TecHNIcAL RESEARCH REPORT

Quotient Signal Decomposition and Order Estimation
by D. Napoletani, C.A. Berenstein and P.S. Krishnaprasad

TR 2002-47

INR

INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu



Quotient Signal Decomposition and Order
Estimation

D. Napoletani, C.A. Berenstein and P. S. Krishnaprasad.

Institute for Systems Research
University of Maryland
College Park, MD 20742
(dnapolet, carlos, krishna @Qglue.umd.edu)

current address for the first author:
School of Computational Sciences
George Mason University
Fairfax, VA 22030
(dnapolet@gmu.edu)

Abstract

In this paper we propose a method for blind signal decomposition that does
not require the independence or stationarity of the sources. This method, that
we consider a simple instance of non-linear projection pursuit, is based on the
possibility of recovering the areas in the time-frequency where the original sig-
nals are isolated or almost isolated with the use of suitable quotients of linear
combinations of the spectrograms of the mixtures.

We then threshold such quotients according to the value of their imaginary

part to prove that the method is theoretically sound under mild assumptions



on the mixing matrix and the sources. We study one basic algorithm based on
this method.

The algorithm has the important feature of estimating the number of sources
with two measurements, it then requires n — 2 additional measurements to pro-
vide a reconstruction of n sources. Experimental results show that the method

works even when several shifted version of the same source are mixed.



1 Introduction

Independent Component Analysis can recover signals that are linearly mixed
with an unknown mixing matrix. All algorithms are essentially based on some
local learning rule (see [L] and references therein, but also [QKS]). This proce-
dure is effective, but it suffers from the need to assume that sources are inde-
pendent and stationary. A different approach is taken in [CC], where sources
are assumed to be independent and non-stationary and only time-delayed cor-
relations of the observations are used to recover the mixing matrix. None of the
previous methods can handle the case of mixtures of sources and their echoes,

since clearly a source and its shifted versions are not independent.

In this paper we suggest an algorithm that requires a different set of assump-
tions on the sources. This algorithm allows to estimate the number of sources
given at least two mixtures and we show that, if there are additional observa-
tions so that the total number of mixtures is equal to the number of sources, a

full reconstruction algorithm is possible.

More specifically let ©1 = a181 + ... + GnSpn, Tz = b1sy + ... + by s, be the

two mixtures of n real-valued discrete sources s;, ¢ = 1,...,n with a;,b; € IR.

Compute the spectrograms of z; and x», say X; and X», where by spec-
trograms we mean the complex-valued matrices of windowed discrete Fourier

transforms.

Clearly, if we denote the spectrograms of s; by S;, we have:

X1 = 0,151 + ...+ anSn, XQ = b151 + ...+ bnSn



Let R be a non-singular 2 x 2 real-valued matrix that we call ezploratory matriz,

and consider the quotient

where t is the time coordinate and w the frequency one.

We use Qr(t, w) to find regions in the time-frequency plane where sources are
isolated or almost isolated. This in turn reduces the search for the unmixing
matrix (up to left multiplication by a diagonal matrix) to the solution of an

underdetermined system of linear equations.

The algorithm does not require the sources to be independent or stationary,
but rather it relies on geometrical separation conditions on the spectrograms
of the sources. In essence, two related data sets of dimension two (X; and

X>) are projected onto a one dimensional space through the non-linear function

7 — ROXi+R(1.,2) X

= RED X TRZ2) X therefore we can view the underlining method as a type

of non-linear projection pursuit in which the choice of the exploratory matrix
determines the specific non-linear projection of interest ( see [H] for an extensive

treatment of projection pursuit).

The second section of this paper introduces the basic idea and we introduce
the definitions and tools needed for our ”quotient projection” algorithm . An
important point of this section is the understanding that the imaginary part
of the quotient Qg (¢, w), a simple measure of ”phase locking” between the two
measurements, can be used to increase the probability of finding areas where

signals are isolated.



Section 3 presents the main steps of the algorithm and in it we discuss the

limits of the method.

The fundamental role of separation of sources in time frequency domain to
achieve reconstruction was already underlined by Rickard and collaborators in
[RD], [RBR], [RY], as we became aware of in the final stages of our work. In
this paper we stress the use of suitable thresholding of the imaginary part of
Qr(t,w) as important in proving the theoretical soundness of the method. The
possibility of choosing the most efficient exploratory matrix is also emphasised

here in line with the idea of choosing the best non-linear projection.

2 Quotients Projections

We need to state several conditions to assure that Qg(t,w) is an effective tool in
detecting sources. We start with a condition on the coefficients in the mixtures
z1 and za:

Condition (1): Assume that 2— # 2—; when i # j.We call b— the slope of

a

the source s;.

Denote by S(f) and R(f) the imaginary and real parts of a complex function

f- Note that if S;(to,wp) # 0 for a single i =iy at a given (to,wp) then

R(]-: l)ai15i1 (to,’w[)) + R(172)bl1 i1 (to,’w[)) _ R(l) 1)ai1 + R(172)bl1

Qr(to, wo) =

S
R(27 l)ai1 Sil (tO; wU) + R(27 2)bl1 Sil (tO; wU) B R(2) 1)ai1 + R(27 2)bl1
and therefore S(Qr(to,wp)) = 0.

Thus, we can approximately identify the regions of the time-frequency plane



where the different sources are isolated, by retaining only the elements of the
matrix Qgr(t,w) that have imaginary part very near to zero. Clearly, this is a
necessary condition to be verified for points (¢, w) where the sources are isolated,

but it is not sufficient.

Let T(t,w) = %, we enforce S(Qr(to, wo)) ~ 0 asking that |T'(to, wo)| <
€. This is a computationally simple way to make sure that the relative mag-
nitude of the imaginary part is taken in account rather than the absolute one,
note that if R(Qr(to, wo)) = 0 then T'(to,wo) is not defined, on the other hand
we will see in the following discussion that a point for which R(Q g (to,wo)) =
0 and S(Qr(to,wo)) = 0 can be ignored. The case R(Qr(to,wo)) >> 0,
S(Qr(to-wo)) # 0 may lead to |T| < € too, but this case is unlikely. if at
(to,wo) there are several non-zero sources This claim will be made precise in
lemma 2.1. Our choice of T'(t,w) is clearly not the only possibility, any other
continuous function T'(t,w) such that |T(¢,w)| = 0 implies |[S(Qr(¢t,w))| = 0

would be suitable.

Let us call Q(g,)(t,w) the function obtained by thresholding Qr(t,w) in

the following way:

Qi (t,0) = Qult,w) if | P < Qe (1) =0 otheruwise.

Ideally we claim that the distribution of the values of R(Q r,.)), is, as € goes
to zero, made of several delta functions of different weigth centered at 0 (due to

the regions of the time frequency domain where there is no contribution from

R(1,1)a;+R(1,2)b; i= 1’

any signal) and at the value of the quotients qg (i) = REDa i RE2)0:

)



that we can assume finite for a generic choice of R.

Therefore the number of ”dominant” peaks (see remark 3.3) of the value
distribution of the non zero values of #(Q(g,)) gives us generically an estimate
of the number of sources and their positions will give the values of the gr(i)’s

and therefore also the values of the slopes Z—Z’_’s.

Definition 2.1 We call silence a positive area region in time frequency domain

where both X, and X5 are identically zero.

The restriction to non zero values of R(Q(g,)) makes the case in which
gr(i) = 0 for some i degenerate, since the removal of the zero values would
also remove the contribution of signal s; to the value distribution. A generic
perturbation of R avoids this problem, in section 3 we indicate how to reduce

the chance of choosing such degenerate exploratory matrix.

We assume throughout this section that R is choosen so that gr(7) is finite

and non-zero for all i = 1, ..., n.

The possibility to separate sources using our idea rests on the following

assumption:

Condition (2): the sources s;, i = 1,...,n are separated in some regions of

our chosen time-frequency representation.

Remark 2.1: Any complex-valued frame that achieves this objective for
the class of sources that we are interested in would be suitable for the quotient

signal decomposition.
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Figure 1: Dominant regions as defined in the text for ¢ = 10~2 (top) and for
€ = 1072 (bottom)

In this paper we perform our experimental work on linear mixtures of speech
signals, using spectrograms as complex linear transformation, therefore it is
interesting to verify to which extent is condition (2) true for this class of signals.
As figure 1 shows, given two speech signals s; and s, on a time interval of 0.61

seconds, the region in time-frequency domain where we have I‘g‘l <€ei# g,
J

i,j = 1,2 is marginal for small € (¢ = 1073), but it is sizable when we consider
higher values (e = 1072).

This suggests that we must develop the theory in the context of small, but
not insignificant, perturbations that can arise where each source is dominant.
Such perturbations can be caused by noise or by low energy contribution by

the other sources, as in this case, therefore the analysis of the problem should



not require a specific knowledge of the probability distribution of the pertur-
bations therefore a non-parametric approach to the theoretical stability of the
algorithm introduced in this paper is needed. For the time being we consider
the ideal case in which signals are truly separated to build a simple version of
our algorithm. To prove that this basic algorithm is theoretically sound we need
to give some mild conditions on the probability distribution of the sources in
the transformed domain to make sure that the contribution to the value distri-
bution of %(Q(g,)) due to values of (£, w) where we do have mixtures of sources

is minimal. Certainly the following condition has to be satisfied:

Condition (3): Sources must be linearly independent on positive measure
regions of the spectrogram, i.e. given any positive area region B, we cannot
find real numbers (pi, ..., p,) such that p1.S; (¢, w) + ... + ppSn(t, w) = 0 for all
(t,w) € B.

If condition (3) is not verified, we can have degenerate situations in which

ghost sources are detected. Assume for example that S; = pS;, p constant for

some i and j in a region M, and that this dependence happens in some region

where the contribution of other signals is marginal. Then we have that, on M:

R(1,1)(a;S; +a;S;) + R(1,2)(b;S; +b;S;)  R(1,1)(a; + pa;) + R(1,2)(b; + pb;)

@r = R(Q, 1)(0,151 + aij) + R(Q, 2)([)@5@ + bij) o R(Q, 1)(0,1 +paj) + R(Q, 2)(bz + pbj)
The slope Zji—ﬁi of a ”source” that does not exist as physical entity would be

detected and, the quotient projection algorithm would need n+ 1 measurements

to give complete reconstruction of the n physical sources and the virtual one.

On the other hand it is reasonable that sources can be very similar in some



cases (think of Gregorian chant).

Thus it is expected that there will always be limit cases that lead the al-
gorithm into detecting ghost sources. Our own auditory system is not immune
from illusions.

We can enforce (3) assuming that:

Condition (3’) S;, i = 1,...,n are spatially distributed realizations of ran-
dom complex variables S; with supports Supp(S'i) not totally overlapping, i.e.
there exist positive area regions B; C Supp(S’i) such that B; does not belong to

any Supp(gj) for j #1i.

In other words we fix the geometrical supports and we assume that the values
of S; on each value of (t,w) € Supp(S;) is a realization of the corresponding
random variable S;.

Let now Z = () Supp(S;:), D = U Supp(S;), Zs, = Supp(S:)\[U(Supp(Si) N

Supp(S;))), j #iand T =Ts,.

Remark 2.2 For simplicity let Z|JZ = D, the following discussion would
work even if there are regions where only the support of some sources overlap,
at least when the number of sources is finite. Moreover note that silence in the

time frequency domain is not included in D.

From condition (2) we know that Z is of positive measure.

Denote S; = %(S’z) + l%(gl) and let pl = aﬁR(S’l) + an%(gn), P, =
alg(gl) + an%(gn), Ml = blgf(gl) + ...+ bnéR(SA'n), Mg = blg(gl) + ...+

b S(Sn).
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As random variables, let Fiy = R(Qr) and iy = gggg;, where we drop the

explicit dependence from (¢,w) while assuming that (¢,w) is a random point

uniformly distributed in D.

A simple computation shows that,

~ _ S(@Qr) _ (R(L1R(2,2) — R(1,2)R(2,1)) (P M> — PyM)

ST RQr) T(P,00)B(Py, M) + TPy, Ma)B(Py, M)

where T(P;, M;) = R(1,1)P; + R(1,2)M; and B(P;,M;) = R(2,1)P; +
R(2,2)M;.

To prove the following lemma and theorem we need one more technical
condition:

Condition (4): the joint probability density function of Pyand M;,i=1,2
is a continuous function.

Let fyx be the underlining probability density function of the values of Fg| X

on a region X. Then:

Lemma 2.1 If conditions (1), (2), (3’) and (4) are satisfied, then the proba-
bility density function fp . of Fy knowing that |F'g| < € converges to a delta
function centered at the origin as € goes to zero. More specifically fpo = fz.
Proof: Condition (4), and the fact that
Sy = {(My, My, P, Py) | Fs(My, Ma, Py, P3) = ¢}

is a set of measure zero in IR* for every q € IR, tell us that fz is a non-atomic

probability density function. As regards fz, we know it is centered at the origin,

11



since signals are isolated on 7 and we expect Fy = 0 for all values of (t,w) € Z,

therefore f7 is a delta function centered at the origin.

The probability density function that we observe, before imposing the thresh-

olding, is fp = %fz-{-%fz where A(x) is the area function. After imposing

that |ﬁg| < € we observe the new probability density function:

cA(Z)
gA(Z2) + A(Z)

AZ)
A(Z) + A@D)

fp,e= fz.e+ fz
o

where o = f;fg and fz . is the restriction of fz to the interval [—e, €].

Since o converges to zero as € goes to zero, we have that fp o = fz.

The previous lemma shows that most non zero values of (g, will likely be
in the regions Zg, for € small enough. Therefore we have the following theorem.

Denote by 4, ;) the delta function centered at gg(i), then:

Theorem 2.1 Under the same conditions as lemma 2.1, the probability density

function gp o of Fy knowing that By =0is D %6%“).

Proof: As a consequence of lemma 2.1, By (to,wp) = 0 implies with probabil-
ity 1 that (tg, wo) € Z, which in turn implies that F‘;R(to, wo) € {qr(1),...,qr(n)}.
The probability that ﬁy(tg, wp) corresponds to any specific one of the gg(i)’s de-
pends from the area of each region Z;. More specifically the probability density

function of ﬁgﬂz is gz = Zl i((IIi)) 6QR(i)’ therefore gpo =91z = Zz i(éf)) 6QR(i)'

Note that the interpretation of the sources as spatially distributed random
variables (that is conditions (3’) and (4)), is not essential to our method, but it
gives a possible theoretical basis to show why the independence of the sources

is not needed.

12



Ezxample 1: To see in practice the basic idea in the ideal setting we applied
the algorithm to the mizture of five speech signals that were each set to zero on
some small not overlapping time intervals of length 0.0061 seconds to make sure
that conditions (2) and (3) were satisfied. This ideal setting is not unlikely in
practice, as it will happen if only one of the speech sources is active at some given
time interval. Let sy, ...,s5 be the sources and set x1 = s1 + 1082 + 1.4s53 + 54 +
0.3s5, x1 = s1+382+1.453+54+0.3s5, 5 = 51 +3.0355+1.0353—4.9954+0.555,

the resulting miztures are observed on a time interval of 1.22 seconds. Con-

0.5,1

sider the choice of R = { 081

] (For a preliminary analysis on how to choose
R see next section).
The true values of the qr(i)’s are: 0.8333, 0.8342, 0.8046, 1.0715, 0.8783.

Note that qr(1) and qr(2) are very close to each other.

An histogram of the value distribution of R(Qr,e)) selecting € = 1072 s
shown in figure 2 top left, a detail is shown in figure 2 bottom left.

Similarly figure 2 top right shows the value distribution with a choice of
€ = 1073 and we see a detail of the distribution at the right bottom.

We can see that as € becomes smaller, the value distribution approximate the
sum of the delta functions centered at the qr(i)’s.

Note that even very minor separations in the slopes of s1 and s2 are resolved

in this ideal situations as the details at the bottom of figure 2 show.

13
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Figure 2: Value distribution of R(Qr,) and detail of the distribution for ¢ =
1072 (left) and for e = 1073 (right)

3 Cluster Detection Algorithm

In this section we estimate the number of sources given two observations and
we lay down the basis of the reconstruction algorithm. As we justify the as-
sumptions and heuristic behind our method, we will deduce several steps of the

algorithm that will be labeled as (A1), (A2) and so on.

First of all, we have to choose the matrix R in such a way that the peaks of
the value distribution of non zero values of #(Qg,c)) are enhanced when they

correspond to the values of the gg(i)’s.

If conditions (1), (2), (3) are fully satisfied and there is no noise, then any
choice of a non singular R such that its rows are not orthogonal to any of the

(a;, b;) is suitable, as this is sufficient to assure that all gr(¢)’s are finite, such

14



choice is the generic case, therefore we can expect that almost any R will allow

the detection of the sources.

In practice, when signals are not fully isolated anywhere, we need to select
R so that, for each (¢,w), the relative contribution in the numerator and de-
nominator of Qg (¢,w) due to each signal is as big as possible, since we do not
want to reduce, with our choice of R, the area of the regions where each signal
is "dominant”.

This already implies that the direction of both the row vectors of R must
be "far” from the direction of the vectors (b;, —a;), ¢ = 1,...,n, the orthogonal

vectors of the (a;, b;).

The specific value of each S; will change from point to point, therefore we can
only try to optimize the contribution of each direction determined by (b;, a;),
i =1,...,n. To make such statement rigorous, let v;, « = 1, ...,n be unit vectors

parallel to (b;,a;), and let ry = (R(1,1), R(1,2)) ro = (R(2,1),R(2,2)). Con-

. — . 2
sider the function F(r) = 3, ; (|<U“T2|)_ L<>U2”T>|) , where < a,b > denotes the
inner product of a and b.

Then the choice of the second row of the exploratory matrix can be reduced

to the solution of the following minimization problem:
(a) ming,F(r2), |ra] = 1.

We can then choose r; to be any slight perturbation of r9, such that |r; — 7| <

clv; — vj|, for all choices of i # j with ¢ << 1.

Clearly the exact directions associated to the (b;, a;)’s are not available as

15



they are what we are looking for, so in general the choice of such ”optimal”
matrix cannot be determined and the use of several exploratory matrices, each
enhancing a different source, is needed. This procedure can be done, but it

would complicate considerably the algorithm.

As this paper is meant to be an introduction to the basic ideas behind such
techniques, we restrict our attention to the case in which all (a;,b;) are in the
positive quadrant, as this case correspond to the most relevant applications in
speech processing in which the coefficients of the mixing matrix are positive

attenuation coefficients of the energy intensity.

Given the previous restriction, any fixed choice of R such that ry, ro are
properly contained in the positive quadrant does assure that there is a lower
bound on < w;,7; >, j = 1,2 for any possible v; in the positive quadrant, this

in turn gives an upper bound on the possible value of F(r;) in the optimization

1,0

problem (a). Note that the choice of R = { 01

] , that is the simple quotient
%, would reduce the resolution of any source s; such that (a;,b;) ~ (1,0) or
(a;, b)) = (0,1) since in the first case s; would have marginal contribution in

the denominator, and in the second case the signal would be marginal in the

numerator.

Definition: Given a data set F', let Fjg be the histogram of the values of F'

with bin size 8. A measure of the roughness of Fj is:

& [S(Fs(nB) — Fs(n— 1))
I(F8) = |Fs(nB)| + [Fs((n — 1)B)| + J

n=—oo

J is a parameter that has the effect of reducing the contribution of values of Fj

16



that are of the order of J. We can see in I(F, 3) a discrete modified version of

the roughness penalty integral [ {7,2\ used by Good and Gaskins in [GG].

With a slight abuse of notation denote by R(Qr,)) the data set given by
non-zero values of R(Q(g,))(t, w) with (¢,w) in the given time frequency do-

main.
We are ready now to write down the first step of our algorithm:

(A1) Slope Detection: Consider an exploratory matrix Ry with positive
rows bounded away from the vectors (1,0), (0,1). Compute Q (g, ) for some
€. Build a best estimation of the value distribution of R(Q(g,,)) choosing the
width § of the bins of the histogram of the values of R(Q(Ro,e)) s0 that the
roughness index I(R(Q(ry,e)), #) is minimized for 3 = . Detect the position of
the g, (7)’s (see next remark) and compute the corresponding slopes 2— The
number E of slopes detected is our estimation of the number of distinct sources

(in practice two sources withh very close slope may not be detected as distinct,

see example 2 and the discussion that follows it).

Remark 3.2: Because of the presence of J, "large” peaks of %(Q(g,,c))3
will be quite smooth. In practice we see that, when the speech time series are
sufficiently long (order of few seconds with sampling rate of 8192 Hz), a choice
of J & 100 is often sufficient to smoothen the major peaks. The smoothness
of the main peaks is actually so high when enough data are used, that we can
detect the position of the gg,(7)’s simply by the following procedure that detect

”large” local maxima:

17



Let F = R(Q(g,,e)) and consider the discrete function D(Fj3) = |Fz(nf3) —
F3((n —1)B)|. Let L = max D(F5) be the maximum local displacement. We
assume that a value x corresponds to a true gg(i) if Fz(x) is a local maximum
and if we can find y; and y» such that y; <z <y with [F5(z) — F5(y:)| > ¢L,
i=1,2 and F5(y) < Fz(z) for y € [y1, 2], y #x, ¢ >> 1.

This strategy would work only if the smoothness of the histogram is relatively

uniform on its domain, otherwise a very sharp main feature can produce a value

of L that is too large for less pronunced peaks.

There is an element of indetermination in the choice of ¢, we want at least
¢ > 1, but one may need larger values of ¢.

In any case we left aside this issue in the description of step Al since there
are several ways to choose the main features of an histogram and such choice is

part of a more general problem than the one treated in this paper.

We can now identify the regions where the identified sources are isolated.

(A2) Cluster Construction: For j = 1,...n, compute functions @; such
that Q;(t, w) = Q(gry.e)(t,w) if |R(Q(Ro,e)(t,w)) — qr, (§)| < B and Q;(t,w) =0
otherwise. Let G; = Supp(Q;) be the support of the Q;’s.

The G;’s are our estimates of the regions of the time-frequency plane where
the S;’s are isolated.

Suppose now that a total of n observations z; were available and let, to
make notation uniform, x = Ms where = (x1, ..., )%, s = (51, ..., 5p)t and M

is an n x n invertible matrix. Note that for each point in the time-frequency

18



domain M X (t,w) = S(t,w) where X(t,w) = (X1(t,w),..., X, (t,w))" and

S(t,w) = (S (t,w), ..., Sp(t,w))t. Assume that E = n, that is, assume that we

are able to identify isolated regions in time-frequency domain for all signals.
Then, given values (¢;,w;) such that (t;, w;) € G;, i = 1,...,n, the following

equalities hold:
(1) M~'X(t;,w;) = (0,0, ..., Si(t;, wy), ..., 0),

since at each (t;,w;) only S; is non-zero.
Each of the equalities (i) for i = 1, ...,n gives some conditions on the coeffi-

cients of M ~1, therefore we can now write the last two steps of our reconstruction

algorithm.

(A3) Constraints on Inverse Mixing Matrix: Choose points (¢;,w;) €
Gi, i = 1,....ks, let (p1,...,pn) be the rows of M1, for each p, k = 1,...,n

consider the systems:
(Br) {< pr, X (t;,w;) >=0, i £k}

Find non zero solutions py of (E;). Build the matrix M ! = [D1 vy D)

(A4) Reconstruction of the Sources: Apply M~"' to (z1,...,x,)t, then

(81, ey 8n)t = M (21, ..., z,)? is our estimate of the sources.

Each system (E}) is an underdetermined system of n — 1 equations in n
unknows (the coefficients of each py). Therefore each specific solution py of
(Ep) is a multiple of some row of M~! and M~ is a rescaled permutation of

the rows of M 1.
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Figure 3: Value distribution of R(Qr,) and detail of the distribution for ¢ =
1072 (left) and for e = 1073 (right).

In other words M ' = AS(M~') where A is a non-singular diagonal matrix

and S(M~1) is a permutation of the rows of M ~!.

We mentioned several times up to now that in general signals may be dom-
inant in some regions of the transformed domain, but not fully separated. Ex-
perimental work shows that for real speech signals we cannot achieve separation
of two sources if their corresponding slopes are very close unlike the case when

there are fully isolated regions, as we can see in the following example:

Ezxample 2: let us work out example 1 again without setting artificially the
signals equal to zero on small windows.
Figure 8 shows that the histogram of the value distribution with optimal bin

size does not allow to distinguish qr(1) and qr(2) for e = 1072, but it achieves
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Figure 4: Value distribution of R(Qr,) and detail of the distribution for ¢ =
1072 (left) and for e = 102 (right) when the intensity of the sources is changed.

some separation for e = 1073 (see detail at the bottom right).

On the other hand the same analysis in which s1 and so are replaced by
51 = 4s1 and sy = 22 fails to show any discrimination between the two sources
as shown by the histograms in figure 4. Note that the directions of the slopes of

the sources was not changed.

Remark 3.3: Example 2 suggests that closeness of the slopes and the degree
of dominance of signals in small regions are related in achieving separation, and
we wonder to which extent the imaginary part threshold can help in enhancing
the resolving power of the algorithm. Clearly the specific choice of the threshold
is a crucial factor in achieving optimal resolution. But the possibility of using

very small thresholds is limited in practice also by the finite sample size. We
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Figure 5: Observations.

need in this case to control € so that the optimal roughness index I(R(Q (g,e), B)

is always below some given constant. Further work is in progress on these issues.

It turns out that the previous simple algorithm performs well also for real

speech signals when the slopes of the sources are well separated.

Ezxample 3: Consider the case in which the four speech signals sy, s2, s3 and
0.2,0.6,0.18,0.3
0.2,0.22,0.25,0.5
0.65,0.2,0.4,0.6
0.5,0.99,0.3,0.4
on a time interval of one second. Let so(t) = s1(t + 7) with 7 = 0.073, that

s4 are mized with the mixing matrix M =

is two of the sources are shifted versions of each other. We show the resulting
miztures x;, 1 = 1,...,4 in figure 5.

Assume we know that all coefficients of M are positive, then we can use

2,7

the exploratory matrix R = [ 1’1 } and apply directly step Al to the first
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two miztures with a choice of threshold ¢ = 1072, The value distribution with
optimized bin size B = 0.0054 is shown in figure 6, in figure 7 we show the graph

of the index computed for decreasing values of f = %, n = 10, ..., 1000.

The estimates of qr(i)’s corresponding to the magjor peaks of the histograms
are in increasing order, 8.3475, 4.5020, 4.9025, 5.1275. The true values are:
3.8415, 4.5000, 4.9070, 5.1250, the relative error is less than 2 x 1073 for all
sources. Step A2 gives us the clusters whose details are shown in figure 8

Before applying step A8 we preprocessed the clusters so that we retain only
the non zero values of the G;’s that are in small rectangular regions where there
is very high density of non zero elements, since we expect regions where each
signal is isolated to have positive area.

This heuristic adjustment reduces in practice the chance of selecting in step
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Figure 9: Estimates of, clockwise from top left, s4, s3, so and s

A8 points that do not belong to positive area regions where signals are isolated.
Then we apply step A8 to randomly chosen points in these dense regions of
—1.8097, —1.8046, —1.6412, —1.8021
0.8726,0.8553,0.7969, 0.8327

. r—1
the clusters Gi and we get M™" =14 yo09 0 4771, —0.5094, —0.4504
1.0000, 1.0000, 1.0000, 1.0000

where all last components of each row were chosen equal to one. Finally step
A4 gives the reconstructions shown in figure 9, rescaled so that they have unit
I* norm .
Compare these reconstructions to the rescaled original sources shown in figure
10. All reconstructions have a signal to noise ratio between 16 and 22 decibel.
We would like to stress that, while on one hand the choice of miring matriz

is somehow non degenerate since the slopes of the sources are “far” from each
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Figure 10: Original Sources, clockwise from top left: sq, s2, s3, s4

other and the norm of a;s;, b;s; is of the same order of magnitude fori =1,...,4,
on the other hand the length of the time interval used for our analysis is only
one second as opposed to several hundred seconds in traditional ICA algorithms.
It seems likely that a long time interval will benefit the accuracy of our algorithm
as well, since a long time interval increases the chance of having areas where
signals are almost isolated as in example 1 (for our case study of speech signals,

different people, hopefully, start to speak at different times...).

We believe that the quotient projections algorithm is only the first step of a
class of non-linear projection algorithms that make full use of the interplay of
real and imaginary parts of homogeneous quotients. In a forthcoming paper we

discuss such more general quotient projections algorithms and we expand the
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theoretical basis of the method.
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