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1 Introduction\The past two decades : : : have led to a powerful conceptual change in our view of what the braindoes : : : It is no longer possible to divide the process of seeing from that of understanding : : :". [69].These lines of Zeki's article express in a concise way what has been realized in di�erent disciplinesconcerned with the understanding of perception. Vision (and perception in general) should not bestudied in isolation but in conjunction with the physiology and the tasks that systems perform. Inthe discipline of Computer Vision such ideas caused researchers to extend the scope of their �eld.If initially Computer Vision was limited to the study of mappings of a given set of visual datainto representations on a more abstract level, it now has become clear that Image Understandingshould also include the process of selective acquisition of data in space and time. This has led to aseries of studies published under the headings of Active, Animate, Purposive, or Behavioral Vision.A good theory of vision would be one that can create an interface between perception and othercognitive abilities. However, with a formal theory integrating perception and action still lacking,most studies have treated Active Vision [2, 4] as an extension of the classical reconstruction theory,employing activities only as a means to regularize the classical ill-posed inverse problems.Let us summarize the key features of the classical theory of Vision in order to point out itsdrawbacks as an overall framework for studying and building perceptual systems: In the theory ofMarr [37], the most in
uential in recent times, Vision is described as a reconstruction process, thatis, a problem of creating representations at increasingly high levels of abstraction, leading from2D images through the primal sketch and the 212D sketch to object-centered descriptions (\frompixels to predicates") [48]. Marr suggested that visual processes|or any perceptual/cognitiveprocesses|are information processing tasks and thus should be analyzed at three levels: (a) at thecomputational theoretic level (de�nition of the problem and its boundary conditions; formulationof theoretical access to the problem), (b) at the level of selection of algorithms and representations(speci�cation of formal procedures for obtaining the solution), and (c) at the implementationallevel (depending on the available hardware).In the de�nition of cognitive processing in the classical theory, Vision is formalized as a pureinformation processing task. Such a formalization requires a well-de�ned closed system. Since partof this system is the environment, the system would be closed only if it were possible to modelall aspects of objective reality. The consequence is well-known: Only toy problems (blocks worlds,Lambertian surfaces, smooth contours, controlled illumination, and the like) can be successfully1



solved.The strict formalization of representations at di�erent levels of abstraction gave rise to break-ing the problems into autonomous subproblems and solving them independently. The conversionof external data (sensor data, actuator commands, decision making, etc.) into an internal repre-sentation was separated from the phase of algorithms to perform computations on internal data;signal processing was separated from symbolic processing and action. Processing of visual data wastreated, for the most part, in a syntactic manner and semantics was treated in a purely symbolicway using the results of the syntactic analysis. This is not surprising, since Computer Vision wasconsidered as a sub�eld of Arti�cial Intelligence and thus studied using the same methodology,in
uenced by the ideas and computational theories of the last decades [12, 21, 44].The strict hierarchical organization of representational steps in the Marr paradigm makes thedevelopment of learning, adaptation and generalization processes practically impossible (so thatthere hasn't been much work on \vision and learning"). Furthermore, the conceptualization of avision system as consisting of a set of modules recovering general scene descriptions in a hierarchicalmanner introduces computational di�culties with regard to issues of robustness, stability, ande�ciency. These problems lead us to believe that general vision does not seem to be feasible.Any system has a speci�c relationship with the world in which it lives, and the system itself isnothing but an embodiment of this relationship. In the Marr approach the algorithmic level hasbeen separated from the physiology of the system (the hardware) and thus vision was studied in adisembodied, transcendental manner.Of course, many of the solutions developed for disembodied systems may also be of use forembodied ones. In general, however, this does not hold. Given in�nite resources, every (decidable)problem can be solved in principle. Assuming that we live in a �nite world and that we have a�nite number of possibilities for performing computations, any vision problem might be formulatedas a simple search problem in a very high dimensional space. From this point of view, the study ofembodied systems is concerned with the study of techniques to make seemingly intractable problemstractable.Not the isolated modelling of observer and world (as closed systems), but the modelling ofobserver and world in a synergistic manner, will contribute to the understanding of perceptualinformation processing systems [58]. The question, of course, still remains how such a synergisticmodelling should be realized. Or: How can we relate perception and action? What are the buildingblocks of an intelligent perceptual system? What are the categories into which the system divides2



its perceptual world? What are the representations it employs? How is it possible to implementsuch systems in a 
exible manner to allow them to learn from experience and extend themselvesto better ones? In this paper we present a formal framework for addressing these questions. Ourexposition describes both some recent technical results and some of our future research agenda.2 Where are we heading to?2.1 Interdisciplinary researchComputer Vision is not the only discipline concerned with the study of cognitive processes respon-sible for a system's interaction with its environment. The last decade of the 20th century has beendeclared the decade of the brain. A number of new �elds that together have established themselvesas Neurosciences are providing us with results about the components of actually existing brains.In areas such as Neurophysiology, Neurogenetics, and Molecular Biology new techniques have beendeveloped that allow us to trace the processes at the molecular, neural, and cellular levels. By nowwe have gained some insight into the various functional components of the brain. We are, however,far from understanding the whole. There are many other di�erent disciplines concerned with theproblem of perception from the biological point of view: Psychology, Cognitive Neurophysiology,Ethology, and Biology, to name a few of them.For most of its history, cognitive modelling has focused almost exclusively on human abilitiesand capacities. In the past, however, the studies were guided by other ideas and a large numberof psychological and psychophysical studies concentrated on the understanding of singularities inhuman perception, or visual illusions, as they are commonly called. The assumption was thatthe brain is designed in a modular, principled fashion, and thus from the study of perceptualmalfunctions (illusions [24]), information about its design can be deduced. Recent results fromCognitive Neurophysiology|the discipline which is concerned, among other topics, with the studyof visual agnosia (a condition exhibited by patients with partially damaged brains) [13, 30]|indicate that the human brain is not designed in a clean, modular fashion, but consists of severalprocesses working in a cooperative, distributed manner. The �ndings from studies of illusionsactually support this point, since a multitude of computational theories of di�erent natures havebeen proposed for explaining the multitude of human visual illusions.When referring to the intelligence of biological systems, we refer to the degree of sophisticationof their competences and to the complexity of the behaviors that they exhibit in order to achieve3



their goals. Various disciplines have been concerned with the study of competences in biologicalorganisms. Genetics and Evolution theory study how di�erent species acquire their species-speci�ccompetences. Competences are classi�ed into two categories: those genetically inherited (throughphylogenesis) and those acquired individually, responsible for the speci�c categories that an indi-vidual distinguishes (through ontogenesis). In Ethology the relationship between the acquisition ofindividual and species-speci�c competences and the behavior of biological organisms is investigated.Organisms at various levels of complexity have been researched. The discipline of Neuroethology isconcerned with the physical implementation of behaviors. By now it has given rise to a great dealof insight in the understanding of perceptual systems of lower animals, such as medusae, worms,and insects. In Computational Neuroethology (Neuroinformatics) researchers are copying the neu-ronal control found in such simple organisms into arti�cial systems with the hope of learning tounderstand in this way the dynamics responsible for adaptive behavior.Two other �elds concerned with the study of interactions of systems and their environments havealso given rise to a number of new technical tools and mathematics. One of these is Cybernetics. Itsgoal is the study of relationships between behaviors of dynamical self-regulating systems (biologicaland arti�cial ones) and their structure. Cybernetics initiated many e�orts in Control theory.The mathematics that has been employed involves integral and di�erential equations. The otherdiscipline is Synergetics, which searches for universal principles in the interrelationship of the partsof a system that possesses macroscopic spatial, temporal, and functional structures.2.2 The approachAfter these discussions of biological sciences, one might assume that it is suggested here to de�ne thescope of Computer Vision as copying biological vision in arti�cial systems. Not at all. ComputerVision is the discipline concerned with the study of the computational theories underlying vision. Itsgoal is to gain insight into perception from a computational point of view. The computations thatcould possibly exist have to be of a certain nature. Thus the problem is to understand the inherentproperties of the computations that a framework which models the understanding of purposive,embodied systems will have.To achieve this goal the study of perception has to be addressed at various levels of abstraction.Our approach here is two-fold: On the one hand we attempt to provide a global model|a workingmodel|for explaining the abstract components of a vision system. On the other hand we proposean approach for achieving the study and building of actual vision systems. The interaction we4



expect with biological sciences will be of the following kind. Results from biological sciences shouldgive us inspiration about the visual categories relevant for systems existing in environments likethose of humans. The constraints imposed by the possible computations should tell the biologicalsciences what experiments to perform to �nd out how biological organisms can possibly function.2.3 The modules of the systemFigure 1 gives a pictorial description of the basic components of a purposive vision system: Theabstract procedures and representations of a vision system are: the procedures for performing visualperceptions, physical actions, learning, and information retrieval, and purposive representations ofthe perceptual information along with representations of information acquired over time and storedin memory.
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�rst kind are the programs that schedule the physical actions to be performed, i.e. they initializemotor commands and thus provide the interface to the body, and the second kind schedule theselection of information to be retrieved from the purposive representations and stored in long-termmemory. An important aspect of the architecture is that the access of the visual processes tothe actions is on the basis of the contents of the purposive representations; i.e., the contents of thepurposive representations serve as addresses to the actions. Another class of programs is responsiblefor learning by providing the actions, the competences, and the representations with the means tochange and adjust parameters.As can be seen from the �gure, learning takes place at various levels of, as well as in between,the modules of the system. For a 
exible vision system, it should be possible to learn the parame-ters describing actions, to acquire new actions, to learn parameters describing visual competences,to acquire new visual competences that compute new purposive representations, and to learn thesequences of actions and perceptual competences to perform a task. In any case, learning is ac-complished by means of programs|learning procedures|that allow the change and adaptation ofparameters in order to learn competences, actions, and their interrelationships.The purposive perceptual representations, as well as representations containing other kinds ofinformation, are stored in memory. The storing must happen in an e�cient way according to theavailable memory space. Di�erent representations share common elements. Memory organizationtechniques have to be studied that allow information to be stored according to its content. Also,designing a memory for representations includes designing the procedures necessary for fast andreliable access.The abstract components on which we focus our discussion are: (1) the visual competences,and (2) the organization of memory and the procedures for learning related to visual processingand the coupling of action and perception.Let us summarize in which way the above model captures the study of perception and actionin a synergistic way, and address some of the questions posed in Section 1: In this model theintelligence of a purposive system is embodied in its visual competences and its actions. Thuscompetences and actions are considered to be the building blocks of an intelligent system. In orderto ful�ll a purpose (a task which is stated in the form of events that can be perceived by means ofthe perceptual processes), a system executes behaviors. Thus, behaviors, which are an emergentattribute of the system, couple perception and action. They constitute some form of structureadaptation which might either be visible externally or take place only internally in the form of6



parameter adaptation.2.4 Outline of the approachIf we aim to understand perception, we have to come up with some methodology to study it.The ideal thing would be to design a clearly de�ned model for the architecture of vision systemsand start working on its components. However, we have few answers available when it comesdown to actually talking about the visual categories that are relevant for visual systems. Whatkind of representations a system needs in order to perform a task depends on the embodimentof the system and the environment in which it lives. Answers to these questions cannot come asinsights gained from the study of mathematical models. It must be empirical studies investigatingsystems (biological and arti�cial ones) that will tell us how to couple functionality, visual categoriesand visual processes. Up to now we haven't understood how we actually could develop visualcompetences for systems that work in environments as complex as our own, so we won't be able toobtain a global view of the overall architecture and functionality of vision systems. At this pointin time it also wouldn't contribute much to the development of our understanding to just go aheadand develop particular systems that perform particular tasks|say, for example, to build a systemthat recognizes tables. Even if we were able to create such a system that has a success rate of 99%,this system would have the capacity of recognizing many things that are unknown to us, and notjust tables. Thus by aiming to build systems that recognize certain categories that seem relevantto our symbolic language repertoire, we wouldn't gain much insight into perception.It thus seems somehow natural that the only way out of this problem of where to start isto approach the study of vision systems in an \evolutionary" way. We call such an approachthe synthetic (evolutionary) approach to Medusa (or Medusa synthesized). We give here a shortoutline of the ideas behind this approach, which we discuss in detail in the remainder of the paper.It means that we should start by developing individual primitive visual operations and provide thesystem in this way with visual capabilities (or competences). As we go on, the competences willbecome more and more complex. At the same time, as soon as we have developed a small numberof competences, we should work on their integration. Such an endeavor throws us immediatelyinto the study of two other major components of the system: How is visual information relatedto action and how is the information represented|how is it organized, how coordinated with theobject recognition space. Thus we are confronted on the one hand with the study of activities andthe integration of vision and action, and on the other hand with the study of the memory space with7



all its associated problems of memory organization, visual data representation, and indexing|theproblem of associating data stored in the memory with new visual information. Furthermore wealso have to consider the problem of learning from the very beginning.3 The competences3.1 Computational principlesOur goal is to study (or more precisely formulated: analyze in order to design) a system froma computational point of view. We argued earlier that the study of visual systems should beperformed in a hierarchical manner according to the complexity of the visual processes. As a basisfor its computations a system has to utilize mathematical models, which serve as abstractions ofthe representations employed. Thus, when referring to the complexity of visual processes, we meanthe complexity of the mathematical models involved.Naturally, the computations and models are related to the class of tasks the system is supposedto perform. A system possesses a set of capabilities which allow it to solve certain tasks. In orderto perform a task the system has to extract and process certain informational entities from theimagery it acquires through its visual apparatus. What these entities are depends on the visualcategories the system reacts to. The categories again are related to the task the system is engagedin. They are also related to the system's physiology, or amount of space (memory) and the timeavailable to solve the task (the required reaction time).The synthetic approach calls �rst for studying capabilities whose development relies on onlysimple models and then going on to study capabilities requiring more complex models. Simplemodels do not refer to environment- or situation-speci�c models which are of use in only limitednumbers of situations. Each of the capabilities requiring a speci�ed set of models can be usedfor solving a well-de�ned class of tasks in every environment and situation the system is exposedto. If our goal is to pursue the study of perception in a scienti�c way, as opposed to industrialdevelopment, we have to accept this requirement as one of the postulates, although it is hard toachieve. Whenever we perform computations, we design models on the basis of assumptions, whichin the case of visual processing are constraints on the space-time in which the system is acting,on the system itself, and on their relationship. An assumption can be general with regard to theenvironment and situation, or very speci�c.For example, the assumption about piecewise planarity of the world is general with regard to8



the environment (every continuous di�erentiable function can be approximated in an in�nitesimalarea by its derivatives). However, in order to use this assumption for visual recovery, additionalassumptions regarding the number of planar patches have to made; and these are environment-speci�c assumptions. Similarly, we may assume that the world is smooth between discontinuities;this is general with regard to the environment. Again, for this assumption to be utilized we mustmake some assumptions specifying the discontinuities, and then we become speci�c. We may assumethat an observer only translates. If indeed the physiology of the observer allows only translation,than we have made a general assumption with regard to the system. If we assume that the motionof an observer in a long sequence of frames is the same between any two consecutive frames, wehave made a speci�c assumption with regard to the system. If we assume that the noise in oursystem is Gaussian or uniform, again we have made a system-speci�c assumption.Our approach requires that the assumptions used have to be general with regard to the envi-ronment and the system. Scaled up to more complicated systems existing in various environments,this requirement translates to the capability of the system to decide whether a model is appropriatefor the environment in which the system is acting. A system might possess a set of processes thattogether supply the system with one competence. Various of the processes are limited to speci�cenvironmental speci�cations. The system, thus, must be able to acquire knowledge about whatprocesses to apply in a speci�c situation.The motivation for studying competences in a hierarchical way is to increasingly gain insightinto the process of vision, which is of high complexity. Capabilities which require complex modelsshould be based on \simpler", already developed capabilities. The complexity of a capability isthus given by the complexity of the assumptions employed; what has been considered a \simple"capability might require complex models, and vice versa.The basic principle concerning the implementation of processes subserving the capabilities,which is motivated by the need for robustness, is the quest for algorithms which are qualitative innature. We argue that visual competences should not be formulated as processes that reconstructthe world but as recognition procedures. Visual competences are procedures that recognize aspectsof objective reality which are necessary to perform a set of tasks. The function of every module inthe system should constitute an act of recognizing speci�c situations by means of primitives whichare applicable in general environments. Each such entity recognized constitutes a category relevantto the system. To give some examples from navigation:The problem of independent motion detection by a moving observer usually has been addressed9



with techniques for segmenting optical 
ow �elds. But it also may be tackled through the recog-nition of non-rigid 
ow �elds for a moving observer partially knowing its motion [3, 41, 61]. Theproblem of obstacle detection could be solved by recognizing a set of locations on the retina thatrepresent the image of a part of the 3D world being on a collision course with the observer. Toperform this task it is not necessary to compute the exact motion between the observer and anyobject in the scene, but only to recognize that certain patterns of 
ow evolve in a way that signi�esthe collision of the corresponding scene points with the observer [42]. Pursuing a target amounts torecognizing the target's location on the image plane along with a set of labels representing aspectsof its relative motion su�cient for the observer to plan its actions. Motion measurements of thiskind could be relative changes in the motion such as a turn to the left, right, above, down, furtheraway, or closer. In the same way, the problem of hand/eye coordination can be dealt with usingstereo and other techniques to compute the depth map and then solve the inverse kinematics prob-lem in order to move the arm. While the arm is moving the system is blind [6]. However the sameproblem can be solved by creating a mapping (the perceptual kinematic map) from image featuresto the robot's joints; the positioning of the arm is achieved by recognizing the image features [25].Instead of reconstructing the world, the problems described above are solved through the recog-nition of entities that are directly relevant to the task at hand. These entities are represented byonly those parameters su�cient to solve the speci�c task. In many cases, there exists an appro-priate representation of the space-time information that allows us to directly derive the necessaryparameters by recognizing a set of locations on this representation along with a a set of attributes.Since recognition amounts to comparing the information under consideration with prestored rep-resentations, the described approaches to solving these problems amount to matching patterns.In addition, image information should be, whenever possible, utilized globally. Since the devel-oped competences are meant to operate in real environments under actual existing conditions|justsuch as biological organisms do|the computations have to be insensitive to errors in the input mea-surements. This implies a requirement for redundancy in the input used. The partial informationabout the scene, which we want to recognize, will mostly be globally encoded in the image infor-mation. The computational models we are using should thus be such that they map global imageinformation into partial scene information. Later in this section, we will demonstrate our point bymeans of the rigid motion model.In order to speak of an algorithm as qualitative, the primitives to be computed do not have torely on explicit unstable, quantitative models. Qualitativeness can be achieved in a number of ways:10



The primitives might be expressible in qualitative terms, or their computation might be derivedfrom inexact measurements and pattern recognition techniques, or the computational model itselfmight be proved stable and robust in all possible cases.The synthetic approach to Medusa has some similarities at the philosophical level with Brooks'proposal about understanding intelligent behavior through the construction of working mechanisms[7]. In proposing the subsumption architecture, Brooks suggested a hierarchy of of competencessuch as avoiding contact with objects, exploring the world by seeing places, reasoning about theworld in terms of identi�able objects, etc. This proposal, however, su�ered from the same curseof generality that weakened Marr's approach. The subsumption architecture lacked a solid basis,since it did not provide a systematic way of creating a hierarchy of competences by taking intoaccount the system's purpose and physiology.3.2 Biological hierarchyIt remains to discuss what actually are the simple capabilities that we should concentrate our �rste�orts on. Other scienti�c disciplines give us some answer. Much simpler than the human visualsystem are the perceptual systems of lower animals, like medusae, worms, crustaceans, insects,spiders and molluscs. Researchers in neuroethology have been studying such systems and have bynow gained a great deal of understanding. Horridge [28, 29], working on insect vision, studied theevolution of visual mechanisms and proposed hierarchical classi�cations of visual capabilities. Heargued that the most basic capabilities found in animals are based on motion. Animals up to thecomplexity of insects perceive objects entirely by relative motion. His viewpoint concerning theevolution of vision is that objects are �rst separated by their motions, and with the evolution ofa memory for shapes, form vision progressively evolves. The importance of these studies on loweranimals becomes very clear when we take into account the commonly held view by leaders in this�eld, that the principles governing visual motor control are basically the same in lower animalsand humans|whereas, of course, we humans and other primates can see without relative motionbetween ourselves and our surrounding.In the last decades the part of the brain in primates responsible for visual processing|thevisual cortex|has been studied from an anatomical, physiological, and also behavioral viewpoint.Di�erent parts of the visual cortex have been identi�ed and most of their connections established.Most scientists subscribe to the theory that the di�erent parts perform functionally specializedoperations. What exactly these functions are has not been clari�ed yet. In particular, opinions11



diverge about the specialization and the interconnections involved in later stages of processingof the visual data. Much more is known about the earlier processes. The visual signal reachesthe cortex at the primary visual cortex|also called V1, or striate cortex, via the retina and thelateral geniculate body. From the primary visual cortex the visual signals are sent to about 30extrastriate or higher-order visual cortical areas, among which about 300 connections have beenreported. Figure 2, taken from [47], shows the major areas involved in visual processing. Accordingto Orban the modules in the primate visual cortex can be divided into four hierarchical levels ofprocessing. It seems to be pretty well accepted that there exist lower areas that are specialized forthe processing of either static or dynamic imagery. MT (also called V5), MST, and FST seem to beinvolved in motion processing, and V4 in color processing. Form vision seems to be accomplishedby di�erent lower modules which use both static and dynamic information. Zeki [70], for example,suggests that V3 is responsible for the understanding of form from motion information, and V4derives form and color information. At later stages the modules process both kinds of informationin a combined way.
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On the basis of anatomical evidence and behavioral studies (studies on patients with lesions ofspeci�c cortical areas) the hypothesis has been advanced [66] that there exist two visual pathwaysoriginating from V1: a dorsal one leading to the parietal cortex and a ventral one leading tothe infero-temporal cortex. The dorsal path is concerned with either the computations concernedwith \where" (object localization) or \how" (the visual guidance of movements [23]), and theventral path with the computations concerned with \what" (object identi�cation). It would be anoversimpli�cation to conceive of these two pathways as being mutually exclusive and hierarchicallyorganized [70]; one of the reasons is that this theory fails to provide an answer to where and howthe knowledge of \what" an object is might be integrated with the knowledge of \where" it is.Also, recently the existence of a third pathway leading to the identi�cation of actions has beensuggested [5].Results from the brain sciences show us that there doesn't exist just one hierarchy of visualprocesses, but various di�erent computations are performed in parallel. Also, it isn't our intentionto propose one strict hierarchy for developing visual competences. We merely suggest studyingcompetences by investigating more and more complex models, and basing more complicated com-petences on simpler ones. Naturally, it follows that computations concerned with di�erent cues andrepresentations can and should be studied in parallel.Inspired by the results from the natural sciences, we chose to study �rst the competences thatonly involve information resulting from motion. This led us to the problems of navigation. Thecompetences we encounter in visual navigation encompass representations of di�erent forms. Toelucidate the synthetic approach, in the next section we will discuss a series of competences ofincreasing complexity employing representations of motion, shape, and space. In the followingsection we will then outline our realizations of the most basic competences in visual navigation,which only require motion information.Next in the hierarchy follow capabilities related to the understanding of form and shape andthe learning of space. Concerning form and shape, our viewpoint is that we should not try to adoptthe classical idea of computing representations that capture the 3D world metrically. Psychologicalstudies on the role of the eye movements suggest that �xations play an important role in ourunderstanding of space. It seems to be that the level on which information from successive �xationsis integrated is relatively abstract and that the representations from which organisms operateon the world are 3D only locally. Therefore, it will be necessary to study new forms of shaperepresentations. In nature too there doesn't exist just one method of shape representation. As13



results from Neurobiology show, form perception in human brains takes place in more than justone part of the cortex and is realized with di�erent kinds of hardware.Space is also understood from the processing of various cues in a variety of ways. Furthermore,di�erent tasks will require representations of space with regard to di�erent reference systems|not just one, as often has been debated in the past. Representations might be object-centered,ego-centered, or action-driven.Actions can be very typical for objects. Early perceptual studies have shown that humans areable to interpret moving scenes correctly, even when the static view does not contain informationabout the structure at all. In the experiments of Johansson [32] subjects were able to recognize ani-mals, as well as speci�c human beings, given only the motions of light bulbs mounted on the object'sjoints. Since our viewpoint is that we should formulate competences as recognition procedures, thestudy of navigation also leads us to the study of action-driven visual processing. We propose tostart modelling such competences by means of more complicated motion models (non-rigid motionmodels).3.3 A hierarchy of models for navigational competencesNavigation, in general, refers to the performance of sensory mediated movement, and visual navi-gation is de�ned as the process of motion control based on an analysis of images. A system withnavigational capabilities interacts adaptively with its environment. The movement of the systemis governed by sensory feedback which allows it to adapt to variations in the environment. By thisde�nition visual navigation comprises the problem of navigation where a system controls its singlecomponents relative to the environment and relative to each other.Visual navigation encompasses a wide range of perceptual competences, including tasks thatevery biological species possesses, such as motion segmentation or kinetic stabilization (the abilityof a single compact sensor to understand and control its own motion), as well as advanced speci�chand-eye coordination and servoing tasks.To explain the principles of the synthetic approach to Medusa, we describe six such compe-tences, all of which are concerned only with the movement of a single compact sensor. These are:ego-motion estimation, partial object-motion estimation, independent motion detection, obstacleavoidance, target pursuit, and homing. These particular competences allow us to demonstrate ahierarchy of models concerned with the representation of motion, form and shape.14



In the past, navigational tasks, since they inherently involve metric relationships between theobserver and the environment, have been considered as subproblems of the general \structure-from-motion" problem [63]. The idea was to recover the relative 3D-motion and the structure of the scenein view from a given sequence of images taken by an observer in motion relative to its environment.Indeed, if structure and motion can be computed, then various subsets of the computed parametersprovide su�cient information to solve many practical navigational tasks. However, although a greatdeal of e�ort has been spent on the subject, the problem of structure from motion still remainsunsolved for all practical purposes. The main reason for this is that the problem is ill-posed, in thesense that its solution does not continuously depend on the input.The most simple navigational competence, according to our de�nition, is the estimation ofego-motion. The observer's sensory apparatus (eye/camera), independent of the observer's bodymotion, is compact and rigid and thus moves rigidly with respect to a static environment. As wewill demonstrate, the estimation of an observer's motion can indeed be based on only the rigidmotion model. A geometric analysis of motion �elds reveals that the rigid motion parametersmanifest themselves in the form of patterns de�ned on partial components of the motion �elds[16]. Algorithmically speaking, the estimation of motion thus can be performed through patternrecognition techniques.Another competence, the estimation of partial information about an object's motion (its direc-tion of translation), can be based on the same model. But, whereas for the estimation of egomotionthe rigid motion model could be employed globally, for this competence only local measurementscan legitimately be employed. Following our philosophy about the study of perception, it makesperfect sense to de�ne such a competence, which seemingly is very restricted. Since our goal is tostudy visual problems in the form of modules that are directly related to the visual task the observeris engaged in, we argue that in many cases when an object is moving in an unrestricted manner(translation and rotation) in the 3D world, we are only interested in the object's translationalcomponent, which can be extracted using dynamic �xation [17].Next in the hierarchy follow the capabilities of independent motion detection and obstacleavoidance. Although the detection of independent motion seems to be a very primitive task, itcan easily be shown by a counterexample that in the general case it cannot be solved without anyknowledge of the system's own motion. Imagine a moving system that takes an image showing twoareas of di�erent rigid motion. From this image alone, it is not decidable which area correspondsto the static environment and which to an independently moving object.15



However, such an example shouldn't discourage us and drive us to the conclusion that ego-motion estimation and independent-motion detection are chicken-and-egg problems: unless one ofthem has been solved, the other can't be addressed either. Have you ever experienced the illusionthat you are sitting in front of a wall which covers most of your visual �eld, and suddenly this wall(which actually isn't one) starts to move? You seem to experience you yourself moving. It seemsthat vision alone does not provide us (humans) with an infallible capability of estimating motion. Innature the capability of independent motion detection appears at various levels of complexity. Weargue that in order to achieve a very sophisticated mechanism for independent motion detection,various di�erent processes have to be employed. Another glance at nature should give us someinspiration: We humans do not perceive everything moving independently in our visual �eld. Weusually concentrate our attention on the moving objects in the center of the visual �eld (where theimage is sensed with high resolution) and pay attention only if something is moving fast in theperiphery. It thus seems to make sense to develop processes that detect anything moving very fast[41]. If some upper bound on the observer's motion is known (maximal speed), it is possible todetect even for small areas where motions above the speed threshold appear. Similarly, for speci�csystems, processes that recognize speci�c types of motion may be devised by employing �lters thatrespond to these motions (of use, for example, when the enemy moves in a particular way). To copewith the \chicken-and-egg" problem in the detection of larger independently moving objects, wedevelop a process, based on the same principle as the estimation of egomotion, which for an imagepatch recognizes whether the motion �eld within the patch originates from only rigid motion, orwhether the constraint of rigidity does not hold. Having some idea about the egomotion or thescene (for example, in the form of bounds on the motion, or knowing that the larger part of thescene is static) we can also decide where the independently moving objects are.In order to perform obstacle avoidance it is necessary to have some representation of space.This representation must capture in some form the change of distance between the observer andthe scene points which have the potential of lying in the observer's path. An observer that wantsto avoid obstacles must be able to change its motion in a controlled way and must therefore beable to determine its own motion and set it to known values. As can be seen, the capability ofegomotion estimation is a prerequisite for obstacle avoidance mechanisms, and general independentmotion detection will require a model which is as complex as that used in egomotion estimation inaddition to other simple motion models.Even higher in the hierarchy are the capabilities of target pursuit and homing (the ability of a16



system to �nd a particular location in its environment). Obviously, a system that possesses thesecapabilities must be able to compute its egomotion and must be able to avoid obstacles and detectindependent motion. Furthermore, homing requires knowledge of the space and models of the envi-ronment (for example, shape models), whereas target pursuit relies on models for representing theoperational space and the motion of the target. These examples should demonstrate the principlesof the synthetic approach, which argues for studying increasingly complex visual capabilities anddeveloping robust (qualitative) modules in such a way that more complex capabilities require theexistence of simpler ones.3.4 Motion-based competencesIn this section we describe the ideas behind some of the modules we have developed to realizethe most basic competences for visual navigation: the competence of ego-motion estimation, aprocess for partial object motion estimation and a process for independent motion detection. Thisdescription should merely serve to demonstrate our viewpoint concerning the implementation ofqualitative algorithms; more detailed outlines and analyses are found elsewhere.First, let us state some of the features that characterize our approach to solving the abovementioned competences, and di�erentiates it from most existing work.In the past, the problems of ego-motion recovery for an observer moving in a static scene andthe recovery of an object's 3D motion relative to the observer, since they both were considered asreconstruction problems, have been treated in the same way. The rigid motion model is appropriateif only the observer is moving, but it holds only for a restricted subset of moving objects|mainlyman-made ones. Indeed, all objects in the natural world move non-rigidly. However, consideringonly a small patch in the image of a moving object, a rigid motion approximation is legitimate.For the case of egomotion, data from all parts of the image plane can be used, whereas for objectmotion only local information can be employed.Most current motion understanding techniques require the computation of exact image motion(optical 
ow in the di�erential case or correspondence of features in the discrete case). This,however, amounts to an ill-posed problem, additional assumptions about the scene have to beemployed and as a result, in the general case, the computed image displacements are imperfect. Inturn, the recovery of 3D motion from noisy 
ow �elds has turned out to be a problem of extremesensitivity with small perturbations in the input causing large amounts of error in the motion17



parameter estimates. To overcome this problem, in our approach to the development of motionrelated competences, we skip the �rst computational step. All the techniques developed are basedon the use of only the spatio-temporal derivatives of the image intensity function|the so-callednormal 
ow. As a matter of fact, in part only the sign of the normal 
ow is employed. It should bementioned that a few techniques using normal 
ow have appeared in the literature; however, theydeal only with restricted cases (only translation or only rotation [1, 27]).Another characteristic is that the constraints developed for the motion modules, for which therigid motion module is the correct one globally, are such that the input also is utilized globally. Thebasis of these computations form global constraints which relate the spatio-temporal derivatives ofthe image intensity function globally to the 3D motion parameters.The global constraints are de�ned on classes of normal 
ow vectors. Given a normal 
ow �eld,the vectors are classi�ed according to their directions. The vectors of each class have a certainstructure that takes the form of patterns in the image (on the sphere or in the plane). For example,one can select in the plane normal 
ow vectors whose direction is de�ned with regard to a pointwith coordinates (r; s). These so-called copoint vectors (r; s) are vectors which are perpendicularto straight lines passing through the point (r; s). In addition, the normal 
ow vectors of a class aredistinguished as to whether their direction is counter-clockwise or clockwise with respect to (r; s),in which case they are called positive or negative (see Figure 3). Since any point (r; s) in the imagecan be chosen as a reference point, there exists an in�nite number of such classi�cations.
(r, s)Figure 3: Positive (r; s) copoint vectors.Every class of copoint vectors has the following property: Considering only translational vectors,we �nd that the positive and negative vectors are separated by a line. In one half-plane the vectors18
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FOE (c)Figure 4: (a) The translational (r; s) copoint vectors are separated by a line that passes throughthe FOE (the point which denotes the direction of translation); in one half-plane all vectors havepositive values (light grey), in the other half-plane negative values (dark grey). (b) The rotational(r; s) copoint vectors are separated by a second order curve that passes through the AOR (the pointwhere the rotation axis pierces the image plane). (c) A general rigid motion separates the (r; s)copoint vectors into an area of negative vectors, an area of positive vectors, and an area that maycontain vectors of any value (white). 19



are positive, in the other the vectors are negative, and on the line they are zero (Figure 4a). Vectorsdue to rotation, on the other hand, are separated by a conic section into positive and negative ones(Figure 4b). Vectors of a general rigid motion (rotation and translation) thus obey the structureshown in Figure 4c. In one area the vectors are positive, in a second they are negative, and thevectors in the third area can take any value. This structure on the normal 
ow vectors is calledthe copoint pattern. Similar patterns exist for other classi�cations.These �ndings allow us to formulate the problem of ego-motion estimation as a pattern recog-nition problem. By localizing for di�erent classes of normal 
ow vectors the positive and negativeareas in the image plane, the parameters for the axis of translation and direction of rotation canbe derived [16].Also, based on the same basic constraints, a process for the detection of independent motionhas been designed. Since the observer is moving rigidly, an area with a motion �eld not possiblydue to only one rigid motion must contain an independently moving object. The constraints arede�ned for the whole visual �eld, but also the motion vectors in every part of the image planemust obey a certain structure. Our approach consists of comparing the motion �eld within imagepatches with prestored patterns (which represent all possible rigid motions)By considering patches of di�erent sizes and using various resolutions, the patterns may also beof use in estimating the motion of objects. Di�erently sized �lters can �rst be employed to localizethe object and then an appropriately sized �lter can be used to estimate the motion. Objects,however, do not always move rigidly. Furthermore, in many cases the area covered by the objectwill not be large enough to provide satisfying, accurate information. In the general case, whenestimating an object's motion, only local information can be employed. In such a case, we utilizethe observer's capability to move in a controlled way. We describe the object's motion with regardto an object centered coordinate system. From �xation on a small area on the object the observercan derive information about the direction of the object's translation parallel to its image plane.By tracking the object over a small amount of time, the observer derives additional informationabout the translation perpendicular to the image plane. Combining the computed values allows usto derive the direction of an object's translation [18].20



3.5 A look at the motion pathwayThere is a very large amount of literature [11, 38, 60, 65] on the properties of neurons involved inmotion analysis. The modules which have been found to be involved in the early stages of motionanalysis are the retinal parvocellular neurons, the magnocellular neurons in the LGN, layer 4C� ofV1, layer 4B of V1, the thick bands of V2 and MT. These elements together are referred to as theearly motion pathway. Among others they feed further motion processing modules, namely MSTand FST, which in turn have connections to the parietal lobe. Here we concentrate on two strikingfeatures: the change of the spatial organization of the receptive �elds and the selectivity of thereceptive �elds for motion over the early stages of the motion pathway. The computational mod-elling of the visual motion interpretation process that we described above appears consistent withour knowledge about the organization and functional properties of the neurons in the early stagesmotion pathway of the visual cortex. In addition our computational theory creates a hypothesisabout the way motion is handled in the cortex and suggests a series of experiments for validatingor rejecting it.Figure 5 (from [40]) shows an outline of the process to be explained which involves four kindsof cells with di�erent properties. In the early stages, from the retinal Pa ganglion cells throughthe magnocellular LGN cells to layer 4Ca of V1 the cells appear functionally homogeneous andrespond almost equally well to the movement of a bar (moving perpendicularly to its direction) inany direction (Figure 5a). Within layer 4C of V1 we observe an onset of directional selectivity. Thereceptive �elds of the neurons here are divided into separate excitatory and inhibitory regions. Theregions are arranged in parallel stripes and this arrangement provides the neurons with a preferencefor a particular orientation of a bar target (which is displayed in the polar diagram) (Figure 5b).In layer 4B of V1 another major transformation takes place with the appearance of directionalselectivity. The receptive �elds here are relatively large and they seem to be excited everywhere bylight or dark targets. In addition, these neurons respond better or solely to one direction of motionof an optimally oriented bar target, and less or not at all to the other (Figure 5c). Finally, in MTneurons have considerably large receptive �elds and in general the precision of the selectivity fordirection of motion that the neurons exhibit is typically less than in V1 (Figure 5d).One can easily envision an architecture that, using neurons with the properties listed above,implements a global decomposition of the normal motion �eld. Neurons of the �rst kind couldbe involved in the estimation of the local retinal motion perpendicular to the local edge (normal21
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Figure 5: The spatial structure of visual receptive �elds and their directional selectivity at di�erentlevels of the motion pathway (from [40]: The spatial scales of the receptive �elds (0.1 degree, etc.)listed here are for neurons at the center of gaze; in the periphery these dimensions would be larger.The polar diagrams illustrate responses to variation in the direction of a bar target oriented atright angles to its direction of motion. The angular coordinate in the polar diagram indicates thedirection of motion and the radial coordinate the magnitude of the response.
ow). Neurons at this stage could be thought of as computing whether the projection of retinalmotion along some direction is positive or negative. Neurons of the second kind could be involvedin the selection of local vectors in particular directions as parts of the various di�erent patternsdiscussed in the previous section, while neurons of the third kind could be involved in computingthe sign (positive or negative) of pattern vectors for areas in the image; i.e., they might com-pute for large patches of di�erent sizes, whether the normal 
ow in certain directions is positiveor negative. Finally, neurons of the last kind could be the ones that piece together the parts ofthe patterns developed already into global patterns that are matched with prestored global pat-terns. Matches provide information about egomotion and mismatches provide information about22



independent motion.In this architecture we are not concerned with neurons that possibly estimate the motion �eld(optic 
ow). This is not to say that optic 
ow is not estimated in the cortex; several neurons couldbe involved in approximating the motion �eld. However, if the cortex is capable of solving somemotion problems without the use of optic 
ow, whose estimation amounts to the solution of anoptimization problem, it is quite plausible to expect that it would prefer such a solution. After all,it is important to realize that at the low levels of processing the system must utilize very reliabledata, such as for example the sign of the motion �eld along some direction. It is worth notingthat after deriving egomotion from normal 
ow, information about 3D motion is available, and thecortex could involve itself with approximating optic 
ow, because in this way the problem is notill-posed any more (at least for background scene points).3.6 Form-based competencesSince Computer Vision was considered to have as a goal the construction of 3D descriptions of theworld, a lot of e�ort was spent on developing techniques for computing metric shape and depthdescriptions from 2D imagery. Studies that are concerned with this kind of work are collectivelyreferred to as \shape from X" computations, where by X is meant cues such as shading, texture,pattern, motion, or stereo. However, exact, quantitative 3D structure is hard to compute, and inthe models employed, explicit assumptions about the scene (smoothness, planarity, etc.) usuallyhave to be made.Considering all the work that has been expended on the computation of metric shape and thathas not yet given rise to any system working in a real environment, a glance at nature might give ussome inspiration. Maybe it is a hopeless task to aim at deriving metric shape or depth information.Psychophysical experiments indicate that binocular stereopsis in the human visual system does notproduce an explicit representation of the metric depth structure of the scene. Psychophysical evi-dence [10, 33] suggests that human performance in tasks involving metric structure from binoculardisparities is very poor. Also, other cues don't seem to allow humans to extract the kind of depthinformation that has usually been considered. In their experiments, Todd and Reichel [62] hadsubjects estimate the depths of points on a drape-like surface shown on video images. Subjectscould accurately report the relative depth of two points if they were on the same surface on thesame side of the \fold", but were quite poor at determining the relative depth if the points wereon di�erent \folds". This experiment leads to the conclusion that humans possess a relative depth23



judgment for points within a local area lying on a surface; however, they cannot estimate evenrelative depth correctly for large distances in the visual �eld, when depth extrema are passed.We also know that in humans the area of the eye in which detailed (high resolution) informationcan be extracted covers only a small region around the fovea (about �ve degrees of visual angle atnormal viewing distance). The low resolution at the periphery does not allow us to derive accuratedepth information. Human eyes, however, are seldom not in motion. The eyes are engaged inperforming �xations, each lasting about 1/4 of a second. Between the �xations, saccadic movementsare carried out, during which no useful information is extracted.The biological evidence gives us good reason to argue for alternative shape models. The exper-iments mentioned above give rise to the following conclusions:(a) Shape or depth should not be computed in metric form, but only relative depth measurements(ordered depth) should be computed.(b) Shape/depth information should be computed only locally. Then the information derived fordi�erent patches has to be integrated. This integration, however, should not take place inthe usual form, leading to complete, coherent spatial descriptions. The result should not bea complete reconstructed 3D shape model, obtained by exactly putting (\glueing") togetherthe local shape representations into a global one. Instead, we have to look for alternativerepresentations that su�ce for accessing the shape information one needs to solve particulartasks.These or similar arguments also �nd support from computational considerations. Concerningargument (b), one might ask why one should compute only local information, if from a technicalstandpoint there is no di�erence whether the sensors have di�erent or the same resolution every-where. If stereo systems are used|the most obvious for deriving shape information|and the twocameras �xate at a point, the disparity measurements are small only near the �xation point, andthus can also be computed exactly only there. In particular, if continuous techniques are employedto estimate the displacement (due to stereo or due to motion), the assumption of continuity ofthe spatio-temporal imagery does not have to be greatly violated. The measurements which aredue to rotation increase with the distance from the image center and the translational measure-ments are proportional to the distance from the epipole or the point denoting the direction oftranslation. Another argument is that computing shape only locally gives legitimacy to the the24



orthographic projection model for approximating the image formation. The exact perspective pro-jection model makes the computation of distance and shape very hard, since the depth componentappears inversely in the image coordinates, which in turn leads to equations that are non-linear inthe unknown parameters.However, concerning argument (a), we don't want to prescribe the computation of ordered, asopposed to metric, shape information. Why should we limit ourselves to ordered depth and notbe even less restrictive? Throughout this paper, we have argued for task-dependent descriptions.This also applies to shape descriptions; a variety of shape descriptions subserving di�erent taskscan be accepted. To derive metric depth or shape means to compute exact values of the distancebetween the camera and the scene. In order to solve, for example, the general structure frommotion problem, theoretically we require at least three views of the scene, or two views and someadditional information, such as the length of the baseline for a stereo setting. From two perspectiveviews, only scaled distance, or distance up to the so-called relief transformation, can be derived. Tocompute only ordered depth measurements would mean that in addition, scaled depth is derivedonly up to a positive term (i.e. it would result in deriving functions of the depth measurement Zof the form f(Z) = 1Z a+ b, where a and b are constants). We argue that one could try to computeeven less informative depth or shape information by aiming at deriving more complicated depthfunctions.Under the in
uence of the reconstructionists' ideas, all e�ort in the past has been devoted toderiving metric measurements. A new look at the old research with a di�erent goal in mind mightgive us new insights. From di�erent cues, depth and shape information of di�erent forms mightbe computed and then appropriately fused. A representation less than an ordered one by itselfdoes not seem to be su�cient for 3D scene understanding. However, by combining two or moresuch representations, additional information can be obtained. It seems that the study of fusion ofinformation for the purpose of deriving form and shape description will de�nitely be of importance.It should be noted that whereas shape and depth measurements are equivalent for a metric3D representation, they are not for ordered representations. Dealing with metric measurements,if absolute depth is given, shape (de�ned as the �rst order derivatives of depth) can be directlycomputed, and vice versa. The same, however, does not hold for ordered, or even less informativerepresentations.Our goal is to derive qualitative, as opposed to quantitative representations, because the com-putations to be performed should be robust. This requires that we don't make unreasonable25



assumptions and employ computations that are ill-posed. Qualitativeness, for example, does notmean performing the same computations that have been performed under the reconstruction phi-losophy, making the same assumptions about the 3D world, and at the end separating the computedvalues by a threshold in order to end up with \qualitative" information in the form of \greater orsmaller than some value". Our e�ort should be devoted to deriving qualitative shape descriptionsfrom well-de�ned input. For example, it wouldn't make sense to assume exact optical 
ow or stereodisparity measurements|which are impossible to obtain|in order to derive shape descriptions lesspowerful than the one of scaled depth. If we had exact 2D image measurements, we could computescaled shape, and we would gain nothing computationally from computing less.By concentrating on simpler shape descriptions, new mathematical models and new constraintsmight be found. Purely mathematical considerations can reveal what kind of information couldpossibly be computed from a certain input allowing a de�ned class of operations. The study ofKoenderink and van Doorn [35] on a�ne structure from motion might serve as an inspiration; init they investigated a hierarchy of shape descriptions based on a strati�cation of geometries.3.7 Space understandingSince in the past the actions of the observer were not considered as an integral part of perceptualinvestigations, computational modelling, and in particular AI research, has dealt with space onlyat a symbolic level. For example, some early systems [68] dealt with the spatial relationship ofobjects in a blocks world. Assuming that objects can be recognized and thus can be stored assymbols, the spatial con�guration of these objects under changing conditions was studied. Also, inexisting studies on spatial planning (e.g. path planning), solutions to the problems of recognizingthe objects and the environment are assumed to be available for the phase of coordinating motions.Within the framework of behavioral vision a new meaning is given to the study of space per-ception. The understanding of the space surrounding an observer results from the actions andperceptions the observer performs and their relationships. For a static observer that does not actin any way, space does not have much relevance. But in order to interact with its environment ithas to have some knowledge about the space in which it lives, which it can acquire through actionsand perceptions. Of course, the knowledge of space can be of di�erent forms at various levels ofcomplexity, depending on the sophistication of the observer/actor and the tasks it has to perform.At one end of the scale, we �nd a capability as simple as obstacle avoidance, which in the mostparsimonious form has to capture only the distance between the observer and points in the 3D26



world; and at the other end of the scale, the competence of homing, which requires the actor tomaintain some kind of map of its environment.To obtain an understanding of space by visual means requires us to identify entities of theenvironment and also to localize their positions; thus both basic problems, the one of \where" andthe one of \what", have to be addressed.The problem of recognizing three-dimensional objects in space is by itself very di�cult, sincethe object's appearance varies with the pose it has relative to the observer. In the ComputerVision literature two extreme views are taken about how to address the 3D recognition problem,which di�er in the nature of the models to be selected for the descriptions of objects in the 3Denvironment. One view calls for object-centered models and the other for descriptions of theobjects by means of viewer-centered views (3D vs. 2D models). In most of the work on object-centered descriptions the form of objects is described using simple geometric 3D models, such aspolyhedra, quadrics, or superquadrics. Such models are suited to represent a small number ofman-made (e.g. industrial) parts. However, to extend 3D modelling to a larger range of objects willrequire models of more complex structural description, characterizing objects as systems and partsof relations. Recently a number of studies have been performed on viewer-centered descriptions,approaching the problem from various directions. To name a few of them: Based on some resultsin the literature of structure from motion, that show that under parallel projection any view of anobject can be constructed as a linear combination of a small number of views of the same object,a series of studies on recognition using orthographic and paraperspective projections have beenconducted [31, 64]. The body of projective geometry has been investigated to prove results aboutthe computation of structure and motion from a set of views under perspective projection [14].The learning of object recognition capabilities has been studied for neuronal networks using nodesthat store viewer-centered projections [52], and geometric studies on so-called aspect graphs haveinvestigated how di�erent kinds of geometric properties change with the views the observer has ofthe geometric model [34].The problem of solving both localization and recognition is exactly the antagonistic con
ict atthe heart of pattern recognition. From the point of signal processing, it has been proved [20] thatany single (linear) operator can answer only one of these questions with su�cient accuracy. Intheory, thus, a number of processes are required to solve tasks related to space perception.Results from the brain sciences reveal that the receptive �eld sizes of cells are much larger inthe specialized visual areas involved in later processing than in those of the early stages. Many cells27



with large receptive �eld sizes respond equally well to stimuli at di�erent positions. For example, inV5 cells with large receptive �elds respond to spots of lights moved in certain directions, no matterwhere the stimulus in the receptive �eld occurs; nevertheless, the position of the light in the visual�eld can be localized accurately. Neurobiologists have suggested several solutions to this problem.Very interestingly, we �nd the following results: In the visual cortex cells have been found whichare \gaze-locked", in the sense that they only respond to a certain stimulus if the subject is gazingin a particular direction. These cells probably respond to absolute positions in the ego-centric space[70].It seems that nature has invented a number of ways for perceiving space through recognition andlocalization of objects in the 3D world. Also, neurophysiological studies have been conducted thatgive good reason to assume that the perception of space in primates is not only grounded on object-centered or ego-centered descriptions, but that some descriptions are with regard to some action.For example, in an area called TEA, cells have been reported which are involved in the coding ofhand movements [50]. These cells respond when an action is directed towards a particular goal,but they do not respond to the component actions and motions when there is no causal connectionbetween them. Monkeys were shown on video �lm arrangements of hand movements and objectmovements contiguous or separated in space or time|for example, a hand and a cup. The handwas retracted and after a short delay the cup moved (by itself) along the same trajectory as thehand. As the discrepancy between hand and object movement widened the impression of causalityweakened. The cells tuned to hand actions were found to be less responsive when the movement ofthe hand and the object were spatially separated and appeared not to be causally related.Humans possess a remarkable capability for recognizing situations, scenes, and objects in thespace surrounding them from actions being performed. In the Computer Vision literature a numberof experiments are often cited [32] in which it has been shown that humans can recognize speci�canimals and humans that move in the dark and are visible only from a set of light bulbs attachedto their joints. These experiments demonstrate very well the power of motion cues. Since actionsgive rise to recognition, and actions are largely understood from motions, it seems to be worthwhileto investigate other motion models, more complicated than the rigid one, to describe actions. Forexamples, situations occurring in manipulation tasks might be modelled through non-rigid motion�elds. The change of the motion �eld or parts of it may be expressed in form of space-timedescriptions that can be related to the tasks to be performed. It should be mentioned that recentlysome e�ort along this line has started; a few studies have been conducted exploiting motion cues for28



recognition tasks. In particular, periodic movements, such as the motion of certain animal species,have been characterized in frequency space [43, 57]. Statistical pattern recognition techniques havebeen applied in the time domain to model highly structured motions occurring in nature, such asthe motions of 
owing water or 
uttering leaves [54]. Attempts have been made to model walkingor running humans by describing the motion of single limbs rigidly [55], and various deformablespatial models like superquadrics and snakes have been utilized to model non-rigid motions of rigidbodies [49], for example for the purpose of face recognition.Representations used for understanding space should be allowed to be of any of three kinds:with regard to the viewer, with regard to an object, or action-driven. An appropriate representationmight allow us to solve tasks straightforwardly that would require very elaborate computations anddescriptions otherwise. Perrett et al. [51] give a good example supporting this point of view. Achoreographer could, for example, use a set of instructions centered on the di�erent dancers (suchas to dancer M. who is currently lying prostrate and oriented toward the front of the stage \raisehead slowly", and to dancer G., currently at the rear of the stage facing stage left, \turn headto look over left shoulder"). Alternatively the choreographer could give a single instruction to allmembers of the dance troupe (\Move the head slowly to face the audience"). To allow for thechoice of di�erent systems of representation will be a necessity when studying space descriptions.These descriptions, however, must be related in some form. After all, all measurements are taken ina frame �xed to the observer's eye. Thus a great deal of work in space understanding will amountto combining di�erent representations into an ego-centered one.The competence of homing is considered to be the apogee of spatial behavior. The amazinghoming capabilities of some animals have attracted the attention of researchers for many years. Inparticular, e�ort has been spent on investigating the sensory basis of animals' perception; discoverieswere made about the use of sensory guidance by sunlight, light patterns in the sky, and moonlight,such as the use of ultraviolet light by ants [36] and polarized light by bees [19]. Recently, researchhas also started on investigations of how particular species organize the spatial information acquiredthrough their motor sequences and sensors [56, 59].Zoologists di�erentiate two mechanisms of acquiring orientation: the use of ego-centered andgeo-centered systems of reference. Simple animals, like most arthropods, represent spatial infor-mation in the form of positional information obtained by some kind of route integration relativeto their homes. The route consists of path segments each of which takes the animal for a givendistance in a given direction. This form of representation related to one point of reference is re-29



ferred to as an ego-centered representation.1 More complicated than relying on only informationcollected en route is the use of geo-centered reference systems where the animal in addition relies oninformation collected on site (recognition of landmarks) and where it organizes spatial informationin a map-based form.However, research from studies on arthropods [8, 9, 67] shows that already in these simpleanimals, the competence of homing is realized in many ways. A large variety of di�erent waysemploying combinations of information from action and perception have been discovered. In whatway the path is stored, in what way landmarks are recognized, etc., is di�erent for every species.Not many general concepts can be derived; it seems that the physical realizations are tightly linkedto the animal's physiology and overall performance. This has to apply to arti�cial systems as well.Computations and implementations cannot be separated. Obviously, the more storage capabilitya system has, the more complex operations it can perform. The number of classes of landmarksthat a system can di�erentiate and the number of actions it can perform will determine the homingcapability of a system. Our suggested strategy is thus to address competences involving spacerepresentations (and in particular the homing competence) by synthesizing systems with increas-ing action and perception capabilities and study the performance of these systems, consideringconstraints on their memory.4 Learning and memoryTo reiterate, a 
exible system that perceives and acts in its environment is considered here toconsist of (a) competences, (b) representations, (c) action routines, and (d) learning programs.All these components can considered as maps. The visual competences are maps from retinotopicrepresentations or space-time representations to other space-time representations. Actions are mapsfrom space-time representations to motor commands or to other representations residing in memory.For any mapm : A! B in the system, the learning programs are maps from A�B ! m. Withoutloss of generality, and to be consistent with the literature, we will call A the stimulus set and Bthe response set, and we will consider the map m as a behavior. It might be the case, of course,that a behavior amounts to a composition of maps, but for simplicity we will use behavior and mapinterchangeably.1In the Computer Vision literature the term \ego-centered" reference system is used with a di�erent meaning thanin Zoology. 30



The learning programs, like the competences, are not of a general nature and they help thevarious di�erent maps of the system develop. Synthesizing mappings from examples is an instanceof a supervised learning problem and it is basically a problem of interpolation. In this case thesystem is trained by being told the correct response to each stimulus. Since this cannot be donefor all possible stimuli, the system will have to generalize from a set of su�ciently representativeexamples. When dealing, however, with the learning of di�cult tasks, it is impossible to bound thestimulus space with a large enough set of examples, and the problem becomes one of extrapolationas opposed to interpolation. Standard neural networks (such as feed-forward networks) have beenshown to yield unpredictable results when required to extrapolate [22].Learning an input output behavior amounts to learning the probability distribution p(a; b) of theinput output pairs. Thus, given an input a0, the system would pick an answer from the distributionp(a0; b). Learning the distribution p(a; b) without any prior knowledge in statistical terms amountsto model-free estimation, i.e. no parametric models are assumed. The estimation error in model-freeestimation can be of two kinds, one related to bias and one to variance. A system biased towards acertain behavior from which it is able to depart only to a certain extent will mainly su�er from anerror in bias. A more 
exible system will be able to reduce the error in bias, but as a consequence itwill have to be punished with a large error due to variance. Geman et al. [22] claim that learning ofcomplex tasks is essentially impossible without carefully introducing systems bias. In other words,it is essential that we choose an appropriate stimulus representation.To learn the map m : A! B amounts then to learning the distribution p(a; b) of the stimulus-response pairs. There are at least two di�erent ways of doing this. One is to let the system modelthe average mapping from stimuli to responses and then apply some distribution with this functionas its mean value. The parameters of the distribution may vary with the stimuli so that the systemcan be more or less certain of whether the mean value is appropriate. Another approach is to letthe system estimate the distribution of the stimulus-response pairs in an analytic form. In this way,since p(a j b) = p(a;b)p(b) , the conditional distribution (a posteriori density) can be calculated once thestimulus is known.The implementation of both of the approaches outlined above can be realized in two di�erentways: a currently popular way and one not yet so popular. The popular technique refers to neuralnetworks.There is a large amount of literature on neural networks that estimate the average mappingfrom stimuli to responses [39, 53]. As described before, the success of this approach depends largely31



on whether the distribution of the examples is appropriate, i.e. on whether the network is requiredto interpolate or extrapolate. In the literature, one can also �nd the use of neural networks forestimating the distribution p(a; b), to a limited extent, in the spirit of the kernel methods that havebeen developed in Statistics for density estimation. p(a; b) is estimated by a weighted summationof a number of kernel functions that can be thought of as bumps. These kernels are usually placedat the sampled observations of the distribution, and then their positions, their parameters, and theweights of the summation are estimated.The other, not so popular way to implement the learning of maps is to invent data structuresthat will be used to store information about the distribution of stimulus-response pairs in a waythat will allow easy accessibility using the stimulus vector. The components of this vector willact as a key, or address, to the data structure. This could be considered as a memory structuremuch like the one in today's digital machines, and thus the problem of learning a map could beconsidered as a problem of memory organization. The stimulus-response space must be quantized,since the memory addresses are discrete and the number of memory locations is �nite. Di�erentdata structures will decompose the stimulus-response space in di�erent ways, producing di�erentorganizations of the memory. The goal will be to discover structures that adapt themselves to theunderlying distribution so as to support fast access with little e�ort [45].The available evidence from our knowledge about human and animal learning in vision, alongwith complexity arguments, suggests that the more adaptive of the hierarchical look-up structuresare a more promising approach than standard feed-forward networks. The reason is that neuralnetworks maintain a complete model of their domain. The model is wrong initially but gets betteras more data comes in. The net deals with all the data in the same way and has no representationabout uncertain or missing input. The architecture is chosen before the data is presented and theprocessing in the early phases of the training is similar to the processing in the later ones. Animaland human learning, on the other hand, seems to proceed in a di�erent manner [46]. When asystem has only few experiences in a domain, every experience (stimulus-response pair) is critical.Individual experiences are remembered more or less in detail in the early phases, and new responsesare formed by generalizing from these small numbers of stored experiences. Later on, when moredata becomes available, more complex models are formed, and there is no longer a need for storingindividual experiences. Instead, the focus is concentrated on discovering regularities. In the �rstphase, thus, look-up structures are used for storing the distribution of the experiences, while thesecond phase resembles parameter �tting. 32



In addition, networks with global receptive �elds seem to be unnatural for learning. In suchnetworks, all neurons must participate in the computation, even if only a few contribute to theoutput. The e�ort to process an input in a fully connected network capable of exact classi�cationof n memories is O(n2) [26]. In a one-layer net, each neuron de�nes a hyperplane. The input isprocessed by letting each neuron determine on which side of the hyperplane the input lies. Thisresults in a waste of computational power since many of the comparisons will be unnecessary. Itis thus preferable to make use of a structure with local receptive �elds so that divide and conquertechniques can be applied, i.e. every time a piece of information is derived about the data it is usedto prune away unnecessary further computations. Using hierarchical look-up structures [45] thecomputational time can be reduced on the average to O(logn).The problem we address next is what maps to learn. If we are interested in learning the map ofa complex task, where the stimulus and response spaces are well de�ned, we should keep in mindthat the map (task) in which we are interested might be the composition of a set of \simpler" mapswhich it could be easier to synthesize or learn from experience (task decomposition). Knowledgefrom the �eld of Neurobiology can provide inspiration for hypothesizing a set of simpler maps.On the other hand, geometry will provide us with the constraints and models for many problems.There obviously exist di�erent kinds of maps, some which we provide the system with (or whichthe system is born with), and some that the system learns from experience. But it would not be ofmuch help to try to learn maps that we can model, for example the map that recognizes egomotion,when we understand the geometry behind this process. Otherwise, we would end up trying tomimic evolution.An intelligent system consists of a set of maps such as described above. With the exception ofthe learning programs and of some of the action routines, these maps relate di�erent space-timerepresentations. It is the geometry of space and the physics of light that together with the learningprograms will contribute to our understanding of these maps, with learning taking over wheneverthe geometric or physical models required become too complicated. This is consistent with ourprinciples behind the synthetic approach. We should develop the competences in the order of thecomplexity of the underlying models, starting from simple models and moving to more complexones. When the models become too complex, we should let experience take over the building ofthe map, through learning. 33



5 ConclusionsThe study of vision systems in a behavioral framework requires the modelling of observer and worldin a synergistic way and the analysis of the interrelationship of action and perception. The role thatvision plays in a system that interacts with its environment can be considered as the extractionof representations of the space-time in which the system exists and the establishing of relationsbetween these representations and the system's actions. We de�ne a vision system as consistingof a number of representations and processes, or on a more abstract level, as a set of maps whichcan be classi�ed into three categories: the visual competences that map di�erent representations ofspace-time (including the retinotopic ones) to each other, the action routines which map space-timerepresentations to motor commands or representations of various kinds residing in memory, andthe learning programs that are responsible for the development of any map. To design or analyzea vision system amounts to understanding the mappings involved. In this paper we have provideda framework for developing vision systems in a synthetic manner, and have discussed a numberof problems concerning the development of competences, learning routines and the integration ofaction and perception. We have also described some of our technical work on the development ofspeci�c motion-related competences.To achieve an understanding of vision will require e�orts from various disciplines. We havedescribed in this study work from a number of sciences, mainly empirical ones. Besides these, thegeneral area of Information Processing also has to o�er various ideas from which the design andanalysis of vision systems can bene�t. Areas that might be of interest include the realization ofspeci�c maps in hardware (VLSI chips or optical computing elements), the study of the complex-ity of visual tasks under the new framework, and information theoretic studies investigating therelationship between memory and task-speci�c perceptual information. We also have not discussedhere the control mechanisms for behavioral systems. A promising framework for implementingpurposive, behavioral systems that act and perceive over time is that of hybrid automata, whichallow the modelling of sequences of continuous as well as discrete processes.References[1] J. Aloimonos and C. Brown. Direct processing of curvilinear sensor motion from a sequenceof perspective images. In Proc. Workshop on Computer Vision: Representation and Control,pages 72{77, 1984. 34
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