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ABSTRACT
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Yingjiu Xu, Doctor of Philosophy, 2003

Dissertation directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

Wireless communications call for high data rate, power and bandwidth effi-

cient transmissions. High-order modulation schemes are suitable candidates for

this purpose as the potential to reduce the symbol period is often limited by

the multipath-induced intersymbol interference. In order to reduce the power

consumption, and at the same time, to estimate time-variant wireless channels,

we propose low-complexity, joint detection and decoding schemes for high-order

modulation signals in this dissertation.

We start with the iterative demodulation and decoding of high-order CPM

signals for mobile communications. A low complexity, pilot symbol-assisted co-

herent modulation scheme is proposed that can significantly improve the bit

error rate performance by efficiently exploiting the inherent memory structure



of the CPM modulation. A noncoherent scheme based on multiple symbol dif-

ferential detection is also proposed and the performances of the two schemes are

simulated and compared.

Second, two iterative demodulation and decoding schemes are proposed for

quadrature amplitude modulated signals in flat fading channels. Both of them

make use of the iterative channel estimation based on the data signal recon-

structed from decoder output. The difference is that one of them has a threshold

controller that only allows the data reconstructed with high reliability values to

be used for iterative channel estimation, while the other one directly uses all

reconstructed data. As the second scheme has much lower complexity with a

performance similar to the best of the first one, we further apply it to the space-

time coded CDMA Rake receiver in frequency-selective multipath channels. We

will compare it to the pilot-aided demodulation scheme that uses a dedicated

pilot signal for channel estimation.

In the third part of the dissertation, we design anti-jamming multicarrier

communication systems. Two types of jamming signals are considered - the

partial-band tone jamming and the partial-time pulse jamming. We propose var-

ious iterative schemes to detect, estimate, and cancel the jamming signal in both

AWGN and fading channels. Simulation results demonstrate that the proposed

systems can provide reliable communications over a wide range of jamming-to-

signal power ratios.

Last, we study the problem of maximizing the throughput of a cellular mul-

ticarrier communication network with transmit or receive diversity. The total

throughput of the network is maximized subject to power constraints on each

mobile. We first extend the distributed water-pouring power control algorithm



from single transmit and receive antenna to multiple transmit and receive anten-

nas. Both equal power diversity and selective diversity are considered. We also

propose a centralized power control algorithm based on the active set strategy

and the gradient projection method. The performances of the two algorithms

are assessed with simulation and compared with the equal power allocation al-

gorithm.
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Chapter 1

Introduction

High-speed data transmission over wireless channels has been an area of intensive

research in past years. One of the frequently occurring problems in wireless com-

munications is signal multipath – the transmitted signal arrives at the receiver

through multiple propagation paths with different delays. As a result, those sig-

nal components from different paths may add up destructively or constructively,

causing signal fading – variation in the received signal strength. This situation is

aggravated by the time-variant nature of wireless channels, where those multiple

propagation paths vary with time. To demodulate the received signal coherently,

this time-variant channel state information must be accurately estimated.

According to Proakis [1], the error rate in Rayleigh fading channels decreases

only inversely with signal-to-noise ratio (SNR), while it decreases exponentially

with SNR in nonfading channels. Therefore in multipath fading channels, a large

amount of transmitting power is required to achieve a low probability of error.

But to do this, one has to consider the high cost of high power amplifier on

top of high power consumption. Otherwise, he has to push the limit of the low

cost amplifier and face the amplitude nonlinearity problem. For this purpose,
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continuous phase modulation (CPM), with its constant envelope, is well suited

for wireless communications because of its compact power spectrum and its

insensitivity to nonlinear distortions. But the BER performance of continuous

phase modulation provided by current receivers is generally worse than that of

the memoryless modulation like MPSK (minimal phase-shift keying). This is in

part due to the correlation in signals introduced by the memory in continuous

phase modulation, which is obvious in uncoded signals. In the case of coded

CPM signals, however, the improper handling of the inherent memory in CPM

signals by current CPM receivers is more to be blamed for the bad performance

than the CPM memory itself. There is either no information or at most hard

decisions vulnerable to error propagation exchanged between CPM demodulators

and channel decoders.

There is also a limit on the maximum transmit power in the practical sit-

uation, not only for economical reasons but also because there are situations

where high-powered signals would be interfering with each other. In the latter

situation, the effective signal-to-interference-ratio (SINR) would saturate when

the transmit power goes to infinity. Therefore, it is extremely important to de-

velop power and bandwidth efficient communication systems for high data rate

wireless communications.

Another difficulty posed by the multipath is intersymbol interference (ISI)

– signals associated with different symbol periods arrive at the receiver at the

same time and interfere with each other. In this case, because the coherent

bandwidth of the channel is smaller than the signal bandwidth, different fre-

quency components of the signal are subject to different gains and phase shifts

across the band. This kind of fading channel is said to be frequency-selective.
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There are mainly two kinds of solutions for static or very slowly fading chan-

nels. One solution to ISI is equalization, which is expensive in the amount of

computation under severe frequency-selective fading. The other is multicarrier

communications, which divide the transmitted data into a number of bit streams

and transmitting them through different frequency subchannels, within each of

which the fading is approximately flat. Recently, a special form of multicar-

rier communications, orthogonal frequency-division multiplexing (OFDM), has

received much attentions due to its simplicity in implementation – it uses the

IFFT at the transmitter and the FFT at the receiver.

For fast multipath fading channels, it remains a challenging task to estimate

time-variant and frequency-selective channel state information efficiently. Since

the fading on each individual path can be treated as flat, efforts have been made

to resolve multiple paths and estimate the parameters of each path separately.

One of them is the Rake receiver for DS-CDMA (Direct-Sequence Code Division

Multiple Access), where each Rake finger handles one path with a certain delay.

But the resolution of this method depends on the channel bandwidth, which

limits it mostly to wide-band signals. For narrow-band signals, oversampling,

either spatial or temporal, must be used to resolve multiple paths. With multiple

antennas coming into use more and more frequently, the problem of channel

estimation in fast multipath fading channels demands more and more attention.

Although the multipath problem is created by nature, not all problems in

wireless communications are caused by nature. Some are due to human beings

themselves, either deliberately or inadvertently, which could pose damages from

severely degrading the performance of wireless communication systems to knock-

ing them completely out of services. Hence these problems have to be addressed
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for reliable communications over wireless channels.

Among inadvertently artificial problems, one of them is the cochannel inter-

ference due to frequency reuse in a cellular network. The presence of the cochan-

nel interference greatly complicates the design of a high performance network.

When there is only a single cell, the problem of maximizing the system through-

put against the frequency-selective fading in a wireless channel can be achieved

through water-pouring power allocation and adaptive modulation among OFDM

subchannels. In a multi-cell mobile communication environment, one would tend

to increase the frequency reuse in order to increase the spectral efficiency with

given bandwidth, which, however, introduces severe cochannel interferences and

complicates the problem of maximizing the system throughput.

Jamming belongs to problems deliberately caused by man in hostility. Anti-

jamming design is especially important for military purposes. Many of the cur-

rent anti-jamming systems make use of bandwidth redundancy by resorting to

spread-spectrum techniques, either code-division multiple access or frequency-

hopping. An interesting problem is how to achieve some kind of anti-jamming

capability without bandwidth redundancy, by exploiting signal structure to esti-

mate and cancel jamming signals and/or by reallocating resources such as power

and bandwidth to avoid jamming signals.

In order to improve power and bandwidth efficiency, and to combat fading

and artificial interferences, we propose approaches to system design based on

the following ideas: joint detection and decoding, pilot symbol-assisted chan-

nel estimation (PSAM), jamming signal estimation and cancellation, transmit

and receive diversity, power control and adaptive modulation. In particular, we

pursue our research in the following aspects: iterative demodulation and de-
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coding of high-order CPM signals in flat fading channels, pilot symbol-assisted

demodulation of turbo-coded quadrature amplitude modulation in Doppler fad-

ing channels, anti-jamming multicarrier communication systems, power control

and adaptive modulation for OFDM with transmit and receive diversity. A more

detailed description of each part will be presented in the following sections.

1.1 Iterative Demodulation and Decoding of

High-Order CPM Signals in Flat Fading

Channels

Continuous phase modulation is a highly attractive modulation scheme for wire-

less communications because of its compact power spectra and its insensitivity to

nonlinear distortion. However, the subject of coherent detection of CPM signals,

especially high-order CPM signals in fading channels, has received less attention

because of the common belief that it is difficult to accurately estimate the phase

of the received signal in such an environment. Differential detection techniques

have thus been widely used in the reverse link to combat phase uncertainties

caused by fading. But the performance of differential detection is significantly

inferior to that of coherent demodulation. Furthermore, differential detection

has irreducible error floor in fast fading channels.

In [2], Gertsman and Lodge demonstrated that joint data detection and chan-

nel estimation can be done accurately by integrating linear prediction into the

branch metric calculation for digital phase-modulated demodulation. Although

it has obtained a BER performance never reached before, the receiver com-
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plexity grows linearly with the constellation size to the power of the predictor

length, limiting this technique to modulation schemes with small constellation

size. To reduce the complexity, it is necessary to separate channel estimation

from CPM demodulation. Pilot symbol-assisted modulation can be used for this

purpose. However, in continuous phase modulation, pilot symbols cannot be

inserted directly into the data stream as in linear modulation on account of the

cross-symbol signal dependency. Ho and Kim [3] demonstrated that data depen-

dent pilot symbols can be used in continuous phase modulation with rational

modulation index.

Once the channel state information is estimated by using pilot symbols, iter-

ative processing can be applied to coded CPM signals by using the “generalized

turbo principle” proposed by Hagenauer [4]. According to Rimoldi [5], continu-

ous phase modulation can be decomposed into a continuous phase encoder and

a linear modulator. With the channel interleaver between the channel encoder

and the CPM modulator, the entire coded CPM transmitter can be regarded as

a serial concatenated turbo encoder. Therefore the demodulation can be greatly

enhanced by passing the soft extrinsic information between the CPM demodu-

lator and the channel decoder.

To further improve the performance, channel estimation error can be reduced

by using the iterative filtering technique mentioned before. What makes channel

estimation more complicated here is that the inherent memory of the CPM

signal will introduce severe error propagation when the receiver reconstructs the

transmitted signal for channel estimation. So far this problem has not been dealt

with in literature.

We propose to use iterative demodulation and decoding schemes for high-
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order continuous phase modulated signals in Doppler fading channels. We pro-

pose to treat the continuous phase encoder of CPM signals as the recursive

inner decoder and the convolutional encoder as the outer decoder so that the

entire CPM transmitter can be treated as a serial concatenated convolutional

code. Thus the CPM receiver can achieve significant performance improvement

by applying iterative demodulation and decoding.

To estimate the time-variant channel state information, we propose two ap-

proaches. One is demodulation based on the pilot symbol-assisted modulation

with iterative channel estimation, which has low computational complexity but

has a little power and bandwidth loss due to the introduction of pilot symbols.

The other one is based on multiple-symbol differential detection, which combines

channel estimation with CPM demodulation. Although it can achieve slightly

better performance at medium signal-to-noise ratio and it does so without power

and bandwidth loss due to pilot symbols, the computational complexity is much

higher than the PSAM based approach. Please also note that instead of gener-

ating a common estimate of channel state information for each symbol period,

the second method generates many estimates simultaneously depending on the

state. So the demodulation based on this method actually belongs to nonco-

herent demodulation. We will evaluate those two approaches using numerical

methods and compare their computational complexity as well as performance.
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1.2 Pilot Symbol-Assisted Demodulation of

Turbo-Coded Quadrature Amplitude

Modulation in Doppler Fading Channels

High-order quadrature amplitude modulation requires channel coding to reduce

the power requirements in wireless communications. Much research has been

done on developing power and bandwidth efficient channel coding schemes for

QAM. A well-established technique is trellis-coded modulation (TCM) proposed

by Ungerboeck in 1982 [6] that uses set partitioning to map the convolutional

coded bits into signal points such that the minimum Euclidean distance is max-

imized. TCM can obtain significant coding gains (3-6 dB) in additive white

Gaussian noise channels without sacrificing either data rate or bandwidth.

With the invention of turbo codes by C. Berrou, A. Glavieux, and P. Thitima-

jshima [7] in 1993, which is a more powerful coding scheme than the convolutional

code, researchers began to combine turbo codes with QAM. In [8], the parallel

outputs of the parallel concatenated turbo encoder are directly mapped to QAM

symbols and the best 8 and 16 state codes for 8-PSK, 16-QAM and 64-QAM

are found for this particular structure. In [9], two parallel concatenated trellis

encoders are connected by a group of interleavers and the outputs of the two trel-

lis encoders are punctured alternately. In the receiver, symbol-by-symbol MAP

decoders are used to decode the received symbols alternately and exchange the

extrinsic information between each other. According to [8] and [9], both systems

perform within 1 dB from the Shannon limit at certain BER (10−7) with large

interleaver size in additive white Gaussian noise channels.

Although TCM is a successful coding scheme in additive white Gaussian
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noise channels, it was recently found that the best trellis codes in additive white

Gaussian channels are often not the best in fading channels. According to [10],

to minimize error probability in fading channels the code should be designed

to maximize the Hamming distance (as measured by the number of modulated

symbols). But in TCM, Ungerboeck’s rule of set partitioning often leads to

parallel branches, in which case the Hamming distance is only one and thus

there is no coding diversity against fading [11] [12] [13]. Based on this discovery,

some power and bandwidth will be given efficient schemes with separated coding

and modulation [14], have been proposed for Rayleigh fading channels.

Another problem in wireless channels is to estimate the channel state in-

formation. Given the time-varying nature of the channel impulse response in

multipath channels, one way to estimate the channel state information is to use

a pilot tone [15] [16] [17]. The best known technique of pilot tone is transparent-

tone-in-band (TTIB) in [15], [16] and [17]. Although it is a general solution, it

requires relatively complex signal processing and results in an increased peak-

to-average power ratio.

In pilot symbol-assisted modulation, the transmitter periodically inserts known

symbols to be used by the receiver as references to estimate the channel state

information. Compared with pilot tone, PSAM does not change the transmit-

ted pulse shape or peak-to-average power ratio. Processing at the transmitter

and receiver of PSAM is also simpler than that of TTIB. In [18], closed form

expressions were derived for the BER of BPSK and QPSK. In [19], closed form

BER performance was extended to M-QAM signals with estimated channel state

information.

To further improve the performance of PSAM, Su [?] proposed iterative fil-
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tering to perform the estimation of the channel state information (CSI) with the

help of decoding process by feeding back the soft information from decoder to

the channel estimator in a BPSK system. This scheme has a linear complexity

and was shown to reduce effectively the performance lag caused by the channel

estimation error in PSAM. However, due to the inherent drawback of the BPSK

signal, the above system has limited power and bandwidth efficiency. To our best

knowledge, no research effort has been made to apply this turbo coded scheme

with iterative filtering to high-order QAM.

We propose a pilot symbol-assisted, turbo-coded quadrature amplitude mod-

ulation (QAM) scheme with iterative channel estimation in Doppler fading chan-

nels. We start with flat-fading channels and propose two schemes for iterative

channel estimation. One is based on the threshold-controlled feedback. The

other one is much simpler with linear complexity but has similar performance.

Then we will extend our work to frequency-selective multipath channels using

space-time coded Rake receiver. We will study the performance of the single

user system under different transmit and receive diversity combinations.

1.3 Anti-Jamming Multicarrier Communication Systems

Multicarrier communication systems provide a simple solution to frequency-

selective fading by dividing the transmitted data into a number of bit streams

and transmitting them through different frequency subchannels. In multicarrier

systems, the frequency response is flat or approximately constant within each

subchannel but varies from one subchannel to another. Basics about multicarrier

systems can be found in [20], [21] and [1].
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In fading channels, the channel state information for all subchannels of mul-

ticarrier systems must be accurately estimated for coherent demodulation. Com-

pared to the serial data system in which only a single channel gain need to be

estimated at each symbol period, channel gains on each subchannels must be

estimated simultaneously. In [22], Li proposed a robust channel estimator that

makes full use of the time and frequency domain correlations of the channel fre-

quency response for OFDM systems in rapid dispersive fading channels. In [23],

pilot symbol-assisted channel estimation schemes with one-dimensional and two-

dimensional Weiner filters were studied and compared. It was shown that the

performance of two one-dimensional Wiener filters combined is similar to that

of a two-dimensional Wiener filter in terms of mean square estimation error. In

[24], an exact expression of the BER performance was derived for a multicarrier

system using optimal pilot symbol-assisted, two-dimensional Wiener filters in an

unknown time-variant, frequency-selective Rayleigh fading channel. However,

this result was limited to the case where each subcarrier is binary modulated.

No efforts were made in those papers to apply the iterative filtering technique

to multicarrier communication systems for joint detection and decoding.

Because multicarrier signals are also wide band, we are tempted to study the

anti-jamming capability of multicarrier signals. In the multicarrier modulation,

multiple samples of jamming signals in both time and frequency directions can be

used to estimate and cancel jamming signals. We consider two types of jamming

signals – the partial-band tone jamming and the partial-time pulse jamming.

We start with detection and estimation of jamming signals in the additive

white Gaussian noise (AWGN) channel. We propose to detect the presence of

jamming signals by computing the eigenvalues of the autocorrelation matrix in all
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subchannels and to estimate the jamming signal and cancel it from the received

signal if detected. The receiver will then demodulate and decode the received

signal as usual. To further improve the performance, we propose to reconstruct

the data signal to help detect and estimate jamming signals iteratively and to

use a correlation detector to generate soft decisions on the jamming state.

Next we will consider anti-jamming design in the multipath fading channel

with Doppler spread. The key issue here is the estimation of the channel state in-

formation for coherent demodulation. We propose to use pilot symbol sequences

specially designed for working in the jamming environment for the estimation of

time-variant channel state information (CSI) at the receiver. We also propose

to combine iterative channel estimation with iterative jamming detection and

estimation to achieve better performance.

1.4 Power Control and Adaptive Modulation for OFDM

with Transmit and Receive

Diversity

One of the main problems in mobile communications is how to maximize the sys-

tem throughput against frequency-selective multipath fading. With OFDM, the

problem of maximizing the system throughput against the frequency-selective

fading in a wireless channel can be achieved through power allocation and adap-

tive modulation among subchannels. When there is only a single cell, the opti-

mization problem can be solved using water-pouring. In a multi-cell mobile com-

munication environment, in order to increase the spectral efficiency with given
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bandwidth one would tend to increase the frequency reuse, which, however, in-

troduces severe cochannel interferences and makes the problem of maximizing

the system throughput intractable.

In [25], Su proposed a distributed water-pouring algorithm (DWPA) for adap-

tive modulation which is executed independently by the cochannel interfering

users. It was shown that the DWPA could effectively suppress cochannel interfer-

ence and improve the system throughput. Since the optimization of a multi-cell

system is complicated and computationally intensive, this heuristic distributed

algorithm is more practical and much easier to implement. The idea was based

on the fact that in many practical situations, a feedback channel with limited

bandwidth from the receiver to the transmitter is usually available. Therefore

channel state information can not only be obtained (estimated) at the receiver

but is also available at the transmitter. Adaptive modulation can thus be used

together with power control to improve the OFDM throughput for a given QoS

(Quality of Service).

Another effective method to mitigate fading, especially deep slowly fading,

is to use spatial diversity – multiple transmit and receive antennas. Transmit

and receive antenna diversity has been an area of intensive research with the

invention of trellis-based space-time codes by Tarokh, etc in [26]. Later, full-

rate space-time block codes have also been [27], [28] proposed. Among them,

Alamouti [28] proposed a simple transmit diversity technique. For our problem

of interest, space-time coded OFDM systems have been explored by Agrawal,

etc. [29] and Li [22].

In this part of our research, we first extend Su’s distributed algorithm from

single transmit and receive antenna to multiple antennas and combine it with
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transmit diversity to mitigate fading and further improve the throughput, where

multiple transmit antennas also cause an increase in the number of cochannel

interfering sources. For simplicity, we will consider only the uplink communi-

cations in the dissertation, although the algorithm is applicable to both uplink

and downlink communications. We will focus on the system with two transmit

antennas on the mobile and one receive antenna on the base station. We will

consider both selective diversity and equal power diversity on the transmitter

side.

Then we will develop a centralized power control algorithm (CPCA) for dif-

ferent antenna combinations. In the case of multiple transmit antennas, the

number of parameters to be controlled doubles and simply splitting the power

evenly to two transmit antennas as in the space-time code usually does not give

good performance.

Finally, we will study the performance of the system in the hostile jamming

environments. The jammer randomly selects a subset of the OFDM subchannels

and sends the jamming signals in those subchannels. Because both the DWPA

and the CPCA allows the transmitter to remove subchannels that do not satisfy

the service requirements and reallocate the power to the subchannels with better

channel conditions – large channel gains, small cochannel interference and no

jamming signals, we expect the system to be robust in the presence of strong

jamming signals.
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Chapter 2

Iterative Demodulation and Decoding of

High-Order CPM Signals In Flat Fading

Channels

Wireless communications require high data rate information transmission at low

bit error rate (BER). CPM signals are suitable for wireless communications

because of their high spectral efficiency and immunity to amplitude nonlinearity.

But the BER performance of continuous phase modulation provided by current

receivers is generally worse than that of the memoryless modulation like MPSK

(minimal phase-shift keying). This is in part due to the correlation in signals

introduced by the memory in continuous phase modulation, which is obvious

in uncoded signals. In the case of coded CPM signals, however, the improper

handling of the inherent memory in CPM signals by current CPM receivers is

more to be blamed for the bad performance than the CPM memory itself. They

either use differential detection or the Viterbi algorithm to demodulate CPM

signals and send hard decisions to their channel decoders but their decoders

do not send back information to help demodulate CPM signals and execute
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demodulation and decoding iteratively.

Iterative demodulation and decoding has been a topic under intense research

efforts since the introduction of turbo codes [7] and the so-called “turbo prin-

ciple” [4]. The core of the iterative demodulation and decoding is soft decod-

ing algorithms such as the soft output Viterbi algorithm (SOVA) [30], and the

symbol-by-symbol a posteriori probability (APP) decoding algorithm [31] – also

referred to as the MAP (maximum a posteriori) algorithm or the BCJR (L. R.

Bahl, J. Cocke, F. Jelinek, and J. Raviv) algorithm. They let the demodulator

and the channel decoder generate and exchange soft decisions reciprocally be-

tween each other with little information loss. Another key component in iterative

demodulation and decoding is the pseudo-random interleaver, which decorrelates

soft decisions of the demodulator (the decoder) so they are weakly correlated at

the input to the decoder (the demodulator).

Recently, many researchers have successfully applied this idea to achieve

large performance improvements in various communication systems. In [32],

Narayanan and Stuber designed a coherent DPSK demodulator for additive

white Gaussian noise (AWGN) channels and showed that large performance gains

in BER can be achieved by exploiting the recursive nature of differential modu-

lation. They treated the differential modulator as an inner encoder and applied

iterative demodulation and decoding to coded DPSK signals. In [33], Moqvist

and Aulin investigated serially concatenated continuous phase modulation with

iterative decoding in the AWGN channel and derived transfer function bound for

coded and interleaved MSK with a uniform interleaver. To demodulate DPSK

or CPM signals by the APP algorithm in time-variant wireless channels, how-

ever, the receiver must have accurate channel state information, which can not
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be known a priori and must be estimated in real time.

Pilot symbol-assisted modulation (PSAM) has proved to be an effective way

of estimating channel state information in flat fading channels with low com-

plexity, limited power and bandwidth loss. Although most of the research on

PSAM has concentrated on linearly modulated signals, Ho and Kim [3] demon-

strated a data dependent pilot encoding rules for continuous phase modulation

with rational modulation indices and showed that, unlike differential detection,

a CPM receiver with PSAM had no error floor in demodulating uncoded CPM

signals in Doppler fading channels.

Another way to apply the APP algorithm to demodulate signals in time-

variant channels is to use joint data detection and channel estimation. In [2]

and [34], Hoeher and Lodge demonstrated using MPSK signals that joint data

detection and channel estimation can be done accurately by incorporating linear

prediction into trellis decoding. Significant performance gains can be achieved

in this way at a price of expanding trellis states, the number of which grows

with the size of the signal constellation to the power of the predictor length. For

high-order modulation, the computational complexity quickly explodes. It has

a light advantage in power and bandwidth efficiency over PSAM in that it does

not need any pilot symbols.

In the first part of this chapter, we present a coherent, iterative demodulation

and decoding system for high-order CPM signals. To track the time-varying

channel state information (CSI) caused by the Doppler effect in mobile wireless

channels, pilot symbols are inserted periodically in data streams to serve as

references for channel estimation. Due to the inherent memory in continuous

phase modulation, those pilot symbols are set to be data-dependent so that the

17



CPM phase trellis can be forced to some pre-defined reference state at certain

time epochs. In addition, pilot symbols are used as parity check symbols in

demodulating each pilot frame to help reduce decoding errors. A pseudo-random

interleaver and a convolutional code is then combined with the phase trellis

of the CPM signal to form a structure similar to that of serial concatenated

convolutional codes so that the BER performance can be significantly improved

by applying iterative demodulation and decoding. The proposed system uses

pilot symbols to separate channel estimation from demodulation so it has low

computational complexity compared with other joint detection and decoding

systems.

To further improve the receiver performance, information is exchanged be-

tween the CPM demodulator, the convolutional decoder, and the channel estima-

tor. First, the channel estimator uses the information from the CPM demodula-

tor to construct an estimate of the phase trajectory of the transmitted signal and

filters all received samples on this estimated phase trajectory to obtain a more

accurate estimation of the CSI. Then the CPM demodulator combines this newly

estimated CSI with the extrinsic information from the convolutional decoder to

generate more reliable soft decisions, which is to be used as the input to the

convolutional decoder. This process can be carried out iteratively to improve

the BER performance. Although there may be some errors in reconstructing

the phase trajectory which will cause an increase in channel estimation errors,

the number of errors will decrease at high signal-to-noise ratio (SNR) and the

accuracy of the estimated CSI will improve due to the increased sampling rate.

In the second part of this chapter, we consider a noncoherent, iterative de-

modulation and decoding system for high-order CPM signals. The trellis branch
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metrics are calculated by using a linear predictor without explicitly estimating

the channel state information for a particular symbol period. As in the coherent

case, a pseudo-random interleaver and a convolutional code are then combined

with the phase trellis of the CPM signal to apply iterative demodulation and

decoding. Although both coherent and noncoherent CPM receivers can achieve

large performance gains in BER, the noncoherent receiver avoids using pilot

symbols so there is no power and bandwidth loss due to the insertion of pilot

symbols. But since it has to enlarge the CPM trellis for linear prediction, its

computation complexity is much higher than that of a coherent receiver.

This chapter is organized as follows. In Section 2.1, a brief description will

be given on CPM signals and the channel model. In Section 2.2, we present it-

erative demodulation and decoding of CPM signals with PSAM. In Section 2.3,

we propose to use iterative filtering to further improve the system performance

by reducing channel estimation error. In Section 2.4, we consider multiple differ-

ential detection of CPM signals. Finally, Section 2.5 summarizes and concludes

this chapter.

2.1 Signal and Channel Models

For simplicity, we consider only CPM signals with single modulation index in

this chapter. The complex envelope of the baseband transmitted CPM signal is

given by

x(t) = Aejφ(t,dk), (2.1)

and

φ(t, dk) = 2πh
k∑

l=0

dlq(t− LT ), kT ≤ t ≤ (k + 1)T, (2.2)
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where dl is the lth modulation symbol, dk = [d0, d1, · · · , dk]
T is the entire trans-

mitted sequence up to time kT . h is the modulation index, and T is the symbol

period. The elements of dk are assumed to be independent, identically dis-

tributed and form an M-ary set

Ωd = {−(M − 1), · · · ,−3,−1, 1, 3, · · · ,M − 1}. (2.3)

The function q(t) is the phase-smoothing response function. It is continuous,

nondecreasing and satisfies

q(t) =




0, t ≤ 0;

1
2
, t ≥ LT.

(2.4)

Here we consider L as integers only. For k ≥ L and kT ≤ t ≤ (k + 1)T ,

φ(t, dk) = πh
k−L∑
l=0

dl + 2πh
k∑

l=k−L+1

dlq(t− LT )

= θk + 2πh
k∑

l=k−L+1

dlq(t− LT ), (2.5)

where

θk = πh
k−L∑
l=0

dl .

For rational modulation indices h, θk mod 2π forms a finite set Θ. In particular,

let h = m/p, where m and p are relatively prime integers. For M-ary CPM

signals,

||Θ|| =




pML−1, m is even

2pML−1, m is odd
(2.6)

For example, consider 8-ary continuous phase-shift keying (CPFSK). L = 1,

M = 8, h = 1/8.

Θ =

{
0,
π

8
,
2π

8
, · · · , 15π

8

}
(2.7)
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Figure 2.1: Phase trellis of 8-CPFSK signals

The phase trellis is shown in Fig. 2.1. There are a total of 16 states. One

characteristics of this phase trellis is time-variant in the sense that the phase

trajectories in the even-numbered symbol intervals are not time translates of

those in the odd-numbered symbol intervals. To obtain a time-invariant phase

trellis, Rimoldi [5] introduced the tilted-phase

ψ(t, dk) = φ(t, dk) + πh(M − 1)t/T
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= 2πh

k−L∑
l=0

dl +M − 1

2
+ 4πh

L−1∑
i=0

dk−i +M − 1

2
q(t− kT + iT )

+πh(M − 1)(t− kT )/T − 2πh(M − 1)
L−1∑
i=0

q(t− kT + iT )

+(L− 1)(M − 1)πh

= 2πh

k−L∑
l=0

ul + 4πh

L−1∑
i=0

uk−iq(t− kT + iT )

+πh(M − 1)(t− kT )/T − 2πh(M − 1)
L−1∑
i=0

q(t− kT + iT )

+(L− 1)(M − 1)πh, kT ≤ t ≤ (k + 1)T (2.8)

where ul = dl+M−1
2

. Let ψk = 2πh
∑k−L

l=0 ul, then ψk forms a new finite set Ψ. In

the case of 8-ary CPFSK,

Ψ =

{
0,
π

4
,
2π

4
, · · · , 7π

4

}
. (2.9)
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Figure 2.2: Titled-phase trellis of 8-CPFSK signals

The tilted-phase trellis is shown in Fig. 2.2. There are only 8 states in the

tilted-phase trellis.
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In both phase trellises, the phase sequence φ(t, dk) mod 2π or ψ(t, dk) mod 2π

is constrained to lie on a trellis. Hence CPM signals with rational modulation in-

dices can be demodulated with either the Viterbi algorithm for hard decisions or

the APP decoding algorithm for soft decisions. The tilted-phase trellis, however,

is favored because it is time-invariant and has only half the number of states.

The transmitter modulates the baseband CPM signal to a specified carrier

frequency and transmits it through the channel. It is assumed that at the begin-

ning of the receiver, the signals are first down-converted to complex baseband

and passed through an ideal anti-aliasing filter whose bandwidth is wide enough

to pass all of the signal energy spread by the fading process. The baseband

received signal can be written as

y(t) = c(t)x(t) + n(t), (2.10)

where n(t) is the zero-mean, additive white Gaussian noise with one-sided power

spectral density N0. The complex channel gain c(t) incorporates both fading and

frequency offset:

c(t) = exp(j2πf0t)g(t) (2.11)

where f0 is the residual frequency offset, and g(t) is the complex Gaussian fading

process with variance σ2
g and Doppler spread fD, and c(t) represents the Rician

fading with autocorrelation function [35]

Rc(τ) = σ2
c

(
Kc

1 +Kc
+

1

1 +Kc
J0(2πfDτ)

)
, (2.12)

where fD is the Doppler frequency, σ2
c is the total power of c(t), and Kc is the

ratio between the line-of-sight power and the scattered power. In this chapter,

we are most interested in Rayleigh fading when there is no line-of-sight path,

i.e., Kc = 0.0.
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Figure 2.3: CPM system with iterative demodulation and decoding

The received signal is sampled at a frequency fs = N/T . The output samples

are denoted by

y(kTs) = c(kTs)x(kTs) + n(kTs), k = 0, 1, ..., (2.13)

where Ts = 1/fs, n(kTs)
′s are complex additive white Gaussian noise samples

with a variance of σ2
n = fsN0. The samples y(kTs)

′s are then iteratively processed

by the channel estimator, the APP CPM demodulator, the channel deinterleaver

and the convolutional decoder as shown in Fig. 2.3. Hereafter all of the modeling

and analysis will be done using this discrete-time complex baseband model.

2.2 Iterative Demodulation and Decoding with PSAM

In this section, we present a detailed description of various aspects for the pro-

posed iterative demodulation and decoding system with PSAM as shown in

Fig. 2.3. We first briefly review the APP decoding algorithm. Then we de-

scribe rules for data-dependent pilot insertion, channel estimation using pilot

references, and a posteriori probability conversion between nonbinary symbols
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and binary bits. Iterative demodulation and decoding will be discussed before

numerical results are given at last.

2.2.1 A Posteriori Probability Decoding Algorithm

The APP decoding algorithm has also been referred to as the maximum a pos-

teriori (MAP) decoding algorithm or the BCJR algorithm [31] in the literature.

We will adhere to the name APP in this chapter unless it is necessary to be loyal

to referred works to avoid confusion. As shown in Fig. 2.3, the CPM receiver

contains two APP decoders. One is for CPM phase trellis, which is nonbinary

in general; the other for the convolutional code. Here we briefly review the APP

decoding algorithm [31], [36], [9] for the purpose of illustrating how to compute

a posteriori probability for trellis states.

Let the trellis state at time kT be denoted by Sk, the input data symbols dur-

ing the period [(k−1)T, kT ) by uk ∈ {0, 1, · · · ,M−1} (∀d ∈ Ωd, ∃ uk such that d =

2 uk − (M − 1) and vice versa.), and output denoted by a vector corresponding

to N samples per symbol period

xk =




x(kT + 0 Ts)

x(kT + 1 Ts)

...

x(kT + (N − 1) Ts)



. (2.14)

Let the received sequence corresponding to xK
1 = x1, x2, · · · , xK be yK

1
= y

1
, y

2
,

· · · , y
K

. Define the branch transition probability γk(s
′, s) and the extrinsic

branch transition probability γ
(e)
k (s′, s) as

γk(s
′, s)

�
= Pr{y

k
|Sk−1 = s′; Sk = s} · Pr{Sk = s|Sk−1 = s′},
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γ
(e)
k (s′, s)

�
= Pr{y

k
|Sk−1 = s′; Sk = s}. (2.15)

Suppose a symbol m is the input to the trellis branch (s’,s), then

Pr{Sk = s|Sk−1 = s′} = Pr{uk = m}, (2.16)

which is the a priori probability for uk. If we further define

αk(s)
�
= Pr{Sk = s; yk

1
},

βk(s)
�
= Pr{yK

k+1
|Sk = s}.

Then for k = 1, 2, · · · , K, αk(s) can be calculated by a forward recursion

αk(s) =
∑

s′
αk−1(s

′)γk(s
′, s). (2.17)

And βk(s) can be calculated by a backward recursion

βk−1(s
′) =

∑
s

βk(s)γk(s
′, s). (2.18)

The a posteriori probability for the input symbol Pr{uk = m|yK
1
} is determined

by

Pr{uk = m|yK

1
} =

∑
(s′,s)∈Am

αk−1(s
′)γk(s

′, s)βk(s)∑M−1
m=0

∑
(s′,s)∈Am

αk−1(s′)γk(s′, s)βk(s)
, (2.19)

where the set Am = {(s′, s) : m is the input to the trellis branch}. To reduce the

computational complexity in computing the a posteriori probability, the APP

algorithm often works in the log domain.

logPr{uk = m|yK

1
}

= log

∑
(s′,s)∈Am

αk−1(s
′)γk(s

′, s)βk(s)∑M−1
m=0

∑
(s′,s)∈Am

αk−1(s′)γk(s′, s)βk(s)
,

= logPr{uk = m} + log

∑
(s′,s)∈Am

αk−1(s
′)γ(e)

k (s′, s)βk(s)∑M−1
m=0

∑
(s′,s)∈Am

αk−1(s′)γ
(e)
k (s′, s)βk(s)

.
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(2.20)

The first term logPr{uk = m} is the a priori information and the second term

is the extrinsic information. In Section 2.3 we need to calculate the a posteriori

probability for the trellis state Pr{Sk = s|yK
1
} in order to construct an estimate

of the transmitter phase trajectory. This is determined by

Pr{Sk = s|yK

1
} =

αk(s) · βk(s)∑
s αk(s) · βk(s)

. (2.21)

2.2.2 Data Dependent Pilot Encoding

In the case of continuous phase modulation, pilot symbols have to be dependent

on the data symbols to force the CPM signal to return to a certain state known

to the receiver [3]. Consider first the phase of a full response CPM signal at time

nT

φn = πh

n∑
l=1

dl mod 2π, dl ∈ Ωd, ∀ l = 1, · · · , n. (2.22)

If h = 1/M and n is odd, then φn must be of the form

φn =
m

M
π mod 2π, m ∈ Ωd. (2.23)

φn+1 can be forced to zero by using a pilot symbol dn+1 = −m, −m ∈ Ωd.

D

Memoryless

Modulator

Figure 2.4: CPM modulator with pilot encoder

Here we would like to point out that the pilot encoding problem in CPM or

DPSK signals is the same as the trellis termination problem in the component
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encoder of turbo codes. So the minimum number of pilot symbols required per

pilot frame is the same as the memory size of the CPM phase encoder. According

to [5], the CPM modulator can be decomposed into a continuous-phase encoder

and a memoryless modulator. Thus we can integrate the pilot encoder into

the CPM modulator as in Fig. 2.4, where the switch is turned to the feedback

branch at the last symbol period of every pilot frame and the subtraction is

mod M operation. The generalization to the case of partial response signal or

general rational modulation index is straightforward.

Due to the introduction of the pilot symbols, the non-binary CPM phase

trellis is forced to zero state periodically within each packet. In this case, the

forward and backward recursion in demodulating CPM signals with APP algo-

rithm can be carried out within each pilot frame instead of the entire transmitted

packet. So the CPM demodulator can be implemented in a parallel structure

and the delay due to the APP demodulation can be greatly reduced. In addi-

tion, samples taken at the pilot symbol period serve as parity check in each pilot

frame so that the pilot symbols also help reduce the decoding errors directly.

2.2.3 Channel Estimation

Since the phase of the CPM signal is forced to zero at pilot positions, the re-

ceiver can make use of this information to estimate the channel state information

through Wiener filtering and interpolation. Perfect timing is assumed for sam-

pling at the receiver. We also assume the channel gain is constant in each symbol

period for slowly fading, therefore only one estimate is needed for all the samples

within one symbol period. In the simulation we will further assume the receiver

has a perfect knowledge of the SNR and optimal Wiener filters will be used for
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estimating channel state information.

Let P be the number of data symbols per pilot symbol. The pilot frame size

is (P + 1). Since we have assumed that the channel state information remains

constant within a symbol period, we also let ck = c(kT ) for convenience. The

estimation for channel gain ck, k = m(P + 1) + n, n = 0, 1, · · · , P , using an

Lp-tap linear filter can be written as

ĉk = hH
p,nyp

(m), (2.24)

where

y
p
(m) =




y((m− �Lp/2� + 1)(P + 1)T )

y((m− �Lp/2� + 2)(P + 1)T )

...

y((m+ 	Lp/2
)(P + 1)T )




(2.25)

is the received vector of Lp nearest pilot samples. Although there are multiple

samples during each pilot symbol period, only the last sample – the sample taken

at the position that the signal phase trellis is at zero state – can be used in the y

vector. Other samples cannot be used for estimating channel state information

at this stage because the receiver has no knowledge about them. According to

[37], the Lp-tap filter coefficient vector hp,n can be determined by

Rphp,n = wp,n, (2.26)

where

Rp = E[y
p
(m)yH

p
(m)], (2.27)

wp,n = E[c∗kyp
(m)]. (2.28)

Here wp,n depends on n = k mod (P +1) and a total of (P +1) filters are needed

for the channel state information at all symbol positions in a pilot frame.
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2.2.4 Symbol-To-Bit Reliability Values (A Posteriori Probability)

Conversion

In converting a posteriori probabilities between M-ary symbols and binary bits,

we assume perfect interleaving between the convolutional encoder and M-ary

symbol mapping. So the log2M bits forming an M-ary symbol are mutually

independent. Let bk represent the kth binary bits of an M-ary symbol d ∈ Ωd

and m−1
k (d) represent the binary value of bit k corresponding to the symbol

d. For simplicity, we use Pa to represent the a posteriori probability. Then the

conversion from symbol a posteriori probabilities to bit a posteriori probabilities

can be carried out as follows:

Pa{bk = 0} =
∑

{n∈Ωd: m−1
k (n)=0}

Pa{d = n}, (2.29)

Pa{bk = 1} =
∑

{n∈Ωd: m−1
k (n)=1}

Pa{d = n}. (2.30)

And the conversion from bit a posteriori probabilities to symbol a posteriori

probabilities can be carried out as

Pa{d = n} =

log2 M−1∏
k=0

Pa{bk = m−1
k (n)}. (2.31)

2.2.5 Iterative Demodulation and Decoding

As mentioned above, the pilot encoder can be integrated into the CPM mod-

ulator with a phase trellis periodically forced to zero. We can interpret the

CPM transmitter as a serial concatenated encoding system – the outer code is

a binary convolutional code, the inner code a non-binary continuous phase en-

coder, and a random channel interleaver in between. So we can apply iterative
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demodulation and decoding to the receiver and it consists of a non-binary APP

demodulator, a symbol-to-bit a posteriori probability (reliability) converter, a

deinterleaver, a convolutional decoder and a feedback path to generate symbol

a priori information for the next iteration as shown in Fig. 2.3.

The a priori input of the CPM demodulator is initially set to zero when a

new packet of data arrives. To apply the APP decoding algorithm described

in Subsection 2.2.1 to the CPM demodulator, the branch transition probability

γk(s
′, s) must be calculated first. For a particular trellis branch (s′, s) (s′ and

s are the starting state and ending state respectively) at time k, the extrinsic

branch transition probability can be written as

γ
(e)
k (s′, s) = constant · exp

{
2Es

fsN0

Re
[
ĉ∗k· < xH(s′, s), y

k
>
]}

, (2.32)

where < ·, · > denotes vector inner product and H denotes Hermitian transpose

of a matrix. x(s′, s) is the vector of CPM output samples on the branch (s′, s).

Es

N0
is the SNR per symbol. Pr{Sk = s|Sk−1 = s′} is equal to the a priori

information Pr{dk = i} if dk = i is the input symbol to the branch (s′, s) and zero

otherwise. With γk(s
′, s), the symbol a posteriori probability Pr{dk = i|yK

1
}

and the extrinsic information can be calculated by a forward and a backward

recursion using (2.17) and (2.18).

To reduce the computational complexity of the symbol-by-symbol APP de-

coder of the non-binary CPM phase trellis, a non-binary version of the MAX-

LOG-MAP [38] algorithm is developed and used in the simulation. Note that

the receiver does not need an explicit pilot remover because in the CPM demod-

ulator, the extrinsic information is generated only for data symbols.

The extrinsic information on CPM symbols are then converted to the ex-

trinsic information at bit level, deinterleaved and processed by an APP convo-
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lutional decoder, which also uses the MAX-LOG-MAP algorithm. The extrinsic

information of coded bits from the outer APP decoder is fed back to a channel

interleaver, converted to the extrinsic information on CPM symbols, and used

by the CPM demodulator as the a priori information in the next iteration. At

the end of the last iteration, soft decisions on information bits generated by the

outer APP decoder are used to generate hard decisions.

2.2.6 Numerical Results

The performance of the new scheme is assessed numerically for 8-ary continuous-

phase frequency-shift keying (CPFSK), which is a full response continuous phase

modulation. A coherent receiver with ideal channel state information is used as

the benchmark. The Doppler spread normalized to the symbol rate, fDT , is

0.01. The convolutional code used is the rate 1/2, constraint length 3, (78, 58)

nonsystematic code. The block size of the pseudo-random bit interleaver is 2160.

The size of the pilot frame is 10, i.e., pilot insertion rate is one pilot every 9 data

symbols. The modulation index for the 8-ary CPFSK is 1/8. Gray mapping is

used to map every three bits in the data stream into an 8-ary symbol.

We first apply iterative demodulation and decoding to the coherent CPM

receiver. The results for the Rayleigh fading channel (Kc = −∞ dB) are shown in

Fig. 2.5. It can be seen that the iterative receiver improves the BER performance

significantly. At 10−4 BER, the gain in SNR of the iterative receiver over the

noniterative receiver is about 3.5 dB with two iterations and more than 5.0 dB

with eight iterations.

Shown in Fig. 2.6 are the simulation results of the iterative receiver with

PSAM. The rightmost curve in Fig. 2.6 is the result of the PSAM receiver with
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Figure 2.5: Performance of the coherent CPM receiver with iterative demodula-

tion and decoding (fDT = 0.01)

one iteration. It can be seen that after only two iterations, the PSAM receiver

outperforms the noniterative coherent receiver at high SNR. With four itera-

tions, it outperforms the noniterative coherent receiver by 2.5 dB at 10−4 BER.

In addition, with four iterations, the PSAM receiver achieves almost the same

performance as eight iterations. This means that there are only marginal benefits

by simply increasing the number of iterations beyond four.

To study the potential performance improvement of the proposed system, we

compare the iterative PSAM receiver with the iterative coherent receiver that

has the ideal channel state information. Both results are also shown in Fig. 2.6.

It can be seen that there exists a 2.7 dB performance gap between the coherent

receiver and the PSAM receiver at 10−4 BER with eight iterations. This shows

that further performance improvement can be obtained by reducing channel

estimation errors with the help of iterative channel estimation. But since the
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Figure 2.6: Performance of the PSAM receiver with iterative demodulation and

decoding (fDT = 0.01)

CPM signals are inherently differential, proper measures must be taken to reduce

the error propagation. This problem will be addressed in the next section.

2.3 Use Iterative Filtering to Further Improve Performance

In order to further improve the BER performance, we use the iterative filtering

technique to improve the channel estimation gradually. We first discuss methods

for iterative filtering. Then we simulate and compare numerical results with

those in the previous section.

2.3.1 Iterative Filtering

To apply iterative filtering to the proposed system, one would be tempted at

first to send back the decoder output – soft or hard decisions about coded bits
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Figure 2.7: CPM receiver with iterative channel estimation

– directly to the channel estimator. However, because of the inherent memory

in CPM modulation, if we try to reconstruct the transmitted signal by passing

data symbols formed from the interleaved hard decisions of the decoder out-

put through a CPM modulator as the dotted feedback in Fig. 2.7, we will run

into severe error propagation problems. This is because the input to the CPM

modulator must be integer symbols or hard decisions. When soft decisions are

converted into hard decisions, important soft information on data symbols is

lost.

To reduce error propagation, we must keep soft decisions in the feedback.

This demands the elimination of the CPM modulator in feedback path. The

question thus becomes how we can reconstruct the original CPM signals from

soft decisions on the input data symbols as faithfully as possible.

Let the transfer function of a trellis encoder be denoted as H(D). If we send

a sequence X(D) through this encoder, the output will be

Y (D) = X(D)H(D). (2.33)

To recover X(D) from the observation Y (D), we can either pass Y (D) through a

trellis decoder for H(D) or through another trellis encoder with transfer function
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1/H(D). This suggests that a trellis decoder for H(D) functions in a way similar

to a trellis encoder with transfer function 1/H(D). Likewise, a trellis decoder

for 1/H(D) functions in a way similar to a trellis encoder with transfer function

H(D). Furthermore, if the trellis decoder uses a symbol-by-symbol soft decoder,

then it functions similarly as a trellis encoder with H(D) but still retains soft-

in/soft-out property.

So in place of the CPM modulator in the feedback, we can use a symbol-

by-symbol trellis decoder that can keep soft decisions and thus reduce error

propagation. Specifically, we let Y (D) represent the tilted-phase trellis [5] se-

quence of CPM signals. Imagine that Y (D) is the input, 1/H(D) is the encoder,

X(D) = Y (D) · 1/H(D) is the output in a transmitter and we try to estimate

Y (D) from the information we have on X(D). But instead of having received

samples from the signal generated from X(D), we have the a posteriori proba-

bility of all the symbols in X(D), which can be used directly as the branch tran-

sition probability γk(s, s
′
) in applying the APP decoding algorithm to 1/H(D).

This is exactly the same problem as we have in the feedback – the a posteriori

probability of the X(D) sequence can be calculated by passing the a posteriori

probability of coded bits from the convolutional decoder through the channel

interleaver and converting them to symbol a posteriori probabilities. Further-

more, we can compute a posteriori estimates of CPM trellis states directly in

the CPM demodulator by (2.21) and use them as the a priori information for

1/H(D) decoder. At the output of the 1/H(D) decoder, we use the states with

maximum a posteriori probability to reconstruct the CPM phase trajectory (We

have successfully implemented this idea in a convolutional coded DPSK system

but the gain is similar to the method that we are going to discuss).
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Although this represents a general solution to the error propagation problem,

the complexity of the receiver increases with an extra APP decoder. Instead,

to reduce the receiver complexity, we compute a posteriori estimates of CPM

trellis states directly in the CPM demodulator by (2.21) and feed them back to

the channel estimator as in Fig. 2.7.

After we obtain a posteriori estimates of CPM trellis states, we can recon-

struct the CPM signal x̂(kTs) in the most likely path for the use of iterative

channel estimation. We have assumed that the channel gain is constant within

a symbol period, so

y(kT ) = c(kT )x(kT ) + n(kT ),

y(kT + Ts) = c(kT )x(kT + Ts) + n(kT + Ts),

...

y(kT + (N − 1)Ts) = c(kT )x(kT + (N − 1)Ts) + n(kT + (N − 1)Ts),(2.34)

Define

z(kT )
�
=

1

N

N−1∑
n=0

y(kT+nTs)/x(kT+nTs) = c(kT )+
1

N

N−1∑
n=0

n
′
(kT+nTs), (2.35)

where

n
′
(kT + nTs) = n(kT + nTs)/x(kT + nTs). (2.36)

As x(kT + nTs) has constant amplitude for all k and n, it is obvious that the

new noise sequence n
′
(kT + nTs) is still additive white Gaussian. If there is

no error in reconstructing x̂(kTs), then z(kT ) is an observation of the channel

gain ck distorted only by additive white Gaussian noise. Compared to the pilot

sequence y(m), the SNR in the sequence z(kT ) is 10 log 10(N) dB higher. The

estimation of channel gain ck using an Lz-tap linear filter is given by

ˆ̂ck = hH
z zk, (2.37)
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where

zk =




z((k − �Lz/2� + 1)T )

z((k − �Lz/2� + 2)T )

...

z((k + 	Lz/2
)T )



. (2.38)

The filter coefficient vector hz can be determined by [37]

Rzhz = wz, (2.39)

where

Rz = E
[
z(k)zH(k)

]
, (2.40)

wz = E [c∗kz(k)] . (2.41)

In the iterative filtering, not only the neighboring Lz observations used to esti-

mate the channel gain c(kT ) are more strongly correlated, but also the sequence

{z(kT )} has higher SNR provided that the number of errors in reconstructing

x̂(kT ) is small. As a result, both the channel estimation error and the BER can

be reduced iteratively with limited additional complexity.

2.3.2 Numerical Results and Discussions

In this part, we use numerical methods to assess the performance of iterative

channel estimation. The simulation parameters are the same as before unless

specified. We simulate three receivers: the coherent receiver, with perfect chan-

nel state information; the PSAM receiver , with the channel state information

estimated using only pilot-induced references (i.e., the PSAM system in Section

2.2); the PSAM-IF receiver, with channel state information estimated initially
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Figure 2.8: Performance of the PSAM-IF receiver on Rayleigh fading channels

(fDT = 0.01)

using pilot-induced references and iteratively on reconstructed CPM phase tra-

jectories. All three receivers use eight iterations.

We first simulate the PSAM-IF receiver. The results are shown in Fig. 2.8.

Compared with the PSAM receiver in Fig 2.6, the BER performance of the

PSAM-IF receiver improves with the number of iterations, even beyond four

iterations. Shown in Fig. 2.9 are the performance of the three receivers in the

Rayleigh fading channel (Kc = −∞ dB). We can see that at 10−4 BER, the

improvement in SNR per information bit is about 0.9 dB from the PSAM receiver

to the PSAM-IF receiver. This is remarkable considering that the PSAM receiver

has already performed much better than the noniterative coherent receiver.

To learn more about the performance of the three receivers, we fix the pilot in-

sertion rate and simulate them in different Doppler spreads. The results for 0.005

and 0.02 normalized Doppler spreads are shown in Fig. 2.10 and Fig. 2.11 respec-
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Figure 2.9: Performance of CPM receivers on Rayleigh fading channels (fDT =

0.01)

tively. At 0.005 Doppler spread, the BER performance of the three receivers are

very close. This is because both the PSAM receiver and the PSAM-IF receiver

can obtain more accurate channel state information at a lower fading rate. But

the coherent receiver performs much worse at 0.005 Doppler spread than that

at 0.01 Doppler spread. This is because the slower the fading rate, the less the

temporal diversity gain for the BER performance. For the same reason, we can

see in Fig. 2.11 that at 0.02 Doppler spread, the coherent receiver performs the

best. But the performance of the PSAM receiver and the PSAM-IF receiver are

further away from that of the coherent receiver. The reason is that at high fad-

ing rate, channel estimation errors increase and degrade the BER performance

more than at lower fading rates. The solution to this problem can be solved by

increasing the ratio of pilot symbols over data symbols, although this implies a

higher loss in data rate.
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Figure 2.10: Performance of CPM receivers on Rayleigh fading channels (fDT =

0.005)

Both the PSAM receiver and the PSAM-IF receiver provide low complexity

solutions to joint channel estimation and coherent demodulation of CPM signals

for wireless communications. Both are able to achieve significant gains in SNR

by exploiting the inherent memory in CPM signals. With iteratively improved

channel estimation, the PSAM-IF receiver is able to achieve better performance

than the PSAM receiver for the Rayleigh fading channel. The disadvantage of

both receivers include a ten percent loss in throughput due to the introduction

of pilot symbols.

2.4 Multiple Differential Detection of CPM Signals

In this section, we present the noncoherent, iterative demodulation and decoding

system with multiple differential detection. The system is as shown in Fig. 2.12.
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Figure 2.11: Performance of CPM receivers on Rayleigh fading channels (fDT =

0.02)

Most of the components in Fig. 2.12, such as the pseudo-random interleaver,

the APP convolutional decoder, etc., are the same as those in the coherent

system shown in Fig. 2.3. What is different here is the CPM MDD demodulator,

even though the CPM modulator is the same. We will focus on the description

of multiple differential detection of CPM signals first. Then we will give the

numerical results and compare them with those of the coherent, iterative receiver.

2.4.1 Multiple Differential Detection of CPM Signals

Let

y
k

=




y(kT )

y(kT + Ts)

...

y(kT + (N − 1)Ts)



. (2.42)
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Figure 2.12: CPM system with multiple differential detection

In the case that the channel state information is given in the kth symbol period,

the conditional probability of y
k

on a particular trellis branch (s
′
, s) (s

′
, s ∈ Θ)

is given by

Pr{y
k
|Sk−1 = s′; Sk = s} =

1

(2πσ2)N
exp

{
−||y

k
− ckx(s

′, s)||2
2σ2

}
, (2.43)

where x(s′, s) is the vector of CPM output samples on the branch (s′, s). Then

the branch transition metrics can be calculated with the knowledge of the a priori

information Pr{Uk = u}. But in practice, the CSI is not available at the receiver

and it must be estimated.

We have defined θk = πh
∑k−L

l=0 dl. Now let

Θk = {θk, dk−L, dk−L−1, · · · , dk−L−Np+1}

be the new trellis state. And {xk−L+1, xk−L, · · · , xk−L−Np+1} be the output sam-

ples of the trellis.

The channel state information ck on the newly defined trellis can be obtained
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by applying a prediction filter

ck−L+1 =
1

N

Np−1∑
l=0

al · xH
k−L−l · yk−L−l

(2.44)

where al, l = 0, · · · , Np − 1, are the predictor coefficients. The branch transition

probability on the newly defined trellis branch (s
′
, s) at time (k − L+ 1)T can

be written as

γk−L+1(s
′, s) = constant · Pr{Sk−L+1 = s|Sk−L = s′}

· exp

[
2Es

fsN0

Re
(
ĉ∗k−L+1 < xH(s

′
, s), y

k−L+1
>
)]

. (2.45)

Then αk(s), βk(s) and symbol-by-symbol decisions can be computed in the same

way as before using the newly defined trellis Θk.

2.4.2 Numerical Results and Discussions
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Figure 2.13: Performance of MDD CPM receiver with different number of iter-

ations (fDT = 0.01, predictor order = 3)
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Figure 2.14: Performance of MDD CPM receiver with different predictor lengths

(fDT = 0.01, 8 iterations)

As in Section 2.2, we use 8−ary CPFSK to assess the performance of the non-

coherent, iterative demodulation and decoding receiver. We will call it the MDD

receiver for simplicity. The channel code and the pseudo-random interleaver are

the same as in Section 2.2.

Shown in Fig. 2.13 are the results of the MDD receiver in the Rayleigh fad-

ing channel with normalized Doppler spread fDT = 0.01. The order of linear

predictor used in MDD is three. It can be seen that the iterative demodulation

and decoding also improves the BER performance in the MDD receiver. But

there is little gain in BER performance at high SNR after three iterations.

Shown in Fig. 2.14 are the results of the MDD receiver with different lin-

ear predictor lengths. Eight iterations are used. Due to high computational

complexity and high memory requirements imposed by the MDD receiver, the

maximum linear predictor length we can simulate in a Sun Ultra 10 computer
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Figure 2.15: Performance of CPM receivers on Rayleigh fading channels (fDT =

0.01)

is 3. It can be seen that the performance of the MDD receiver well depends

on the length of the linear predictor. At 10−4 BER, the 3-tap linear predictor

outperforms the 1-tap linear predictor by more than 3.0 dB and 2-tap linear

predictor by more than 1.0 dB.

We compare the performance of the MDD receiver with those of the coherent

receiver, the PSAM receiver, and the PSAM-IF receiver in Fig. 2.15. The order

of the linear predictor used in the MDD receiver is three. At one iteration, it can

be seen that the MDD receiver always performs better than the PSAM receiver

but worse than the coherent receiver. At eight iterations, the MDD receiver

performs better than the PSAM receiver but worse than the PSAM-IF receiver.

At high SNR, the BER curve of the PSAM receiver descends faster and expects

to match that of the MDD receiver eventually.

Compared with the PSAM receiver, the MDD receiver performs better under
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a certain SNR with a predictor length of three. There is no power and bandwidth

loss due to pilot symbols in the MDD receiver. Ideally, if the order of the

linear predictor used in MDD receiver is sufficiently large, the MDD receiver

can perform very close to the COHERENT receiver. Unfortunately, due to the

limitations in the computing facility, especially computer memory, we were not

able to simulate the cases with the linear predictor order larger than three. With

the linear predictor order Np being set to three, the MDD CPM demodulator

has 8 · 8Np = 4092 states (tilted-phase trellis) and the program needs about 200

mega-bytes in memory. While for the PSAM receiver, its CPM demodulators

has only 8 states. High computational complexity and memory consumption is

also the most severe disadvantage for the MDD receiver.

2.5 Conclusions

In this chapter, we have designed coherent and noncoherent iterative receivers for

high-order CPM signals. All of them uses the CPM demodulator as inner decoder

and have a structure similar to a serial concatenated convolutional decoder. For

the coherent receiver, in addition to using pilot symbols as references for channel

estimation, the PSAM receiver and the PSAM-IF receiver use them as parity

check symbols within each pilot frame to help reduce the decoding error directly.

Simulation results have shown significant improvement in BER performance for

both PSAM and PSAM-IF receivers. Since the PSAM-IF receiver also uses the

output of the CPM demodulator to reconstruct the CPM phase trajectories and

iteratively estimate the channel state information on reconstructed trajectories,

it has about 1.0 dB gain in SNR over the PSAM receiver at high SNR with

47



limited additional complexity.

The noncoherent MDD receiver that applies multiple-symbol differential de-

tection in the CPM demodulator, also benefits from iterative processing. There-

fore its BER performance is largely determined by the length of the linear predic-

tor. But increasing the predictor length incurs huge increase in computational

complexity and memory requirement. Therefore, one of our future works is to

design reduced-state MDD demodulator using the techniques described in [39].

By balancing between the number of trellis states and the linear predictor length,

we might achieve better performance under the same computational complexity

and memory requirement.

Other ways to improve the performance include increasing interleaver size or

using more powerful codes, although both will increase receiver complexity and

decoding delay. At last, it should be pointed out that although the proposed

system is designed for CPM signals, it applies to other differentially encoded

signals like DPSK signals as well.
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Chapter 3

Pilot Symbol-Assisted Demodulation of

Turbo-Coded Quadrature Amplitude

Modulation in Doppler Fading Channels

Motivated by development in mobile and wireless communications, the problem

of system design for reliable, high-speed data transmission over fading channels

have received considerable interests in recent years. Various newly developed

techniques have been combined together to combat fading and improve the sys-

tem performance. In [40], pilot symbol-assisted modulation (PSAM) [18], [19],

turbo codes [7], and joint iterative channel estimation and decoding, have been

applied together for the demodulation of BPSK signals transmitted over Rayleigh

fading channel. However, due to the inherent drawback of the BPSK signal, the

above system has limited power and bandwidth efficiency.

Given the emerging interest in high-order modulation for speech and data

transmission for mobile systems, we concentrate on the system design of trans-

mitting QAM signals over Doppler fading channels. Among fading channels,

two kinds of them are of particular interest to us. One is the flat-fading channel,
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the other is the multipath fading channel, where multipath will cause frequency-

selective fading.

In the flat fading channel, we investigate the application of iterative channel

estimation [40] and decoding for turbo-coded M-QAM signals. Pilot symbols

are inserted periodically in the encoded data stream for the estimation of the

time-variant channel state information (CSI). The decoder uses this estimated

CSI, together with the received data sequence, to generate soft decisions for each

data symbol. These soft decisions are used to reconstruct data symbols, which

together with the known pilot symbols are then filtered again to obtain improved

estimation of the CSI.

We consider two schemes for iterative channel estimation in the flat fading

channel. One is a threshold-controlled scheme that uses only the decisions whose

reliability values are larger than a threshold value for data reconstruction and

subsequent channel estimation. The other is an indiscriminating channel estima-

tion scheme that reconstructs all data symbols for iterative channel estimation

and allows a low complexity implementation.

In the multipath fading channel, the difficulties lie not only with the need

to estimate multiple channel parameters for each symbol period, but also with

different delays of multipath signals, which will result in intersymbol interference

and thus destroy references provided by pilot symbols at the receiver side. To

handle this problem, we consider turbo-coded QAM signals in a DS-CDMA sys-

tem and use the Rake receiver to resolve multiple dominant transmission paths.

Thus for each path, the fading can be considered to be flat so references provided

by pilot symbols can be used to estimate the path gain for that path. Another

widely used channel estimation scheme in DS-CDMA is to use a dedicated pilot

50



signal, which shares the same bandwidth but has its own spreading code. It is

often called “PAD” (pilot-aided demodulation). We will consider both PSAM

and PAD for channel estimation and compare their performances. For this part,

similar work has been done for MPSK signals by Khairy in [41]. But he only

considered receiver diversity in [41]. Besides, because of the model inaccuracy

in his simulator, his results for PSAM are flawed (PAD uses only neighboring

symbols and are more tolerant on model inaccuracy).

Since the rake receiver can exploit the diversity gain by coherently combining

the received signals from multiple paths, we also consider diversity gain at the

transmitter side. This can be achieved by using the space-time code proposed

by Tarokh, etc. in [26], [29]. For simplicity, we consider only the space-time

code proposed by Alamouti in [28]. Although similar work has been done by

Lenardi [42], Schulz-Rittich [43], etc., our approach differentiates from their work

in several aspects. First, although they have used space-time code, no other

channel codes are considered. As a result, they didn’t include the performance

gain from iterative channel estimation, which is often more significant than the

diversity gain. Second, they only used pilot symbols to estimate the channel

state information so there is no comparison between PSAM and PAD. Therefore

our approach here is much more comprehensive.

The outline of this chapter is as follows. In Section 3.1, we present the

turbo-coded QAM with PSAM in flat-fading channels. We will first describe the

proposed system. Then we will present the flat-fading channel and signal models,

computation of log-likelihood ratio, soft decisions for turbo-coded bits, channel

estimation with PSAM, and simulation results. In Section 3.2, the turbo-coded

QAM with PSAM in multipath fading channels are studied. Conclusions will be
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drawn in Section 3.3.

3.1 PSAM in Flat-Fading Channels
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Figure 3.1: Transmitter and Receiver of Pilot Symbol-Assisted Demodulation

Turbo Coded QAM

The proposed PSAM turbo-coded QAM system is as shown in Fig. 3.1.

Transmitted signals go through turbo encoder, channel interleaver, QAM map-

ping, and pilot insertion before it is pulse-shaped and transmitted through the

flat-fading channel. At the receiver, QAM signals are first passed through a
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matched filter. Here we assume perfect timing and synchronization for received

signals and ignore the inter-symbol interference caused by the Doppler fading.

The output of the matched filter are separated into the pilot stream – to be

used for channel estimation, and the data stream. The data stream is delayed

and compensated by the estimated channel state information before it is used

for the calculation of log-likelihood ratio at bit level. The bit level log-likelihood

ratio are then deinterleaved and sent to the turbo decoder and so completes the

first iteration. From the second iteration, the output of the turbo decoder are

fed back to reconstructed the transmitted data symbols, which are then used to-

gether with pilot symbols to obtain a more accurate channel estimation through

an iterative filter. The rest is the same as the first iteration. And this processing

can be carried on to the third iteration, the fourth iteration, · · · , and so forth.

In the rest of this section, we will first present the flat-fading channel and signal

models, followed by the key components in the proposed PSAM system: log-

likelihood ratio computation, soft decisions for information and coded bits, and

iterative channel estimation. At last, we will evaluate the system performance

using numerical methods.

3.1.1 Rayleigh Flat-Fading Channel and PSAM Signal Models

We assume the transmitted signal s(t) has a complex envelope given by

s(t) = A

∞∑
k=−∞

b(k)p(t− kT ) (3.1)

where T is the symbol duration, b(k) is the kth symbol for 16-QAM. A is the

amplitude factor and p(t) is a unit energy pulse:∫ ∞

−∞
|p(t)|2 dt = 1 (3.2)
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At the receiver, the fading channel output r(t) is given by

r(t) = c(t)s(t) + n(t) (3.3)

in which n(t) is AWGN with power spectral density N0/2 in both real and

imaginary components. The complex channel gain c(t) represents the Rician

fading with autocorrelation function [35]

Rc(τ) = σ2
c

(
Kc

1 +Kc

+
1

1 +Kc

J0(2πfDτ)

)
, (3.4)

where J0(·) is the zeroth order Bessel function of the first kind, fD is the Doppler

frequency, σ2
c is the total power of c(t), and Kc is the ratio between the line-of-

sight power and the scattered power.

The receiver detects the pulses using a matched filter with impulse response

p∗(−t)/√N0 [18]. The symbol-spaced samples r(k) of the matched filter output

are given by

r(k) = h(k)s(k) + n(k) (3.5)

where h(k) = A c(k)√
N0

and the Gaussian noise samples n(k) are white with unit

variance.

In PSAM, known symbols are inserted periodically into the data symbol

sequence once per (M − 1) symbols. At the receiver, these symbols are filtered

and interpolated to estimate channel gains associated with each data symbols.

The optimum filter under a given signal-to-noise-ratio and Doppler spread is

Wiener filter [18]. The receiver then scales and rotates a reference decision

grid for QAM constellation with the estimate, and feeds the modified decision

boundaries to the data branch. This modified decision boundaries are then used

to generate logarithm likelihood ratios of four bits associated with each received

16-QAM data symbol, which will be discussed in detail in the next section.
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3.1.2 Logarithm Likelihood Ratio (LLR) Calculation

For reasons stated in the introduction, a set of binary turbo encoder and decoder

is used in the system. However, the symbols transmitted over the fading channel

and received after matched filtering are 16-QAM symbols. This requires that

an appropriate mapping from binary coded bits to 16-QAM symbols be used

in the transmitter and that noise-corrupted data symbols be broken into their

associated bit logarithm likelihood ratio at the receiver. As in [12], Gray mapping

is used in the transmitter. Next we will deal with the calculation of bit logarithm

likelihood ratio for 16-QAM signals.

Consider a sequence of information bits b1b2b3b4...b4k−3b4k−2b4k−1b4k..., a se-

quence of 16-QAM symbols r(1), r(2), ..., r(k), ..., and the following mapping.

b4k−3b4k−2 Xk b4k−1b4k Yk

01 -3 01 -3

00 -1 00 -1

10 +1 10 +1

11 +3 11 +3

The bit logarithm likelihood ratio for 16-QAM signals is given by

Λ(b4k−i) = K log
Pr{b(4k − i) = 1|r(k)}
Pr{b(4k − i) = 0|r(k)} , ∀ i = 0, 1, 2, 3, (3.6)

where K is a constant.

In the case of additive white Gaussian channel with no fading, according

to [12], a good approximation of the LLR can be achieved using the following

expressions:

Λ(b4k−3) = Xk
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Λ(b4k−2) = |Xk| − 2

Λ(b4k−1) = Yk

Λ(b4k) = |Yk| − 2

Let r(k) = X(k)+jY (k). In the case of Rayleigh fading channel, we need to scale

and rotate the reference frame according to the channel gain before calculating

the LLR. It is easy to prove that the following expressions hold, where h(k) is

the complex channel gain associated with symbol (Xk, Yk).

Λ(b4k−3) = |h(k)|Xc
k

Λ(b4k−2) = |h(k)|(|Xc
k| − 2)

Λ(b4k−1) = |h(k)|Y c
k

Λ(b4k) = |h(k)|(|Y c
k | − 2)

where

Xc
k + jY c

k = (Xk + jYk)/h(k)

3.1.3 Soft Decisions for Information and Coded Bits

A standard binary turbo decoder generates the soft decisions only for the in-

formation bits, the extrinsic part of which are to be used in the next iteration

as a priori information. In this design, the soft decisions for the coded bits as

well as information bits are needed for the iterative channel estimation. Let uk

be the information bit associated with the transition from time k − 1 to k. Let

xk,1, ..., xk,ν be the coded bits associated with the branch transition from time

k − 1 to k. And let the trellis states at level k − 1 and at level k be denoted by

the integer s′ and s respectively. Then for the information bit, the soft decision

56



can be calculated by

L(uk) = log

∑
{(s′,s):uk=1} αk−1(s

′)γk(s
′, s)βk(s)∑

{(s′,s):uk=0} αk−1(s′)γk(s′, s)βk(s)
(3.7)

where

γk(s
′, s) = Pr(s|s′)p(y

k
|s′, s) (3.8)

αk(s) is yielded by the forward recursion

αk(s) =
∑
s′
αk−1(s

′)γk(s
′, s) (3.9)

βk(s) is yielded by the backward recursion

βk−1(s) =
∑
s′
γk(s, s

′)βk(s
′) (3.10)

For the coded bits xk,1, ..., xk,ν , their soft decisions are given by

L(xk,i) = log

∑
{(s′,s):xk,i=1} αk−1(s

′)γk(s
′, s)βk(s)∑

{(s′,s):xk,i=0} αk−1(s′)γk(s′, s)βk(s)
, ∀i = 1, 2, ..., ν. (3.11)

3.1.4 Iterative Channel Estimation

The idea behind iterative channel estimation is to reconstruct data symbols from

the output of the channel decoder and use them together with pilot symbols to

re-estimate the channel state information. When there are very few errors in

data reconstruction, more accurate channel estimates can be obtained due to

significantly increased sampling rate. We consider two approaches for iterative

channel estimation. One aims to reduce error propagation and use a threshold-

controlled feedback so that only those reconstructed symbols with high reliability

values are used for iterative channel estimation. In this case, the taps and coef-

ficients of iterative filters are determined by the reliability values of neighboring
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symbols and must be computed for each symbol position. The other will simply

reconstruct all data symbols and use a single iterative filter for all symbols.

We first consider the approach with threshold controlled feedback. The soft

values of a posteriori probability generated by the turbo decoder reflects the

extent that a particular bit can be trusted. The higher the value, the more

reliable its corresponding hard decision. The role of the threshold controller is

to decimate all the bits with a confidential level lower than the threshold and

allow only the bits with a higher confidential level to pass through. Those bits

will then be turned into hard decisions for reconstructing the 16-QAM symbols

to be used for iterative channel estimation. Note that a symbol can only be

reconstructed when all of its four bits pass through the threshold controller.

Otherwise, no symbol will be formed in that symbol position. For pilot symbols,

since they are known a priori to the receiver, they will always be included in

the iterative channel estimation.

To estimate the channel state information h(k). We consider a time window

Ωt(k) = {k − LW/2, · · · , k − 1, k, k + 1, k + LW/2}. Suppose there are Nt pilot

and reconstructed data symbols in this window: s(k1), s(k2), · · · , s(kNt), ki ∈
Ωt(k). Let r(k) = [r(k1), · · · , r(kNt)]

T . The autocorrelation matrix R(k) =

1
2
E[r(k)rH(k)] and the cross-correlation vector p(k) = 1

2
E[r(k)u∗(k)] for the

calculation of iterative filter coefficients based on the estimated symbol value is

given by,

1

2
E[r(k)r∗(l)]

=
1

2
E[h(k)ŝ(k)ŝ∗(l)h∗(l)] +

1

2
E[n(k)n∗(l)]

=
1

2
E[h(k)h∗(l)]ŝ(k)ŝ∗(l) + δk,l
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=
A2

2N0

E[c(kT )c∗(lT )]ŝ(k)ŝ∗(l) + δk,l

=
A2

N0

σ2
gJ0(2πfDT (k − l))ŝ(k)ŝ∗(l) + δk,l,

1

2
E[r(l)h∗(k)]

=
1

2
E[h(l)h∗(k)]ŝ(l)

=
A2

2N0
E[c(lT )c∗(kT )]ŝ(l)

=
A2

N0
σ2

gJ0(2πfDT (l − k))ŝ(l), (3.12)

where ŝ(k), ŝ(l) are the data symbols formed in the feedback path. At this stage,

we can calculate the Wiener filter coefficients directly by

w(k) = R−1p(k) (3.13)

Note here that both the dimension and the elements of the coefficient vector

w(k) vary from symbol to symbol. To get the channel estimation of a specific

symbol, we use the iterative filter

ĥ(k) = w(k)r(k), (3.14)

The main problem of this threshold-controlled, iterative channel estimation

scheme is that it requires matrix inversion at each symbol position, which sets the

complexity to be polynomial. To reduce the complexity, we propose a simplified

channel estimation scheme in the following.

We first select for each specific symbol the most reliable point out of the

16-QAM constellation, i.e.

ŝ(k) = max
i=1,...,16

Pr{s(k) = qi}, (3.15)

where qi, i = 1, ..., 16 are 16-QAM constellation points. We then have

r(k) ≈ h(k)ŝ(k) + n(k). (3.16)
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Divide both sides by ŝ(k), we have

r′(k) ≈ h(k) + n′(k), (3.17)

where r′(k) = r(k)/ŝ(k) and n′(k) = n(k)/ŝ(k). Since ŝ(k) = |ŝ(k)|ej arg(ŝ(k)),

this process is equivalent to a scaling of the amplitude of r(k) by | 1
ŝ(k)

| and a

rotation of the phase of r(k) by − arg(ŝ(k)) .

Although the new noise term n′(k) is no longer stationary Gaussian noise, we

still treat it as if it were stationary Gaussian noise in the subsequent processing.

To get the channel estimation of a specific symbol, we use the iterative filter

ĥ(k) = wH
a ra(k), (3.18)

where wa is a vector of iterative filter coefficients, H stands for the matrix

transpose and complex conjugate, and

ra(k) =




r′(k − LW

2
)

...

r′(k − 1)

r′(k + 1)

...

r′(k + LW

2
)




. (3.19)

With this updated version of channel estimation, the estimation error is given

by

e(k) = h(k) − ĥ(k). (3.20)

3.1.5 Simulation Results

In this section, we simulate the BER performance of the proposed system in a flat

fading channel with a normalized fading rate, fDT , of 0.01. The modulation is
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16-QAM. The turbo code is a rate 1/2, (111, 101) code. The turbo interleaver is

a pseudo-random interleaver of block size 1076 (in bit). The channel interleaver

is also a pseudo-random interleaver of 2160 bits. With 16-QAM modulation, a

packet has 540 data symbols. In the case of pilot symbol-assisted modulation,

there are 55 pilot symbols. The pilot symbol filter has 20 taps. After the first

iteration, the reconstructed data symbols from neighboring symbol positions are

used for the purpose of iterative channel estimation, although some of them will

be decimated by the threshold controller. The Lw is equal to 20.
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Figure 3.2: Bit Error Rate Performance of Turbo Coded QAM with Threshold-

Controlled Iterative Channel Estimation

Shown in Fig. 3.2 are the simulation results of the threshold-controlled, it-

erative receiver in the flat fading channel. It can be seen that the smaller the

threshold value, the better the BER performance. As the threshold value de-

creases from 1000 to 0, where the best BER performance is achieved, the required

SNR decreases for more than 1.5 dB at a BER of 10−4. This means that dec-
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Figure 3.3: Bit Error Rate Performance of Turbo Coded QAM with Simplified

Iterative Channel Estimation

imating the reconstructed symbols with low reliability values does not improve

the BER performance, although it allows for removing some data symbols from

iterative channel estimation without performance degradation at low threshold

values. Furthermore, at high threshold values, the BER performance deterio-

rates because most of the data symbols are not used for channel estimation,

which leads to higher estimation errors for the channel state information.

Also included in this figure are the performance results of receivers with per-

fect channel state information and with pilot symbol-assisted channel estimation

only. In terms of SNR, the best threshold-controlled iterative receiver is about

1.1 dB better than the PSAM receiver without iterative channel estimation at

a BER of 10−4. At this point, the SNR difference between the coherent receiver

and the best threshold-controlled iterative receiver is only 1.0 dB.

Shown in Fig. 3.3 are the simulation results of the receiver with simplified
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channel estimation. For comparison, we also include the results of the coher-

ent receiver, the threshold-controlled iterative receiver and the PSAM receiver

without iterative channel estimation. At the BER range that we are interested

in, the SNR difference between the simplified receiver and the best threshold-

controlled receiver is within 0.2 dB. Since the simplified receiver has only linear

complexity, it is much favored for obvious practical reasons compared to the

threshold-controlled receiver, which has polynomial complexity. Therefore, we

will only consider the simplified scheme in the rest of this chapter.

3.2 Turbo-Coded QAM with PSAM and Transmit Diver-

sity in Frequency-Selective Fading Channels

(PSAM only)

DS−CDMA

DS−CDMA

Pilot signal
(PAD only) Pulse Shaping

Pulse ShapingQAM Mapping
Pilot Embedder

Interleaver   Turbo Encoder

Figure 3.4: Transmitter of Turbo Coded DS-CDMA Signals

In this section, we consider turbo-coded quadrature amplitude modulation

with PSAM and transmit diversity in multipath fading channels. The system

is as shown in Fig. 3.6 and Fig. 3.7. As we will compare transmit diversity

with receive diversity, we also show in Fig. 3.4 and Fig. 3.5 the diagrams for the

transmitter and the Rake receiver without transmitter diversity. A number of

users share the same channel using DS-CDMA. The transmitted signal of each
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user will go through multiple transmission paths before it arrives at the receiver.

Each path has different attenuation and delays. The fading on each path is flat

in frequency and subject to Doppler shift. When there are multiple users in

the system, their transmitted signals can either be demodulated with various

single user detectors [1] or multiuser detectors proposed by [44], [45], etc. No

matter what kind of detectors, the channel estimation with PSAM will remain

the same. Without loss of generality, we will focus on the case that there is only

one user in the system and consider single user detection with the correlation

detector. It is straightforward to extend from single user case to multiple users.

For comparison, we will also consider pilot-aided demodulation of multipath

signals in DS-CDMA.
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Figure 3.6: Transmitter of Turbo Coded DS-CDMA Signals with Transmitter

Diversity

3.2.1 Multipath Channel and Signal Models

The transmitted signal for the uth antenna of a user in CDMA is given by

su
1(t) = A

∞∑
k=−∞

bu1(k) a1(t− kT ), (3.21)

where bu1(k) is the space-time coded data symbol for the uth antenna, a1(t) is

the spreading signal with a period T = N Tc. Tc is the chip duration and N is

the number of chips in one symbol period. The spreading signal for the ith user

is given by

ai(t) =

N∑
j=1

ai,j p(t− jTc), (3.22)

where p(t) is a unit energy pulse in the interval 0 ≤ t ≤ Tc and ai,j is a sequence

of N +1 and −1. The signal su
1(t) is transmitted through a multipath chan-

nel. We assume a wide-sense stationary multipath fading channel model with L

uncorrelated paths. The channel impulse response for the ith user is given by

cui (τ, t) =

L∑
l=0

cuil(t) δ(τ − τil), (3.23)
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where L is the number of resolvable paths for the Rake receiver. cuil is the

complex channel gain for the lth path for the uth transmit antenna of the ith

user. Channel gains on different paths are i. i. d. random processes. The

complex channel gain cuil(t) represents the Rayleigh fading with autocorrelation

function [35]

Rc(τ) = E
[|cuil(t)|2] J0(2πfDτ), (3.24)

where J0(·) is the zeroth order Bessel function of the first kind, and fD is the

Doppler frequency.

The received signal is given by

r(t) =
Nu∑
u=1

L∑
l=1

cu1l(t− τ1l) s
u
1(t− τ1l)
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+

Ku∑
m=2

Nu∑
u=1

L∑
l=1

cuml(t− τml) s
u
m(t− τml) + n(t), (3.25)

where Ku is the number of total users in the CDMA system, Nu is the number

of transmit antennas, and n(t) is the additive white Gaussian noise with two-

sided power spectral density N0/2. The signal is received by the Rake receiver

shown in Fig. 3.7. The matched filters for the ith user have an impulse response

ai(−t)/
√
N0. For convenience, we assume that τ11 = 0.0 since it is the relative

delay rather than the absolute delay that determines the level of multiuser in-

terferences. The output of the first matched-filter of the first user, representing

the first finger of the Rake receiver, is given by

r11(k) =

Nu∑
u=1

hu
11(k)b

u
1(k) +

L∑
l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)}

+
Ku∑

m=2

L∑
l=1

Nu∑
u=1

hu
ml(k)I

u
ml(k) exp{jφu

ml(k)} + n11(k) (3.26)

where hu
11(k) =

A cu
11(k)√
N0

, Iu
ml(k) is the interference from the (u, l)th path of mth

user to the 1st finger of the 1st user’s Rake receiver, and n11(k) is the AWGN

with unit variance. In our case, we consider only one user in the DS-CDMA

system. Hence the received signal for the 1st finger of the Rake receiver can be

simplified to

r11(k) =
Nu∑
u=1

hu
11(k)b

u
1(k) + i11(k), (3.27)

where

i11(k) =
L∑

l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)} + n11(k), (3.28)

The interference Iu
ml(k) depends on the specific code used in the CDMA system.

For a random signature sequence of length N , according to the approximation
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in [46] and [47], Iu
ml(k) can be approximated as additive white Gaussian noise,

with its mean and power given by

E [Iu
ml(k)] = 0.0. (3.29)

E
[|Iu

ml(k)|2
]

=
2

3N
E
[|su

m(t)|2] . (3.30)

However, this approximation only applies for large N values and multiples users.

And since Gold sequences have excellent cross-correlation property and has been

widely used in current DS-CDMA systems, we use Gold sequences so exact

multipath interferences can be simulated.

3.2.2 Transmit Diversity

At time k and k+ 1, the received signal at the matched filter output of the user

1’s lth finger are given by


r1l(k) = h1
1l(k)b

1
1(k) + h2

1l(k)b
2
1(k) + i1l(k);

r1l(k + 1) = h1
1l(k + 1)b11(k + 1) + h2

1l(k + 1)b21(k + 1) + i1l(k).
(3.31)

To exploit the transmit diversity, we adopt Alamouti’s [28] approach, which

involves two transmit antennas, i.e., Nu = 2. Suppose there are symbols b1(k)

and b2(k) to be transmitted at time k and k + 1 from the first user. To make

use of the transmit diversity, at time k, b1(k) is transmitted through one of the

antennas and b2(k) transmitted through the other antenna; at time k+1, −b∗2(k)
and b∗1(k) are transmitted through two antennas. The received signals at time k

and k + 1 are given by


r1l(k) = h1
1l(k)b1(k) + h2

1l(k)b1(k + 1) + i1l(k);

r1l(k + 1) = h1
1l(k + 1) (−b∗1(k + 1)) + h2

1l(k + 1)b∗1(k) + i1l(k + 1).
(3.32)
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In the slowly fading channel, there exists very strong correlation between path

gains hu
ml(k) and hu

ml(k + 1). Therefore we have hu
ml(k) ≈ hu

ml(k + 1). So the

above equations become


r1l(k) = h1
1l(k)b1(k) + h2

1l(k)b1(k + 1) + i1l(k);

r1l(k + 1) ≈ h1
1l(k) (−b∗1(k + 1)) + h2

1l(k)b
∗
1(k) + i1l(k + 1).

(3.33)

When the channel state information is given, we can solve for b1(k) as follows,

η1l(k) = h1 ∗
1l (k)r1l(k) + h2

1l(k)r
∗
1l(k + 1)

≈ h1 ∗
1l (k)

[
h1

1l(k)b1(k) + h2
1l(k)b1(k + 1) + i1l(k)

]
+h2

1l(k)
[
h1 ∗

1l (k) (−b1(k + 1)) + h2 ∗
1l (k)b1(k) + i∗1l(k + 1)

]
=

(|h1
1l(k)|2 + |h2

1l(k)|2
)
b1(k) + h1 ∗

1l (k)i1l(k) + h2
1l(k)i

∗
1l(k + 1).

(3.34)

Similarly for b1(k + 1), we have

η1l(k + 1) = h2 ∗
1l (k)r1l(k) − h1

1l(k)r
∗
1l(k + 1)

≈ h2 ∗
1l (k)

[
h1

1l(k)b1(k) + h2
1l(k)b1(k + 1) + i1l(k)

]
−h1

1l(k)
[
h1 ∗

1l (k) (−b1(k + 1)) + h2 ∗
1l (k)b1(k) + i∗1l(k + 1)

]
=

(|h1
1l(k)|2 + |h2

1l(k)|2
)
b1(k + 1) + h2 ∗

1l (k)i1l(k) − h1
1l(k)i

∗
1l(k + 1).

(3.35)

The Rake receiver then combines η1l(k) from L fingers to form a decision variable∑L
l=1 η1l(k) for the demodulation of b1(k). When there is perfect channel state

information,
∑L

l=1 η1l(k) achieves a diversity order of 2L.
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3.2.3 Channel Estimation with PSAM and Transmit Diversity

To estimate the channel state information hu
1l(k), u = 1, 2, we need to send two

pilot symbols, b1(k) = p1 and b1(k+1) = p2, at one time. So the received signals

at time k and k + 1 can be written as


r1l(k) = h1
1l(k)p1 + h2

1l(k)p2 + i1l(k);

r1l(k + 1) ≈ h1
1l(k) (−p∗2) + h2

1l(k)p
∗
1 + i1l(k + 1).

(3.36)

Let 


ξ1
1l(k) = p∗1r1l(k) − p2r1l(k + 1);

ξ2
1l(k) = p∗2r1l(k) + p1r1l(k + 1).

(3.37)

Substitute (3.36) into the above equations, we have


ξ1
1l(k) = (|p1|2 + |p2|2) h1

1l(k) + p∗1i1l(k) − p2i1l(k + 1);

ξ2
1l(k) = (|p1|2 + |p2|2) h2

1l(k) + p∗2i1l(k) + p1i1l(k + 1).
(3.38)

ξ1
1l(k) and ξ2

1l(k) can be used to estimate the channel state information for the

two paths from two transmit antennas to the lth finger of the Rake receiver.

Then data signals are solved using these estimated channel state information

and the output of all L fingers are combined to form a decision variable. The

processing after that is the same as Section 3.1, i.e., log-likelihood calculation,

deinterleaving, and decoding. From the second iteration, the transmitted sym-

bols are reconstructed from decoder output to iteratively estimate the channel

state information.

3.2.4 Pilot-Aided Demodulation and Transmit Diversity

For comparison purpose, we also consider pilot-aided demodulation scheme. In

this scheme, a pilot signal is transmitted simultaneously with the data signal.
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The transmitted signal from the uth antenna of the 1st user is given by

su
1(t) = A

∞∑
k=−∞

[
Au

p(k) ap1(t− kT ) + bu1(k) a1(t− kT )
]
, (3.39)

where Au
p(k) is the pilot value transmitted through antenna u, ap1(t) is the

pilot spreading code and is chosen to be nearly orthogonal to a1(t). All the

other parameters are the same as in the PSAM scheme. In the single transmit

antenna case, A1
p(k) can be any values known to the receiver. But in the case

with transmit diversity, Au
p(k) must also be space-time coded in the same way

as pilot symbols in the PSAM scheme in order to resolve distinct paths from two

transmit antennas. The received signal can be written as

r(t) =
Nu∑
u=1

L∑
l=1

cu1l(t− τ1l) s
u
1(t− τ1l)

+

Ku∑
m=2

Nu∑
u=1

L∑
l=1

cuml(t− τml) s
u
m(t− τml) + n(t). (3.40)

As shown in Fig. 3.7, there are two branches in each finger of the PAD system.

One is for data signals, the other is for pilot signals. In the data branch, the

signal is first passed through a filter matched to a1(−t)/
√
N0. The output of

this matched filter in the first finger of the first user is given by

r11(k) =
Nu∑
u=1

hu
11(k) [bu1(k) + Ip1,1(k)] +

L∑
l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)}

+

Ku∑
m=2

L∑
l=1

Nu∑
u=1

hu
ml(k)I

u
ml(k) exp{jφu

ml(k)} + n11(k), (3.41)

where hu
11(k) =

A cu
11(k)√
N0

, Ip1,1(k) is the interference from the pilot signal to the

data signal on the same path, and n11(k) is the AWGN with unit variance. Since

we have assumed that each user’s pilot and data code are nearly orthogonal,

Ip1,1(k) ≈ 0.0. Iu
ml(k) is the total interference (including data and pilot) from
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path (u, l) of user m to finger 1 of user 1’s Rake receiver. In the pilot branch,

the signal is passed through a filter matched to ap1(−t)/
√
N0. The output of

this matched filter in the first finger of the first user is given by

r11,p(k) =
Nu∑
u=1

hu
11(k)

[
Au

p(k) + Iu
1,1(k)

]
+

L∑
l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)}

+

Ku∑
m=2

L∑
l=1

Nu∑
u=1

hu
ml(k)I

u
ml(k) exp{jφu

ml(k)} + n11,p(k), (3.42)

where Iu
1,1(k) is the interference from the data signal to the pilot signal on the

same path. Again, we have Iu
1,1(k) ≈ 0.0 due to near orthogonality between the

user’s pilot code and data code. In the case of one user, (3.41) can be simplified

to

r11(k) =
Nu∑
u=1

hu
11(k)b

u
1(k) + i11(k), (3.43)

where

i11(k) =

L∑
l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)} + n11(k). (3.44)

Under the same condition, (3.41) can be simplified to

r11,p(k) =

Nu∑
u=1

hu
11(k)A

u
p(k) + i11,p(k), (3.45)

where

i11,p(k) =
L∑

l=2

Nu∑
u=1

hu
1l(k)I

u
1l(k) exp{jφu

1l(k)} + n11,p(k). (3.46)

Since Au
p(k) is known to the receiver, r11,p(k) can be used to estimate the channel

state information hu
11(k). As mentioned before, Au

p(k) is also space-time coded,

the estimation of the channel state information is the same as in the PSAM
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scheme. Let {Ap(k)} be the corresponding uncoded sequence of {Au
p(k)}. Then

the channel state information can be estimated from the following equations


ξ1
1l,p(k) = (|Ap(k)|2 + |Ap(k + 1)|2) h1

1l(k) + A∗
p(k)i1l,p(k)

−Ap(k + 1)i1l,p(k + 1);

ξ2
1l,p(k) = (|Ap(k)|2 + |Ap(k + 1)|2) h2

1l(k) + A∗
p(k + 1)i1l,p(k)

+Ap(k)i1l,p(k + 1).

(3.47)

The estimated CSI is then used to demodulate the transmitted data signal bu1(k)

from the received signal r11(k). The rest of the receiver processing – calculation

of log-likelihood ratio, deinterleaving, and turbo decoding – is the same as the

PSAM scheme described before in this chapter.

In the iterative channel estimation, the samples in the pilot branch and data

branch of each Rake finger are combined to obtain a new estimate of the channel

state information. In particular, if we assume a perfect feedback from the turbo

decoder, we can reconstruct the transmitted data sequence {b̂u1(k)}. By resolving

hu
11(k) from (3.43), we have



ξ1
1l(k) =

(
|b̂1(k)|2 + |b̂1(k + 1)|2

)
h1

1l(k) + b̂∗1(k)i1l(k)

−b̂1(k + 1)i1l(k + 1);

ξ2
1l(k) =

(
|b̂1(k)|2 + |b̂1(k + 1)|2

)
h2

1l(k) + b̂∗1(k + 1)i1l(k)

+b̂1(k)i1l(k + 1).

(3.48)

We can combine (3.47) and (3.48) to form a new sequence with maximal SNR

for iterative channel estimation


ζ1
1l(k) =

√
1 − rp ξ

1
1l(k) +

√
rp ξ

1
1l,p(k);

ζ2
1l(k) =

√
1 − rp ξ

2
1l(k) +

√
rp ξ

2
1l,p(k),

(3.49)

where rp is the ratio of the average pilot energy over the total energy (including

both pilot and data signals) per symbol. Therefore {ζ1
1l(k)} can be used to
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estimate the channel state information for path (1, l), l = 1, 2, · · · , L and {ζ1
1l(k)}

for path (2, l), l = 1, 2, · · · , L.

3.2.5 Simulation Results
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Figure 3.8: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 1

Simulation results are shown in Fig. 3.8 – 3.17. At the transmitter side,

we have simulated 1 − 2 transmit antennas; at the receiver side, we have sim-

ulated 1, 2, 3, 4, 6, 8 fingers separately. We assume that all transmission paths

are mutually independent, subject to the same Doppler frequency, and have the

same statistics: mean, variance. For each case, we simulated 5 receivers: CO-

HERENT, PSAM, PSAM with iterative filtering (PSAM-IF), PAD, PAD with

iterative filtering (PAD-IF). In the case of one transmit antenna, one pilot sym-

bols are inserted every ten data symbols; while in the case of two transmission

antennas, two pilot symbols are inserted every ten data symbols. We also add

74



2 3 4 5 6 7 8 9 10 11 12

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
it 

E
rr

or
 R

at
e

COHERENT
PSAM
PSAM−IF
PAD
PAD−IF

Figure 3.9: Bit Error Rate Performance of Turbo Coded QAM: 2 TX antenna,

L = 1

one additional pair of pilot symbols so there are pilot symbols at the beginning

and at the end of a packet. For PAD, we adjust the power ratio of the pilot signal

over the data signal so the pilot signal consumes the same amount of power as

pilot symbols in PSAM. The spreading sequences are Gold sequences from [48].

For the pilot signal, the spreading sequence is

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1.

For the data signal, the spreading sequence is

1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1.

The sequence length or processing gain is 31. And the rest of simulation param-

eters are the same as the previous section unless otherwise specified.
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Figure 3.10: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 2
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Figure 3.11: Bit Error Rate Performance of Turbo Coded QAM: 2 TX antenna,

L = 2
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Figure 3.12: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 3
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Figure 3.13: Bit Error Rate Performance of Turbo Coded QAM: 2 TX antenna,

L = 3
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Figure 3.14: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 4
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Figure 3.15: Bit Error Rate Performance of Turbo Coded QAM: 2 TX antenna,

L = 4
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Figure 3.16: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 6
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Figure 3.17: Bit Error Rate Performance of Turbo Coded QAM: 1 TX antenna,

L = 8
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From all these figures, we can see that PSAM performs better than PAD

in call cases. PSAM’s advantage become more obvious as the number of paths

goes high. In Fig. 3.8 where there is only one transmission path, the difference

between PSAM and PAD in SNR at 10−4 BER is only about 0.3 dB, while in

Fig. 3.15 and Fig. 3.17, where there are a total of eight transmission paths, the

difference is more than 3.0 dB. This is because the initial channel estimation is

very poor in PAD due to low SNR in pilot channel. As the number of paths

increases, multipath interference increases and further reduces the SNR in pilot

channel.

Another observation is that iterative channel estimation always provided re-

markable performance improvement. The improvement becomes larger with the

number of paths. In the case of single transmit antenna, the gain provided by

iterative channel estimation for PSAM increases from about 1.0 dB at 10−4 BER

when there is only one transmission path to more than 2.0 dB when there are

eight transmission paths; for PAD, the gain ranges from about 1.2 dB to more

than 3.0 dB. When there are transmit diversity, we observe the same trend but

the gain is not as large for PSAM.

As the number of paths increases, the performance of PSAM, PSAM-IF,

PAD, and PAD-IF all improves initially, reaches peak at some point, and then

starts to degrade. For single transmission antenna, their performance reaches

peak when L = 4; for two transmit antennas, it happens when L = 3. The

reason is that when the number of paths increases, so does the order of diversity.

But with further increase, the channel estimation error will increase due to the

reduced signal power and increased multipath interference at each path; on the

other hand, the gain provided by the increase in diversity order will be less
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obvious as can be seen in the BER of COHERENT receiver in Fig. 3.16 – 3.17.

At a certain point, the channel estimation error will more than offset the diversity

gain when the number of paths increases.

The space-time code provides remarkable gains in BER performance only

when the number of paths to the Rake receiver per transmit antenna is small.

When L = 1, transmit diversity provides significant gain for all receivers. It is

larger compared to the results of receive diversity in Fig. 3.10 even though the

diversity orders are the same. This is because with transmit diversity, diversity

is achieved by resolving signals from two parallel paths so the additional paths

created by the additional transmit antenna do not introduce multipath interfer-

ence. While in the case of receive diversity, multiple paths interfere with each

other in the form of multipath interference. Although Gold sequences have ex-

cellent cross-correlation property, their auto-correlation property are not as good

as maximal length sequences. As a result, Gold sequences are more vulnerable

to multipath interference than maximal length sequences.

When L is large, except the COHERENT receiver, in which the channel state

information are assumed to be perfectly known, the performance of all other re-

ceivers actually deteriorates, especially for PAD. The reason is that distributing

the transmission power over more paths degrades the SNR and subsequently

degrades the channel estimation. In the case when there are multiple transmis-

sion paths between any pair of transmit and receive antennas, the system may

achieve better performance by concentrating the power in one transmit antenna.
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3.3 Conclusions

In this chapter, we have proposed joint iterative channel estimation and decoding

systems for turbo-coded pilot symbol-assisted QAM systems over Doppler fading

channels. We have considered both the flat-fading channel and the multipath

channel. In the flat-fading channel, our focus is on how to design low complexity,

power and bandwidth efficient, joint detection and decoding schemes for pilot

symbol-assisted modulation. We have considered two schemes based on data re-

construction and iterative channel estimation. The first is a threshold-controlled

iterative channel estimation scheme in which decisions from the channel decoder

are selected for data reconstruction by their reliability values. We have simulated

the scheme using a range of threshold values and determined that the best result

is achieved at very low threshold values. To reduce the polynomial complexity

of the threshold-controlled scheme, we propose another simplified joint detection

and decoding scheme that have similar performance with only linear complexity.

In the multipath channel, our focus is on the comparison between pilot

symbol-assisted demodulation and pilot-aided demodulation under various trans-

mit and receive diversity scenarios. From the simulation results, some conclu-

sions can be drawn. First, iterative channel estimation always provides remark-

able performance improvement. Second, space-time code should only be used

when L is small; the system can achieve better performance by using only one

transmit antenna when there are multiple transmission paths available. Third,

as the number of paths increases, the performance of PSAM, PSAM-IF, PAD,

and PAD-IF all improves initially, reaches peak at some point, and then starts to

degrade. Fourth, PSAM always performs better than PAD, and PSAM-IF per-

forms better than PAD-IF at medium or higher normalized Doppler frequency.
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Although we have only simulated PSAM, PSAM-IF , PAD, PAD-IF under fixed

complexity, the results would also be in favor of PSAM and PSAM-IF if we use

the same pilot energy, i.e., using a larger window for PAD so that the pilot en-

ergy in this window is the same as the energy of pilot symbols used in PSAM.

Because in this case, the complexity of the PAD will be much higher due to larger

number of filter taps. When the normalized Doppler frequency is smaller than

0.001, however, the PAD filter can be replaced by a simple integrator. In this

case, PAD and PAD-IF will have similar performance to PSAM and PSAM-IF

with comparable complexity. So we conclude that while PSAM and PSAM-IF

perform similarly to PAD and PAD-IF respectively at low normalized Doppler

frequency (smaller than 0.001), PSAM and PSAM-IF are better choices for DS-

CDMA systems at medium (0.005) or higher normalized Doppler frequency.
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Chapter 4

Anti-Jamming Multicarrier Communication

Systems

In this chapter, we investigate the anti-jamming design of frequency-hopped mul-

ticarrier communication systems. Multicarrier modulation is a form of frequency-

division multiplexed (FDM) group-band. It divides the transmitted data into

B bit streams to modulate B frequency carriers. The modulated carriers are

summed for transmission, and must be separated at the receiver before demodu-

lation. According to [21], there are three methods used for this separation: FDM

filtering, overlapping staggered quadrature amplitude modulation (SQAM), and

QAM with the sinc function, which has the advantage that both the transmit-

ter and the receiver can be implemented using Fast Fourier Transform (FFT)

techniques.

We consider two types of jamming signals – partial-band tone jamming and

partial-time pulse jamming. Due to lack of separation between neighboring car-

riers, both the second and the third method are vulnerable to partial-band tone

jamming because one jamming tone will not only jam the signal in the subchan-

nel that the tone falls in, it will also jam neighboring subchannels. When there
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are multiple jamming tones, they mix with each other, rendering the estimation

and cancellation of jamming signals virtually impossible. So we only consider

multicarrier modulation with FDM filtering. The design for partial-time pulse

jamming, however, is not subject to this limit and is applicable to general mul-

ticarrier systems.

Most of the anti-jamming designs for communication systems rely on spread-

spectrum techniques such as DS-CDMA or frequency-hopping. In DS-CDMA,

the main focus has been on exploiting the processing gain to reduce the perfor-

mance loss caused by the jamming; in frequency-hopping, the focus has been on

avoiding the jamming signal by transmitting the data signal in the bandwidth

free of jamming.

For multicarrier systems, anti-jamming design has received little attention

in literature so far. In [49], a special complex sequence – complex quadratic

sequence is proposed as the frequency-spreading sequence for multicarrier spread

spectrum (MC-SS) modulation scheme. The resulting MC-SS signal has constant

envelope in both time and frequency domains. The presence of the jamming

signal is determined by monitoring the power level, which requires both the

knowledge of the data signal power and the jamming signal power. Another

shortcoming is that this detection scheme is not suitable for the fading channel, in

which the instantaneous received power of both the data signal and the jamming

signal could vary greatly. They also made no effort in estimating the jamming

frequency and canceling the jamming signal.

Our design, however, is much more efficient and challenging. First, instead

of frequency spreading, all multicarrier subchannels except pilot subchannels are

used for data transmission so our system has much higher single user throughput.
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For a single user, B data symbols are transmitted in one symbol period in our

system while only one symbol is transmitted in their system. Second, our scheme

is to detect, estimate and cancel jamming signals in both time and frequency

directions in both the AWGN and the fading channels, which is much more

challenging than simple detection in the AWGN channel. Third, the central

carrier frequency of our multicarrier signal hops from one band to another so

that the deliberate jammer have to spread the jamming power over the entire

frequency-hopped bandwidth. Therefore, only a small portion of the subchannels

will be jammed at the same time. This, however, poses additional difficulty for

jamming detection and estimation as the receiver only has limited observation

period for the jamming period.

We start with detection and estimation of jamming signals in the additive

white Gaussian noise (AWGN) channel. Upon receiving the data signal distorted

by the jamming, the receiver first detects the presence of jamming signals by

computing the eigenvalue spread of the autocorrelation matrix in all subchannels.

If the receiver determines that a particular subchannel has been jammed, it will

go ahead to estimate the jamming signal and cancel it from the received signal.

The receiver will then demodulate and decode the received signal as without

jamming signals. To further improve the performance, the receiver feedback the

information from the decoder output and make use of the reconstructed data

signal to enhance jamming detection and estimation. From the second iteration,

the receiver uses a correlation detector to generate soft decisions on the jamming

state so the performance can be further improved.

As for the problem of frequency estimation, there have been a rich dedicated

literature in the area of signal processing. They range from classical methods like
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periodogram, maximum entropy, linear regression [50], etc., to subspace-based

super resolution algorithm, such as MUSIC (MUltiple SIgnal Classification) [51]

and ESPRIT (Estimation of Signal Parameters Via Rotational Invariance Tech-

niques) [52], etc. We choose the ESPRIT algorithm due to its high resolution

and ease of computation. More information on frequency estimation methods

can be found in [51] and [53].

Next we will move on to the multipath fading channel with Doppler spread.

After the detection, estimation and subsequent cancellation of jamming signals,

the receiver must estimate the channel state information for coherent demodu-

lation. For this purpose, pilot symbols are inserted periodically in the encoded

data stream for the estimation of time-variant channel state information (CSI)

at the receiver. An important issue is that the pilot symbol sequence must be

specially designed in a jamming environment so that its characteristics is dif-

ferent from that of the jamming signal. Because pilot symbols provide crucial

references for the channel estimation and demodulation, it is also required that

pilot symbol sequences are robust to jamming cancellation processing.

Compared to the serial data system in which only a single channel gain needs

to be estimated at each symbol period, the channel gain of all subchannels must

be estimated simultaneously in the multicarrier system for coherent demodula-

tion. The decoder uses this estimated channel state information, together with

the received data sequence, to generate soft decisions for each data symbol.

These soft decisions are then feedback so they can be used in the iterative de-

tection and estimation of jamming signals as well as in the iterative processing

of channel state information and most importantly, data signals.

Since partial-time pulse jamming is a dual problem of partial-band tone jam-
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ming, so we will use partial-band tone jamming to illustrate the anti-jamming

design for the most part of the chapter. The outline of this chapter is as follows.

Section 4.1 describes multicarrier signals, multipath fading channel, and jam-

ming signal models. Section 4.2 presents anti-jamming design against partial-

band tone jamming signals in both AWGN and fading channels. Section 4.3

is dedicated to the subsequent processing after jamming signal estimation and

cancellation – iterative demodulation and decoding of MPSK signals with pilot

symbol-assisted modulation. Simulation results are presented and discussed in

Section 4.4. Finally, we conclude this chapter in Section 4.5.

4.1 Signal, Channel and Jamming Models

In this section, we model the multicarrier signals, the channel and the jamming

signals. We start with the multicarrier signal. Then we move on to the fading

channel model. Although we also consider the AWGN channel in this chapter,

we will not discuss it specifically due to its simplicity. At last, we present two

types of jamming models: partial-band tone jamming and partial-time pulse

jamming.

4.1.1 Signal Model

According to [54], the transmitted signal in subcarrier b is given by

xb(t) =
+∞∑

l=−∞
ξ(b, l)s(t− lT ) cos 2πfbt

−
+∞∑

l=−∞
η(b, l)s(t− lT ) sin 2πfbt (4.1)
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where ξ(b, l) and η(b, l) are real and imaginary parts of the lth transmitted

symbol in an MPSK constellation. T is the symbol period, l is discrete time

index, and fb = f0 +Wb is the carrier frequency of the bth subchannel, W is the

frequency separation between two carriers. s(t), t ∈ [0, T ] is the shaping pulse

and s(t) = 0, t �∈ [0, T ]. The energy of s(t) is normalized to 1, i.e.,∫ T

0

s2(t) = 1. (4.2)

The receiver uses a matched filter h(t) = s(T − t), 0 ≤ t ≤ T at each carrier

to demodulate the signal. If we ignore the signal components from other carriers,

the output of the matched filter in carrier b due to the data signal is given by

�{ys(b, (l + 1)T )} =

∫ (l+1)T

lT

�{2 xb(τ) exp(−i2πfbτ)}h((l + 1)T − τ) dτ

=

∫ (l+1)T

lT

∞∑
k=−∞

ξ(b, k)s(τ − kT )s(τ − lT ) dτ

= ξ(b, l)

∫ (l+1)T

lT

s2(τ − lT ) dτ

= ξ(b, l)

∫ T

0

s2(t) dt

= ξ(b, l), (4.3)

�{ys(b, (l + 1)T )} =

∫ (l+1)T

lT

�{2 xb(τ) exp(−i2πfbτ)}h((l + 1)T − τ) dτ

= η(b, l). (4.4)

In the AWGN channel, the channel gain is constant throughout the entire

bandwidth. In the multipath fading channel, we assume that the channel gain is

flat in each subchannel of the multicarrier system but frequency-selective from

one subchannel to another. In the frequency-domain, the received data symbol

of bth subchannel at time l can be written as

Y (b, l) = H(b, l)X(b, l) +N(b, l), (4.5)
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where X(b, l) = ξ(b, l) + i η(b, l) is the transmitted data symbol in subchannel b

at time l; H(b, l) is the complex channel gain of data signals in bth subchannel at

time l; N(b, l) is an additive white Gaussian noise with power spectrum density

N0.

In the presence of jamming, the received signal in the frequency domain is

given by

Y (b, l) = H(b, l)X(b, l) +HJ(b, l)I(b, l)J(b, l) +N(b, l), (4.6)

where I(b, l) is the indicator function of the jamming signal; J(b, l) is the received

jamming signal; HJ(b, l) is the complex channel gain of jamming signals in bth

subchannel at time lT .

4.1.2 Rayleigh Fading Channel Model

The complex baseband representation of a multipath channel impulse response

can be written as

h(t, τ) =
∑

p

cp(t)δ(τ − τp), (4.7)

where p is the index of the multiple propagation path; τp is the delay of the pth

path; and cp(t) is the complex amplitude of the pth path which incorporates

the propagation loss, shadowing effect, and the phase rotation caused by the

delay τp. In most of wireless channels, the attenuation and phase of one path

are uncorrelated with those of another path; and cp(t)’s can be modeled as wide-

sense stationary complex Gaussian stochastic processes. We assume that all the

paths have identical correlation function except their differences in power level.

Thus,

E[cp(t+ ∆t)c∗p(t)] = σ2
pφt(∆t), (4.8)
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where σ2
p is the average power of the pth path and φt(∆t) is the time-domain

correlation function. Let H(t, f) be the frequency response of the time-varying

channel impulse response h(t, τ):

H(t, f) =

∫ ∞

−∞
h(t, τ)e−j2πfτdτ

=
∑

p

cp(t)e
−j2πfτp. (4.9)

The space-time, space-frequency correlation function of the multipath chan-

nel can be written as

φ(∆t,∆f) = E[H(t+ ∆t, f + ∆f)H∗(t, f)]

= φt(∆t)φf(∆f), (4.10)

where φf(∆f) =
∑

p σ
2
pe

−j2π∆fτp . So the space-time, space-frequency correla-

tion can be separated into a time-domain correlation φt(∆t) and a frequency-

domain correlation φf(∆f). The frequency-domain correlation is dependent on

the multipath delay profile, while the time-domain correlation is dependent on

the vehicle speed and the carrier frequency.

4.1.3 Jamming Models

Partial-Band Tone Jamming The partial-band tone jamming signal is given by

jt(t) =
∑

b

At(b) cos [2π(fb + ∆fb)t+ φb]

=
∑

b

At(b) cos (2π∆fbt+ φb) cos 2πfbt

−
∑

b

At(b) sin (2π∆fbt+ φb) sin 2πfbt (4.11)

where −W
2

≤ ∆fb ≤ W
2

is the frequency difference between the jamming tone

and the bth carrier. φb is the initial phase. At(b) ∈ {0, At}, where At is the
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amplitude of the jamming tone. Here we assume that all the jamming tones

have the same power.

We also assume that the frequency separation between two jamming tones

is larger than that between two neighboring carriers, which is a reasonable one

because in order to effectively jam a frequency-hopped multicarrier system, the

jammer has to spread the jamming tones over the entire bandwidth so the fre-

quency separation between two jamming tones cannot be small. Under this

assumption, there is at most one jamming tone in each subchannel.

Suppose there is a jamming tone with frequency fb + ∆fb, ∆fb ∈ [−W
2
, W

2
],

the output of the matched filters due to the multi-tone jamming signal can be

written as

yt(b, (l + 1)T ) =

∫ (l+1)T

lT

2 jb(τ) exp(−i2πfbτ)h((l + 1)T − τ) dτ

=

∫ (l+1)T

lT

At exp [−i(2π∆fbτ + φb)] h((l + 1)T − τ) dτ

=

∫ (l+1)T

lT

At exp (−iφb) exp (−i2π∆fbτ) s(τ − lT ) dτ

= At exp {−i[2π∆fblT + φb]}
∫ T

0

s(t) exp (−i2π∆fbt) dt

= At exp {−i[ωbl + φb]}S(∆fb) (4.12)

where ωb = 2π∆fbT . Because the frequency sub-bands are completely separated

by filters, there are no jamming signals leaking from other sub-bands. Define

A1(b)
∆
= At S(∆fb). The frequency-domain received signal in the AWGN channel

can be written as

J(b, l) = yt(b, (l + 1)T ) = A1(b) exp{−i[ωbl + φb]}. (4.13)

In fading channels, the received jamming signal becomes HJ(b, l)J(b, l), where
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HJ(b, l) is the channel gain for the jamming signal. Here we assume that the

data channel and the jamming channel have the same statistics.

Partial-Time Pulse Jamming The partial-time pulse jamming signal is given

by

jp(t) =

∞∑
k=−∞

Ap δ(t− tk), (4.14)

We assume that the pulse jamming signal covers the entire frequency-hopped

bandwidth and that the pulse is sufficiently short in time so that its frequency

spectrum is constant over all multicarrier subchannels. We also assume that the

time interval between two neighboring pulses are greater than the symbol period,

i.e., |tl − tl+1| > T, ∀l so that there is at most one jamming pulse within each

symbol period. We further model the jamming state in a symbol period as a

Bernoulli random variable, i.e., with probability α, the pulse jammer transmits

a single pulse with a power PJT/α = A2
p in a symbol period.

Suppose lT ≤ tl ≤ (l+1)T , the output of the matched filter due to the pulse

jamming signal can be written as

yp(b, (l + 1)T ) =

∫ (l+1)T

lT

2 jp(t) exp (−i2πfbτ) h((l + 1)T − τ) dτ

=

∫ (l+1)T

lT

2

∞∑
k=−∞

Ap δ(τ − tk) exp (−i2πfbτ) s(τ − lT )dτ

=

∫ (l+1)T

lT

2Ap δ(τ − tl) exp (−i2πfbτ) s(τ − lT )dτ

= 2Ap exp (−i2πfbtl) s(tl − lT )

= 2Ap exp {−i2π[f0 +Wb]tl} s(tl − lT )

= 2Ap exp {−i[2πWtlb+ 2πf0tl]} s(tl − lT )

= 2Aps(tl − lT ) exp {−i[ωlb+ φl]} , (4.15)
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where ωl = 2πWtl and φl = 2πf0tl. Define A2(l)
∆
= 2Aps(tl−lT ). In the additive

white Gaussian channel with a unit channel gain, the received jamming signal is

simply

J(b, l) = yp(b, (l + 1)T ) = A2(l) exp {−i[ωlb+ φl]} . (4.16)

The received pulse jamming signal becomes HJ(b, l)J(b, l) in fading channels.

As we have seen, partial-time pulse jamming is a dual problem of partial-band

tone jamming, so we will use partial-band tone jamming to illustrate the anti-

jamming design in the rest of the chapter.

4.2 Jamming Detection, Estimation and Cancellation in

AWGN and Fading Channels

In this section, we consider detection and estimation of partial-band tone jam-

ming signals for each subchannel. We first study the problem in the AWGN

channel. Then we move to the fading channel.

4.2.1 Detection of Jamming Signals in the AWGN Channel

We first consider the multi-tone jamming in the AWGN channel. For l =

0, · · · , L− 1,

I t(b) = 0 : Y (b, l) = X(b, l) +N(b, l),

I t(b) = 1 : Y (b, l) = X(b, l) + A1(b) exp(−iωbl) exp(−iφb) +N(b, l), (4.17)

where

I t(b) ∈ {0, 1},
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ωb, φb ∈ [0, 2π],

X(b, l) ∈
{

exp
(
i
π

M

)
, exp

(
i
3π

M

)
, · · · , exp

(
i
(2M − 1)π

M

)}
.

For simplicity, we assume that the shaping pulse has a flat spectrum within the

subchannel, i.e., S(∆fb) = constant. Under this assumption, A1(b) = A1. We

define the jamming-to-signal ratio as

J/S
�
=

αA2
1

E [|H(b, l)X(b, l)|2] =
αA2

1

E [|H(b, l)|2]E [|X(b, l)|2] . (4.18)

Optimal Detection For any matrix element V (b, l), let V t(b) = [V (b, 0), · · · ,
V (b, L− 1)]T . Define

Θ
�
=
[
I t(b), X t(b), ωb, φb

]T
. (4.19)

The parameter set Γ = {0, 1} × SL × [0, 2π]2. Let xt
0, · · · , xt

ML−1 represent ML

M-ary sequence of length L. For convenience, we make the following definitions

Γ0,0 =
{
Θ ∈ Γ|I t(b) = 0, Xt(b) = xt

0

}
,

...

Γ0,ML−1 =
{
Θ ∈ Γ|I t(b) = 0, Xt(b) = xt

ML−1

}
,

Γ1,0 =
{
Θ ∈ Γ|I t(b) = 1, Xt(b) = xt

0

}
,

...

Γ1,ML−1 =
{
Θ ∈ Γ|I t(b) = 1, Xt(b) = xt

ML−1

}
. (4.20)

Because N(b, 0), · · · , N(b, L − 1) are i. i. d. Gaussian random variables with

N(b, l) ∼ N (0, 2σ2), l = 0, · · · , L− 1. For Θ ∈ Γ0,i, the conditional probability

p(Y t(b) = yt(b)|Θ ∈ Γ0,i) is given by

p(Y t(b) = yt(b)|Θ ∈ Γ0,i) =
1

(2πσ2)L
exp

{
−||yt(b) − xt

i||
2σ2

}
. (4.21)
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We assume that the initial phase φb is uniformly distributed in [0, 2π] and that

∆fb is uniformly distributed in [−W
2
, W

2
]. Hence ωb is also uniformly distributed

in [−π, π], or equivalently, in [0, 2π]. For Θ ∈ Γ1,i, the conditional probability

p(Y t(b) = yt(b)|Θ ∈ Γ1,i) is given by

p(Y t(b) = yt(b)|Θ ∈ Γ1,i) =

1

4π2

∫ 2π

0

∫ 2π

0

1

(2πσ2)L
exp

{
−||yt(b) − xt

i − A1 exp(−iωb) exp(−iφb)||
2σ2

}
dωbdφb,

(4.22)

where

ωb = [0, ωb, · · · , (L− 1)ωb]
T . (4.23)

The jamming state I t(b) can be detected by

Lt,1 =
P{I t(b) = 1|Y t(b) = yt(b)}
P{I t(b) = 0|Y t(b) = yt(b)}

=
P{Y t(b) = yt(b)|I t(b) = 1}P{I t(b) = 1}
P{Y t(b) = yt(b)|I t(b) = 0}P{I t(b) = 0}

=

∑
xt

i
P{Y t(b) = yt(b), X t(b) = xt

i|I t(b) = 1}P{I t(b) = 1}∑
xt

i
P{Y t(b) = yt(b), X t(b) = xt

i|I t(b) = 0}P{I t(b) = 0}

=

∑
xt

i
P{Y t(b) = yt(b)|X t(b) = xt

i, I
t(b) = 1}P{Xt(b) = xt

i}P{I t(b) = 1}∑
xt

i
P{Y t(b) = yt(b)|X t(b) = xt

i, I
t(b) = 0}P{Xt(b) = xt

i}P{I t(b) = 0}
(4.24)

Since P{Xt(b) = xt
i} = 1/ML, ∀i, we have

Lt,1 =
P{I t(b) = 1|Y t(b) = yt(b)}
P{I t(b) = 0|Y t(b) = yt(b)}

=

∑ML−1
i=0 P{Y t(b) = yt(b)|Θ ∈ Γ1,i}P{I t(b) = 1}∑ML−1
i=0 P{Y t(b) = yt(b)|Θ ∈ Γ0,i}P{I t(b) = 0}

� 1. (4.25)

Although Lt,1 is the optimal detection of the multi-tone jamming in subchannel b,

its computational complexity increases exponentially with respect to the number
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of symbols L. So we have to consider suboptimal detection algorithms with lower

complexity.

Detection Based on Eigenvalue Spread Consider an M + 1 element array of

received samples

Y b(l) = [Y (b, l), · · · , Y (b, l +M)]T (4.26)

The correlation matrix is

R = E[Y b(l) Y
H
b (l)]

= s1A
2
1 s

H
1 + (1 + 2σ2) I, (4.27)

where s1 = [1, exp(−iωb), · · · , exp(−iωbM)]T and I is the (M + 1) × (M + 1)

identity matrix. Using eigenvalue decomposition, R = QΛQH , where Q is an

unitary matrix and

Λ =




λ1

λ2

. . .

λM+1




(4.28)

is a diagonal matrix whose diagonal elements are the eigenvalues of the matrix R.

By sorting, we can let λ1 ≥ λ2 ≥ · · · ≥ λM+1. Since R = s1A
2
1 s

H
1 + (1 + 2σ2) I,

Qs1A
2
1 s

H
1 Q

H is also a diagonal matrix. Because s1A
2
1 s

H
1 is a rank one matrix,

it has only one nonzero eigenvalue γ1. So we have

λ1 = γ1 + 1 + 2σ2,

λ2 = 1 + 2σ2,

...
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λM+1 = 1 + 2σ2. (4.29)

When there is no jamming signal, γ1 = 0; when there is one jamming signal,

γ1 = MA2
1. Therefore we can detect the presence of the jamming signal by

observing r = λ1/λ2 � η. When the jamming power is not known, the η is set

to be 10. We use the covariance method of data windowing in estimating the

matrix R and M is set to one in the simulation since we have assumed that there

is at most one jamming tone in each subchannel.

4.2.2 Estimation of Jamming Signals in the AWGN Channel

After the receiver has determined that a particular subchannel has jamming

signals using the detection schemes, the jamming parameters – amplitude and

phase – must be estimated in order to cancel the jamming signal.

Differential Frequency Estimation When the jamming signal has much stronger

power than both the data signal and the background noise, we can ignore the data

signal and the background noise in estimating the angle φ(b) using differential

frequency estimation,

1

L− 1

L−2∑
l=0

Y (b, l)

Y (b, l + 1)
≈ 1

L− 1

L−2∑
l=0

exp(iωb) = exp(iωb). (4.30)

So ωb can be estimated by

ω̂b ≈ ∠
[

1

L− 1

L−2∑
l=0

Y (b, l)

Y (b, l + 1)

]
= ∠

[
L−2∑
l=0

Y (b, l)

Y (b, l + 1)

]
. (4.31)

To estimate J(b, l), since

J(b, l) = A1 exp{−i[ωb l + φb]} = A1 exp[−iωb l] · exp[−iφb], (4.32)
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we only need to estimate At
J(b) = A1 exp(−iφb), which is given by

Ât
J(b) ≈ 1

L

L∑
l=1

Y (b, l) exp[−iω̂b l]. (4.33)

After canceling the jamming signal, there will be added noise due to the jamming

cancellation. If we ignore the frequency estimation error, the power of this

additional noise is equal to (E|X(b, l)|2 + 2σ2)/L.

ESPRIT The ESPRIT algorithm [52] is a high-resolution signal parameter es-

timation method that can be applied to the problem of estimating sinusoids in

noise. Although the MUSIC algorithm [51] has smaller estimation variance, it

requires huge cost in computation searching over parameter space. We choose

the ESPRIT algorithm because of its high resolution compared to other fre-

quency estimation method and its ease of computation compared to the MUSIC

algorithm. For ease of reference, we include the algorithm in the following.

The ESPRIT algorithm:

• Compute [R]MM×MM as defined in (4.27).

• Solve generalized eigenvalue decomposition, RE = ΣnEΛ, where

[E]MM×MM = [e1, · · · , eMM ]

and [Σn]MM×MM is the noise covariance matrix.

• Form Es = Σn[e1, · · · , ed] =


 [Ex]MM

2
×d

[Ey]MM
2

×d


 and let Exy = [Ex Ey].

• Compute eigenvalue decomposition, EH
xyExy = EΛEH and divide the ma-

trix E into four submatrices as follows

E =


 [E11]d×d [E12]d×d

[E21]d×d [E22]d×d


 .
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• ω̂b = −E12E
−1
22 .

Note here Σn is an identity matrix because both the data signal and the AWGN

are uncorrelated. Hence the generalized eigenvalue decomposition is actually

eigenvalue decomposition in the normal sense. Although it involves eigenvalue

decomposition, the ESPRIT algorithm is still very simple because we only need

to work with 2 × 2 matrices, i.e., MM = 2. For more information on the

algorithm, please refer to [52].

4.2.3 Detection and Estimation of Jamming Signals in the Fading

Channel

In fading channels, the received signal can be written as

Y (b, l) = H(b, l)X(b, l) + I t(b)HJ(b, l)A1 exp{−i[ωb l + φb]} +N(b, l). (4.34)

Due to correlated channel state information, the detection of the jamming state

becomes more complicated in the fading channel. As a result, the detection

scheme in (4.25) is too complicated for practical purpose. But we can still use

the eigenvalue-based detection method to detect the presence of the jamming

signal.

In slowly fading channel, HJ(b, l) changes slowly so we can still use differen-

tial estimation or the ESPRIT algorithm to estimate ωb. But then we need to

estimate

J t(b, l) = HJ(b, l)J(b, l) exp{iωb} = HJ(b, l)A1 exp(−iφb)

instead of A1 exp(−iφb). Let

Z(b, l) = exp(iω̂b l)Y (b, l)
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= HJ(b, l)A1 exp(−iφb) +H(b, l)X(b, l) exp(iω̂b l)

+N(b, l) exp(iω̂b l)

= J t(b, l) +H(b, l)X(b, l) exp(iω̂b l) +N(b, l) exp(iω̂b l). (4.35)

Then the receiver can make use of the a priori knowledge of the channel statistics

to estimate J t(b, l) = HJ(b, l)A1 exp(iωb) with Wiener filters. After canceling

the jamming signal, there will be added noise due to the cancellation. If we

ignore the error in frequency estimation, the power of this additional noise can

be calculated by

E|e(b, l)|2 = A2
1(1 − wH

o Rwo) (4.36)

where e(b, l) = J(b, l) − Ĵ(b, l), R is the autocorrelation matrix of the channel

statistics, and wo is the optimal Wiener filter coefficient vector. The actual noise

power will be larger due to the error in frequency estimation.

4.2.4 Iterative Detection and Estimation of Jamming Signals

The receiver first detects, estimates and cancels the jamming signal from re-

ceived samples and then proceeds to demodulate and decode multicarrier sig-

nals, completing the first iteration of processing. After that, the receiver tries

to reconstruct the received data signal component based on the decoder output

and feeds it back to the beginning of the receiver. Thus a new iteration starts.

In the new iteration, the jamming estimator first removes the reconstructed

data signal from received samples and then re-estimates the jamming signal.

This time, the jamming estimation benefits from the reduced noise level – noises

to the estimation of the jamming signal include data signals and the AWGN.

Although the jamming detector based on the eigenvalue spread can also
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benefit from the feedback information, we choose to use a different jamming

detector because the original detector can only provide hard decisions on the

jamming state. The new detector is a correlation detector that computes the

cross-correlation of the jamming estimator output between the first iteration and

subsequent iterations.

Let Ĵ(i)(b, l) be the jamming output in the ith iteration. Note that when

i ≥ 2, the Ĵ(i)(b, l) is free of noise due to the data signal when there is no error

in data reconstruction. So we can detect the presence of the jamming tone by

computing

ρ(b) =

∑L−1
l=0 Ĵ(i)(b, l)Ĵ

∗
(1)(b, l)√∑L−1

l=0 |Ĵ(i)(b, l)|2
∑L−1

l=0 |Ĵ(1)(b, l)|2
, i ≥ 2. (4.37)

ρ(b) provides soft decisions on the jamming state. Because negative values of ρ

are meaningless in this case, we can limit ρ to [0, 1] by using

ρ = max(ρ, 0). (4.38)

4.3 Iterative Demodulation and Decoding

Jamming estimation and cancellation is only part of the multicarrier receiver de-

sign. In this part, we discuss other key components in the multicarrier receiver

working in the fading channels – joint detection and decoding of the convolu-

tional coded multicarrier communication system. We will not discuss specifically

about the design for the AWGN channel as it is a special case of the design for

the fading channel. The transmitter includes a channel (convolutional) encoder,

a channel interleaver, a serial-to-parallel converter, MPSK mapping, and multi-

carrier modulation. Pilot symbols are transmitted through dedicated subchan-

nels. The receiver structure is shown in Fig. 4.1, Fig. 4.2, Fig. 4.3. Apart from
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Figure 4.1: Multicarrier Receiver Part I – Jamming Detection, Estimation, and

Cancellation for the First Iteration

the jamming estimation and cancellation discussed in Section 4.2, the receiver

also includes computing P (Y (b, l)|X(b, l)), channel estimation, parallel-to-serial

conversion, bit reliability calculation, channel deinterleaving, channel (convolu-

tional) decoding and data feedback.

The role of bit reliability calculation is to convert symbol reliabilities to

bit reliabilities. The main purpose of the feedback path is to reconstruct data

symbols for channel estimation. We will not elaborate on these two parts in order

to save space. For more information, please refer to Chapter 2 and [55]. Instead,

we will concentrate on multicarrier signal demodulation with jamming, design
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Figure 4.2: Multicarrier System Diagram Part II – Decoding and Data Recon-

struction

of pilot symbol sequence, channel estimation and iterative channel estimation.

4.3.1 Multicarrier Signal Demodulation with Jamming

The received multicarrier signal with partial-time tone jamming can be repre-

sented by

Y (b, l) = H(b, l)X(b, l) + I t(b)HJ(b, l)J(b, l) +N(b, l) (4.39)

In order to demodulate the received signal, the receiver need to compute the

conditional probability P (Y (b, l)|X(b, l))

P (Y (b, l)|X(b, l) = x)

= P (Y (b, l), I t(b) = 0|X(b, l) = x) + P (Y (b, l), I t(b) = 1|X(b, l) = x)

= P (Y (b, l)|X(b, l) = x, I t(b) = 0)P (I t(b) = 0)

+P (Y (b, l)|X(b, l) = x, I t(b) = 1)P (I t(b) = 1). (4.40)

As we don’t have the a priori information on I t(b), we use the decisions made

by the jammer detectors in place of the probability P (I t(b) = i).

4.3.2 Design of Pilot Symbol Sequence

In frequency-selective, time-variant channel, references must be provided to the

receiver for coherent demodulation. For this purpose, we use dedicated carriers
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Figure 4.3: Multicarrier System Diagram Part III – Jamming Detection, Esti-

mation, and Cancellation for the Second and Subsequent Iterations

to transmit pilot symbol sequence so that the channel state information in the

data carriers can be estimated by interpolation.

The anti-jamming design presented in Section 4.2 has two requirements for

pilot sequence. First, the sequence should avoid any repeated patterns so that

it will not be mistaken for the jamming signal by the eigenvalue-based jamming

detector. For instance, a constant sequence is no different than a jamming signal

whose frequency coincides with one of the carrier frequencies. Second, the pilot

sequence should have a white spectrum so that even if the jamming detector

make a false alarm error in the pilot channel, the jamming estimation and can-
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cellation process will cause little distortion by removing one particular frequency

component or a continuum of frequency components within a narrowband.

To satisfy the first requirement, the sequence should be randomized so that

its power is distributed evenly in all the dimensions of eigenspace. Fortunately,

this kind of sequences also automatically satisfy the second requirement because

the Fourier transform is unitary. Specifically, we take a symbol from the signal

constellation and multiply it by a random sequence of ±1. This random ±1

sequence can be found by computing the eigenvalue spread, i.e., the ratio of the

two eigenvalues of its 2×2 autocorrelation matrix and searching for the sequence

that has a ratio closest to one. For a period of 40 symbols, we have found the

following sequence to be used in the simulation:

−1, 1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1,−1,−1, 1, 1, 1,−1, 1,−1,

−1, 1, 1,−1,−1,−1, 1,−1,−1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1, 1.

The eigenvalue spread of the 2 × 2 autocorrelation matrix of this sequence is

20/19, which is the best for this length.

4.3.3 Channel Estimation for Multicarrier

For convenience, we present the rest of the receiver as if there were no jamming

signals. We assume that the multipath fading is flat in each subchannel of

multicarrier but frequency-selective from one subchannel to another. Therefore,

the received data symbol of bth subchannel at time lT can be written as

Y (b, l) = H(b, l)X(b, l) +N(b, l), (4.41)

where H(b, l) is the complex channel gain of bth subchannel at time lT , and

N(b, l) is an additive white Gaussian noise with power spectrum density N0.
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Let P = {(b, l) : X(b, l) be pilot symbol}. The problem is to estimate the

two-dimensional wide-sense stationary stochastic process H(b, l) given observa-

tion {Y (b, l), (b, l) ∈ P}. The mean square error is defined as

J = E
∣∣∣Ĥ(b, l) −H(b, l)

∣∣∣2 . (4.42)

Because both H(b, l) and Y (b, l) are Gaussian stochastic processes, the optimum

estimator in the mean square sense is the linear minimum mean-square error

(MMSE) estimator. Thus

Ĥ(b, l) =
∑

(b′,l′)∈P
wo(b, l, b

′, l′)Y (b′, l′), (4.43)

where optimum Wiener filter coefficients wo(b, l, b
′, l′) can be determined by the

orthogonality principle

E[(H(b, l) − Ĥ(b, l))Y ∗(b′, l′)] = 0, (4.44)

where ∗ represents complex conjugate. In the simulation, we use dedicated

subchannels for transmitting pilot symbols. In this case, the two dimensional

channel estimation problem can be simplified to one dimensional filtering in the

frequency domain.

After the channel state information has been estimated, the multicarrier re-

ceiver uses this information to calculate the reliability value for each data bit.

These reliability values are then passed through a channel decoder, the output

of which are feedback to the channel estimator.

4.3.4 Iterative Channel Estimation

The iterative filters use the received pilot symbols and the reconstructed data

symbols to obtain more accurate estimation of the channel state information.
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Figure 4.4: Iterative Channel Estimation Using Both Reconstructed Data Sym-

bols and Pilot Symbols

Once we have reconstructed the data symbols X̂(b, l)’s as in [55], we have

Y (b, l) ≈ H(b, l)X̂(b, l) +N(b, l), (4.45)

Divide both sides by X̂(b, l),

Y ′(b, l) ≈ H(b, l) +N ′(b, l), (4.46)

where Y ′(b, l) = Y (b, l)/X̂(b, l) and N ′(b, l) = N(b, l)/X̂(b, l). Because N ′(b, l)

is uncorrelated Gaussian noise, we can use (4.43) and (4.44) with Y (b, l) re-

placed by Y ′(b, l) to estimate CSI. To obtain the estimation of the CSI at a data

position (b, l), we use eight neighboring Y ′(b′, l′) ∈ {Y ′(b + bb, l + ll), bb, ll ∈
{−1, 0, 1}, bb2 + ll2 �= 0} to estimate H(b, l) as shown in Fig. 4.4.

In Fig. 4.3, independent of the jamming state, the corresponding output of

the jamming estimator are removed from all received samples used for iterative

channel estimation. This is because in the second and subsequent iterations, the

input to the jamming estimator on the subchannels without jamming contains

only the additive white noise and some decoding errors. Therefore the output

of the narrowband jamming estimator corresponding to those subchannels are

of very low power level and can be ignored.
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4.4 Simulation Results
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Figure 4.5: Number of Iterations on the Performance of Differential Frequency

Estimation

In the simulation, we further assume the channel has a uniform Doppler

power spectrum (with fD = 20.83 Hz being the one-sided maximum Doppler

frequency) and uniform delay spectrum (with τm = 10 µs being the one-sided

maximum echo delay). The carrier spacing is 4.1667 kHz. This corresponds to

a normalized Doppler fading of 0.005 and a normalized delay spread of 1/24.

The scheme was investigated for blocks with a 40-symbol period and 25

subchannels for data signals. The entire transmission bandwidth hops to another

range between two blocks. In the fading channel, six more subchannels are

dedicated to the transmission of pilot symbols, i.e., one pilot subchannel in every

6 subchannels. For each received data blocks, the initial channel estimator uses

5-tap one dimensional filters in frequency domain. And the iterative filtering
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Figure 4.6: Number of Iterations on the Performance of Eigenvalue-Based Jam-

ming Detection and ESPRIT

uses an 8-tap two dimensional filter. We use 40-tap linear filters to estimate the

jamming signals.

We use 8-PSK modulation for each subchannel. Gray mapping is used for

the mapping of 8-PSK symbols. The convolutional code is rate 1/2, (7, 5) non-

systematic convolutional code with constraint length 3. The channel interleaver

is a pseudo-random interleaver of 3000 bits. The number of iterations is 3 unless

otherwise specified.

For the jamming signal, as the partial-time pulse jamming is the dual problem

of the partial-band tone jamming, we only simulate the multi-tone jamming.

The probability that a particular subchannel is jammed is set to 0.1. As we have

assumed, there is at most one jamming tone within a subchannel.

We first study the effect of iterative jamming detection and estimation on the

system performance. We simulate the BER using 1, 2, 3, 8 iterations. Fig. 4.5
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Figure 4.7: Performance of Iterative Jamming Detection and Estimation in the

AWGN channel: J/S = -10 dB

shows the result for differential jamming frequency estimation. Fig. 4.6 shows

the result for ESPRIT. In both cases, the performance improvement due to

the iterative processing is obvious, especially between the first and the second

iteration. After the third iteration, further iterative processing only provides

marginal gain in Fig. 4.5 when differential estimation is used and no discernible

gain in Fig. 4.6 when the ESPRIT algorithm is used. For this reason, three

iterations are used for the rest of the simulation.

We then vary the jamming-to-signal power ratio and simulate the system

performance. The simulated J/S ratios are −10, −5, 0, 5, 10 dB. The results

are shown in Fig. 4.7 – 4.11. For each figure, we simulate four cases: no jamming

signals, iterative processing with differential frequency estimation, iterative pro-

cessing with the ESPRIT algorithm, and the case without anti-jamming design.

Although not shown here, we have also simulated the BER when J/S = 20 dB
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Iterative Jamming Detection and Estimation in the AWGN channel: J/S = −5 dB

No jamming
J/S = −5 dB, DFE
J/S = −5 dB, ESPRIT
J/S = −5 dB, No Anti−Jamming Design

Figure 4.8: Performance of Iterative Jamming Detection and Estimation in the

AWGN channel: J/S = -5 dB

and J/S = 30 dB. The results are the same as in Fig. 4.11 corresponding to

J/S = 10 dB.

It can be seen clearly that iterative processing can effectively suppress the

multi-tone jamming signals for a wide range of J/S values. The reason that it

performs better at high J/S values is because that the receiver can obtain more

accurate estimates of jamming frequencies. In fact, the most difficult case for

the receiver happens around J/S = −5 dB. At this point, the jamming signal

mixes well with the data signal – it is sufficiently strong to affect the data signal

while it is not strong enough for reliable detection and robust estimation. This

is the very reason that we make use of soft decisions on the jamming state.

The ESPRIT algorithm also shows a clear advantage over differential fre-

quency estimation at this point. While the latter has high error floor at J/S =

−5 dB, the former is only about 1.0 dB worse than the case without jamming
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Iterative Jamming Detection and Estimation in the AWGN channel: J/S = 0 dB

No jamming
J/S = 0 dB, DFE
J/S = 0 dB, ESPRIT
J/S = 0 dB, No Anti−Jamming Design

Figure 4.9: Performance of Iterative Jamming Detection and Estimation in the

AWGN channel: J/S = 0 dB

at 10−3 bit error rate. When J/S goes higher, the difference between the two

vanishes.

It appears counterintuitive that the BER performance remains unchanged

after the J/S value increases to a certain level. In fact, as jamming power in-

creases, both the jamming state detection error and the frequency estimation

error decrease substantially. If we ignore the frequency estimation error and

assume perfect jamming state detection at high J/S values, the additional noise

level caused by the jamming cancellation is (E[|H(b, l)X(b, l)|2]+2σ2])/L for the

first iteration and (E[|H(b, l)X(b, l) − Ĥ(b, l)X̂(b, l)|2] + 2σ2])/L for the second

and subsequent iterations. Since the power of the noise due to jamming cancel-

lation is independent of the jamming power, it is not unreasonable that the BER

performance at high J/S values does not deteriorate when the jamming power

increases.
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Iterative Jamming Detection and Estimation in the AWGN channel: J/S = 5 dB

No jamming
J/S = 5 dB, DFE
J/S = 5 dB, ESPRIT
J/S = 5 dB, No Anti−Jamming Design

Figure 4.10: Performance of Iterative Jamming Detection and Estimation in the

AWGN channel: J/S = 5 dB

Shown in Fig. 4.12 – 4.13 are the simulation results in the fading channel.

Fig. 4.12 contains the results of differential frequency estimation. Fig. 4.13 con-

tains the results of the ESPRIT algorithm. For reference, we have also included

the performance of the coherent receiver and the PSAM-IF receiver without

jamming.

Although iterative jamming estimation and cancellation can still suppress

the multi-tone jamming signal for a wide range of J/S values, it displays error

floors at high signal-to-noise ratio. This is not unexpected because unlike the

AWGN channel, the channel state information in the fading channel is frequency-

selective and time-varying so it has to be estimated for coherent demodulation.

Although we have designed the pilot sequence that are robust to multi-tone

jamming signals, it can not avoid the residual noise as a result of jamming

cancellation. This residual noise is much larger in the fading channel because
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Iterative Jamming Detection and Estimation in the AWGN channel: J/S = 10 dB

No jamming
J/S = 10 dB, DFE
J/S = 10 dB, ESPRIT
J/S = 10 dB, No Anti−Jamming Design

Figure 4.11: Performance of Iterative Jamming Detection and Estimation in the

AWGN channel: J/S = 10 dB

the multi-tone jamming signals are spread by the Doppler fading. The fading

also causes the amplitude of both the data signal and the jamming signal to

vary, causing more detection errors. For the same reason, unlike the AWGN

channel, the BER performance begins to decrease after J/S = 10 dB in the

fading channel.

The advantage of the ESPRIT algorithm, however, is more prominent in

the fading channel. It is generally better than differential frequency estimation

– its error floors are one magnitude lower than those of differential frequency

estimation throughout the simulated J/S range.
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Iterative Jamming Estimation (DIFFERENTIAL) and Cancellation in the Rayleigh Fading Channel
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Figure 4.12: Performance of Iterative Jamming Detection and Estimation (Dif-

ferential) in Fading Channels
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Iterative Jamming Estimation (ESPRIT) and Cancellation in the Rayleigh Fading Channel

J/S: − ∞ dB, ideal CSI
J/S: − ∞ dB, PSAM−IF
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J/S: 5 dB, PSAM−IF
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Figure 4.13: Performance of Iterative Jamming Detection and Estimation (ES-

PRIT) in Fading Channels
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Although we have not simulated partial-time pulse jamming, we expect simi-

lar results from our anti-jamming design with little adaptation. For partial-time

pulse jamming, jamming detection, estimation, and cancellation are performed

across multiple carriers during a symbol period; while for partial-band tone jam-

ming, they are performed over multiple symbol periods in a subchannel. Specif-

ically, for the AWGN channel, if we assume s(t) = constant, t ∈ [0, T ] and

consider anti-jamming design for partial-time pulse jamming with 25 symbol pe-

riods, 40 data carriers, we will obtain the same results as those for partial-band

tone jamming with 40 symbol periods, 25 data carriers. For fading channels, the

duality is complicated by fading in time and frequency directions and by pilot

symbols. Still, there exists a strict duality between partial-band tone jamming

and partial-time pulse jamming if, in addition to the duality conditions for the

AWGN channel, we insert pilot symbols periodically in each carrier as in a sin-

gle carrier transmission for partial-time pulse jamming, exchange the values of

normalized Doppler and delay spread, and adjust the channel interleaver so that

a bit that constitutes the symbol X(b, l) for partial-band tone jamming will be

a corresponding bit of the symbol X(l, b) for partial-time pulse jamming.

4.5 Conclusions

In this chapter, we have studied anti-jamming system design for multicarrier

communications. We have considered two types of jamming signals – the partial-

band tone jamming and the partial-time pulse jamming. The design of the anti-

jamming system is illustrated by using the multi-tone jamming. Specifically, we

have considered two types of detection schemes. One is the eigenvalue-based
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jamming detection, which generates hard decisions on jamming state for initial

detection; the other is the correlation-based iterative detection, which generates

soft decisions on jamming state for subsequent detection. For jamming frequency

estimation, we have also considered two types of schemes – differential frequency

estimation and the ESPRIT algorithm. To further reduce the error in jamming

detection and estimation, we make use of iterative jamming detection and esti-

mation by removing the reconstructed data signal component from the received

samples.

In the fading channel, we have designed a robust pilot sequence for the esti-

mation of the channel state information for the data signal. The eigenvalue-based

jamming detection requires that the pilot sequence have evenly distributed power

in all dimensions so that it would not be treated as a jamming tone since it can

not differentiate between a constant pilot sequence and a jamming tone whose

frequency coincides with the carrier frequency of the pilot subchannel. Even

if the jamming detection does make false-alarm errors in the pilot subchannel,

the pilot sequence is little affected by the jamming estimation and cancellation

process because its power is spread evenly over the entire bandwidth. Thus re-

moving one frequency component will not cause much distortion. In addition, we

have also included iterative channel estimation so that the receiver have better

estimates of the channel state information after the first iteration.

Simulation results have shown that our design of the anti-jamming multi-

carrier receiver are very effective in suppressing the jamming signal and that

the iterative processing greatly improves the BER performance. It works for all

the simulated J/S values ranging from −10 to 30 dB. Although not simulated,

it should also work with J/S values below −10 dB as the jamming signal is
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too weak to affect the receiver performance at this range. On the other hand,

we have simulated the system at up to 40 dB and it still works in the AWGN

channel.

In the AWGN channel, the anti-jamming design based on the ESPRIT al-

gorithm displays no error floor above 10−5 bit error rate while the design based

on differential frequency estimation has error floors at J/S = −10 dB and

J/S = −5 dB, though it performs as well as the former at high J/S values.

In the fading channel, both designs have error floors, but error floors of the

ESPRIT algorithm is one magnitude lower than those of differential frequency

estimation. This implies that better performance can be achieved with better

algorithms for estimating jamming frequencies such as the MUSIC algorithm.

Although we have only simulated the anti-jamming system design against the

partial-band tone jamming, we expect it has similar performance in the case of

the partial-time pulse jamming because of the duality between them. The anti-

jamming design for multicarrier communications can also be used for M-QAM

signals since it does not require constant envelope property of MPSK signals.
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Chapter 5

Power Control and Adaptive Modulation for

OFDM with Transmit and Receive Diversity

High data-rate mobile communications have received great interests in the past

several years. One of the main problems in mobile communications is how to

maximize the system throughput against frequency-selective multipath fading.

Another important practical issue is how to mitigate cochannel interference in

a wireless network. In this chapter, we first apply adaptive modulation and

transmit diversity techniques to OFDM signals in a hexagonal cellular system

and use a distributed water-pouring algorithm (DWPA) [25] and a centralized

power control algorithm (CPCA) based on active set strategy to combat fading

and suppress cochannel interference. Our objective is to achieve high spectral

efficiency and high throughput under the constraints on maximum transmission

power. Then we will study the performance of the system in hostile environments

with deliberate jamming signals. The system performance will be assessed using

simulation methods.

Compared to single carrier serial transmission schemes, which require lengthy

equalizers to mitigate frequency-selective fading, orthogonal frequency-division
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multiplexing (OFDM) makes the equalizer obsolete by dividing the transmis-

sion bandwidth into multiple subchannels so that the channel gain within each

subchannel is flat – approximately constant. With OFDM, the problem of maxi-

mizing the system throughput against frequency-selective fading in a wireless

channel can be achieved through power allocation and adaptive modulation

among subchannels. When there is only a single cell, the optimization prob-

lem can be solved using water-pouring. In a multi-cell mobile communication

environment, in order to increase the spectral efficiency with given bandwidth

one would tend to increase the frequency reuse, which, however, introduces se-

vere cochannel interferences and makes the problem of maximizing the system

throughput intractable.

For wireless communications, Su [25] proposed the distributed power allo-

cation algorithm for adaptive modulation which is executed independently by

the cochannel interfering users. It was shown that the DWPA could effectively

suppress cochannel interference and improve the system throughput. Since the

optimization of a multi-cell system is complicated and computationally inten-

sive, this heuristic distributed algorithm is more practical and much easier to

implement. The idea was based on the fact that in many practical situations, a

feedback channel with limited bandwidth from the receiver to the transmitter is

usually available. Therefore channel state information can not only be obtained

(estimated) at the receiver but is also available at the transmitter. Adaptive

modulation can thus be used together with power control to improve the OFDM

throughput for a given QoS. Previous works on distributed power control can

also be found in [56], [57], [58], [59], and [60]. Besides, Chow [61] proposed power

allocation algorithms to maximize the throughput under maximum power and

121



QoS constraints for wireline communications.

In addition to distributed algorithms, there also exists extensive interest in

centralized power control algorithms. In [62], centralized power allocation algo-

rithms were proposed for TDMA single carrier systems. Compared to distributed

systems, centralized controllers have information from all cochannel cells and are

capable of better coordinating the transmit power of the entire network. In this

chapter, we develop a centralized power control algorithm based on the active set

strategy and the gradient projection method. The proposed CPCA outperforms

the DWPA in all cases, albeit with much higher computational complexity.

Another effective method to mitigate fading, especially deep slow one, is

to use spatial diversity – multiple transmit and receive antennas. Transmit and

receive antenna diversity has been an area of intensive research with the invention

of trellis-based space-time codes by Tarokh, etc in [26]. Later, full-rate space-

time block codes have also been proposed. Among them, Alamouti [28] proposed

a simple transmit diversity technique. For our problem of interest, space-time

coded OFDM systems have been explored by Agrawal, etc. [29] and Li [22].

In this chapter, we first extend Su’s distributed algorithm from single trans-

mit and receive antenna to multiple antennas in order to mitigate fading and

cochannel interference, where multiple transmit antennas also cause an increase

in the number of cochannel interfering sources. For simplicity, we will consider

only the uplink communications in this chapter, although the algorithm is ap-

plicable to both uplink and downlink communications.

In the second part of this chapter, we will develop the centralized power

control algorithm for different antenna combinations. In the case of multiple

transmit antennas, the number of parameters to be controlled doubles and simply
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splitting the power evenly to two transmit antennas as in the space-time code

usually does not give good performance.

In the third part of this chapter, we will study the performance of the system

in hostile jamming environments. The jammer randomly selects a subset of

the OFDM subchannels and sends the jamming signals in those subchannels.

Because both the DWPA and the CPCA allows the transmitter to remove the

subchannel that does not satisfy the service requirements and reallocate the

power to the subchannels with better channel conditions – large channel gains,

small cochannel interference and no jamming signals, we expect the system to

be robust in the presence of strong jamming signals.

This chapter is organized as follows. In Section 5.1, a brief description will be

given to the cellular OFDM system, the channel model and adaptive modulation.

In Section 5.2, we describe different diversity schemes for the space-time coded

OFDM system to be considered in this chapter. In Section 5.3, we present the

distributed water-pouring power allocation algorithm for the OFDM system. In

Section 5.4, we develop the centralized power allocation algorithm. In Section

5.5, we present the jamming models. In Section 5.6, we will demonstrate the

simulation results and have some discussions. Finally, Section 5.7 summarizes

and concludes this chapter.

5.1 Channel and System Model

The system considered here is a multi-cell OFDM system. Users within a cell

transmit OFDM signals and the multiple access scheme among them is either

TDMA or FDMA. While same frequency bands are reused by multiple cells
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in order to achieve high spectral efficiency, the degree of reuse is determined

by the reuse factor, which usually takes the number of 3, 4, or 7. The higher

the frequency of the frequency reuse, the smaller the value of the reuse factor.

Because of the frequency reuse, cells assigned with the same frequency band

interfere with each other.

We assume that the fading on each subchannel can be treated as flat fading

and that the mobile speed is sufficiently low so that the Doppler effect and the

inter-channel interference can be ignored.

j = 1, 2, ..., 32

Cell i’Cell i

ii, j

ii, j

ii’, j

ii’, j

c(1,1)

(1,2)c
(1,1)c

(1,2)c

Figure 5.1: Channel Gains for Space-Time Coded OFDM

Suppose there are NC cochannel cells and there is one mobile within the

boundary of each cell. All the mobiles have NTX transmit antennas and all the

base stations have NRX receive antenna as shown in Fig. 5.1. We use si,j(k) to

denote the information symbol to be sent from the jthe subchannel of the ith

mobile at time k while s
(u)
i,j (k) the symbol to be transmitted from the uth transmit

antenna from the same subchannel of the same mobile. In space-time coded
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systems, the former represents the uncoded symbol while the latter the coded

symbols; they are equal in the absence of space-time codes. For convenience, we

normalize si,j(k) and s
(u)
i,j (k) so that

E
[|si,j(k)|2

]
= E

[
|s(u)

i,j (k)|2
]

= 1.0. (5.1)

We use Pi,j to denote the total power assigned to the jthe subchannel of the ith

mobile and P
(u)
i,j the corresponding power on the uth transmit antenna.

Pi,j =

NTX∑
u=1

P
(u)
i,j . (5.2)

If at time k, symbols s
(1)
i,j (k), · · · , s(NTX)

i,j (k) are transmitted through subchannel

j from NTX antennas of the mobile in cell i to its base station, the received

signal at subchannel j on the vth antenna can be written as

r
(v)
i,j (k) =

NTX∑
u=1

cu,v
ii,j(k)

√
P

(u)
i,j s

(u)
i,j (k) +

NC∑
i′=1
i′ �=i

NTX∑
u=1

cu,v
i′i,j(k)

√
P

(u)
i′,j ζ

(u)
i′,j (k) + n

(v)
i,j (k),

(5.3)

where n
(v)
i,j (k) is the additive white Gaussian noise; the second term on the right-

hand side of the equation

i
(v)
i,j (k) =

NC∑
i′=1
i′ �=i

NTX∑
u=1

cu,v
i′i,j(k)

√
P

(u)
i′,j ζ

(u)
i′,j (k) (5.4)

is the total interference from other cochannel cells with ζ
(u)
i′,j (k) the interfer-

ence from the uth antenna of the jth subchannel of the i′th mobile; cu,v
i′i,j(k)

is the channel state information of subchannel j from the uth antenna of the

transmitting mobile in cell i′ to the vth receive antenna of the base station

in cell i. In the practical situation, it is reasonable to assume that chan-

nel gains are Gaussian random variables and that all NTX paths from the
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NTX transmit antennas to receiver antenna v have the same statistics, i.e.,

E
[|c1,v

ii,j|2
]

= E
[|c2,v

ii,j|2
]

= · · · = E
[
|cNTX ,v

ii,j |2
]
. In addition, we assume that

channel gains will not change throughout the process of power control. For this

purpose, we will drop the time index for channel gains hereafter when doing so

will not cause ambiguity, i.e., we will simply write cu,v
i′i,j(k) as cu,v

i′i,j.

The channel state information includes the joint effect of multipath fading,

distance loss and shadowing. The spaced-frequency correlation function of the

multipath channel is given by

Φc(∆f) =
1

1 + j2π∆fλ
, (5.5)

where the parameter λ is defined as the mean access delay (MED). The distance

loss usually follows the reverse αth (α = 2 ∼ 5 [63]) power rule with respect to

distance. The shadowing factor is log-normally distributed with 0 dB mean and

a standard deviation ranging from 4 to 12 dB [64].

5.1.1 Adaptive Modulation

The main task in this chapter is to maximize the throughput under maximum

power constraints given a modulation technique and symbol error rate (SER)

requirements. The throughput will be obtained through power allocation and

variable modulation constellations. Since the derivation of the throughput is

the same as in [65], we only give a concise description in the following to help

understanding the algorithms to be discussed later.

We assume that an Mi,j-QAM two-dimensional constellation is used on the

jth subchannel of the ith cell. We also assume that for each subchannel, the

modulation is fixed within a frame but may vary from one frame to another
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depending on the channel conditions and power allocation.

The number of bits transmitted on this subchannel is

bi,j = log2Mi,j. (5.6)

The symbol error probability on this subchannel is [1]

SERi,j ≈ 4Q

(√
3 · SINRi,j

Mi,j − 1

)
, (5.7)

where SINRi,j is the signal-to-interference ratio of the jth subchannel in the ith

cell and Q(x) =
∫∞

x
1√
2π
e−

x2

2 dx. It is obvious that when the SER requirement is

given, the function inside Q(·) is fixed. Let us define a service requirement γi,j

such that

γi,j =
3 · SINRi,j

Mi,j − 1
. (5.8)

Then we have

Mi,j = 1 +
3 · SINRi,j

γi,j
,

and

bi,j = log2Mi,j

= log2

(
1 +

3 · SINRi,j

γi,j

)

= log2

(
1 +

SINRi,j

Γi,j

)
, (5.9)

where Γi,j = γi,j/3. The final equation resembles the expression for Shannon

capacity [66] in the AWGN channel. The factor Γi,j is defined as the SINR gap,

which relates the performance of a quadrature amplitude modulated signal to

the Shannon capacity of the channel.
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For simplicity, we assume for the rest of this chapter that there is a common

service requirement γ for every cell and every subchannel, and that the cor-

responding SINR gap is Γ. By allowing noninteger number of bits per channel

symbol – justification of noninteger bits per channel symbol can be found in [67],

the optimization problem can be recast as

max
P

(u)
i,j

∑
i,j

log

(
1 +

SINRi,j

Γ

)
, subject to




∑
j,u P

(u)
i,j ≤ Pi, ∀ i,

P
(u)
i,j ≥ 0, ∀ i, j, u.

(5.10)

5.2 Transmit and Receive Diversity

In this section we consider diversity combining in the case of transmit and receive

diversity and derive the effective signal-to-interference ratio. For fair comparison,

we use normalized channel gains so that

E

[∑
u,v

|cu,v
i′i,j|2

]
= Constant. (5.11)

Also, the power of the AWGN noise level is the same at each receive antenna, i.e.,

E|nv
i,j(k)|2 = Ni,j , ∀v = 1, 2, · · · , NRX . We start with single transmit and receive

antenna, Then we move to receive diversity and maximal ratio combining. At

last we consider transmit diversity, using the space-time block code proposed by

Alamouti [28]. We assume that the propagation delay only depends on the direct

distance between the source and the destination so the signals from multiple

transmit antennas of a mobile or base station arrive at the multiple receive

antennas of another base station or mobile at the same time. Based on this

assumption, we discuss how to calculate the power of cochannel interference in

detail, a major issue in deriving the SINR for transmit diversity.
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5.2.1 Single Transmit and Receive Antenna

In the case of single transmit and receive antenna, the SINR is given by

SINRi,j =
|c1,1

ii,j|2Pi,j

Ni,j +
∑NC

i′=1
i′ �=i

|c1,1
i′i,j|2Pi′,j

(5.12)

For convenience, let

ξi′i,j =




1
Γ
|c1,1

ii,j|2, i′ = i,

|c1,1
i′i,j|2, i′ �= i.

(5.13)

Then the SINR becomes

SINRi,j =
Γξii,jPi,j

Ni,j +
∑NC

i′=1
i′ �=i

ξi′i,jPi′,j
. (5.14)

And the maximizing problem becomes

max
Pi,j

∑
i,j

log


1 +

ξii,jPi,j

Ni,j +
∑NC

i′=1
i′ �=i

ξi′i,jPi′,j




subject to 


∑
j Pi,j ≤ Pi, ∀ i,
Pi,j ≥ 0, ∀ i, j.

(5.15)

The original problem is a nonlinear optimization problem with linear inequality

constraints. As P
(u)
i,j is always nonnegative, we can let P

(u)
i,j =

[
q
(u)
i,j

]2

and work

on another form of the problem

max
q
(1)
i,j

∑
i,j

log


1 +

ξii,j[q
(1)
i,j ]2

Ni,j +
∑NC

i′=1
i′ �=i

ξi′i,j[q
(1)
i′,j]

2


 ,

subject to ∑
j

[q
(1)
i,j ]2 ≤ Pi, ∀ i, (5.16)
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Now the problem becomes a nonlinear optimization problem with nonlinear in-

equality constraints. But since it has much fewer inequality constraints, it is

more suitable for the active set method in nonlinear optimization.

Define

q
i
=
[
q
(1)
i,1 · · · q(NTX )

i,1 · · · q(1)
i,N · · · q(NTX )

i,N

]T

, q =
[
q
1
· · · q

M

]T

. (5.17)

and

J(q)
∆
= −

∑
i,j

log


1 +

ξii,j[q
(1)
i,j ]2

Ni,j +
∑

i′ �=i ξi′ i,j [q
(1)

i′ ,j ]
2


 . (5.18)

Then the equivalent problem becomes

min
q
J(q) subject to

∑
j,u

[q
(u)
i,j ]2 ≤ Pi, ∀i (5.19)

To find the optimum solution to (5.19), we need to derive the first and the second

order derivatives of the objective function J(q). For convenience we first make

a few definitions.

Ii,j(q)
∆
= Ni,j +

∑
i′ �=i

ξi′ i,j[q
(2)

i′ ,j]
2, (5.20)

bi,j(q)
∆
= log


1 +

ξii,j[q
(1)
i,j ]2

Ni,j +
∑

i′ �=i ξi′ i,j [q
(1)

i′ ,j ]
2


 . (5.21)

Then the first order derivative is given by

∂J(q)

∂q
(1)
m,n

=
q
(1)
m,n

ln 2

{
M∑
i=1

ξmi,n

Ii,n(q)

[
1 − e−bi,n(q)

]− ξmm,n

Im,n(q)

}
(5.22)

The second order derivative is given by

∂2J(q)

∂q
(1)
k,l ∂q

(1)
m,n

= 0, l �= n. (5.23)

∂2J(q)

∂q
(1)
k,n∂q

(1)
m,n

= −2q
(1)
m,nq

(1)
k,n

ln 2

{
M∑
i=1

ξmi,nξki,n[
Ii,n(q)

]2 [1 − e−2bi,n(q)
]
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−ξmk,nξkk,n[
Ik,n(q)

]2 − ξmm,nξkm,n[
Im,n(q)

]2
}
, k �= m; (5.24)

∂2J(q)

∂q
(1)
m,n∂q

(1)
m,n

=
1

ln 2

{
M∑
i=1

ξmi,n

Ii,n(q)

[
1 − e−bi,n(q)

]− ξmm,n

Im,n(q)

}

−2[q
(1)
m,n]2

ln 2

{
M∑
i=1

[
ξmi,n

Ii,n(q)

]2 [
1 − e−2bi,n(q)

]− [
ξmm,n

Im,n(q)

]2
}
.

(5.25)

5.2.2 Receive Diversity

In the case of receive diversity, one transmit and NRX receiver antennas are used.

If at time k, the ith mobile sends a symbol s1
i,j(k) through subchannel j from its

transmit antenna to the multiple antennas at the ith base station. The received

signal at the NRX receive antennas can be written as


r
(1)
i,j (k) = c1,1

ii,j

√
P

(1)
i,j s

(1)
i,j (k) + i

(1)
i,j (k) + n

(1)
i,j (k),

r
(2)
i,j (k) = c1,2

ii,j

√
P

(1)
i,j s

(1)
i,j (k) + i

(2)
i,j (k) + n

(2)
i,j (k),

...
...

...

r
(NRX)
i,j (k) = c1,NRX

ii,j

√
P

(1)
i,j s

(1)
i,j (k) + i

(NRX)
i,j (k) + n

(NRX)
i,j (k).

(5.26)

By using maximal-ratio combining, we can form a decision variable for s1
i,j(k) as

follows

yi,j(k) =

NRX∑
v=1

c1,v ∗
ii,j

√
P

(1)
i,j r

(1)
i,j (k)

=

(
NRX∑
v=1

∣∣c1,v
ii,j

∣∣2)P
(1)
i,j s

(1)
i,j (k) +

√
P

(1)
i,j

NRX∑
v=1

c1,v ∗
ii,j i

(v)
i,j (k)

+

√
P

(1)
i,j

NRX∑
v=1

c1,v ∗
ii,j n

(v)
i,j (k)

=

(
NRX∑
v=1

∣∣c1,v
ii,j

∣∣2)P
(1)
i,j s

(1)
i,j (k) +

√
P

(1)
i,j

NRX∑
v=1

c1,v ∗
ii,j

NC∑
i′=1
i′ �=i

c1,v
i′i,j ζ

(1)
i′,j(k)
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+

√
P

(1)
i,j

NRX∑
v=1

c1,v ∗
ii,j n

(v)
i,j (k)

=

(
NRX∑
v=1

∣∣c1,v
ii,j

∣∣2)P
(1)
i,j s

(1)
i,j (k) +

√
P

(1)
i,j

NC∑
i′=1
i′ �=i

(
NRX∑
v=1

c1,v ∗
ii,j c1,v

i′i,j

)
ζ

(1)
i′,j(k)

+

√
P

(1)
i,j

NRX∑
v=1

c1,v ∗
ii,j n

(v)
i,j (k), (5.27)

where ζ
(1)
i′,j is the interference due to transmission of the ith mobile on the jth

subchannel. Since the signals s
(1)
i′,j(k) transmitted from different mobiles are

mutually independent, so are the interference ζ
(1)
i′,j(k)’s. As E

[
|ζ (u)

i′,j |2
]

= P
(u)
i′,j ,

the signal-to-interference ratio at the jthe subchannel of the ith base station can

be written as

SINRr
i,j =

(∑NRX

v=1

∣∣c1,v
ii,j

∣∣2)2

P
(1)
i,j(∑NRX

v=1

∣∣c1,v
ii,j

∣∣2) Ni,j +
∑NC

i′=1
i′ �=i

∣∣∣∑NRX

v=1 c1,v ∗
ii,j c1,v

i′i,j

∣∣∣2 P (1)
i′,j

(5.28)

For convenience, define

ηi′ i,j
∆
=




1
Γ

∑NRX

v=1 |c1,v
ii,j|2, i′ = i,

∑NRX

v=1 c1,v ∗
ii,j c1,v

i′i,j/
∑NRX

v=1 |c1,v
ii,j|2, i′ �= i.

(5.29)

Then the effective SINR becomes

SINRr
i,j =

Γ ηii,jP
(1)
i,j

Ni,j +
∑NC

i′=1
i′ �=i

ηi′i,jP
(1)
i′,j

. (5.30)

As (5.30) has the same form as (5.14), the rest of the problem is the same as in

the case of single transmit and receive antenna.

5.2.3 Transmit Diversity

To exploit the transmit diversity, we adopt Alamouti’s [28] approach, which

involves two transmit antennas and one receive antenna, i.e., NTX = 2 and

132



NRX = 1. Suppose there are symbols si,j(2k) and si,j(2k + 1) to be transmitted

at time 2k and 2k + 1 from subchannel j of the ith mobile. To make use of

the transmit diversity, at time 2k, after the inverse Fourier transform, si,j(2k) is

transmitted through one of the antennas and si,j(2k + 1) transmitted through

the other antenna; at time 2k + 1, −s∗i,j(2k + 1) and s∗i,j(2k) are transmitted

through two antennas after the inverse Fourier transform.

At the ith base station, the signals are first passed through the Fourier trans-

form. At time 2k, the output of subchannel j at antenna v can be written as

r
(v)
i,j (2k) = c1,v

ii,j

√
P

(1)
i,j si,j(2k) + c2,v

ii,j

√
P

(2)
i,j si,j(2k + 1)

+i
(v)
i,j (2k) + n

(v)
i,j (2k). (5.31)

The output of subchannel j at time 2k + 1 is given by

r
(v)
i,j (2k + 1) = c1,v

ii,j

√
P

(1)
i,j

[−s∗i,j(2k + 1)
]
+ c2,v

ii,j

√
P

(2)
i,j s

∗
i,j(2k)

+i
(v)
i,j (2k + 1) + n

(v)
i,j (2k + 1). (5.32)

Let 


y
(v)
i,j (2k) = c1,v ∗

ii,j

√
P

(1)
i,j r

(v)
i,j (k) + c2,v

ii,j

√
P

(2)
i,j r

(v) ∗
i,j (k + 1),

y
(v)
i,j (2k + 1) = c2,v ∗

ii,j

√
P

(2)
i,j r

(v)
i,j (k) − c1,v

ii,j

√
P

(1)
i,j r

(v) ∗
i,j (k + 1).

(5.33)

Then we have


y
(v)
i,j (2k) = (|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j )si,j(2k)

+c1,v ∗
ii,j

√
P

(1)
i,j i

(v)
i,j (k) + c2,v

ii,j

√
P

(2)
i,j i

(v) ∗
i,j (k + 1)

+c1,v ∗
ii,j

√
P

(1)
i,j n

(v)
i,j (k) + c2,v

ii,j

√
P

(2)
i,j n

(v) ∗
i,j (k + 1),

y
(v)
i,j (2k + 1) = (|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j )si,j(2k + 1)

+c2,v ∗
ii,j

√
P

(2)
i,j i

(v)
i,j (k) − c1,v

ii,j

√
P

(1)
i,j i

(v) ∗
i,j (k + 1))

+c2,v ∗
ii,j

√
P

(2)
i,j n

(v)
i,j (k) − c1,v

ii,j

√
P

(1)
i,j n

(v) ∗
i,j (k + 1).

(5.34)
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y
(v)
i,j (2k) and y

(v)
i,j (2k+1) can be used for the demodulation of the signals si,j(2k)

and si,j(2k + 1) respectively. Here we can treat y
(v)
i,j (2k) and y1

(v)
i,j (2k + 1) as

received samples of a virtual subchannel j with |c1,v
ii,j|2P (1)

i,j + |c2,v
ii,j|2P (2)

i,j as its

channel state information.

Power of Cochannel Interference

In the case of space-time coded OFDM systems, the transmitted signals from

multiple transmit antennas are not independent of each other, which poses the

question of how to analyze the power of cochannel interference. We assume that

the propagation delay only depends on the direct distance between the source

and the destination so the signals from multiple transmit antennas of a mobile

or base station arrive at the multiple receive antennas of another base station

or mobile at the same time. The remaining issue is, because the intended signal

and the cochannel interference come from difference sources, we must consider

delays between the intended signals and the cochannel interferences in analyzing

the power of cochannel interference.

For simplicity, we first consider only one interfering source, i.e.,

i
(v)
i,j (k) = c1,v

i′i,j

√
P

(1)
i′,j ζ

(1)
i′,j(k) + c2,v

i′i,j

√
P

(2)
i′,jζ

(2)
i′,j(k), i

′ �= i. (5.35)

Substitute into (5.31), we have


r
(v)
i,j (2k) = c1,v

ii,j

√
P

(1)
i,j si,j(2k) + c2,v

ii,j

√
P

(2)
i,j si,j(2k + 1)+

c1,v
i′i,j

√
P

(1)
i′,jζ

(1)
i′,j(2k) + c2,v

i′i,j

√
P

(2)
i′,jζ

(2)
i′,j(2k) + n

(v)
i,j (2k),

r
(v)
i,j (2k + 1) = c1,v

ii,j

√
P

(1)
i,j [−s∗i,j(2k + 1)] + c2,v

ii,j

√
P

(2)
i,j s

∗
i,j(2k)+

c1,v
i′i,j

√
P

(1)
i′,jζ

(1)
i′,j(2k + 1) + c2,v

i′i,j

√
P

(2)
i′,jζ

(2)
i′,j(2k + 1)

+n
(v)
i,j (2k + 1).

(5.36)
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Note here that the cochannel interference terms ζ
(u)
i′,j (2k) �= s

(u)
i′,j(2k) because the

OFDM receiver is supposed to be synchronized to the intended signal si,j(k)

instead of the interference s
(u)
i′,j(k). We denote the delay between the intended

signal and the CCI being considered as τi′i,j. For convenience, let

gu,v
ii,j = cu,v

ii,j

√
P

(u)
i,j , (5.37)

and 


z
(1)
i′,j(2k) = ζ

(1)
i′,j(2k),

z
(2)
i′,j(2k) = ζ

(2)
i′,j(2k),

z
(1)
i′,j(2k + 1) = −ζ (1) ∗

i′,j (2k + 1),

z
(2)
i′,j(2k + 1) = ζ

(2) ∗
i′,j (2k + 1).

(5.38)

Then (5.36) becomes


r
(v)
i,j (2k) = g1,v

ii,jsi,j(2k) + g2,v
ii,jsi,j(2k + 1)+

g1,v
i′i,jz

(1)
i′,j(2k) + g2,v

i′i,jz
(2)
i′,j(2k) + n

(v)
i,j (2k),

r
(v)
i,j (2k + 1) = g1,v

ii,j[−s∗i,j(2k + 1)] + g2,v
ii,js

∗
i,j(2k)+

g1,v
i′i,j [−z(1) ∗

i′,j (2k + 1)] + g2,v
i′i,jz

(2) ∗
i′,j (2k + 1)

+n
(v)
i,j (2k + 1).

(5.39)

Without loss of generality, we consider 0 ≤ τi′i,j < 2T . We first solve for si,j(2k).

y
(v)
i,j (2k) = g1,v ∗

ii,j r
v
i,j(2k) + g2,v

ii,jr
v ∗
i,j (2k + 1)

=
(|g1,v

ii,j|2 + |g2,v
ii,j|2

)
si,j(2k) +

g1,v ∗
ii,j g

1,v
i′i,jz

(1)
i′,j(2k) + g1,v ∗

ii,j g
2,v
i′i,jz

(2)
i′,j(2k) −

g2,v
ii,jg

1,v ∗
i′i,j z

(1)
i′,j(2k + 1) + g2,v

ii,jg
2,v ∗
i′i,j z

(2)
i′,j(2k + 1) +

g1,v ∗
ii,j n

(v)
i,j (2k) + g2,v

ii,jn
(v) ∗
i,j (2k + 1) (5.40)
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In modeling the power of cochannel interference, we should analyze the correla-

tion of z
(1)
i′,j(2k), z

(2)
i′,j(2k), z

(1)
i′,j(2k + 1), and z

(2)
i′,j(2k + 1).

S   (2k)
i’,j

*−S   (2k+1)i’,j

S   (2k+1)
i’,j

*S   (2k)i’,j

τ      = 0i’i,j

1 *−Z    (2k+1)i’,jZ    (2k)i’,j
1

2Z    (2k)i’,j Z    (2k+1)i’,j
2 *

T T

T T

Figure 5.2: Cochannel Interference, τi′i,j = 0

Case A As shown in Fig. 5.2, τi′i,j = 0. In this case, we have

z
(1)
i′,j(2k) = z

(2)
i′,j(2k + 1) = si

′
,j(2k), (5.41)

z
(2)
i′,j(2k) = z

(1)
i′,j(2k + 1) = si′ ,j(2k + 1). (5.42)

So the total interference can be written as

I
(v)
i,j (2k) = g1,v ∗

ii,j g
1,v
i′i,jz

(1)
i′,j(2k) + g1,v ∗

ii,j g
2,v
i′i,jz

(2)
i′,j(2k) −

g2,v
ii,jg

1,v ∗
i′i,j z

(1)
i′,j(2k + 1) + g2,v

ii,jg
2,v ∗
i′i,j z

(2)
i′,j(2k + 1)

= g1,v ∗
ii,j g

1,v
i′i,jsi

′
,j(2k) + g1,v ∗

ii,j g
2,v
i′i,jsi

′
,j(2k + 1) −

g2,v
ii,jg

1,v ∗
i′i,j si′ ,j(2k + 1) + g2,v

ii,jg
2,v ∗
i′i,j si′ ,j(2k)

=
(
g1,v ∗

ii,j g
1,v
i′i,j + g2,v

ii,jg
2,v ∗
i′i,j

)
si′ ,j(2k) +(

g1,v ∗
ii,j g

2,v
i′i,j − g2,v

ii,jg
1,v ∗
i′i,j

)
si′ ,j(2k + 1). (5.43)

And the power of the total interference is given by

E
[
|I(v)

i,j (2k)|2
]

=
∣∣g1,v ∗

ii,j g
1,v
i′i,j + g2,v

ii,jg
2,v ∗
i′i,j

∣∣2E [|si
′
,j(2k)|2

]
+
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∣∣g1,v ∗
ii,j g

2,v
i′i,j − g2,v

ii,jg
1,v ∗
i′i,j

∣∣2E [|si′ ,j(2k + 1)|2]
=

∣∣g1,v ∗
ii,j g

1,v
i′i,j + g2,v

ii,jg
2,v ∗
i′i,j

∣∣2 +
∣∣g1,v ∗

ii,j g
2,v
i′i,j − g2,v

ii,jg
1,v ∗
i′i,j

∣∣2
= |g1,v

ii,j|2|g1,v
i′i,j|2 + |g2,v

ii,j|2|g2,v
i′i,j|2 + |g1,v

ii,j|2|g2,v
i′i,j|2 + |g2,v

ii,j|2|g1,v
i′i,j|2

=
(|g1,v

ii,j|2 + |g2,v
ii,j|2

) (|g1,v
i′i,j|2 + |g2,v

i′i,j|2
)

=
(
|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j

)(
|c1,v

i′i,j |2P (1)
i′,j + |c2,v

i′i,j|2P (2)
i′,j

)
.(5.44)
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Figure 5.3: Cochannel Interference, 0 < τi′i,j < T

Case B As shown in Fig. 5.3, 0 < τi′i,j < T . In this case, obviously z
(1)
i′,j(2k) and

z
(2)
i′,j(2k) are independent. For further analysis, we assume that the input symbols

to the space-time encoder are independent with each other and that the inphase

and the quadrature components of data symbols are independent and balanced

in power. Under this assumption, even though both z
(1)
i′,j(2k) and −z(1) ∗

i′,j (2k+ 1)

contains si′ ,j(2k), z
(1)
i′,j(2k) and z

(1)
i′,j(2k + 1) are uncorrelated because

E
[
si′ ,j(2k)

(
s∗

i′ ,j(2k)
)∗]

= E[s2
i′ ,j(2k)] = E[x2

i′ ,j(2k)] − E[y2
i′ ,j(2k)] = 0, (5.45)

where xi′ ,j(2k) and yi′ ,j(2k) are real and imaginary parts of si′ ,j(2k) respectively.

Although we did not include the FFT and IFFT in the argument, but since they

are linear transforms, they do not affect the result. Using similar arguments, we
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can prove that z
(2)
i′,j(2k) and z

(2)
i′,j(2k + 1) are uncorrelated, and that z

(1)
i′,j(2k + 1)

and z
(2)
i′,j(2k + 1) are also uncorrelated. Therefore,

E
[
|I(v)

i,j (2k)|2
]

= E
[
|g1,v ∗

ii,j g
1,v
i′i,jz

(1)
i′,j(2k) + g1,v ∗

ii,j g
2,v
i′i,jz

(2)
i′,j(2k)−

g2,v
ii,jg

1,v ∗
i′i,j z

(1)
i′,j(2k + 1) + g2,v

ii,jg
2,v ∗
i′i,j z

(2)
i′,j(2k + 1)|2

]
= E

[
|g1,v ∗

ii,j g
1,v
i′i,jz

(1)
i′,j(2k) + g2,v

ii,jg
2,v ∗
i′i,j z

(2)
i′,j(2k + 1)|2

]
+

E
[
|g1,v ∗

ii,j g
2,v
i′i,jz

(2)
i′,j(2k) − g2,v

ii,jg
1,v ∗
i′i,j z

(1)
i′,j(2k + 1)|2

]
= |g1,v

ii,j|2|g1,v
i′i,j|2 + |g2,v

ii,j|2|g2,v
i′i,j|2 + |g1,v

ii,j|2|g2,v
i′i,j|2 + |g2,v

ii,j|2|g1,v
i′i,j|2

+g1,v ∗
ii,j g

1,v
i′i,jg

2,v ∗
ii,j g

2,v
i′i,jE|z(1)

i′,j(2k)z
(2) ∗
i′,j (2k + 1)|

+g1,v
ii,jg

1,v ∗
i′i,j g

2,v
ii,jg

2,v ∗
i′i,j E|z(1) ∗

i′,j (2k)z
(2)
i′,j(2k + 1)|

−g1,v ∗
ii,j g

2,v
i′i,jg

2,v ∗
ii,j g

1,v
i′i,jE|z(2)

i′,j(2k)z
(1) ∗
i′,j (2k + 1)|

−g1,v
ii,jg

2,v ∗
i′i,j g

2,v
ii,jg

1,v ∗
i′i,j E|z(2) ∗

i′,j (2k)z
(1)
i′,j(2k + 1)|

=
(|g1,v

ii,j|2 + |g2,v
ii,j|2

) (|g1,v
i′i,j |2 + |g2,v

i′i,j|2
)

+g1,v ∗
ii,j g

1,v
i′i,jg

2,v ∗
ii,j g

2,v
i′i,j

[
E|z(1)

i′,j(2k)z
(2) ∗
i′,j (2k + 1)| − E|z(2)

i′,j(2k)z
(1) ∗
i′,j (2k + 1)|

]
+g1,v

ii,jg
1,v ∗
i′i,j g

2,v
ii,jg

2,v ∗
i′i,j

[
E|z(1) ∗

i′,j (2k)z
(2)
i′,j(2k + 1)| −E|z(2) ∗

i′,j (2k)z
(1)
i′,j(2k + 1)|

]
(5.46)

Since the correlation E
[
|z(1)

i′,j(2k)z
(2) ∗
i′,j (2k + 1)|

]
and E

[
|z(2)

i′,j(2k)z
(1) ∗
i′,j (2k + 1)|

]
only depends on the delay τi′i,j, they are equal by symmetry, which is true

even when the transmit power on the two antennas are different. Similarly,

E
[
|z(1) ∗

i′,j (2k)z
(2)
i′,j(2k + 1)|

]
is equal to E

[
|z(2) ∗

i′,j (2k)z
(1)
i′,j(2k + 1)|

]
. So we have

E
[
|I(v)

i,j (2k)|2
]

=
(|g1,v

ii,j|2 + |g2,v
ii,j|2

) (|g1,v
i′i,j|2 + |g2,v

i′i,j |2
)

=
(
|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j

)(
|c1,v

i′i,j|2P (1)
i′,j + |c2,v

i′i,j|2P (2)
i′,j

)
.
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(5.47)
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Figure 5.4: Cochannel Interference, τi′i,j = T

Case C As shown in Fig. 5.4, τi′i,j = T . In this case, we have

z
(1)
i′,j(2k) = −s∗

i′ ,j(2k − 1), (5.48)

z
(2)
i′,j(2k) = s∗

i′ ,j(2k − 2), (5.49)

z
(1)
i′,j(2k + 1) = −s∗

i
′
,j
(2k), (5.50)

z
(2)
i′,j(2k + 1) = s∗

i′ ,j(2k + 1). (5.51)

Since si′ ,j(2k− 2), si′ ,j(2k− 1), si′ ,j(2k), and si′ ,j(2k+ 1) are mutually indepen-

dent, z
(1)
i′,j(2k), z

(2)
i′,j(2k), z

(1)
i′,j(2k+ 1), and z

(2)
i′,j(2k+ 1) are also mutually indepen-

dent of each other. Therefore

E
[
|I(v)

i,j (2k)|2
]

= E
[
|g1,v ∗

ii,j g
1,v
i′i,jz

(1)
i′,j(2k) + g1,v ∗

ii,j g
2,v
i′i,jz

(2)
i′,j(2k)−

g2,v
ii,jg

1,v ∗
i′i,j z

(1)
i′,j(2k + 1) + g2,v

ii,jg
2,v ∗
i′i,j z

(2)
i′,j(2k + 1)|2

]
= |g1,v

ii,j|2|g1,v
i′i,j|2 + |g1,v

ii,j|2|g2,v
i′i,j|2 + |g2,v

ii,j|2|g1,v
i′i,j|2 + |g2,v

ii,j|2|g2,v
i′i,j|2

=
(|g1,v

ii,j|2 + |g2,v
ii,j|2

) (|g1,v
i′i,j|2 + |g2,v

i′i,j|2
)

=
(
|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j

)(
|c1,v

i′i,j |2P (1)
i′,j + |c2,v

i′i,j|2P (2)
i′,j

)
.(5.52)
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Figure 5.5: Cochannel Interference, T < τi′i,j < 2T

Case D As shown in Fig. 5.5, T < τi′i,j < 2T . Using the same argument as in

Case B, we have

• z
(1)
i′,j(2k) and z

(1)
i′,j(2k + 1) are uncorrelated;

• z
(1)
i′,j(2k) and z

(2)
i′,j(2k) are uncorrelated;

• z
(2)
i′,j(2k) and z

(2)
i′,j(2k + 1) are uncorrelated;

• z
(1)
i′,j(2k + 1) and z

(2)
i′,j(2k + 1) are independent.

And similar to Case B, the power of interference is given by

E
[
|I(v)

i,j (2k)|2
]

=
(
|c1,v

ii,j|2P (1)
i,j + |c2,v

ii,j|2P (2)
i,j

)(
|c1,v

i′i,j|2P (1)
i′,j + |c2,v

i′i,j|2P (2)
i′,j

)
.

(5.53)

In summary, the power of an interfering signal from a single cochannel cell

is given by (5.53) in all cases. In the case of multiple CCI sources, as they are

mutually independent of each other, the power of the total CCI is simply the

sum of the power of every interfering source. So the SINR for virtual subchannel

j at the ith base station can be written as

SINRt
i,j =

|c1,1
ii,j|2P (1)

i,j + |c2,1
ii,j|2P (2)

i,j

Ni,j +
∑

i′ �=i

(
|c1,1

i′i,j|2P (1)
i′,j + |c2,1

i′i,j|2P (2)
i′,j

) . (5.54)
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For simplicity, let

κ
(u)
i′i,j =




1
Γ
|cu,1

i′i,j|2, i′ = i,

|cu,1
i′i,j|2, i′ �= i,

(5.55)

Then

SINRt
i,j =

Γ
∑2

u=1 κ
(u)
ii,j

[
q
(u)
i,j

]2

Ni,j +
∑

i′ �=i

∑2
u=1 κ

(u)

i′ i,j

[
q
(u)

i′ ,j

]2 (5.56)

The first and second derivatives of the objective function

In the case of dual transmit antennas, the number of parameters doubles. The

objective function now becomes

J(q) = −
∑
i,j

log


1 +

∑2
u=1 κ

(u)
ii,j

[
q
(u)
i,j

]2

Ni,j +
∑

i
′ �=i

∑2
u=1 κ

(u)

i′ i,j

[
q
(u)

i′ ,j

]2


 , (5.57)

where q is as defined before. The optimization problem can now be recast as

min
q
J(q) subject to

∑
j

∑
u

[
q
(u)
i,j

]2

≤ Pi, ∀i. (5.58)

To derive the first and the second order derivatives of the objective function.

First we redefine Ii,j(q) and bi,j(q)

Ii,j(q)
∆
= Ni,j +

∑
i
′ �=i

2∑
u=1

κ
(u)

i′ i,j

[
q
(u)

i′ ,j

]2

, (5.59)

bi,j(q)
∆
= log


1 +

∑2
u=1 κ

(u)
ii,j

[
q
(u)
i,j

]2

Ni,j +
∑

i′ �=i

∑2
u=1 κ

(u)

i′ i,j

[
q
(u)

i′ ,j

]2


 . (5.60)

Then the first order derivative is given by

∂J(q)

∂q
(u)
m,n

=
q
(u)
m,n

ln 2

[
M∑
i=1

κ
(u)
mi,n

Ii,n(q)

(
1 − e−bi,n(q)

)− κ
(u)
mm,n

Im,n(q)

]
(5.61)
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The second order derivative is given by

∂2J(q)

∂q
(u)
k,l ∂q

(v)
m,n

= 0, l �= n. (5.62)

∂2J(q)

∂q
(u)
k,n∂q

(v)
m,n

= −2q
(u)
k,nq

(v)
m,n

ln 2

{∑
i

κ
(u)
ki,nκ

(v)
mi,n[

Ii,n(q)
]2 [1 − e−2bi,n(q)

]

−κ
(u)
kk,nκ

(v)
mk,n[

Ik,n(q)
]2 − κ

(u)
km,nκ

(v)
mm,n[

Im,n(q)
]2

}
, ∀k �= m, u �= v. (5.63)

∂2J(q)

∂q
(u)
k,n∂q

(u)
m,n

= −2q
(u)
m,nq

(u)
k,n

ln 2

{
M∑
i=1

κ
(u)
mi,nκ

(u)
ki,n[

Ii,n(q)
]2 [1 − e−2bi,n(q)

]

−κ
(u)
mk,nκ

(u)
kk,n[

Ik,n(q)
]2 − κ

(u)
mm,nκ

(u)
km,n[

Im,n(q)
]2

}
, k �= m. (5.64)

∂2J(q)

∂q
(u)
m,n∂q

(v)
m,n

= −2q
(u)
m,nq

(v)
m,n

ln 2

{∑
i

κ
(u)
mi,nκ

(v)
mi,n[

Ii,n(q)
]2 [

1 − e−2bi,n(q)
]− κ

(u)
mm,nκ

(v)
mm,n[

Ik,n(q)
]2

}
,

∀u �= v. (5.65)

∂2J(q)

∂q
(u)
m,n∂q

(u)
m,n

=
1

ln 2

{
M∑
i=1

κ
(u)
mi,n

Ii,n(q)

[
1 − e−bi,n(q)

]− κ
(u)
mm,n

Im,n(q)

}

−
2
[
q
(u)
m,n

]2

ln 2




M∑
i=1

[
κ

(u)
mi,n

Ii,n(q)

]2 [
1 − e−2bi,n(q)

]−
[
κ

(u)
mm,n

Im,n(q)

]2

 .

(5.66)

5.3 Distributed Power Allocation Algorithm with Trans-

mit and Receive Diversity

In this section, we consider the DWPA for improving the total throughput

against frequency-selective fading and cochannel interference. We first assume

that each base station can accurately measure the channel state information –

cu,v
ii,j– for all the intended signal paths and the total interference plus noise power
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appearing during demodulation. We further assume that the computed power

allocation information can be fed back to the mobile without any distortion. We

first consider the case with one transmit antenna. Then we move to two transmit

antennas.

5.3.1 Single Transmit Antenna

We first extend the DWPA from single receive antenna to multiple receive an-

tennas. The distributed water-pouring algorithm is as follows:

For cochannel base station i,

1. Define a set of active subchannels

Gi = {j : SINRr
i,j > η},

where η is the least SINR requirement and SINRr
i,j is defined in (5.28).

2. Initially set the set Gi to include all subchannels.

3. Base station i first measures the subchannel gains cu,v
ii,j and computes ηii,j, ∀j ∈

Gi (5.29). It then measures the virtual interference plus noise power

Ii,j = Ni,j +

NC∑
i
′ �=1

i′ �=i

ηi′i,jPi′,j, ∀j ∈ Gi

of its own link and forms the virtual effective noise level as

I
′
i,j =

Γ

ηii,j
Ii,j, ∀j ∈ Gi

4. Apply water-pouring algorithm to all subchannels in Gi

P̂i,j =




Pi+
∑

j∈Gi
I
′
i,j

nGi
− I

′
i,j , ∀j ∈ Gi &

Pi+
∑

j∈Gi
I
′
i,j

nGi
≥ I

′
i,j,

0, otherwise,

where nGi
is the size of the set Gi.
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5. Update the set of active subchannel Gi. Go to step 4 if Gi is changed;

otherwise continue.

6. Feedback P̂i,j to the corresponding mobile. The mobile then adjusts the

power and modulation according to this information. Go to step 1.

The algorithm is executed independently by all cochannel base stations. Since

there is no analytical approach on how to choose the least SINR requirement η,

it will be selected through simulation.

5.3.2 Dual Transmit Antenna

In the case of dual transmit antennas, a new question arises on how to assign the

power between the two transmit antennas. A better solution to this problem will

be presented in Section 5.4, where the gradient of the objective function is used

to balance the power between the two antennas. Given the limited information

the receiver has in the DWPA, however, the best way is to use selective diversity

(SD) and assign all the power for that subchannel to the antenna with larger

channel gain. For comparison, we will also include the approach used in the

space-time code, that is, to split the power evenly to two transmit antennas –

equal power diversity (EPD), which is the best solution when the channel state

information is not available at the transmitter.

Selective Diversity

In this case, the transmitter assigns all the power of Pi,j to the antenna with

better channel conditions. (5.54) can be written as

SINRt
i,j =

max(|c1,1
ii,j|2, |c2,1

ii,j|2)Pi,j

Ni,j +
∑

i′ �=i max
(|c1,1

i′i,j|2, |c2,1
i′i,j|2

)
Pi′,j

. (5.67)
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Replace ηi′i,j with max
(|c1,1

i′i,j|2, |c2,1
i′i,j|2

)
, we can apply the DWPA.

Equal Power Diversity

In this case, we let P
(1)
i,j = P

(2)
i,j = Pi,j/2, ∀i, j. Then (5.54) becomes

SINRt
i,j =

(
|c1,1

ii,j |2+|c2,1
ii,j|2

2

)
Pi,j

Ni,j +
∑

i′ �=i

(
|c1,1

i′i,j |2+|c2,1

i′i,j |2
2

)
Pi′,j

. (5.68)

Replace ηi′i,j with
|c1,1

i′i,j |2+|c2,1

i′i,j |2
2

, we can also apply the DWPA.

5.4 Centralized Power Control Algorithm with Transmit

Diversity

In this section, we present the centralized power control algorithm with transmit

diversity. We will first discuss the gradient projection method and how to reduce

the computational complexity given the large dimension of the vector q. Then

we will describe the centralized power control algorithm based on the active set

strategy.

5.4.1 Gradient Projection Method

The problem in (5.58) is a constrained nonlinear optimization problem. We

adopt the gradient projection method to handle the active inequality constraints.

Let Ωa be the set of all active constraints and Ma the number of elements in the

set Ωa. First, define

hi
∆
=

∑
j

∑
u

P
(u)
i,j − Pi, ∀i ∈ Ωa, (5.69)
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h =
[
hi1 , hi2 , · · · , hiMa

]T
, i1, · · · , iMa ∈ Ωa. (5.70)

Let ∇h be the Jacobian matrix of the matrix h

∇h ∆
=




(
∂hi1

∂q

)T

(
∂hi2

∂q

)T

...(
∂hiMa

∂q

)T



. (5.71)

We will use subscript (·) to indicate the index of the algorithm step. According

to [68], the projection matrix and the search direction at step k are given by

R(k) = I −∇hT
(k)(∇h(k)∇hT

(k))
−1∇h(k), (5.72)

s(k) = R(k)∇J(k) (5.73)

The vector q are then updated by

q
′

(k+1)
= q

(k)
− α(k)s(k). (5.74)

We then use Newton-Raphson iterations to return q
k+1

to the active constraint

surface

[q
(k+1)

](j+1) = [q
(k+1)

−∇hT
(k+1)(∇h(k+1)∇hT

(k+1))
−1h(k+1)](j), (5.75)

with [q
(k+1)

](0) = q
′
(k+1)

. This Newton-Raphson iterations are terminated when

‖R(k)∇J(k)‖ ≤ ε.

The step size α(k) is given by

α(k) =
∇JT

(k)∇J(k)

∇JT
(k)H(k)∇J(k)

, (5.76)

where H is the Hessian of the objective function given by

H =
∂

∂q

(
∂J(q)

∂q

)T

(5.77)
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As we have found in the numerical experiments, the Hessian H(k) often turns out

to be indefinite, which can lead to negative step size α(k). To avoid this situation,

we use modified Hessian instead. We first perform eigenvalue decomposition for

the Hessian

H(k) = Q(k)Λ(k)Q
T
(k). (5.78)

Let λmin be the minimum diagonal element of the matrix Λ(k). Then the modified

Hessian is determined by

Ĥ(k) =




H(k), λmin > 0;

Q(k)

(
Λ(k) − λminI + δ

)
QT

(k), λmin ≤ 0,
(5.79)

where δ is a small positive number. Therefore the step size α(k) is computed by

α(k) =
∇JT

(k)∇J(k)

∇JT
(k)Ĥ(k)∇J(k)

. (5.80)

Complexity Reduction In the simulation, we use 19 cochannel cells and 32

OFDM subchannels. As a result, the dimension of q is as much as 608. Since the

gradient projection method involves eigenvalue decomposition for the Hessian Hk

in each step. So the complexity will be in the order of (NM)3 ≈ 2.25 × 108

operations. To reduce the computational complexity, we first let

q̂
j

=
[
q
(1)
1,j · · · q(NTX)

1,j · · · q(1)
M,j · · · q(NTX )

M,j

]T

, q̂ =
[
q̂
1
· · · q̂

N

]T

. (5.81)

Obviously q̂ is a linear transformation of q̂.

q̂ = Aq. (5.82)

Define

H
′
j =

∂

∂q̂
j

(
∂J(q̂)

∂q̂
j

)T

, (5.83)
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H
′

=
∂

∂q̂

(
∂J(q̂)

∂q̂

)T

(5.84)

From (5.23), it is obvious that H
′
consists of N M ×M diagonal matrix

H
′
=




H
′
1

H
′
2

. . .

H
′
N




(5.85)

So instead of decompose H
′
, which needs (NM)3 multiplications, we decompose

H
′
j, ∀j = 1, · · · , N , which only needs NM3 operations. And the step size is

actually given by

α(k) =
∇JT

(k)∇J(k)

∇JT
(k)Ĥ

′
(k)∇J(k)

, (5.86)

Another term that needs huge amount of computation is the calculation of

∇hT
(k)(∇h(k)∇hT

(k))
−1∇h(k) that involves (NM)2 +M3 +M2 +NM operations.

In fact,

∇h(k) =




∇hT
i1,(k)

∇hT
i2,(k)

...

∇hT
iM ,(k)




(5.87)

Therefore

∇hT
(k)(∇h(k)∇hT

(k))
−1∇h(k)

=




∇hT
i1,(k)(∇hi1,(k)∇hT

i1,(k))
−1∇hi1,(k)

. . .

∇hT
iM ,(k)(∇hiM ,(k)∇hT

iM ,(k))
−1∇hiM ,(k)




(5.88)

The number of multiplications is reduced to MN2 +M3 +M2 +NM .
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5.4.2 Active Set Strategy

Estimation of Lagrangian Multipliers According to the Karush-Kuhn-Tucker

conditions (KKT) [69], at a KKT point q∗

∇J∗ +

M∑
i=1

µi∇hi ∗ = 0, µi ≥ 0, ∀i = 1, · · · ,M. (5.89)

This is the same as

∇J∗ + µi∇hi ∗ = 0, µi ≥ 0, ∀i = 1, · · · ,M. (5.90)

For inactive constraints, µi = 0; for active constraints, µi > 0, and can be

estimated by

min
µi

‖∇J∗ + µi∇hi ∗‖ (5.91)

So we have

µ̂i = −∇JT
∗ ∇hi ∗

∇hT
i ∗∇hi ∗

(5.92)

Discussion on Step Size in Dealing with Inactive constraints After the step size

is computed by (5.80), for active constraints, the qi,j are forced to the constraint

surface by the Newton-Raphson iterations. Note due to the particular structure,

all the qi,j in inactive constraints are not affected by this iterative process. But

we must check whether α(k) is so large that some of the inactive constraints

would be violated. We must ensure for every inactive constraints i

‖q
i
− α(k)∇qi

‖ ≤ Pi (5.93)

i.e.,

(
qT

i
− α(k)∇qT

i

)(
q

i
− α(k)∇qi

)
− Pi
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= ‖q
i
‖ − 2α(k)∇qT

i
q

i
+ α2

(k)‖∇qi
‖ − Pi (5.94)

= ‖∇q
i
‖α2

(k) − 2∇qT

i
q

i
α(k) + ‖q

i
‖ − Pi ≤ 0. (5.95)

Solve the above inequality, we obtain

2∇qT
i
q

i
−
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖ ≤ α(k)

≤
2∇qT

i
q

i
+
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖ (5.96)

Since ‖q
i
‖ − Pi ≤ 0,

2∇qT
i
q

i
−
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖ ≤ 0

2∇qT
i
q

i
+
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖ ≥ 0 (5.97)

Since α(k) must be positive, so we have bounded α(k) in both directions

0 ≤ α(k) ≤
2∇qT

i
q

i
+
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖ . (5.98)

Centralized Power Control Algorithm Let Ωa be the set of active constraint

indices.

1. Initially set all M constraints to be active. Let q
(u)
i,j =

√
Pi

NTXN
, ∀i, j, u.

2. Compute ∇J(k) (5.61) and R(k) (5.72).

3. If ‖R(k)∇J(k)‖ ≥ ε1, continue the inside loop; otherwise go to step 4.

(a) Compute the step size α(k) (5.86). If α(k) violates any inactive con-

straints, let

α(k) = min
i

2∇qT
i
q

i
+
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖
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and set the constraint

arg min
i

2∇qT
i
q

i
+
√

(2∇qT
i
q

i
)2 − 4‖∇q

i
‖(‖q

i
‖ − Pi)

2‖∇q
i
‖

to be active.

(b) Set q
(k+1)

= q
(k)

− α(k)R(k)∇J(k)

(c) If ‖h(k+1)‖ ≥ ε2, continue the inside loop; otherwise go to step 3(d).

i. [q
(k+1)

](j+1) = [q
(k+1)

−∇hT
(k+1)(∇h(k+1)∇hT

(k+1))
−1h(k+1)](j)

(d) Compute ∇J(k) (5.61) and R(k) (5.72).

4. Estimate µ̂i, ∀i ∈ Ωa. Let j = arg mini∈Ωa µ̂i.

5. If µ̂j ≥ 0, terminate; otherwise, deactivate constraint j and go to step 2.

In the simulation, we observe that the algorithm often oscillates between the

positive and negative values of a subset of the vector q, leading to extremely

slow convergence. Considering that changing the sign of qi,j will not change the

actual power allocation, which is equal to q2
i,j , and subsequently the throughput,

we deliberately randomize the step size α(k) after step 3(a). Specifically, we first

generate a Bernoulli random variable with equal probability. If the result is one,

let

α(k) =
α(k)

2
. (5.99)

If the result is zero, leave α(k) unchanged. This modification has proved to be

very effective in preventing the CPCA from getting stuck at oscillation and has

significantly improved the convergence speed in the simulation.
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5.5 Power Control in the Presence of Jamming

In this section, we consider the DWPA and the CPCA in the case of strong

jamming signals. We will describe the jamming model. The simulation result

and discussions will be give in Section 5.6.

5.5.1 Jamming Model

In the case of jamming, we assume that there is a random noise jammer located

inside the cellular network. We assume that the jammer’s position is uniformly

distributed inside the boundary of the cellular network as in [70]. The jammer

randomly selects a subset of OFDM subchannels and transmits the jamming

signals – additive white Gaussian noise – through those subchannels. As a result,

all the cochannel cells are affected to a certain degree depending on the distance.

The jammer uses a single antenna to transmit jamming signals. As the jammer

has no knowledge of the channel conditions, it distributes its power evenly over

the entire subset of selected subchannels.

With the presence of the jammer, the equation for the received signal, (5.3),

can be rewritten as

rv
i,j(k) =

NTX∑
u=1

cu,v
ii,j(k)s

u
i,j(k) +

NC∑
i′=1
i′ �=i

NTX∑
u=1

cu,v
i′i,j(k)s

u
i′,j(k) + dv

i,j(k)j(k)

+nv
i,j(k), (5.100)

where dv
i,j(k) is the channel gain of the jth subchannel from the jammer to the

vth receive antenna of the ith base station; j(k) is the jamming signal at time

k. The jammer signals are subject to distance loss, shadowing, and frequency-

selective fading as the data signals. Based on this new equation, we derive the
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expressions for the signal-to-interference ratio. Again, we omit the time index k

for the jamming channel state information dv
i,j(k) as we did to cu,v

ii,j(k) in Section

5.1.

In the case of single transmit (mobile) and receive antenna (base station),

the SINR in the jth subchannel of the i base station now becomes

SINRi,j =
Γξii,jPi,j

Ni,j +
∑NC

i′=1
i′ �=i

ξi′i,jPi′,j + ξJi,jIjPJ/NJ

. (5.101)

where ξJi,j = |d1
i,j|2, Ij is the indication function – it equals one when subchannel

j has jamming signals and zero otherwise, NJ is the number of subchannels that

have jamming signals, and PJ is the total jamming power.

In the case of receive diversity, the SINR is

SINRr
i,j =

Γηii,jPi,j

Ni,j +
∑NC

i′=1
i′ �=i

ηi′i,jPi′,j + ηJi,jIjPJ/NJ

(5.102)

where

ηJi,j =

∣∣∣∑NRX

v=1 c1,v ∗
ii,j dv

i,j

∣∣∣2∑NRX

v=1

∣∣c1,v
ii,j

∣∣2 . (5.103)

In the case of transmit diversity, the SINR is

SINRt
i,j =

Γ
∑2

u=1 κ
(u)
ii,j

[
q
(u)
i,j

]2

Ni,j +
∑

i′ �=i

∑2
u=1 κ

(u)

i′ i,j

[
q
(u)

i′ ,j

]2

+ κJi,jIjPJ/NJ

, (5.104)

where κJi,j = |d1
i,j|2.

5.6 Simulation Results

We consider a hexagonal cellular system with frequency reuse factor 4 as shown

in Fig. 5.6. Around a central cell, we consider 6 cochannel cells in the second
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total cochannel cells: 19

frequency reuse factor: R = 4

Figure 5.6: A Hexagonal Cellular System

tier and 12 cochannel cells in the fourth tier. In each of the 19 cochannel cells,

a base station is located in the center and is communicating with one mobile

within the cell. The mobiles are uniformly distributed in their corresponding

cells for each simulation instance. Path distance loss obeys a decay law with

exponent α = 3.5, whose gain is normalized to one at a reference distance that

is equal to 0.01 times the radius of the cell. No mobiles are allowed within this

reference distance from the base station. A lognormal fading with 0 dB mean

and 8 dB standard deviation is used to simulate shadowing effect. There are a

total of 32 OFDM subchannels for each cochannel cell. The adjacent subchannel

cross-correlation coefficient is 0.5. The total transmission power for each mobile

is normalized to 1.0 Watt and the power of AWGN at the receiver end is 10−10

Watt. The SINR gap Γ is set to be 10.8276, which corresponds to a symbol error

probability of 10−3.

We simulate three antenna combinations: 1 transmit antenna and 1 receive
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Figure 5.7: Normalized Throughput of the Cellular System, 1 TX antenna, 1

RX antenna, σ = 8 dB

antenna; 1 transmit antenna and 2 receive antennas; 2 transmit antennas and 1

receive antenna. For each antenna combination, we simulate three algorithms:

EP, DWPA, and CPCA. For transmit diversity, both EP and DWPA have two

cases: one is to split power evenly between two transmit antennas, which is

referred to as EPD (equal power diversity); the other assigns full power to the

transmit antenna with larger channel gain in that subchannel, referred to as SD

(selective diversity). For each simulation, 1000 samples are generated and the

results are shown in Fig. 5.7, 5.8, 5.9. We use the normalized throughput,

which is equal to the total throughput divided by the product of the number of

cochannel cells and the number of OFDM subchannels.

Comparison of Power Control Algorithms The first observation is that in terms

of the normalized throughput the CPCA always gives the best performance, the
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Figure 5.8: Normalized Throughput of the Cellular System, 1 TX antenna, 2

RX antennas, σ = 8 dB

DWPA the second at low η values, and the EP the third. This is reasonable

because both the CPCA and the DWPA exploit feedback information to improve

the normalized throughput with the CPCA having the most information on

channel conditions and the AWGN noise level. The performance of the DWPA

also relies heavily on the η value. It reaches the peak at about 4 dB and descends

quickly after 6 dB.

Comparison of Diversity Schemes The second observation is that among three

diversity schemes: the receive diversity gives the best performance, the transmit

diversity with selective diversity slightly worse, the transmit diversity with equal

power diversity the third, and the no diversity case the worst. The reason that

the receive diversity has an edge over the transmit diversity with SD is because

the former actually has larger channel gains because it has two paths from each
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Figure 5.9: Normalized Throughput of the Cellular System, 2 TX antennas, 1

RX antenna, σ = 8 dB

transmit antenna while in the latter, only the stronger one is used. As for why

the SD is much better than the EPD, the reason is that the SD puts all power

in the stronger path so the receiving power is larger than that of the EPD.

Convergence of the DWPA and the CPCA In Fig. 5.10, we study the percentage

of convergence the DWPA. For the DWPA, we stop the algorithm if the difference

of any two consecutive power vectors has a norm smaller than 10−8 and consider

that it has reached convergence; or when the number of iterations reaches 100 and

consider that it diverges. The reason we set the maximum number of iterations

to be 100 is because we have observed that when the algorithm converges, it

usually converges in fewer than 10 iterations; otherwise it will not converge

anyway. From Fig. 5.10, we can see that the percentage of convergence of the

DWPA is a function of the threshold value η – it has a higher percentage of
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Figure 5.10: Convergence Rate of the DWPA Algorithm, σ = 8 dB

convergence at very low η values. Also, diversity helps improve the percentage

of convergence. Among different diversity schemes, the receive diversity and

the transmit diversity with SD have the best percentage of convergence for the

DWPA.

σ = 6 dB σ = 8 dB σ = 10 dB

No Diversity 336 1032 3023

Receive Diversity 95 364 1330

Transmit Diversity with EPD 164 550 1459

Transmit Diversity with SD 134 448 1190

Table 5.1: Number of Iterations Needed for Convergence of the CPCA

For the CPCA, we stop the algorithm when the KKT conditions are satisfied.

In the simulation, ε1 = 10−3· length of q and ε2 = 10−8. The algorithm has

converged in all the simulations we have run. In Table 5.1, we show the average
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Figure 5.11: Normalized Throughput of the Cellular System, 1 TX antenna, 1

RX antenna, σ = 6 dB

number of iterations it takes to converge for different shadowing parameters. A

complete iteration is defined as a step taken towards the negative direction of the

gradient. The general trend for the CPCA is that as the standard deviation of the

shadowing goes higher, so goes the number of iterations needed for convergence.

As in the DWPA, the CPCA converges faster when there is diversity. The

common characteristics is that when the channel variation is small, the CPCA

converges in fewer iterations.

Effect of Shadowing Deviation on DWPA To obtain a better understanding

of these algorithms, we vary the standard shadowing deviation σ and simulate

the sensitivity of the three algorithms to this parameter. The results are shown

in Fig. 5.11, 5.12, 5.13 for σ = 6 dB and 5.14, 5.15, 5.16 for σ = 10 dB. As

the standard deviation of the shadowing goes higher, the normalized throughput
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Figure 5.12: Normalized Throughput of the Cellular System, 1 TX antenna, 2

RX antennas, σ = 6 dB

experiences a slight decrease due to the increased cochannel interference. But the

advantages of the CPCA and the DWPA over the EP become more prominent as

σ increases. The same is true between the CPCA and the DWPA. For instance,

in the one transmit antenna and one receive antenna case, the throughput of the

DWPA (η = 4 dB) and the CPCA are 7% and 12% more than that of the EP

at σ = 6 dB. The numbers change to 11% and 19% at σ = 8 dB and 17% and

28% at σ = 10 dB.

Power Control in the Presence of Jamming We use the same hexagonal cellular

system as before. And all the system parameters are the same if not specified.

The jammer roams inside the network area. The jamming power is 30 dB as

high as the maximum transmit power of a single mobile. For each simulation,

1000 samples are generated.
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Figure 5.13: Normalized Throughput of the Cellular System, 2 TX antennas, 1

RX antenna, σ = 6 dB
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Figure 5.14: Normalized Throughput of the Cellular System, 1 TX antenna, 1

RX antenna, σ = 10 dB
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Figure 5.15: Normalized Throughput of the Cellular System, 1 TX antenna, 2

RX antennas, σ = 10 dB
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Figure 5.16: Normalized Throughput of the Cellular System, 2 TX antennas, 1

RX antenna, σ = 10 dB
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Figure 5.17: Normalized Throughput Under Jamming, 1 TX antenna, 1 RX

antenna, σ = 8 dB

−10 −5 0 5 10 15 20
2

2.5

3

3.5

4

4.5

5

Least SINR requirement η (dB)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

bi
t)

EP, with jamming
DWPA, with jamming
CP, with jamming
EP
DWPA
CP

Figure 5.18: Normalized Throughput Under Jamming, 1 TX antenna, 2 RX

antenna, σ = 8 dB
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Figure 5.19: Normalized Throughput Under Jamming, 2 TX antenna, 1 RX

antenna, σ = 8 dB

Shown in Fig. 5.17 - 5.19 are the throughput of the cellular network for

three antenna combinations under hostile jamming. We can see that although

the performance of all the three algorithms – EP, DWPA, CP – deteriorate

by 20 − 30% due to the jamming, all of them are very robust against random

jamming in terms of the normalized throughput.

5.7 Conclusions

In this chapter, we dealt with the problem of optimizing throughput for a hexago-

nal cellular OFDM system with transmit and receive diversity. We first extended

the DWPA initially proposed by Su [25] from single transmit and receive antenna

to multiple antennas. Then we developed a centralized power control algorithm

based on the gradient projection method and the active set strategy. To increase
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the convergence rate, randomization of the step size was proposed.

Several conclusions can be drawn from the simulation results. First, among

three power control algorithms, the CPCA always produces the best performance

in terms of the normalized throughput, the DWPA the second, and the EP the

last. In terms of complexity, however, the CPCA is the most complicated. It

requires all the information on the channel and the cochannel cells as well as

sophisticated processing to allocate the transmit power. Although we did not

prove its convergence analytically, it has converged in all the simulations we

have run. As for the DWPA, it only needs to estimate the channel gains for the

intended signal and measure the total cochannel interference plus noise level for

each subchannels. The processing of the information is relatively simple – only

water pouring is needed. It somehow achieves a balance between the complexity

and the performance when compared with the CPCA and the EP. The main

issue remained for the DWPA, however, is that it cannot guarantee convergence,

although it does give better performance than the EP even when it diverges.

Still, it is a good heuristic algorithm to exploit frequency selectivity when the

additive white Gaussian noise dominates the total interference.

Second, among different diversity schemes, receive diversity and transmit

diversity with SD have similar performances that are better than others. On

both cases, however, the advantages of the DWPA and the CPCA over the EP

are less obvious. This is because there is less channel variation when there is

diversity.

Third, the shadowing parameter also affects the performance of the three

power control algorithms. When the standard deviation of the shadowing goes

higher, the advantages of the DWPA and the CPCA over the EP are more
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prominent. In other words, the complexity of the DWPA and the CPCA are

more acceptable on severe shadowing channels.

In the end, we simulated the effect of a single noise jammer on the sys-

tem throughput. Although it did cause a 20 − 30% decrease in the normalized

throughput with overwhelming jamming power – 30 dB as high as the maximum

transmit power of a single mobile, the system remained in working conditions.
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Chapter 6

Conclusions and Future Work

In this dissertation, we have studied joint detection and decoding of high-order

modulation schemes for CDMA and OFDM wireless communications. We have

proposed various joint detection and decoding schemes to improve power and

bandwidth efficiency, to mitigate the effect of fading, interference, and jamming.

In the following, we summarize our work in this dissertation and point out some

directions for future work.

Specifically, in Chapter 2, we have designed coherent and noncoherent itera-

tive receivers for high-order CPM signals. Both of them make use of the memory

inherent in CPM signals and have a structure similar to that of a serial concate-

nated convolutional decoder. For the coherent receiver, pilot symbols are used

as references for channel estimation. Simulation results have shown significant

improvement in BER performance for both PSAM and PSAM-IF receivers. And

the PSAM-IF receiver further improves the BER performance by 1.0 dB over the

PSAM receiver at high SNR since it involves iteratively estimating the channel

state information on reconstructed CPM phase trajectories. The noncoherent

MDD receiver that applies multiple-symbol differential detection in the CPM
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demodulator also benefits significantly from iterative processing.

The BER performance of noncoherent MDD receiver is largely determined

by the length of the linear predictor, which, however, would incur huge increase

in computational complexity and memory requirement. Reduced-state MDD

demodulator using the techniques described in [39] is a direction for further re-

search. We might be able to achieve better performance under the same compu-

tational complexity and memory requirements by balancing between the number

of trellis states and the linear predictor length.

In Chapter 3, we have proposed joint iterative channel estimation and decod-

ing systems for pilot symbol-assisted QAM communications over Doppler fading

channels, including both the flat-fading channel and the multipath frequency-

selective channel. In the flat-fading channel, we have designed a threshold-

controlled iterative channel estimation scheme, simulated the scheme using a

wide range of threshold values and determined that the best results are achieved

at very low threshold values. To reduce the polynomial complexity of the

threshold-controlled scheme, we also proposed another simplified scheme that

has similar performance but with only linear complexity.

In the multipath channel, our focus is on the comparison between pilot

symbol-assisted demodulation and pilot-aided demodulation under various trans-

mit and receive diversity combinations. We concluded from the simulation re-

sults that iterative channel estimation always provides remarkable performance

improvement and that transmit diversity should only be used when the number

of multiple paths is small. As the total number of paths increases, the perfor-

mance of PSAM, PSAM-IF, PAD, and PAD-IF all improves initially, reaches

peak at some points, and then starts to degrade. Finally, when the normalized
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Doppler frequency is around 0.01 or higher, PSAM performs better than PAD,

and PSAM-IF performs better than PAD-IF.

In Chapter 4, we have designed anti-jamming systems for multicarrier com-

munications against partial-band tone jamming and partial-time pulse jamming.

The design of the anti-jamming systems is illustrated by using the multi-tone

jamming. Specifically, we have proposed a hard jamming detector based on

eigenvalues and a soft detector based on the correlation of the jamming esti-

mator output. We proposed to use differential frequency estimation and the

ESPRIT algorithm for jamming frequency estimation. To further reduce the

error in jamming detection and estimation, we make use of iterative jamming

detection and estimation by removing the reconstructed data signal component

from the received samples.

In the fading channel, we have designed the pilot symbol sequence robust

to jamming detection and estimation for channel estimation. Furthermore, we

have also included iterative channel estimation in the design so that the receiver

has better estimates of the channel state information after the first iteration.

Simulation results have shown that our design of the anti-jamming multicarrier

receiver is very effective in suppressing the jamming signal and that the iterative

processing greatly improves the BER performance. It works for all the simulated

J/S values ranging from −10 to 30 dB.

Future work includes the design for more reliable jamming detection and more

accurate jamming estimation schemes. Exploring the anti-jamming capability

of multicarrier communication systems against jamming signals of other types,

such as noise jamming, is another interesting topic.

In Chapter 5, we dealt with the problem of optimizing throughput for a

169



hexagonal cellular OFDM system with transmit and receive diversity. We first

extended the DWPA initially proposed by Su [25] from single transmit and re-

ceive antenna to multiple antennas. We have studied both selective diversity and

equal power diversity on the transmitter side. Then we developed a centralized

power control algorithm based on the gradient projection method and the active

set strategy. To increase the convergence rate, we randomized the step size.

Among three power control algorithms – EP, DWPA, and CPCA, the CPCA

always produces the best performance in terms of the normalized total through-

put, the DWPA the second, and the EP the last. In terms of complexity, how-

ever, the CPCA is the most complicated. The processing of the information

for the DWPA is relatively simple – only water pouring is needed. The main

issue remained for the DWPA, however, is that it cannot guarantee convergence,

although it does give better performance than the EP even when it diverges.

Among different diversity schemes, receive diversity and transmit diversity

with selective diversity have similar performances that are better than others.

On both cases, however, the advantages of the DWPA and the CPCA over the

EP are less obvious.

One of the remaining issues for power control and adaptive modulation in

cellular wireless network is to prove analytically the convergence of the CPCA

algorithm. Another issue is to find algorithms for constrained optimization that

converges faster than the current gradient projection method.

In all, we have covered a wide range of important issues in the physical layer

wireless communications. These issues are essential to the development of high

data rate, power and bandwidth efficient wireless communication systems in the

future.
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