
UMIACS-TR-94-123 November, 1994CS-TR-3372Nonlinear Array Dependence AnalysisWilliam Pugh David Wonnacottpugh@cs.umd.edu davew@cs.umd.eduInstitute for Advanced Computer StudiesDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractStandard array data dependence techniques can only reason about linear constraints. There has also been workon analyzing some dependences involving polynomial constraints. Analyzing array data dependences in real-worldprograms requires handling many \unanalyzable" terms: subscript arrays, run-time tests, function calls.The standard approach to analyzing such programs has been to omit and ignore any constraints that cannotbe reasoned about. This is unsound when reasoning about value-based dependences and whether privatizationis legal. Also, this prevents us from determining the conditions that must be true to disprove the dependence.These conditions could be checked by a run-time test or veri�ed by a programmer or aggressive, demand-driveninterprocedural analysis.We describe a solution to these problems. Our solution makes our system sound and more accurate foranalyzing value-based dependences and derives conditions that can be used to disprove dependences. We also givesome preliminary results from applying our techniques to programs from the Perfect benchmark suite.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.
1



extended abstractNonlinear Array Dependence AnalysisWilliam Pugh David Wonnacottpugh@cs.umd.edu, (301) 405-2705 davew@cs.umd.edu, (301) 405-2726Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742January 6, 1995AbstractStandard array data dependence techniques can only reason about linear constraints. There has also been workon analyzing some dependences involving polynomial constraints. Analyzing array data dependences in real-worldprograms requires handling many \unanalyzable" terms: subscript arrays, run-time tests, function calls.The standard approach to analyzing such programs has been to omit and ignore any constraints that cannotbe reasoned about. This is unsound when reasoning about value-based dependences and whether privatizationis legal. Also, this prevents us from determining the conditions that must be true to disprove the dependence.These conditions could be checked by a run-time test or veri�ed by a programmer or aggressive, demand-driveninterprocedural analysis.We describe a solution to these problems. Our solution makes our system sound and more accurate foranalyzing value-based dependences and derives conditions that can be used to disprove dependences. We also givesome preliminary results from applying our techniques to programs from the Perfect benchmark suite.1 IntroductionStandard algorithms for determining if two array references are aliased (i.e., might refer to the same memory location)are posed in terms of checking to see if a set of linear constraints has an integer solution. This problem is NP-Complete[GJ79]. Both approximate and exact algorithms have been proposed for solving this problem.Unfortunately, many array dependence problems cannot be exactly translated into linear constraints, such asExample 1. The lhs and rhs of the assignment statement might be aliased if and only if9a; b; c; p; n s:t: 1 � a; b; c � n ^ p > 2 ^ ap + bp = cpAllowing arbitrary constraints makes checking for solutions undecidable (not to mention di�cult). Disproving theabove conditions is the same as proving Fermat's last theorem.The standard approach in cases such as this is to simply omit any non-linear constraints when building the setof constraints to be tested. For the above example, we would simply check the constraints:9a; b; c; p; n s:t: 1 � a; b; c � n ^ p > 2Omitting the non-linear constraints gives us an upper bound on the conditions under which the array referencesare aliased. Checking this upper bound for solutions will give us a conservative solution, which is what we need ifwe are to prove the safety of a program transformation that requires independence.if p > 2 thenfor a := 1 to nfor b := 1 to nfor c := 1 to na[a^p+b^p] = a[c^p]Example 1 for i := 1 to n dofor j := 1 to p doA[i,j] := A[i-x,j] + C[j]Example 2 for i := 1 to 100 doA[P[i]] := C[i]Example 32



However, there are a number of situations in which this approach is unsatisfactory. It is inadequate when wewant to know the conditions under which a solution exists, rather than just testing for the potential existence ofa dependence, or when we wish to produce dependence information that corresponds to the 
ow of values in theprogram (rather than memory aliasing).1.1 Symbolic dependence analysisWe represent data dependences as relations between tuples of integer variables. The input tuple represents thevalues of the loop index variables at the source of the dependence, and the output tuple the values of the loop indexvariables at the sink. We use a Presburger formula (see Section 2) to constrain these tuples to the iterations thatare connected by a dependence. Note that our techniques should not be blindly applied to all scalar dependences ina program, as other techniques can produce the same results more e�ciently ([SW94]).Consider Example 2: we can describe the 
ow dependence carried by the outer loop as a relation from sourceiteration i; j to destination iteration i0; j0:f[i; j0]! [i0; j0] j 1 � i < i0 � n ^ 1 � j; j0 � p ^ i = i0 � x ^ j = j0gSince all the terms are a�ne, we can use techniques described in [PW92] to compute the conditions on symbolicconstants (x; n and p) that must be true in order for a 
ow dependence to exist:1 � x < n ^ 1 � pOnce we compute these conditions, we might use more powerful analysis techniques to see if they can be disproved,allow the user the assert that they are false, and/or check at run-time to see if they are false. As described in [PW92],we can eliminate the test 1 � p as uninteresting.If a program contains non-linear expressions and we simply omit the corresponding non-linear constraints from thedependence problem, we will be unable to accurately compute necessary and su�cient conditions for the dependenceto exist. For example, if we omit the non-linear terms inf[i]! [i0] j 1 � i < i0 � 100^ P[i] = P[i0]g(the relation describing the output dependence in Example 3), we would conclude that a dependence is inevitable.However, if we include the non-linear constraints, we can determine that there is a dependence i� P[1:100] containsrepeated elements.1.2 Computing value-based dependencesStandard array data dependence tests only determine if two array references touch the same memory location; theyare oblivious to intervening writes. For a number of program optimizations and transformations, it is desirable toalso compute \value-based" dependences [Fea88, PW92, PW93, PW94, Mas94], in which there are no interveningwrites. In our approach [PW93], we start with a set of constraints describing the iterations that are aliased andthen subtract out the pairs clobbered by an intervening write. For example, the memory-based 
ow dependence inExample 4 is f[i; j]! [i0; j0] j 1 � i � i0 � n ^ 1 � j = j0 � mg:When we subtract out the pairs clobbered by an intervening write:f[i; j]! [i0; j0] j 1 � i < i0 � n ^ 1 � j = j0 � mgWe �nd that values are only communicated within iterations of the i loop:f[i; j]! [i0; j0] j 1 � i = i0 � n ^ 1 � j = j0 � mgThis approach cannot be applied with conservative approximations of the dependences: subtracting an upperbound from an upper bound gives something that is neither an upper bound nor a lower bound. So we can't justblindly omit non-linear constraints if we wish to compute value-based dependences, even if we are willing to settlefor a conservative approximation. If we tried to do so in Example 5, we would conclude that there cannot be aloop-carried 
ow dependence, even though there can. In Section 5.1, we will see that our techniques produce acorrect, though approximate, result for this example. In some cases, we can produce exact value-based dependenceinformation despite the presence of non-linear terms (Section 5's Example 11 shows one such case).3



for i := 1 to n dofor j := 1 to m dowork[j] := ...for j := 1 to m do... := work[j]Example 4 for i := 1 to n dofor j := 1 to L[i] dowork[j] := ...for j := 1 to m do... := work[j]Example 5 for i := 1 to n doA[m*i] := ...... := A[i]endfor Example 61.3 Representing control-
ow informationThere have been two approaches to the calculation of array data
ow information. Some methods, like ours, are basedon extensions of array data dependence techniques. Others are based on extensions of scalar data
ow equations todeal with array sections. In general, the former are better at dealing with complicated subscripts, and the latterhandle more complicated control 
ow. As we will see in Section 3.1, a su�ciently rich constraint language will letus handle control 
ow constructs other than for loops and structured if's.When we want to analyze value-based dependences or �nd the conditions under which a dependence exists, wemust have some way to avoid making approximations whenever we are faced with a non-linear term. This paperdescribes our use of constraints containing uninterpreted function symbols to represent non-linear expressions fromthe program, and thus avoid the problems described above. In Section 2, we describe the class of constraints thatwe can manipulate (Appendix A gives some details of our implementation). In Section 3, we show how to useuninterpreted function symbols for program analysis. Sections 4 and 5 show that these more powerful constraints letus perform accurate symbolic and value-based dependence analysis in the presence of non-linear terms. We presentour conclusions in Section 7.2 Presburger Formulas with Uninterpreted Function SymbolsPresburger formulas ([KK67]) are those formulas that can be constructed by combining a�ne constraints on integervariables with the logical operations ^, _, and :, and the quanti�ers 8 and 9. For example, the formulas weconstructed for the analysis of Examples 2 and 4 in Section 1 are Presburger formulas. There are a number ofalgorithms for testing the satis�ability of arbitrary Presburger formulas ([KK67, Coo72, PW93]). This problemappears to have worst-case complexity of 222O(n) [Opp78].We formulate value-based array data dependence in terms of (simple) Presburger formulas, with only two nestedalternating quanti�ers. Memory based array data dependence can be formulated in terms of even simpler Presburgerformulas, with only a single quanti�er. Fortunately, the formulas we generate for array dependence analysis of realprograms can be solved quite e�ciently [PW93].Presburger arithmetic can be extended to allow uninterpreted function symbols: terms representing the applicationof a function to a list of argument terms. The functions are termed \uninterpreted" because the only thing we knowabout them is that they are functions: two applications of a function to the same arguments will produce the samevalue. The formula we used in the analysis of Example 3 is in this class (since the array P is not modi�ed, it isequivalent to a function). Downey ([Dow72]) proved that full Presburger arithmetic with uninterpreted functionsymbols is undecidable. We will therefore need to restrict our attention to a subclass of the general problem, andproduce approximations whenever a formula is outside of the subclass.Shostak ([Sho79]) developed a procedure for testing the validity of quanti�er-free Presburger formulas withuninterpreted function symbols, based on the following observation: Consider a formula F that contains referencesf(i) and f(j), where i and j are free in F . Let F0 be F with fi and fj substituted for f(i) and f(j). F is satis�ablei� F 0 = (((i = j) ) (fi = fj)) ^ F0) is satis�able. Shostak provides several ways of improving over the naivereplacement of F with F 0.We are currently restricting our attention to formulas in which all function symbols are free, and functions areonly applied to an a�ne mapping of the input or output tuple of the relation containing the formula. For example,in a relation from [i; j; k] to [i0; j0], a binary function f could be applied f(i; j), f(i0; j0), or f(k + 2; i + j). In manycases (and in our current implementation), we only need considering applying a function to a pre�x of the input or4



for i := 1 to n dofor j := 1 to n dofor k := 1 to n doif p[i,j,k] < 0 thengoto L1 // 2 level breakA[i] := ...endforendforL1:endfor Example 7
for i := 1 to nfor j := 1 to n*i doa[j] := ...endforfor j := n*i+1 to m doa[j] := ...endforfor k := 1 to m do... := a[k]endforendfor Example 8 for i := 1 to nfor j := 1 to mfor k := 1 to p[i] doa[q*i+k] := ...endfor...endforendfor Example 9output tuple (e.g., the �rst two applications of f). Note that the formula we used for Example 3 is in this class.Our techniques are based on adapting the observation used by Shostak to our problem domain. The details ofthis adaption and its integration with our previous work are covered in Appendix A.3 Using Function Symbols in Dependence AnalysisConsider a program that contains a nonlinear term, such as Example 6. For each non-linear expression e that isnested within n loops, we use an n-ary function f(I) to represent the value of e in iteration I. For example, the 
owdependence in this example is f[i]! [i0] j 1 � i � i0 � n ^ fm�i(i) = i0gOf course, we do not know the value of fm�i at compile time, but we can use it in the constraints that describea dependence (after all, we're using n, and we don't know what it is).This basic technique works for non-linear expressions in subscript expressions, loop bounds and the guard ofconditional branches that do not break out of loops. This technique doesn't work well for breaks (i.e., jumps out ofa loop). The problem is that to describe the conditions under which iteration i of a loop executes, we must expressthe fact that the break was not taken in any previous iteration. We therefore use a slightly di�erent approach forbreaks: we create a function symbol who's value is the iteration in which the break is performed. In Example 7,there may be di�erent break's for each iteration of i. So we create function symbols bj(i) and bk(i) to describe whenthe break occurs. The constraints describing the iterations of the assignment statement that are executed are:f[i; j; k] : 1 � i; j; k � n ^ (j < bj(i) _ j = bj(i) ^ k < bk(i))gWe treat while loops as for loops with in�nite upper bounds (i.e., no upper bound) and a break statement.3.1 More Sophisticated Selection of FunctionsThe previous representation is somewhat crude: the only thing it captures is that a value computed at some iterationof a statement has some �xed but unknown value. We can do substantially better by recognizing when valuescomputed at di�erent points must be the same. For example, if we use the same function to represent the twooccurrences of n*i in Example 8, we can show that there are no upwards exposed reads. Also, an expression may bepartially loop invariant. In Example 9, the expression q * i is independent of the j loop, and would be representedas a function of i. If p is constant, p[i] is also independent of j.To summarize, we determine the level at which an expression is loop variant, and create a function symbol withas few arguments as possible. We identify syntactically distinct expressions that should be represented with the samefunction symbol by an adaptation of global value numbering [AWZ88, RWZ88]. More details will be provided in thefull paper. 5



4 Symbolic Dependence AnalysisIn previous work ([PW92]), we discussed a general method for �nding conditions that prove independence in programswithout non-linear terms, and described some ad-hoc methods for applying our techniques in the presence of suchterms. Our use of uninterpreted function symbols gives us a general framework for performing this analysis in thepresence of non-linear terms.4.1 Symbolic dependence analysis without non-linear termsWe begin with a review of our previous work. If a relation contains no function symbols, we �rst replace the variablesrepresenting the iteration space with existentially quanti�ed variables, giving the conditions on the symbolic constantsunder which a dependence exists somewhere in the iteration space. For example, the recall the 
ow dependence inExample 2: f[i; j0] ! [i0; j0] j 1 � i < i0 � n ^ 1 � j; j0 � p ^ i = i0 � x ^ j = j0g. This dependence exists i�1 � x < n ^ 1 � p.These conditions often contain conditions that are only false only in situations in which we don't care if the loopis parallel (in this case, 1 � p). We wish to avoid asking the user about such constraints or generating run-time testsfor them. We avoid this problem by collecting another set of constraints that give the conditions that must be truefor the dependence to be interesting: each surrounding loop executes at least one iteration, the loop that carries thedependence executes more than one, plus any facts about the program provided by user assertions or other analysis.We then consider only the gist of the dependence conditions given these uninteresting conditions ([PW92]).Informally, gist p given q this is the conditions that are interesting in pgiven that qholds. More formally, it is aminimal set of constraints such that (gist p given q) ^ q = p ^ q.If we �nd that there are interesting conditions under which the dependence will not exist, we might chooseto compile a run-time test or query the user about whether the conditions can actually occur (for example, theprogrammer might have knowledge about x in Example 2 that is not available to the compiler).4.2 Symbolic dependence analysis in the presence of non-linear termsWhen a Presburger formula contains no function symbols, we can eliminate any arbitrary set of variables. Thisability derives from the fact that our methods are based on a variation of Fourier's method of variable elimination,which relies on classifying individual constraints as either upper or lower bounds on the variable to be eliminated.However, a constraint like p(i) > 0 constrains both p and i, but it is neither an upper nor a lower bound on i.Therefore, we cannot eliminate i exactly if p(i) remains in the formula.This fact limits our ability to eliminate arbitrary variables from a formula. For example, we cannot simplyeliminate i and i0 from the relation describing the output dependence in Example 3:f[i]! [i0] j 1 � i < i0 � 100 ^ p(i) = p(i0)gWe therefore leave in the relation any iteration space variables that are used as function arguments. In this exam-ple, we cannot eliminate any variables, and the relation is not changed in the �rst step of our symbolic analysis.Fortunately, the uninteresting conditions on these variables are eliminated in the second step: the gist of the aboverelation given 1 � i � i0 � 100 is f[i]! [i0] j p(i) = p(i0)gNote that we may wish to include the \uninteresting" conditions in any run-time tests we compile (to check forrepeated elements only in p[1:100]) or dialogue with the programmer (\Is it the case that p[i] != p[i']whenever 1 � i < i0 � 100").4.3 Inductive Simpli�cationWith our methods, we frequently derive dependence breaking conditions of the form:C � 8i; i0; i < i0 ^ P (i; i0)) Q(i; i0)Verifying this condition with a run-time test typically requires O(n2) work, since we must check all ordered i,i0 pairs.We can often simplify this. We can derive C1, the subset of C for when i0 = i + 1:C1 � 8iP (i; i + 1)) Q(i; i + 1)6



Clearly, proving C1 is a necessary condition to proving C. We can then attempt an automatic inductive proof thatC1 ) C. We do this by checking if(i < i0 ^ P (i; i0)) Q(i; i0)) ^ (P (i0; i0+ 1)) Q(i0; i0+ 1))) (P (i; i0+ 1)) Q(i; i0+ 1))is a tautology. We have generally found that it is su�cient to prove a stronger claim, thati < i0 ^ P (i; i0) ^Q(i; i0) ^ P (i0; i0 + 1) ^Q(i0; i0 + 1) ^ P (i; i0+ 1)) Q(i; i0+ 1))is a tautology. If so, we know that checking C1 is su�cient. If not, we can sometimes derive additional informationthat, along with C1, is su�cient to prove C (see the DYFESM example in section 6) for an example of this).Sometimes, we have breaking conditions of the form:C � 8i; i0; i < i0 ^ P (i; i0)) (Q0(i; i0) _Q00(i; i0))and �nd that C1 6) C. However, if we de�neC0 � 8i; i0; i < i0 ^ P (i; i0)) Q0(i; i0)C00 � 8i; i0; i < i0 ^ P (i; i0)) Q00(i; i0)we may �nd that C 01 ) C0 ) C and C001 ) C 00 ) C. This occurs when we can show that all the elements of an arrayare distinct by showing that they are strictly increasing or strictly decreasing, and in cases such as those shown inthe TRFD INTGRL and DYFESM HOP examples described in Section 6.Once such a condition is derived to disprove one dependence, it can often be used to disprove many others.5 Value-Based Dependence AnalysisOur use of function symbols to represent non-linear expressions increases the accuracy of our value-based dependenceanalysis. We can compute value-based dependence information from access A to B by subtracting, from the relationdescribing the pairs where memory aliasing occurs, all the pairs in which the memory location is over-written bysome write B. This set of pairs to be subtracted is the union of all compositions of a dependence B to C with onefrom A to B. This composition operation may produce results that are outside the class of relations we can handle,and therefore produce approximate results.For example, we cannot produce exact information about the loop-carried 
ow of values in Example 10. To doso, we would have to calculate the composition of the loop-carried 
ow dependence with the loop-carried outputdependence, which produces the relation:f [i; j]! [i0] j 9[i00; j00] s:t: 1 � i < i00 < i0 � n ^ p(i) > 0 ^p(i00) > 0 ^ 1 � j00 = j0 � n ^ j = j00 = i0 gSince this relation contains an application of a function to a quanti�ed variable, it is outside the class of formulaswe can handle. It is possible to apply the techniques described in [Sho79] to the formula in this relation, but thesetechniques simply test for satis�ability; we need to subtract this relation from the relation giving memory-baseddependences.Note that we can compose the loop-independent 
ow dependence with the loop-carried output dependence. Sincei00 = i0, we can replace p(i00) with p(i0):f [i; j]! [i0] j 9[i00; j00] s:t: 1 � i < i00 = i0 � n ^ p(i) > 0 ^ p(i00)| {z } > 0 ^ 1 � j00 = j0 � n ^ j = j00 = i0 g�f [i; j]! [i0] j 9[i00; j00] s:t: 1 � i < i00 = i0 � n ^ p(i) > 0 ^ z }| {p(i0) > 0 ^ 1 � j00 = j0 � n ^ j = j00 = i0 gWhen we subtract this from the relation that describes the memory-based dependence, we eliminate any loop-carried
ow dependences to iterations in which p(i) > 0.We can produce exact value-based dependences for Example 11. There are two compositions of output depen-dences and 
ow dependences that describe potential kills. We can represent each of these exactly, and when wesubtract them both from the loop-carried memory-based dependence, nothing is left.7



for i := 1 to n doif p(i) > 0 thenfor j := 1 to n doa[j] := ...endforendif... := a[i]endfor Example 10
for i := 1 to n doif p[i] > 0 thenfor j := 1 to n doa[j] := ...endforelsefor j := 1 to n doa[j] := ...endforendif... := a[i]endfor Example 115.1 Symbolic array data
ow analysisWe can apply the techniques of Section 4 to value-based dependence relations, even if they are inexact. For example,we cannot produce an exact description of the data 
ow in Example 5. If we choose to be conservative, we can showthat the value-based loop-carried 
ow dependences are a subset off [i; j]! [i0; j0] j 1 � i < i0 � n ^ 1; l(i0) + 1 � j = j0 � m; l(i) gWe eliminate j and j0, producing f [i]! [i0] j 1 � i < i0 � n ^ 1; l(i0) + 1 � m; l(i) gWhen we take the gist of this relation given our usual set of uninteresting conditions, we get:f[i]! [i0] j l(i0) < l(i); mgThus, we can disprove a dependence by asserting that L is nondecreasing, or that all elements of L are greater than m(in which case the read is covered). Therefore, we could privatize the work array and run this loop in parallel undereither of these conditions. Similarly, we could conclude that Example 10 could be run in parallel if p is always greaterthan 0. However, the inexactness of our result keeps us from showing that this example can also be parallelized if pis nondecreasing.5.2 Related WorkPaul Feautrier and Jean-Francois Collard ([CF94]) have extended their array data
ow analysis technique to handlenon-linear terms in loop bounds and if's. They also give a precise description of the set of programs for which theycan provide exact dependence information. However, their system cannot be applied to programs with nonlineararray subscripts, and according to Section 5.1 of their work, extending it to handle this case is \very di�cult".Furthermore, there is no discussion of any way of introducing information about the values of non-linear expressions,as we describe in Section 3.1. We have not been able to come up with a precise mathematical comparison of ourmethods, but have so far not found an example in which one method cannot disprove a dependence that is disprovedby the other, without resorting to non-linear subscripts or the techniques in Section 3.1.We believe that the most signi�cant distinction between our work and [CF94] is our ability to relate the non-linear terms in our dependence relations to expressions in the program, and thus discuss the program with someexternal agent (such as the programmer), as described in Section 4. The techniques described in [CF94] produceinformation about the possible sources of a value that is read from an array, but do not provide information aboutwhich expressions in the program control which source actually produces the value. In other words, they provide nomechanism for deriving the fact that Example 5 can be parallelized (after array expansion) if L is nondecreasing.8



Procedure time for our analysis time for f77 -fastBTRIX 2.3s 3.8sCFFT2D1 9.0s 1.0sINTERF 10.2s 2.2sNLFILT 4.6s 1.4sOLDA 4.2s 2.1sFigure 1: Analysis times for array data dependences in several procedures1: for i := 1 to nmol1 do2: for j := 1 to nmol do3: kc := 04: for k := 1 to 9 do5: rs[k] := ...6: if rs[k] > cut2 then kc := kc + 17: if kc < 9 then8: for k := 2 to 5 do9: if rs[k] <= cut2 then10: rl[k+4] := ...11: if kc = 0 then12: for k := 11 to 14 do13: ... := ... rl[k-5] ...Example 12: MDG INTERF 1000 for i := 1 to n dofor j := 1 to i doa[p[i]+j] := ...Example 13: TRFD INTGRL 540for i := 1 to n dofor j := 1 to b[i] doa[p[i]+j] := ...Example 14: DYFESM HOP 20Vadim Maslov's work on lazy dependence analysis ([Mas94]) can handle some non-linear constraints. The value-based dependences his system can disprove are a strict subset of the ones we can disprove, but the dependences hissystem fails to disprove do not appear to be common. However, his system cannot determine the conditions thatwould disprove a dependence and cannot utilize the all of the optimizations described in Section 3.1.5.3 Timing ResultsWe have implemented techniques to manipulate relations in which functions are applied to a pre�x of the input oroutput tuple of the relation (this is su�cient to handle everything described in this paper except a small subset ofthe cases described in Section 3.1). Figure 1 shows the amount of time required on a Sparcstation 10/51 for ourimplementation to perform memory and value-based dependence analysis on the array variables of several routinesfrom the Perfect Club Benchmark Suite ([B+89]). The routines shown in this table all contain many non-linearterms.While these times may be to great to allow the use of our techniques during regular compilation, they are notexcessive for a system that interactively assists programmers in the detection and elimination of dependences thatprevent parallelism (this task has traditionally been done manually, in time measured in minutes, hours, or days).6 Real world examplesIn this section, we describe the results of applying the techniques describes here to a number of loops from the Perfectclub that have been identi�ed by other researchers as being parallel but not made parallel by current compilers[EHLP91, BE94, BEH+94, RP94].MDG INTERF 1000 (Example 12) The di�cult issue in the analysis of this program is proving that the rlarray can be privatized. Our analysis cannot prove this, but can determine that the condition that needs to be9



proven to verify this is:8i; j; k; 1 � i � nmol1 ^ 1 � j � nmol ^ 1 � k � 9 ^ C11(i; j) ) C9(i; j; k)where C11 and C9 are the guards at lines 11 and 9. It is not easy to generate a fast run-time test to verify this, andwe doubt that this could be automatically proved except by building a special case for this example. However, thiscondition is guaranteed to be true and can be easily veri�ed by a programmer.TRFD INTGRL 540 Example 13 is a very simpli�ed version of the di�culty here. Our methods determine thatthere is an output dependence i�:8i; i0; 1 � i < i0 � n) (p(i0) � p(i) + i _ p(i) � p(i0) + i0)We can use the techniques in Section 4.3 to show that a su�cient (but not necessary) test to disprove the dependenceis: 8i; 1 � i < n) p(i + 1) � p(i) + i _ 8i; 1 � i < n) p(i) � p(i + 1) + i+ 1Aggressive interprocedural analysis can prove that p(i) = i(i � 1)=2, which would disprove the dependence.DYFESM Example 14 shows a very simpli�ed version of the tricky dependence here. Our methods determinethat there is an output dependence i�:8i; i0; 1 � i < i0 � n) (p(i0) � p(i) + b(i) _ p(i) � p(i0) + b(i0))If we try to show that 8i; 1 � i < n) p(i + 1) � p(i) + b(i) is a su�cient condition to disprove the dependence, we�nd that we must also establish 8i; 1 � i < n ) b(i) � 0. The fact that p(i + 1) = p(i) + b(i) might be veri�ed byadvanced interprocedural analysis, but the fact that b(i) is nonnegative depends on input data and would thus needto be asserted by the programmer or veri�ed by a run-time test.BDNA ACTFOR 240 Our methods don't work on this example. We are unable to disprove the loop carried
ow dependence on the arrays XDT and IND, and do not generate exact constraints that could disprove it. We areinvestigating ways of handling this example.ARC2D FILERX 290 Our methods prove that there is no loop carried value-based 
ow dependence, allowingus to privatize the work array and run the loop in parallel. We do not prove that no copy-in is required, but dogenerate an exact set of conditions that describe when it isn't (advanced interprocedural analysis could determinethat these conditions are always satis�ed).MDG POTENG 2000 We disprove all value based loop carried 
ow dependences, except for some accumulationsinto scalars, which can be handled by parallel reductions, allowing the loop to be run in parallel.TRFD OLDA 100 and 300 We prove that the work arrays (XRSIQ, XIJ, XIJKS, and XKL) can be privatized.We also need to show that there are no output dependences for the writes to XIJRS and XIJKL. It is quite easyto determine from the code that the subscripts of these writes are strictly increasing (if checked before inductionvariable recognition). Since facts of this kind can be easily incorporated into our framework, we suggest suchinformation be recorded and used. After non-linear induction variable recognition, the subscripts are replacedwith complicated polynomials of the loop variables, and verifying that these polynomial are non-decreasing is morechallenging. Generating a run-time test is not particularly easy or useful for this example.7 ConclusionsStandard array dependence analysis techniques produce conservative approximations by ignoring any constraintsarising from non-linear terms in the program. This approach is not adequate for tests that perform value-baseddependence analysis or provide information about the conditions under which a dependence exists.10



We use uninterpreted function symbols to represent non-linear terms in our constraint system. This approachlets us calculate conditions that are su�cient and necessary for a memory-based dependence to exist. Furthermore,it seems to be at least as powerful as other methods for computing approximate value-based array dependences inthe presence of non-linear terms. We can determine the conditions under which a value-based dependence exists,although these conditions will not be tight if the dependence is approximate (i.e. we will produce separate sets ofnecessary and su�cient constraints).Our techniques provide information that is useful in determining that some code from the Perfect Club Benchmarkprograms can be run in parallel. This information is not provided by standard analysis techniques. Some of thisinformation might be derived by advanced interprocedural analysis techniques [BE94], but it may be more e�cientto derive such information in a demand-driven way, rather than trying to derive all interprocedural information thatcan be proven.A partial implementation of our approach will be distributed with version 0.9 of the Omega library and dependenceanalyzer (expected Nov. 20th, 1994), and most of the techniques described here should be implemented by spring1995.A Manipulating Presburger Formulas with Uninterpreted FunctionSymbolsOur techniques for manipulating Presburger formulas with uninterpreted function symbols are based on our previouswork with regular Presburger formulas ([PW93]). Our approach is based on conversion to disjunctive normal formand testing each conjunct via Fourier's method of elimination, adapted for integer variables ([Pug92]). We havedeveloped a number of techniques to ensure that the number and sizes of conjuncts produced do not get out of handfor the formulas that we encounter in practice.Our techniques, like those of Shostak, rely on the fact that when i = j, f(i) must equal f(j), and when i 6= j, f(i)is unrelated to f(j). We therefore convert each formula into a specialized disjunctive normal form, in which everyconjunct that contains multiple uses of a function also contains either an equality constraint between or the functionarguments or some constraint that contradicts this equality. In other words, a conjunct containing both f(i1; i2; i3)and f(j1; j2; j3), could contain either i1 = j1 ^ i2 = j2 ^ i3 = j3 or i2 > j2 (or some similar inequality).Note that the relations we generate to describe data dependences are often in this form already, because thefunctions are typically applied to a pre�x of the input or output tuple and we use distinct relations to describedependences carried at di�erent levels.We simplify each individual conjunct, treating function symbols as follows:� If a conjunct contains only one application of f , treat the function application as a scalar constant.� If a conjunct contains multiple function applications whose arguments are equal, we unify them, treating theresult as a single scalar constant.� We treat function applications with arguments that are known to be distinct as independent distinct scalarconstants.When we manipulate relations with the relational operators supported by the Omega test, we handle appearancesof f as follows:� For some operations, such as intersection, union, or inversion, the input and output tuples of all input relationsbecome the input or output tuple of the result. Such operations must always produce relations that we canrepresent exactly.� Operations such as range or composition, in which the input or output tuple of a relation becomes existentiallyquanti�ed in the result, may produce results that we cannot handle. In this case, we approximate any constraintthat contains a function application that cannot be written as f(In) or f(Out) in the result.When we approximate, we may wish to produce either an upper or a lower bound on the relation. We can relaxany conjunction of constraints containing f(x), where x is existentially quanti�ed, by replacing f(x) with a newexistentially quanti�ed scalar. We can tighten such a conjunction by replacing it with false.11



During value-based dependence analysis, we may perform operations on approximate relations. Speci�cally, weneed to analyze A^:B, where A is exact formula and B is a formula that is an upper bound on what B is intendedto express. This upper bound could arise due to an inexact composition. If A ^B is infeasible, we know that A isan exact answer, even though B is an inexact upper bound. Otherwise, A is an inexact upper bound on the answer.To analyze A ^ :B ^ :C ^ :D ^ : : :, we �rst handle the exact negated clauses. This makes it more likely that wewill be able to use the technique above to get an exact answer.References[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of values in programs. Conf. Rec. Fifteenth ACM Symp.on Principles of Programming Languages, pages 1{11, January 1988.[B+89] M. Berry et al. The PERFECT Club benchmarks: E�ective performance evaluation of supercomputers. International Journalof Supercomputing Applications, 3(3):5{40, March 1989.[BE94] William Blume and Rudolf Eigenmann. Symbolic analysis techniques needed for e�ective parallelization of the Perfectbenchmarks. Technical Report 1332, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., 1994.[BEH+94] William Blume, Rudolf Eigenmann, Jay Hoe
inger, David Padua, Lawrence Rauchwerger, and Peng Tu. Automatic detectionof parallelism: A grand challenge for high-performance computing. Technical Report 1349, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., 1994.[CF94] Jean-Fran�cois Collard and Paul Feautrier. Fuzzy array data
ow analysis. Technical Report Research Report No 94-21,Laboratoire de l'Informatique du Parall�elisme, Ecolo Normal Sup�erieure de Lyon, Instiut IMAG, July 1994. Postscriptavailable as lip.ens-lyon.fr:pub/LIP/RR/RR94/RR94-21.ps.Z.[Coo72] D. C. Cooper. Theorem proving in arithmetic with multiplication. In B. Meltzer and D. Michie, editors,Machine Intelligence7, pages 91{99. American Elsevier, New York, 1972.[Dow72] P. Downey. Undeciability of presburger arithmetic with a single monadic predicate letter. Technical Report 18-72, Center forResearch in Computing Technology, Havard Univ., 1972.[EHLP91] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua. Experience in the automatic parallelization of 4 Perfect benchmarkprograms. In Proc. of the 4th Workshop on Programming Languages and Compilers for Parallel Computing, August 1991.[Fea88] Paul Feautrier. Array expansion. In ACM Int. Conf. on Supercomputing, St Malo, pages 429{441, 1988.[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freemand and Company, 1979.[KK67] G. Kreisel and J. L. Krevine. Elements of Mathematical Logic. North-Holland Pub. Co., 1967.[Mas94] Vadim Maslov. Lazy array data-
ow dependence analysis. In ACM '94 Conf. on Principles of Programming Languages,January 1994.[Opp78] D. Oppen. A 222pn upper bound on the complexity of presburger arithmetic. Journal of Computer and System Sciences,16(3):323{332, July 1978.[Pug92] William Pugh. The Omega test: a fast and practical integer programmingalgorithm for dependenceanalysis. Communicationsof the ACM, 8:102{114, August 1992.[PW92] William Pugh and David Wonnacott. Eliminating false data dependences using the Omega test. In SIGPLAN Conferenceon Programming Language Design and Implementation, pages 140{151, San Francisco, California, June 1992.[PW93] William Pugh and David Wonnacott. An exact method for analysis of value-based array data dependences. In Lecture Notesin Computer Science 768: Sixth Annual Workshop on Programming Languages and Compilers for Parallel Computing,Portland, OR, August 1993. Springer-Verlag.[PW94] William Pugh and David Wonnacott. Static analysis of upper and lower bounds on dependences and parallelism. ACMTransactions on Programming Languages and Systems, 14(3):1248{1278, July 1994.[RP94] Lawrence Rauchwerger and David Padua. The privatizing doall test: A run-time technique for doall loop identi�cation andarray privatization. Technical Report 1383, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev.,1994.[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations. Conf. Rec. FifteenthACM Symp. on Principles of Programming Languages, pages 12{27, January 1988.[Sho79] Robert E. Shostak. A practical decision procedure for arithmetic with function symbols. Journal of the ACM, 26(2):351{360,April 1979.[SW94] Eric Stoltz and Michael Wolfe. Detecting value-based scalar dependence. In Proc. of the Seventh Annual Workshop onLanguages and Compilers for Parallel Computing. Cornell University, August 1994.12


