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Abstract
An original survey addressing time-space complexity covers
several stereo matching algorithms and running time exper-
iments are reported. Taking the point of view that good re-
construction needs to be solved in feedback loops, we then
present a new dense stereo matching based on a path com-
putation in disparity space. A procedure which improves
disparity maps is also introduced as a post-processing step
for any technique solving a dense stereo matching problem.
Compared to other algorithms, our algorithm has optimal
time-space complexity. The algorithm is faster than “real-
time” techniques while producing comparable results. The
correctness of our algorithm is demonstrated by experi-
ments in real and synthetic benchmark data.

1. Introduction
The dense stereo matching problem consists in finding a
dense disparity map from a pair of images in a stereo con-
figuration. Applications are view synthesis, augmented re-
ality, image-based rendering, 3D reconstruction, object de-
tection for mobile robots, and autonomous vehicles. Many
of these applications require real-time performance and,
consequently, an optimal algorithm concerning time-space
complexity is an important matter specially with high reso-
lution images at s high frequency (frame rate).

Stereo matching is an ill-posed problem and difficulties
arise from the aperture problem in textureless regions, depth
discontinuities, and occluded pixels. There are several con-
straints which aid to overcome these issues. The ordering
constraint states that if an object is to the left of another
in one stereo image, it is also to the left in the other im-
age. Assuming this ordering constraint, the stereo matching
problem is reduced to a path finding problem.

We present a new approach to solve the dense stereo
matching problem. Our approach reduces the matching of
a scanline pair to a path computation in disparity space. A
path is found by a number of local steps which assume con-
tinuity and deal with occlusions. Each local step is taken
based only on local information, but the current state of a
path represents global computation.

This new approach is not based in any previous tech-
nique. It implements a local search which computes a

heuristic path while area-based algorithms search the whole
disparity range. Our local search is greedy and differs
from any optimization method used in stereo matching
as dynamic programming and graph cut based algorithms.
Therefore, our algorithm falls into a new class of methods
which performs a constant number of computation per pix-
els and does not iterate over a disparity range.

We also introduce a procedure which improves disparity
maps in discontinuity regions. This routine can be applied
as a post-processing step to the result of any technique solv-
ing the dense stereo matching problem.

The increasing demand for higher resolution images and
for capturing faster motions at higher frame rates will al-
ways pose a challenge to computational power when real-
time performance is required. Therefore, the use of asymp-
totic analysis to evaluate stereo algorithms is justified. In
this paper, several stereo matching algorithms are assessed
according to a time and space performance viewpoint.
While a similar survey focuses on correctness issues [21],
we address resource complexity for the first time. Running
time experiments for several algorithms are reported con-
sistently with the complexity analysis. This analysis shows
that our algorithm is the only optimal algorithm in the liter-
ature concerning time complexity.

Our algorithm is proved to have optimal complexity,
since our path framework requires the least amount of re-
sources necessary to solve the stereo matching problem.
The algorithm is faster than the so called “real-time” tech-
niques and produces comparable results. The performance
improvement over real-time solutions is achieved by avoid-
ing a brute force search over the disparity range at every
pixel. Our technique searches the disparity range only at
possible occlusions.

The effectiveness of our algorithm is demonstrated by
experiments on well-known benchmark stereo pairs (real
and synthetic). The algorithm achieved good results with
overall gross errors ranging from 0.71% to 3.85%.

We analyze the time-space complexity of several stereo
matching approaches in Section 2. Our new algorithm and
improving stereo routine are presented in Section 3 and the
optimal performance is shown in Section 4. Some valida-
tion experiments are discussed in Section 5. In Section 6,
we have our conclusions and suggestions for some general-
izations.

1



2. Time-Space Complexity Review
We review several dense stereo matching algorithms from a
performance perspective. The time and space complexity is
analyzed for several approaches including area-based, dy-
namic programming, Bayesian, cooperative, graph cut, and
layered methods. Due to the lack of space, we omit a de-
tailed description of each technique. For a full description
of each algorithm, the reader is referred to the original work.

The input for a dense stereo matching problem is a pair
of rectified stereo images and the output is a disparity map.
Both input and output are represented by matrices with ������

elements, where
�

is the height of an image and
�

is
the width. Assuming a square image (

� � �
), the range

of disparity is � ���
	�� , where 	 is at most the image width� ��
 � .

2.1. Area-based Methods
A variable window algorithm [28] uses the integral image
technique to compute an arbitrary rectangular window cor-
relation in constant time. Pre-processing an integral image
for each disparity takes ����	 ��� time and requires ����	 ���
space. The algorithm searches for square windows between
some range of sizes by using dynamic programming to find
the best window for every pixel in ��� ��� time per disparity.
Hence, the search for a minimum window at all disparities
takes ����	 ��� time and space. Finally, the search for the
best disparity takes also ����	 ��� time and space. Therefore,
the overall complexity for a variable window approach is
����	 ����� ��� ����� ��� time and space.

Instead of a limited number of windows, the match-
ing cost for a class of “compact” windows may be com-
puted [27]. Although the size of this class is exponential
in the maximum window size � , a minimum ratio cycle al-
gorithm for graphs achieves a ����� ��� � � time bound. This
way, the overall time complexity becomes ����� ��� � 	 ��� . As-
suming � is independent of the input size, this method takes
����	 ����� ��� ����� ��� time and ��� ��� space.

Another multiple window approach uses a window con-
figuration that has a small window in the center surrounded
by � partly overlapping windows [13]. The correlation
value is the sum of the center correlation with the best
surrounding correlation windows. Although each window
correlation is computed in constant time with some pre-
processing, the selection of the best windows requires sort-
ing in ��� �"!$#&%'� � time per pixel and disparity. This way,
the algorithm takes ��� �"!$#&%'�(	 ��� time, which becomes
����	 ��� since � is independent of the input size. Therefore,
this method takes ��� �)��� �*� time and requires ��� ��� space.

2.2. Dynamic Programming Techniques
A dynamic programming process finds the best path
through a disparity space in ����	 � � time and space for each

scanline [7]. This method also incorporates ground control
points and intensity edges into the matching process. The
winner-takes-all technique finds a candidate set of points
and thresholding further reduces this set in ����	 � � time and
space per scanline. Edge detection is performed in ��� ���
time and space for both images. Hence, this pre-processing
takes ����	 ��� time and ��� ��� space overall. Therefore, the
method takes ����	 ���'� ��� ����� �+� time and ��� ��� space.

A different path cost function uses occlusion penalty,
match reward, and a dissimilarity measure insensitive to
sampling [5]. For each scanline, a dual dynamic program-
ming algorithm iterates over all 	 �

cells in disparity space
computing the best paths to the ,&	 following cells. This
way, the algorithm runs in ����	�- ���.� ��� � - � time and re-
quires ��� ��� space.

2.3. Bayesian Approaches
In a Bayesian approach [24], the Markov network requires
����	/- ���0� ��� � - � space to store hidden nodes. An ap-
proximate solution for the posterior probability is found by
a Bayesian belief propagation algorithm. Belief propaga-
tion is an iterative inference algorithm that propagates mes-
sages in the network. A max-product belief propagation
algorithm takes time ����1�	/- ���2� ����1 � - � , where 1 is the
number of iterations.

The stochastic diffusion optimization method [16] has a
conditional probability with a likelihood model, a disparity
field model, and a line field model. The likelihood model
is computed initially in ����	 ��� time and space. The last
two models use the MRF model with their neighborhood
configurations 3 . This way, they are computed in ���43 ���
time and require ����	 ��� space, where 3 reflects the inter-
activity of neighboring fields and is sufficient to calculate
the probabilistic expectation. Since 3 is ����	 � , each state
is computed in ����	 ��� time. The potential space is a 3D
disparity space which is iteratively updated by the proba-
bilistic expectation of the neighboring fields and the compu-
tational models. The potential space is diffused to a stable
local state. Hence, the stochastic diffusion takes ����15	 ���
time and requires ����	 ��� space, where 1 is the number of
iterations. When the potential space converges, the opti-
mal fields are deterministically estimated by the localized
minimal potential condition in ����	 ��� time. Therefore, the
overall complexity of the stochastic diffusion approach is
����1�	 ���2� ����1 ����� ��� for time and ����	 ���6� ��� �)��� �+� for
space.

2.4. Cooperative Algorithms
A cooperative algorithm [18, 29] iterates support and inhi-
bition. Matching values are stored in a 3D disparity space,
where each element corresponds to a pixel in the reference
image and a disparity relative to another image. Hence,
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a disparity array requires ����	 ���7� ��� �)��� �+� space. For
each element in the disparity space, an update function of
match values diffuses support among neighboring match
values in a 3D region while inhibition weights down all
matches along similar lines of sight. Since a ray of view
corresponds to ,&	 elements in the disparity space, the co-
operative approach takes ����18� 9;:=<?>(	 � 	 ��� , where 1 is the
number of iterations and 9;:=< is the size of the 3D support
region. Assuming 9;:=< is constant, the time bound becomes
����1�	/- ���@� ����1 � - � .

A cooperative method may have only a support region
to aggregate disparity with a non-uniform diffusion process
[20]. The method uses a membrane diffusion model which
only diverges to a certain amount from its initial value. The
diffusion process is iterated and a measure of certainty de-
cides whether to diffuse each pixel. A Bayesian model ex-
plicitly associates all possible disparities at each pixel with
a scalar value between � and A . Initially, the probability
distribution from each pixel is based on the intensity errors
between matching pixels. An update rule assumes indepen-
dent distribution of adjacent disparity and corresponds to
a smoothed energy. The diffusion computes support val-
ues for all pixels and disparities in ����	 ��� time. The cer-
tainty measure is computed in ����	 � time for each pixel,
and the update step is computed in constant time for each
pixel and disparity. This way, each iteration in the non-
uniform Bayesian diffusion method takes ����	 ��� time and
space. Therefore, the approach takes ����1�	 ���B� ����1 �C��� ���
time and ����	 ���6� ��� �)��� ��� space, where 1 is the number
of iterations.

2.5. Graph Cut Methods
A graph cut based algorithm takes ����1�	�DC��E��GF �H� time,
where 1 is the number of iterations, D is the time complexity
of graph construction and a maximum flow algorithm, and
��E��GF � is the size of the graph I modeling the energy func-
tion. Assuming the energy function is defined by constants
independent of the image size, the number 1 of iterations is
��� ��� [26].

In general, each graph cut technique differs by the en-
ergy function used and, consequently, by the corresponding
graph I which models the function. In a multi-view method
[19], the graph represents a 3D mesh corresponding to the
disparity space volume. Hence, the number of vertices in
I is ����	 ��� . Each vertex is internally six-connected and,
consequently, the number of edges is also ����	 ��� .

In a discontinuity preserving method [9], the set of
vertices corresponds to pixels in the image and to auxil-
iary nodes in a fixed neighborhood of the current partition
boundaries. Hence, the number of vertices in I is ��� ���
and, since each vertex has a constant number of edges, the
set of edges is also ��� ��� in size.

In the occlusion handling method [14, 15], the vertices

in I correspond to possible pixel assignments. Since each
pixel in one image may be assigned to 	 pixels in the other,
the vertex set E requires ����	 ��� space. The edge set in I
represents some fixed-size neighborhood criteria and also
requires ����	 ��� space.

The weights of the edges are each computed in con-
stant time for all graph models. This way, the graph con-
struction takes ��� ��� time and space for the discontinuity
preserving method. For the multi-view method and occlu-
sion handling method, the graph construction takes ����	 ���
time and space. The maximum flow problem is solved
in ����E�FJ!K#L%/MONP � time and requires ����F � space [12].
Therefore, the discontinuity preserving algorithm takes
����1�	 � -*!K#L% ���Q� ��� �OR=� � !K#L% ��� time and requires ��� ���
space. The multi-view method and the occlusion handling
graph cut based algorithm takes ����1�	 R+� -S!K#L%T��	 ���G�U�
��� �8V*� � !$#&% ��� time and requires ����	 ����� ��� �)��� ��� space.

2.6. Layered Approaches
A layered approach [17] iteratively segments the images
into surfaces and estimates the disparity map for each sur-
face. Given an energy function satisfying some conditions,
the segmentation is computed by a graph cut approach [9].
The disparity map for a particular surface is found by a sur-
face fitting step. The surface fitting minimizes an energy
function using standard gradient-based numerical methods.
The layered algorithm takes ����1LWX��DZY;� ��� >�DZ[Z� ���H�G� time and
requires ���]\XY;� ��� >^\L[X� ���G� space, where 1LW is the num-
ber of iterations, D&Y ( \LY ) is the time (space) required to
compute the surface segmentation using graph cuts, and
DZ[ ( \L[ ) is the time (space) required to find the disparity
maps using numerical optimization. A graph cut based al-
gorithm implies that D Y � ��� is ����1 � �OR=� � !K#L% ��� and \ Y � ��� is
��� ����� �+� . For a quasi-Newton method, D [ � ��� is ����1 - � - �
and \ [ � ��� is ����1 - ��� , where 1 - is the number of iter-
ations until convergence [11]. Therefore, a layered ap-
proach takes ����1&WX��1 � �ORS� � !K#L% � >01 - � - �H� time and requires
��� ����� � >_1 - ��� space.

An energy function that allows affine warpings displace-
ments handles slanted surfaces [6]. The energy function
is minimized by iteratively alternating between segment-
ing and fitting. The approach segments the image into
non-overlapping regions corresponding to different surfaces
by using a graph and finding a local minimum multiway
cut of this graph. The graph I`��E@�
F � contains a vertex
for every pixel in the image and for every possible label:a E a �b� >�c , where c is the number of surfaces (labels)
in the scene. Each pixel is linked to its neighbors and to
each label:

a F a � �4de>fc �g� . An approximate solution
for a multiway cut is found by a graph cut approach in
����1 � c@-*DC��E��GF �H� time and ����c ��� space [8], where 1 � is
the number of iterations to find an approximate minimum
multiway cut and DC��E��GF � is the time complexity of the
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maximum flow problem. Since c is initially assumed to be
	 , the complexity becomes ����1 � � - � � !$#&% ��� and ��� �)��� ���
for time and space, respectively. The affine parameters of
the displacement function for each region are found using a
greedy algorithm [22]. A linear system with 3 unknowns is
minimized by a Newton-Raphson technique in ��� ��� time
and space per iteration, since the system evaluation com-
putes values for every pixel in all surfaces. Hence, the fit-
ting step takes ����1 - ��� time and ��� ��� space, where 1 - is the
number of iterations in the minimization. Therefore, this
approach takes ����1&Wh�H��1 � � - � � !K#L% ��� >i��1 - ���H�G� time and re-
quires ��� ����� �*� space, where 1LW is the number of iterations
of the segment-fit step.

2.7. Complexity Summary and Running Time
The next table summarizes the time-space complexity of
stereo matching methods. The area-based methods have the
best performance and usually are referred to as real-time
algorithms. Hence, area-based and dynamic programming
techniques are considered fast. Bayesian and cooperative
approaches have a good performance, while graph cut and
layered methods require much more resources.

The error column displays the gross error evaluated
for the tsukuba real image [21]. The area-based meth-
ods and dynamic programming have reasonable results
( � ,hj kLlXmn��lhj$A+,Xm2� ). Bayesian and Cooperative techniques
have some of the best results ( �KA&j$A+lXmn�
o�j dLpqm2� ). Graph cut
and layered approaches perform very well concerning errors
([1.19%, 8.08%]).

We report the results of experiments to compare the run-
ning (execution) time performance of stereo matching algo-
rithms. The running time experiments are consistent with
the time complexity analysis (see Fig. 1). The experiments
are performed on a Dell Computer with 2.80GHz processor
and 2Gb main memory running a Linux environment for
Windows XP.

The performance is evaluated by varying the size of the
input images. The input size ranges from 40000 pixels
( ,&�&�sr_,&�&� ) to 400000 pixels ( o&kX,(rtoLkL, ). The execu-
tion time for each algorithm was determined as the median
of several runs.

The graph cut implementation used [1] is described by
Kolmogorov and Zabih [14]. The cooperative algorithm
evaluated [2] is presented by Scharstein and Szeliski [20].
We used a regular diffusion (80 iterations). The belief
propagation method [3] is proposed by Felzenszwalb and
Huttenlocher [10]. An area-based algorithm [4, 25] with
shiftable square windows (window size 15) is used [2] in
our experiments. Dynamic programming [2] is represented
by the method presented by Bobick and Intille [7]. The run-
ning time of our optimal algorithm is also reported. For
all algorithms, the disparity range was adjusted accordingly
when necessary.
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Figure 1: Running time performance of stereo matching al-
gorithms.

3. An Optimal Time-Space Algorithm
The epipolar constraint reduces the stereo matching prob-
lem to a 1D search. In a stereo rectified configuration, the
epipolar lines are the horizontal scanlines with same u co-
ordinate. Each pixel in a scanline of the left image v+w is
matched to a pixel in a corresponding scaline of the right
image vSx .

The disparity space for a pair of scanlines consists of a
matrix where each element represents a grid node � ��y � �Oz;�
with the disparity cost between the pixels {|w � � �Oy �Hu �J}
v=w and {~x � � �Oz �Hu ��} vSx . The disparity cost is the sum
of absolute differences (SAD): ��� Y
�|�G� �G�|Y a v w � � y >�:;�Gu�>
9 �@� v x � � z >i:;�GuJ>_9 � a . This way, the disparity space be-
comes an environment for a path computation, where each
node � � y � � z � in the path corresponds to a matching be-
tween pixels { w and { x .

The path in the disparity space is found by a greedy
heuristic algorithm. Therefore, global minimization such as
dynamic programming is not used [23]. Since dense stereo
matching is an ill-posed problem, the concept of optimal so-
lution is non-existent or depends on an energy function def-
inition which is particular to each method. Hence, a heuris-
tic approach gives as good solution as any other technique
but with a better performance. Our algorithm improves
real-time (area-based) approaches by avoiding a brute force
search over the disparity range at every pixel. The heuristic
algorithm performs a brute force search only at occlusions.

For each pair of scanlines, the algorithm computes a path
which consists of a sequence of nodes in disparity space.
Each node � ��y � �Oz;� in this disparity space is connected
in a 3-neighborhood way: 3 R � �Oy � �OzZ�7��� :Z�G�;�B�G� �@� �
� � �Oy >�A&� �Oz >�A � �+� �Oy >fAL� �Oz;� �+� �Oy � �Oz >�A � � . The ad-
jacent nodes are named continuous ( : ), positive occlusion
( �;� ), and negative occlusion ( � �

). The source node is ob-
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Algorithm Time Space Error
Area-based [27] ��� �)��� �+� ��� ��� 3.36%
Dynamic prog. [7] ��� �)��� �+� ��� ��� 4.12%
Area-based [13] ��� �)��� �+� ��� ��� 4.25%
Area-based [28] ��� �)��� �+� ��� ����� ��� 2.35%
Dynamic prog. [5] ��� � - � ��� ��� 5.12%
Bayesian [16] ����1 �)��� �*� ��� ����� ��� 3.95%
Cooperative [20] ����1 �)��� �*� ��� ����� ��� 6.49%
Cooperative [18] ����1 � - � ��� ����� ��� 1.67%
Cooperative [29] ����1 � - � ��� � ��� � � 3.49%
Bayesian [24] ����1 � - � ��� � - � 1.15%
Graph cut [9] ��� ��RS� � !$#&% ��� ��� ��� 1.86%
Graph cut [14] ��� �OV*� � !$#&% ��� ��� ����� ��� 1.19%
Graph cut [15] ��� �OV*� � !$#&% ��� ��� ����� ��� 1.85%
Graph cut [19] ��� � V*� � !$#&% ��� ��� � ��� � � 2.98%
Layered [6] ����1 W �H��1 � � - � � !$#&% ��� >���1 - ���H�G� ��� ����� ��� 8.08%
Layered [17] ����1&Wq��1 � �ORS� � !$#&% � >_1 - � - �G� ��� ����� � >_1 - ��� 1.58%

Table 1: Time-space complexity and gross error of stereo matching algorithms for all pixels in the Tsukuba image [21].

tained by searching the best match for the first pixel in both
scanlines: � � y �*A � or �HA&� � z � . This way, the path starts from
either the left or top side of the disparity space (see Fig. 2).
A local step is performed until either the bottom or right
side of the disparity space is reached. Hence, the destina-
tion node is any node representing a match for the last pixel
in both scanlines: � ��y � � � or � � � �OzZ� .

o+
co−

Continuous step

Occlusion step

Destination

Source

o−

o−
o+

c
o+

c

Figure 2: A local path through a binary disparity space.

The local step is either a continuous step or an occlu-
sion step. A continuous step finds the minimum disparity
cost in the 3-neighborhood of a node. This way, the next
node in the path may represent a continuous match ( : ) or
a potential occlusion ( �Z� and � �

). Assuming the scene is
smooth almost everywhere (continuity constraint), a contin-
uous match is preferred over a potential occlusion. The lo-
cal continuous step iterates over a range of correlation win-
dow sizes computing the SAD disparity cost among the 3-
neighbors. If a potential occlusion ( �&� or � �

) is the neigh-
bor with the minimum cost for the current window size, the

size of the window is increased and the search for a contin-
uous match continues. A continuous match happens when
the neighbor node with the minimum cost is the continuous
node ( : ). If the whole range of window sizes is explored
and a continuous match is not found, then the best potential
occlusion is selected as the local step.

An occlusion step is performed when a certain number of
positive (negative) potential occlusion steps are performed
successively. This number of potential occlusions is related
to how much slant is considered in the scene. For a dispar-
ity node � � y � � z � , a positive occlusion step just selects the
next node with the minimum disparity cost among all nodes
� �O�y � � z � , where ���y0� � y . Similarly, a negative occlusion
step finds the node with the minimum disparity cost among
all nodes � ��y � �O�z � , where �O�z � �Oz .

At each local step, the node � ��y � �Oz;� corresponds to a
match between a pixel � ��y �Hu � in the left scanline and a pixel
� �Oz �Gu � in the right scanline, where u specifies the scanlines
in the pair of images. Using the left image as a reference,
the disparity of a pixel � � y �Hu � is � y �0� z .

The ordering constraint imposes an orientation in the lo-
cal path computed by the stereo algorithm. Considering a
scanline, stereo matching may be performed in two possible
directions: from left to right and from right to left. The dis-
parity maps obtained by the algorithm using each direction
may be different (see Fig. 3). This behavior of our stereo al-
gorithm is due to the fact that the path computation is based
only on local information.

In order to deal with this orientation issue, the main algo-
rithm computes the stereo matching in both directions and
a consensus routine produces a single map from the two re-
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(a) Left-to-right map. (b) Consensus map. (c) Right-to-left map.

Figure 3: Disparity maps for both directions and the corresponding consensus map.

sults. Our consensus rule just assigns the least disparity for
each pixel.

Since most of the gross errors in the stereo matching are
close to depth discontinuities, we have designed an iterative
algorithm to improve disparity maps in these regions. Ini-
tially, the algorithm identifies in the current disparity map�

every pixel { with a 4-neighbor pixel { ��} 3 V ��{ � such
that

a � ��{ �?� � ��{ �]� a � A . These pixels would represent the
boundary � of objects in the scene (see Fig. 4).

(a) Gross errors before im-
provement.

(b) Gross errors after im-
provement.

(c) Detected boundary of
objects.

Figure 4: Disparity map improvement by boundary refine-
ment.

The algorithm iteratively changes the disparity of bound-
ary pixels until there is no local improvement in the dispar-
ity cost for all pixels in the boundary. For each pixel in the
boundary, a new disparity cost candidate is the minimum

cost achieved by replacing the current disparity with the dis-
parity of all 4-neighbors. In this case, the disparity cost is a
special SAD measure using a correlation window only with
same disparity pixels. If the minimum disparity cost found
among 4-neighbors for a pixel compares to the current cost
by a ratio less than a certain threshold, the disparity of this
pixel is changed. At the end of each iteration, the bound-
ary is updated by checking the depth discontinuities in the
changed disparity map.

4. Optimal Performance Analysis
Our stereo matching algorithm computes a path for each
left-right pair of scanlines. Hence, the algorithm finds ��� � �
paths. Each path computation involves a number of local
steps. Since the source node is at the top/left side of the
disparity space, the destination node is at the bottom/right
side, and each continuous step moves either right or down,
then the number of continuous steps is ��� � � . Objects in
the scene do not depend on the size of the images. Conse-
quently, the number of occlusion regions in each scanline
is constant. This way, a path computation performs ��� � �
continuous steps in constant time and ����A � occlusion steps
in ��� � � time. Hence, each path is found in ��� � � time and
the stereo matching algorithm takes ��� ��� �B� ��� ��� time.

An iteration of the improving stereo algorithm updates
each boundary pixel disparity in constant time. Since the
number of objects in the scene is constant, the number of
pixels in the boundary region is ��� � > � � and, consequently,
a disparity update iteration takes ��� � W � �*� time. A disparity
update represents a move of the boundary region towards
the correct location. Since a displacement of a boundary
pixel is ��� � > � � , the number of iterations towards the cor-
rect boundary is ��� � W � �+� . Therefore, the improving stereo
algorithm takes ��� ��� time.

The stereo matching algorithm requires ��� ��� space for
the disparity map. The improving stereo algorithm keeps
the boundary region in a list which requires ��� � > � � space.
Other data structures have the same size as a disparity map.
Hence, the improving stereo procedure also requires linear
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space. Therefore, our method is time-space linear and, con-
sequently, optimal since the output (disparity map) lower
bound for performance is linear.

5. Experiments
The algorithm designed and implemented is the result of ex-
perimentation over some parameters. These parameters in-
clude the maximum size of a correlation window considered
in order to take a potential positive and negative occlusion
step, the number of successive potential occlusions which
defines a candidate occlusion, the size of the window for
the special SAD used in the improving algorithm, and the
associated ratio threshold in the improving stereo routine.

(a) map. (b) venus.

(c) sawtooth. (d) tsukuba.

Figure 5: Disparity maps computed for stereo benchmarks.

Correctness was tested with four stereo pairs for which
there exists ground truth disparity. The original image
benchmarks are found at [2], where many algorithms are
surveyed and evaluated [21]. The disparity maps computed
show that our framework achieves good results (see Fig. 5).

The algorithm was evaluated according to gross errors.
A gross error occurs when the disparity computed differs
from the ground truth from more than one unit. The gross
errors of the disparity maps computed by our algorithm are
reasonable (see Fig. 6)

The errors are classified according to three regions of in-
terest: all pixels, untextured and discontinuity regions. The
next table shows the percentage of gross errors in these re-
gions for each stereo pair. Our algorithm performs well
since overall gross errors range from 0.71% (map) to 3.85%
in a real image (tsukuba). Therefore, according to Table 2.7,

(a) map. (b) venus.

(c) sawtooth. (d) tsukuba.

Figure 6: Gross errors of the disparity maps.

our approach outperforms dynamic programming, while it
compares to area-based, Bayesian and cooperative tech-
niques. However, graph cut based methods are consistently
superior concerning correctness.

Image All Untextured Discontinuity
tsukuba 3.85% 4.76% 12.53%
sawtooth 1.94% 2.08% 9.26%
venus 2.12% 3.31% 18.33%
map 0.71% 5.39%

Table 2: Numerical gross errors by interest region.

6. Conclusions
The contributions of this paper include a new approach to
solve the dense stereo matching problem based on a path
computation in disparity space. A procedure which im-
proves disparity maps is presented as a post-processing step
for any technique solving a dense stereo matching problem.

An original survey addressing time-space complexity
covers several stereo matching algorithms. In this con-
text, our algorithm proved to have optimal ��� ��� time-space
complexity. The algorithm is faster than “real-time” tech-
niques while producing comparable results. The effective-
ness/correctness of our algorithm is demonstrated by exper-
iments in real and synthetic benchmark data where errors
range from 0.71% to 3.85%.
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As future work, a generalization of our technique to
multi-view stereo matching is trivial. The algorithm will
have only to consider multiple potential occlusions between
different pairs of images and a local step will involve ,X�
possibilities, where � is the number of images considered
for matching. The use of our algorithm in the motion field
computation is also feasible when the ordering constraint is
generalized and linearization is applied in the 2D disparity
space.
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