utilization for both regions is reached,

it must be determined which region will increase in size the least if each remaining

sub-region is inserted into that region. In this way, all the children are placed into the

two resulting regions to achieve minimal overlap in the split dimension. This process is

performed for each dimension, and the dimension that causes the smallest overlapping

region is chosen to be split. After � � ��� and �����	� values and the split dimension are

55

Internal node Parent internal node

Child internal node 1 Child internal node 2 Child internal node 3 Child internal node 4

Object to be inserted

(a) Overlapping region must be adjusted when a new data

object to be inserted is not fully covered by any sub-region.

(Shaded regions represent the overlaps.)

Child internal node 1 Child internal node 2 Child internal node 3 Child internal node 4

Parent internal nodeInternal node

Increased overlap

(b) Cascading overlap problem - enlarging the sub-region of

child internal node 1 enlarges the sub-region of child node

2.

Figure 5.4: Dynamic adjustment of overlapping sub-regions in an internal node of an

SH-tree

56

S1

S2

S3

C1
C3

C2 C4

Live space bounding box of
current node

MBR inherited
from parent node

Dead Space S1

S2

S3

C1
C3

C2 C4

1111 1111 1111 1100

C1 C2 C3 C4

(b) Encoded live space (ELS)
for child nodes

MBR

(a)Live space bounding box
of current node

Figure 5.5: Dead space elimination: live space bounding box vs. live space encoding

chosen, the split information is stored in the parent node of the node to be split. The

complexity of the split algorithm of SH-trees is proportional to the cost of the sorting

algorithm, � � � � � ��� � 	 � � � 	�� � ����� � � , where � is the node capacity (maximum number

of child nodes). The goal of the R-tree node split algorithm is to minimize the volumes

of the resulting MBRs. While an exhaustive algorithm generates all possible splits, that

is too expensive in general, so most R-tree implementations employ one of two heuris-

tics. Quadratic split selects the next child entry to assign to one of the two new nodes

by selecting the child node that requires the minimum expansion of a current new node

MBR, and linear split simply chooses the next child node in the node list to place into

one of the two new nodes. The SH-tree node split algorithm has lower complexity than

the quadratic split policy used for R-trees (� � � � �).

57

5.2.3 Object Deletion: Live Space Bounding Box

In both SKD-trees and Hybrid-trees, deletion is a problem because of the overlapping

regions between nodes. When a data object that caused the creation of an overlapping

region is deleted from the tree, and if the overlapping region is not necessary for other

data objects in a node, the overlapping region should be removed in order to make index

search faster. However, no such mechanism exists for either SKD-trees or Hybrid-trees.

In SKD-trees, the overlapping regions only grows, and in Hybrid-trees the overlapping

regions do not change once they are created, which is possible because hybrid trees do

not support non-point data. This unnecessary overlap problem is mainly because split-

ting positions are shared by multiple child nodes. The shared split positions generate

approximate (not tight) bounding boxes for child nodes, and there is no way of knowing

the precise occupied regions within child nodes unless all sub-trees are searched. In

R-trees, condensing bounding boxes is not a problem, because the bounding box infor-

mation in an internal node is the precise information for all its sub-trees.

In order to solve this problem, SH-trees store the minimum bounding box infor-

mation in the node itself instead of in the parent, as shown in Figure 5.3. With this

additional bounding box information, which we refer to as a live space bounding box,

SH-trees can avoid searching all sub-trees in order to condense overlapping regions. In-

stead, the deletion algorithm needs to access a small number of child nodes to determine

the actual overlap. The live space bounding box also solves the dead space problem of

space partitioning methods (i.e. the regions in the MBR of an internal node where no

actual data objects are located.).

There have been some previous efforts to solve the dead space problem, such as

the ELS (Encoding Live Space) data structure used for Hybrid-trees. ELS divides the

MBR of a child node into a regular grid and encodes an occupancy map using a small

58

number of bits, as shown in Figure 5.5. ELS helps improve search performance, but

it is not sufficient to condense overlapping regions. ELS gives an approximate hint

for the bounding boxes of the child nodes. Besides, ELS is beneficial only with static

datasets. If any object is inserted or deleted, the occupancy map must be reconstructed

from scratch. Contrary to ELS, the algorithm using the live space bounding box must

access the child nodes to get precise bounding box information so that it can condense

the overlapping region appropriately. When precise bounding boxes for child nodes

are known, it is simple to remove unnecessary overlap. First start from the leaf node

whose minimum bounding box was condensed from deleting the object. The algorithm

proceeds to the parent node and compares the condensed MBR with the split information

in the parent node. In order to check whether the split position can be shifted to reduce

the overlap, the algorithm must visit the child nodes of the parent that caused the overlap

of the split, in order to get live space bounding boxes for those nodes. After accessing the

live space bounding boxes for the children, if the live space bounding box of the parent

node can be condensed, then this process is performed recursively up the tree until the

root node is reached. Reading the live space bounding boxes of child nodes could be an

expensive overhead for disk-based indexing structures since live space bounding boxes

reside in child nodes, but it does not cause more overhead than just referencing another

pointer in main memory indexes.

Although both the ELS and live space bounding box data structures improve range

query performance, they make the number of fan-outs (number of child nodes) for a

tree node dependent on the number of dimensions of the data because the space for the

encodings depends on the number of dimensions. Higher fan-out is better because it

makes the tree height smaller, which makes the paths through the tree for search and

insertion shorter. The number of fan-outs for R-trees, Hybrid trees with ELS, and SH-

59

trees with the live space bounding box are as follows: 1

1. R-trees:

Q 5 2 � � ��� �� � � 4����>
 � ����
�� � � � * �	CJ�����O�	N9�>��#�� � � N�?�?9�����O�	N9�>��#D#�� � �+IJ(�+* � Q � � �/�M���"#

2. Hybrid trees:

Q 5 2 � � ��� �
� ��U�8 � #�� � � 4 � �R@J#�� � � 4�5�798F#	� � �+
1? * � �1� � 4E#�� � ��IJ(�+* � Q � � �/�M���"#

3. SH-trees:

Q 5 2 � � ��� ��
 � � � 4����>
 � �	�>
�� � � � * �	CJ�����O�	N9�>��#	� � � N&?"?9��������NG�/��#D#
� �.4 � �R@J#�� � �.4�5�798F#	� � ��
D? * � �1� � 4E#�� � �+IJ(�+* � Q � � �/�M���"#

For R-trees, the node fan-out is inversely proportional to the number of dimensions,

and similarly for Hybrid trees, because the amount of space for ELS encoding is pro-

portional to the number of dimensions. For SH-trees with the live space bounding box,

the number of dimensions only decreases the numerator in the formula, so the number

of fan-outs for SH-trees decreases linearly with the number of dimensions. Hence, for

high dimensional data SH-trees have a larger number of child nodes for a given node

compared to R-tree based structures.

5.3 Experiments

We measured the performance of both index creation and search using the SH-tree, R-

tree, R*-tree, and X-tree algorithms. The experiments were run on a SunBlade 100

workstation with a 500MHz Sparcv9 processor, 256MB memory, and a 7200RPM IDE

disk with a seek time of 9ms.

1
��	� in the formulas denotes the number of bytes needed to represent the value

60

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

2060100140180220260300

nu
m

be
r

of
 p

ag
e

ac
ce

ss

Size of data chunks(x 204(205))

AVHRR Index Creation (I/O)
SH-tree

X-tree
R-tree

R*-tree

(a) Disk Page Accesses

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2060100140180220260300

T
im

e
(s

ec
on

ds
)

Size of data chunks(x 204(205))

AVHRR Index Creation (Time)
SH-tree

X-tree
R-tree

R*-tree

(b) Response Time

Figure 5.6: Index Creation for AVHRR Dataset

5.3.1 AVHRR Dataset

The AVHRR dataset described in Chapter 3 is used to evaluate low-dimension (3D)

multidimensional indexing trees. Because the AVHRR sensor swings across the ground

track, the sensor values and meta values are stored as two dimensional arrays. We

partitioned those arrays into equal sized rectangular chunks. The length of a ground

61

 50000

 100000

 150000

 200000

 250000

2060100140180220260300

nu
m

be
r

of
 p

ag
e

ac
ce

ss

Size of data chunks(x 204(205))

AVHRR Index Search (I/O)
SH-tree

X-tree
R-tree

R*-tree

(a) Disk Page Accesses

 0

 50

 100

 150

 200

 250

 300

 350

2060100140180220260300

T
im

e
(s

ec
on

ds
)

Size of data chunks(x 204(205))

AVHRR Index Search (Time)
SH-tree

X-tree
R-tree

R*-tree

(b) Response Time

Figure 5.7: Index Search for AVHRR Dataset

track can grow indefinitely, but the length of the cross track is fixed at 409 values. Hence

we divided the cross track into 2 unequal partitions - 204 and 205, as was done for the

same data in a previous study several years ago [25], and evaluated the performance of

the indexing trees with various sized data chunks along the ground track.

We evaluate both the insertion and search times for the SH-tree, X-tree, R*-tree, and

R-tree algorithms. For the experiments, we modified the R-tree and R*-tree implemen-

62

tations from the database group at the University of California, Riverside and the X-tree

implementation from Dr. Kriegel’s group at Universität München [1]. We modified

those codes for fair comparison, so that the X-tree implementation writes dirty pages to

disk whenever they are updated, as do all the other tree implementations. For the R-tree

algorithm we chose a linear cost split policy, which is as fast as the SH-tree algorithm

for creating the index. For common experimental parameters such as minimum node

utilization, we chose the same values for all algorithms, and for the tree specific pa-

rameters, we used the default values in the various implementations; for example a 0.2

threshold overlap value for topological split in the X-tree algorithm. We turned off OS

disk file caching, via the Solaris directio system call, which makes the execution times

of the algorithms correlate more closely with the number of disk page accesses.

Figure 5.6 shows the time and the number of page writes for inserting bounding

boxes, with various data chunk sizes. As the chunk size decreases, the number of leaf

nodes in the indexing trees increases, since we are partitioning a fixed size dataset.

When the data chunk size is 300x204 (or 300x205), we insert about 40,000 data chunks

into the indexing trees, but when the chunk size is 20x204, there are about 560,000

data chunks. Measuring the number of page accesses, the SH-tree algorithm writes the

fewest number of pages for inserting all the rectangles, in all cases. For a small chunk

size (20x204), the X-tree algorithm writes approximately 20 times as many disk pages

as the SH-tree, and 6 times as many disk pages as the R*-tree and R-tree algorithms

in the worst case, because of the large size of its supernodes. When a bounding box

(or sub-regions) of an internal node must be updated, all other trees access only one

page, but several pages must be written for a supernode of the X-tree, although those

pages are adjacent on disk. Because of these multiple page accesses, the X-tree index

creation algorithm has even worse performance than the notoriously expensive R*-tree

63

algorithm. The timing results presented in Figure 5.6(b) show the elapsed wall clock

time for inserting the bounding boxes of all data chunks into the index.

The SH-tree algorithm is fast not only for building the tree, but also for range queries.

We generated 2000 range queries using the AVHRR query workload generator. These

queries are generated from the workload model, using 16 geographic places of interest

(hotspots) at a randomly selected time. The average size of a query in latitude and

longitude is approximately 18 degrees and the maximum time span of a query is 10

days. When the data chunks are small, the SH-tree algorithm accesses only 1/4 as many

disk pages as the R-tree algorithm and half that of the R*-tree algorithm, as shown in

Figure 5.7. However as the data chunk size grows, the SH-tree algorithm tends to

generate large overlapping regions, due to the cascading overlap problem. Although

the R*-tree algorithm outperforms the SH-tree algorithm for large data chunk sizes, the

SH-tree algorithm shows better or almost equal performance compared to the R-tree and

X-tree algorithms. An interesting result is that the X-tree algorithm does not perform

well for the non-point AVHRR dataset. In the worst case, the X-tree algorithm reads 2.7

times more disk pages than the R*-tree algorithm. For the small number of data chunks,

the X-tree algorithm shows similar performance to the R-tree algorithm in disk page

accesses. We noted in Section 5.1.2 that the split history used by the X-tree algorithm

does not produce better trees for non-point data objects.

5.3.2 Synthetic Dataset

We present experimental results on synthetic datasets, looking at the effects of the di-

mensionality of the dataset on performance. We generated datasets of 200,000 uni-

formly distributed hypercubes in the unit hyper-rectangle, with the dimension of the

datasets ranging from 2 to 20. As the number of dimensions of the dataset increases,

64

 1

 2

 3

 4

 5

 6

 7

 8

2018161412108642

nu
m

be
r

of
 p

ag
e

ac
ce

ss

Dimension

Index Creation in High dimensions (I/O)
SH-tree

X-tree
R-tree

R*-tree

(a) Average Disk Page Accesses per Insertion

 0

 10

 20

 30

 40

 50

2018161412108642

T
im

e
(m

ili
se

co
nd

s)

Dimension

Index Creation in High dimensions (Time)
SH-tree

X-tree
R-tree

R*-tree

(b) Average Response Time per Insertion

Figure 5.8: Index Creation for Synthetic Datasets

the indexing methods based on data partitioning, including the R-tree, R*-tree and X-

tree algorithms, all suffer from reduced fan-out. However, the SH-tree data structure

scales well to high dimensional datasets, because of its dimension independent fan-out.

In three dimensions, the R-tree based trees have the same fan-out as the SH-tree for the

same dataset.

Figure 5.8 shows the performance of index creation for the various algorithms, for

65

 500

 1000

 1500

 2000

 2500

2018161412108642

nu
m

be
r

of
 p

ag
e

ac
ce

ss

Dimension

Index Search in High dimensions (I/O)
SH-tree

X-tree
R-tree

R*-tree

(a) Average Disk Page Accesses per Query

 0

 2000

 4000

 6000

 8000

 10000

 12000

2018161412108642

T
im

e
(m

ili
se

co
nd

s)

Dimension

Index Search in High dimensions (Time)
SH-tree

X-tree
R-tree

R*-tree

(b) Average Response Time per Query

Figure 5.9: Index Search for Synthetic Datasets

two to twenty dimensional datasets. Due to its node reinsertion strategy, the R*-tree

algorithm takes much longer to create an index than either the R-tree or SH-tree algo-

rithms. As was described for the AVHRR experiments, the X-tree algorithm suffers from

the supernode problem, especially in high dimensions. In low dimensions, the SH-tree,

R-tree, and X-tree algorithms access a similar number of disk pages, about 43% of that

for the R*-tree algorithm. However as the number of dimensions increases, the X-tree

66

insertion algorithm becomes very expensive. In the worst case, the X-tree algorithm

writes 667 times as many disk pages for the twenty dimension dataset as for the two

dimension dataset, the R-tree and R*-tree algorithms access up to three times as many

disk pages, but the SH-tree algorithm requires only 1% more disk accesses.

Comparing the algorithms for twenty dimensions, the number of disk writes for

insertion with the SH-tree algorithm is only 19% that of the R*-tree algorithm, and only

0.2% that of the X-tree algorithm. Overall, the tree insertion algorithm for SH-trees

appears to be very efficient. The time to create an index, as shown in Figure 5.8(b), is

mostly proportional to the number of disk accesses.

For index searches in high dimensions, we generated and submitted 10,000 uni-

formly distributed hypercube queries. The performance of the SH-tree algorithm for

index search is very good compared to the other algorithms, both for execution time and

disk accesses, as seen in Figure 5.9. The SH-tree algorithms scale better than the other

tree algorithms to high dimensions. The R-tree algorithm accesses more disk pages than

the other algorithms across all numbers of dimensions, and the performance gap grows

as the number of dimensions increases. Although the X-tree algorithm accesses fewer

nodes than the R*-tree algorithm, it accesses 8 times more disk pages than the R*-tree

algorithm and 36 times more pages than the SH-tree algorithm. In our experience, the

root node of an X-tree tends to become a huge supernode in high dimensions. For ex-

ample, with 20 dimensions and 200,000 objects, the size of root node was 635 pages. In

that case, no matter how small a range query is submitted, at least 635 disk pages must

be accessed unless the root node is kept in memory. However, the elapsed wall clock

time for the X-tree algorithm is much better than expected compared to the number of

disk operations it performs. This is a result of using supernodes; multiple adjacent disk

blocks can be read with a single read system call avoiding expensive disk seek opera-

67

tions. Hence, the time to search the X-tree is less than for the R*-tree in 20 dimensions.

The SH-tree algorithm accesses from 1.5% to 19% the number of disk pages as does the

R-tree algorithm, from 22% to 94% that of the R*-tree algorithm, and from 2% to 98%

that of the X-tree algorithm.

5.4 Summary

In this Chapter, we investigated how a few commonly used spatial indexing structures

perform for multidimensional scientific datasets, and compare their features and perfor-

mance with that of SH-trees, an extension of Hybrid trees, for indexing multidimen-

sional rectangles.

We have shown that the SH-tree outperforms other spatial indexing techniques on

both a real remote sensing dataset and for synthetic datasets, also showing that the SH-

tree is more scalable to high dimensions than the other techniques. One of the important

properties of SH-trees is that it has dimension independent number of fan-outs as in

space partitioning methods but it supports rectangular data. This property makes tree

height (search path) of SH-trees shorter than other data partitioning methods especially

for high dimensions.

Another important property of SH-trees is that its insertion algorithm is simple and

fast. While search performance of SH-trees comes from large number of fan-outs and

short tree height, the low complexity of insertion and deletion algorithm makes the in-

sertion/deletion performance of SH-trees efficient.

Scientific data analysis applications query into very large multidimensional datasets,

which are growing in size every day, and are becoming truly enormous. For such a

class of applications, SH-tree works fast both for searching and updating, and it also

68

supports indexing rectangular chunked datasets, which reduce the index size for even

better performance.

69

Algorithm 2

SH-tree Node split algorithm
procedure
� ? * � �1�$���"����#

1: for � <��
to
� � 4����>
 � ��� do

2: 5"����5��%8!��0�� : < S
��)���>� � � 2 � �	�	�����)(�+* �&�$���"��
�� �+' * �	03� ����NG�/�"5������ � � #
3: 5"����5���K ��2 (3� : < � �	
��)���/� � � 2 � �	�����.��(�+* �������"�	
�� �+' � �.2 (3���O�	N9�>�"5"����� � � #
4: while minimum node utilization is not satisfied do

5: * �	0�� Q 5���� � � � �	�	� ��: < 5�����5��&8F�	03�
� ���

6: remove arrayLeft[0] from both arrayLeft and arrayRight

7: � ��2 (3� Q 5��	� � � � �	��� �>: <=5"����5���K ��2 (9�
� ���
8: remove arrayRight[0] from both arrayLeft and arrayRight

9: 4�5�798 �)5��/� � ��5"�M��: <�
 S�� � � ��2 (3� Q 5��	� � � � �	�>#
10: 4 � �R@ �)5"�>� � �"5"�M��: <�
B
�� � * �	0�� Q 5���� � � � �	��#
11: for all

K��65"����5��%8!��0��
� ����5"����5���K ��2 (9�
� � do

12: if
��K�' � ��2 (9���O�	N9�/��5"����� � �
 4�5"798 �)5"�>� � �"5��M�	#�� �.4 � ��@ �)5��/� � ��5"�M�
 K�' * ��0����O�	N9�>�"5"����� � � # then

13: //R less extends left region

14: * ��0�� Q 5"��� � � � ���	� �>: < K

15: 4�5"798 �)5"�>� � �"5��M�V: <BK�' � �.2 (3���O�	N9�>�"5"����� � �
16: else if

�+KO' � ��2 (3������NG�/�"5������ � �
 465"798 �)5"�>� � �"5"�M��#�� � 4 � ��@ �)5��/� � �"5��M�
 K�' * ��0����O�	N9�>�"5"����� � � # then

17: //R less extends right region

18: � ��2 (9� Q 5"��� � � � �	�	� �>: <=K

19: 4 � ��@ �)5��/� � ��5"�M�V: <=K�' * ��0����O�	N9�>�"5������ � �
20: else

21: add
K

into sub-partition that has less element

22: if
465"798 �)5"�>� � �"5"�M�
 4 � ��@ �)5��/� � ��5"�M��� 4�5"798
 4 � ��@ then

23: 465"798;: <;465"798 �)5"�>� � �"5��M�
24: 4 � �R@ : < 4 � �R@ ��5"�>� � �"5"�M�
25:
D? * � �1� � 4 : < �
26: * �	0��1IJ(��* ������� : < * ��0�� Q 5"��� � � � ���
27: � ��2 (3�1IJ(�+* ������� : <;� ��2 (3� Q 5���� � � � �	�
28: �M(�
O: <BIJ�	�>
��+��NG��� � NG���+������� * �	0��1IJ(��* ��������#
29: �/��CJ�����"�O: <BIJ�	��
)�+��NG��� � NG���+������� � ��2 (3�1IJ(��* ��������#
30:
)�M5��+NH
�'
D? * � �M
"�>03��: < � 4 � ��@ � 4�5�798 �
1? * � �1� � 46#
31:
)�M5��+NH
�' �>��CJ�����"�O: < �>��CO�$���"�

32: return

)�M5��+NH

end procedure

70

Algorithm 3

Deletion algorithm
procedure
�-, �����	�	� � * ���M�"�+�O� � �����3� � �!, �L���	���$���"�F��N9���"�$���"��#

1: �)(�+* � S ����5�� : <B���������	� � ��5�����(>�.��#

2: for all
� ����N9���"�$���"��' �)(�+* ������� do

3: //there is no more than one child c that contains o

4:
)�M5��+NH
V: < �-, ��������� � * ���M���.� � ��#
5: if

��M5"�+NH
P<O<B���J�LW��V@J�6�
then

6: continue

7: if

��M5"�+NH
P<O< @J��� U�KP@��L
�8!
��LUV�

then

8: KL��46������8F�	5&0/����#

9: for all
�)� �E��' �)(�+* �"����� do

10: K�� � �>
����������)��#
11: if

��N9���"�$���"�
has fewer child nodes than minimum then

12: return UNDERUTILIZED

13: if
�)N9���������"�L<O<=8FU S W then

14: delete
�

15: update live space bounding box

16: else

17: update live space bounding box using children’s live space bounding box

18: return
W��V@J�6�

19: return
���P�PW��V@J���

end procedure

71

Chapter 6

Distributed Indexing for Scientific Datasets

As more storage capacity has become required to store large scientific datasets, recent

Data Grid research has focused on developing more scalable distributed storage sys-

tems [12, 52]. Large scale distributed storage systems require a data discovery mech-

anism to locate a specific data item. Many widely used data discovery mechanisms

are based on centralized directory services, such as MCAT (metadata catalog) for the

Storage Resource Broker [12]. However, a centralized directory service has several po-

tential problems including server scalability, single point of failure, and single authority

administration. A straightforward and widely used method to achieve scalability and

avoid single points of failure is replication. There has been extensive research on data

replication in the past, however relatively little effort has been devoted to data discovery

mechanisms that are common in the relational database community, such as indexing.

In a distributed environment, although the size of the indexing structure is much

smaller than that of the input datasets, an index can become a performance bottleneck

since the index tends to be accessed much more frequently than the input data [67].

Index replication in distributed environments helps improve search performance by

spreading workload and also by locating the index closer (in network terms) to clients,

but may make updating the index expensive due to consistency requirements across

72

replicas. Instead of replication, we propose a form of hierarchical indexing, which dis-

tributes parts of the index onto multiple data servers. Both replication and hierarchical

indexing reduce the overhead of a single centralized index. However, a central server is

still needed for both indexing schemes, which can be a potential performance bottleneck.

As an alternative way of distributing the index, we have proposed a fully decentralized

two level index, called DiST, which works in a peer-to-peer fashion. Compared to the

replicated index and two-level index, the main benefit of a decentralized index is that

there is less potential for a resource bottleneck.

In this chapter, we compare the strengths and weaknesses of these indexing schemes.

Also, we have performed a scalability study of the indexing schemes via simulation,

which is not possible to perform on a real distributed system because of resource con-

straints. Finally, we provide guidelines for choosing a distributed multidimensional

index strategy for data intensive scientific data analysis applications.

6.1 Centralized Indexing

In the centralized indexing scheme, which is commonly used in many scientific data

analysis applications, a single index server stores all the index tree nodes, as shown in

Figure 6.1. Since data items are distributed across multiple data servers, leaf level nodes

in a centralized index contain server names, data file names, and offset information.

All range queries must be forwarded to the central index server, and the central server

searches its index and returns pointers to the data to the requesting client. After receiving

the pointers, clients can request data objects from the specified data servers after parsing

the information returned from the index server. Alternately, the central index server can

multicast data read requests to the appropriate servers, which increases the overhead

73

…d1 dk… … … …

d1 dk

Figure 6.1: Searching with Centralized Indexing

on the central index server. For index insert operations, for when a client stores new

data in one or more data servers, the data servers forward index update messages to the

centralized index server to complete the operations.

The centralized indexing scheme is easy to implement, but has several drawbacks.

First, in a wide area network, network latency may cause significant performance degra-

dation. Second, a centralized index server is a potential resource bottleneck, particularly

as the number of data servers and clients scales up to large configurations. Third, cen-

tralized indexing has a single point of failure. Even if data servers are accessible, there

is no way to search into datasets when the centralized index server is not accessible. A

straightforward way of solving these problems is to replicate the centralized index onto

multiple servers. Although replication of data objects has been extensively studied in

various fields, replication of the index has only started to receive attention recently [67].

The MCAT service in the Storage Resource Broker (SRB), developed at the San Diego

Supercomputing Center, is one example of a system that can replicate metadata, such as

an index [78]. However, replication makes index update operations very expensive [67],

74

hence we have proposed alternative indexing schemes that will be discussed in Sec-

tions 6.2 and 6.6.

6.2 Hierarchical Two Level Indexing

Because of the algorithms and data structures used for multidimensional indexing, up-

dating or searching an index file in parallel is a good way to distribute the load on a

centralized server. There are two ways to parallelize index operations. One method is

to replicate the index, while the other is to partition the index and distribute the parts

to multiple servers. Partitioning not only spreads client requests across multiple index

servers, but also decreases the amount of the work to be done by each server for an index

request (search or insert), because each server has a smaller index to operate on.

In hierarchical two level indexing, each data server has an index for data stored on

that server (a local index). To search the index, a global index is used to determine which

local index(es) must be accessed. The global index stores the Minimum Bounding Boxes

(MBBs) of the local indexes, each of which is only big enough to span all the bounding

boxes of the data chunks in the local server. When a range query is submitted to the

server owning the global index, the server compares the range with the MBBs of the

local servers and returns the list of servers that have overlapping MBBs with the given

range. Since the global index does not contain any information about the actual data

stored in the servers, it is possible for the global index server to return local servers for

a query when, in fact, those local servers do not have any data that overlaps the query

range. However, the global index gives approximate information about local indexes in

order to avoid broadcasting queries to all data servers.

The size of the top level global index depends on the number of local indexes, not on

75

MBB A MBB B MBB C MBB K…

… … … …

MBB
A MBB

C

MBB
B

MBB
K

Figure 6.2: Searching with Two Level Hierarchical Indexing

the total number of data objects being indexed. Therefore, the size of the global index is

much smaller than for the centralized index, so searching the global index is faster than

searching the centralized index. The data servers are responsible for searching their own

local indexes, reading the parts of the datasets pointed to by the index, and returning the

data to the requesting client.

When a sensor device or a simulation stores data into a local server, the data will

first be inserted into the local index for that server in the hierarchical two-level indexing

scheme. When a data object is inserted that is outside the current MBB of the local

index, that MBB must be extended to include the new data object. When the root MBB

changes, an update notification is forwarded to the top level global index server. When

the global index server receives the update notification, it searches its index, deletes the

old MBB and inserts the new one. Thus, most index updates are performed in the local

data servers for two level indexing, while all index updates are performed in the central

server for centralized indexing.

76

6.3 Replication Management

Replication of persistent data objects in a wide area network not only reduces access

latency, but also improves data locality and increases robustness and scalability. Repli-

cation has been shown to be useful for many purposes in distributed systems and in

databases. However replication in distributed systems is done mainly for fault toler-

ance, while database research focuses on its performance implications [104, 101, 76,

41, 55, 5, 79, 105, 106, 27, 87].

For the centralized indexing scheme, the whole index can be replicated, but for the

two-level indexing scheme only the global index should be replicated because there is

no point to replicating a local index, since the local server will be accessed anyway to

read the data from the server. If a local server fails, a replica of the local index for the

failed server located on another server is useless, because it will not be possible to read

the data since it is not available either. We do not consider replicating the data on a

server in this work, since that is outside the scope of the dissertation.

In some of the literature, replicas are considered read-only copies of data objects,

which do not change or do so infrequently. This assumption does not apply universally,

and especially not for the index, because the index tends to be modified relatively fre-

quently whenever data is stored, replicated, or deleted. As we will show in Section 6.5,

it is desirable to create remote copies of indexes when read requests are predominant to

reduce query response time, but the number of replicas must be limited to reduce update

overhead to maintain consistency between index replicas. The appropriate number of

index replicas is determined by several factors, including read/write statistics, network

latency, response time, bandwidth, and index size.

When an index is replicated, a client must be able to find where the replicas are

located and which one it should submit a query to. In addition, when a query is submitted

77

to a replicated index, the replicated index server has to determine whether it will handle

the request or forward it to another replica for load balancing.

In order to ensure consistency across replicas, distributed locking protocols or atomic

broadcasts have been extensively researched. Multidimensional indexing structures

have non-deterministic internal structure. If we insert the same data objects in different

orders, the resulting tree structures can be different. Nonetheless, any of those indexes

will return the same result for any given query, as long as all the structures contain the

same data objects in their leaf nodes (i.e., the same data objects have been inserted). We

allow some inconsistency between replicas of an index in order to improve the perfor-

mance of insertion operations, so that clients can insert data concurrently into different

replicas, as if there are no write-after-write data dependencies across insertions. Among

many consistency models, our replication protocol can be classified as an eventual con-

sistency model, which requires replicas to converge to the same state after some amount

of time. Although different index replicas may never converge to the same tree structures

they will converge to the same state to return the same result for any query. There are

some transient states when different index replicas may return different query results, but

that only occurs in time periods before the replicas converge. However, because there is

no global clock across a set of distributed servers and it is expensive to order requests

(search and/or update) across different clients, it should not matter which replica has the

most up-to-date information. Moreover, many scientific data processing applications do

not require a strict consistency model, as do most commercial relational databases. For

instance, the Globus toolkit MDS (Monitoring and Discovery System) service also has a

weak consistency model [89]. In the consistency model of MDS, available information

is recent, but not guaranteed to be absolutely up-to-date. This allows update costs to be

reduced at the expense of having potentially slightly stale information. Note that if a

78

strong consistency model is required for a certain application, it is not difficult to de-

ploy a global locking protocol, as is commonly used in distributed systems applications

that require it. However that will increase the cost of index updates in proportion to the

number of index replicas.

Although we do not employ global locking protocols, each server needs a local

locking strategy to handle concurrent requests, since multiple client requests may arrive

within a short time period to a server. We use a coarse-grained locking strategy in our

implementation (locking the whole index for the duration of an insertion), but we could

use a fine-grained locking algorithm that locks internal nodes of the multidimensional

indexing structure in order to increase concurrency [97].

6.4 Performance Model

We present a simplified performance model for both the centralized and hierarchical

indexing schemes, using the variables defined in Table 6.1.

The number of network messages for both indexing schemes is proportional to � �

(average number of data servers involved ini a query), which is dependent on query

selectivity
�
� (the fraction of the dataset referenced by a query). We distinguish � �

from
�
� , because the dataset distribution may only depend on a one dimension out of

several for the dataset, such as time (and not spatial dimensions).

When the workload is evenly distributed across replicas for load balancing, the av-

erage number of disk accesses to one of the index replicas in the centralized indexing

scheme is
��� � � � 	�� ����� � 	 	 �)���H�+��5 *
	��

�
�

 � � I � (6.1)

Also, the average number of disk accesses to the top level global index for a single

79

server in the two-level hierarchical indexing scheme is ��� K
 � ��� , while the average

number of disk access to a local index in the two-level hierarchical indexing scheme is
� � X��� � � 8 . Therefore the average number of disk accesses in two-level hierarchical

indexing scheme is

� � � � � 	�� � � � � 	 	 (� ����5"���)(� ��5 * 	��
�
�

 � ����� � � � �

�
� � 8 (6.2)

In Section 6.5 we show that
���

can be ignored, since
� I is always much larger

than
���

.

The size of an index file depends on the number of data objects indexed (�), the

fan-out degree for an internal node in the index tree (its number of children), and node

utilization. If we assume that the node utilization is 100%, the number of leaf nodes (�)

in the index will be � �
	 ��� ��
 ��� � �
 � � ��� � �
 	 ��� � , where � is the fan-out degree. Then

the size of the centralized index (� I) is

� I 	 � � � � � �� � � � � � � ���������� 4 � � � � ���� ��� (6.3)

When we distribute the data objects across N data servers, the size of a local index

for the two-level hierarchical scheme � 8 is:

� 8 	 �
�

� 4
� ���� ���

� �
�
��� � � � � �� ��� � (6.4)

and the size of the global index is

� � 	 � � � �
 ���� ���

� � ���� ��� � (6.5)

Since the number of data objects is usually much larger than the number of data

servers (�! �), we may substitute � 8 by
��"� . The average number of disk accesses

���
,
� 8 , and

� I depends on the size of the index files (�$#��&% � � �(' �$#��*) � � 8 ' �+# �-, � � I) and

the query selectivity (
�
�). Thus we can substitute

� I in equation 6.1 by � I � � � . In

equation 6.2 we can substitue
� 8 by � 8 � � � 	 � "� � � � and

���
by � � � � � 	 �
 �
 � �

�
� .

80

We can then rewrite the average number of disk accesses to the centralized index as

��� ��� � 	�� ����� � 	�	 �)���H�+��5 * 	��
�
�

 � � I 	��

�
�

 � � I � � � (6.6)

The average number of total disk accesses to both the global and local index in two-level

hierarchical indexing is then

� � � � � 	 � ����� � 	 	 (� ����5"���)(� �)5 * 	��
�
�

 � ��� � � � � �

�
� � 8 	��

�
�

 � � ���� ���

� � � � � � � I �
�
�

� �
(6.7)

From the formulas 6.6 and 6.7, we make the following hypotheses:

(1) As the number of replicas increases, the centralized index performs searches

faster, but two-level indexing does not obtain much benefit from more replicas

until the number of data servers (�) becomes very large.

(2) As the number of data servers (�) increases, two-level indexing performs searches

faster, but the performance of centralized indexing does not change.

In Section 6.5, we show experimental results that support these two claims. Also, we

measure the overhead for updating the index, which is an important factor in designing a

distributed indexing scheme for datasets that change frequently over time, either because

data is added or deleted, or data values are changed.

6.5 Performance Evaluation of the Distributed Indexing

Schemes

6.5.1 Storage Resource Broker

We have employed the Storage Resource Broker (SRB) in the implementation of the

distributed indexing schemes. The SRB is a client-server system developed at the San

81

Diego Supercomputer Center (SDSC) that provides a uniform interface for connecting

to heterogeneous data resources, such as storage area networks (SANs), high perfor-

mance multi-level storage systems (HPSS), Unix file systems, Oracle databases, etc.,

over a wide area network [12, 77]. The SRB provides a well-defined storage interface

to heterogeneous storage resources by mapping from those interfaces to the underly-

ing storage resource interfaces. Datasets managed by the SRB can be accessed through

the MCAT (MetaData Catalog) service, which is a relational database designed to enable

attribute-based querying and identification of data, via metadata attached to the datasets.

However MCAT does not support multidimensional indexing operations.

We have implemented multidimensional spatio-temporal indexing modules on top

of the basic SRB infrastructure, to support multidimensional range queries into datasets

accessible by the SRB. We have chosen Spatial Hybrid trees (SH-trees) [66] for the

indexing data structure, which we described in Chapter 5. Functions for building and

searching SH-trees are implemented as SRB proxy functions. The proxy functions en-

able an SRB server to forward client requests to other SRB servers without any interac-

tion with the clients [12]. Thus, clients do not need to know where the local indexes and

datasets are located.

For performance reasons, we decided not to register index files in the MCAT, be-

cause the MCAT can be a serious performance bottleneck. If we register an index file

in MCAT to make it easy to find, then whenever we open or close an index file the SRB

server contacts the MCAT server to update the metadata for the file. Therefore we im-

plemented a separate directory service to find a remote replicated index. Note that the

local indexes for the two level hierarchical indexing scheme, which are not replicated,

can be found directly through the global index.

82

6.5.2 Experimental Environment

We measured the performance of the centralized and two-level indexing schemes on two

workstation clusters geographically distributed over a wide area network. The first is a

Linux cluster at the University of Maryland, where each of 40 nodes has a Pentium III

650 MHz processor, and the nodes are connected by a 100Mb/sec switched Ethernet

network. The second is a Linux cluster at Ohio State University, where each of 20 nodes

has a Pentium III 933 MHz processor, also connected by switched 100 Mb/sec Ethernet.

The two clusters are connected by the high bandwidth Internet2 wide area network.

We used 3 dimensional AVHRR satellite datasets described in Chapter 3 to evaluate

the two indexing schemes. We partitioned the AVHRR datasets into equal sized rect-

angular chunks, built three dimensional bounding boxes (latitude, longitude, and time)

for each of them, and stored the data server address, file name, and the array offset as

a pointer to the chunk. The dataset was partitioned into 400,000 chunks. We assigned

10,000 chunks to each of 40 servers, 20 at Maryland and 20 at Ohio State. For our ex-

periments we assigned chunks to servers in order of increasing time (i.e. the first 10,000

chunks in time to server 1, the next 10,000 to server 2, etc.) to achieve good tempo-

ral locality on each server. In order to create range queries, we employed the CBMG

technique described in Chapter 3. For the experiments, we generated 100 3-dimensional

queries (latitude, longitude, and time) per client (up to 80 clients; i.e. 8,000 queries). In

the batch query workloads, there are 40 hot points of interest.

6.5.3 Experimental Results

Figure 6.3 shows the total elapsed wall clock time to insert 10,000 objects per client

into the index. A client waits for one insertion to complete before performing the next

insertion. We ran a single client on each server and increased the number of servers from

83

 0

 2000

 4000

 6000

 8000

 10000

 12000

403632282420161284

se
c

Number of Servers (Clients)

Creation Time (No Replica)

Centralized Index
Two Level Index

Figure 6.3: Insertion Time without Replication.

4 to 40. Thus, the total number of data objects inserted into the index also increased from

40,000 to 400,000. The entire index for the centralized scheme and the global index for

the two-level scheme were located on a Maryland server. However, the average insertion

time for the clients in Ohio is only 2% slower than for Maryland, and the search times

also are about the same. Whether the index is on a local or a remote cluster does not

affect the overall performance of index accesses greatly. This is partly because the

clusters are connected by Internet2, which has much greater bandwidth than the local

area network, and also because most of the time for the index operations is spent on disk

I/O rather than in network delay, even for remote index accesses. For this reason, the

graphs shown in this section do not distinguish whether the index servers are located in

Ohio or Maryland.

As shown in Figure 6.3, the time to insert data into the centralized index increases

rapidly as the number of clients increases, since only one insertion request at a time

can be executed by the centralized server and the rest of the requests must wait in a

queue. Meanwhile, the time to insert data into the two-level hierarchical index is almost

independent of the number of concurrent clients. In the two-level hierarchical indexing

84

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

20181614121086421

se
c

Number of Replicas

Creation Time (Replicated)

Centralized Index
Two Level Index

Figure 6.4: Insertion Time with Replication.

scheme, most of the insertion operations are done completely locally to the local indexes

in the data servers, and involve the server containing the global index only when the

index root node MBB on a local server changes, which is not too frequent.

Figure 6.4 shows the index creation time when the index is replicated. We fixed the

number of clients at 20, and each client inserts locally 10,000 objects. (The number of

data servers was also 20.) As the number of index replicas increases from 1 to 20, the

insertion time for the centralized index increases by 32%, and the insertion time for the

two-level hierarchical index increases by 58%, but from a much lower starting point.

This is because network latency takes a larger proportion of the overall execution time

for two level indexing compared to centralized indexing, since the size of the global

index is much smaller. Inserting data into multiple index replicas is a non-blocking op-

eration and is performed in parallel, therefore the cost for additional replicas is not very

high. If we had employed a blocking insertion operation for strong consistency among

replicas, the cost of having more replicas would likely have been quite substantial.

To evaluate the performance of index searches, we ran up to 80 clients with 40 data

servers and each client submitted 100 queries. Figure 6.5 shows search performance

85

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

se
c

Number of Clients

Search Time (No Replica)

Centralized Index
Two-Level Index

Figure 6.5: Search Time without Replication.

for both indexing schemes without replication. Error bars are shown in this graph to

emphasize the standard deviation in execution time across clients, because the variance

is quite large in contrast to the other experiments. Each query accessed data on 4 to 5

servers on average. The search time for the centralized indexing scheme in Figure 6.5

includes the time for the centralized index server to connect to the local servers that

have the desired data for all 100 queries, even though we do not include the time for

the servers to read and return the desired data (since the same data will be read for both

indexing schemes). We also measured the time for the centralized index server to do its

index lookup without connecting to the local servers, which was only 2-4% faster. That

means up to 98% of the search time is spent on searching the index in the centralized

server.

The two-level hierarchical indexing scheme is up to three times faster than the cen-

tralized index without replication. As the number of clients that submit queries in-

creases, the performance gap between the two schemes increases. When the number

of clients is over 40, significant resource contention begins to occur in the centralized

index server, as shown by the large variance in execution time across queries for large

86

 0

 500

 1000

 1500

 2000

 2500

4038363432302826242220181614121086421

se
c

Number of Replicas

Search Time (Replicated)

Centralized Index
Two Level Index

Figure 6.6: Search Time with Replication.

numbers of clients. The variance for the hierarchical scheme is very small.

Figure 6.6 shows search performance when the indexes are replicated onto multi-

ple servers. The number of data servers was 40, and we ran a single client per node.

We measured the search time varying the number of index replicas from 1 to 40. The

submitted queries are forwarded to replicas in round-robin fashion in order to achieve

load balance. As illustrated in the graph, the performance of the two-level hierarchi-

cal indexing scheme does not depend on the number of replicated indexes, because the

server overhead in the global index server is very low even when there is only a single

global index and 40 clients submit range queries to the same server. The file size of the

global index is only 167KB for 40 data (and local index) servers, so searching such a

small index does not cause much overhead. On the other hand, the performance of the

centralized index improves significantly with more index replicas. When there are more

than 4 replicas, searching the centralized index became even faster than the two-level

hierarchical index. These experiments support the first claim we made in Section 6.4 -

as the number of replicas increases, the centralized index performs searches faster, but

two-level indexing does not obtain benefits from more replicas.

87

 300

 350

 400

 450

 500

 550

 600

 650

 0 5 10 15 20 25 30 35 40

se
c

Number of Nodes

Search Time (No Replica)

Two Level Index (No replica)
Centralized Index (4 replica)

Figure 6.7: The Effect of Number of Data Servers.

When the centralized index is fully replicated, any query will access its global index

in its local server. However some queries will be forwarded from other servers to the

local server to do searches into the local index for the two-level scheme. Thus the

number of accesses to the local indexes, which is a dominant factor in the response time

for the two-level scheme, does not decrease when the global index is replicated.

Although our experiments showed that increasing the number of replicas of the

global index for the two-level hierarchical indexing scheme did not increase perfor-

mance, if the number of data servers is much larger than the 40 used in the experiments

shown, and the number of clients that submit queries is also large, we suspect the global

index may become a performance bottleneck.

For the experiments shown in Figure 6.7, we declustered 400,000 data objects across

from 2 to 40 data servers (200,000 data objects per server when there are 2 data servers,

and 10,000 local data objects per server when there are 40 data servers.) When there

is a single data server, the performance of two-level indexing should be no different

from that of the centralized index. While two-level indexing benefits more from paral-

lelism as the number of data servers increases, the performance of centralized indexing

88

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 5 10 15 20 25 30

se
c

Average number of data servers involved for a query

Search Time

Two Level Index
Centralized Index

Figure 6.8: The Effect of Query Selectivity (���).

is independent of the number of data servers. Note that this experimental result sup-

port the second claim from the performance model described in Section 6.4. We have

experimentally shown that both claims made from the models hold.

Query selectivity is an important factor in evaluating multidimensional indexing

structures. In the experiment shown in Figure 6.8, we varied query selectivity with a

fixed number of data servers (40), and no index replication. Higher selectivity means a

larger query range, hence more of the data is selected. The result shows that as query se-

lectivity increases, the query response time for both indexing schemes increases as well.

In centralized indexing, this is because higher query selectivity causes more paths to be

searched in the index. Also, for two level hierarchical indexing, higher query selectivity

causes more data servers to participate in a query. Although searching local indexes is

performed in parallel, clients must wait for query results to be returned for each local

index.

To summarize, our results indicate that no one scheme is always best. For index

updates, two level hierarchical indexing is superior to replicated indexing since most

updates can be executed locally. However, for searching centralized indexing performs

89

better once there are enough index replicas, and two level hierarchical indexing per-

forms better as the number of data servers increases. Since the number of data servers

is usually not a parameter that is arbitrarily set (only depending on where the data is lo-

cated), we conclude that centralized indexing with replication can provide better search

performance than hierarchical indexing. Note that when the centralized index is fully

replicated on all servers, all index searches will be done locally, providing better perfor-

mance than can be achieved with two level hierarchical indexing. However, this is only

the case when the index is not updated frequently. Therefore, we argue that if datasets

are frequently updated, two level indexing is a better choice than centralized indexing

with replication, because of its low update overhead. However if the datasets are static,

replication of the centralized index is a better choice rather than partitioning it as in the

hierarchical scheme, trading space to store the replicated indexes for performance.

6.6 Decentralized Two Level Indexing

…

… … … …

MBB A MBB B MBB C MBB K

MBB
A MBB

C

MBB
B

MBB
K

A

BK

A C

B

A C

B

A

BK

Figure 6.9: Decentralized DiST Indexing

DiST is a decentralized version of the two level indexing scheme that we described

90

h

$¶V�JOREDO�LQGH[%¶V�JOREDO�LQGH[&¶V�JOREDO�LQGH['¶V�JOREDO�LQGH[

h

i

h

i

h

i

h

i

j
h

i

j

h

ik

h

i

j
h

i

j h

ik

D��6HUYHU�$�MRLQV

E��6HUYHU�%�MRLQV

F��6HUYHU�&�MRLQV

G��6HUYHU�'�MRLQV

Figure 6.10: Node Join in DiST

in Section 6.2. Each server has a local index for the data stored on that server, and

the global index is distributed across all the servers, as shown in Figure 6.9. The DiST

global index partitions the complete multi-dimensional attribute space (i.e. it is a space

partitioning spatial index), as is done for KD-trees, and each leaf node in the tree corre-

sponds to an MBB of a local index as for the two level index.

When a server joins the system, it becomes an owner of a specific partition in the

multi-dimensional space. The partition is determined by the KD-tree insertion algo-

rithm, which assigns ownership of partitions to servers. Each server that joins the sys-

tem already has its own local index, and the MBBs of the local indexes are stored in

the decentralized, partitioned global index. When a new server joins the system and

inserts the MBB of its local index into the global index, that MBB will map into exactly

one partition, owned by one existing server, since we convert the MBB into a single

high dimensional point for insertion into the tree (i.e., a rectangle in 2D becomes a 4D

point) [44, 68]. The insertion algorithm has the previous owner divide its current space

into two parts, and assigns one of the newly split partitions to the new server. How-

ever, the previous owner does not need to forward that split update to all other servers

91

Algorithm 4

Node Join Algorithm
procedure
���	�����/� � �-�+K����	��� � � � ����CO�$���"��#

1: �JCL�>����
&� : < � ���1�JCL�>���&�+K����	��� � � #
2: if

�JCP�/����
��
== me then

3:
���
�������� � * ����5 *
��>�"��7 � K����	��� � � � ����CO�$���"��#
4:

�
* ����5 *
��>�"��7GIJ��? �%WO�	�	CJ5"�����+�$��CO�$���"� � � * ����5 *
��>�"��79#

5: else

6: �/� � ��KL���	NG��
)�MWO�	��CJ5"�������OCL�>����
�� � KL������� � � � ����CO���	���	#

end procedure

in the system. The reason is that the query routing algorithm can deal with stale index

information.

Figure 6.10 shows an example of server join. Whenever a new server joins the

system, the server sends a join request to any existing server, and the recipient of the

join request, call it R, searches its global index. If the bounding box of the new server

falls inside the region owned by R, R splits the multi-dimensional space it owns and the

new server becomes the owner of one of the new partitions. Otherwise, R forwards the

join request to the server that R’s global index says owns the sub-partition containing

the bounding box of the new server. As shown in Figure 6.10, if server C sends a join

request to server A, server A searches its global index and forwards the request to server

B, since the bounding box for server C is inside the region the index says is owned by

server B. Server B also searches its global index and determines that the root bounding

box of server C falls inside the space it owns, so B splits its space and forwards a copy

of its global index to server C.

For searching the index, the DiST query routing algorithm guarantees that any range

query will eventually be forwarded to the actual destination owner server that has the re-

quested data, although the query can be submitted to any server, and none of the servers

92

z�����Gk h

k

z�����Gh

h i

j

k z�����Gi

z�����Gj
h

j

k

z�����Gl h

k

z�����Gm

h

i

j

k

l

l

m

h

i

j

k

m
����

Figure 6.11: Query Routing in DiST

in the system has a complete and up-to-date global index. Therefore we allow incon-

sistent global information across servers, so long as we can guarantee correct search

results. So whenever a server joins the system, only one other server must update its

global index to ensure correct query results. Minimizing information propagation is one

reason why we chose a static space partitioning method, namely KD-trees. The updated

global information is propagated in a lazy manner as we will describe later.

Figure 6.11 shows how DiST guarantees correct range query results. When a query

is submitted to server A, the server searches its global index and forwards the query to

server B, since the global index of server A indicates that the query range falls inside the

region owned by server B. However that region turns out to have been split previously,

when another server, F, joined the system. Although server A does not have complete,

up-to-date, global index partitioning information, the query can still be forwarded to the

right server (server F in the example), since server B can forward the query to server

F. In this way, the query can be delivered to the right server(s) with a small number of

network messages.

Maintaining only a partial global index at each server may result in more network

93

Algorithm 5

Range Query Routing Algorithm
procedure
KL5"� 2 � � NG�����G� � NG����� � � � � � NG�����&
�� � � NH����� , �
)�M�	��� � � ���/�"���"#
1: �JCL�>����
&� : < � ���1�JCL�>���&�+K����	��� � � #
2: if QueryID is already processed then

3: � NG�����%KL�	
�N * �MWO�	��CJ5"����� � ���>�"��� � �6@P8F8 #
4: else

5: �JCP�/����
�� 8 �
��-: < � ���1�JCP�/����8 �
���� � NG����� � � � #
6: � NG����� , �
��M�	��� �B< �JCP�/����
�� 8 �
��
7: for all

�JCP�/����
��
in
�OCL�>����
�� 8 �
)� do

8: if
�JCP�/����
��

== me then

9: KL��
)N * � +=
8F���)5 * � �	5"���)(>� � NG����� � � � #

10: else if
�JCP�/����
��

is not in � NG����� , �
��M�	��� then

11: � NG������K�� �	NG��
)�MWO�	��CP5��������JCP�>����
�� � � NG����� � � � � � NG�����%
�� � � NG����� , �
)�M�	��� � 46�	#
12: WO����CJ5"���"�	�

:= TRUE

13: KL�	
�N * � +=
XA5 � � � NG������K���
�N * �1
"� � NH�����&
&� � �JCL�>����
&� 8 �
��1#

14: � NG�����%KL�	
�N * �MWO����CJ5"����� � ���/�"��� � K���
�N * �1#
end procedure

messages and longer routing path for search queries compared to fully propagating

global index updates, as shown in Figure 6.12. In the example, server A must forward

a query to server B, since A does not have partition information for servers C or D. If

server A has partition information for servers C and D, the message from server A to

server B is not needed, since the partition for server B does not overlap the given query

range, as seen in Figure 6.12(b).

Lazy Index Updates

When the global index is not a balanced KD-tree, the partial global index may cause a

long message chain for a range query search. If the global index is completely skewed,

the number of messages in the worst case is � , where � is the total number of servers.

To improve performance, two incomplete global indexes can be merged as they are

94

$ %

$

&

'

4XHU\�IRUZDUGLQJ
& '

4XHU\�IRUZDUGLQJ 4XHU\�IRUZDUGLQJ

4XHU\�UHVXOWV4XHU\�UHVXOWV4XHU\�UHVXOWV

4XHU\�
IRUZDUGLQJ

4XHU\�
IRUZDUGLQJ

4XHU\�UHVXOWV

$
% % % %

$ $ $
& & ' & '

TXHU\

/RFDO�LQGH[
VHDUFK

/RFDO�LQGH[
VHDUFK

12�/RFDO�
,QGH[�VHDUFK

%
$

& '

%
$

& '

%
$

& '

%

D��:LWKRXW�SLJJ\EDFN�JOREDO�LQGH[�XSGDWH��WRWDO�QXPEHU�RI�PHVVDJHV�LV��

E��:LWK�SLJJ\EDFN�JOREDO�LQGH[�XSGDWH��WRWDO�QXPEHU�RI�PHVVDJHV�LV��

Figure 6.12: A partial global index may cause additional messages for searches

traversed in either breadth or depth first order. With tree merging, as a server obtains a

global index that is close to complete, it is likely that the number of network hops needed

for any range query search operation will be close to 1. The intended effect is to replicate

the global index across all the data servers in a lazy manner. Lazy updates are triggered

when a server receives a query and detects that the query sender did not directly send the

query to one or more servers that should receive the query. In most applications, range

queries are much more frequent than update requests, thus lazy index updates will make

the partial global indexes become complete and consistent quickly.

In our first design and implementation of DiST [68], query results were collected and

returned back up the query routing path, and lazy index update messages were attached

to the query results. But we have determined that this method is not very efficient for

index updates, which is reflected in search query response time. Thus in our new design

and implementation, used for the experiments shown in Section 6.5.3, DiST returns

index update messages immediately after servers detect stale partial global indexes in

remote servers. Also, after searching its local index, a data server directly forwards the

95

s����G����� s����G�����

|����G�����|����G�����

s� s�Rl�

|�

|�Tl�

|�Rl�

s�Tl�s� s�Rl�
s�Tl�

|�

|�Tl�

|�Rl�

�P ~���G���G��¡�G��G������G�����G��G
�����SGl� ��G����� G��G��G�����

�PG~���G���G��¡�G��G������G�����G��G
�����SGl� ��G����� G��G��G�����

j��������G���� G�����

�s�S|��

Figure 6.13: Point Transformation

query results to the server originating the query (the one the client submitted the query

to), and that server collects the results and returns them to the client. The originating

query server can determine whether it has received all the results from the data servers

by keeping track of query forwarding history (i.e. information on what servers have

already seen the query).

Query forwarding history is also required to eliminate duplicate query processing.

Even with keeping track of the query forwarding history, a server can receive the same

query multiple times due to the query routing properties of DiST. Therefore we need to

assign a unique query ID to each query, which should increase monotonically. Using

the query ID, servers can detect and not forward duplicate queries.

The Transformation Effect Revisited

We convert a
�

dimensional rectangle
� ��� ' � �
 � � � � ' � �
 � � � � � � � ' � �
 for a data ob-

ject, where � / � is the lower/upper bound for dimension � , into a � � �
dimensional

point data � � � ' � � ' � � ' � � ' � � � ' � � ' � � � . The transformation of a rectangle for a range

query in
�

dimensions must be handled differently, because the rectangle must be con-

verted correctly into a rectangle in � � �
dimensions for searching. Without optimiza-

96

tion, the converted range query becomes an unbounded rectangle, i.e. the range query
��� � � ' � � �
 � � � � ��� � � ' � � �
 , where

� � / � � is the lower/upper bound of the query for

dimension � , is converted into searching for points in the space
� ��� ' � � �
 � ��� � � ' �
 �

� � � � ��� ' � � �
 � ��� � � ' �
 . The transformation of a multidimensional rectangle into

higher dimensional points causes poor range query performance, due to the unbounded

query range. Henrich et. al. [44] propose a transformation technique to solve this prob-

lem. They described a split strategy suitable for skewed data distributions, and an im-

proved transformation strategy for range queries. In this strategy, the root node in the

index stores additional metadata - for each dimension, the longest edge over all rectan-

gles stored in the tree (� �). A range query can be then be transformed into a bounded

rectangle in the higher dimension -
��� ��� ��� � ' � � �
 � ��� � � ' � � � � � �
 � � � � ��� � � �

� � ' � � �
 � ��� � � ' � � � � � �
 . However, as the longest edge � � in the tree gets longer,

the search path in the tree also gets longer, which causes more message hops for range

query searches. If the data rectangles are small, the converted point tends to be near

the diagonal, with all coordinates having close to the same value, and if the sizes of all

the rectangles are the same the converted point data will reside on a single line. When

the rectangles are large, the converted point will be far from the diagonal, and � � will

be also large. If even a single large rectangle is stored in the tree, then it will affect

range query performance by causing longer search paths. As far as we know there is no

decentralized indexing scheme that can store rectangular data without using the point

transformation method. In decentralized systems, grid-based DHT routing methods,

such as in CAN [80], are known to be robust and do not have the routing bottleneck

that KD-trees have near the root of the tree. However, with the extremely skewed data

distribution resulting from the point transformation method, grid-based methods may

suffer from unbalanced load.

97

When the transformation method is used with lazy index updates, the updates could

make search performance even worse than when lazy updates are not used. With lazy

index updates, the number of server bounding boxes stored in the global index increases

and the largest edge will increase as well. Eventually all the servers will have the same

largest edge, so the size of the resulting range query will be the same on all servers. In

DiST, the size of a range query is more critical than in other space partitioning methods,

because even if a range query overlaps a very small region in a server’s partition, and

the query does not overlap the high dimensional point for the server’s local index MBB,

DiST will return a hit so that the server must be accessed to process the range query.

In Section 6.5, we show how lazy index updates affect range query performance on the

point transformed data.

6.7 Experiments: Distributed Indexing

6.7.1 Experimental Environment

We have measured the performance of the three different indexing schemes on 41 Linux

cluster machines. Each of the 41 servers has two Intel Xeon 2.66GHz processors and

2GB of memory, and the servers are connected by a Myrinet network with a nominal

maximum of 1 gigabit/s data transfer rate per node. Intercommunication between index

servers is done via TCP sockets.

We used the same three dimensional satellite AVHRR dataset, which was partitioned

into 120,000 chunks. We assigned 3,000 chunks to each of 40 data servers, and we

used an extra server as dedicated index server (41 total) for the centralized indexing

and global index in hierarchical two level indexing scheme. The clients are distributed

evenly across the 40 server machines and each of them submits 1000 sequential queries,

98

waiting for one query to complete before issuing the next query. Thus the total number

of concurrent queries is almost the same as the number of concurrent clients.

 10

 100

 1000

 10000

 100000

40003600320028002400200016001200800400

T
im

e
(m

s)

Number of Clients

AVG Query Response Time per Query

DiST
DiST(update)

Two Level
Centralized

(a) AVG Response Time for a Query

 0.1

 1

 10

 100

 1000

 10000

40003600320028002400200016001200800400

of

 q
ue

ri
es

Number of Clients

AVG Queue Length

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) AVG Waiting Queue Length

Figure 6.14: Search performance varying the number of clients

6.7.2 Experimental Results

Figure 6.14 and 6.15 show the search performance of three indexing schemes for dif-

ferent numbers of clients. Note that the graphs are log scale. The query response time

shown in Figure 6.14(a) is the amount of time from the moment a query is submitted to

99

 1

 10

 100

 1000

 10000

 100000

 1e+06

40003600320028002400200016001200800400

T
im

es
 (

us
)

Number of Clients

AVG QWET per Server

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(a) AVG Query Wait Execution Time for a Server

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

40003600320028002400200016001200800400

of

 m
es

sa
ge

s

Number of Clients

AVG # of Messages per Server

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) Communication Cost per Server

Figure 6.15: Search performance varying the number of clients (cont’d)

the system until it completes. The average query processing time for the two level in-

dexing scheme is approximately 5% that of the centralized indexing scheme when there

are 400 concurrent clients, and only 2% of the time when there are 4000 concurrent

clients. The communication costs for both indexing schemes are almost the same as

shown in Figure 6.15(b). But the performance gap between the two indexing schemes

comes from the difference in size of the centralized index (proportional to the number

of MBBs in the index) vs. the global index for the two level scheme (proportional to the

100

number of local data servers).

The comparison between hierarchical two level indexing and DiST is more inter-

esting. Under light workloads, DiST(no update) performs searches faster than the two

level indexing scheme does. However, when the system is heavily loaded, the query

response time of DiST(no update) rapidly increases and becomes slower than two level

indexing. One of the reasons is that DiST(no update) has longer routing paths than two

level indexing. When the system is not heavily loaded, the long routing path doesn’t

hurt overall query response time significantly because the servers are connected via a

very fast network and because the queries do not share query routing paths due to its

decentralized nature. However, as more queries are received than the servers can pro-

cess immediately, queries are enqueued for processing, thus the long routing paths for

DiST(no update) and the queuing delay become a critical performance factor that in-

creases query response time.

Figure 6.14(b) shows the average length of waiting queues for query requests. Wait-

ing queue length measures the number of waiting queries at a server when a query is

enqueued, whereby we can measure the instantaneous server load. DiST(no update)

has the shortest waiting queue length when the number of concurrent clients is 400.

However as more clients submit queries, the number of waiting queries in DiST(no up-

date) grows faster than that of two level indexing because the DiST implementation has

slightly higher overhead for computing the query routing path than two level indexing.

This causes more queries to be enqueued in DiST(no update) compared to two level

indexing. On the other hand, lazy index update messages makes DiST(update) behave

very differently. The size of a lazy index update message is much larger than that of

a query message, and it takes a significant amount of time to merge two partial global

indexes relative to the time to process a range query, hence lazy index update messages

101

makes enqueued queries wait longer than even DiST(no update). In spite of the longer

waiting queue, the reason why DiST(update) has the fastest query response time is that

once the partial global index is updated, each server can directly forward client range

queries to the correct data servers with a single routing hop, and there is no global index

server bottleneck due to its decentralized nature. Note that Figure 6.14(b) shows that the

global index server for two level indexing has a high queuing delay.

 10

 100

 1000

 10000

 100000

40363228242016

T
im

e
(m

s)

Number of Servers

AVG Query Response Time per Query

DiST
DiST(update)

Two Level
Centralized

(a) AVG Response Time for a Query

 1

 10

 100

 1000

 10000

40363228242016

of

 q
ue

ri
es

Number of Servers

AVG Queue Length

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) AVG Waiting Queue Length

Figure 6.16: Search performance varying the number of servers

The query wait and execution time (QWET) shown in Figure 6.15(a) measures the

102

 1

 10

 100

 1000

 10000

 100000

40363228242016

T
im

es
 (

us
)

Number of Servers

AVG QWET per Server

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(a) AVG Query Wait Execution Time for a Server

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 2.2e+06

40363228242016

of

 m
es

sa
ge

s

Number of Servers

AVG # of Messages per Server

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) Communication Cost per Server

Figure 6.17: Search performance varying the number of servers (cont’d)

execution time and queuing delay from the moment a query is enqueued on a server

until the server forwards it to other servers for further processing or returns to the client.

QWET is different from query response time in many ways. First, the long QWET

for DiST(update) does not mean slow query response time, due to that method’s short

routing path. On the other hand, DiST(no update) has faster QWET than the global

index server for two level indexing, but is slower when measuring query response time.

Also DiST(update/no update) has a longer QWET than for the data servers for two level

103

indexing, but has faster query response time than two level indexing. We measured

QWET for the global index server and for the data servers in two level indexing sep-

arately because they have very different performance behaviors. These results clearly

illustrate that the global index server in the two level indexing scheme is a serious per-

formance bottleneck, similar to the problems seen for the centralized indexing server. In

Figure 6.14(b), the length of the queue for the global index server is half to two thirds

that of the centralized index server, but eight to thirteen times that of DiST(update).

Figure 6.15(b) shows the average number of network messages received by a server.

The number of network messages for centralized indexing is almost the same as that

for the global index server with two level indexing. Since DiST does not have any

centralized server, the network messages are well distributed across the system, but the

number of network messages is slightly higher overall than for the data servers in two

level indexing because of routing overhead. In order to update the partial global indexes

using lazy update messages, DiST requires additional network messages. However after

the index is updated, the number of network messages are reduced because query routing

paths become shorter. Thus DiST(update) eventually generates fewer network messages

than DiST(no update), as shown in Figure 6.15(b).

In order to evaluate the scalability of the indexing schemes, we measured index

search performance varying the number of data servers from 16 to 40, as shown in

Figure 6.16 and 6.17. Each data server receives queries from 50 local clients (i.e.

2000 total clients with 40 data servers), and each of the clients submits 1000 sequen-

tial queries. Hence more data servers means more concurrent queries as well. As we

add more data servers, the size of the centralized index and the global index for two

level indexing increases linearly. However, since the size of the global index for two

level indexing is very small compared to the fully centralized index, the QWET for the

104

global index server does not increase much for more data servers. In Figure 6.16(a),

DiST(no update) performs worse as we increase the number of data servers because the

routing path for a query becomes longer with more data servers. Query response time

for DiST(update) and two level indexing also grows, but not as much as for DiST(no

update). Figure 6.16(b) shows that the average wait queue length for all the indexing

schemes, except for the data servers in the two level indexing scheme, increases as the

number of data servers increases. However, the centralized index and global index server

in the two level indexing scheme suffer more from resource contention than DiST.

If we had run thousands of data servers, the global index server for the two level

scheme would have become a bottleneck as is the centralized index. However, since we

do not have access to that many servers, we implemented an event driven simulator to

model the behavior of all the indexing schemes and observed that the global index server

also becomes a bottleneck with thousands of data servers and performs much worse

than DiST. Figure 6.18 shows simulated search performance for hierarchical two level

indexing and DiST. In this simulation, we distributed 120,000 multidimensional chunks

across 1000 data servers. The average latency of a packet between two servers was fixed

at 50ms, to simulate average wide area network latencies, and the times for searching

the local index in the simulation are measured from doing the lookup as part of the

simulation, and is less than 1ms in most cases. The time for searching the global index

was approximately 2ms on the machine where we ran the simulation. Figure 6.18(b)

shows that when the average query inter-arrival time is less than the time for searching

a global index, more than 1 query is enqueued for hierarchical two level indexing, and

the query response time for two level indexing becomes very long. In the experiments

described previously, the reason why the global index server becomes a bottleneck is

mainly due to network congestion, but the simulation results show that global index

105

 10

 100

 1000

10ms9ms8ms7ms6ms5ms4ms3ms2ms1ms

T
im

e
(m

s)

Inter-arrival Time

AVG Query Response Time per Query

DiST
Two Level

(a) AVG Response Time for a Query

 0.01

 0.1

 1

 10

 100

 1000

10ms9ms8ms7ms6ms5ms4ms3ms2ms1ms

of

 q
ue

ri
es

Inter-arrival Time

AVG Queue Length

DiST
Two Level

(b) AVG Waiting Queue Length

Figure 6.18: Simulation Results

server can also become a computation bottleneck.

In order to maximize parallelism for accessing spatio-temporal datasets, it is some-

times suggested that large datasets be declustered across distributed storage archives

using space filling curves, such as Hilbert curves [50]. In such a case, we expect that

two level indexing will have poor performance, because the MBB for the root of each lo-

cal index would cover the entire spatio-temporal range of the whole dataset. That would

cause the global index server to effectively broadcast all queries to all data servers. De-

106

 10

 100

 1000

 10000

 100000

40363228242016

T
im

e
(m

s)

Number of Servers

AVG Query Response Time per Query (Declustered)

DiST
DiST(update)

Two Level
Centralized

(a) AVG Response Time for a Query

 10

 100

 1000

 10000

40363228242016

of

 q
ue

ri
es

Number of Servers

AVG Queue Length (Declustered)

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) AVG Waiting Queue Length

Figure 6.19: Search performance with declustered datasets

centralized two level indexing (DiST) would have the same problem for declustered

datasets, resulting in long routing paths for query forwarding. In order to determine

how declustering affects index search performance, we ran the same experiments as

shown in Figure 6.16 and 6.17, after declustering the datasets in a round robin fash-

ion. Round robin had the same effect as space filling curve declustering, making all the

MBBs for the local indexes have similar spatio-temporal attributes. The experimental

results shown in Figure 6.19 and 6.20 show that the performance of DiST and two level

107

 10

 100

 1000

 10000

 100000

40363228242016

T
im

es
 (

us
)

Number of Servers

AVG QWET per Server (Declustered)

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(a) AVG Query Wait Execution Time for a Server

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

40363228242016

of

 m
es

sa
ge

s

Number of Servers

AVG # of Messages per Server (Declustered)

DiST
DiST(update)

Two Level
Two Level (Global)

Centralized

(b) Communication Cost per Server

Figure 6.20: Search performance with declustered datasets (cont’d)

indexing are not as good as for the clustered dataset experiments shown previously, as

expected, but these schemes are still faster than centralized indexing. DiST(update) is

the biggest victim of declustering, and its query response time became 4-7 times slower

than for the clustered dataset experiments, while hierarchical two level indexing be-

came 2-3 times slower. Note that we didn’t include the time to read the actual datasets.

Therefore, the performance degradation is purely from broadcasting query messages.

As shown in Figure 6.20(b), the number of network messages across all the different

108

indexing schemes is about the same because most of the data servers will receive all the

queries with declustering.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2800260024002200200018001600140012001000800600400200

T
im

e
(m

s)

Number of Data Inserted per Server

AVG Insertion Time

DiST
Two Level

Centralized

Figure 6.21: Insertion performance

In our last set of experiments, we measure insertion performance for the distributed

indexing schemes. Figure 6.21 shows the elapsed time to insert data chunks into the

index. The number of data servers used was 40 and each of data servers has one client

that performs the data chunk insertion operations into the index. As we discussed earlier,

most insertions are done only at the local indexes stored in the local data servers, for two

level indexing and DiST. Hence their insertion performance is greatly superior to that

of centralized indexing. Although DiST insertion performance appears to be mostly

independent of the number of data servers, insertion time increases slightly as for two

level indexing, but is always much higher than for two level indexing. Note that the

graph is log scale. The gap between DiST and hierarchical two level indexing comes

from the overhead of the DiST join algorithm, which is very expensive. An update to the

global index is performed by first deleting the old MBB from the partial global index

at the local server, then inserting the new MBB into the partial global index (as for a

new node join). The lazy update mechanism is then used to propagate the update. For

centralized indexing, the high insertion cost comes from the high cost of the computation

109

required to insert into a very large index.

6.8 Design Choices for Distributed Multidimensional In-

dexing

In this section we discuss some of the lessons we learned about distributed multidi-

mensional indexing schemes, so that the appropriate indexing scheme can be chosen

for a particular application. Each of the three different indexing schemes has strengths

and weaknesses. In order to compare the different indexing schemes, it is important

to determine application domains where assumptions about the datasets and indexing

characteristics hold. First of all, “the scalability of the system” (i.e. the number of data

servers) must be considered. Second, we need to perform “workload characterization”

determining system properties such as expected query inter-arrival time. Third, “dataset

characterization” must be performed, to understand dataset properties such as clustering

and data distribution. Fourth, “index update frequency” is another important factor to

consider, to understand whether the index will be static or dynamically updated, and if

so, how frequently. We discuss these design factors in more detail. Table 6.2 shows

the anticipated performance of the multidimensional indexing schemes for the different

criteria.

Scalability of the System: The number of data servers affects not only the size

of index but also the query routing path length. Distributing the index across a large

number of data servers will decrease the size of the index but increase the query routing

path length, hence the trade-off between the two effects determines the scalability of

the distributed indexing scheme. Search performance for centralized indexing is not

directly related to the number of data servers. However it is likely that more data servers

110

will have more data and a larger index in a central server, which makes centralized index

search slow. Partitioning the index seems to always be the best choice for highly scalable

systems, but the costs and benefits of decentralization should be carefully considered,

since while decentralization does help with scalability in general, it could lead to long,

slow message forwarding paths.

Workload Characterization: Accurate characterization of expected application

workload can lead to the choice of the best distributed indexing scheme. Query inter-

arrival time is the key aspect for selecting a distributed indexing scheme for various

workload characteristics. We have shown that partitioning the index disperses query

workload and decentralization eliminates any central bottleneck. In addition to query

inter-arrival time, query selectivity (i.e. the size of query window) and the distribution

of clients across the network are additional workload characteristics that may affect the

performance of the distributed indexing schemes.

Dataset Characterization: The distribution of datasets across servers affects the

query forwarding pattern for the distributed indexing schemes, as was shown in Sec-

tion 6.5. In addition to dataset distribution, the size of datasets is another characteristic

that can affect the relative performance of indexing schemes. A large dataset on a sin-

gle server leads to a large local index, which will increase QWET for that data server.

As we have seen in the experiments for the declustered datasets, large QWET seems to

be a more critical performance issue for DiST than for the other distributed indexing

schemes, since high QWET also increases query forwarding delay.

Index Update Frequency: If clients add or delete datasets frequently, two level in-

dexing is a better indexing scheme than centralized indexing because most insertion and

deletion operations are done completely locally, accessing the global index server only

when the MBB of a local index root node changes. While only one index update request

111

can be performed at any point in time by the centralized index server, the hierarchical or

decentralized two level index performs index updates in parallel. In DiST, the update of

the partial global index in other servers will not be performed immediately because of

the decentralized nature of the update algorithm. The updated information will be prop-

agated as other servers find out their partial global indexes are no longer valid during

subsequent index searches. As we have shown in our experiments, the DiST insertion

algorithm is very expensive compared to two level indexing. Also, lazy index update is

not a cheap operation to perform frequently. And a lazy index update could propagate

stale partial global index, thus could increase the number of data servers that need to be

eventually updated with the correct information. For applications that require frequent

index updates that propagate to the global index, the decentralized approach does not

appear to be a good choice.

112

Table 6.1: Description of variables used to model distributed indexing

Variable Description

� # of data servers

�
of queries

� # of replicas

� I average # of disk accesses for a sin-

gle query with a centralized index

���
average # of disk accesses for a sin-

gle query for the global part of the

hierarchical index

� 8 average # of disk accesses for a sin-

gle query for the local part of a hier-

archical index

� � average # of data servers involved in

a query (����� � ���)

�
� query selectivity (����� � �
)

� I size of centralized index

� � size of global index

� 8 size of local index

113

Design Criteria Indexing Scheme

Centralized Two Level DiST(no update) DiST(update)

Scalability Worst Good Bad Best

Heavy Workload Worst Good Bad Best

Clustered Datasets Worst Good Bad Best

Declustered Datasets Worst Good Bad Better

Frequent Update Worst Best Bad Bad

Table 6.2: Design criteria of distributed multidimensional indexing

114

Chapter 7

Case Study: Multidimensional Indexing for Query

Processing Middleware

Multiple query optimization has been extensively studied in various contexts, includ-

ing relational databases and data analysis applications [31, 37, 91, 107, 62, 35]. The

objective is to exploit sub-expression commonality across multiple queries to reduce

execution time through computation and data reuse. Finding a globally optimal query

plan has been shown to be an NP-complete problem [92], so creating a good multi-query

execution plan can only be achieved using heuristics or probabilistic techniques. Never-

theless, multiple query optimization has been shown to be useful in several contexts.

Over the last few years, my research group has developed a distributed multiple

query optimization middleware framework (MQO) for scientific data analysis applica-

tions [11]. A unique aspect of our middleware is the utilization of an active semantic

cache, where intermediate aggregates used for computing a query are tagged and stored

for future reuse. Applications ported to use the middleware can then leverage those

cached results by either reusing them directly or by applying data transformations to

them [11].

In order to locate objects that can be reused for computing the result of a new query,

115

MQO’s query planner inspects the semantic information for all of the cached objects,

attempting to identify the objects that directly or through data transformations will help

in computing the new query result. This approach was shown to work well for small

caches with tens or hundreds of objects, as a naı̈ve linear search for relevant reusable

objects was acceptable. However, as the price of main memory steadily drops, it is

not uncommon to find machines with many gigabytes of RAM, which allows MQO

to leverage much larger semantic caches. In this scenario, starting with perhaps a few

thousand cached objects to be considered during query planning, it becomes imperative

to improve the cache look-up mechanism as a means to lower planning time.

Since many scientific datasets are multidimensional (i.e., with space and time ob-

ject attributes), these datasets can be efficiently indexed using multidimensional spatial

tree structures. Likewise, intermediate objects computed when these datasets are pro-

cessed for queries also have spatio-temporal attributes so can be indexed using similar

techniques, making them available for reuse when computing other queries.

MQO is able to efficiently use computational resources from SMP machines and

clusters of distributed memory parallel machines. The middleware was also extended

with a proxy service [10] that allows data analysis and visualization applications to be

distributed onto a heterogeneous Grid computing environment. The Grid is an ideal

environment for running applications that need extensive computational and storage re-

sources, as additional resources can be employed incrementally as need arises. For

example, as new large scientific datasets are generated as a result of simulations or ac-

quisition of sensor readings or when the pool of users interested in the data increases,

new storage and processing resources are required in order to keep up with the additional

load. Moreover, because of the demand for storage capacity, bandwidth, and fault toler-

ance, datasets are often stored in distributed parallel storage systems. For these reasons,

116

in order to harness the processing power of multiple replicas for distributing the query

workload (potentially from several co-existing applications), middleware proxy service

implements a simple directory service – the Lightweight Directory Service (LDS). LDS

stores and maintains information about the location of datasets, the availability of query

processing capabilities, and near-real-time load information on the backend data servers.

When input datasets are available on more than one backend server, the information

maintained by LDS can be used to distribute the query processing.

While the availability of a distributed cached infrastructure can substantially de-

crease the amount of time required to process a query, good planning and scheduling

becomes harder. That is, forwarding a query to backend servers with lower workloads

may actually be detrimental to overall performance, since other busier servers may have

cached aggregates that will considerably speed up processing. Striking a balance be-

tween reuse of cached aggregates and load balancing can be achieved if additional in-

formation is available. For example, if the proxy is also aware of the cache contents in

each of the backend servers, it might be better to forward a query to the server that has

portions of the query results in its semantic cache, even if it is busier than an alternative

server.

In this chapter, we describe the design of a single indexing data structure that is si-

multaneously able to efficiently locate objects based on semantic attributes as well as

based on the cache eviction metric. Also, we experimentally study this indexing ap-

proach, demonstrating that, under representative workloads, it yields sizable decreases

in query planning time compared to a more traditional configuration that uses a sequen-

tial scan of the objects in the semantic cache. Finally, we describe how we integrated

hierarchical distributed indexing in the multi-query optimization middleware in order to

improve query planning and scheduling performance. We will also experimentally study

117

Proxy
Frontend

client

client

client

MQO App.
server

MQO App.
server

MQO App.
server

Semantic Cache

Object 1

query

query

sub-query

Object 2

Application
defined
operator Application

defined
operator

Raw
Datasets

Object 3

Semantic metadata

Figure 7.1: A Grid-enabled MQO system configuration

this issue in the context of a computationally expensive computer vision application. For

relatively stable configurations (few index updates), the simplest way to distribute the

index is to replicate it onto multiple servers. However, for dynamically changing index

contents, we show that a better method consists of partitioning the index and storing the

pieces on multiple servers in a hierarchical fashion.

7.1 Multiple Query Processing Middleware

MQO provides an environment based on C++ abstract operators that are customized

when new applications are implemented, or when existing applications are ported. MQO

supports several types of computational platforms, transparently employing platform-

specific optimizations. From large SMP machines, to clusters of homogeneous nodes,

to a distributed heterogeneous Grid environment, MQO is able to use the application-

customized operators for efficient query planning and scheduling [11]. MQO offers

three main features to improve query processing performance: automatic load balancing,

parallel sub-query execution, and semantic caching.

118

In the rest of this section, we focus our description on MQO’s semantic cache in-

frastructure. Figure 7.1 shows a simplified view of the overall MQO architecture, when

configured for a Grid-enabled environment. In this configuration, a proxy server is the

system interface with clients. The proxy is used to: (1) receive queries from clients, (2)

compute a distributed query plan whereby subqueries may be created and dispatched

to different backend MQO application servers for detailed planning and execution, (3)

collect the subquery results, (4) assemble the final query results, and, finally, (4) return

the results to the client.

When a query is submitted, the proxy instantiates a query object and spawns a query

thread, which is responsible for planning, execution, and result assembly and delivery.

Semantic caches are available both at the proxy (for final query results) as well as at

all of the backend application servers, where intermediate objects resulting from query

computation are stored. During planning, the proxy query planner searches locally for

cached results to compute the query result. While conventional data caching requires

a complete and perfect match for reuse, MQO’s active semantic cache employs auto-

matic data transformation operators, referred to as projection primitives, that enable

transforming an existing cached object into a data product relevant for the new query.

If the proxy cannot fully compute the query from a single cached object, it generates

sub-queries for the incomplete query regions as depicted in Figure 7.2. The sub-queries

are recursively processed through the same planning and execution process. When the

proxy has exhausted the local reuse possibilities for a query (or sub-query), the query

(or sub-queries) is shipped to back-end application servers for further processing.

Sub-queries may be processed by different application servers in parallel [11]. As

previously stated, the application servers also have their own semantic caches, hence

objects resulting from prior processing are stored in their caches along with semantic

119

information. Therefore the planning and execution process at the backend servers are

performed in a similar fashion to what happens at the proxy.

Originally, MQO’s query planner sequentially scanned all cached data objects to

locate reusable candidates for evaluating a new query. While this simple approach was

adequate for a small cache with few objects, it is limiting in at least two ways. First,

it is inadequate for distributed query planning, i.e., when the proxy needs to dispatch

subqueries for remote execution at different back-end servers. In this case, it is usually

profitable to be able to route sub-queries to backend servers whose caches will aid in

the processing. Otherwise, computing query results must resort to processing raw input

data, incurring I/O and processing costs. Second, with large caches hosting a large

number of objects, locating reusable objects becomes a disproportionately large part of

the query planning time. This problem and the interaction between the cache indexing

mechanism and the cache replacement policy are the subject of the rest of this chapter.

7.1.1 Semantic Cache Indexing Issues

One focus of cache indexing is on efficiently performing cache replacement operations.

Depending on the replacement policy, a data structure with search time complexity O(1)

is often available (such as an LRU list – see Section 7.1.2 for more detail), but most

replacement policies can be implemented with a simple priority queue (heap), where

operations take O(����� �), where � is the number of objects in the cache. Similarly, lo-

cating a particular entry in the cache is usually not challenging. In other words, because

cache objects are looked up based on a simple key, such as physical addresses or URL

(in case of web caches), a simple hash table look-up suffices. In this case, look-up

operations result in either a single hit or a miss.

While that is the case for traditional caching, when semantic caching is employed for

120

Cached Aggregate

project

���

New Query

Sj,2

Sj,3

Sj,4

Sj,1

���

Figure 7.2: Example for the query execution process in a Virtual Microscope applica-

tion – an MQO-based application for analyzing digital microscopy collections. MQO

reuses a cached object (� �), performs a data transformation by automatically decreas-

ing the image resolution, and spawns subqueries (� ���	� , ����� � , �
���
 , and �
��� �) to generate

� � . (Courtesy of H. Andrade)

multi-query optimization, the scenario is different. For example, look-up operations are

based on multi-dimensional attributes (e.g., spatio-temporal ranges) and also can result

in partial hits, i.e., an object may partially satisfy the look-up predicate (e.g., a partial

spatial overlap or a visualization data product that can be transformed by re-scaling).

Hence, the underlying indexing data structure needs to address these requirements.

We refer to the index for a main memory semantic cache as the cache index. Ideally,

the cache index data structure should primarily make semantic cache look-up operations

fast, while, secondarily, keeping the cost of index updates (insertion and deletion of

objects) low, since those operations happen less frequently than lookups, particularly

for large caches.

Currently, all applications using the MQO middleware employ range aggregation

queries [7]. A typical query has spatio-temporal predicates that are defined as ranges,

121

i.e., a multi-dimensional bounding box in the underlying multidimensional attribute

space of the dataset. Similarly, individual tuples in the dataset as well as aggregate

objects generated during query processing have spatio-temporal attributes. Therefore,

in designing our indexing data structure, we focus on multidimensional index as the

basic support for indexing the hyper-rectangular objects stored in the semantic cache.

In the rest of this section, we describe our approach for indexing the contents of

a semantic cache, and achieving the desired performance. Our discussion centers on

indexing requirements for query planning as well as cache management operations. We

demonstrate how a single data structure is able to efficiently address those needs by

merging a cache object’s semantic information and its utilization profile, which is used

for driving replacement decisions. Finally, we discuss improvements to the deletion

algorithm, as efficient cache replacement also depends on efficiently reorganizing the

index as objects get evicted from the cache.

7.1.2 Cache Replacement Priority Queue

While a multidimensional index can accelerate semantic cache search operations, a sep-

arate data structure such as a priority queue is needed for cache replacement. In practice,

a crucial part of designing a caching mechanism is the implementation of the replace-

ment policy, to choose the object(s) to be evicted to make room for a new one if the

cache is full. A bad replacement decision with respect to the working set [32] can be

costly as in many cases recomputing an object may be very expensive in both computa-

tion and I/O, particularly for scientific applications1. For this reason, cache replacement

1For example, to compute a visualization data product for a digital microscopy application such as the

Virtual Microscope [4] requires locating and processing high resolution images. A modern disk such as

Seagate’s Barracuda 7200.10 provides a 78 MB/s sustained transfer rate [90]. Using a single disk similar

122

policies have been studied extensively as one of the most effective ways to alleviate the

widening gap in access and transfer times between in-core processor caches, main mem-

ory, and storage devices. In other words, the effectiveness of caching directly depends

on the replacement policy evicting the object least likely to be used in the future and,

therefore, avoiding the cost of having to locate, retrieve, and re-process input data.

A large number of replacement policies have been proposed in the context of com-

puter architecture, operating systems, database systems, and, more recently, web prox-

ies. Replacement policies differ in how they choose an object for eviction. This choice

affects the decision of how to index the cache contents. For example, the Least Recently

Used (LRU) policy, one of the most popular replacement policies, is often implemented

by employing a linked list. In a nutshell, the object most recently reused is at the head of

the list and the oldest at the tail. As an object is selected for reuse, it gets moved to the

head of the list. And the time complexity of insertion and deletion from an LRU linked

list is O(1). When a cached object is referenced, the update also can be performed in

O(1) time, assuming the semantic tag for the object includes a pointer to its LRU linked

list node. While these update operations are efficient, for query planning it is important

to quickly (i.e., better than O(n), where � is the number of cached objects) locate the

objects relevant for computing a new query. This is clearly not possible with a linked

list structure, since searching a linked list takes O(n) time.

Aside from LRU, other cache replacement policies typically require more sophisti-

cated data structures for locating an eviction candidate. An example is the Least Fre-

quently Used (LFU) policy, which is often implemented using a priority queue or heap

data structure. The heap ensures O(log n) insertion/deletion/search times. Similarly,

to this one, the transfer of high-resolution input data alone – such as a collection of 20,000 � 20,000

32-bit pixels – from storage to main memory takes approximately 156 seconds.

123

several other more sophisticated replacement policies for non-uniform cache objects

(e.g., Least Relative Value [8]) can also be implemented using a heap.

Considering the cache indexing issues described in Section 7.1.2, our goal is to effi-

ciently satisfy the planning and cache management indexing requirements of a semantic

cache in an integrated fashion.

7.1.3 An Integrated Approach – Merging the Indices

Instead of relying on two different indexing mechanisms, one suitable for locating

reusable cached objects and another for supporting eviction decisions, our basic idea

is to extend existing multidimensional indexing structures to address both needs, ac-

commodating replacement policies that can be implemented by a priority queue.

Multidimensional indexing trees can be modified to support a priority queue for

cache replacement, as shown in Figure 7.3. Each leaf node in the indexing tree stores a

cached object’s semantic information in addition to its eviction metric for cache replace-

ment purposes (e.g., the most recent access time for LRU). Using the object’s eviction

metric, we overlay an m-ary heap onto the indexing tree. Whenever a cached object

is inserted or deleted, we need to heapify [28] the tree structure to restore the heap

properties. If the multidimensional indexing structure is balanced, the complexity of

insertion/deletion is logarithmic. When leaf nodes are accessed as a result of a look-up

operation, the eviction metric can be updated, also triggering a heapify operation.

This approach can be used to modify any multidimensional indexing structure if it is

a tree. For example, as will be seen in Section 7.2, we experimented with Spatial-Hybrid

tree (SH-trees), that works efficiently for rectangular data as we discussed in Chapter 5.

This combined cache index will benefit cache replacement policies such as LFU, where

the underlying data structure is a heap, more than cache replacement policies such as

124

LRU Heap 3

LRU Heap: 3 LRU Heap: 25 LRU Heap: 8 LRU Heap: 7

13 25 3 31 25 47 8 17 51 7

Cached objects access time

Figure 7.3: Cache Index with Cache Replacement Priority Queue

LRU that can be implemented as a linked list, because the overhead of insert/delete

operations for a linked list is minimal.

7.1.4 Improving Cached Object Deletion

Most multidimensional indexing research has focused on search performance for

multidimensional indexing structures, while index update performance has been ne-

glected in favor of better search performance. For example, both R-trees and R*-

trees employ an expensive reinsertion algorithm when a node overflows. This ap-

proach is used because reinsertion is known to improve the tree structure for subsequent

searches [13].

However, reinsertion might be expensive in the context of semantic cache indexing,

as it may be frequently triggered by cache evictions. Hence we designed an alterna-

tive reinsertion strategy. Instead of reinserting from the root node, the child nodes of

the underutilized node are reinserted from the parent node of the underutilized node.

125

Algorithm 6

Deletion algorithm
procedure

B��� 2 � � � � * � � 2 �+�$���"�FN9�>�"����N9� �+* � �	� � �����"��?95"�����H� � � NG��NG� ��#
1: for all

� �$N9�>�"����N9� �+* ��� ����' ��(�+* � do

2:
 � � * � � 2 : < ?95������/��' W � �>��
 � �>UO� * 5"� 2 ��4����H� � � � * � � 2 ����#
3:
)�M5��+NH
V: <B
 � � * � � 2 ' S �"� � NH� ���������.��#
4: if

��M5"�+NH
P<O<=WV@P8!8
then

5: Q NH
�(9
��/�M��K�� � �>
����	� � NG��NH�"� � � ��#
6: break

end procedure

procedure
IJ�	�/������
��������	�"�+�$���"� * �	5&0G#

1: � : < * �	5&0

2: ��: <=��4�?3� �

3: while N is not empty do

4: Q : < Q 5"�����/�����6#

5: if
�

is underutilized then

6: remove
�

in Q
7:
B��� 2 � � � � * � � 2 ��� �1Q � ��#
8: else

9: adjust
�

’s MBR in Q
10: � : < Q
11: reinsert all entries in

�

end procedure

This alternative reinsertion strategy is similar to merging the underutilized node with its

sibling nodes.

Figure 7.4 shows an example of node merging as performed by the proposed deletion

method (shown in Algorithm 6). In the standard R-tree deletion algorithm, line 7 of
� � � � � � 	 ���
 � � is

� 	 	 ��� �
 � � � � � 	 ��

 � 	 ��	 � � � ' � � � � �

 � � 	 � � � � . But in our enhanced

deletion algorithm, we call � ��
 � � � � � � � � � � � ' � ' � � in order to avoid reinsertion. The

� ��
 � � � � � � � � � function picks a sibling node that requires minimum enlargement across

126

all sibling nodes to accommodate each entry in an underutilized node. But if the sibling

has no empty slots, the entry is inserted into the reinsertion queue. This algorithm

can greatly reduce the number of reinsertions. In the example, suppose C1 is to be

deleted since it does not have enough child nodes. Although C1 is deleted, its dangling

child nodes must be reinserted somewhere in the tree. Thus, we need to determine

which sibling node will contain each dangling node, and the bounding boxes of the

affected nodes must change accordingly. However this merging process is not as simple

as it seems. If a sibling node is full, the merging process will make the sibling split,

and the parent node may also split recursively. If the parent node splits, there is a

problem: which parent should be used for the rest of the dangling child nodes? Our

answer to this question is that we do not split the parent node. For each dangling node,

if the chosen sibling node is full, the algorithm puts the dangling child node into a

reinsertion queue. After all the dangling child nodes are merged into the sibling nodes

or put into the reinsertion queue, the algorithm reinserts the child nodes in the reinsertion

queue from the root node, as is done for R-trees. This algorithm reduces the number of

expensive reinsertion operations and overall makes delete operations faster, as we show

experimentally in Section 7.2.

7.2 Experiments: Cache Index

The primary objective of the experimental study is to measure semantic cache index

performance when query planning-related look-ups are performed, while at the same

time the cache is having objects added and removed as a result of cache replacement

operations. We measured semantic cache look-up time with and without the cache index,

to show that the overhead of updating the cache index is negligible, considering that it

127

g4

g2
C1

C2

C3

g1

g3

a) before removing C1 b) after moving children of C1
into C2 and C3

g7

g8

g6

g5

C1 C2 C3 C2 C3

g1 g2 g3 g4 g5 g7 g6 g8 g1 g2 g3 g4g5 g7 g6 g8

… … … …

…

… g4

g2 C2

C3

g1

g3

g7

g8

g6

g5

…

…

Figure 7.4: Merging an underutilized node. Instead of reinserting dangling children

(g1-g4) from root node, they are inserted directly into their parent’s sibling nodes (C2

or C3).

128

greatly speeds up cache searches.

7.2.1 Experimental Environment

To experiment with the semantic cache indexing improvements, we assembled synthetic

query workloads based on Kronos queries [111], a satellite data processing application

that was previously ported to MQO.

As extensive user-generated traces from Kronos queries are not available, we em-

ployed a variation of the Customer Behavior Model Graph (CBMG) technique to scale

up the limited user traces we have. This approached enabled us to generate a large num-

ber of queries whose aggregate behavior is similar to that of real users interacting with

the system.

For the experiments, we generated 1,000,000 multidimensional queries (3D queries

except for the experiments shown in Figure 7.9 and 7.10), based on different CBMG

transition probabilities. As the results we obtained were similar in terms of trends and

relative performance, we show results for the following configuration: 20% of queries

select a new point of interest, 40% of the queries were generated by moving the query

window, emulating spatial movement, and the remaining 40% of queries were generated

by increasing or decreasing the query window size (where the visualization data product

resolution is increased or decreased).

The central point of the study is understanding the improvements in query planning

obtained through using the cache index. For this reason, executing the queries is not re-

ally necessary. Thus, instead of running the real MQO middleware, and to better isolate

the planning phase, we modeled the semantic cache behavior of MQO and measured

only the cache index performance, without including the time to read the raw datasets

from disk and fully assemble the visualization data products, which can be extremely

129

time consuming.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

8192409620481024512256

T
im

e
(u

se
c)

Page Size (byte)

Time to insert data into Cache index
Cache Index (Reinsert)

Cache Index (Merge)

(a) Insertion Time

 30

 35

 40

 45

 50

 55

 60

8192409620481024512256

T
im

e
(u

se
c)

Page Size (byte)

Time to search data in Cache index
Cache Index (Reinsert)

Cache Index (Merge)

(b) Search Time

Figure 7.5: Average Cache Index Access Time for a Query with Various Page Sizes

We measured the performance of the cache index for insert, delete, and search oper-

ations using SH-trees described in Chapter 5. The insertions and deletions occur when

cached objects are replaced for new queries. The measured times are average results

over one million queries.

130

 20

 40

 60

 80

 100

 120

 140

 160

 180

8192409620481024512256

T
im

e
(u

se
c)

Page Size (byte)

Time to delete data in Cache index
Cache Index (Reinsert)

Cache Index (Merge)

(a) Deletion Time

 100

 150

 200

 250

 300

 350

8192409620481024512256

T
im

e
(u

se
c)

Page Size (byte)

Total query planning time
Cache Index (Reinsert)

Cache Index (Merge)

(b) Query Planning Time (search+insert+delete)

Figure 7.6: Average Cache Index Access Time for a Query with Various Page Sizes

(cont’d)

The experiments were run on a Linux machine with a 2.4 GHz Intel Pentium 4

processor and 512 MB memory. We fixed the node utilization factor (the minimum

number of child nodes of a valid non-root node divided by the node capacity) to 40% (a

common value used in many R-tree implementations), and the page size to 1 KB, except

131

for the experiments shown in Figure 7.5 and 7.6 that vary the page size.

7.2.2 Experimental Results

We implemented three different cache index data structures. The first one contains two

separate data structures, a multidimensional index and a priority queue (heap). This

configuration is identified as “Cache Index (Separate)”. The second implementation is

a single combined multidimensional index as shown in Figure 7.3, denoted as “Cache

Index (Reinsert)”. The third implementation is also a combined multidimensional in-

dex, but its deletion algorithm employs the sibling merge optimization described in Sec-

tion 7.1.4, denoted as “Cache Index (Merge)”. Our baseline configuration is referred

to as “SCAN”, which employs a priority queue without a multidimensional index (i.e.,

query planning steps requiring access to the semantic cache are carried out as a sequen-

tial scan over the cache contents).

Note that the index tree node size does not have to be the same as the disk page

size since the cache index resides in main memory. The index tree node size is an

important performance factor since it determines node fan-outs. Thus we measured

the performance of the cache index as a function of tree node size. Figure 7.5 and

7.6 illustrate how node fan-out for the cache index trees affects performance. We now

describe the performance metrics we measured. Insertion time is the amount of time

needed to insert a new query result into the cache index and priority queue. Search time

is the amount of time needed to find objects in the cache index. Deletion time is the

amount of time spent on cache replacement. Query planning time is the total amount

of time spent on insertion, search, and cache replacement. For a single query, a single

search operation is carried out to search for hits in the cache, and a single insert operation

is performed to insert the query result. However, the number of cache delete operations

132

depends on the volume of the current query, depending on how many objects must be

be replaced in the cache, which in turn depends on how big the objects are.

SH-trees can hold 38 child pointers for a page size of 1 KB. Unlike R-trees, SH-

trees have a dimension-independent number of child pointers, as for KDB-trees. In

contrast to search time, insertion and deletion time increases as node size increases. For

an 8 KB node size, each node has 313 child pointers. With fewer child pointers, the

insertion and deletion algorithms require less computation time to split and recalculate

the bounding boxes for tree nodes. However, the longer search paths caused by smaller

fan-out increase search time.

The node fan-out of all disk-based balanced tree structures must be larger than 3, so

that we can split a node without violating the minimum node utilization constraint (40%

for these experiments). Thus we could not run the experiments for node size smaller

than 256 bytes. The total execution time slightly increases when the node size is smaller

than 512 bytes. Figure 7.5 and 7.6 show that the cache index with sibling merge for

deletes shows better performance than the delete with reinsert in most cases. Also, both

cache index structures show good performance when the node size is 512 or 1024 bytes.

Thus, for the rest of our experiments, we fixed the index node size to 1KB.

Figure 7.7(a) shows the wall clock time to insert metadata for new data objects into

the cache index. We increased the size of the cache from 400 MB to 4 GB and assume

that the query result size for 1 query volume unit (latitude � longitude � time) is 1 KB.

The query volume for this experiment varies from 12 to 818 and the average query

volume is approximately 200. Hence the cache can store from approximately 2,000

(400MB/200KB) to 20,000 (4GB/200KB) cached objects. We approximated the size of

cached objects to be the volume of the query range, because we assume that a larger

range query generates larger query results. For example, the size of Kronos satellite

133

images for a certain region for two days would be twice as large as that for a single day.

If many large query results are stored in the cache, the number of cached objects would

be less than the case when many small query results are stored.

 0

 10

 20

 30

 40

 50

40003600320028002400200016001200800400

T
im

e
(u

se
c)

Size of Cache (MB)

Time to insert data into Cache index
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(a) Insertion Time

 0

 20

 40

 60

 80

 100

40003600320028002400200016001200800400
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
im

e
(u

se
c)

SC
A

N
 T

im
e

(u
se

c)

Size of Cache (MB)

Time to search data in cache
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(b) Search Time

Figure 7.7: Average Cache Index Access Time for a Query with Various Cache Sizes

Cache Index (Merge) has the same performance as Cache Index (Reinsert) for inser-

tions, since their insertion algorithms are the same. Cache Index (Separate) also shows

134

 0

 10

 20

 30

 40

 50

 60

 70

40003600320028002400200016001200800400

T
im

e
(u

se
c)

Size of Cache (MB)

Time to delete data in cache
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(a) Deletion Time

 0

 100

 200

 300

 400

 500

40003600320028002400200016001200800400

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
im

e
(u

se
c)

SC
A

N
 T

im
e

(u
se

c)

Size of Cache (MB)

Query planning time
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(b) Query Planning Time (search+insert+delete)

Figure 7.8: Average Cache Index Access Time for a Query with Various Cache Sizes

(cont’d)

similar performance with the other cache indexing structures, which means that the ex-

tra insert operation into a separate heap does not cause much overhead. Although we

increased the cache size, the insertion time for cache indices does not increase accord-

ingly because the complexity of the insertion algorithm is logarithmic. However, the

135

insertion time for the Cache Index configurations is much higher than that of the SCAN

configuration, which employs an LRU list.

The deletion time for the SCAN configuration is also very low and constant, as

expected. The Cache Index (Separate) and Cache Index(Reinsert) configuration also

show similar deletion performance, which means that a separate priority queue does not

have high overhead for deletion. However, the deletion performance of Cache Index

(Merge) was up to 11% faster than that of Cache Index (Reinsert).

We expected that the sibling merge deletion algorithm would hurt search perfor-

mance by increasing overlapping regions across child nodes, but the effect on search

performance does not seem to be very significant from our experiments. The search

time for Cache Index (Merge) was at worst only 8% slower than that of Cache Index

(Reinsert), and sometimes Cache Index (Merge) was even faster. An interesting result

in Figure 7.7(b) is that Cache Index (Separate) shows much slower search performance

than the other cache indices, because of restructuring the heap from updating the time

stamps after each successful search operation for a large number of cached objects. Note

that the times for SCAN are on a different scale for Figures 7.7(b), 7.8(b), 7.9(b), and

7.10(b), and are shown on the right side of the graphs.

Although a separate heap does not increase insertion and deletion overhead much,

we found that it causes some amount of overhead when searching. As we increase

the cache size, the performance gap between linear scanning and the cache indexing

methods grows. The search time for the linear scan increases as the cache size grows,

because the large number of objects in the cache makes linear scanning expensive.

Instead of breaking down the performance into improvements in individual insert/delete/search

operations, Figure 7.8(b) shows overall query planning time that includes all the insert,

delete, and search time. The figure shows that performance improvements from the

136

cache index are quite substantial compared to linear scan. Sequential scan does not

have much overhead for insertion or deletion, but scanning itself is expensive enough

that when the cache can contain more than 2,000 data objects the SCAN configuration

performs worse than the Cache Index configurations.

 0

 20

 40

 60

 80

 100

 120

201816141210864

T
im

e
(u

se
c)

Number of dimensions

Time to insert data into cache
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(a) Insertion Time

 0

 10

 20

 30

 40

 50

201816141210864
 0

 500

 1000

 1500

 2000

T
im

e
(u

se
c)

SC
A

N
 T

im
e

(u
se

c)

Number of dimensions

Time to search data in cache
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(b) Search Time

Figure 7.9: Average Cache Index Access Time for a Query with Various Dimensions

Weber et al. showed that any multidimensional index would perform worse than

linear scanning for high dimensional data, due to the well known curse of dimensionality

137

 0

 20

 40

 60

 80

 100

 120

 140

201816141210864

T
im

e
(u

se
c)

Number of dimensions

Time to delete data in Cache index
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(a) Deletion Time

 0

 100

 200

 300

 400

 500

 600

201816141210864
 0

 500

 1000

 1500

 2000

T
im

e
(u

se
c)

SC
A

N
 T

im
e

(u
se

c)

Number of dimensions

Query planning time
Cache Index(Reinsert)

Cache Index(Merge)
Cache Index(Separate)

SCAN

(b) Query Planning Time (search+insert+delete)

Figure 7.10: Average Cache Index Access Time for a Query with Various Dimensions

(cont’d)

problem, especially for nearest neighbor queries [102]. Range queries can also have this

problem in high dimensions, but many scientific datasets have 4 or fewer dimensions

(e.g., three-dimensional space and time). However, we still wanted to experiment with

high-dimensional data, so we generated synthetic high dimensional query workloads

(one million queries total) and ran the experiments with a fixed cache size that can store

138

approximately 4,000 objects, as shown in Figure 7.9 and 7.10. We ran the experiments

with different cache sizes, but show only one of them since the results are similar. For

this workload we used the same transition probabilities as for the previous experiments.

As the number of dimensions increases, the insert/delete/search time of the cache

index methods also increases, but linear scan seems to be almost independent of dimen-

sions. This is because if a data object does not overlap in the first dimension, the rest

of the dimensions are skipped. Cache Index (Separate) shows the worst performance in

most cases for search, and Cache Index (Merge) shows the best performance for delete.

In terms of overall query planning time, Cache Index(Merge) shows the best perfor-

mance and is about 6 times faster than linear scanning for 20 dimensions. However, we

observed that the performance of the cache index degrades as the number of dimensions

increases, while linear scan performance seems to be independent of the dimensionality

of the data. Thus we suspect that with a large number of dimensions, a cache index

would be of no use. But as we mentioned earlier, most scientific datasets are low di-

mensional, and a range query is a more common access pattern than nearest neighbor

queries for many scientific data analysis applications.

7.3 MQO in Grid environment

MQO targets several types of computational platforms, transparently employing platform-

specific optimizations. From large SMP machines, to clusters of homogeneous nodes,

to a distributed heterogeneous Grid environment, MQO is able to use the application-

customized operators for efficient query planning and scheduling. In the rest of this

chapter, we focus on MQO’s Grid configuration, which employs a proxy component

referred to as the Active Proxy-G (or APG, for short). This discussion is necessary to

139

p1 p2 p3 p4

��������� ��	�
��
��������������

p1

p2

p3

p4

��������� ��	�
��
��������������

p1 p2 p3 p4

��������� ��	�
��
��������������

(a)

(b)

(c)

Figure 7.11: Application Servers with different parallel configurations. (a) shared mem-

ory, (b) distributed shared memory, or (c) distributed memory

provide the context for the integration of distributed cache indexing capabilities into the

middleware.

The APG works as a front-end to the distributed multiple query optimization system.

When a query is received by the proxy, it may be able to process the query directly us-

ing its local cache. If cached aggregates alone cannot be used to fully compute a query,

the proxy server generates sub-queries for the unresolved portions and repeats the same

process for the sub-queries, recursively. If no processing can be done by the proxy, the

query is forwarded to backend application servers, which then use their local cache or

directly access the raw datasets to compute the results. The backend application servers

can run on cluster nodes, shared memory machines, or distributed shared memory ma-

chines with attached large-scale storage devices. Figure 7.11 graphically depicts these

different configurations. APG enables the backend application servers to be distributed

and connected in any hierarchy forming a computational Grid.

When a client submits a query through the proxy, the proxy’s main task is to locate a

suitable backend server to process it. The proxy employs a directory service (the Light

140

Directory Service – LDS), where information such as the location of datasets as well as

workload performance metrics are stored. Dataset locations constrain the set of backend

servers that can be used for servicing a query (i.e., in the current prototype a query can

only be processed by a backend server that has direct access to the datasets referred to by

the query). Performance metrics collected by the proxy can be used for partitioning and

balancing the work when multiple backend servers are able to process a query. When

replicas exist, the proxy has to select one of them based on a scheduling policy. The

original MQO implementation could be configured to use two different policies [10]: (1)

round-robin, where a replica is selected for processing a query based solely on where

the last query was serviced, and (2) load-based policies where, by actively collecting

metrics such as CPU and disk utilization, the least busy backend server with a suitable

replica is selected. Note that clients can also directly submit queries to backend servers,

if they know where the datasets are located, which further increases the potential for

load imbalance. That is, imperfect information at the APG as well as additional load

from servers directly submitting queries to backend servers compound the scheduling

problem.

With the existing query scheduling policies, the proxy service could only leverage

previously computed results that were part of queries it had seen (i.e., queries that have

been submitted through the proxy interface). Moreover, the proxy cache contents are

only related to the query final data product. While we have previously shown that

this approach was indeed able to provide substantial decreases in query execution time,

it does not permit the utilization of intermediate data products that are automatically

cached as a query is processed because these are only available at the backend servers.

Furthermore, the proxy cache can only grow in size up to the available memory in the

node hosting the proxy. For these reasons and in order to generate better query plans

141

that can take into consideration the contents of remote semantic caches, an efficient

distributed index is needed.

The semantic caches available at the backend application servers are independent

and evict content as need arises according to their own cache replacement policies with-

out any global coordination. In general, strong distributed cache consistency is expen-

sive and inherently non-scalable. More directly, it is very hard to keep track of the

up-to-date contents of remote semantic caches in distributed systems. On a more posi-

tive note, strong cache consistency is not really necessary for application correctness, as

query results can always be computed directly from the raw datasets, albeit with a per-

formance penalty. Therefore, it is possible to tolerate cache misses, which may occur

when a query plan is assembled based on stale information. Typically, if recomputing

a query from scratch is cheap as measured by I/O and CPU processing costs, simple

distribution of the load across backend servers may perform reasonably well. However,

many scientific and visualization applications are both data and compute intensive. It is

often faster to reuse cached aggregates rather than to generate them from scratch [49].

For these applications, more reuse of cached aggregates and improved load balance will

decrease average query execution time and maximize overall system throughput. As

will be seen in the next section, we accomplished this through distributed indexing.

7.4 Distributed Indexing for Query Optimization

A distributed multidimensional index enables update and search operations to be per-

formed in parallel, thus providing the means for distributing the load across multiple

servers. In Chapter 6, we have studied three types of distributed indexing schemes:

index replication, hierarchical indexing, and decentralized indexing. Each of them ad-

142

dresses different needs. Since cached objects stored in the middleware backend servers’

semantic caches can potentially change very quickly due to workload characteristics

and eviction requirements, the index replication approach is not suitable since it incurs

significant overhead in propagating the index changes. Similarly, the decentralized in-

dexing approach is not suitable either, because it does not perform well if the index

is changing rapidly. Finally, hierarchical indexing has been shown to work well in a

distributed environment even when updates are frequent.

Integrating hierarchical indexing with the MQO middleware consisted of extending

the backend application server with a local index that tracks the contents of its semantic

cache. The proxy was extended in order to host the global index. Since the system

needs to be able to quickly insert, delete, and search the local index, we have employed

SH-trees for the local index.

The low likelihood of global index updates comes at the expense of limited knowl-

edge about objects available in the local indices. For example, global indices may have

a large amount of dead space (i.e., multidimensional regions in which no actual objects

are located, but are indexed as a result of an enlargement operation made to accommo-

date a new object).

The tradeoff between the amount of knowledge available at the global index versus

the amount of communication can be controlled by creating additional hierarchy levels.

With this change, the global index stores the MBRs of the second (or third) level nodes

of the local indexes. Storing finer grained MBR information reduces the dead space and,

as a consequence, also reduces the likelihood of cache misses. Alternatively, in order

to mitigate this problem, we have devised a simpler technique that employs a bitmap

live space encoding data structure, described in Chapter 5.2.3. The bitmap provides the

global index with finer grain information for the root node MBR of the local indices

143

by partitioning the root node MBR into several subregions. If any next level tree node

overlaps the partitioned subregion, it is marked with a 1, otherwise with a 0, as seen

in Figure 5.5. The additional information can be used to eliminate some false cache

hits. This approach is very economical for low dimensionality objects, as is common

for many scientific datasets, which typically have fewer than 4 dimensions (e.g., space

and time). For higher numbers of dimensions, the bitmap encoding suffers from the well

known curse of dimensionality problem.

7.5 Multiple Query Scheduling Policies

The distributed index addresses the issue of locating candidates for executing queries or

subqueries on behalf of the proxy. However, picking the best candidate for executing a

query requires balancing the potential for reusing aggregates in the semantic cache of

an application server versus the wait to be serviced by that server. In extreme cases,

a server with popular aggregates may be swamped with additional load. Thus, query

scheduling plays an important role in load balancing and, ultimately, in overall response

time and system throughput.

In the rest of this section, we discuss 5 query scheduling policies we have imple-

mented and experimented with, as will be shown in Section 7.6.

Round-Robin: Round-Robin scheduling is our baseline policy. It assigns a roughly

equal number of queries to each application server. This technique is simple, well-

understood, and generally performs well when queries and application servers are ho-

mogeneous. On the other hand, it does not take into consideration any state information,

such as semantic cache contents and backend servers’ individual loads.

Load-based: Load-based scheduling assigns a backend server to a query based on

144

the load observed in each of the backend servers. It does so by selecting the least busy

backend server. This is done through MQO’s Workload Monitor Service, which actively

collects performance metrics from each of the application servers, by polling them pe-

riodically (the polling period is typically set to 15 seconds). Several individual metrics

are collected, such as the server’s internal thread pool utilization, disk read rate, and the

size of the query wait queue. These metrics can be used to infer the server load. For

simplicity, we employed only the size of the wait queue2.

Index/Overlap: This policy makes scheduling decisions solely based on the result

of a global index lookup operation. An exception exists for the initial � queries (� is

the number of backend application servers) where round-robin is used for selecting the

backend application server. When all the backend servers have received at least one

query to process, each will have intermediate results in its cache and an MBR for its

local cache index. Using these initial MBRs, subsequent queries are forwarded to the

server that requires the minimum enlargement of its current local MBR (measured by

the difference in volumes of the old and new MBRs). In other words, this policy tries to

keep the MBR of each backend server as small as possible to achieve good clustering of

queries with MBRs that are “close” in the multidimensional space.

Index/Distance: This policy makes scheduling decisions based on the result of a

global index lookup similarly to the Index/Overlap policy. However, instead of looking

for the backend server whose MBR has the greatest degree of overlap with a query, the

proxy attempts to locate a server whose local index root MBR is the closest to the query’s

MBR (measured as the Euclidean distance between the geometric centers of the two

2As will be seen in Section 7.6, we used a volumetric reconstruction application to provide the work-

load for our experiments. The experimental queries are reasonably homogeneous in terms of the amount

of processing and I/O necessary to compute their results, which makes the queue size a good indication

of the system load.

145

MBRs). This policy also attempts to assign approximately the same number of queries

to each server. It does so by trying to keep the MBRs of the backend servers roughly the

same sizes. For example, in Figure 7.12 the query is forwarded to server 2, which results

in enlarging its MBR. For a query whose center falls between server 1 and 2’s MBR

centers, the proxy may forward the query to either one of them with the same probability.

The intuition behind this policy is that relying purely on the amount of overlap will bias

the proxy towards backend servers whose root MBRs are geometrically large, because

a large MBR is likely to have greater overlap with any given query. Using the distance

method contributes to removing the bias, while still maintaining the clustering property

expected from Index/Overlap.

Index/Load: This policy considers the results of the global index lookup in con-

junction with the current load associated with each of the candidate backend servers.

Based on the waiting queue size, the proxy estimates the wait time a new query will

probably experience. For backend servers that the global index indicates do not have

relevant reusable aggregates, the proxy makes a pessimistic assumption that no new

reusable aggregates will be materialized and all of the waiting queries will be computed

from scratch. Conversely, for servers that are reported as having reusable aggregates,

the estimate optimistically assumes that the computation time will be amortized by di-

rectly reusing those cached objects. From this assessment, the proxy selects the backend

server with the smallest time estimate to process the query.

146

MBR of an application server 1

Query

A B

MBR of an app.
server 2

center

MBR of an application server 1

Query

MBR of an app.
server 2

(A)

(B)

Figure 7.12: Minimum distance policy

7.6 Experiments: Distributed Multiple Query Optimiza-

tion

Improvements in planning and scheduling strategies are typically highly dependent on

applications, system characteristics, and workloads. In order to shed light on the mag-

nitude of improvements that can be expected by adopting distributed indexing, we per-

formed experimental studies using a computationally intensive computer vision appli-

cation, which can be seen as a representative example for many of the visualization

techniques used by scientific applications.

7.6.1 Experimental Environment

We employed an experimental configuration with 16 independent backend servers – i.e.,

full-fledged servers able to compute a volumetric reconstruction with access to replicas

of the entire dataset – and a single proxy. Backend servers and the proxy were placed

on different nodes of a Linux cluster. Each node is a Pentium III 650 MHz processor.

147

The nodes are connected by 100Mb/sec switched Ethernet.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

161412108642
T

im
e

(s
ec

)
Number of Servers

AVG Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(a) Query Execution Time (Average)

 0

 100

 200

 300

 400

 500

 600

 700

161412108642

T
im

e
(s

ec
)

Number of Servers

AVG Query Wait Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(b) Query Wait and Execution Time (Average)

 0

 200

 400

 600

 800

 1000

 1200

 1400

161412108642

T
im

e
(s

ec
)

Number of Servers

Batch Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(c) Total Batch Query Time (Average)

Figure 7.13: The Effect of Number of Servers

The dataset we used is a multi-perspective sequence of 2600 frames generated by 13

148

 0

 5

 10

 15

 20

 25

 30

161412108642

T
im

e
(s

ec
)

Number of Servers

STDDEV Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(a) Query Execution Time (Standard Deviation)

 0

 20

 40

 60

 80

 100

 120

 140

161412108642

T
im

e
(s

ec
)

Number of Servers

STDDEV Query Wait Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(b) Query Wait and Execution Time (Standard

Deviation)

 0

 50

 100

 150

 200

 250

161412108642

T
im

e
(s

ec
)

Number of Servers

STDDEV Batch Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(c) Total Batch Query Time (Standard Deviation)

Figure 7.14: The Effect of Number of Servers

149

synchronized cameras, which we described in Chapter 3. The test dataset is partitioned

into 32 silhouette image files (each file is 329 MB in size totaling about 10 GB). In

order to evaluate the scheduling policies we replicated the datasets, thus each of the

16 backend servers stores the 10 GB dataset. Each of the 32 image files contains a

collection of data chunks. A chunk of data is a single image whose attributes include a

camera index and a timestamp.

We created 16 query batch files with the same query inter-arrival time for the ex-

periments shown in Figure 7.13 and 8 query batch files with various query inter-arrival

times for the experiments shown in Figure 7.17. Each batch file has 100 queries, sim-

ulating multiple simultaneous users posing queries to the system as a Poisson process.

The queries in a batch were constructed according to a synthetic workload model since

we do not have enough real user traces for the application. The workload generator

emulates a hypothetical situation in which users want to view a short, multi-second 3D

instant replay of hot events in, e.g., a basketball game. The workload generator takes

as input parameters a set of “hot video frames” (e.g., slam dunks during the game) that

mark the interesting scenes, and the length of a “hot interval” (i.e., the duration of the

scene), characterized by a mean and a standard deviation.

A query in a batch requests a set of reconstructions associated with frames selected

according to the following model. The center of the interval is drawn randomly with a

uniform distribution from the set of hot frames (10 hot frames were used). The length

of the interval is selected from a normal distribution (each hot frame is associated with

a mean video segment length, statistically varying from 34 to 62 frames). Between the

first and last frame requested by a particular query, intermediate frames can be skipped,

i.e., a query may process every frame, every 2nd frame, or every 4th frame. The skip

factor is randomly selected. The 3-dimensional query box was also fixed (queries re-

150

 50

 60

 70

 80

 90

 100

 110

64MB32MB28MB24MB20MB16MB12MB

T
im

e
(s

ec
)

Size of Semantic Cache

AVG Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(a) Query Execution Time

 300

 350

 400

 450

 500

 550

64MB32MB28MB24MB20MB16MB12MB

T
im

e
(s

ec
)

Size of Semantic Cache

AVG Query Wait Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(b) Query Wait and Execution Time

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

64MB32MB28MB24MB20MB16MB12MB

T
im

e
(s

ec
)

Size of Semantic Cache

Batch Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(c) Total Batch Query Time

Figure 7.15: The Effect of Semantic Cache Size

151

construct the entire available volume) and the depth of an octree was 6, except for the

experiments shown in Figure 7.16. Queries also used data from all the available cameras

for reconstruction.

To measure performance, we considered the following metrics: Query Wait and

Execution Time (QWET), Query Execution Time (QET), and Total Batch Query Time

(TotalBQT). QWET is the amount of time from the moment a query is submitted to the

system until it completes. That is, QWET includes the delay (due to the proxy being

busy servicing other queries) plus the actual processing time. QET measures the elapsed

time for a query to complete from the moment a backend server is selected until com-

pletion measured at the proxy. Hence QET depends on the local cache hit ratio, while

QWET, to a greater degree, depends on load-balancing across the backend application

servers. Finally, TotalBQT measures the total execution time for one query batch. From

a user standpoint, lower QET and lower QWET implies faster query turnaround time.

Lower TotalBQT implies higher query server throughput.

It should be noted that the MQO middleware has several control knobs. In order

to focus on measuring the performance of the different scheduling policies without the

influence of caching at the proxy, we disabled the semantic cache in the proxy and

processed queries in FIFO order.

7.6.2 Experimental Results

Figure 7.13 depicts system performance when we employed different query scheduling

policies and varied the number of backend servers. Figure 7.13 shows the average exe-

cution time of 16 query batch files and Figure 7.14 shows the standard deviations across

16 query batches. For this experiment, we fixed the size of the semantic cache at 256MB

and used LRU as the cache replacement policy on all backend servers. Each application

152

server employed a single thread for processing queries, since all the cluster nodes are

uni-processors and would only marginally benefit from additional threads. However,

for the front-end proxy, we varied the number of concurrent threads according to the

number of application servers. For example, when 16 application servers are used, up

to 16 threads are allowed in the proxy, which enables up to 16 queries to be simultane-

ously processed. Note that this does not imply that all 16 backend servers will be busy,

i.e., multiple queries may be assigned to the same application server, depending on how

good the scheduling policy is at load balancing.

In general, as the number of application servers increases, frequently used cache ob-

jects are dispersed through the multiple backend server caches and the per server cache

hit ratio drops. As a consequence, the average QET increases as more queries are com-

puted from scratch without the benefit of caching as seen in Figure 7.13(a). Round-robin

shows the worst performance in most cases. Load-based scheduling also does not show

good performance, since neither policy considers the contents of the application server

caches. As server caches get populated, the three index-based scheduling policies start

to reap the benefits of increased cache hit rates, which causes decreased query execu-

tion time. An interesting result in Figure 7.13(a) is that the Index/Overlap policy does

not show consistent performance due to load imbalance. As we discussed earlier, when

the top-level MBR for a particular local index gets enlarged, the proxy becomes biased

and chooses the backend server with the largest overlapping MBR. Thus, a majority of

queries are forwarded to a single application server, which results in that server having

a longer wait queue, increasing both QET and QWET. Note that QET includes the time

waiting in the backend servers’ queue, but not the time in the proxy’s queue. Unlike

Index/Overlap, the other two index-based policies – Index/Distance and Index/Load –

manage to avoid such a load imbalance problem. Although Index/Load does not suffer

153

 40

 50

 60

 70

 80

 90

 100

 110

 120

7654

T
im

e
(s

ec
)

Octree Depth

AVG Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(a) Query Execution Time

 250

 300

 350

 400

 450

 500

 550

 600

 650

7654

T
im

e
(s

ec
)

Octree Depth

AVG Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(b) Query Wait and Execution Time

 600

 800

 1000

 1200

 1400

 1600

 1800

7654

T
im

e
(s

ec
)

Octree Depth

Batch Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(c) Total Batch Query Time

Figure 7.16: The Effect of Octree Depth

154

 0

 20

 40

 60

 80

 100

 120

 140

161412108642

T
im

e
(s

ec
)

Mean Inter-arrival Time (sec)

AVG Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(a) Query Execution Time

 0

 100

 200

 300

 400

 500

 600

161412108642

T
im

e
(s

ec
)

Mean Inter-arrival Time (sec)

AVG Query Wait Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(b) Query Wait and Execution Time

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

161412108642

T
im

e
(s

ec
)

Mean Inter-arrival Time (sec)

Batch Query Execution Time
Round Robin

Load
Index/Load

Index/Overlap
Index/Distance

(c) Total Batch Query Time

Figure 7.17: Workload Comparison

155

from load imbalance, it tends to enlarge the local index MBRs leading to an increase in

false hits, as the proxy does not take into consideration the clustering of cached aggre-

gates. Occasionally, it creates large amount of dead space as opposed to Index/Distance

and Index/Overlap, as those policies both favor not increasing the MBR. On the other

hand, Index/Load benefits from bitmap encoding, which acts to mitigate the dead space

problem as previously explained.

Figure 7.13(b) shows the query wait and execution time for the same experiment.

As the number of servers increases, the average QWET seen by the proxy decreases

as more queries can be executed concurrently. Note that while the QET improvements

are not very large, hundreds of seconds are saved when measuring QWET and QBT

due to more reuse. Similar to the QET result, Index/Distance outperforms the other

policies consistently. As seen in Figure 7.13(c), the total batch query time when us-

ing Index/Distance is around 50% to 69% of the time when round-robin is employed.

Figure 7.14(b) and 7.14(c) show that Index/Overlap has much higher standard devia-

tion than the others. If query requests are fortunately distributed evenly, Index/Overlap

achieves both high cache hit ratio and load balance. But if not, Index/Overlap performs

even worse than round-robin due to load imbalance. The performance fluctuation is

shown in Figure 7.13.

Figure 7.15 shows performance data for the scheduling policies as a function of the

application servers’ semantic cache sizes. For this experiment, we used 8 application

servers and the proxy was configured with 8 threads. When the cache size is smaller

than 24 MB, all policies suffer from a high rate of cache misses, since the cache can-

not simultaneously accommodate many data products. In other words, the cache size

is much smaller than the working set. In the experiments, the total size of the most

frequently used cached aggregates was about 24 MB. Therefore, when the cache size

156

is smaller than that, queries may fail to find any cached aggregates at all. Because the

round-robin and load-based policies are not targeted at maximizing reuse (although they

may occasionally benefit from cache hits “by accident”), relatively speaking they are not

severely impacted by small cache size (� ��� MB) nor do they particularly benefit from

additional cache space. Since Index/Distance and Index/Overlap do not consider the

size of the waiting queue, cache misses due to reduced cache size make the queries wait

longer, which hurts overall system throughput. In such a case, Index/Load shows both

the fastest query response time and the highest system throughput.

Figure 7.16 shows performance for the scheduling policies as the octree depth in-

creases. The higher the depth, the more computationally expensive a query becomes

due to the increased resolution of the volumetric reconstruction. Increased resolution

translates into more space needed to compute and cache the results. Note that com-

putational cost and memory requirement increase exponentially with octree depth. We

ran 8 application servers, each with a 256 MB semantic cache. While we expected

that the benefits from cache hits would have an exponential impact on the performance,

because we kept the cache size fixed, we only observed a minor effect. Note that in-

creased depth creates increased data product sizes, causing increased cache eviction

activity and additional cache misses. In measuring system throughput, the performance

gap between non-index based and index based policies increases slightly as the com-

putation time increases. When the depth is 5, the total query batch time (QBT) with

Index/Distance scheduling is 72% that of load-based scheduling, but it is 63% that of

load-based scheduling when the depth is 7.

Finally, using the synthetic workload generator we described earlier, we created 8

different query workloads with different mean inter-arrival times to control the amount

of concurrent load presented to the system. Note that the results for different workloads

157

depicted in Figure 7.17 are not directly comparable. Not only are the inter-arrival times

different, but so are the the queries and the induced workset for caching. In other words,

different queries have different cache hit rates, causing differences in processing time,

which is unlikely to be a function of query inter-arrival time.

In this experiment, 8 application servers were used. As seen in Figure 7.17, the

Index/Distance policy shows the best performance in most cases, with the other two

index-based policies also outperforming the round-robin and load-based policies. In

Figure 7.17(a), as expected, we see that QET is not greatly affected by the inter-arrival

time. In measuring query wait time (Figure 7.17(b)), when the proxy server receives

queries at a very high rate (� 2 seconds on average between queries), Index/Load shows

better performance than Index/Overlap and Index/Distance because of better load bal-

ancing. The query wait and execution time drops dramatically when the inter-arrival

time is greater than 10 seconds, because the inter-arrival time becomes larger than the

average query execution time (10 seconds � 8 servers = 80 � QET). With large inter-

arrival times, QWET has almost the same value as QET for a query, since almost no

queries have to wait. In Figure 7.17(c), when the average inter-arrival time is greater

than 12 seconds, we see that the total query batch time tends to stay around the same

value, irrespective of the scheduling policy employed. This is because QBT only de-

pends on the QET of the few last queries since the system is very lightly loaded.

7.7 Summary

To summarize, we have learned the following lessons from the experimental study. First,

multidimensional indexing structures can help to efficiently find cached objects in a

large semantic cache. Experimental results show that a cache index performs better than

158

linear scanning, and the performance benefits grow as the size of the semantic cache

increases. Second, distributed indexing can help improve overall query processing per-

formance, measured both by system throughput and by query response time. Third, load

balancing is as important a factor in overall performance as cache hit rates for the dis-

tributed semantic caching infrastructure. Fourth, index-based scheduling that considers

both load balancing and clustering properties (Index/Distance) tends to outperform less

informed policies. Furthermore, Index/Distance policy is more stable, rarely performing

badly compared to the policies that use less information.

159

Chapter 8

Conclusions and Future Work

In this Chapter, I conclude this dissertation by reviewing the thesis and its contributions

and present some directions for future work.

8.1 Thesis and Contributions

In this dissertation, I supported the following thesis: distributed multidimensional in-

dexing can greatly improve access to distributed large scientific datasets. Numerous

emerging scientific data analysis applications need the support of a distributed multidi-

mensional indexing service. The goal of this work was to investigate the problem of

indexing large distributed scientific datasets for scientific data analysis applications, to

provide efficient multidimensional indexing techniques that aid in navigating distributed

scientific datasets, and to show significant improvements in accessing distributed large

scientific datasets. The main contributions made by this dissertation include:

An approach to increase the efficiency of indexing via data chunking

In order to accelerate search and update performance of indexing, I defined a logical

data chunking concept that groups data elements and store a bounding box for each

160

chunk instead of for each element. In scientific datasets, data elements that are nearby

in a stored array (i.e. their indices are close) usually are also nearby in spatio-temporal

coordinates, because the sensor or simulation data is stored in the same order it is ac-

quired or produced. By grouping data elements into chunks, we can get a relatively tight

bounding box for the spatio-temporal coordinates (meaning that the boxes for different

chunks do not overlap much). Data chunking may cause data elements not within the

requested query range to be retrieved, because if the bounding box of a data chunk over-

laps the query range all the elements in the chunk must be accessed. There is therefore

an overhead from data chunking - filtering out data elements not within the query range

after they are read from disk. However, I have shown that the overhead of filtering the

additional data elements is negligible

A design of an efficient indexing structure for chunked datasets

I have designed an efficient multidimensional indexing structure for rectangular data

objects (chunked datasets), which supports fast insertion/deletion as well as fast search.

Little emphasis has been laid upon the performance of multidimensional index inserts

and deletes, as opposed to search performance. The SH-tree I developed is a disk based

space partitioning indexing structure for rectangular data objects, which has dimension

independent tree height and low insert/delete algorithmic complexity. I compared the

performance of a few widely used multidimensional indexing structures with SH-trees,

looking at insert, delete, and search operations, and showed that SH-trees overall per-

form better than the widely used indexing techniques.

161

A set of techniques for distributing index for distributed datasets

I developed and compared three approaches to distribute a multidimensional index -

replicated centralized indexing, hierarchical two level indexing, and decentralized two

level indexing. The experimental study demonstrated that hierarchical two level index-

ing performs well in most situations, scaling well with the number of servers, with the

size of the dataset, and with the workload offered by clients. However, the decentralized

approach performs better than the other schemes under some conditions, such as when

index update operations are not too frequent, so that we can efficiently update partial

global indexes using lazy index update messages.

Analyzing the design choices that affect the performance of distributed indexing

This dissertation explored and compared the designs, challenges, and problems for dis-

tributed multidimensional indexing schemes, and also provided a comprehensive per-

formance study of distributed indexing to provide guidelines to choose a distributed

multidimensional index for a specific application.

As a case study application, I have described how hierarchical two level indexing

scheme can be used by a distributed multiple query optimization middleware system to

generate better query plans, leveraging information about the contents of remote seman-

tic caches. Experimental results obtained using a computer vision application showed

that employing this information for query scheduling results in both lower query re-

sponse time and better system throughput than round-robin or load-based scheduling.

I believe this is the first work that showed that distributed multidimensional indexing

helps improve query processing performance for a real distributed query processing

system.

162

8.2 Future Work

We foresee many possible extensions to the work presented in this dissertation. Al-

though I showed significant improvements by employing the distributed indexing schemes,

many improvements can still be made.

Performance study using more applications

I intend to extend this work using more various data analysis applications as well as

different workload profiles in WAN-based heterogeneous environments. In this dis-

sertation, I evaluated hierarchical two level indexing in the context of multiple query

optimization framework, but there are other static data analysis applications where repli-

cated centralized indexing or decentralized indexing is more appropriate than hierarchi-

cal two level indexing, as we discussed in Chapter 6.

Replica management of distributed index

I showed that it is sometimes desirable to create remote copies of indexes in wide area

systems, since replication reduces access latency, improves data locality, and increases

robustness and scalability. Since any system that has replicas needs a mechanism for

creating, deleting, and locating replicas, we need to further investigate how many repli-

cas should be either created or deleted, where to create new replicas, and which replica

should be accessed to process a certain query. We have shown that more replicas ac-

celerate search performance, but worsen update performance. The basic idea of the

index replication mechanism should be that when read requests are dominating the sys-

tem, more replicas must be created to reduce the query response time, and when write

requests are dominant, some number of replicas must be deleted to reduce the update

overhead for maintaining consistency between replicas. The decisions can be made

163

based on a few factors such as read/write statistics, network latency, response time,

bandwidth, and index size.

Indexing service Grid-ification

It seems very likely that distributed multidimensional indexing techniques will be part

of the Grid infrastructure. In such an environment, a set of interfaces and protocols have

to be provided for a user to launch applications that will use the distributed indexing

service. In fact, users should not be concerned with where datasets are located as long as

they can access them through distributed indexing service provided by Grid. Supplying

these interfaces for distributed indexing services is a potentially very useful extension

of this work.

Grid resource matchmaking

Distributed multidimensional indexing service also can be used as a resource match-

maker in Grid. For instance, consider a set of large-scale distributed machines, located

all over the world. In such a system, users may want to issue a request to find machines

with a given set of constraints, such as a machine with at least 1GB of main memory and

a network delay to a particular host of less than 1 second. In order to handle such range

queries efficiently in a Grid environment, a spatial indexing scheme is needed that is

both more scalable and more robust than a centralized indexing scheme. The distributed

indexing schemes that I presented in this dissertation need to be investigated to see how

to make them suitable for Grid matchmaking, otherwise a further research has to be

done to extend this work.

164

BIBLIOGRAPHY

[1] R-tree Portal. http://www.rtreeportal.org.

[2] Planetary data system data preparation workbook. Technical Report JPL D-7669, Part I,

Jet Propulsion Laboratory, California Institute of Technology, February 1995.

[3] M. Aeschlimann, P. Dinda, L. Kallivokas, J. L ópez, B. Lowekamp, and D. O’Hallaron.

Preliminary report on the design of a framework for distributed visualization. In Proceed-

ings of the Parallel and Distributed Processing Techniques and Applications (PDPTA99),

Las Vegas, NV, 1999.

[4] A. Afework, M. Beynon, F. Bustamante, A. Demarzo, R. Ferreira, R. Miller, M. Silber-

man, J. Saltz, A. Sussman, and H. Tsang. Digital dynamic telepathology - the Virtual

Microscope. In Proceedings of the 1998 AMIA Annual Fall Symposium. American Medi-

cal Informatics Association, Nov. 1998.

[5] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. NEfedova, D. Quesnel, and S. Tuecke. Secure, efficient data transport and replica

management for high-performance data-intensive computing. In IEEE Mass Storage Con-

ference, 2001.

[6] M. Alpdemir, A. Mukherjee, A. Gounaris, N. Paton, P. Watson, A. Fernandes, and

D. Fitzgerald. Ogsa-dqp: A service for distributed querying on the grid. In Proceed-

ings of the Advances in Database Technology, 2004.

[7] H. Andrade. Multiple Query Optimization Support for Data Analysis Applications. PhD

thesis, Department of Computer Science, University of Maryland, Dec. 2002.

165

[8] H. Andrade, T. Kurc, A. Sussman, E. Borovikov, and J. Saltz. On cache replacement

policies for servicing mixed data intensive query workloads. In Proceedings of the 2nd

Workshop on Caching, Coherence, and Consistency, held in conjunction with the 16th

ACM International Conference on Supercomputing, New York, NY, June 2002.

[9] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient execution of multiple query

workloads in data analysis applications. In Proceedings of the ACM/IEEE SC2001 Con-

ference, Nov. 2001.

[10] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Active Proxy-G: Optimizing the query

execution process in the Grid. In Proceedings of the ACM/IEEE SC2002 Conference,

Nov. 2002.

[11] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Optimizing the execution of multiple data

analysis queries on parallel and distributed environments. IEEE Transactions on Parallel

and Distributed Systems, 15(6):520–532, June 2004.

[12] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker. In

Proceedings of CASCON’98 Conference, Dec. 1998.

[13] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The � � -tree: An efficient and

robust access method for points and rectangles. In Proceedings of 1990 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD), pages 322–331, May 1990.

[14] J. L. Bentley. Multidimensional binary search trees used for associative searching. In

Communications of the ACM 18(9), 1975.

[15] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for high-

dimensional data. In Proceedings of the 22th International Conference on Very Large

Data Bases (VLDB), pages 28–39, 1996.

[16] M. Beynon, C. Chang, U. Catalyurek, T. Kurc, A. Sussman, H. Andrade, R. Ferreira, and

J. Saltz. Processing large-scale multidimensional data in parallel and distributed environ-

ments. Parallel Computing, 28(5):827–859, May 2002. Special issue on Data Intensive

Computing.

166

[17] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware

for filtering very large scientific datasets on archival storage systems. In Proceedings of

the Eighth Goddard Conference on Mass Storage Systems and Technologies/17th IEEE

Symposium on Mass Storage Systems, pages 119–133. National Aeronautics and Space

Administration, Mar. 2000. NASA/CP 2000-209888.

[18] M. D. Beynon, T. Kurc, U. Çataly ürek, C. Chang, A. Sussman, and J. Saltz. Distributed

processing of very large datasets with DataCutter. Parallel Computing, 27(11):1457–

1478, Oct. 2001.

[19] C. B öhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces – index struc-

tures for improving the performance of multimedia databases. ACM Computing Surveys,

33(3):322–373, Sept. 2001.

[20] E. Borovikov, A. Sussman, and L. Davis. An efficient system for multi-perspective imag-

ing and volumetric shape analysis. In Proceedings of the 2001 Workshop on Parallel and

Distributed Computing in Imaging Processing, Video Processing, and Multimedia, San

Francisco, CA, 2001.

[21] E. Borovikov, A. Sussman, and L. Davis. A high performance multi-perspective vision

studio. In Proceedings of the 17th ACM International Conference on Supercomputing

(ICS), 2003.

[22] K. Chakrabarti and S. Mehrotra. The Hybrid tree: An index structure for high dimensional

feature spaces. In Proceedings of the 15th International Conference on Data Engineering

(ICDE), pages 440–447, 1999.

[23] U. S. Chakravarthy and J. Minker. Multiple query processing in deductive databases using

query graphs. In Proceedings of the 12th International Conference on Very Large Data

Bases (VLDB), pages 384–391, 1986.

[24] C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infrastructure for building parallel

database systems for multi-dimensional data. In Proceedings of the 13th International

Parallel Processing Symposium. IEEE Computer Society Press, Apr. 1999.

167

[25] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz. Titan: A high per-

formance remote-sensing database. In Proceedings of the 13th International Conference

on Data Engineering (ICDE), pages 375–384, 1997.

[26] E. Ch ávez, G. Navarro, R. Baeza-Yates, and J. Marroqu ı́n. Searching in metric spaces.

ACM Computing Surveys, 33(3):273–321, Sept. 2001.

[27] A. Chervenak, E. Deelman, I. Foster, L. Guy, and W. Hoschek. Giggle: A framework for

constructing scalable replica location services. In Supercomputing (SC 2001), 2001.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, 2nd edition, 2001.

[29] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. Querying peer-to-peer

networks using P-trees. In Proceedings of the 7th International Workshop on the Web and

Databases (WebDB), 2004.

[30] E. W. G. D. C. Wells and R. H. Harten. FITS: A flexible image transport system. Astron-

omy and Astrophysics Supplement Series, 44:363–370, 1981.

[31] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, and M. Tan. Semantic data caching

and replacement. In Proceedings of the 22th International Conference on Very Large

Data Bases (VLDB), pages 330–341, 1996.

[32] P. J. Denning. The working set model for program behavior. Communications of the

ACM, 11(5):323–333, May 1968.

[33] M. Folk. A White Paper: HDF as an Archive Format: Issues and Recommendations,

January 1998. http://hdf.ncsa. uiuc.edu/archive/hdfasarchivefmt.htm.

[34] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: Multi-dimensional

queries in p2p systems. In WebDB ’04: Proceedings of the 7th International Workshop

on the Web and Databases (WebDB), pages 19–24. LNCS, 2004.

[35] B. Gedik and L. Liu. MobiEyes: Distributed processing of continuously moving queries

on moving objects in a mobile system. In Proceedings of the 9th International Conference

on Extending Databases Technology (EDBT), 2004.

168

[36] Gnutella website. http://www.gnutella.org.

[37] P. Godfrey and J. Gryz. Answering queries by semantic caches. In Proceedings of the

10th International Conference on Database and Expert Systems Applications (DEXA),

pages 485–498, 1999.

[38] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel. Hdf5-fastquery. In Proceed-

ings of 18th International Conference on Scientific and Statistical Database Management

(SSDBM), 2006.

[39] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. Dewitt, and G. Heber. Scientific

data management in the coming decade. SIGMOD Record, 34(4), Dec. 2005.

[40] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings

of 1984 ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 47–57, 1984.

[41] D. Hagimont and D. Louvegnies. Javanaise: Distributed shared objects for internet coop-

erative applications. In IFTP International Conference on Distributed Systems, Platforms,

and Open Distributed Processing Middleware, 1998.

[42] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A scalable

overlay network with practical locality properties. In Proceedings of the 4th USENIX

Symposium on Internet Technologies and Systems (USITS ’03), 2003.

[43] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section

analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360, July

1991.

[44] A. Henrich, H.-W. Six, and P. Widmayer. The LSD tree: Spatial access to multidimen-

sional point and non-point objects. In Proceedings of the 15th International Conference

on Very Large Data Bases (VLDB), pages 45–53, 1989.

[45] A. Jhingran. A performance study of query optimization algorithms on a database sys-

tem supporting procedures. In Proceedings of the 14th International Conference on Very

Large Data Bases (VLDB), pages 88–99, 1988.

169

[46] I. Kamel and C. Faloutsos. Parallel R-trees. In Proceedings of 1992 ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 195–204, 1992.

[47] M. H. Kang, H. G. Dietz, and B. K. Bhargava. Multiple-query optimization at algorithm-

level. Data and Knowledge Engineering, 14(1):57–75, 1994.

[48] N. Katayama. HnRStar tree library ver. 1.0.

http://research.nii.ac.jp/˜katayama/homepage/research/srtree.

[49] J.-S. Kim, H. Andrade, and A. Sussman. Comparing the performance of high-level mid-

dleware systems in shared and distributed memory parallel environments. In Proceed-

ings of 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS).

IEEE Computer Society Press, Apr. 2005.

[50] N. Koudas, C. Faloutsos, and I. Kamel. Declustering spatial databases on a multi-

computer architecture. In Proceedings of the 5th International Conference on Extending

Databases Technology (EDBT), 1996.

[51] B. Kroll and P. Widmayer. Distributing a search tree among a growing number of proces-

sors. In Proceedings of 1994 ACM SIGMOD International Conference on Management

of Data (SIGMOD), pages 265–276, 1994.

[52] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weath-

erspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale

persistent storage. In Proceedings of ACM ASPLOS, 2000.

[53] T. Kurc, U. Catalyurek, X. Zhang, J. Saltz, M. Peszynska, R. Martino, M. Wheeler,

A. Sussman, C. Hansen, M. Sen, R. Seifoullaev, P. Stoffa, C. Torres-Verdin, and

M. Parashar. A simulation and data analysis system for large scale, data-driven oil reser-

voir simulation studies. Concurrency and Computation: Practice and Experience, 2005.

To appear.

[54] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Querying very large multi-

dimensional datasets in ADR. In Proceedings of the ACM/IEEE SC1999 Conference.

ACM Press, Nov. 1999.

170

[55] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Data replication strategies in

grid environments. In the 5th International Conference on Algorithms and Architectures

for Parallel Processing (ICA3PP), 2002.

[56] Larry Klein. An HDF-EOS and Data Formatting Primer , March 2001.

http://edhs1.gsfc.nasa.gov/waisdata/sdp/pdf/wp1750102.pdf.

[57] J. Liebeherr, E. Omiecinski, and I. Akyildiz. The effect of index partitioning schemes on

the performance of distributed query processing. IEEE Transactions on Knowledge and

Data Engineering, 5(3), 1993.

[58] W. Litwin, M.-A. Neimat, and D. A. Schneider. ��� � : Linear hashing for distributed

files. In Proceedings of 1993 ACM SIGMOD International Conference on Management

of Data (SIGMOD), pages 327–336, 1993.

[59] D. Lomet and B. Saltzberg. The hB-tree: A multiattribute indexing method with good

guaranteed performance. ACM Transactions on Database Systems, 15(4), 1990.

[60] T. Matsuyama, L. Hao, and M. Nagao. A file organization for geographic information sys-

tems based on the spatial proximity. In Computer Vision, Graphics and Image Processing.

Vol. 26, No.3, pages 303–318, 1984.

[61] D. Menasce and V. A. F. Almeida. Scaling for E-Business: Technologies, Models, Perfor-

mance, and Capacity Planning. Prentice Hall PTR, 2000.

[62] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing of

spatio-temporal data streams in PLACE. In Proceedings of the 2nd Workshop on Spatio-

temporal Databases Management (STDBM), 2004.

[63] A. Mondal, M. Kitsuregawa, B. C. Ooi, and K. L. Tan. R-tree-based data migration and

self-tuning strategies in shared-nothing spatial databases. In ACM Proceedings of the 9th

international symposium on Advances in Geographic Information Systems (GIS), pages

28–33, 2001.

[64] A. Mondal, Yilifu, and M. Kitsuregawa. P2PR-tree: An R-tree-based spatial index for

peer-to-peer environments. In Proceedings of the 1st international workshop on P2P

171

Computing and Databases, 2004.

[65] B. Nam and A. Sussman. Improving access to multi-dimensional self-describing scien-

tific datasets. In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid), May 2003.

[66] B. Nam and A. Sussman. A comparative study of spatial indexing techniques for mul-

tidimensional scientific datasets. In Proceedings of 16th International Conference on

Scientific and Statistical Database Management (SSDBM), June 2004.

[67] B. Nam and A. Sussman. Spatial indexing of distributed multidimensional datasets. In

Proceedings of the 5th IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid), May 2005.

[68] B. Nam and A. Sussman. DiST: Fully decentralized indexing for querying distributed

multidimensional datasets. In Proceedings of 20th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), 2006.

[69] National Oceanic and Atmospheric Administration. NOAA Polar Orbiter User’s Guide

– November 1998 Revision. compiled and edited by Katherine B. Kidwell. Available at

http://www2.ncdc.noaa.gov/ docs/podug/cover.htm.

[70] NCSA, University of Illinois. HDF User’s Guide, version 4.1r5, November 2001.

ftp://ftp.ncsa.uiuc.edu/HDF/HDF /Documentation/HDF4.1r5/Users Guide.

[71] NCSA, University of Illinois. Introduction to HDF5, April 2001.

http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html.

[72] NOAA, National Climatic Data Center. NOAA KLM user’s guide section 3.1, September

2000. http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3-1.htm.

[73] NOAA satellite and information service. Advanced Very High Resolution Radiometer -

AVHRR, 2005. http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html.

[74] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Spatial k-d-tree: An indexing mechanism

for spatial databases. In IEEE COMPSAC Conference, 1987.

[75] F. Özcan and V. Subrahmanian. Partitioning activities for agents. In Proceedings of the

2001 International Joint Conferences on Artificial Intelligence, Seattle, WA, 2001.

172

[76] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. Lo-

cus: A network transparent high reliability distributed system. In the 8th Symposium on

Operating Systems Principle, pages 169–177, 1981.

[77] A. Rajasekar, M. Wan, and R. Moore. MySRB & SRB – components of a data grid. In

Proceedings of the 11th IEEE International Symposium on High Performance Distributed

Computing (HPDC), July 2002.

[78] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder. Data grid federation. In Proceedins

of the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA), 2004.

[79] K. Ranganathan and I. Foster. Design and evaluation of replication strategies for a high

performance data grid. In International Conference on Computing in High Energy and

Nuclear Physics, 2001.

[80] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content

addressable network. In Proceedings of the 2001 ACM SIGCOMM Conference, 2001.

[81] Raytheon Systems Co., MD. HDF-EOS Users Guide for the

ECS Project, Volume I: Overview and Example, November 2001.

http://hdfeos.gsfc.nasa.gov/hdfeos/Docs/HDFEOSv2. x UG vol1.pdf.

[82] R. Rew, G. Davis, and S. Emmerson. NetCDF User’s Guide for C, 1997.

http://www.unidata.ucar.edu/packages /netcdf/cguide.pdf.

[83] J. T. Robinson. The K-D-B tree: A search structure for large multi-dimensional dynamic

indexes. In Proceedings of 1981 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD), 1981.

[84] M. Rodr ı́guez-Mart ı́nez and N. Roussopoulos. MOCHA: A self-extensible database mid-

dleware system for distributed data sources. In Proceedings of 2000 ACM SIGMOD In-

ternational Conference on Management of Data (SIGMOD), pages 213–224. ACM Press,

May 2000. ACM SIGMOD Record, Vol. 29, No. 2.

173

[85] A. Rosenthal and U. S. Chakravarthy. Anatomy of a modular multiple query optimizer.

In Proceedings of the 14th International Conference on Very Large Data Bases (VLDB),

pages 230–239, 1988.

[86] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[87] M. Satyanarayanan, J. Kister, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A

highly available file system for a distributed workstation environment. IEEE Transactions

on Computers, 39(4):447–459, 1990.

[88] B. Schnitzer and S. T. Leutenegger. Master-Client R-Trees: A new parallel R-tree ar-

chitecture. In Proceedings of 11th International Conference on Scientific and Statistical

Database Management (SSDBM), pages 68–77, 1999.

[89] J. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman. Monitoring

and discovery in a web services framework: Functionality and performance of the globus

toolkit’s mds4. Technical Report ANL/MCS-P1248-0405, Argonne National Laboratory,

Apr. 2005.

[90] Seagate. Barracuda 7200.100 – Data Sheet. http://www.seagate.com/docs/pdf/marketing/

po barracuda 7200 10.pdf.

[91] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems,

13(1):23–52, 1988.

[92] T. K. Sellis and S. Ghosh. On the multiple-query optimization problem. IEEE Transac-

tions on Knowledge and Data Engineering, 2(2):262–266, 1990.

[93] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-

dimensional objects. In Proceedings of the 13th International Conference on Very Large

Data Bases (VLDB), pages 507–518, 1987.

[94] K. Shim, T. K. Sellis, and D. Nau. Improvements on a heuristic algorithm for multiple

query optimization. Data and Knowledge Engineering, 12:197–222, 1994.

[95] C. T. Shock, C. Chang, B. Moon, A. Acharya, L. Davis, J. Saltz, and A. Sussman. The

design and evaluation of a high-performance earth science database. Parallel Computing,

24(1):65–90, Jan. 1998.

174

[96] N. M. Short. Remote Sensing Tutorial, 2006. http://rst.gsfc.nasa.gov.

[97] S. Song, Y. Kim, and J. Yoo. An enhanced concurrency control scheme for multidi-

mensional index structure. IEEE Transactions on Knowledge and Data Engineering,

16(1):97–111, Jan. 2004.

[98] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable

Peer-To-Peer lookup service for internet applications. In Proceedings of the 2001 ACM

SIGCOMM Conference, pages 149–160, 2001.

[99] M. S. Sunita Sarawagi. Efficient organization of large multi-dimensional arrays. In Pro-

ceedings of the Tenth International Conference on Data Engineering, pages 328–336,

February 1994.

[100] J. R. G. Townshend. Global data sets for land applications from the advanced very

high resolution radiometer: an introduction. International Journal of Remote Sensing,

15:3319–3332, 1994.

[101] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in the globus data grid. In

Proceedings of the 1st IEEE International Symposium on Cluster Computing and the

Grid (CCGrid), pages 106–113, 2001.

[102] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for

similarity-search methods in high-dimensional spaces. In Proceedings of the 24th Inter-

national Conference on Very Large Data Bases (VLDB), 1998.

[103] D. Wessels and K. C. Claffy. ICP and the Squid web cache. IEEE Journal on Selected

Areas in Communications, 16(3):345–357, Apr. 1998.

[104] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understanding replica-

tion in databases and distributed systems. In 20th International Conference on Distributed

Computing Systems (ICDCS), Apr. 2000.

[105] O. Wolfson and S. Jajodia. Distributed algorithms for dynamic replication of data. In

PODS ’92: Proceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems, pages 149–163, 1992.

175

[106] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm. ACM

Transactions on Database Systems, 22(2):255–314, 1997.

[107] X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Scalable spatio-

temporal continuous query processing for location-aware services. In Proceedings of 16th

International Conference on Scientific and Statistical Database Management (SSDBM),

2004.

[108] C. Zhang, A. Krishnamurthy, and R. Y. Wang. SkipIndex: Towards a scalable peer-to-

peer index service for high dimensional data. Technical Report TR-703-04, Princeton

University, 2004.

[109] K. Zhang, H. Andrade, L. Raschid, and A. Sussman. Query planning for the Grid: Adapt-

ing to dynamic resource availability. In Proceedings of the 5th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid), Cardiff, UK, May 2005.

[110] X. Zhang, J. L. Freschl, and J. M. Schopf. Scalability analysis of three monitoring and

information systems: Mds2, r-gma and hawkeye. In IEEE Transactions on Parallel and

Distributed Systems, June 2006.

[111] Z. Zhang, J. J áJ á, D. Bader, S. Kalluri, H. Song, N. E. Saleous, E. Vermote, and J. R. G.

Townshend. Kronos: A Java-based software system for the processing and retrieval of

large scale AVHRR data sets. Technical Report EECE-TR-99-006, University of New

Mexico, Nov. 1999.

[112] R. Zimmermann, W.-S. Ku, and W.-C. Chu. Efficient query routing in distributed spatial

databases. In ACM 12th International Symposium on Advances in Geographic Informa-

tion Systems (GIS), 2004.

176

