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The study of interfaces is important in understanding biological interactions,

including cellular signaling and virus infection. This thesis is an original effort

to examine the interaction between a block copolymer and both a protein and a

virus. Block copolymers intrinsically form nanometer-scale structures over large

areas without expensive processing, making them ideal for the synthesis of the

nanopatterned surfaces used in this study. The geometry of these nanostructures

can be easily tuned for different applications by altering the block ratio and

composition of the block copolymer. Block copolymers can be used for controlled

uptake of metal ions, where one block selectively binds metal ions while the

other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-

opening metathesis polymerization. It formed spherical domains with spheres



approximately 30 nm in diameter, and these spheres were then subsequently

loaded with nickel ion. This norbornene block copolymer was tested for its ability

to bind histidine-tagged green fluorescent protein (hisGFP), and it was found

that the nickel-loaded copolymer was able to retain hisGFP through chelation

between the histidine tag and the metal-containing portions of the copolymer

surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel,

forming a cylindrical microstructure. The binding of Tobacco mosaic virus and

Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron

microscopy allowed for observation of both block copolymer nanostructures and

virus particles. Results showed that Tween washes could not remove bound

Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that The

size and tunability of block copolymers and the lack of processing needed to

attain different structures makes them attractive for many applications, including

microfluidic devices, surfaces to influence cellular signaling and growth, and as a

nanopatterning surface for organized adhesion.
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Chapter 1

Introduction

1.1 Motivation

This thesis is an investigation into the interaction between a block copolymer

surface and both a virus and a protein. Examination of the interface between

biological and inorganic systems is rapidly expanding, as many events charac-

teristic of biological systems occur at, or are initiated on, surfaces and bound-

aries. Traditional materials solutions to bio/synthetic interfaces have relied on mi-

cropatterned surfaces created through lithography or other structured deposition

methods. Nanoscale structures will be created by block copolymer microphase

separation. These block copolymer surfaces are examined for their ability to

pattern both a protein and a virus. A norbornene-based block copolymer is syn-

thesized and its success in retaining and patterning a modified green fluorescent

protein is determined. A polystyrene-b-poly(4-vinylpyridine) copolymer surface
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is examined for its ability to bind two different plant viruses, Tobacco mosaic

virus and Tobacco necrosis virus. It is hoped that this research will enhance

the understanding of the interaction between an inorganic surface and biological

species such as viruses and proteins.

1.2 Significance and application

There is much practical significance that can be taken from this project. Research

into the use of block copolymers as nanopatterning surfaces for viruses does not

yet exist. This study is unique in its use of a block copolymer template for the

creation of regularly-shaped metal loaded domains for the purpose of interacting

with biological species such as proteins and viruses. Block copolymers present

a unique advantage in that they inherently form regular domains of nanometer

size. Control over domain morphology can be exerted through simple choice of

block length and composition, allowing a wide range of available structures and

functional groups. These block copolymer patterns are valuable in that they can

achieve nano-scale patterning of target species that is similar to the patterning

of the block copolymer surface itself.

A norbornene copolymer has been synthesized that can selectively bind histidine-

tagged green fluorescent protein (his6GFP). his6GFP is a genetically modified

protein, created through recombinant DNA synthesis, which contains a residue

of six histidine amino acids (his6) at the amino terminus of green fluorescent
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protein [1]. This tag is commonly used as a purification tool, as the histidine

tag chelates with metal ions, allowing it to be separated from other accompany-

ing proteins [2]. The copolymer surface, functioning as a (his6)-tagged protein

chelator, could serve as an advanced, organized surface for protein separation. It

would allow for the binding, detection, and analysis of proteins that are tagged.

In the future, the same block copolymer surface could be decorated with or-

dered arrays of antibodies, rather than metal-containing domains, allowing for

even greater specificity and opening the range of applications from tagged pro-

teins to virtually any nano- or microscopic species. Systems which use inorganic

surface-bound antibodies as biosensors are already beginning to appear in liter-

ature [3, 4, 5]. A block copolymer surface could therefore be integrated into a

detection system designed to identify and quantify biological molecules and other

larger entities. Nanopatterning of protein particles could allow for greater ease

and speed in structural studies of proteins, especially x-ray crystallography which

relies on protein crystals to derive structural data.

Applications also exist for viruses that are nanopatterned by the polystyrene-

b-poly(4-vinylpyridine) block copolymer. For example, nanopatterned arrays of

viruses on a block copolymer surface could aid X-ray analysis-based solutions to

the surface structure of viruses. Ordered immobilization of virus particles on a

nanopatterning surface could eventually address the difficulty of preparing virus

particles for X-ray analysis. Information about virus geometry and even viral

3



surface electron density can be determined from X-ray scattering data [6].

Research has shown that nanotextured surfaces can influence the behavior of

viruses and cells [7]. Because much of the chemistry involved in signaling and

recognition in biology involves surface interactions [8, 9], having a tunable surface

that can be altered to study different organisms or to elicit different reactions

could be quite valuable as a research tool.

Microfluidic devices are devices that deal with fluids on a very small volume

scale, often on the order of nanoliters. These devices are receiving much research

attention and are becoming more commercially viable, especially as a microbatch

tool to reduce experimental costs. Several companies, including Hewlett-Packard,

Agilent Technologies, and Caliper Technologies, are producing working produc-

tion versions of lab-on-a-chip devices, an example of which is seen in Figure 1.1.

Often, as in the case of the Agilent 2100 bioanalyzers, they are used for elec-

trophoretic analysis of DNA, RNA, and proteins. The 2100 can be seen in Fig-

ure 1.2. Even NASA has invested significant research in microfluidic devices, as it

plans to include such devices in the Modular Assays for Solar System Exploration

(MASSE) project, scheduled to start in 2013, where the microfluidic chips will

help to detect possible bacteria and life forms on other planets. A nanopatterned

block copolymer surface seems a natural fit for such a microfluidic system, as its

ease in processing should allow it to be integrated, especially in the capacity of

binding studies, species detection, or structural characterization.
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Figure 1.1: Picture of the lab-on-a-chip device being developed by Agilent Tech-

nologies.

Figure 1.2: Agilent Technologies 2100 LabChip used for DNA, RNA, and protein

analysis through electrophoresis.

A surface capable of nanopatterning a protein, or any biological molecule,

could also be considered as a patterned substrate used to underpin a molecular

computation device. Molecular computation devices and DNA computing sys-

tems are slowly developing, but show the promise of being able to perform feats

of calculation that are beyond traditional solid-state processors [12, 13].

5



1.3 Biointerfaces

Biologically active materials systems have become a popular topic for research

in the past two decades. The application of materials science in biology is quite

diverse [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. An important area of interest

in this growing field is the study of the interface between inorganic and biological

systems.

In their natural state, biological systems display a remarkable ability to recog-

nize, sort, and act on information relayed through different chemical signals and

environmental conditions. As recently as 2001, efforts have been made to emulate

the versatility of biological surface interfaces [26, 27, 28, 29, 30]. For example,

silicon-based micropatterned surfaces have been made that are able to direct the

growth of retinal cell neurite growth [31].

Much of the current research on this topic of biological-inorganic surface inter-

faces involves patterning that exists on the microscale. Lithographic techniques

can produce a wide variety of structures, such as arrays of lines and dots [32], that

have been proven to affect the direction of growth of cells, the adhesion of cells

to a substrate, and the shape and health of cells attached to the substrate [85].

Rather than using lithography to pattern an inorganic surface, block copolymers

were employed to create a surface decorated with nanometer-sized structures.
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1.4 Block copolymers

Block copolymers are polymer molecules that contain two or more unlike ho-

mopolymers that are chemically linked to form a single polymer chain. Usually,

homopolymers are insoluble in one another, and often form two phase systems

at equilibrium. Block copolymers are physically limited in their ability to phase

separate, because the blocks are linked together by a covalent bond. Therefore,

in order to reach a state of lowest free energy, a block copolymer system with

sufficiently high homopolymer block incompatibility will ”microphase separate”

into structures that seek to minimize contact between the two homopolymer

blocks. This process of microphase separation results in periodic structure of

nanometer-sized domains rich in one block or the other.

The physical limitation of block copolymers means that the traditional ex-

pression of free energy of mixing should be modified in order to better describe

the separation process. The Gibbs free energy of mixing is expressed as:

∆Gm = ∆Hm − T∆Sm (1.1)

where ∆Gm is the Gibbs free energy of mixing, ∆Hm is the enthalpy of mixing,

and ∆Sm the entropy of mixing. Negative values of ∆Gm indicate conditions

favorable to mixing, while positive values of ∆Gm indicate instability leading to

phase separation.

From the theory developed by Flory and Huggins [39], it can be written that:
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∆Gm = RT [n1 ln φ1 + n2 ln φ2 − n1φ2χ12] (1.2)

The Flory-Huggins interaction parameter χ was introduced to account for

the energy of interspersing polymer and solvent molecules [39, 40]. In 1980,

Ludwik Leibler further modified the Flory-Huggins χ parameter to include the

enthalpic effect of non-bonded interactions present in block copolymer systems

[34]. Leibler’s modified expression of χ was as follows:

χ =
1

kbT
·
[
Eab −

(Eaa + Ebb)

2

]
(1.3)

where Eij refer to the contact energy between components i and j, kb is Boltz-

mann’s constant, and T is temperature.

According to this theory, χ is negative and favors a and b component mixing

when Eab is larger than the sum of Eaa and Ebb, meaning that lower energy in

the system is achieved by having more a-b contacts than a-a or b-b contacts. A

positive χ occurs when Eab is less than the sum of Eaa and Ebb, and the system

prefers homogeneous contacts. In block copolymers with components A and B,

Leibler noted that the repulsion between blocks A and B were strong even when

the repulsion between monomers A and B were fairly weak [34].

In a block copolymer with block components A and B, instability between

the blocks tends to result in a positive χ and favors homogeneous contacts, thus

resulting in phase separation. Because of their physical limitation in separating,
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a system of microdomains results from this process of phase separation. These

microdomains, as Leibler noted, are not always random and often form structures

with a regular arrangement. In a diblock copolymer consisting of two different

blocks, the structures caused by microphase separation are observed in four major

groups - spheres or cylinders of one block in a matrix of the other block, a gyroidal

or interconnected structure, and alternating lamelle of each block. A diagram of

each of these states is seen in Figure 1.3. Leibler deduced that the two most

important factors governing the formation and geometry of these microphases

were the composition f, the fraction of monomers A in the block copolymer chain,

and the product χN, where χ is the Flory-Huggins interaction parameter and N is

the degree of polymerization. The parameters f and χN can be used to construct

a phase diagram showing the regions of stability of the different phases with

respect to the degree of polymerization f and the block fraction N. This phase

diagram is seen in Figure 1.4.

Figure 1.3: Schematic of the four major morphologies observed in a diblock

copolymer.
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Figure 1.4: Mean-field phase diagram of a diblock copolymer, showing the varia-

tion in morphology with change in volume fraction f of block A and the product

of the Flory interaction parameter χ and degree of polymerization N. Adapted

from Matsen and Bates 1996 [38].

Block copolymers represent a unique opportunity to design and engineer

nanometer-sized structures. The synthesis of quantum dots, for example, requires

the use of capital-intensive techniques: either one must use lithographic masks

and material deposition techniques like metal-organic chemical vapor deposition

or molecular beam epitaxy, or one must take advantage of frustrated interactions

between a substrate and a slightly lattice-mismatched epitaxial film layer [44].

Block copolymers form equilibrium nanostructures that do not require such ex-

ternal synthetic techniques, but rather take advantage of the natural process of
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microphase separation inherent in block copolymers.

1.5 Targeted metal loading of single blocks in a

block copolymer

In a block copolymer, single blocks can be chosen so that they have the chem-

ical ability to take up metal ions. Robert E. Cohen performed significant work

showing the ability of a norbornene-based block copolymer to take up metal ions

leading to the formation of templated metal nanoclusters [46, 47, 48, 49, 63]. In

this thesis, two block copolymers will be examined for their nanopatterning abil-

ity: norbornene-b-5-norbornene-2,3-dicarboxylic acid and polystyrene-b-poly(4-

vinylpyridine). Both of these copolymers contain a block that is inert to metal

ions, norbornene and polystyrene. The second block in both these copolymers is

able to complex metal ions through complexation [41, 42, 43, 46, 47, 48, 49].

In these two copolymers, metal loading occurs through metal ion sequestra-

tion in the receptive block. The dual carboxylic acid arms of 5-norbornene-2,3-

dicarboxylic acid provide pendant oxidation sites that serve to immobilize and

stabilize passing metal ions [46, 47, 49]. In polystyrene-b-poly(4-vinylpyridine),

the pendant 4-vinylpyridine nitrogen with its unshared electron pair allows metal

complexation into the poly(4-vinylpyridine) block. There are several methods of

introducing metal ions into the microstructure of a block copolymer. Metal-
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loaded polymer systems have been synthesized by deposition of metal vapor into

liquid monomer followed by polymerization, deposition of metal ions into poly-

mer films from supercritical CO2 [45], and exposure of block copolymer to metal

salts to polymers both as solid films and when in solution with the copolymers.

Figure 1.5: Structure of norbornene-b-5-norbornene-2,3-dicarboxylic acid.

Figure 1.6: Structure of polystyrene-b-poly(4-vinylpyridine).

In this study, both block copolymers will be exposed to metal salts while in so-

lution. Initial success in using nickel as a chelating agent toward histidine-tagged

green fluorescent protein led to the use of nickel in both protein and virus binding

experiments. Exposure to the copolymer in solution results in high specificity in

12



targeting the nickel ion to the receptive block of each block copolymer. Electron

micrographs showed that nanoparticle formation is not observed. Rather, the

receptive block complexes the metal generally over its domain with apparently

minimal leakage between blocks.

The issue of metal leakage between the blocks is addressed by selecting poly-

mers that possess glassy blocks, i.e. the polymer at the experimental temperature

is below its glass transition temperature. The diffusion constant of species dis-

persed in a glassy copolymer is low, often ranging as low as 10−16 to 10−18 cm2/sec

[50, 51]. Because of the diffusion barrier between the two blocks in both copoly-

mers, the metal ions are not observed to diffuse into the inert block. Electron

microscopy was the primary method of analysis in this thesis. Leakage of metal

ions, visible as contrast in the electron microscope, was not observed in either

polynorbornene or polystyrene.

In this study, the block copolymers studied will be used to uptake metal

ions to form templated metal-containing microstructure. The metal ions used,

especially nickel, show affinity toward certain functional groups, and are valuable

as complexed ions. Nickel is often used as the basis for chelation-based protein

separation systems, and there are numerous commercial examples of immobilized

metal-affinity chromatography (IMAC) systems available to researchers today.

In order to test the hypothesis of protein and virus nanopatterning, this

project will show that the surface of a metal-functionalized amphiphilic block
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copolymer is capable of chelating both proteins and viruses. By doing so, it will

be demonstrated that such a copolymer surface can form the basis of devices

intended for the purification, identification, and analysis of proteins and viruses.

1.5.1 Ring-opening metathesis polymerization

Ring-opening metathesis polymerization (ROMP) was utilized to form the nor-

bornene/norbornene dicarboxylic acid (which will be subsequently referred to as

NOR/NORCOOH) diblock copolymer [52]. ROMP is a powerful synthetic tool

that can be used to form block copolymers with various functional groups [54] and

low polydispersity. Ring-opening metathesis is a specific type of metathesis poly-

merization where a strained cyclic olefin monomer switches alkenic (R2C=CR2)

ligands with an initiator [55, 56]. A mechanism of the process of ROMP is seen

in 1.7.

Metallocene-initiated ROMP is a living chain polymerization that proceeds

with initiation and propagation, and has no natural termination reaction. There-

fore, a ROMP system will consume all monomer in a reaction and retain its poly-

merization activity. If a different ROMP-capable monomer is added, the polymer-

ization will continue and will form a block copolymer. Ethyl vinyl ether is used to

artificially terminate the ROMP reaction used here to create NOR/NORCOOH.

Ethyl vinyl ether complexes with the active catalyst, but does not undergo

ROMP, so it effectively kills the polymerization.
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Various catalysts have been devised since the introduction of the metal-

carbene induced ROMP of cyclic alkenes, using ruthenium, molybdenum, and ti-

tanium [53, 55, 56]. The introduction of metallocene catalysts by both Grubbs [58]

and Schrock [57] allowed the formation of metathesis polymers with low polydis-

persity. Robert H. Grubbs is well known for his contributions to metathesis poly-

merization, and specifically to the development of the effective ruthenium based

ROMP catalyst [1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro

(phenylmethylene) (tricyclohexyl-phosphine) ruthenium], known as Grubbs’s sec-

ond generation catalyst [53, 52, 54]. This second generation benzylidine imidazole

version of Grubbs’s ruthenium ROMP catalyst was used to initate polymeriza-

tion of the NOR/NORCOOH copolymer used in this study [59]. Its structure is

seen in Figure 1.8.

Figure 1.7: Mechanism of ROMP. The metal-carbene ligand of the ROMP initia-

tor metathesizes the strained double bond of a cyclic monomer. The formation

of a metallocyclobutene intermediate species leads to the ROMP product with

monomer and initiator ligands switched.
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Figure 1.8: Grubbs’s second generation ROMP initiator [1,3-Bis-

(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro (phenylmethylene)

(tricyclohexyl-phosphine) ruthenium].
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Chapter 2

Nanopatterning of Recombinant Proteins Using

A Norbornene Block Copolymer Template

2.1 Motivation

Here, a norbornene block copolymer will be discussed that is capable of selec-

tively binding histidine affinity tag modified green fluorescent protein. There are

several possible commercial applications of such a system. For example, there

has been increasing amounts of research in microfluidic devices and the idea of

lab-on-a-chip technology, and an ordered polymer surface may aid in the produc-

tion of arrays of single nanoreactors in microfluidic devices. This could function

in applications including combinatorial chemistry for drug discovery and high

throughput analysis in genomics and proteomics. Nanocale confinement stud-

ies depend on the development of appropriate nanoscale patterns such as those

present by the self-assembly of block copolymers. The polymer surface, function-
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ing as a hexahistidine (his6)-tagged protein chelator, could serve as the basis for

a fast protein separation device in the process of protein purification.

2.2 Introduction

The ability to immobilize proteins on nanometer sized patterns has become a

major challenge for the development of bioengineered surfaces. Nanopatterned

surfaces are known to influence cell function through surface-triggered interac-

tions [64]. The ability to vary the topology and separation between nanopatterned

recombinant proteins on the surface of a block copolymer may lead to the con-

struction of devices that can examine cellular signaling. In addition, the ability

to spatially control the immobilization of small amounts of recombinant proteins

may provide better platforms for the study of single molecular events, such as

through AFM force measurements.

This study examines the ability of the diblock copolymer surface to selectively

bind hisGFP. Kumar and Hahm demonstrated the feasability of this system in a

recently published study [65]. In order to accomplish specific protein adsorption

to a block copolymer surface, a norbornene block copolymer was first loaded

with different metal ions in order to determine the most effective ion to use

in the protein binding system. Copper [66], iron [67], and nickel [68] ions are

mentioned in literature as being effective in chelating histidine-tagged proteins.

Currently, nickel chelation columns are used regularly to separate histidine-tagged
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proteins from a mixture in order to isolate the tagged protein [69] in a process

first introduced by Porath et al. [70].

Monomers of norbornene and norbornene dicarboxylic acid were copolymer-

ized together to produce an amphiphilic diblock copolymer. The hydrophilic

block of these copolymers were used to template the formation of metal nanopar-

ticles. Robert Cohen developed a method where the carboxylic acid block of a

diblock copolymer was used to template the formation of nickel nanoparticles

within the hydrophilic blocks of these copolymers [46, 49]. While this metal-

templating technique has been successful in the methyltetradodecene-norbornene

dicarboxylic acid system, the same principle holds for the polymer systems used in

this experiment, and was verified in this study through electron microscopy. Ring-

opening metathesis polymerization (ROMP) was chosen to form the norbornene-

b-5-norbornene-2,3-dicarboxylic acid (NOR/NORCOOH) diblock copolymer [53,

52, 54, 59].

The protein species used is a modified version of green fluorescent protein

(GFP). A hexahistidine (his6) affinity tag is grafted to the N’ terminus of the GFP

through the expression of recombinantly modified DNA [60, 1]. The structure

of his6-tagged GFP can be seen in Figure 2.1. This histidine tag has a strong

affinity for metal ions, with which it forms stable complexes [61]. Studies have

shown that the histidine tag does not affect the structure and function of GFP, so

that the standard methods of analyzing for GFP can also be used with hisGFP.
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Binding of the hisGFP to the surface can thus be connected to the detection and

intensity of fluorescence coming from a film exposed to hisGFP.

Figure 2.1: Schematic structure of his6GFP. The protein forms a cylindrical, can-

like structure surrounding a fluorescent chromaphore. The his6 tag is seen as the

tail on the lower right of the main protein structure.

Once the nickel ion was selected from the three metals being tested, the

actual method of protein binding was investigated. Specifically, it must be known

whether it is the his6 tag on the protein that is responsible for binding, or whether

other functional groups present on the protein can interact with and bind to the

metal groups on the copolymer surface. In order to separate these two effects, the
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binding of hisGFP was compared directly to that of untagged GFP. In addition, it

must be established the metal nanoclusters in the copolymer are responsible for

binding hisGFP. Therefore, the experiment must also eliminate the possibility

that the norbornene copolymer itself has no affinity to the protein or to the

his6 tag. Tween 20 detergent will be used to wash weakly bound his6GFP from

the block copolymer surface. Tween 20 is a polysorbate, and it is a non-ionic

surfactant that is effective at disrupting weak protein interactions, and is used

both to remove peripheral proteins from membranes and is also used as a blocking

agent in membrane-based immunoassays. Its structure is seen in Figure 2.2.

Figure 2.2: The polysorbate detergent Tween 20.

2.3 Experimental design

Green fluorescent protein (GFP) was purchased from ClonTech Laboratories, as

part of the Living Colors recombinant protein line (rGFP). hisGFP was syn-

thesized through the expression of recombinantly modified DNA and purified
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according to literature procedures [1]. Tween 20 was purchased from Aldrich and

diluted in deionized water. Tetrahydrofuran (THF) and norbornene (NOR) were

purchased from Aldrich, distilled over sodium, and then degassed three times

through a freeze/pump/thaw process. 5-norbornene-2-endo,3-exo-dicarboxylic

acid (NORCOOH) was purchased from Aldrich, dried in vacuum and stored in

an argon-filled MBraun LabMaster100 glovebox. Grubbs’s second generation

ROMP initiator [1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro

(phenylmethylene) (tricyclohexyl-phosphine) ruthenium] was also purchased from

Aldrich, stored in the glovebox, and used as recieved. All reactants were dis-

tilled and dried before use, and the polymerization took place in the glovebox.

Electron microscopy was performed on a Hitachi H600AB electron microscope

with accelerating voltage of 100 kV. Fluorescence testing was performed using a

Perkin-Elmer LS55 Luminescence Spectrometer with excitation at 395 nm and

luminescence at 508 nm [71]. Data was taken by averaging a series of ten readings

into one fluorescence data value. Three films of each type were tested in order to

establish experimental error and account for variations in luminescent intensity

across the film surface.

2.3.1 Synthesis of protected NORCOOTMS monomer.

10 g of NORCOOH was dissolved in 400 mL dry ethyl ether and allowed to

stir for 4 hours. With the NORCOOH completely dissolved, 10 mL of pyridine
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and 5 mL of chlorotrimethylsiloxane were added to the stirring solution in the

glovebox. Pyridine hydrochloride precipitated from the stirring ether, and this

white precipitate was filtered out by pouring the reaction mixture through a 1 cm

bed of Celite. The product, norbornene dicarboxylic trimethylsilyl ester (NOR-

COOTMS), was recovered and purified through three cycles of recrystallization

in ethyl ether. The final, pure NORCOOTMS appeared as a white powder and

was vacuum dried and stored in the glovebox.

2.3.2 Synthesis of NOR400/NORCOOH50 diblock copoly-

mer.

The diblock copolymer was formed by first initiating the polymerization of the

NORCOOH block. NORCOOTMS was dissolved in THF to a concentration of

1 mmol/mL. Grubbs’s second generation initiator was added so that the mole

ratio between initiator and NORCOOTMS was 1:50, giving a dark purple solu-

tion. The purple solution was vigorously stirred and allowed to polymerize for 24

hours. At the end of this period, the purified and dried NOR was added to the

reaction mixture. NOR was dissolved in solution in THF at 0.2 mmol/mL. This

reaction was allowed to continue for 6 hours, and then it was removed from the

glovebox and halted with the addition of 200 µL of ethyl vinyl ether. The polymer

was recovered by precipitation in a chilled mixture of 400 mL methanol, 40 mL

distilled water, and 5 mL glacial acetic acid. The solid polymer obtained from
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this process was white with a slight purple tint caused by trace amounts of the

Grubbs catalyst, and was washed thoroughly with pentane to remove unreacted

monomer. The final washed product was dried in vacuum, then redissolved in

pure THF at 1 mg/mL. This mixture was used to form NOR/NORCOOH films.

A schematic of this reaction process is shown in Figure 2.3.

Figure 2.3: ROMP synthesis of NOR400NORCOOH50, starting with the protec-

tion of acid group with TMS, formation of the NORCOOTMS homopolymer, and

block copolymerization of NOR onto the living NORCOOTMS homopolymer.

Films used for TEM study were cast from a solution of THF and 1% w/v nickel
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nitrate in 5-cm diameter, flat-bottomed containers made from Bytac� PTFE

coated aluminum sheets within a THF-filled desiccator over the course of 7 days.

Upon casting, the polymer films were microtomed and examined in the TEM.

During this study it was found that films exposed to an aqueous metal ion solution

post-casting had poor resolution in the TEM, and so solution-doped polymers

were used to reveal the morphology of the copolymer. This was performed only

for the TEM, and was done using nickel, which was found by Cohen in his work

to bind to the -COOH containing block only in very low amounts compared to

both copper and iron [46]. It was assumed that if nickel would bind in sufficient

amount to allow for observation in TEM, then both copper and iron would also.

Films that were used for surface binding tests were cast on the surface of glass

slides that had been stored at 120 � and sterilized with alcohol and acetone. 3

mL of the polymer solution was spread evenly over the slide, forming a uniform,

clear film over the slide. To prepare the NOR/NORCOOH block copolymer for

protein adsorption, films of the copolymer were cast on glass slides which had

been heated to 120 �, then washed in acetone and ethanol. Films were cast by

allowing 3 mL polymer solution (at 1 mg/mL) to evaporate on the slide, giving

a uniform thin film of NOR/NORCOOH on the slide. In all experiments, the

proteins hisGFP and GFP were dissolved in aqueous solutions at a concentration

of 1 mg/mL.
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2.4 Binding study of hisGFP on NOR/NORCOOH

surface with different metal ions

To test the hisGFP binding effectiveness of different ions, three metal ion species

were examined: nickel, copper, and iron. NOR/NORCOOH films were soaked in

solutions of metal salts to add metal ions to the surface -COOH groups. Nickel

nitrate (NiNO3)2, copper sulfate hexahydrate (CuSO4-6H20), and iron chloride

(FeCl3) were dissolved in water at a concentration of 100 µg/mL. NOR/NORCOOH

films were exposed to the aqueous solution for 12 hours. Three NOR/NORCOOH

films were exposed to each metal type to provide experimental spread during

data collection. The films were removed from the metal solution, washed with

deionized water, allowed to dry for 1 hour, then exposed directly to the hisGFP

solution. hisGFP exposure was limited to 10 minutes, after which the films were

washed with 1 % Tween 20 detergent solution. This step was performed in order

to remove all proteins not specifically bound to the metal groups on the surface

of the polymer. The treated films were immediately tested in a fluorescence spec-

trometer to quantify the amount of protein held on the polymer surface. Baseline

was established by taking the fluorescence of the empty test chamber as well as

that of the blank glass slide, and the polymer both with and without metal load-

ing. Since these values were very similar, they were averaged together to give a

single baseline value to which fluorescence of bound hisGFP was compared.
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2.5 Fluorescence of hisGFP on NOR/NORCOOH

Polymer films were cast and loaded with nickel ions in an identical fashion as

the previous metal ion-hisGFP affinity test. Two identical film sets were cast to

test the hisGFP binding directly against that of GFP without the histidine tag.

This meant casting two sets of nickel-loaded block copolymer, as well as two sets

of plain, non-metal containing copolymer. Two glass slides were also used, as

before, to ensure the glass gives no fluorescent background readings. These test

films were exposed directly to the hisGFP or GFP solution. Protein exposure

was limited to 10 minutes, after which the films were washed with 1 % Tween 20

detergent solution. This step was performed to remove all proteins not specifically

bound to the metal groups on the surface of the polymer. The treated films

were immediately tested in a fluorescence spectrometer to quantify the amount

of protein held on the polymer surface. Baseline was established by taking the

fluorescence of the empty test chamber as well as that of the blank glass slide, and

the block copolymer both with and without metal loading. As in the previous

experiment, the empty chamber, glass slide, and polymer with and without metal

gave nearly the same fluorescence value, and so were averaged together to give

a single baseline value. Because there were no competing fluorescence sources in

the system, it was possible to detect bound GFP fluorescence and bound hisGFP

fluorescence in order to compare binding of the GFP against hisGFP.
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2.6 Results and discussion

Gel permeation chromatography (GPC) was used to examine the molecular weight

and polydispersity of the NOR/NORCOOH diblock copolymer produced from

ROMP. It was found that the weight average molecular weight of the copoly-

mer was within 5 % of the target (46773 g/mol) for a 400/50 block ratio, with

a polydispersity index (PDI) of 1.21. Transmission electron microscopy (TEM)

allowed direct observation of the copolymer’s microphase separated morphology.

The 400/50 NOR/NORCOOH block ratio produced spherical domains of NOR-

COOH with an average diameter of 30 ± 5 nm, which can be seen in Figure 2.4.

Figure 2.4: TEM micrograph of the nickel-loaded NOR400NORCOOH50 diblock

copolymer.
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The glass slide and polymer films that were not exposed to hisGFP achieved

only baseline fluorescence, as expected. The metal-loaded films, on the other

hand, showed significant fluorescence. Among the three metal ions tested in the

block copolymer, nickel proved the most effective, giving a fluorescence of 70.58

± 2.11 arbitrary intensity units. Copolymer films treated with copper and iron

ions also showed hisGFP binding, but showed significantly less fluorescence, as

seen in Figure 2.5. Copper-treated films showed fluorescence of 48.32 ± 1.45, and

iron was nearly the same value at 47.35 ± 1.40. The results in Figure 2.5 confirm

that there is metal ion binding activity at the surface of the copolymer, and that

nickel is the most effective ion in binding hisGFP.

While the first experiment was designed to identify the most effective metal

ion in binding the recombinant protein, the second test was designed to ensure

that binding of the hisGFP was due only to the his6 affinity tag on the protein N’

terminus. Therefore, hisGFP and GFP without the his6 affinity tag were tested

against each other on identical films to show the importance of the his6 tag to

the copolymer surface binding in this system.

A baseline fluorescence value was established as in the previous test, and it

was found that all experimental controls gave very similar fluorescence readings,

which were averaged together and treated as the baseline, as seen in Figure 2.6.

Data for the hisGFP and GFP on the non-metal loaded polymer was analyzed

with ANOVA, which showed them to be statistically close to baseline, suggesting
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Figure 2.5: Fluorescence data obtained from block copolymer surfaces loaded

with different metal ions and exposed to hisGFP. The Nickel-loaded block copoly-

mer exhibited significantly higher affinity to his GFP than other metal-loaded

polymer samples.

that the polymer with no metal had little or no affinity for either protein. ANOVA

also showed that the nickel-loaded copolymer surface held a significant amount

of the hisGFP with a detected fluorescence of 77.43 ± 8.74. The nickel-loaded

polymer could not significantly bind the untagged GFP, as its fluorescent intensity

was not significantly above baseline.

This data suggests strongly that the interaction between the hisGFP and the

metal at the polymer surface is significantly higher than any other nonspecific

interactions in the system, and that the metal-loaded surface is indeed specifically

interacting with the his6 affinity tag.
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Figure 2.6: Comparison of hisGFP vs. GFP fluorescence on various surfaces.

Only the fluorescence caused by hisGFP binding on the nickel-loaded block

copolymer surface was significantly above baseline.

2.7 Conclusions

The experiments performed on this block copolymer system show that nickel is

the most effective metal in chelating histidine-tagged green fluorescent protein,

and that the metal-loaded surface of the norbornene block copolymer is capable

of binding histidine-tagged green fluorescent protein while being unable to bind

green fluorescent protein without histidine tags. While there are undoubtedly

non-specfic interactions like hydrogen bonding and Coulombic attraction between

the polymer, metal, and the target protein, it appears that only the histidine-

metal chelated protein can remain through the process of washing performed in

these experiments. Future work upon this project will focus on studying the
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composition of the metal-loaded copolymer surface and the actual location of

these histidine-tagged proteins on the copolymer surface.
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Chapter 3

Nanopatterning of Tobacco Mosaic and Necrosis

Virus Using Poly(styrene-b-4-vinylpyridine)

3.1 Introduction

This chapter will seek to show that similar principles used to nanopattern histidine-

tagged green fluorescent protein (hisGFP) on the surface of the norbornene block

copolymer can also be applied in a different block copolymer system with differ-

ent biological species. The nanopatterning mechanism between the virus and

copolymer differs from the histidine-nickel chelation that occurs between the

histidine-tagged green fluorescent protein and the NOR/NORCOOH-nickel di-

block copolymer. Analysis of this system showed that the histidine tagged added

to the green fluorescent protein was responsible for its binding behavior. The

virus species that were tested did not have a hexahistidine (his6) tag, and re-

quired a different interpretation of the virus binding behavior.
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Viruses are physically much larger than individual protein molecules, such as

the tested his6-tagged green fluorescent protein. For example, hisGFP is a single

protein containing 238 amino acids, while the Tobacco mosaic virus is composed

of 2130 surface protein subunits surrounding an RNA core of 6400 base pairs.

Thus, the virus is about three to four orders of magnitude larger than the virus.

The virus surface is composed of a multitude of protein subunits, each of which

presents a particular set of functional groups. Non-tagged GFP was unable to

bind to the surface of the NOR/NORCOOH block copolymer. This is because

the histidine-nickel chelation binding is strong compared to the relatively weak

non-specific functional group associations, such as hydrogen bonding and van

der Waals attractions, occurring between the copolymer’s surface molecules and

metal ions and the external functional groups of the protein. With this result in

mind, it is expected that these non-specific functional group interactions cannot

account for significant binding of viruses to the block copolymer surface.

Rather, the binding between the virus and the copolymer occurs because of

unlike-charge Coulombic interaction. The viruses proposed carry a net negative

surface charge at neutral pH. The block copolymer, loaded with non-oxidized

metal, should carry a net positive surface charge. It is assumed that this interac-

tion will be the dominant mechanism of virus binding to the metal-loaded block

copolymer surface. Previously, Tween detergent was used to test the specificity of

GFP binding by disrupting weak, non-specific binding between the surface func-
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tional groups on the protein surface at the nickel-loaded NOR/NORCOOH block

copolymer. Here, Tween will also be used to examine the strength the binding

of the virus to the copolymer surface by disrupting weak functional group in-

teractions between the virus and the copolymer. Since it is theorized that the

interaction between the virus and copolymer is Coulombic, viruses should remain

on the surface after washing with Tween.

3.2 Background

Viruses are mobile genetic elements surrounded by a protein coat [72]. Since

they cannot replicate themselves autonomously, they are obligate parasites that

seek out host cells in order to reproduce. Viruses are able to induce the protein

synthesis and assembly mechanisms of cells to in order to produce viral proteins

that are assembled into functioning virions.

Viruses can infect many different kinds of cells, including bacteria, animal,

and plant cells. They are able to do this by penetrating the cell membrane, or

in the case of plants, through damaged cell walls. When the virus penetrates the

cell, the viral genetic material in the form of DNA or RNA enters the cell and

exploits the cell’s own molecular machinery to replicate itself. The infected cell

then reproduces and assembles the virus and its coat proteins according to the

instructions written on the viral genetic code [72]. Generally, the production of

viral proteins is harmful to the infected cell, and can be fatal.
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The study and understanding of viruses and their interaction with other living

organisms is crucial in improving standard of life, both from an epidemiological

and economic perspective. Many human diseases, causing significant loss of life,

are viral in origin. Viral respiratory infections and human immunodeficiency virus

(HIV) are two examples of diseases with viral origin that claim millions of lives

a year [73, 74]. Plant viruses are also a cause for serious economic concern. An

example is the bean pod mottle virus, which destroys soybeans [72], and maize

dwarf mosaic virus, which is a worldwide problem affecting corn crops. These

viruses can cause problems with the food supply and affect economies around the

world [75, 76], causing billions of dollars in lost or damaged crops.

Nanopatterned surfaces can be used to target viral surface proteins in or-

der to study their structure and function more easily and more accurately. A

nanopatterned surface has already been shown to affect the mobility and mor-

phology of cells [85]. It is the purpose of this study to lay the foundations for a

block-copolymer based nanopatterning system for identification and analysis.

3.2.1 Poly(styrene-b-4-vinylpyridine)

The PS/P4VP purchased from Polymer Source had a molecular weight ratio of

20.0K/19.0K for the polystyrene and poly(4-vinylpyridine) blocks, respectively.

The polystyrene block had a degree of polymerization of 192, and the poly(4-

vinylpyridine) had a degree of polymerization of 180. The total block copolymer
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had a polydispersity of 1.09. The structure of PS/P4VP is seen in Figure 3.1.

Figure 3.1: Structure of the poly(styrene-b-4-vinylpyridine) copolymer.

PS/P4VP was employed in these experiments because it has often been used

in other published research to take up metal ions for various purposes [41, 42,

43]. Metal chelation occurs through the lone electron pair on the pendant pyri-

dine moiety. At room temperature, both polystyrene (Tg 97.06 �) and poly(4-

vinylpyridine) (Tg 143.65 �) blocks are in a glassy state limiting the diffusion

of metal ions from poly(4-vinylpyridine) to polystyrene. Metal ion localization

in the poly(4-vinylpyridine) is important to the nanopatterning process, because

it insures that the tested viruses will be templated by the metal-loaded poly(4-

vinylpyridine) block and not feel competing attraction to polystyrene due to

unintended metal diffusion from block to block.

A lamellar block copolymer microstructure is expected when a film is cast

from a non-specific solvent for both polystyrene and poly(4-vinylpyridine), which

in this case was chloroform, as seen in Figure 3.2. Ni2+ does not dissolve in chlo-
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roform, however. In order to dissolve both Ni2+ and PS/P4VP block copolymer,

a solvent mixture of 8.5 % tetrahydrofuran and 91.5 % was used. The copolymer

microstructure resulting from stating casting of this solvent mixture was cylin-

drical, as seen in Figure 3.3. Ni2+ binds to the P4VP block, causing the observed

darkened cylinders in Figure 3.3. In this micrograph, both the cylinder ends and

sides are visible. The long axis of the P4VP cylinders are approximately 20 nm in

diameter, with an intercylindrical distance of approximately 20 nm and cylinder

lengths greater than 1 µm. These dimensions should therefore be favorable for

the nanopatterning of a similarly cylindrical virus, such as tobacco mosaic virus,

which has a diameter of 18 nm and a length of 300 nm.
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Figure 3.2: TEM micrograph showing lamellar microstructure of PS/P4VP

when static cast from chloroform. Contrast between polystyrene and poly(4-

vinylpyridine) is provided from iodine vapor staining.

39



Figure 3.3: TEM micrograph showing both the sides and the ends of the cylindri-

cal microstructure resulting from PS/P4VP-Ni film formation from static casting

from 8.5 % tetrahydrofuran and 91.5 % chloroform. The Ni2+ ion in the P4VP

block provides contrast.
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3.2.2 Tested tobacco virus species

Two different virus species were used in order to examine the interaction between

viruses and the block copolymer surface. Tobacco mosaic virus (TMV) and to-

bacco necrosis virus (TNV) were used primarily for three reasons: they are very

well characterized, they cannot infect humans, and they are easily synthesized in

large amounts [83]. Tobacco mosaic virus is a common plant virus that infects

tobacco leaves as well as a nearly 150 other herbaceous and dicotyledonous plants

including tomato, pepper, spinach, and many flowers [80, 81]. Generally, infection

causes stunting of the plant and reduces the amount of useful crop. The TMV

virus is non-enveloped virus with a helical RNA strand of 6400 bases surrounded

by a coat of 2130 identical coat proteins. The TMV virion is a rigid rod 300 nm

long with a diameter of 18 nm (Figure 3.4). The isoelectric point of TMV is 3.5,

so at pH 7, TMV has an overall negative surface charge, with a linear charge

density of 0.5-2 electrons/Å [79]. TMV forms head-to-tail oligomeric strings that

are much longer than the length of a single TMV virion (Figure 3.5).
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Figure 3.4: Electron microscope picture of the tobacco mosaic virus.
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Figure 3.5: Oligomeric strands of TMV caused by head-to-tail addition.

Tobacco necrosis virus (TNV) is another plant virus affecting a large vari-

ety of commercial crops. Unlike the TMV rod, TNV has a regular icosahedral

shape with an average diameter of 26 nm [77], seen in Figure 3.6. It is also a

non-enveloped RNA virus, like TMV, and it will be used to further study the

interaction of copolymer surface with virus. TNV has an isoelectric point of 4.5,

so like TMV, TNV has a negative charge at pH 7. TNV is used to circumvent
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the problem of multiple cylinder-virus interaction points. The long axis of the

TMV virus does not always align with the long axis of a single cylinder, and

often crosses many cylinders at an angle to the copolymer’s preferred direction.

Therefore, TNV gave the ability to study the behavior of single virions as they

interacted with single copolymer cylinders.

Figure 3.6: Tunneling electron microscope picture of the tobacco necrosis virus.

Magnification is 300K [78].
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3.3 Experimental design

3.3.1 Introduction

The purpose of experiments presented here was to deduce the mechanism of

virus binding to the surface of the copolymer. With a better understanding of

the nature of the virus-copolymer interaction, it was possible to then examine

the patterning of the viruses on the surface of the block copolymer. Specifically,

it was necessary to resolve the tendency of rodlike virus particles to lie randomly

on the copolymer surface rather than self-orienting to maximize contact with

the attracting block of the copolymer surface. To have any chance of large-scale

ordering of the virus, the surface of the block copolymer itself must have a degree

of long-range microstructural order. This was accomplished through the use of

applied stress above the glass transition temperature. Tween detergent was again

used to disrupt weak bonding between the copolymer and the virus. It is proposed

that the interaction between the block copolymer and the virus is a Coulombic

one, therefore Tween detergent will be used to eliminate the possibility of non-

specific binding.

3.3.2 Ultramicrotoming and electron microscopy

A Leica EM UC6 Ultramicrotome was used to section samples for electron mi-

croscopy. PS/P4VP-Ni and PS/P4VP specimens were fixed in Spurr’s fast-curing
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resin. Embedded specimens were microtomed at room temperature. Specimens

were cut to 100 nm thickness so that they would be visible in the TEM and

be able to endure the planned virus exposure and Tween wash procedures. Mi-

crotomed films were mounted on 600 mesh copper grids, model number 600TT,

purchased from Ted Pella. Electron microscopy was performed on a Hitachi

H600AB electron microscope with 100 kV accelerating voltage.

It was found that samples thinner than 100 nm had two significant problems.

They were damaged by the repeated water and detergent exposure, and they

tended not to withstand the electron beam in the TEM and would curl away

from the beam and break away from the grid. Therefore, all samples were cut to

100 nm for analysis.

3.3.3 Nickel metal complexation and film preparation of

poly(styrene-b-4-vinylpyridine)

PS/P4VP was dissolved in chloroform, a good solvent for both polystyrene and

poly(4-vinylpyridine). A polymer/chloroform concentration of 1 mg/mL was

used. Nickel nitrate Ni(NO3)2 was dissolved in separate copolymer and solu-

tions at a concentration of 100 µg/mL. In order to dissolve Ni(NO3)2 in the

PS/P4VP/chloroform system, the metal salt was added to the solution and the

mixture was titrated with tetrahydrofuran until a clear solution was formed. At

the point of solution formation, the amount of tetrahydrofuran added was 8.5 %
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of the total solution volume.

Bulk films of the copolymer and metal were cast in flat-bottomed basins

formed from Bytac film in a chloroform-saturated desiccator in order to slow the

evaporation process. Film formation through evaporation occurred slowly over

the course of a week. These static cast films were further processed using stress

applied in a heated channel die in order to give a preferential direction to the

long axis of the PS/P4VP cylindrical microstructure. Binding analysis of the

virus-copolymer system consisted of visualization through electron microscopy.

Binding experiments were performed with the PS/P4VP films cut and mounted

on 600-mesh copper TEM grids.
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3.3.4 Stress-Induced Orientation of PS/P4VP-Ni Block

Copolymer Morphology

A custom-made aluminum mold with integrated cooling water galleries was used

to heat the copolymer past its glass transition temperature, transmit applied

stress, and quench the copolymer once it experienced flow. A schematic of this

die is shown in Figure 3.7. PS/P4VP-Ni films loaded into the channel die from

static casting were translucent with a light blue color.

Figure 3.7: Dimensions of the channel die used to orient the PS/P4VP block

copolymer. Also shown are the three major axes of deformation.

Samples were heated to 160 � in a standard Carver 2400 digitally controlled

heat press. A small pre-loaded force of about 100 lbs was initially applied to
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the cold sample prior to flow to ensure proper mechanical and thermal contact

of the channel die with the copolymer. Flow initiated when the preload pressure

was observed to drop to zero, indicating the copolymer could no longer support

a mechanical load. This occurred shortly after reaching the target temperature

of 160 � . Pressure was immediately raised to 2000 lbs and the copolymer was

allowed to flow until it reached the ends of the mold. At this point, the heaters

were turned off and cooling water was flowed through the mold, dropping the

system temperature to room temperature at a rate of approximately 280 �/min.

The applied pressure was maintained during the quenching process. Once cool,

the copolymers were removed from the mold after being carefully marked to show

the direction of flow.

3.3.5 Virus Staining Technique

Electron microscopy was the analytical tool used to examine the morphology of

the block copolymer and virus species. In order to properly image the virus, a

stain was applied to provide contrast in the electron beam. Commonly, phospho-

tungstic acid (PTA) is used when staining TMV and TNV. It was found, however,

that PTA caused significant interference with the existing block copolymer con-

trast, as in Figure 3.8 . The tendency was for the virus to be weakly stained,

accompanied by a loss in contrast from the metal-containing microstructure of

the copolymer.
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Figure 3.8: Image of TMV stained with phosphotungstic acid. The underlying

PS/P4VP copolymer with nickel-containing microstructure is obscured by over-

staining with phosphotungstic acid.

A successful alternative was to stain the block copolymer/virus system with

a 1 % solution of uranyl acetate (UA) [82]. When applied to the block copoly-

mer/virus surface, UA was able to clearly show virus particles while not interfer-

ing with the visualization of the block copolymer microstructure. The staining

procedure was always a 30-second exposure to a 1 mg/mL solution of UA.

Staining was performed by holding the grid of interest containing the copoly-
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mer film in self-closing tweezers and allowing a 10 µL drop of UA staining solution

to rest on the surface for 30 seconds. At the end of the stain time, the drop was

rapidly removed by gently contacting the grid bottom and sides with filter pa-

per. Once the stained film was fully dry, it was allowed to air-dry for at least 30

minutes before insertion into the TEM.

3.3.6 Binding of Tobacco Mosaic Virus on PS/P4VP-Ni

and PS/P4VP

The TMV binding ability of the PS/P4VP-Ni surface was tested by directly

exposing TEM-grid mounted samples to an aqueous TMV solution. In order

to test the binding strength of TMV to the metal-loaded copolymer surface,

detergent washes were performed in order to analyze the amount of virus held

by the copolymer. Initial TEM pictures were taken to establish the appearance

of the TMV on the copolymer surface. Tween detergent was used to attempt to

clean the copolymer of TMV.

Wild type TMV was prepared according to literature procedures [83]. Samples

of PS/P4VP-Ni and non-nickel PS/P4VP were mounted on copper TEM grids

as per the stated sample preparation method. A 10 µL droplet of the TMV

solution of approximately 0.1 % mg/mL was placed on the grid and allowed to

remain there for 1 minute. After 1 minute, the droplet was wicked away with

filter paper. The sample was then immediately exposed to a 10 µL droplet of
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uranyl acetate stain for 30 seconds, and then wicked away with filter paper. Once

dry, the specimen was ready for electron microscopy.

Tween detergent washes were performed after virus exposure and before uranyl

acetate staining. Primary washes consisted of a Tween-only solution. For Tween

washes of 2 minutes or less, the TEM grid containing microtomed copolymer was

held in tweezers and gently circulated in a basin of 1 % Tween for the required

time. After exposure, the grid was wicked dry, rinsed with 10 µL of water, and

wicked dry again. Upon drying, the washed sample was stained by exposing the

grid to 10 µL of UA for 30 seconds.

For Tween washes lasting longer than 2 minutes, the grids were washed in

autoclaved 1.5 mL centrifuge tubes. The tube was filled with 1 mL of the Tween

wash solution. The grid containing copolymer and virus was dropped into the

centrifuge tube, being sure that it did not float on the surface, but rather sank to

the bottom. This centrifuge tube was then gently tumbled for the desired wash

time. The sample was then rinsed with 10 µL of water, wicked dry, and then

stained for 30 seconds with 10 µL of UA. Tween washes were also performed with

a mixed solution of 1 % Tween and 1 molar sodium chloride (NaCl). Washing

procedures for the Tween/NaCl solution were identical to those used for Tween-

only washes.
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3.3.7 Flow-induced exposure of tobacco mosaic virus to

PS/P4VP-Ni

PS/P4VP-Ni films were prepared according to previous film preparation/microstructure

stress alignment methods. Films were applied parallel to each other on the sur-

face of the copper TEM grid. An apparatus was built that held the edges of the

TEM grid and allowed the surface of the grid to remain unclamped, lying at a

45° angle to the horizontal countertop. A 1 mL sterile syringe was loaded with

1 mg/mL TMV solution. A flat-tipped Luer-locking needle was attached to the

syringe. This syringe and tip were inserted into a syringe pump set to 3 mL/min

pump rate. A schematic of this setup is seen in Figure 3.9. The TMV was flowed

onto the surface of the TEM grid at 3 mL/min. When the TMV solution was

spent, the grid was wicked dry, gripped in tweezers, and then exposed to UA for

30 seconds, as in previous experiments. TEM analysis of the flow experiment

followed after a 30 minute drying period.
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Figure 3.9: Schematic of the dynamic exposure apparatus built for exposing

PS/P4VP-Ni films to flowing TMV solution. A syringe pump is connected to a

tube which ends in a flat-tipped needle. At the barrel of the needle, a TEM grid

with affixed microtomed sections of PS/P4VP-Ni is held stationary. The TEM

grid is oriented so that the long axis of the copolymer points in the direction of

virus solution flow.

3.3.8 Binding of tobacco necrosis virus on PS/P4VP-Ni

TMV, because of its 300 nm length, often lays across several cylinders, and

therefore it is unable to help determine the effect of a single cylinder on the
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binding activity of the surface. To this end, wild-type TNV was prepared through

standard methods of tobacco leaf infection and purification [83] and was dissolved

in a solution of approximately 1 mg/mL. Microtomed samples of oriented nickel-

PS/P4VP were mounted on copper TEM grids and held in tweezers. As before,

a 10 µL drop was allowed to remain on the surface for exactly 1 minute and then

wicked away with a filter paper.

UA was used to stain TNV in an identical procedure to TMV. The sample

was exposed to a 10 µL droplet of uranyl acetate stain for 30 seconds following

TNV exposure, and then wicked away with filter paper. Once dry, the specimen

was ready for electron microscopy.

3.4 Results and discussion

Preferential orientation of the copolymer microstructure was achieved by exerting

pressure on the block copolymer above its glass transition temperature. Heat

and flow of the block copolymer within the channel die had the effect of giving a

preferential direction to the long axis of the cylinders formed through microphase

separation of the PS/P4VP-Ni copolymer.

The partial orientation of the block copolymer microstructure was visualized

through electron microscopy. Samples microtomed parallel to the flow axis, seen

in Figure 3.10, showed only the sides of the cylinders, preferentially aligned in

the flow direction. Samples microtomed parallel to the constraint direction, as
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in Figure 3.11 showed only the hexagonally close-packed ends of the cylinders.

For virus testing, it was desired to use the cylinder long axis. Therefore, fol-

lowing samples were microtomed to expose the cylindrical long axis of the block

copolymer, and these surfaces were used in virus binding tests.

Figure 3.10: PS/P4VP-Ni microtomed along the flow direction, showing prefer-

entially oriented cylinders. Contrast comes from nickel in the P4VP block.
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Figure 3.11: PS/P4VP microtomed along the constraint direction, showing the

cylinder ends. Contrast comes from nickel in the P4VP block.

TMV was bound by the nickel-loaded PS/P4VP-Ni block copolymer preferen-

tially over the non-metal-loaded PS/P4VP. As observed in the TEM micrograph

in Figure 3.12, TMV remained visible on the block copolymer microstructure

against 1 % Tween washes of up to 5 minutes, as seen in Figure 3.12. It was also

seen that after extended washes of up to 2 hours, some scattered TMV was still

observed on the block copolymer. Only after a 30 minute exposure to Tween,

in Figure 3.14 was the visible TMV removed from the PS/P4VP-Ni surface.
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PS/P4VP that was prepared without nickel was seen to lose almost all visible

TMV before 2 minutes, as in Figure 3.13. In order to view the microstructure of

the block copolymer, the polymer was stained after microtoming with a 2 hour

exposure to iodine vapor, preferentially contrasting the P4VP block. TMV is

observed on the non-metal PS/P4VP surface, in Figure 3.13. After one minute

of Tween wash, approximately 55 % of the TMV is removced, and after 2 minutes

in Tween, virtually no virus is seen on this surface as in Figure 3.13.
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Figure 3.12: TEM micrograph showing TMV binding to PS/P4VP-Ni. The

pictures are taken after increasingly long Tween washes. In 3.12A, wash time is

30 seconds, 3.12B is 1 minute, 3.12C is 2 minutes, and 3.12C is 5 minutes. After

6 hours, the surface still resembles that seen after 5 minutes, with some virus still

visible.
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Figure 3.13: Binding of TMV to PS/P4VP with no metal loading. Contrast

in this TEM micrograph comes from post-virus exposure staining of the P4VP

block with iodine vapor. As in Figure 3.12, wash time in A is 30 seconds, B is 1

minute, and C is 5 minutes. In C, after a 5 minute exposure to Tween detergent,

the virus is removed, leaving shadowy imprints but no visible virus particles.
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Figure 3.14: PS/P4VP-Ni surface following a 30 minute Tween detergent wash

after TMV exposure. TMV rods are no longer visible on the surface, although

there are shadowy remnants of the virus stained by UA. This indicates that the

majority of TMV removal occurs before 30 minutes.

A sample of PS/P4VP-Ni, which had been exposed to TMV, was only par-

tially dipped into the 30 % Tween solution and held there for 5 minutes. Tween

20 is typically used in concentrations ranging from 0.05 % to 0.5 %. As seen

in Figure 3.15, there was near total virus removal from the washed portion, and

there was a clear demarcation line between the washed and unwashed portion

of the grid. While this unusually strong wash was able to remove viruses com-

pletely and noticeably from the copolymer surface, it is also possible that the

Tween detergent, in very large concentrations, was able to shield the charge in-
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teraction between the virus and the copolymer and facilitate its physical removal.

Therefore, this result does not necessarily rule out the possibility of Coulombic

unlike-charge based binding.

Figure 3.15: Border between washed and unwashed sections of a the TMV-

exposed PS/P4VP-Ni surface after exposure to 30% Tween for 5 minutes.

The epoxy used to fix the PS/P4VP and PS/P4VP-Ni block copolymer was

also examined for the presence of TMV. This compound is generally crosslinked

and unreactive, and cannot participate in any significant binding with TMV.
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Since it was also exposed to TMV, unwashed samples showed TMV present on the

epoxy. However, once Tween washes were begun, the virus seen in Figure 3.13A

and Figure 3.13B quickly diminished and was not seen on the epoxy after more

than 2 minutes of 1 % Tween wash. The epoxy is a highly crosslinked network

that is assumed to have little or no binding ability, similar to the polystyrene

portion of the PS/P4VP block copolymer.

The disappearance of TMV from the epoxy shows that Tween is effective in

removing non-specifically bound viruses. This result seems to indicate that al-

though there should be significant non-specific binding, owing to the large number

of the virus surface functional groups interacting with the surface, the dominant

binding force holding the virus on the surface is either Coulombic binding of the

negatively charged virus to the metal-loaded microstructure of the copolymer sur-

face, or a result of chelation between the virus and nickel ions on the copolymer

surface.

TNV was tested for its binding on nickel-PS/P4VP. While it is a much smaller

virus than TMV, TNV is similar in that it carries a negative charge at pH 7. Be-

cause of its size, approximately 26 nm, it is possible for the TNV particles to fit

within the confines of the metal-loaded P4VP portion of the surface microstruc-

ture. This makes TNV an excellent candidate for testing the binding of individual

viruses to each separate block copolymer cylinder.

As in Figure 3.16, single TNV virions were seen to fit within both the PS
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and P4VP portions of the copolymer surface microstructure. When exposed to

wash, TNV associated with PS was washed away. Here, Tween 20 functions

properly to solubize the TNV virions which have nothing specifically to bond to

on the polystyrene portions of the copolymer surface morphology. There was a

distinct correlation of the binding ability of single nickel-loaded P4VP cylinders,

and individual TNV virions. This is important because it suggests that unlike

charge binding occurs between the metal-loaded copolymer and the virus without

the need for collective action between different P4VP-Ni cylinders. Again, as in

the TMV tests, TNV was seen to bind to the nickel-containing PS/P4VP block

copolymer surface following Tween 20 washes, adding further credibility to the

Coulombic interaction explanation of TMV and TNV virus binding.
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Figure 3.16: TNV on the surface of the nickel-loaded PS/P4VP-Ni block copoly-

mer.

Tween washes were performed on TNV as they were on TMV, and it was seen

that results were consistent with results achieved by washing TMV with Tween.

When exposed to PS/P4VP-Ni, the TNV was not removed completely after 5
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minutes in a Tween wash, although there is continuously less and less virus over

time. Figure 3.17 shows TNV resisting Tween washes in a similar manner to

TMV.
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Figure 3.17: Effect of Tween washes on the presence of TNV on the surface of

PS/P4VP-Ni. As in TMV binding, 5 minutes of wash is not sufficient to remove

all visible TNV from the surface.

After one minute in the Tween wash, it was observed that TNV had been

67



mostly removed from the non-metal containing polystyrene portion of the block

copolymer microstructure. TNV virions were clearly observed contained within

the nickel-loaded 4-vinylpyridine cylinders. This is another positive indication

that the virus does not bind through van der Waals or hydrogen bonding, but

rather that the TNV specifically prefers the metal-loaded microstructure. The

binding of TNV to the surface allowed observation of how individual viruses

responded to individual parts of the block copolymer microstructure. Analysis

of TNV micrographs showed that 87 % of the TNV particles, after a 2 minute

Tween wash, were adhered to the nickel-conaining P4VP block of the copolymer.

This large percentage of TNV-metal binding further suggests that the PS block

is unable to bind TNV. With the possibility of virus binding to PS reduced, it

seems likely that the virus particles are binding only to the nickel-containing

P4VP block.

Non-nickel PS/P4VP was unable to show binding of TNV, as it did with

TMV. Unoxidized nickel ions on the freshly microtomed PS/P4VP-Ni surface are

assumed to carry the positive charge necessary for binding the TMV and TNV

virions. PS/P4VP films, lacking the nickel ion and necessary positive charge,

cannot strongly bind TMV or TNV.

Another interesting observation is the partial alignment of the TMV virion

with the block copolymer microstructure, achieved with the help of shear caused

by virus solution flow. When static cast, the TMV virions were seen to lie at all
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angles randomly, with no preferred direction. The experiment involving dynamic

exposure was performed with the flow direction coinciding with the long axis

of the block copolymer. It was thought that this arrangement would make the

TMV virions more likely to align with this long axis. As seen in the closeups in

Figure 3.18 and Figure 3.19, this situation is indeed possible, as single virions

were seen to match up well with the block copolymer’s microstructure. Seen from

a lower magnification, in Figure 3.20, a large-scale ordering of the viruses can be

seen.

Figure 3.18: TEM micrographs showing alignment of single virions directly par-

allel to the flow axis of the PS/P4VP-Ni block copolymer microstructure.

69



Figure 3.19: Other views of the TMV alignment with PS/P4VP-Ni.
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Figure 3.20: Lower-magnification TEM image showing the large-scale orientation

of the block copolymer. Because of the large number of viruses on the surface,

the underlying block copolymer microstructure is somewhat obscured, but the

predominant direction of virus alignment can be seen heading off to the lower

right of the micrograph.
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3.5 Conclusions

In this chapter it was shown that nickel-loaded PS/P4VP block copolymer is

capable of binding both TMV and TNV virions. Nickel ion added in solution is

contained in the block copolymer’s P4VP microstructure by metal chelation to

the pyridine nitrogen. Microphase separation of the PS/P4VP cast from a mixed

91.5 % CHCl3/8 % THF solvent resulted in a cylindrical microstructure with the

nickel residing in the P4VP block.

The cylinder long axis of the microstructure was oriented using a hot press

and a cooled channel die for quenching, resulting in PS/P4VP cylinders that had

a strong anisotropic directional preference. This microstructure, when exposed

by microtoming, was seen in the electron microscope to be able to bind both

TMV and TNV virions when loaded with nickel.

Without nickel, the binding ability of the surface was no different than that of

the Spurr’s epoxy used to fix the PS/P4VP for microtoming. The biodetergent

Tween was used to test binding because of its known ability to disrupt weak,

nonspecific binding in biological systems. In Tween washes of up to 2 hours, TMV

remained visible on the surface in increasingly diminished, but still significant,

amounts. TMV, because of its size, was seen to cross several cylinders and often

formed aggregates with other nearby TMV, although this did not seem to have

an affect on the binding ability of the PS/P4VP surface.

It was also seen that when exposed to flowing solutions of TMV, the PS/P4VP-
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Ni surface exhibited an ability to retain TMV in a partially aligned state, when

the direction of flow coincided with the long axis of the PS/P4VP-Ni cylinders.

Therefore, it is concluded that unlike-charge Coulombic interaction is the

dominant mechanism in binding of the negatively charged TMV and TNV to

the positively charged PS/P4VP-Ni block copolymer surface. The viability of

virus nanopatterning by the PS/P4VP-Ni surface is validated by these results,

and it should now be possible to further investigate the binding viruses onto

charge-bearing or otherwise functionalized block copolymer surfaces.
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Chapter 4

Future Work

There are many opportunities to advance the study of virus and protein nanopat-

terning by block copolymers beyond this dissertation. It is hoped that the sugges-

tions contained in this section will lead to productive applications of the concepts

advanced in this writing.

In analyzing the nanopatterning of hisGFP by the norbornene block copoly-

mer, only fluorescence spectrometry was used to analyze the presence or absence

of the protein on the block copolymer surface. Although this is an accurate rep-

resentation of the presence or absence of surface-bound hisGFP, it is not able

to determine the exact location of the binding, nor is it able to determine the

orientation of the hisGFP once it has bound to the surface.

Atomic force microscopy (AFM) experiments could resolve the location of

the protein on the surface, as could high-resolution scanning electron microscopy

(SEM). The film casting would have to be modified, from static-casting to spin-
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casting, in order to produce a near-flat copolymer surface that could be read

by the AFM tip. Near-field scanning optical microscopy (NFSOM) could be

used to locate individual fluorescing hisGFP and this positional data could be

correlated to the known sizes of the block copolymer microstructure. NFSOM

could also be used to quantify the amount of hisGFP on the surface, allowing

for the development of a wash constant of hisGFP from the copolymer surface

during Tween detergent washes.

The block copolymer surface, which is capable of binding hisGFP, should be

subjected to competition from imidazole, which is normally used in the washing

of his-tagged proteins from nickel chelation columns. The purpose of such a

competitive wash would be to determine if in fact such a competitive wash would

be successful, allowing some understanding of the binding strength of the hisGFP

to the copolymer surface. The use of stoichiometric amounts of imidazole would

also help quantify the amount of protein washed from the surface. It would also

help to determine the re-usability of the surface, a critical concern if this material

is to eventually function as part of a device.

A wash constant could also be developed for the system of TMV and TNV on

the surface of PS/P4VP-Ni. First and foremost in this effort would be to develop

a positive way to determine the presence or absence of TMV and TNV from the

surface. One possible way is through the use of picture analyzing software that

could identify and count virus particles, such as NIH Image or ImageJ. However,
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in certain cases, the ”shadow” of a virus on the surface was indeterminate to

whether it was a poorly-stained virus or the remnants of virus that was no longer

present of the copolymer surface. In this case, AFM would be easily able to

distinguish virus rods from proteins on the surface. Also, X-ray photoelectron

spectroscopy could be used to detect the presence or absence of the virus by

identifying the bonds on the surface characteristic of the virus proteins.

With the ability to easily quantify the amount of virus on the surface, it would

be valuable to determine a wash constant that describes the rate of virus removal

during Tween washes. This value would allow quantitative analysis between

different wash procedures and determination of binding strengths of virus to

copolymer.

In the virus-PS/P4VP-Ni system, as in the norbornene-hisGFP system, ex-

periments could be performed to determine the re-usability of the virus binding

surface. Long or high concentration Tween washes to remove viruses followed

by re-binding and binding population analysis would most likely accomplish this

goal.

Flow experiments might be performed that flow TMV perpendicular to the

axis of the aligned block copolymer. The purpose of such an experiment would

be to see whether PS/P4VP-Ni can align the TMV when the virus rods are not

already preferentially aligned to the axis of the block copolymer.

One final possible experiment is the modification of the PS/P4VP-Ni surface
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to be more active in the affecting the final orientation of the TMV particle. For

example, the PS/P4VP-Ni surface could be chemically modified after film casting

to sulfonate the polystyrene. This would result in the post-casting creation of

an amphoteric copolymer, with the poly(4-vinylpyrinde) block displaying virus-

attractive positive charge from nickel ions, while the newly sulfonated polystyrene

block would repel the virus particle with a negative charge.
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