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ABSTRACT

Title of Thesis: COMPARING ANALYTICAL AND DISCRETE-EVENT
SIMULATION MODELS OF MANUFACTURING SYSTEMS

Degree Candidate: SaraT. Hewitt

Degreeand Y ear: Master of Science, 2002

Thesis directed by: Associate Professor Jeffrey W. Herrmann

Models have a variety of usesin manufacturing as they allow exploration of a
system with mitigated risk to the existing system and mitigated financial risk. Both
analytical models and discrete event simulation models can help elucidate system
behavior, but there can be differences in the results of these two types of models. The
objective of thisthesisis to examine the differences between results from analytical
models and discrete event simulation models. A series of case studies serveto illustrate
why analytical models and discrete-event simulation models differ. The creation of a
computer tool called a Learning Historian made it possible to efficiently conduct
experiments of discrete-event simulation models.

A flow shop with process drift provides one example of differing analytical and

discrete-event ssmulation models. Even after eliminating errors due to different



underlying assumptions, there is a difference between the analytical and simulation
model results because of the inherent variability in the simulation model.

A two-stage system that evolves from a push production control to a hybrid
system to a pull production control system illustrates additional sources of differences
between analytical and discrete event simulation models. The results for the two-stage
push model and the hybrid pull-push model from the analytical and simulation models
generally agree. Significant errors arise for the two-stage pull model because thereis no
correct analytical model for the two-stage pull model. The results of the push and pull
production control models illustrate the tradeoff between customer cycle time and

inventory level.
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1 Introduction

System modeling is an important component of engineering design. A model
represents a system and the relationships that influence that system. This representation
can take the form of physical and analogue models, such as globes or clay models, or
schematic and mathematical models, such as organizational charts and equations
(Blanchard, 1998). In general, models are used to save time and money, for training
purposes, to determine how to optimize a system, to predict performance, to enhance
understanding of system behavior and to examine worst-case scenarios. If experimenting
with asystem is not possible, then amodel can be used to analyze the system. For
example, no company would build two factories and analyze which one works better;
rather they would design a model that represents the two different layouts, evaluate which
system is better and then build one factory. Modeling also offers benefits for analyzing
worst-case scenarios; many systems have disastrous consequences if a system entersa
worst-case scenario (e.g., Chernobyl nuclear power plant). Creating amodel allows users
to learn about the worst-case scenario and explore alternatives and consequences without
undue risk.

There are many systems that can be modeled, ranging from chemical processing
to economic behavior. Thisthesiswill focus on discrete part manufacturing systems. In
these systems each station processes a job, with the final result being some value-added
product. There are three types of models that can be used for discrete event part
manufacturing: physical, anaytical and ssmulation. A physical model is one where the
entire system is scaled down. Physical models are useful for educating people about the

system, what it looks like, etc., but do not elucidate system behavior. Analytical models



and simulation models therefore offer the best means of exploring and understanding
system behavior, but there exist tradeoffs between accuracy and effort. The tradeoffs
between analytical models and simulation models will be discussed in Chapter 2.

Simulation models have three key characteristics. the duration of the system
analysis, the degree of randomness and the continuity of state variables. The duration of
the system analysis refers to whether the system is studied at a point in time (static
simulation), or if the system is studied for an extended period of time (dynamic
simulation). The randomness takes into account the behavior of the input variables.
Deterministic simulations contain no randomness in the input variables, while the inputs
to a stochastic ssmulation are probability distributions, which have an inherent variability.
The continuity of the state variables deals with the possible values of the states, either
defining the state of the system with a discrete set of values or with continuous variables.
A discrete-event system is one where the states of the resources and stations can be
clearly defined (e.g., busy, idle, down) by discrete variables and only events can cause a
changein the state of the system. An example of a discrete-event system would be a
manufacturing process, where the state of the system is the state of each machine and the
arrival or completion of each part will change the state of the system. In acontinuous
system, the state changes with respect to time and continuous variables represent the state
of the system. An example would be a chemical plant, where the pressure or temperature
of some component would change continuously with respect to time (Buzacott and
Shanthikumar, 1993).

This research will focus on dynamic, stochastic, discrete-event simulation, using

the commercially available ssimulation program Arena.



Modeling is an important component of designing manufacturing systems, so the
root of the differences between analytical models and discrete event models is important.
The next step in the analysisis to determine where and when these differences manifest
themselves, and how these differences can be minimized. The objective of thisthesisis
to examine the differences between results from analytical models and discrete event
simulation models.

Thethesisis organized as follows:

Chapter 2 provides background information about simulation, both analytical
models and discrete-event models. The software used in discrete-event smulation is
introduced, as are some of the components of the software. In addition, thereisareview
of the interaction between analytical models and discrete-event simulation models.
Chapter 3 outlines the methodology used to compare analytical models and discrete-event
simulation models. A computer program called a Learning Historian was developed to
aid in thisanalysis; the development of the Learning Historian and its functions will be
described. Chapter 4 uses a simple queueing system to demonstrate the application of the
methodology. The system isintroduced, the analytical equations presented, and the
results of the analytical model are compared to the results of the discrete-event simulation
model. Chapter 5 studies a process flow system. Chapter 6 analyzes a pull and push
production control systems. Chapter 7 concludes the thesis and suggests areas for future

work.



2 Background

2.1 Introduction

This chapter reviews analytical models and the discrete-event simulation program,
Arena. Typical tradeoffs between analytical and simulation models and previously

observed differences between analytical and simulation models are discussed.

2.2 Analytical models

Analytical models are collections of mathematical equations that, when solved,
predict the expected behavior of the system. For example, process models address the
behavior and variability of the process at various steps. Analytical models can be
developed using various media; for smple systems, paper and pencil may suffice, while
more complicated systems require computer program, (often Microsoft Excel and
macros). Unlike simulation models, analytical models do not require random-number
generation. Instead, solving these models entails solving a series of equations
representing different states of the system. The analytical model only needsto be run
once to obtain the desired system characteristics. Consequently, the results of the
analytical model are unique and exact, expressed without confidence intervals.

Analytical models are frequently used to examine queueing systems, inventory
control and linear programs. An example of a queueing system will be discussed in
greater detail in Chapter 4. Inventory control models are used to determine when to
reorder or restock inventory. Linear programs are problems that follow the standard

form: minimize the objective function cx, where Ax=b and x>0.



2.3 Tradeoffs between analytical models and discrete-event
simulation models

Both analytical models and discrete event simulation models can provide valuable
information about a system, but there are varying strengths and weaknesses of the two
types of models.

Discrete event simulation is often the more robust form of modeling; when
systems are too complex to solve mathematically, often it is still possible to model the
system as a discrete-event smulation. Analytical models, on the other hand, generally
require less time to build, do not require program specific training, and often take less
time to generate answers (Banks et al., 2001). The ability of the models to represent
complex systems trandates into their ability to represent the information to the user.

Analytical models are a collection of mathematical equations whose equations
yield numerical answers only for specific components of the system. The mathematical
nature of analytical models meansit is easier for people to understand analytical models,
while simulation models are often only understood by those familiar with simulation
programs. In contrast, discrete event simulation produces results for al components of
the system (e.g., process time for each step, utilization of each machine, etc.). So while
analytical models are simpler to understand because they are a collection of mathematical
equations, the more difficult to understand discrete-event simulation provides more
information about the system.

Analytical models and simulation models are built differently, so must be changed
differently. Simulation models are often inflexible, so changing either the structure of the

parameters of the system can be difficult, unless the ability to make a changeis



programmed into the model. The equations of analytical models allow for ease of
parametric change, but structural changes often require a new model (Buzacott and
Shanthikumar 1993).

Simulations require more data than an analytical model, which is both an
advantage and a disadvantage. Data about a system is often quite difficult to obtain, so
the fewer data demands of analytical models means that the information regquirements for
analytical models can be more easily met. The disadvantage of needing less datais that
the less accurate inputs to an analytical model results in less accurate output. In addition,
some approximations must be made in the analytical model in order to generate a
collection of equations to represent a system. These approximations again yield less

accurate results for the analytical model.

2.4 Observed differences in model results

Simulation models and analytical models are often used to validate one another,
where the models are considered accurate if the two models agree within approximately
5-10% (Narahari and Khan 1996; Bulgak and Sanders 1990). Koo et al. (1995) found
that the degree of agreement between analytical models and simulation models depended
on the variability of the arrival rate and processing rate. In Koo’s model, arrival and
processing rates with high variability (squared coefficient of variation between 0.5 and
1.0) resulted in relative errors of approximately 15%. However, when the arrival and
processing rate variability was low (scv = 0.25) the analytical model had arelative error
of 32%. One possible explanation for this difference is that the analytical model for
exponentia distributions (scv = 1.0) is exact, while the approximations for non-

exponentia distributions (such as distributions with scv = 0.25) is not.



Bulgak and Sanders (1990) found that for an automatic assembly system model,
as the number of workstations and pallets in the system increases, the analytical model
and the simulation model agree more closely. As an extension of this concept, the
analytical model deteriorates for small assembly systems. Zhuang et al. (1998), also
found that as the number of pallets increases, the analytical model and simulation model
exhibit better agreement of the throughput rate.

According to Huettner and Steudel (1992), part of the discrepancy between results
from a spreadsheet analysis, a deterministic analytic queueing model and asimulation are
dueto the fact that statistical fluctuations “tend to accumulate due to the fact the eventsin

the system are dependent upon one another.”

2.5 Arena

Arenaisacommercialy available discrete-event simulation program that
provides a user-friendly, Windows-based interface while using SIMAN/Cinema
simulation language to execute the simulations. The user does not directly interact with
the SIMAN code, but Arena translates the user’ s actionsinto SIMAN code. Stochastic
systems use random-number generators, so the output of the simulation is an estimate of
the true system behavior. Multiple runs are necessary to determine a sample of system
behavior, so aconfidence interval is used to describe the output results. Arena
automatically calculates the 95% confidence interval unless the user specifies otherwise.

Using the following variables and equations, Arena cal cul ates the confidence

interval as follows (Devore and Farnum 1999):



n = the number of samples

X (n) = the sample mean

S?(n) = the variance of the sample

t e = the critical value from at distribution with n-1 degrees of freedom
A

xmp%ixi

S*(n) I (Xi - )_((n)j2

- n-17=

Then the 100(1-c)% confidence interval is:

_ 52
X+t ﬂ
n-11-> n

Figure 2.1 shows atypical Arenawindow.
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Figure 2.1: The Arena Interface

The user typically interacts with the interface shown in Figure 2.1 to both develop
and run the model. To make or change amodel in Arena, the user clicks on icons and
drags them onto alarger screen. The user can edit the behavior of each icon through a
pop-up window. Once the user creates a model, the user runs the model and the program
evaluates the model and produces an output report. Some of the preprogrammed Arena
icons represent conveyors, machines, operators, etc. If there is not a preprogrammed
icon, the user can create various system components using Arenalogic blocks. Once a
user has created a model, the user can explore alternatives by modifying the resources,

variables, properties, etc. and running the simulation.



2.5.1 Process Analyzer

The Process Analyzer (PAN) isanew Arenatool designed to assist usersin
evaluating different scenarios after an Arenamodel has been finished, validated, and
verified. The PAN isdesigned so that those who are not intimately familiar with the
model (or with Arena), but who understand the system under consideration, can explore
aternatives. Using the PAN, users can select amodel, select any number of inputs and
outputs of interest, then enter values for the inputs, and the model will run with the new
input values. The PAN will display the output valuesin a chart, as shown in Figure 2.2.
The user can continue to modify inputs without losing previous results, and can even run

multiple scenarios at once.
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Figure 2.2: The Process Analyzer interface

The benefits of the Process Analyzer over the standard method of modifying
models within Arenainclude:
= The user does not have to interact with the simulation directly, so people with
varying skills can explore the model options.
= The PAN does not display every output and every input, only the inputs and
outputs selected by the user.
= The output results can be sorted according to their values, thereby facilitating

analysis of the alternatives.
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Theresults are stored in a*.pan file so that the user can run aternatives, close
the program, come back later and run more alternatives without losing the
results of previoustrias.

The scenarios, complete with inputs and outputs, can be printed in an

organized chart.

However, there is room for improvement for the PAN:

If ascenario has 10 replications, the PAN can graph the 10 different
values of some output, but cannot graph the results of different scenarios
against one another.

The PAN stores the minimum, maximum and half-width of each output
value, but those values are not included in the graph. Only when the user
selects the scenario and then selects the status tab, will the minimum,
maximum and half-width be shown at the bottom of the window.

The PAN does not support models that use Visual Basic for Application
blocks

The user must select a.p fileto begin using the PAN. The .pfileisafile
generated by Arenato run the model. If thereisnot an existing .p file, the

user must cause the Arenamodel to generate the .p file.

2.5.2 Output Analyzer

The Output Analyzer creates barcharts, histograms, moving average plots, graphs

of user-specified confidence intervals, and correlograms from the results of an Arena

model. A correlogram is useful when thereis only asingle replication of along run (as

opposed to multiple, shorter runs). Data can also be batched or truncated to remove the

12



effects of non-steady state behavior. Manipulating data and creating various plots is done
entirely in the Output Analyzer interface; the user does not interact with Arenain the
analysis, only in the formulation of the model that creates the data. To use the Output
Analyzer the user must, in the Arenamodel, create a statistics block that saves specified

dataresultsto a .dat file. Figure 2.3 shows some of the graphs that the Output Analyzer

can create.
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Figure 2.3: Graphs developed by the Output Analyzer

JI.MI

2.5.3 OptQuest

OptQuest is an optimization program developed by OptTek that can be used with
Arena (version 5.0), aswell as other computer ssmulation programs. OptQuest allows

users to maximize or minimize user defined objective functions from the Arenamodel.

13



OptQuest will then run the Arena model for various input values while searching for the
optimal value. The user can limit the range of possible input parameters and define the
objective function entirely in the set up for the OptQuest; the user does not interact with
Arena, except in theinitial formulation of the Arena model.

For example, in afactory, the objective function to be maximized could be net
profit, where net profit is afunction of the number of operators and the number of
products produced. Due to the size of the factory, there isalimit on the number of
possible operators, so one of the requirements of the optimization is that the number of
operators cannot exceed a given value. The user would then have OptQuest run for a
variety of input valuesin order to search for an optimal solution.

OptQuest uses a search algorithm based on scatter search, tabu search, integer
programming and neural networks to search for an optimal solution. The scatter search
combines existing solutions to make new solutions. The tabu search records recent
moves in order to form atabu search memory that ensures that OptQuest does not reverse

search paths.

2.6 Summary

The two types of modeling under discussion here are analytical models and
discrete-event simulation models, specifically the discrete-event simulation program,
Arena. Analytical models are a collection of equations that are solved to analyze system
behavior. Arena, like most simulation models, uses a random-number generator to
sample from probability distributions to explore system behavior. Analysistools such as
the Process Analyzer, Output Analyzer and OptQuest enhance the simulation component

of Arena. The tradeoffs between analytica models and discrete-event simulation models

14



focus on the tradeoff between time and effort and accuracy. The difference in accuracy
has been noted in other simulation studies as ranging from 15% to 32% with a correlation
between greater part flow and greater agreement. There is aso a correlation between
higher levels of variability (squared coefficient of variation = 1.0) and better agreement

of analytical and simulation models.
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3 Approach

3.1 Introduction

This chapter explains the methodology that will be followed in order to more fully
explore the difference between analytical and computer simulation models. In order to
systematically analyze the difference between analytical models and Arena simulation
models, a Learning Historian was devel oped to record simulation model results. The
Learning Historian alows the user to more easily create and run trials. The design of this
Learning Historian follows from past Learning Historians for both discrete-event and

continuous simulations.

3.2 Methodology

In order to evaluate the differences between Arena discrete event simulation
Arenamodels and analytic models, an Arenamodel and an analytic model will be built
for the same systems. Three systems will be modeled: a simple M/M/1 queuing system, a
manufacturing system and a push-pull system. The Arenamodel and the analytic model
will then be run for various input values. The input values will be chosen so asto
examine awide range of system utilizations.

Arenais adiscrete-event simulator with arandom number generator, so the
results of the Arenamodel are not exact answers, as such multiple trials must be run for
each model and the results will be expressed as a 95% confidence interval. A Learning
Historian will compile alist of input values and their corresponding output values, where

the output values are expressed by a 95% confidence interval. The results of the Arena

16



model will be compared to the results of the analytical model and the differences between

the results will be examined to determine the cause of the differences.

3.3 The need for a Learning Historian

A Learning Historian is a device that works ‘on top’ of a simulation program.
After the model has been validated and verified, the Learning Historian allows the user to
efficiently examine how the modeled system works. The Learning Historian runs the
model for the user-defined inputs and displays the output variables of interest. The goal
of the Learning Historian isto provide an environment that facilitates learning about
system behavior by making it easier for usersto run trials and by incorporating
visualization of the results. The historical aspect of the Learning Historian allows the
user to edit the inputs of onetrial to create a second trial.

For complex simulation models, the automatically generated computer program
output file can be anywhere from five to twenty pageslong. One reason for the length of
output files is that the computer simulation program automatically generates a variety of
output results for every entity type that enters the system and for every station that exists
within the system. However, for most systems, only certain outputs are of interest. For
example, in amulti-step manufacturing process, there are usually only afew stations or
operators that are of interest, but the output report includes the utilization of every
resource and the time at every station. In addition, for many simulation experiments, the
user may need to run the ssimulation for avariety of input variables. For example, ina
simple model of a push-pull manufacturing process, the batch size, kanban size and
machine availability may all vary. In order to determine an optimal system the user may

have to conduct upwards of 30 experimental runs. Using the Learning Historian is
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advantageous because it succinctly visualizes the results from these many runs, which

facilitates the analysis of the system.

3.4 Development of Learning Historian

In order to develop a Learning Historian for Arenait was first necessary to

examine past Learning Historians and the advantages and disadvantages of each.

3.4.1 Java- based Learning Historian

In Spring 2000, the Human Computer Interaction Laboratory (HCIL) developed a
Learning Historian for Arenausing java. Subsequent usability studiesillustrated the
need for adynamic display tool. The display tool chosen at that time was Starfield
Dynamic Object Miner (StarDOM). The goal of StarDOM, and other dynamic display
tools, isto alow the user to modify the graphical display so asto facilitate learning.
StarDOM is ajava-based application, which made it easier to integrate into the java
based Learning Historian. When using the Learning Historian to analyze a model, the
model had to be located in a specific folder for the java code to use the correct model.
The Learning Historian executed the model using an Arena function called scenario
manager. The scenario manager takes the two text files that contain the processing rules
and input parameters of the model and quickly runs the model. One reason that the
scenario manager is able to evaluate the model more quickly than the run command in
Arenaisthat the scenario manager does not animate the model. One disadvantage of this
Learning Historian is that recent versions of Arena do not contain a scenario manager.
There are three frames in this Learning Historian. The first frame, shown in Figure 3.1,

contains the controls for setting inputs and executing the trials and for navigating
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between trials. The user sets the input values using slider bars and then executes the trial.
The first frame also contains a historical application that allows the user to load and save
histories and to open StarDOM. The execution controls let the user either create a new
trial or revise an existing trial. The Learning Historian required a unique configuration

file for each model to determine which inputs and outputs to display.

Ega Experimental Trial Historian

L SIS Experiment Controls

Record Mode
Trial Number : 4
Drill Presses: 2
ey Experirnent |
s
Revise Experiment
Welding Machines: 1
Execute I
4
Artival Rate (partimin.: 2.0149
Historian Controls i
s
S RISl Experiment Outputs
- et Profit; 19,394
Total Parts Campleted: 184
Hirle Histary
Average Cycle Time: 784400

Figure 3.1: The control frame for the java based Learning Historian
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The second frame, shown in Figure 3.2, displays the results of various trials using

bar graphs and also contains controls for navigating between trials (i.e. first, previous,

next, last).

E; Experiment Histom

=

I- I- . 1 I | I I 1 I I I 1 I 1

) 5 10 1
e | Frstes | Preve | Wetr | Last>> | clear

Figure 3.2: The navigation frame for the java based Learning Historian

The third frame, shown in Figure 3.3, is the visualization tool StarDOM. Each
trial isadatapoint in StarDOM. One benefit of StarDOM, and other such programs, is

that the user can change the axis of the graphs and can filter the results.
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Figure 3.3: StarDOM graphing the trials of the java based Learning Historian

3.4.2 VisSim, Time Dependent Learning Historian
The Human Computer Interaction Laboratory (HCIL) also developed a Learning

Historian for a Simulated Processes in a Learning Environment (SimPLE) using VisSim.

VisSim isacommercial simulation package designed for time dependent simulation. A

key difference between the SImPLE problems and Arena-based problemsis that the

SImPLE Learning Historian is time dependent. As such, the input values can be changed

over time and the outputs are a function of time. In an example of vacuum pump

technology used in semiconductor manufacturing, the user can turn on pumps and open

valves at any time, thereby changing the state of the system. In addition, the pressure in

the pump chambers or reaction chambers will change as afunction of time given the
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chemical reactions that are taking place within the system and the states of various valves
and pumps.

Figure 3.4 shows the SImPLE Learning Historian for a chemical reaction example. The
graph on the top of Figure 3.4 shows the pressure as afunction of time. The lines toward

the bottom of Figure 3.4 show when various switches were turned on or off.
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Figure 3.4: The input and output display for the SmPLE Learning Historian

While the time independence of Arena models simplifies an Arena-based

Learning Historian, many of the functionalities and designs of the SimPLE Learning
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Historian can be incorporated into the design of an Arena-based Learning Historian. One
benefit of using a user interface similar to that of the VisSim Learning Historian is that
the HCIL has already conducted usability studies in order to improve the user interface.

(For more information about the VisSim Learning Historian see Plaisant et al., 1999).

3.4.3 Lessons for a new Learning Historian

Arenauses aVisua Basic interface, so the decision was made to build aLearning
Historian with Visual Basic. The assumption isthat, by utilizing Visua Basic, the
Learning Historian will interact with Arenamore easily. Also, later versions of Arena
(Arena4.0 and above) all contain a Visual Basic editor within Arena, which provides a
ready-made connection between the Visual Basic Learning Historian and the Arena
model.

The dynamic display tool chosen for this program is Spotfire, acommercialy
available program for visualizing and analyzing data. Spotfireissimilar to StarDOM in
that both can graph data-points on a user-defined axis, but Spotfire is more robust than

StarDOM.

3.5 The Learning Historian

3.5.1 User Interface

There are three components of the Learning Historian: the Visual Basic interface,
Arena, and Spotfire.

While using the Learning Historian the user interacts with the Visual Basic
interface and the Spotfire program. The user does not interact with the Arena program

while using the Learning Historian, as the Learning Historian will modify and run the
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Arena program as necessary. The user selects inputs, outputs, and determines the values
for the inputs in the Visual Basic interface.

Users can run any Arena model with the Learning Historian, but the model must
contain aVisual Basic for Applications (VBA) module that tells the program to modify
variable values in accordance with the values entered in the Visual Basic interface. If the
Arenamodel is run independently of the Learning Historian, the Arena model runs with
the variables that are aready in the Arenafile; Arena does not try to modify any variable

values.

3.5.2 Operation

Figure 3.5 shows the block diagram for the overall flow of the Visual Basic
Learning Historian. An explanation of the activity flow of the Learning Historian follows
below.

To begin using the Learning Historian the user selects an Arenamodel using a
typical open file dialog, similar to that used to open aword processing document. The
Learning Historian then opens the Arena model, runs the model with the current values,
and scans the output file for the names of outputs and user-modifiable inputs. The input
and output names are then displayed in list boxesin the Learning Historian. The user
uses the list boxes to select which inputs and outputs are of interest. The inputs of
interest are the variables that the user will modify. The user can now choose to enter a
set of trials, or onetrial. Regardless of if the user is entering one trial or many trias, the
user enters the values for the input variablesin labeled text boxes. If the user has chosen
to enter trials, the input values will be entered into a chart and the user will be able to add

more trials. When the user has finished entering the input values, the user clicks on “Run
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Arena’ and the Learning Historian writes the input names and their user-defined values
to atext file. The VBA modulesin the Arenamodel will read this text file and the input
variables will be modified to the values defined by the user. Arenawill run the model
with these new values and the Learning Historian will read the output file and identify the
output values of interest. The Learning Historian scans the output file for lines
containing the variables that the user previously defined as being of interest. The
Learning Historian then scans the selected line for the average output value and the half-
width value. These values are then stored in a chart and appended to a comma-delimited
filethat Spotfire will read. If the user entered multiple trials the Learning Historian
repeats the process of writing input names and values to a text file, running the model
with the new values, determining outputs and writing outputs to a comma-delimited file.
When the trials are complete, the user can choose to enter more trials, or run onetrial at a
time.

After at least onetrial has been run, the Learning Historian can open Spotfire, at
which point the Spotfire program will automatically read the comma-delimited output
text file. Therest of the Spotfire actions, such as reading and plotting the text file, are
already coded into it, asit isacommercially available software package.

When the user is done running trials and visualizing the data with Spotfire, the
user also can save the Learning Historian sessions and the results of the trials that have
already been conducted. When the user indicates that he/she would like to save the
current Learning Historian session, the Learning Historian will automatically generate a
text file that contains the path for the Arena model and the comma-delimited list of input

and output values. The Learning Historian sessions are saved as*.LH.TXT files.
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Therefore, when users open previously saved Learning Historian sessions, arbitrary text

files cannot be opened; only Learning Historian session files will be opened.
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3.5.3 Design

A usability study of the Visual Basic Learning Historian was conducted to
determine how to improve the Learning Historian, both as regards the interface and as
regards the abilities of the Learning Historian. The results are shown below; the layout
and names of buttons may change as a result of more usability studies, but the operation
and processing rules will not change.

There are four framesin this Learning Historian. The first frame, shown in Figure
3.6, isthe home frame for the Learning Historian. In thisframe the user can select a
model, run Arena, run Spotfire, view the results of the previoustrials, and can navigate
between the input/output selection screen and the trials screen. Once the user has
selected a model and the inputs and outputs of interest, the user can enters the input

values of asingletrial into the text boxes on the right hand side of the frame.
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Figure 3.6: The home frame of the Learning Historian

The second frame, Figure 3.7, allows users to select which inputs and output

variables to display from listboxes.
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Figure 3.7: The input/output selection frame

The third frame, Figure 3.8, allows the users to enter input values for multiple

trials.

29




w, Tnals

L e i R s S T ]

Figure 3.8: Thetrials screen

The fourth frame, Figure 3.9, is Spotfire, which graphsthetrials. Eachtrial is
represented as a data point in Spotfire. Spotfire allows the user to change the axis of the
graphs and to filter resultsin order to more closely analyze different components of the

system.
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Figure 3.9: A graph produced by Spotfire
For more information about the Learning Historian please see Appendix A.
3.6 Summary

An anaytica model and an Arenamodel of a manufacturing system and a push-
pull system will form the basis of the experimentation for the difference between
analytical models and discrete event simulation models. Each model will be run for a
variety of input values, these results will be compared to determine the difference
between the analytical model and the Arena model.

Onetool in this process will be a Learning Historian that sits on top of the Arena

model. The Learning Historian facilitates ssmulation by making it faster and easier for
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usersto run multiple trials by automatically recording output results and by incorporating
amethod of visualizing multiple results.

This Learning Historian uses many of the components of the VisSim continuous
time simulation developed by the Human Computer Interaction Laboratory (HCIL). The
HCIL Learning Historian was modified to reflect the behavior and simulation capabilities
of adiscrete-event smulation. After apreliminary version of the Learning Historian was
developed, various usability studies were conducted to improve the Arena Learning
Historian.

The Learning Historian iswritten in Visual Basic because the Arena program uses
aVisua Basicinterface. The Learning Historian works by writing the user-defined
Inputs to atemporary text file, the Arena program then modifies the Arenamodel with
the new input values, runs the Arena model and the Learning Historian parses the Arena
generated output file for the output results and their half-widths. The results and the half-
widths are displayed in the Learning Historian in a chart and in acomma-delimited file

that can be saved and that can be opened using avisual data-mining tool called Spotfire.
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4 A simple queueing system
4.1 Introduction

In order to more clearly explain the methodology that will be used in the following
chapters, this chapter presents an example of asimple queuing system. The results from

the analytical equations and the Arenamodel are presented and compared and any

discrepancies discussed.

4.2 M/M/1 Queuing

Queuing systems are described by their arrival rate, processing rate and the
number of serversin the system. The M denotes Markovian behavior, which signifies an
exponentia distribution. Therefore, an M/M/1 system has exponentially distributed
interarrival times, an exponentially distributed service time and one server. The arriva
rate is denoted by A and the servicerateis . The unit for ratesis customers per hour.
The mean interarrival timeis equal to 1/A and the mean processing timeis equal to 1/p.

If the arrival rate, A, is greater than the servicerate, p, that is, if, on average, the
system creates entities faster than the system can process the entities, the system will not
reach steady state. The system will be examined for avariety of utilization levels,

achieved by varying either the arrival rate, A, or the servicerate, 1 (Banks et al., 2001).

4.3 Analytical model

The following variables and equations are used in the calculations of the
analytical model.

Let p be the utilization of the server.
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Let L be the average number of customersin queue. Let Lsbe the average
number of customersin the system. The following equations can be used to calculate L

and Ls(Banks et al., 2001):

4.4 Arena Simulation Model

Figure 4.1 shows the logic flow of the Arena simulation model. Instead of
customers per hour, the simulation program needs the mean interarrival time and the

mean processing time, which are equal to /A and 1/ respectively.

Create entities. Process entities.
Create parts according to Delay parts according to . T
. ™ i - —» Dispose of entities.
an exponential an exponential
distribution with mean distribution with mean
1/2 1/

Figure 4.1: The Arenalogic for an M/M/1 queueing system

There is one operator (server) for the system. Arena creates entities according to
an exponentially distributed interarrival time and processes the entities according to an
exponentialy distributed servicetime. Arenawill automatically calculate the number in

gueue and the number in system. The interarrival time and service times, A and p



respectively, are defined as variables so that the model can be run with the Learning

Historian.

45 Results and Discussion

Thefollowing isalist of input values for A and p and the output results for both
the analytical model and the Arenamodel. The Learning Historian collected the results
of the Arenasimulation. The Arenaresults represent a 95% confidence interval, using
data from ten trials of 1500 minutes, with the results of the first 100 minutes ignored due
toinitial transient effects. The number in queue and the average queue time are related
by Little's Law (this was checked during the validation of the mode!), therefore only the
results of the number in queue and the number in the system (work-in-progress) are

shown in the table below.

Number in System (L) Number in Queue (L)

u A Analytical |Simulation Analytical |Simulation

20 |10 |1.0000 0.9856 0.0215  |0.5000 0.4884 £ 0.0175
30 |10 |0.5000 0.4960 0.0058  |0.1667 0.1640  + 0.0044
40 |10 |0.3333 0.3325 0.0049 |0.0833 0.0829 £ 0.0030
50 |10 |0.2500 0.2487 0.0025  |0.0500 0.0495 £ 0.0014
60 |10 |0.2000 0.1991 0.0020  |0.0333 0.0329 £ 0.0011
70 |10 |0.1667 0.1666 0.0020  |0.0238 0.0240  + 0.0009
80 |10 |0.1429 0.1422 0.0016 |0.0179 0.0176  + 0.0008
90 |10 |0.1250 0.1246 0.0014  |0.0139 0.0138  + 0.0006
100 |10 |0.1111 0.1107 0.0011 |0.0111 0.0109  + 0.0005
100 |20  |0.2500 0.2505 0.0024  |0.0500 0.0503  + 0.0010
100 |30 |0.4286 0.4275 0.0024  |0.1286 0.1284  + 0.0013
100 |40 |0.6667 0.6660 0.0050  |0.2667 0.2656  + 0.0034
100 |50 |1.0000 0.9993 0.0110  |0.5000 0.4983  + 0.0094
100 |60  |1.5000 1.5026 0.0197  |0.9000 0.9029 £ 0.0172
100 |70 |2.3333 2.3337 0.0250  |1.6333 1.6352 +0.0224
100 |80  |4.0000 4.0127 0.0792  |3.2000 3.2116  + 0.0767
100 |90  |9.0000 9.0430 0.3446  |8.1000 8.1430 £ 0.3425

H |

Table 4.1: Summary of results for an M/M/1 queueing system
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For the M/M/1 model, the analytical results are within the confidence interval of
the Arenasimulation results. The resultsillustrate a high degree of agreement, as seenin
Table 4.1 and Figure 4.2, because the analytical model for an M/M/1 system is generally
considered exact. If the models were run for cases where the arrival rate, A, equals the
servicerate, 1, (where the utilization equals one) the analytical model equations would
not apply, but the simulation would generate results. For the case where the utilization
equals one, the equations for WIP and the number in queue approaches infinity, while the
simulation model generates non-infinite results. As the length of the ssmulation
increases, the simulation results for number in system and number in queue at 100%
utilization will also increase. Therefore, as the computer simulation time increases, the

results will aso increase infinitely.

10
9 —&—Ls analytical o
8 —&— s +HW ﬁ
7 Ls-HW ///
6 —e—Lq analytical /;/
4 Lg- HW 1
3 i
2 | / |
1 o :;”‘/
0 —f—— o
0 20 40 60 80 100
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Figure 4.2: Plot of A vs. number in queue and number in system for p = 100
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4.6 Summary

The above analysis of the M/M/1 system serves as an example of the
methodology that will be followed in the next two chapters. The Learning Historian was
used to quickly and efficiently gather the results from the Arenamodel. The analytical
results and the computer simulation results match within a 95% confidence interval. The
one exception to this statement is the case where the utilization equals one, at which point
the equations for the analytical model yield infinity. When the utilization is one the
simulation model will generate finite results, but the results will be dependent on the

length of the simulation run.
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5 Aflow shop with process drift

5.1 Introduction

This chapter presents the evolution of aflow shop manufacturing process model.
The results from the analytical equations and Arena are presented and compared and any
discrepancies discussed.

One of the key aspects of this manufacturing system is the role of defects and
subsequently the processyields. Theyield of aprocessis the number of good parts
leaving the process divided by the number of good incoming parts and is expressed as a
percent. As machines process raw materias, the machine will occasionally drift out of
control. If aprocessing step isout of control, the yield of that step is reduced. Inspection
stations throughout the system remove the defects and serve to identify and fix the out of

control machines.

5.2 Flow Shop Example

Figure 5.1 shows the routing for a nine-step manufacturing process. Different
product lines have different processing times at each step, but follow the same routing
through the system. The processing times for Electroless plating and Electroplating, are
independent of the batch size; al other processing times depend on the size of the batch

at the station.
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Figure 5.1: The product routing for the process flow example

Inspect 2

Steps 1, 3, 4, 5, 7, and 8 are manufacturing stations. Each manufacturing station

can either be within specified parameters (in-control) or out-of-control. In this example,

an in-control process has a 98% yield and an out-of-control process has a 70% yield.

Each manufacturing step has a drift rate that determines the frequency with which the

step goes out-of-control. If a manufacturing step goes out-of-control, it will be corrected

when the drift is detected at the next inspection station, as shown in Figure 5.2.

Station 1

Inspect 1

Defect arrives

Part a arrives.

Processed at reduced yield

Part afinishes processing

Part aarrives at Inspect 1
and begins processing

Part b arrives. Processed at

reduced yield

Defect detected and
corrected

Part a finishes inspection.

Part b finishes processing

Part b arrives at Inspect 1

Part c arrives. Processed at
non-reduced yield

Figure 5.2: Sample timeline of events
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The number of good partsin the batch is calculated at each station, but the
number of partsin the batch changes only at inspection stations. For an example of the
batch sizes and the number of good partsin a batch see Table 5.1 (note, all steps assume a

98% vyield). Steps 2, 6, and 9 are inspection stations that remove the defective parts with

100% accuracy.
I nspect I nspect Inspect
Station | Station | Station | Station | Station | Station Station | Station
1 2 3 4 5 6 |Station7| 8 9
# parts entering the
station 100 100 98 98 98 98 92 92 92
# good parts
entering station 100 98 98 96 94 92 92 90 88
# good parts
leaving station 98 98 96 94 92 92 90 88 88

Table 5.1: Number of good parts as a batch flows through the system

5.3 Analytical Model

The analytical model uses the following variables and equations:
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c; = Squared Coefficient of variation (SCV) of interarrical times at station |

¢, = SCV of the modified aggregate process time
CT. = the average cycle time of jobs of product i
CT =theaveragecycletime at station
DT. = expected delay in detection of a process drift in product i
occurring &t stationj,je R nJ
DT’ = expected delay in detection of a process drift at stationj, j € J
F = the set of all inspection stations
H (i, j) = station that product i visitsimmediately before station |
=j-LViel,i<j<n
J = the set of all processing stations
n; = number of resources at station |
R = sequence of stations that product i must visit
Q, = subsequence of R, that starts with the station that follows |
and ends with the next inspection stationforj e R N J
={j+L....,m;meF

~—+

’Jf = modified aggregate process time at station j

u; = the average resource utilization at station |
y; = normal unchecked yield of product i at station j

y; = reduced unchecked yield of product i at station j

z; = average unchecked yield due to drift for product i at station |

p; = process drift rate for station j

The delay between a process going out of control and detection of the out of
control processis afunction of the cycle time at each step between the out-of-control step

and the inspection station.
DT, = ). CT;;VieRnJ

geQ;
DT, = min{DT,}; ¥j < J
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The average yield depends on how often the processisin control and how often the

processis out of control,

1 n * 0

—Y; +DTyy,

_ P

471
—+ DT,
Pj

A common performance measurement is cycletime. The cycle time for each

product depends on its cycle time at each processing station.

. e
CT; :—(C']f" +c’;)—j t+t
2 n (1-u;)
CT =) CT/
R
For the purposes of this experiment, the model was run with the scrap yield equal
to one, so the equations that deal with scrap yield are not shown here.

For amore detailed explanation of the analytical model please see reference

(Chincholkar and Herrmann, 2002).

5.4 Arena simulation model

The entities entering the manufacturing system are ‘raw products . The finished
products are obtained after these raw products pass through a nine-step process. The
processing times at each step follow an Erlang-2 distribution. The simulation model
creates raw products according to an exponentially distributed interarrival time. When

Arena creates raw products it assigns per part processing times for that product type for
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each station in the system and a batch size specifying the number of raw productsin the
batch. The products are then routed to the first manufacturing station.

This Arenamodel creates defects as entities that trigger a process to become out-
of-control. Arena creates defects according to an exponentially distributed interarrival
time with a mean equal to one divided by the drift rate (1/p;). Each step hasits own drift
rate, so each step hasits own different type of defect entity; that is, the defect that causes
step three to go out-of-control is different and independent of the defect that will cause
step four to go out-of-control. When Arena creates a defect, the defect immediately
travels from the create block to the station that the defect will cause to go out-of-control
(see Figure 5.3). When adefect is detected, the inspection station fixes only that defect;
if there are multiple defects at a station when one defect is detected, only one of the
defectsis corrected.

There is adefect counter for each processing step. As mentioned before, a
different type of defect entity affects each step. Therefore, the defect counter for
processing step three only counts the step three defects in the system while the defect
counter for step four only counts the step four defectsin the system and so on. When a
defect arrives at a station, the defect counter for that station isincremented by one. A
manufacturing step is deemed to be out-of-control whenever its defect counter is greater
than or equal to one. The defect remains at the station until araw product arrives at the
station. When the raw product arrives, it checksto seeif there are any defects waiting at
the station. If there are no waiting defects, the raw product is processed and continues
through the system. If there is a defect waiting at the station, the defect entity is “joined”

to theraw product. Thejoined raw product and defect entity is akin to a sticker being



placed on the raw product indicating that the step is out-of-control. The raw product and
the defect now go through the system together, obeying the processing times and rules for
the raw product (see Figure 5.4).

At an inspection station the raw product and defect are delayed for a specified
inspection processing time. The raw product and defect are then split apart and travel
through a series of logic blocks that identify defect entities. Whenever the logic blocks
detect a defect entity, they pull the defect out of the system, decrease the appropriate
defect counter by one and dispose of the defect (see Figure 5.5).

The number of good productsin abatch isrecalculated at each step. The
calculation is afunction of the previous number of good products in the batch and the
yield of the step, which depends on whether or not the step is out of control. The number
in the batch is recalculated only at inspection stations.

b, = number of good parts leaving workstation j
b, , = number of good parts entering workstation

X= P{number of output good parts = number of input good parts}
y; = fractional yield at workstation j

The Arenamodel and the analytical model use a simplistic calculation of

b. = (bjfl)( Y ) . (Another method of calculating the number of good partsin a batch

j
would be to use the binomial distribution. This might be more valid in some settings, but
it isnot available in the Arena program).

The Arenamodel needs the batch size to be an integer number, but often the
number of good partsin abatch will equal afractional batch size. For example, if the
batch size is 98 and the yield is 98%, the expected number of good partsin abatch is

(0.98)(98)=96.04. However, the Arena model needs the number good in the batch to be



an integer number, so Arenawill treat 96.04 as 96, thereby reducing the yield to 97.96%
instead of 98%. In order to create integer numbers for the number of good partsin a
batch, and maintain the correct yield, the number of good parts in the batch is calculated

using amodified formula. This modified expression calculates the number of good parts

in abatch, by, as either the rounded down integer value of b, = (b_,)(y; ), or asthe
batch size b; =b, ;. The batcheswill use the 100% yield calculation a fraction of the

time and will usethe integer value of (by, )(y, ) the rest of thetime. The Arena model

implements this by having each batch go through a probability module that determines if
the batch will be multiplied by afractional yield or by a100% yield. The probability
module is re-evaluated for each batch that passes through the probability module. The

chance x that b; =b, , is determined for each batch according to the algorithm below:

(by)

=

(X)(by.1) + (1~ x){integer|
(x)(b, 1)+|nteger[(b )(yj)} {lnteger

(bs)(y,

(bs)(y,

{bJ _, -integer (b] 2y,
[(by-2)(

)]

I |
U

yJ
11 yJ

(b,4)(y, ) -integer] (b,.)(,) |

)=
Ji=(
J
{[(b—)( )} integer| (b,,)(Y, }

b, 1—|nteger[ W)y,
Using an example of a batch size of 100 and ayield of 98%, the expression is

evauated as follows:

(b;)(y;)=(0.98)(98) = 96.04
integer(96.04) = 96
_ (96.04-96)
98- 96
Check: (0.02)(98)+(0.98)(96) = 96.04=(b,_, )(y; )

=0.02
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5.5 Therole of underlying assumptions

The preliminary model exhibited large errors between the analytical results and the
simulation results, as shown in the tables below. The Learning Historian collected the
Arenaresults, which represent a 95% confidence interval, using data from twenty trials of
200,000 minutes, with no warm-up period. In the subsequent experiments, the input
variables that will be modified are the batch size, and the arrival rate (throughput level) of
the raw parts. Three different throughput levels are used in the following experiments.
The throughput level specifies how many Product One, Two and Three entities are
released into the system each day. The experiments are run for three different input batch
sizelevels. Theinitia batch sizes are shown in the tables bel ow according to the
following format: theinitial batch size of Product One, the initial batch size of Product
Two, theinitial batch size of Product Three.

The cycle time and throughput of each product depends on the batch size at each
step, so the batch size is the output parameter of interest. The batch sizes change at the
three inspection stations: Inspect 1, Inspect 2 and Test and Tune. The Test and Tune
station is the last station in the process flow and so the batch sizes from this step are
considered the output batch size. The error between the analytical results and the

simulation resultsis calculated as follows;

(analytical result-simulation result)
simulation result

% error =

The batch sizes at Inspect 1 for the different trials are shown in Table 5.2. At this
station, the results from the analytical model have percent errors ranging from 6.5% to

8.3%. All values are outside of the 95% confidence intervals. The batch sizes continue
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to move farther away from the simulation results, culminating in percent errors ranging

from 34.8% to 51.8% at the Test and Tune Output station, as shown in Table 5.3.

Batch size of Product One Batch size of Product Two Batch size of Product Three

TH
level |Analytical Simulation Analytical Simulation Analytical Simulation

Input batch size = 50, 100, 150

1 40.506] 37.772+ 0.237 81.012  75.512+ 0.485 121.518 113.100+ 0.649
2 40,505 38.008+ 0.233 81.011  75.900+ 0.469 121.516 114.090+ 0.747
3 40.248  37.632+ 0.249 80.495  75.283+ 0.503 120.743 112.780+ 0.752

Input batch size = 100, 200, 300
1 76.939 71.221+ 0.296 153.877| 142.320+ 0.666 230.816/ 213.800+ 0.908
2l 76938 71.015% 0.221 153.876| 142.180+ 0.484 230.814| 213.090% 0.745
3 76.644 71.097+ 0.211 153.287| 142.190+ 0.391 229.931| 213.470% 0.674
Input batch size = 150, 300, 450

1 112.598 105.420+ 0.167 225.195| 210.920+ 0.379 337.793 316.200+ 0.575
2| 112597, 105.320% 0.164 225.194] 210.600+ 0.290 337.791] 315.890% 0.525
3 112.267] 105.340% 0.161 224534 210.670+ 0.329 336.802] 316.030+ 0.507
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000
Table 5.2: Batch size at Inspect 1 (parts per batch)
Batch size of Product One Batch size of Product Two Batch size of Product Three
TH

level |Analytical Simulation Analytical Simulation Analytical Simulation
Input batch size = 50, 100, 150

1 11.294 7.457+ 0.068| 22.588 15.368+ 0.138 33.882 23.191+ 0.227
2 11.286 7.538+ 0.062 | 22.572 15.590+ 0.123 33.857 23.609+ 0.193
3 10.925 7.195+ 0.055| 21.849 14.903+ 0.110 32.774 22.607+ 0.188

Input batch size = 100, 200, 300
1 18.207 12.334+ 0.098| 36.414 25.467+ 0.166 54.621 38.265+ 0.329
2 18.206 12.283+ 0.077 | 36.411 25.350+ 0.133 54.617 38.162+ 0.222
3 17.955 12.313+ 0.065| 35.910 25.396+ 0.141 53.865 38.212+ 0.212
Input batch size = 150, 300, 450
1 24.565 17.622+ 0.078 | 49.131 35.976+ 0.108 73.696 54.057+ 0.296
2 24.565 17.629+ 0.097 | 49.129 35.985+ 0.178 73.694 54.297+ 0.306
3 24.308 17.607+ 0.058| 48.616 35.886+ 0.107 72.923 54.080+ 0.156
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.3: Batch sizes at Test and Tune Output Station (parts per batch)

Such alarge disagreement in results necessitates a careful review of the model. A

potential source of error between two modelsis that the two systems may use subtly
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different underlying assumptions. Different assumptions do not always result in large,
eye-catching discrepancies; they can sometimes result in small, subtle errors that do not
necessarily attract attention. Divergent underlying assumptions can result from having
one person make the smulation model and having one person make another model, or
from having one person make the simulation model and having someone else revise the
model. Chance et al. (1999) provides an example of how assumptions, considered basic
to the original modeler, are often unknown to others.

All models utilize assumptions and as such can al fall prey to differing
assumptions about the system behavior. In this model, the treatment and behavior of the
defectsis one such possible area for different assumptions. For example, if the defect
correction is presumed to correct all of the defects acting on one machine, or if no more
defects arrive once amachine is considered out of control, then the system can be
modeled as afinite state system, as shown in Figure 5.6, where the state is the number of
defects acting on amachine at agiven time. The analytical model uses the finite state

assumption.

Figure 5.6: Finite State System

If, however, it is presumed that defects are unique; one defect correction only
fixes one defect at atime, then the system will be an infinite state system. An infinite

state system, where the state is the number of defects acting on amachine at a given time,
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Isshown in Figure 5.7. The preliminary version of the Arenamodel used the infinite

state assumption.

Figure 5.7: Infinite State System

If modeled as afinite state system, aworkstation j will have an average yield of:

1 n T
— Y +DTyy;
j

1 + DTJ.*
P

If modeled as an infinite state system, the workstation will have ayield of:
(1= ADT)(¥)+£DT; (¥;). DT <1

For trials where defects are fixed faster than they arrive, that is, where defects are
fixed before the next defect would arrive, both the infinite and finite state systems will
result in the same effective yield. If, however, defects arrive faster than they are
detected, then the infinite state system will not reach steady state and the average yield of
the infinite state will approach itslower limit, equal to the reduced yield. To fix the
discrepancy, the simulation model was modified to be afinite state system so that only
one defect can act on a station at a time; no more defects arrive while the machineis
considered out of control. The revised model uses the logic shown in Figure 5.8 for the

defect creation and routing; thisis a change from the logic shown earlier in Figure 5.3.
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“ Is Step 4 out of
control?

Create Defect fo\

Step 4 I

Route to Step 4

A

= (Dispose of Defect

Figure 5.8: Arenamodel logic for defect creation and routing

5.6 Model Validation Results

After correcting the different underlying assumptions, the results of the revised
model were compared to the analytical results. Again there were slight discrepancies
between the two sets of results. Given the complexity and interrelationshipsin the
model, the most straightforward method of validating the model was to try to separate
possible sources of error. In order to isolate the rounding method, the yield of both thein
control and out of control processes were set to 98%, as this renders the defect detection
timeirrelevant.

Table 5.4 shows the batch sizes at Inspection Station 1 for varying input batch
sizes and throughput levels. Two things can be seen from thistable. First, the half-width
of zero shows that the method of calculating the number of good partsin abatch is highly
deterministic. Second, the calculation of the number of good partsin abatch is identical
for the analytical model and the simulation model, at least when the calculation of the

batch size times the yield does not require rounding to an integer value.
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Batch Size of Product | Batch Size of Product Batch Size of Product
One Two Three
Throughput
(TH) Level | Analytical | Simulation | Analytical | Simulation | Analytical | Simulation
Input Batch Size = 50, 100, 150
1 49 49+ 0 98 98+ 0 147 1470
2 49 49+ 0 98 98+0 147 1470
3 49 49+0 98 98+ 0 147 1470
Input Batch Size = 100, 200, 300
1 98 98+0 196 196+ 0 294 294+ 0
2 98 98+0 196 196+ 0 294 294+ 0
3 98 98+ 0 196 196+ 0 294 294+ 0
Input Batch Size = 150, 300, 450
1 147 1470 294 294+ 0 441 441+0
2 147 147+ 0 294 294+ 0 441 441+ 0
3 147 147+ 0 294 294+ 0 441 441+ 0
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.4: Batch sizes at Inspection Station 1

Table 5.5, batch sizes at Inspection Station 2, highlights a new facet of the yield
calculations; the situation where the yield times the batch size is not equal to an integer
number. At thispoint it is necessary to use the modified formula mentioned above. For
the case with input batch sizes of 100, 200, 300, 2% of the batches should have 100%
yield at station 3, Electroless Plating, because,

96.04-96 192.08-192 288.12-288 0.02
08-96 196-192 294288 '
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Batch Size of Product One Batch Size of Product Two Batch Size of Product Three

TH
level |Analytical Simulation Analytica Simulation Analytica Simulation

Input Batch Size=50, 100, 150

1 | 46.118 | 46.059 + 0.00199 | 92.237 | 92.117 + 0.00561 | 138.355 |138.160 + 0.01377

2 | 46118 | 46.060 + 0.00167 | 92.237 | 92120 + 0.00269 | 138.355 |138.170 + 0.00870

3 | 46118 | 46.060 + 0.00065 | 92.237 | 92.119 =+ 0.00324 | 138.355 |138.170 + 0.00702
Input Batch Size=100, 200, 300

1 | 92237 | 92.122 + 0.00420 | 184.474 | 184.240 + 0.01328 | 276.710 | 276.350 + 0.03486

2 | 92237 | 92118 + 0.00388 | 184.474 | 184.240 + 0.00831 | 276.710 | 276.360 + 0.03157

3 | 92237 | 92121 + 0.00262 | 184.474 | 184.230 + 0.01034 | 276.710 | 276.360 + 0.01598

Input Batch Size=150, 300, 450

1 | 138.355 | 138.180 0.00972 | 276.710 | 276.340 + 0.03376 | 415.066 |414.600 + 0.06942

2 | 138.355 | 138.180 0.00540 | 276.710 | 276.360 + 0.01889 | 415.066 |414.520 + 0.04638
3 | 138.355 | 138.180 0.00565 | 276.710 | 276.350 + 0.01844 | 415.066 |414.510 + 0.04068

+ [+ |+

Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.5: Batch sizes at Inspection Station 2
Measuring which percent of batches use a 100% yield and which percent of

batches use a 98% yield validates the simulation model logic. Taking atypical scenario
from the above trials (input batch sizes = 100, 200, 300; throughput equals 1500, 1500,
1000; 20 replications; 200,000 minutes per replication), the twenty averages are shown in
Figure 5.8. The average of the twenty valuesis shown as a solid horizontal line in the
figure. After the probability block, the batches pass through blocks that assign a new
number of good parts per batch. After the assignment of a new number of good parts per
batch there are counters that measure how many batches went through blocks that

assigned b, = b, ;, and how many batches went through blocks that assigned
b, :integer[(bj_l)(yij )] . The values in Figure 5.9 come from the counters that follow the

probability block.
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Figure 5.9: Scatter plot of probability results
Using a 95% confidence interval, the average of the twenty replicationsis

0.02031 + 0.00031. The desired value of 0.02 falls within this confidence interval, so the
probability module is working correctly. Given that Table 5.4 shows that the model
correctly calculates the value of yield times batch size, it is reasonable to assume that the
error in batch sizes between the anaytical model and the simulation model are due to the
variability in the probability distribution and the random nature of the simulation. The
difference in effective yields between the analytical model and the simulation model
ranges from 0.12% to 0.13% for the situation where all of the reduced yields are set to
98%, and from 0.7% to 4.4% when all of the reduced yields are set to 70%.

It is also necessary to note that while the analytical model and the simulation
model appear to be in agreement when the all of the yield rates are 98% (the batch sizes
differ by 0.11% to 0.14%), the confidence interval is very small, and consequently the

analytical model is outside of the confidence interval of the simulation model.



Theresults at the Test and Tune Station, the output station, demonstrate the same
rounding errors as seen above for the situation where all of the yields are set to 98%. The
rounding error propagates, however, and the percent error between the analytical model
batch sizes and the simulation model batch sizes ranges from 0.13% to 0.18%. Again,

these values are outside of the confidence intervals for the simulation model.

5.7 Results

Now that the underlying assumptions of the two models are in agreement, and the
behavior of the probability block has been studied, the two models should produce
similar results, at least within confidence intervals. The Arenamodel was run using the
same parameters as mentioned in Section 5.5

The Batch sizes for the different trials at Inspection Station 1 are shown in Table
5.6. At this station the results from the analytical model are within 0.38% of the average

simulation result, which is within the 95% confidence interval of the simulation results.

Batch Size of Product One Batch Size of Product Two | Batch Size of Product Three
TH level | Analytical | Simulation Analytical |  Simulation  |Analytical| Simulation
Input Batch Size=50, 100, 150

1 40.506 40.442+ 0.217 | 81.012 80.953+ 0.445| 121.518 | 121.540+0.903

2 40.505 40.461+ 0.236 | 81.011 80.836+ 0.538 | 121.516 | 121.360+0.823

3 40.248 40.163+ 0.149 | 80.495 80.348+ 0.284 | 120.743 | 120.440+0.447
Input Batch Size=100, 200, 300

1 76.939 77.027+ 0.586 | 153.877 153.810+ 1.208 | 230.816 | 231.700+1.918

2 76.938 77.236% 0.442 | 153.876 154.380+ 0.827 | 230.814 | 232.030£1.369

3 76.644 76.428+ 0.385 | 153.287 152.780+ 0.767 | 229.931 | 229.040+1.402

Input Batch Size=150, 300, 450
1 112.598 112.680+ 0.589 | 225.195 225.220+ 1.251 | 337.793 | 337.530+2.087
2 112.597 112.580+ 0.579 | 225.194 225.330+ 1.318 | 337.791 | 336.760+2.080
3 112.267 112.050+ 0.626 | 224.534 223.920+ 1.166 | 336.802 | 336.190+1.818
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.6: Batch sizes at Inspection Station 1
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Table 5.7 shows the batch sizes at Inspection Station 2. At this station the
analytical results and the simulation results differ by -0.01% to 3.7%. Consequently,
most of the analytical results for Product One and Product Two are outside of the
confidence interval, and most of the results for Product Three are within the confidence
interval. The analytical results for Product Three are within -0.01% to 2.2% of the

simulation results, and the confidence interval for Product Threeis larger than for

Products One and Two.
Batch Size of Product One | Batch Size of Product Two | Batch Size of Product Three
Throughput
Level Analytical Simulation |Analytical| Simulation |Analytical Simulation
Input Batch Size=50, 100, 150
1 20.946 | 20.532+ 0.163 41.893 | 41.110+ 0.328 62.839 62.325+ 0.682
2 20.931 | 20.495+ 0.153 41.862 | 41.020+ 0.387 62.793 62.418+ 0.601
3 20.285 | 19.549+ 0.175 40.571 | 39.232+ 0.343 60.856 59.570+ 0.496
Input Batch Size=100, 200, 300
1 34931 | 33.959+ 0.430 69.861 | 68.283+ 0.963 104.792 | 104.070+ 1.388
2 34928 | 34.153+ 0.299 69.857 | 68.731+ 0.599 104.785 | 104.180+ 1.244
3 34.494 | 33.759+ 0.268 68.988 | 67.966+ 0.593 103.481 | 102.100+ 1.039
Input Batch Size=150, 300, 450
1 47.853 | 47.654+ 0.352 95.705 | 94.682+ 0.872 143.558 | 142.360+ 1.794
2 47.851 | 47.710+ 0.339 95.703 | 95.296+ 0.778 143.554 | 143.570+ 1.333
3 47.404 | 47.136+ 0.313 94.807 | 93.780+ 0.677 142.211 | 141.640+ 1.012
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.7: Batch sizes at Inspection Station 2
Table 5.8 shows the batch sizes at the final station, Test and Tune. At this station

the analytical results for Product One are 1.9% to 6.0% higher than the average
simulation result and consequently are always above the confidence interval of the
simulation. The analytical results for Product Two are also generally above the
confidence interval (input batch size of 50,100, 150, throughput level three and input
batch size 150, 300, 450, throughput level two being the two exceptions). The analytical
results and the simulation results of Product Two differ by 0.8% to 4.0%. For Product

Three, the analytical results and the simulation results differ by 1.0% to 3.0%. In
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addition, the confidence interval for Product Threeis slightly larger than for Products
One or Two. As such, two of the results are within the simulation confidence intervals

and two of the results are outside of the confidence interval by only 0.07% and 0.1%.

Batch Size of Product One | Batch Size of Product Two |Batch Size of Product Three
Throughput
Level Anaytica | Simulation |Analytical| Simulation |Analytical| Simulation
Input Batch Size=50, 100, 150
1 11.294 | 10.826+0.081 | 22.588 | 22.005+0.160| 33.882 | 33.188+0.349
2 11.286 | 10.825+0.077 | 22.572 | 21.984+0.197| 33.857 | 33.291+0.287
3 10.925 | 10.302+0.091| 21.849 | 21.019+0.158| 32.774 | 31.814+0.250
Input Batch Size=100, 200, 300
1 18.207 | 17.604+0.232| 36.414 | 35.534+0.492| 54.621 | 53.830+0.824
2 18.206 | 17.685+0.170| 36.411 | 35.703+0.348| 54.617 | 53.926+0.738
3 17955 | 17.491+0.142| 35910 | 35.374+0.301| 53.865 | 52.980+ 0.509
Input Batch Size=150, 300, 450
1 24565 | 24.072+0.187 | 49.131 | 48.369+0.425| 73.696 | 72.767 +0.851
2 24565 | 24.098+0.175| 49.129 | 48.749+0.464 | 73.694 | 72.949+ 0.692
3 24.308 | 23.807+0.150| 48.616 | 48.008+0.311| 72.923 | 71.966+0.515
Throughput levels: 1=500, 500, 250; 2=1000, 1000, 500; 3=1500, 1500, 1000

Table 5.8: Batch Sizes at Test and Tune Output Station

5.8 Discussion

Onetrend in the above results is the tendency for the results of Product Threeto
have a dlightly larger half-width than Products One and Two. Thisisduein part to the
number of batches released for Product Three. Product Three has the largest batch size
and the lowest daily throughput, so there are far fewer batches per day than Product One
or Two. Fewer batches released correlates to fewer data points to average, so the Product
Three averages are more scattered, which resultsin alarger half-width when the results
of the twenty replications are averaged together. For example, for the 150, 300, 450 case,
with athroughput of 500, 500, 250, there are only 450/250=0.56 batches of Product

Three released per day, while there are 500/150=3.33 batches of Product One per day.
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The Product Three confidence intervals are, at maximum, 1.2% of the average value,
which is an acceptable size for a confidence interval.

The primary source of difference between the anaytic model and the smulation
model is the variability introduced by the calculation of the batch sizes. Asshowninthe
validation section above, both the 98% yield and the 70% yield result in aslight error in
theyield calculation. This error occurs at each station, so the errors will propagate
through the system, resulting in an increase in the batch size percent errors from Inspect 1
to the Test and Tune station.

The differences between the analytical and simulation model might be mitigated
If it were possible to calculate the batch size using a more appropriate method, such as
the Binomial distribution. Using a Binomial distribution would offer two benefits: one,
Binomial distributions would only produce integer values, which would eliminate the
errors due to rounding from the probability block. Additionally, using a more stochastic
distribution would increase the width of the confidence interval. The analytical and
simulation answers at the final station differ by 1.9% to 6.0%, but a 1.9% differenceis
enough of adifference to make the analytical result outside of the confidence interval of

the simulation model.

5.9 Summary

The process flow model offers an opportunity to use the validation and verification
stages of the development of a simulation model to critically analyze model behavior.
Validation offered an opportunity to examine the underlying assumptions of the model

that could, if undetected, result in alarge difference between the analytical and
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simulation models. Verifying the batch size calculation within the model illuminated the
constant error that would exist at each batch size calculation. The constant error in the
batch size calculation, due to the variability of the probability block within the ssmulation

model illustrates the impact of propagation of errors within amodel.
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6 Push-pull models

6.1 Introduction

A push-pull system isaterm used in operations planning and control to denote a
system that combines push production control and pull production control. In apush
system, each workstation works on the pieces waiting for processing and then “pushes’
the work to the next station, regardless of the workload of the following workstation or of
the product demand. In apull system, work is done only when the output inventory level
drops below a predetermined level and a station requests more inventory from an
upstream workstation. Pull systems are often known as Kanban systems or Just-in-Time
(JIT) systems because workstations use Kanbans to request inventory from the prior
workstation (Kanban is a Japanese word meaning card or signa) (Slack, 1997). Push and
pull systems illustrate a tradeoff between inventory levels and cycle time.

This chapter will present a two-stage push model, a hybrid pull-push model and a
two-stage pull model for comparison.

An example of a pull-push system would be a company that processes some raw
material to an intermediate stage using pull production control. This partially processed
inventory would then be stored at the push-pull interface. The push component of the
system would be the workstations that work on the partially completed inventory only

when demand for finished inventory arrives at the push pull interface.
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6.2 Two stage system

The customer arrival rate is denoted by A and the servicerateis u, at thefirst
station and 1, at the second station. All interarrival times and service times are
exponentialy distributed. The unit for ratesis customers per hour. The mean interarrival
timeisequa to 1/A and the mean processing time for station oneis equal to 1/u; and the
mean processing time for station two is equal to 1/p,. Thereisone server at each station.

If the arrival rate, A, is greater than the servicerate, p; or p,, that is, if, on average,
the customers arrive faster than the stations can process them, the system will not reach
steady state (Banks et al., 2001). The system will be examined for avariety of utilization
levels, achieved by varying either the arrival rate, A, or the servicerates, u; and p,. The
systems that have a pull component, the system will also be examined for avariety of
Kanban levels. For a steady state system, that is where the arrival rate is less than the
service rates, the arrival rate to the second station is the same as the arrival rate to the first
station. Figures 6.1, 6.2 and 6.3 show the process flow for a two-stage push system, a

hybrid pull-push system and a two-stage pull system (Liberopoulos and Dallery, 2000).

Parts to
customers

k.

Process Two —

Raw parts —| Process One

Figure 6.1: Two-stage push system
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Figure 6.2: Pull-push system
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ueue queue L
Finished
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E;:;;:: Intermediate
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L Demands

Figure 6.3: Two-stage pull system

6.3 Analytical model

The following variables and equations are used in the calculations of the
analytical model.

Let p, be the utilization of server n.

o= A for thefirst stationand p, = A for the second station
Hy H

The equations below apply to individual stations. For systems that combine push

and pull controls, apply the push control equations at the push stations and the pull
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control equations at the pull stations. Given that for an n-stage system, the average

systemtime, W, ., = ZWS,i , analyzing the agreement of theindividual W,; eliminates

i=1
the need to explicitly measure W, ., . Therefore, in the results that follow, the individual

system times and queue times will be studied and the sum of the system times and queue

timeswill not. The same logic applies to the average time in queue.

6.3.1 Push System

The following equations apply for each section of a system that uses “push”
processing, where each station is a singe server processing parts according to afirst come
first serve (FCFS) protocol. Let W, be the average amount of time in queue. Let W; be
the average amount of time in the system. The following equations can be used to

calculate Wy and Ws (Banks et al., 2001):

Yo,
W. =
Toul-p)
1
W, =
#1-p)

6.3.2 Pull System

The following equations apply for each section of a system that uses “ pull”
processing (Buzacott and Shanthikumar, 1993). Let z, be the number of Kanbans
circulating through the nth station of the system. Let Wsbe the average timein system.
From the point of view of the customer, the time in system and the time in queue are the
same thing because it takes the customer no time to pick up inventory; that is, the
customer has a service time of zero. If the customer has to wait for inventory to be

delivered, that waiting time will be the total time that the customer spends at that station.
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z

w, =2
u—A

The number of Kanbans available for the machine (which is defined as the number of

Kanbansin queue plus the number of Kanbans in process) is given by

E[# kanbans available] = 1L(1— p°). The part processed at station 1 will usethe
-p

following equations for queue time and system time:

L,=# Kanbans available- # Kanbans in process

The average inventory level after astation is given by

E[Inventory level] = z—li(l— p*). The number of customers/parts backlogged after
—-pP
z+1
apull station is given by Lbz;tvvb:f :
—p

For atwo-stage pull system, the number of Kanbans cycling through the second

processing station is equal to z,:

z, = z, - # backlogged
z+1

: P
L=0L—7"—
1-p



6.3.3 Two-stage push model

For atwo-stage pull model, the total customer cycle time equals the total part cycle time
1 1
+

and is given byW,, +W,, =
* ’ lul(l_pl) ﬂz(l_pz)

. The number of partsin the systemis

equal to Lg + L, which can be found by Little's Law. Consequently,

Ly+L, =
* ? 1-p 1-p;

6.3.4 Hybrid pull-push model

For a hybrid pull-push model, the total customer cycle time equals

W, +W,, = Py 1 , while the number of partsin the system is given by
=4 ﬂz(l_pz)

L

Ly+Ll,=2+
1-p,

6.3.5 Two-stage pull model

In the two-stage pull model, the total customer cycletime equals W,, = P2 i and the
Hy—

number of partsin the systemisfixedat Ly +L, =2 +z,.

6.4 Arena Simulation Model

Figure 6.4, Figure 6.5 and Figure 6.6 show the logic flow of the Arena simulation
model. Instead of customers per hour, the simulation program needs the mean

interarrival time and the mean processing time, which are equal to 1/,
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Uy, and 1/, respectively. Thereis one operator (server) for each processing station.
Arena creates entities according to an exponentially distributed interarrival time and
processes the entities according to an exponentialy distributed servicetime. Thetimein
each queue and the time in each station can be determined using Arena stallying
capabilities. Theinterarrival time and service times, A, p;, and 1, respectively, are

defined as variables so that the model can be run with the Learning Historian.

Create parts ) = Process 1 F = Process2 p—-a Dispose

Figure 6.4: The Arenalogic for atwo-stage push system

\ Digpose
Create Kanhan I

\ tdatch Kanban . —|
Create raw and raw material
material Process 1 '—r Match demand

and invertory Process 2 Dispose

Create demand I

Figure 6.5: The Arenalogic for a pull-push system
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7\ intermediate materig
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finished goods

Process 2

Create Kanban 1\

:

Figure 6.6: The Arenalogic for the pull-pull system

6.5 Results

The following are lists of input values for A, w,, and p,, and the output results for
both the analytical model and the Arenamodel. The Learning Historian collected the
results of the Arena simulation. The Arena results represent a 95% confidence interval,
using data from thirty trials of 1500 minutes, with the results of the first 100 minutes
ignored dueto initial transient effects. The number in queue and the average queue time
arerelated by Little's Law (this was checked during the validation of the model),
therefore only the results of the time in queue and the time in process are shown in the
table below.

Asdiscussed in Chapter 4, the system will not reach steady state if the utilization,
p, is greater than or equal to 1, therefore values of A, p;, and ,, have been selected to
explore arange of utilizations for stations one and two such that p;, and p, are less than

one.
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6.5.1 Two-stage push model

The utilization of each processing station isshownin Table 6.1. Asthisisapush-
push model, the equations used in the analytical model are always the push equations and
result in a high degree of agreement between the analytical and simulation model as seen
in Figure 6.7. The high degree of agreement results from the exact analytical equations.
The analytical results for utilization levels are al within 1% of the average simulation
results, which is within the 95% confidence interval of the simulation results. The cycle
times for each station are shown in Table 6.2. The analytical results for the cycle times
are within 1.9% of the average simulation results and within the 95% confidence
intervals. The queue times for each station are shown in Table 6.3. The analytical
estimates of queue times are within 2.7% of the simulation results, which is within the

95% confidence intervals.
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Figure 6.7: Station Cycle Timev. A for w=4, u,=5

Station 1 Utilization

Station 2 Utilization

—_—

p

p2

Analytic

Simulation

Analytic

Simulation

0.2500

0.2503+ 0.0028

0.2000

0.1997+0.0027

0.5000

0.4964+ 0.0052

0.4000

0.3983+0.0041

0.7500

0.7491+ 0.0048

0.6000

0.6001+0.0048

0.8750

0.8736+ 0.0073

0.7000

0.6977+0.0059

0.5000

0.4976+ 0.0051

0.2000

0.1980+0.0030

0.3333

0.3330+ 0.0043

0.2000

0.1991+0.0027

0.2000

0.1990+ 0.0023

0.2000

0.2013+0.0029

0.2500

0.2514+ 0.0030

0.5000

0.4965+0.0078

0.2500

0.2499+ 0.0023

0.3333

0.3331+0.0043

PlRrlRrlRrlPrPr0O[Ww[N [P

HIDIDIAWINIDIDIDID

D WMol |o1 o1 |01

0.2500

0.2516+ 0.0026

0.1667

0.1662+0.0025

A, 1 1, and pu2 arein minutes

Table 6.1: Utilization results for atwo-stage push system
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Cycle Time at Station 1 Cycle Time at Station 2
Al |p2 |Anaytic Simulation Analytic Simulation
1 4 5 03333 0.3338+ 0.0047] 0.25000.2505+ 0.0030
2l 4 5 05000 04931+ 0.0106 0.3333/0.3310+ 0.0050
3 4 5 1.0000 0.9848+ 0.0310 0.5000/0.4993+ 0.0154
35 4 5 20000 1.9608+ 0.1506] 0.6667/0.6540+ 0.0182
1 2 5 10000 1.0138+ 0.0329 0.25000.2504+ 0.0036
1 3 5 05000 05031+ 0.0108 0.25000.2501+ 0.0034
1 5 5 02500 0.2500+ 0.0029 0.25000.2530+ 0.0038
1 4 2 03333 03356+ 0.0049 1.00000.9935+ 0.0308
1 4 3 03333 0.3354+ 0.0047] 0.50000.5033+ 0.0075
1 4 6 03333 03374+ 0.0044] 0.20000.1993+ 0.0024
A, p 1, p2, and cycle times are in minutes

Table 6.2: Workstation cycle time results for a two-stage push system

Queue Time at Station 1 Queue Time at Station 2
u2 | Analytic Simulation Analytic Simulation
0.0833 0.0829+ 0.0033 0.0500] 0.0504+ 0.0022
0.2500 0.2435+ 0.0090| 0.1333 0.1308+ 0.0040
0.7500, 0.7346+ 0.0304/ 0.3000| 0.2990+ 0.0147,
1.7500 1.7108x 0.1500 0.4667, 0.4544+ 0.0171
0.5000 0.5121+ 0.0308 0.0500] 0.0509+ 0.0021
0.1667| 0.1682+ 0.0085 0.0500] 0.0499+ 0.0021
0.0500 0.0505+ 0.0018 0.0500] 0.0513+ 0.0022
0.0833 0.0833+ 0.0034/ 0.5000] 0.4955+ 0.0267
0.0833 0.0847+ 0.0035 0.1667| 0.1692+ 0.0058
0.0833 0.0854+ 0.0037| 0.0333 0.0329+ 0.0013
A, 1 1, u2, and cycle times are in minutes
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Table 6.3: Workstation queue time results for atwo stage push system

6.5.2 Pull-push model

This section details the results for the pull-push model. The analytical results for
processing station one use the pull equations, while the results for processing station two
use the push equations. The resultsfor utilization levels are shownin Table 6.4. The
analytical resultsfor utilization levels are within 0.6% for station one and within 0.7% for
station two. The results for both station one and station two are within the 95%

confidence interval generated by the simulation results. Table 6.4 also lists the analytical
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and simulation results of the inventory level at the interface between the pull system and
the push system. The analytical results are within —1.1% and 0.8% of the simulation
results and are always within the 95% confidence interval. Figure 6.8 illustrates the
agreement between the analytical and simulation models for the inventory level asthe

arrival rate varies.

Station 1 Utilization Station 2 Utilization Inventory level
Al w2 | z |Analytic Simulation Analytic Simulation Analytic Simulation
1 4 5 6 0.2500 0.2512+ 0.0032 | 0.2000 0.2008+ 0.0029 | 5.6667| 5.6634+ 0.0074
2 4 5 6 05000 0.4997+ 0.0048 | 0.4000 0.4004+ 0.0037 | 5.0156 5.0169+ 0.0184
3 4 5 6/ 07500 0.7493+ 0.0073 | 0.6000 0.6006+ 0.0044 | 3.5339 3.5435+ 0.0598
35 4 5 6 0.8750 0.8740+ 0.0056 | 0.7000 0.6988+ 0.0042 | 2.1416 2.1666+* 0.0784
1 2 5 6 05000 04968+ 0.0070 | 0.2000 0.1994+ 0.0038 | 5.0156 5.0272+ 0.0338
1 3 5 6 03333 0.3335+ 0.0034 | 0.2000] 0.1996+ 0.0026 | 5.5007| 5.4987+ 0.0099
1 5 5 6 0.2000 0.1999+ 0.0025 | 0.2000] 0.1993+ 0.0030 | 5.7500 5.7488+ 0.0046
1 4 2 6 0.2500 0.2492+ 0.0033 | 0.5000 0.4963+ 0.0061 | 5.6667| 5.6686+ 0.0065
1 4 3 6 02500 0.2490+ 0.0024 | 0.3333] 0.3319+ 0.0048 | 5.6667| 5.6689+ 0.0060
3 4 5 2 0.7500 0.7493+ 0.0060 | 0.6000 0.6007+ 0.0040 | 0.6875 0.6882+ 0.0146
3 4 5 4 07500 0.7529+ 0.0052 | 0.6000 0.5999+ 0.0051 | 1.9492 1.9327+ 0.0349
3 4 5 8 0.7500 0.7493+ 0.0061 | 0.6000 0.6031+ 0.0044 | 5.3003 5.2713+ 0.0728
3 4 5 10 0.7500 0.7512+ 0.0057 | 0.6000 0.6005+ 0.0039 | 7.1689 7.1710+ 0.0888

A, 1, and p2 arein minutes. Theinventory level is measured in parts

Table 6.4: Utilization and inventory levels for the pull-push system
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Figure 6.8: Inventory v. A for pi=4, no=5, ;=6

The customer and part cycle time for station 1 are shown in Table 6.5. Asthe cycle
time and queue time are the same for the customer at station 1, only the cycletimeis
shown. The analytical estimate of customer cycletime for station oneis aways within
the 95% confidence interval of the simulation results, even though the percent error
ranges from —82% to 23%. The analytical results for the part cycle time at process 1 have
percent errors ranging from —1.10% to 0.7%, which is always within the simulation 95%

confidence interval.
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Customer Cycle Time at

Process 1 Part Cycle Time at Process 1

A |ul u2 [Z | Analytic Simulation Analytic Simulation
1 4 5 6 0.0001 0.0002+ 0.0004 0.3333 0.3369+ 0.0060
2 4 5 6 00078 0.0069+ 0.0014  0.4922 0.4915+ 0.0082
3 4 5 6 01780 0.1659+ 0.0191 0.8220 0.8192+ 0.0176
35 4 5 6 08976 0.8324+ 0.1131] 1.1024] 1.0972+ 0.0188
1 2 5 6 00156 0.0153+ 0.0067 0.9844 0.9780+ 0.0272
1 3 5 6 0.0007 0.0007+ 0.0005 0.4993 0.5029+ 0.0085
1 5 5 6 00000 0.0001+ 0.0002 0.2500 0.2523+ 0.0036
1 4 2 6 0.0001 0.0001+ 0.0001 0.3333 0.3333+ 0.0052
1 4 3 6 00001 0.0001+ 0.0001 0.3333 0.3330+ 0.0045
3 4 5 2 056250.56898+ 0.03917] 0.4375 0.4376+ 0.0040
3 4 5 4 03164 0.3299+ 0.03194  0.6836 0.6886+ 0.0106
3 4 5 8 0.1001/0.10002+ 0.01533 0.8999 0.9087+ 0.0219
3 4 5 10 0.05630.05515+ 0.01389  0.9437| 0.9424+ 0.0284

A, 1 1, u2, queue times, processing times and cycle times are in minutes

Table 6.5: Station 1 Results for the pull-push system

The queue time, processing time, and cycle time for station 2 are shown in Table
6.6. The percent error for the queue time for station two varies from —2.9% to 9.7%.
Five of the trials are outside of the 95% confidence intervals (A=3,3.5; u1=4; pu,=5;
z=2,4,6,8). The percent errorsfor the processing time at station two range from —0.5% to
0.1% and all of the processing times are within the 95% confidence intervals. The cycle
time for station two is the sum of queue time and processing time. The percent error for
the cycle time for processing station two varies from -0.7% to 6.1%. Four of thetrials are
outside of the 95% confidence intervals for cycle time at station two (A=3,3.5; w;=4;
u=5; z=2,4,6). Most of the trials that have queue times outside of the 95% confidence
interval also have a cycle time outside of the 95% confidence interval. Thereisone
exception to this statement; the trial with A=3; pu;=4; n,=5; z=8 has aqueuetimethat is
out of the 95% confidence interval, but a processing time and a cycle time within the
95% confidence interval. Of the five queue times that are above the 95% confidence

interval, most have a percent error of 6.2% to 9.7%, however the A=3; w1=4; n,=5; z=8
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trial has a percent error of only 3.7%. In addition, the process time for A=3; pn1=4; p,=5;

z=8 has an error of —-0.5%. The percent error for the cycle time for A=3; pw1=4; u,=5; z=8

1S 1.9% which isjust inside of the 95% confidence interval.

Queue Time at Station 2

Processing Time at Station 2

Cycle Time at Process 2

pl

p2

Analytic

Simulation

Analytic

Simulation

Analytic

Simulation

0.05000

0.05022+ 0.00246

0.20000

0.20098+ 0.00193

0.25000

0.25120+ 0.00362

0.13333

0.13491+ 0.00428

0.20000

0.20022+ 0.00138

0.33333

0.33513+ 0.00519

0.30000

0.28246+ 0.00903

0.20000

0.20034+ 0.00111

0.50000

0.48281+ 0.00970Q

0.46667

0.42818+ 0.01523

0.20000

0.20010+ 0.00103

0.66667

0.62828+ 0.01565

0.05000

0.04907+ 0.00251

0.20000

0.20054+ 0.00242

0.25000

0.24961+ 0.00435

0.05000

0.05045+ 0.00239

0.20000

0.20027+ 0.00159

0.25000

0.25072+ 0.00359

0.05000

0.05150+ 0.00246

0.20000

0.20017+ 0.00185

0.25000

0.25167+ 0.00375

0.50000

0.49650+ 0.02186

0.50000

0.49919+ 0.00432

1.00000

0.99569+ 0.02437

0.16667

0.16921+ 0.00812

0.33333

0.33385+ 0.00328

0.50000

0.50306+ 0.01051

0.30000

0.27575+ 0.01116

0.20000

0.20037+ 0.00115

0.50000

0.47612+ 0.01183

0.30000

0.27346+ 0.00834

0.20000

0.19985+ 0.00128

0.50000

0.47331+ 0.00906

DIBN DD DDD|DD[D D

0.30000

0.28937+ 0.00988

0.20000

0.20090+ 0.00114

0.50000

0.49027+ 0.01048
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10 0.30000

0.29470+ 0.00826

0.20000

0.20010+ 0.00105

0.50000

0.49480+ 0.00888

A, p 1, n2, queue times, processing times and cycle times are in minutes

Table 6.6: Station 2 results for the pull-push system

6.5.3 Two-stage pull model

This section details the results for the pull-pull model. The analytical results for

both station one and station two use the pull equations. The results for utilization levels

areshown in Table 6.7. The analytical results for utilization levels are within 1.5% for

processing station one and within 1.4% for processing station two. Three of the scenarios

are outside of the 95% confidence interval for station one. The analytic results for A=1,

wi=4, n2=5, 2,=6, z,=8 is dightly (0.26%) above the 95% confidence interval, while the

analytic resultsfor A =3, w1=4, n,=5, z;=6, z,=2,4 are sightly (0.22%, 0.19%) below the

95% confidence interval. Two scenarios are outside of the 95% confidence interval for
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station two. The analytic resultsfor A =3, n1=4, n,=5, z:=6, z,=4, 10 are slightly (0.27%,

0.01%) below the 95% confidence interval.

Utilization at Station One | Utilization at Station Two
Analytic Simulation Analytic Simulation
0.2500 | 0.2463+ 0.0031 | 0.2000 | 0.1979+ 0.0023
0.5000 | 0.5011+ 0.0054 | 0.4000 | 0.4010+ 0.0046
0.7500 | 0.7516 + 0.0077 | 0.6000 | 0.6002 + 0.0055
0.8750 | 0.8749+ 0.0068 | 0.7000 | 0.6994 + 0.0057
0.5000 | 0.4940+ 0.0069 | 0.2000 | 0.1986 + 0.0026
0.3333 | 0.3325+0.0034 | 0.2000 | 0.1996 + 0.0026
0.2000 | 0.2004 + 0.0029 | 0.2000 | 0.2028 + 0.0032
0.2500 | 0.2481 + 0.0022 | 0.5000 | 0.5017 + 0.0052
0.2500 | 0.2508 + 0.0027 | 0.3333 | 0.3338+ 0.0031
0.7500 | 0.7487 + 0.0047 | 0.6000 | 0.5967 + 0.0050
0.7500 | 0.7524 + 0.0063 | 0.6000 | 0.5989 + 0.0053
0.7500 | 0.7506 + 0.0070 | 0.6000 | 0.5988 + 0.0057
0.7500 | 0.7494+ 0.0052 | 0.6000 | 0.6010+ 0.0048
0.7500 | 0.7559+ 0.0041 | 0.6000 | 0.6015+ 0.0042
0.7500 | 0.7582 + 0.0069 | 0.6000 | 0.6077 + 0.0061
0.7500 | 0.7536 + 0.0070 | 0.6000 | 0.6001 + 0.0050
0.7500 | 0.7554 + 0.0061 | 0.6000 | 0.6054 + 0.0053
0.7500 | 0.7486 + 0.0071 | 0.6000 | 0.6003 + 0.0044
0.7500 | 0.7496 + 0.0056 | 0.6000 | 0.5993 + 0.0052
6 | 0.7500 | 0.7487 +0.0067 | 0.6000 | 0.5973+ 0.0039
5] 2]10|0.7500 | 0.7504 +0.0048 | 0.6000 | 0.5987 + 0.0048
Table 6.7: Utilization results for two-stage pull system
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The intermediate inventory (the inventory after station one) and final inventory
(the inventory after station two) levels are shown in Table 6.8. Most of the analytical
results for the intermediate inventory are within 1% of the simulation results (the other
five results have percent errors of —4.6%, —2.5%, -1.6%, -1.5% and —1.4%). Only two
scenarios have results outside of the 95% confidence interval (A =3, w1=4, n,=5, z;=6,
2,=2; 21=2, 2,=2).

The analytical results for the final inventory, also shown in Table 6.8, generally

do not agree with the simulation results. 13 of the 21 results are outside of the 95%
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confidence interval, with percent errors ranging from —83.7% to 0.1%. With the
exception of the A =3, u1=4, np=5, =10, z,=8 scenario, al of the scenarios with A =3,

wi=4, n,=5 are below the 95% confidence interval. Clearly thereis an error with these

numbers.
Intermediate Inventory Final Inventory

A | pl|p2|2z1| 22 |Analytic Simulation Analytic Simulation

14|56 8| 56667 5669+ 0.0083 | 7.7499 7.7540+ 0.0044
2|1 4|5|6]| 8| 50156 50181+ 0.0237 | 7.3182 7.3136+ 0.0167
3/4|5|6]|8]| 35339 35298+ 0.0766 | 5.9992 6.1468+ 0.0832
35/ 4| 5| 6| 8] 21416 21971+ 0.0864 | 2.9376 4.3346+ 0.1466
1/2|5)|6]| 8] 50156 5.0354+ 0.0336 | 7.7344| 7.7363+ 0.0072
1|/3|5|6]| 8] 55007 55030+ 0.0095 | 7.7493 7.7494+ 0.0050
1|/5|5|6]|8]| 57500 5.7500+ 0.0052 | 7.7500 7.7448+ 0.0056
14|26 8| 56667 56686+ 0.0049 | 7.0038 6.9995+ 0.0266
14|36 8] 56667 56635+ 0.0057 | 7.5000 7.4996+ 0.0084
3/4|5|2]|8]| 06875 06917+ 0.0119 | 4.8722 5.2195+ 0.0790
3|14 ]5|4| 8] 19492 19418+ 0.0374 | 5.5917| 5.8166+ 0.0693
3/4|5|8]|8]| 53003 53027+ 0.0830 | 6.2290 6.3334+ 0.0566
3|14]5|10| 8| 7.1689 7.1727+ 0.0794 | 6.3585 6.3961+ 0.0548
3]4|5|6]| 2| 35339 35837+ 0.0429 | 0.6754 0.9011+ 0.0135
3]14|5|6]|4]| 35339 35053+ 0.0646 | 2.2214 2.4066+ 0.0442
3/4|5|6]|6]| 35339 35023+ 0.0615 | 4.0580 4.2284+ 0.0533
3/4|5|6[10| 35339 34827+ 0.0611 | 7.9780 8.0681+ 0.0742
3/4|5|2]|2]| 06875 07211+ 0.0176 | 0.0912 0.5579+ 0.0228
3/4|5|2]|4]| 06875 0.6990+ 0.0150 | 1.2728 1.8467+ 0.0445
3/4|5|2]|6| 06875 06942+ 0.0177 | 2.9782 3.4433+ 0.0843
3/4|5|2]10| 0.6875 0.6891+ 0.0127 | 6.8340 7.1157+ 0.0977

Table 6.8: Inventory Levelsfor atwo-stage pull system
The inventory is a function of the number of Kanbans circulating in the system
and station utilization. However, the number of Kanbans circulating through station two
isafunction of how many Kanbans are backlogged at the intermediate inventory. The
utilization of station two is correct, therefore errors in the final inventory must be due to
an error in the calculation of the number of Kanbans circulating through station two.

Table 6.9 shows the analytical and simulation results for the number of Kanbans
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backlogged at the intermediate inventory station. The analytical results using the
equations for number backlogged stated in Section 6.3.2, are shown in the first column of
analytical results (labeled analytical results (infinite queue)). The percent error for these
analytical calculations ranges from —20% to 275%. (Thereis no defined percent error for
the case where the simulation result is zero). Consequently, most of the trials are outside
of the 95% confidence interval. Thistable aso illustrates why the scenarios with A =3,
ui=4, n2=5 have afinal inventory outside of the 95% confidence interval; the trials with A
=1,2 have few parts backlogged, as such the effect of having, for example, 0.00008
Kanbans backlogged, as opposed to 0.0001 Kanbans backlogged is minimal.

Clearly the number of parts backlogged does not follow the equations stated in
section 6.3.2. Asin Chapter 5, it isuseful to look at the underlying assumptions in order
to validate the system behavior. The problem with the analytical results arises from
assumptions made in the development of the analytical equations. The analytical
equations assume that the number backlogged has no limit; there is an infinite queue for
backlogged parts (Buzacott and Shanthikumar, 1993). However, at the intermediate stage
amaximum of z, Kanbans can be backlogged at any time. Therefore, the calculation for
the number of Kanbans backlogged at the intermediate stage should take into account the
finite queue at that stage. Using a finite queue assumption, the number of Kanbans

backlogged at the intermediate inventory stageis (Hall, 1991):

E[Backlogged] = ZZ: np*"P,
n=0
1

1+1_pp(1— P

FB:
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The number backlogged, when using finite queue equations, is shown in the second
column of analytical resultsin Table 6.9. Again, most scenarios are outside of the

confidence interval, but the analytical values are now below the confidence interval.

Number Backlogged at Intermediate | nventory
Analytical Analytical

A |pd|u2|z1 | z2 (Infinite Queue) |(Finite Queue) |Simulation

114|5|/6|8 0.00008 0.00008 |0.00010 + 0.00014
214|568 0.01563 0.01532 |0.01415 + 0.00365
3/4/5/6|8 0.53394 0.37863 |0.44281 + 0.05866
354|/5/6|8 3.14157 1.13590 |1.57380 + 0.12338
112|5|/6|8 0.01563 0.01532 |0.01409 + 0.00544
1/3|5/6|8 0.00069 0.00069 |0.00068 + 0.00035
1/5|/5|/6|8 0.00002 0.00002  |0.00000 + 0.00000
114|2|6|8 0.00008 0.00008 |0.00002 + 0.00003
114|3|6]|8 0.00008 0.00008 |0.00010 + 0.00012
3/4|/5/2|8 1.68750 1.23274 11.39360 + 0.05952
3|/4|/5/4|8 0.94922 0.68029 |0.78145 + 0.04934
3/4/5/8|8 0.30034 0.21173 ]0.23389 + 0.03433
3/4|/5]10/8 0.16894 0.11870 ]0.14644 + 0.03454
3/4|/5/6]|2 0.53394 0.09020 ]0.14231 + 0.00791
3|/4|/5/6|4 0.53394 0.20470 ]0.28391 + 0.02515
3|/4|/5|/6|6 0.53394 0.30358 |0.38897 + 0.03664
3/4|/5|6]10 0.53394 0.37640 ]0.48201 + 0.05344
3|/4|5]2]|2 1.68750 0.34571 |0.50524 + 0.01796
3|/4|/5]/2|4 1.68750 0.71508 ]0.91942 + 0.03259
3|/4|5/2|6 1.68750 1.01269 |1.21070 + 0.06681
3/4|/5]2]10 1.68750 1.20941 |1.48520 + 0.07648

Table 6.9: Number Backlogged at Intermediate Inventory
The flaw with using equations for queues with limited capacity, is that those

equations assume that if the queue is full, customers are turned away and do not enter the
system (Banks et al., 2001). In the two stage pull model, if there are no parts at the final
inventory stage customers are not turned away, instead they are put in an infinite backlog
gueue at the final inventory stage.

The number of Kanbans backlogged at the intermediate inventory determines z,,

which isacomponent of al of the calculations for the second station (with the exception
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of the utilization at station two). Therefore, any error in the number backlogged at the
intermediate inventory will create discrepanciesin the calculations for the rest of the
system. Ascan be seen in Figure 6.9, when A is small, the number backlogged is
approximately zero, so the differences between the analytical and simulation model are

negligible, but as A increases the number of Kanbans backlogged becomes significant.

3.5
— - @ - — Analytical (Infinite
[ J
3 Queue) ;
Analytical (Finite i
Queue) '

N
&

—@— Simulation + HW I

N

—~8— Simulation - HW l'

Number Backlogged
H
= (6]

o
o

o

0 1 Lambda?2 3 4

-0.5

Figure 6.9: Number Backlogged v. A for pi=4, n,=5, 2;=6, z,=8

Table 6.10 shows the cycle time for customers for the two-stage pull system. As
mentioned above, the values are outside of the confidence interval and have large percent
errors due to the errors in the calculation of the number of Kanbans backlogged (these
analytical equations use the infinite queue equations). However, both the incorrect
analytical results and the simulation results show that the customer cycletimeis
significantly decreased for a two-stage pull system, when compared to either atwo-stage

pull system or a hybrid system.
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Customer Cycle Time

z2 | Analytic |Simulation

0.0000 0.0000+ 0.0000
0.0002] 0.0002+ 0.0001
0.0110 0.0373% 0.0111
0.1178 0.4178+ 0.0898
0.0000 0.0000+ 0.0000
0.0000 0.0000+ 0.0000
0.0000 0.0000+ 0.0000
0.0039 0.0025+ 0.0015
0.0001] 0.0000+ 0.0000
0.0199 0.1167+ 0.0188
0.0136/ 0.0670+ 0.0145
0.0098 0.0205+ 0.0056
0.0092 0.0195+ 0.0063
0.2364| 0.3567+ 0.0256
0.0851] 0.1713+ 0.0288
0.0306/ 0.0735+ 0.0169
0.0040 0.0192+ 0.0074
0.4262| 0.9798+ 0.0889
4 0.1534| 0.4245+ 0.0453
6| 0.0552 0.2250+ 0.0427
2/ 10  0.0072 0.0697+ 0.0185

Table 6.10: Customer Cycle Time
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6.6 Comparison of push and pull behavior

A number of observations can be made concerning the behavior of push and pull
production control. First, the customer cycle time is highest for the two-stage push
model, followed by the hybrid pull-push model. In the hybrid model the customer should
spend almost no time in the system before entering station two because the customer
picks up pre-made materias from the intermediate inventory. The two-stage push model
and the hybrid model will have the same customer cycle time at station two, where both
models use push production control. Therefore, the improvement in customer cycle time

for the hybrid model comes from the decreased in customer cycletime at station one.
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The second observation focuses on the work in progress (WIP) level. For the two-
stage pull model the WIP isfixed at z; + z,. For the hybrid model, the WIP is z; plus the
WIP of apush model, while the WIP for the two-stage push model is the WIP of each
push stage. Theinventory level and customer cycle time have been plotted in Figure
6.10. The graph shows the inventory level and customer cycle time for the A =3, u;=4,
H2=5 scenarios, using the average simulation value for each scenario. From the graph it
can be seen that both the pull-push model and the two-stage pull model exhibit an inverse
relationship between customer cycletime and WIP level. For agiven WIP level, the two-
stage push model has the highest cycle time. Either the pull-push model or one of the
two-stage pull models has the lowest cycle time; thereis no clear answer as the graphs of
the behavior of the different pull-pull models and the pull-push model overlap one

another.

81



Customer Cycle Time v. WIP
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Figure 6.10: Customer Cycle Time v. Inventory

Thirdly, as the system evolves from push production control to hybrid control to
pull production control, there is no change in the utilization level. Additionally, if the
utilization level islow and the number of Kanbans high, then thereislittle difference

between push production control and pull production control. For example:

P
W, g =—1—
g, push ,U(l_p)

_pi=p_rle=p)_(p=p7)

W, o0 = - -
Al-p) 2(1-p) w(1-p)
pZ
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Recall that p<1, so as p approaches zero, p” also approaches zero and the difference

between W, ., and W, ,,, approaches zero. Also, asz increases p” approaches zero, and

g, pu ,pul

again the difference between W, . and W, ,,, approaches zero. Asaresult, for low

utilization at station one, the part cycle time for processing station one is approximately
equal for all three models. As utilization increases for station one, the difference between

the part cycle time for the pull and push production control grows.

6.7 Summary

The evolution of atwo-stage system from a push production control to a pull
production control illustrates the need to eval uate the assumptions made in the derivation
of analytical models. Specifically, the models presented in this chapter show the value of

discrete-event simulation for cases in which there are no precise analytical models.
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7 Summary and Conclusion

In this research, the creation of analytical models and discrete-event simulation
models of real-life systems enabled a comparison of the two types of models and an
analysis of the differences between the models.

The Learning Historian significantly facilitated the gathering of results from the
simulation models studied in this research. By using the Learning Historian to modify
the simulation model and mine the cumbersome Arena-generated output file, the user
spends less time operating the simulation software and can spend more time analyzing
the system. The benefits of the Learning Historian are not limited to parsing the Arena-
generated output file; the Learning Historian also stores model results for further anaysis
and incorporates visualization of results.

Modeling aflow shop with process drift was an iterative process of first aligning
the underlying assumptions of the model and the system, and then isolating the variability
inherent to the simulation. The analytical model and the Arena model produced widely
divergent results when using different underlying assumptions, but once the assumptions
agreed, the results agreed within afew percent. Thislevel of agreement was not always
enough to ensure that the analytical results were within the 95% confidence interval of
the ssimulation model as there were limited sources of variation in the model.

Creating a simulation model of pull and push production control system was an
evolutionary process, following the system as it moved from push production control, to
a hybrid system, to a pull production control. The simulation models of the push
production control and the hybrid system agreed with their anaytical models, while the

pull production control model did not. Analyzing the pull production control offered an
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opportunity to examine the assumptions of the analytical model. The result was that
there was no analytical model that correctly modeled the behavior of the pull system, so
the results of the analytical model were either significantly above or below the 95%
confidence interval, depending on the different assumptions used in the analytical model.

A wide range of manufacturing systems can be modeled either anayticaly or
with discrete-event simulation software. Such systems include pull production control
systems, hybrid systems (combining push and pull configurations), and flow shops with
process drift. This work has used a few of these systems as examples to illustrate
possible sources of errors between analytical models and discrete-event models. While it
IS not possible to examine every type of system, the work contained here has identified
sources of error that apply to many types of models.

Thiswork has made a distinction between valid sources of error and invalid
sources of error in simulation models when compared to the real system. Invalid sources
of error include using different distributions or different input values or different
underlying assumptions. These sources of error can be eliminated through careful
validation of the model. The validation process should include checking constants and
distributions, explicitly stating assumptions and finally, removing some sources of
uncertainty and then checking the behavior of the model.

Vaid sources of error include the inherent variability of discrete event ssmulation
and the propagation of such errors. The flow shop with process drift model showed that
the variation of the probability block can create a pervasive error throughout the model.
Any model that uses random variables will experience some variability as shown in the

process flow example. All stochastic discrete-event models will have some inherent
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variability due to the random nature of the ssimulation. These errors, while not always
avoidable, can often be examined so that the results can be analyzed with the knowledge
of the error.

It is aso necessary to evaluate the assumptions of an analytical model in order to
evaluate if it can be applied to the system under consideration. Equations for the two-
stage pull model either erroneously assumed that the intermediate inventory was an
infinite queue, or correctly realized that the queue was finite, but turned customers away
once the queue became full.

The time and accuracy trade-off between analytical models and discrete event
simulation models has been mentioned previously. The two-stage pull model highlighted
aparticular aspect of that trade-off, when applying an existing analytical model yielded
inaccurate results. One advantage of discrete-event simulation models that has not been
mentioned is the freedom to create a discrete-event simulation model for any system
under analysis, within the limits of the smulation code. For example, while thereisno
analytical model for atwo-stage pull system, it is possible to create a simulation model
for the two-stage pull system. The simulation program islimited in some respects, as
evidenced by itsinability to model abinomial distribution.

Future work could examine the behavior of non-Markovian systems. The
analytical models of exponential distributions are generally exact, while approximations
of other distributions are not as accurate. Analyzing the differences between analytical
and discrete-event simulation models for different distributions may illustrate a different

set of features that cause errors. Constructing analytical and simulation models for
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aternate systems, such as pooled operators, machines that fail, and finite capacity queues,

may illustrate some other possible sources of error.
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Appendix A: How the Learning Historian works

The Arenamodel must contain a specific VBA module in order to use the
Learning Historian. When the user conducts atrial, the VBA module reads the text file
from the Learning Historian before running the Arenamodel. The VBA module changes
the value of the Arena variables to the user-defined values from the Learning Historian
interface.

There are four formsin the Learning Historian:

1. FrmOutput: where the user can choose which input and output variables are of

interest.

2. FrmMain: the starting form, where the user can choose an Arenamodel. After
the input and output variables are selected, the user can then enter input
values, run Arena, run Spotfire, or view the table of results.

3. FrmTrials: alowsthe user to create a set of trials for experimentation.

4. FrmAbout: FrmAbout presents the user with information about the Learning
Historian, such as model version, etc. Thisform does not influence the

running of the Learning Historian.

How the forms work:

FrmMain

Using a common dialog the user opens amodel. The model nameis saved as
‘selectedfile’. The Arena program and the selected model open. The full name of the
model is parsed to determine the path; thisinformation is stored as the ‘rootdir’. All files

created by the Learning Historian will be stored with this same path name. Arenawrites
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the associated .exp file. The Learning Historian then searches the .exp file for “User
Defined” variables (variables that the user can modify) and enters all of the “User
Defined” variable namesin alistbox in frmOutput. The program also searches the .exp
filefor “User Defined” variables with .min or .max extensions. The names of the
variables with .min and .max extensions are saved in array called NameArray. The.min

and .max values are saved in an array called MinMax, as shown below.

NameArray(0)=tarrive MinMax(0)=tarrive.min MinMax(1)=tarrive.max
NameArray(1)=meantri MinMax(2)=meantri.min MinMax(3)=meantri.max
NameArray(2)=** MinMax(4)=**.min MinMax(5)= **.max
NameArray(3)=** MinMax(6)=**.min MinMax(7)=**.max

The model then runs with the default values and parses the output file for the
output names. The output names are then displayed on the form in alistbox in
frmOutput. FrmOutput now opens.

Once the user has selected the inputs and outputs from frmOutput, frmMain is
displayed and automatically creates the appropriate number of textboxes, depending on
how many inputs were selected on frmOutput. The names of the selected input variables
are written as captions for the textboxes. After entering valuesin all of the textboxes the
user can click on “Run Arena.” If the user selects “Run Spotfire” without running Arena
at least once then a message box will pop-up telling the user to run Arenafirst. If the
user selects “Run Arena” without filling in al of the input textboxes then a message box
will pop-up telling the user to enter valuesin all of the input textboxes.

The “Run Arena’ command takes the names and user-entered values of the inputs
and stores them in a comma-delimited file (Read.txt) to be read by the Arena VBA

module. Arenareadsthe comma-delimited file, modifies the variables, runs the moddl,
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and opens the Arena-generated output file. The Learning Historian parses the output file
looking for the values of the selected outputs. The FlexGrid in frmMain is updated with
the new values and the results are appended to the comma-delimited file to be read by
Spotfire.

If the user clicks on the FlexGrid, the data will be sorted (single click=sorted in
ascending order, double-click=sorted in descending ordey).

The “Run Spotfire” command opens Spotfire and tells Spotfire which file to read

asinput.

FrmOutput

FrmOutput opens with four listboxes; two listboxes are empty, one listbox is
filled with al possible input variables and one listbox isfilled with all possible output
variables. One of the empty listboxes will store the list of selected inputs; the other
empty listbox will store the list of selected outputs. Selecting an input and clicking on
“Add input”, or double clicking on an input from the listbox filled with inputs will cause
the Learning Historian to compare the selected input to the list of previously selected
inputs. If there are no duplicates, then the output will be added to the list of selected
inputs. The “Add output” button performs the same actions as the “Add input” button,
but for the list of outputs.

The user returnsto frmMain after selecting the inputs and outputs of interest. If
the user attempts to return to frmMain before selecting inputs and outputs, an appropriate

error message will appear telling the user what remains to be done.
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FrmTrials

Thisform isloaded by clicking on “create a set of trials’ on frmMain after the
user has selected inputs and outputs. The Learning Historian labels each textbox with an
input variable name. The user enters values into the textboxes, clicks on “Add thistrial
tolist”, and the set of input valuesis added to a flexgrid and the input textboxes are
cleared. The user can now add another set of inputs, delete a set of inputs or start running
the input sets. If the user leaves any of the input textboxes blank then an appropriate
error message will pop up, reminding the user to add inputs. When the user clicks on
“Run Trials’ the program will pass the input values to the textboxes on frmMain. The
program will then run the VBA module (thisis the same module that is called when the

user clicks on “Run Arena” on frmMain.

Opening an already existing Learning Historian Session

If the user opts to open an already existing Learning Historian Session, then the
Learning Historian will read the .Ih.txt file for the model name, and will open Arena and
the appropriate model within Arena. The full name of the model is parsed to determine
the path; this information is stored in the variable ‘rootdir’. All files created by the
Learning Historian will be stored with the rootdir path. Arenawrites the associated .exp
file. The program then searches the .exp file for “User Defined” variables (variables that
the user can modify) and enters all of the variable namesin alist (IstinAvail). The
program also searches the .exp file for “User Defined” variables with .min or .max

extensions to determine any limits on the “User Defined” variables. The selected inputs

91



and outputs are entered into the appropriate listboxes. The Learning Historian will also

load the FlexGrid and the Spotfire results file with the results stored in the .Ih.txt file.
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