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Abstract

In this paper we consider the problem of controlling the orientation of a satellite with
thrusters which provide two control torques. We derive open loop steering control laws for
steering the satellite from one orientation to another. Then we develop closed loop regulation
control laws. For a \symmetric" satellite, (i.e. one with two moments of inertia equal) we
stabilize a �ve dimensional subset of the states. The regulator for the asymmetric satellite,
which is controllable, renders an arbitrary con�guration asymptotically stable. A novel choice
of \Listing" coordinates for SO(3) proves to be useful in deriving these control laws.

�Research supported in part by NSF grant IRI90-14490, in part by NASA under grant NAG 2-243, and also by
NSF grant DCDR88-03012. The authors would like to thank Carlos Canudas DeWit for suggesting this problem.
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1 Introduction

The problem of controlling the attitude of a rigid body has a long and rich history in control. Early
work includes the work of Meyer [12], Brockett [2], Baillieul [1] and Crouch [8], on controllability
and stabilization. Controllability was discussed for models of the satellite with fewer than three
inputs both in [1, 8], but work on stabilization by Meyer [12] and others [27] considered the fully
actuated satellite. Our paper focuses on the control of a satellite with only two input torques.
Control laws stabilizing a subset of the states of the system of a satellite with two inputs can be
found in [3].

Despite the wealth of �ne work, some interesting questions about stabilization remain open
and are worth reconsidering in the light of recent work on the control of nonholonomic systems
[22, 24, 26]. Recent results of Coron [6] indicate that it is possible to �nd time-periodic and
smooth control laws which stabilize the origin. One of our contributions is the construction of such
stabilizing control laws. Indeed, there has been renewed interest in this direction, see for example
[5, 20]. The contributions of this paper are:

1. a set of open{loop planners for steering a satellite with two inputs,

2. a novel set of coordinates for the orientation of the satellite related to Listing's law and the
Hopf �bration,

3. and, �nally, control laws which stabilize the angular velocities and orientation of the satellite.

The control laws derived by us are smooth time varying control laws. It has been conjectured,
however, that somewhat faster convergence for the regulators may be attainable by use of non-
smooth feedback control laws (see [17]). After we announced [23] our results, two other papers
have presented di�erent control laws for stabilization of the asymmetric satellite. The one by
Morin, Samson, Pomet amd Jiang [15] employ techniques close to those described in this paper,
with di�erent choices of output function. The paper of Coron [7] uses di�erent techniques. He
transforms the system into a locally quadratic form and using a dilation technique demonstrates
Lyapunov stability.

We consider a rigid body model of the satellite with thrusters, providing input torques about
the �rst two principal axes. This assumption is without loss of generality: what follows is easily
modi�ed for other locations of the thrusters. The satellite model obeys the Euler equations for the
rigid body. The moments of inertia through the unit axes ei, i = 1; 2; 3 will be denoted Ii and the
input torques are denoted �1; �2. Euler's equations for the model of the satellite are given by:264 _!1

_!2
_!3

375 =

264
I2�I3
I1

!2!3
I3�I1
I2

!3!1
I1�I2
I3

!1!2

375+
264

�1
I1
�2
I2

0

375
_R = R!̂

where !̂ refers to the skew-symmetric matrix given by

!̂ =

264 0 �!3 !2
!3 0 �!1
�!2 !1 0

375 :

The state of the satellite is characterized by the orientation matrix R 2 SO(3), and the angular
velocity vector ! 2 <3. SO(3) denotes the group of rotations on <3. As noted in the literature,

2



the dynamics simplify after the following input transformation,

�1 = I1

�
u1 +

I3 � I2
I1

!2!3

�
�2 = I2

�
u2 +

I1 � I3
I2

!3!1

�
to 264 _!1

_!2
_!3

375 =

264 u1
u2

�!1!2

375
_R = R!̂ (1)

The constant � := I1�I2
I3

. The analysis of the system divides into two cases: the symmetric satellite,
with I1 = I2, i.e. � = 0, and the asymmetric satellite with � 6= 0. A control law for pointing the
symmetric satellite, that is, stabilizing 4 of the 6 states, may be found in [20]. (The four variables
that are stabilized are Re3, a point on the two-sphere, and !1; !2. An alternative to this law is
rederived in Section 3.1 as a starting point for our �nal goal.)

The organization of the paper is as follows: In Section 2, we present the open{loop path planning
algorithms for steering the satellite between a given initial and �nal orientation. Separate solutions
are given for the symmetric and asymmetric satellite. The symmetric and asymmetric satellite are
qualitatively di�erent, because in the symmetric case it is impossible to control the angular velocity
about the symmetry axes. In Section 3, we construct feedback controls for stabilizing the satellite.
The method of exact input{output linearization is employed, using a clever choice of the output
functions and coordinates. Finally, in the second part of this section we derive the stabilizing
control law, and prove that it works using a Lyapunov argument. Once again, the symmetric and
asymmetric cases must be treated separately. Finally, we provide simulation results for both cases.

2 Open{Loop Steering

In this section, we focus on the problem of constructively generating control laws for steering the
satellite of (1) from an initial orientation Ri 2 SO(3), initial angular velocity !i 2 <

3 at time 0 to
a �nal orientation Rf 2 SO(3) and �nal angular velocity !f 2 <

3 at time T . We solve the problem
at �rst for a symmetric satellite, that is I1 = I2, with !3(0) = 0. Owing to the symmetry, !3 is
constant for all control laws and so we will need to choose !3(T ) = 0, as well.

Proposition 1 (Steering the Symmetric Satellite) Consider the dynamics of the satellite on

SO(3)�<3 described by equation (1) with I1 = I2, that is � = 0 and !3 � 0. Given Ri; Rf 2 SO(3),
an initial angular velocity !i and a time T > 0, there exists a piecewise constant control law, u(�)
de�ned on [0; T ], which steers the symmetric satellite from Ri; !i at time 0 to Rf ; !f = 0 at time

T .

Proof: The proof is constructive and involves an algorithm. The function atan2(y; x) = arg(x+
iy).

1. System Halt, (0; T5 ).
For T

5 seconds apply the controls:

[u1; u2] = [�5!1(0)
T

; �5!2(0)
T

].
The system halt maneuver brings the possibly non-zero initial !1, !2 to zero.
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2. Pointing, (T5 ;
2T
5 ).

De�ne �; � by performing the following computation:
xd = R(T5 )

�1Rfe3
� = atan2(�xd(2); xd(3)).
� = arcsin(xd(1)), with � 2 [0; �].

Apply each of the following control laws for T
20 seconds:

[u1; u2] = [�
�
20
T

�2
; 0]

[u1; u2] = [��
�
20
T

�2
; 0]

[u1; u2] = [0; �
�
20
T

�2
]

[u1; u2] = [0;��
�
20
T

�2
]

The maneuver is composed of two rotations:

R(
2T

5
) = R(

T

5
) Exp(�ê1) Exp(�ê2): (2)

The angles �; � have been chosen so that:

R�1(
T

5
)Rfe3 = Exp(�ê1) Exp(�ê2)e3: (3)

By using relation (2) in (3), we �nd Rfe3 = R(2T5 )e3. We are now pointing in the desired
direction, Rfe3.

3. Measurement, (2T5 ).
Compute: Rd = R�1(2T5 )Rf .
 = atan2(�Rd(1; 2); Rd(1; 1)).
If  = 0, STOP.

In the next step, the residual rotation error is computed. Because R(2T5 )e3 = Rfe3 we see that
Rde3 = e3. This implies that Rd = Exp( ê3) and further,  = atan2(�Rd(1; 2); Rd(1; 1)).
If  = 0 we have achieved the �nal orientation, otherwise the rest of the algorithm must be
executed.

4. Outward Leg, (2T5 ;
3T
5 ).

Apply each for T
10 seconds:

[u1; u2] = [�2

�
10
T

�2
; 0]

[u1; u2] = [��
2

�
10
T

�2
; 0]

5. Correction, (3T5 ;
4T
5 ).

Apply each for T
10 seconds:

[u1; u2] = [0;  
�
10
T

�2
]

[u1; u2] = [0;� 
�
10
T

�2
]
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6. Return Leg (4T5 ; T ).

Apply each for T
10 seconds:

[u1; u2] = [��
2

�
10
T

�2
; 0]

[u1; u2] = [�2

�
10
T

�2
; 0]

To see the justi�cation of these last three steps, examine the product Exp(�2 ê1) Exp( ê2)

Exp(��
2 ê1). Recall that R Exp(â)R�1 is equal to Exp

�cRa�. Thus, the net motion of the

last three steps is Exp( dExp(�2 ê1)e2) = Exp( ê3)Rd.

Remarks

1. Area Form. If we set !3 = 0 and think of the remaining angular velocities !1; !2 as the controls
then the resulting system on SO(3) is equivalent to the equations of parallel transport for a
unit vector tangent to the two-sphere S2. Consequently, it follows from the Gauss-Bonnet
theorem that the rotation about the e3 axis induced by the last three steps is equal to the area
enclosed by the path traced by R(t)e3 on S2. For a detailed proof of this fact, see [21, 25].
This suggests that the dynamics of the system is related to an area form which should have
a simple expression in the right set of coordinates. This expression is found in x3.1.

2. Regulator from the Planner. There is little hope of converting this algorithm into a regulator
since large deviations are needed to correct for small errors in rotation about e3. The resulting
regulator would not be stable in the sense of Lyapunov. We can, however, linearize the control
system about the trajectory and construct a feedback control law (see [26] for details) which
will stabilize to the open loop path in the face of noise and small modeling errors.

3. Symmetric satellite with !3 6= 0: Since !3 is constant, it is useful to solve the problem for
Rr(t) = R(t)Exp(�!3tê3). The dynamics in this new set of coordinates is given by:

_Rr(t) = Rr!̂r

!r(t) =

264 cos(!3t) � sin(!3t) 0
sin(!3t) cos(!3t) 0

0 0 1

375
264 !1
!2
0

375
This is veri�ed by di�erentiating Rr. Now de�ning u = [u1; u2]

T , and v = [v1; v2]
T , set

u =

"
!2!3
�!1!3

#
+

"
cos(!3t) sin(!3t)
� sin(!3t) cos(!3t)

#
v

It may now be veri�ed that under this input transformation _!r1 = v1 and _!r2 = v2. An
open{loop planner, similar to the one found in Proposition 1, may now be used.

4. Asymmetric Satellite. Notice that at each point after system halt in the algorithm of Propo-
sition 1, either !1 or !2 is zero. This ensures that _!3 remains zero. Therefore, as long as
the algorithm of Proposition 1 is given an asymmetric satellite with !3 = 0, it will work as
designed. An initial non-zero !3 can be removed by ramping up and down both !1 and !2
the proper amounts.
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3 Feedback Control

In the following section, we apply geometric nonlinear control to capture the dynamics of four
of the six states of either the symmetric or asymmetric satellite. Exact linearization methods
require coordinates and so impose Euclidean structure on the fundamentally non-Euclidean space
SO(3)�<3. It is not possible to avoid coordinate singularities since SO(3)�<3 is not <6. However,
a judicious choice of output functions con�nes the singularities to an S1 subset of SO(3). This is
achieved through the use of a non-standard coordinate chart related to Listing's law [11] of eye
movement. This chart also appeared in the attitude control of a model of a falling cat with a
no-twist joint [14]. It is closely related to the Hopf �bration SO(3) ! S2 which takes R to Re3.
In this section, controllers stabilizing the additional states of the zero dynamics as well as the four
linear states are presented.

3.1 Input-Output Linearization

In this subsection we input-output linearize [10] the system (1) for both the symmetric and asym-
metric satellite. A natural choice of output is the pointing direction R(t)e3, a variable vector
con�ned to the surface of the unit sphere S2. The compicated control dynamics involving !3 and
rotations about e3 do not appear in these outputs and their derivatives. We use a stereographic
parameterization of S2, which has only one singularity. Our region of interest will be the identity
matrix which projects to the north pole of the sphere. Consequently, we choose the stereographic
projection to have its singularity at the south pole. The resulting output functions are

h1(R;!) =
eT1Re3

1 + eT3Re3

h2(R;!) =
eT2Re3

1 + eT3Re3
:

(4)

We will show that the outputs have vector relative degree 2, 2 [10] { that is to say, the controls are
recaptured upon taking two derivatives of the hi. Two states that are rendered unobservable by
feedback can be expressed explicitly by noting that for all R 2 SO(3) of the form R = Exp( ê3),
h1 and h2 are zero. It follows that the hi do not capture the  , and _ = !3 dynamics.

Proposition 2 (Input{Output Linearization) Given the control system for a satellite on SO(3)�
<3 described by equation (1), the outputs h(R;!) of equation (4) have vector relative degree 2, 2

for all khk <1.

Proof: Di�erentiating the outputs for i = 1; 2, we get

_hi =
eTi R!̂e3
1 + eT3 Re3

�
eTi Re3e

T
3R!̂e3

(1 + eT3Re3)
2

;

which may be written "
_h1
_h2

#
= A(R)

"
!1
!2

#
: (5)
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If we denote rij = eTi Rej, the ij
th element of the matrix R, the matrix A(R) is

A(R) =
�1

(1 + r33)2

"
(1 + r33)r12 �(1 + r33)r11 + r13r31

(1 + r33)r22 � r23r32 �(1 + r33)r21 + r23r31

#
:

Note that these equations contain no explicit dependence on !3. The determinant of the matrix
A(R), the so-called decoupling matrix [10], is

det (A(R)) =
1

(1 + r33)2
:

The determinant is bounded for every h1; h2 since r33 = �1 corresponds to the south pole of S2.
In terms of the outputs h1; h2, the determinant1 of the decoupling matrix is 1

4 (1 + h21 + h22)
2, thus

the chosen outputs thus have vector relative degree 2, 2.
The second derivative is "

�h1
�h2

#
= f0(!;R) +A(R)

"
u1
u2

#
:

The choice of inputs u = A�1(R) (v � f0(!;R)) input-output linearizes the system:

�h1 = v1
�h2 = v2 : (6)

If the outputs were zero, then h1 = _h1 = h2 = _h2 = 0. By equation (5), !1 = !2 = 0, thus from
equation (1) we see that _!3 = 0. The system will be rotating at the constant rate !3 about the
e3 axis. Thus, the zero dynamics manifold is TS1. Furthermore, the trajectories are bounded for
all time. To solve for the zero dynamics, we require a coordinate chart for SO(3) which will keep
track of this rotation  about e3 as measured in the body frame.

Euler angles, although a favorite of the literature [16, 3, 8], are not advisable for this system.
The x � y � z Euler angle chart, when projected down to the S2, is not symmetric. Any Euler
angle chart which is symmetric, for example the z � y� z, is singular at the north pole. Listing, a
psychologist studying the movement of the eye, noted that the eye moves in a way which minimally
twists the optic nerve. Listing's law [9, 11] describes the subset of SO(3) swept out by such an
eye. This subset is <P 2 � <P 3 = SO(3). The same subset of SO(3) describes the con�guration
space of a cat which does not twist its spinal cord [13]. It can be thought of as the image under
the exponential map of a two dimensional subspace of so(3). We will use polar coordinates on

<2 in order to parameterize the subspace. Thus R`(�; �) = Exp(� d(cos(�)e1 + sin(�)e2)) for any
�; � 2 T 2. The formula for R`(�; �) is

266664
cos2(�)(1� cos(�)) + cos(�) cos(�) sin(�)(1� cos(�)) sin(�) sin(�)

cos(�) sin(�)(1� cos(�)) sin2(�)(1� cos(�)) + cos(�) � sin(�) cos(�)

� sin(�) sin(�) sin(�) cos(�) cos(�)

377775 :

1In the standard Euler angle parameterization, the determinant is 1
(1+cos(�) cos(�))2

.
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The complete chart for SO(3) is R(�; �;  ) = R`(�; �) Exp( ê3). It may be veri�ed that the
equation for the decoupling matrix has the following pleasing form in these coordinates.

A(R) =
(1 + h21 + h22)

2

"
� sin( ) � cos( )
cos( ) � sin( )

#

Proposition 3 (Zero Dynamics) Consider the control system of the satellite of equation (1)

with the input-output linearizing control law of Proposition 2. The zero dynamics for these outputs,

parametrized by  and !3, are given by

_ =
2

(1 + h21 + h22)
(h2 _h1 � h1 _h2) + !3

_!3 =
�2�

(1 + h21 + h22)
2

�
sin(2 )( _h22 �

_h21) + 2 cos(2 ) _h1 _h2
�

where  is measured as in the Listing parameterization.

Proof: The derivative of !3 may be computed directly using equation (5). To compute the
derivative of  , di�erentiate the Listing coordinate chart R(�; �;  ).

_R = R!̂ = R`!̂
` Exp( ê3) + _ Rê3

= R d( Exp(� ê3)!̂`) + _ Rê3

This implies

!3 = !`3 +
_ :

The quantity !`3 may be computed directly from the derivative of the matrix R`(�; �). The equation
for _ is

_ = !3 � (1� cos(�)) _� :

The angles �, � and their derivatives depend only on h and _h. It may be veri�ed that these dynamics
are

_ =
2

(1 + h21 + h22)
(h2 _h1 � h1 _h2) + !3

_!3 =
�2�

(1 + h21 + h22)
2

�
sin(2 )( _h22 �

_h21) + 2 cos(2 ) _h1 _h2
�

: (7)

Remarks

1. Stabilization Strategy

The four states h1; h2; _h1 and _h2 constitute a controllable linear system and are therefore
easy to stabilize to a point. The challenge rests with the remaining dynamics, !3 and  . It
is impossible to a�ect the dynamics of !3 in the symmetric (� = 0) case so we are forced
to consider the symmetric and asymmetric cases separately. The controllers we propose in
the next two subsection are composite: a linear system controller for the h variables will be
perturbed by a high order control law to stabilize what would normally be the zero dynamics.
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2. Use of Euler Angles
Suppose we use x� y� z Euler angles instead of this nonstandard chart. We set R(�; �;  ) =
Exp (�ê1) Exp (�ê2) Exp ( ê3). It may be veri�ed that the zero dynamics take on the de-
ceptively simple form:

_ = � sin(�) _� + !3

This essentially says that  evolves according to area swept out on the two-sphere whose
spherical coordinates are (�; �)2. Because this is such a special equation, one might expect that
it would have a simple expression in h1; h2 coordinates. However, this di�erential equation
is ill de�ned at the equator of S2. The singularity and the asymmetry are artifacts of the
coordinate chart we have chosen for SO(3).

3. Use of Quaternions
Hamilton's quaternions parameterize SO(3) in a way which avoids singularities (see for ex-
ample [16]). Speci�cally, the unit quaternions form a Lie group which is di�eomorphic to the
three-sphere S3 inside the space <4 of all quaternions, and this group comes with a canonical
double covering map S3 ! SO(3). One composes this double cover with our map R ! Re3
to form the standard Hopf �bration S3 ! S2. The splitting of the orientation space of our
two-torque satellite into a `direction' Re3 2 S

2 and a rotational angle  about e3, when pulled
up to the quaternions, corresponds to the base and �ber of the standard Hopf �bration.

3.2 The Regulator for the Symmetric Satellite

We can control at most �ve states of the symmetric satellite since !3 is a constant for all inputs.
We will consider the case !3 � 0 here. The case of !3 6= 0 is similar. The notion of a saturation
function is useful (see, for example, [18]). This is a C3 function ��(�) : < ! < chosen so that
��(x) = x for jxj < � and ��(x) = � sgn(x) for jxj > �. Here � is a small positive number. Note
that @��

@ 
( ) = 0 for all j j > �. The new output functions use these saturation functions:

y = h+

"
�2�( ) cos(t)
��( ) sin(t)

#
:

It may be veri�ed that the second derivative of the output y is

�y = B(h; _h;  )v + f1(h; _h;  ) :

For su�ciently small �, the matrix B(�) is invertible for all h; _h, and  . With this notation, the
matrix B becomes

B(h; _h;  ) =

264 1 +
4��( )

@��
@ 

( ) cos(t)h2

1+h21+h
2
2

�4��( )
@��
@ 

( ) cos(t)h1

1+h21+h
2
2

2 @��
@ 

( ) sin(t)h2

1+h21+h
2
2

1�
2 @��
@ 

( ) sin(t)h1

1+h21+h
2
2

375 :
Its determinant is

det(B) = 1 +
4��( )

@��
@ 

( ) cos(t)h2

1 + h21 + h22
�

2@��
@ 

( ) sin(t)h1

1 + h21 + h22
: (8)

Thanks to the higher order terms in the denominators of the second and third terms, this determi-
nant is bounded away from zero by a careful selection of ��(�) and �.

2d(� sin �d�) = � cos�d� ^ d� is the area form on the two-sphere.
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Proposition 4 (Regulator for the Symmetric Satellite) Consider the control system of the

symmetric satellite given by equation (1) with � = 0 and !3 = 0, Then, all smooth control laws

v(R;!; t) of the form v = �B�1(h; _h;  )
�
f1(h; _h;  ) + k1y + k2 _y

�
with k1; k2 > 0 render the equi-

librium point R = I; ! = 0 asymptotically stable for � > 0 chosen su�ciently small, .

Proof: From the de�nition of y, it follows that (h; _h;  ) ! (y; _y;  ) is an invertable change of
coordinates. In the y-coordinates we have that �y = �k1y� k2 _y, with ki > 0. This implies that y; _y
are exponentially stable. Now apply center manifold theory [4]. The derivative of  is higher order
in y, so  and t parameterize the center manifold3. The variables y are exponentially stable with
no higher order perturbation so on the center manifold we have y = _y = 0. To �nish the proof, we
have to solve for the dynamics on the center manifold. Using y = _y = 0, we may solve for h and _h.
To reduce the burden of the notation, de�ne b( ; t) = h� y; thus, restricted to the center manifold

_h =
@b

@t
+
@b

@ 
_ (9)

Substituting for _h, we �nd that:

_ 

0@1� �2�( )
@��
@ 

( ) sin(2t)

1 + h21 + h22

1A =
�2�3� ( )

1 + h21 + h22

For small enough �, the term 1 �
�2� ( )

@��
@ 

( ) sin(2t)

1+h21+h
2
2

is greater than zero. Thus, the  dynamics are

asymptotically stable. By the center manifold theorem, the equilibrium point (R;!) = (I; 0) is
stable.

Figure 1 shows simulations of the trajectory of the system in the h1; h2 space and resulting time
evolution of the coordinate  .

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

h1

h 2

Phase plot in projective plane

0 5 10 15 20
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

time

Plot of     versus time resultingψ

ψ

Figure 1. The trajectory in the phase plot of h1; h2 on the left spirals into the origin as the error
along the \�ber direction"  is reduced. The resulting time plot of  is on the right.

3The version of the theorem that we use is for periodic time-varying systems, see for example, [22].
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3.3 The Asymmetric Satellite Regulator

In this sub-section we present the regulator control law for the asymmetric satellite. To begin with
we rewrite the model in a more convenient form. Write

S = S( ) =

"
� sin( ) � cos( )
cos( ) � sin( )

#

and

! =

"
!1
!2

#

Recall that h; u 2 <2. The control system is

_h =
(1 + h21 + h22)

2
S( )!

_! = u

_!3 = �!1!2

_ = !3 +
2

1 + h21 + h22

�
h2 _h1 � h1 _h2

�
(10)

Note that

S�1 =

"
� sin( ) cos( )
� cos( ) � sin( )

#
Now we de�ne the new outputs y by:

y = ! + S( )�1h+ `( ; !3; t) (11)

where

` =

"
`1
`2

#
=

"
( + !3) cos(t)

�k1( + !3)
2 cos(t)

#
(12)

(We are now working locally near  = 0 so we may think of  as a real instead of as an angular
coordinate. The reader may replace the occurrences of  +!3 in the de�nition of ` with any function
which agrees with  + !3 up to terms of order 3. In particular, this function can be taken to be
periodic in  .) Di�erentiate the output to �nd:

_y =

"
u1
u2

#
+ f2(h; y;  ; !3; t)

Proposition 5 (Regulator for the Asymmetric Satellite) Consider the satellite with dynam-

ics described by equation (1) with � 6= 0. All smooth control laws u(R;!; t) of the form u =
�(k0y+f2(h; y;  ; !3; t)) with y as de�ned in (11), k0 > 0, sgn(k1) = sgn(�) and jk1j > 0:4, locally
asymptotically stabilize the equilibrium point R = I; ! = 0 .

11



Proof: We begin by writing the dynamical system resulting from our control law in terms of the
variables (h; y; !3;  ). The system has a time-periodic center manifold [19, 22] passing through the
origin which we approximate. We express the dynamics on this center manifold to the appropriate
order. Then we use the method of averaging together with a Lyapunov function to prove stability.

The control law u = �(k0y + f2(h; y;  ; !3; t)) leads to closed loop dynamics given by:

_h =
(1 + h21 + h22)

2

�
�h+ S( )�1(y � `)

�
_y = �k0y

_!3 = � (y1 � ( + !3) cos(t) + sin( )h1 � cos( )h2)�
y2 + k1( + !3)

2 cos(t) + cos( )h1 + sin( )h2
�

_ = !3 +
2

1 + h21 + h22

�
h2 _h1 � h1 _h2

�
(13)

The linearization of this di�erential equation is

_h = �h+ S(0)�1(y � (`1( ; !3; t); 0)
T )

_y = �k0y

_!3 = 0

_ = !3 (14)

It follows that the h; y directions belong to the stable eigen-directions, and that the  ; !3 plane
corresponds to the (generalized) eigenspace of the 0 eigenvalue. Also the subspace y = 0 is preserved
by the dynamics. It follows that there is a time dependent center manifold passing through 0
and contained in the subspace y = 0. To calculate it we will use a coordinate transformation
~h = h + �( ; !3; t), to eliminate the time-varying dependence found in the equation for _h2. In

terms of these new variables, the linearized ~h dynamics will be _~h = �~h. Consequently, the periodic
time-varying, center manifold [19, 22] is parameterized by ( ; !3; t) and can be expressed in the
form y = 0 and ~h = �( ; !3; t).

We now solve for the lower order terms of h on the center manifold. Since y � 0 on the center
manifold, we have (see (11)):

! = �`� S�1h (15)

We know that _h = A(h;  )! with A =
1+h21+h

2
2

2 S. Consequently

_h =
1 + h21 + h22

2
S!

which we expand out:

_h1 =
1 + h21 + h22

2
(� sin( )!1 � cos( )!2)

_h2 =
1 + h21 + h22

2
(cos( )!1 � sin( )!2) : (16)

By substituting (15) into (16) we compute the the dynamics of h,

_h1 =
1 + h21 + h22

2

�
�h1 + sin( )( + !3) cos(t)� k1 cos( )( + !3)

2 cos(t)
�

_h2 =
1 + h21 + h22

2

�
�h2 � cos( )( + !3) cos(t)� k1 sin( )( + !3)

2 cos(t)
�

:

12



Now we solve for the coordinates ~h. We require that the dynamics of ~h1 have no linear time-varying
terms and that the nonlinear terms of ~h2 dynamics be strictly third order. The resulting center
manifold equation ~hi = �i(t;  ; !3), i = 1; 2, will be of order two and three respectively. The
general form of such a transformation is:

~h1 = h1 + (
11 
2 + 
12 !3 + 
13!

2
3) cos(t) + (
14 

2 + 
15 !3 + 
16!
2
3) sin(t)

~h2 = h2 + (
21 + 
22!3) cos(t) + (
23 + 
24!3) sin(t) (17)

Solving for the vectors 
1 = (
11; 
12; 
13; 
14)
T 2 <4; 
2 = (
21; 
22; 
23; 
24; 
25; 
26)

T 2 <6 we get,
for given k1,


1 = (0:2; 0:44; 0:4; 0:08)T


2 = (�0:2 + 0:2k1;�0:68 + 0:88k1; 0:464 � 0:024k1;

�0:4 + 0:4k1; 0:24 + 0:16k1; 0:448 � 0:368k1)
T : (18)

Knowing the center manifold to second order, we can express the dynamics of  and !3 on the
center manifold to third order. We will denote time independent polynomials by Pi(�), time-average
zero terms by Oi(t; �), and remainder terms by Ri(t; �). The functions Oi; Ri are time periodic.

_ = !3 (1 + P1( ; !3)) +O1(t;  ; !3) +R1(t;  ; !3)

_!3 = P2( ; !3) +O2(t;  ; !3) +R2(t;  ; !3)

The terms Oi are third order, while the terms Ri are fourth or higher order. The polynomials P1
and P2 are

P1( ; !3) = 
31!
2
3 + 
32!3 + 
33 

2

P2( ; !3) = 
41!
3
3 + 
42!

2
3 + 
43!3 

2 + 
44 
3 ; (19)

with the vectors 
3 2 <
3 and 
4 2 <

4 being


3 = (k1 � 1) (0:116; 0:56; 0:06)T


4 = �k1�

�
0:148208 +

0:01792

k1
; 0:4576 +

0:1696

k1
; 0:656 +

0:16

k1
; 0:4

�T
: (20)

We apply an averaging transformation [4], ( ; !3) = x1 +	(x1; t) where x1 2 <
2 and where 	

is third order in x1 and is time-average zero. The linearization of such a transformation at x1 = 0
is full rank hence a local di�eomorphism. The dynamics of x1, computed by di�erentiation, are
then,

_x1 =

"
x12 (1 + P1(x1)) +O1(x1; t) +

@	1
@t

� x12
@	1
@x11

+	2 +R11(x1; t)

P2(x1) +O2(x1; t) +
@	2
@t

� x12
@	2
@x11

+R12(x1; t)

#
(21)

where Rjk(x1; t) is at least order four and x12 denotes the second component of the vector x1. In
the standard averaging theory, one sets

@	

@t
= �

"
O1(x1; t)
O2(x1; t)

#
(22)
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resulting in a time periodic, time average zero 	 and removing lower order time dependent terms.
In our case, averaging will have to be repeatedly applied to obtain this result. With the choice of
	 satisfying (22), we have

_x1 =

"
x12 (1 + P1(x1)) +O11(x1; t)

P2(x1) + x12O12(x1; t)

#
+R1(x1; t)

where R1(x1; t) is of order four and higher, O11(x1; t) is third order and is time-average zero, and
O12(x1; t) is second order and time-average zero. The ith iteration of averaging has the form,
xi�1 = xi +	(xi; t). It maybe veri�ed that the dynamics of the ith iteration are given by

_xi =

"
xi2 (1 + P1(xi)) + xi�1i2 Oi1(x1; t)

P2(x1) + xii2Oi2(xi; t)

#
+Ri(xi; t)

with Ri(xi; t) fourth and higher order, Oi1(xi; t) order 4� i for i 2 (1; 4), and Oi2(xi; t) order 3� i
for i 2 (1; 3). At the fourth iteration, third order time dependent terms drop out of the equation
for _xi2 and in the �fth iteration third order time dependent terms drop out of the equation for _xi1.

Relabel the state variables of the �fth interation by z 2 <2. In (23) below, the remainder terms,
written as Ri(t; z), are time periodic terms of order 4 and higher. The polynomials P1; P2 are as
de�ned earlier.

_z1 = z2 (1 + P1(z)) +R3(t; z)

_z2 = P2(z) +R4(t; z) (23)

The following Lyapunov function is locally positive de�nite if �k1 > 0 and �0 is su�ciently small.

V (t; z) = 0:1�k1z
4
1 + 0:5z22 + �k1�0z

3
1z2 +

z41z2g1(t) + �2z
5
1 + z51z2g2(t) + �4z

6
1 (24)

The functions gi(t) are periodic and time average zero. They will be speci�ed later, as will the
constants �i. We now compute the derivative of the Lyapunov function, keeping track of terms up
to order six. The order four terms of _V are:

z2P2(z) + 0:4�k1z
3
1z2 + 3�k1�0z

2
1z

2
2 :

The Lyapunov function has been chosen so that terms involving z31z2 cancel. Thus the fourth order
term may be written as z22P3(z), where

P3(z) = 
51z
2
2 + 
52z2z1 + 
53z

2
1 (25)

is a quadratic with coe�cients:


5 = ��k1

�
0:148208; 0:4576 +

0:1696

k1
; 0:7064 +

0:16

k1
� 3�0

�T
: (26)

The order �ve terms are

z2R3(t; z) + z41z2
@g1(t)

@t
+ 5�2z

4
1z2 + 3z31z

2
2g1(t):

Due to the periodic nature of the vector �eld, the order 5 part of the �rst term may be written
z22R5(t; z)+z2z

4
1 (�10 + �11(t)), where �11(t) is periodic with time average zero and R5(t; z) is order
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3. This calculation does not take into account the 6th order terms in z2R3(t; z). For this reason
we have to consider it again amongst the sixth order terms. Choose �2 = ��10

5 so as to cancel the

constant (averaged) part and choose g1(t) =
R t
0 �11(�)d� so as to cancel the time dependent average

zero part of the the z2z
4
1 coe�cient of z2R3. Consequently, the order 5 terms are now of the form

z22
~R3(t; z).
The order six terms are as follows.

3�k1�0z
2
1z

2
2P1(z) + �k1�0z

3
1P2(z) + 6�4z

5
1z2

+5z41z
2
2g2(t) + z51z2

@g2(t)

@t
+ z2R6(t; z) :

As with the order four terms, the periodic nature of the vector �eld implies that it may be written
z22R4(t; z)+ z2z

5
1(�20+�21(t)). As before, �4 and g2(t) can be chosen as to cancel all the z51z2 term,

leaving the 6th order terms in the form �0:4(�k1)
2�0z

6
1 + z

2
2R7(t; z). All other terms are order 7 or

higher. The derivative of the Lyapunov function is now

_V = z22 (P3(z) +R8(t; z)) � 0:4(�k1)
2�0z

6
1 +R9(t; z) : (27)

We must check that this is negative de�nite for z small. The constant �0 is chosen arbitrarily
small and positive. The polynomial P3(z) is quadratic. R8(t; z) is cubic and higher in z and R9 is
seventh order and higher. So it su�ces to show that the quadratic P3(z) is negative de�nite. The
coe�cients of z21 and z22 occurring in P3 are both negative, since � and k1 are taken positive. So it
remains to show that the discriminantD = b2�4ac = 
252�4
51
61 of P3 is negative for appropriate
�0; k1. This is easily seen from the numerical expression for the 
5i. (In fact, D = (�k1)

2 times,
approximately �:18 � :01=k1 + :02=k21 � 1:7�0 which is negative for all 1=k1 and �0 su�ciently
small.) The precise calculation of the critical gain 0:4 is left to the interested reader.

Figure 2 shows simulations of the control law for the asymmetric satellite.
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Figure 2. After an initial transient wherein the large error in h is corrected, note that the trajectory
in the phase plot of h1; h2 on the left wobbles back and forth about the origin, unlike the symmetric
regulator phase plane trajectory. The plot on the right shows the resulting evolution of  and !,
which converge at a slower than linear rate.

4 Conclusion

Our main contribution is the construction of stabilizing control laws for regulation of both the
symmetric and asymmetric satellite. We also contribute both open loop control laws for large
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motions of the satellite and a natural set of coordinates for the satellite related to both the falling
cat and eye-movement. All control laws are smooth. Possible future work includes the investigation
of non-smooth control laws in order to improve convergence rates.
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