
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Automatic Differentiation for Iterative Process and Its
Applications in Network Performance Analysis

by Mingyan Liu

CSHCN T.R. 97-35
(ISR T.R. 97-93)

Sponsored by: NASA

Automatic Di�erentiation for Iterative Process

and Its Applications in Network Performance Analysis

Mingyan Liu

enter for Satellite and Hybrid Communication Networks

University of Maryland

College Park, MD 20742 �

Abstract

In this paper we focus on the application of automatic di�erentiation (AD) technique on
iterative processes. We review some of the results on the convergence of general iterative
processes and the convergence of the derivative code of such iterative processes. We are
especially interested in a class of �xed point iteration problems and we extended some those
results to discuss this class of problems. Finally we apply an AD package ADIC to a network
performance evaluation problem for numerical experiment to get sensitivities of network
blocking probabilities w.r.t. network o�ered tra�c load.

�This work was supported by the Center for Satellite and Hybrid Communication Networks, under NASA

cooperative agreement NCC3-528

1

1 Introduction

The idea behind automatic di�erentiation (AD) is not a new one. The utility of computers for
evaluating functions de�ned by formulas has long been recognized. And since di�erentiation
of functions de�ned by formulas is a mechanical process done according to �xed rules, it is
highly suitable for automation along the same lines as function evaluation. However, the
technique of automatic di�erentiation did not become popular and really applicable until
pretty recently, due to the remarkable work by Andreas Griewank and Christian Bischof,
who is also the major contributer of the AD package ADIFOR for FORTRAN and the
recently available ADIC (test version) for C.

However, just because the derivatives computed by automatic di�erentiation are those
de�ned by the statements that were executed by a particular program run, which is what
was actually computed and may di�er signi�cantly from the derivative of the function one
intended to compute [1]. This is especially true in the iterative evaluation of a function
de�ned implicitly or otherwise. Usually the iteration continues until the value of f(x) meet
certain criteria. However, this may not be true of the value of f

0

(x) or higher derivatives.
On the other hand, many engineering problems are impossible or impractical to be expressed
in an explicit or exact form, and we have to turn to approximations which often take an
iterative form. The problems lie in the design of programs to which AD is to be applied
and can be handled most e�ectively by the programmer, especially for pitfalls arising from
branching or iteration.

This paper will be focusing on approaching iterative processes, especially �xed point
problems, using automatic di�erentiation. It is organized as follows: Section 2 summarizes
the �ndings and results of [2] on convergence of derivatives of functions de�ned implicitly
or iteratively, and its implication on design of good AD packages. Section 3 discusses a
proposed automatic di�erentiation procedure for �xed point problems by [3], which is also
partly based on the result of [2]. Section 4 discusses cases of two or more �xed points. In
Section 5, the AD package ADIC is applied to a �xed point algorithm, which is developed
to approximate the blocking probabilities in a network, to get the sensitivities of blocking
probabilities in respect to tra�c load. The e�ciency of ADIC is also evaluated in that sense.
Section 6 is conclusion of the paper.

2 Derivative Convergence of Implicit Functions

Consider a system of nonlinear equations, where dependent variable y 2 Rn and independent
variable x 2 Rm are implicitly de�ned by R(y; x) = 0, R : Rn � Rm ! R. Suppose given
x
�
, we want to calculate y

�
such that R(y

�
; x

�
) = 0. The iterative process employed to solve

this problem is as follows:

2

Given y0,

Until kR(yk; x�)k � TolR or kyk � yk�1k � Toly

Compute some preconditioner Pk
yk+1 = yk � PkR(yk; x�) (1)

k = k + 1

Where the choice of preconditioner Pk determines the type of method the iterative process
uses, e.g., Newton's method with Pk = Ry(yk; x�)

�1.

Now suppose we want to compute y
0

= @y

@x
, then the application of automatic di�erenti-

ation to the previous iteration results in the following code:

Given y0,

Until kR(yk; x�)k � TolR or kyk � yk�1k � Toly

Compute Pk and P
0

k =
@Pk
@x

yk+1 = yk � PkRk

y
0

k+1 = y
0

k � PkR
0

k � P
0

kRk

k = k + 1

Now we have the following questions:

1. Does y
0

k converge assuming yk does?

2. If y
0

k does converge, at what rate? If it does not converge as fast as yk, then it is
clear we need a separate stopping criteria for y

0

k, which may make the whole process not
automatic anymore.

Also, since we have for implicit function

R
0

x(y�; x�) =
@R

@y
� y

0

x +
@R

@x
; (2)

i.e., only the �rst-order derivatives are needed to determine y
0

x =
@y

@x
jx=x�. Since R

0

x can be
evaluated cheaply (at approximately the same cost of evaluating R itself), the computation
of P

0

k could be possibly computationally dominant.

Adopting two assumptions, namely, the regularity assumption and the contractivity as-
sumption, [2] studied these questions and proved that given yk converges to y� in a reasonably

3

rapid and stable fashion, y
0

k ! y
0

�
for a large class of iterations, with or without P

0

k, which
is very important because we know that the evaluation of P

0

k is computationally dominant.
More speci�cally, it is shown that for Newton's method and for secant updating methods,
the derivatives converge R-quadratically and R-linearly, respectively. Also, for a large class
of memoryless contractions, where Pk does not depend on previous iterates, derivative con-
vergence can be achieved with an R-linear or possibly R-superlinear rate.

Secondly, the convergence of y
0

k is generally expected to lag behind the convergence of yk
so that an augmented stopping criteria for y

0

k is necessary. [2] also provided a constructive
stopping criterion for the derivative iteration by bounding the derivative errors (Lemma 1).

Numerical experiments were also given in [2] on small test examples, which con�rmed
the theoretical results.

3 Function Evaluation Involving a Fixed Point

[3] examined a class of functions which include in their computation a convergent iterative
process of the form y = �(y; u), � : Rn �Rm ! Rn, where u : Rk ! Rm is some function
of independent variable x 2 Rk. Fixed point y

�
is the convergent result of � and the �nal

dependent variable z = f(x; y), f : Rk �Rn !Rh.

It can be illustrated as:

Given x
�
and u

�
= u(x

�
),

Until kyk � yk�1k � Toly

yk+1 = �(yk; u�)

k = k + 1

z
�
= f(y

�
; x

�
)

[3] approached this class of functions relatively independent from [2], however, we can
actually establish a relationship between the two in the following way. Let R(y; u

�
) =

�(y; u
�
)� y = 0 be the implicit function, thus we have the update

yk+1 = �(yk; u�) = yk +R(yk; u�): (3)

Choosing Pk = �I, the above equation becomes

yk+1 = yk � PkR(yk; u�); (4)

4

which is just equation (1) in Section 2. We see that the �xed point problem is actually a
subset of the problems discussed in Section 2.

For y
0

k to converge, according to [2]'s contractivity assumption, the above iteration is a
memoryless contraction if

Dk = [I � PkRy(yk; u�)] satisfy �k � kDkk � � < 1 (5)

with respect to some induced matrix norm so that in the limit

�
�
� lim

k
�k � �:

From (5),
Pk = �I =) Dk = [I +Ry(yk; u�)] = �y(yk; u�);

Equivalent to the contractivity assumption, the convergent requirement that

k�y(yk; u�)k < � < 1 (6)

is examined in [3], described as y
�
being an attractive �xed point of � if the above holds.

Finally, z
0

x is calculated by using chain rule:

z
0

x =
@f

@y
� y

0

�
+

@f

@u
� u

0

�
:

[3] derived convergence theorems from the de�nition of a well behaved iterative constructor
� and also proposed an implementation strategy for this particular type of functions. The
implementation used reverse accumulation of automatic di�erentiation, and the basic idea is
to switch on and o� the graph construction of u, � and f accordingly. Error estimates and
stopping criterion for derivative were also given in [3].

Here we would like to summarize the stopping criteria proposed by both papers.

[2] has the following result: For R(y; x) = 0, denote

�k � kyk � y
�
k and �k � ky

0

k � y
0

�
k

and set
�k � (Lc1 + kP

0

kk)�k with c1 � 2(c20 + 1);

where L and c0 are constants, following the regularity and contractivity assumption, it can
be shown that

�k �
1

(1� �)
kPk(Ry(yk; x)y

0

k +Rx(yk; x))k+
1

2
Lc0c1�k; (7)

�k+1 � �k�k + c0�k; and O(kyk � y
�
k) � c1c0L�k; (8)

5

for all �k < �.

(7) provides us with a stopping criterion for the derivative iteration if we can make some
reasonable estimates on L, c0 and �.

In [3], a stopping criterion is provided in terms of the desired accuracy of �krk, where
� < 1 and r is a �xed arbitrary row vector:

kyk+1 � ykk <
�(1� �)3

2C(1� �k)
; (9)

and

ky
0

k + r � y
0

k+1k <
�(1� �)

2k
� krk; (10)

where � and k are bounds for k�yk and k�uk, respectively, in a neighborhood of (y
�
(u); u),

and C is the Lipschitz constant for the map �
0

in this neighborhood.

4 Multiple Fixed Points

In this section we consider the case where there are two �xed points (y
�
; u

�
) (both of them

can be vectors) de�ned as follows:

y = f1(x; u); f1 : R
m �Rn ! Rl

u = f2(x; y); f2 : R
m �Rl ! Rn

where x is the independent variable. This is of interested to us because in many engineering
instances, the system operating parameters are unknown and can only be calculated through
establishing iterative process among them. The example in next section is of this type.

Suppose given x
�
, y ! y

�
and u! u

�
in the following way:

Given x
�
and u0,

Until kyk � yk�1k � Toly or kuk � uk�1k � Tolu

yk = f1(x�; uk)

uk+1 = f2(x�; yk)

k = k + 1

z
�
= f(y

�
; u

�
)

6

Similarly to what we did in Section 3, let

R(x
�
; u) = f2(x�; f1(x�; u))

be the implicit function, so the update becomes:

uk+1 = R(x
�
; uk) = uk � PkR(x�; uk);

where the n� n preconditioner Pk = Qk � I, and QkR(x�; uk) = uk, QkRu +Q
0

kR = I.

Applying the contractivity assumption, the discrepancies

Dk = [I � PkRu(x�; uk)]

= I � (Qk � I)Ru(x�; uk)

= I �QkRu(x�; uk) +Ru(x�; uk)

= Q
0

kR +Ru

It is not the intention of this paper to develop rigorous mathematical proof here. However,
we can easily see that this, again, is a subset of the problems discussed in [2], and by
using suitable argument and conditioning on Q

0

kR+Ru, it can be shown that u
0

x converges.
Similarly, y

0

x converges. By using the chain rule, we have

z
0

x = f
0

uu
0

x + f
0

xy
0

x:

To summarize, ideally we would want the derivative evaluation code generated by an AD
preprocessor to take the form of the following:

Given x
�
, u0 and u

0

0,

Until kyk � yk�1k � Toly or kuk � uk�1k � Tolu

Until ky
0

k � y
0

k�1k � Toly0 or ku
0

k � u
0

k�1k � Tolu0

yk = f1(x�; uk)

y
0

k =
@f1
@x

+ @f1
@u
� u

0

k

uk+1 = f2(x�; yk)

u
0

k+1 =
@f2
@x

+ @f2
@y
� y

0

k

k = k + 1

z
�
= f(y

�
; u

�
)

7

z
0

x = f
0

uu
0

x + f
0

xy
0

x

Similar argument can be applied to problems involving more than two �xed-points.

5 Application in Network Performance Evaluation

In this example, iteration takes the form of what is described in Section 4.

Consider a loss network, which is basically a circuit-switched network, where a call re-
quires certain amount of bandwidth on every link on a path between the source and the
destination. If the network has the required bandwidth on those links when it gets the
request, the call is admitted and it will be using the requested capacities for some time;
otherwise the call is rejected. The performance metric here of interest is the blocking prob-
ability which is the probability that a call �nds the network unavailable when it arrives and
is thus rejected.

Because an exact form of this blocking probability is generally unavailable due to the
size of network, number of tra�c types, tra�c pattern, etc., various approximation schemes
have been studied. One popular and quite e�cient way is called the �xed point or reduced
load approximation method. The idea is to consider the tra�c load on each single link and
the blocking on each single link as two set of unknowns (we use set here because load and
blocking are both further classi�ed according to tra�c type and source-destination pair) of
the network. If, under certain reasonable assumptions, we can express the tra�c load on a
single link in terms of the original load and the blocking on other links { the load is reduced
by blocking on other links, and express the blocking on a single link in terms of tra�c load,
then by continuous substitution, hopefully the problem can converge and we can solve for
both sets of unknown parameters, which we assume to be the equilibrium operating point of
the network under stable condition. And the �nal blocking probability should be a function
of blocking on individual links and the tra�c load as well.

So the problem formulation falls under the category discussed in Section 4. Let a denote
the vector of link admissibility probabilities, � denote the vector of link tra�c load, and
x be the set of independent variables like the distribution of tra�c load, network resource
allocation (link capacities), or admission control parameters. We have two approximations:

� = f1(a; x) and a = f1(�; x)

the �xed point (a
�
; �

�
) and the blocking probabilities B = B(a

�
; �

�
). This is a very brief

sketch of the algorithm, details can be found in [4].

Naturally we are interested in @B
@x
, the sensitivity of blocking probability with respect to

network design parameters, and eventually we would like to solve the following optimization

8

problem:
min f(B); such that g(x) � 0;

where f(�) is some costpenalty function and g(�) is the restriction on network designs.

In this experiment, the AD package ADIC [5] is chosen to generate derivative code to
calculate @B

@x
. There is no separate stopping criterion implemented for derivative iteration.

The whole iteration is terminated when the function convergence criterion is satis�ed as
illustrated in Section 2. So stopping criterion for derivatives had to be manually added.

We used a �ve-node fully connected network, with three di�erent classes of tra�c for the
experiment. Details on this network can be found in [4]. The computation results are quite
satisfying, and correspond to previous discussions, B

0

x did converge but was slower than B

itself, 18 iterations vs. 11 iterations.

6 Conclusion

This paper focuses on application of automatic di�erentiation technique on iterative pro-
cesses. Results from [2] and [3] were discussed and evaluated regarding convergence of
general iterative processes and additional stopping criteria which should be implemented in
existing AD packages. Some extension of these results were made to discuss a class of �xed
point iteration commonly encountered in network performance evaluation and numerical
experiment were made by using the preprocessor ADIC.

References

[1] Louis B. Rall and George F. Corliss. An introduction to automatic di�erentiation. pages
1{18, 1990.

[2] Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson.
Derivative convergence for iterative equation solvers. Optimization Methods and Software,
2:321{355, 1993.

[3] Bruce Dhristianson. Reverse accumulation and attractive �xed points. Optimization

Methods and Software, 3:311{326, 1994.

[4] M. Liu, A. Misra, and J. S. Baras. Performance evaluation in multi-rate multi-hop
communication network with adaptive routing. Proc. Annual ATIRP Conferrence, 2,
1998.

[5] Christian Bischof and Lucas Roh. User's Guide to ADIC 1.0 Revision 1.0 Beta 1, 1997.

9

