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1. Introduction

Controlled Markov processes often arise when modeling the behavior of asynchronous
algorithms, queuing systems, and computer and communication networks. In these models
it is often the case that the control policy considers only the immediate future of the process
in an attempt to stabilize it. While in general, a myopic policy will not guarantee the long-
term stability of the process, in this paper we shall give sufficient conditions on the one-step
behavior of a process to guarantee its long-term stability.

Suppose we are given a time-homogenous Markov process, { X, }. Consider an analysis
in which we choose a nonnegative function u such that if the expected value of u(X,,) is
suitably bounded, then the process is stable in some sense. For example, in Section 3 our
process will be the state of a system of N parallel queues. Our control policy will direct the
traffic arriving at time n + 1 to the queue whose length was shortest at time n. We will show
that this policy can stabilize the system in the sense that the expected sum of the squares
of the differences between all pairs among the N queues is uniformly bounded for all time.

To motivate our results, consider the following example of a single-server queue. Let
{Y,,n = 0,1,2,...} be a discrete-time Markov chain whose transition probabilities are as

follows. For z = 0,

PYot1 =7 |Ya=1) = .
1—X, ify=0.
For:>1,
A, ifj=1+1,
PYoy1 =j | Ya=1) = § 1 -\ +p), ifj=1,
i, ifjg=14-1.

We take 0 < X < g < 1 with A 4+ g < 1. Our concern here is the long-term behavior of

E[Y, | Yo = ¢]. In particular, we would like to know if
T@E[YH%zi] < 0.

In this simple example, since A < g, it is very easy to compute the stationary distribution

(see Billingsley (1979), Theorem 8.6, p. 106),
. A’ A
limP(Yn=j|Y0:z):(——> <1——).
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o .
Recalling that for |z| < 1, 3. j2/~! = (1 — 2)7?, it is not hard to compute that indeed,
J=1

lim E[Y, [Yo=i] = —— < oo,

assuming that we can take the limit inside the expectation.

How could we study the behavior of E[Y}, | Y5 = ¢] if the stationary distribution were
not available to us? Recall that in the field of differential equations, a “Lyapunov function”
can sometimes be used to study the behavior of solutions to a differential equation without
actually solving it. In this spirit, our paper generalizes the preceding example, and gives
conditions on the one-step behavior of a process that will yield useful information about its
long-run (and short-run) behavior.

We now make a precise statement of our model. Let {X,,n = 0,1,2,...} be a time-
homogeneous Markov process defined on a probability space (Q,F,P), and taking values in
a measurable space (X, X). Let u: X — [0,00) be a given measurable function. (Here [0, c0)

is equipped with the usual Borel o-field.) For z € X, let

1>

(1.1) Un(2) E[u(X,) | Xo = ], n=0,1,2,....

In this paper we give sufficient conditions to answer the following question: “Does there

exist a positive, finite constant D such that

lim i,(z) < D

00

for all z € X?” To answer this question we will construct a sequence of functions {u,} such

that for all n > 0,
(1.2) tn(z) < un(z), VzeX

and such that {u,} is easy to analyze. To suggest how one might establish (1.2), consider

the following result.

Proposition 1. Set uo(z) 2 u(z), and let {uy}n>1 be given. If one can show that for all
n >0, and all z € X,
(1.3) Elun(X1) | Xo=z] < (@),

then i, (z) < un(z) for alln 20, and all z € X.

3



Proof. We proceed by induction. Clearly,
io(z) £ E[u(Xo) | Xo=2] = u(z) = uo(z),

and so (1.2) holds for n = 0. Suppose (1.2) holds for some n > 0. Then

tnya(z) & Elu(Xpp) | Xo = 2]
= E[E[w(Xn41) | X1, Xo] | Xo = 2]
= E[E[u(Xns1) | X1] | Xo = 2], by the Markov property,
= E[d,(X1) | Xo = 2], by time homogeneity,
< Elun(X1) | Xo = 2], by the induction hypothesis,
< wnale), by (L3)

The difficulty is to establish conditions under which (1.3) holds. If we let p(z, B) denote
a regular version of P(X; € B | Xo = z) for B € X, then we can rewrite (1.3) as

(1.4) /)(un(y)p(x,dy) < Upyr(a).

Remark. The careful reader will see later that since uy(x) will have the form u,(z) =
fa(u(z)), in order to derive the results in this paper, we do not need a regular version of
P(X: € B| Xo = z) for B € X, but only a regular version of P(u(X;) € C' | Xo = «) for
C a Borel subset of [0,00). Since u is real-valued, such a regular version always exists; see

Billingsley (1979), Theorem 33.3, p. 390.

In Section 2 we give sufficient conditions under which (1.4) will hold. These conditions

are summarized in Theorem 2.

”

In Section 3 we describe the problem of “joining the shortest queue.” We then apply
Theorem 2 to show that the servers are equally loaded, even in heavy traffic.
In Section 4 we prove Theorem 2.

In Section 5 we present an extention of Theorem 2.

In Section 6 we compare our results to those of Hajek (1982) for problems in which both

apply.



2. Statement of Main Result

As pointed out in Section 1, the problem of finding a sequence {u,} satisfying (1.2) can
be reduced to the problem of finding a sequence satisfying (1.4). We now present our main
result, Theorem 2, which gives conditions under which this can be done. The proof is given

in Section 4.

Theorem 2. Fiz b > 0 and 0 < € < 1. Suppose that there exist posiltive constants C and v

satisfying A6+ (L)
+ + +e
(2.1) : o C S W
and such that for some L,
(2.2) lu(y) —u(z)] < eu(z), p(z,-)-as., fu(z)>L,
(2.3) Elu(Xnt1) —u(z) | Xn =2] < —, if u(z) > L,
and
(2.4) E[lu(Xng1) —u(@)]? | X, = 2] < Culz), if u(z) > L.

If one can find a finite constant A, depending on b and L, such that
(2.5) E[u(Xn)!T? | Xp = 2]V < A, Hf0<u(z) <L,

then the sequence {u,} given by

A u(:L')b+2 Ab+2 nl 1
2.6 n = + A+ — ,
(25) )= Rt g A G

satisfies (1.4), and by Proposition 1,
(2.7) Elu(Xy,) | Xo=2] < uu(z), n>0,z¢eX

Of course, when n = 0, equation (2.6) is to be interpreted as uo(z) 2 u(z), and when n =1,
it 1s to be interpreted as
U(.’L‘)b+2

ul(m) [u(:v) + b_i_f]bﬂ

e

+ A.



Remark. When b =1, (2.6) becomes

wle) = @) A1
(2.8) () [u(m)+%n]2+A+4y2;k2.

In fact, since § k=% = w2/6 (See Papadimitriou (1973) for an elementary proof of this fact.
k=1

See Stark (1974) for more general series), it is easy to see that

(2.9) Jim un(z) = A(1+ 2(z4)2),
and that
(2.10) unle) < u(a) + A(1+2(2A)2)

Note that the limit in (2.9) is independent of , whereas the bound in (2.10) is independent

of n.

Remark. The inequality (2.3) is very similar to the definition of a Markovian supermartingale.
To see this, recall that if F, £ ¢(Xo, ..., X,), then {u(X,)} is an {F,}-supermartingale if
and only if for all n > 0,

2.11) Elu(Xnpr) | Fa] < u(Xo).

Since {X,} is Markovian, this can be rewritten as

E[u(Xnp1) [ Xn] < u(Xn),

or

(2.12) Elu(Xnt1) —u(z) | Xpn=2] <0, Vz € X.

To compare (2.3) with (2.12), observe that (2.3) is a stronger inequality, but holds only when
u(z) > L. On the other hand, (2.12) is a weaker inequality, but holds for every x € X. Now,

observe that if (2.11) were to hold, then we could immediately write
E[u(Xn41) | Xo] < E[u(Xs) | Xo],
from which it would follow by induction that for all n > 0,

Elu(Xn) | Xo] < u(Xo),



which we can rewrite as

Elu(X,) | Xo =2z] < u(z).

Now, if Theorem 2 were to hold with b = 1, substituting (2.10) into (2.7) would yield
E[u(Xy) | Xo=2] < u(z)+ A1+ 2(%2)?).

Clearly, (2.12) (that is, the Markov version of (2.11)) is a stronger condition than
(2.1) ~ (2.5) combined.

Ezample. Let us apply Theorem 2 to the single-server queue described in Section 1. Since
Y, takes values in [0, 00), we take u(Y,) = Y,. Now, set b = 1 and fix 0 < € < 1. Make the

following observations. First, it is easy to calculate

. )\, iflzo,
E[Yn+1|Yn:Z] =
i—(u—2N), ifi>0.

Rewrite this as

| ‘ A, iti=0,
(2.13) E[Vig1 — | Yo =1] = {

—(p—A), ifi>0.
Clearly, we should set v = g — XA > 0. The next step is to observe that if Y,, =1,

(2.14) Yoy —i| < 1,
and so
(2.15) E[|[Yop1 —i* | Yo =1] < 1L
Now, having set v = p — A, let ) 1 \
¢ =3 ((1;65)) ‘

To put (2.14) and (2.15) into the form of (2.2) and (2.4), observe that in order to have
1 < e and 1 < Oy,

we must have

(2.16) i > max{—



Let L denote the right-hand side of (2.16). Finally, note that since (2.14) implies
Yn-}-l S Z+ 17

we have

E[Y-r?+1|Yn:i]1/3 < i+l
< L+1, ifs < L.

It should now be clear that Theorem 2 applies to the single-server queue if ¢ > X. In this

case,

— 9 2
Tim E[Y, | Yo =i] < (L+1)+-—(”—i—/\) (L+17 < oo,

R=00 3
We remark here that the preceding bound depends on L, which by (2.16), depends on . To
reduce L we should try to choose 0 < € < 1 so that

3(L+e¢)
2v(1 —e)¥’

1
€

or equivalently,

2v(1 —e)* —3e(1+¢) = 0.

In other words, to reduce L, we must find the zeros of a fourth-degree polynomial in e.

Observe that there is at least one zero in (0,1).

3. Joining the Shortest Queue

In this section we will investigate the balancing of N queues to N identical servers under
a range of traffic conditions. Consider a system of N identical servers, each with its own
infinite waiting room, indexed by ¢ = 1,..., N. Suppose also that we are given N + 1 arrival
processes indexed by i = 1,..., N, N 4+ 1. Customers from arrival processes ¢ = 1,..., N are
assigned to the corresponding waiting room for server ¢. Customers from the (N +1)’st arrival
process may in general be assigned to any waiting room; however, we shall only consider
what happens when we employ the policy of assigning these customers to the waiting room

with the fewest waiting customers. In case of a tie, the waiting room of smallest index is

selected.



Let Q) denote the size of the queue for server 7 at time n = 0,1,2,.... This includes

customers in the waiting room as well as the customer being served. Let

Qn 2 (QW,...,QM).

We want to show that the policy of joining the shortest queue will ensure, even under

arbitrarily heavy traffic conditions, that for all z # j,

(3.1) E[1QY — QP11 Qo = q]

is uniformly bounded for all time. To apply the theory of Section 2, we need to find a suitable
function u. Below we show that the function defined in (3.2) will suffice.

Before proceeding, we point out that the continuous-time analog of this model has been
studied by a number of authors, though, to our knowledge, none has investigated the behavior
of the continuous-time analog of (3.1). For example, Haight (1958), Kingman (1961), Flatto
and McKean (1977), and Conolly (1984) characterized the stationary distribution of the
state of the system. Foschini and Salz (1978) studied a diffusion approximation. Blanc
(1987) outlined a numerical method for calculating the state probabilities and moments of
the queue-length distribution. Brumelle (1971) bounded the expected waiting time. Wolff
(1977) bounded moments of the delay distribution (see also Wolff (1987) for corrections and
comments). Halfin (1985) bounded the probability distribution of the number of customers
in the system, and its expected value in equilibrium. Other researchers, Winston (1977) and
Weber (1978), proved that the policy of “joining the shortest queue” is optimal in the sense
of maximizing the customer throughput, while Ephremides, Varaiya, and Walrand (1980)
proved that this policy is optimal in the sense of minimizing the expected total time for
completing service on all customers which arrive before a fixed time.

We now make a precise statement of our model. Using the N-fold cartesian product of
the nonnegative integers as the state space for {Q,}, we take {Q,} to be a Markov process

with transition probabilities defined as follows. Suppose that
Qn = 4q = (q(l)a R (I(N)),

where the ¢{) are nonnegative integers. Let p, A, A1, ..., An be a sequence of elements from

N
the interval [0, 1] such that A + Y~ A; + Np < 1. Suppose that the N-vector Ag; is defined
i=1
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by (0,...,0,1,0,...,0), where the 1 occupies the j’th coordinate. Let 1 denote the smallest
index such that ¢(® < ¢\ holds for j = 1,...,N. Let 6;(j) = 1 if j = ¢, and 0 otherwise.
Let p(t) = pif t > 1 and p(t) = 0 if t = 0. We assume that

/\]+/\5l(j), lf q’:q—l—qu,
PQuir=¢ | Qu=2q) = { #(¢Y), if ¢’ = ¢ — Ag;,
N .
L=A=2 N+ w(gM)], if ¢ = q.
]:

Let
A N N
(3.2) u(g) & 0 S0 ¢ — ¢@P

a=1 f=a+1

Theorem 3. Without loss of generality, assume that Ay < --- < An. If

(3.3) A > NX—II(AN — k),

k=1

then there ezist finite positive constants v and A such that

" _ _ule)® A L
E[u(@n) | Qo=¢] < [u(q)+%n]2+A(1+4(u) kZ:)lkg),
from which it follows that

(3.4) Elu(@n) | Qo =q] < u(q)+AQ+5(Z)%),

and

Tim E[u(@n) | Qo =q] < A(L+2(E)) < oo.

Remarks. (i) If A > (N —1)(Ax — A1) then (3.3) holds. (:2) Since the inequality in (3.3) does
not depend on p, the interpretation of (3.4) is that the policy of “joining the shortest queue”
will ensure that even under arbitrarily heavy traffic, E[w(Qn) | Qo = ¢] does not “blow up.”
By Jensen’s inequality, (3.4) also implies that for every ¢ # 7,

E[QY — Q9| Qo=q] < E[IQY — QY| Qo=q]"?
< E[u(@n) | Qo= q]'?
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is bounded for all time. In this sense, each queue has “approximately” the same number
of customers; i.e., the queues are “equally loaded” or “balanced.” The reader may find it

interesting to contemplate various special cases suchas g =0, Ay = Ay > 0, or Ay = A\, = 0.

Proof. We will show below that (3.3) implies

(3.5) lu(g + Agj) —u(g)] < (N —1)(1+2y/u(q)),

(3.6) E[u(@nt1) —u(g) | @Qn=1¢] < (N~ ( ; (Av =X > 2;@_)1’
and
(3.7) E[Ju(@ns1) —u(@P | @n=q] < (N =1)*(1+4y/u(q) + 4u(q))

First, however, we will use (3.3) and (3.5) — (3.7) to show that the hypotheses of Theorem 2

are satisfied. So, set b = 1, and fix any 0 < ¢ < 1. Now make the following observations.

Since
i (= 1)1 +2/5)

v—00 v

= 0,

it is clear that for all sufficiently large v,
(N—1)(1+2/%) < ev.

Next, since

g WA A+ AY) gy

v—00 v

if we fix any C' > 4(N — 1)?, then for all sufficiently large v,
(N —1*(1 +4y/v +4v) < Co.

So, fix any C > 4(N — 1)?, and then choose (recall (2.1))

(3.8) v > g—C~ ((11j:))4.

Now, since (3.3) holds, we have

N-1

. v —_—
UILI&{(N_l ( ;)\N“‘)‘k) 2N—1}— 00.

=1
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Thus, for all sufficiently large v,

(N—l)—2( Nz:j AN—Ak),/gN”_l < —u.

It should now be clear that if b =1,0 <& < 1, C > 4(N — 1)?, and v satisfies (3.8), then
there is some L such that (2.2) — (2.4) hold. To find a finite constant A satisfying (2.5),

observe that if u(q) < L, then (3.5) implies
ju(g £ Ags) —u(g)] < (V= 1)(1+2VD),

and so

wgEAg) < (N=1)(1+2VL)+ L

Hence, we may take

A= (N-1DA+2VL)+ 1L

We conclude that if (3.3) holds, (3.5) — (3.7) are sufficient to apply Theorem 2.

We now establish (3.5) — (3.7). Clearly, (3.5) implies (3.7). To establish (3.5) and (3.6),
we proceed as follows. We denote by ¢ the smallest integer in {1,..., N} such that ¢ < ¢
holds for j = 1,..., N. Setting ¢; 2 ¢ — ¢, we can write

q = (q(i)_*'gla""q(i)_*—gN)'

Note that each £; > 0, and ¢; = 0. Fixing any j € {1,..., N}, we can write

N-1 N
u(q) = }: |q(ﬁ) — q(J)|2 n Z Z |q(ﬁ) - q(a)|2

Bt ari Cods
N-1 N
(3.9) = Y ls—4IP+ 3 2 W — Ll
bt ai b

and

N-1 N
wWgtAg) = S1¢@ - (@@ EDP+Y D 1P - ¢

57 %
= > (s —4;) :F1|2+Z ZW*IZP
B#j o=1 p=atl
a#y  P#T
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so that

(3.10) u(g £ Ag) —ul(g) = Y (1F24s—45)).
oy

It follows from (3.9) that for any 8 # 7,
s — 4] < Ju(g).

This with (3.10) implies (3.5).
To establish (3.6), use (3.10) to write

N
Elu(Q@ui) — (@) | @ = a] = 3{ (01 =20s ~ ) s +26)
=1 NG
14 2(L5 — ¢ Ry
+ (T 20— 6 Juta? + )}
= L{ V= D[a? + )+ A+ A6(5)
+230(t — ){(a® +65) =\ = 6]}
B#5
N
< u0+2ZﬁZ(£@—Zj)[u(q(i)+€j)—/\j—A&i(j)],
=1 B4

N
where 10 £ (N —1)[Np + 3 Aj + A] < (N —1). For the second term, write
J=1

N
£33 — )@V + 4) = A = A&()].

=1 p#j
Break this into two terms. In the first change the order of summation so that
N
o= Sl ST{ulaD + 6) — X — A& Zez (@D + ;) = X; = 2&(5))-
6=1  j#B =1 B#
Using the fact that ¢; = 0, that u(-) < p, and that the minimum value of 37,45 A; occurs

when = N,

o < Dl o= = 28] = 2o Lilu(aY +45) = A = AN = 1)

B#i B i

= Y Ul(N = D= A = 2N = S 6Lu(e® + ) = LN = 1)
B#i JEB J#Fi

N-1 .

< SLIN =D — A= 3 M= 2o 4[(@? +45) = NN - 1)
B k=1 i

= Y 4[N —-Dp— )\——Z/\k — > 4l = NN = 1),
J#L k=1 J#1
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where the last step follows by observing that £;u(q\) + £;) = £;u for all j. Continuing, we

see that
N-1
141 S [(N-— 1)/\1\/ - Z /\k — /\]Ze‘7
k=1 J#i
N-1
(3.11) = =2 0w =)D 4
k=1 j#i

Now, observe that according to (3.9), if we set j = 7, and use the fact that #; = 0, then

N-1 N
u(q) = D Ly+ 30 > ls— Ll

oE
N-1 N
< DGt > (Gta)
Bz oo
B#a
and so
(3.12) < Dt
2N - 1 oy

Now, if (3.3) holds, substituting (3.12) into (3.11) yields

(3.13) s —</\ - kz:j(AN - /\k)) %[gq:)_l

Finally, we can write

E[u(Qnt1) ~ulg) | @n=q] < w+2n
N-
< (N ( /\ — ) _ulg)_
which is exactly (3.6). This completes the proof of Theorem 3.
We now briefly discuss the continuous-time analog of this model. Suppose that {Q,} is
the jump chain corresponding to a continuous-time queuing process {Qt} with instantaneous

arrival rates 5\, Moo, Av, and instantaneous departure rate f for each of the N servers. If

- N . .
we let d(q) 23+ A; + (g9}, then the jump chain parameters are
j=1
A= Ad(q),
(3.14) A= Ai/d(g),
w(g?) = pld9)/d(q).

14



Clearly, the transition probabilities given that @, = ¢ now depend on g in a slightly different
way. However, assuming that 5\1 <0 L S\N, a review of the proof of Theorem 3 through

(3.11) when (3.14) is in force will show that the crucial question is whether or not

~

by 1 N-1 . R
_— > — AN — Ap).
dlg) = d(q) kg( )
This condition obviously holds if and only if
A N_l A A
(315) A > Z(/\N _)‘k)-
k=1

So, if (3.15) holds, we can express (3.13) in terms of the infinitesimal rates:

N-1

A=Y (G =4
rn < - k=1( ! ) u() .
- d(q) V2N —1
~ N .
Since mqaxcl(q) =X+ 2 A+ Nj,
J=1
A =5 (G — )
- N — Ak
< k=1 U(Q)
P A Y
A+ 21 A+ N
J:
Thus, for jump chains, (3.6) should be replaced by
N-1 .

and (3.3) should be replaced by (3.15).

4. Proof of Theorem 2

Before proving Theorem 2, we introduce the following notation. Let

A 14
(4.1) S =3I
and set
A Ab+2
= gbt+1

so that we can use (2.5) to write

1

—— [ u(y)***p(z,dy) < B, 0L uz)<L.
sb+1 Jx

(4.2)

15



Now, for v > 0, let @o(v) = v, and for n > 1 set

A vb+2

(4.3) Pn(v) = o sn]

With this notation we can write (recall (2.6))
uo(2) = wo(u(e)),
(4.4) ui(z) = pi(u(z)) + 4,
n—1

1
u(z) = en(u(z))+A+ Bkz_:l T n>2.

For later reference, note that differentiating ¢, with respect to v yields

VP2 + sn(b + 2)vbt!

(45) (P'/n.(v) = [’U + 5n]b+2 )
and

" b+1)(b+2)snvb
(4.6) Pn(v) = ( [v)(—}- Sn]b)+3 :

Proof of Theorem 2. Fix z € X. We first show that (1.4) holds if 0 < u(z) < L. Then we

will show that (1.4) holds if u(x) > L. Suppose 0 < u(z) < L and n = 0. Use the fact that

uo(y) = u(y) followed by Jensen’s inequality and (2.5) to get

/XUo(y)P(w,dy) —u(z) = /XU(y)p(fc,dy) —pu(z) — A

1/(b+2)
([ iz, )
X
S A—(Pl(il?)——A S 0.

IA

Now for n > 1, keep in mind (4.2) while using (4.4) to write

L) o2, dy) = wna(2) = [ ulu®)ple dy) = onia((a)) -

y)b+2

1
< W/Xu(y)m p(z, dy) = np1(w(@)) = —3
B B
< ;L—bﬁ - <Pn+1(u(a:)) — e
< 0.

16
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We next establish (1.4) when u(z) > L and n > 1. The case n = 0 follows the same pattern
(without Taylor’s theorem, since @o(v) = v) and is and left to the reader. Using Taylor’s

theorem, we can write

L) plandy) = une)+ [ fouluv) = ouu(@)] oz dy)
(47) < un(e) + [len(u(@))(uly) - u(@)) + K(uly) - u(@)]p(=,dy),

where K is the upper bound on %gog given by

K A G+10k+2) (1 +¢e)b . u(z)bs?n?
2 (1 —e)*3  [u(z) + sn]tt+s

To verify that K is an upper bound, observe that (2.2) implies that p(z,-)-a.s.,
u(z)(l—¢) < u(y) < u(z)(l+e).

Now, using (4.6),
" < (b+1)(b+ 2)sn?u(z)*(1 +¢)°

1
sup _Spn(v) =
u(z)(1—e)<v<u(z)(1+¢) 2 2[”(:6)(1 - 8) + Sn]b+3

< K,

since [u(z)(1 — €) + sn] > (1 — &)[u(z) + sn]. Returning to (4.7), we use (2.3) and (2.4) to
write

Joun) plady) < wn(@) + (@) - (~) + KCu(@)
Using the definition of K and (2.1) together with (4.5),

w(z)P*? + sn(b + 2u(x) | 2vu(z)t's*n?
/Xun(y)p(x,dy) < up(z) —v [u(z) + sn]b+? [u(z) + sn]tt?

b+2 vsnu(z)®+!

— VU(:B) - URT ST
= (o)~ Gay 4 e fu(a) ¢ o+ 2 F b

vu(z)r+?
< un(e) - [u(z) + sn)b+?
_ B 3 vu(z)bt?
(4.8) = Unt1(@) + un(@) — Unta1 (@) [u(z) + sn]p+?’
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Observe that

un(®) ~ tas1(2) = pulu(z)) — punr(u(x)) —

IA

en(u(2)) = i1 (u(z))

= u(a)"*? (— /+ 58‘9‘ (W) ‘w)

= ulz b2 s n+1 do
= ( ) (b+1) /n [u($)+89]b+2

vu(z)b+?

9 fa(e) + sn

where the last step follows by setting & = n in the integrand, and then using (4.1). Combining
(4.8) and (4.9) yields (1.4) when u(z) > L.

5. Extension of Theorem 2

It is possible to weaken the hypotheses of Theorem 2 by replacing (2.2) — (2.4) with

(5.1) - (5.4) below.
Suppose that for each z € X, there is a “bad” subset, B,, with

(5.1) B, C {yeX:u(y) <u(z)},

and such that

(5.2) Ipg(y)lu(y) —u(z)| < eu(z), plz,-)-as., ifu(z)>L,

(5-3) E[1pg(Xn41)((Xnt1) —u(2)) | Xn =2] < —v,  ifu(z)> L,
and

(5.4) E[ Ipe( Xt t)[u(Xnt1) —u(@)* | X, = 2] < Cu(z), if u(z) > L.

Here, BS denotes the complement of B, and Ip: denotes the indicator function of the set
Be.
To prove that we can weaken the hypotheses as claimed, we proceed as follows. Observe

that (4.5) implies ¢/, > 0, and so ¢, is a nondecreasing function on [0,00). Hence, (5.1)

18



implies

/ [n(u(y)) — en(u(z))] p(z,dy) < 0.

x

From this and Taylor’s theorem,

L)oo, dy) = un(@)+ [ fon(u(®)) = pulu(2)] pla, dy)
(5.5) < un(@)+ [ len(u(®)) = palu(@))] (e, dy)

x

< ug(e) + | [en(u(@))(uly) — u(z)) + K(u(y) — u(z))*] p(z, dy).

If we replace (4.7) with (5.5), then the derivation given in Section 4 will prove the modification

of Theorem 2 stated above.

6. Relation to Other Work

In this section we compare our results to those of Hajek (1982) for problems in which
both apply. We point out that our results are restricted to nonnegative functions of time-
homogenous Markov processes while Hajek’s results apply to real-valued functions of non-
Markov processes. The purpose of this section is to show that when considering a nonnegative
function of a time-homogenous Markov process such that (2.2) holds, whenever Hajek’s work
applies, so does ours, and further, we can sometimes reach stronger conclusions.

To apply Hajek’s results to {u(X,)} requires that the following hold.

There exist positive constants v, 1, p, and § such that for some I < oo,

(6.1) Elu(Xnp1) —u(z) | Xn=2] < —p, if u(z) > L,
(6.2) E[e"Ent)=u@) | X, = 2] < p,  ifu(z) > L,
and

(6.3) E[e"(Xmt)-D) | X, = 2] < 6,  ifu(z) < L.

Remarks. (1) If p < 1, applying Jensen’s inequality with the natural logarithm function to
(6.2) yields (6.1) with —v = %ln p. (i1) Observe that if (6.1) and (6.2) hold for some L,
they also hold for any I’ > L. With regard to (6.3), rewrite (6.2) and (6.3) as

E[enXnst) | X, = 2] < pe™ ), if u(z) > L,
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and

E[e”“(X”“) | X, =2z] < set, if u(z) < L.
It follows that for any L' > L,
E[e™Xmt1) | X, = 2] < max{6e"", pe™'}, if u(z) < L.
So, for all sufficiently large L',
E[emXnt1) | X, = 2] < pe™, if u(z) < L'.

In other words, if (6.1) — (6.3) hold for some L, they hold for all sufficiently large L (with
6 = p for very large L).

Hajek proves by a simple induction argument that (6.2) and (6.3) imply

1 . A
(6.4) E[en’u(Xn) | XO — x] S pneT]u(.’L') + _1___L567?L.
=P

To relate this to our results, apply Jensen’s inequality to (6.4) to get

1 1—p"
(6.5) Elu(X,) | Xo=2] < ;ln[pne"“(”) + 1 P e,
which yields both
(6.6) Elu(X,) | Xo=2] < gln[e" + 1——56" ], if p<1,
—p
and
— 1 )
(6.7) Tim E[u(X,) | Xo = 2] < -ﬁln(l_p)+L, it p< 1.

When our assumptions (see Section 2) hold, our theory yields (for =1 and 0 < & < 1)

u(x)f} A3 n—1 1

(6.9) Elu(Xa) | Xo = 2] < u(e) + AL+ 3(%)?),
and
(6.10) lim E[u(X,) | Xo=2] < A(1+2(%)?) < oo.

=00
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Clearly, both theories yield very similar results. We now compare the assumptions which
each theory requires in order to be applied. First, equation (6.1) is precisely our equation
(2.3). Second, we will show below that (6.3) implies the existence of a finite constant
A satisfying (2.5). Third, we will show below that if (2.2) holds, then (6.2) implies our
equation (2.4) with a constant C satisfying (2.1). It follows that if there exist positive
constants v,7,p,6, and 0 < ¢ < 1 such that for some L < oo, (6.1), (6.2), and (6.3) hold,

and if we have p(z,)-a.s.,
lu(y) — u(z)] < eu(z), if u(z) > L,

then both (6.5) and (6.8) hold. However, if p > 1, the uniform bounds (6.6) and (6.7) are
not available, while the uniform bounds (6.9) and (6.10) still hold.
The remainder of this section is devoted to establishing the preceding claims. Suppose

that (6.3) holds. Rewrite it as
/Xe"“(y) p(z,dy) < 6, if u(z) < L.

[nu(y))*+?
(b+2)

Now, for any b =0,1,2,..., since nu(y) > 0 implies < ™) we can write

b b+2)! ., .
/Xu(y) 2 p(x,dy) < re b, ifu(z) < L,

providing a finite constant A satisfying (2.5).
Suppose that (6.2) and (2.2) hold. Rewrite (2.2) as

(1—-e)u(z) < u(Xnp1) < (1 +¢€)u(z).
Taylor’s theorem implies
D = 1l Xa) — (o)) +
where (1 —e)u{z) < v* < (14 ¢)u(z). Thus,
D) > 1 = geu(e) + 2P 0 @ Xo) — (@)
So, (6.2) implies

2
ElJu(Xo) = u(@)* | X = 2] S Ipeu@) = 14 pl 370700,
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Now, setting

A 2 i)
a(v) = [nev—(l—P)]ﬁe ni=e),

we clearly have UlLrg ﬂvﬂ = 0. If we choose any positive C satisfying (2.1) we can then take

L large enough so that whenever v > L, a(v) < Cv.
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