
ABSTRACT

Title of dissertation: Design Space Re-Engineering
for Power Minimization
in Modern Embedded Systems

Lin Yuan, Doctor of Philosophy, 2006

Dissertation directed by: Professor Gang Qu
Department of Electrical and Computer
Engineering

Power minimization is a critical challenge for modern embedded system design.

Recently, due to the rapid increase of system’s complexity and the power density,

there is a growing need for power control techniques at various design levels. Mean-

while, due to technology scaling, leakage power has become a significant part of

power dissipation in the CMOS circuits and new techniques are needed to reduce

leakage power. As a result, many new power minimization techniques have been

proposed such as voltage island, gate sizing, multiple supply and threshold voltage,

power gating and input vector control, etc. These design options further enlarge

the design space and make it prohibitively expensive to explore for the most energy

efficient design solution.

Consequently, heuristic algorithms and randomized algorithms are frequently

used to explore the design space, seeking sub-optimal solutions to meet the time-

to-market requirements. These algorithms are based on the idea of truncating the

design space and restricting the search in a subset of the original design space.

While this approach can effectively reduce the runtime of searching, it may also

exclude high-quality design solutions and cause design quality degradation. When

the solution to one problem is used as the base for another problem, such solution

quality degradation will accumulate. In modern electronics system design, when

several such algorithms are used in series to solve problems in different design levels,

the final solution can be far off the optimal one.

In my Ph.D. work, I develop a re-engineering methodology to facilitate explor-

ing the design space of power efficient embedded systems design. The direct goal

is to enhance the performance of existing low power techniques. The methodology

is based on the idea that design quality can be improved via iterative “re-shaping”

the design space based on the “bad” structure in the obtained design solutions; the

searching run-time can be reduced by the guidance from previous exploration. This

approach can be described in three phases: (1) apply the existing techniques to

obtain a sub-optimal solution; (2) analyze the solution and expand the design space

accordingly; and (3) re-apply the technique to re-explore the enlarged design space.

We apply this methodology at different levels of embedded system design to

minimize power: (i) switching power reduction in sequential logic synthesis; (ii) gate-

level static leakage current reduction; (iii) dual threshold voltage CMOS circuits

design; and (iv) system-level energy-efficient detection scheme for wireless sensor

networks. An extensive amount of experiments have been conducted and the results

have shown that this methodology can effectively enhance the power efficiency of

the existing embedded system design flows with very little overhead.

DESIGN SPACE RE-ENGINEERING FOR POWER

MINIMIZATION IN MODERN EMBEDDED SYSTEMS

by

Lin Yuan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Gang Qu, Chair/Advisor
Professor Shuvra S. Bhattacharyya
Professor Manoj Franklin
Professor Dennis M. Healy
Professor Martin Peckerar
Professor Ankur Srivastava

c© Copyright by

Lin yuan
2006

DEDICATION

To my parents and friends

ii

ACKNOWLEDGMENTS

First and foremost I’d like to thank my advisor, Professor Gang Qu for his in-

valuable guidance and never-ending help in research, teaching and all other aspects.

As an advisor and a friend, he has been a perfect role model for me in the past five

years. From him, I learn not only how to be a prolific researcher, but also how to

be a nice person, a great mentor, a supportive friend, and an affectionate father. It

is great pleasure of me to work with and learn from such an extraordinary person.

I would like to thank Professor Shuvra Bhattacharyya, with whom I have been

a teaching assistant and have worked on a research project which lead to a published

paper. His unique vision in research and abundant experience in teaching have been

a great source of guidance for me. I would like to thank Professor Manoj Franklin,

Professor Dennis Healy, Professor Martin Peckerar, and Professor Ankur Srivastava

for agreeing to serve on my thesis committee and for sparing their invaluable time

reviewing the manuscript. I would like to thank Professor Ankur Srivastava for his

always available help, advice or simply a word of encouragement.

My colleagues at the Embedded System Research Lab are the nicest and most

supportive. Ming-Yung Ko, who is the lab administrator, did a wonderful job and

helped me get familiar with lab environments and computer systems. Vida Kianzad,

who is like an elder sister to me, always encouraged me when I was depressed. I

also enjoyed many inspiring discussions with Neal Bambha, Dong-Ik Ko, Sankalita

iii

Saha, Mainak Sen and Ankush Varma.

My PhD years would not have been so memorable without my friends. Pushkin

Pari, Sadagopan Srinivasan, and Aditya Kalyanpur are both my labmates and my

best buddies. They are really good friends and fun people. I owe special thanks to

Honghao Ji and Ji Luo for their enormous help and being very considerate to me.

Many thanks are due to all my old and new friends in every corner of this globe;

they made my life full of exciting stories.

I feel extremely happy to have amazingly nice roommates, Wei Jing, Haibin

Ling, and Mei Zhang. They are like my families and I don’t even want to miss a

single moment with them.

I would also like to acknowledge help and supports from the staff members

at ECE Help Desk, Clifford Russell, Tarjia Johnson and Jeff McKinney. Their

professional technical supports have made my work efficient and smooth.

At last, I owe my deepest thanks to my parents who have always stood by me

and guided me through my career. I am really proud to have such great parents.

iv

TABLE OF CONTENTS

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Low Power Design Challenge in Modern Embedded Systems 1
1.2 Power Minimization in Embedded System Design Flow 6
1.3 Design Space Exploration and Re-Engineering 8

1.3.1 Design Space Exploration . 8
1.3.2 Design Space Re-Engineering 10

1.4 Thesis Organization . 11

2 General Re-Engineering Methodology and Framework 12
2.1 A New Design Framework for Low Power 12
2.2 Re-Constructing the Design Space . 14
2.3 Application . 15

2.3.1 Sequential Logic Synthesis (Chapter 3) 15
2.3.2 Dual-Vth CMOS Circuit Design (Chapter 4) 15
2.3.3 Input Vector Control for Static Power Reduction (Chapter 5) 16
2.3.4 Energy-Efficient Detection Scheme for Wireless Sensor Net-

works (Chapter 6) . 17
2.4 Summary . 17

3 Power-Driven Sequential Logic Synthesis 18
3.1 Introduction . 18

3.1.1 A Motivational Example . 20
3.1.2 FSM Re-Engineering . 21

3.2 Related Work . 23
3.3 Preliminary . 25

3.3.1 An Example of Re-constructing FSMs 27
3.4 Power-Driven FSM Re-Engineering Approach 28
3.5 FSM Re-engineering Algorithm . 28

3.5.1 A Generic Approach . 29
3.5.2 Genetic Algorithm Based State Duplication 31
3.5.3 Heuristic on State Selection for Duplication 34
3.5.4 Heuristic on How to Duplicate a Selected State 35
3.5.5 Determine the Minimum Switching Activity 37

3.6 Experimental Results . 39
3.7 Summary . 44

v

4 Dual-Vth CMOS Circuit Design for Leakage Reduction 47
4.1 Introduction . 47

4.1.1 A Motivational Example . 49
4.1.2 Main Idea and Contribution 51
4.1.3 Chapter Organization . 52

4.2 Related Work . 53
4.3 Simultaneous Dual Vt Assignment and Input Vector Selection 55

4.3.1 Dual Vt Assignment . 55
4.3.2 Input Vector Selection . 56
4.3.3 Combining Dual Vt Assignment and Input Vector Selection . . 58
4.3.4 Algorithm Description and Analysis 60

4.4 Experimental Results . 63
4.5 Summary . 67

5 Gate-Level Input Vector Control for Static Power Minimization 69
5.1 Introduction . 69
5.2 Related Work . 73
5.3 Leakage Reduction by Gate Replacement 76

5.3.1 Basic Gate Replacement Technique 77
5.3.2 A Fast Gate Replacement Algorithm 80

5.4 Solving the MLV+ Problem . 83
5.4.1 NP-Completeness of the MLV Problem 83
5.4.2 The MLV+ Problem and Outline of the Divide-and-Conquer

Approach . 85
5.4.3 Finding the Optimal MLV for Tree Circuits 86
5.4.4 Connecting the Tree Circuits 90
5.4.5 Overhead Analysis . 93

5.5 Experimental Results . 94
5.6 Summary . 101

6 Energy Efficient Detection Scheme for Wireless Sensor Network Design 103
6.1 Introduction . 103
6.2 Related Work . 106

6.2.1 On Detection in Wireless Sensor Networks 106
6.2.2 On Energy Efficiency in Sensor Network Design 107

6.3 System Model . 108
6.4 Hybrid Detection Scheme . 112

6.4.1 Intuition . 112
6.4.2 Detection mechanism . 113
6.4.3 Decision rules . 114
6.4.4 Suboptimal algorithm . 118

6.5 Energy Consumption Model . 119
6.5.1 Data acquisition . 119
6.5.2 Data processing . 120
6.5.3 Communication . 121

vi

6.6 Simulation Results . 123
6.7 Summary . 128

7 Conclusions 130

A List of Publications 132

Bibliography 135

vii

LIST OF TABLES

3.1 Total switching activity reduction on re-constructed FSMs. 42

3.2 Area and power comparison between original FSM and reconstructed
FSM . 44

4.1 Leakage current (nA) in high-Vth (0.48V) and low-Vth (0.33V) two-
input NAND gates at different inputs from SPICE simulations. 48

4.2 Leakage current (nA) in the library gates. 63

4.3 Propagation delay (ns) in the library gates. 63

4.4 Comparison of individual MLV and Vth assignment with simultaneous
MLV and Vth assignment algorithm on MCNC benchmarks in terms
of runtime and leakage. The red(%) column reports the reduction
over the combined serial randome MLV search and Vth assignment. . . 64

4.5 Number of gates in the worst leakage state (# WLS), number of WLS
gates at high Vth (# WLS*), and the total number of gates assigned
high Vth (# VthH) in MCNC circuits with serial dual-Vth assignment
and with simultaneous dual-Vth assignment and input vector control. 65

4.6 Comparison of individual MLV and Vth assignment with simultaneous
MLV and Vth assignment algorithm on ISCAS benchmarks in terms
of runtime and leakage. The red(%) column reports the reduction
over the combined serial randome MLV search and Vth assignment. . . 66

4.7 Number of gates in the worst leakage state (# WLS), number of WLS
gates at high Vth (# WLS*), and the total number of gates assigned
high Vth (# VthH) in ISCAS circuits with serial dual-Vth assignment
and with simultaneous dual-Vth assignment and input vector control. 67

5.1 Results on 26 small circuits with 22 or less primary inputs. 96

5.2 Results on 43 large circuits with primary inputs more than 22. 98

5.3 The percent of WLS gates in 43 circuits and the area increase with
different input vector control algorithms. 100

5.4 Average performance comparison with algorithm in [1]. 101

viii

LIST OF FIGURES

1.1 Number of transistors on chip is doubled every 18 months as predicted
by Gordon Moore. 3

1.2 Trend of increasing power density. 4

1.3 Trend of increasingly significant leakage power. 5

1.4 Serial design space exploration strategy in the conventional design flow. 8

2.1 Re-engineering design framework. 13

3.1 A 5-state FSM and a functionally equivalent 6-state FSM. 20

3.2 Re-constructing an FSM by duplicating a state S. 28

3.3 FSM re-engineering for low power state encoding. 29

3.4 Pseudocode: State duplication via genetic algorithm 33

3.5 Pseudocode: Duplicate a State . 38

3.6 Switching activity of POW3’s encoding schemes on the original and
re-constructed FSMs and the optimal encoding (Opt) on the new
FSMs. Normalized to the optimal encoding on the original FSMs. . . 45

4.1 Dual-Vth assignment for circuit C17 and its impact on leakage reduction. 49

4.2 Pseudo-code of the simultaneous dual Vt assign and input vector se-
lection algorithm. 60

5.1 Leakage current of (a)INVERTER, (b)NAND2 and (c)NAND3. Data
obtained by simulation in Cadence Spectre using 0.18 µm process. . . 70

5.2 A motivation example for gate replacement. 71

5.3 Gate replacement and the consequence to its fanout gate. 78

5.4 Pseudo-code of the gate replacement algorithm. 81

5.5 Illustration for the proof of the NP-completeness of the MLV problem. 84

5.6 Dynamic programming to find optimal MLV in a tree circuit. 87

ix

5.7 MLV in a circuit before and after gate replacement 90

5.8 Resolving the conflict in connecting tree circuits. 91

5.9 Leakage and WLS percentage on 43 large circuits with 22 PIs or
more. X-axis lists benchmarks sorted by leakage current in divide-
and-conquer approach; Y-axis shows percentage of leakage and WLS
gates. 97

6.1 Wireless Sensor Network for Detection 109

6.2 Comparison of Three Schemes in Detection Accuracy 118

6.3 Dense Network: 1 × 1 Field . 123

6.4 Intermediate Network:
√

2 ×
√

2 Field 124

6.5 Sparse Network: 2 × 2 Field . 125

6.6 Breakdown of Energy Consumption for Dense Network 127

6.7 Comparison of Energy per Node for Dense Network 128

x

Chapter 1

Introduction

1.1 Low Power Design Challenge in Modern Embedded Systems

With the advances of transistor integration capability and System-on-Chip

(SoC) design technology, modern embedded systems can be implemented on a tiny

silicon chip. For example, the wireless sensor developed at Berkeley is in the size of

a nickel, yet it integrates almost a million transistors on chip [111]. This trend of

technology scaling makes it possible for designers to implement a sophisticated em-

bedded system on small and portable device and these portable embedded systems

have ever become more and more popular in today’s market such as cell phones,

personal digital assistants (PDA), MP3 players, digital cameras, and medical sensors

etc.

One of the major challenges for modern embedded system design is the power

efficiency. Most portable devices are sustained by batteries; in many cases, fre-

quently recharging the batteries are not possible or convenient. Although a sub-

stantial improvements have been made in battery technology, the increase in battery

capacity can not keep pace with the rapid increase of power requirements. At the

same time, the performance of embedded systems have improved dramatically and

they are burning more and more power. For example, the recent embedded pro-

cessors developed at Freescale are running at a clock frequency of 3 GHz [113]; the

1

Transmeta Crusoe processor has a maximum frequency of 1 GHz [114]. Therefore,

reducing power consumption in the embedded system has been deemed as a crucial

approach to extend the life-time of embedded systems.

The other reason that drives the low-power design solution for embedded

systems is the continuing transistor technology scaling, which follows the famous

Moore’s Law [79]. Figure 1.1 shows the trend of the number of transistors inte-

grated in microprocessors. In accordance to this trend is the power density increase

on chip as shown in Figure 1.2. As more and more transistors being integrated on the

chip, the power density is increasing dramatically, which will not only shorten the

life-time of the system, but also cause high junction temperature that may trigger

hardware failure and performance degradation.

There are two main sources of power dissipation in embedded systems: dy-

namic power and static power.

Dynamic power is caused by the capacitance charging and discharging in the

circuits. It can be described by the equation:

Pdyn = αCL · V 2
dd · f (1.1)

where α is the switching activity; CL is the effective loading capacitance of the

circuit; Vdd is the supply voltage; and f is the clock frequency.

Static power is mainly contributed by the leakage current flowing in the CMOS

circuit when it is at standby mode (there are also leakage currents even when the

circuit is switching):

2

Figure 1.1: Number of transistors on chip is doubled every 18 months as predicted

by Gordon Moore.

Pstat = Vdd · Ileakage (1.2)

where the leakage current Ileakage consists of gate leakage and subthreshold leakage.

Based on the BSIM3 MOS transistor model [112], the subthreshold leakage current

of a MOSFET can be modeled as:

Isub = Ae
q

n′kT
(VG−VS−VTH0

−γ′Vs+ηVDS)(1 − e
−qVDS

kT) (1.3)

where A = µ0Cox
Weff

Leff
(kT

q
)2e1.8; Cox is the gate oxide capacitance per unit area; µ0 is

the zero bias mobility; n’ is the subthreshold swing coefficient of the transistor; VTH0

is the zero bias threshold voltage. The gate leakage is only a small portion of the

3

Figure 1.2: Trend of increasing power density.

total leakage and is projected to be controlled by high-K material [45]. Therefore,

leakage reduction techniques are mainly focused on minimizing the subthreshold

leakage.

Traditionally, dynamic power consumption is the dominant part and many

low power techniques have been proposed to reduce it. One of the most popular

approaches for dynamic power reduction is voltage scaling. This is based on the

quadratic dependence of dynamic power on supply voltage. However, the circuit

delay is inversely proportional to supply voltage as shown in Equation (1.4):

delay ∝ Vdd

(Vdd − Vth)α
(1.4)

where α is between 1.0 and 1.2. As Vdd is scaled down, the performance of the

4

system will also decrease. In order to meet the performance requirements, threshold

voltage Vt also has to be scaled down. However, the reduction of threshold causes

exponential increase in subthreshold leakage as shown in equation (1.3.

Due to this reason, leakage power has become a significant part of power

consumption in today’s embedded system. Figure 1.1 shows that leakage is going to

be the dominant source of power dissipation in 65nm technology node and beyond.

Therefore, a holistic approach is needed to minimizing the total power in the circuit.

This enlarges the design space of power minimization in embedded system and makes

this problem even more complicated.

Figure 1.3: Trend of increasingly significant leakage power.

5

1.2 Power Minimization in Embedded System Design Flow

In order to effectively minimize power, power reduction techniques are carried

out at each level of the system design flow:

System level: Dynamic voltage scaling (DVS) is one of the most effective tech-

niques at system level. It employs an operating system (OS)-supported voltage

scheduler. Based on the workload and tasks’ deadlines, the scheduler scales the

voltage to a pre-determined level at run-time such that each task can complete be-

fore its deadline and the overall dynamic power is minimized [7, 36, 37, 38, 49, 73,

74, 83, 104]. Recently, due to the increasing significance of leakage power, leakage-

aware DVS algorithms have been proposed to minimize the sum of dynamic and

leakage power [41, 56, 108]. In addition to DVS, multiple supply voltages can also

applied statically to each functional blocks of the system [17, 91]. IBM has proposed

a voltage-island solution for System-on-Chip (SoC) design. Each block is powered

by a different voltage source depending on its performance requirement [54].

Module level: At module level, the goal of power minimization is to reduce power

consumption in functional-units and memory modules [23]. Power-aware synthesis

algorithms have been proposed in the following procedures: resource allocation (de-

ciding the numbers and types of functional units and registers available for synthe-

sis) and assignment (binding an operation to a specific instance of a functional unit)

[109], functional-unit selection (selection of a functional-unit type to implement an

operation) [27], and scheduling (determining the cycle-by-cycle behavior of a circuit

by assigning operations to control steps) [19]. The basic idea of these algorithms is

6

to (i) reduce the switching activities of functional-units when they are not on critical

paths. (ii) turn off modules whenever they are not producing useful outputs.

Gate level: Gate level power minimization are conducted through logic synthesis

procedures, with the optimization objective redefined to be power consumption.

For dynamic power minimization, the synthesis algorithms are targeted at reducing

the switching activities at the fanins and fanouts of logic gates. These techniques

include finite state machine (FSM) minimization and state encoding [8, 47, 102, 105],

boolean multi- and two-level logic optimization [14, 40], technology mapping [89],

precomputation logic [2], and retiming etc. For leakage power minimization, the

algorithms include power gating, FSM decomposition [24] , and input vector control

[18, 106] etc.

Circuit level: At circuit-level , power reduction can be further achieved by chang-

ing the characteristics of transistors and structure of the circuits. For example, one

of the approaches to reduce dynamic power is transistor sizing. By choosing the

optimal size for a subset of transistor, the overall power consumption in the circuit

can be minimized [10]. In addition, more effective leakage power minimization tech-

niques can be applied at circuit level. For example, multiple-Vth CMOS technique

inserts sleep transistors with large threshold voltage at either the Vdd or GND to

reduce the leakage current at standby mode [4, 12]; dual-Vth assigns transistors on

critical and non-critical paths different threshold voltage [96, 94]; reverse body bias

connect the gate with substrate of a MOSFET to reduce gate leakage [97].

As one can see, there are myriad options for power minimization even at one

7

level of the design. Achieving a global optimal solution across various levels in the

design flow is not possible. In fact, solution from one design level is often used as

the entry point for the design at its next level. Next subsection elucidates the design

space exploration strategy in this design flow and introduce our methodology.

1.3 Design Space Exploration and Re-Engineering

1.3.1 Design Space Exploration

Stage 2

Stage n

Design Specification

System Level

Module Level

Gate Level

Circuit Level

Stage 1

Final Solution

(a) Embedded system design flow.

Final solution

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��
��
��
��
��

��
��
��
��
��

After system level optimization

After logic level optimization

After module level optimization

Initial design space

After circuit level optimization

(b) Design space exploration.

Figure 1.4: Serial design space exploration strategy in the conventional design flow.

8

Due to the vast design space for power minimization in embedded system,

the exploration methodology usually follows a serial strategy. That is, even within

one design level, the optimization is performed in consecutive stages; the solution

from one stage is used as the base for the next stage. This strategy is shown in

Figure 1.4(a). For example, in power-driven sequential synthesis, FSM minimization

is performed first; then the minimized FSM is encoded using power-drive state

encoding algorithm.

If we view this process from a design space point of view, we can see that the

design space shrinks as the optimization proceeds and eventually, the solution will

be chosen from a restricted solution pools. This is shown in Figure 1.4(b).

In each design level, the design space is large and finding the optimal solution

is usually a NP-hard problem [26]. Therefore, many heuristic and randomized al-

gorithms are used to explore the design space. For example, a greedy algorithm is

often used to solve the binary covering problem in logic synthesis [30]; in high-level

synthesis, genetic algorithm is frequently used for resource allocation and binding

[34]. Comparing to a complete search in the original design space, applying these

algorithms in a serial fashion is much more efficient in truncating the design space

and finding the design solutions fast.

However, this approach often removes good design solutions without enough

caution. It becomes much worse when such truncation of good solutions happens in

the early design stage because the design space from the earlier stage will be used

as the initial space for later stages. In this case, the solutions obtained after the

last stage may be far off the optimal ones in the global design space. For example,

9

in sequential logic optimization level, a conventional optimization procedure is to

first minimize the number of states in FSMs followed by state encoding algorithms.

However, as it has been pointed out in [33], this serial optimization strategy may

result in inferior solutions. Based on our experimental results, the solution can be

17% worse than the optimal ones in the non-minimized FSMs.

1.3.2 Design Space Re-Engineering

In my Ph.D. work, I propose a re-engineering approach to explore the design

space efficiently and effectively at the same time. Our goal is to enhance the per-

formance of the existing low power techniques. Our approach can be described in

three phases: (1) apply the existing technique to obtain a sub-optimal solution; (2)

analyze this solution and expand the design space accordingly; and (3) re-apply the

technique to re-explore the enlarged design space.

The novelty of our approach is in the second phase when we re-construct the

design space. Particularly, we start with the analysis of the solution obtained by

the existing technique. We first evaluate the solution based on a cost function that

models the design objective. Then we study which part and what structure of the

current solution contribute most to the cost. Next, we re-construct the design space

such that the new solutions will not have such part or structure.

As the design space expansion is directed intelligently based on the analysis

of the previous solution, this approach not only provides the potential of finding

higher quality solutions, but also makes the design space re-exploration efficient.

10

Therefore, it opens doors for further optimization with relatively small run-time

overhead.

1.4 Thesis Organization

The remainder of this thesis is organized in the following way. In Chapter 2, I

demonstrate a general framework on the re-engineering methodology. Then I apply

this methodology to four low power design problems: the power-driven sequential

synthesis (Chapter 3); dual-Vth CMOS circuit design for leakage reduction (Chapter

4); gate-level input vector control for static power reduction (Chapter 5); and energy

efficient wireless sensor network design (Chapter 6). I conclude my thesis in Chapter

7.

11

Chapter 2

General Re-Engineering Methodology and Framework

2.1 A New Design Framework for Low Power

In this chapter, I will elaborate the re-engineering methodology and illustrate

the design framework using this methodology. Our focus is on power minimization;

however, this methodology can be also applied to solve other optimization problems.

Given a problem P, the design space S consists of all the solutions to P

that satisfy certain design constraints. A cost C is defined for each solution with

respect to an objective (e.g. power consumption). The optimization process aims

to find the solutions which have the least cost based on the optimization objective.

Current synthesis algorithms or tools achieve this goal via step-by-step design space

truncating; each step will reduce the design space S and the output is used as the

initial design space for the next step. The re-engineering methodology is based on

the idea that some global optimal solutions may be lost during the serial design space

constraining process. The word re-engineering means that it iteratively enlarge the

design space and re-explore it seeking for better design solutions in the optimization.

In the power minimization scenario, the solutions that consumes the least power are

desired.

The re-engineering design framework is illustrated in Figure 2.1. This three-

phase approach can be used to improve the performance of power minimization

12

Figure 2.1: Re-engineering design framework.

design tools. First, an existing design synthesis tool is applied on the problem to

obtain an “optimal” solution (i.e. the best based on the tool we use). The second

phase is re-constructing the design space based on this synthesis solution. In the

third and last phase, the re-constructed design space is re-explored for a new power

efficient design solution.

13

2.2 Re-Constructing the Design Space

The key part of the re-engineering methodology is how to re-construct the

design space. Initially, we start with solution analysis where we evaluate the solution

based on a given cost function. Such cost function is determined based on the

abstraction level of the optimization objective. First of all, such cost function must

be able to accurately reflect the optimization objective; second, it must be easy to

calculate. For example, total switching activity is often used as a cost function for

dynamic power minimization.

Then we identify the particular structure of the current solution that causes

a large cost. In fact, the solution structure is an output of the previous exploration

algorithm “truncating” the design space. During the exploration process, a certain

solution structure will be used as criteria for design space truncating. For example,

state minimization, a step in the sequential FSM synthesis, will always keep the set

of FSMs with the minimal number of states and exclude the others.

Hence, in order to remove the “bad” solution structure that results in large

cost, we need to reverse the previous synthesis steps and revise the current design

space. That is, we will enlarge the current design space in a way to include certain

solutions that may help to reduce the cost. Note that however, when enlarging the

design space, we do not expand it arbitrarily; instead, we still rely on the outputs

from the previous exploration and revisit those parts where better solutions may lie.

After the design space is re-constructed, a re-exploration is conducted on the

new space in Phase III. This exploration can use the same algorithm as in the first

14

phase; it can also be a new exploration based on the re-constructing process in Phase

II.

2.3 Application

In the rest of this thesis, I will apply this framework to several power mini-

mization problems at different levels of the design. The basic idea of solving these

problems with re-engineering methodology is described below:

2.3.1 Sequential Logic Synthesis (Chapter 3)

This problem is at the gate level of the design. The serial steps are state

minimization followed by state encoding. The state minimization step removes

equivalent and/or compatible states in the original FSMs and the design space for

state encoding is restricted to minimized FSMs. Based on the observation made in

[33] we take one step back by introducing redundant states in the minimized FSM.

We found that adding the redundant states may help the state encoding tool to find

a better design solution with smaller cost (total switching activity in this case).

2.3.2 Dual-Vth CMOS Circuit Design (Chapter 4)

The problem in dual-Vth CMOS circuit design is to assign a high and low Vth

values to transistors in the circuit in order to minimize the leakage. Conventionally,

such process is performed after an input vector is determined for the primary inputs

of the circuit. However, the input vectors also affect the leakage currents in the

15

circuit and even the best Vth assignment solution based on a given input vector

may not be as good as the one based on another input vector. In this problem,

we propose an iterative algorithm to find the best Vth assignment and input vector

simultaneously.

2.3.3 Input Vector Control for Static Power Reduction (Chapter 5)

Technology mapping in logic synthesis are often targeted at reducing dynamic

power and/or improving performance. Leakage has not been considered. However,

the leakage currents in different CMOS gates are quite different. Meanwhile, at

standby mode, leakage power can be minimized by choosing a particular input vector

to the primary inputs. Such input vector is often chosen based on an already mapped

circuit. Following the re-engineering framework, we first obtain a sub-optimal MLV

solution by a heuristic algorithm. Based on this input vector, we check the inputs

to each logic gate in the circuit and find the ones that result in the largest leakage

current. Then we replace these worst-leakage-state gates by another gate in the

library, such that the output function of the circuit remains the same, while less

leakage currents are generated. With the gate replacement, the input vector space

is re-explored to find the new MLV in the modified circuits.

16

2.3.4 Energy-Efficient Detection Scheme for Wireless Sensor Net-

works (Chapter 6)

Several detection schemes are available for wireless sensor network design at

system level. However, once a detection scheme is fixed, the power reduction at this

level is limited. We propose a hybrid detection scheme that can trade off energy

with detection accuracy. Based on the different accuracy requirements of different

applications, an more flexible and more energy efficient system can be built for the

sensor networks.

2.4 Summary

In this chapter, I demonstrate the general design flow with re-engineering

methodology. Four low power design problems are described as examples to apply

this methodology. More detailed description of each problem and our solutions are

provided in the rest chapters of this thesis.

17

Chapter 3

Power-Driven Sequential Logic Synthesis

3.1 Introduction

Finite state machine (FSM) is the most commonly used model for microcon-

troller design in embedded systems. Logic synthesis, which has the goal of converting

the symbolic description of the FSM to a hardware implementation, traditionally

starts with FSM state minimization and state encoding in order to optimize de-

sign objectives such as area, delay, and testability. For example, De Micheli et al.

[63] formulate the minimum area state encoding problem as generating a minimum

(multi-valued) symbolic cover of the FSM and propose a heuristic row encoding

technique in [64]. Villa et al. [93] use the notion of face-posets to tackle this prob-

lem and propose a state encoding technique for two-level implementation. State

encoding techniques for multi-level logic minimization have been studied in [20] and

[60] where the goal is to reduce the number of literals in the Boolean output and

next-state functions.

With the increasing popularity of portable computing and personal communi-

cation applications, power dissipation has become critical in the design of sequential

circuits. Hence, low power state encoding techniques were proposed in accordance

with the design focus shifting to low power.

In light of the well-known fact that digital CMOS circuit’s power dissipation

18

is proportional to the switching activity, state encoding is then re-formulated to

minimize the number of state bit switches per transition for low power FSM syn-

thesis. This problem is NP-hard and many heuristic algorithms have been proposed

mainly based on the idea of assigning codes with small Hamming distance to pairs

of states that have a high transition probability. Such techniques include state en-

coding with minimal code length [8, 78, 90], non-minimal code length [59, 68] and

variable code length [88]; state re-encoding approaches [28, 92] and techniques that

try to minimize power and area simultaneously [48, 69].

However, these work all start with the minimized FSM and seek for the best

encoding for the existing states to reduce switching activity. On the other hand,

there is a much longer history on the study of conducting state minimization and

assignment at one step (see, for example, [6, 31, 55]), but reducing switching activity

or power has never been the goal for any of these approaches.

As we will see in the following motivational example, the best solution that

minimizes the switching activity does not necessarily come from the minimized FSM.

A similar observation, that state encoding with the minimal code length may not

be optimal in terms of switching activity or power, has also been reported earlier

[59, 68, 88]. This motivates the proposed concept of FSM re-engineering, where

we re-construct the FSM to improve the solution’s quality. More specifically, we first

apply a FSM synthesis technique to obtain a synthesis solution; we then identify

the structure in the FSM that might prevent us from getting better solutions and

re-construct the FSM accordingly; the re-engineered FSM will be re-synthesized to

generate new (and often better) solution.

19

3.1.1 A Motivational Example

We take the example from a paper on power-driven FSM state encoding [47]

to show the potential of the proposed FSM re-engineering approach.

000

100

001

111

101

S1

S2 S3

S4

S51−/−0

10/11,01/−1
0−/11

00/11,11/0−

1−/0011/11,0−/00

00/−1,1−/10

01/1−,00/10

01/−1

10/00

��
��
��
��

��
��
��
��

1−/0001/−1

(a) Original STG with a total switching activity of 1.27

110

000

001

100 101

111S1

S2 S3

S4

S5
00/11,11/0−

11/11,0−/00

00/−1,1−/10

1−/−0

(b) The re−constructed STG with a total switching activity of 1.17

0−/11

01/1−,00/1010/00

10/00

11/11,0−/00

10/11,01/−1

S6

Figure 3.1: A 5-state FSM and a functionally equivalent 6-state FSM.

The state transition graph (STG) in Figure 3.1(a) represents a 2-input 2-

output FSM with five states {S1,S2,S3,S4, S5}. Each edge represents a transition

with the input and output pair shown along the edge. The FSM has already been

minimized.

We re-construct this FSM by introducing state S6 as shown in Figure 3.1(b).

One can easily verify that these two STGs are functionally equivalent. In fact, state

S6 is an equivalent state of S1. We then exhaustively check all the possible state

encoding schemes for both FSMs and report the one that minimizes total switching

activity in Figure 3.1 as shown next to each state.

When we calculate the switching activity, an indicator of power efficiency of

the encoding scheme, we observe that it drops from 1.27 to 1.17 (or a 7.9% reduction)

after we add state S6. Note that the encoding in the original 5-state FSM is optimal

20

obtained from exhaustive search. This implies that we lose the most energy-efficient

encoding for this FSM (and its functionally equivalent FSMs) once it is minimized!

FSM re-engineering not only gives the theoretical opportunity to build FSM

with better energy efficiency, it can also be applied to existing low-power encoding

algorithms. For example, when we use POW3 [8] instead of the exhaustive search

to encode the original 5-state FSM, it gives a coding with switching activity 18.9%

higher than the optimal. However, when we use POW3 to encode the equivalent

6-state FSM, it successfully finds a coding that is only 5.4% away from the optimal.

3.1.2 FSM Re-Engineering

FSM re-engineering refers to the procedure of re-constructing an FSM that

is functionally equivalent to a given FSM. The goal of FSM re-engineering is to

enable synthesis and optimization tools to find better solution for the given FSM

by synthesizing and optimizing the re-constructed FSMs.

In the context of low power state encoding, the proposed FSM re-engineering

approach takes an encoded FSM as input and outputs a functionally equivalent

FSM with reduced switching activity. The novelty of this approach, which sepa-

rates it from other low power state encoding and re-encoding techniques, is that it

investigates the solution space over the entire set of equivalent FSMs rather than

restricting to the minimized FSM.

FSM synthesis normally starts with state minimization, which in general re-

sults in simplier function implementation, less hardware, and shorter delay. How-

21

ever, this may not be necessary for power efficiency because power is proportional

to the switching activity, not the number of states. Leaving redundancy such as

equivalent states in the FSM can be helpful in reducing switching activity. For ex-

ample, state S1 in Figure 3.1(a) originally has four edges and contributes a lot to

the total switching activity because states S1 and S4 have the largest Hamming

distance. Duplicating state S1 solves this problem as we have seen in Figure 3.1(b).

Finally, we mention the following concerns one may have before we elaborate

our FSM re-engineering approach.

• Area and delay overhead: Implementing non-minimized FSM may require

increased hardware which may also cause area or delay overhead. However,

this is not always true. For example, a 36-state FSM and a 42-state FSM need

the same number of latches (flip flops, or state registers). Furthermore, we

mention that synthesis on minimized FSM does not guarantee the optimality

of area and delay either. One example is the one-bit hot encoding we will

mention in the next section.

• Search cost: Although quality of the solution can be improved theoretically

as we search a larger solution space, we have to pay a higher search cost. Note

that the FSM re-construction is done after the first round of synthesis and

driven by the optimization objective. Therefore, our search is actually guided

in a subset of FSMs that could yield good solutions with better chance.

In the rest of this chapter, we apply the proposed FSM re-engineering frame-

work to low power state encoding problem. However, one can apply it for optimiza-

22

tion of other design objectives such as area and testability.

Section 2 surveys the most relevant work on FSM low power state encoding

and shows their difference from the proposed FSM re-engineering framework. The

notation and problem formulation are given in Section 3. The power-driven FSM

re-engineering approaches, a genetic algorithm and a fast heuristic, are presented in

Section 4. Experimental results are reported in Section 5 and Section 6 concludes.

3.2 Related Work

Dynamic power dissipation in CMOS circuits is composed of power consumed

in sequential logic and combinational logic. Power dissipated in the combinational

logic mainly depends on the complexity of the Boolean logic functions and their gate

level implementation. Power dissipation in sequential logic is due to capacitance

charging and discharging in state registers caused by the state bits switching, which

is often described as

P =
1

2
V 2

ddf
∑

i∈sb

C(i)E(i) (3.1)

where Vdd is supply voltage, f is clock frequency, C(i) is the capacitance of the

register storing the ith state bit, and E(i) is the expected switching activity of the

ith register. C(i) is technology dependent and remains, in general, constant for all

the state bits.

There have been a number of power-driven state encoding algorithms to re-

duce the switching activity E(i) and hereby power. Roy and Prasad propose a

simulated annealing based algorithm to improve any given state encoding scheme

23

[78]. Washabaugh et al. suggest to first obtain state transition probability, then

build a weighted state transition graph, and finally apply branch and bound for

state encoding [95]. Olson and Kang present a genetic algorithm, where in addi-

tion to the state transition probability, they also consider area while encoding in

order to achieve different area-power trade-offs [69]. Benini and De Micheli present

POW3, a greedy algorithm that assigns code bit by bit. At each step, the codes

are selected to minimize the number of states with different partial codes [8]. Iman

and Pedram developed a power synthesis methodology and created a complete and

unified framework for design and analysis of low power digital circuits [40].

Unlike these power-driven state encoding algorithms, low power state re-

encoding techniques start from an encoded FSM and seek for a better coding scheme

to reduce switching activity. Hachtel et al. recursively use weighted matching

and mincut bi-partitioning methods to re-assign codes [28]. Veeramachaneni et al.

propose to perform code exchange locally to improve the coding scheme’s power

efficiency [92]. Our FSM re-engineering approach is conceptually different from re-

encoding in that we look to change the topology of the FSM, not only re-assign

codes to the existing states.

The above work takes two common assumptions, 1) they look for codes with

the minimal length, that is, the number of bits to represent a state will be ⌈log n⌉

for any n-state FSM; 2) their encoding (or re-encoding) algorithms are applied after

state minimization is done. There are a couple of recent work on non-minimal

length encoding algorithms showing that power may be improved with code length

longer than this bound [59, 68]. These methods require extra state register(s) in the

24

FSM implementation which will add to the hardware cost and cause area increase.

However, none of the papers have reported the area overhead. Our approach is

essentially different from theirs in that we do not introduce extra state bits (when

the number of states is not 2k). Therefore, the area overhead in our approach

expects to be much less. Besides, as we have mentioned earlier, our technique is

a stand-alone FSM encoding enhancement. FSM re-engineering can be applied to

non-minimal length encoding algorithms to find better solutions as well.

Finally, we mention the one-bit hot encoding where each state in an n-state

FSM receives an n-bit code with exactly one bit to be 1. This encoding scheme

can greatly simplify the logic implementation of the FSM and could also reduce the

switching activity because now every pair of states will have a Hamming distance

equal to two. However, it requires a code of length the same as the number of states

and this makes it impractical for FSMs of large size.

3.3 Preliminary

We consider the standard state transition graph (STG) representation of an

encoded FSM G = (V, E), where a node vi ∈ V represents a state si with code Ci in

the FSM M , and a directed edge (vi, vj) ∈ E represents a transition from state si to

state sj with transition probability Pij (please refer to section 4.0 for calculation of

Pij). We simplify this directed weighted graph G to an undirected weighted graph

G̃ = (V, Ẽ, {Ci}, {pij}):

• V , the set of states, which is the same as in G;

25

• Ẽ, the set of edges. An edge (vi, vj) ∈ Ẽ if and only if (vi, vj) ∈ E, or

(vj, vi) ∈ E, or both;

• Ci, the weight of node vi ∈ V , which is the code of state si;

• pij, the weight of edge (vi, vj) ∈ Ẽ, pij = Pij + Pji.

Denote H(vi, vj) as the Hamming distance between the codes, two bitstreams

Ci and Cj, of states si and sj under the given encoding scheme. The total switching

activity of the encoded FSM can be calculated as

∑

(vi,vj)∈Ẽ

pijH(vi, vj) (3.2)

Recall that two FSMs, M and M ′, are equivalent if and only if they always

produce the same sequence of outputs on the same sequence of inputs, regardless

of the topological structure of their STGs. We formally formulate the FSM re-

engineering problem as:

Given an encoded FSM M and its corresponding graph G̃ = (V, Ẽ, {Ci}, {pij}),

construct an equivalent FSM M ′ and encode it such that in the corre-

sponding graph G̃′ = (V ′, Ẽ ′, {C ′
i}, {p′ij}), we maximize the total switch-

ing activity reduction:

∑

(vi,vj)∈Ẽ

pijH(vi, vj) −
∑

(ui,uj)∈Ẽ′

p′ijH(ui, uj) (3.3)

The FSM re-engineering problem targets the re-construction and encoding of

a functionally equivalent FSM for low power FSM implementation. Clearly, it is

NP-hard because it requires the best state encoding for the re-constructed FSM M ′,

which is an NP-hard problem. Furthermore, when we restrict M ′ to be the same

26

as M , the problem becomes “determining a new encoding scheme to minimize the

total switching activity”, which becomes the existing FSM re-encoding problem.

The novel contribution of the FSM re-engineering problem is that it re-constructs

the original (minimized and encoded) FSM to allow us explore a larger design

space for power-efficient FSM encoding. In this chapter, we focus on the FSM

re-construction and defer the state encoding problem to existing algorithms. We

give an example on how to re-engineer an FSM and explain why it can reduce the

switching activity.

3.3.1 An Example of Re-constructing FSMs

We have already seen from Figures 3.1 how to add a new state to the FSM

without altering its functionality. Figure 3.2 illustrates a systematic way to do so.

We see that a new state, S ′, is added as a duplicate of state S as follows: S ′ goes to

the same next state under the same transition condition as state S; the transitions

from other states to state S in the original STG will be split such that some of them

still go to state S while the rest go to the new state S ′.

To see the advantage of this non-minimized FSM, we consider a scenario where

state S has a large Hamming distance to one of its previous states Spj and the

transition from Spj to S contributes a lot to the total cost. In the re-constructed

FSM, we can redirect the next state of this transition to S ′ and assign S ′ a code

with a small Hamming distance to Spj.

For example, in Figure 3.2, no matter which code we assign to state S, it will

27

1
Sn

Sn
k

S
2

S
3

S
4

5
S

S
6

S
1

1
Sn

Sn
k

S
2

S
3

5
S

S
6

S
1

S
4 S’

S

S

11010

10110

00111

00011

00000

11111

11010

10110

00000

00111

11110

00001

00011

11111

Figure 3.2: Re-constructing an FSM by duplicating a state S.

have a Hamming distance three or larger to at least one of its previous states. (To

see this, notice that both codes 11111 and 00000 are assigned to its previous states).

However, in the re-constructed FSM, we can assign code 11110 and 00001 to state S

and its duplicate S ′, respectively. This ensures that S will have Hamming distance

one from all of its previous states, and S ′ will have Hamming distance two from S4

and distance one from all the other previous states.

3.4 Power-Driven FSM Re-Engineering Approach

3.5 FSM Re-engineering Algorithm

In this section, we elaborate the FSM re-engineering approach by showing how

the state duplication technique can improve state encoding algorithms. We first

propose two heuristic algorithms, based on Hamming distance, on how to select a

state for duplication and how to duplicate the selected state. We then present a

genetic algorithm for state duplication to target power minimization. Finally, we

28

describe an integer linear programming (ILP) method that can find the most power-

efficient state encoding to evaluate our proposed FSM re-engineering approach.

3.5.1 A Generic Approach

Figure 3.3 outlines the proposed low power state encoding approach by FSM

re-engineering. We first compute the original FSM’s total switching activity for

a reference. Then we re-construct a functionally equivalent FSM and encode it

for reduced switching activity. We will use the state duplication technique as an

example to illustrate the three key steps for this approach:

1. select the best candidate state for duplication;

2. decide how to duplicate the selected state;

3. estimate the (maximum) switching activity reduction after the state duplica-

tion.

Yes

compute total switching activity (SW)

FSM_Reconstruct()

encode reconstructed FSM

Encoded FSM

if maximum SW
reduction > δ %

No

duplicate state(s)select a duplication strategy

SW reduction
estimate the maximum

Output FSM

Figure 3.3: FSM re-engineering for low power state encoding.

29

The strength of FSM re-engineering, as we have discussed earlier, is to improve

the performance of FSM synthesis and optimization tools/algorithms. This can be

seen from Figure 3.3 as we use the same algorithm, which gives us the input encoded

FSM, to encode the re-constructed FSM and produce the encoded FSM in the two

lower boxes. In our simulation, POW3 developed by Benini and De Micheli [8] is

used as the state encoding scheme.

In this section, we first describe the method to compute switching activity.

Next, we present a generic algorithm and a fast heuristic to select states for du-

plication. We then explain a heuristic on how to duplicate a given state. Finally,

we give an integer linear programming formulation of the problem from which the

minimum switching activity can be obtained to demonstrate the potential of the

proposed FSM re-engineering approach.

4.0 Compute FSM’s Switching Activity

As we have mentioned earlier, the proposed FSM re-engineering method seeks

for a functionally equivalent FSM that provides opportunity to a low power state

encoding scheme so that it can find coding with reduced switching activity.

According to Equation (2), the state transition probability of each edge and the

Hamming distance between the two states of each edge must be determined before

the calculation of total switching activity. The former measures how frequently each

transition occurs and the latter gives the amount that each transition contributes

to the total switching activity. The Hamming distance between the two states of

30

each transition can be conveniently determined after state encoding is performed.

To compute the transition probability, it is necessary to have the input dis-

tribution at each state, which can be obtained by simulating the FSM at a higher

level of abstraction [95]. This gives us pj|i, the conditional probability that the next

state is sj if the current state is si. Then we build a Markov chain based on these

conditional probabilities to model the FSM. The Markov chain is a stochastic pro-

cess whose dynamic behavior depends only on the present state and not on how the

present state is reached [29]. We now can obtain the steady probability Pi of each

state si corresponding to the stationary distribution of the Markov chain. The state

transition probability Pij for the transition si → sj is given by

Pij = pj|iPi (3.4)

3.5.2 Genetic Algorithm Based State Duplication

As we have seen in Figure 3.2, we make it possible to assign the same state more

than one codes, one for that state and the rest for its duplicate(s), by duplicating that

state. However, as it has also been implied in Section 3, choosing an optimal state

duplication strategy is also NP-hard. The reason is that it is necessary to encode the

duplicated states optimally first to determine whether a state duplication strategy

is optimal. This necessary condition itself is already known as NP-hard.

Figure 3.4 depicts the proposed genetic algorithm that searches for a good state

duplication strategy. First, since duplicating only a state with only one previous

state does not help in reducing the Hamming distance between this state and its

31

previous state. We eliminate all the states with only one previous state from the

queue of states to be duplicated (lines 1-3). For the 5-state FSM in Figure 3.1(a),

the candidate queue for state duplication is {S1, S3, S4, S5}.

A state duplication scheme is represented by a boolean vector of the same

length as the above candidate queue. A bit ‘1’ at the ith position of the vector

indicates that the ith candidate state is duplicated and a bit of ‘0’ means that the

scheme chooses not to duplicate this state. For example, the 6-state FSM in Figure

3.1(b), where state S1 is duplicated, corresponds to vector 1000. Each vector is

referred as a chromosome.

According to each chromosome, we duplicate the states (lines 7-9) and calcu-

late its fitness (line 10), which is defined as the total switching activity according to

that chromosome. The smaller the total switching activity, the better the chromo-

some. We start with an initial population of N randomly generated chromosomes

(line 5). Children are created by the roulette wheel method in which the probability

that a chromosome is selected as one of the two parents is proportional to its fitness

(line 13). With certain ratio, crossover is performed among parents to produce chil-

dren by exchanging substrings in their chromosomes. A simple mutation operation

flips a bit in the chromosome with a given probability known as bit mutation rate

(line 14). When the population pool is full, i.e., the number of new chromosomes

reaches N , the algorithm stops to evaluate fitness of each individual for the creation

of next generation. This process is repeated for MAX GEN times and the best

chromosome gives the optimal duplication strategy.

We will discuss how to calculate or estimate the fitness of each chromosome,

32

Genetic Algorithm

/* Traverse STG and duplicate states. */
1. for each state in STG
2. if it has more than one incoming edge
3. put it in candidate queue;
4. chromosome length = the size of candidate queue;
5. initialize N random vectors;
6. while generation < MAX GEN
7. for each chromosome vk

8. if vk[i] == 1
9. duplicate the ith candidate state;

10. vk.fitness = total switching activity;
11. do

12. sort chromosome by non-decreasing fitness;
13. roulette wheel selection to select parents;
14. crossover & mutate to create children;
15. until number of new chromosomes = N

Figure 3.4: Pseudocode: State duplication via genetic algorithm

that is, the total switching activity for a new FSM with certain states duplicated.

To calculate switching activity in each step after state duplication, one way is

to encode the re-constructed FSM and compute the total switching activity using

Equation (2) as stated above in section 4.0. This gives us the actual gain in switching

activity reduction by duplicating a set of states. When it is expensive to apply the

state encoding algorithm on the entire FSM, we use the following alternative to

locally assign the new state the “best” code (might not be feasible) and calculate

the lower bound for switching activity.

Lemma 1. Let {xi : (xi1xi2 · · ·xin)} be the set of states that have transition to/from

state s and their codes. Let pxis be the transition probability between states xi and

s. The total switching activity is minimized at state s when it has code c1c2 · · · cn,

33

where

cj =















1 if
∑

xi
pxis(1 − 2xij) < 0

0 otherwise

[Proof]. From the definition, the switching activity at the j-th bit will be

∑

xi
pxisxij if cj = 0, and

∑

xi
pxis(1 − xij) if cj = 1. Comparing these two values,

we conclude that cj should be assigned 1 if
∑

xi
pxis(1 − xij) <

∑

xi
pxisxij , which

yields the result as above.

3.5.3 Heuristic on State Selection for Duplication

While genetic algorithm can find a very good state duplication strategy, it

may take a long time to converge for FSMs of large size. In fact, the length of

chromosome (i.e., the size of the queue for states to be duplicated) can be close to

the size of the original FSM. (In the worst case, it is only two less than the number

of states.) Therefore, we propose a heuristic that select the states for duplication

efficiently.

As we have seen from Figure 3.2, states with large (average) Hamming distance

from its previous states will benefit because they will have less previous states in

the re-constructed FSM, which allows the encoding scheme to find a better code to

reduce the Hamming distance. Outgoing edges to the next states and the codes of

the next states do not have the same importance because each duplicate state will

be connected to the same set of next states to preserve the correct functionality.

34

For each state si, we define:

r(si) =
∑

(vj ,vi)∈E

H(vi, vj)/indgree(vi) (3.5)

where node vi represents state si in the STG and the sum is taken over the number

of all the incoming edges (vj, vi) at node vi.

This value measures the average Hamming distance between state si and all

its previous states. We duplicate one state at a time and each time we select the

state according to the following rules:

1. select the state with the largest r-value.

2. if there is a tie, select the state with fewer previous and/or next states.

3. if the tie still exists, break it by selecting a state randomly.

Rule 1. helps us to locate the state(s) such that state duplication can give us

large gain in reducing Hamming distance. Rule 2. helps us reduce the size of the

re-constructed FSM because each duplicated gate needs to be connected to all the

next states and some of the previous states. This could eventually help the encoding

algorithm to find a better encoding scheme.

3.5.4 Heuristic on How to Duplicate a Selected State

We now present our algorithm that duplicates the selected state. Ideally, we

want to duplicate the state in such a way that the new FSM will maximally reduce

the switching activity when encoded optimally. Apparently, this requires solving the

NP-hard state encoding problem optimally. Instead, we focus on how to duplicate

a state to minimize switching activity locally.

35

More specifically, let s be the state we select for duplication, PS and NS be

the sets of previous states and next states of s respectively in the original FSM. The

state duplication procedure 1) creates a state s′ that also has NS as its next states,

and 2) splits PS into PT1 and PT2 and make them as the previous states for s and

s′ in the new FSM. The goal of such local state duplication is to minimize

∑

t∈PT1

PtsH(t, s) +
∑

t∈NS

PstH(t, s) +

∑

t∈PT2

Pts′H(t, s′) +
∑

t∈NS

Ps′tH(t, s′)

where Pts is the transition probability from state t to state s and H(t, s) is the

Hamming distance between the two states.

The challenge is how to partition the previous states PS into two subsets.

Our solution, as shown in Figure 3.5, is based on the fact that the two states in PS

with the largest Hamming distance should belong to different partitions. We find,

in line 3, states vk and vl that have the largest Hamming distance and put them

into PT1 and PT2 as their respective centers (lines 4-5). For each of the other states

t ∈ PS, we include it to the subset whose center is closer to t (lines 6-9). After

we finish the partition, we re-compute the centers c1 and c2 of the two subsets (line

10) following the method described in Lemma 2 below. We then re-partition set

PS based on these new centers and continue if the new partition results in reduced

total Hamming distance (line 12).

The following lemmas show the correctness of this approach.

Lemma 2. In any optimal partition, state s and its duplicate s′ will have the codes

of the two centers.

36

[Proof]. Suppose that one partition has k states with codes {xi1xi2 · · ·xin :

i = 1, 2, · · · , k} and they will have state s as their next state in the re-constructed

FSM. We want to find the code c1c2 · · · cn for state s to minimize the total Hamming

distance
k

∑

i=1

H(s, xi) =

k
∑

i=1

n
∑

j=1

|xij − cj | =

n
∑

j=1

(

k
∑

i=1

|xij − cj |)

Because each bit is independent, the above is minimized if and only if
∑k

i=1 |xij −cj |

is minimized for each j = 1, 2, · · · , n. Let a be the number of 1’s in {xij : i =

1, 2, · · · , k} and b be the number of 0’s.
∑k

i=1 |xij − cj | = b if cj = 1 and
∑k

i=1 |xij −

cj | = a if cj = 0. Clearly, it is minimized when cj is defined as the majority of

{xij : i = 1, 2, · · · , k}.

Lemma 3. The optimal partition is reached in time linear to the size of set PS,

i.e., the number of previous states of state s.

[Proof]. Because of its discrete nature, every time the loop (lines 6-12) is

repeated, the total Hamming distance is reduced by at least 1. Therefore, this

loop will stop after being repeated finite times. Furthermore, the largest Hamming

distance from s (or its duplicate s′) to any state in PS is n. If there are k states in

PS, then the loop will not be executed more than kn times.

3.5.5 Determine the Minimum Switching Activity

There are two reasons for us to determine the optimal encoding scheme for

a given FSM. First, it allows us to test the quality of low power state encoding

heuristics. Second, comparing the minimum switching activity of the original FSM

37

Local Algorithm to Duplicate a State

/* Duplicate state s */
1. for each pair si and sj in PS, the previous states of s
2. compute the Hamming distance H(si, sj);
3. pick s1 and s2 s.t. H(s1, s2) = max

si,sj∈PS
{H(si, sj)};

4. PT1 = {s1}; PT2 = {s2};
5. c1 = s1; c2 = s2;
6. for each state t ∈ PS
7. if (H(t, c1) < H(t, c2))
8. PT1 = PT1 ∪ {t};
9. else PT2 = PT2 ∪ {t};
10. re-compute c1 and c2, the centers of PT1 and PT2;
11. Htotal =

∑

t∈PT1

H(t, c1) +
∑

t∈PT2

H(t, c2);

12. if (Htotal decreases) goto line 6;
13. for each state t ∈ PT1

14. add t as a previous state of state s;
15. for each state t ∈ PT2

16. add t as a previous state of state s′;
17. for each state t ∈ NS, the next state of s
18. add t as a next state of state s′;

Figure 3.5: Pseudocode: Duplicate a State

with that of the re-constructed FSM provides us insight of FSM re-engineering

approach’s potential power efficiency.

The power-driven state encoding problem can be formulated as follows: find-

ing a code xi1xi2 · · ·xin for each state xi, i = 1, . . . , k, of a k-state FSM, such that

n
∑

l=1

|xil − xjl| ≥ 1, i 6= j (3.6)

and the following (total switching activity) is minimized

∑

1≤i<j≤k

pij

n
∑

l=1

|xil − xjl| (3.7)

where pij = Pij + Pji is the total transition probability between states xi and xj as

38

we have defined earlier.

Equation (6) enforces that no two states can have the same code. Expression

(7) is the same as the switching activity given in Equation (2) because the Hamming

distance between states xi and xj is defined as H(xi, xj) =
∑n

l=1 |xil − xjl|.

We introduce (Boolean) variables d
(l)
ij = |xil−xjl| and dl

ii = 0 for 1 ≤ i < j ≤ k

and 1 ≤ l ≤ n. Equations (6) and (7) can be re-written in the following linear form:

n
∑

l=1

d
(l)
ij ≥ 1 (3.8)

∑

0<i≤j≤k

pij

n
∑

l=1

d
(l)
ij (3.9)

The definition of d
(l)
ij is equivalent to the following:

xil + xjl + (1 − d
(l)
ij) ≥ 1

xil + (1 − xjl) + d
(l)
ij ≥ 1

(1 − xil) + xjl + d
(l)
ij ≥ 1

(1 − xil) + (1 − xjl) + (1 − d
(l)
ij) ≥ 1

The problem then becomes a (0-1) integer linear programming (ILP) problem and

we can use the off-the-shelf ILP solver to solve it and thus determine the minimum

switching activity.

3.6 Experimental Results

We simulate the FSM re-engineering framework on MCNC benchmark suite

using POW3 as the low-power state encoding algorithm. For simplicity, we con-

trol the state duplication technique such that the encoding bits remains minimal.

39

Therefore, no state will be duplicated for FSMs with exactly 2k states. The 26

applicable benchmarks have states from 5 to 48. Our simulation is designed to com-

pare POW3’s performance before and after FSM re-engineering using the following

metrics: switching activity (calculated from Equation (2)), power and area (simu-

lated using SIS), overhead over the optimal (from solving the ILP problem). We

also compare the performance enhancement of POW3 by FSM re-engineering with

reported literatures on comparable cases.

Switching Activity Comparison

Table 3.1 reports the switching activity in original FSMs and the re-engineered

FSMs, both encoded by POW3. The second column is the length of the code; the

third column lists the number of states in the original FSM; the fourth column gives

the number of states duplicated by heuristic and genetic algorithm approach. In

columns 5 to 7 are the switching activities in original FSMs and FSMs re-engineered

by heuristic and genetic algorithm. Columns 8 and 9 show the switching activity

reduction in these two approaches respectively.

In the 26 benchmarks, 21 FSMs re-engineered by our genetic algorithm based

approach can achieve 0.2 to 34.4% switching activity reduction with an average

8.9% after pow3 encoding. By using our heuristic re-engineering technique, we can

reduce switching activities in 17 benchmarks by an average of 6%. We mention that

this improvement is significant. First, it is achieved over the encoding by POW3,

a state-of-the-art low power encoding algorithm. Second, POW3 itself can achieve

an average 12% switching activity reduction over area-driven encoding algorithms

40

[8]. Finally, we compare this result with one of the existing non-minimal length

low-power encoding algorithm [68] based on improvements over POW3. Column 10

and 11 list the switching activity reduction percentage reported in [68]. The table

entry filled with an asterisk means result on that benchmark is not reported in their

paper. One can see, our heuristic method outperforms their fast approach; and our

genetic algorithm based technique is better than their greedy approach.

We also notice that five benchmarks have no improvement after we re-engineer

them using genetic algorithm. The reason is that the encoding on the original FSMs

are very close to or have already achieved the minimum switching activity. For

example, POW3 generates a Gray code for bbtas, which is the optimum in switching

activity. In these cases, the genetic algorithm based strategy correctly chooses not to

duplicate any state because no duplication gives the least total switching. However,

in our heuristic approach, for two benchmarks, the algorithm duplicates one or more

states that results in negative gain in switching activity reduction. This is due to the

inaccurate estimation of switching activity reduction in the proposed algorithm (as

discussed at the end of Section 4.1). We mention that this problem can be avoided

if we run POW3 every time to decide whether a state should be duplicated.

Power and Area Comparison

As one may observe from Table 3.1, although the code length does not in-

crease, we do duplicate on average 1.7 and 2.1 states in each approach. What is

the impact of this to area and power when we implement the re-constructed FSM?

Table 3.2 reports this on the circuit implementation obtained by SIS package. We

41

Table 3.1: Total switching activity reduction on re-constructed FSMs.

Dups switching activity by pow3 red(%) red(%) in [68]
FSM Bits States

(heu/ga) orig heu ga heu ga fast greedy
example 3 5 3/2 1.5229 1.2703 1.236 16.6 18.8 * *

s8 3 5 1/2 0.2128 0.1553 0.1396 27 34.4 -16.9 0
ex3 3 5 3/2 1.2 1.075 1.068 10.4 10.9 14.1 19.5
s27 3 6 1/2 0.8866 0.8866 0.8489 0 4.3 0 0

bbtas 3 6 1/0 0.4435 0.4565 0.4435 -2.9 0 0 0
beecount 3 7 0/0 0.5027 0.5027 0.5027 0 0 0 2.1

dk14 3 7 0/1 1.1671 1.1671 1.1235 0 3.7 10.5 10.5
ex5 4 9 2/2 1.1972 1.0442 1.0442 12.8 12.8 0 0
lion9 4 9 2/1 0.5626 0.4571 0.4984 18.8 11.4 20 20
ex7 4 10 1/1 1.0085 0.9487 0.9487 5.9 5.9 0 0

bbara 4 10 0/0 0.3 0.3 0.3 0 0 3.3 6.7
train11 4 11 1/1 0.5540 0.5087 0.5087 8.2 8.2 0 0

modulo12 4 12 2/2 0.5833 0.5 0.5 14.3 14.3 * *
mark1 4 12 1/1 0.9493 0.9342 0.9195 1.6 3.1 -4.3 -2.2
ex4 4 14 1/0 0.5921 0.6074 0.5921 -2.6 0 7.7 7.7

dk512 4 15 1/1 1.6012 1.4167 1.357 11.5 15.3 7.4 19.6
s208 5 18 13/0 0.4751 0.4751 0.4751 0 0 * *
s1 5 20 1/8 1.2535 1.1986 1.1633 4.4 7.2 3.8 15.8
ex1 5 20 2/3 0.9823 0.9366 0.8597 4.7 12.5 0.8 2.4

donfile 5 24 3/6 1.5208 1.3906 1.3657 8.6 10.2 -13.6 -6.4
pma 5 24 0/1 0.9112 0.9112 0.8495 0 6.8 * *
dk16 5 27 2/2 1.9169 1.849 1.7512 3.5 8.6 1.6 9.2
styr 5 30 2/2 0.5302 0.5239 0.4325 1.2 18.4 1.7 6.8
s510 6 47 1/4 0.9245 0.8868 0.8113 4.1 12.2 * *

planet 6 48 1/8 1.5268 1.4375 1.3469 5.8 11.8 10.8 20
s1488 6 48 0/5 0.3462 0.3462 0.3455 0 0.2 * *

Average switching activity reduction 6.0% 8.9% 2.5% 6.9%

use the standard script.rugged to simplify the circuits and lib2 library for technology

mapping. The area is obtained by map -s command. The power is measured in µW

using the sequential power estimation package in SIS, assuming a 5V power supply

and 20MHz clock frequency.

We are able to get the area and power information from SIS on 14 benchmarks

as reported in Table 3.2. We see that an average 7.9% power reduction is achieved

at the cost of only 1.3% area increase in the FSMs reconstructed by genetic algo-

rithm. Interestingly, more than one third of the circuits have area reduced after

42

state duplication. The negative power reduction occurs when the power increase in

the combinational part of the circuits exceeds the reduction in the sequential part.

Again, we compare our power-saving results with the data reported in [68].

The comparison is made based on the improvement in dynamic power consumption

in SIS. We copied their results from [68] and listed in column 8 and 9. An asterisk

in a cell means the power improvement data is not reported in the paper for that

benchmark. We see that our methods can achieve greater power-saving improve-

ments over POW3 in almost all the benchmarks than both approaches presented in

[68]. Even though, in their paper, they reported an average 17% power improvement

over all of their benchmarks, however, this number is from the better one of their

two different encoding schemes and is achieved at the cost of increased code length

(or equivalently, the number of state registers) and the area change is not reported.

Comparison with Optimal Encodings

For a subset of benchmarks, we are able to find the optimal encodings for

both the original and the re-constructed FSMs. This allows us to quantitatively

judge the quality of the encodings obtained by POW3. Figure 3.6 depicts the

switching activity of optimally encoded new FSM, POW3’s encoding on the new

FSM (produced by both heuristic and genetic algorithm), and POW3’s encoding on

the original FSM (from bottom to top). These numbers are all normalized to the

switching activity of the original FSM with the optimal encoding.

We see that although FSM re-engineering has the potential to reduce the

minimum switching activity by only 2.5% on average, the power efficiency of POW3

43

Table 3.2: Area and power comparison between original FSM and reconstructed
FSM

Area increase Power (µW) decrease Power decrease in [68]
Circuit

orig. re-eng. % orig. re-eng. % fast greedy

example 43616 44544 2.1% 280.4 287.7 -2.6% * *

ex3 46400 50112 8% 314 282.5 10% 5.2% 7%

ex5 70528 80272 13.8% 405.2 467.9 -15.5% 0% 0%

lion9 38976 45472 16.7% 178.3 165.7 7.1% 2.1% -3.5%

ex7 78416 70064 -10.7% 405.8 287.7 29.1% 11.1% 14.6%

train11 47792 49184 2.9% 212.3 172 19% 12.3% 24.5%

mark1 94656 99760 5.4% 280.7 316.9 -12.9% -4.2% -21.3%

dk512 79344 81200 2.3% 430.1 408.1 5.1% 3.3% 11.7%

s1 321088 313664 -2.3% 1388.7 1210.1 12.9% * *

ex1 234784 213904 -8.9% 744.9 643.5 13.6% 6% -10%

dk16 282112 254736 -9.7% 1547.3 1341.7 13.3% 4.8% 9.6%

styr 407856 421312 3.3% 1347.6 1213.1 10% * *

s510 302064 283040 -6.3% 923.1 799.7 13.4% * *

planet 504832 514112 1.8% 2042.1 1881.3 7.9% * *

Average 1.3% 7.9% 4.5% 3.6%

is greatly enhanced. From Figure 3.6, POW3 finds codes for the original FSMs

that have switching activity from 11.6% to 48.6% higher than the optimal with

average 27.0%. However, when we encode the new FSMs (by heuristic and genetic

algorithm) using POW3, the average overhead drops to 12.1% and 6.7%. It even

finds an coding that achieves the optimal in ex3 and codings better than the original

optimal in benchmarks example, s8 and lion9.

3.7 Summary

The concept of FSM re-engineering is introduced in this chapter. It is a generic

framework for FSM synthesis based on the observation that minimizing the number

of states in an FSM may lose the optimal solutions, or make it harder to find such

44

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

N
o

rm
a

li
z
e

d
 S

w
it

c
h

in
g

 A
c

ti
v

it
y

Pow3 SW in orig FSM

Pow3 SW in new FSM(heu)

Pow3 SW in new FSM(ga)

Opt SW in new FSM

example s8 ex3 ex5 lion9 ex7 train11

Figure 3.6: Switching activity of POW3’s encoding schemes on the original and re-

constructed FSMs and the optimal encoding (Opt) on the new FSMs. Normalized

to the optimal encoding on the original FSMs.

solutions, for many FSM related optimization problems. To keep the discussion

concrete, we study the low power state encoding problem by using a state duplication

based FSM re-engineering technique. Our technique does not necessarily provide

a power efficient state encoding scheme. Instead, we demonstrate its strength in

enhancing the performance of any given power-driven encoding algorithms. We

apply this on MCNC benchmark using POW3 as the encoding tool. Experimental

results show that POW3’s power in reducing circuit’s total switching activity has

45

almost been doubled by the proposed FSM re-engineering approach. Simulation on

SIS indicates that an average 7.9% power reduction is achievable with only 1.3%

area increase and no additional state registers. We further use an integer linear

programming formulation to identify the optimal coding that achieves the minimum

switching activity, where we find that the re-engineered FSMs have better optimal

codes.

46

Chapter 4

Dual-Vth CMOS Circuit Design for Leakage Reduction

4.1 Introduction

Many of the portable embedded systems often remain in standby mode for a

considerable amount of time and dissipate leakage power during such idle period.

Leakage power has also increased exponentially in the recent years due to technology

scaling and can reach as high as 50% of the total chip power at 65nm technology. As

a result, many leakage reduction techniques have been proposed recently [43]. For

example, dual threshold voltage process uses devices with higher threshold voltage

along non-critical paths to reduce leakage current while maintaining the performance

[96]; Multiple-threshold CMOS (MTCMOS) technique places a high Vt device in se-

ries with low Vt circuitry, creating a sleep transistor [4, 12, 65]; in dynamic threshold

MOS (DTMOS) [5], the gate and body are tied together and the threshold voltage

is altered dynamically to suit the operating state of the circuit; controlling the body

bias voltage to minimize leakage is discussed in [66]; leakage minimization for cache

design is proposed in [45].

In this chapter, we propose an integrated approach that simultaneously con-

siders both dual threshold voltage and input vector in a single optimization loop.

Dual threshold voltage (Vt) technique uses two sets of library gates: one implemented

with low Vt transistors that have smaller propagation delay but higher leakage power,

47

and the other with high Vt transistors that have larger delay and lower leakage. In

dual Vt design, low Vt gates are placed on the critical paths to guarantee the tim-

ing/speed and high Vt gates are used on non-critical paths to reduce leakage. This

technique has exhibited excellent results in leakage power reduction while meeting

the performance requirements.

Input vector control is another effective approach to static leakage power re-

duction. It is based on the transistor stack effect – the leakage current in CMOS

gates depends (heavily) on the inputs on the gates. For instance, a 2-input NAND

gate with input ’11’ has more than 30 times higher leakage than the same gate with

input ’00’ (see Table 4.1). The input vector control technique seeks for an input

vector that minimizes the circuit’s total leakage and applies it whenever the circuit

is idle. Many algorithms have been proposed to find such minimum leakage vector

(MLV) (see a brief survey in Section 2).

Table 4.1: Leakage current (nA) in high-Vth (0.48V) and low-Vth (0.33V) two-input
NAND gates at different inputs from SPICE simulations.

INPUT @ Low-Vth @ High-Vth Leakage reduction
0 0 0.19 0.01 0.18
0 1 1.87 0.05 1.82
1 0 1.22 0.03 1.19
1 1 6.27 0.34 5.93

At standby mode, both techniques can be applied to reduce the static leakage

power. For dual Vt design, each gate has the option of being implemented with low

Vt or high Vt. For input vector control, each primary input signal can either ’0’

or ’1’. This yields a design space that is exponential to the total number of logic

gates and primary inputs, which is prohibitively large for any complete search [58].

48

The following example shows how the leakage can be reduced by applying these two

techniques separately and together.

4.1.1 A Motivational Example

0.34nA

Low−Vt gate

1

1

1

High−Vt gate

P1

P2

P3

P4

P5

1.87nA

1

0 0.34nA

0

1

0

1
1.22nA

1

1

1.22nA

1.87nA

1G

G2

G

G G

G

3

4

5

6

(a) On a random input vector; the total leakage reduces from

18.72 nA to 6.86nA.

1

1

1

0

1 1

1

0.01nA

0.19nA

1.22nA

0.34nA

1.87nA

0.03nA

Low−Vt gate 0

High−Vt gate

P1

P2

P3

P4

P5

0

0

0

G2

G

G G

G

3

4

5

6

G1

(b) on the minimum leakage input; the total leakage reduces

from 10.96 nA to 3.66nA.

Figure 4.1: Dual-Vth assignment for circuit C17 and its impact on leakage reduction.

We consider the same ISCAS benchmark circuit C17 used in [106] as shown

49

in Figure 4.1(a). Existing dual Vt assignment algorithms are conducted based on

a given input vector such as a random input vector, the MLV obtained from any

input vector control technique, or statistic values on the inputs. For example, on

input vector ’10100’, the total leakage when we put low Vt (0.33V) on all the gates

is L0 = 18.72nA. Assuming that we can increase Vt of one gate to 0.48V on each

path without violating the timing requirement, an exhaustive search for the dual

Vt assignment will assign gates G5 and G6 to high Vt, resulting in a total leakage

L1 = 6.86nA.

Meanwhile, exhaustive search on all the 32 input vectors indicates that the

MLV is ’00010’. The circuit’s total leakage with all gates at 0.33V is L2 = 10.96nA.

When we combine these two techniques by applying the dual Vt approach under the

MLV, gates G1, G3, and G4 will be assigned 0.48V as shown in Figure 4.1(b). The

total leakage reduces to L3 = 3.66nA.

Finally, our proposed simultaneous dual Vt and input vector assignment finds

the same dual Vt assignment as shown in Figure 4.1(b) with a different input vector

’00011’. This solution has a total leakage 2.29nA, 38% less L3, the result when we

exhaustively search MLV and then assign dual Vt. It is also the overall optimal solu-

tion when we exhaustively search for input vector selection and dual Vt assignment

simultaneously.

50

4.1.2 Main Idea and Contribution

From the above example, we see that none of the dual Vt assignment or the

MLV selection or a simple serial combination of the two will be able to find the

optimal solution for leakage reduction. Repetitively applying MLV selection and

dual Vt assignment could improve the quality of the solution. However, due to

the high complexity of both dual Vt assignment and MLV search algorithms, such

iterative strategy will take extremely long time before it converges and therefore is

not practical for large circuits.

Our proposed heuristic approach exploits the interdependency of input vector

and dual Vt assignment by considering them simultaneously in a single optimization

loop. It is based on the following two observations:

• First, raising Vt has very different impact on the leakage reduction for the

same gate with different inputs. As shown in the last column of Table 4.1,

when we increase the Vt for the NAND2 gate from 0.33V to 0.48V, the leakage

reduction is 5.93 nA under inputs ‘11’, but only 0.18nA when the inputs are

‘00’.

• Second, according to a recent study on all the MCNC and ISCAS benchmarks

[106], even after selecting input vectors carefully, more than 40% of the cir-

cuit’s total leakage are dissipated on gates with inputs that make these gates

dissipating the most leakage, although there are only about 15% such gates.

The first observation suggests that the effectiveness of dual Vt technique is

directly related to the input vector and it is beneficial to assign high Vt to gates

51

with inputs that make these gates dissipating the most leakage, which are referred

to as gates at their worst leakage state (WLS). The second observation suggests that

significant amount of leakage can be reduced by controlling only such WLS gates.

In our approach, we determine whether to assign ’0’ or ’1’ to each primary

input one by one. When making this decision, we consider the dual Vt option and

assign high Vt to certain gates. After all the primary inputs get a value, we obtain

an input vector. Under such input vector, we apply an existing dual Vt algorithm

[94] to assign Vt to the gates that have not received Vt.

The key contribution that separates our approach from the dual Vt assign-

ment and input vector selection algorithms is the seamless integration of these two

techniques. Comparing with the serial combination of an input vector selection

algorithm and the dual Vt assignment algorithm [94], we are able to achieve an aver-

age leakage reduction of 12% and 19% on popular ISCAS and MCNC benchmarks,

respectively. The worst case run time for our approach is O(k2 · n2), where k is the

number of primary inputs and n is the number of logic gates.

4.1.3 Chapter Organization

The rest of the chapter is organized as follows: Section 2 reviews the related

work in dual Vt assignment and input vector control. In Section 3, we present our

algorithm and analyze its performance. In Section 4, we report the experiment

results. We conclude the chapter in Section 5.

52

4.2 Related Work

A dual-Vt assignment algorithm is presented in [96] where the Vt assignment

is done at the logic gate level, i.e., all transistors in a gate are either assigned high

Vt or low Vt. Their approach starts with all gates at low Vt; a breadth-first traversal

is performed on the circuit from the primary inputs to the primary outputs. Each

gate is examined and assigned high Vt if it does not violate the timing constraints

in the circuit. This greedy algorithm may preclude many solutions where another

set of other gates on and off critical paths could have been assigned high Vt with

more leakage reduction and no performance degradation. A more effective approach

is proposed in [94], where the problem of dual Vt assignment is formulated as the

Max-Cut problem in a weighted direct cyclic graph. A heuristic is used to partition

the circuit graph according to the logic topological level of the gates. Dual Vt

assignment is conducted on gates that are at one level at a time. Furthermore, a

dual-Vt assignment algorithm together with supply voltage scaling and gate sizing is

proposed in [87]. Their approach creates extra slack at some gates via gate sizing and

voltage scaling; a Vt assignment is then carried out simultaneously. More recently,

a dual-Vt design method for FPGAs is studied in [52].

On the other hand, input vector control for leakage minimization has also

received plenty of attention. This problem is shown to be NP-complete in [106].

A random search algorithm is proposed in [32]. The underlying transistor stack

effect that causes leakage dependency on inputs are explained in [42]; a greedy

heuristic algorithm is also proposed to assign the inputs. In [77]. the authors

53

developed a heuristic algorithm based on node controllability. It can achieve a fairly

good results with much shorter run-time. In addition to the heuristic approaches,

an integer linear programming (ILP) approach has been adopted in [25] to attack

this problem. Furthermore, pseudo boolean enumeration method for input vector

assignment is described in [18].

All the above works address the dual Vt and input vector assignment separately.

In [58], the simultaneous Vt and input vector assignment is considered. The authors

formulate the problem as search in a nested binary tree: one for dual Vt assignment

and the other for input vector assignment. A branch-and-bound approach is taken

in the search. It must be pointed out that even a lower bound computation method

is given, no results are reported using the complete branch-and-bound method due

to its infeasibility for large circuits. Instead, two heuristics are proposed: heuristic 1

only does one downward traversal based on the lower bound; heuristic 2 traverses the

input assignment search tree subject to a fixed runtime constraint, while the dual-Vt

gate assignment search tree is kept to a single downward traversal. Our algorithm

differs from their’s in following aspects: first, their dual-Vt assignment does not

exploit the circuit topology and the greedy single downward traversal may preclude

many possible good Vt configurations; second, their algorithm target at assigning

Vt to transistors in the gate, our Vt assignment algorithm is restricted at logic gate

level. The key advantage of our approach is that we leverages circuit topology and

the fact that most of the leakage power are produced by a small portion of gates in

their worst leakage states.

54

4.3 Simultaneous Dual Vt Assignment and Input Vector Selection

In this section, we will describe the dual Vt assignment and input vector se-

lection problems, explain the intuition and the challenge for conducting these two

problems simultaneously, and demonstrate our algorithm.

4.3.1 Dual Vt Assignment

The dual Vt assignment problem can be stated as: given a combinational circuit

with a timing constraint at the primary outputs and a technology library with high-Vt

and low-Vt gate implementations, map each gate in the circuit to either the low-Vt

or the high-Vt implementation, such that the delay of the circuit satisfies the timing

requirement and the total leakage power is minimized.

To compute the delay of the circuit, a static timing analysis is performed.

Typically, the arrival time at the primary inputs are set to be zeros. Following the

topological order, the arrival time at each gate g is computed as the maximal arrival

time of its fanin gates plus the propagation delay at g. The delay of the circuit is

the maximal arrival time at the primary outputs. Similarly, given a required time

at the primary outputs, the required time at each gate can be calculated following

the reverse topological order: the required time at each gate g is the minimum of

the required time at its fanout gates i minus the propagation delay in i. In addition,

a slack is associated with each gate g, which is defined as the required time minus

the arrival time at g.

When the threshold voltage Vt of a CMOS gate is changed from low Vt to high

55

Vt, the leakage current in the gate is reduced significantly at the cost of increased

propagation delay. If the delay constraint at the gate is still satisfied (i.e., the delay

increase is within the slack), the assignment of high Vt to that gate is said to be

feasible. The challenge is, whenever a gate g is assigned Vt high, the slacks of all

the other gates on the paths that pass through g will be affected, and it is not clear

which gate should be assigned Vt high to maximize the leakage reduction.

In [94], a levelization-based heuristic algorithm is proposed. Given a combi-

national circuit, the level of a primary input is zero and the level of a gate is one

more than the maximum of the levels of all its fanin gates. The circuit is partitioned

into k partitions with all the gates in one partition having the same level. Initially,

all the gates in the circuit are assigned low Vt. Then high Vt are assigned to those

gates that can achieve the maximal leakage reduction while satisfying the delay con-

straints. This assignment is conducted at one level of gates at a time. If the sum of

leakage reduction in feasible gates at that level is the largest, the gates at that level

will be assigned high Vt first. The advantage of this level-based Vt assignment is

that all the feasible gates at one level simultaneously without violating the timing.

In this case, only one static timing analysis is needed after each Vt assignment for

one level.

4.3.2 Input Vector Selection

The input vector selection problem can be stated as: given a combinational

circuit and the leakage current of each gate under different input combinations,

56

determine an input vector at the primary inputs (PIs) such that the total leakage

current of all the gates in the circuit is minimized. The obtained input vector is

referred as the minimum leakage vector (MLV).

A complete survey of the different approaches to solve this problem can be

found in [106]. Here we give two definitions, leakage observability and worst leakage

state, both of which will be used when we elaborate our approach on simultaneous

dual Vt assignment and input vector selection.

As we have shown in the previous sections, leakage current in a circuit depends

on the input vector at its PIs. To measure the impact of the value at one PI on the

circuit’s total leakage, the term “leakage observability” has been defined in [42]. In

this chapter, we will extend this definition to circuit with dual Vt technology.

Definition 1. Leakage Observability: given a partially assigned input vector ~w, the

leakage observability of a PI pin i is:

Lobs(i, w) =















0 if i ∈ ~w;

|Lavg1(i, ~w) − Lavg0(i, ~w)| otherwise.

(4.1)

where Lavgv(i, ~w) is the portion of total leakage in the circuit attributable to PI pin

i being forced to the value v (v = 0 or 1).

To compute Lavgv(i, ~w), we need to calculate Lavgv
n(i, ~w) for each gate n. For

a single gate, Lavgv
n(i, ~w) is the average leakage for all possible input states of gate

n, given that part of PIs that belong to vector ~w have been assigned and PI pin

i is assigned value v. Consider the NAND2 gate G3 in Figure 4.1(a). When ~w =

{11xxx}, Lavg0
3(3, ~w) = 1

2
· (L(3, ‘11′)+L(3,′ 10′)) and Lavg1

3(3, ~w) = 1
2
· (L(3, ‘01′)+

57

L(3,′ 00′)), where L(k, ~u) represents the leakage of a gate k under the input ~u.

In a circuit with dual-Vt technology, Vt becomes another necessary parameter

to calculate the leakage. For each gate in the library, a SPICE simulation can be

conducted at priori to estimate the leakage current in each gate with both high

Vt and low Vt implementation for each of the possible input values. These leakage

current values can be stored in a look-up table.

Definition 2. Worst Leakage State (WLS): when the inputs to a gate g results in

the largest leakage among all the possible inputs, it is said that g is in the WLS or

g is a WLS gate.

Due to the stack effect, when a gate is in the WLS, its leakage current is much

higher (in the order of 10X) than the same gate with other input states. In [106], it

is observed that in the MCNC and ISCAS benchmarks, WLS gates account for only

about 15% of the total gates, but account for more than 40% of the total leakage

current. Therefore it is promising to focus the leakage reduction on the WLS gates

and a gate replacement technique is proposed to reduce WLS gates, and hence the

total leakage, in the circuit.

4.3.3 Combining Dual Vt Assignment and Input Vector Selection

With both the dual Vt option and input vector control, we can expect higher

leakage reduction by solving the following problem: given a combinational circuit

with a timing constraint at the primary outputs, a technology library with high-Vt and

low-Vt gate implementations and their corresponding leakage current under different

58

input combination for each logic gate, select a value for each primary input and

assign a Vt for each logic gate such that the delay of the circuit satisfies the timing

requirement and the total leakage is minimized.

As we have seen in the motivational example, dual Vt assignment and input

vector selection alone will not give us the optimal solution due to their assumptions:

In input vector selection, we need to know the Vt assignment for each individual

gate because the leakage currents are different at different Vt. This implies that we

need to perform dual Vt assignment first. On the other hand, the dual Vt assignment

algorithms need to assume an input value for each gate due to the stack effect as

shown in Table 4.1, which suggests that the input vector needs to be decided first.

A simple combination of the two approaches also fails to find the optimal solu-

tion. Another approach is to iteratively repeat an input vector selection algorithm

and a dual Vt assignment algorithm until there is no more leakage reduction can be

achieved. However, the search space for input vector selection is 2k, where k is the

number of PIs; and that for the dual Vt assignment is 2n, where n is the number of

gates in the circuit; the time for this iterative improvement approach to converge is

not clear either. Therefore, this approach is not practical.

The challenge remains as how to combine these two leakage reduction tech-

niques efficiently and effectively.

59

4.3.4 Algorithm Description and Analysis

Our approach selects the value for each PI one by one and explicitly looks for

WLS gates and aggressively assigns them high Vt as long as the timing constraint

is not violated. This is based on the following facts: (1) the input values determine

whether a gate is at its WLS or not; (2) a gate at WLS dissipates large amount of

leakage; (3) applying high Vt to a WLS gate saves more leakage.

Input: gate-level circuit L; two threshold voltage Vt−Low and,
Vt−High.

Output: a minimum leakage input vector to the circuit L∗ with dual
Vt assignmeng.

Simultaneous Vt and MLV Assignment Algorithm:

1. assign Vt−Low to each gate g in L;
2. while there are unassigned primary inputs (PI)
3. for each unassigned PI i
4. set the value of i, val(i) = 0;
5. propagate val(i) = 0 in the circuit;
6. while there are gates in WLS
7. extract the first WLS gate gj from the WLS list;
8. if(assign(gj , Vt−High) == TRUE)
9. update slack using static timing analysis
10. Lavgi(L, 0) = total leakage in the circuit

11. set val(i) = 1;
12. repeat lines 5 to 9 with val(i) = 1
13. Lavgi(L, 1) = total leakage in the circuit;
14. Lobs(i) = |Lavgi(L, 0) - Lavgi(L, 1)|;
15. k = the index of PI with the largest Lobs(i);
16. set the value of the kth PI to be the one with smaller Lavgi;
17. apply dual Vt assign on the rest of circuit;

Figure 4.2: Pseudo-code of the simultaneous dual Vt assign and input vector selection
algorithm.

Figure 4.2 gives the pseudo code of our algorithm. The program starts with

all the PIs unassigned and all gates at low Vt (line 1). Then it assigns PI pins one at

a time based on the leakage observability at the PIs to obtain an input vector (the

60

outer while loop from line 2 to line 16). Specifically, for each PI, we try both input

values 0 and 1. A logic simulation is performed to propagate that value throughout

the circuit (line 5). Meanwhile we can collect all the WLS gates in the circuit into

the list. We remove the WLS gates one by one from the list and assign them high

Vt if such assignment will not violate the timing constraint (the inner while loop

from line 6 to line 9). When there are no WLS gates left in the list (there may

still be WLS gates remaining in the circuit, these WLS gates cannot be assigned

high Vt due to timing violation), we stop and compute the average leakage of the

circuit (line 10). Similarly, we can calculate the average leakage for the PI taking

the other opposite value (lines 11 and 12). We compute the leakage observability for

each PI (line 14) and find the one with the largest leakage observability (line 15).

We assign this PI the value, ’0’ or ’1’, that results in smaller average leakage (line

16). Consequently, all the high Vt assignment based on this value propagation are

finalized. This procedure repeats until all the PIs have been assigned. At the end, a

standard dual Vt assignment method can be performed on the circuit to assign the

rest of gates high Vt, if possible (line 17).

Algorithm complexity analysis

Let k and n be the number of PIs and the number of logic gates in the circuits,

respectively. Propagating an input value to the entire circuit in line 5 takes O(n)

time. The timing analysis in line 9 takes O(n) time assuming that we have built a

topological order of the gates outside the while loop. The number of WLS gates is of

61

O(n), so the complexity of the inner while loop (lines 6-9) is O(n2). Calculating the

total leakage in line 10 takes O(n) time. Lines 12 and 13 have the same complexity

of lines 5-10. Finding the PI pin with the largest leakage observability in line 15

takes O(k) time. The for loop (lines 3-16) repeats for each unselected PI and is

bounded by O(k). Each iteration of the outer while loop (lines 2-16) will determine

the value of one PI, so it will be repeated no more than k times. Therefore, the

worst case run time of this algorithm is O(k2 · n2).

Run time improvement

There are several ways to improve the run time of the above algorithm. For

example, the timing analysis step in line 9 is time consuming and the above algorithm

performs timing analysis for each WLS gate. We can reduce this partitioning the

WLS gates by their levels as defines in [94] and explained in Section 3.1. Then

we only need to do one timing analysis for all the WLS gates in the same level.

This reduces the run time for the inner while loop (lines 6-9). Another possibility

is to calculate the leakage observability without performing the high Vt assignment.

Then we do the timing analysis only on the selected PI, the one with the largest

leakage observability, to decide which value we will assign to this PI. This takes the

timing analysis out of the for loop (lines 3-16) and will reduce the overall run time

complexity from O(k2 · n2) to O(k · n2).

62

Table 4.2: Leakage current (nA) in the library gates.

Gate Type Input Low Vth High Vth

0 1.87 0.05
INV

1 3.14 0.17

0 0 0.19 0.01
0 1 1.87 0.05
1 0 1.22 0.03NAND2

1 1 6.27 0.34

0 0 3.75 0.20
0 1 2.41 0.14
1 0 3.14 0.17NOR2

1 1 0.67 0.05

Table 4.3: Propagation delay (ns) in the library gates.

Gate Type Low Vth High Vth

INV 0.13 0.22

NAND2 0.16 0.27

NOR2 0.18 0.30

4.4 Experimental Results

We implemented the simultaneous dual-Vth and input vector assignment al-

gorithm in SIS [86] and ran the simulation on a Sun Ultra 5.10 workstation with

256MB memory. Ten MCNC [115] benchmark circuits and eleven ISCAS [39] bench-

mark circuits are used to test our algorithm; these circuits are implemented with the

same technology library used in [94]. The leakage current and average propagation

delay in each library gates are shown in Table 4.2 and 4.3 respectively.

All the gates in a circuit are initially assigned low Vth. The largest arrival time

at the primary outputs is used as the timing constraint for the circuit. We first

obtain an MLV to the circuit by uniformly generating 50,000 random input vectors

and choosing the one that results in the minimum total leakage. We select 50,000 in

63

Table 4.4: Comparison of individual MLV and Vth assignment with simultaneous
MLV and Vth assignment algorithm on MCNC benchmarks in terms of runtime and
leakage. The red(%) column reports the reduction over the combined serial randome
MLV search and Vth assignment.

50K Random Search Dual-Vth on MLV Simultaneous Vth and MLV.
Circuit # PI # Gate

runtime leakage runtime leakage runtime leakage red(%)
i1 25 52 27.6 86.9 0.1 38.5 0.3 36.0 6%
i2 201 242 133.85 411.6 3.6 262.4 75.1 145.6 45%
i3 132 132 81.4 302.9 0.1 296.4 19.0 240.2 19%
i4 192 308 161.3 672.2 3.3 270.5 75.9 201.3 26%
i5 133 445 218.9 972.5 4.9 932.9 51.2 619.7 34%
i6 138 764 353.05 1354.7 6.1 1103.3 85.4 1056.7 4%
i7 199 1011 465.55 2133.8 10.4 1695.6 367.0 1265.1 25%
i8 133 3764 1836.5 8400.2 45.4 5440.5 693.0 5004.0 8%
i9 88 1218 554.75 2603.2 13.5 1525.4 58.1 1535.1 -1%
i10 257 3366 1647.25 8499.3 100.9 1736.4 1526.6 1340.1 23%

Average 548.0 18.8 295.2 19%

order to ensure that the random search strategy runs at least as long as our approach

for a fair comparison. It has also been shown that with a 99.3% confidence ratio, the

number of input vectors that have smaller leakage current is less than 0.01% of the

entire vector space. Based on the MLV, the levelization-based dual-Vth assignment

algorithm [94] is applied on the circuits driven by the MLV. We report the results

in terms of total leakage current and CPU runtime in this case; and compare them

with the ones achieved by our simultaneous dual-Vth and input vector assignment

algorithm in Table 4.4 and 4.6, for the MCNC and ISCAS benchmarks, respectively.

Table 4.4 reports the results in ten MCNC benchmarks. The first column lists

the circuit names; the second column lists the number of PIs in each circuit and

the third column lists the number of gates after technology mapping. The fourth

and fifth column show the runtimes and total leakage by the 50K random search

MLV algorithm; the next two columns show the runtimes and leakage after dual-

64

Table 4.5: Number of gates in the worst leakage state (# WLS), number of WLS
gates at high Vth (# WLS*), and the total number of gates assigned high Vth (#
VthH) in MCNC circuits with serial dual-Vth assignment and with simultaneous
dual-Vth assignment and input vector control.

dual-Vth based on MLV Simultaneous Vth and MLV Assign.
Circuit

WLS # WLS* # VthH # WLS # WLS* #VthH

i1 2 1 32 3 2 32

i2 31 12 75 7 1 75

i3 1 0 4 0 0 4

i4 34 19 212 24 19 212

i5 36 2 19 28 24 40

i6 31 2 220 31 2 220

i7 103 3 248 95 59 299

i8 481 183 1434 480 230 1473

i9 81 11 566 80 10 531

i10 477 393 2845 462 446 2862

Vth assignment algorithm is applied based on the MLV. One can see that dual-Vth

algorithm can achieve an average 35% leakage reduction in the circuit.

The last three columns show the results achieved by the simultaneous Vth and

input vector assignment algorithm. The runtimes are in the same order of the serial

approach (i.e., random MLV search followed by dual-Vth assign); the total leakage

is 48% smaller than that with MLV only and 19% smaller than that with the serial

MLV and dual Vth assignment. This means by assigning Vth concurrently with input

vector, we can improve the performance of dual Vth technique by 37% on average.

This improvement comes from the reduction of the number of WLS gates that

are at low Vth, which is reported in Table 4.5. The second to fourth columns show the

number of gates in WLS (#WLS), the number of WLS gates that are assigned high

Vth (# WLS*) and the total number of gates assigned high Vth (# VthH) in circuits

with dual-Vth assignment following MLV. We found that on average 11% of the

65

Table 4.6: Comparison of individual MLV and Vth assignment with simultaneous
MLV and Vth assignment algorithm on ISCAS benchmarks in terms of runtime and
leakage. The red(%) column reports the reduction over the combined serial randome
MLV search and Vth assignment.

50K Random Search dual-Vth on MLV Simultaneous Vth and MLV.
Circuit # PI # Gate

runtime leakage runtime leakage runtime leakage red(%)
C17 5 6 0.9 10.31 0.0 10.13 0.2 10.13 0%

C6288 32 2400 1000.0 6660 3.5 4522.45 53.6 2956.74 35%
C1908 33 771 301.1 1764.73 1.4 748.18 10.4 724.13 3%
C432 36 282 112.9 703.54 0.6 324.41 4.1 312.88 4%
C1355 41 552 231.4 1310.16 1.4 789.08 13.0 721.98 9%
C499 41 567 227.0 1412.67 1.7 768.39 13.9 787.09 -2%
C3540 50 1526 641.8 3850.03 6.5 1081.12 58.9 929.25 14%
C880 60 442 186.9 1047.43 2.9 240.71 12.6 199.95 17%
C5315 178 2513 1126.1 6146.03 22.3 2092.48 537.4 1414.4 32%
C7552 207 3381 1530.8 8402.34 58.4 1887.14 1155.9 1636.76 13%
C2670 233 1087 510.5 2776.4 24.4 533.79 405.6 490.86 8%

Average 533.6 11.2 206.0 12%

total gates are in their worst leakage states, contributing 32% of total leakage before

dual-Vth assignment is performed; After Vth assignment, 28% of the WLS gates are

assigned high Vth and the total leakage contributed by the WLS gates becomes 13%.

In three columns are the same set of data in circuits with simultaneous dual-Vth

assignment and MLV. We see that even though the total number of gates assigned

high Vth are similar in both approaches, the percentage of WLS gates assigned high

Vth in our algorithm is 56% higher than that in the serial approach.

Table 4.6 and Table 4.7 show the same set of results on ISCAS benchmark

circuits. On average, our simultaneous algorithm can achieve 12% of leakage reduc-

tion over the serial MLV and Vth assignment approach. However, this reduction is

smaller than that in MCNC benchmarks. This is partly due to the reason that the

ISCAS benchmarks have fewer number of PIs and larger logic levels in general, which

66

makes the input vector at the primary inputs less important [16]. Currently, we are

investigating on how to improve this approach’s performance in circuits with large

logic depth. One possibility is to combine our approach with the gate replacement

technique [106] and/or the internal point control technique [1]. Note that in both

ISCAS and MCNC benchmarks, there is a circuit in each set that produces more

leakage in simultaneous assignment algorithm than in the traditional approach (the

negative % reduction). Also, in circuit C17, there is no WLS gate assigned VthH

because the timing constraint we enforced at the circuit is very tight.

Table 4.7: Number of gates in the worst leakage state (# WLS), number of WLS
gates at high Vth (# WLS*), and the total number of gates assigned high Vth (#
VthH) in ISCAS circuits with serial dual-Vth assignment and with simultaneous dual-
Vth assignment and input vector control.

dual-Vth based on MLV Simultaneous Vth and MLV Assign.
Circuit

WLS # WLS* # VthH # WLS # WLS* #VthH

C17 1 0 1 1 0 1

C6288 698 196 992 690 564 904

C1908 118 67 499 117 87 473

C432 23 7 163 32 20 158

C1355 113 42 245 110 57 205

C499 90 46 267 100 73 210

C3540 202 160 1150 209 194 1154

C880 66 51 373 55 46 373

C5315 366 241 1814 378 356 1864

C7552 543 440 2824 522 469 2832

C2670 166 137 942 165 148 925

4.5 Summary

In this chapter, we proposed a simultaneous dual-Vth and input vector assign-

ment algorithm to reduce static leakage current in the circuits when they are at

67

standby mode. Our algorithm is based on the observation that gates that are in

their worst leakage input state contribute the most to the total circuit leakage. Our

algorithm iteratively finds an input vector and a Vth assignment solution that either

remove gates from the worst leakage states, or assign high Vth to those gates that

can not be assigned out states due to logic dependencies. The experimental results

show that this simultaneous algorithm can reduce on average 19% and up to 45%

of total leakage current over the traditional individual dual Vth and input vector

assignment approaches.

68

Chapter 5

Gate-Level Input Vector Control for Static Power Minimization

5.1 Introduction

As the VLSI technology and supply/threshold voltage continue scaling down,

leakage power has become more and more significant in the power dissipation of to-

day’s CMOS circuits. For example, it is projected that subthreshold leakage power

can contribute as much as 42% of the total power in the 90nm process genera-

tion [43]. Many techniques thus have been proposed recently to reduce the leakage

power consumption. Dual threshold voltage process uses devices with higher thresh-

old voltage along non-critical paths to reduce leakage current while maintaining the

performance [96]. Multiple-threshold CMOS (MTCMOS) technique places a high

Vth device in series with low Vth circuitry, creating a sleep transistor [65]. In dy-

namic threshold MOS (DTMOS) [5], the gate and body are tied together and the

threshold voltage is altered dynamically to suit the operating state of the circuit.

Another technique to dynamically adjust threshold voltages is the variable thresh-

old CMOS(VTCMOS) [53]. All of these approaches require the process technology

support.

The input vector control (IVC) technique is applied to reduce leakage current

at circuit level with little or no performance overhead [21]. It is based on the well-

known transistor stack effect: a CMOS gate’s subthreshold leakage current varies

69

(a)
INPUT Leakage(nA)

0 best:100.3
1 worst:227.2

(b)
INPUT Leakage(nA)

00 best: 37.84
01 2nd worst: 100.30
10 95.17
11 worst: 454.50

(c)
INPUT Leakage (nA)

000 best: 22.84
001 37.84
010 37.84
011 2nd worst: 100.30
100 37.01
101 95.17
110 94.87
111 worst: 852.40

Figure 5.1: Leakage current of (a)INVERTER, (b)NAND2 and (c)NAND3. Data
obtained by simulation in Cadence Spectre using 0.18 µm process.

dramatically with the input vector applied to the gate [42]. Recently, Lee et al.

made the similar observations on gate oxide leakage that it is also dependent on the

input vectors to a CMOS gate [57]. We note that the maximal and minimal leakage

vectors are the same for both subthreshold leakage and gate leakage. In our study,

we use Cadence Spectre to measure the overall leakage current in a CMOS gate that

includes both subthreshold leakage and gate leakage. Figure 5.1 lists the overall

leakage current in INVERTER, NAND2 and NAND3 gates under all the possible

input combinations. We see that the worst case leakage (marked in bold) is much

higher than the other cases. The idea of IVC technique is to manipulate the input

vector with the help of a sleep signal to reduce the leakage when the circuit is at the

standby mode [32]. The associated minimum leakage vector (MLV) problem seeks

to find a primary input vector that minimizes the total leakage current in a given

circuit. [1, 9, 18, 25, 32, 42, 77]. The MLV problem is NP-complete and both exact

and heuristic approaches have been proposed to search for the MLV. A detailed

survey is given in Section II.

70

In this chapter, we consider how to enhance IVC technique with little or no

re-design effort. In particular, we study the MLV+ problem that seeks to modify

a given circuit and determine an input vector such that the circuit’s functionality

is maintained at the active mode and the circuit leakage is minimized when the

circuit is at standby mode. Our solution to this problem is based on the concept

of gate replacement that is motivated by the large discrepancy between the worst

leakage and the other cases (see Figure 5.1). The essence of gate replacement is to

replace a logic gate that is at its worst leakage state by another library gate. This

is illustrated by the following example.

1

0

0

1

100.3nA

95.17nA

37.84nA

0

1

1

37.84nA

454.5nA

1

0

0

95.17nA

1

G

G G

G

3

4

5

6

G1

G2

(a) Original MCNC benchmark circuit
C17 with total leakage 831.08nA under the
optimal MLV.

SLEEP

SLEEP

SLEEP

94.87nA

1

1

37.84nA

37.84nA

1

1

0

0

94.87nA

95.17nA

94.87nA

0

0

11

1

G

G2

G4

1G
5

~
G

3

~
G

6

~

(b) New circuit C17 with three gates re-
placed and total leakage 476.88nA under
the same MLV.

Figure 5.2: A motivation example for gate replacement.

Consider circuit C17 from the MCNC91 benchmark suite [115] (Figure 5.2(a)).

An exhaustive search finds the MLV {0,0,0,1,0}, with the corresponding minimum

total leakage current of 831.08nA. Note that gate G3 has its worst leakage current

(454.5nA) with input {1,1}, which contributes more than half of the total leakage.

In fact, we have observed that a significant portion of the total leakage is often

71

caused by the gates that are in their worst leakage state (see Table 5.2 in Section

V).

Instead of controlling the primary inputs, we consider replacing these leakage-

intensive gates. In particular, we replace the NAND2 gate G3 by a NAND3 G̃3

where the third input SLEEP is the complement of the SLEEP signal (Figure

5.2(b)). At active mode, SLEEP = 1 and G̃3 produces the same output as G3.

But at the standby mode, SLEEP = 0 and G̃3 has a leakage of 94.87nA (Figure

5.1(b)), which is much smaller than G3’s 454.5nA.

However, this replacement also changes the output of this gate at the sleep

mode and affects the leakage on gates G5 and G6. In this case, we replace them in

a similar fashion. As a result, the new circuit’s total leakage becomes 476.88nA, a

43% reduction from the original 831.08nA in Figure 5.2(a).

The proposed gate replacement technique is conceptually different from the

existing input vector control methods. In fact, they are complementary to each

other. Specifically, IVC method considers the entire circuit and searches for an

appropriate input vector in favor of small leakage. The gate replacement technique

targets directly at the logic gates that are in their worst leakage state (WLS) under

a specific input vector and replace them to reduce leakage. This chapter has the

following contributions:

1. We examine the effectiveness of IVC methods1 in multilevel circuits. For all

the 69 MCNC91 benchmarks, we obtain the optimal MLV for small circuits

1IVC-based approaches such as internal control point insertion [1] will be discussed in Section

II

72

and the best over 10,000 random input vectors for large circuits. The number

of gates in their WLS are on average 15% and 17% respectively, but they

contribute more than 40% of the circuit’s total leakage.

2. Motivated by the above observation, we propose the technique to replace gates

that are in their WLS by other library gates that will generate less leakage cur-

rent at those states. Unlike other leakage reduction techniques such as MTC-

MOS and DTMOS, this modification of the circuit does not require changes

of process technology in the design flow. Hence, it will not increase the design

complexity or the leakage sensitivity.

3. We implement a fast gate replacement algorithm that gives an average of

10% leakage reduction for a fixed input vector. This algorithm’s run time

complexity is linear to the number of gates in the circuit in average cases and

quadratic in the worst case.

4. We develop a divide-and-conquer approach to combine gate replacement and

IVC. It reduces the leakage by 17% and 24% over the optimal/sub-optimal

MLV mentioned in 1) with little area and delay overhead. The number of

gates in their WLS is dropped to 4% and 9% respectively.

5.2 Related Work

In this section, we mainly survey the efforts on input vector control (IVC)-

based leakage reduction techniques. A survey on other leakage minimization tech-

73

niques can be found in [21].

The effect of circuit input logic values on leakage current was observed by

Halter and Najm [32]. The underlying reason of this effect was explained by Johnson

et al. [42] as the transistor stack effect. Authors in [32] proposed a technique to

insert a set of latches with MLV stored in to the primary inputs of a circuit, forcing

the combinational logic into a low-leakage state when the circuit is idle. Many

algorithms have been proposed to find such minimum leakage vectors (MLV). Based

on the nature of these algorithms, they can be classified into the following groups:

Heuristic Algorithms: These include the random search algorithm developed by

Halter and Najm [32] and the genetic algorithm proposed by Chen et al. [16].

Johnson et al. [42] defined leakage observability for each primary input as the

degree to which the value of a particular input is observable in the magnitude of

leakage current. They iteratively chose the input with the largest leakage observ-

ability and assigned it with a value that results in the smallest leakage. The input

combination constructed in this greedy fashion was taken as the MLV.

In [77], Rao et al. introduced the concept of node controllability, which is

defined as the minimum number of inputs that have to be assigned to particular

values to ensure that a node (or gate) is in a specific state. Based on this, they

proposed a fast greedy heuristic to determine the values of the primary inputs that

minimize the node’s leakage.

Exact Algorithms: The MLV problem can be modeled as a pseudo Boolean

Satisfiability (SAT) problem. This formulation allows us to apply the off-the-shelf

SAT solvers to find the MLV for leakage reduction [1, 3].

74

Gao and Hayes [25] formulated the MLV problem as an integer linear program-

ming(ILP) problem. They first use pseudo-Boolean functions to represent leakage

current in different types of cells with the general sum-of-products form. Then they

apply the well-known Boole-Shannon expansion [30] to linearize the objective func-

tion and constraints. At last, they use an off-the-shelf ILP solver to solve the ILP

optimization. For large circuits, the authors proposed a simplified mixed-integer lin-

ear programming formulation that uses selective variable-type relaxation to reduce

the runtime.

Based on the pseudo Boolean formulation of the leakage in CMOS gates, two

implicit pseudo boolean enumeration algorithms are presented in [18]. The input

space enumeration method leverages integer valued decision diagrams and works well

for small circuits. The hyper-graph partitioning based recursive algorithm represents

a given circuit as a hyper-graph, partitions it, and uses divide-and-conquer to solve

the problem. The trade-off between dynamic and leakage power in choosing the

MLV has also been discussed.

Internal Point Control: Due to the ineffectiveness of IVC technique for circuits

with large logic levels, Abdollahi et al. proposed a technique to directly control the

value of internal pins to reduce leakage [1]. Their first approach inserts multiplexers

at the input pins of each gate. The SLEEP signal selects the correct input in active

mode and chooses the input values that produce low leakage current in standby

mode. This approach can reduce leakage in the CMOS gates significantly; however,

the inserted multiplexers will also generate leakage current and introduce extra delay

and area. In their second approach, they modify the library gates by adding SLEEP

75

signal-controlled transistors in the gate to select the low-leakage inputs for its fanout

gates. They reported an average leakage reduction of 25% within 5% delay penalty

and no more than 15% area increase. However, since the structure of the gates is

changed, a new set of library gates are needed.

Our gate replacement technique belongs to the class of internal point control,

but is conceptually different from [1] in the following aspects: 1) They treat each

input pin of the gates as potential place to insert multiplexers, while we consider only

roots of each tree. The search space is reduced substantially. 2) Their purpose of

modifying a gate G is to produce the low-leakage input for G’s fanout gate while we

aim to reduce leakage current at G itself. 3) They modify gates whenever necessary

while we restrict our algorithm to replace gates only by the available gates in the

library, and hence do not require gate structure modification. However, these two

approaches can be combined as we will discuss in more details in Sections III and

IV.

5.3 Leakage Reduction by Gate Replacement

A logic gate is at its worst leakage state (WLS) when its input yields the

largest leakage current. Regardless of the primary input vector, a large number

of gates are at WLS, particularly when the circuit has high logic depth. Take the

69 MCNC91 benchmarks for example. For each of the 69 circuits, when we apply

the optimal (or sub-optimal) MLVs to these circuits, 16% of the gates on average

remain at WLS, producing more than 40% of the circuit’s total leakage. A detailed

76

report can be found in Section V. In this section, we describe the gate replacement

technique that targets directly the leakage reduction in WLS gates.

5.3.1 Basic Gate Replacement Technique

As we have shown in the motivation example in Section I, the proposed gate

replacement technique replaces a gate G(~x) by another library gate G̃(~x, SLEEP),

where ~x is the input vector at G, such that

1. G̃(~x, 0) = G(~x) when the circuit is active (SLEEP = 0);

2. G̃(~x, 1) has smaller leakage than G(~x) when the circuit is in standby (SLEEP =

1).

The first condition guarantees the correct functionality of the circuit at active mode.

The second condition reduces the leakage on gate G at the standby mode, but it

may change the output of this gate. Note that, although we do not need to maintain

the circuit’s functionality at the standby mode, this change may affect the leakage

of other gates and should be carefully considered.

Figure 5.3(a) shows that the replacement of G by G̃ changes the output from

0 to 1. For simplicity, we assume that G’s fanout only goes to gate H which can

be either a NAND or a NOR or an INVERTER. In Figure 5.3(b) and (d), we see

that such change does not affect the output of gate H and therefore it won’t affect

any other gates in the circuit. Let L(G(11)) be the leakage of gate G with input

11, we can conveniently compute the leakage reduction by this replacement, which

is L(G(11)) + L(H(00)) − L(G̃(110)) − L(H(10)) in the case of (b) for example.

77

1

1

1

1

1

10

10

10

1

1

10

SLEEP

(a)

1

1

SLEEP

SLEEP

1

1

1

SLEEP

(e)

(d)

(c)

SLEEP

SLEEP

1

1

1

SLEEP

SLEEP

10

1

1

1

1

1

1

1

0

0

0

0

(b)

1

0

0

0

0

0

1

1

1

0

1

1

1

1

1

1

(f)

0

1

1

1

0

0

0

1

1

~

H
~

G
~

G
~

G
~

G

G H

G

G

G

G

H

H

H

H

H

H

H

G
~

G
~

G
~

H

Figure 5.3: Gate replacement and the consequence to its fanout gate.

In Figure 5.3(c), the replacement at gate G not only changes the output of

gate H , it also puts H at its WLS. Our solution is to replace the NAND2 gate

H by an NAND3 H̃. This preserves the output of H and the leakage change will

be L(G(11)) + L(H(01)) − L(G̃(110)) − L(H̃(110)). Similarly, in Figure 5.3(f), we

replace the INVERTER by a NAND2 gate. Finally, in Figure 5.3(e), the replacement

of G moves both gates G and H away from their WLS. It also changes the output

of the NOR gate H , which we can conduct similar analysis.

Remarks:

78

• General Fanout The above analysis is applicable to G’s fanout gate H of

any type. The change of G’s output either does not affect H ’s output (Figure

5.3 (b) and (d)) or changes H ’s output. In the latter case, we either change

H ’s output back (Figure 5.3 (c) and (f)) or continue the analysis starting from

H (Figure 5.3 (e)).

• Beyond library gates If the library does not have a replacement for G, we

can add one transistor into the N or P sections of G to meet conditions 1 and

2. This is similar to the gate modification method proposed in [1]. However,

they attempt to control the output of the modified gate in order to reduce

the leakage in its fanout gate by producing the desirable signal. Our gate

replacement targets directly the leakage reduction of the current gate.

• Multiple fanouts When gate G has multiple fanouts, we analyze each of them

and then consider their total leakage when we compute the leakage change due

to the replacement of gate G.

• Compatibility The gate replacement technique does not change the primary

input vector of the circuit. This implies that we can combine it with existing

MLV searching strategies to further reduce leakage. The MLV+ problem is

based on this observation and is discussed in details in next section.

• Power overhead There is not much dynamic power overhead because the

SLEEP signal remains constant at active mode and will not cause any addi-

tional switching activities. The leakage in gates G̃ and G may be different

79

at active mode. Such difference becomes negligible when the circuit stays at

standby mode long enough [1].

• Other overhead Gate replacement may introduce delay and area overhead.

This overhead can be controlled by restricting the replacement off critical path

and transistor resizing. Gate replacement does not add new logic gates and

thus requires little or no effort to redo the place-and-route.

5.3.2 A Fast Gate Replacement Algorithm

Based on the above gate replacement technique, we propose a fast algorithm

that selectively replaces gates to reduce the circuit’s total leakage for a given input

vector. Figure 5.4 gives the pseudo-code of this algorithm.

We visit the gates in the circuit by the topological order. We skip all the gates

that are not at WLS and the gates that have already been visited or marked (line

16) until we find a new gate Gi at WLS (line 2). Lines 3-9 find a subset of gates

S and temporarily replace them. S includes all the unmarked gates whose leakage

and/or output is affected by the replacement we attempt to do on gate Gi and other

gates in S. We then compute the total leakage change caused by the replacement

of gates in S (line 10) and adopt these replacements if there is a leakage reduction

(lines 11-13). Otherwise, we simply mark gate Gi as visited and do not make any

replacement (line 14). We then look for the next unmarked gate at WLS and this

procedure stops when all the gates in the circuits are marked.

Correctness: The topological order guarantees that when we find a gate at its

80

Input: {G1, G2, · · · }: gates in a circuit sorted topologically,
{x1, x2, · · · }: an input vector,
SLEEP : the sleep signal.

Output: a circuit of the same functionality when SLEEP = 0 and
with less leakage when SLEEP = 1.

Gate Replacement Algorithm:

1. for each gate Gi ∈ {G1, G2, · · · }
2. if (Gi is at WLS and not marked)
3. include Gi in the selection S;
4. while (there is new addition to S)
5. for each newly selected gate G in S
6. if (there exists library gate G̃ meets the conditions

in Section III-A)

7. temporarily replace G by G̃;
8. if (output of G is changed due to this replacement)
9. include G’s unmarked fanout gate Gj in S;

10. compute the total leakage change of gates in S;
11. if (there is leakage reduction)
12. mark all gates Gj in the selection S;
13. make the replacements in lines 7,9,or 10 permanent;
14. else mark gate Gi only;
15. empty the selection S;
16. else mark Gi if it has not been marked yet;

Figure 5.4: Pseudo-code of the gate replacement algorithm.

WLS, all its predecessors have already been considered. The replacement at line

7 ensures that the functionality will not change at the active mode. The subset S

constructed in the while loop (lines 3-9) is the transitive closure of gates that are

affected by the replacement action at gate Gi. Therefore, we only need to compute

the leakage change on gates within S (line 10). We make the replacement only

when this leakage change is in favor of us, so the new circuit will have less leakage

in standby mode.

Complexity: Let n be the number of gates in the circuit. The for loop is linear

to n. Inside the for loop, the computation of leakage change and the marking of all

81

gates in S (line 10-15) is linear to |S|, the number of gates in S. The while loop

(lines 3-9) stops when there is no new addition to S and this will be executed no

more than |S| times. As we have discussed in section 3.1 (see Figure 5.3), in most

cases, S includes only G and its fanout gates. However, it may include all the gates

of the circuit in cases similar to Figure 5.3 (e) and so |S| cannot be bounded by any

constant. That is, |S| is O(n) in the worst case and O(k) on average, where k is

the maximal fanout of the gates in the circuit. Consequently, the complexity of this

gate replacement algorithm is O(n2) in the worst case and O(kn) on average.

Improvement: There are several ways to improve the leakage reduction perfor-

mance of the above gate replacement heuristic. The tradeoff will be either increased

design complexity, or reduced circuit performance, or both. First, one can consider

gates that are not in the library as we have commented in the remarks in Section

III-A (line 6). However, this requires the measurement of leakage current, area and

delay in these new gates as they are not available in the library. A second alternative

is to insert control point at one of G’s fanins. For example, one can find the fanin

y such that replacing y by its complement y′ gives G the largest leakage reduction.

If y = 0, replace it by OR(y, SLEEP); if y = 1, replace it by AND(y, SLEEP).

However, the addition of new gates may require the repeat of placement and routing

and will incur more area and delay penalty in general. Third, one may also consider

both the library gate replacement and control point insertion at the same time and

choose the one that gives more leakage reduction. Finally, whenever we replace

gate Gi, we also make the replacement for all the other gates in the selection S

82

permanent (line 13). We have tested a couple of alternatives and they give limited

improvement in leakage reduction at very high cost of run time complexity.

The incentive to keep the run time complexity of this gate replacement al-

gorithm low is that it will be combined with IVC technique under the following

divide-and-conquer approach to solve the MLV+ problem.

5.4 Solving the MLV+ Problem

Recall that the minimum leakage vector (MLV) problem seeks the input vector

that minimizes the circuit’s total leakage. It has been claimed that this problem is

NP-complete for general circuits [1, 18, 42, 77]. But no formal proof has been given

to our knowledge. In this section, we first give a brief proof of the NP-completeness

of the MLV problem and then define the MLV+ problem, an extension of the MLV

problem. Our main focus will be on the divide-and-conquer approach that solves

the MLV+ problem.

5.4.1 NP-Completeness of the MLV Problem

The MLV problem can be defined as follows: given a combinational circuit

consisting of primary inputs (PIs), primary outputs(POs), internal logic gates con-

nected by nets/wires, and the leakage current of each gate under different input

combinations, determine an input vector at the PIs such that the total leakage

current of all the gates in the circuit is minimized.

Theorem: The MLV problem is NP-complete.

83

X2X2

Xn

X1

(b) Reducing the satisfiability test to MLV.(a) A circuit for satisfiability test.

Xn

X1

Figure 5.5: Illustration for the proof of the NP-completeness of the MLV problem.

Proof. On one side, we have already mentioned a couple of exact algorithms that

solve the MLV problem by reducing it to NP-complete problems such as pseudo

Boolean satisfiability and integer linear programming.

On the other side, we show that the NP-complete CIRCUIT-SAT problem

[26] can be reduced to the MLV problem. Consider an arbitrary circuit shown in

Figure 5.5(a), to test whether the circuit is satisfiable (i.e., producing a logic ‘1’ at

its output), we construct a new circuit by adding a big inverter at its output (Figure

5.5(b)). The inverter is big in the sense that it has a huge leakage value L when its

input is ‘0’ and a small leakage ǫ when its input is ‘1’. Actually, we can set L to

be the sum of ǫ and the leakage of each gate in the circuit when it is in its WLS.

Now we solve the MLV problem for this modified circuit. If the total leakage is less

than L, clearly the original circuit is satisfiable and the MLV is one input vector

that makes the circuit output logic ‘1’. Otherwise, because that the only way for

the total leakage to be larger than L is when the input to the big inverter is ‘0’, the

original circuit is not satisfiable.

84

5.4.2 The MLV+ Problem and Outline of the Divide-and-Conquer

Approach

In the previous section, we have seen that leakage current can be further re-

duced over the MLV by the proposed gate replacement technique. We have also

mentioned that this technique is independent of the input vector and can be com-

bined with the MLV method. We hence formulate the following MLV+ problem:

Given a combinational circuit with PIs, POs, the internal logic gates

that implement the PI-PO functionality, and the leakage current of each

library gate under its different input patterns, determine a gate level

implementation of the same PI-PO functionality without changing the

place-and-route and an input vector at the PIs that minimizes the total

leakage.

Apparently , this is an extension of the MLV problem with the relaxation of

modifying circuit by gate replacement. It enlarges the search space of MLV and

provides us with the opportunity of finding better solution. For a circuit of k PIs

and n internal logic gates, the search space for the original MLV problem is the 2k

different input combinations. Under the above MLV+ formulation, the search space

becomes 2k · Πn
i=1li, where li is the number of library gates that can replace gate i,

including gate i itself. Assuming that half of the gates have one replacement, then

the solution space for MLV+ problem will be 2n/2 times larger than the solution

space for the MLV problem. Even when we restrict the gate replacement technique

only to gates that are at their WLS, this will be significant because (1) a circuit

85

normally has more gates than PIs (n >> k) and (2) the percentage of gates in WLS

is considerably high (16% on the MCNC91 benchmark when MLV is applied, and

will be higher as the logic depth of the circuit increases).

As we have analyzed in the previous section, the MLV+ problem not only

enlarges the solution space for the IVC method, it also has the great potential in

improving the solution quality (in terms of leakage reduction) because of the stack

effect. However, one challenge is how to explore such enormous solution space for

better solutions. Given the NP-completeness of the MLV problem, we consider

special circuits where the MLV+ can be solved optimally and develop heuristics for

the general case. In the rest of this section, we describe details of our proposed

divide-and-conquer approach that consists of the following phases:

1. decompose a general circuit into tree circuits.

2. find the MLV for each tree circuit optimally by dynamic programming.

3. apply the gate replacement technique to the MLV for each tree to further

reduce leakage.

4. connect the tree circuits by a genetic algorithm.

5.4.3 Finding the Optimal MLV for Tree Circuits

A tree circuit is a single output circuit in which each gate, except the primary

output, feeds exactly one other gate. A general combinational circuit can be trivially

decomposed into non-overlapping tree circuits [30]. This is illustrated in Figure 5.8.

The circuit in (a) is not a tree because gate G3 has two fan-out gates G5 and G6.

86

a

b

c

d

LK(1,0) = L(G1("11")) = 454.5 V(1, 0) = "11"
LK(1,1) = min(L(G1("11")), L(G1("10")), L(G1("00")))

LK(2, 0) = L(G2("1")) = 227.2 V(2, 0) = "1"
LK(2, 1) = L(G2("0")) = 100.3 V(2, 1) = "0"

LK(3, 0) = L(G3("1")) = 227.2 V(3, 0) = "1"
LK(3, 1) = L(G3("0")) = 100.3 V(3, 1) = "0"

LK(4, 0) = L(G4("11")) + LK(1, 1) + LK(2,1)=592.6
V(4, 0) = "000"
LK(4, 1) = min{ L(G4("10"))+LK(1,1)+LK(2,0), L(G4("01"))+LK(1,0)+LK(2,1),

V(4, 1) = "001"

LK(5, 0) = L(G5("11"))+LK(4,1)+LK(3,1) = 915

LK(5, 1) = min{ L(G5("10"))+LK(4,1)+LK(3,0), L(G5("01"))+LK(4,0)+LK(3,1),

V(5, 1) = "0011"

 = L(G1("00")) = 37.8
V(1, 1) = "00"

 L(G4("00"))+LK(1,0)+LK(2,0)} = L(G4("10"))+LK(1,1)+LK(2,0)=360.2

 L(G5("00"))+LK(4,0)+LK(3,0)} = L(G5("10"))+LK(4,1)+LK(3,0) = 682.6

V(5, 0) = "0010"

LK(1,0)=454.5
LK(4,0)=592.6

V(5,0)="0010"

V(2,1)="0"

Total leakage: 682.6nA

MLV: "0011"

V(1,0)="11"

LK(1,1)=37.8

V(1,1)="00"

V(4,0)="000"

LK(4,1)=360.2

LK(2,0)=227.2

V(2,0)="1"

LK(2,1)=100.3

LK(5,0)=915

LK(5,1)=682.6

V(5,1)="0011"

LK(3,0)=227.2

V(3,0)="1"

LK(3,1)=100.3

V(3,1)="0"

V(4,1)="001"

G4
G5

G3

G1

G2

Figure 5.6: Dynamic programming to find optimal MLV in a tree circuit.

By splitting at the fanout of G3, we get three trees with G3, G5 and G6 being the

root of each tree respectively.

We consider a tree circuit with gates {G1, G2, · · · , Gn} sorted in the topological

order, which is preserved by the tree decomposition.

Let L(Gi(~x)) be the leakage current in the gate Gi when vector ~x is applied

at Gi’s fanins. Each gate Gi can be treated as the root of a sub-tree circuit.

Let LK(i, z) be the minimum total leakage of the tree circuit when it outputs

logic value z at root Gi and ~V (i, z) be the input vector to the tree circuit that

achieves LK(i, z). We develop a dynamic programming approach to compute the

pairs (LK(i, 0), ~V (i, 0)) and (LK(i, 1), ~V (i, 1)) for each gate Gi. The MLV for the

tree circuit rooted at gate Gn, with gates {G1, G2, · · · , Gn} sorted in the topological

order, can then be determined conveniently.

1. For each input signal to the tree, define

LK(0, z) = 0, ~V (0, z) = z (5.1)

87

2. For each gate Gi(i = 1, 2, ..., n), let

LK(i, z) = min
∀~x, s.t.Gi outputs z

(L(Gi(~x)) +
t

∑

j=1

LK(ij , xij)) (5.2)

~V (i, z) = ∪t
j=1

~V (ij , x
0
ij
) (5.3)

where {xi1 , xi2 , · · · , xit} are the fanins of Gi from gates {Gi1 , Gi2, · · · , Git}

respectively and the input combination {x0
i1
, · · · , x0

it} achieves LK(i, z).

3. The minimum leakage of the tree circuit with gates {G1, · · · , Gn} is given by

min{LK(n, 0), LK(n, 1)} (5.4)

and the MLV will be either ~V (n, 0) or ~V (n, 1) accordingly.

A step-by-step illustration of the dynamic programming can be found in Figure

5.6.

Correctness: We show the correctness of the recursive formula in Equation (2)

and (3). To compute LK(i, z), we need to consider all the possible combination

of fanins {xi1 , · · · , xit} that produces output z at gate Gi. For each such combi-

nation, the minimum leakage in the subtree rooted at Gi is the sum of leakage at

gate Gi and the minimum leakage at each of its fan-in gate Gij with output xij ,

LK(ij , xij). Equation (2) takes the overall minimum leakage and gives the cor-

rect LK(i, z). Assume that this minimum leakage is achieved when Gi has fanins

xi1 = x0
i1 , ..., xit = x0

it . Note that ~V (ij , x
0
ij
) is the input vector for the subtree circuit

rooted at Gj to produce x0
ij

with the minimum leakage LK(ij , xij). The tree struc-

ture of the circuit guarantees that the subtrees rooted at {Gi1, ..., Git} will not share

88

any common inputs. Therefore, ~V (i, z) is the simple concatenation of ~V (ij , x
0
ij
) as

given in Equation (3).

Complexity: Equations (1) and (4) take constant time. For each gate Gi, we need

to compute (LK(i, 0), ~V (i, 0)) and (LK(i, 1), ~V (i, 1)) by equations (2) and (3). This

requires the enumeration of all the 2t different combinations of Gi’s t fanins. For the

first time, we need to perform t additions in equation (2). If we enumerate the rest

2t−1 cases following a Gray code, we only need to update L(Gi(~x))(two operations),

replace one LK(ij , xij) (two operations) and compare the result with the current

minimum leakage, a total of five operations. Therefore, we need t + 5 · (2t − 1)

operations for each Gi and this gives a complexity of O(K ·n), where K is a constant

depending on the largest number of fanins in the circuit.

After obtaining the MLV for the tree circuit, we perform the gate replacement

algorithm proposed in Section III to further reduce leakage. Note that, although

the MLV is optimal, this does not guarantee us an optimal solution for the MLV+

problem on the tree circuit. For example, consider the circuit in Figure 5.7, the

algorithm finds the optimal MLV {a=0, b=1} with leakage 422nA. Gate 2 is at

its WLS and the gate replacement algorithm does not give any improvement. The

input vector {0,0} gives the maximum leakage 654nA; however, when we apply gate

replacement technique and replace G3, the leakage is reduced to 295nA. In fact,

{0,0} is the optimal solution for the MLV+ problem. 2.

2We conjecture that the MLV+ problem remains NP-hard for tree circuit. Because we have

already lost the optimality when we do the tree decomposition, we will not discuss in details on

how to find better solutions to MLV+ on tree circuits. For the same reason, we did not focus on
how to improve the fast gate replacement algorithm in Section III-B

89

0

1

minimum leakage = LK(3,1)=422.6nA

1

b=0

a=0

MLV = "00"

SLEEP

minimum leakage = LK(3,1)=295.5nA

1

1

MLV = "01"

a=0

b=1

1

G3

G2

G1 G1

G2

G3

Figure 5.7: MLV in a circuit before and after gate replacement

5.4.4 Connecting the Tree Circuits

In the previous phase, we have determined the output and required input for

each individual tree circuit to yield the minimum leakage. The goal of this phase is

to combine all the tree circuits to solve the MLV+ problem for the original circuit.

The root of each tree circuit may have multiple fanouts that go to other tree circuits

as input. Since we treat the tree circuits independently, conflict occurs if the output

of a tree circuit and the value required by its fanout gates are not consistent. For

example, in Figure 5.8 (a), the circuit is decomposed into three tree circuits T1, T2

and T3. T1 outputs ’1’ when its MLV is applied, while T2 and T3 require ’0’ and ’1’

from T1 in their respective MLVs. So we have a conflict.

There are basically three ways to resolve this conflict:

(I) enforcing T1’s output at all the fanout gates (Figure 5.8 (b));

(II) changing T1’s output and enforcing this new value at all the fanout gates

(Figure 5.8 (c));

90

T1

0

1 0

0

T3

T1

T2

1

0 1

1

0
0

0
0
0

0
0

T2

T1

T3

1

0

1

(a) (e)

(b)

(c)

(d)

T2
SLEEP

T3

1

1

0

T1

T3

T2

1

0

0

SLEEP
T3

T1

T2

1

1

G4

2

G

G
G3

G6

5
G

Figure 5.8: Resolving the conflict in connecting tree circuits.

(III) inserting an AND gate to allow them to be inconsistent (Figure 5.8 (d)).

Similarly, if T1 output ’0’ and some of its fanouts require ’1’, we can add an

OR gate as shown in Figure 5.8 (e)).

To decide which one we should use to resolve the conflict, we apply each of them

and re-evaluate the circuit’s total leakage. In (I), this requires the re-computing of

the minimum leakage and the MLV for tree circuit T2 under the condition that its

input from T1 is logic ’1’. The dynamic programming algorithm in Section IV-B can

be trivially modified for this purpose. In (II), we need to do the same procedure

for tree circuit T3. Besides, we have to replace the pair {LK(n, 1), ~V (n, 1)} for tree

circuit T1 by {LK(n, 0), ~V (n, 0)}.

Both (I) and (II) resolve the conflict by sacrificing the minimum leakage of

tree circuits under the provably optimal MLV. In (III), we successfully connect the

tree circuits while preserving the minimum leakage and MLV for each tree with the

help of the SLEEP signal-controlled AND or OR gates. The cost is that we have to

91

add the leakage of the inserted AND or OR gate into the total leakage. We mention

that this gate addition also preserves the correctness of the circuit at active mode

when SLEEP=0.

It is now easy to make a decision on which method to adopt to resolve a single

conflict: use the one that gives the minimum leakage. However, the decision at

one conflict may affect the existence of conflict at other places in the circuit. For

example, method (I) in Figure 5.8 (b) could change the output of tree T2 and directly

affect whether there is a conflict at the root of T2.

We use a genetic algorithm (GA) to resolve the conflicts and connect all the

tree circuits. A solution by the GA is in the form of a binary bit stream, each bit

indicates whether there is a conflict at the root of a tree and which method to use

to resolve it. In particular, a ’1’ means there is a conflict and method (III) should

be used; a ’0’ means that there is either no conflict or we should use the better one

of methods (I) and (II) to resolve the conflict.

The GA follows a standard routine where we start with a population of N

random bit streams (referred to as chromosomes). Based on each bit stream, we

resolve the conflict, apply the dynamic programming algorithm in Section IV-B to

re-compute the minimum leakage of a tree circuit when methods (I) and (II) are

used, run the gate replacement algorithm in Figure 5.4 on the entire circuit, and

compute the circuit’s total leakage. The fitness for a bit stream is calculated from

the leakage value. The smaller the leakage, the larger the fitness. We sort all the

chromosomes according to their fitness and create the next generation by the roulette

wheel method. In this method, the probability that a chromosome is selected as one

92

of the two parents is proportional to its fitness. Crossover, which refers to the

exchange of substrings in two chromosomes, is performed among parents to produce

children. A simple mutation operation, which flips a bit in the chromosome at the

bit mutation rate, is also used. The GA continues to generate a total of N new

chromosomes and starts for the next generation. This process repeats for certain

number of times (50 in our simulation) and the best chromosome is returned as the

optimal solution.

5.4.5 Overhead Analysis

As the control gates are introduced in the tree-connecting stage of the algo-

rithm, they also require sleep signal to control. Hence, we need to consider the

extra power these control gates and sleep signal may consume, and their effect on

the overall power saving. In this subsection, we will discuss the power overheads.

1) Control gates: The control gates will consume extra dynamic power and

leakage power. In this chapter, we only consider the leakage power overhead of the

inserted gates and ignore their dynamic power due to the following reasons. First,

the number of inserted control gates only accounts for 5% to 6% of the total number

of gates in the circuit. Second, they are simple 2-input AND and OR gates, which

have a relatively small intrinsic capacitance at the node compared to other gates.

Third, the switching activities in these control gates are very limited because one of

the two inputs is the sleep signal, which changes only at the moment when the circuit

switches between active mode and sleep mode. As dynamic power is dependent

93

on physical capacitance and switching activities, we consider this dynamic power

overhead is negligible.

As for leakage power, we measured the average leakage current in control gates

over all possible inputs. In our algorithm, we add this extra leakage current to the

objective function, i.e., the overall leakage current to be minimized. Therefore, the

leakage saving achieved in our algorithm has already considered this overhead.

2) Sleep signal: Both the gate replacement and the control gates require the

sleep signal to drive them during active and sleep mode. The generation of the sleep

signal may consume extra power. However, due to the fact that our experiment

was conducted at the logic synthesis level before placement and routing, it is not

practical to obtain such power data quantitatively. On the other hand, the sleep

signal is required by many other leakage minimization techniques, such as [1], [5],

and [65]. Hence, in this chapter, we expect the generation of the sleep signal to be

similar to those approaches and we believe this problem can be better solved at the

physical level of circuit design.

5.5 Experimental Results

We implemented the gate replacement and divide-and-conquer techniques in

SIS environment [86] and applied them on 69 MCNC91 benchmark circuits. Each

circuit is synthesized and mapped to a 0.18 µm technology library. We use Cadence

Spectre to simulate the leakage current for all the library gates under every possible

input vector. The supply voltage and threshold voltage are 1.5V and 0.2V, respec-

94

tively. The measured leakage current includes both subthreshold and gate leakage.

The simulations are conducted on a Ultra SPARC SUN workstation.

Our results are compared with traditional input vector control methods in

terms of leakage saving, run time, area and delay penalty. The 69 benchmarks

including 26 small circuits with 22 or fewer primary inputs (Table 5.1) and 43 large

circuits (Table 5.2). For each small circuit, we find the optimal MLV by exhaustive

search. For each large circuit, we choose the best MLV from 10,000 distinct random

input vectors. It is reported that this will give us a 99% confidence that the vectors

with less leakage is less than 0.5% of the entire vector population [32, 77]. To have

a fair comparison with [1], we also collect the average leakage of 1,000 random input

vectors for each large circuit.

Table 5.1 reports the results for the 26 small circuits. Column 4 lists the

leakage current for each circuit when the best MLV is applied. Even in this case,

an average of 15% of the gates are at WLS as shown in column 5. The fast gate

replacement algorithm is able to move about half of these gates from their WLS

(column 7). This results in a 13% leakage reduction with only 4% area increase

(columns 6 and 8). We mention that we restrict ourselves to replace only gates off

critical paths. This leaves 8% of the gates in the circuits at their WLS, but it also

guarantees us that there is no delay overhead.

The last four columns show that the divide-and-conquer algorithm gives a 17%

leakage reduction over the best MLV at the cost of 9% more area. We incorporate

delay constraints in the genetic algorithm to ensure that the delay overhead to be

within 5%. The two columns in the middle are the number of tree circuits in each

95

Table 5.1: Results on 26 small circuits with 22 or less primary inputs.

pi gate exhaustive gate replace divide-and-conquer
circuit

leak(nA) wls imprv wls ar inc imprv wls # tr cg ar inc
b1 3 13 2195 23% 2% 15% 5% 2% 10% 5 0% 5%

cm42a 4 25 2941 0% 0% 0% 0% 8% 0% 18 4% 8%
C17 5 6 831 17% 43% 0% 17% 43% 0% 4 0% 17%

cm82a 5 28 5017 21% 29% 4% 12% 40% 1% 10 4% 18%
decod 5 22 1921 0% 0% 0% 0% 8% 0% 21 5% 3%

cm138a 6 19 1760 0% 0% 0% 0% 1% 0% 12 5% 5%
z4ml 7 66 12246 24% 25% 11% 11% 37% 4% 20 5% 17%
f51m 8 136 26038 26% 37% 7% 12% 48% 4% 25 3% 14%

9symml 9 166 34018 26% 20% 17% 5% 38% 8% 18 8% 14%
alu2 10 356 64153 21% 2% 20% 0% 21% 5% 89 7% 11%
x2 10 44 6159 9% 15% 2% 3% 12% 2% 18 9% 10%

cm85a 11 38 4925 8% 14% 3% 3% 13% 3% 16 0% 3%
cm151a 12 34 5745 24% 9% 18% 4% 3% 18% 5 3% 5%

alu4 14 728 133127 25% 1% 21% 1% 15% 4% 166 7% 10%
cm162a 14 45 6947 18% 2% 9% 3% 0% 9% 13 4% 12%

cu 14 49 6182 12% 16% 6% 2% 9% 5% 21 6% 7%
cm163a 16 43 6376 19% 2% 9% 3% 1% 9% 11 5% 13%

cmb 16 42 5405 10% 11% 5% 2% 4% 4% 8 2% 6%
parity 16 75 12764 20% 11% 15% 5% 15% 7% 15 7% 20%
pm1 16 39 3474 3% 0% 0% 1% -2% 0% 16 3% 3%
t481 16 1945 251184 2% 1% 1% 0% 26% 0% 17 2% 1%
tcon 17 41 6491 20% 43% 0% 14% 41% 0% 9 2% 17%
pcle 19 74 12594 20% 32% 4% 6% 32% 4% 22 0% 6%
sct 19 92 11811 18% 14% 9% 4% 10% 6% 24 4% 6%
cc 21 48 5823 13% 6% 10% 1% 6% 9% 22 0% 1%

cm150a 21 72 12270 15% 4% 14% 1% 1% 10% 9 7% 10%
Average 15% 13% 8% 4% 17% 4% 4% 9%

case and the number of control gates we have used to connect these trees. Only in

three cases, we have inserted more than five control gates. Note that the addition

of control gates may decrease the delay because it reduces the fanouts of the gate.

The area increase comes from the addition of control gates and the replacement of

“smaller” gates by “bigger” library gates.

Figure 5.9 reports the leakage and wls gates reduction in the 43 large circuits

(x-axis) with 22 PIs or more. We replace the infeasible exhaustive search by the

best solution from a random search of 10K input vectors. The fast gate replacement

96

��

���

���

���

���

����

����

�	
��
���
����
���
�������
�������
����
�������
����

Figure 5.9: Leakage and WLS percentage on 43 large circuits with 22 PIs or more.

X-axis lists benchmarks sorted by leakage current in divide-and-conquer approach;

Y-axis shows percentage of leakage and WLS gates.

algorithm are restricted only on gates off critical paths; for the divide-and-conquer

approach, we set the maximal delay increase to be 5%.

The benchmarks are sorted by the total leakage achieved by the divide-and-

conquer method normalized to the best over 10K random search, which is shown

one of the two curves at the top part of the figure. The average leakage reductions

are 10% by gate replacement only (leakage G.R.) and 24% by divide-and-conquer

method (leakage D.C.). The maximal leakage reductions are 46.4% and 60% respec-

tively. The three curves at the bottom give the ratio of WLS gates. On average,

97

Table 5.2: Results on 43 large circuits with primary inputs more than 22.

pi gate random (10k) gate replace (G.R.) div & conq (D.C.) over 1K average
circuit

leak(nA) time(s) imp(%) time(s) imp(%) time(s) G.R.(%) D.C.(%)
cordic 23 102 18434.0 9.9 15.1 0.01 27.4 10.1 28.4 38.8
ttt2 24 207 33801.5 22.7 9.5 0.02 18.4 72.6 30.9 37.7
i1 25 39 5250.6 5.4 27.7 0 26.3 6.0 45.5 44.4

pcler8 27 90 14670.1 10.0 11.1 0.01 27.0 14.9 35.2 46.8
c8 28 164 26083.0 17.4 19.0 0.01 14.4 21.5 31.7 27.8

C6288 32 2400 480084.2 222.0 2.9 0.11 8.8 398.7 7.0 12.6
comp 32 163 28322.3 15.2 5.6 0.01 13.2 85.4 34.1 39.4
C1908 33 615 117029.6 57.2 2.5 0.02 31.0 66.0 6.4 33.7

my adder 33 225 40842.1 21.0 2.0 0.02 31.1 32.1 8.9 36.0
term1 34 363 60460.5 37.3 11.7 0.02 15.4 160.0 23.9 27.0
count 35 144 22445.4 15.2 0.0 0.01 3.4 14.2 0.0 15.4
C432 36 200 38101.4 20.1 11.2 0.01 37.5 24.7 21.6 44.8
unreg 36 113 18188.4 12.7 4.6 0.01 17.3 84.4 20.1 30.7

too large 38 582 107888.1 61.4 12.5 0.05 37.1 80.1 24.5 45.7
b9 41 111 16100.3 12.8 8.6 0.01 19.7 68.0 30.1 38.5

C1355 41 517 91739.0 50.7 4.5 0.02 19.1 95.0 12.1 25.4
C499 41 532 95292.0 48.3 5.0 0.05 18.2 84.5 16.8 28.4
cht 47 232 38560.8 25.3 4.5 0.02 14.7 22.8 18.4 27.1

apex7 49 239 41955.1 26.0 19.3 0.02 30.3 25.6 26.9 36.9
C3540 50 1136 218977.1 115.0 2.9 0.08 21.3 133.8 11.5 28.2

x1 51 295 45351.2 32.8 17.7 0.02 25.0 105.9 32.1 38.2
C880 60 354 61978.8 35.8 12.6 0.04 25.8 39.9 21.7 33.5
dalu 75 1865 349299.8 187.5 3.8 0.15 23.2 194.9 29.1 43.5

example2 85 286 51036.6 32.6 4.3 0.02 41.5 28.9 11.3 45.7
i9 88 510 88469.6 63.9 0.0 0.04 17.3 156.0 0.0 50.1
x4 94 378 61336.3 46.4 28.2 0.03 33.6 206.5 40.1 44.7
i3 132 92 16166.9 14.9 0.0 * 18.5 * 0.0 27.2
i5 133 269 44848.1 34.3 19.9 0.02 42.0 45.6 35.8 53.5
i8 133 1898 305924.5 224.4 9.1 0.15 39.4 7591.3 43.5 62.3

apex6 135 710 126523.6 86.1 3.9 0.06 26.8 399.5 11.4 32.6
rot 135 601 109944.1 67.1 17.5 0.06 23.1 403.3 23.5 28.7
x3 135 742 116641.0 89.5 15.6 0.07 20.4 384.4 29.7 33.7
i6 138 340 47021.1 47.3 46.4 0.03 59.0 89.8 68.9 76.2

frg2 143 1030 165090.4 136.0 12.9 0.11 28.4 176.5 28.0 40.8
pair 173 1538 270729.8 160.9 7.6 0.14 17.5 366.0 14.9 24.0

C5315 178 1777 343295.9 188.3 6.0 0.15 11.5 534.5 11.6 16.8
i4 192 136 22699.8 22.8 3.1 0.01 27.8 34.6 28.3 46.6
i7 199 405 58431.5 58.4 1.2 0.04 13.5 117.9 37.7 45.5
i2 201 109 13174.8 22.1 19.7 0.01 36.8 36.1 36.1 49.7

C7552 207 2801 515320.2 293.3 0.6 0.18 5.9 726.0 20.6 24.8
C2670 233 807 155992.3 94.5 0.8 0.09 11.9 98.6 5.4 16.0
des 256 3995 931447.4 471.2 7.2 0.24 45.7 8502.6 17.6 51.8
i10 257 2281 440552.2 261.6 6.7 0.2 14.3 162.8 11.7 18.8

Average 80.9 10% 0.05 24% 510.2 23% 37%

98

the 10K random search has 17% gates at WLS(orig, wls); the proposed fast gate

replacement and divide-and-conquer techniques reduce this ratio to 11%(G.R. wls)

and 9%(D.C. wls), respectively.

More detailed results for these 43 circuits are shown in Table 5.2. Columns

4-5 list the leakage current and runtime when the best MLV from 10,000 random

vectors is applied to each circuit. The next two columns show the results when the

fast gate replacement algorithm is applied to such best MLV. The average leakage

reduction is 10% and the run time is only 0.05 seconds and increases linearly to the

number of gates in the circuit.

The next two columns show results by the divide-and-conquer approach where

we set a 5% maximum delay constraint. In the genetic algorithm, we start with

a population size of N = 150 and it converges after 50 generations. We are able

to achieve, over the best MLV from 10,000 random vectors, 24% leakage saving.

Although the average run time is 6X of the random search, we mention that this

is mainly caused by the two circuits, i8 and des. They have a couple of large tree

circuits and therefore the frequently called dynamic programming takes considerably

long time. Excluding these two circuits, the average run time for random search

and the divide-and-conquer algorithm drop to 64.7s and 143s, respectively. More

importantly, we see clearly the run time for random search increases exponentially

to the number of primary input and linearly to the number of gates (columns 2,3,5).

However, the run time for the divide-and-conquer approach grows at a much slower

pace (column 9).

The last two columns compare our results with those reported in [1]. Because

99

Table 5.3: The percent of WLS gates in 43 circuits and the area increase with
different input vector control algorithms.

pi gate random 10k gate replace (G.R.) div & conq (D.C.)
circuit

wls(%) wls(%) area inc(%) wls(%) # tree # cg area inc (%)
cordic 23 102 21.6 11.8 5.7 7.8 52 7 9.3
ttt2 24 207 18.4 17.4 4.4 14.5 43 13 9.6
i1 25 39 7.7 0.0 4.3 0.0 16 1 5.1

pcler8 27 90 16.7 11.1 4.0 10.3 31 0 4.0
c8 28 164 19.5 4.3 8.4 0.0 38 8 6.9

C6288 32 2400 29.0 27.7 1.9 11.7 1424 700 27.3
comp 32 163 22.1 11.7 2.4 9.7 77 4 5.4
C1908 33 615 20.5 17.1 0.9 13.4 218 63 10.1

my adder 33 225 22.2 20.0 1.5 18.2 95 15 6.4
term1 34 363 18.5 9.6 4.0 8.8 75 18 8.8
count 35 144 17.4 17.4 0.0 16.7 37 3 2.4
C432 36 200 15.0 9.0 3.3 8.0 79 12 8.9
unreg 36 113 19.5 5.3 3.1 5.3 18 2 4.9

too large 38 582 17.4 9.6 2.2 9.6 113 43 10.9
b9 41 111 11.7 8.1 2.0 7.9 34 4 8.7

C1355 41 517 22.1 13.0 1.4 6.9 265 80 13.1
C499 41 532 20.3 13.3 2.2 8.8 197 39 5.8
cht 47 232 16.8 11.6 3.7 10.1 66 5 3.3

apex7 49 239 20.1 8.4 5.8 7.4 82 8 11.1
C3540 50 1136 18.2 15.3 1.3 7.7 381 174 2.1

x1 51 295 16.3 4.7 4.8 4.0 61 21 11.9
C880 60 354 18.9 11.6 4.1 11.6 115 45 10.8
dalu 75 1865 25.6 23.2 1.4 17.9 321 157 14.2

example2 85 286 17.5 15.0 1.4 13.2 110 7 9.8
i9 88 510 1.0 1.0 0.0 1.0 113 14 2.1
x4 94 378 18.3 4.5 5.3 4.5 110 41 8.6
i3 132 92 21.7 21.7 0.0 20.7 6 0 0.0
i5 133 269 12.6 4.8 2.9 4.0 68 5 7.8
i8 133 1898 14.2 11.4 0.8 4.0 259 110 6.3

apex6 135 710 20.8 5.9 2.1 3.0 215 71 5.7
rot 135 601 20.0 13.8 5.5 12.0 208 58 12.7
x3 135 742 14.3 9.0 3.2 5.6 192 57 10.0
i6 138 340 9.1 0.6 2.1 0.0 71 4 3.0

frg2 143 1030 16.1 7.4 3.2 6.8 244 55 7.4
pair 173 1538 18.9 13.2 2.4 5.4 434 185 12.0

C5315 178 1777 18.7 15.0 2.0 9.9 532 216 15.1
i4 192 136 8.8 8.8 0.4 8.8 6 0 4.6
i7 199 405 6.2 5.7 0.2 5.7 76 7 1.1
i2 201 109 4.6 0.0 2.2 0.0 12 4 3.6

C7552 207 2801 20.8 15.3 0.3 6.9 908 409 16.1
C2670 233 807 18.1 17.8 0.2 14.6 235 89 9.9
des 256 3995 23.6 18.5 2.5 7.3 847 450 14.2
i10 257 2281 20.4 19.2 1.9 4.5 695 319 6.1

100

their detailed results are not available, we can only compare the average perfor-

mance. In their experimental setup, the leakage reduction is compared with the

average value among 1,000 random vectors. For a fair comparison, we also report

in the last two columns the improvement of our approaches over the same baseline.

As we mentioned earlier, most of the leakage currents are contributed by gates

in their worst leakage state (WLS). After gate replacement and inserting internal

control points, the number of WLS gates will be reduced, however, the area of the

circuits may change. Hence, we report the results for these circuits in Table 5.3.

Table 5.4: Average performance comparison with algorithm in [1].

algorithm in [1] gate replacement divide-and-conquer

leakage reduction 25% 23% 37%

delay penalty ≤ 5% 0% ≤ 5%

area penalty ≤ 15% 2% 7%

Finally, Table 5.4 summarizes the performance improvement in the control

point insertion approach [1], our gate replacement algorithm, and the divide-and-

conquer approach.

5.6 Summary

We study the MLV+ problem which seeks to modify a given circuit and de-

termine an input vector such that the correct functionality is maintained when the

circuit is active and the leakage is minimized under the determined input vector

when the circuit is at stand-by mode. The relaxation of circuit modification with

changing its functionality enlarges the solution space of the IVC method. We show

101

that MLV (and hence MLV+) problem is a hard problem and propose low-complexity

heuristics to solve the MLV+ problem. The proposed algorithms are practical and

effective in the sense that we do not need to change the design flow and re-do place-

and-route. The experimental results show that this technique improves significantly

the performance of IVC in leakage reduction at gate level with little area and delay

overhead.

102

Chapter 6

Energy Efficient Detection Scheme for Wireless Sensor Network

Design

6.1 Introduction

Wireless sensor networks (WSNs) are an emerging class of systems with a vari-

ety of applications. The advent of small, low-cost, low-power micro-electromechanical

sensor technology and low-power RF design has made it possible to conceive of large

sensor networks which can perform a comprehensive set of functions. In particular,

with the ability of sensor nodes to sense, process, and transmit data, WSNs are well

suited to perform event detection mission [99, 100, 15, 110, 67, 84, 107, 13].

In an event detection scenario, sensor nodes are deployed into a target field

to collect data. The sensor nodes can process the observed data if needed before

transmitting the data to a fusion center, where a final decision is made about whether

an event occurs or not. Traditionally, there are two types of detection schemes: a

centralized scheme requires sensor nodes to forward all the information contained in

the observations to the fusion center; while a distributed scheme, on the other hand,

allows each sensor node to make its own decision and then send out only its 1-bit

decision to the fusion center. For both schemes, a final decision will be made at the

fusion center based on the information provided by all the sensor nodes.

103

It is crucial for the sensor network to detect the occurrence of the target event

accurately. We define detection accuracy as the probability that the fusion center

makes the correct final decision, or equivalently, the probability of error in the final

decision. Apparently, the more information the fusion center has, the higher the

detection accuracy is. Therefore, for the same system parameters, the centralized

scheme will achieve the highest detection accuracy and the distributed scheme will

have low detection accuracy.

Energy efficiency is another important design concern for WSNs. An energy

efficient detection scheme will extend the system’s life time as sensor nodes usually

must rely on small and non-renewable batteries. A sensor node consumes energy

in collecting, processing, transmitting, and receiving data. With the communica-

tion power dominating in many applications, the distributed scheme is more energy

efficient than the centralized scheme as it reduces each sensor node’s data transmis-

sion to the minimal level (only a 1-bit decision is transmitted). These two schemes’

inherent tradeoff between detection accuracy and energy consumption has been in-

vestigated in [99].

However, neither of the centralized and distributed detection schemes provides

flexibility for WSN designers to choose between detection accuracy and energy con-

sumption. In this chapter, we propose an energy-driven hybrid detection scheme to

fully exploit the energy-accuracy tradeoff. More specifically, we study how to achieve

the required detection accuracy with the least energy consumption. According to

the proposed hybrid scheme, each sensor node sends out its 1-bit decision (like the

distributed scheme) if that decision exceeds a pre-determined detection accuracy

104

threshold, and sends out all its observations otherwise (like the centralized scheme).

Note that in the former case, a sensor node can stop collecting observations to fur-

ther reduce energy consumption once it makes its 1-bit decision. The detection

accuracy threshold at individual sensor node is selected such that the fusion center

is guaranteed to achieve the required detection accuracy probabilistically. That is,

the probability that the fusion center will make the correct final decision is higher

than the required detection accuracy.

Our hybrid scheme is similar to the traditional sequential detection scheme,

which implements sequential probability ratio test (SPRT) at the fusion center or

sensors [100], in that both schemes operate data processing at sensors adaptively to

the collected observations, and hence the number of observations at sensors will be a

random variable instead of a fixed value. However, the proposed hybrid scheme sets a

restriction for the maximum number of observations collected by each sensor, which

avoids the potential delay at sensors and the consequent problem of asynchronism

caused by arbitrary large number of observations in the case of sequential detection.

We survey the related WSN work on detection and energy efficiency and ex-

plain the novelty of our work in Section II. We describe the WSN model and the two

traditional detection schemes in Section III. We introduce the energy-driven hybrid

scheme and analyze it in Section IV. Section V presents the WSN’s energy consump-

tion model, which includes energy on sensing, processing, transmitting and receiving

data. The simulation results reported in Section VI confirm that the proposed hy-

brid scheme is the most energy efficient to achieve the same detection accuracy. We

summarize the chapter in Section VII.

105

6.2 Related Work

6.2.1 On Detection in Wireless Sensor Networks

For a WSN that performs an event detection function, most of the previous

work focus on developing optimal decision rules or investigating the statistical prop-

erties for the distributed detection mechanisms. For example, the structure of an

optimal sensor configuration has been studied for the scenario where the WSN is

constrained by the capacity of the wireless channel over which the sensors are trans-

mitting [15]. Optimum distributed detection system design has been studied in [110]

for cases with statistically dependent observations from sensor to sensor. The work

in [67] has focused on a WSN with a large number of sensors which is based on a

specific signal attenuation model, and the problem of designing an optimum local

decision rule has been investigated. In [84] and [107] the problem of binary hypoth-

esis testing using binary decisions from independently and identically distributed

sensors is studied, and the optimal fusion rules are obtained.

In this chapter we study the tradeoff between different metrics, detection ac-

curacy and energy efficiency in particular, for the detection scheme’s performance.

Our main goal is to develop a detection scheme that consumes minimum energy

to provide a given detection accuracy. This problem is orthogonal to several other

approaches that are designed for objectives other than optimizing decision rules.

Therefore, they can be integrated with our proposed detection scheme. For in-

stance, [13] presents node sleeping scheduling protocol to maximize WSN’s lifetime

with guaranteed detection delay for rare-event detection. [75] studies the minimal

106

number of sensors required to monitor an environment with a desired sensing accu-

racy. [61] proposes a random sensor deployment with minimum energy consumption

under the constraints of quality of monitoring and WSN lifetime. [46] proposes a

tracking method in a WSN of binary proximity sensors.

6.2.2 On Energy Efficiency in Sensor Network Design

As we have mentioned, energy consumption has always been a key concern

for WSN design. Many energy-efficient techniques have been proposed in the past,

mainly at three design levels: sensor node level, communication level, and network

level. Low power design techniques for digital circuits have been used to build low

power microsensor nodes [70, 81]. For example, dynamic power management is

introduced at system level to reduce energy consumption by turning off idle com-

ponents in the node [85]. In addition, dynamic voltage scaling technique is used to

further reduce the dynamic energy consumption by adjusting the supply voltage at

runtime based on the processing workloads of sensors [98, 101].

A lot of work have been reported at communication and network levels to

improve WSN’s energy efficiency. These include clustering mechanisms [22], routing

algorithms [50, 51], energy dissipation schemes [62], sleeping schedules [80] and so on.

The energy reduction is normally achieved at the cost of other system performance

metrics such as delay [80, 50], robustness [51], or network density [80, 50]. [76]

summarizes several energy optimization and management techniques, to enhance

the energy awareness of WSNs.

107

However, performance metrics associated with specific applications have not

been adequately studied. As an example, [11] considers the energy-accuracy tradeoff

for aggregation applications of a sensor network that performs distributed estima-

tion. Previously we have investigated the energy-accuracy tradeoff for the two tra-

ditional detection schemes [99], as well as a sequential detection scheme [100]. The

hybrid detection scheme proposed in this chapter improves the energy efficiency of

the former two traditional schemes while providing the same detection accuracy.

More importantly, this scheme provides WSN designers with the flexibility to trade

off accuracy and energy, as well as sensor density.

6.3 System Model

A typical wireless sensor network that performs an event detection mission is

shown in Figure 6.1. It consists of a number of sensor nodes and a fusion center.

Each sensor node will collect observation data from its neighborhood, process the

data if needed, then route the processed data to the fusion center, where a final

decision on whether the event occurs or not will be made.

In such a sensor network, usually spatial and temporal correlations exist among

observation data within or across sensor nodes; data aggregation occurs along the

route from sensor nodes to the fusion center, where information can be partially lost

due to compression; and interference is always a problem for the wireless channel.

However, to focus our attention on the key issues of detection accuracy and en-

ergy efficiency, we assume that each sensor node independently observes, processes

108

fusion center

Figure 6.1: Wireless Sensor Network for Detection

and transmits data; given a certain hypothesis, observations are independently and

identically distributed (i.i.d.) at each single node and across sensor nodes; data is

transmitted via multi-hop routing, however on-route sensor nodes simply forward

the transmitted data without doing any compression; and there is no noise or any

other interference.

We start with the investigation of the binary hypothesis testing. Let H indicate

whether an event happens (H = H1) or not (H = H0), with the prior probabilities

P [H = H1] = p and P [H = H0] = 1 − p, 0 < p < 1. We have K sensor nodes, each

collecting T observations. The observations follow Bernoulli distribution conditioned

on each hypothesis, with the conditional pmf of P [1|H0] = p0 and P [1|H1] = p1.

The event can be effectually detected as long as p0 6= p1. Hence, WLOG we assume

0 < p0 < p1 < 1. A final decision Ĥ will be made at the fusion center. Decision

errors are penalized through a decision cost function of Cij, which denotes the cost

of choosing Ĥ = Hi when Hj is true, for i, j ∈ {0, 1}. For simplicity we assume

109

uniform costs as Cij = 0 for i = j and Cij = 1 for i 6= j.

Minimizing the overall probability of error, i.e., Pe = P [Ĥ 6= H], over all ad-

missible decision rules at the fusion center and each sensor node is a simple detection

problem that belongs to the classical binary hypothesis testing. Based on the above

model, we have studied the following two traditional detection schemes in [1]:

• Centralized Scheme

At each sensor node, the observation data is transmitted to the fusion center

without any loss of information. Since observations are assumed to be condi-

tional i.i.d. binary random variables, It is obvious that the number of 1’s in

the T binary observations at each sensor node (denoted as ni for the ith node,

i = 1, . . . , K) is a sufficient statistic for the detection. The optimal final de-

cision rule at the fusion center is actually the maximum a posteriori detector

for the binary hypothesis testing [71], which is given by

Ĥ =















H1 if n ≥ γc;

H0 if n < γc.

(6.1)

where n =
∑K

i=1 ni, and the threshold

γc =
ln1−p

p
+ KTln1−p0

1−p1

lnp1(1−p0)
p0(1−p1)

. (6.2)

The overall probability of error is given by

Pe = p(1 − P [n ≥ γc|H1]) + (1 − p)P [n ≥ γc|H0], (6.3)

where P [n ≥ γc|Hα] (for α = 0, 1) are the detection probability (α = 1) and

110

the false alarm (α = 0) that can be computed by

P [n ≥ γc|Hα] =
KT
∑

n=⌈γc⌉

(KT
n)pn

α(1 − pα)KT−n. (6.4)

• Distributed Scheme

Each sensor node makes a local decision and transmits the binary result (bi

for the ith node) to the fusion center indicating its decision. We assume that

sensor nodes are homogeneous, thus each sensor node will adopt the same

detector, and the local decision rule does not depend on the total number of

sensor nodes, which is considered as a global information. Therefore similar

to the centralized scheme, both the local detector at each sensor node and the

final detector at the fusion center will be maximum a posteriori detector. The

detailed results can be found in [99], we do not elaborate them here.

The centralized and distributed schemes are easy to implement and can be

conveniently analyzed theoretically. However, they do not provide any flexibility in

detection accuracy and energy consumption. That is, for fixed system parameters

the performance of the schemes, including detection accuracy and energy consump-

tion, is fixed for the application users. In the following section we propose a hybrid

detection scheme that can achieve flexibility between energy and accuracy. When

we fix the detection accuracy, the energy-driven hybrid detection scheme can achieve

significantly higher energy efficiency than the above traditional schemes.

111

6.4 Hybrid Detection Scheme

6.4.1 Intuition

When a single node is considered, the number of 1’s (denoted by ni) in the T

binary observations indicates the confidence in the decision. That is,

P [H1|ni] =
P [ni|H1]P [H1]

∑1
α=0 P [ni|Hα]P [Hα]

=
pλi

pλi + 1 − p
, (6.5)

where the likelihood ratio at the ith node is given by

λi =
P [ni|H1]

P [ni|H0]
= [

p1(1 − p0)

p0(1 − p1)
]ni(

1 − p1

1 − p0

)T . (6.6)

As we assume 0 < p0 < p1 < 1, the likelihood ratio increases monotonically with ni,

so does P [H1|ni], which means the more number of 1’s a sensor node observes, the

more confident it is to decide Ĥ = H1; and vice versa. In other words, the accuracy

of decision Ĥ = H1 increases with the increase of ni; or equivalently, the accuracy

of decision Ĥ = H0 increases with the decrease of ni.

Therefore, to achieve a certain level of accuracy at a sensor node, we only need

to collect a minimum number of 1’s (N1) or a minimum number of 0’s (T − N0),

where 0 ≤ N0, N1 ≤ T . From the point view of energy efficiency to guarantee such

a detection accuracy at the sensor node, it is sufficient to stop collecting new data

once N1 1’s or T − N0 0’s have been observed. This has the potential in saving

energy from data collecting and processing. If neither N1 1’s or T − N0 0’s are

accumulated in all the T observations, the sensor node simply transmits all the data

to the fusion center in order not to lose any information.

112

6.4.2 Detection mechanism

The hybrid detection scheme allows each sensor node to compare the number

of 1’s in its T binary observations (ni for the ith node) with two threshold N0 and

N1 (N0 < N1). If ni ≤ N0 the sensor node will send a 0 to the fusion center as the

local result; or if ni ≥ N1 a 1 will be sent; otherwise the original information from

observations will be sent. In other words, if a sensor node observes enough 1’s or

0’s, which can guarantee a certain accuracy, it will make a local decision and send it

to the fusion center, similar to the distributed scheme; otherwise it will send all the

information to the fusion center, similar to the centralized scheme. A final decision

will be made at the fusion center based on all the information provided from the

sensor nodes. Therefore the new scheme can be considered as a hybrid of the two

traditional schemes.

Obviously if N0 < 0 and N1 > T , sensor nodes will always perform the cen-

tralized scheme; if N1 − N0 = 1, sensor nodes will always perform the distributed

scheme. Therefore these two traditional schemes can be considered as two extreme

cases of the hybrid scheme.

Notice that for the hybrid scheme, each sensor node does not necessarily ob-

serve all of the T observations before they can make a local decision. As soon as

the number of 1’s reaches N1, it can decide to send a 1; or on the other hand, as

soon as the number of 0’s reaches T − N0, it can decide to send a 0. In either case,

the data observing process will possibly be terminated before the total number of

observations reaches T . Therefore, the hybrid scheme can potentially save energy

113

in data observing and processing. We will validate this intuition by simulations.

The mechanism of the hybrid scheme at each sensor node can be generalized

as follows:

Y j
1 →































#(1) ≥ N1 → send b = 1

#(0) ≥ T − N0 → send b = 0

otherwise → take Yj+1 . . . until YT , send n

(6.7)

where Yj is the jth observation collected at this sensor node, j = 1, 2, . . . , T ; Y j
1

stands for {Y1, Y2, . . . , Yj}; b is the binary local decision; and n is the number of 1’s

out of the T observations.

6.4.3 Decision rules

Similar to the distributed scheme, we adopt identical detectors, which means

the thresholds of {N0, N1} are the same for all sensor nodes. This is reasonable

since we study homogeneous sensor networks, and it will significantly reduce the

computation complexity. We first consider local decision rule, then address the

approach to determine optimal final decision rule.

• Local decision rule

Our object is to determine the local thresholds, i.e., {N0, N1}, that can guar-

antee a certain detection accuracy for the final decision at the fusion center,

e.g., Pe ≤ δ. Here we introduce an approach that finds an upper bound for

Pe.

First, we loose Pe to Pe−dis, which represents the overall probability of error

114

of the case that all sensor nodes send a 1-bit decision. We have:

Pe−dis = (1 − p)P [Ĥ = H1|H0] + pP [Ĥ = H0|H1].

Then to ensure Pe−dis ≤ δ, we enforce P [Ĥ = H1|H0] ≤ δ and P [Ĥ =

H0|H1] ≤ δ, such that

P [Ĥ = H1|H0] =

K
∑

k=⌈ΓD⌉

(K
k)P [b = 1|H0]

k

(1 − P [b = 1|H0])
K−k ≤ δ, (6.8)

where b is the local decision at each node, and ΓD is the threshold that can

be computed. Because we assume P [b = 1|H0] < 1/2, Equation (6.8) can be

further simplified as

K(K
⌊K/2⌋)

P [b = 1|H0]

1 − P [b = 1|H0]
(1 − P [b = 1|H0])

K ≤ δ.

Next considering (1 − P [b = 1|H0])
K < 1, we have

K(K
⌊K/2⌋)

P [b = 1|H0]

1 − P [b = 1|H0]
≤ δ.

Finally we obtain an upper bound on the accuracy of the local decision, given

by

P [b = 1|H0] ≤
K(K

⌊K/2⌋)

K(K
⌊K/2⌋) + δ

. (6.9)

Similarly we can derive the upper bound for P [b = 0|H1].

As we know

P [b = 0|Hα] =

T
∑

i=T−N0

(i−1
T−N0−1)(1 − pα)T−N0pi−T+N0

α ; (6.10)

115

P [b = 1|Hα] =
T

∑

i=N1

(i−1
N1−1)(1 − pα)i−N1pN1

α (6.11)

for α = 0, 1. From Equations (6.9), (6.10), (6.11), we will be able to determine

{N0, N1} as a function of {δ, K, T, p0, p1}.

Although the upper bound can be loose, it demonstrates the idea that an

overall accuracy of the system is dependent on the local thresholds at each

sensor node.

• Final decision rule

Suppose among the K sensor nodes, s of them send a ‘0’ and another t of them

send a ‘1’, which leaves the other K−s−t sensor nodes sending their ni’s, where

s, t ≥ 0 and s + t ≤ K. WLOG let Ω = {n1, . . . , nK−s−t; 0, . . . , 0; 1, . . . , 1}

denote the set of data transmitted to the fusion center from sensor nodes.

Then for a given Ω, the optimal final decision rule is to choose Ĥ = H1 if

P [H1|Ω] ≥ P [H0|Ω]. (6.12)

Equation (6.12) can be derived to

P [Ω|H1]

P [Ω|H0]
=

K−s−t
∏

k=1

P [nk|H1]

P [nk|H0]
× Bs

0 × Bt
1 ≥

1 − p

p
, (6.13)

where

Bi =
P [b = i|H1]

P [b = i|H0]
; i = 0, 1.

P [b = i|Hα] are given by Equations (6.10), (6.11).

We can also compute

P [nk|Hα] = (T
nk

)pnk
α (1 − pα)T−nk (6.14)

116

for α = 0, 1.

The overall probability of error can be computed by Equation (6.3), where the

detection probability (Pd) and false alarm (Pf) can be expressed as

Pd =
∑

Ω:Ĥ(Ω)=H1

(K
s)(K−s

t)(P [b = 0|H1])
s

×(P [b = 1|H1])
t ×

K−s−t
∏

k=1

P [nk|H1]; (6.15)

Pf =
∑

Ω:Ĥ(Ω)=H1

(K
s)(K−s

t)(P [b = 0|H0])
s

×(P [b = 1|H0])
t ×

K−s−t
∏

k=1

P [nk|H0]. (6.16)

Figure 6.2 presents the detection performance of the hybrid scheme with op-

timal decision rule applied, and it is compared with the centralized and distributed

schemes. The system parameters are set as: p = 0.5, p0 = 0.2, p1 = 0.7, T = 5;

K is varied from 5 to 10; and hybrid scheme of {N0 = 1, N1 = 3}, {N0 = 1, N1 =

4}, {N0 = 0, N1 = 4} are examined. As we can see, for given values of parameters,

the hybrid scheme performs significantly better than the distributed scheme, and it

is comparable to the centralized scheme. Also, it is improved with the increase of

the distance between N0 and N1. As long as the desired detection accuracy falls into

the range between the results of the centralized and distributed schemes, the hy-

brid scheme can always guarantee to achieve the same accuracy by setting {N0, N1}

accordingly. Furthermore, we will see from the simulation results that the hybrid

scheme consumes much less energy than the other two schemes to achieve the same

detection accuracy.

117

5 6 7 8 9 10
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

K

P
e (

lo
g

sc
al

e)

hybrid: (1,3)
hybrid: (1,4)
hybrid: (0,4)
centralized
distributed

Figure 6.2: Comparison of Three Schemes in Detection Accuracy

6.4.4 Suboptimal algorithm

Determining the optimal detection performance by exhaustive search in Equa-

tions (6.15), (6.16) may not be practical due to the excessive computations, espe-

cially for large K and T . Hence we develop a suboptimal algorithm to compute an

approximate result for the detection performance.

In the suboptimal algorithm, instead of computing P [n|Hα] for each different

n ∈ {N0 + 1, . . . , N1 − 1}, we replace it with its average value, which is given by

Pavg [n|Hα] =

∑N1−1
i=N0+1(P [n = i|Hα])2

∑N1−1
i=N0+1 P [n = i|Hα]

; α = 0, 1 (6.17)

where P [n = i|Hα] can be computed by Equation (6.14). Thus Equation (6.13) can

118

be simplified to

(
Pavg[nk|H1]

Pavg[nk|H0]
)K−s−t × Bs

0 × Bt
1 ≥

1 − p

p
,

and Equations (6.15), (6.16) can be simplified in the same way.

6.5 Energy Consumption Model

Energy is mainly dissipated on three parts in our network: data acquisition,

data processing and communication.

6.5.1 Data acquisition

Data acquisition includes sensing observations from the field and converting

the observed information into digital format. Each sensor node collects observations

via a sensing device. The power consumption for sensing is dependent on the types of

sensing devices. For example, the MICA Mote microsensors [35] have three different

sensing devices: photoresister, accelerometer and temperature meter. Their power

consumption ranges from 0.4mW to 13.5mW. After an observation is collected, the

analog-digital converter (ADC) in the sensor node will convert the information into

a binary value and store it into a local memory.

Because the observations in our scenario are discrete, we can assume the sens-

ing device will be turned on and off periodically to sample the data and store it

locally. For one observation, we measure the total energy consumed in sensing,

converting, and storing, and denote this unit energy consumption as es. We also

assume, after the sensing device is turned off, no energy will be dissipated.

119

For the T observations collected from the sensing field, both the centralized

and the distributed detection schemes will sample T times. Therefore, the sensing

energy in each sensor node will be Tes. For the hybrid scheme, sensor nodes will keep

collecting observations until they can make a decision or all the T observations are

collected. As we have described in Section IV, given the local thresholds N0 and N1,

the number of observations collected at each node will be between min{N1, T −N0}

and T . Therefore, the sensing energy at a node for the hybrid scheme will be esτ ,

where τ ∈ [min{N1, T − N0}, T].

6.5.2 Data processing

Two major contributors to energy consumption in data processing are dynamic

power and leakage power in the sensor node’s microprocessor (or microcontroller).

Dynamic power is caused by the capacitance charging and discharging and is pro-

portional to CsV
2
dd, where Cs is the total switching capacitance in the microprocessor

and Vdd is the supply voltage. Leakage power is caused by the leakage current in the

CMOS circuits and is dependent on the threshold voltage Vth and thermal voltage

VT of the circuits. During the active mode, both dynamic and leakage power are

present; while in the idle mode, the leakage power is the dominant part. As the leak-

age power increases dramatically in the past few years and is projected to be more

and more significant in the future, most microprocessors have incorporated one or

more sleep modes, in which the leakage power consumption is tiny. However, when

the microprocessor switches from sleep mode back to active mode, an additional

120

time and energy is required for waking up. Such wake-up time in microprocessors

is usually in a few to hundreds of cycles and the energy is between 2 and 45nJ [72].

In our system model, we assume that the observations are sparse in the time

domain and the inter-arrival time is much longer than the wake-up time plus data

processing time. Therefore, for energy efficiency, we put the microprocessor into

sleep mode as soon as it finishes data processing. Assuming that the energy overhead

for wake-up is ew and the microprocessor needs n cycles to process an observation,

with ecyc as the energy consumption for each cycle, the energy consumed to process

each observation will be ep = ew + necyc. For the centralized scheme, since no data

processing is needed, the data processing energy is virtually zero. For the distributed

scheme, each sensor node needs to spend T cycles to process data and one additional

cycle to make a final decision. In this case, the total energy is (T + 1)ep. For the

hybrid scheme, the processor will process each incoming observation until it can

make a decision, otherwise all the T observations will be processed. Similar to

the sensing energy, the amount of processing energy will depend on the number of

observations it processes, thus it will be between min{N1, T − N0}ep and Tep.

6.5.3 Communication

We consider multi-hop communications in our network model, where a greedy

perimeter stateless routing (GPSR) algorithm is implemented. Each sensor node will

receive data from and send data to its neighbors within a communication radius,

denoted by R. The energy for transmitting and receiving one bit information is

121

modeled as:

Etx = etd
β; Erx = er, (6.18)

where et is the energy of transmitting one bit data over a unit distance; er is the

energy for receiving one bit information from a neighbor; d is the distance between

two neighboring nodes; and β is the path loss exponent, which is an environment-

dependent constant, usually between 2 and 4. We adopt β = 2 in our simulation.

When a sensor node sends packets to the fusion center via a routing path, all

the nodes along that path will receive and forward the packets. Assuming that the ith

node sends Si bits of data to the fusion center, we can calculate the communication

energy consumed on this path as

Etx−i =

li
∑

j=1

etd
2
jSi; Erx−i =

li
∑

j=1

erSi, (6.19)

where li is the length of the path, in number of hops, from the ith node to the fusion

center, and dj is the distance between the j−1th node and the jth node on the path.

For the centralized scheme, every sensor node sends the number of 1’s of the

collected data to the fusion center. Therefore Si = log2(T +1) for all the nodes. For

the distributed scheme, all the sensor nodes send only their one bit decision to the

fusion center, thus Si = 1 in this case. For the hybrid scheme, if a node has made

a decision locally, it only needs to send one bit data out; otherwise, it will need to

send out the log2(T + 1) bit data to the fusion center.

122

6.6 Simulation Results

We have already demonstrated that the proposed hybrid scheme’s detection

accuracy is significantly higher than the distributed scheme and can be comparable

to the centralized scheme. In this section, we conduct simulation to validate the

energy efficiency of the hybrid scheme.

−15 −10 −5 0
0

0.5

1

1.5

2

2.5

3
x 10

4

P
e
 (log scale)

E
to

ta
l (

nJ
)

hybrid
centralized
distributed

K
h
, E

h

K
c
, E

c

K
d
, E

d

Figure 6.3: Dense Network: 1 × 1 Field

In our simulation, the probability p that the event happens changes from 0.1

to 0.9 with a step of 0.2, the conditional probability that 1 is observed when the

event does not occur (p0) and when the event does occur (p1) varies from 0.1 to 0.3

and 0.7 to 0.9, respectively, both with the step of 0.1. Here we report the results

under the representative parameter setting: p = 0.5, p0 = 0.2 and p1 = 0.7. It is

123

−15 −10 −5 0
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

P
e
 (log scale)

E
to

ta
l (

nJ
)

hybrid
centralized
distributed

Figure 6.4: Intermediate Network:
√

2 ×
√

2 Field

easy to see that as p0 decreases (and/or p1 increases), each observation becomes

more accurate. So we can set a small distance between the two thresholds in the

hybrid scheme to reach the given detection accuracy. As a result, the sensor node

has a better chance to make its own decision and transmit only this 1-bit decision.

Consequently the hybrid scheme becomes more energy efficient.

We adopt the following energy parameters: transmitting 1 bit over a unit dis-

tance needs et = 400nJ , receiving 1 bit from a neighbor node needs er = 50nJ ,

taking 1 bit observation requires es = 10nJ , and processing one observation con-

sumes ep = 40nJ . We report the results when each sensor node takes 5 observations

(i.e., T = 5) and the local thresholds in the hybrid scheme are set as N0 = 1 and

124

−15 −10 −5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

P
e
 (log scale)

E
to

ta
l (

nJ
)

hybrid
centralized
distributed

Figure 6.5: Sparse Network: 2 × 2 Field

N1 = 3.

As we have discussed in Section IV, with the same number of sensor nodes,

the three different detection schemes achieve different detection accuracy. In our

simulation, we measure the detection accuracy by the overall probability of error

Pe and let it vary from 10−2 (lowest accuracy) to 10−14 (highest accuracy). The

minimal number of sensors required to reach Pe varies accordingly from 4 to 41,

6 to 48, and 6 to 59 for centralized, hybrid, and distributed detection schemes,

respectively. For instance, when Pe = 10−10, these three schemes need Kc = 28,

Kh = 34, and Kd = 41 sensors, respectively. For a given detection accuracy, we

randomly deploy the minimal number of sensors required by each detection scheme

125

in a unit square (1 × 1) field. We set the communication radius R = 0.45 and use

the GPSR [44] protocol to route the data from sensor nodes to the fusion center.

Now, with the energy model presented in Section V, we are able to com-

pute the energy consumption for each detection scheme as depicted in Figure 6.3.

Clearly, the proposed hybrid scheme is more energy efficient than the centralized

and distributed schemes. For example, when Pe = 10−10, the sensor network with

hybrid scheme consumes a total energy of Eh = 10292.9nJ , while centralized and

distributed schemes require Ec = 16714.3nJ and Ed = 18988.3nJ , or 62.4% and

84.5% more energy than Eh, respectively. Comparing with the centralized scheme,

our hybrid scheme saves a large amount of energy on communications because it

can make local decision and convert a lot of data into the 1-bit decisions. On the

other hand, the distributed scheme’s poor detection performance forces it to deploy

more sensors (Kd = 41) which results in more energy cost on sensing and local data

processing. This energy breakdown is shown in Figure 6.6.

To study the impact of the communication cost on the energy performance of

these detection schemes, we scale the size of the sensor field to change the energy

per bit per communication hop. Figure 6.4 depicts the result when the sensor field

is doubled, and R is changed to 0.64. Figure 6.5 presents the result when the edge

of the field is doubled, i.e., field is four times large, and R is changed to 0.9. As one

can see, with communication becomes more expensive, the total energy cost for all

schemes increases. However, the centralized scheme has the fastest increase as it has

the most communication activity. Thus its performance is deteriorated most and

it becomes less energy efficient than the distributed scheme. On the other hand,

126

Total Energy= 16.7

Total Energy= 10.3

Total Energy= 19.0

Figure 6.6: Breakdown of Energy Consumption for Dense Network

the proposed hybrid scheme still has the best performance because its increased

cost in communications is less than that of the other two schemes when the same

detection accuracy is achieved. In sum, the hybrid scheme can reduce total energy

consumption significantly over both traditional schemes.

Finally, we compare the energy consumption per node to provide the desired

detection accuracy. This is another important metric to evaluate WSN’s energy

efficiency, particularly when sensor’s energy source is not renewable or rechargeable.

As one can see from Figure 6.7, the centralized scheme has the highest energy

per node cost. This implies that under the current simulation setting, a WSN with

centralized scheme, despite consuming less total energy than a WSN with distributed

scheme (see Figure 6.3), has a shorter lifetime. Figure 6.7 shows that the proposed

127

hybrid scheme performs distinctly better than the two traditional schemes in terms

of energy per node, which results in a much longer lifetime for the WSN.

−15 −10 −5 0
250

300

350

400

450

500

550

600

650

700

P
e
 (log scale)

E
to

ta
l/K

 (
nJ

)

hybrid
centralized
distributed

Figure 6.7: Comparison of Energy per Node for Dense Network

6.7 Summary

In this chapter we propose an energy-driven hybrid detection scheme that can

reduce energy consumption while providing a guaranteed detection accuracy. We

terminate the detection process on individual sensor node when a local decision can

be made with accuracy higher than a pre-determined threshold. Such threshold

is calculated to ensure that the overall detection accuracy will be achieved at the

fusion center. We have developed the optimal decision rule for the proposed hybrid

128

detection scheme, and assessed its detection performance. We have also constructed

an energy consumption model to estimate the energy consumption for the system.

Simulation results confirmed that the hybrid scheme can significantly reduce the

energy consumption than the traditional schemes to achieve the same detection

accuracy.

The proposed hybrid scheme provides WSN designers with the flexibility in

balancing different performance metrics. The inherent relation between the overall

accuracy and local thresholds needs further investigations. Moreover, we are cur-

rently studying a more general WSN model to investigate the energy efficiency and

the detection accuracy of the hybrid scheme. Many factors such as non-binary data,

spatial and temporal correlation among observations, and data aggregation along

routes are being considered in this general model. Our long term goal is to build a

framework to study, across all WSN design levels, the minimum energy required to

perform a given function.

129

Chapter 7

Conclusions

In this thesis, we address the increasing concern of power consumption in

modern embedded system design. We propose a re-engineering design methodology

to explore the ever-increasing design space of energy efficient system more efficiently

and effectively.

This methodology is based on the observation that existing design space explo-

ration algorithms may exclude good solutions in the early stage of the serial design

flow. By re-constructing the design space and re-exploration, the solution quality

can be improved.

A general design framework using this methodology is given. To keep the dis-

cussion concrete, we also apply this framework to four power minimization problems

at different levels of embedded system design flow.

In the sequential circuit synthesis problem, we re-construct the FSM by du-

plicating states. State encoding in the enlarged FSMs can provide solutions with

smaller switching activity, i.e., reduced dynamic power consumption. Our experi-

ments on MCNC benchmarks have shown a 12% power reduction.

In the dual-Vth assignment problem, we combined the procedure of input vector

control followed by Vth assignment in leakage power minimization. We developed an

iterative algorithm to simultaneous assign input vectors and Vth. The performance

130

of dual-Vht assignment is improved by over 30% with the same run-time.

In the input vector control for static power minimization problem, we re-

engineer the technology mapping solution. Basically, we replace gates that are in

the worst leakage states by other library gates to reduce the worst case leakage. A

sleep signal is used to control the correct functionality at active mode. Our approach

can achieve 50% more leakage reduction with less overhead.

In the energy efficient wireless sensor network design, this re-engineering idea

is used to design the detection scheme at system level. A hybrid scheme is proposed

to trade off detection accuracy for energy efficiency. We run simulation on networks

with a specific application. Our scheme consumes the least energy with guaranteed

detection accuracy.

Through these problems, we show that the re-engineering design framework

can be practically integrated into today’s embedded system design flow and improve

design’s energy efficiency. It will be a promising approach to solving other low power

problems. Moreover, it is possible to apply this methodology to other optimization

problems than power minimization. It can be another research direction in the

future.

131

Appendix A

List of Publications

1. Lin Yuan and Gang Qu, Energy Efficient Design for Distributed Sensor Net-

works, Handbook of Sensor Network, Chapter 38, CRC Press, Oct. 2004.

2. Lin Yuan and Gang Qu, Analysis of Energy Reduction on Dynamic Voltage

Scaling-Enabled Systems, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 24, No. 12, pp. 1827-1837, Dec. 2005.

3. Lin Yuan and Gang Qu, A Combined Gate Replacement and Input Vec-

tor Control Approach for Leakage Current Reduction, IEEE Transactions on

VLSI, Vol. 14, No. 2, Feb. 2006.

4. Lige Yu, Lin Yuan, Gang Qu and Anthony Ephremides, Energy-Driven Detec-

tion Scheme with Guaranteed Accuracy, to appear in International Conference

on Information Processing in Sensor Networks (IPSN), 2006.

5. Sean Leventhal, Lin Yuan, Neal Bambha, Shuvra Bhattacharyya and Gang

Qu, DSP Address Optimization Using Evolutionary Algorithm, 9th Interna-

tional Workshop on Software and Compilers for Embedded Systems (SCOPES),

2005.

6. Lin Yuan and Gang Qu, Enhanced Leakage Reduction Techniques by Gate

Replacement, 42nd IEEE/ACM Design Automation Conference (DAC), 2005.

132

7. Lin Yuan, Gang Qu and Ankur Srivastava, VLSI CAD Tool Protection by

Birthmarking Design Solutions, IEEE/ACM Great Lakes Symposium on VLSI

(GLSVLSI), 2005.

8. Lin Yuan, Gang Qu, Tiziano Villa, and Alberto Sangiovanni-Vincentelli, FSM

Re-Engineering and Its Application in Low Power State Encoding, Asia South

Pacific Design Automation Conference (ASPDAC), pp. 254-259, 2005.

9. Lin Yuan and Gang Qu, FSM Re-Engineering for Low Power State Encoding,

International Workshop on Logic and Synthesis (IWLS), pp. 257-264, 2004.

10. Lin Yuan, Pushkin Pari and Gang Qu, Finding Redundant Constraints for

FSM Minimization, National Conference on Artificial Intelligence (AAAI),

pp. 976-977, 2004.

11. Pushkin Pari, Lin Yuan, Jane Lin and Gang Qu, Generating ”Random” 3-

SAT Instances with Specific Solution Space Structure, National Conference

on Artificial Intelligence (AAAI), pp. 960-961, 2004.

12. Lin Yuan and Gang Qu, Information Hiding in Finite State Machine, 6th In-

formation Hiding Workshop (IHW), pp. 340-354, Lecture Notes in Computer

Science, Springer-Verlag, 2004.

13. Lin Yuan, Pushkin Pari and Gang Qu, Soft IP Protection: Verilog HDL Wa-

termarking Technique, 6th Information Hiding Workshop (IHW), pp. 224-238,

LNCS, Springer-Verlag, 2004.

133

14. Pushkin Pari, Lin Yuan and Gang Qu, How Many Solutions Does a SAT

Instance Have?, IEEE International Symposium on Circuits And Systems (IS-

CAS), pp. 209-212, 2004.

15. Adarsh Jain, Lin Yuan, Pushkin Pari and Gang Qu, Zero Overhead Water-

marking Technique for FPGA Designs, IEEE/ACM Great Lakes Symposium

on VLSI (GLSVLSI), pp.147-152, 2003.

16. Lin Yuan and Gang Qu, Design Space Exploration for Energy-Efficient Se-

cure Sensor Network, IEEE International Conference on Application-Specific

Systems, Architectures and Processors (ASAP), pp. 88-92, 2002.

134

BIBLIOGRAPHY

[1] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage Current Reduction in
CMOS VLSI Circuits by Input Vector Control”, IEEE Trans. VLSI, vol. 12,
pp. 140-154, Feb. 2004.

[2] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power”, in IC-
CAD 1994, pp. 74-81.

[3] F. Aloul, S. Hassoun, K. Sakallah, D. Blaauw, “Robust SAT-Based Search Al-
gorithm for Leakage Power Reduction”, International Workshop on Integrated
Circuit Design, pp. 167-177, 2002.

[4] Mohab Anis, Mohamed Elmasry “Multi-Threshold CMOS Digital Circuits :
Managing Leakage Power”, Springer, October 2003.

[5] F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.K. Ko, and C. Hu, “Dy-
namic Threshold-Voltage MOSFET(DTMOS) for ultra-low voltage VLSI”,
IEEE Transaction on Electron Devices, vol. 44, pp. 414-422, 1997.

[6] M.J. Avedillo, J.M. Quintana, and J.L. Huertas, “SMAS: a program for con-
current state reduction and state assignment of finite state machines,” IEEE
International Symposium on Circuits and Systems, pp. 1781-1784, 1991.

[7] H. Aydin, R. Melhem, D. Mosse, and P.M. Alvarez, “Dynamic and Aggres-
sive Scheduling Techniques for Power-Aware Real-Time Systems”, in Proc. of
RTSS, 2001, pp. 95-105.

[8] L. Benini and G. D. Micheli, “State Assignment for Low Power Dissipation,”
IEEE Journal of Solid-State Circuits, Vol.30, pp.258-268, March 1995.

[9] S. Bobba and I.N. Hajj, “Maximum Leakage Power Estimation for CMOS
Circuits”, IEEE Alessandro Volta Memorial Workshop on Low Power Design,
pp. 116, 1999.

[10] M. Borah, R.M. Owens, and M.J. Irwin, “Transistor sizing for low power
CMOS circuits”, IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 15, pp. 665–671, June, 1996.

[11] A. Boulis, S. Ganeriwal, and M. B. Srivastava, “Aggregation in Sensor Net-
works: An Energy-Accuracy Trade-off,” Elsevier Ad-hoc Networks Journal
(special issue on sensor network protocols and applications), 2003.

135

[12] B.H. Calhoun, F.A. Honore, and A. Chandrakasan, “Design Methodology for
Fine-Grained Leakage Control in MTCMOS”, International Symposium on
Low Power Electronics and Design, pp. 104-109, 2003.

[13] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards Optimal Sleep
Scheduling in Sensor Networks for Rare-Event Detection,” Proc. of The
Fourth International Symposium on Information Processing in Sensor Net-
works (IPSN’05), Los Angeles, CA, April, 2005.

[14] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power CMOS Digital
Design,” IEEE Journal of Solid-State Circuits, Vol.27, pp. 473-484, April 1992.

[15] J. -F. Chamberland and V. V. Veeravalli, “Decentralized Detection in Sensor
Networks,” IEEE Trans. on Signal Processing, 51(2):407-416, February 2003.

[16] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of Standby Leak-
age Power in CMOS Circuits Considering Accurate Modeling of Transistor
Stacks”, in Proc. ISLPED,1998, 1998, pp. 239-244.

[17] C. Chen, A. Srivastava, and M. Sarrafzadeh, “On Gate Level Power Opti-
mization using dual-Supply Voltages”, IEEE Transaction on Very Large Scale
Integration (VLSI) Systems, Vol. 9, pp. 616-629, Oct. 2001.

[18] K. Chopra and S.B.K. Vrudhula, “Implicit Pseudo Boolean Enumeration Al-
gorithms for Input Vector Control”, in Proc. DAC, 2004, pp. 767-772.

[19] A. Dasgupta and R. Karri, “Simultaneous Scheduling and Biding for Power
Minimization During Microarchitecture Synthesis”, in Proc. of ISLPED, 1995,
pp. 69-74.

[20] S. Devadas, H-T. Ma, R. Newton, and A. Sangiovanni-Vincentelli, “MUS-
TANG: State Assignment of Finite State Machines Targeting Multi-level Logic
Implementations,” IEEE Transactions on Computer-Aided Design, pp. 1290-
1300, December 1988.

[21] D. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evaluating Run-Time
Techniques for Leakage Power Reduction”, in Proc. VLSI Design, 2002, pp.
31-38.

[22] E. J. Duarte-Melo and M. Liu, “Analysis of Energy Consumption and Lifetime
of Heterogeneous Wireless Sensor Networks,” Proc. of IEEE Globecom, Taipei,
Taiwan, November 2002.

136

[23] G.Lakshminarayana, A. Raghunathan, N.K. Jha, and S. Dey, “Power Man-
agement in High-Level Synthesis”, IEEE Transactions on Very Large Scale
Integration Systems, Vol. 7, No. 1, pp. 7-15, March 1999.

[24] F. Gao and J.P. Hayes, “ILP-Based Optimization of Sequential Circuits for
Low Power”, in Proc. of ISLPED 2003, pp. 140-145.]

[25] F. Gao and J.P. Hayes, “Exact and Heuristic Approaches to Input Vector
Control for Leakage Power Reduction”, in Proc. ICCAD, 2004, pp. 527-532.

[26] M.R. Garey and D.S. Johnson, “Computers and Intractability, A Guide to the
Theory of NP-Completeness”, Freeman Company, 2001.

[27] L. Goodby, A. Orailoglu, and P.M. Chau, “Microarchitectural Synthesis of
Performance Constrained Low Power VLSI Designs”, in Proc. of ICCD, 1994,
pp. 323-326.

[28] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi, “Re-
Encoding Sequential Circuits to Reduce Power Dissipation,” International
Workshop on Low-Power Design, Napa, April 1994.

[29] G. D. Hachtel, B. Macii, A. Pardo, and F. Somenzi, “Probabilistic Analysis
of Large Finite State Machines,” Proceedings of the ACM Design Automation
Conferences, San Diego, CA, June 1994.

[30] G.D. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms”,
Kluwer Academic Publishers, 1996.

[31] G. Hallbauer, “Procedures of state reduction and assignment in one step in
synthesis of asynchronous sequential circuits,” International IFAC Symposium
on Discrete Systems, pp. 272-282, 1974.

[32] J. Halter, and F. Najm, “A Gate-Level Leakage Power Reduction Method for
Ultra Low Power CMOS Circuits”, in Proc. CICC, 1997, pp 475-478.

[33] J. Hartmanis and R.E. Stearns, “Some dangers in state reduction of sequential
machines”, Information and Control, pp252-260, Sept, 1962.

[34] M.J. Heijligers, L.J. Cluitmans and J.A. Jess, “High-level synthesis scheduling
and allocation using genetic algorithms”, in Proc. of ASPDAC 1995, pp. 61-
66.

137

[35] J. Hill, R. Szewcyk, a. Woo, D. Culler, S. Hollar, and K. Pister, “System Ar-
chitecture Directions for Networked Sensors,” 8th Intl’ Conf. on Architectural
Support for Programming Languages and Operating Systems, pp. 93-104, 2000.

[36] I. Hong, G. Qu, M. Potknojak, and M.B. Srivastava, “Synthesis Techniques
for Low-Power Hard Real-Time Systems on Variable Voltage Processor”, in
Proc. of RTSS, 1998, pp. 178-187.

[37] S. Hua and G. Qu, “Voltage Set-up Problem for Embedded Systems with Mul-
tiple Voltages”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 13, No. 7, July 2005.

[38] S. Hua, G. Qu, and S.S. Bhattacharyya, “Energy-Efficient Multi-Processor
Implementation of Embedded Software”, ACM Transactions in Embedded
Computing Systems (Special Issue on Concurrent Hardware-Software Design
Method for Multi-Processor System-On-Chip), 2005.

[39] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark
Circuits”, in Proc. of ISCAS 1985, pp. 695-698.

[40] S. Iman, and M. Pedram, “POSE: Power Optimization and Synthesis Envi-
ronment”, Proceedings of the 33rd Design Automation Conferences, pp. 21-26,
Las Vegas, NV, June 1996.

[41] R. Jejurikar, C. Pereira and R. Gupta, “Leakage Aware Dynamic Voltage
Scaling for Real-Time Embedded Systems”, in Proc. of DAC, 2004, pp. 275-
280.

[42] M.C. Johnson, D. Somasekhar, and K. Roy, “Models and Algorithms for
Bounds on Leakage in CMOS Circuits”, IEEE Tran. Computer-Aided Design
of Integrated Circuits and Systems, vol.18, pp. 714-725, 1999.

[43] J. Kao, S. Narendra, A. Chandrakasan, “Subthreshold Leakage Modeling and
Reduction Techniques”, in Proc. ICCAD, 2002, pp.141-148.

[44] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks,” Proc. of ACM MOBICOM, August 2000.

[45] N.S. Kim, D. Blaauw, and T. Mudge, “Leakage Power Optimization Tech-
niques for Ultra Deep Sub-Micron Multi-Level Caches”, in Proc. of ICCAD,
2003, pp. 627-632.

[46] W. Y. Kim, K. Mechitov, J. Y. Choi, and S. Ham, “On Target Tracking with
Binary Proximity Sensors,” Proc. of The Fourth International Symposium on

138

Information Processing in Sensor Networks (IPSN’05), Los Angeles, CA, April
2005.

[47] M. Koegst, G. Franke, and K. Feske, “State Assignments for FSM Low Power
Design”, Proceedings of the Conference on European Design Automation, pp.
28-33, 1996.

[48] M. Koegst, S. Rulke, G. Franke, and M. Avedillo, “Two-Criterial Constraint-
Driven FSM State Encoding for Low Power”, Euromicro Symposium on Digital
Systems Design, Warsaw, Poland, September 2001.

[49] C.M. Krishna and Y.H. Lee, “Voltage Clock Scaling Adaptive Scheduling
Techniques for Low Power in Hard Real-Time Systems”, in Proc. of RTAS,
2000, pp.156-165.

[50] B. Krishnamachari, D. Estrin and S. Wicker, “The Impact of Data Aggre-
gation in Wireless Sensor Networks,” Proc. of ICDCSW’02, Vienna, Austria,
July 2002.

[51] B. Krishnamachari, Y. Mourtada, and S. Wicker. “The Energy-Robustness
Tradeoff for Routing in Wireless Sensor Networks,” IEEE International Con-
ference on Communications, Anchorage, Alaska, May 2003.

[52] A. Kumar and M. Anis, “Dual-Vt Design of FPGAs for Subthreshold Leakage
Tolerance”, in Proc. of ISQED, pp. 27-29, 2006.

[53] T. Kuroda, et al, “A 0.9V 150MHz 10mW 4mm2 2-D Discrete Cosine Trans-
form Core Processor with Variable Threshold-Voltage(VT) Schemen”, IEEE
Journal of Solid-State Circuits, pp. 1770-1779, Nov. 1996.

[54] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout, S.W. Gould, and J.M.
Cohn, “Managing Power and Performance for System-on-Chip Designs using
Voltage Islands”, in Proc. of ICCAD 2002, pp. 195-202.

[55] E.B. Lee and M. Perkowski, “Concurrent minimization and state assignment
of finite state machines”, International Conference on Systems Man and Cy-
bernetics, pp. 248-260, 1984.

[56] Y-H. Lee, K.P. Reddy, and C.M. Krishna, “Scheduling Techniques for Reduc-
ing Leakage Power in Hard Real-Time Systems’ ’, Euromicro Conference on
Real-Time Systems, pp. 140-148, 2003.

139

[57] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester, “Analysis and Minimiza-
tion Techniques for Total Leakage Considering Gate Oxide Leakage”, in Proc.
DAC, 2003, pp. 175-180.

[58] D. Lee and D. Blaauw, “Static Leakage Reduction through Simultaneous
Vt/Tox and State Assignment”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1014-1029, Vol. 24, No. 7, Jul. 2005.

[59] I. Lemberski, M. Koegst, S. Cotofana, and B. Juurlink, “FSM Non-Minimal
State Encoding for Low Power,” Proceedings of the 23rd International Con-
ference on Microelectronics, Yugoslavia, May 2002.

[60] B. Lin, and A. R. Newton, “Synthesis of multiple-level logic from symbolic
high-level description languages,” Proceedings of the IFIP TC 10/WG 10.5
International Conference on Very Large Scale Integration, pp. 187-196, Federal
Republic of Germany, August 1989.

[61] M. Maleki and M. Pedram, “QoM and Lifetime-constrained Random Deploy-
ment of Sensor Networks for Minimum Energy Consumption,” Proc. of The
Fourth International Symposium on Information Processing in Sensor Net-
works (IPSN’05), Los Angeles, CA, April 2005.

[62] D. Maniezzo, K. Yao and G. Mazzini, “Energetic Trade-off between Com-
puting and Communication Resource in Multimedia Surveillance Sensor Net-
work,” IEEE MWCN2002, Stockholm, Sweden, September 2002.

[63] G. D. Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Optimal State
Assignment for Finite State Machines,” IEEE Transactions on Computer-
Aided Design, pp. 269-285, July 1985 .

[64] G. D. Micheli, “Symbolic Design of Combinational and Sequential Logic
Circuits Implemented by Two-level Logic Macros,” IEEE Transactions on
Computer-Aided Design, pp. 597-616, October 1986.

[65] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-
mada, “1-V Power Supply High-Speed Digital Circuit Technology with Multi-
threshold Voltage CMOS”, IEEE Journal of Solid-State Circuits, pp. 847-854,
Aug. 1995.

[66] C. Neau and K. Roy, “Optimal Body Bias Selection for Leakage Improvement
and Process Compensation over Different Technology Generations”, Interna-
tional Symposium on Low Power Electronics and Design, pp. 116-121, 2003.

140

[67] R. Niu, P. Varshney, M. H. Moore, and D. Klamer, “Decision Fusion in a Wire-
less Sensor Network with a Large Number of Sensors,” Proc. of the Seventh
International Conference on Information Fusion, Stockholm, Sweden, June
2004.

[68] W. Noth, and R. Kolla, “Spanning Tree Based State Encoding for Low Power
Dissipation,” Proceedings of the Design Automation and Test in Europe, pp.
168, Munich, Germany, March 1999.

[69] E. Olson and S.M.Kang, “State assignment for low-power FSM synthesis using
genetic local search,” Proceedings of the IEEE 1994 Custom Integrated Circuits
Conference, pp.140-143, San Diego, CA, May 1994.

[70] C. Park, J. Liu, and P. H. Chou, “Eco: an Ultra-Compact Low-Power Wireless
Sensor Node for Real-Time Motion Monitoring,” Proc. of The Fourth Interna-
tional Symposium on Information Processing in Sensor Networks (IPSN’05),
Los Angeles, CA, April 2005.

[71] H. Vincent Poor, “An introduction to Signal Detection and Estimation,” Sec-
ond Edition, Springer.

[72] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low Power
Wireless Research”, in Proc. of The Fourth International Symposium on In-
formation Processing in Sensor Networks (IPSN’05), Los Angeles, CA, April
2005.

[73] G. Qu, “What is the limit of Energy Saving by Dynamic Voltage Scaling?”,
in Proc. of ICCAD, 2001, pp. 560-563.

[74] G. Quan and X. Hu, “Minimum Energy Fixed-Priority Scheduling for Variable
Voltage Processors”, in Proc. of DATE, 2002, pp. 782-787.

[75] Y. Rachlin, R. Negi, and P. Khosla, “Sensing Capacity for Discrete Sensor
Network Applications,” Proc. of The Fourth International Symposium on In-
formation Processing in Sensor Networks (IPSN’05), Los Angeles, CA, April
2005.

[76] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, “Energy-Aware
Wireless Sensor Networks,” IEEE Signal Processing, vol. 19, no. 2, pp. 40-50,
March 2002.

[77] R.M. Rao, F. Liu, J.L. Burns, and R.B. Brown, “A Heuristic to Determine
Low Leakage Sleep State Vectors for CMOS Combinational Circuits”, in Proc.
ICCAD,2003 pp.689-692.

141

[78] K. Roy and S. C. Prasad, “SYCLOP: Synthesis of CMOS logic for low power
application,” Proceedings of the International Conference on Computer De-
sign, pp. 464-467, October 1992.

[79] Robert R. Schaller, “Moore’s law: past, present, and future”, textitIEEE
Spectrum, Vol. 34, pp. 52-59, June 1997.

[80] C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Srivastava, “Optimizing Sen-
sor Networks in the Energy-Latency-Density Design Space,” IEEE Trans. on
Mobile Computing, vol. 1, no. 1, January-March 2002.

[81] B. Schott and M. Bajura, “Power-Aware Microsensor Design,” Intl’ Confer-
ence on Computer-Aided Design, San Jose, CA, November 2005.

[82] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw and V. Zolotov,
“Discrete Vt Assignment and Gate Sizing Using a Self-Snapping Continuous
Formulation”, in Proc. of ICCAD, 2005, pp. 705-711.

[83] D. Shin, J.Kim and S. Lee, “Intra-Task Voltage Scheduling for Low-Energy
Hard Real-Time Applications”, IEEE Design and Test of Computers, pp. 20-
30, Mar. 2001.

[84] W. Shi, T. W. Sun, and R. D. Wesel, “Quasiconvexity and Optimal Binary Fu-
sion for Distributed Detection with Identical Sensors in Generalized Gaussian
Noise,” IEEE Trans. Inform. Theory, vol. 47, pp. 446-450, January 2001.

[85] A. Sinha and A. P. Chandrakasan, “Dynamic Power Management in Wireless
Sensor Network,” IEEE Design & Test of Computers, Vol. 18, No. 2, pp. 62-74,
April 2001.

[86] E. Sentovich, et al., “SIS: A System for Sequential Circuit Synthe-
sis,”University of California, Berkeley, Electronics Research Laboratory Mem-
orandum, No. UCB/ERL M92/41, May 1992.

[87] A. Srivastava, D. Sylvester, and D. Blaauw, “Power Minimization using Si-
multaneous Gate Sizing, Dual-Vdd and Dual-Vth Assignment”, in Proc. of
DAC, 2004, pp. 783-787.

[88] P. Surti, L. F. Chao and A. Tyagi, “Low Power FSM Design Using Huffman-
Style Encoding,” Proceedings of IEEE European Design and Test Conference,
pp. 521-525, Paris, France 1997.

[89] C. Tsui, M. Pedram, A.M. Despain, “Technology decomposition and mapping
targeting low power dissipation”, in DAC, 1993, pp. 68-73.

142

[90] C. Tsui, M. Pedram, C. Chen, and A. M. Despain, “Low Power State As-
signment Targeting Two- and Multi-level Logic Implementations,” in Proc. of
ICCAD, 1994, pp. 82-87.

[91] K. Usami and M. Horowitz, “Clustered Voltage Scaling Technique for Low-
Power Design”, in Proc. of ISLPED, 1995, pp. 3-8.

[92] V. Veeramachaneni, A. Tyagi, and S. Rajgopal, “Re-encoding for Low Power
State Assignment of FSMs,” International Symposium on Low Power Design,
pp. 173-178, Dana Point, CA, April 1995.

[93] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finite
State Machines for Optimal Two-Level Logic Implementations,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, pp.
905-924, September 1990.

[94] Q. Wang and S.B.K. Vrudhula, “Algorithms for Minimizing Standby Power in
Deep Submicronmeter Dual-Vt CMOS Circuits”, IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, pp. 306-318, Vol. 21, No. 3,
Mar. 2002.

[95] S. Washabaugh, P. Franzon, and H. Nagle, “SABSA: Switching Activity Based
State Assignment,” Proceedings of IEEE Solid State Circuits and Technology
Committee Workshop on Low Power Electronics, 1993.

[96] L. Wei, Z. Chen, M. Johnson, and K. Roy, “Design and Optimization of Low
Voltage High Performance Dual Threshold CMOS Circuits”, in Proc. of DAC,
pp. 489-494, 1998.

[97] L. Yan, J. Luo and N.K. Jha, “Combined Dynamic Voltage Scaling and Adap-
tive Body Biasing for Heterogeneous Distributed Real-time Embedded Sys-
tems”, in Proc. of ICCAD, 2003, pp. 30-38.

[98] L. Yuan and Gang Qu, “Design Space Exploration for Energy-Efficient Se-
cure Sensor Network”, IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 88-92, 2002.

[99] L. Yu and A. Ephremides, “Detection Performance and Energy Efficiency
Trade-off in a Sensor Network,” Proc. of 2003 Allerton Conference, Allerton,
IL, October 2003.

[100] L. Yu and A. Ephremides, “Detection Performance and Energy Efficiency
of Sequential Detection in a Sensor Network,” Proc. of HICSS’06, Hawaii,
January 2006.

143

[101] L. Yuan and G. Qu, “Energy Efficient Design for Distributed Sensor Net-
works,” Handbook of Sensor Network, Chapter 38, CRC Press, October 2004.

[102] L. Yuan and G. Qu, “FSM Re-Engineering for Low Power State Encoding”,
International Workshop on Logic and Synthesis (IWLS), pp. 257-264, June
2004.

[103] L. Yuan and G. Qu, “A Combined Gate Replacement and Input Vector Con-
trol Approaches for Leakage Current Reduction”, Institute for Advanced Com-
puter Studies (UMIACS), University of Maryland, MD, Tech. Rep. TR 2005-
63, Nov. 2005.

[104] L. Yuan and G. Qu, “Analysis of Energy Reduction on Dynamic Voltage
Scaling-Enabled Systems”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 24, No. 12, pp. 1827-1837, Dec. 2005.

[105] L. Yuan, G. Qu, T. Villa, and A. Sangiovanni-Vincentelli, “FSM Re-
Engineering and Its Application in Low Power State Encoding”, in Proc. of
ASP-DAC, 2005, pp. 254-259.

[106] L. Yuan and G. Qu, “A Combined Gate Replacement and Input Vector Control
Approach for Leakage Current Reduction”, IEEE Transactions on Very Large
Scale Integration Systems, pp. 173-182, Vol. 14, No. 2, Feb. 2006.

[107] Q. Zhang, P. K. Varshney, and R. D. Wesel, “Optimal Bi-level Quantization
of I.I.D. Sensor Observations for Binary Hypothesis Testing,” IEEE Trans.
Inform. Theory, July 2002.

[108] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and Practical
Limits of Dynamic Voltage Scaling”, in Proc. of DAC, 2004, pp. 868-873.

[109] L. Zhong, J. Luo, Y. Fei, and N.K. Jha, “Register Binding Based Power
Management for High-level Synthesis of Control-Flow Intensive Behaviors”,
in Proc. of ICCD, 2002, pp. 391-394.

[110] Y. Zhu, R. S. Blum, Z. Q. Luo, and K. M. Wong, “Unexpected Properties and
Optimum-Distributed Sensor Detectors for Dependent Observation Cases,”
IEEE Trans. on Automatic Control, vol. 45, no. 1, January 2000.

[111] Berkely Smart Dust Wireless Embedded Sensors, Available:
http://robotics.eecs.berkeley.edu/ pister/SmartDust

[112] U.C.Berkeley BSIM3v3.1 SPICE MOS Device Models, 1997. Available:
http://www-device.EECS.Berkeley.edu/bsim3/.

144

[113] Freescale Semiconductor Inc., Available: http://www.embedded.com/showArticle.jhtml?articleI

[114] Transmeta Corporation, Available: http://www.transmeta.com/crusoe/specs.html.

[115] Saeyang Yang, “Synthesis and Optimization Benchmarks User Guide”, 2002,
Available: ftp://mcnc.mcnc.org.

145

