
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

On Satellite Multicast to Heterogeneous Receivers

by Apinun Tunpan, M. Scott Corson

CSHCN TR 2001-16
(ISR TR 2001-25)

Sponsored by: ATIRP

On Satellite Multicast to Heterogeneous Receivers

Apinun Tunpan and M. Scott Corson
Institute for Systems Research, University of Maryland, College Park, MD 20742 USA∗†

{ apinun,corson }@isr.umd.edu

February 14, 2001

Abstract

We propose a framework for single-source, satellite-based multicast dissemination of bulk files. The
framework trades off between reception delay and bandwidth usage and coexists with terrestrial back-
ground network traffic; specifically TCP traffic utilizing a short-term congestion control mechanism. The
framework consists of two major components: 1) a multicast rate scheduling mechanism that uses long-
term, end-to-end multicast packet survival statistics in order to deal with the bandwidth-delay trade-off
issue, and 2) a fair queueing algorithm that regulates the points where multicast traffic from the satellite
meets terrestrial background traffic. We show through simulation the performance of this framework
under a number of scenarios.

1 INTRODUCTION

Multicast is an efficient way to transmit the same data from a single source to multiple receivers. Two
of the current research issues in multicast involve with how to deal with receiver heterogeneity and how
to achieve fair bandwidth sharing between multicast traffic and other existing network traffic. Regard-
ing receiver heterogeneity, some research focuses on multiple channel ormulti-layeredapproaches (e.g.
[VRC98, RJL+00, ST00]). In a multi-layer approach, each receiver subscribes to a subset of channels (or
layers) in such a way that the total capacity of the subscribed channels does not exceed the receiver’s ca-
pacity. Such multi-layered approaches can be applied to the transmission of both continuous data streams
(e.g. video) in which receivers can tolerate losses, and reliable multicast (e.g. bulk files) in which complete
reception of the whole file is a requirement. When applying the multiple-channel approach to the case of
finite-sized bulk file, we generally see larger transmission redundancy (e.g. in [BKTN98]) in a trade-off to
achieve smaller reception delays, or are faced with a channel synchronization problem unless the data is
wisely partitioned and transmitted (e.g. [DAZ99]).

∗Prepared through collaborative participation in the Advanced Telecommunications & Information Distribution Research Pro-
gram (ATIRP) Consortium sponsored by the U.S. Army Research Laboratory under the Federated Laboratory Program, Cooperative
Agreement DAAL01-96-2-0002.
†The views and conclusions in this document are those of the authors and shoul d not be interpreted as representing the official

policies, either expressed or implied of the Army Research Laboratory or the U.S. Government.

1

We recently proposed a single-source, single-channel (i.e. singly-layered) long-term, rate scheduling
approach for multicasting bulk files over a hybrid satellite-terrestrial network [TC00]. The ’long-term’ rate
scheduling approach is designed for an environment in which the propagation delay is significant, and the
capacity of the feedback channel is limited. A receiver cannot send a negative acknowledgement (NACK)
for every lost packet, but rather reports to the multicast source the long-term packet survival statistics con-
ditioned on each of the (discrete) source’s transmission rates. Utilizing these packet survival statistics and
a forward error correction (FEC) capability, our approach effectively deals with receiver heterogeneity by
adjusting the ’length’ of each transmission rate in the source’s transmission rate sequence. One of the un-
solved problems, however, is that when the satellite multicast traffic (from the sky) merges with existing
local terrestrial traffic, the two might not share the available terrestrial bandwidth fairly, especially when the
terrestrial traffic uses TCP’s congestion control mechanism whose effective throughput can drop sharply in a
very short period in response to network congestion that the long-term multicast rate scheduling mechanism
might have caused.

We assume that each satellite earth station receiving multicast data from the satellite is located very near
(i.e. a few hops away) to the multicast receivers. This configuration is reasonable for many deployment
scenarios as the satellite multicast traffic avoids the congested network routes in the terrestrial network. We
also assume that there are some background TCP traffic streams originating from some nearby terrestrial
sources, also being received by multicast receivers, and thus sharing a portion of the terrestrial network
links with the multicast traffic. Recent work such as [GB00] has called for network support for multicast
in heterogeneous environments. In a similar fashion this paper focuses on a simple use of fair queueing
algorithms at the routers where the multicast traffic meets terrestrial traffic near to the receivers (i.e. at the
very edge of the networks), as shown in Fig 1. The fair queueing algorithm blocks the excess part of the
multicast traffic, protects the TCP traffic from starvation, and at the same time makes the multicast network
appear heterogeneous (from the sender’s perspective) due to both the presence of the terrestrial traffic and the
varying link capacity. The multicast rate scheduling mechanism we utilize then handles this heterogeneity.

with
FairQueuing

Router
Subnet Router

Terrestrial Traffic
Sources

Earth
Station

TCP Flow 1

TCP Flow 2

Link
Congested

Multicast Traffic (from Satellite)

Multicast/Unicast
Receivers

Figure 1: Fair Queueing in Satellite Multicast

2 THE MULTICAST RATE SCHEDULING PROBLEM

In this section, we describe the long-term multicast rate scheduling problem we study. We assume that
a single multicast source can transmit at some rater selected from a finite discrete setR (e.g. R =
{512, 256, 128, 64}Kbps). The source has a single, finite size bulk file ready to be transmitted at a time.
If there are two or more files ready to transmit, they can be logically combined into one bulk file. Let the
multicast source use Reed-Solomon erasure (RSE) coding (e.g. [Mac97]) and let the bulk file be encoded
intoW ≥ 1 RSE-based FEC blocks. Each FEC block consists ofh data packets andc parity packets – all
of the same length. We assume a multicast tree that has a root at the sender and has a finite numberM of

2

(1)q
r

q
r
(5)

4

Source

1 32
5

Figure 2: A Sample
Multicast Tree Model
(M=5).

1

2

3

h

r (1)b
r (2)b
r (3)b

r (h)b

h+c

h+1

h+2

b

br (h+2)

br (h+c)

r (h+1)

D
at

a
Pa

ck
et

s
Pa

rit
y

Pa
ck

et
s

Rate Mapping
W Blocks

Actual BlocksMaster Block

Figure 3: Mapping the master
block to the actual data blocks

receivers (e.g. Fig. 2). We assume that, when perceived from an individual receiver (i.e. a one dimensional
view), each packet transmitted by the multicast source survives the network loss and arrives at the receiver
independently. Each receiverm ∈ M,M = {1, 2, . . . ,M}, monitors the long-term, end-to-end multicast

packet survival probabilityq(m)
r at each of the source transmission rater ∈ R. We assume thatq(m)

r ∈ (0, 1]
is relatively time-invariant for our scheduling period – this is generally true if there is no route change and
any other average network background traffic remains the same. The multicast source initially transmits a
number of probe packets at each rater ∈ R so that the survival estimator ofq(m)

r can be initialized. Each
receiver periodically reports its packet survival statistics to the multicast source to aid the rate schedule
computation. In computing a rate schedule, each receiver has weight one. For scalability, a subset of re-
ceivers that have similar packet survival characteristics (e.g. inside a subnet) may be represented by a single
representative who reports the packet survival statistics on the subset’s behalf, having weight equals to the
number of receivers it represents.

The multicast source transmits packets from each of theW FEC blocks interleavingly and progressively
as appearing on the right of Fig. 3 (each FEC block is shown vertically). This technique is well-known
and is used to suppress the effect from burst losses, if any, that might have violated our independent packet
survival assumption. To successfully decode an RSE-based FEC block, a receiver must receive at leasth

distinct packets, either data or parity, from the same FEC block. To allow a systematic way to compute a rate
schedule, we introduce the notion of the master block, as shown on the left of Fig. 3. The master block also
hash data andc parity packets. Relying on the receivers’ packet survival statistics, the independent packet
survival assumption and the time-invariant assumption, the rate scheduling mechanism can then determine
the appropriate amount of the master block’s parity packetsc and the master block’s rate assignmentsrb(j);
j = 1, 2, . . . , h, h + 1, . . . , h + c subject to a pre-defined reception reliability requirement and minimiz-
ing a composite cost function which has two competing cost components: the normalized bandwidth cost
component and the normalized aggregate delivery delay cost component. The composite cost function also
has a ’knob’φ ∈ [0, 1] parameter which controls the relative importance between the two competing cost
components. Each of the master block’s rate assignmentsrb(j), j = 1, 2, . . . , h + c, can then be actuated
on thej-th ’row’ of each of theW actual FEC block as shown in Fig. 3.

In [TC00], we showed, per receiver, the probabilistic relationships between the master block’s reception
reliability and the bulk file’s reception reliability. When a data block is sufficiently large (i.e.h � 1), we
also observed that the independent packet survival assumption allows us to approximate the (virtual) master
block’s reception status at each receiver by the Gaussian distribution because a special case1 of the central
limit theorem can be applied. Based on this Gaussian approximation technique, the approximate solutions

1the ’uniformly bounded’ case

3

Obs #1 Obs #2 Obs #3 Obs #4 Obs #6Obs #5

E

IR

E

IR

S SS S S S

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Source

Gateway Satellite

1.5Mb/s
1.0Mb/s 512Kb/s

512Kb/s 256Kb/s1.0Mb/s

Figure 4: Topology Used in The Experiments

to two special cases of the rate scheduling problem were also proposed. In the first case, the rate scheduling
algorithm simply selects one rater ∈ R which best suits the composite cost function. In the second case,
the rate schedule utilizes each and every rater ∈ R in a decreasing order: the rate scheduling algorithm
determines the number of master block packets to be transmitted at each rater ∈ R. We have found that
the second algorithm, although requiring more computational overhead, is more preferable than the first
algorithm in providing bandwidth-delay trade off for heterogeneous receivers. We use the second algorithm
for the rest of this paper.

3 THE FAIR QUEUEING ALGORITHMS

Two broad types of fair queueing algorithms have been proposed. The first type of fair queueing algorithms
requires some per-flow state to be maintained at the routers (e.g. ”Deficit Round Robin” or DRR [SV95]).
The second type of fair queueing algorithms improve scalability by dividing routers intoedgerouters and
corerouters. The edge routers, which reside near the edge of the network, maintain per-flow states, and tag
each packet by certain value that represents the flow properties (e.g. rate) before forwarding the packet into
the network core – where the core routers compare only the information on the packet’s tag to decide whether
to drop or forward the packet (e.g. ”Core-Stateless Fair Queueing” or CSFQ [SSZ98] andT UF[CD99]).

Recall from Section 1 that the satellite multicast traffic merges with the terrestrial network traffic near
the edges of the network. Using the fair queueing algorithms which maintain per-flow state is still reasonable
because fewer active flows exist at the network edges than those inside the network core. We focuses on
two fair queueing algorithms: the well-known DRR [SV95] and its extension DRR+ [HMMM00]. DRR has
a theoretical fairness for flows with different packet lengths. DRR+ extends DRR by replacing the DRR’s
per-flow FIFO mechanism by a per-flow random early detection (RED) mechanism. DRR+ was shown
in [HMMM00] to provide better fairness among reno TCP traffic flows than its DRR counterpart. In this
paper, however, we use DRR and DRR+ mainly both to block excess part of the long-term multicast traffic
from reducing background Reno TCP throughput and to create a favorable operating environment for our
long-term rate scheduling mechanism.

4

4 EXPERIMENTS AND RESULTS

We use the network simulator (ns-2) to study the performance. The topology used in our simulation is
depicted in Fig. 4; (E) denotes an earth station, (R) denotes a router, (S) denotes a sub-net router, and (I)
denotes the source of the terrestrial background traffic. Each receiver, denoted by either black or shaded
leaf nodes, receives both multicast traffic and unicast FTP traffic; the unicast FTP traffic transmits infinite-
length data, utilizes reno TCP and originates from the corresponding (I) node. A shaded leaf node denotes a
receiver which also functions as a representative who reports packet survival statistics for its subnet back to
the multicast source. Only at the links between (R) and (S) nodes where multicast traffic merges with local
terrestrial traffic do we implement one of the following queueing policies: DropTail(FIFO), RED, DRR and
DRR+; all other links use DropTail queues. For DRR and DRR+ queues, we can adjust the parameterwm
which is the multiple of ’quantum’ the multicast flow receives per service round with respect to that of a
unicast flow. In the results shown below, we setwm = 4 which means that, when a service turn arrives, our
active multicast flow receives four times of the service quantum of any other active unicast flow receives.
The rest of the simulation parameters are shown in Table I.

Parameters Values, Notes
Satellite Channel C = 512Kbps, delay=270ms

(E)-(R) links 512Kbps, 5ms
(R)-(S) links bandwidths as in Fig.4, 5ms
(I)-(R) links 40Mbps, 20ms

(S)-(Receiver) links 10Mbps, 1ms
Bulk Files Ten 5-MB files, each encoded in

W = 160 blocks,h = 32 packets
Packet Size 1K bytes (both multicast and TCP)
DRR/DRR+ unicast quantum 1K bytes

Table I: Parameters for the Experiments.

The multicast source can transmit at rater ∈ R = {512, 256, 128, 64} Kbps. All the background TCP
traffic starts at 0.1 seconds (virtual time). After 30 seconds, the multicast source starts transmitting 2000
probe packets at each and everyr ∈ R to initialize the packet survival probability estimators (the probe
traffic is needed only once at startup, and in practice it can be part of the bulk file). After the probe transmis-
sion has ended (and subsequently after each bulk file transmission has ended) all the receiver representatives
reliably report their packet survival statistics back to the multicast source via the terrestrial feedback chan-
nels. Upon the reception of all the packet survival statistics, the multicast source computes the rate schedule
for the next file transmission which starts 5 minutes after the previous file transmission has ended – with
an exception of the first bulk file which starts at 600 seconds into the simulation. The rate schedules are
computed in such a way that theoretically (i.e. with both one-dimensional independent packet survival and
time-invariant assumptions), the probability that each rate schedule provides unreliable delivery of any bulk
file to a specific receiver would be at most0.001 (in reality, these two assumptions are violated, for example
by burst losses, thus we may see larger unreliability).

We consider thebandwidth-delay trade off in Figs. 5 through 8. On the top of each of these plots and at
each of the knobφ settings we used in the experiments, we present thenumber of globally completed files
which is the number of bulk files that were received completely atall of the receivers as a result of actuating
the rate schedule alone (i.e. without utilizing any NACK mechanism). In the middle of these plots, and at
each knob settings, we present the averageredundancy ratio, which is defined as(h+ c)/h wherec is the
amount of master block’s FEC parity packets, as the result of the rate schedule computation, along with the
sample standard deviation from the ten bulk file transmissions. Since we useh = 32, if (h + c)/h < 8

5

then the multicast source can use a RSE encoder based on the finite field GF(256), i.e. having 8-bit symbols,
which is very common and fast. At the bottom of these plots, and at each knob setting, we show the average
file reception latencyof the files that are globally completed. The file reception latency at a specific receiver
is defined as the elapsed time from the moment the receiver sees the start of a bulk file until the receiver
receives sufficient packets (data or parity) to reconstruct the whole bulk file.

We also consider thethroughput dynamics of the multicast and TCP traffic resulting from the queueing
algorithms chosen for the (R)-(S) links (Figs. 9 through 12). We choose to see the throughputs during the
transmission of the 7th bulk file at knob settingφ = 0.1 (i.e. emphasizing latency reduction rather than
bandwidth reduction). In each of these figures, the ’raw’ multicast and TCP throughputs as seen from
observers Obs #1, #3, and #6 are shown on the top, middle and bottom plots respectively; each data point
represents the average throughput in a 5-second interval immediately prior to and excluding the point.

Figure 5: DropTail

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Global Reliability (V2FtpDropTail)

Knob φN
um

be
r o

f G
lo

ba
lly

 C
om

pl
et

ed
 F

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3
Bandwidth Requirements (V2FtpDropTail)

Knob φ

R
ed

un
da

nc
y

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500
Average Delays (V2FtpDropTail)

Knob φ

Av
er

ag
e

R
ec

ei
ve

r D
el

ay
s

(s
ec

)

Figure 6: RED

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Global Reliability (V2FtpRED)

Knob φN
um

be
r o

f G
lo

ba
lly

 C
om

pl
et

ed
 F

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3
Bandwidth Requirements (V2FtpRED)

Knob φ

R
ed

un
da

nc
y

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500
Average Delays (V2FtpRED)

Knob φ

Av
er

ag
e

R
ec

ei
ve

r D
el

ay
s

(s
ec

)

Figure 7: DRR (wm=4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Global Reliability (V2FtpDrrM4)

Knob φN
um

be
r o

f G
lo

ba
lly

 C
om

pl
et

ed
 F

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5
Bandwidth Requirements (V2FtpDrrM4)

Knob φ

R
ed

un
da

nc
y

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600
Average Delays (V2FtpDrrM4)

Knob φ

Av
er

ag
e

R
ec

ei
ve

r D
el

ay
s

(s
ec

)

Figure 8: DRR+ (wm=4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Global Reliability (V2FtpDrrplusM4)

Knob φN
um

be
r o

f G
lo

ba
lly

 C
om

pl
et

ed
 F

ile
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5
Bandwidth Requirements (V2FtpDrrplusM4)

Knob φ

R
ed

un
da

nc
y

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600
Average Delays (V2FtpDrrplusM4)

Knob φ

Av
er

ag
e

R
ec

ei
ve

r D
el

ay
s

(s
ec

)

We now describe our findings. First we notice an effective bandwidth-delay trade off in most of the
results we show in Figs. 5 through 8. However, in the use of DropTail queues at the traffic merging points,
the global reliability is low (Fig.5) at knob settings aroundφ = 0.5 − 0.9 (i.e. trying to minimize multicast

6

Figure 9: DropTail with
Knobφ = 0.1

4350 4400 4450 4500 4550 4600 4650 4700 4750 4800 4850
0

100

200

300

400

500

600
A4DropTailMxK1G1 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

4350 4400 4450 4500 4550 4600 4650 4700 4750 4800 4850
0

100

200

300

400

500

600
A4DropTailMxK1G3 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

4350 4400 4450 4500 4550 4600 4650 4700 4750 4800 4850
0

50

100

150

200

250

300
A4DropTailMxK1G6 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

Figure 10: RED with
Knobφ = 0.1

4600 4650 4700 4750 4800 4850 4900 4950 5000 5050 5100
0

100

200

300

400

500

600
A4RedMxK1G1 (5−sec window average)

Simulattion Time (sec)
T

h
ro

u
g

h
p

u
ts

 (
K

b
it
s
/s

e
c
)

Multicast
TCP

4600 4650 4700 4750 4800 4850 4900 4950 5000 5050 5100
0

100

200

300

400

500

600
A4RedMxK1G3 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

4600 4650 4700 4750 4800 4850 4900 4950 5000 5050 5100
0

50

100

150

200

250

300
A4RedMxK1G6 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

bandwidth consumption rather than minimizing the reception latency). The main reason is that burst losses
are more common in DropTail queues and thus the receivers connecting to the slowest (R)-(S) link (i.e. the
256Kbps link) sometimes do not receive sufficient packets for some of theW = 160 data blocks. The use
of RED, DRR, and DRR+ queues at the traffic merging points help in coping with this unreliability problem
in different ways. The RED queues helps reduce burst losses by probablistically dropping the packets. DRR
has a mechanism to reserve a certain amount of bandwidth for a specific flow; the bursty effect of TCP flows
is thus mostly blocked from interfering with the multicast flow and vise versa. DRR+ combines the benefits
of both DRR and RED.

Next, we look at the impact of different queueing algorithms on the traffic throughput dynamics. The
use of the DropTail queues at the traffic merging points cannot provide any protection for the TCP flow
from being bandwidth-starved by the multicast flow, especially at observers (Obs) #3 and #6 (i.e. the middle
and bottom plots of Fig. 9 respectively). When compared to the DropTail queues, the RED queues allow a
slightly smaller average amount of multicast bandwidth to be passed on to multicast receivers (Fig. 10); this
is due to the probabilistic nature of the packet drops. The use of RED queues at the traffic merging points
also allows slightly quicker recovery of the TCP throughput at the slowest (R)-(S) links or Obs #6, i.e.
comparing the bottom plots of Fig. 9 and Fig. 10. The former shows that it is not until the multicast traffic
is being transmitted at rate 128Kbps by the multicast source that the TCP traffic begins to recover, while the
latter shows that TCP traffic starts to recover ’sooner’ when the multicast traffic is being transmitted at rate
256Kbps. However, the use of RED queues does not completely solve the TCP starvation problem. The use
of the DRR queues at the traffic merging point gives better protection (Fig. 11) for TCP. For the ’fastest’

7

Figure 11: DRR with
φ=0.1,wm=4

5800 5900 6000 6100 6200 6300 6400 6500
0

100

200

300

400

500
A4DrrM4K1G1 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

5800 5900 6000 6100 6200 6300 6400 6500
0

50

100

150

200
A4DrrM4K1G3 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

5800 5900 6000 6100 6200 6300 6400 6500
0

50

100

150
A4DrrM4K1G6 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

Figure 12: DRR+ with
φ=0.1,wm=4

5900 6000 6100 6200 6300 6400 6500
0

100

200

300

400

500
A4DrrplusM4K1G1 (5−sec window average)

Simulattion Time (sec)
T

h
ro

u
g

h
p

u
ts

 (
K

b
it
s
/s

e
c
)

Multicast
TCP

5900 6000 6100 6200 6300 6400 6500
0

50

100

150

200
A4DrrplusM4K1G3 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

5900 6000 6100 6200 6300 6400 6500
0

50

100

150
A4DrrplusM4K1G6 (5−sec window average)

Simulattion Time (sec)

T
h

ro
u

g
h

p
u

ts
 (

K
b

it
s
/s

e
c
)

Multicast
TCP

(R)-(S) links (i.e. at observer Obs #1), DRR even gives a ’smoother’ TCP throughput than the DropTail’s
counter part (i.e. the topmost plot of Fig. 11 vs. the topmost plot of Fig. 9). However at the slowest link (i.e.
at observer Obs #6, or the bottom plot of Fig. 11), we still notice a recurring pattern of short TCP starvations
and restarts. DRR+ almost completely eliminates this problem (Fig. 12). In fact, the DRR+ algorithm, like
the RED algorithm, provides an operating environment which is closet to the independent packet survival
assumption we used for the rate scheduling mechanism.

We also experimented with differentwm settings for DRR/DRR+ queueing algorithms. Ifwm = 1,
the multicast flow receives no more bandwidth share than any other unicast flow sharing the same (R)-(S)
link. In the topology that we use, however, we found that the rate scheduling algorithm is less effective
in providing bandwidth-delay trade off because most of the multicast receivers do not benefit from the
multicast transmission rates 512Kbps and 256Kbps. This suggests that the choice of rates in the setR
is also important. A solution to this problem can be realized by either using an entirely different set of
multicast transmission ratesR or by using some dynamic mechanisms to re-adjust the members ofR. The
multicast source can generally learn if the rate member in the setR is appropriate or not by looking at the
probed packet survival probabilitiesq(m)

r at each rater ∈ R and at every receiverm ∈M.

Lastly, for DRR/DRR+ queueing algorithms, it is also possible that one can administratively set different
wm values for different subnets according to some local fairness measures, but we do not cover this issue in
this paper.

8

5 CONCLUSION

We have proposed a framework for the rate scheduling of bulk data multicast in a hybrid satellite-terrestrial
network. The framework consists of a long-term rate control mechanism that affects a bandwidth-delay
trade off and uses a fair queueing algorithm at the points where multicast traffic from the satellite merges
with local terrestrial traffic. Among the queueing algorithms we studied, the DRR+ queueing, which was
first proposed in [HMMM00], is the most preferable choice because of 1) its compatibility with reno TCP,
2) its capability to provide some fairness to both the satellite multicast traffic and the terrestrial reno TCP
traffic, and 3) its conformance to the independent packet survival assumption used in the rate scheduling
algorithm.

There is a variety of applications where a satellite bulk data multicast system that can provide a bandwidth-
delay trade off is useful. For example, the dissemination of weather information, or (near-) real-time stock
prices, and application files. Different file types generally require different degrees of urgency (i.e. the users’
satisfaction issue) and network load (i.e. the administrative issue).

Acknowledgements

The authors would like to thank Go Hasegawa of the Osaka University in Japan for the discussion on and
the sample codes of the DRR+ queueing. The authors also thank Joseph Macker (NRL) and R. B. Adamson
for the discussion on the Multicast Dissemination Protocol (MDP).

References

[BKTN98] S. Bhattacharyya, J. Kurose, D. Towsley, and R. Nagarajan. Efficient rate-controlled bulk data
transfer using multiple multicast groups. InIEEE INFOCOM ’98, March 1998.

[CD99] A. Clerget and W. Dabbous. Tag-based fair bandwidth sharing for responsive and unresponsive
flows. Technical Report ISSN 0249-6399 ISRN INRIA/RR 3846, INRIA Sophia Antipolis,
France, 1999.

[DAZ99] M.J. Donahoo, M.H. Ammar, and E.W. Zegura. Multiple-channel multicast scheduling for
scalable bulk-data transport. InIEEE INFOCOM ’99, March 1999.

[GB00] M. Grossglaser and J-C Bolot. On service models for multicast transmission in heterogeneous
environments. InIEEE INFOCOM ’2000, March 2000.

[HMMM00] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara. Comparisions of packet scheduling
algorithms for fair service among connections on the internet. InIEEE INFOCOM ’2000,
March 2000.

[Mac97] J.P. Macker. Reliable multicast transport and integrated erasure-based forward error correc-
tion. In IEEE MILCOM ’97, 1997.

9

[RJL+00] I. Rhee, S.R. Joshi, M. Lee, S. Muthukrishnan, and V. Ozdemir. Layered multicast recovery.
In IEEE INFOCOM ’2000, March 2000.

[SSZ98] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: Achieving approximately
fair bandwidth allocations in high speed networks. InACM SIGCOMM ’98, September 1998.

[ST00] S. Sarkar and L. Tassiulas. Fair allocation of discrete bandwidth layers in multicast networks.
In IEEE INFOCOM ’2000, March 2000.

[SV95] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin. InACM
SIGCOMM ’95, 1995.

[TC00] Apinun Tunpan and M. Scott Corson. Bulk data multicast rate scheduling for hybrid hetero-
geneous satellite-terrestrial networks. InIEEE ISCC ’2000, July 2000.

[VRC98] L. Vicisano, L. Rizzo, and J. Crowcroft. Tcp-like congestion control for layered multicast data
transfer. InIEEE INFOCOM ’98, 1998.

10

