
Languages and Tools for Real-time Systems: Problems, Solutionsand Opportunities �Richard GerberDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742(301) 405-2710rich@cs.umd.eduUniversity of Maryland Technical ReportCS-TR-3362, UMIACS-TR-94-117October 14, 1994AbstractThis report summarizes two talks I gave at the ACM SIGPLAN Workshop on Language,Compiler, and Tool Support for Real-Time Systems, which took place on June 21, 1994, inin Orlando, Florida. The workshop was held in concert with ACM SIGPLAN Conference onProgramming Languages Design and Implementation.The �rst talk (\Statements about Real-Time: Truth or Bull?") was given in the earlymorning. At the behest of the workshop's organizers, its primary function was to seed theongoing discourse and provoke some debate. Besides asking controversial questions, and positingopinions, the talk also identi�ed some several fertile research areas that might interest PLDIattendees.The second talk (\Languages and Transformations: Some Solutions") was more technical,and it reviewed our research on program optimizations for real-time domains. However, I triedas much as possible to revisit the research problems raised in the morning talk, and presentsome possible approaches to them.The following paragraphs contain the text frommy viewgraphs, laced with some commentary.Since so much work has been done in real-time systems { and even more in programminglanguages { my references are by necessity incomplete.�Author supported by ONR project N00014-94-10228, NSF grant CCR-9209333, and an NSF Young InvestigatorAward CCR-9357850. 1

1 IntroductionOne often �nds a gaping chasm between those who write research papers about computer systems,and those who earn their paychecks building them. When representatives from both sides attemptto discuss their work, they �nd each other speaking in strange and foreign tongues. This can be avery frustrating experience for both parties involved.The lower one steps down the ladder of abstraction in development technologies { say, from MLto C++, to C, to machine-code debugging, to using logic analyzers { the wider the chasm gets.And since real-time programming is still, sadly, practiced at a fairly low level, the gap of discoursebetween University researchers and industrial programmers can at times be wide indeed.After all, our job is to help create higher levels of abstraction { and in so doing, we occasionallyhave to make assumptions, simpli�cations, etc. If we had to consider each minuscule step of theproblem we would never get anything done. But sometimes practitioners believe that we over-simplify the problem at hand, and sometimes { admittedly { we do.Their job, on the other hand, is to get the system out before the release deadline slips toofar. This may mean replacing a nicely structured C++ class hierarchy with a tight, hand-written,assembly language module. Or forgetting about fancy (but non realtime) debuggers, and turningto an in-circuit-emulator (or ICE). In other words, if it works, and it helps expedite the process, sobe it.Having been one of them in my previous career I can assure you that this type of ad-hoc,
exible expediency yields better marginal results than most strict development processes, formalapproaches, expensive OO structuring tools, CASE tool suites, high-performance compilers, etc.What I mean is the following. Given limited development resources, and the choice between fancysoftware processes on one hand, or an ICE, a logic analyzer and a very good consultant/hacker onthe other, I'd always take the latter.However my option is replete with gaping limitations. First, it depends on excellent program-mers who can keep track of ad-hoc changes. Also my expert \consultant/hacker" (if one can befound) will not stay forever { hopefully. Moreover, my option requires buying some very expensivehardware, which may not even be upgradable to next-year's chipsets.But more importantly, the ad-hoc option simply does not scale to modern systems. In multipro-cessor platforms, for example, a single-pod ICE will be of little help, and it probably won't providereal-time performance { no matter what the vendors claim. Further, RISC processors with cachesmake this type of debugging very di�cult indeed { the logic analyzer provides no register-levelinformation, and in \real-time mode" the ICE provides little more.Most importantly, my option would be useless in building a very large system, with hundreds(or thousands) of interacting components. And maintaining it would be a nightmare indeed.But if I can't use a seat-of-the pants approach, what are the alternatives? Should I turn to an2

object-oriented language { and its associated class libraries { or will the binding problems get inmy way? How about o�-the-shelf kernels { can I trust them, or should I \grow my own?" Andshould I buy expensive, graphical CASE tools, or get into object-oriented-design?And getting down to fundamentals, how can I get my hands on a good timing analyzer, or evenan unobtrusive pro�ler that I can trust? Should I turn on my compiler's fancy optimizer, or will itgive me worse { and even incorrect { performance?I have heard all of these questions from \builders," though they are not always posed as ques-tions. Sometimes they are rendered as opinions (\No, No, \I don't know," \No"), which have grownout of bitter, frustrating experiences.So, I would like to o�er a challenge for this community: We are in the business of designingabstractions and the tools to support them { including languages, timing tools, standardized kernels,compilers, etc. So let's provide solid abstractions to solve some of these problems in a rationalmanner { without neglecting the all-too-important details. Maybe then \builders" will be able touse what we \researchers" produce, and perhaps we'll end up understanding each other.In fact, some nice solutions already exist, and I'll attempt to identify several of them. Weshould be aware of them, and use them if we can.2 Statements About Real-Time: Truth or Bull?This workshop is devoted to a relatively young research area: programming languages and toolsupport for real-time development. And when one approaches a new research area, it helps toinvestigate its underpinnings, and to appreciate its contemporary practices. It is especially enlight-ening to question its mythology, and understand how it arose.Let's investigate a bit. I'd like to toss out a few statements, each of which captures one \schoolof thought" about real-time systems development. I'll comment on each one, and explain whetherI think it's either \true" or \bull." Of course these are my own opinions, and mine alone { if youdisagree, so much the better! \Truth or Bull?"Statement 1: Neither Ada nor POSIX 1003.1-4 can be used for RT. (T/B)Opinion: \C'mon, let this old dog rest already."In other words it's bull. But when we investigate the statements { both of which I've heardmany times { we �nd two or three dogs that should �nally rest.First, for many years it was fashionable to beat up on Ada { even among those who weren'tfamiliar with it. Much of this stemmed from the heavy-handed way that DOD imposed it on3

developers. But the fact remains that Ada is used in many mission-critical systems, thus belyingthe myth that Ada83 and real-time are not compatible.Often what lies behind this myth is a vague confusion between Ada \the language" and Ada\the runtime environment." And if one only peruses a sample set of standards documents, orperhaps listens to the \lure of Ada," one may easily come to believe that Ada is both \language"and \runtime." After all, the standards don't really distinguish between the two, right?Frankly, many features of the \runtime" portion are indeed incompatible with real-time practice.Examples abound: synchronous rendezvous as the primary IPC, minimum (but alas, no maximum)delay construct, lack of good priority-based scheduling, heavyweight memory management, etc.But one doesn't appreciate the entire story by reading documents, USENET newsgroups oroperating systems textbooks. For a long time DOD program managers have understood theseproblems, and have allowed embedded-systems contractors to use Ada \the language," supportedby customized runtime systems. And since the few main vendors of Ada compilers (e.g., Rational,Verdix, Intermetrics, etc.) sell such environments, a de facto standard of sorts has emerged. Asfor Ada \the language," it's just that { a programming language equipped with tasking constructs,package encapsulation and assorted other features. One may argue whether it's good, bad, ugly,cumbersome, etc., but the fact remains that it is used in many realtime systems.In a large sense, the Ada 9X real-time annex [30] simply codi�ed many components of thede facto standard. It supports shared, protected objects (i.e., typed, shared memory segments),asynchronous transfer of control, �rst-class interrupt handlers and exceptions. As for real-timeprimitives, it includes timeouts (and not just delays), direct, priority-based scheduling (and abilityto change priorities), priority-ceiling support for protected objects, etc.The \annex approach" to 9X also codi�ed the way that embedded-systems developers currentlyuse Ada: The base language is more minimal { and far less complicated { while the more heavy-weight features can be selectively incorporated. Nonetheless, whether Ada will �nd its way intonon-military domains remains an open question. (A positive sign is the Gnu-Ada project, whichwill provide universities, small production houses and the like with cheap support.)All of which brings us to the Posix standards, or more precisely, the POSIX 1003.4 StandardRealtime Extensions. One frequently hears that \Ada can't support real-time." But even morefrequently one hears that \POSIX-compliant systems can't support real-time." Who says this, andwhy?First, the POSIX real-time standard is an attempt to bring the POSIX \open systems frame-work" to the world of real-time development. The idea is that if a certi�ed set of realtime featuresare adopted in Unix systems, then perhaps I'll be able to run your real-time applications on myplatform, and they'll perform as you intended them to perform. This should seem like a decentidea to most people. What's so controversial about it?The problem is that standards policies always step on the toes of \vested interests." Assume4

that you just spent the last �ve years of your career building a real-time kernel. Assume that muchof that time was spent selling your concept to your research community, customer base, etc. Nowalong comes a set of standards that mandates a radically di�erent kernel concept. And, no matterhow hard you may try, your kernel will never be compliant. Thus if the standard is adopted, yourkernel will be obsolete. Think about it: how would you feel?To get to the bottom of this, let's check out the POSIX 1003.4 extensions: multiple, selectablepriority levels, fully preemptive processes, �ne-resolution timers and alarms, priority-driven servers,and the like. In other words, the POSIX standard seems to shout from its margins the words\Priority-Based Scheduling." Right?Wrong. And now we �nally come to what folks used to argue about (and some still do) { theyargued over scheduling policies. You see, there have traditionally been two schools in this: those whoadvocated preemptive, priority-based scheduling, and those who advocated nonpreemptive, time-based scheduling. The \priority group" employs methods like \rate-monotonic scheduling" [24, 21](which statically assigns the highest priority to the highest-rate process), the \priority-ceiling-protocol" [29] (which handles priority inversion due to blocked resources), \EDF-scheduling" [24](which dynamically assigns the highest priority to the process with the earliest deadline), \generalstatic-priority-scheduling" [31] (which accounts for o�sets, blocking, and deadlines), and a varietyof other policies. This group argues for an easier design process, cheaper analysis tests, moreadaptability, etc.The \time-line group" uses terms like \calendar-based dispatching," \cyclic executive dispatch-ing," [35, 7, 2, 38, 36], etc. Basically, these terms add up to the same approach { a major frame(or LCM, or hyper-period) is created, and all task instances falling within the frame are sorted toexecute non-preemptively. This group argues for more dependability, predictability, less nondeter-minism, etc.This isn't merely a philosophical argument, since representatives from both groups have builtkernels based on their philosophies. Thus, while the argument is at times about scheduling, it'spartially about operating systems. Since the POSIX standard seems to argue for priority-drivenscheduling, the second group { on the face of it { loses out.But this isn't true. Recall that the POSIX standard includes programmable timers, so onecan easily build a cyclic executive scheduler on top of a POSIX-compliant system. Just run anexecutive at the highest priority, and use the timers to trigger the \launching-time" for each taskinstance. Thus static scheduling and POSIX are hardly incompatible.Let's look at things a di�erent way. There is a wide scale of complexity in the world of realtimesystems. The scale begins with purely periodic tasks, which don't communicate with each other orthe environment. Proceeding up the scale, tasks may protect critical sections with semaphores, orperhaps use shared IO devices. Proceeding further, there may be nested, relative timing constraints,inserted delays and like. Then we get to multiprocessing systems, inter-networked systems, etc.5

The further one proceeds up this scale, the less \pure" static-priority scheduling applies. So let'sassuming that you choose to use static-priority scheduling whenever possible. If your system is amarginally complex one, I bet that it possesses some element of time-based scheduling.On the other hand, assume that I have a very critical application in which leaving out a \P()"operation could cause a nuclear reactor to melt-down. For the sake of predictability I've decidedto use a cyclic-executive scheduler. However, I still may wish to utilize some available CPU timefor less critical, non-realtime processes (like screen updates). If there are several such processes,they will have to be arbitrated in some manner, and probably by using priorities. Thus I'll end upusing some priority-based scheduling after all.What I'm saying is that not only has the \ADA/POSIX debate" been a red herring, but so hasthe \scheduling debate." It's time to put both of these dogs to rest.But if we have to declare a winner here, it's the the real-time research community. There isnow a panoply of industrial real-time kernels, all of which are well-supported, lightweight, and { toa greater or lesser extent { POSIX-compliant. To name three, QNX [14], VxWorks and Lynx-OSsupport very fast context-switch latencies, programmable timers, multiple-levels of priorities andfull preemptivity. These kernels were built using the principles that university-types developed.For example, without the rich theory of rate-monotonic-analysis (now more appropriately called\static-priority analysis"), there would have been little reason for the major features in POSIX1003.4, or in Ada 9X.So let's stop recycling these poor, tired, overwrought arguments, and �nally declare victory.We've won.Statement 2: In order to build a real-time system, one must perform tight, a priori, static timinganalysis. (T/B)Opinion: \Less and less tight with each new architecture. Is it time to declare defeat?"In other words, \bull." But I suppose I have to explain myself, since at the workshop myremarks were slightly misunderstood. It was noted that in the absence of timing analysis, o�-linescheduling analysis becomes impossible, as does time-based compiler optimization, etc. In otherwords, \we may as well pack up and go home." True enough.But re-reading the statement after several months, I'll still maintain my position. As in State-ment 1, I can simply give \proof by example." I claim that (1) tight, a priori, static timing analysisis not carried out, and (2) real-time systems do indeed get built. Since I hope we can agree on (2),I suppose I'll have to substantiate (1).Resolved: modern architectures are far too complicated to statically derive tight bounds onexecution-times for nontrivial codes. The operant words here are static, tight and nontrivial. Theword static infers that analysis is performed on the program without actually running it. A tight6

predicted time bound is one that will actually be achieved if the program takes its worst-case path.As for nontrivial, I'm assuming that the program contains branching structures, memory accesses,perhaps a few (bounded) loops or function calls.Let's make it easy and assume no preemptions. Still, how tight will your prediction be? Will itbe 15% over actual worst-case (that's impressively tight), 25% (still tight), 50% (not so tight, butnot bad), 100% (somewhat loose), 500% (very loose)?What makes this problem di�cult? Remember, a standard hardware platform these days pos-sesses hierarchical caches, shared memory cards, an instruction pipeline (or two), register windows,etc.Consider the cache: can you really predict the exact, maximum number of misses that yourprogram will su�er? Remember, this involves disambiguating all aliases { an undecidable problemin itself. Thus { since loading a line of aliased data can easily replace another { you may onlyprovide a very conservative upper bound. Also, if data and code aren't segregated, then loading aline of code may replace a data line, and vica versa.As for shared memory, your programmay compete for common-bus cycles with other processors.Or even more typically, DMA-driven devices will steal memory cycles here and there.Let's turn to register windows. Have you even tried to time a \Jump-and-Link/Save" combina-tion on a SUN 4 chip? I have. Without over
ow, you'll �nd it to be one of the fastest control-transferoperations around { one that's measured in nanoseconds. But on over
ow it's one of the slowest,with a kernel trap measured in milliseconds. How is that for variance? (The same problem occursin \Restore.")Another issue arises with benchmarks { which ones will your analyzer use? The vendor's CPU(i.e., Register-to-Register) timings? How did they obtain them? Can they count memory-cycles,pipeline stalls, bus arbitration delays and the like? And can you account for all of the peculiaritiesinherent to your customized platform?My point is, all of these factors (and especially the interplay between them) will necessarily leadto conservative estimates. Does this mean we should \pack up and leave" the area of real-time?No way. In fact, any timing estimate is better than none at all: if I perform my scheduling analysisassuming an overly conservative estimate, the worst that will happen is that my system will endup wasting cycles.In fact, there has recently been very encouraging work in this area. For example, the tooldescribed in [28] lets one perform analysis at the source-level; while it necessarily leads to a roughestimate, it's a nice start in the prediction process. In [12] a more accurate timing tool is described;it analyzes micro-instruction streams using an abstract architecture description. Getting morere�ned, the tool described in [37] analyzes instruction timings at the pipeline level, and [22] pushes(conservative) analysis to both the cache and pipeline levels.And now, several papers in this workshop present even newer approaches, and we should expect7

to see further progress along these lines.Yet I'll still maintain that static analysis will always produce conservative results. And if, bysome miracle, someone develops a tool that achieves reasonably tight estimates, we need only wait:the next chip that comes along will defeat it.So what's my point? It's this: let's stop pretending that we have tight, static bounds on ourcodes { we don't, we never did (even in Z80 days), we never will. Let's instead take a widerview. At the start the design process, we may not have chosen our hardware platform, or evenwritten any code. Yet some \rough" load analysis should be performed to make an informed choiceshardware, software decomposition, etc. For this we need better analytic/simulation approaches,perhaps using hybrid deterministic-stochastic models. Then when the platform is selected, andthe code is written, static analysis will play a very dominant role. But let's not rule out pro�lingand monitoring techniques to get measured execution times on the actual hardware. Who knows {perhaps we were far too conservative (leading to gross under-utilization) or { heaven forbid { tooliberal.Statement 3: Real-time applications require traceability down to the machine-code level. (T/B)Opinion: \Unfortunately it is still desirable in some systems."By traceability, I mean that there are (formal or informal) mappings between the follow processstages:(1) Functional Spec () (2) Detailed Design () (3) Source Code () (4) Machine CodeHere I'm interested in the mapping between levels (3) and (4). Recall the ad-hoc developmentmethod I described in my introduction { which traded fancy software processes for expert pro-grammers, an ICE, and a state-of-the art logic analyzer. If your objective is to build a small-to-moderately sized embedded system, and you have a short deadline, I doubt that you can �nd abetter development process.But in such ad-hoc environments programmers like to \have their cake and eat it too." Thatis, they usually like writing their programs in languages such as 'C', but { if worse comes to worse{ they'll end up debugging at the assembly level. Why is this so? After all, if I'm going to spendall of that money on an ICE, aren't I going to buy one with a symbolic debugger?Sure I am. But assume I'm attempting to catch a subtle, intermittent race condition. Perhaps(who knows?) the DMA is running wild, overwriting a variable or two { perhaps even overwritingsome interrupt vector locations. Debugging at this level often requires tracing though the actualinstructions executed by the processor, the memory addresses accessed { and having all this dataorganized along a time-line. And: I also have to relate this information back to my source code.Some of my undergraduates could tell you all about it. I teach a kernel-level programming8

course, which goes by the nondescript title of Operating Systems (CMSC 412). In addition to thestandard textbook material, it requires designing and implementing a small, time-sharing kernel fora \bare" 80486 machine. The students start with simple interrupt-level programming for standardIO; they proceed to implement preemptive, time-shared dispatching; they then construct message-passing IPC; next they build a dynamic linker/loader for multi-threaded, multiple applications(including address patch-up); then a mini �le-system, and �nally a socket-style \windows" package(to get the feel of X11).This is not an emulated system; moreover, the symbolic debugger is worthless after the projectincorporates multiple '.exe' images. Thus the code has to be debugged the \old fashioned way," viaintensive detective work. Remember, when a system like this \hangs," it simply goes dead to theworld { and the only recourse is to reboot it. Thus the students have to �nd clever ways to collectenough data before the kernel crashes (which it inevitably does). What does this involve? Usuallya mixture of strategically placed \printf" statements, good experiment construction, etc. But somestudents { the really desperate ones { build their own runtime monitors. These are primitive a�airs:they spew out traces of addresses corresponding to selected, executed instructions. However, whenthe system hangs, they can compare the addresses to those on their \.asm" listings, and �nd theo�ending instructions.Thus these students end up requiring traceability, though they probably don't know its formalde�nition. But they do know one thing. Without the C to asm correspondence, their tools wouldbe worthless, they wouldn't catch the bugs, and they'd never �nish the course.Statement 4: Does this mean CISC is preferable to RISC? (T/B)Opinion: \I'll hedge on this one."While I believe there is some truth in the statement, arguing the point seems rather futile.After all, this war was fought in the architecture community over 10 years ago { and I think we canagree that RISC won convincingly. Yes, Intel will continue producing faster, denser, warmer andsweatier CPUs based on the x86-based technology { at least for a while, at least until other chipsoutperform them in emulation mode. And if the RISC experience has taught us one thing, it's this:that limited chip real-estate can be more e�ciently spent on caches, pipelines, register windowsand the like. These features can dramatically increase average-case performance, which is exactlywhat we want in our desktop workstations. This principle is cogently explained in Hennessy andPatterson's text [13], so there's little need for me to belabor it here.But the perspective changes when I'm looking for a real-time platform, especially one that'llhost a mission-critical system. Yes, I do want my general-purpose workstation to perform like aLamborghini { and maybe I'll settle for a Corvette { to borrow the analogy made in [13]. But myidea of a good real-time CPU is more like a Mercedes Wagon { high class, yet safe and reliable.9

Indeed, the very features that enhance RISC performance (loads of registers, pipelines, intensecompiler optimizations) can become liabilities in the world of real-time.As I've mentioned, many embedded systems developers still have to carry out machine-leveldebugging; thus they demand a degree of traceability from source programs down to the compiledmachine code. And as my students have discovered, this process is su�ciently painful, even onIntel-based CISC systems. However, this level of debugging can become pure torture on manyRISC machines.Why? For one, reading RISC code { and tracing it back to the source { can be a puzzlingexercise. After all, the compiler is partly responsible for enhancing the performance of a RISCprocessor. This often implies registerizing as many variables as possible, and then relocating theinstructions to keep the pipeline moving. The net result is that the textual relationship betweensource code and assembler is no longer maintained { indeed, a good compiler tends to place theinstructions where you're least likely to �nd them. Added to that is the complication of deferredexecution. Unlike in your typical CISC processor, now the human debugger has to be cognizantof the instruction pipeline's behavior. So, even when critical assembler instructions are located,their textual order doesn't necessarily correspond to their execution order. This factor is especiallyimportant when unravelling a tricky race condition where { for example { a DMA and the CPU areintermittently overwriting shared variables. In fact, performing low-level debugging on a complexRISC CPU can be a uniquely unpleasant experience.Nonetheless, to argue against RISC is to argue against reality. The only way to address thisproblem, once and for all, is to minimize the need for machine-level debugging. To be sure, mostgeneral programmers are able use powerful debugging tools (such as dbx). So, I'd like to o�er aproposal to this community. We need similar types of symbolic debuggers, constructed to solve theproblems we face: race conditions in multi-threaded environments, �ne-grained timing monitors(postulated by \assert" conditions), a way to account for intrusive devices such DMA { and all ofit to work in real-time. Are we up to it?Statement 5: Compiler transformations/optimizations shouldn't be performed on real-time code.(T/B)Opinion: \It depends : : :"Many of the points I made in discussing Statements 3-4 seem to argue against compiler transfor-mations of any kind { especially those that involve instruction reordering. To make this somewhatmore vivid, consider the simple example in Figure 1. Since the two instructions don't induce de-pendences on each other, it appears like the safest compiler transformation that one could desire.Right?Not necessarily. Actually, the variable names hint at the problem. A real-time application10

/� Before Transformation �/x := x in ax out a := f(y) =) /� After Transformation �/x out a := f(y)x := x in aFigure 1: A Simple Transformation { Is it Safe?typically communicates with various external devices, e.g., sensors, actuators, displays, etc. 1 Andat least in lower-level programs, you'll still �nd memory-mapped IO to be a very popular means ofmanaging the interface between the software and the devices.Thus a reordering transformation may easily introduce a nightmarish bug into the program.Most trivially, consider the situation where \a" is a one-place bu�er, in which the reference to\x in a" corresponds to reading from the bu�er, and where writing to \x out a" allows the bus tore�ll the bu�er. I don't think it's necessary to describe why the transformed program is incorrect!This is an obvious case of a \bad" program transformation, and it's a fairly trivial one atthat. But there are many cases that are not at all so obvious; indeed, they can be quite subtle.Revisiting the discussion concerning RISC CPUs, compilers often obtain enhanced performance by\registerizing" as many variables as possible. But if a variable corresponding to an external inputport gets stored in a register, the result is { well, probably not what the programmer intended. Sure,IO-mapped variables can be declared \volatile," but even this won't be su�cient in the exampleabove.We're now touching on the real reason why many real-time programmers are resistant to com-piler optimizations in general. First { as we've already stated { their tradition is one of low-levelprogramming, of intimate familiarity with the code and its interaction with the hardware. Abstrac-tions that remove them from the hardware level induce a fear that their programs won't performas intended. And often this conservatism is well-founded, since many of these programmers havefound that debugging their code also involves debugging their compiler { or at least understandingits code generator signi�cantly more than they desired. This is even true when no transformationsare applied, so you can well imagine their touchiness about aggressive optimizations. After all,they ask, whose code gets produced { theirs or the compiler-writer's? And all too often compilerwriters forget (or conveniently overlook) an essential fact: that source codes are written by humanprogrammers. So please note: programmers of production-quality, real-time systems will simplynot accept a compiler technology that \outsmarts" them, and possibly \disobeys" their intentions.They believe that they understand their code more intimately than a compiler ever will, and it'sobvious that they do.1If this were not the case the application wouldn't have any real-time constraints!11

/� Before Transformation �/input(IN A, &x)if (p(x))z := f(x)elsez := g(t)output(OUT B, z) =) /� After Transformation �/z := g(t)input(IN A, &x)if (p(x))z := f(x)output(OUT B, z)Figure 2: A Speculative Transformation { Good or Bad?I am not proposing a return to the good old days of assembly-language coding { no way.Even with the bugs and vagaries that have to be conquered and demysti�ed, I'd much rather usea compiled, high-level language to support my software. It would be bene�cial, however, if mycompiler maintained the intended semantics of my original program.On the positive side, transformation engines, if properly used, can be of enormous bene�tin helping to tune my system. Under the old fashioned technique of assembly-language coding,programmers were much more closely aware of resources consumed by their code. Conversely,the convenient abstractions a�orded by higher level languages come at a price. An operation'sresource requirements are often hidden from the programmer, and thus may be grossly over- orunder-estimated. For example, a function called \doit()" may require 1�s of CPU time, or perhaps100ms; since we're disconnected from the actual instructions that get executed, we may not beaware of which it is. This level of abstraction can easily lead to a con
ict between the timingconstraints and the actual execution time. And transformation engines can help to resolve suchfaults.Consider the example in Figure 2, where the instruction \z := g(t)" is moved to the top of theprogram. Assume that there is a tight timing constraint between the two IO operations. Also,perhaps \f(x)" is relatively lightweight and \g(t)" is a real CPU hog. Then it may be the case thatthe original program cannot meet its constraint, while the transformed program can.Since it breaks a control-dependence, this type of \speculative transformation" is rarely carriedout by general-purpose compilers. Indeed, when an instruction appears within the body of aconditional (but is free of a dependence on it), one should still assume that the programmer hada good reason for putting it there. Often the reason stems from a personal coding style, or forthe sake of readability. On the other hand, perhaps the reason is more critical; e.g., to avoid anexception. In our example program, there may be an invariant relationship between \x" and \g"that only the programmer understands.While this seems to again argue against compiler transformations, it is not necessarily the case.Recall the objective to moving \g(t)" out of the program { to help a programmer tune unschedulablecode. And production real-time programmers will �nd this type of code reordering sadly familiar,12

since it is usually carried out by hand, and often under the pressure of an approaching releasedeadline. If an interactive tool can help automate this process, so much the better. The tool, forexample, can help in identifying the \good target" instructions to move, by transferring them totheir \correct" places, and by analyzing the results.3 Program Transformations: Problems, Solutions and Introspec-tionsFor the past several years we have investigated the problem of optimizations for real-time programs.(In fact the �rst report on this work was given at last year's PLDI [15].) I'll now brie
y describe thework, how it evolved, and most importantly { what we learned in the process. For those interested inmore technical aspects of our work, please see our research papers (accessible by World-Wide-Weband FTP2).3.1 Balancing Time.Recall Figure 2, in which the original program overloaded its timing constraint, while the trans-formed program did not. One may be tempted to ask: \Why wasn't the transformed versionwritten in the �rst place?" The answer is obvious { it's di�cult to see the \big system picture"when writing small pieces of its code. Moreover, this may have been a fragment used in manydi�erent systems, each possessing their own timing constraints.But eventually the code's execution time has to get balanced against the system's timing spec-i�cations. Often timing bottlenecks are not recognized until fairly late in the development cycle,after the system has been integrated. To achieve balance at this point usually requires a costly andarduous process of instrumentation and system tuning.By the time we looked at this problem from a research perspective, two trends had emerged.First, a variety of experimental real-time programming languages had been posited (e.g., [17, 20,23, 26, 34, 11]). While di�ering in several details, they had converged on a core set of real-timeconstructs and functionality. Second, there was a proliferation (indeed an explosion) of compileroptimization techniques, designed to take advantage of emerging computer architectures { e.g.,RISC, SPMD, VLIW, superscaler, etc.In a way, compiler optimizations can be considered \tuning instruments" of sorts, in that theirobjective is to achieve better performance. Therefore, it seemed natural to use similar technologiesin hard real-time domains. But this was easier said than done, as we quickly discovered.2Sites listed at the end of this paper. 13

3.2 Problems to Surmount.The �rst problem we encountered was one of semantics { that is, without an unambiguous semanticsfor a real-time construct, it's impossible to de�ne the notion of a \safe program transformation."Indeed, while there is emerging consensus on a basic set of temporal constraints, languages usevarious mechanisms to carry them out. For example, timing constructs can be compiled into setof scheduling directives, or perhaps macro-expanded into system calls to be invoked at runtime.These alternatives result in subtle, though important di�erences in their interpretation.The second problem was �nding the right metric to use in optimizing the code. In high-performance domains, an optimizing compiler's job is to exploit a program's inherent parallelism,and to pack its computations into as many functional units as possible. Thus it enhances averagecase performance by achieving better instruction-level throughput. But in real-time we are con-cerned not with enhancing average-case performance, but instead with ensuring adherence to theconstraints. In fact we will be satis�ed with increasing the program's overall execution time { aslong as the timing constraints are met.The third problem was addressing real-time scheduling support. Since \schedulability" oftende�nes whether the constraints will be met, the particular scheduling strategy will play a leadingrole in optimization metric used. But scheduler support is provided to arbitrate between thedemands of several programs, while a compiler usually works on one program at a time. Thistraditional separation of concerns between the kernel and the compiler has evolved for many goodreasons, and it is important to maintain.The fourth problem is shared by all researchers in optimization strategies { for any architectureor objective. That is, we all rely on good data
ow analyzers for our work. If it can't be determinedwhether instruction B depends on instruction A, then reordering A and B is not such a good idea.We faced two additional issues, both of which I addressed above: timing analysis and traceabil-ity. As for the former, optimization for any real-time metric will depend on some degree of statictiming prediction { even if it only produces a crude identi�cation of CPU-hogging code blocks. Asfor traceability, optimized { but unreadable { code will be of little use to most systems builders.3.3 Semantics and TCELWe embarked on this research with a straightforward, easily-stated objective: to improve a worst-case execution times via modern optimization technologies. The objective was easily to state, butit contained many hidden nuances { and that of language semantics was the by far trickiest. Why?I've hinted at the essence of this issue { that of transforming Input-Output operations. Mostreal-time languages implicitly circumvent this problem by imposing the strictest possible semantics.For example, \every 10ms do B," is usually interpreted to mean the block B { as it appearsin the source language { is dispatched every 10 milliseconds. But such an interpretation implies14

that even the most common optimizations would fail the safety test. Why? Since any code withinB may correspond to memory-mapped IO, every instruction should be executed in exactly theplace it appears. Consider constant propagation: what the compiler may interpret as reading aconstant-valued variable may actually be an input function in disguise.Also, a more insidious problem is that transforming code may actually decrease the application'sability to be scheduled. That is, the relocated instructions from one task may steal the CPU time-slot required by another task.Clearly, then, this model was ill-suited for our purposes. Also, I've already shown the perilsof assuming an overly-course-grained semantics. (Many of these perils were also uncovered in ourinitial work.) So obviously a compromise was in order.We called our compromise TCEL, for Time-Constrained Event Language. TCEL's syntacticconstructs are not unlike those in other languages. However the semantics is signi�cantly di�erent,in that it is based on the time-constrained relationships between observable events. What is an\observable operation?" Any operation that can be detected outside of a single process, i.e., amessage-passing operation, an access to memory-mapped I/O, an instruction that induces side-e�ects on other tasks, or for that matter, a reference to any annotated function call or variable. Infact, in TCEL any instruction can be annotated as \observable."This distinction between \observable" and \unobservable" instructions is the key to our trans-formation strategy. Since it imposes a \looser" interpretation on the constraints, a compiler canhelp rearrange the unobservable code to aid in the tuning process.This semantics was inspired by a principle commonly applied in formal methods. When rea-soning about a real-time concurrent system it is often useful to consider only \events of interest,"and to abstract away local-state information. Indeed, almost all formal models ease this processby making some distinction between an \event" and a corresponding \action." For example, inReal-Time Logic [18], events are instantaneous { and require no resources { while actions consumenonzero time. Similar distinctions exist in RTRL [5], Timed IO Automata [25], ACSR [19], andin almost every formal approach to real-time. It therefore seemed natural to extend this commontechnique to a \full-blown" real-time programming language, in which the \events" correspond toactual IO operations within C code.3.4 Metrics and TransformationsAfter working out the TCEL event-based semantics, we turned our attention to developing trans-formation strategies. We focused our attention on two objectives: (1) tuning single programs inisolation, with the result of unconditionally improving the entire application's schedulability; and(2) transforming programs individually, but using a schedulability analyzer to determine whetherthe optimized programs either improve or degrade performance.15

L1: doL2: receive(p,&obj coords1);L3: start after 3.5 ms �nish within 4.0 msL4: fL5: receive(p,&obj coords2);L6: r1 = F(obj coords1);L7: r2 = G(obj coords2);L8: next cmd = H(r1,r2);L9: send(q,next cmd);gFigure 3: A Real-Time Program: Can it be transformed?After some initial investigation we decided to avoid a third option: inter-task optimizations,where multiple tasks are optimized simultaneously { and where the types of transformations usedare guided by the interactions between the tasks. We found this approach to be untenable, as itintroduces complex circularities between the runtime scheduler and the compiler. Once introducedthese interdependencies almost impossible to break, resulting in a search problem of untenablecomplexity.Local Transformations for Feasibility. One type of transformation can always be applied,and it doesn't require additional information about the rest of the system. That is, whenever atask's internal constraints con
ict with its own execution time, a timing fault would always bethe result { regardless of the scheduling paradigm used. We call such tasks infeasible (as opposedto unschedulable). Infeasibility conditions can arise when there are nested constraints; e.g., whensome deadlines are tighter than periods, or when there are inserted delay statements. When facedwith an infeasible task, using local transformations to achieve local feasibility is certainly betterthan taking no action at all.Our approach to this problem is to us a variant of of trace-scheduling [6], with the objective of(1) �nding the overloaded paths in the program; and then (2) relocating the unobservable code o�of these paths.Consider the TCEL program fragment in Figure 3, which receives sensor data, delays, receivesmore data; then it transforms the data into a command and sends out the result. The �nal sendmust take place within 4.0 ms of receiving the original message.In the usual interpretation of this program, statements L5-L9 would always execute after thedelay; i.e., the after construct would be \executed" like a \sleep" command in Unix. TCEL'ssemantics, on the other hand, only induce timing constraints between the three event-triggeringinstructions: L2, L5 and L9. As for the unobservable statements L6-L8, their execution is bound16

only by natural control and data dependences.This looser semantics yields an immediate bene�t: if the execution times of L6-L8 con
ict withthe 4ms deadline, the unobservable code can be moved to help tune the program to its hardware.Perhaps all (or part) of L6 can be executed while the program delays. It may be possible tospecialize parts of L7 and L8 to do the same; perhaps some pre-computations can even be executedbefore L1. In performing these transformations, the observable events act as \semantic markers,"denoting the places where code can be moved.While the method appears straightforward (and in this case simple), using it on larger programsis a nontrivial compiler problem. Indeed, in [9] we show that even in the case of a basic block,simply determining which instructions to move is NP-Hard. And the situation gets signi�cantlymore complicated when the program possesses a branching structure, i.e., when the actual executionpaths are determined at runtime.Thus we take a greedy approximation approach, which works in several phases. First theTCEL source is translated into a single-static-assignment (SSA) representation [4], whose namingconventions help isolate the \worst-case" execution paths. Next the code is decomposed into severalblocks, and equations are generated to constrain their start and �nish-times. Finally a variant ofcode scheduling is used to relocate the unobservable code, and hopefully attain feasibility.The actual details of the method are rather complex, and are not within the scope of this paper;readers should refer to our more technical papers referenced below.Transformations for Schedulability. In [8] we addressed a more ambitious goal { that oftransforming multiple tasks to achieve schedulability. The problem here is that \schedulability," byde�nition, depends on interactions between multiple tasks. Thus, to avoid introducing circularitiesbetween the scheduler and compiler, we required the following ingredients: (1) a straightforwardmeans of transforming each program individually, and (2) a simple metric to evaluate whether thetransformed version is better than the original.We narrowed our problem domain a bit, concentrating on control applications with (purely)periodic tasks. There is a wide variety of priority-based schedulers which can support such ap-plications; moreover, most of them also possess cheap, o�ine analysis tests. This helped satisfyrequirement (2) above.As for requirement (1), common sense dictates that if a task's deadline is increased { withoutchanging its semantics { the entire application's potential for schedulability can be enhanced. Infact this is the motivation behind our transformation strategy. Whenever an application is foundunschedulable, we attempt to identify tasks that contribute to the timing problems. Each of thesetasks gets split into two threads { one containing its observable events, and the other containing itsunobservable instructions. While the former thread must �nish by the original deadline, the latteris allowed to \slide" into the next frame. Thus the transformation e�ectively increases the original17

State(k) State(k+1)

Input(k)

Output(k)

Task at the periodk−th
Input/Output
 Handler State−Update

Input(k)

State(k)

Output(k)

State(k+1)every 25ms/� Original Task � �/freceive(Sensor, data);if (!null(data));ft1 = F1(state);t2 = F2(state);t3 = F3(data);t4 = F4(data);cmd = t1 � (t3 + t4);send(Actuator,cmd);state = t1 � (t2 + t3);gg
every 25ms/� Slice �IO �/freceive(Sensor, data);c = !null(data);if (c)ft1 = F1(state);t3 = F3(data);t4 = F4(data);cmd = t1 � (t3 + t4);send(Actuator, cmd);g;/� Slice �ST �/if (c)ft2 = F2(state);state = t1 � (t2 + t3);ggFigure 4: Slicing for Scheduling: Original Structure/Program (A) and Transformed Version (B)task's deadline, while maintaining its semantics. The pictures in Figure 4 (top) show the e�ect ofthe transformation on the behavior of the task's kth period.The actual transformation is carried out via program slicing. Brie
y stated, a slice of a programP with respect to a program point p and variable v consists of P 's statements and control predicatesthat a�ect v at point p. (See [8] for details on our approach; refer to [33, 16, 27, 32] on program-slicing in general.) Consider the program in Figure 4(A), and its two residual slices in Figure 4(B).Since slice �IO contains all of � 's IO operations, the observable behavior of the transformed taskwill be semantically identical to the original.So the question is: when should a task be sliced, and how can we evaluate the transformedtask's e�ect on schedulability? In our paper we presented a dynamic variant to rate-monotonicanalysis, which succeeded in answering this question. This solution was somewhat unsatisfying {at least from our point of view. The o�ine analysis was indeed cheap to perform, and it allowedthe transformation tool to help tune tasks prioritized in rate-monotonic order. However, the on-18

line scheduler was a bit more complicated than desired, in that it added a dynamic, time-basedcomponent to the dispatcher.But research moves quickly in this �eld! After investigating TCEL's \delayed deadline" model,Alan Burns at the University of York [3] developed a static-priority scheduling scheme to handlesuch applications. Unlike \pure" rate-monotonic schemes, here the actual priority assignment isdependent the respective execution times of each IO-handler and state-update component, as well asthe task periods. Based on his analysis, Burns presented a search algorithm that �nds a schedulablestatic-priority order { or determines when no such order exists. In other words it's optimal.This analysis, in turn, allowed us to make further improvements. Burns's algorithm assumesthat tasks in the application have already been transformed into their two component sub-threads.On occasion, it may be bene�cial to slice all tasks �rst, and then assign their priorities. But wehave found that slicing a task frequently adds too much overhead to make it worthwhile; moreover,the resulting state-update component may be quite small. Thus it's a better idea to selectivelyslice tasks, as necessary. So the question is: which tasks should be sliced?Burns's analysis provides the answer, since it yields a sound means for evaluating schedulabilityfor arbitrary tasks { whether they are are sliced or not. Based on the analysis, we were able todevelop an algorithm that determines the minimal subset of tasks to be sliced { and then slicesthem. The algorithm is currently driven by an X-interface, and it works in concert with the GNUC compiler and GDB debugger. The tool provides graphical, user-selectable transformations, sothat the programmer remains informed of all slicing decisions. In this manner, the programmermaintains a reasonable degree of traceability to the original program. Much of the interface, aswell as the slicing routines, was cannibalized from Agrawal and Spa�ord's Spyder toolset [1]. Thisis a slick piece of code, and those who are interested in building analysis engines for C modulesmay wish to check it out.3.5 Lessons Learned at The School of Hard KnocksMany of the points made in this paper actually grew out of lessons learned from this research. Atthe risk of belaboring these points, I think it's appropriate to reiterate them, and how they relateto our work.Lesson 1: The Limits of Dependence Analysis. Our approach relies heavily on contemporarycompiler methods, including intra- and inter-procedural data and control analysis. And as with allprogram transformation algorithms, the limitations of this enabling technology become a constrain-ing factor of our approach. We originally assumed, rather too eagerly, that dependence-analysisfor our types of transformations would be quite simple, especially compared to that required byparallelizing compilers.This was not the case, and we ultimately su�ered the same di�culties as all other researchers in19

the global-optimization business. While the �eld of dependence analysis has made rapid progress,sadly the newest techniques are oriented mainly for detecting parallelism in FORTRAN codes. Onthe other hand, C is the base language of choice in real-time domains. And while FORTRANand C do share some common characteristics, they di�er signi�cantly in many aspects { and mostprominently in their styles of indexing arrays. For example, it's di�cult to write a C program thatthat accesses 2-D arrays, and yet avoids using pointers. But as we know, determining pointer-aliaseddependencies is one of the hardest compiler problems of all!One can partially o�set this limitation by rewriting (linear) array accesses with FORTRAN-style, integer indexing; by using annotations to give \hints" to the dependence analyzer; or bysimply taking very pessimistic dependence sets. None of these techniques is very satisfying. Thus,we're eagerly awaiting more progress on this very challenging problem.Lesson 2: The Limits of Timing Analysis. Another limiting factor is the di�culty of achievingaccurate, static timing analysis { a problem I've already addressed at some length. We foundvery early in the game that it was futile to predict the execution time of a single instruction (or arelatively small block of code). First, the CPU time is probably too small to make a di�erence inachieving schedulability, and second, the \noise" in the prediction will be too large.Thus we have adopted a hierarchical abstraction approach to deal with time predictions. Inmany cases, we need only account for the CPU-intensive function calls that perform complexoperations, and we can ignore the execution time of �ner-grained instructions. The same approachis used on larger-grained structures within the control
ow graph. Our experience shows thetransform engine should usually hunt for the \big-game targets," and forget about the smallerones.However after the code is transformed, it becomes imperative to verify the result with a moresophisticated timing tool; for example, a good pro�ler. Performing such re-timing is especiallyimportant in a cached memory structure, where code scheduling will always change the instructionalignment.At the workshop, it was remarked that this approach (and its resulting algorithms) represents adeparture from our original PLDI paper [15]. This is correct. Throughout the course of the project,we gradually learned that that the original approach { while theoretically sound { was untenableto implement. The revised approach (and algorithm) is described in a more recent report [9].Lesson 3: Traceability is a Must. The results of multiple SSA-based transformations are, atbest, cryptic. And as mentioned above, programmers of real-time systems will not accept anyauto-transform tool. Since they may eventually resort to low-level debugging, they require { atthe very least { iterative feedback during each transformation stage. Moreover, transformationsbased on the TCEL's event semantics are not fool-proof if the programmer overlooks declaring IOoperations as \observable" { which may easily happen with memory-mapped IO. We've alreadyshown (in Figure 1) the rami�cations of reordering such instructions.20

However, while programmers will reject multiple, automatic transformations, they will enthusi-astically embrace a tool that helps tune their systems. These considerations argue for a front-endthat permits the programmer to interact with the tool during code optimization process. Witha TCEL-style transform engine as its foundation, a graphical interface allows a programmer toselectively apply the transformations { and also remain informed of the results. Hence our currentwork on the X-interface. Also, the types of transformations we use (i.e., \structure-based") di�erfrom those described in the original PLDI paper. Now their results are suited for humans (and notjust computers) to read.Lesson 4: There's No Substitute for a Good Design. When the design itself is the product ofill-considered timing estimates, transforming the individual tasks will be of little use. Indeed, noamount of system tuning can help in this case { and the only resort is to redesign the system. Howcan such errors arise? Easily.Consider the process of designing a real-time system. If it's a control system, for example, func-tional correctness can be checked at the subsystem level. Moreover, high-level timing requirementsare also be evaluated { and sample/update parameters can be adjusted to ensure stability criteria,correct signal-to-gain ratios, etc.Then the subsystems are decomposed into \tasks," so that the real-time schedulers can tractablyguarantee the system's requirements, while also maintaining its functional correctness. This de-composition introduces a new class of intermediate timing constraints, which are artifacts used torealize the original high-level requirements. Perhaps groups of tasks are allocated to processors,based on locality considerations.And herein lies the obvious problem. It takes a \guru," a very rare kind of specialist, to carryout this process in a manner that balances resource consumption against requirements. It demandssomeone with much more skill than my high-paid consultant/hacker. In fact given a large enoughsystem it's an impossible task, even for the most seasoned engineer. And so we end up withscenarios like the following: The guru { to the best of his or her ability { mandates that functionalunits X and Y execute with periods 65ms and 20ms, respectively. But then the programmers codeup the system, and �nd that Y grossly over-utilizes its CPU; further, they discover that most ofX 's outputs are not being read by the other subsystems. Then the guru readjusts the rates {re-checking them with the requirements. This process may continue many times, until perhaps itconverges. During this process the system is tuned, re-tuned, etc. But ultimately, in the worst caseit may be determined that a redesign is in order.And I believe that this is the true problem that we should be addressing { the problem ofdesign re�nement. It embraces the areas requirements engineering, design theory, programminglanguages, timing analysis { all of it. In fact, the PLDI community seems to have a handle onmany of these areas. But perhaps it's time to stop treating them individually, and start studyingthem as a whole. In doing so, we may learn new ways of evaluating design alternatives { before it's21

too late.We have done some research on this problem, and our initial results are in a paper entitled\Guaranteeing End-to-End Timing Constraints by Calibrating Intermediate Processes" [10]. Theseresults are encouraging, and they do yield a new way to approach the problem { as well as somealgorithms to help solve it in certain circumstances. But this paper, and indeed no paper, will everprovide the \solution to the problem." The problem of real-time design will never be solved assuch, only improved.4 Honesty, Understanding and OpportunityI initially promised controversial, provocative statements; however, in re-reading my viewgraphsafter several months I'm afraid I failed to deliver on my promise. Simply put, much of what I havewritten thus far should be taken as common sense these days.But I promised some controversy, and I feel duty-bound to deliver. So let's �nally return to theissue of dialogue, both between \researchers" and \builders," as well as between the \real-time"and \programming languages" communities.4.1 Honesty may, after all, be the best policyAs I wrote in the introduction, academic researchers face a dilemma: On one hand, our traditionis to work with highly abstract models of the domains we analyze. On the other hand, we oftenend up developing methods that are perfectly sound with respect to our model, but thoroughlyimpractical to use in the domain itself.We researchers in real-time face this dilemma more frequently than many of our colleagues,and we're more likely to su�er its pitfalls. The reason is obvious: If we had to factor in everytiming peculiarity of a computing system, we would never rise above analyzing timing diagrams.Moreover, we'd still have to worry about functional correctness, just like our colleagues.But we should never forget one point: an abstract model's representation of timing behaviorwill di�er in subtle, but important, ways from the system's execution pro�le. Thus we walk a �neline between being inundated with detail on one hand, and being irrelevant on the other.Within our transformation research (described in the previous section), we took several grossabstractions { mainly in the area of timing analysis. Along the way we decided that �ne-grainedtiming measurements are not obtainable, and we adjusted our method accordingly. Moreover, wedeveloped the work knowing full well that if the results are to realize their potential, we'll requiresome additional progress in several enabling technologies. New compiler optimizations often sharethis property, in that they are limited by the state of dependence analysis. But new optimizationtechniques can help to stimulate additional work on dependence analysis, and so research progressesapace. 22

Since abstractions and simpli�cations are essential in even the most \practical" research project,and since we all write papers on our work, we must end up asking ourselves the following question:What's the best way to write about these simpli�cations, drawbacks, limitations, etc.?If we're interested in selling our work to \implementors," the answer may just be: \As honestlyas possible." Perhaps one reason they �nd our work simplistic { and at times inaccessible { isprecisely because we happen to gloss over those missing details.No, we don't try to con our readers, or oversell our work by omitting \fatal
aws." On thecontrary, the realtime community has, if anything, been guilty of underselling its work { especiallyin proportion to its impact. The problem is this: We are academic researchers, and we write papersfor our colleagues. Thus we expect that they have a high degree of technical sophistication, a depthof knowledge equal to our own.For example, it rarely disturbs me when a new scheduling result fails to account for context-switch latencies in its analysis { that is, unless the latencies would invalidate the analysis altogether.After all, I've read 100, 200, or 500 scheduling papers, and I know how context-switch times arehandled in various classes of algorithms. I have learned how to charge latencies to the tasks { andwhich tasks should be charged. I'm also con�dent that if I really, truly desired to do so, I couldexplicitly add context-switching into the analysis equations.But consider a \practitioner" { someone who builds real-time systems for a living { for whomthis paper is perhaps an entree into the \formal" world of real-time scheduling. Regardless of theresult's quality, and its potential use, the practitioner may have the following reaction: \This is apie-in-the sky dream { look, they didn't even care about context-switch times!"We've all heard this kind of statement, and we've probably dismissed it as abject ignorance.But ignorance does not necessarily imply stupidity, and the \practitioner" probably knows moreabout building systems than we ever will. And let's face it: we're partly at fault.The pity of it is this: The author needed only to add a few sentences and citations, clearlydenoting that context-switches were not considered. Perhaps it could have been explained thatthis was to keep the equations free of clutter, and to center the theory on the problem at hand.Moreover, a few references could have been cited { for example, mentioning that \latencies can behandled in the standard way (e.g., as in [ABC])."But even if context-switching had been overlooked completely, this wouldn't have been a mortalsin. But it could have been clearly pointed out { laced with a few potential ways of dealing withthem. At this point the burden would be on the \practitioner" to search a bit further, to check outreferences, to develop new techniques, to get initiated.23

4.2 But please understand what we do for a livingWill practitioners take up their share of the burden, and meet us half-way? I can only hope so.However, at times I'm afraid that it will take more than honesty on our part to bridge the gap { agap that seems very wide.In my conversations with the \builders" of \real-life," embedded systems, I've often detected amisunderstanding of what we do for a living, which at times can border on disdain. Our work isperceived { fairly or unfairly { as being far too abstract, too incremental, too \theoretical" to evertranslate into useful, deliverable products.But while we do not build �nished products, polished and ready for market, that doesn't meanwe are totally irrelevant either. If a scheduling algorithm fails to factor in context-switch overhead,it doesn't imply that it's useless! And even if the technique possesses a mere grain of an idea thatcan help you build a system, then why dismiss it? Why not give the author a call? If it were me I'dbe
attered { and I'd try to help you re�ne it into something you could use in a \real" application.Let me tell you a little secret: we pie-in-the-sky researchers like nothing better than being usefulin this world.Transforming results into products can be a very long process. But research transitions canbe lightening-quick. And regardless of what corporations do, we researchers can certainly learnfrom each other. Sadly however, the schism between \builders" and \theorists" has even infectedus { to the point where we may avoid our colleagues' conference presentations when we considerthem irrelevant to our work. We've all seen groups of \practitioners" disappear during the more\theoretical" talks { and vice versa. Do we really have nothing to learn from each other?I think not. In fact, our research on real-time programming languages grew out of similar con-cepts found in formal methods. The end-to-end design work had its principal genesis in schedulingtheory, not design theory per se. Some of our recent ideas on automatic veri�cation stemmedfrom presentations on program dependence analysis. The motivation for our parametric schedulingtechniques derived mainly from Bill Pugh's work on variable elimination. And so on.In fact, my Ph.D. work on formal speci�cation grew mainly out of my experiences as a developer,and out of a desire to \�nd a better approach." But these tales, and those of my fellow \gurus,"will have to wait for another paper.4.3 PLDI + Real-Time = OpportunityThe rationale for this workshop is, I believe, for two separate �elds to trade ideas, to learn fromeach other, and perhaps to start new research collaborations. That said, let me o�er my �nal \trueor bull statement."Statement 6: There aren't fertile problems for PLDI researchers in realtime systems; moreover,the real-time community is too small, and not worth the bother of getting involved.24

Opinion: \Complete bull on both points."The second point is easy to address, since the real-time the real-time community is huge, espe-cially when one considers industrial folks who participate. Consider: real-time applications includemanufacturing control systems, avionics systems, patient monitoring and imaging equipment, com-munications and automotive systems. And we can't forget the hottest stu� of all { interactivegraphics, animation, mixed media, virtual reality, etc.I believe that PLDI researchers can get into these areas, and yet still do what they do best {i.e., language design, program analysis, compiler techniques, runtime support, etc. Due to to twoconverging trends, now is the time for SIGPLAN researchers to leap in.The �rst trend has to do with demand. Practitioners now understand that traditional develop-ment processes do not scale to modern, complex systems. The low-level approach, when appliedto a large system, inevitably ends up in the long, tedious phase of system integration { every man-ager's worst nightmare. There is now a strong desire to use standardized kernels, to reuse veri�edmodules in many di�erent systems. Most of all, if a project is to survive, it's now essential to avoidthat drawn-out process of tuning, instrumentation, etc.And then there's the second trend. That is, real-time developers are no longer only embeddedcontrols engineers, with �fteen years of highly specialized experience. They are also animators,physicists, video producers, musicians, medical researchers, graphic artists, etc. Programming isprobably a very small part of their job. Perhaps they can write C functions, or Hypercard scripts {but these are not real-time systems gurus, nor do they ever wish to be. Yet they struggle with thesame issues that\hard-core" developers would �nd familiar. These issues usually deal with withdoing the following activities within a predictable amount of time: (1) getting data into the systemfrom a device; (2) processing it in some manner; and then (3) dumping the results out to anotherdevice.Indeed from this perspective, most contemporary developers are real-time programmers to someextent { yet these developers still have to resort to very primitive design methods. Just ask anyanimator about the \science" involved in laying out a Quicktime-compressed video on a CD. Onewill usually get a response such as \I tried compression X, then I tried Y; then Z; I wrote the itout on the CD at 40 frames per second; then 30. Well, I guess it looks OK to me, sort of."And herein lies an opportunity. We now have solid theoretical foundations on which we use todevelop new software technologies. Moreover, hard real-time systems engineers will eagerly acceptany good alternatives to the familiar, labor-intensive implementation methods. Most of all, wehave a new class of implementors who possess neither the quali�cations nor the time to learn thetraditional methods. They demand new approaches to help design, implement, and integrate theirsystems { and the demand is growing every day.The time is right for this community to help satisfy their demand.25

For More Information. The topics I've discussed in this paper draw on material in several�elds { real-time systems, programming languages, software engineering, formal methods, designengineering and others. My references are by necessity incomplete, and not at all representative ofthe work performed in any of these �elds. Many more references are given in my group's paperson these subjects, available via the World-Wide Web at:http://www.cs.umd.edu/projects/TimeWare/TimeWare.htmlor via FTP at:ftp.cs.umd.edu:/pub/realtimeThe ACM SIGPLAN Real-Time Workshop '94 also has its own home page, accessible via WWWor ftp:http://www.cs.umd.edu/~pugh/sigplan_realtime_workshop_94ftp.cs.umd.edu:/pub/faculty/pugh/sigplan_realtime_workshop_94Finally, the IEEE Technical Committee on Real Time Systems has a WWW home page, main-tained by Azer Bestavros:http://cs-www.bu.edu/pub/ieee-rts/Home.htmlReferences[1] H. Agrawal, Richard DeMillo, and Eugene H. Spa�ord. Debugging with dynamic slicing andbacktracking. Software Practice and Experience, 23(6):589{616, June 1993.[2] T. Baker and A. Shaw. The cyclic executive model and ada. The Journal of Real-TimeSystems, 1(1):7{25, September 1989.[3] A. Burns, K.Tindell, and A.J.Wellings. Fixed priority scheduling with deadlines prior tocompletion. In 6th Euromicro Workshop on Real-Time Systems, pages ??{??, June 1994.[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. E�ciently comput-ing static single assignment form and the control dependence graph. ACM Transactions onProgramming Languages and systems, 9:319{345, July 1987.[5] B. Dasarathy. Timing constraints of real-time systems: Constructs for expressing them,method for validating them. IEEE Transactions on Software Engineering, 11(1):80{86, Jan-uary 1985. 26

[6] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Transac-tions on Computer, 30:478{490, July 1981.[7] G. Fohler and C. Koza. Heuristic Scheduling for Distributed Real-Time Systems. MARS 6/89,Technische Universitat Wien, Vienna, Austria, April 1989.[8] R. Gerber and S. Hong. Semantics-based compiler transformations for enhanced schedulability.In Proceedings IEEE Real-Time Systems Symposium, pages 232{242. IEEE Computer SocietyPress, December 1993.[9] R. Gerber and S. Hong. Compiling real-time programs with timing constraint re�nement andstructural code motion. Technical Report UMDCS-TR-3323, UMIACS-TR-94-90, Departmentof Computer Science, University of Maryland, July 1994.[10] R. Gerber, S. Hong, and M. Saksena. Guaranteeing end-to-end timing constraints by cali-brating intermediate processes. In Proceedings IEEE Real-Time Systems Symposium. IEEEComputer Society Press, December 1994. To appear.[11] R. Gerber and I. Lee. A Hierarchical Approach for Automating the Veri�cation of Real-TimeSystems. IEEE Transactions on Software Engineering, 18(9):768{784, 1992.[12] M. G. Harmon, T. P. Baker, and D. B. Whalley. A retargetable technique for predictingexecution time. In Proceedings IEEE Real-Time Systems Symposium, pages 68{77. IEEEComputer Society Press, December 1992.[13] John L. Hennessy and David Patterson. Computer Architecture, A Quantitative Approach.Morgan Kaufmann, 1989.[14] Dan Hildebrand. A microkernel posix os for real-time embedded systems. In Proceedings ofEmbedded Systems Conference, April 1993.[15] S. Hong and R. Gerber. Compiling real-time programs into schedulable code. In Proceedings ofthe ACM SIGPLAN '93 Conference on Programming Language Design and Implementation.ACM Press, June 1993. SIGPLAN Notices, 28(6):166-176.[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graph. ACMTransactions on Programming Languages and systems, 12:26{60, January 1990.[17] Y. Ishikawa, H. Tokuda, and C. W. Mercer. Object-oriented real-time language design: Con-structs for timing constraints. In Proceedings of OOPSLA-90, pages 289{298, October 1990.[18] F. Jahanian and Al Mok. Safety analysis of timing properties in real-time systems. IEEETransactions on Software Engineering, 12(9):890{904, September 1986.27

[19] I. Lee, P. Br�emond-Gr�egoire, and R. Gerber. A Process Algebraic Apprach to the Speci�cationand Analysis of Resource-Bound Real-Time Systems. IEEE Proceedings, 82(1), January 1994.[20] I. Lee and V. Gehlot. Language constructs for real-time programming. In Proceedings IEEEReal-Time Systems Symposium, pages 57{66. IEEE Computer Society Press, 1985.[21] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact char-acterization and average case behavior. In Proceedings IEEE Real-Time Systems Symposium,pages 166{171. IEEE Computer Society Press, December 1989.[22] S. Lim, Y. Bae, C. Jang, B. Rhee, S. Min, C. Park, H. Shin, K. Park, and C. Kim. Anaccurate worst case timing analysis for risc processors. In Proceedings IEEE Real-Time SystemsSymposium. IEEE Computer Society Press, December 1994. To appear.[23] K. J. Lin and S. Natarajan. Expressing and maintaining timing constraints in FLEX. InProceedings IEEE Real-Time Systems Symposium. IEEE Computer Society Press, December1988.[24] C. L. Liu and J. Layland. Scheduling algorithm for multiprogramming in a hard real-timeenvironment. Journal of the ACM, 20(1):46{61, January 1973.[25] M. Merritt, F. Modungo, and M. Tuttle. Time-Constrained Automata. In CONCUR '91,August 1991.[26] V. Nirkhe. Application of Partial Evaluation to Hard Real-Time Programming. PhD thesis,Department of Computer Science, University of Maryland at College Park, May 1992.[27] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software devel-opment environment. In Proceedings of the ACM SIGSOFT/SIGPLAN Software EngineeringSymposium on Practical Software Development Environments, pages 177{184, May 1984.[28] C. Park and A. C. Shaw. Experimenting with a program timing tool based on source-leveltiming schema. In Proceedings IEEE Real-Time Systems Symposium, pages 72{81. IEEEComputer Society Press, December 1990.[29] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time synchronization. IEEE Transactions on Software Engineering, 39:1175{1185, September1990.[30] Ada 9X Mapping/Revision Team. Ada 9X Reference Manual, Draft ANSI/ISO Standard,ANSI/ISO/IEC CD 8652. Intermetrics, Inc., 1993.[31] K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach for analysing �xedpriority hard real-time tasks. The Journal of Real-Time Systems, 6(2):133{152, March 1994.28

[32] G. A. Venkatesh. The semantic approach to program slicing. In Proceedings of the ACMSIGPLAN '91 Conference on Programming Language Design and Implementation, June 1991.[33] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, July1984.[34] V. Wolfe, S. Davidson, and I. Lee. RTC: Language support for real-time concurrency. InProceedings IEEE Real-Time Systems Symposium, pages 43{52. IEEE Computer Society Press,December 1991.[35] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, precedence andexclusion relations. IEEE Transactions on Software Engineering, 16(3):360{369, March 1990.[36] X. Yuan, M. Saksena, and A. Agrawala. A Decomposition Approach to Real-Time Scheduling.Real-Time Systems, 6(1), 1994.[37] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst case execution times.The Journal of Real-Time Systems, 5(4), October 1993.[38] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling Tasks with Resource requirementsin a Hard Real-Time System. IEEE Transactions on Software Engineering, SE-13(5):564{577,May 1987.

29

