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Abstract

The feedback control of border collision bifurcations is considered for two-dimensional
discrete-time systems. These are bifurcations that can occur when a fixed point of a
piecewise smooth system crosses the border between two regions of smooth operation.
The goal of the control effort is to modify the bifurcation so that the bifurcated steady
state is locally unique and locally attracting. In this way, the system’s local behavior
is ensured to remain stable and close to the original operating condition. This is in
the same spirit as local bifurcation control results for smooth systems, although the
presence of a border complicates the bifurcation picture considerably. Indeed, a full
classification of border collision bifurcations isn’t available, so this paper focuses on
the more desirable (from a dynamical behavior viewpoint) cases for which the theory
is complete. The needed results from the analysis of border collision bifurcations are
succinctly summarized. The control design is found to lead to systems of linear inequal-
ities. Any feedback gains that satisfy these inequalities is then guaranteed to solve the
bifurcation control problem. The results are applied to an example to illustrate the
ideas.

1 Introduction

The purpose of this paper is to study the feedback control of border collision bifurcations in
two-dimensional piecewise smooth maps. Similar control problems have been considered for
one-dimensional systems by the authors in [1, 2]. The study of border collision bifurcations
in two-dimensional systems is significantly more complicated than for one-dimensional sys-
tems. Indeed, a full classification of border collision bifurcations is not yet available. Thus,
we focus on designing feedback control laws that can be shown to ensure that the system
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undergoing a border collision bifurcation will experience a safe (locally stable) form of such
bifurcations. To achieve this, we collect analysis results from the literature on these more
desirable bifurcations, giving details only on those for which clear and proven sufficient con-
ditions exist. The control laws considered allow for actuation on either side of a border of
a piecewise smooth system, or on both sides, or on both sides with the restriction that the
same control gains apply on both sides of the border.

Continuous piecewise-smooth dynamical systems have been found to undergo special bi-
furcations along the borders between regions of smooth dynamics. These have been named
border collision bifurcations by Nusse and Yorke [3], and had been studied in the Russian
literature under the name C-bifurcations by Feigin [4]. Di Bernardo et al. [5] brought Fei-
gin’s results in a more complete form to a wider audience while putting them in the context
of modern bifurcation analysis. Border collision bifurcations include bifurcations that are
reminiscent of the classical bifurcations in smooth systems such as fold and period doubling
bifurcations.

Despite this resemblance, the classification of border collision bifurcations (BCB) is far
from complete, and certainly very preliminary in comparison to the results available in the
smooth case. The classification is complete only for one-dimensional discrete-time systems [6,
7]. Concerning the two-dimensional piecewise smooth maps, Banerjee and Grebogi [8] propose
a classification for a class of two-dimensional maps undergoing border-collision by exploiting
a normal form. It has also recently been shown by Banerjee, Yorke and Grebogi [9] that the
dynamics of two-dimensional piecewise-smooth (PWS) maps may feature so-called robust
chaotic dynamics without parameter windows of periodic behavior. Dutta et al. [10] presented
a novel analysis showing that in border collision bifurcation in which multiple coexisting
attractors are created simultaneously cause the intriguing phenomenon that in the presence
of arbitrarily small noise the bifurcations lead to fundamentally unpredictable behavior of
orbits as a system parameter is varied slowly through its bifurcation value. Di Bernardo et al.
[11] analyzed a so-called corner-collision bifurcation (which is a border-collision bifurcation) in
piecewise-smooth systems of ordinary differential equations. For higher dimensional systems,
currently the known results are limited to several rather general observations.

Since the discovery of border collision bifurcations, several researchers have studied bifur-
cations in PWS systems [3, 12, 13, 14, 15, 8, 7, 16, 5, 17, 18]. PWS systems occur as models
for switched systems, such as power electronic circuits (e.g., [15]) and impacting mechani-
cal systems (e.g., [19, 20, 21, 22, 17, 18]). They are usually modeled by piecewise smooth
maps. PWS discrete-time maps are also used to model systems that are inherently discrete.
For example, it has been recently shown that simple computer networks with Transmission
Control Protocol (TCP) connections and implementing a Random Early Detection (RED)
algorithm at the router end can be modeled as PWS maps [23]. Other examples of PWS dis-
crete time systems which have been shown to exhibit BCBs can be found in economics (e.g.,
[24]), biology (e.g., [25]) and in controlled linear discrete time systems with PWS nonlinear-
ity (e.g., [26]) . PWS systems can of course exhibit classical smooth bifurcations, for example
at a fixed point in a neighborhood of which the system is smooth. What is of interest there-
fore is the study of bifurcations in PWS systems that occur at the boundaries between regions
of smooth behavior, or that involve motions that include more than one such region.

In this paper, the goal is to obtain feedback control laws to ensure a less severe form of
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border collision bifurcation than could otherwise occur. Since a full classification of possible
border collision bifurcations isn’t available, it is crucial that sufficient conditions that are
known for the desirable border collision bifurcations be summarized clearly.

It should be emphasized that, while this paper focuses on maps, the results have impli-
cations for switched continuous-time systems as well. Maps provide a concise representation
that facilitates the investigation of system behavior and control design. They are also the
natural models for many applications, as mentioned above. Even for a continuous piecewise
smooth system, a control design derived using the map representation can be translated to
a continuous controller either analytically or numerically.

The only studies we know of on control of BCBs are Di Bernardo [27], Di Bernardo and
Chen [28] and our work [1, 2]. In [27, 28], feedbacks functioning only on the unstable side of
the border were sought to modify the bifurcation from one type to another type using the
classification scheme of Feigin. The control gains were chosen by trial and error. In [1, 2],
we considered design of feedbacks that achieve safe BCBs for one-dimensional discrete-time
systems. This could entail feedback on either side of the border or on both sides. Sufficient
conditions for stabilizing control gains were found analytically.

This paper is organized as follows. In Section 2, we summarize sufficient conditions for
safe border collision bifurcation in two dimensional maps. In Section 3, we develop feedback
control laws to modify the border collision bifurcation to one that is less severe. In Section 4,
the results are applied to an example model system that has been used in studies of cardiac
nodal conduction time.

2 Sufficient Conditions for Safe Border Collision Bifur-

cations in Two-Dimensional Systems

In this section, we summarize the known sufficient conditions for the simplest safe border
collision bifurcations, i.e., for border collision bifurcations that involve a locally stable fixed
point leading to a locally unique stable fixed point or a locally unique stable period-two orbit
after the border. More precisely, we summarize only those cases for which it has been proven
that the bifurcated fixed point or period-two orbit is part of a locally unique bifurcated family
of orbits. That is, no other periodic or chaotic steady state orbits emerge in the cases we
discuss. We focus on these simple supercritical cases since in the control design part of the
paper, our goal will be to find control laws that render the system’s operation to satisfy one
of the sufficient conditions.

2.1 General classification

The investigations into border collision bifurcations phenomena were initiated by mathemati-
cians looking into the dynamics of piecewise smooth (PWS) maps [4, 3]. Later the devel-
opment benefited from the observation that most power electronic circuits yield piecewise
smooth maps under discrete-time modeling, and nonsmooth bifurcations are quite common
in them [15].

In a two-dimensional PWS map, the stability of the fixed points is determined by the
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eigenvalues or, equivalently, by the trace and the determinant of the corresponding Jacobian
matrices. There have been two approaches in developing a classification of the border collision
bifurcations. The work of the Russian mathematician Feigin [4] (which was brought to the
English-speaking world in [5]) considered the existence of period-1 and period-2 orbits before
and after border collision, and classified the various cases depending on the number of real
eigenvalues greater than 1 or less than −1. This resulted in a powerful strategy of giving
a general classification of border-collision bifurcations in n-dimensional piecewise smooth
systems. However, this general classification of BCBs does not provide detailed classification
of various border collision bifurcations which is needed in developing stabilizing feedback
control laws.

Other authors tried to tackle this problem with reference to one- and two-dimensional
maps by using other techniques of nonlinear dynamics. For example [16, 8] looked at the
asymptotically stable orbits (including chaotic orbits) before and after border collision, and
proved the existence of various types of BCBs, depending on the relationship of the trace
and the determinant of the Jacobian matrix on the two sides of the border.

Consider a PWS map that involves only two regions of smooth behavior:

f(x, y, µ) =

{
fA(x, y, µ), (x, y) ∈ RA

fB(x, y, µ), (x, y) ∈ RB
(1)

where µ is the bifurcation parameter and RA and RB are regions of smooth behavior. Since
the system is two-dimensional, the border is a curve separating the two regions of smooth
behavior and is given by x = h(y, µ). The map f : �2 × � → �2 is assumed to be PWS: f
depends smoothly on (x, y) everywhere except at the border where it is continuous in (x, y).
It is also assumed that f depends smoothly on µ everywhere, and the Jacobian elements are
finite at both sides of the border.

Let (x0(µ), y0(µ)) be a possible path of fixed points of f ; this path depends continuously
on µ. Suppose also that the fixed point hits the border at a critical parameter value µb.

Since the nature of border collision bifurcations depends on the local character of the map
in the neighborhood of the fixed point, it suffices to look at the piecewise linear approximation
at the two sides of the border. It has been shown that a normal form for the PWS system
(1) in the neighborhood of a fixed point on the border can be expressed as [3, 8, 16](

xk+1

yk+1

)
= G2(xk, yk, µ)

=




(
τL 1
−δL 0

)
︸ ︷︷ ︸

JL

(
xk

yk

)
+

(
1
0

)
µ, xk ≤ 0

(
τR 1
−δR 0

)
︸ ︷︷ ︸

JR

(
xk

yk

)
+

(
1
0

)
µ, xk ≥ 0

(2)

where τL is the trace and δL is the determinant of the Jacobian matrix JL of the system at
a fixed point in RA := {(x, y) ∈ �2 : x ≤ 0} and close to the border and τR is the trace and
δR is the determinant of the Jacobian matrix JR of the system evaluated at a fixed point in
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RB := {(x, y) ∈ �2 : x ≥ 0} near the border. The normal form map G2(·, ·, ·) can be used
to study local bifurcations of the original PWS map [8, 16] when a fixed point collides with
the border.

Denote by L∗ := (x∗
L, y∗

L) ∈ RA and R∗ := (x∗
R, y∗

R) ∈ RB possible fixed points of the
system near the border. Then from the normal form (2), the fixed points are given by:

(x∗
L, y∗

L) =

(
µ

1 − τL + δL

,
−µδL

1 − τL + δL

)
, (3)

(x∗
R, y∗

R) =

(
µ

1 − τR + δR
,

−µδR

1 − τR + δR

)
. (4)

For the fixed point L∗ to actually occur, one needs µ
1−τL+δL

≤ 0, otherwise L∗ is in RB

and is denoted as L̄∗, a virtual fixed point. Similarly, for R∗ to actually occur, one needs
µ

1−τR+δR
≥ 0. Otherwise, R∗ is in RA and is denoted as R̄∗. The stability of the fixed points

is determined by the eigenvalues of the corresponding Jacobian matrix

λ1,2 =
1

2

(
τ ±

√
τ 2 − 4δ

)

The results on BCBs in two-dimensional systems available in the literature require that
|δL| < 1 and |δR| < 11. Therefore, in the control design phase of this work we will need to
ensure that the closed-loop system satisfies this condition (along with other conditions to be
presented below).

There can be six types of fixed points in a linearized dissipative two-dimensional discrete
system when the determinant is positive (Table 1). The fixed points in two sides of a border
collision may be any of these six types.

The following result is very useful.

Proposition 1 When the eigenvalues at both sides of the border are real, if an attracting
orbit exists, it is unique (i.e., coexisting attractors cannot occur).

Proof:
(a) If the fixed points in both sides are saddles, the attractor can be a period-2 or chaos,

both of which occur on the unstable manifolds of the saddles. Now, The stable eigenvector
at R∗ has a positive slope m1 = (−δR/λ1R), and the unstable eigenvector at L∗ has a nega-
tive slope given by (−δL/λ1L). Therefore a heteroclinic intersection must exist. There is a
mathematical result, called the Lambda Lemma [30], which says that if a curve C crosses
a stable manifold transversely, then each point of the unstable manifold of the same saddle
fixed point is a limit point of

⋃
n>0 fn(C). Since the unstable manifold of L∗ has transverse

intersections with the stable manifold of R∗, by the Lambda Lemma we conclude that the
two unstable manifolds come arbitrarily close to each other. Therefore the attractor must be
unique.

1It has been shown that attractors can exist if the determinant in one side is greater than unity in
magnitude, provided that determinant in the other side is smaller than unity. The situation |δL| > 1 and
δR = 0 (which occurs in some classes in power electronic systems) has been treated in [29].
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Table 1: The possible types of fixed points of the normal form map.

Type eigenvalues condition
For positive determinant

Regular attractor real, 0<λ1, λ2 <1 2
√

δ<τ <(1 + δ)
Regular saddle real, 0<λ1 <1, λ2 >1 τ >(1 + δ)

Flip attractor real, −1<λ1 <0,−1<λ2 <0 −(1 + δ)<τ <−2
√

δ
Flip saddle real, −1<λ1 <0, λ2 <−1 τ <−(1 + δ)
Spiral attractor complex, |λ1|, |λ2|<1

(a) Clockwise spiral 0<τ <2
√

δ

(b) Counter-clockwise spiral −2
√

δ<τ <0
For negative determinant
Flip attractor −1<λ1 <0, 0<λ2 <1 −(1 + δ)<τ <(1 + δ)
Flip saddle λ1 >1,−1<λ2 <0 τ >1 + δ
Flip saddle 0<λ1 <1, λ2 <−1 τ <−(1 + δ)

(b) If the fixed points in both sides are stable and eigenvalues are real, for µ < 0 initial
conditions in RA converge on the stable manifold associated with the larger eigenvalue, and
then converge on to L∗ along that eigenvector. All initial conditions in RB see the virtual
fixed point R̄∗ which is in RA, and move to RA along a stable manifold. Now, it has been
shown in [16] that this stable manifold folds at the intersection with the x-axis, and this
ensures the existence of a transverse heteroclinic intersection with a stable manifold of L∗.
This implies that the stable manifolds of L∗ and R̄∗ come arbitrarily close to each other, and
therefore all initial conditions in RB also converge on to L∗. The same argument applies for
µ> 0, and trajectories starting from all initial conditions converge on the stable fixed point
L∗.

(c) If the fixed point in RA is stable and that in RB is unstable, then for µ < 0 a mechanism
like case (b) operates and for µ > 0 a mechanism like case (a) operates, preventing the
occurrence of coexisting attractors.

Next, we summarize the known cases in which a locally unique fixed point before the
border yields, after the border, either a new locally unique fixed point or a locally unique
period-2 attractor. The discussion begins with the case in which the system determinants
are positive on both sides of the border, followed by the case in which the determinants are
negative on both sides of the border, ending with the cases in which the determinants on
both sides of the border are of opposite signs.

2.2 The case of positive determinants on both sides of the border

Scenario A. Locally unique stable fixed point on both sides of the border

If
−(1 + δL) < τL < (1 + δL) and − (1 + δR) < τR < (1 + δR) (5)

then a stable fixed point persists as the bifurcation parameter µ is increased (or decreased)
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through zero. The possible changes in the type of fixed point for the positive determinants
case, and the resultant system behavior are summarized in Table 2. These border collision
events can happen either with or without extraneous periodic orbits emerging from the critical
point. This table summarizes the present knowledge about the possibility of extraneous
bifurcated orbits (EBO) occurring either before, after, or on both sides of the border for the
various cases. “Possible” means examples exist where EBOs occur at bifurcation. “Possible∗”
means that we know of no such examples, but also no proof has been reported that EBOs do
not occur. The cases where EBOs are known not to occur (i.e., the fixed points on both sides
of the border are locally unique and stable) are those in which the eigenvalues are real both
before and after the border (see Proposition 1). This happens when the fixed point changes
from: 1) regular attractor to flip attractor 2) regular attractor to regular attractor 3) flip
attractor to regular attractor and 4) flip attractor to flip attractor, as µ is varied through its
critical value (see cases 1-4 in Table 2).

Scenario B. Supercritical period doubling BCB

When the determinants on both sides of the border are positive, there are two regions in
the parameter space where period doubling BCB occurs (a locally unique stable fixed point
leads to an unstable fixed point plus a locally unique attracting period two orbit). These
scenarios of interest in this paper result from either of two sets of conditions, and is therefore
divided into Scenario B1 and Scenario B2 as follows.

Scenario B1. This occurs if

−(1 + δL) < τL < −2
√

δL, (6)

τR < −(1 + δR), (7)

and τRτL < (1 + δR)(1 + δL). (8)

Scenario B2. This occurs if

2
√

δL < τL < (1 + δL), (9)

τR < −(1 + δR), (10)

and τRτL > −(1 − δR)(1 − δL). (11)

2.3 The case of negative determinants on both sides of the border

If the determinants on both sides of the border are negative, then the eigenvalues are real.
Thus if the fixed point is stable, it is locally unique (see Proposition 1). The condition for
locally unique stable fixed point on both sides of the border is given in Scenario C below.

Scenario C. Locally unique stable fixed point on both sides of the border

If the determinants on both sides of the border are negative, a locally unique stable fixed
point leads to a locally unique stable fixed point as µ is increased through zero if

−(1 + δL) < τL < (1 + δL) and − (1 + δR) < τR < (1 + δR). (12)
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Table 2: For the parameter range given by (5) (the positive determinants case), a stable
fixed point yields a stable fixed point after the border crossing. However, this can happen
either with or without extraneous periodic orbits (EBO) emerging from the critical point.
“Possible” means examples exist where EBOs occur at bifurcation. “Possible∗” means that
we know of no such examples, but also no proof has been reported that EBOs do not occur.

Case no. Type of fixed points Parameter space region Possibility of EBOs

1 Regular attractor to
flip attractor

2
√

δL <τL <(1 + δL),
−(1 + δR)<τR <−2

√
δR

Not Possible

2 Regular attractor to
Regular attractor

2
√

δL <τL <(1 + δL),
2
√

δR <τR <(1 + δR)
Not Possible

3 Flip attractor to
Regular attractor

−(1 + δL)<τL < −2
√

δL,
2
√

δR <τR <(1 + δR)
Not Possible

4 Flip attractor to
Flip attractor

−(1 + δL)<τL < −2
√

δL,
−(1 + δR)<τR <−2

√
δR

Not Possible

5 Regular attractor to
spiral attractor

2
√

δL <τL <(1 + δL),
−2

√
δR <τR <2

√
δR

Possible∗

6 Spiral attractor to
Regular attractor

−2
√

δL <τL <2
√

δL,
2
√

δR <τR <(1 + δR),
Possible∗

7 Flip attractor to
Spiral attractor

−(1 + δL)<τL <−2
√

δL,
−2

√
δR <τR <2

√
δR

Possible

8 Spiral attractor to
Flip attractor

−2
√

δL <τL <2
√

δL,
−(1 + δR)<τR <−2

√
δR

Possible

9 Clockwise spiral to
Anticlockwise spiral

0<τL <2
√

δL,
−2

√
δR <τR <0

Possible

10 Anticlockwise spiral to
Clockwise spiral

−2
√

δL <τL <0,
0<τR <2

√
δR

Possible

11 Clockwise spiral to
Clockwise spiral

0<τL <2
√

δL,
0<τR <2

√
δR

Possible∗

12 Anticlockwise spiral to
Anticlockwise spiral

−2
√

δL <τL <0,
−2

√
δR <τR <0

Possible∗
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Also, the condition for supercritical period doubling border collision with no EBOs is:

Scenario D: Supercritical border collision period doubling

If

−(1 + δL) < τL < (1 + δL), (13)

τR < −(1 + δR), (14)

τRτL < (1 + δR)(1 + δL), (15)

and τRτL > −(1 − δR)(1 − δL). (16)

then a locally unique stable fixed point to the left of the border for µ < 0 crosses the border
and becomes unstable and a locally unique period two orbit is born as µ is increased through
zero.

2.4 The case of negative determinant to the left of the border and
positive determinant to the right of the border

If the determinant is negative to the left of the border, then the eigenvalues are real. If the
determinant is positive to the right of the border, then the eigenvalues are real if τ 2

R > 4δR.
Thus, a sufficient condition for having a locally unique fixed point leading to a locally unique
fixed point as µ is varied through the critical value is given as:

Scenario E. Locally unique stable fixed point on both sides of the border

−(1 + δL) < τL < (1 + δL), (17)

−(1 + δR) < τR < (1 + δR), (18)

and τ 2
R > 4δR (19)

The conditions can be divided into two cases:

Scenario E1. This occurs if

−(1 + δL) < τL < (1 + δL) (20)

and − (1 + δR) < τR < −2
√

δR (21)

Scenario E2. This occurs if

−(1 + δL) < τL < (1 + δL) (22)

and 2
√

δR < τR < (1 + δR) (23)

2.5 The case of positive determinant to the left of the border and
negative determinant to the right of the border

If the determinant is negative to the right of the border, then the eigenvalues are real. If the
determinant is positive to the left of the border, then the eigenvalues are real if τ 2

L > 4δL.
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Thus, a sufficient condition for having a locally unique fixed point leading to a locally unique
fixed point as µ is varied through the critical value is given as:

Scenario F. Locally unique stable fixed point on both sides of the border

−(1 + δL) < τL < (1 + δL), (24)

τ 2
L > 4δL, (25)

and − (1 + δR) < τR < (1 + δR). (26)

The conditions can be divided into two cases:

Scenario F1. This occurs if

−(1 + δL) < τL < −2
√

δL (27)

and − (1 + δR) < τR < (1 + δR) (28)

Scenario F2. This occurs if

2
√

δL < τL < (1 + δL) (29)

and − (1 + δR) < τR < (1 + δR) (30)

Note that currently there are no known conditions for supercritical border collision period
doubling that occurs without EBOs when the determinants on both sides of the border are
of opposite signs.

Figures 1 and 2 is a compact representation of Scenarios A-F. They show the parameter
ranges for τL, δL, τR and δR such that the fixed points are unique attractors on both sides of
the border (in these figures, δL and δR are fixed whereas τL and τR are variables).

2.6 Undesirable and dangerous bifurcations

From the literature, we can also identify several bifurcations that lead to a collapse of the
piecewise smooth system. Our interest here is in control to achieve safe (not dangerous)
BCBs, but it is worthwhile summarizing some of the known conditions for dangerous BCBs.
The “dangerous bifurcations” considered begin with a system operating at a stable fixed
point on one side of the border, say the left side. The main “dangerous bifurcations” that
can result from border collision are:

Border collision pair bifurcation: This occurs if

−(1 + δL) < τL < (1 + δL)

and τR > (1 + δR)

where a stable fixed point and an unstable fixed point merge and disappear as µ is
increased through zero. This is analogous to saddle node bifurcations in smooth maps.
The system trajectory diverges for positive values of µ since no local attractors exist.
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Figure 1: No bifurcation occurs as µ is increased (decreased) through zero in the shaded
regions. Only the path of the fixed point changes at µ = 0. (a) 0 < δL < 1 and 0 < δR < 1
(b) −1 < δL < 0 and −1 < δR < 0.
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Figure 2: No bifurcation occurs as µ is increased (decreased) through zero in the shaded
regions. Only the path of the fixed point changes at µ = 0. (a) 0 < δL < 1 and −1 < δR < 0
(b) −1 < δL < 0 and 0 < δR < 1.
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Subcritical border collision period doubling: This occurs if

−(1 + δL) < τL < (1 + δL),

τR < −(1 + δR),

and τRτL > (1 + δR)(1 + δL).

Here a bifurcation from a stable fixed point and an unstable period-2 orbit to the left
of border to an unstable fixed point to the right of the border occurs as µ is increased
through zero.

In addition, there are certain BCBs that, while not causing a catastrophic collapse of the
system, may lead to undesirable system behavior. These include the following, conditions for
which are given in [8, 16].

Stable fixed point leading to stable fixed point plus EBOs: This is an instance of
multiple attractor bifurcation. In such a BCB, multiple attractors may occur on either
side of the border or both sides of the border in addition to the stable fixed points.
Conditions for this type of BCB are not currently available. Two examples of this are
given in Section 3.

Supercritical border collision period doubling: Although supercritical period dou-
bling is not classified as “dangerous bifurcation,” it is undesirable in some applications.
(see Section 4 below for an example.)

Stable fixed point leading to chaos: This is also called instant chaos where chaotic
behavior develops following border collision.

These are the situations that would require control. Next, we present the methodologies
of controlling such undesirable and dangerous bifurcations.

3 Control of BCB in PWS Two-Dimensional Maps

In the remainder of the paper, control of BCBs in PWS maps of dimension two is discussed.
The analysis leads to sufficient conditions on the control gains that are in the form of systems
of linear inequalities. Software packages such as MATLAB have standard ways of checking
for existence of solutions to such systems. Indeed, determining feasibility of constraints is a
standard first step in solving linear programming problems.

Consider a general 2-D PWS map of the form

f(x, y, µ) =

{
fA(x, y, µ), (x, y) ∈ RA

fB(x, y, µ), (x, y) ∈ RB
(31)

where µ is the bifurcation parameter and RA, RB are two regions of smooth behavior sepa-
rated by a smooth curve called the border — x = h(y, µ). The map f(·, ·, ·) is assumed to

be PWS: fA(x, y, µ) :=

(
fA1(x, y, µ)
fA2(x, y, µ)

)
is smooth on RA, fB(x, y, µ) :=

(
fB1(x, y, µ)
fB2(x, y, µ)

)
is
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smooth on RB and f is continuous in (x, y) and depends smoothly on µ everywhere. Let
(x0(µ), y0(µ)) be a possible path of fixed points of f ; this path depends continuously on µ.
Suppose also that the fixed point hits the border at a critical parameter value µb. Assume
without loss of generality that µb = 0. Thus, (x0(0), y0(0)) = (xb, yb). Suppose that the
coordinate system is chosen such that (xb, yb) = (0, 0).

Expanding (31) in a Taylor series near the fixed point (0, 0, 0) gives

f(x, y, µ) =




JA

(
x
y

)
+

(
α1

α2

)
µ + HOT, (x, y) ∈ RA

JB

(
x
y

)
+

(
α1

α2

)
µ + HOT, (x, y) ∈ RB

(32)

where JA is the Jacobian of f at (x, y) ∈ RA close to (0, 0, 0), JB is the Jacobian of f at

(x, y) ∈ RB close to (0, 0, 0) and

(
α1

α2

)
is the derivative of f with respect to µ, and HOT

denotes higher order terms. The quantities in (32) are thus:

JA = lim
(x,y)→(0−,0)




∂fA1(x, y, 0)

∂x

∂fA1(x, y, 0)

∂y
∂fA2(x, y)

∂x

∂fA2(x, y, 0)

∂y


 , (33)

JB = lim
(x,y)→(0+,0)




∂fB1(x, y, 0)

∂x

∂fB1(x, y, 0)

∂y
∂fB2(x, y)

∂x

∂fB2(x, y, 0)

∂y


 , (34)

and

(
α1

α2

)
= lim

(x,y)→(0,0)




∂fA1(x, y, 0)

∂µ
∂fA2(x, y, 0)

∂µ


 = lim

(x,y)→(0,0)




∂fB1(x, y, 0)

∂µ
∂fB2(x, y, 0)

∂µ


 . (35)

Note that the limit in (35) is independent of the direction of approach to the origin since f
is smooth in µ.

The fact that the normal form for BCBs contains only linear terms in the state leads one to
seek linear feedback controllers to modify the system’s bifurcation characteristics. The linear
feedback can either be applied on only one side of the border or on both sides of the border.
Both possibilities are considered below. The issue of which type of actuation to use and with
what constraints is a delicate one. There are practical advantages to applying a feedback on
only one side of the border, say the stable side. However, this requires knowledge of where the
border lies, which is not necessarily available in practice. The purpose of pursuing stabilizing
feedback acting on both sides of the border is to ensure robustness with respect to modeling
uncertainty. This is done below by investigating the use of simultaneous stabilization as an
option — that is, controls are sought that function in exactly the same way on both sides
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of the border, while stabilizing the system’s behavior. Not surprisingly, the conditions for
existence of simultaneously stabilizing controls are more restrictive than for the existence of
one sided controls.

The notion of applying different controls on the two sides of the border was previously
considered by Bernardo [27]. This method provides some flexibility in controlling both sides
of the border to any desirable behavior, but knowledge of the border is needed in the design.
Here, the concept of applying the control to the stable side of the border only is also consid-
ered. This method will be shown to facilitate stabilization of the system to a period-2 orbit
after the BCB in cases where the uncontrolled system bifurcates to an unstable fixed point
or to a chaotic attractor.

All the control laws are developed based on the map linearizations as the fixed point is
approached on both sides of the border. It is important to emphasize that we do not assume
the system to be in normal form. This alleviates two problems: First, by not requiring the
system to be in normal form, we need not include state transformations in the design of
control laws except for the transformation setting the border to lie on the y-axis. Second,
simultaneous control can be considered directly in a natural way. (Recall that in this paper
simultaneous control occurs when we assume that a single feedback law applies on both sides
of the border. If a normal form were used, then because two different linear transformations
would be needed on both sides of the border to achieve the normal form, a simultaneous
feedback in physical coordinates would not be simultaneous in normal form coordinates, and
keeping track of the difference would be highly unwieldy.) Consider a general two-dimensional
piecewise affine map

f(x, y, µ) =




(
a11 a12

a13 a14

)
︸ ︷︷ ︸

JL

(
x
y

)
+

(
α1

α2

)
µ, (x, y) ∈ RL

(
a21 a22

a23 a24

)
︸ ︷︷ ︸

JR

(
x
y

)
+

(
α1

α2

)
µ, (x, y) ∈ RR

(36)

where µ is the bifurcation parameter and f is assumed continuous in �2 but nonsmooth
at the border separating RL and RR. Without loss of generality, let the border separating
the two regions of smooth behavior be x = 0, i.e., RL = {(x, y) ∈ �2 : x ≤ 0} and
RR = {(x, y) ∈ �2 : x > 0}. Since the map f is not differentiable at the border x = 0,
JL �= JR. The continuity of f at the border implies that the second column of JL equals the
second column of JR, i.e., a12 = a22 := a2 and a14 = a24 := a4. Let τL :=trace(JL) = a11 +a4,
δL :=det(JL) = a11a4 − a2a13, τR :=trace(JR) = a21 + a4 and δR :=det(JR) = a21a4 − a2a23.

Remark 1 If the border is not x = 0 (without loss of generality, it can be assumed to pass
through the origin), it can be transformed to x = 0 by introducing a shift in the x-variable:
x̄ = x− h(y, µ) and leaving y unchanged: ȳ = y. Then in the (x̄, ȳ) coordinates, x̄ = 0 is the
border. It is assumed that this transformation has been done before the linearizations on both
sides of the border were calculated (see [8]).

Note that the map (36) in general represents the linearizations of a two-dimensional PWS
map near a fixed point on the border separating two regions of smooth behavior RL and RR
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as shown above. System (36) undergoes a variety of border collision bifurcations depending
on the values of the parameters τL, δL, τR and δR as mentioned above. The fixed points of
the map (36) on both sides of the border are given by

(x∗
L, y∗

L) =

(
(α1 − α1a4 + a2α2)µ

1 − τL + δL
,
(a13α1 + α2 − α2a11)µ

1 − τL + δL

)
,

(x∗
R, y∗

R) =

(
(α1 − α1a4 + a2α2)µ

1 − τR + δR
,
(a23α1 + α2 − α2a21)µ

1 − τR + δR

)
.

Assume that α1 − α1a4 + a2α2 �= 0 so that the fixed point does not move along the border
as µ is varied through zero. Without loss of generality, assume α1 − α1a4 + a2α2 > 0 (if
α1 − α1a4 + a2α2 < 0, just replace µ by −µ).

Below, the Jury test for second order systems is recalled (see, for instance [31]) which
will be used in the sequel. It gives necessary and sufficient conditions for Schur stability of
characteristic polynomials of degree two.

Lemma 1 (Jury’s Test for Second Order Systems [31]).
A necessary and sufficient condition for the zeros of the polynomial

p(λ) = η2λ
2 + η1λ + η0 (37)

(η2 > 0) to lie within the unit circle is

p(1) > 0, p(−1) > 0 and |η0| < η2 (38)

Note that for PWS maps of dimension two or higher, having the eigenvalues of the Ja-
cobians on both sides of the border within the unit circle does not imply that the fixed points
are the only attractors as µ is increased from negative values to positive values. In some
situations, higher periodic attractors exist on one side or both sides of the border in addition
to the stable fixed points. There is continuing effort by researchers to completely characterize
the border collision bifurcations that occur in this parameter region when the eigenvalues of
at least one of the Jacobians on either side of the border are nonreal. Sufficient conditions
for having locally unique stable fixed points on both sides of the border are summarized in
Section 2 (see also Figs. 1-2).

Although the focus of this paper is on using control to achieve certain safe, simple border
collision bifurcations, it is deemed worthwhile to present the following two examples of more
complex bifurcations. These examples show bifurcations of multiple attractors on one side or
both sides of the border when the fixed point is stable on both sides of the border. Recently,
it was shown that multiple attractor bifurcations are a source of unpredictability in piecewise
smooth systems [10]. The presence of arbitrarily small noise may lead to fundamentally
unpredictable behavior of orbits as a bifurcation parameter is varied slowly through a critical
value.
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Example 1 Stable fixed point plus period-4 attractor to stable fixed point plus
period-3 attractor: Consider the following simple piecewise smooth linear 2D map

(
xk+1

yk+1

)
=




(
0.50 1
−0.90 0

)(
xk

yk

)
+

(
1
0

)
µ, xk ≤ 0( −1.22 1

−0.36 0

)(
xk

yk

)
+

(
1
0

)
µ, xk > 0

(39)

The map (39) undergoes a bifurcation from a stable fixed point plus period-4 attractor to a
stable fixed point plus a period-3 attractor as µ is increased through zero (see Fig. 3 (a)).
Note that the fixed point for µ < 0 is spirally attracting (λL1,2 = 0.25±0.9152i)and for µ > 0
is a flip attractor (λR1 = −0.5, λR2 = −0.72) .

Example 2 Stable fixed point to stable fixed point plus period-7 attractor:
Consider the following simple piecewise smooth linear 2D map

(
xk+1

yk+1

)
=




(
1.6 1
−0.8 0

)(
xk

yk

)
+

(
1
0

)
µ, xk ≤ 0( −1.4 1

−0.6 0

)(
xk

yk

)
+

(
1
0

)
µ, xk > 0

(40)

The map (40) undergoes a bifurcation from a stable fixed point to a stable fixed point plus a
period-7 attractor as µ is increased through zero (see Fig. 3 (b)). Note that the fixed point
for µ < 0 is spirally attracting (λL1,2 = 0.8 ± 0.4i) and for µ > 0 is also spirally attracting
with opposite sense of rotation (λR1,2 = −0.7 ± 0.3317i) .

−0.1 −0.05 0 0.05 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

µ

x n

Stable fixed point 

−0.1 −0.05 0 0.05 0.1
−2

−1.5

−1

−0.5

0

0.5

1

µ

x n

Stable fixed point 

(a) (b)

Figure 3: (a) Bifurcation diagram of (39) (b) Bifurcation diagram of (40).

In developing the control laws, the focus is on controlling “dangerous” border collision bi-
furcations and undesirable border collision bifurcations (see Section 2.6 for a list of dangerous
and undesirable bifurcations).
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3.1 Method 1: Control applied on one side of border

In this control scheme, the feedback control is applied only on one side of the border. Suppose
that the system is operating at a stable fixed point on one side of the border, locally as the
parameter approaches its critical value. Without loss of generality, assume this region of
stable operation is RL— that is, assume −(1 + δL) < τL < (1 + δL). Since the control is
applied only on one side of the border, the linear state feedback can be applied either on the
unstable side or the stable side of the border.

3.1.1 Linear feedback applied on the unstable side of the border

Recall that the fixed point is stable if it is in RL and a BCB occurs as µ is increased through
zero. Applying additive linear state feedback only for (x, y) ∈ RR leads to the closed-loop
system

(
xk+1

yk+1

)
=




(
a11 a2

a13 a4

)(
xk

yk

)
+

(
α1

α2

)
µ, xk ≤ 0(

a21 a2

a23 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
︸ ︷︷ ︸

b

uk, xk > 0
(41)

uk = (γ1 γ2)︸ ︷︷ ︸
c

(
xk

yk

)
= γ1xk + γ2yk (42)

Suppose that the pair (JR,b) is linearly reachable (i.e., the matrix (b | JRb) is nonsingular),
then there exists a c = (γ1 γ2) such that the eigenvalues of the closed-loop matrix JR + bc
in RR can be arbitrarily placed in the complex plane [32]. The characteristic equation of the
Jacobian of the controlled system in the right side of the border is given by

λ2 − (τR + b1γ1 + b2γ2)︸ ︷︷ ︸
τ̃R

λ + δR + (b1a4 − a2b2)γ1 + (a21b2 − a23b1)γ2︸ ︷︷ ︸
δ̃R

= 0 (43)

where a tilde is used to denote variables that pertain to the closed loop system. Applying
the Jury’s test for second order systems, the fixed point to the right of the border for µ > 0
is stable if and only if

−1 < δ̃R < 1 (44)

1 + τ̃R + δ̃R > 0 (45)

1 − τ̃R + δ̃R > 0 (46)

Stability of the fixed point before the border for µ < 0 and (44)-(46) is not sufficient to have
locally unique attracting fixed points for negative and positive values of µ. To achieve locally
unique fixed points and thus stabilize the BCB as µ is increased through zero, control gains
are sought such that the parameters of the controlled system on both sides of the border
are placed in one of the shaded regions of Figs. 1-2. Since the control has no effect on the
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system to the left of the border (in RL), the cases of real and complex eigenvalues of JL are
considered separately.

Case 1: τ 2
L ≥ 4δL: This is tantamount to the eigenvalues being real (recall that −(1 + δL) <

τL < (1 + δL)), thus choosing the control gains such that δ̃R < 0 in (44)-(46) results in
stabilizing the BCB. Note that this choice of the control gains places the controlled system
parameters in the shaded region of Fig. 1 (b) if δL < 0 and in one of shaded regions of Fig. 2
(a) if δL > 0. Rewriting (44)-(46) and imposing δ̃R < 0 yields

(b1a4 − a2b2)γ1 < −(a21b2 − a23b1)γ2 − δR (47)

(b1a4 − a2b2)γ1 > −(a21b2 − a23b1)γ2 − δR − 1 (48)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a21b2 − a23b1)γ2 − (1 + τR + δR) (49)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a21b2 − a23b1)γ2 − (1 − τR + δR) (50)

Stabilizing gains (γ1, γ2) can be obtained by finding the region in the (γ1,γ2) plane where
inequalities (47)-(50) are satisfied. Such region is not empty, by the reachability assumption.

Case 2: τ 2
L < 4δL: This is tantamount to the eigenvalues of JL being nonreal (i.e., the fixed

point on the left hand side of the border for µ < 0 is spirally attracting). Since control is
applied on the unstable side only, it can modify the eigenvalues of JR but not those of JL.
Thus, no control exists that can place the closed loop parameters in one of the shaded regions
of Fig. 1 (a) or Fig. 2 (a). Therefore, it is concluded that when the fixed point in RL for
µ < 0 is spirally attracting, one needs to apply the control on both sides of the border in
order to stabilize the bifurcation and have a unique attracting fixed point on both sides of
the border for negative and positive values of µ. This will be considered in a later section.

3.1.2 Linear feedback applied on the stable side of the border

For a linear state feedback applied on the stable side of the border to be effective in ensuring
an acceptable bifurcation, it turns out that one must assume that the open-loop system
supports a fixed point on the right side of the border for µ > 0. This is tantamount to
assuming τR < (1 + δR). Of course, the assumption −(1 + δL) < τL < (1 + δL) is still
in force. Consequently, this control method cannot be used to control border collision pair
bifurcation. This method may be useful in controlling other types of BCB where the system
supports a fixed point in RR (e.g., bifurcation from a stable fixed point to chaos). Now,
applying additive linear state feedback only for (x, y) ∈ RL yields the closed-loop system

(
xk+1

yk+1

)
=




(
a11 a2

a13 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
︸ ︷︷ ︸

b

uk, xk ≤ 0

(
a21 a2

a23 a4

)(
xk

yk

)
+

(
α1

α2

)
µ, xk > 0

(51)

uk = (γ1 γ2)︸ ︷︷ ︸
c

(
xk

yk

)
= γ1xk + γ2yk (52)
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Note that such a control scheme does not stabilize an unstable fixed point on the right side
of the border for µ > 0. This is because the control has no direct effect on the system for
(x, y) ∈ RR. All is not lost, however. It will be shown that this control scheme can be used
to stabilize the BCB to a period-2 orbit.

The characteristic equation of the Jacobian of the controlled system to the left of the
border is given by

λ2 − (τL + b1γ1 + b2γ2)︸ ︷︷ ︸
τ̃L

λ + δL + (b1a4 − a2b2)γ1 + (a11b2 − a13b1)γ2︸ ︷︷ ︸
δ̃L

= 0 (53)

To render the BCB a supercritical period doubling border collision, the fixed point to the
left of the border must remain stable and the eigenvalues of the second iterate map with one
point in RL and the other point in RR are inside the unit circle. Additional conditions are
needed to ensure that the fixed point to the left of the border for µ < 0 is a unique attractor
and the period-2 orbit for µ > 0 is also a unique attractor. The fixed point to the left of the
border remains stable if and only if

−1 < δ̃L < 1 (54)

1 + τ̃L + δ̃L > 0 (55)

1 − τ̃L + δ̃L > 0 (56)

The closed loop system (51)-(52) has a stable period-2 orbit for µ > 0 if the eigenvalues of
(JL + bc)JR are inside the unit circle. It is straightforward to show that the characteristic
polynomial of (JL + bc)JR is

λ2 − τ12λ + δ12 = 0 (57)

where

τ12 = (a21b1 + a2b2)︸ ︷︷ ︸
β1

γ1 + (a23b1 + a4b2)︸ ︷︷ ︸
β2

γ2 + a11a21 + a2
4 + a23a2 + a13a2︸ ︷︷ ︸

β3

(58)

δ12 = (−a2b1a4a23 + a23a
2
2b2 + a21b1a

2
4 − a2a4a21b2)︸ ︷︷ ︸

β4

γ1

+ (−a11a2a23b2 − a4b1a13a21 + a11a21a4b2 + b1a23a13a2)︸ ︷︷ ︸
β5

γ2

+ (−a11a2a4a23 + a23a
2
2a13 − a2a4a13a21 + a11a21a

2
4)︸ ︷︷ ︸

β6

= 0 (59)

Applying the Jury’s Test for second order systems, the period-2 orbit is stable iff

|δ12| < 1 (60)

1 − τ12 + δ12 > 0 (61)

1 + τ12 + δ12 > 0 (62)

To make sure that no other attractors or repellers are involved in the BCB at µ = 0, extra
conditions need to be imposed. To this end, the cases when δR > 0 and δR < 0 are considered
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separately (see Section 2 for details).

Case 1: δR < 0: Achieving Scenario D
We seek control gains such that (54)-(56) and (60)-(62) are satisfied with δ̃L < 0. This gives
a sufficient condition to have a unique attracting fixed point for µ < 0 and a unique period-2
attractor for µ > 0. Writing these conditions explicitly yields

(b1a4 − a2b2)γ1 < −(a11b2 − a13b1)γ2 − δL (63)

(b1a4 − a2b2)γ1 > −(a11b2 − a13b1)γ2 − δL − 1 (64)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a11b2 − a13b1)γ2 − (1 + τL + δL) (65)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a11b2 − a13b1)γ2 − (1 − τL + δL) (66)

and

β4γ1 < −β5γ2 − β6 + 1 (67)

β4γ1 > −β5γ2 − β6 − 1 (68)

(−β1 + β4)γ1 > (β2 − β5)γ2 + β3 − β6 − 1 (69)

(β1 + β4)γ1 > −(β2 + β5)γ2 − β3 − β6 − 1 (70)

Case 2: δR > 0
Since for positive determinants there are two regions in the parameter space where supercrit-
ical border collision period doubling occurs, different control laws will be needed to relocate
the parameters to correspond to one of these regions (see Scenario B).

Case 2.1: Achieving Scenario B1

We seek control gains such that 0 < δ̃L < 1, −(1 + δ̃L) < τ̃L < −2
√

δ̃L and (60)-(62) are
satisfied. This is a sufficient condition to have a unique attracting fixed point for µ < 0 and
a unique period-2 attractor for µ > 0 (see Scenario B1). The conditions 0 < δ̃L < 1 and

−(1 + δ̃L) < τ̃L < −2
√

δ̃L are satisfied if 0 < δ̃L < ε and −(1 + δ̃L) < τ̃L < −2
√

ε, where
ε ∈ (0, 1). Here ε is a small parameter. It is used to simplify the conditions on the control
gains and make the inequalities linear.

Writing these conditions explicitly yields

(b1a4 − a2b2)γ1 < −(a11b2 − a13b1)γ2 − δL + ε (71)

(b1a4 − a2b2)γ1 > −(a11b2 − a13b1)γ2 − δL (72)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a11b2 − a13b1)γ2 − (1 + τL + δL) (73)

b1γ1 < −b2γ2 − τL − 2
√

ε (74)

and

β4γ1 < −β5γ2 − β6 + 1 (75)

β4γ1 > −β5γ2 − β6 − 1 (76)

(−β1 + β4)γ1 > (β2 − β5)γ2 + β3 − β6 − 1 (77)
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Case 2.2: Achieving Scenario B2

We seek control gains such that 0 < δ̃L < 1, 2
√

δ̃L < τ̃L < (1 + δ̃L) and (60)-(62) are
satisfied. This is a sufficient condition to have a unique attracting fixed point for µ < 0 and
a unique period-2 attractor for µ > 0 (see Scenario B2). The conditions 0 < δ̃L < 1 and

2
√

δ̃L < τ̃L < (1 + δ̃L) are satisfied if 0 < δ̃L < ε and 2
√

ε < τ̃L < (1 + δ̃L), where 0 < ε < 1,
small.

Writing these conditions explicitly yields

(b1a4 − a2b2)γ1 < −(a11b2 − a13b1)γ2 − δL + ε (78)

(b1a4 − a2b2)γ1 > −(a11b2 − a13b1)γ2 − δL (79)

b1γ1 > −b2γ2 − τL + 2
√

ε (80)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a11b2 − a13b1)γ2 − (1 − τL + δL) (81)

and

β4γ1 < −β5γ2 − β6 + 1 (82)

β4γ1 > −β5γ2 − β6 − 1 (83)

(β1 + β4)γ1 > −(β2 + β5)γ2 − β3 − β6 − 1 (84)

Stabilizing control gains can be obtained by finding the region in the (γ1,γ2) plane satisfied
by inequalities (63)-(70) if δR < 0 and inequalities (71)-(77) or (78)-(84) if δR > 0.

3.2 Method 2: Different controls applied on each side of border

In this method, different controls are applied on each side of the border. Applying the linear
state feedback additively in both the left and right sides of the border yields the closed-loop
system

(
xk+1

yk+1

)
=




(
a11 a2

a13 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
u1k

, xk ≤ 0(
a21 a2

a23 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
u2k

, xk > 0

(85)

u1k
= (γ11 γ12)

(
xk

yk

)
= γ11xk + γ12yk (86)

u2k
= (γ21 γ22)

(
xk

yk

)
= γ21xk + γ22yk (87)

If the system linearizations on both sides of the border are reachable, then the BCB can be
controlled to achieve any desired behavior. The fact that the controls on both sides are not
equal provides the flexibility in placing the eigenvalues of the Jacobians of the system on
both sides of the border to be in any desired locations. Obtaining stabilizing control gains
for this case is straightforward. The drawback of this method is that knowledge of the border
is needed in the design. If the location of the border is not exactly known, the control action
may introduce complications into the system behavior.
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3.3 Method 3: Simultaneous stabilization

In this method, the same linear state feedback control is applied additively on both the left
and right sides of the border. This leads to the closed-loop system

(
xk+1

yk+1

)
=




(
a11 a2

a13 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
uk, xk ≤ 0(

a21 a2

a23 a4

)(
xk

yk

)
+

(
α1

α2

)
µ +

(
b1

b2

)
uk, xk > 0

(88)

uk = (γ1 γ2)

(
xk

yk

)
= γ1xk + γ2yk (89)

Suppose that the fixed point to the left of the border for µ < 0 is stable— that is, assume
−(1 + δL) < τL < (1 + δL). Suppose also that as µ is increased through zero, a BCB occurs.

The characteristic polynomials of the closed loop system to the left and right of the border
are given by

p̃L(λ) = λ2 − (τL + b1γ1 + b2γ2)︸ ︷︷ ︸
τ̃L

λ + δL + (b1a4 − a2b2)γ1 + (a11b2 − a13b1)γ2︸ ︷︷ ︸
δ̃L

= 0 (90)

and

p̃R(λ) = λ2 − (τR + b1γ1 + b2γ2)︸ ︷︷ ︸
τ̃R

λ + δR + (b1a4 − a2b2)γ1 + (a21b2 − a23b1)γ2︸ ︷︷ ︸
δ̃R

= 0 (91)

respectively.
A simultaneous control that renders the BCB to be from a locally unique stable fixed point

to a locally unique stable fixed point exists if there is a (γ1, γ2) such that the parameters of
the controlled system are in one of the shaded regions of Figs. 1-2. There is a total of nine
different shaded regions in these figures. Next, conditions on the control gains that place the
parameters of closed loop system in one of these regions are found. In all except one of the
cases, the system of inequalities obtained isn’t linear, and involves one or two square roots.
By a parametrization technique, it is possible to obtain linear inequalities that imply the
obtained inequalities. This is shown explicitly below only for Case 6; the other cases can be
treated similarly.

Case 1: Placing parameters in upper right square of Fig. 1(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1

2
√

δ̃L < τ̃L < 1 + δ̃L

and
0 < δ̃R < 1

2
√

δ̃R < τ̃R < 1 + δ̃R

Case 2: Placing parameters in upper left square of Fig. 1(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1

−(1 + δ̃L) < τ̃L < −2
√

δ̃L

and
0 < δ̃R < 1

2
√

δ̃R < τ̃R < 1 + δ̃R
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Case 3: Placing parameters in lower left square of Fig. 1(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1

−(1 + δ̃L) < τ̃L < −2
√

δ̃L

and
0 < δ̃R < 1

−(1 + δ̃R) < τ̃R < −2
√

δ̃R

Case 4: Placing parameters in lower right square of Fig. 1(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1

2
√

δ̃L < τ̃L < 1 + δ̃L

and
0 < δ̃R < 1

−(1 + δ̃R) < τ̃R < −2
√

δ̃R

Case 5: Placing parameters in shaded region of Fig. 1(b)
Control gain pairs (γ1, γ2) are sought such that

−1 < δ̃L < 0 (92)

1 + τ̃L + δ̃L > 0 (93)

1 − τ̃L + δ̃L > 0 (94)
and

−1 < δ̃R < 0 (95)

1 + τ̃R + δ̃R > 0 (96)

1 − τ̃R + δ̃R > 0 (97)

Substituting the expressions for δ̃L, τ̃L, δ̃R and τ̃R in (92)-(97) yields

(b1a4 − a2b2)γ1 < −(a21b2 − a23b1)γ2 − δR (98)

(b1a4 − a2b2)γ1 > −(a21b2 − a23b1)γ2 − δR − 1 (99)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a21b2 − a23b1)γ2 − (1 + τR + δR) (100)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a21b2 − a23b1)γ2 − (1 − τR + δR) (101)
and

(b1a4 − a2b2)γ1 < −(a11b2 − a13b1)γ2 − δL (102)

(b1a4 − a2b2)γ1 > −(a11b2 − a13b1)γ2 − δL − 1 (103)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a11b2 − a13b1)γ2 − (1 + τL + δL) (104)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a11b2 − a13b1)γ2 − (1 − τL + δL) (105)

Stabilizing control gains (if they exist) can be obtained by finding the region in the (γ1,γ2)
plane satisfying inequalities (98)-(105).

Case 6: Placing parameters in left rectangle of Fig. 2(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1 (106)

−(1 + δ̃L) < τ̃L < −2
√

δ̃L (107)
and
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−1 < δ̃R < 1 (108)

−(1 + δ̃R) < τ̃R < (1 + δ̃R) (109)

Explicit conditions on the control gains can be obtained as follows: Introduce a small pa-
rameter ε ∈ (0, 1). Seek control gains such that 0 < δ̃L < ε and −(1 + δ̃L) < τ̃L < −2

√
ε.

Then (106)-(109) yield

(b1a4 − a2b2)γ1 < −(a11b2 − a13b1)γ2 − δL + ε (110)

(b1a4 − a2b2)γ1 > −(a11b2 − a13b1)γ2 − δL (111)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a11b2 − a13b1)γ2 − (1 + τL + δL) (112)

b1γ1 < −b2γ2 − τL − 2
√

ε (113)

and

(b1a4 − a2b2)γ1 < −(a21b2 − a23b1)γ2 − δR + 1 (114)

(b1a4 − a2b2)γ1 > −(a21b2 − a23b1)γ2 − δR − 1 (115)

(b1a4 − a2b2 + b1)γ1 > −(b2 + a21b2 − a23b1)γ2 − (1 + τR + δR) (116)

(b1a4 − a2b2 − b1)γ1 > −(−b2 + a21b2 − a23b1)γ2 − (1 − τR + δR) (117)

Case 7: Placing parameters in right rectangle of Fig. 2(a)
Control gain pairs (γ1, γ2) are sought such that

0 < δ̃L < 1

2
√

δ̃L < τ̃L < 1 + δ̃L

and
−1 < δ̃R < 1

−(1 + δ̃R) < τ̃R < −(1 + δ̃R)

Case 8: Placing parameters in upper rectangle of Fig. 2(b)
Control gain pairs (γ1, γ2) are sought such that

−1 < δ̃L < 1

−(1 + δ̃L) < τ̃L < (1 + δ̃L)
and

0 < δ̃R < 1

2
√

δ̃R < τ̃R < 1 + δ̃R

Case 9: Placing parameters in lower rectangle of Fig. 2(b)
Control gain pairs (γ1, γ2) are sought such that

−1 < δ̃L < 1

−(1 + δ̃L) < τ̃L < (1 + δ̃L)
and

0 < δ̃R < 1

−(1 + δ̃R) < τ̃R < −2
√

δ̃R

The next example illustrates how the developed control laws can be used to control border
collision bifurcation.
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Example 3 Border collision pair bifurcation (saddle node bifurcation)
Consider the following simple piecewise smooth linear 2D map

(
xk+1

yk+1

)
=




(
1 1

−0.5 0

)
︸ ︷︷ ︸

JL

(
xk

yk

)
+

(
1
0

)
µ +

(
1
0

)
uk, xk ≤ 0

(
2.5 1
−0.7 0

)
︸ ︷︷ ︸

JR

(
xk

yk

)
+

(
1
0

)
µ +

(
1
0

)
uk, xk > 0

(118)

uk = γ1xk + γ2yk (119)

The map (118) with uk = 0 undergoes a border collision pair bifurcation (saddle node bifur-
cation), where a stable and an unstable fixed point merge and disappear as µ is increased
through zero (see Fig. 4). This is an example of a “dangerous” bifurcation. For this example,
a11 = 1, a2 = 1, a13 = −0.5, a4 = 0, a21 = −2.5, a23 = −0.7, α1 = 1 and α2 = 0. The
eigenvalues of JL are λL1,2 = 0.5 ± 0.5i and those of JR are λR1 = 2.1787 and λR2 = 0.3213.

Next, the control methods developed above are applied to control the BCB in (118) so
that the closed loop system possesses a locally unique and attracting fixed point on both
sides of the border.

Control applied on unstable side
Control applied on the unstable side does not exist for this example since the eigenvalues of
JL are complex (τ 2

L < 4δL).

Control applied on stable side
Recall that for a control applied on the stable side to be effective in ensuring an acceptable
bifurcation, the uncontrolled system must support a fixed point to the right side of the border
for positive values of µ. Since in this example, no fixed point exists for µ > 0, stable side
control does not work.

Different controls applied on each side of the border
Since the control on the left side of the border can be chosen independently of that to the
right of the border (as long as the controlled system parameters lie within one of the shaded
regions of Figs. 1-2), the border collision pair bifurcation can be controlled to achieve a
transition from a stable fixed point to a stable fixed point as µ is increased through zero.
The calculations are trivial for this case and thus are not presented.

Simultaneous control
For this example, it is straightforward to check that there are control gains that satisfy in-
equalities (98)-(105). Thus, the controlled system parameters can be placed in the shaded
region of Fig. 1(b). A set of stabilizing control gain pairs (γ1,γ2) is obtained from inequali-
ties (98)-(105) and is depicted in Fig. 5 (a). The bifurcation diagram of the controlled system
with γ1 = −1.95 and γ2 = −1.05 is shown in Fig. 5 (b).
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Figure 4: Bifurcation diagram of uncontrolled system (118). A solid line represents a path
of stable fixed points whereas a dashed line represents a path of unstable fixed points.
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Figure 5: (a) The interior of the triangle gives simultaneously stabilizing control gains
for (118)-(119) (b) Bifurcation diagram of a simultaneously controlled system (118)-(119)
using γ1 = −1.95 and γ2 = −1.05. A locally unique and stable fixed point exists on both
sides of the border.
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4 Quenching of a Period Doubling BCB in a Cardiac

Conduction Model

In this section, we consider a cardiac conduction model that was proposed by Sun et al. [25].
The model incorporates physiological concepts of recovery, facilitation and fatigue. It is
formulated as a two-dimensional PWS map. Two factors determine the atrioventricular
(AV) nodal conduction time: the time interval from the atrial activation to the activation of
the Bundle of His and the history of activation of the node. The model predicts a variety
of experimentally observed complex rhythms of nodal conduction. In particular, alternans
rhythms, in which there is an alternation in conduction time from beat to beat, are associated
with period-doubling bifurcation in the theoretical model.

The authors first define the atrial His interval, A, to be that between cardiac impulse
excitation of the lower interatrial septum to the Bundle of His. (See [25] for definitions.) The
model is: (

An+1

Rn+1

)
= f(An, Rn, Hn)

where

f(An, Rn, Hn) =




(
Amin + Rn+1 + (201 − 0.7An)e−Hn/τrec

Rne−(An+Hn)/τfat + γe−Hn/τfat

)
, for An ≤ 130(

Amin + Rn+1 + (500 − 3.0An)e−Hn/τrec

Rne−(An+Hn)/τfat + γe−Hn/τfat

)
, for An > 130

(120)

with R0 = γexp(−H0/τfat). Here H0 is the initial H interval and the parameters Amin, τfat, γ
and τrec are positive constants. The variable Hn represents the interval between bundle of His
activation and the subsequent activation (the AV nodal recovery time) and is usually taken as
the bifurcation parameter. The variable Rn represents a drift in the nodal conduction time,
and is sometimes taken to be constant. In this section, we consider Rn as a variable as in [25].
Note that the map f is piecewise smooth and is continuous at the border Ab := 130ms.

Several researchers studied this model and developed control techniques to stabilize the
unstable fixed point (e.g., [33, 34, 35, 36]). With the exception of [36], all the studies of this
model reported in the literature viewed the border collision period doubling bifurcation in this
system as if it were an ordinary period doubling bifurcation in a smooth dynamical system.
Although in [36] the bifurcation in the cardiac model was recognized as a border collision, the
control design proposed there was based on bifurcation control results for smooth systems.
They used a linear feedback with control gain determined by trial and error. In [34], the
authors propose the use of linear delay feedback to suppress the period doubling bifurcation.
In [33], the authors apply control of chaos technique to suppress the alternation resulting from
the period doubling bifurcation. In this work, we show that the period doubling bifurcation
is an instance of a BCB and apply the control techniques developed in this paper to quench
the period doubling BCB, and simultaneously stabilize the fixed point after the border.
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4.1 Analysis of the border collision bifurcation

Numerical simulations show that the map (120) undergoes a supercritical period doubling
bifurcation as the bifurcation parameter S := Hn is decreased through a critical value (see
Fig. 6). We show that this bifurcation is a supercritical period doubling BCB which occurs
as the fixed point of the map hits the border Ab = 130.

Let the fixed points of the map (120) be given by (A∗
1(S), R∗

1(S)) for An < Ab and
(A∗

2(S), R∗
2(S)) for An > Ab. Under normal conditions, the fixed point (A∗

1(S), R∗
1(S)) is

stable and it loses stability as S is decreased through a critical value S = Sb where A∗
1 = Ab.

Then, at Sb, R∗
1 := Rb.

Next, a change of variable is introduced such that the fixed point is at the origin at S = 0.
Let Ān = An − Ab = An − 130, R̄n = Rn − Rb and S̄ = S − Sb. The map becomes

f̄(Ān, R̄n, S̄) =





 Amin + R̄n+1 + (110 − 0.7Ān)e

−(S̄+Sb)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb)

τfat + γe
−(S̄+Sb)

τfat


 , for Ān ≤ 0


 Amin + R̄n+1 + (110 − 3.0Ān)e

−(S̄+Sb)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb)

τfat + γe
−(S̄+Sb)

τfat


 , for Ān > 0

(121)

The Jacobians to the left of the border close to the origin JL and to the right of the
border close to the origin JR are given by

JL =


 −0.7e

−Sb
τrec − Rb

τfat
e

−(130+Sb)

τfat e
−(130+Sb)

τfat

− Rb

τfat
e

−(130+Sb)

τfat e
−(130+Sb)

τfat


 (122)

and

JR =


 −3.0e

−Sb
τrec − Rb

τfat
e

−(130+Sb)

τfat e
−(130+Sb)

τfat

− Rb

τfat
e

−(130+Sb)

τfat e
−(130+Sb)

τfat


 (123)

respectively. Also, the derivative of f with respect to S is

(
α1

α2

)
=


 − 110

τrec
e

−Sb
τrec − γ

τfat
e

−Sb
τfat − Rb

τfat
e

−(130+Sb)

τfat

− γ
τfat

e
−Sb
τfat − Rb

τfat
e

−(130+Sb)

τfat


 (124)

Next, the following parameter values are assumed (borrowed from [25]): τrec = 70ms,
τfat = 30000ms, Amin = 33ms, γ = 0.3ms. For these parameter values, Sb = 56.9078ms,
Rb = 48.2108ms and

JL =

( −0.31208 0.99379
−0.001597 0.99379

)
, JR =

( −1.33223 0.99379
−0.001597 0.99379

)

and

(
α1

α2

)
=

( −0.69861
−0.001607

)
.
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The eigenvalues of JL are λL1 = −0.3109, λL2 = 0.9926 (τL = 0.6817, δL = −0.3086) and
those of JR are λR1 = −1.3315, λR2 = 0.9931 (τR = −0.3384 and δR = −1.3224). Note
that there is a discontinuous jump in the eigenvalues at the border collision bifurcation. The
stability of the period-2 orbit with one point in RL and the other in RR is determined by
the eigenvalues of JLR := JLJR. These eigenvalues are λLR1 = 0.4135 and λLR2 = 0.9867.
This implies that a stable period-2 orbit is born after the border collision as seen in the
simulations.

40 45 50 55 60 65
40

60

80

100

120

130

140

160

180

S

R
n   

   
   

   
   

   
   

   
   

   
 A

n

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

130

140

160

Beat number n

R
n   

   
   

   
   

   
   

   
   

   
   

   
 A

n

(a) (b)

Figure 6: (a) Joint bifurcation diagram for An and for Rn for (120) with S as bifurcation
parameter and τrec = 70ms, τfat = 30000ms, Amin = 33ms and γ = 0.3ms (b) Iterations
of map showing the alternation in An as a result of a period doubling bifurcation. The
parameter values are the same as in (a) with S = 45ms.

4.2 Feedback control of border collision bifurcation

For the cardiac conduction model, the control is usually applied as a perturbation to the
bifurcation parameter S̄ [33, 36]. The control methods developed in this paper are used
to quench the period doubling bifurcation. Static feedback applied on the stable side only
cannot stabilize an unstable fixed point on the other side of the border. However, it can be
used to reduce the amplitude of the bifurcated period-2 orbit. This is not pursued here, since
we are interested in quenching the period-2 orbit.

Next, static feedback applied on the unstable side is considered followed by simultaneous
control.
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4.2.1 Static feedback applied on unstable side

Applying static linear state feedback on the unstable side only (Ān > 0) as a perturbation
to the bifurcation parameter yields the closed loop system

(
Ān+1

R̄n+1

)
=





 Amin + R̄n+1 + (110 − 0.7Ān)e

−(S̄+Sb)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb)

τfat + γe
−(S̄+Sb)

τfat


 , for Ān ≤ 0


 Amin + R̄n+1 + (110 − 3Ān)e

−(S̄+Sb+un)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb+un)

τfat + γe
−(S̄+Sb+un)

τfat


 , for Ān > 0

(125)

un = (γ1 γ2)

(
Ān

R̄n

)
= γ1Ān + γ2R̄n (126)

For the assumed parameter values, the Jacobians for Ān < 0 and Ān > 0 are

J̃L = JL =

( −0.31208 0.99379
−0.001597 0.99379

)
,

and

J̃R =

( −1.33223 − 0.69860γ1 0.99379 − 0.69860γ2

−0.001597 − 0.001607γ1 0.99379 − 0.001607γ2

)

=

( −1.33223 0.99379
−0.001597 0.99379

)
︸ ︷︷ ︸

JR

+

( −0.69860
−0.001607

)
︸ ︷︷ ︸

b

(
γ1 γ2

)

respectively. Using the results of Section 3.1.1 Case 1, stabilizing control gains (γ1, γ2) are
obtained by solving (47)-(50). Figure 7 (a) shows all the possible stabilizing gains (γ1, γ2)
that satisfy (47)-(50), and Fig. 7 (b) shows the bifurcation diagram of the controlled system
with (γ1, γ2) = (−1, 0). Note that by setting γ2 = 0, only An is used in the feedback. In
practice, the conduction time of the nth beat An, can be measured. The state An has been
used in the feedback loop by other researchers who developed control laws for this model
(e.g., [34, 36]).

4.2.2 Simultaneous static feedback control

Applying the same static linear state feedback on both sides of the border as a perturbation
to the bifurcation parameter yields the closed loop system

(
Ān+1

R̄n+1

)
=





 Amin + R̄n+1 + (110 − 0.7Ān)e

−(S̄+Sb+un)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb+un)

τfat + γe
−(S̄+Sb+un)

τfat


 , for Ān ≤ 0


 Amin + R̄n+1 + (110 − 3Ān)e

−(S̄+Sb+un)

τrec − 130

(R̄n + Rb)e
−(Ān+130+S̄+Sb+un)

τfat + γe
−(S̄+Sb+un)

τfat


 , for Ān > 0

(127)

un = (γ1 γ2)

(
Ān

R̄n

)
= γ1Ān + γ2R̄n (128)
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Figure 7: (a) Stabilizing control gain pairs satisfying (47)-(50) are within the region subtended
by the lines in the figure, with static linear state feedback control applied on unstable side
(An > 130) (b) Bifurcation diagram of the controlled system using static linear state feedback
applied in the unstable region with control gains (γ1, γ2) = (−1, 0).

The Jacobians of the controlled system to the left and right of the border are given by

J̃L =

( −0.31208 − 0.69860γ1 0.99379 − 0.69860γ2

−0.001597 − 0.001607γ1 0.99379 − 0.001607γ2

)

=

( −0.31208 0.99379
−0.001597 0.99379

)
︸ ︷︷ ︸

JL

+

( −0.69860
−0.001607

)
︸ ︷︷ ︸

b

(
γ1 γ2

)

and

J̃R =

( −1.33223 − 0.69860γ1 0.99379 − 0.69860γ2

−0.001597 − 0.001607γ1 0.99379 − 0.001607γ2

)

=

( −1.33223 0.99379
−0.001597 0.99379

)
︸ ︷︷ ︸

JR

+

( −0.69860
−0.001607

)(
γ1 γ2

)

respectively. Using the results of Section 3.3, Case 5, stabilizing control gains (γ1, γ2) are
obtained by solving (98)-(105). Figure 8 (a) shows all stabilizing gains (γ1, γ2) that sat-
isfy (98)-(105), and Fig. 8 (b) shows the bifurcation diagram of the controlled system with
(γ1, γ2) = (−1, 0). Figure 9 shows the effectiveness of the control in quenching the period-2
orbit and simultaneously stabilizing the unstable fixed point.
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Figure 8: (a) Stabilizing control gain pairs satisfying (98)-(105) are within the region sub-
tended by the lines in the figure , with simultaneous static linear state feedback control (b)
Bifurcation diagram of the controlled system using simultaneous static linear state feedback
with control gains (γ1, γ2) = (−1, 0).
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Figure 9: Iterations of map. Simultaneous static linear state feedback control applied at beat
number n = 500. The control is switched off and on every 500 beats to show the effectiveness
of the controller. Here S = 48ms and (γ1, γ2) = (−1, 0).
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