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Most analyses of physics assessment tests have been done within the framework of 

classical test theory in which only the number of correct answers is considered in the 

scoring.  More sophisticated analyses have been developed recently by physics researchers 

to further study students’ conceptions/misconceptions in physics learning to improve 

physics instruction.  However, they are not connected with the well-developed 

psychometric machinery.  

The goal of this dissertation is to use a formal psychometric model to study 

students’ conceptual understanding in physics (in particular, Newtonian mechanics).  The 

perspective is based on the evidence-centered design (ECD) framework, building on



previous analyses of the cognitive processes of physics problem-solving and the task 

design from two physics tests (Force Concept Inventory, FCI and Force Motion Concept 

Evaluation, FMCE) that are commonly used to measure students’ conceptual 

understanding about force-motion relationships. 

Within the ECD framework, the little-known Andersen/Rasch (AR) multivariate 

IRT model that can deal with mixtures of strategies within individuals is then introduced 

and discussed, including the issue of identification of the model.  To demonstrate its 

usefulness, four data sets (one from FCI and three from FMCE) were used and analyzed 

with the AR model using a Markov Chain Monte Carlo estimation procedure, carried out 

with the BUGS computer program. 

Results from the first three data sets (questions were used to assess students’ 

understanding about force-motion relationships) indicate that most students are in a mixed 

model state (i.e., in a transition toward understanding Newtonian mechanics) after one 

semester of physics learning.  In particular, they incorrectly tend to believe that there must 

be a force acting on an object to maintain its movement, one of the common 

misconceptions indicated in physics literature.  Findings from the last data set (which deals 

with acceleration) indicate that although students have improved their understanding about 

acceleration after one semester of instruction, they may still find it difficult to represent 

their understanding in terms of acceleration-time graphs.  This is especially so when the 

object is slowing down or moving toward the left, in which case the sign of acceleration in 

both task scenarios is negative.  
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Chapter I 

Introduction 
 

An emerging development in educational assessment is the integration of the 

science of learning and the science of measurement (National Research Council, 2001).  

Rather than separate and disconnected phases of item writing, analysis, and interpretation, 

researchers are seeking to coordinate psychology, task design, and psychometric analysis 

(Embretson, 1985, 1998).  This dissertation is meant to provide an example of this line of 

research.  It concerns innovative psychometric modeling approaches to a particular kind of 

assessment designed to reveal students’ conceptions and misconceptions about Newtonian 

mechanics in physics.   

 It was not until 1980’s that physics educators started to probe students’ conceptual 

understanding in physics.  In her review about research on conceptual understanding in 

mechanics (e.g., gravitational force, velocity and acceleration, and force and motion), 

McDermott (1984) pointed out some interesting and unexpected results from several 

studies.   Studies about “passive” forces (e.g., the tension in a string) indicated that 

students, regardless of ages, have the same conceptual difficulty understanding those 

forces, yet most physics instructors proceed as if the concept of a passive force is easily 

understood (e.g., Minstrell, 1982; Sjǿberg & Lie, 1981).  A study of gravity showed that 

the serious misconceptions may sometimes lead to correct answers (Champagne, Klopfer, 

& Anderson, 1980).  A study in velocity and acceleration revealed that students with 

greater facility with mathematics do not necessarily have a deeper conceptual 

understanding than those who have less training in mathematics (Whitaker, 1983).  Studies 



 2

in the relation between force and motion showed that many students (even they had 

previously taken physics) have a well-integrated system of beliefs about the behavior of 

objects in motion – an object will not stop moving unless the initial force acting on the 

subject is “used up”, the “Aristotelian” or “medieval” belief – that is in conflict with the 

Newtonian view (McCloskey, Caramazza, & Green, 1980).  To further study this 

phenomenon, Viennot (1979) constructed a model for how students think about force, 

assuming that they often hold simultaneously both Newtonian and non-Newtonian 

conceptions of force, and the particulars of the task presented to them determine which 

belief system will be used for problem-solving.  Finally, Lawson’s study (1984) of the 

ability of college students to apply the work-energy and impulse-momentum relations to an 

actual physical system showed that a majority of students (including honors physics 

students and non-calculus students) could not make the necessary connection between the 

algebraic expressions and a real-life demonstration even though they had little difficulty in 

applying these relations to standard textbook problems. 

 Since these findings were based on different physics topics and experiments (or 

tasks), McDermott further suggested the following characteristics that should be 

considered when conducting research on conceptual understanding about physics and 

interpreting the results: (1) nature of instrument used to assess understanding, (2) degree of 

interaction between student and investigator, (3) depth of probing, (4) form of data, (5) 

physical setting, (6) time frame, and (7) goals of investigator.  

In fact, these considerations are also important in assessing students’ learning in 

other fields of study.  In order to carry out this type of assessment, covering all of above 

concerns, a systematic approach that describes characteristics and implementation of each 
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stage in assessment would be preferred.  In this dissertation, the “evidence-centered” 

assessment design (ECD) developed by Mislevy, Steinberg, and Almond (2003) is used.   

Within the ECD approach, the focus in this presentation is on the stage of the “Conceptual 

Assessment Framework (CAF)”.  The CAF concerns the interplay among three models, 

namely, the student model, the task model, and the evidence model.  These three models 

correspond to three key elements (cognition, observation, and interpretation – the 

assessment triangle) underlying any assessment, as discussed in the recent publication 

entitled Knowing What Students Know (National Research Council, 2001, p 44).  More 

thorough reviews on ECD as well as recent developments in cognitive science of learning 

(particularly in physics – e.g., Bao & Redish, 2004; diSessa, 1982; Reiner, Slotta, Chi, & 

Resnick, 2000) are given in the next chapter.        

Investigations from research reviewed by McDermott, on one hand, provide 

resources for improving physics instruction to help students to learn abstract physics 

concepts, especially those found to be more difficult for many students.  On the other hand, 

they lead to the issue about the statistical analysis of students’ conceptual understanding in 

physics.  Data from the above-mentioned studies was mainly collected and analyzed by 

laboratory observation and/or interviews, and descriptive analysis was conducted for some 

of the research studies in which a survey or a written test was administered to students.  The 

latter approach (i.e., using written tasks) became more common as some useful instruments 

were developed – for example, the Force Concept Inventory (FCI), a well-designed 

research-based multiple-choice instrument developed to measure students’ conceptual 

understanding of Newtonian mechanics (Hestenes, Wells, & Swackhammer, 1992) and the 

Force Motion Concept Evaluation (FMCE), designed to measure students’ understanding 
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about force-motion relationships (Thornton & Sokoloff, 1998).  Hake (2002) pointed out 

that most of the analyses of physics assessment tests have been done within the framework 

of “classical test theory” in which only the number of correct answers is considered in the 

scoring.   This includes the commonly-used index called “normalized gain” (g), based on 

the difference between pre- and post-test and defined as Gain/[Gain(maximum possible)].  

For example, if a class averaged 50% on the pretest, and 70% on the posttest then the 

class-average normalized gain = (70%-50%)/(100%-50%) = .4.  Test reliability indices 

such as Cronbach’s alpha and the Kuder-Richardson reliability coefficient (also known as 

KR-20) have been employed as well.   These analyses mainly tell us students’ mastery 

levels (i.e., how much they understand or how much knowledge they have gained through 

instruction) but shed little light on students’ thinking in terms of how they respond to the 

tasks presented to them.     

More sophisticated analyses have been developed to further study students’ 

conceptions/misconceptions in physics learning (e.g., Bao & Redish, 2001 & 2004).  

Rather than examining students’ responses in terms of correctness, Bao and Redish focus 

on how students’ responses on multiple-choice questions are distributed, to explore if 

students have common correct or incorrect models for problem-solving.  They call this 

Concentration Analysis.  In addition, the second method they proposed, called Model 

Analysis, can be used to extract the probability states of students’ use of different models.  

Model Analysis (summarized here in Chapter II) adapts techniques from quantum 

mechanics to characterize students in terms of their propensities of responding according 

to different perspectives on a class of physical phenomena.  An analysis based on these two 
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methods provides much more information than the traditional analysis mentioned above in 

terms of exploring students’ conceptual understanding about physics concepts.   

However, there are some limitations to these methods (mainly, they are not well 

connected with current development in psychometrics), and their usefulness has not been 

examined in other learning subjects.  This may not be an issue for physics educators, but it 

would be a concern for researchers in educational measurement. 

For the past twenty years or so, psychometric analyses based on modern test theory 

(e.g., item response theory, IRT) have been well-developed, and some of them may be 

useful for cognitively-relevant assessment (see Junker, 1999, and National Research 

Council, 2001, Chapter 4, “Contributions of Measurement and Statistical Modeling to 

Assessment”).  It is the goal of this presentation to examine one way in which a 

psychometric analysis can offer some advantages in studying students’ conceptual 

understanding in physics.   

In the current study, the little-known Andersen/Rasch (AR) multivariate IRT model 

(Andersen, 1973 & 1995) that can deal with mixtures of strategies within individuals and is 

parallel to Bao and Redish’s Model Analysis is introduced, and is applied to several data 

sets collected by Bao and Redish.  The use of the AR model is appropriate given the 

considerations of the CAF and the assessment triangle: It coheres nicely with the 

psychological perspective for the knowledge being assessed (in this study, students are 

viewed as in a mixed-model state for solving a physics task) and the observations (the data 

were collected from students’ responses on items designed to reflect the mixtures of 

strategies within students).  
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In addition, other IRT models (in particular, the three-parameter logistic model, 

3PL, which is commonly used in the education measurement) and latent class (LC) models 

are included in the review to discuss the interplay among substantive perspectives, task 

design, measurement models, and inferences about student learning in the ECD 

framework.  However, they are not included in the data analysis to contrast with the AR 

model.  This is because that the comparisons of model fit among those models are both 

complicated and off the main track of our objective.  For example, one cannot compare 

3PL with the AR model when the AR is being used to model more than two response types 

since the collapsing of response categories are different; that is, dichotomous vs. 

polytomous.  Therefore, the comparisons among those models offered here are not 

empirical.  Rather, in the next chapter we discuss their similarities and dissimilarities in 

terms of the way they model students’ responses with respect to the psychological 

perspective each model represents and the purpose of assessment.   

Finally, a Markov chain Monte Carlo (MCMC; Gelman, Carlin, Stern, & Rubin, 

1995) estimation procedure is used here to estimate the item and person parameters under 

the AR model.  This procedure is growing rapidly in popularity in the statistical literature 

due to its flexibility in model fitting.  It has been applied in the context of IRT (as reviewed 

in Chapter II).  It is of interest to explore how it performs with the AR and the data used in 

the current study. 
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In sum, this dissertation integrates ideas from the following areas of current 

research: 

• “Evidence-centered” assessment design. 

• The psychology of science learning in physics. 

• Latent-trait measurement models (in particular, the AR model).  

• MCMC estimation.   

Each area is reviewed in detail in the following chapter.   The contribution of this study is 

threefold.  First of all, it provides an example of doing an assessment by integrating the 

fields of research listed above.  Second, since applications of the AR model are hardly 

found in the psychometrics literature, this study would represent a useful contribution to 

educational measurement as well.  Third, the findings from the current study would also be 

beneficial to members of the physics education community who are interested in 

promoting the physics instruction by providing a tool for analyzing data from tests such as 

FCI and FCME.   This type of the analysis addresses the inferences about thinking Bao and 

Redish and others are interested in, and inherits the advantages of model fitting, model 

interpretation, and model criticism techniques of probability-based reasoning. 
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Chapter II 

Literature Review 
 
Assessment Design 

Educational assessment concerns inference about students’ ability or knowledge 

based on evidence elicited by given tasks (Mislevy, 1994).  For example, to assess 

international students’ English language proficiency, a TOEFL test (consisting of a 

collection of language tasks) can be used.  Based on elements we believe are important in 

language proficiency for non-English speakers coming to study in the U.S., four subtests 

are constructed and included in the TOEFL test: listening, vocabulary and grammar, 

reading comprehension, and writing.  Succeeding on these tasks (evidence) in TOEFL 

indicates the examinee possesses language proficiency (an inference we make).  By using 

this example, we can see that an assessment design needs to address the following 

questions:  What do you want to make inferences about (e.g., language proficiency), what 

do you need to see (e.g., performance with what qualities), and what features in tasks evoke 

the evidence you need (e.g., identifying the topic of an oral conversation in TOEFL) 

(Messick, 1994).  In this dissertation, the target inference is the mixtures of conceptions 

(some correct, some erroneous) that students bring to bear on mechanics problems, with 

evidence coming from tasks designed to reveal those conceptions. 

Evidence-centered assessment design (ECD) (Mislevy, et al., 2003) is a formal 

framework for designing assessments from this evidentiary-reasoning perspective.  The 

ECD framework is introduced below to provide more details and thorough discussion in 

terms of the structure of an assessment design. 
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There are four stages in the ECD: Domain Analysis, Domain Modeling, 

Conceptual Assessment Framework, and Operational Assessment.  Domain Analysis 

concerns gathering information about how people acquire knowledge or skills, and how 

they use them.  This information is essential in assessment since it will help the assessment 

designer to know, for instances, under what situations we can see people doing the kinds of 

things and using the kinds of knowledge related to assessment.  This analysis can provide 

clues about important features of performance situations.  This information then is 

organized in terms of design objects called paradigms in the second stage of the ECD, 

Domain Modeling.  There are three paradigms: the proficiency paradigms are the 

structures that organize potential claims about aspects of proficiency for students; the 

evidence paradigms state the kinds of things student might say or do that would provide 

evidence about these proficiencies; and the task paradigms are the kinds of situations that 

might evoke the evidence we need to see.  At this stage, by knowing the interrelationship 

among these three paradigms, one starts to rough out the structure of an assessment that 

will be needed for future operational assessment.  

In this dissertation, the required information for Domain Analysis and Domain 

Modeling comes from the domains of physics, physics learning, and cognitive psychology.  

Since the physics tasks and data used in the current study were built on Bao and Redish’s 

expertise and familiarity with the domain (see the Chapter III for more details about the 

description of data sets), much of this work has been done already.  Our task here is to map 

their thinking into the Domain Modeling structures in the course of a literature review.  

These are conceptual foundations from which specific assessments, and the arguments 

they embody, are developed.  These paradigms can be viewed as narrative forms of the 
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evidentiary-reasoning arguments that underlie operational assessments.  They ground the 

specifics of task authoring, scoring rules, and statistical models. 

The next stage of the design, then, is the Conceptual Assessment Framework 

(CAF).  The CAF specifies the more technical elements of an operational assessment, 

including, importantly, measurement models.  As mentioned in the introduction, this 

dissertation research is mainly based on this stage, as we develop, fit, and compare three 

models under the AR model, and discuss how the other two psychometric models differ 

from the AR model in reflecting views of mechanics knowledge with respect to the Bao 

and Redish data sets. 

The CAF consists of three major models that coordinate an assessment’s 

substantive, statistical, and operational aspects, and provides the technical details required 

for implementing the assessment.  The student model (SM) specifies the variable(s) in 

terms of which we wish to characterize students.  It may contain a single variable, 

representing an overall proficiency, or multiple variables, characterizing several aspects of 

knowledge or competences.  Technically, the SM model can be presented by a possibly 

vector-valued parameter (usually denoted by θ), and a joint probability distribution p(θ).  

A student model then can be viewed as a mathematical structure containing variables that 

can take a range of possible values, and a joint probability distribution function quantifying 

relationships among these variables.  Reasoning from observable behavior in task 

situations with given features, we can characterize the students’ knowledge, skills, or 

proficiency which we are interested in making inferences about, and use probability 

distributions over a student’s SM variables to express our belief about their values.  Values 

of SM variables correspond to claims that can be made about students, for example, as to 
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their level of proficiency for getting correct answers in a domain of tasks, as in traditional 

testing, or as to the way they may be thinking about problems in the domain, as in Bao and 

Redish’s research (2004).   Later in this chapter, we discuss how alternative psychometric 

models express different conceptions of knowledge and learning in physics, including 

mixtures of qualitative knowledge states suggested by cognitive research but poorly 

addressed by traditional test analyses.           

A task model (TM) in the CAF concerns substantive considerations about the 

features of tasks that are necessary to evoke evidence about SM variables.  It embodies 

beliefs about the nature and structure of task situations, as they are important under the 

conception of knowledge that guides the assessment’s design.  With regard to work 

products (e.g., what the student says, does, or produces), the task model also specifies what 

student behaviors or productions will be observed as they provide clues about their 

knowledge, again as they are important under the conception of knowledge that guides the 

assessment’s design.  Therefore, for a particular task, the values of task model variables 

consist of information characterizing the situation with regard to its salient features and the 

kinds of performances that will be captured.  In addition, the TM also describes features of 

tasks that are needed to inform the operational activities for particular assessment tasks 

(e.g., authoring, calibrating, presenting, and coordinating).  Although many tasks can be 

created given a task model, the collection is constrained only to suit the needs of the 

assessment project.  In this dissertation research, the tasks we use were designed in 

previous research and the data were collected by Bao and Redish to provide evidence about 

how college students learn and apply Newtonian mechanics in physics.  We make explicit, 

in the framework of a task model, the connections between the Bao-Redish conception of 
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physics learning and the features of tasks in their test to reveal the mixtures of knowledge 

states they predict. 

An evidence model (EM) in the CAF concerns reasoning from what we observe in 

a given task situation to update beliefs about SM variables.  It contains two components, 

which connect students’ work products to their knowledge and skill: the evaluation 

component and the measurement component.  One can think of the evaluation component 

as “task scoring” since it describes rules for extracting evidence from individual 

performances, as values of observable variables.  In other words, the evaluation component 

indicates how one identifies and evaluates (e.g., through rubrics) students’ work or 

performance (what they say, do, or produce in a given task), and expresses salient aspects 

of them as values of observable variables (e.g., item or task scores).  In comparison, one 

can view the measurement component as “test scoring,” for it contains statistical models 

used to synthesize information or analyze data from observable variables across 

performances, in order to reflect belief about SM variables.  

Technically speaking, the measurement component specifies models used to 

construct likelihood functions for SM variables (as induced by the values of the observed 

variables) and to estimate model parameters to obtain estimators for SM variables.  

Therefore, one can see that the measurement models in this context make connections 

between student models and task models.  If tasks are well developed jointly with 

measurement model, one can take advantage of efficient statistical computing to use the 

complex model or estimation procedures (e.g., full Bayesian analysis) to support 

inferences in terms of preplanned and substantively important patterns in data.  For the 

current study, while much work in the evaluation component has been done by Bao and 
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Redish, the little-known AR model is used to analyze data collected from Bao and Redish 

to examine college students’ problem-solving in physics.  Bayesian estimation procedures 

(Markov chain Monte Carlo techniques, MCMC) are used to estimate models’ parameters 

and address their comparative fit to the data.  The AR model and the basic idea of MCMC 

estimation procedure are introduced in later sections. 

Finally, the last stage of ECD is the Operational Assessment.  It concerns the 

operation of the implemented assessment based on the design generated in the previous 

stages (in particular, the CAF).  Since this stage is not closely related to the current study 

(the data has already been collected), it is not discussed in detail here. 

 

Science of Learning in Physics 

In terms of ECD, we design a task with some features and hope to make an 

inference about the student variable(s) given the evidence in performances evoked by those 

features.  By knowing how students learn and approach new physics concepts, one can 

design an appropriate task to examine their understandings, transitional stages, or 

misunderstandings, of those concepts.  These three constructs (understanding, transitional 

stage, and misunderstanding) can be reflected by students’ model use for problem-solving.   

They could use the correct model, mix correct with incorrect models, or simply use the 

incorrect model, as discussed later in this chapter.  This perspective is naturally allied with 

improving instruction for abstract physics concepts, although it is an analytic method 

rather than a contribution to the substantive base that is the focus of the dissertation.  By the 

way of background, then, this section provides some general ideas of development in the 

science of thinking and learning in terms of four perspectives (more details can be found on 
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pp. 57-110, National Research Council, 2001), focusing on a cognitive perspective.  From 

this perspective, we emphasize the issues and concepts associated with physics learning, 

especially those relevant to Bao and Redish’s point of view (2004).  

Four perspectives.  With regard to instruction and assessment, there are four 

perspectives that are particularly significant in terms of history of research and theory 

regarding the nature of the human mind (Greeno, Collins, & Resnick, 1996):   

• Differential perspective. 

• Behaviorist perspective. 

• Cognitive perspective. 

• Situative perspective.   

These four approaches are not mutually exclusive; rather, each approach emphasizes 

different aspects of knowing and learning with different implications for what to be 

included in the task to reveal individuals’ abilities or conceptual understanding and how to 

design and implement the task.   

During the first few decades of the 20th century, researchers focused on how 

individuals differ in their general intelligence ability – the differential perspective.  This 

approach assumes that individuals differ in their mental capacities and that these 

differences define stable mental traits or cognitive abilities (e.g., aspects of knowledge, 

skill, and intellectual competence) that can be measured.  Individuals possessing different 

amount of these traits would show different levels (or patterns) of performance on tasks 

designed to reflect those abilities.  Obviously, this approach is not aimed at studying how 

individuals process and store information in daily living or school learning.   
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Similarly, the behaviorist theories that became popular and dominated much of the 

research and theory on learning during the middle of the century also do not take cognitive 

processes into account in terms of learning.  They view knowledge as the organized 

accumulation of stimulus-response associations that serve as the components of skills.  

These associations can be strengthened by reinforcement (e.g., rewards) or weakened by 

punishments, and this is what motivates individuals’ learning.  On one hand, many 

behavioral laws and principles have been derived from this perspective to promote learning 

or mediate behaviors (e.g., quit smoking).  On the other hand, as mentioned earlier, the 

behaviorist approach ignores the underlying cognitive structures or processes that could 

have influences on external behaviors. 

It was not until 1960s that the cognitive perspective started to emerge, due to 

advances in fields such as linguistics, computer science, and neuroscience.  This approach 

helps to further study individual development and learning by using powerful technologies 

to observe behavior and infer cognitive functioning and underlying processes.  It focuses 

on how people develop knowledge structures – how they process new information, how 

they integrate new information with the prior knowledge, and how they retrieve knowledge 

to solve problems.  Compared with the differential and behaviorist perspectives that only 

focus on how much knowledge or skills individuals have, cognitive theories also 

emphasize what type of knowledge individuals have, and how it is organized.  This latter 

aspect of acquiring knowledge becomes more important in current assessments.  An 

important purpose that one would like to be able to address with assessment is not only to 

examine how much individuals know (e.g., how many items examinees answer correctly or 

incorrectly) but also to assess how, when, and whether they can apply what they know.  To 
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be able to do this, however, requires more complex tasks (than traditional tests that target 

only on students’ overall performance) to reveal information about how individuals 

respond to the questions through their cognitive processes, including, for example, 

reasoning strategies and evolving understanding over time.  

The last perspective for studying human behaviors is the situative approach, also 

known as the sociocultural perspective.  While the cognitive perspective focuses on 

individual thinking and learning, the situative perspective describes behavior at a different 

level of analysis.  It studies how practical activity and contexts such as culture and ethnicity 

“mediate” individuals’ behaviors.  Based on this view, human behaviors or learning could 

be affected by the communities to which individuals belong – groups of people, large or 

small, who have the same goal or share some common interests (e.g., family and school).  

Therefore, in the context of assessment, some students may be better prepared than others 

to take a multiple-choice test because their parents or school teachers provide them more 

opportunities to practice.  Some test items may favor a specific ethnic group because the 

questions ask are part of the culture in which those examinees live.  It is not surprising that 

not every social activity is evenly distributed among the population of test takers.  

Although some statistical techniques (e.g., differential item functioning in IRT) have been 

developed to detect such bias among examinees, most current testing practices have been 

found to be not a good match with the situative standpoint.  The reason is that the situations 

presented in most tests are not well connected with the specific contexts in which people 

typically use the knowledge or skills being tested. 
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In the current study, we take the cognitive approach to study how students solve 

physics tasks.  In particular, we are interested in examining how individuals organize 

information or knowledge that is processed.  Knowing this will help us understand how 

people answer questions or solve problems.  This, in turn, can help to improve instruction.  

Below we present key ideas derived mainly from a cognitive perspective to understand 

students’ learning in physics from Bao and Redish (2004).  We also review selected studies 

in physics to show how students’ prior knowledge affects their learning new concepts, a 

concern also shared by Bao and Redish.               

Bao and Redish’s view about students’ learning in physics.  Bao and Redish (2004) 

presented their view about students’ learning based on a synthesis of three kinds of 

scientific research: ecological (phenomenological observations of normal behavior), 

psychological (studies of cognitive structures), and neurological (studies of the structure 

and functioning of the brain).  Although the final model of learning has not yet been 

determined, they considered the following three elements as important factors in studying 

students’ problem solving in physics – memory (in particular, long-term memory, focusing 

on its characteristics), context dependence, and the structure in long-term memory.   

Memory is one of critical issues for both teaching and learning.  Bao and Redish 

focused on long-term memory because they were interested in evaluating the success of 

instruction and this involves how students utilize their long-term memory.  Three 

characteristics of long-term memory were particularly related to their study: 
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1.  Long-term memory can exist in (at least) 3 stages of activation: inactive, primed 

(ready for use), and active (immediately accessible).  

2.  Memory is associative and productive.  The elements stored in the long-term 

memory are associated, so activating one element leads, with some probability, 

to the activation of associated elements.  Activation often consists of data 

receiving, reasoning, and mapping the memory elements onto input structures. 

3.  Activation and association are context dependent, both external and internal 

(other activated elements).  

They also believe that how students respond to a physics question depends on the 

interactions between students and the historically and culturally constituted contexts.  In 

fact, this reflects the situative perspective as discussed earlier.  The evidence of context 

dependence can be found from the physics education literature.  For example, it can be 

shown that students respond differently on two formally equivalent questions if they are 

stated in two different scenarios (i.e., one is phrased in physics terms using a laboratory 

example; the other is phrased in common speech using everyday experience).  The 

majority of students tended to answer the physics-like problem correctly, while only a half 

of students answered correctly on the everyday problem (Steinberg & Sabella, 1997).  This 

is particularly true when students are just beginning to learn new material.  It could be due 

to the fact that students have not yet mastered the new concept and do not know how to 

apply the knowledge or skills they have learned to the situation they encounter or to the 

question they are asked. 
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Five structures in long-term memory that are particularly relevant for the 

understanding of physical phenomena and for the study of physics were identified by Bao 

and Redish from the literature of science learning: reasoning primitives, facets, schemas, 

mental models, and physical models.  Note that these structures describe how people 

organize information or knowledge within each structure.  They differ in the way students 

use them for reasoning or problem-solving, as discussed below.  

A primitive, in Bao and Redish’s definition, concerns the finest-grained cognitive 

element.  A reasoning primitive is what people use to describe why things work the way 

they do, and the typical response based on a primitive is “That’s just the way things work.” 

They cannot give a reason why things happen.  diSessa (1993) refers to such statements as 

“ phenomenological primitives” or “p-prims”.  The term facet refers to the mapping of a 

reasoning primitive into a physical situation. 

The next terms in Bao and Redish’s hierarchy are schema and mental model.  They 

are broadly defined, and play a critical role in their study in understanding students’ 

responses.  A schema refers to a cognitive element or a set of cognitive elements that are 

activated together in response to a stimulus or situation presented to the student, while a 

“robust and reasonably coherent” schema refers to a mental model.  Finally, a physical 

model is a type of mental model commonly used by a certain population to describe the 

characteristics and properties of a specific physical object or set of objects.   Based on this 

definition, people may view the same object or system differently.  For example, they 

could describe it in terms of macroscopic point of view or view it from a microscopic 

perspective. 
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How do these cognitive elements described above (i.e., context-dependence and the 

structures in long-term memory, especially schemas and mental models) operate in 

students’ learning?  Bao and Redish (2004) carried out research in the context of sets of 

“expert-equivalent questions”, a sequence of questions or situations in which an expert 

would use a consistent mental model, but, based on the literature in physics learning, a 

particular student can use any of a variety of mental models (e.g., McCloskey, op cit.; 

Viennot, op cit.).  They hypothesized that a student’s response not only depends on his/her 

educational history (i.e., the previous experience or the preexisting knowledge about a 

specific concept) as will be discussed below, but also on the student’s mental model state at 

the particular instant triggered by the question presented to him/her.  The latter proposal 

suggests that in at least some cases a student will be in a mixed model state, indicating that 

he/she can be thought of as simultaneously occupying a number of distinct model states1, 

and which state would be invoked depends on the features of a particular question.  They 

also suggested that the appropriate way of analyzing this situation 

(mixture-within-persons) is to study the student’s responses using a probabilistic 

mathematical model.  Their method is described in more details later in this chapter. 

As mentioned above, students’ previous experience or prior knowledge may have 

impacts on students’ physics learning.  In his study, diSessa (1982) found that regardless of 

                                                 
1 For examples, Newtonian way of thinking, a belief consistent with Newton’s laws; 

“impetus theory” belief, stating that a certain force keeps acting on a moving object until 

the force is diminished by other forces such as those from air or gravity; and an Aristotelian 

way of thinking, an expectation that objects simply move in the direction you push them 

without considering the combination of forces or other naïve beliefs about forces. 
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previous physics learning in high school and in the freshman year, a particular college 

student used strategies quite similar to those of elementary students in that they both started 

to approach this task with Aristotelian conceptions of physics, indicating that the college 

student could not make the connection between what she had learned in physics (e.g., 

vector addition and conservation of momentum) and how to complete the task.  It was 

further suggested that previous knowledge would play an important role in understanding 

the new physics concepts (students were trying to understand the new concepts using 

previous experience) and in applying them to the novel situations.  In other words, when a 

new task is given to physics novices, they tend to use their preexisting knowledge or 

experience to solve for it.  That is why the Aristotelian-type strategies were immediately 

adopted by elementary students or even the college student for problem-solving.  The 

Aristotelian expectation is closer to common sense and everyday “intuitive” manipulation 

of the world, but is contradictory to Newton’s laws. 

In their reviews on misconceptions of the concept of force, light, heat, and 

electricity, Reiner, Slotta, Chi and Resnick (2000) provided evidence that naive 

conceptions often reflect an underlying commitment to preexisting knowledge of material 

objects or substances.  Using force as an example, in physics, force is seen “as a process of 

interaction involving two or more material objects in which these objects are sped up, 

slowed down, or redirected” (p. 10).  However, physics novices do not conceive of force as 

a process of interaction between two material objects.  Rather, they think of force as either 

some act of the object itself or a property of a material object (e.g., novices tend to explain 

gravity by assuming an innate, inexhaustible internal property called weight, or even 

explain the fact that an object will fall if dropped because of the contact of air pressure). 
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Understanding how prior knowledge affects students’ learning would help us to 

explain, for example, why students tend to use “impetus theory” or the Aristotelian 

approach for solving Newtonian mechanics problems even after instruction.  Our analyses 

in Chapter IV show some examples of such analyses.    

In the current study, sets of tasks identified by Bao and Redish were used to 

examine whether college students apply Newtonian thinking in conceptual 

problem-solving.  Based on what researchers have suggested about physics learning, as 

reviewed above, we expect that students may approach questions in different ways 

depending on the degree to which they have mastered the concept (naïve physics learners 

may use Aristotelian theories or other preexisting knowledge to answer questions, while 

those who understand Newtonian mechanics will tend to use Newtonian way of thinking to 

respond to given tasks) and on the features of the questions.  Therefore, our goal here is to 

use appropriate psychometric models to see if we can provide evidence to support what we 

believe about how students apply abstract physics concepts.  The AR model, along with 

other IRT models (in particular, the 3PL) and LC models are reviewed below. 

 

Measurement Models 

Three psychometric models are discussed here.  Each model represents a distinct 

perspective in terms of students’ learning, and they are different from the traditional test 

analysis (e.g., based on the total score or the percentage of answering items correctly).  Our 

main interest lies in the AR model, because this is the one closest to the 

psychological/substantive model that motivated the items.  The other two models – an IRT 

model and a LC model – are included partly to contrast them with the AR model, but even 
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more to be able to discuss the interplay among substantive perspectives, task design, 

measurement models, and inferences about students.  However, as mentioned in the 

introduction, our main purpose in the current study is not to choose the best fitting model 

but to analyze data from a model that embodies the kinds of patterns that its psychological 

grounding entails.  Therefore, only the AR model is used in the data analysis.    

Note that the AR model is a Rasch-type IRT model.  It can be considered as a 

multivariate (or multidimensional) IRT model since, as discussed in a later subsection, 

more than one parameter is associated with each person, whereas conventional IRT models 

deal with a unidimensional latent trait.  In addition, the AR model is appropriate for 

polytomous data (i.e., data with multiple response categories) while many conventional 

IRT models deal with binary data (i.e., data is coded, for example, as correct or incorrect).   

In general, IRT assumes that, in testing situation, examinee performance on a test 

can be explained by his/her underlying latent variable (e.g., ability).  In fact, it can be 

further extended to any situation in which a paper and pencil test or a questionnaire is used 

to measure educational or psychological constructs.  The primary use of IRT is for 

modeling examinees’ propensities to give higher quality responses – right rather than 

wrong multiple choice responses, for example, or well-constructed rather than 

poorly-constructed essays.  An IRT model is then developed to specify the relationship 

between the “observable” (e.g., item scores) and the “unobservable” quantities (e.g., 

abilities) by a mathematical probabilistic function.  It yields the probability of a correct 

response to an item (or more broadly, the probability of a response in a particular response 

category) given the examinee’s position on the continuum (e.g., the ability or propensity 

level), the item’s position on the continuum (e.g., the item difficulty parameter), and other 
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possible item parameters (e.g., the item discrimination parameter and/or the guessing 

parameter).  In brief, an IRT model simultaneously takes into account the individual’s 

ability (or other latent traits) and the item characteristics for analyzing responses.  

Interested readers can refer to Hambleton and Swaminathan (1985) for a more thorough 

discussion on conventional IRT models (mainly dealing with unidimensional latent traits 

for binary data) and van der Linden and Hambleton (1997) for modern IRT models 

(extending to items with polytomous response formats and/or multidimensional latent 

traits).  

One of common and essential assumptions for IRT and other measurement models 

(e.g., LC models) is the assumption of local independence (LI), or conditional 

independence (CI) of item responses given item and person parameters.  LI states that an 

examinee’s responses to different items in a given test are statistically independent, given 

the item and person parameters in the model.  In other words, an examinee’s response on 

one item must not affect (in any ways) his or her performance to any other items in the test, 

above and beyond the relationships that are accounted for by those parameters.  (In the case 

of typical IRT models, the student parameters correspond to ability in the domain of tasks; 

as seen below, the student parameters correspond to tendencies to employ different 

problem-solving approaches.)  Obviously, it is not always the case in practice, so the issue 

becomes to what extents and in what ways the assumption of LI is violated.  There are 

standard ways to check for when and how it holds.  For longer tests with enough data per 

examinee, say twenty items or more, tests such as item-fit indices can be carried out to 

examine the assumption of LI (e.g., Q2 test proposed by Van den Wollenberg, 1982; Q3 test 

proposed by Yen, 1984, & 1993; R2 test developed by Glas & Verhelst, 1995; and S3 and 



 25

LM test proposed by Glas & Falcόn, 2003).  Those statistics may not be appropriate to be 

used for tests with a few items (this is the case for the current study since the data only 

contains no more than 8 items).  However, we can check the fit of the AR model that 

assumes LI over various contexts by, for example, comparing item parameter estimates 

before and after instruction.  This approach to checking a particular LI violation is 

discussed in the next chapter. 

The following subsections review the form of measurement models (again focusing 

on the AR model), and compare the other two models with the AR model in terms of the 

substantive interpretation of the student model they would imply as they relate to the 

assessments Bao and Redish studied.  

The Andersen/Rasch (AR) multivariate measurement model.  The AR psychometric 

model is consistent with the above-reviewed literature concerning students’ cognitive 

process in physics learning for the measurement paradigm instantiated in assessments such 

as the FCI and FCME.  Based on the literature, a student’s mental model state could consist 

of distinct competing physics models, and which one would be used for problem-solving 

depends on the features of the item presented to him/her.  The AR model is an  appropriate 

one from psychometrics since it was developed to model students in terms of propensities 

toward characteristic types of response which in this case will be conceptions of the 

domain (it can be viewed as a “mixture-within-persons” approach, as further explained 

below), rather than in terms of expected correctness.  The analysis based on the AR model 

addresses the same kinds of student/task interactions as the Model Analysis methodology  

that Bao and Redish (2004) developed in their research to study students’ physics learning. 
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The AR model states that at a given point in time, a person is seen as having 

propensities to answer in accordance with any of the conceptions.  Tasks are also 

parameterized in terms of their tendency to provoke different conceptions as well.  Given 

physics tasks (e.g., a multiple-choice test with j items, each item having m choices that are 

each associated with a particular way of thinking about situations in the targeted domain) 

administered to N examinees, the idea of AR model can be presented as follows. 

In terms of items, each item can be characterized by a vector value containing m 

elements, with each value of the element corresponding to a location on a continuum for a 

certain property in physics in a sense that can be described as follows.  For example, the 

first choice may represent the Newtonian approach (those who pick this choice have 

behaved in a way consistent with a Newtonian strategy for problem-solving), the second 

choice may represent the strategy using “impetus theory”, the third choice may reflect an 

Aristotelian belief, and so forth.  In other words, the item parameter is a vector-valued 

parameter which contains m elements, and larger values for an element indicate a greater 

tendency for that item to elicit responses in line with the corresponding problem-solving 

approach.  In particular, the choice with the highest value indicates that that way of 

thinking is more common on this item, all other things being equal.  In line with the 

science-learning research noted above, particular features of given items can tend to evoke 

particular misconceptions.  

 For persons, similar to items, each examinee is characterized in terms of a 

vector-valued parameter that also contains m elements, with each element representing the 

associated propensity level on the continuum.  If, for instance, person A has the greatest 

propensity level on the Newtonian approach (the first choice on the above example), this 
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indicates that person A tends to respond in accordance with Newtonian strategies for 

problem-solving.  Furthermore, if the task is designed to examine whether or not students 

have mastered Newton’s third law, then we can make an inference about person A saying 

that he/she probably understands how to apply Newton’s third law in this situation.   

Let Xij; i = 1, …, n, j = 1, …, k be independent random variables (i is the index for 

examinees while j is the index for items) and further assume that there are m discrete 

choices for each item (so Xij can be any integer between 1 and m).  The m options are 

associated with kinds of response that are the same across all items, with respect to 

strategy, perspective, style, conception, or some other way of partitioning responses in the 

domain.  In our example above, category 1 responses are consistent with a Newtonian 

approach, category 2 with an “impetus theory” approach, and category 3 with a naïve or 

Aristotelian approach, which might be called a null approach. The formal AR model can be 

written as: 

∑
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)exp(/)exp()( βθβθ ,     (1) 

where 

p  is an integer between 1 and m; 

ipθ  is the pth element in the person i’s vector-valued parameter; and 

jpβ  is the pth element in the item j’s vector-valued parameter. 

Again, note that there are m probabilities for each examinee on a given item, representing 

the probability of choosing any particular choice for that person on that item. 
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The graphical representation of the AR model can be viewed as item response 

surfaces (IRSs) (not the item response curve, since the model is multivariate).   For a given 

item, there are more than one IRSs under the AR model, depending on the number of 

response categories (i.e., m) – one IRS for each response category.  In addition, each IRS is 

multidimensional since there is more than one parameter for a given person.  If m equals 3 

(as the example above) and a vector-valued item parameter is given, one can have three 

three-dimensional IRSs as functions of the values of person parameters θi1, θi2, and the 

corresponding probability as dimensions of the graph.  (Note that with three response 

categories there are only two unique person parameters since to identify the model the 

constraint needs to be imposed that θi3 = - (θi1 + θi2) – this is discussed below.  Thus θi3 can 

be omitted when plotting IRSs.)   

Figures 1-3 represent the IRSs given that an item’s vector-valued parameter ( jβ ) is 

(2.5, .5, -3.0), an item with a greater tendency to evoke the response category 1.  From 

Figure 1 (IRS for the response category 1), one can see that as the value of θ.1 increases 

(while the others remain the same), the probability of choosing the response category 1 

increases as well.  By the time that θ.1 equals 4, the probability is approaching 1.  On the 

other hand, the probability is not much changed as the value of θ.2 goes up.  A similar 

interpretation holds for Figure 2.  For Figure 3, the probability for selecting the response 

category 3 reaches the peak when both θi1 and θi2 decrease – so θi3 increases.  However, the 

probability will not approach 1 because the given item has least tendency to provoke 

response category 3. 
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Figure 1. 
Item Response Surface for the Response Category 1 
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Figure 2. 
Item Response Surface for the Response Category 2 
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Figure 3. 
Item Response Surface for the Response Category 3 

 

 

 

 

 



 32

As in other IRT models, adding a constant to all item and person parameters will 

result in the same probability.  In regard to removing this indeterminacy of the model, one 

way the scale can be fixed by centering parameters for each item and person around zero, 

i.e., βj3 = - (βj1 + βj2) for item j, and θi3 = - (θi1 + θi2) for person i.  In addition, setting normal 

priors with fixed means for item and person parameters, a common practice in Bayesian 

IRT estimation procedures, ensures the identification of the AR model.  This is the method 

used in the BUGS analyses discussed in Chapter IV.   

In order to examine if the AR model is identifiable (i.e., the parameter estimates are 

unique given a data set), an equivalent set of constraints will be utilized within the 

framework of the multidimensional random coefficients multinomial logit model 

(MRCMLM) developed by Adams, Wilson and Wang (1997).  The MRCMLM can be 

used to represent a wide class of Rasch models as special cases, including: (1) 

unidimensional models such as the linear logistic model (Fischer, 1973 & 1995), the rating 

scale model (Andrich, 1978), the partial credit model (Masters, 1982), and the ordered 

partition model (Wilson, 1992); and (2) multidimensional models such as the 

multicomponent latent trait model (Whitely, 1980) and the multidimensional Rasch model 

for learning and change (Embretson, 1991).  We can show that the AR model is also a 

special case of MRCMLM using a proper parameterization.  Then we can apply the 

conditions given and proven by Volodin and Adams (1995) that are necessary and 

sufficient for the identification of MRCMLM to the case for the AR model.  These 

conditions, developed for use under maximum likelihood estimation, express conditions 

for suitably constrained sets of item parameters. 
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The formal MRCMLM can be represented by: 

∑
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where:  Xjk = 1 indicates a response is in category k for item j and Xjk = 0 indicates it is not; 

β is a column vector containing P item parameters being estimated; A, the design matrix of 

the test, is used to impose a linear relationship among item parameters and is defined by 

design vectors ajk (for j = 1,… ,J; and k = 1,… ,Kj), so that if one defines ∑
=
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J

j
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the PK ×  matrix of the form ),,...,,...,,,...,(
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column vector containing D person parameters being estimated for each person; and B, the 

scoring matrix of the test, is formed by DK j ×− )1( submatrices Bj  that is the catenation of 

1)1( ×−jK  column vectors bjk giving the performance level of an observed response in 

category k of item i.  If a response category for a particular item does not relate to a 

particular latent dimension, then the score on that latent dimension is set to zero. 

 Consider a test with five items and three response categories for each item 

(corresponding to the Newtonian, “impetus theory”, and Aristotelian approaches, 

respectively, as the example used earlier).  By using appropriate constraints (and using the 

notations for the AR model) and choices of A and B matrices, it can be shown that the AR 

model is a special case of MRCMLM.  First, we impose 01 =jβ  for every item j (i.e., every 

item’s parameter for Newtonian approach is set to 0) and 01 =iθ  for every person i (i.e., 

every person’s parameter for Newtonian approach is also set to zero).  These two 

constraints are necessary to remove the indeterminacy of the AR model, and help us 
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identify both A and B matrices needed to construct the AR model in the context of 

MRCMLM.  (The “set first component for all items and all persons” constraints are 

equivalent to the “sum-to-zero within items and within persons” constraints described in 

the previous section and used in the parameter estimation in Chapter IV, but are expressed 

in the form also used for identification conditions that will be discussed below.) 

The matrix B will take the following form: 


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B ,          (3) 

where the first and second column represent the “impetus theory” and Aristotelian 

dimension, respectively; and the first two rows are for item 1, the next two rows are for 

item 2, and so forth – the first row for a given item is for the response category 2 and the 

second row is for the response category 3.  Notice that there is no Newtonian dimension 

due to the constraint we impose above regarding θ.  Similarly, there is no parameter 

associated with the response category 1 for any item. 
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The matrix A will take the following form: 



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0000000001
0000000010
0000000100
0000001000
0000010000
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0001000000
0010000000
0100000000
1000000000

A ,         (4) 

where the first two columns are for the “impetus theory” and Aristotelian parameters of 

item 1, the next two columns are for item 2, and so on.  Altogether the ten rows are the 

“impetus theory” and Aristotelian responses for all five items (two response categories for 

each item).   

However, one more constraint in this type of parameterization is necessary to 

further remove the indeterminacy of the AR model (Andersen, 1973, pp. 144-145) due to 

the linear relationship between θ and β in Equation (1) – the probabilities remain the same 

for each response category p when the same constant is added to θip and subtracted from βjp.  

One possibility is to set both β12 and β13 equal to 0, that is, β1p is 0 for any p (after 

combining the first two constraints) – using Item 1 as a baseline.  (One could arbitrarily 

choose any item and set all of its parameters zero.)  Under this parameterization, the person 

parameters for the two dimensions being estimated need no further restrictions.  Notice 

again that this style of parameterization is different from the one mentioned previously (i.e., 

centering parameters for each item and person around zero, then incorporating priors to 

identify the centers of the θ distributions) but they accomplish the same end.   
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Then the matrix A is reduced to the following form: 
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A .          (5) 

The eight columns in (5) are for the “impetus theory” and Aristotelian parameters of items 

2 through 5 only (two columns for each item), and the ten rows are the “impetus theory” 

and Aristotelian responses for all five items. 

 For the normal person-parameter case, Volodin and Adams (1995) showed that the 

following are necessary and sufficient conditions for the identification of MRCMLM: 

 Proposition 1.  If D is the number of latent dimensions, P is the length of the 

parameter vector, β, 1+jK  is the number of response categories for item j, and 

∑
=

=
J

j
iKK

1

, then MRCMLM can only be identified if KDP ≤+ . 

 Proposition 2.  If D is the number of latent dimensions, P is the length of the 

parameter vector, β, then MRCMLM can only be identified if rank(A) = P, rank(B) = D, 

and rank([B ||A]) = P + D.  (Note: [B || A] refers to the horizontal concatenation) 
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 Proposition 3.  If D is the number of latent dimensions, P is the length of the 

parameter vector, β, 1+jK  is the number of response categories for item j, and 

∑
=

=
J

j
iKK

1

, then MRCMLM can only be identified if and only if 

KDPABrank ≤+=])||([ . 

 Using the matrices of B and A, shown in (3) and (5), as the parameterization of 

MRCMLM for the AR model, and according to the definitions given by those propositions 

above, we can see that: 

1) 2=D , since only two dimensions are being estimated (i.e., “impetus theory” and 

Aristotelian approach); 

2) 8=P , since only eight item parameters are being estimated (2 parameters each for 

items 2 through 5 only); 

3) 10=K , since there are three response categories for each item; 

4) 8)( =Arank  based on (5); 

5) 2)( =Brank  based on (3); and 

6) 10])||([ =ABrank  since the matrix of ]||[ AB  takes the following form: 







































=

0100000001
1000000010
0100000100
1000001000
0100010000
1000100000
0101000000
1010000000
0100000000
1000000000

]||[ AB .        (6) 
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Therefore, Proposition 1 is true for our case since KDP ≤=+=+ 1028 .  Proposition 2 is 

also true since PArank == 8)( , DBrank == 2)( , and 10])||([ =+= DPABrank .  

Finally, Proposition 3, following the first two propositions, is also valid 

here: )10(10])||([ =≤=+= KDPABrank . 

 Thus the AR model is identifiable.  One can use the same approach to examine if 

the AR model is identified for a data set other than five items or three response categories 

by using the same style of setting constraints and checking the propositions.    

It may be noted that since the AR model belongs to the Rasch family, sufficient 

statistics exist for both items and persons.  For person i, the minimal sufficient statistic is 

the number of Xij’s (j = 1,...,k) with observed value p, and the person’s score can be 

determined by the weight associated with each response category (so the sufficient statistic 

for person i would be the sum of weighted response categories).  Similarly, for item j, the 

minimal sufficient statistic is the number of Xij’s (i = 1,…,n) with observed value p. 

The three-parameter logistic (3-PL) IRT model.  For binary data, the most general 

and commonly used IRT model is the 3-PL model proposed by Birnbaum in the late 1950s.  

The 3-PL model takes the following form: 

)(exp1
)(exp

)1()(
jj

jj
jjj ba

ba
ccP

−+

−
−+=

θ
θ

θ ,      (7) 

where Pj (θ) is the probability that an examinee with ability level θ answers item j 

correctly; bj is the difficulty parameter for the item j; aj is the discrimination parameter for 

the item j; and cj is the guessing parameter for the item j. 
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The 3-PL model is adequate for a multiple-choice with a single response test in which 

examinees may obtain answers by guessing.  In addition, it is assumed that θ is 

unidimensional. 

Latent class (LC) models.  Unlike IRT in which the underlying latent variable (θ) is 

assumed to be continuous, the latent variable assumed in a LC model is categorical since its 

purpose is to predict memberships (or classes).  For a set of V dichotomous variables, there 

are 2V different response patterns that can be observed although some of them may not be 

seen in real data as mentioned above.  In general, the responses for a sample of N cases can 

be summarized in a frequency table which shows the 2V response vectors along with the 

number of cases associated with each pattern.  This table is then to be analyzed.  The 

Equations (8), (9) and (10) below represent the general form of latent class analysis (van 

der Heijden, Dessens, and Bockenholt, 1996): 

,,,,,||| xwvuxwxvxuxuvwx ∀= πππππ        (8) 

with restrictions 

xand
W

w
xw

V

v
xv
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u
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X

x
x ∀==== ∑∑∑∑

====

,11
1

|
1

|
1

|
1

ππππ ,    (9) 

where 

xπ  is the probability of falling into latent class x; and  

xu|π , xv|π , and xw|π  are the conditional probabilities of falling into levels u, v, and  

w, respectively, given x. 

 

 



 40

The unobservable probabilities are related to the expected probabilities uvwπ by Equation 

(10): 

 ∑
=

=
X

x
uvwxuvw

1
ππ .         (10) 

That is, the overall, or unconditional probability for a response vector ( uvwπ ) is the sum of 

each conditional probability for the response vector weighted by the corresponding latent 

class proportion.  

Comparisons among the three measurement models with regard to the Bao-Redish 

assessment.  IRT models are the most familiar item-level test theory models that concern 

students’ propensities to do well on tasks in a defined domain; e.g., right answers rather 

than wrong answers, high ratings rather than low ratings on essays.  The 3-PL model, 

applied to the Bao-Redish data, would therefore characterize students simply as to their 

propensity to make correct (Newtonian) answers to the items, or an overall proficiency 

level in students’ learning.  This is the kind of inference one can make about a student 

model through the 3-PL model.  As discussed above, the 3PL would also characterize items 

as to their operational properties such as difficulty, discrimination, and/or guessing 

parameters. 

The 3-PL model would be appropriate for the Bao-Redish data sets which were 

collected from the tests consisting of multiple-choice items if the objective of the analyst 

were simply to characterize students in terms of their propensity to make correct responses.  

However, an analysis based on the 3-PL model would not be able to probe the details of the 

processes students may have used for problem-solving.  The 3PL embodies a certain way 

of thinking about students and items – which characteristics are important, and how those 
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characteristics are, in probability, reflected in students’ performances.  It is a student’s 

tendency to produce right rather than wrong answers.  This is the major difference between 

the AR model and the 3-PL model.2  

Other IRT models have been developed to incorporate knowledge from cognitive 

science of learning into psychometric analyses (e.g., Embretson, 1995; Samejima, 1995; 

Wilson, op cit.).  They are not conformable with current research in that the cognitive 

process hypothesized and parameterized in those models is not consistent with Bao and 

Redish’s model for how students learn physics, and those models are not coded for the data 

sets used in the current study (i.e., response categories represent various strategies possibly 

used by students for problem-solving, and the responses are not necessarily involved in a 

systematic relationship to cognitive approaches).  

The student model that accords with a LC model presumes that each student is a 

member of a class, associated with distinct probabilities for responses of different types.  

Applied to the Bao-Redish assessment, one might posit that each student is associated with 

a certain conception (or misconception) of Newtonian mechanics problems, and tends to 

respond in that way.  These might be called “pure states” of understanding and expected 

                                                 
2 It is possible that some polytomous IRT models (e.g., Masters’ partial credit model – 

Masters, op cit.; or Muraki’s generalized partial credit model – Muraki, 1992) could be 

used to obtain students’ overall proficiency levels.  These models are not widely used as 

the 3-PL model in the current educational measurement.  The more important point is that 

recoding students’ responses based on their level of partial knowledge as opposed to their 

tendencies to use different approaches would not be coherent with the task design in this 

study.  These models are not considered here. 
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responses.  There are occasional inconsistencies in responses, however, so that answers 

corresponding to other conceptions would occur with probabilities to be estimated.  

In this sense, an LC model could be posited which would be similar to the AR 

model in that it can be used to model students in terms of conceptions/misconceptions of 

the domain rather than in terms of expected correctness (as in the 3-PL model).  However, 

the LC differs in that a given student may not be in an arbitrary “mixture state” as in the AR 

model, but is instead modeled as in a “pure state” – that is, a student uses a consistent 

theory or model to respond, although there are some probabilities of responses of other 

strategies.  Therefore, the latent class analysis (LCA) provides a different perspective in 

understanding students’ learning – one that is farther than the AR model and even the 3-PL 

model in terms of investigating individual student’s learning.  It should be noted that some 

mixture LC/IRT models exist in the literature (e.g., Mislevy & Verhelst, 1990; Rost, 1991); 

however, they too are not considered here because those models concern propensity toward 

correct answers under different strategy uses.  Neither the modeling of strategies nor the 

form of the data required for those analyses are consistent with the framework of the 

Boa-Redish analyses.  The present aim is not to explore a given data set with a 

compendium of models, but rather to fit a model (the AR model here) most aligned with 

the intention of the assessment and to draw out the cognitive basis of that model. 

The AR model matches up with the literature in cognitive science of physics 

learning in the area of focus, and is fully compatible with the Bao-Redish study.  This is the 

main point in the current study – i.e., to show an example of using a psychometric model 

that is consistent with the studies in science of learning, and to make inferences about 

students by examining their responses to tasks designed under the same conception of 
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learning.   The 3-PL model, which shows the degree to which students have learned, and 

LC models, which reveals students’ learning in terms of class membership, are interesting 

ones and provide different perspectives in students’ learning, but they are less well aligned 

with current development in the cognitive science of learning in physics in the area Bao 

and Redish addressed.  These models are discussed here to contrast with the AR model in 

terms of the way they model students’ responses, and the nature of inferences they can 

support regarding students’ learning.  

 

MCMC Estimation  

Both item and person parameters under the AR model will be estimated by MCMC 

sampling-based methods using a Bayesian approach.  Compared with other estimation 

procedures (e.g., joint maximum likelihood estimation, JMLE, and marginal maximum 

likelihood estimation, MMLE, which has become standard IRT methodology in practice), 

one advantage of using a Bayesian approach is that the estimation is direct given that the 

priors are specified in advance; therefore, it requires a much smaller sample size than 

maximum likelihood estimation (MLE) procedures to yield stable estimates.  Also, no 

artificial constraints need to be imposed on the parameter space as with MLE, since 

outward drifts of the estimates are naturally and effectively controlled by the priors.  

Swaminathan and Gifford’s simulation study (1986) on the 3-PL model showed that the 

Bayesian estimates stay in the parameter space.  Furthermore, the Bayesian estimates show 

a closer relationship to the true values than JML estimates.  Although from a frequentist 

perspective, Bayesian estimates are biased toward the mean of the prior distribution (i.e., 

exhibits shrinkage), the use of priors is also what keeps the parameter estimates (especially 
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the a and c parameters in the 3-PL model) in the admissible parameter space.  Another 

advantage of using Bayesian estimation over MLE (especially MMLE) is that uncertainty 

in item parameter estimates are easily incorporated into examinee inferences, and vice 

versa (e.g., Kim, 2001; Patz & Junker, 1999a; Tsutakawa & Johnson, 1990).  Finally, 

Bayesian estimation provides solutions for those examinees with perfect or zero scores. 

JMLE fails unless those examinees are removed prior to estimation. 

MCMC techniques have been recently applied to estimate parameters for latent 

variable measurement models, especially IRT models.  For example, Albert (1992) applied 

a Gibbs sampling method to estimate item parameters under the two-parameter normal 

ogive model for a 33-item Mathematics Placement Test administered to 100 examinees.  

He then compared the estimates with those derived from MLE using EM algorithm based 

on a normal approximation.  It was found that in terms of item difficulty parameters, these 

two estimation procedures yielded similar results; for discrimination parameters, the 

estimates based on Gibbs sampler tended to be larger than those resulting from MLE/EM, 

indicating that the marginal posterior distributions exhibited right skewness.  By 

examining the standard error of estimates, he further suggested that the normal 

approximation to the posterior of the item parameters based on the mode and information 

matrix (used to compute the EM standard errors) might be a poor approximation to the 

exact posterior distribution.   

Since these findings are only based on a single test, Baker (1998) conducted a 

simulation study to further investigate the item parameter recovery characteristics of 

Albert’s Gibbs sampling method by comparing with those obtained from BILOG (Mislevy 

& Bock, 1989) in which MMLE/EM was implemented.  He found that for a data set with 
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50 items and 500 examinees, the item parameter recovery of both estimation procedures 

was excellent.  For a fewer number of items and examinees BILOG tended to be superior to 

the Gibbs sampling although the differences were small.  As suggested by Baker, this could 

be due to the program Albert developed to implement Gibbs sampling.  A more highly 

developed “production” version of the program might produce better results.  Albert’s 

Gibbs sampling procedure was also used by Fox & Glas (2001) to estimate parameters for 

a multilevel IRT model.  In addition, Beguin and Glas (2001) generalized Albert’s 

procedure to estimate parameters of the three-parameter normal ogive model and a model 

with multidimensional ability parameters. 

Kim (2001) examined the accuracy of parameter estimates in the one-parameter 

logistic model using MCMC with Gibbs sampling.  Four datasets were analyzed using 

Gibbs sampling method along with MLE methods, including conditional maximum 

likelihood estimation (CMLE), JMLE, and MMLE (expected a posterior method, EAP, 

was used to estimate θ parameters).  He found that item parameter estimates from the four 

methods were almost identical, and θ estimates from Gibbs sampling were similar to those 

obtained from EAP. 

 Patz and Junker (1999a) applied MCMC using a Metropolis-Hastings sampling 

algorithm to estimate parameters for the two-parameter logistic IRT model.  Later they 

extended this strategy to the data with multiple item formats (multiple-choice and partial 

credit items), missing data, and rated responses (Patz & Junker, 1999b).  They 

demonstrated how MCMC approach is more straightforward and relatively easier to 

implement than MML/EM as IRT model complexity increases, since computationally 

MCMC does not involve exact numerical quadrature (for the E step) or pre-calculation of 



 46

derivatives (for the M step).  However, the cost of this ease of implementation is that the 

execution time is generally slower than EM due to the fact that MCMC is trying to estimate 

the entire joint posterior distribution function of all the parameters (this will be introduced 

later) while EM only estimates one or two values for each parameter – the MML estimate 

and its standard error.  

The examples reviewed above show some advantages of using MCMC to estimate 

model parameters, including its flexibility, ease of implementing for complex IRT models, 

and accuracy of parameter estimates.  The major drawback is that it usually requires a 

considerable amount of computing time.  Perhaps the rapid development of personal 

computers (PCs) will alleviate this problem.  Relatively few applications (e.g., Hoiijtink & 

Molenaar, 1997) using MCMC techniques for LC models were found in the literature. 

The general form of the Bayesian approach can be written as Equation (11): 

)()|()|( ** ypyxpxyp ×∝ ,        (11) 

where 

)|( *xyp  is the posterior density function of y given the observed data x*; 

)|( * yxp  is the likelihood function for x* given y; and 

)(yp  is the prior belief about y. 

If one uses the 3-PL model as an example and lets g(θ n), f(ai), f(bi), and f(ci) denote the 

prior beliefs about the ability of examinees θ n (n=1,…, N), the item discrimination 

parameter ai (i=1,…, I), the item difficulty parameter bi (i=1,…, I), and the guessing 

parameter ci (i=1,…, I), then the joint posterior density of the parameters θ, a, b, and c (i.e., 

the posterior to observing the item responses) is given by  
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From Equation (11), one can see that the right side of the equation is proportional to 

the posterior.  To make the posterior a proper distribution, one must obtain the normalizing 

constant C.  If y is a discrete variable, then 

,/)()|()|( ** Cypyxpxyp kkk =        (13)   

where ∑=
j

jj ypyxpC )()|( * ,       (14) 

and the summation runs over all possible values of y.  If y is a continuous variable, then 

,/)()|()|( ** Cypyxpxyp =         (15) 

where ∫=
y

dyypyxpC )()|( * .       (16) 

Evaluating C can be exceedingly difficult to evaluate with multiple variables, as the case 

for 3-PL model (Equation 12).  However, one can use the sampling-based approximation 

methods (e.g., MCMC) to resolve this without having to evaluate the normalizing constant.   

The key idea of Markov chain simulation is to create a chain whose stationary 

distribution is a specified posterior distribution and run the simulation long enough (i.e., 

repeating the sampling process by starting with a possible value for each variable then 

drawing a sample from the updated distribution and continuing to do so) that the 

distribution of the current draws conditioning on the previous draws is a sufficiently close 

approximation to the stationary distribution.  At this point, approximate distributions and 

summary statistics for each variable can be obtained based on these many draws. 
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There are two widely used Markov chain simulation methods – the Gibbs sampling 

and the Metropolis algorithm or the Metropolis-Hastings approximation method (see 

Gelman et al., 1995, pp. 320-344).  We start with the Gibbs sampling, since to date most 

statistical applications of MCMC in psychometrics have used it. 

Let Xij be a response for person i to item j, θi be a parameter(s) for person i, δj be a 

parameter(s) for item j, ξ be a parameter(s) for distribution of θs and τ be a parameter(s) for 

distribution of δs.  A full Bayesian measurement model can be presented by: 

)()()|()|(),|(),,,,( τξτδξθδθτξδθ ppppXpXp ij
i j

iij∏∏= .   (17)  

By Bayes Theorem, 

)()()|()|(),|()|,,,( ** τξτδξθδθτξδθ ppppXpxp ij
i j

iij∏∏∝ .   (18) 

Then the Gibbs sampling proceeds as follows: 

• Draw values from “full conditional” distributions as shown below 

• Start with a possible value for each variable in cycle 0 

• In cycle t+1, 

 For each person i, draw 1+t
iθ  from ),,,,,|( *1 xp tttt

i
t
ii τξδθθθ >
+

< . 

 For each item j, draw 1+t
jδ  from ),,,,,|( *11 xp ttt

j
t

j
t

j τξδδθδ >
+

<
+ . 

 Draw 1+tξ  from ),,,|( *11 xp ttt τδθξ ++ . 

 Draw 1+tτ  from ),,,|( *111 xp ttt +++ ξδθτ . 

The Metropolis (M) or Metropolis-Hastings (MH) algorithm can be used within 

Gibbs iterations when the “full conditional” distributions are not in a familiar form or 

cannot be sampled from directly.  The basic idea of the M and MH approximation methods 

is that one can draw from a “proposal distribution” that one can compute and sample from.  
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By setting up a criterion based on the density of the proposal distribution and the target 

distribution at the drawn point, draws from the proposal distribution are either accepted or 

rejected.  If they are rejected, the value of this variable in the next cycle of the Gibbs 

sampler remains the same.  The most popular choice of the proposal distribution is the 

normal distribution with mean at the variable’s previous value and a specified (or 

estimated) standard deviation.  In general, as long as the distribution is defined over the 

appropriate range, virtually any proposal distributions will work. 

The M and MH algorithms differ as to whether the proposal distribution is 

symmetric (for M) or not (for MH), and as to the corresponding accepting rule.  Given that 

θ is a variable in the posterior one is interested in, θt is its value in cycle t of a Gibbs 

sampler, p(z) is the full conditional for z, which includes data and most recent draws for all 

other variables, q(.|θt) is the proposal distribution with mean θt and a specified standard 

deviation (e.g., 1) and y is a draw from the proposal distribution, then the proposal 

distribution is symmetric if  )|()|( yqyq tt θθ = .  Accept y as θt+1 with probability min 

(r,1) where 

 
)(
)(
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ypr
θ

= .          (19) 

On the other hand, for MH the proposal distribution does not need to be symmetric, 

i.e., )|()|( yqyq tt θθ ≠ , and  

)|(/)(
)|(/)(
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yqypr tt

t

θθ
θ

= .         (20) 

One can easily see that if the proposal distribution is symmetric Equation (20) reduces to 

Equation (19); therefore one could consider the MH as an extension or generalization of M.  

Allowing the asymmetric proposal distribution in MH can be useful in increasing the speed 
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of the random walk solution afforded by a MH-within-Gibbs solution.  In other words, the 

convergence to the stationary distribution might be faster if using MH compared to M, 

given the proper proposal distribution. 

There are some important properties for MCMC.  First of all, MCMC exhibits the 

known Markov property of “no memory”, meaning that draws in cycle t+1 only depend 

directly on values in cycle t, not on previous cycles.  Second, an indirect dependence on 

previous values introduces autocorrelations across cycles.  That is, although the sequence 

of draws of a given parameters does approximate the posterior of that parameter, the values 

are not independent draws from the distribution.  Smaller autocorrelation coefficients are 

preferred; the value depends on the parameterization of the model, and the amount of 

information in the data for a given parameter.  Third, under regularity conditions (e.g., 

sampling can “cover the space”, or can choose any point in each parameter’s range), 

dependence on starting values is “forgotten” after a sufficiently long run.  Therefore, the 

“burn in” cycles – the first few hundreds or thousands of draws that are to be discarded 

because the sampled values in those cycles are dependent upon the starting values – will 

not be included in calculating the summary statistics for the variable one is interested in.  

One can run multiple chains with over-dispersed starting points to examine if they look like 

they are sampled from the same stationary distribution (see Gelman et al., 1995, on 

convergence diagnostics).      

Several computer programs have been developed for specific purposes to carry out 

the model parameter estimations using MCMC, including a computer program written in 

MATLAB (The Mathworks, Inc., 1996) by Albert (1992), a FORTRAN program written by 

Baker (1998), and a specialized code in S-PLUS (MathSoft, Inc., 1995) by Patz and Junker 
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(1997).  Each of these programs is specific to the model the researchers were studying.  For 

the current study, the WinBUGS computer program is used for estimating model 

parameters, assessing model convergence, and comparing the nested models under the AR 

model (these are discussed in the next chapter).  It is an interactive Windows version of the 

BUGS program (Bayesian inference analysis Using Gibbs Sampling, Spiegelhalter, 

Thomas, & Gilks, 1997) for Bayesian analysis of complex statistical models using MCMC 

techniques (in particular Gibbs sampling, with Metropolis steps within Gibbs for full 

conditionals with hard-to-calculate forms).  It is a widely used freeware program and has 

been used to a wide range of complex problems (see those examples listed in the program 

manual) due to its flexibility.  This is particularly useful in the current study because no 

other computer programs are readily available for estimating parameters for the AR model.  

Therefore, because of the program’s flexibility along with those advantages and nice 

features of using MCMC over other estimation procedures as discusses earlier, BUGS 

where MCMC techniques are implemented would be the best choice to estimate 

parameters for the AR model in the current study. 

 

Analysis of a Mechanics Test in Physics from the Perspective of Evidence-Centered Design 

The domain of interest – the SM in CAF.  As described in the earlier sections, the 

goal of this dissertation research is to use an appropriate psychometric model to examine 

data that bear on how college students learn physics concepts, in particular here Newtonian 

mechanics.  In the past, the evaluation of a given student’s performance for physics tasks 

was mainly based on the overall score (or the number of items he/she answered correctly), 

and the statistical inference one can make is whether or not the student has mastered the 
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content.  However, this does not tell much about how students may be thinking when they 

respond to questions presented to them.  Do they have a common model (correct or 

incorrect one) in their reasoning to answer questions?  Does each individual not only have 

the Newtonian thinking but also other alternatives, and is the state of reasoning evoked 

dependent on the features of test items?  Research in the cognitive science of learning has 

shown that prior knowledge or experience plays an important role when an individual is 

learning new things or concepts.  In particular, a student’s responses on the test are affected 

by the context each item embodies if he/she has not yet mastered the concepts the test is 

designed to measure.  Using the CAF in the “evidence-centered” assessment design and the 

knowledge from previous studies in the psychology of science learning, the purpose of this 

research is to examine how new models and methods consistent with the psychometric 

tradition can be used to reveal naïve physics learners’ conceptions and misconceptions 

about Newtonian mechanics.  Such approaches – the Andersen/Rasch model in particular – 

are solidly grounded in statistical theory and situated in psychometric notion of modeling 

“noisy” responses in terms of more fundamental characteristics of students and tasks.  In 

this case, however, those characteristics are driven by the psychology and the particular 

substance of physics learning: specifically, what are the propensities of a student to 

respond under the various approaches, and what are tasks’ propensities to, by virtue of their 

features, provoke responses of the different approaches? 

Design of the assessment – the TM in CAF.  To further investigate how students are 

learning physics concepts – to have indications of students’ understanding of them and thus 

provide feedback to improve instruction – the features of tasks that are needed to evoke 

evidence about the student variable(s) need to be taken into consideration in the task 
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design.  Using a physics test as an example, this means that if the goal of the test is to 

examine students’ mastery level on Newton’s third law, the test should consist of questions 

in which the understanding of Newton’s third law is required to answer items correctly.  If, 

on the other hand, one would like to explore more deeply how students are responding to 

those questions, each item may only embody one contextual feature (e.g., the mass or 

velocity of the object as a trigger factor) in order to study each factor/feature individually.  

Items with multiple contextual features can have the confounding effects and prevent us 

from analyzing and interpreting students’ misconceptions (i.e., how did they arrive at the 

wrong answers?). 

Below we present a set of choices listed on the FMCE used to examine students’ 

understanding about Newton’s third law given different scenarios to demonstrate how the 

situation is set up, and the response alternatives are created, in order to provoke various 

misconceptions.  Those questions involve collisions between a car and a truck but are 

mixed with different physical features – mass and velocity.  Based on Newton’s third law, 

the magnitude of the forces between the car and the truck when they collide would be the 

same regardless of weight and speed.  However, students with incorrect physical models 

would believe that either mass or velocity or both can result in different magnitudes of 

forces between the car and the truck.  Therefore, five student models – one null model, one 

correct model, and three incorrect models – possibly exist among students (Bao, 1999): 
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Model 0: Null Model (i.e., nonscientific reasoning). 

Model 1: Both car and truck exert the same amount of force on the other regardless 

of either mass or velocity. (Correct) 

Model 2: The car and the truck can exert unequal amount of force on the other, and 

the one exerting the larger force depends on the velocity only (i.e., 

regardless of the subject’s mass). (Incorrect) 

Model 3: The car and the truck can exert unequal amount of force on the other, and 

the one exerting the larger force depends on the mass only (i.e., regardless 

of the subject’s velocity). (Incorrect) 

Model 4: The car and the truck can exert unequal amount of force on the other, and 

the one exerting the larger force depends on both the velocity and the 

mass. (Incorrect) 

In order to sort out which of these models a student might be using under various 

conditions, the FCME is tacitly using a task model with a common stimulus situation – 

truck and car colliding head-on – and introducing variation with respect to the following 

task-model variables and possible values of them: 

• Mass of vehicles: Same; truck heavier; and car heavier. 

• Velocity: Both moving at the same velocity; both moving, and car moving 

 faster; both moving, and truck moving faster; truck moving but car still; car 

 moving but truck still. 

(Additional task model variables that could be introduced to explore other misconceptions 

associated with Newton’s third law are whether colliding objects are animate, are capable 

of intentionality, and have been moving prior to the scenario.) 
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Further, the students’ work products are choices of proffered explanations that are 

provided in multiple choice format, designed to reveal thinking along the lines of the 

student models listed above.  Specifically, seven choices on the FMCE are given to 

students to let them choose the answer that best describes the size (magnitude) of the forces 

between the car and the truck under several conditions (e.g., on question 30, students are 

asked to choose the best answer given that the truck is much heavier than the car and they 

are both moving at the same speed when they collide): 

A. The truck exerts a larger force on the car than the car exerts on the truck. 

B. The car exerts a larger force on the truck than the truck exerts on the car. 

C. Neither exerts a force on the other, the car gets smashed simply because it is in 

the way of truck. 

D. The truck exerts a force on the car but the car doesn’t exert a force on the truck. 

E. The truck exerts the same amount of force on the car as the car exerts on the 

truck. 

F. Not enough information is given to pick one of the answers above. 

G. None of the answers above describes the situation correctly. 

Comparing these choices with those models students possibly use for problem-solving, it is 

easy to see that choices C, F, and G correspond to Model 0 (the null model – in other cases, 

many of the responses of which correspond roughly to an Aristotelian conception of force 

and motion), choice E is based on Model 1 (the correct model), and the other choices are 

derived from either Model 2, Model 3, or Model 4 (incorrect student models, containing 

some notion of force and motion, but often not quite correct in ways that can be thought as 

using “impetus theory” rather than Newtonian mechanics), depending on how the situation 
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is set up.  If using question 30 – the truck is much heavier than the car but they are moving 

at the same speed when they interact – as an example, it should be noted that, however, 

students using the Model 2 – the force the subject exerts to the other depends on the 

velocity only – would choose the correct answer (the choice E) as well.  As a result, student 

responses on this group of FMCE questions cannot be coded with item-based modeling as 

suggested by Bao (that is the same reason we exclude those questions on the FMCE in our 

current study – the AR model is appropriate to be used only for the data coded at the item 

level).  This is somewhat related to the data analysis discussed in the following subsection.  

Our purpose here is to demonstrate how the problem situation is set up and how those 

choices are created to provoke students’ conceptions/misconceptions.  On the other hand, 

one can see that how we analyze the data is related to how the task is designed to reveal 

students’ cognitive process in problem-solving.   

In order to set the stage for the AR analyses we employ and to summarize previous 

analyses, the next section reviews Bao and Redish’s analyses.  In terms of the ECD 

framework, Bao and Redish’s analyses correspond to the statistical component (or the 

measurement component) of the EM in the CAF. 

 Summary of Bao/Redish analyses – statistical analysis in the EM of the CAF.     

Two methods were developed by Bao and Redish (2001 & 2004) in their studies on 

students’ physics learning: Concentration Analysis and Model Analysis.  They first 

developed Concentration Analysis to measure how students’ responses on multiple-choice 

questions are distributed.  This information can be used to explore if the students have 

common correct/incorrect models or if the question is effective in detecting models of 

students’ reasoning for problem-solving.  Suppose a multiple-choice single-response 
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question with 5 choices is given to 100 students.  Examples of distributions of responses 

could be: (1) the responses are evenly distributed among all the choices (i.e., 20 students 

for each choice), implying random guessing; (2) there is a higher concentration on some 

choices than on others, which is a more typical distribution that may occur in our classes; 

and (3) only one choice is selected by all students, giving a 100% concentration.  Based on 

this example, the concentration factor (C) is defined “as a function of student response that 

takes a value in [0,1].”  A larger value of C indicates more concentrated responses with 1 

being a perfectly correlated response (the 3rd type of the distribution above) and 0 a random 

response (the 1st type of the distribution above).  The value of C would be between 0 and 1 

for the 2nd type of distributions.  This concentration factor can be calculated using Equation 

(21),  
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where m is the number of choices, ni is the number of students select the choice i, and N is 

the total number of students.   

Several methods of using the concentration factor were introduced, and results 

from the FCI (Hestenes et al., 1992) were used to demonstrate them.  For example, one can 

cross tabulate the concentration factor with scores (or the percentage of items students 

answer correctly) if both of them are recoded into categories based on criteria set by 

researchers.  This can be used to show if the questions trigger some common 

“misconceptions.”  Assume that students’ scores and the concentration factors are 

categorized into three levels (Low, Median, and High).  Then the following patterns are 
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meaningful and provide some information about the student data: HH (one correct model), 

LH (one dominant incorrect model), LM (two possible incorrect models), MM (two popular 

models, one is correct and another is incorrect), and LL (random guessing).  Other methods 

involve constructing plots, and they can provide additional information about how 

students’ responses shift from pre-instruction to post-instruction (if data from both pre- and 

post- instruction is available) or information about incorrect answers.    

To look for the detail of those possible situations of student models for reasoning in 

physics learning, Bao and Redish (2004) developed the second method, Model Analysis, to 

extract the probability states of students’ use of different models.  The analysis is mainly 

based on the cognitive science of learning (e.g., context dependence, as discussed earlier) 

and the knowledge from qualitative research (i.e., interview students to find out possible 

contextual features in learning the Newtonian mechanics).  It involves two important 

concepts which have been mentioned but not well-defined in the preceding sections: 

common models and student model states.  The common models are those models 

commonly used by students.  They often consist of one correct expert model and a few 

incorrect or partially correct student models.  When students are presented with a set of 

questions for a new physics concept or situation, they may respond using a previously 

well-formed model or create a new model based on their past experience or knowledge 

(e.g., mapping of a reasoning primitive).  As an example, with the concept of the 

force-motion relation in the Newtonian mechanics, there are three common models 

students may use as indicated on the Bao and Redish’s paper: 
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Model 1: An object can move with or without a net force in the direction of motion. 

(an expert model using Newtonian way of thinking) 

Model 2: There is always a force in the direction of motion. (an incorrect student 

model using “impetus theory” belief) 

Model 3: Null model. (an unsystematic, inconsistent, or Aristotelian approach) 

Note that in practice, there can be more than one more specific model corresponding to 

each of the model categories described above.  In this dissertation, response options that 

corresponded to the same model category will be collapsed into a single category (more 

details are described in the following chapter).   For example, suppose a task provide six 

multiple choice options, and two were consistent with a correct student model, three with 

an incorrect student model, and one with a null model.  For the purposes of Bao and 

Redish’s analysis and for the AR analysis of this dissertation, the first two would be 

combined into one common Newtonian category and the next three would be combined 

into a single category thought of as using “impetus theory” approach .     

Students may consistently use one of the common models (correct or incorrect one) 

to answer all questions or they may inconsistently use different common models depending 

on what model is triggered by the given item.  These different situations of using models 

when naïve students are presented test questions related to a new concept are described as 

student model states.  The first case above (i.e., consistently use the same model) is called a 

pure model state while the second case (i.e., inconsistently use different models) is referred 

to a mixed model state.  A mixed model state is common when students are in the transition 

of mastering a new concept. 
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The idea of Model Analysis is that if one can design a set of questions to probe a 

particular concept, the probability for a given student to activate the different common 

models in response to these questions can be measured appropriately.  That is, a student’s 

model states can be represented by a set of probabilities.  Suppose a population of students 

is given j multiple-choice single-response questions on a single concept for which this 

population uses m common models.  The kth student’s probability distribution measured 

with the j questions can be represented by a vector space, kV
r

 : 
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where k
ωv  is the probability of  the kth student being in the ωth model state and equals to 
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The Equation (22) can be represented in a square root form to have a unit vector, 

kur , in the model space: 
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A procedure called model estimation is then introduced to extract information 

about students’ use of models in terms of eigenvalues and eigenvectors derived from the 

class model density matrix based on the single student model density matrix.  Suppose m 

equals 3 (i.e., involves 3 common models).  The single student model density matrix is 

defined as in Equation (25), a product of  kur  and ( )Tkur : 
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Then the class model density matrix is defined as the average of the individual 

students’ model density matrices as in Equation (26):  
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where N is the number of students. 

It can be shown that the diagonal elements of Φ  reflect the percentages of 

students’ responses for each common model used while the off-diagonal elements reflect 

the consistency of the model used by students.  Suppose 11δ  equals a non-zero number and 

other elements in Φ  equal zero.  It indicates that students consistently use one model 

(correct or incorrect one).  If 11δ , 22δ , and 33δ  (i.e., the diagonal elements) equal some 

non-zero numbers and the off-diagonal elements are all zeros, implying that three common 

models are consistently used by students.  On the other hand, if all elements in Φ  are not 

zeros, implying that students use three models inconsistently, and large off-diagonal 

elements indicate low consistency for individual students in their model use. 
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Furthermore, an eigenvalue decomposition method can be used to extract the class 

model vectors (the eigenvectors of Φ ) and the eigenvalues.  As discussed in Bao and 

Redish’s paper, these eigenvectors representing the class model states reflect “the salient 

features of all the individual student model vectors.”  In the case where students have two 

dominant models (a correct one and a common misconception), one can construct a 

two-dimensional graph or “model plot” using the eigenvectors corresponding to those two 

model states to represent the student usage of the two models.  In terms of the eigenvalues, 

it can be shown that they are affected by two factors: the similarity of the individual 

students’ model vectors and the number of students with similar model state vectors.  

Therefore, a large eigenvalue obtained from Φ  implies majority of students in the class 

tend to have similar single student model vectors.  That is, most students use the same 

common model.  Compared to Concentration Analysis, this quantitative information tells 

us clearly about which common model the majority of students use – it can be Model 1, 

Model 2, or Model 3 if using the example above.  On the other hand, several small 

eigenvalues indicate that students apply their models differently from each other.  Data 

from FCI (5 questions that activate models associated with the force-motion concept and 

student responses were coded according to those three common models as seen in the 

example) was used to demonstrate the Model Analysis.  Later, Bao, Hogg, and Zollman 

(2002) showed the effectiveness of Concentration Analysis and Model Analysis on the 

self-designed questions following what cognitive psychology suggests about students’ 

science learning to evaluate college students’ understanding about Newton’s third law. 
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Psychometric analyses.  Methods developed by Bao and Redish as described above 

provide a better way than the traditional, total score, evaluation method in revealing how 

students learn new physics concepts in Newtonian mechanics.  It helps to design a more 

valid instrument and to improve instruction in physics.  However, there are some 

limitations in their methods. 

First, it is not clear whether these methods can be applied to other fields of learning 

(e.g., mathematics).  The cognitive learning process for mathematics may be different from 

learning physics since they are two different subjects (i.e., their substances are not the 

same).  More generalized analyses would be preferred in educational testing.  For example, 

psychometric models which are statistical models are substance-independent, yet when 

appropriately constructed and applied, reflect the key patterns in the substantive problem at 

hand.  Thus analyses based on them can be used in various subjects of learning while 

remaining true to the learning theory of the domain of interest.  

Second, the Boa-Redish analyses are not connected with the well-developed 

psychometric machinery, where much has been learned over the past century about issues 

such as estimation, model criticism, and modeling approaches.  Some measurement 

models (e.g., IRT models) have been widely used in educational testing.  Although they 

may not be sufficient for Bao and Redish’s interests in knowing how students learn new 

physics concepts, the little-known AR model as described above does exist, and it is 

consonant with the conception of student model states in the Bao-Redish approach.  Their 

analysis is based on the belief that naïve students use different models, with probabilities 

that depend in part on the features of the test items.  This could be described as a 

mixture-within-persons model as the AR model.  Posterior probability vectors associated 
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with the different model states in the AR model would reveal the same kinds of patterns the 

Boa-Redish eigenvalues summarize. 

Third, their analyses are data dependent, in the same sense as those of the classical 

test theory.  That is, all of statistics in their analyses will vary if different sets of questions 

are given to students.  For example, k
ωv  in Equation (22) will be changed if using a 

different set of questions.  That is, student model states parameterized in this way are not 

unique for a given concept as they indicated in their paper, “the student model state 

represents an interaction between the student and particular instrument chosen.” (Bao & 

Redish, 2004, p. 11).  This limits the test use, and it does not allow comparing students’ 

performance if they have taken quite different subsets of test items.  In modern test theory, 

like the AR and other IRT models, once the assumptions of the model are satisfied (and 

they can be examined using statistical procedures), the item (or person) parameter 

estimates are independent of the particular sample of students (or test items) (Hambleton & 

Swaminathan, 1985).  Thus different subsets of the same item pool would yield different 

concentration analysis estimates but statistically equivalent AR item parameter estimates, 

even while both models were faithful to the same mixture-within-persons response 

patterns.  (This aspect of the analysis will be addressed directly in Chapter IV, in a 

comparison of results of a four-item test and an eight-item test that includes the original 

four.) 

Next, neither of their methods provides estimates and accompanying measures of 

accuracy at the level for individual students, as well as standard error of estimate at the 

item level.  These are very important and essential in educational measurement (no matter 

whether the use is for classroom assessments or high-stake tests).  Concentration Analysis 
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is mainly used to examine the effectiveness of the test items (but without providing 

accompanying standard errors of estimation), and it is not intended to measure students’ 

mastery or propensity levels.  Model Analysis is based on the class model density matrix 

and is used to evaluate two types of consistency – the consistency of individual students 

using different models by examining the structure of the class model states (mixed or pure) 

and the consistency among different students reflected by the eigenvalues.  Analyses based 

on psychometric models provide more useful and important information both at the 

individual and item levels than those two analyses, yet also fulfill Bao and Redish’s 

intentions to know how individual students respond to physics questions.  Besides, in most 

cases, psychometric analyses simultaneously produce the item and person parameter 

estimates, whereas two separate methods are needed in Bao and Redish’s studies to 

conduct the item or person level analysis.  Furthermore, psychometric analyses support 

associated standard errors of estimation that are not available in Bao and Redish’s 

analyses.  There is no clear way to examine the precision of estimated statistics in their 

analyses.  Thus the AR model is a good example of the psychometric approach and its 

attendant advantages to a test built around contemporary, rather than traditional, views of 

learning.  

Finally, there are no procedures developed for statistical model fitting and model 

comparisons in Bao and Redish’s analyses.  They provide ingenious descriptive tools to 

study students’ physics learning in great detail; however, lack of statistics for model fitting 

and model comparisons prevents the researcher from assessing the effectiveness of their 

analyses and comparing with other alternatives.  Bao and Redish showed the effectiveness 

of their methods using data from FCI, but it was based on some qualitative information and 
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was mainly targeting physics.  In terms of a statistical point of view, it would be better to 

have a quantitative index for describing how well the model fits the data.  They also 

compared Model Analysis with Factor Analysis using two special cases and showed that 

the former is more valid than the latter in detecting the class model states.  Again, a 

statistical index for model comparisons would be recommended rather than just showing 

the model differences by using two extreme cases.  In Chapter III, we introduce a Bayesian 

model-fit index that was used in the current study to assess the fit of the model and to 

compare various models under the AR model.  

The Bao-Redish model analyses provide an innovative approach to examining data 

from a rich, substantively- and cognitively-grounded set of test items.  Appreciating the 

patterns they seek to model yet recognizing the limitations of the methods, psychometric 

analyses based on the AR model are conducted in the current study.  The general model 

description and its inference on the student variable have been discussed in the earlier 

sections.  (Although the 3-PL model and LC models are not applied, they were contrasted 

in a previous subsection with the AR model in the way they model students’ responses, 

based on the psychological perspective they represent and the inference they can make 

about students’ learning.)  

Summary 
As briefly discussed in the very beginning and developed throughout in the paper, 

this dissertation research is meant to provide an example of analyses integrating ideas from 

several areas of current research.  First, it is based on the ECD framework developed by 

Mislevy, et al (2003).  Within this framework, this dissertation focuses on the measurement 

component of the evidence model in the CAF.  Second, as the primary goal, it is desired to 
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compare and explore the utility of analyses that draw upon the armamentarium of 

psychometrics to make inferences about the student variable(s) using data from physics as 

an example.  Bao and Redish (2001 & 2004) have developed both the Concentration 

Analysis and Model Analysis to study college students’ learning in physics (especially in 

Newtonian mechanics).  Their analyses are shown to be effective but with the limitations 

discussed above.  

Next, this line of research also integrates findings from the psychology of science 

learning with psychometric methods.  One of major findings that Bao and Redish draw 

upon is that naïve students’ responses on questions are affected by their pre-existing 

knowledge or experience (i.e., context dependence).  Therefore, task questions designed to 

measure students’ understanding of physics concepts are suggested to embody the 

contextual features associated with each item targeting on the specific concept.  Bao and 

Redish (2001 & 2004) have showed that five questions on FCI are effective in evoking 

features related to the force-motion concept in Newtonian mechanics through their 

analyses. 

Finally, parameter estimation for the AR model can be carried out by using MCMC 

techniques.  The computer program, WinBUGS, is available for doing this kind of task, and 

will illustrate the use of MCMC estimation procedures with an innovative model and 

application through this study.  



 68

Chapter III 

Methodology 

 
Data 

 Four data sets were used: (1) the FCI data with 5 items (questions 5, 9, 18, 22, and 

28) and 198 subjects; (2) the Force-Motion data , containing 403 examinee responses to 4 

items (questions 2, 5, 11, and 12) from the FMCE; (3) the Force-Motion data, obtained 

from the same subjects as for the second data set but with 4 additional items (i.e., questions 

2, 5, 11, and 12 plus items 8, 9, 10, and 13); and (4) the Acceleration data, also obtained 

from the same subjects as for the second data set, containing students’ responses on 

questions 22 through 26.  All of these questions are listed in Appendix A.   

As indicated earlier, the FCI and FMCE are the two most commonly used 

instruments in physics to measure students’ understanding on concepts in Newtonian 

mechanics.  Items on the first two data sets have been used by Bao and Redish in their 

studies (Bao, 1999; Bao & Redish, 2001, 2004).  Therefore, the findings from the current 

study can be used to contrast with what they found in general terms (since the datasets are 

different).  For the following two reasons, we also conducted analyses using the third data 

set.  First, we can compare the parameter estimates for those questions used both in the 

second and third data sets – since they are the same items, it is expected that the parameter 

estimates would be similar, with some variations due to sampling error.  Second, we can 

examine whether more items would yield more stable estimates in the case of the third data 

set.   (In the context of IRT, more items and/or more examinees are preferred in order to 

obtain more stable and accurate estimates).  We employed the fourth data set because 
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acceleration is also an interesting topic in physics.  In addition, it gives us an opportunity to 

explore whether the mapping schema created by Bao and Redish and mainly used on the 

force-motion concept can be applied to other concepts (if applicable) as well.  

 The FCI data were collected from the algebra-based physics course (PHYS 121) 

taught in the Fall of 2001 at the University of Maryland.  Most of the students were from 

the College of Biology (about 70-80% typically) and most were juniors or seniors.  They 

were given the FCI in the first and last weeks of the class.  Therefore, the data contain 

students’ responses on both pre- and post-tests.  This allows us to examine whether 

students make some progress in understanding the force-motion relation after one semester, 

as well as to explore the homogeneity of the item parameter estimates.  This can be done 

through model comparisons that are described later in this chapter. 

 The FMCE test was given to a population similar to that for the FCI data.  They 

were collected in the first and last weeks of the class during the Fall of 2000 and 2002.  

Since the same instrument was given to similar populations, the data from those two years 

are combined in this study.  In addition, as for the FCI data, the FMCE data also contain 

students’ responses from pre- and post-tests that are distinguished in the analysis.  As 

mentioned earlier two concept groups measured in FMCE are considered in the current 

study: the Force-Motion concept (for the second and third data sets) and the Acceleration 

concept (for the fourth data set). 
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Analyses 

 The responses from all four data sets (both pretest and posttest) were originally 

coded based on five choices.  Bao (1999) and Bao and Redish (2004) recoded the students’ 

responses for the first two data sets into three categories based on three student models, 

namely Newtonian (Model 1), “impetus theory” (Model 2), and a “null” or Aristotelian 

(Model 3) conception.  Therefore, in this study, responses from the first two data sets were 

recoded into three response categories based on this coding scheme.  We also recoded 

students’ responses on both the third and fourth data sets following Bao and Redish’s 

mapping strategy.  These codings can be found in Appendix B.  Then the recoded 

responses would be adequate to be analyzed for the AR model.  It should be noted that for 

the first data set there is no response category 3 (i.e., no responses would be recoded under 

category 3) for question 22.  However, to be consistent with other items, we use the model 

as if the response category 3 exists for this item when estimating model parameters and 

was not used by any student (and we anticipate a parameter estimate that indicates a 

response in category 3 is very unlikely!). 

After the data were recoded, standard descriptive item analyses were conducted for 

each data set, including a frequency distribution table for each question based on the 

original five response categories and the three response categories collapsed in terms of 

physics conceptions.  In addition, the Pearson correlation among items for each data set 

that are based on the three response categories were performed, followed by the polyserial 

correlation analyses (between the item and students’ overall scores) also based on the three 

response categories.  (Even though the categories 1-3 are, strictly speaking, nominal, they 

can be ordered from 1 representing a higher level of understanding than 2, which is again 
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higher than 3.)  The analyses first were conducted for pre- and post-test separately then 

they were analyzed using the combined data set (i.e., combine the pre- and post-test for 

each data set).  These analyses were used to help to identify some possible mistakes 

resulting from data entry and to provide some basic information about items. 

Each data set then was analyzed under the AR model, using the computer program 

WinBUGS.  Missing data in WinBUGS are treated as “missing at random” (MAR) – that is, 

the distribution of the missing-data mechanism does not depend on the missing values, 

rather it is permitted to depend on other observed values through the proposed model 

(Gelman, et al, 1995).  As mentioned beforehand, in order to examine whether the item 

parameters and/or the person parameters are homogeneous with respect to testing occasion, 

three models under the AR model were compared.  This modeling strategy is analogous to 

a common strategy in latent class modeling (e.g., Dayton, 1998, p. 78).  If the item 

parameter estimates are homogeneous, this indicates that each item has a similar tendency 

to evoke the specific conception/misconception regardless of time points; likewise, the 

homogeneity of the person parameter estimates implies that student populations’ 

propensity distributions, reflecting their understanding about physics concepts, do not 

change from the pre-test to the post-test.  These three models are: 

First, the homogeneous model: One BUGS run, with the same conditional 

probabilities for items and the same examinee population distributions for θs over all 

subjects and time points. 

Second, the partially homogeneous model: One BUGS run, with the same 

conditional probabilities for all subjects and time points but different population 

distributions for pre-test response data and post-test response data.  In BUGS, this is 
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accomplished by including a data variable time (1 for pre-test and 2 for post-test, for 

instance) for each data vector, and having distinct examinee distributions for the two sets.  

The θs for the pre- and post-test would come from normal distributions but with different 

means, and they can be estimated empirically. 

Third, the heterogeneous model:  One BUGS run again, with same distinct pre- and 

post-test distributions for subject as in the partially homogeneous model but now with two 

sets of item parameters for each item (i.e., one for the pre-test and another for the post-test).  

The time-point variable associated with each data vector determines which set of item 

parameters is used with that data vector.  

The BUGS code for each condition is listed in Appendix C.  Since those codes are 

identical for each data set (they only differ mainly on the data vectors), only the ones for 

the first data set are presented.   

 Each BUGS run consists of the following steps: model specification (select 

specification under model menu), sample monitor (select samples under inference menu), 

and sample update (select update under model menu).  Through model specification, one 

can examine whether the program code for the full Bayesian model in question is 

syntactically correct, load data, compile the model with number of MCMC chains the user 

specifies, and load initial values for parameters that need to be estimated or let the program 

generate the initial values.  The sample monitor tool is to monitor the nodes (the variable of 

interest, i.e., the parameters being estimated) by specifying begin and end – numerical 

values used to select a subset of the stored sample for analysis (by default, the value for end 

is 1,000,000), and thin – used to select every kth iteration of each chain to contribute to the 

statistics being calculated, where k is the value for thin that a user may specify.  The sample 
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update tool allows one to specify the number of iterations desired for each run, and it is 

used to continue the BUGS run until it reaches convergence.   

Checking convergence is necessary, and can be carried out by several ways (they 

are options under the sample monitor tool).  Note that convergence in MCMC estimation is 

not convergence to point estimates, but rather to draws from a stationery distribution; in 

particular, the posterior distribution for each parameter in the model.  Thus different values 

are obtained in each cycle, and the issue is whether they can be considered to be draws 

from a stable underlying distribution (Gelman, 1996).   

Most convergence diagnostics and in particular those included in WinBUGS 

involve running multiple chains, with each chain starting from a distinct set of initial values 

for each parameter being estimated (usually, the item parameters).  The first 

convergence-monitoring approach is to examine trace plots of the sample values versus 

iteration for each chain and see if they are mixing well (see Figure 4 for a reasonable 

convergence from two chains).  Second, one can look at history plots, a complete trace for 

the variable being monitored (see Figure 5 for an acceptable convergence).  Finally, one 

can examine the Gelman-Rubin convergence statistics (Brooks and Gelman, 1998).  The 

Gelman-Rubin statistic (or is called “R”) would general be expected to greater than 1 if the 

initial values are adequately over-dispersed between two chains and would be 

approximately equal to 1 if reaching convergence.  In addition, one should also pay 

attention on examining whether the convergence is stable (see Figure 6 as an example).  

The green line on the figure represents the width of the central 80% interval of pooled runs 

in bins of length 50.  The blue line, on the other hand, represents the average width of the 

80% intervals within the individual runs, again in the bins of length 50.  Their ratio (= 
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pooled / within), the R-statistic, is represented by the red line.  In this study, each BUGS 

run consists of two chains to check for the convergence of the chains to a common 

stationary distribution. 

 
Figure 4.  
A Trace Plot for a Reasonable Convergence from Two Chains 
 

iteration
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    2.0

 

  

Figure 5.  
A History Plot for an Acceptable Convergence from Two Chains 
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Figure 6.  
The bgr Diagnosis – the Gelman-Rubin Statistic Represented by the Red Line 
 

iteration
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After convergence, a further number of iterations need to be run to obtain samples 

that can be used for posterior inference (i.e., to obtain the summary statistics – e.g., the 

mean, standard deviation, and quantiles – of the posterior distributions for the parameters 

being estimated).  In general, more iterations (i.e., more samples from the posteriors) 

would produce more accurate posterior estimates.  One way to assess the accuracy of the 

posterior estimates is to compare the Monte Carlo error (the MC error) with the sample 

standard deviation (SD) for each parameter of interest.  SD is an estimate of the uncertainty 

of estimation of the parameter due to having finite data, and its size is determined by the 

data and the model.  MC error is an estimate of the uncertainty due to having only a finite 

number of draws in the MCMC chains, and it can be driven to zero simply by running long 

enough chains.  As a rule of thumb, it is suggested that the simulation should be run until 

the MC error for each parameter being estimated is less than about 5% of the sample SD.  

Since the MC error and sample SD are reported in the summary statistics table, the 

comparison between those two statistics can be done easily. 
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The same samples being used to obtain the summary statistics were also used to 

compute a statistic called the Deviance Information Criterion (DIC; Spiegelhalter, Best, 

Carlin, & van der Linde, 2002) and related statistics that are described below.  The DIC is 

provided and calculated by BUGS.  It is appropriate for comparing both nested and 

non-nested models in which the effective number of parameters being estimated is not 

clearly defined (due to the incorporation of prior distributions and hierarchical model 

structures).  

This is the case here.  In the current study, we would like to compare different 

models (i.e., the homogeneous, partially homogeneous, and heterogeneous models) under 

the AR model, and the parameter estimates for both the partially homogeneous and 

heterogeneous models involve setting up some hyperparameters (e.g., mu11 and mu12 in 

the BUGS code, the means of prior distributions on the examinee population distribution 

means).  Furthermore, the inclusion of a prior distribution (also applied in our analyses) 

induces a dependence between parameters being estimated which in turns to reduce the 

effective dimensionality to some extents (Spiegelhalter et al. 2002).   For this reason, other 

information criteria such as AIC (Akaike, 1973 & 1987) and BIC (Schwarz, 1978) may not 

be appropriate for model comparisons.   The computation of both AIC and BIC depends on 

a measure of the effective number of parameters in the model, and they are not clearly 

defined in hierarchical Bayesian analyses such as ours.  For these reasons, the DIC was 

used in the current study to compare different models.  The definition and general idea of 

DIC is described below. 
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Model comparisons by DIC.  The DIC is given by:  

pDDpDDDIC ×+=+= 2ˆ  .       (27) 

D , suggested as a Bayesian measure of fit or adequacy, is the posterior mean of the 

deviance where deviance is defined as -2 * log (likelihood).  The likelihood is defined as 

p(y | θ), where y comprises all stochastic nodes given values (i.e. data), and θ comprises the 

stochastic parents of y – “stochastic parents” are the stochastic nodes upon which the 

distribution of y depends, when collapsing over all logical relationships.  In general, the 

value of D decreases when fit increases.  pD, suggested as a measure of model complexity, 

and is given by DDpD ˆ−=  where D̂ is a point estimate of the deviance (i.e., -2 * log 

(likelihood)) obtained by substituting in the posterior means,θ , thus 

)|(log(2ˆ θypD ×−= .   As we can see, pD is the difference between the posterior mean of 

the deviance and the deviance at the posterior means of the parameters of interest.  Meng 

and Rubin (1992) showed that such a difference is the key quantity in estimating the 

degrees of freedom of a test.  In simple models (e.g., a simple regression model), pD is the 

effective number of parameters.  This interpretation does not necessarily apply to more 

complex situations such as the analyses carried out here.  (For example, the value of pD 

will not necessarily increase as the fitting model seemingly becomes more complex, since 

the effect of priors and the configuration of the data may effectively mean that either more 

or less is being demanded from the data in the way of inference.) 

 From Equation (27) one also can see that DIC as a type of Bayesian criterion used 

to compare models combines both measure of fit ( D ) and complexity (pD).  This approach 

is different from AIC and BIC.  On the other hand, like AIC or BIC, the model with the 

smallest DIC is gauged to be the model that would best predict a replicate dataset of the 
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same structure as that currently observed.  However, it could be misleading just to report 

the model with the lowest DIC if the difference is, say, less than 5, and the models imply 

very different inferences.  In general, models with the difference within 0 to 2 deserve 

similar consideration, and models with DIC values greater by an amount of 4 to 7 have 

notably less support.  These rules of thumb, suggested by Burnham and Anderson (2002) 

and commonly applied with AIC, appear to work reasonably for DIC as well (Spiegelhalter 

et al. 2002).  As with AIC and BIC, DICs are comparable only for models with exactly the 

same observed data, but there is no requirement for them to be nested. 
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Chapter IV 

Results and Discussion  
 
 
 This chapter begins with descriptive analyses for the items, which is followed by 

the model-based analyses. 

 
Descriptive Item Analyses 
  
 Tables 1 through 4 show frequency distributions based on the original response 

categories for each item on the pre-test, post-test, and combined test for each data set, 

respectively.  Tables 5 through 8, on the other hand, show the frequency distribution based 

on the three response categories (collapsed to Newtonian, impetus theory, and null 

groupings) for each data set, respectively.  Note that for the first data set, one examinee 

took the pre-test only.  The student might have dropped out sometime during the semester 

or was absent from the class when the test was administered.  His/her responses on the 

pre-test were included in the analyses.  Therefore, there are 99 respondents in the pre-test 

while only 98 respondents in the post-test, and the total number of respondents is 197.  For 

the fourth data sets, three examinees who did not answer any of questions either on the pre- 

or post-test were excluded in the analyses. 

The Pearson correlations among items as well as between the items and the test 

score for each data set (based on the three response categories) in terms of pre-test, 

post-test, and combined data is listed in Tables 9 through 12, respectively.  While the AR 

model does not require ordered data, as is assumed by using these descriptive statistics, it is 

true that in the coded data, model 1 responses are generally more desirable than model 2 

responses, which are in turn more desirable than model 3 responses.)  These results are 



 80

followed by the polyserial correlations between the items and the test score for each data 

set (also in terms of pre-test, post-test, and combined data) as seen in Tables 13 through 16. 

 
Table 1. 
Frequency Distribution Based On the Original Five Response Categories for the 1st Data 
Set 
 

Pre-test Post-test Response 
Category 5 9 18 22 28 5 9 18 22 28 

a 7 
(7.1) 

5 
(5.1) 

14 
(14.1) 

26 
(26.3) 

3 
(3.0) 

4 
(4.1) 

11 
(11.2) 

3 
(3.1) 

19 
(19.4) 

1 
(1.0) 

b 19 
(19.2) 

23 
(23.2) 

10 
(10.1) 

34 
(34.3) 

3 
(3.0) 

51 
(52.0) 

21 
(21.4) 

55 
(56.1) 

47 
(48.0) 

3 
(3.1) 

c 25 
(25.3) 

25 
(25.3) 

27 
(27.3) 

2 
(2.0) 

6 
(6.1) 

8 
(8.2) 

20 
(20.4) 

4 
(4.1) 

5 
(5.1) 

7 
(7.1) 

d 19 
(19.2) 

7 
(7.1) 

47 
(47.5) 

30 
(30) 

51 
(51.5) 

28 
(28.6) 

10 
(10.2) 

24 
(24.5) 

24 
(24.5) 

6 
(6.1) 

e 29 
(29.3) 

39 
(39.4) 

98 
(99.0) 

3 
(3.0) 

31 
(31.3) 

7 
(7.1) 

36 
(36.7) 

12 
(12.2) 

2 
(2.0) 

80 
(81.6) 

missing 0 
(0.0) 

0 
(0.0) 

1 
(1.0) 

4 
(4.0) 

5 
(5.1) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(1.0) 

1 
(1.0) 

Total 99 99 99 99 99 98 98 98 98 98 
 

Table 1 (continued). 
Frequency Distribution Based On the Original Five Response Categories for the 1st Data 
Set 
 

Combined Response 
Category 5 9 18 22 28 

a 11 
(5.6) 

16 
(8.1) 

3 
(1.5) 

45 
(22.8) 

4 
(2.0) 

b 70 
(35.5) 

44 
(22.3) 

69 
(35.0) 

81 
(41.1) 

6 
(3.0) 

c 33 
(16.8) 

45 
(22.8) 

14 
(7.1) 

7 
(3.6) 

13 
(6.6) 

d 47 
(23.9) 

17 
(8.6) 

51 
(25.9) 

54 
(27.4) 

57 
(28.9) 

e 36 
(18.3) 

75 
(38.1) 

59 
(29.9) 

5 
(2.5) 

111 
(56.3) 

missing 0 
(0.0) 

0 
(0.0) 

1 
(0.5) 

5 
(2.5) 

6 
(3.0) 

Total 197 197 197 197 197 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
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Table 2. 
Frequency Distribution Based On the Original Response Categories for the 2nd Data Set 
 

Pre-test Post-test Response 
Category 2 5 11 12 2 5 11 12 

A 3 
(1.5) 

9 
(4.4) 

13 
(6.3) 

10 
(4.9) 

5 
(2.5) 

1 
(0.5) 

96 
(48.7) 

94 
(47.7) 

B 179 
(87.3) 

94 
(45.9) 

9 
(4.4) 

5 
(2.4) 

102 
(51.8) 

51 
(25.9) 

13 
(6.6) 

9 
(4.6) 

C 7 
(3.4) 

3 
(1.5) 

1 
(0.5) 

0 
(0.0) 

9 
(4.6) 

7 
(3.6) 

11 
(5.6) 

5 
(2.5) 

D 13 
(6.3) 

71 
(34.6) 

1 
(0.5) 

176 
(85.9) 

79 
(40.1) 

126 
(64.0) 

6 
(3.0) 

84 
(42.6) 

E 0 
(0.0) 

1 
(0.5) 

15 
(7.3) 

7 
(3.4) 

0 
(0.0) 

1 
(0.5) 

10 
(5.1) 

3 
(1.5) 

F 2 
(1.0) 

25 
(12.2) 

40 
(19.5) 

1 
(0.5) 

0 
(0.0) 

8 
(4.1) 

6 
(3.0) 

1 
(0.5) 

G 1 
(0.5) 

0 
(0.0) 

125 
(61.0) 

4 
(2.0) 

0 
(0.0) 

2 
(1.0) 

55 
(27.9) 

1 
(0.5) 

J 0 
(0.0) 

1 
(0.5) 

0 
(0.0) 

0 
(0.0) 

2 
(1.0) 

1 
(0.5) 

0 
(0.0) 

0 
(0.0) 

missing 0 
(0.0) 

1 
(0.5) 

1 
(0.5) 

2 
(1.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

Total 205 205 205 205 197 197 197 197 
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Table 2 (continued). 
Frequency Distribution Based On the Original Response Categories for the 2nd Data Set 
 

Combined Response 
Category 2 5 11 12 

A 8 
(2.0) 

10 
(2.5) 

109 
(27.1) 

104 
(25.9) 

B 281 
(69.9) 

145 
(36.1) 

22 
(5.5) 

14 
(3.5) 

C 16 
(4.0) 

10 
(2.5) 

12 
(3.0) 

5 
(1.2) 

D 92 
(22.9) 

197 
(49.0) 

7 
(1.7) 

260 
(64.7) 

E 0 
(0.0) 

2 
(0.5) 

25 
(6.2) 

10 
(2.5) 

F 2 
(0.5) 

33 
(8.2) 

46 
(11.4) 

2 
(0.5) 

G 1 
(0.2) 

2 
(0.5) 

180 
(44.8) 

5 
(1.2) 

J 2 
(0.5) 

2 
(0.5) 

0 
(0.0) 

0 
(0.0) 

missing 0 
(0.0) 

1 
(0.2) 

1 
(0.2) 

2 
(0.5) 

Total 402 402 402 402 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
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Table 3.  
Frequency Distribution Based On the Original Response Categories for the 3rd Data Seta 

 
Pre-test Post-test Response 

Category 8 9 10 13 8 9 10 13 
A 4 

(2.0) 
11 

(5.4) 
33 

(16.1) 
40 

(19.5) 
63 

(32.0) 
68 

(34.5) 
83 

(42.1) 
111 

(56.3) 
B 3 

(1.5) 
4 

(2.0) 
138 

(67.3) 
140 

(68.3) 
11 

(5.6) 
8 

(4.1) 
98 

(49.7) 
69 

(35.0) 
C 3 

(1.5) 
1 

(0.5) 
25 

(12.2) 
12 

(5.9) 
6 

(3.0) 
5 

(2.5) 
8 

(4.1) 
10 

(5.1) 
D 3 

(1.5) 
175 

(85.4) 
5 

(2.4) 
2 

(1.0) 
7 

(3.6) 
109 

(55.3) 
7 

(3.6) 
3 

(1.5) 
E 18 

(8.8) 
8 

(3.9) 
1 

(0.5) 
2 

(1.0) 
15 

(7.6) 
3 

(1.5) 
1 

(0.5) 
1 

(0.5) 
F 60 

(29.3) 
3 

(1.5) 
0 

(0.0) 
5 

(2.4) 
19 

(9.6) 
1 

(0.5) 
0 

(0.0) 
2 

(1.0) 
G 111 

(54.1) 
0 

(0.0) 
2 

(1.0) 
0 

(0.0) 
76 

(38.6) 
3 

(1.5) 
0 

(0.0) 
0 

(0.0) 
J 1 

(0.5) 
3 

(1.5) 
0 

(0.0) 
1 

(0.5) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
1 

(0.5) 
missing 2 

(1.0) 
0 

(0.0) 
1 

(0.5) 
3 

(1.5) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
Total 205 205 205 205 197 197 197 197 
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Table 3 (continued). 
Frequency Distribution Based On the Original Response Categories for the 3rd Data Seta 
 

Combined Response 
Category 8 9 10 13 

A 67 
(16.7) 

79 
(19.7) 

116 
(28.9) 

151 
(37.6) 

B 14 
(3.5) 

12 
(3.0) 

236 
(58.7) 

209 
(52.0) 

C 9 
(2.2) 

6 
(1.5) 

33 
(8.2) 

22 
(5.5) 

D 10 
(2.5) 

284 
(70.6) 

12 
(3.0) 

5 
(1.2) 

E 33 
(8.2) 

11 
(2.7) 

2 
(0.5) 

3 
(0.7) 

F 79 
(19.7) 

4 
(1.0) 

0 
(0.0) 

7 
(1.7) 

G 187 
(46.5) 

3 
(0.7) 

2 
(0.5) 

0 
(0.0) 

J 1 
(0.5) 

3 
(0.7) 

0 
(0.0) 

2 
(0.5) 

missing 2 
(1.0) 

0 
(0.0) 

0 
(0.0) 

3 
(0.7) 

Total 402 402 402 402 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
aQuestions 8, 9, 10, and 13 only – the frequency distribution for the other four questions (2, 
5, 11, and 12) can be found in Table 2. 
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Table 4. 
Frequency Distribution Based On the Original Response Categories for the 4th Data Set 
 

Pre-test Post-test Response 
Category 22 23 24 25 26 22 23 24 25 26 

A 55 
(27.2) 

5 
(2.5) 

23 
(11.3) 

8 
(3.9) 

117 
(57.6) 

140 
(71.4) 

12 
(6.1) 

2 
(1.0) 

23 
(11.7) 

35 
(17.9) 

B 0 
(0.0) 

27 
(13.3) 

94 
(46.3) 

25 
(12.3) 

10 
(4.9) 

6 
(3.1) 

114 
(58.2) 

34 
(17.3) 

105 
(53.6) 

4 
(2.0) 

C 1 
(0.5) 

2 
(1.0) 

47 
(23.2) 

2 
(1.0) 

50 
(24.6) 

4 
(2.0) 

4 
(2.0) 

144 
(73.5) 

8 
(4.1) 

149 
(76.0) 

D 1 
(0.5) 

15 
(7.4) 

2 
(1.0) 

4 
(2.0) 

0 
(0.0) 

0 
(0.0) 

3 
(1.5) 

2 
(1.0) 

0 
(0.0) 

1 
(0.5) 

E 139 
(68.5) 

3  
(1.5) 

2 
(1.0) 

25 
(12.3) 

13 
(6.4) 

46 
(23.5) 

0 
(0.0) 

0 
(0.0) 

7 
(3.6) 

4 
(2.0) 

F 1 
(0.5) 

24 
(11.8) 

14 
(6.9) 

95 
(46.8) 

0 
(0.0) 

0 
(0.0) 

7 
(3.6) 

7 
(3.6) 

41 
(20.9) 

0 
(0.0) 

G 4 
(2.0) 

113 
(55.7) 

8  
(3.9) 

18 
(8.9) 

6 
(3.0) 

0 
(0.0) 

45 
(23.0) 

4 
(2.0) 

4 
(2.0) 

2 
(1.0) 

J 2 
(1.0) 

13 
(6.4) 

11 
(5.4) 

23 
(11.3) 

6 
(3.0) 

0 
(0.0) 

10 
(5.1) 

2 
(1.0) 

7 
(3.6) 

0 
(0.0) 

missing 0 
(0.0) 

1 
(0.5) 

2 
(1.0) 

3 
(1.5) 

1 
(0.5) 

0 
(0.0) 

1 
(0.5) 

1 
(0.5) 

1 
(0.5) 

1 
(0.5) 

Total 203 203 203 203 203 196 196 196 196 196 
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Table 4 (continued). 
Frequency Distribution Based On the Original Response Categories for the 4th Data Set 
 

Combined Response 
Category 22 23 24 25 26 

A 
 

195 
(48.9) 

17 
(4.3) 

25 
(6.3) 

31 
(7.8) 

152 
(38.1) 

B 
 

6 
(1.5) 

141 
(35.3) 

128 
(32.1) 

130 
(32.6) 

14 
(3.5) 

C 
 

5 
(1.3) 

6 
(1.5) 

191 
(47.9) 

10 
(2.5) 

199 
(49.9) 

D 
 

1 
(0.3) 

18 
(4.5) 

4 
(1.0) 

4 
(1.0) 

1 
(0.3) 

E 
 

185 
(46.4) 

3 
(0.8) 

2 
(0.5) 

32 
(8.0) 

17 
(4.3) 

F 1 
(0.3) 

31 
(7.8) 

21 
(5.3) 

136 
(34.1) 

0 
(0.0) 

G 4 
(1.0) 

158 
(39.6) 

12 
(3.0) 

22 
(5.5) 

8 
(2.0) 

J 2 
(0.5) 

23 
(5.8) 

13 
(3.3) 

30 
(7.5) 

6 
(1.5) 

missing 0 
(0.0) 

2 
(0.5) 

3 
(0.8) 

4 
(1.0) 

2 
(0.5) 

Total 399 399 399 399 399 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
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Table 5. 
Frequency Distribution Based On the Three Response Categories for the 1st Data Set 
 

Pre-test Post-test Response 
Category 5 9 18 22 28 5 9 18 22 28 

1 19 
(19.2) 

12 
(12.1) 

14 
(14.1) 

56 
(56.6) 

6 
(6.1) 

28 
(28.6) 

21 
(21.4) 

55 
(56.1) 

43 
(43.9) 

7 
(7.1) 

2 51 
(51.5) 

48 
(48.5) 

47 
(47.5) 

39 
(39.4) 

85 
(85.9) 

63 
(64.3) 

41 
(41.8) 

15 
(15.3) 

54 
(55.1) 

87 
(88.8) 

3 29 
(29.3) 

39 
(39.4) 

37 
(37.4) 

N/Aa 3 
(3.0) 

7 
(7.1) 

36 
(36.7) 

28 
(28.6) 

N/Aa 3 
(3.1) 

missing 0 
(0.0) 

0 
(0.0) 

1 
(1.0) 

4 
(4.0) 

5 
(5.1) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

1 
(1.0) 

1 
(1.0) 

Total 99 99 99 99 99 98 98 98 98 98 
 

Table 5 (continued). 
Frequency Distribution Based On the Three Response Categories for the 1st Data Set 
 

Combined Response 
Category 5 9 18 22 28 

1 47 
(23.9) 

33 
(16.8) 

69 
(35.0) 

99 
(50.3) 

13 
(6.6) 

2 114 
(57.9) 

89 
(45.2) 

62 
(31.5) 

93 
(47.2) 

172 
(87.3) 

3 36 
(18.3) 

75 
(38.1) 

65 
(33.0) 

N/Aa 6 
(3.0) 

missing 0 
(0.0) 

0 
(0.0) 

1 
(0.5) 

5 
(2.5) 

6 
(3.0) 

Total 197 197 197 197 197 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
aThere is no response category 3 for item 22 after recoding the data based on the 
three-response coding scheme.  
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Table 6. 
Frequency Distribution Based On the Three Response Categories for the 2nd Data Set 
 

Pre-test Post-test Response 
Category 2 5 11 12 2 5 11 12 

1 13 
(6.3) 

71 
(34.6) 

13 
(6.3) 

10 
(4.9) 

79 
(40.1) 

126 
(64.0) 

96 
(48.7) 

94 
(47.7) 

2 179 
(87.3) 

94 
(45.9) 

125 
(61.0) 

176 
(85.9) 

102 
(51.8) 

51 
(25.9) 

55 
(27.9) 

84 
(42.6) 

3 13 
(6.3) 

39 
(19.0) 

66 
(32.2) 

17 
(8.3) 

16 
(8.1) 

20 
(10.2) 

46 
(23.4) 

19 
(9.6) 

missing 0 
(0.0) 

1 
(0.5) 

1 
(0.5) 

2 
(1.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

0 
(0.0) 

Total 205 205 205 205 197 197 197 197 
 
 
Table 6 (continued). 
Frequency Distribution Based On the Three Response Categories for the 2nd Data Set 
 

Combined Response 
Category 2 5 11 12 

1 92 
(22.9) 

197 
(49.0) 

109 
(27.1) 

104 
(25.9) 

2 281 
(69.9) 

145 
(36.1) 

180 
(44.8) 

260 
(64.7) 

3 29 
(7.2) 

59 
(14.7) 

112 
(27.9) 

36 
(9.0) 

missing 0 
(0.0) 

1 
(0.2) 

1 
(0.2) 

2 
(0.5) 

Total 402 402 402 402 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
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Table 7.  
Frequency Distribution Based On the Three Response Categories for the 3rd Data Seta 

 
Pre-test Post-test Response 

Category 8 9 10 13 8 9 10 13 
1 4 

(2.0) 
11 

(5.4) 
33 

(16.1) 
40 

(19.5) 
63 

(32.0) 
68 

(34.5) 
83 

(42.1) 
111 

(56.3) 
2 111 

(54.1) 
175 

(85.4) 
138 

(67.3) 
140 

(68.3) 
76 

(38.6) 
109 

(55.3) 
98 

(49.7) 
69 

(35.0) 
3 88 

(42.9) 
19 

(9.3) 
33 

(16.1) 
22 

(10.7) 
58 

(29.4) 
20 

(10.2) 
16 

(8.1) 
17 

(8.6) 
missing 2 

(1.0) 
0 

(0.0) 
1 

(0.5) 
3 

(1.5) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
0 

(0.0) 
Total 205 205 205 205 197 197 197 197 

 

 
Table 7 (continued). 
Frequency Distribution Based On the Three Response Categories for the 3rd Data Seta 
 

Combined Response 
Category 8 9 10 13 

1 67 
(16.7) 

79 
(19.7) 

116 
(28.9) 

151 
(37.6) 

2 187 
(46.5) 

284 
(70.6) 

236 
(58.7) 

209 
(52.0) 

3 146 
(36.3) 

39 
(9.7) 

49 
(12.2) 

39 
(9.7) 

missing 2 
(1.0) 

0 
(0.0) 

0 
(0.0) 

3 
(0.7) 

Total 402 402 402 402 
 
Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
aQuestions 8, 9, 10, and 13 only – the frequency distribution for the other four questions (2, 
5, 11, and 12) can be found in Table 6. 
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Table 8. 
Frequency Distribution Based On the Three Response Categories for the 4th Data Set 
 

Pre-test Post-test Response 
Category 22 23 24 25 26 22 23 24 25 26 

1 55 
(27.1) 

32 
(15.8) 

47 
(23.2) 

33 
(16.3) 

50 
(24.6) 

146 
(74.5) 

126 
(64.3) 

144 
(73.5) 

128 
(65.3) 

149 
(76.0) 

2 140 
(69.0) 

137 
(67.5) 

117 
(57.6) 

120 
(59.1) 

127 
(62.6) 

46 
(23.5) 

52 
(26.5) 

36 
(18.4) 

48 
(24.5) 

39 
(19.9) 

3 8 
(3.9) 

33 
(16.3) 

37 
(18.2) 

47 
(23.2) 

25 
(12.3) 

4 
(2.0) 

17 
(8.7) 

15 
(7.7) 

19 
(9.7) 

7 
(3.6) 

missing 0 
(0.0) 

1 
(0.5) 

2 
(1.0) 

3 
(1.5) 

1 
(0.5) 

0 
(0.0) 

1 
(0.5) 

1 
(0.5) 

1 
(0.5) 

1 
(0.5) 

Total 203 203 203 203 203 196 196 196 196 196 
 
 
Table 8 (continued). 
Frequency Distribution Based On the Three Response Categories for the 4th Data Set 
 

Combined Response 
Category 22 23 24 25 26 

1 201 
(50.4) 

158 
(39.6) 

191 
(47.9) 

161 
(40.4) 

199 
(49.9) 

2 186 
(46.6) 

189 
(47.4) 

153 
(38.3) 

168 
(42.1) 

166 
(41.6) 

3 12 
(3.0) 

50 
(12.5) 

52 
(13.0) 

66 
(16.5) 

32 
(8.0) 

missing 0 
(0.0) 

2 
(0.5) 

3 
(0.8) 

4 
(1.0) 

2 
(0.5) 

Total 399 399 399 399 399 
 

Note. The number in the parenthesis represents the percentage associated with that 
frequency count. 
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Table 9. 
The Pearson Correlations for the 1st Data Set 
 

  5 9 18 22 28 
Pre-test 

5 1.000     
9 -.016 1.000    

18 -.051 -.030 1.000   
22 -.139 -.034 .012 1.000  
28 -.032 .043 .032 .156 1.000 
test .462 .494 .511 .323 .327 

 
Post-test 

5 1.000     
9 -.068 1.000    

18 -.246 -.013 1.000   
22 .174 .089 -.130 1.000  
28 .183 .029 -.039 .016 1.000 
test .355 .558 .491 .405 .309 

 
Combined 

5 1.000     
9 -.018 1.000    

18 -.059 .007 1.000   
22 -.034 .017 -.108 1.000  
28 .067 .036 -.004 .080 1.000 
test .454 .528 .539 .300 .308 
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Table 10. 
The Pearson Correlations for the 2nd Data Set 
 

 2 5 11 12 
Pre-test  

2 1.000    
5 .191 1.000   
11 .219 .133 1.000  
12 .227 .133 .387 1.000 
test .546 .703 .677 .581 

 
Post-test 

2 1.000    
5 .320 1.000   
11 .193 .169 1.000  
12 .252 .227 .536 1.000 
test .614 .614 .742 .743 

 
Combined 

2 1.000    
5 .317 1.000   
11 .284 .228 1.000  
12 .329 .262 .555 1.000 
test .640 .669 .759 .742 
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Table 11. 
The Pearson Correlations for the 3rd Data Set 
 

 2 5 11 12 8 9 10 13 
Pre-test 

2 1.000        
5 .191 1.000       
11 .219 .133 1.000      
12 .227 .133 .387 1.000     
8 .130 .148 .475 .207 1.000    
9 .216 .058 .225 .416 .259 1.000   
10 .217 .083 .158 .121 .130 .068 1.000  
13 .151 .116 .266 .270 .128 .111 .274 1.000 
test .488 .516 .659 .560 .577 .469 .491 .558 

 
Post-test 

2 1.000        
5 .320 1.000       
11 .193 .169 1.000      
12 .252 .227 .536 1.000     
8 .120 .080 .518 .417 1.000    
9 .128 .075 .300 .607 .581 1.000   
10 .180 .072 .463 .343 .639 .494 1.000  
13 .227 .249 .541 .456 .455 .315 .528 1.000 
test .447 .414 .740 .735 .749 .665 .713 .726 

 
Combined 

2 1.000        
5 .317 1.000       
11 .284 .228 1.000      
12 .329 .262 .555 1.000     
8 .206 .181 .557 .430 1.000    
9 .220 .131 .342 .597 .526 1.000   
10 .256 .144 .401 .332 .483 .380 1.000  
13 .274 .251 .496 .456 .397 .303 .466 1.000 
test .527 .502 .754 .738 .732 .644 .657 .699 
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Table 12. 
The Pearson Correlations for the 4th Data Set 
 

  22 23 24 25 26 
Pre-test 

22 1.000     
23 .545 1.000    
24 .348 .410 1.000   
25 .523 .465 .348 1.000  
26 .482 .354 .642 .430 1.000 
test .742 .735 .748 .742 .781 

 
Post-test 

22 1.000     
23 .608 1.000    
24 .301 .377 1.000   
25 .584 .571 .388 1.000  
26 .268 .372 .644 .366 1.000 
test .725 .797 .720 .789 .705 

 
Combined 

22 1.000     
23 .655 1.000    
24 .455 .506 1.000   
25 .641 .614 .489 1.000  
26 .513 .488 .716 .523 1.000 
test .794 .815 .795 .816 .809 

 

Table 13. 
The Polyserial Correlations between the Items and the Test for the 1st Data Set 
 

5 9 18 22 28 
Pre-test 

.515 .559 .575 .409 .509 
     

Post-test 
.419 .624 .586 .510 .473 

     
Combined 

.510 .593 .607 .376 .476 
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Table 14. 
The Polyserial Correlations between the Items and the Test for the 2nd Data Set 
 

2 5 11 12 
Pres-test 

.777 .785 .791 .831 
    

Post-test 
.704 .748 .852 .855 

    
Combined 

.764 .767 .843 .864 
 

Table 15. 
The Polyserial Correlations between the Items and the Test for the 3rd Data Set 
 

2 5 11 12 8 9 10 13 
Pre-test 

.693 .576 .769 .797 .692 .643 .572 .656 
        

Post-test 
.513 .505 .850 .846 .835 .758 .819 .855 

        
Combined 

.627 .574 .838 .859 .820 .762 .748 .797 
 

Table 16. 
The Polyserial Correlations between the Items and the Test for the 4th Data Set 
 

22 23 24 25 26 
Pre-test 

.915 .857 .843 .839 .897 
     

Post-test 
.960 .977 .945 .972 .945 

     
Combined 

.948 .923 .910 .920 .939 
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BUGS Analyses 

The model-based analysis procedure described in the previous chapter was 

followed to analyze each data set under three models, i.e., the homogeneous, partially 

homogeneous, and heterogeneous AR models.  The DIC was used to choose a model that 

best fits the data, so our discussion below is based on the preferred model given that data 

set.  Since we analyzed four different data sets, namely, the FCI data with 5 items, the 

Force-Motion data with 4 items, the Force-Motion data with 8 items (4 of them are the 

same as the second data set), and the Acceleration data with 5 items, we present the results 

in following manner: 

First, since these data sets are repeatedly mentioned here, it is convenient to name 

each data set FCI5, FM4, FM8, and Acc5, respectively.  Second, each of them is discussed 

separately except for FM4 and FM8.  Because these two analyses concern an overlapping 

set of items, it is of interest to compare the item parameter estimates between these two for 

common items.  Next, we interpret both item and person parameters in detail using FCI5 

only since the interpretation would be analogous for the remaining data sets.  Finally, for 

each data set, we focus on item level analysis (e.g., patterns of changes that occurred from 

pre to post and what kinds of learning might have taken place), so each item is discussed 

thoroughly.  In terms of persons, however, the tests are so short it is unproductive to 

discuss each examinee’s performance or change over time.  Instead, we examine the 

overall students’ propensity level distributions on both pre- and post-test, as it relates to the 

tendencies of change for performance on items.   
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FCI5.  The DIC values for the heterogeneous, partially homogeneous, and 

homogeneous models for the FCI5 data set are 1730.170, 1785.390, and 1780.340 

respectively.  Thus the heterogeneous model is preferred, indicating that both the 

conditional probabilities for items and the population distributions change over time.  To 

further examine the nature of the performance patterns, we will discuss the item parameter 

estimates that are summarized in Table 17.  

We first demonstrate how to interpret the item parameter under the AR model using 

the items on the pre-test; that is, b[1,j,k] (from now on, we refer as items 1 through 5 the 

questions numbered 5, 9, 18, 22, and 28, respectively, in the full FCI assessment).  From 

Table 17, we can see that items 1, 2, and 3 on the pre-test have a greater tendency for 

eliciting responses using model 3, the null model, since b[1,j,3] is the greatest among three 

vector elements (0.2798, 0.7817, and 0.6731 for b[1,1,3], b[1,2,3], and b[1,3,3], 

respectively), indicating that Aristotelian responses, and presumably a nonscientific way of 

thinking, are more common on these items, given all other things being equal.  Item 4 tends 

to evoke responses based on model 1, the expert model, using the Newtonian approach, as 

indicated by the fact that b[1,4,1] is greater than other two vector elements (2.1230 vs. 

1.0150 and -3.1370).  Recall that having modeled the data as if response category 3 exists 

for item 4 but was not chosen, we can see that b[1,4,3] is extremely low (-3.1370) as would 

be expected.  Item 5, on the other hand, has a greater tendency to evoke responses using 

model 2, an incorrect student model (1.9310 vs. -0.4903 and -1.4410), indicating that 

“impetus theory” belief is more common on this item, again given all other things being 

equal.  

 



 98

 

Table 17. 
The Item Parameter Estimates for the FCI Data under the Heterogeneous AR Model 
 

Item Parameter Mean SD MC error 
          (Pre-test) 
 b[1,1,1]a -0.4088  0.7457  0.01978 
 b[1,1,2]   0.1290  0.7439  0.02174  
 b[1,1,3]   0.2798     N/Ab      N/A 
 b[1,2,1]  -0.8745  0.7524  0.01977 
 b[1,2,2]   0.0928  0.7445  0.02173 
 b[1,2,3]   0.7817     N/A      N/A 
 b[1,3,1]  -0.7284  0.7496  0.01976 
 b[1,3,2]   0.0553  0.7448  0.02175 
 b[1,3,3]   0.6731     N/A      N/A 
 b[1,4,1]   2.1230  0.8096  0.01966  
 b[1,4,2]   1.0150  0.8144  0.02152 
 b[1,4,3]  -3.1370     N/A      N/A 
 b[1,5,1]  -0.4903  0.7863  0.01950 
 b[1,5,2]   1.9310  0.7670  0.02155 
 b[1,5,3]  -1.4410     N/A      N/A 
------------------------------------------------------------------------------------------ 
          (Post-test) 
 b[2,1,1]   0.1814  0.7706  0.02142 
 b[2,1,2]   0.8759  0.7591  0.02093 
 b[2,1,3]  -1.0570     N/A      N/A 
 b[2,2,1]  -0.6220  0.7672  0.02148  
 b[2,2,2]  -0.1211  0.7540  0.02099 
 b[2,2,3]   0.7431     N/A      N/A 
 b[2,3,1]   0.6328  0.7625  0.02150  
 b[2,3,2]  -1.0900  0.7629  0.02093  
 b[2,3,3]   0.4573     N/A      N/A  
 b[2,4,1]   1.5500  0.8373  0.02132  
 b[2,4,2]   1.5450  0.8277  0.02077  
 b[2,4,3]  -3.0950     N/A      N/A  
 b[2,5,1]  -0.5777  0.8013  0.02114 
 b[2,5,2]   1.9620  0.7749  0.02079  
 b[2,5,3]  -1.3840     N/A      N/A       
________________________________________________________________________  
Note. The number of MC draws (i.e., the sample size) that were used to compute these 
statistics is 210,000. 
ab[t,j,k] represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) for the item j with the response category k. 
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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 Comparisons within and between items are possible based on those parameter 

estimates (although we do not intend to do it here in detail).  In terms of the significance of 

differences between parameter estimates within items, one can compare the posterior 

means using an independent or dependent t-test (which test is appropriate depends on the 

correlation of the estimates of selected parameters, and the correlation can be obtained 

through WinBUGS under inference menu).  The (posterior) standard deviations of the 

parameter estimates (labeled SD as listed in the table) can be used much as standard errors 

of estimates that are (often improperly) used in frequentist statistical inference.  However, 

given the fact that FCI5 only contains 197 students’ responses on 5 items, the  posterior 

standard deviations for the individual parameters in these analyses are relatively large and 

comparisons may not be reliable (this is also true for the remaining data sets).  Therefore, 

the word “tendency” is used here (also for other data sets as well) mainly to describe the 

patterns shown from the parameter estimates; statistically significant differences among 

population values are not claimed. If one desired more accurate comparisons, larger 

samples of students (along with preferably longer tests) are required to make strong 

inference about item parameters.  On the other hand, these parameter estimates are indeed 

descriptive of patterns in the sample, which is in fact nearly equivalent to the population of 

interest in the classes the FCI5 is from.  On the other hand, these data were sufficient to test 

for and find differences among student models as whole, as we compared three nested 

models under the AR model. 

Since the AR model belongs to the Rasch family, one would be able to compare 

two items in such a way that only the parameters associated with those two items are 

involved in the comparison (this is called “specific objectivity”, a unique feature of Rasch 



 100

models).  In the context of the AR model, this means that we can compare two items for a 

given dimension (Newtonian strategy, “impetus theory” belief, or Aristotelian thinking).  

One way of doing it is to use the log of the odds ratio (or logit).  For example, we can 

compare items 1 and 2 (use Table 17) in terms of the Newtonian dimension.  The 

difference between b[1,1,1] and b[1,2,1] is 0.4657 (i.e., b[1,1,1] minus b[1,2,1]).  This, in 

fact, indicates the difference is 0.4657 in a logit metric (i.e., 0.4657 logits).  We then can 

transform this logit to odds, i.e., log odds = 0.4657, so odds = exp(0.4657) = 1.6.  This 

means that item 1 is more likely than item 2 to provoke a Newtonian response with the 

odds of 1.6:1.  Similar comparisons can be made across persons, to compare their relative 

propensities to give responses from the various classes.                  

By looking at the item text, we may gain further insight into why each item has a 

different tendency to provoke responses based on different physics models.  This is 

discussed below. 

 Item 1 asks what kind of force(s) is (are) acting on the ball when it leaves a boy’s 

hand (a boy throws it straight up) and later returns to the ground.  One of choices states that 

“the ball falls back down to the earth simply because that is its natural action.”  This is 

based on the Aristotelian way of thinking, and would be a choice for naïve students without 

knowledge of Newton’s laws since it is close to everyday thinking.  Similarly, item 2 asks 

the same kind of question as item 1 and provides a choice also based on the naïve thinking: 

“gravity does not exert a force on the puck; it falls because of intrinsic tendency of the 

object to fall to its natural place.” 
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The scenario for item 3 is a little more complicated than the first two items since it 

involves an elevator being lifted up an elevator shaft by a steel cable and asks how the 

upward force by the cable and the downward force due to gravity act on the elevator when 

it is moving up the shaft at a constant velocity.  The keyword here is “constant” that is 

being highlighted in the question, implying that those two forces are equal.  If students use 

a Newtonian approach, which is unlikely during the pre-test, they would choose the correct 

answer.  Even for those students who possess some knowledge about Newtonian 

mechanics, they would select choices (if not the correct one) stating that the upward force 

is greater than the downward force for the elevator is moving up but without considering 

whether its velocity is constant.  However, for students who answer without knowing 

anything about Newton’s laws for force-motion relationships or simply guess the answer, 

the choices corresponding to model 3 would be selected – “it goes up because the cable is 

being shortened, not because of the force being exerted on the elevator by the cable” (naïve 

thinking) or “the upward force on the elevator by the cable is less than the downward force 

of gravity” (the unsystematic approach), especially on the pre-test.  Therefore, on the 

pre-test item 3 has a greater tendency to provoke thinking that leads to a response classified 

as model 3.  

Item 4 seems to be an easy one since the question simply asks what kinds of 

force(s) – the force of gravity, the force of the “hit”, or the force of air resistance – is (are) 

acting on the golf ball during its entire flight after it was hit.  Unlike the first two items, it 

does not ask the sign or magnitude of the force(s) acting on the ball; that is, students do not 

need to justify how the forces affect the ball’s movement.  In this sense, item 4 is much 

simpler than the first two questions.  Without knowing much about force-motion relation 
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or simply using common sense, students would be more likely to select a correct choice – 

the one stating the force of gravity and the one consisting of both the force of gravity and 

force of air resistance.  This may be why item 4 tends to provoke a response consistent with 

the correct Newtonian model on the pre-test data.  Since other choices also include the 

force of “hit”, students who select those choices would be thought of as using a model 2 

approach, an incorrect model, for the force of “hit” no longer acts on the ball after it was 

hit.  Note that there are no choices provided based on naïve thinking as for the first two 

items – i.e., no responses that would be coded as using model 3. 

For item 5, the situation is similar to item 3, but it involves friction forces.  A large 

box is being pushed across the floor at a constant speed of 4.0 m/s, and the question asks 

how the forces are acting on the box.  Again, the keyword here is “constant” as for item 3. 

The item would be answered correctly if a student were using a Newtonian way of 

thinking.  However, some of the choices accompanying this item make it harder than it 

would be to respond in this way.  For example, the first choice states that “If the force 

applied to the box is doubled, the constant speed of the box will increase to 8.0 m/s.”   This 

statement is not true even without considering the frictional forces since velocity is the 

function of time (i.e., the acceleration is constant but the speed of the box is not constant).  

One other hand, the frictional forces do exist in most real-world situations, and the net 

force should be determined before we can figure out the speed of the box.  Students could 

pick this choice mainly because they thought the double force will result in a constant 

acceleration (without considering the frictional forces), which in turns yields a constant 

double speed (without fully understanding the relationship between velocity and 

acceleration).  Another plausible choice is the last one, stating that “There is a force being 
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applied to the box to make it move but the external forces such as friction are not real forces 

they just resist motion.”  This statement looks correct, but friction is real even when the box 

is at motion.  The reason the box being pushed is moving at a constant speed (implying the 

acceleration is zero) is that the force applied to the box equals the frictional force (so the 

net force is zero).  Students who select this choice would be considered as using model 2 

approach, an incorrect understanding about forces or force-motion relationships.  Thus, 

these two choices would make item 5 have a greater tendency to evoke a response using an 

incorrect student model.   

In terms of person parameter estimates, we use the first five examinees’ parameter 

estimates from the pre-test, labeled theta[1,i,k] (see Table 18), to demonstrate how to 

interpret the parameter estimates under the AR model.  Recall that each student’s 

propensity parameters are constrained to sum to zero, so the parameter estimates have an 

ipsative quality: A student has propensities for each class of response, but since some 

response must be made, the comparison is among how likely they are within the examinee 

(again other things being equal).  As seen in Table 18, student 1 has a greater propensity to 

use the model 3, given all other things being equal, for problem-solving since the 

theta[1,1,3] (0.2869) is greater than theta[1,1,1] (-0.3883) and theta[1,1,2] (0.1014).  

Student 2 is inclined to use both models 1 and 3 since theta[1,2,1] (0.1507) and theta[1,2,3] 

(0.2023) are greater than theta[1,2,2] (-0.3529) and they are slightly different, indicating 

that he/she inconsistently uses different models for problem-solving.  Depending on 

features of items, such a student provides some Newtonian responses, some 

“impetus-theory” responses, and some nonscientific responses, with propensities 

suggested by the θ estimates.  Similarly, students 3 and 5 are also in a mixed model state 
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for they tend to use more than one model to respond to physics questions.  The first of these 

two students has a greater propensity to use either model 2 or 3, and the latter has a greater 

propensity to use either model 1 or 2.  Student 4, on the other hand, is closer to being in a 

“pure” model state, as was the case  for student 1; student 4 has a much greater propensity 

to use model 1 (theta[1,4,1] is much greater than both theta[1,4,2] and theta[1,4,3]), 

indicating that he/she is inclined to use Newtonian approach for solving physics tasks like 

those in this set of FCI items.   

After instruction, students’ propensity to use the various models may change.  For 

example, on the post-test student 1 (as labeled theta[2,100,k] in the table) now has a greater 

propensity to use model 2 (on the pre-test he/she tends to use model 3), indicating that 

he/she may have gained some knowledge about force-motion relation (but not fully 

reached the point of using it consistently).  Such individual changes in turn reflect on the 

item’s tendency to evoke a certain model on the post-test.  This is discussed below.   

 
Table 18. 
The First 5 Examinees’ Parameter Estimates for the FCI Data under the Heterogeneous AR 
Model 
 

Person Parameter Mean SD MC error 
             (Pre-test) 
 theta[1,1,1]a        -0.3883      1.0160           0.02167  
 theta[1,1,2]         0.1014      0.9380           0.02269  
 theta[1,1,3]         0.2869              N/Ab      N/A 
 theta[1,2,1]         0.1507      0.9821           0.02166  
 theta[1,2,2]        -0.3529      0.9541           0.02262  
 theta[1,2,3]         0.2023        N/A      N/A 
 theta[1,3,1]        -1.0100      1.0540           0.02166  
 theta[1,3,2]         0.5528      0.9348  0.02266  
 theta[1,3,3]         0.4572        N/A      N/A  
 theta[1,4,1]         1.1480      1.0070  0.02160  
 theta[1,4,2]         0.5642      0.9874  0.02263  
 theta[1,4,3]        -1.7120        N/A      N/A  

theta[1,5,1]         0.2422      1.0330  0.02165  
 theta[1,5,2]         0.2905      0.9771  0.02265  
 theta[1,5,3]        -0.5327        N/A      N/A 
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Table 18 (continued). 
The First 5 Examinee’s Parameter Estimates for the FCI Data under the Heterogeneous AR 
Model 
 

Person Parameter Mean SD MC error 
             (Post-test) 
 theta[2,1,1]         0.7119      1.0120  0.02154  
 theta[2,1,2]         0.9340      1.0080  0.02077  
 theta[2,1,3]        -1.6460         N/A      N/A  
 theta[2,2,1]         0.7068      1.0170  0.02165  
 theta[2,2,2]         0.9316      1.0090  0.02089  
 theta[2,2,3]        -1.6380         N/A      N/A 
 theta[2,3,1]         0.2805      0.9605  0.02170  
 theta[2,3,2]         0.0821      0.9611  0.02068  
 theta[2,3,3]        -0.3626         N/A      N/A 

theta[2,4,1]         1.0900      1.0060  0.02171  
 theta[2,4,2]         0.5356      1.0110  0.02076 
 theta[2,4,3]        -1.6250         N/A      N/A 
 theta[2,5,1]         0.7092      1.0130  0.02162  
 theta[2,5,2]         0.9267      1.0070  0.02082  
 theta[2,5,3]        -1.6360         N/A      N/A 
________________________________________________________________________ 
Note. The number of MC draws used to compute these statistics is 210,000. 
atheta[t,i,k] represents the parameter estimate at the time point t (t = 1 for the pre-test while 
t =2 for the post-test) for the person i with the response category k. 
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available.  
 
 

Table 19 summarizes the average parameter estimates over persons and items for 

the pre- and post-test.  We can see that on average examinees tend to use model 2 on the 

pre-test (labeled as mu12).  After instruction, they still have a greater propensity to use 

model 2 (labels as mu22).  However, their tendency to use model 1 has been increased 

(-0.0947 on the pre vs. 0.2144 on the post), while the tendency to use model 3 has been 

decreased (-0.4938 on the pre vs. -0.7124 on the post).  The average tendency over items to 

elicit certain models (labeled as mubtk) also shows the similar result.  This indicates that 

even though on average students tend not to use Newtonian approach for problem-solving 

after instruction, some improvement has occurred – students are in a transition toward 

understanding Newtonian mechanics.  On the other hand, this also implies that students 
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have difficulties in understanding some concepts.  Just which ones may be examined by 

looking at the change from individual items.  

To conveniently study the change for the item’s tendency to provoke specific 

responses based on different student models, we represent Table 17 in terms of what model 

is likely to be elicited given the features of the item, as seen in Table 20.  

 
Table 19. 
The Average Parameter Estimates over Persons and Items before and after Instruction for 
the FCI Data  
 

Parameters Mean SD MC error 
          (Person) 
 mu11a   -0.0947   0.7611 0.02145 
 mu12                0.5885   0.7467 0.02243 

mu13               -0.4938     N/Ab                  N/A 
------------------------------------------------------------------------------------------  

mu21                0.2144   0.7483 0.02145 
 mu22                0.4980   0.7371 0.02055 

mu23               -0.7124     N/A                   N/A 
------------------------------------------------------------------------------------------ 
            (Item) 

mub11a               -0.0609   0.7549 0.01795 
 mub12                0.5618   0.7452 0.01878 

mub13               -0.5009     N/A                   N/A 
------------------------------------------------------------------------------------------ 

mub21                0.2023   0.7465 0.01797  
 mub22                0.5563   0.7395 0.01727 

mub23               -0.7586     N/A                   N/A 
________________________________________________________________________ 
Note. The number of MC draws used to compute these statistics is 210,000. 
amutk represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) over persons with response category k.   Similarly, mubtk represents the 
parameter estimate at the time point t (t = 1 for the pre-test while t =2 for the post-test) over 
items with response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available.  
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Table 20. 
The Model Elicited Given the Features of the Item before and after Instruction for the FCI 
Data 
 

 1 (5)a 2 (9) 3(18) 4(22) 5(28) 
Before model 3 model 3 Model 3 model 1 model 2 
After model 2 model 3 Model 1 model 1 or 2 model 2 

 
aThe number in the parenthesis refers to the original item number. 
 

From Table 20, we can see that after instruction the modal tendency to evoke the 

response based on a certain model has changed for 3 items (out of 5 items), namely items 1, 

3, and 4.  Item 1 has a greater tendency to evoke a response based on model 2 on the 

post-test (vs. model 3 on the pre-test).  Item 3 tends to provoke a response based on model 

1 on the post-test (vs. model 3 on the pre-test).  Item 4, interestingly, elicits a response 

based on models 1 or 2 equally well on the post-test (vs. model 1 on the pre-test).  There is 

no appreciable change across occasions for items 2 and 5.   

First of all, this inconsistent change from item to item implies that although 

students’ understanding about force (or force-motion relation) has been improved as 

discussed earlier, it needs not occur for everyone and needs not be constant across items.  

Even for items measuring the same concept from an expert’s point of view, the students do 

not perform consistently.  For example, regarding Newton’s first law – an object can move 

with or without force – as represented by items 1, 2, and 4, students’ responses on the 

post-test are not consistent, as indicated by different modal models elicited by these items.    

Second, the results highlight how some concepts measured by these items are still 

difficult for students to comprehend after instruction.  For example, Newton’s first law as 

indicated above is one of them.  Students still tend to believe that there is a force acting on 

the object to keep it moving as shown by item 1 (it tends to evoke a response based on 
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model 2) and even item 4 (it has a greater tendency to provoke a response based on either 

model 1 or 2).  Notice that before instruction, item 4 tends to elicit the response based on 

model 1.  It is surprising to see that kind of change for item 4 – perhaps implying that 

students become confused even after instruction.  The concept about friction is another 

difficult one for students.  Although students can use the correct model (i.e., constant speed 

implies equal force) to answer item 3, they do not apply the same approach to item 5.  As 

discussed earlier, these two items ask the same kind of question, but item 5 additionally 

involves frictional forces.  Since model 2 is the modal model for item 5 after instruction 

(the same as before instruction), this suggests that students still do not fully understand the 

frictional forces. 

Comparison with Bao and Redish’s analyses using FCI5.  The five FCI questions 

used in the current study have been used by Bao and Redish, as mentioned before.  

Although the student population in their studies (mostly engineering majors) is quite 

different from the one in the current study (mostly biology majors), comparing their 

findings based on the methods they developed with the results derived from the AR 

analyses is of interest.  Some discrepancies are expected since the data were obtained from 

two different populations and the statistics were derived from different methods of 

analyses. 

In their study using Concentration Analysis (see Chapter II for more details), Bao 

and Redish (2001) pointed out that before instruction students tended to use common 

incorrect models (referred to as model 2 or 3 in this study since at that time the 3-model 

coding schema has not yet been developed) on those 5 FCI questions.  This finding is 

similar to what we found here as seen in Table 20:  Items have a greater tendency to elicit a 
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response based on model 2 or 3, except for item 4 which has a greater tendency to provoke 

the model 1 response.  Note that the above finding from Bao and Redish’s study is based on 

students in traditional classes (traditional lecturing plus sessions led by teaching assistants 

for recitations) as for the data used in the current study. 

Bao and Redish’s Model Analysis (2004) further indicated that students in the 

traditional classes tend to use model 2 (the incorrect model) before instruction, whereas 

they inconsistently use either model 1 or 2 (equally likely) after instruction.  This is slightly 

different from what we found here as shown by Table 19 and discussed earlier.  This may 

be due to different student data used and analyses employed in both studies.  However, to 

some extents, the results from both analyses indicate that students are still having 

difficulties in understanding some force-motion concepts measured by FCI after 

instruction.     

FMCE4 and FMCE8.  As for FCI5, the heterogeneous model is preferred for both 

data sets.  For the former, the DIC values for the homogeneous, partially homogeneous and 

heterogeneous models are 1785.390, 1780.340, and 1730.170, respectively; while for the 

latter, the corresponding DIC values for the models are 4595.720, 4494.520, and 4454.290, 

respectively.  This indicates that both the item parameter estimates and the population 

distribution change after instruction for both data sets.  To further understand this change 

and to compare the item parameter estimates between FMCE4 and FMCE8 for common 

items, we first discuss each data set separately, followed by the comparisons between these 

two data. 
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Table 21 summarizes the mean parameter estimates over persons and items before 

and after instruction for FMCE4.  We can see that on average students tend to use model 2 

before instruction but they have a greater propensity to use model 1 after instruction 

(although the difference between models 1 and 2 is not that substantial), indicating that 

most students have improved their understanding about force-motion concept.  This shift is 

also seen by the change at the item level.  On average, items tend to elicit a response based 

on model 2 before instruction, while they tend to evoke a response based on model 1 after 

instruction.  We then summarize the parameter estimates for each item before and after 

instruction (Table 22), and represent the results in terms of the model that tends to be 

evoked before and after instruction (Table 23) to further study this change and its 

implications. 

From Table 22 (or 23), we can see that before instruction items 1, 3, and 4 (as for 

FCI5, we refer items 1 through 4 to questions numbered 2, 5, 11, and 12, respectively) tend 

to provoke a response based on model 2, whereas item 2 has a greater tendency to evoke a 

response based on model 1.  By looking at the item text, we may find clues to explain how 

this occurs. 
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Table 21. 
The Average Parameter Estimates over Persons and Items before and after Instruction for 
the FMCE data with 4 Items  
 

Parameters Mean SD MC error 
          (Person) 

mu11a   -0.3941   0.7955 0.03276 
 mu12    0.6313   0.7003 0.02883 

mu13               -0.2372     N/Ab                  N/A 
------------------------------------------------------------------------------------------- 
 mu21    0.4498   0.6971 0.02801 
 mu22    0.2872   0.7303 0.02968 

mu23               -0.7370     N/A                   N/A 
------------------------------------------------------------------------------------------- 
            (Item) 

mub11a   -0.3726   0.7786 0.02625 
 mub12    0.8668   0.7184 0.02328 

mub13               -0.4942     N/A                   N/A 
------------------------------------------------------------------------------------------- 
 mub21    0.3696   0.7135 0.02249 
 mub22    0.1622   0.7358 0.02392 

mub23               -0.5318     N/A                   N/A 
________________________________________________________________________ 
Note. The number of MC draws used to compute these statistics is 100,000. 
amutk represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) over persons with response category k.   Similarly, mubtk represents the 
parameter estimate at the time point t (t = 1 for the pre-test while t =2 for the post-test) over 
items with response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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Table 22. 
The Item Parameter Estimates for the FMCE Data with 4 Items under the Heterogeneous 
AR Model 
 

Item Parameter Mean SD MC error 
          (Pre-test) 
 b[1,1,1]a -0.5376  0.8197  0.03261  
 b[1,1,2]   1.8090  0.7134  0.02880  
 b[1,1,3]  -1.2720    N/Ab                    N/A  
 b[1,2,1]   0.6444  0.8038  0.03287  
 b[1,2,2]   0.0341  0.7072  0.02891  
 b[1,2,3]  -0.6785    N/A                     N/A  
 b[1,3,1]  -1.1470  0.8181  0.03280  
 b[1,3,2]   0.7052  0.7092  0.02890  
 b[1,3,3]   0.4416    N/A                     N/A  
 b[1,4,1]  -0.8291  0.8237  0.03257  
 b[1,4,2]   1.7770  0.7137  0.02883  
 b[1,4,3]  -0.9482    N/A                     N/A 
------------------------------------------------------------------------------------------- 
          (Post-test)  
 b[2,1,1]   0.2585  0.7071  0.02803  
 b[2,1,2]   0.7819  0.7397  0.02977  
 b[2,1,3]  -1.0400    N/A                     N/A  
 b[2,2,1]   0.9233  0.7065  0.02809  
 b[2,2,2]  -0.1167  0.7415  0.02976  
 b[2,2,3]  -0.8066    N/A                     N/A  
 b[2,3,1]   0.2306  0.7042  0.02808  
 b[2,3,2]  -0.3001  0.7394  0.02977  
 b[2,3,3]   0.0695    N/A                     N/A  
 b[2,4,1]   0.4393  0.7066  0.02808  
 b[2,4,2]   0.4625  0.7400  0.02979  
 b[2,4,3]  -0.9018    N/A                     N/A       
________________________________________________________________________  
Note. The number of MC draws used to compute these statistics is 100,000. 
ab[t,j,k] represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) for the item j with the response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
 

Table 23. 
The Model Elicited Given the Features of the Item before and after Instruction for the 
FMCE Data with 4 items 
 

 1 (2)a 2 (5) 3(11) 4(12) 
Before model 2 model 1 model 2 model 2 
After model 2 model 1 model 1 model 2 or 1 

 
aThe number in the parenthesis refers to the original item number. 
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The first two items are from the same set of questions involving a sled on ice.  They 

ask which force (7 alternative choices as listed) would keep the sled moving in a certain 

velocity under the condition given by each question.  Item 1 asks which force would keep 

the sled moving toward the right at a constant velocity.  Students who answer without 

knowing and applying Newton’s law might easily choose the force that is toward the right 

and is of constant strength (the choice B).  However, this is based on an incorrect model 

(i.e., model 2) since, as mentioned earlier, an object can move with or without the force – 

the correct understanding based on Newton’s first law.  In other words, since the sled is 

moving there is no need to apply any force to keep it moving.  Because of students’ 

propensity to use “impetus theory” belief on this question before instruction, item 1 tends 

to elicit a response based on model 2.   

Item 2, in fact, asks the same kind of question as item 1.  However, it states the 

question in a different way.  Instead of referring to a moving sled, it describes that “The 

sled was started from rest and pushed until it reached a steady (constant) velocity toward 

the right” and asks which force would keep the sled moving at this velocity.  Without 

considering friction (“Friction is so small that it can be ignored” as mentioned in the 

beginning of this set of questions), it would be likely for students to select choice D: No 

applied force is needed, a response based on the correct model.  This could be the reason 

why item 2 has a greater tendency to evoke a Newtonian or model 1 response even before 

instruction.  It should be noted that, however, by selecting this correct choice does not 

indicate that students indeed know and apply Newtonian approach on this question.  It is 

possible that students simply respond to this question based on their common sense, and it 

happens to be consistent with Newtonian way of thinking in this case.  (This could be 
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further examined by interviewing students; i.e., by asking them to justify their reasons for 

choosing a specific choice)  In addition, the tendency to elicit responses based on different 

models for the first 2 items (which are intrinsically equivalent) provides a piece of 

evidence about the context dependence discussed in Chapter II: students respond 

differently on two expert-equivalent situations due to the different features built into each 

scenario. 

The next two items are also in the same set of questions.  They involve a coin that is 

tossed straight up into the air, and they ask the direction and magnitude of the force acting 

on the coin in various cases.  For item 3, the coin is moving upward after it is released; for 

item 4, the coin is at its highest point.  Since students do not need to know exactly what 

force is acting on the coin (the accompanying choices imply there is only one type of 

force), they may respond to the question simply based on the position of the coin.  

Therefore, for item 3, students would tend to think the force that is up and decreasing 

because the coin is moving up (so the force is up), but it will stop moving up at some point 

(implying the force is decreasing).  For item 4, it would be likely for them to believe the 

force is zero, since the coin being at its highest point implies no movement (no motion, so 

the magnitude of the force is zero).  However, these rationales are based on the incorrect 

model (model 2): believing that there is a force acting on the coin, and its direction and 

magnitude would be changed depending on the position of the coin.  Indeed, there is a force 

(and only one) acting on the coin after it is released: gravity, but it is always down and 

constant regardless the position of the coin.  This is the correct model.  Given the features 

of these items, the way of thinking characterized as model 2 appears to have been used by 

most students before instruction since it probably is consistent with their common sense.     



 115

Notice that the above scenario is similar to some of the questions on FCI5 – a boy 

throws a steel ball (question 5) or a golf ball is traveling through the air after hit (question 

22).  However, they are different in two ways.  First, the questions on FMCE4 specifically 

describe the moving object (a coin in this case) at a certain position (moving upward or at 

the highest point), while on FCI5 the moving object (a steel ball or a golf ball) is described 

only in a very general way – it follows a parabolic-like path.  Second, the accompanying 

choices for FMCE4 imply only one type of force acting on the coin, as mentioned above.  

Students do not need to know exactly what force(s) is (are) acting on the coin for FCME4, 

whereas the choices provided on FCI5 combine more features about the force(s) acting on 

the object – the type of force(s) and its (their) direction and magnitude.  Because of these 

discrepancies, students (recall that FCI5 and FMCE4 data were obtained from similar 

populations) may respond differently – e.g., question 5 on FCI5 has a greater tendency to 

elicit a response based on model 3 (not model 2 as for FMCE4 questions) before 

instruction.   

After instruction, the first two items retain their tendency to provoke certain 

models, while the last two items shift their tendencies to evoke different models.  This 

suggests that students still have difficulties in understanding some concepts.  First of all, 

students tend to believe that there is a force acting on an object to keep it moving – as 

shown by item 1 where both before and after instruction there is a greater tendency to 

observe a response based on model 2.  This seems to be a common misconception, as 

suggested both here in FCI5 and as indicated in physics education literature.  Second, 

students’ understanding about gravity seems to be problematic (it has been improved but 

not fully) since students have a greater propensity to use either model 1 or 2 to respond to 
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item 4.  They tend to think that the magnitude of the force (probably regardless of gravity 

or other types of force) is zero when the coin is at its highest point as discussed above. 

Comparison of FMCE4 with Bao’s analysis.  These four questions on FMCE were 

also evaluated using Model Analysis in Bao’s study (Bao, 1999).  Bao indicated that most 

students in the traditional classes tend to use model 2 (the incorrect model) before 

instruction, while they tend to use either model 1 or 2 (more in model 2 but not by much) 

after instruction.  This result is different from our analysis.  As seen on Table 21 and 

discussed earlier, we found that students have a greater propensity to use model 2 on the 

pre-test, but they tend to use model 1 (rather than model 2) on the post-test.  Again, this 

discrepancy could be due to the different student data used or to the different approaches of 

analyzing data.    

Now we turn our discussion to FMCE8.  Tables 24-26 list the average parameter 

estimates over persons and items before and after instruction, the item parameter estimates 

under the heterogeneous model, and the model elicited given the features of the item before 

and after Instruction for the FMCE8, respectively. 

From Table 24, we can see that students have a greater propensity to use model 2 

for problem-solving before instruction, whereas they tend to use either model 1 or 2 

(equally likely) after instruction.  The average tendency to elicit certain models over items 

also confirms this, although on average they tend to evoke the response based more on 

model 1 than model 2 after instruction.  More detailed discussion about this change appears 

below.  Regardless of this slight difference, the above result indicates that most students 

are in a mixed model state – in a transition toward understanding Newtonian mechanics. 
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Table 24. 
The Average Parameter Estimates over Persons and Items before and after Instruction for 
the FMCE Data with 8 Items  
 

Parameters Mean SD MC error 
         (Person) 
 mu11a   -0.5337   0.7199 0.03030 
 mu12    0.7374   0.6915 0.03004 

mu13               -0.2073     N/Ab                  N/A 
------------------------------------------------------------------------------------------ 
 mu21    0.2609   0.7252 0.03100  
 mu22    0.2858   0.7470 0.03252 
 mu23               -0.5467     N/A                   N/A 
--------------------------------------------------------------------------- 
            (Item) 
 mub11a   -0.4007   0.7217 0.02709  
 mub12    0.8423   0.7002 0.02689 

mub13               -0.4416     N/A                   N/A 
------------------------------------------------------------------------------------------ 
 mub21    0.4205   0.7255 0.02770  
 mub22    0.2744   0.7438 0.02908 

mub23               -0.6949     N/A                   N/A 
________________________________________________________________________ 
Note. The number of MC draws used to compute these statistics is 100,000. 
amutk represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) over persons with response category k.   Similarly, mubtk represents the 
parameter estimate at the time point t (t = 1 for the pre-test while t =2 for the post-test) over 
items with response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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Table 25. 
The Item Parameter Estimates for the FMCE Data with 8 Items under the Heterogeneous 
AR Model 
 

Item Parameter Mean SD MC error 
          (Pre-test) 
 b[1,1,1]a -0.4254  0.7515  0.03033  
 b[1,1,2]   1.6820  0.7071  0.03012  
 b[1,1,3]  -1.2570    N/Ab                  N/A 
 b[1,2,1]   0.7814  0.7286  0.03044  
 b[1,2,2]  -0.0940  0.6998  0.03017  
 b[1,2,3]  -0.6874    N/A                      N/A  
 b[1,3,1]  -1.0110  0.7463  0.03038  
 b[1,3,2]   0.5946  0.7030  0.03020  
 b[1,3,3]   0.4164    N/A                      N/A  
 b[1,4,1]  -0.7257  0.7566  0.03037  
 b[1,4,2]   1.6590  0.7076  0.03014  
 b[1,4,3]  -0.9331    N/A                      N/A  
 b[1,5,1]  -1.9550  0.7804  0.03038  
 b[1,5,2]   0.7432  0.7118  0.03017  
 b[1,5,3]   1.2120    N/A                      N/A  

b[1,6,1]  -0.6990  0.7530  0.03032 
 b[1,6,2]   1.5670  0.7071  0.03018  
 b[1,6,3]  -0.8678    N/A                      N/A  
 b[1,7,1]   0.0464  0.7339  0.03041  
 b[1,7,2]   0.6592  0.6998  0.03014  
 b[1,7,3]  -0.7055    N/A                      N/A  
 b[1,8,1]   0.3744  0.7344  0.03046  
 b[1,8,2]   0.7675  0.7012  0.03015  
 b[1,8,3]  -1.1420    N/A                      N/A  
---------------------------------------------------------------------------- 
          (Post-test) 
 b[2,1,1]   0.4024  0.7365  0.03108  
 b[2,1,2]   0.7592  0.7584  0.03270  
 b[2,1,3]  -1.1620    N/A                      N/A  
 b[2,2,1]   1.1260  0.7350  0.03112  
 b[2,2,2]  -0.1650  0.7589  0.03263  
 b[2,2,3]  -0.9615    N/A                      N/A  
 b[2,3,1]   0.4115  0.7328  0.03110  
 b[2,3,2]  -0.3201  0.7566  0.03266  
 b[2,3,3]  -0.0914    N/A                      N/A  
 b[2,4,1]   0.6058  0.7351  0.03109  
 b[2,4,2]   0.4310  0.7575  0.03267  
 b[2,4,3]  -1.0370    N/A                      N/A  
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Table 25 (continued). 
The Item Parameter Estimates for the FMCE Data with 8 Items under the Heterogeneous 
AR Model 
 

Item Parameter Mean SD MC error 
 

b[2,5,1]  -0.2821  0.7351  0.03114  
 b[2,5,2]   0.0537  0.7552  0.03265  
 b[2,5,3]   0.2284    N/A                      N/A  
 b[2,6,1]   0.1257  0.7366  0.03112  
 b[2,6,2]   0.8052  0.7578  0.03271  
 b[2,6,3]  -0.9309    N/A                      N/A  
 b[2,7,1]   0.4726  0.7372  0.03113  
 b[2,7,2]   0.6983  0.7573  0.03263  
 b[2,7,3]  -1.1710    N/A                      N/A  
 b[2,8,1]   0.9219  0.7358  0.03111  
 b[2,8,2]   0.2186  0.7585  0.03267 
 b[2,8,3]  -1.1400    N/A                      N/A     
________________________________________________________________________  
Note. The number of MC draws used to compute these statistics is 100,000. 
ab[t,j,k] represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) for the item j with the response category k. 
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
 
 
Table 26. 
The Model Elicited Given the Features of the Item before and after Instruction for the 
FMCE Data with 8 items 
 

 1 (2)a 2 (5) 3(11) 4(12) 5(8) 6(9) 7(10) 8(13) 
Before 2b 1 2 2 3 2 2 2 
After 2 1 1 1 or 2 3 2 2 or 1 1 

 
aThe number in the parenthesis refers to the original item number. 
bindicates the model elicited by the item.  
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We can compare the parameter estimates for the common items (the first 4 on 

FMCE8) between FMCE4 and FMCE8.  Since the data were obtained from the same group 

of students, we expect that the parameter estimates for those items would be similar, with 

some variations due to sampling error or due to the fact that with FMCE8 more information 

is available about each examinee, and his/her propensity to use model can be better 

estimated.  (Note that in our analysis we will not be able to evaluate which set of parameter 

estimates is better than the other since only one set of data is used and “true” values are not 

known.  In general, this kind of evaluation can be done by a simulation study, but this lies 

beyond the concerns of the current study.) 

By comparing Tables 22 and 25 in terms of the parameter estimates, we can see that 

differences exist.  However, if we take into account the posterior standard deviations 

(labeled as SD in the table) associated with each parameter estimate, these discrepancies 

may not be statistically significant.  The following discussion should thus be considered as 

descriptive rather than inferential.  Except for item 4 (question 12), the relative position of 

parameter estimates within each item (i.e., the model the item tends to elicit) is the same 

between FMCE4 and FMCE8, as seen by comparing Table 23 with Table 26.  Item 4, after 

instruction, tends to elicit both models 1 and 2 (b[2,4,1] and b[2,4,2] are 0.4393 and 

0.4625, respectively) with FMCE4; with FMCE8, it has a greater tendency to provoke a 

response based on model 1, followed by model 2 (b[2,4,1] and b[2,4,2] are 0.6058 and 

0.4310, respectively).  Notice that for latter the difference between b[2,4,1] and b[2,4,2] is 

small, and in terms of practical concern they could be interpreted as effectively the same.  

That is, students are in the transition toward learning a new physics concept and have a 
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propensity to provide a response consistent with the use of either model 1 or 2, as with 

FMCE4 regarding item 4. 

There are four additional items in FMCE8.  Items 5 through 7 (corresponding to 

questions numbered 8 through 10 in FMCE) are in the same set of questions involving a toy 

car that is given a quick push so that it rolls up an inclined ramp.  This scenario is in fact 

expert-equivalent to the one for items 3, 4, and 8 (corresponding to questions numbered 11, 

12, and 13 in FMCE), the tossed coin as discussed earlier.  Furthermore, items 5-7 ask the 

same kind of questions as items 3, 4, and 8 – “the car is moving up the ramp after it is 

released” (vs. “the coin is moving upward after it is released”), “the car is at its highest 

point” (vs. “the coin is at its highest point”); and “the car is moving down the ramp” (vs. 

“the coin is moving downward”), respectively.  However, students do not respond 

consistently on those items, especially after instruction – no wonder, since as discussed 

above, students are in a mixed model state after instruction, and their responses are still 

influenced by features that are not relevant from the expert perspective.   

From Table 26, we can see that before instruction, the difference between these two 

sets of questions occurs only for item 5.  This item has a greater tendency to elicit a 

response based on model 3 (in contrast, item 3, its expert-equivalent question, tends to 

evoke a response based on model 2).  This finding again suggests context dependence.  

After instruction, students retain their propensity to use null or incorrect models for items 5 

through 7 (with an exception for item 7 since it also tends to evoke responses based on 

model 1), indicating that students still have difficulties in understanding force-motion 

concept or applying it to the situations depicted in items 5 through 7.  The latter 

explanation is more likely, since its expert-equivalent set of questions (i.e., items 3, 4, and 
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8) tends to provoke responses mainly based on model 1, indicating that students at least 

learned the concept to the extent that they knew how to apply it to a tossed coin.  The force 

involving a tossed coin is relatively straightforward – an up and down force, even if 

students do not know it is gravity.  But the initial force applied to a toy car to make it move 

on the inclined ramp is a force with an angle, and therefore it involves the concept of “net 

force”.  The initial force can be decomposed into the horizontal and vertical force plus a 

gravitational force in the vertical direction.  Students who do not know Newton’s first law 

– an object can continue to move without force – think that they need to deal with the net 

force to make a correct answer, so they could easily to choose the answer, for example, 

stating that “the net force is zero” when the car is at its highest point, or the answer 

describing that “net increasing force down ramp” when the car is moving down the ramp.  

These responses are based on model 2, an incorrect model.  (Again, the reasoning students 

used to respond items 5 through 7 can be further examined by interviewing them.)  Because 

of students’ inconsistency in responding to equivalent sets of questions, their propensity to 

use a certain model for problem-solving is in a mixed state with regard to the set of tasks 

encompassed by the FMCE8 data.                       

Acc5.  The last data set deals with the concept of acceleration.  Unlike the first three 

data sets, the partially homogeneous model is preferred (the DIC values for the 

homogeneous, partially homogeneous, and heterogeneous model are 2583.370, 2393.120, 

and 2402.910, respectively), indicating that although the population distribution has been 

changed  after instruction (see Table 27) but one set of item parameter estimates before and 

after instruction would be adequate to describe the data.  This could be due to the fact that 

students change their model use consistently.  This reflects on items as well, as seen in 
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Table 28: before instruction every item tends to elicit a response based on model 2, while 

after instruction each has a greater tendency to evoke a response based on model 1.  

Therefore, instead of using two sets of item parameter estimates (one for pre-test and 

another for post-test) the partially homogeneous model with one set of item parameter 

estimates is preferred.  Our discussion below regarding the items is therefore based on the 

partially homogeneous model.   

 
Table 27. 
The Average Parameter Estimates over Persons before and after Instruction for the 
Acceleration Data  
 

Parameters Mean SD MC error 
        (Pre-test) 
 mu11a   -0.4382   0.3903 0.01401  
 mu12    1.1310   0.3798 0.01373 

mu13               -0.6928     N/Ab                  N/A 
--------------------------------------------------------------------------- 
        (Post-test) 
 mu21    1.6670   0.3902 0.01399  
 mu22    0.0534   0.3842 0.01373  

mu23               -1.7204     N/A                   N/A 
________________________________________________________________________ 
Note. The number of MC draws used to compute these statistics is 100,000. 
amutk represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) over persons with response category k.    
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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Table 28. 
The Item Parameter Estimates for the Acceleration Data under the Heterogeneous AR 
Model 
 

Item Parameter Mean SD MC error 
          (Pre-test) 
 b[1,1,1]a  0.5759  0.7397  0.02941  
 b[1,1,2]   1.2100  0.7297  0.02997  
 b[1,1,3]  -1.7860    N/Ab                 N/A 
 b[1,2,1]  -0.5645  0.7361  0.02943  
 b[1,2,2]   0.8261  0.7231  0.03001  
 b[1,2,3]  -0.2616    N/A                 N/A 
 b[1,3,1]  -0.1900  0.7333  0.02944  
 b[1,3,2]   0.4300  0.7225  0.03000  
 b[1,3,3]  -0.2400    N/A                 N/A  
 b[1,4,1]  -0.6352  0.7360  0.02945  
 b[1,4,2]   0.4897  0.7227  0.02999  
 b[1,4,3]   0.1455    N/A                 N/A  
 b[1,5,1]   0.0234  0.7339  0.02945  
 b[1,5,2]   0.6604  0.7233  0.02997  
 b[1,5,3]  -0.6838    N/A                 N/A  
--------------------------------------------------------------------------- 
         (Post-test) 
 b[2,1,1]   1.5390  0.7606  0.02987  

b[2,1,2]   0.6620  0.8026  0.03152  
 b[2,1,3]  -2.2010    N/A                 N/A  
 b[2,2,1]   0.6862  0.7487  0.03000  
 b[2,2,2]   0.2362  0.7914  0.03171  
 b[2,2,3]  -0.9224    N/A                 N/A  
 b[2,3,1]   1.0660  0.7502  0.03001  
 b[2,3,2]  -0.0926  0.7944  0.03167  
 b[2,3,3]  -0.9738    N/A                 N/A  
 b[2,4,1]   0.6920  0.7483  0.03001  
 b[2,4,2]   0.1069  0.7925  0.03171  
 b[2,4,3]  -0.7988    N/A                 N/A  
 b[2,5,1]   1.4110  0.7557  0.03001  
 b[2,5,2]   0.2837  0.7996  0.03167  
 b[2,5,3]  -1.6940    N/A                 N/A  

 _______________________________________________________________________  
Note. The number of MC draws used to compute these statistics is 100,000. 
ab[t,j,k] represents the parameter estimate at the time point t (t = 1 for the pre-test while t =2 
for the post-test) for the item j with the response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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We summarize the item parameter estimates as seen in Table 29.  Note that items 1 

through 5 refer to questions 22 through 26 in FMCE – a set of questions used to measure 

students’ understanding about the concept of acceleration.  They involve a toy car which 

can move to the right or left on a horizontal surface along a straight line (the + distance 

axis).  Each item describes the car with a different motion (e.g., item 1 states that the car 

moves toward the right, speeding up at a steady rate) and asks which choice representing 

the acceleration-time graph corresponds to the motion of car (see Appendix A for details).   

 
Table 29. 
The Item Parameter Estimates for the Acceleration Data under the Partially Homogeneous 
AR Model 
 

Item Parameter Mean SD MC error 
 

b[1,1]a   0.8475  0.3971  0.01379  
 b[1,2]   0.7295  0.3887  0.01360  
 b[1,3]  -1.5770    N/Ab                 N/A 
 b[2,1]  -0.1641  0.3902  0.01387  
 b[2,2]   0.3098  0.3809  0.01369  
 b[2,3]  -0.1457    N/A                 N/A 
 b[3,1]   0.2067  0.3902  0.01391  
 b[3,2]  -0.0594  0.3808  0.01366  
 b[3,3]  -0.1473    N/A                 N/A  
 b[4,1]  -0.2109  0.3900  0.01390  
 b[4,2]   0.0417  0.3805  0.01368  
 b[4,3]   0.1692    N/A                 N/A  
 b[5,1]   0.4630  0.3912  0.01384  
 b[5,2]   0.2037  0.3816  0.01364  
 b[5,3]  -0.6667    N/A                 N/A  

_______________________________________________________________________  
Note. The number of MC draws used to compute these statistics is 100,000. 
ab[j,k] represents the parameter estimate for the item j with the response category k.  
bSince the parameters with response category 3 are not estimated here – they were obtained 
by computing the sum of parameter estimates with the first two response categories and 
then reversing the sign of the sum, the associated SDs and MC errors are not available. 
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From Table 29, we can see that item 1 tends to provoke a response consistent with 

model 1 or 2 (b[1,1] and b[1,2] are 0.8475 and 0.7295, respectively).  It is not difficult to 

understand why this occurs.  Students who use the correct model – speeding up at a steady 

rate means the acceleration is constant – would choose a graph that corresponds to a 

constant acceleration (i.e., choices A or B).  Note that the correct answer in fact is choice A 

(not B) since the car moves to right, indicating that the sign of acceleration is positive.  

Those who choose B may not take into account the direction of the car’s moving but at 

least demonstrate their understanding about what “speeding up at a steady rate” means in 

terms of acceleration.  Therefore, those who choose A or B would be considered to use the 

correct model.  On the other hand, if students do not understand the concept of 

acceleration, they would choose a graph that represents an increasing acceleration since the 

car is “speeding up” – they confuse the concepts of velocity and acceleration.  Thus, this 

item has a greater tendency to evoke not only model 1 responses but also model 2 

responses. 

 Item 2 differs from item 1 in that the car is not speeding up at a steady rate but 

slowing down at a steady rate.  It tends to elicit a response based on model 2, the incorrect 

model.  For the similar reasons as for item 1, students who think of acceleration as velocity 

would choose the graph(s) that corresponds to decreasing acceleration over time since the 

car is “slowing down.”  It is not clear, however, why items 1 and 2 (which can be 

considered as the same type of question) have different tendencies to evoke a certain 

model.  Maybe students’ comprehension about “slowing down” is not as straightforward or 

natural as “speeding up” when it comes to the graphical representation. 
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 Item 3 has a greater tendency to elicit a response based on the correct model.  It 

states that the car moves toward the left at a constant velocity.  Students may have a better 

understanding about what “constant velocity” refers to: zero acceleration.  Therefore, they 

have a greater propensity to use model 1 thinking on this item.  Similarly, item 5, which is 

identical to item 3 but has the car moving toward the right (not left), has a greater tendency 

to provoke a response based on model 1 although it also tends to evoke responses based on 

model 2 (b[5,1] and b[5,2] are 0.4630 and 0.2037, respectively). 

Finally, item 4, which is similar to item 1 but now has the car moving toward the 

left, has a different story to tell.  It has a greater tendency to evoke a response based on 

model 3, the null or unsystematic model.  Comparing this result with that of item 1, it is 

possible that students are more likely to be confused when the car moves toward the left 

than right for the same kind of reason that they are more used to a “speeding up” than 

“slowing down” scenario in terms of graphical representation.  For naïve students, this item 

would be hard for them to respond intuitively, and therefore they tend to use a model 3 

approach. 
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Chapter V 

Summary and Conclusions 
 

The goal of the current study was to use a formal psychometric model (i.e., the 

Andersen-Rasch multivariate measurement model, AR; Andersen, 1973 & 1995) to study 

students’ conceptual understanding in physics (in particular, Newtonian mechanics).  The 

perspective is based on the “evidence-centered” design (ECD; Mislevy, Steinberg, & 

Almond, 2003) framework.  The study builds on the Force Concept Inventory (FCI; 

Hestenes, Wells, & Swackhammer, 1992) and the Force Motion Concept Evaluation 

(FCME; Thornton & Sokoloff, 1998) task design and on previous analyses of the cognitive 

processes of physics problem-solving.  It thus focuses on the measurement component of 

evidence model (EM) in the ECD stage called the Conceptual Assessment Framework 

(CAF).  The use of the AR model for tasks designed to reveal students’ 

conceptions/misconceptions in physics is consistent with a cognitive perspective of 

learning, namely that students’ solve problems using approaches that can often be 

identified with conceptions or common misconceptions, and their propensity to use a 

certain approach (in this case Newtonian, “impetus theory”, or Aristotelian) for 

problem-solving depends on the features of the item presented to him/her.  To demonstrate 

this, four data sets (one from FCI and the others from FMCE, labeled FCI5, FMCE4, 

FMCE8, and Acc5, respectively) were used and analyzed with the AR model using a 

Markov Chain Monte Carlo (MCMC; Gelman, Carlin, Stern, & Rubin, 1995) estimation 

procedure, carried out with the BUGS computer program (Bayesian inference analysis 

Using Gibbs Sampling; Spiegelhalter, Thomas, & Gilks, 1997).  We summarize the results, 
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discuss the limitations of the current study, and consider some potential research questions 

for the future.  

 

Summary and Conclusions to the Psychometric Analysis 

The first data, FCI5, contains students’ responses about force-motion relation.  

Based on values of the Bayesian model-fit index DIC (Deviance Information Criterion; 

Spiegelhalter, Best, Carlin, & van der Linde, 2002) the heterogeneous AR model is 

preferred to the homogeneous and partially homogeneous AR models, indicating that both 

student distribution and item parameter estimates have been changed after instruction.  

Before instruction, students have a greater propensity to use model 2 (incorrect “impetus 

theory” conceptions of force and motion).  After instruction, they still tend to use model 2 

although their tendency to use model 1 (correct Newtonian conception of force and 

motion) has been increased.  One can view this as most students being in a mixed model 

state; they may use model 1 or model 2, with probabilities that depend on the particular 

features of the task they are solving.  By further studying the change in terms of item 

parameter estimates, we indicated two possible common misconceptions in their incorrect 

answers.  One is related to Newton’s first law (students tend to believe that there is a force 

acting on the object to keep it moving) and another is related to frictional forces.  Since 

those questions in FCI5 were also used in Bao and Redish’s studies, we compared our 

results with their findings.  The two studies yield similar results with a slight difference in 

terms of model use after instruction: Their analysis indicated that both models 1 and 2 are 

about equally likely to be used by students. 
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The second data we used is FMCE4.  As with FCI5, questions in FMCE4 measure 

students’ understanding about forces and force-motion concepts.  The heterogeneous 

model is again preferred, based on values of the DIC.  Before instruction, students tend to 

use model 2 (the same as for FCI5); after instruction, however, students have a greater 

tendency to use model 1 rather than model 2 (although the difference is not substantial), 

indicating that most students have improved their understanding about force-motion 

relation to some extent, but not fully.  This is confirmed by examining the shift of item 

parameter estimates before and after instruction.  The item level analysis indicates that 

students still tend to believe that there is always a force in the direction of an object to keep 

it moving, the same misconception revealed by FCI5.  In addition, students seem to 

incorrectly believe that when the tossed coin is at its highest point, the magnitude of gravity 

is zero.  Comparing these results with Bao’s study using questions in FMCE4, Boa’s 

analysis shows a slight difference after instruction.  Bao indicated that students tend to use 

either model 1 or 2 (more in model 2 but not by much). 

FMCE8, the third data we used, has 4 additional items to FMCE4.  As for the first 

two data, the heterogeneous model is selected for its smallest DIC value.  On the pre-test, 

students have a greater propensity to use model 2 (the same as for FCI5 and FMCE4).  

After instruction, students are equally likely to use either model 1 or 2, strongly indicating 

that students are in a mixed model state.  We then compared the item parameter estimates 

for the common items between FMCE4 and FMCE8.  The analysis shows the similar 

results one would expect, after taking into account the posterior standard deviation 

associated with the parameters being estimated.  Further examining the 4 additional items 
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implies that students, again, seem to believe that a force is needed to keep an object 

moving. 

Based on what was found from the first three data sets (questions in those data are 

used to measurement students’ understanding about force-motion relation in some ways 

although the item format is different between FCI and FMCE – i.e., the former consists of 

five choices for each item, while for latter it has seven or eight choices associated with each 

item), as well as comparing with what Bao and Redish found in their studies, it appears that 

these students had a greater propensity to give responses consistent with model 2 before 

instruction, and they give responses consistent with either model 1 or 2 (more or less, 

depending on the features of the item and characterized by the item parameters in the AR 

model) after instruction.  This indicates students are in a mixed model state (i.e., in a 

transition toward understanding Newtonian mechanics) after one semester of physics 

learning.  This also implies that they still have difficulties in understanding some concepts 

related to force-motion.  In particular, they incorrectly believe that there is a force acting on 

an object to keep it continue to move, one of common misconceptions identified by Bao 

and Redish (2004).  However, the particular features of tasks still evoke different response 

categories to expert-equivalent items, indicating that the students are still not in a “pure 

state” of Newtonian responding. 

Finally, we analyzed the acceleration data, Acc5.  Unlike the first three data sets, 

the partially homogeneous model is preferred, indicating that although the population 

distribution has changed, a single set of item parameter estimates appears to be adequate to 

describe the data.  Before instruction, students tend to provide responses consistent with 

model 2 for problem-solving.  After instruction, however, they have a greater propensity to 
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provide responses consistent with model 1, implying that students have improved their 

understanding about the concept of acceleration.  We further examined the item parameter 

estimates for each item and found that students may have difficulties to represent their 

understanding about acceleration in terms of acceleration-time graphs, especially when the 

object is slowing down or moving toward the left, in which case the sign of acceleration in 

both task scenarios is negative. 

It can be seen the analysis based on the psychometric AR model provides additional 

information beyond the Bao and Redish analyses (Bao, 1999; Bao & Redish, 2001 & 2004) 

both at the item and person level.  First, the vector-valued parameter estimates for each 

item shows its tendency to provoke the response based on a certain model (or models); 

similarly, the vector-valued parameter estimates for each person indicates his/her 

propensity to use a specific model (or models) given the features of the items.  Second, the 

accompanying standard deviations and MC errors can be used to estimate the accuracy of 

parameter estimates.  Third, the shift of parameter estimates (in terms of item or persons) 

from before to after instruction implies what kind of learning has taken place and what 

concepts students seem to have difficulties in understanding, which can help to improve 

the physics instruction.   Fourth, carrying out analysis within the formal framework of 

probability-based reasoning allows us to use criteria (e.g., DIC used in the current study) to 

assess the fit of the model to the data as well as to compare different models (e.g., the 

homogeneous, partially homogeneous, and heterogeneous AR models compared in this 

study).        
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Limitations of the Current Study 

When making inferences from this study, one should be aware that the sample size 

for each data set is relatively small, and most of students are biology majors.  They may not 

be a good representation of other student populations, and may differ from identifiable 

groups such as physics and engineering majors or humanities majors.   Therefore, the 

results of this study need to be interpreted with caution.  Because of the relatively small 

sample size (by the standards of psychometric analyses such as latent class and IRT 

modeling), not much information is available to estimate parameters for individual items 

and students.  Particularly with the partially homogeneous and heterogeneous models, 

model parameters were less precisely estimated, and it usually took many more MCMC 

cycles to converge. 

 
 
Directions for Future Research 
 

As discussed in Chapter II, there are four perspectives to study the nature of human 

mind: the differential, behaviorist, cognitive, and situative perspectives.  In the past, most 

research has focused on the first two perspectives, while the last two approaches have not 

been explored in great detail, especially in the field of educational measurement.  The 

current study explores students’ learning in terms of cognitive perspective.  However, we 

only focus on a small piece of cognitive process (i.e., the mixture-within-persons strategy 

for problem-solving).  For this aspect of learning, modeling students’ problem-solving in 

terms of common misconceptions has proven useful.  Other fields of learning may not be 

the same as physics in this regard, so they may focus on different aspects of cognitive 

process.  In this study, we have provided a good example of integrating ideas from the 
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cognitive science of learning and modeling students’ responses in the ECD framework to 

examine students’ problem-solving in physics.  We can continue to follow this line of 

research to explore, for example, how students solve a class of math tasks and how it is 

different from physics learning. 

As also discussed in Chapter II, most current testing practices are not a good match 

with the situative perspective.  More studies are needed to explore how social or cultural 

factors affect students’ learning.  For example, one may be interested in investigating 

whether the different test formats (multiple-choice test vs. open-ended questions) affect 

students’ problem-solving strategy and how it occurs.  Again, in principle this research can 

be carried out in the ECD framework.  It is likely that extensions of interpretations and of 

psychometric models themselves will be called for, just as the AR extends beyond the 

overall-proficiency models that are used for most testing applications.  

Finally, one might consider extending the AR model by incorporating, for example, 

the category weight to further examine its use in terms of studying mental model states.  

This extension of the AR model could take the following form: 

∑
=

++==
m

p
jpippjpippij pXP

1
)exp(/)exp()( βθωβθω ,    (28) 

where: 

ωp is the category weight associated with the response category p.   

Such a model would provide for more variety in the shapes of conditional probability 

distributions, but questions of identifiability and estimability would need to be explored. 
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Appendix A 

 Physics Questions 
 
Questions for the FCI data – the 1st data set: 
 
5. A boy throws a steel ball straight up.  Discarding any effects of air resistance, the 

force(s) acting on the ball until it returns to the ground is (are): 
 

a) its weight vertically downward along with a steadily decreasing upward force. 
b) a steadily decreasing upward force from the moment it leaves the hand until it  

reaches its highest point beyond which there is a steadily increasing downward 
force of gravity as the object gets closer to the earth. 

c) a constant downward force of gravity along with an upward force that steadily 
decreases until the ball reaches its highest point, after which there is only the 
constant downward force of gravity. 

d) a constant downward force of gravity only. 
e) none of the above, the ball falls back down to the earth simply because that is its 

natural action. 
 

9. The main forces acting, after the “kick”, on the puck along the path you have chosen 
are: 

 
a) the downward force due to gravity and the effect of air pressure. 
b) the downward force of gravity and the horizontal force of momentum in the 

direction of motion. 
c) the downward force of gravity, the upward force exerted by the table, and a 

horizontal force acting on the puck in the direction of motion. 
d) the downward force of gravity and an upward force exerted on the puck by the 

table. 
e) gravity does not exert a force on the puck, it falls because of intrinsic tendency of 

the object to fall to its natural place. 
 
18. An elevator, as illustrated (skipped), is being lifted up an elevator shaft by a steel 

cable.  When the elevator is moving up the shaft at a constant velocity: 
 

a) the upward force on the elevator by the cable is greater than the downward force of 
gravity. 

b) the amount of upward force on the elevator by the cables equals that of the 
downward force of gravity. 

c) the upward force on the elevator by the cable is less than the downward force of 
gravity. 

d) it goes up because the cable is being shortened, not because of the force being 
exerted on the elevator by the cable. 

e) the upward force on the elevator by the cable is greater than the downward force 
due to the combined effects of air pressure and the force of gravity.   
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22.  A golf ball driven down a fairway is observed to travel through the air with a 
trajectory (flight path) similar to that in the depiction below (skipped).  Which 
following force(s) is(are) acting on the golf ball during its entire flight? 

    1.  the force of gravity 
    2.  the force of the “hit” 
    3.  the force of air resistance 
 

a) 1 only 
b) 1 and 2 
c) 1, 2, and 3 
d) 1 and 3 
e) 2 and 3 

 
28. A large box is being pushed across the floor at a constant speed of 4.0 m/s.  What 

can you conclude about the forces acting on the box? 
         

a) If the force applied to the box is doubled, the constant speed of the box will 
increase to 8.0 m/s. 

b) The amount of force applied to move the box at a constant speed must be more 
than its weight. 

c) The amount of force applied to move the box at a constant speed must be equal 
to the amount of the frictional forces that resist its motion. 

d) The amount of force applied to move the box at a constant speed must be more 
than the amount of the frictional force that resist its motion, 

e) There is a force being applied to the box to make it move but the external 
forces such as friction are not “real” forces they just resist motion.    

 
 

Questions for the Force-Motion data with 4 items – the 2nd data set: 
 

A sled on ice moves in the ways described in questions 1-7 below.  Friction is so small that 
it can be ignored.  A person wearing spiked shoes standing on the ice can apply a force to 
the sled and push it along the ice.  Choose the one force (A through G) which would keep 
the sled moving as described in each statement below. 
 
You may use a choice more than once or no at all but choose only one answer for each 
blank.  If you think that none is correct, answer choice J. 

 
(graphs are skipped here) 
A. The force is toward the right and is increasing in strength (magnitude). 
B. The force is toward the right and is of constant strength (magnitude). 
C. The force is toward the right and is decreasing in strength (magnitude). 
D. No applied force is needed. 
E. The force is toward the left and is decreasing in strength (magnitude). 
F. The force is toward the left and is of constant strength (magnitude). 
G. The force is toward the left and is increasing in strength (magnitude). 
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2. Which force would keep the sled moving toward the right at a steady (constant) 
velocity? 

 
5. The sled was started from rest and pushed until it reached a steady (constant) 

velocity toward the right.  Which force would keep the sled moving at this velocity? 
 
 
Questions 11-13 refer to a coin which is tossed straight up into the air.  After it is released it 
moves upward, reaches its highest point and falls back down again.  Use one of the 
following choices (A through G) to indicate the force acting on the coin for each of case 
describe below.  Answer choice J if you think that none is correct.  Ignore any effects of air 
resistance. 
 

A. The force is down and constant. 
B. The force is down and increasing. 
C. The force is down and decreasing. 
D. The force is zero. 
E. The force is up and constant. 
F. The force is up and increasing. 
G. The force is up and decreasing. 

 
11. The coin is moving upward after it is released. 
 
12. The coin is at its highest point. 

 
13. The coin is moving downward.  (This item is used for the 3rd data set only) 

 
 
Questions for the Force-Motion data with 8 items – the 3rd data set 
(note: only those items addition to the 2nd data set are listed) 
 
Questions 8-10 refer to a toy car which is given a quick push so that it rolls up an inclined 
ramp.  After it is released, it rolls up, reaches its highest point and rolls back down again.  
Friction is so small that it can be ignored.   (the graph is skipped here) 
 
Use one of the following choices (A through G) to indicate the net force acting on the car 
for each of the cases described below.  Answer choice J if you think that none is correct. 
 

A. Net constant force down ramp. 
B. Net increasing force down ramp. 
C. Net decreasing force down ramp. 
D. Net force zero. 
E. Net constant force up ramp. 
F. Net increasing force up ramp. 
G. Net decreasing force up ramp. 
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  8. The car is moving up the ramp after it is released. 
 
  9. The car is at its highest point. 
 
10. The car is moving down the ramp.  
  

 
Questions for the Acceleration data – the 4th data set 
 
Questions 22-26 refer to a toy car which can move to the right or left on a horizontal 
surface along a straight line (the + distance axis).  The positive direction is to the right. 
 
(The graph is skipped here) 
 
Different motions of the car are described below.  Choose the letter (A to G) of the 
acceleration-time graph which corresponds to the motion of the car described in each 
statement.  (note: the horizontal axis represents time while the vertical axis represents the 
acceleration; and the interception between the horizontal and vertical axis is zero.)  
 
You may use a choice more than once or not at all.  If you think that none is correct, answer 
choice J. 
 

A.                                             D.                                       G. 

 
B.                                             E.                                         J.  None is correct.  

 
 
      C.                                              F. 
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22. The car moves toward the right (away from the origin), speeding up at a steady rate. 
 
23. The car moves toward the right, slowing down at a steady rate. 
 
24. The car moves toward the left (toward the origin) at a constant velocity. 
 
25. The car moves toward the left, speeding up at a steady rate. 
 
26. The car moves toward the right at a constant velocity. 
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Appendix B 

 Associations between the Physics Models and the Choices 
 
For the 1st data set – 5 FCI questions on Force-Motion concept 
 
Questions Model 1 Model 2 Model 3 

5 d a, b, c e 
9 a, d b, c e 

18 b a, e c, d 
22 a, d b, c, e N/A 
28 c a, d, e b 

 
 
For the 2nd data set – 4 FMCE questions on Force-Motion concept 
  
Questions Model 1 Model 2 Model 3 

2 d b others 
5 d b others 

11 a g others 
12 a d others 

 
 
For the 3rd data set – 8 FMCE questions on Force-Motion concept 
  
Questions Model 1 Model 2 Model 3 

2 d b others 
5 d b others 

11 a g others 
12 a d others 
8 a g others 
9 a d others 

10 a b others 
13 a b others 

 
 
For the 4th data set – 5 FMCE questions on Acceleration concept 
  
Questions Model 1 Model 2 Model 3 

22 a, b e, f others 
23 a, b f, g others 
24 c a, b others 
25 a, b e, f others 
26 c a, b others 
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Appendix C 

 The BUGS Codes for Estimating Parameters under the Homogeneous, 
Partially Homogeneous, and Heterogeneous AR models                              

(Using the 1st Data Set only) 
 
The BUGS code for the homogeneous model 
 
# Andersen's multivariate Rasch model: 
# the first 99 responses are from the pre-test and the remaining 98 are from the post-test 
#  
# scale fixed by centering parameters for each item around zero & 
# also by centering parameters for each person around zero 
# 
# Model A -- One BUGS run, with the same conditional probabilities and the same                                    
# examinee population distributions for thetas over all subjects & time # points. 
 
 
Model 
 
{ 
    for (j in 1:ni){  
     b[j,1] ~ dnorm(0,1) 
     b[j,2] ~ dnorm(0,1) 
     b[j,3] <- -(b[j,1]+b[j,2]) 
    } 
    
    for (i in 1:N){  
     for (j in 1:ni){ 
       for (k in 1:3){ 
         x[i,j,k] <- exp(theta[i,k] + b[j,k]) 
       } 
       sum[i,j] <- sum(x[i,j,1:3]) 
       for (l in 1:3){ 
         p[i,j,l] <- x[i,j,l]/sum[i,j] 
       } 
       resp[i,j] ~ dcat(p[i,j,1:3]) 
     } 
     theta[i,1] ~ dnorm(0,1) 
     theta[i,2] ~ dnorm(0,1) 
     theta[i,3] <- -(theta[i,1]+theta[i,2]) 
    } 
} 
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#inits 
list(b = structure(.Data=c( 
.1,.9,NA, 
.6,.5,NA, 
.1,.05,NA, 
2.0,2.0,NA, 
.5,2.5,NA), .Dim=c(5,3))) 
 
list(b = structure(.Data=c( 
.8,.2,NA, 
.2,.8,NA, 
.5,.5,NA, 
.2,.2,NA, 
1.5,.5,NA), .Dim=c(5,3))) 
 
#data 
list(N = 197, 
ni = 5, 
resp = structure(.Data = c( 
2,3,3,1,2, 
1,3,3,1,2, 
2,3,3,2,2, 
2,1,1,1,2, 
1,2,3,NA,NA, 
. 
. 
. 
 
1,1,3,1,2, 
2,3,1,2,2, 
2,3,1,2,2, 
2,3,2,1,3, 
2,1,3,2,2), .Dim = c(197, 5))) 
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The BUGS code for the partially homogeneous model 
 
# Andersen's multivariate Rasch model: 
# the first 99 responses are from the pre-test and the remaining 98 are from the post-test 
#  
# scale fixed by centering parameters for each item around zero & 
# also by centering parameters for each person around zero 
# 
# Model B -- One BUGS run, with the same conditional probabilities for all  
# subjects and time points but different population distributions for  
# pre-test response data and post-test response data 
 
 
Model 
 
{ 
    for (j in 1:ni){  
      b[j,1] ~ dnorm(0,1) 
      b[j,2] ~ dnorm(0,1) 
      b[j,3] <- -(b[j,1]+b[j,2]) 
    } 
 
# for pre-test data (t=1) 
 
    for (t in 1:1){ 
      for (i in 1:99){  
       for (j in 1:ni){ 
         for (k in 1:3){ 
           x[i,j,k] <- exp(theta[t,i,k] + b[j,k]) 
         } 
         sum[i,j] <- sum(x[i,j,1:3]) 
         for (l in 1:3){ 
           p[i,j,l] <- x[i,j,l]/sum[i,j] 
         } 
         resp[i,j] ~ dcat(p[i,j,1:3]) 
       } 
       theta[t,i,1] ~ dnorm(mu11,1) 
       theta[t,i,2] ~ dnorm(mu12,1) 
       theta[t,i,3] <- -(theta[t,i,1]+theta[t,i,2]) 
      } 
      mu11 ~ dnorm(0,1) 
      mu12 ~ dnorm(0,1)   
    } 
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# for post-test data (t=2) 
 
    for (t in 2:2){ 
      for (i in 100:N){  
       for (j in 1:ni){ 
         for (k in 1:3){ 
           x[i,j,k] <- exp(theta[t,i,k] + b[j,k]) 
         } 
         sum[i,j] <- sum(x[i,j,1:3]) 
         for (l in 1:3){ 
           p[i,j,l] <- x[i,j,l]/sum[i,j] 
         } 
         resp[i,j] ~ dcat(p[i,j,1:3]) 
       } 
       theta[t,i,1] ~ dnorm(mu21,1) 
       theta[t,i,2] ~ dnorm(mu22,1) 
       theta[t,i,3] <- -(theta[t,i,1]+theta[t,i,2]) 
      } 
      mu21 ~ dnorm(0,1) 
      mu22 ~ dnorm(0,1) 
    } 
} 
 
#inits 
list(b = structure(.Data=c( 
.1,.9,NA, 
.6,.5,NA, 
.1,.05,NA, 
2.0,2.0,NA, 
.5,2.5,NA), .Dim=c(5,3))) 
 
list(b = structure(.Data=c( 
.8,.2,NA, 
.2,.8,NA, 
.5,.5,NA, 
.2,.2,NA, 
1.5,.5,NA), .Dim=c(5,3))) 
 
#data 
list(N = 197, 
ni = 5, 
resp = structure(.Data = c( 
2,3,3,1,2, 
1,3,3,1,2, 
2,3,3,2,2, 
2,1,1,1,2, 
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1,2,3,NA,NA, 
. 
. 
. 
 
1,1,3,1,2, 
2,3,1,2,2, 
2,3,1,2,2, 
2,3,2,1,3, 
2,1,3,2,2), .Dim = c(197, 5))) 
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The BUGS code for the heterogeneous model 
 
# Andersen's multivariate Rasch model: 
# the first 99 responses are from the pre-test and the remaining 98 are from the post-test 
#  
# scale fixed by centering parameters for each item around zero & 
# also by centering parameters for each person around zero 
# 
# Model C -- One BUGS run, different item parameters and population  
# distributions for pre-test response data and post-test response data 
 
 
Model 
 
{ 
 
# for pre-test data (t=1) 
 
   for (t in 1:1){ 
     for (j in 1:ni){  
       b[t,j,1] ~ dnorm(mub11,1) 
       b[t,j,2] ~ dnorm(mub12,1) 
       b[t,j,3] <- -(b[t,j,1]+b[t,j,2]) 
     } 
     mub11 ~ dnorm(0,1) 
     mub12 ~ dnorm(0,1)  
  
     for (i in 1:99){  
       for (j in 1:ni){ 
         for (k in 1:3){ 
           x[i,j,k] <- exp(theta[t,i,k] + b[t,j,k]) 
         } 
         sum[i,j] <- sum(x[i,j,1:3]) 
         for (l in 1:3){ 
           p[i,j,l] <- x[i,j,l]/sum[i,j] 
         } 
         resp[i,j] ~ dcat(p[i,j,1:3]) 
       } 
     theta[t,i,1] ~ dnorm(mu11,1) 
     theta[t,i,2] ~ dnorm(mu12,1) 
     theta[t,i,3] <- -(theta[t,i,1]+theta[t,i,2]) 
     } 
     mu11 ~ dnorm(0,1) 
     mu12 ~ dnorm(0,1)  
   } 
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# for post-test data (t=2) 
   
   for (t in 2:timept){ 
     for (j in 1:ni){  
       b[t,j,1] ~ dnorm(mub21,1) 
       b[t,j,2] ~ dnorm(mub22,1) 
       b[t,j,3] <- -(b[t,j,1]+b[t,j,2]) 
     } 
     mub21 ~ dnorm(0,1) 
     mub22 ~ dnorm(0,1) 
  
     for (i in 100:N){  
       for (j in 1:ni){ 
         for (k in 1:3){ 
           x[i,j,k] <- exp(theta[t,i,k] + b[t,j,k]) 
         } 
         sum[i,j] <- sum(x[i,j,1:3]) 
         for (l in 1:3){ 
           p[i,j,l] <- x[i,j,l]/sum[i,j] 
         } 
         resp[i,j] ~ dcat(p[i,j,1:3]) 
       } 
     theta[t,i,1] ~ dnorm(mu21,1) 
     theta[t,i,2] ~ dnorm(mu22,1) 
     theta[t,i,3] <- -(theta[t,i,1]+theta[t,i,2]) 
     } 
     mu21 ~ dnorm(0,1) 
     mu22 ~ dnorm(0,1)  
   } 
 
} 
 
#inits 
list(b = structure(.Data=c( 
.2,.8,NA, 
.7,.4,NA, 
.2,.2,NA, 
2.5,2.5,NA, 
.6,3,NA, 
.1,.9,NA, 
.6,.5,NA, 
.1,.05,NA, 
2.0,2.0,NA, 
.5,2.5,NA), .Dim=c(2,5,3))) 
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list(b = structure(.Data=c( 
.8,.2,NA, 
.4,.7,NA, 
.2,.2,NA, 
2.5,2.5,NA, 
3,.6,NA, 
.9,.1,NA, 
.5,.6,NA, 
.05,.1,NA, 
2.0,2.0,NA, 
2.5,.5,NA), .Dim=c(2,5,3))) 
 
#data 
list(N = 197, 
timept = 2, 
ni = 5, 
resp = structure(.Data = c( 
2,3,3,1,2, 
1,3,3,1,2, 
2,3,3,2,2, 
2,1,1,1,2, 
1,2,3,NA,NA, 
. 
. 
. 
 
1,1,3,1,2, 
2,3,1,2,2, 
2,3,1,2,2, 
2,3,2,1,3, 
2,1,3,2,2), .Dim = c(197, 5))) 
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