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ABSTRACT

Title of Dissertation: The Stress Field Surrounding the Tip
of a Crack Propagating in a Finite Body

Name of Candidate: Ravinder Chona
Doctor of Philosophy, 1987

Dissertation directed by: Professor George R. Irwin

Department of Mechanical Engineering
University of Maryland, College Park, MD.

The goal of this dissertation was to establish the relationship
between a parameter descriptive of the trajectory of a smoothly
curving crack, such as the curvature of the crack path, and the local
stress state in the close vicinity of the crack tip. The behavior of
fast-running cracks propagating alony straight and smoothly curving
paths in fracture specimens of various geometries was examined using
dynamic photoelasticity and representations of the running crack
stress field were developed in terms of the coefficients of a set of
infinite series, for both opening and shear mode loading conditions.
Analysis of the isochromatic patterns, using local collocation methods
based on this stress field representation, allowed the stress state in
the neighborhood of the propagating crack-tip to be modelled with a
high degree of accuracy and results were obtained for the variations
with crack tip position of both the singular and leading non-singular
stress field coefficients of interest.

The results obtained for quasi-static and rapid crack propagation

under opening mode conditions in a ring segment revealed the



1/2

importance of retaining terms of order (at a minimum) r even when
only the singular term was to be determined accurately. Furthermore,
it was found that the non-singular stress field coefficients varied
similarly in both static and dynamic situations, with some variations
in magnitude that could be attributed to crack speed.

The results from the curved crack experiments also showed
systematic variation of the non-singular terms, but more importantly,
it was found that the instantaneous curvature of the crack path was
related to the magnitude of the Tlowest order non-singular stress
component (the coefficient of the rl/z—term) associated with the local
shear mode of deformation in the vicinity of the tip of the running
crack. Furthermore, the results established that the only singularity
associated with a crack propagating along a smoothly curving path in a
brittle, isotropic material was that associated with the opening mode
stress intensity factor, KI’ and that the shear mode singularity, KII’

was identically equal to zero.
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CHAPTER 1

INTRODUCTION

Trajectory problems in mechanics, such as the problem of
determining the path followed by a particle in a potential field such
that it traverses the distance between two points in the shortest time
(the brachistochrone problem first considered by Bernoulli), have long
been recognised as being complex [1.1]. The problem of prediction of
the crack path in fracture mechanics is no less so, even when
attention is restricted to a two-dimensional planar crack that is
propagating at a constant speed (121,

The solution to the general crack trajectory problem requires:
(a) the computation of the stress intensity factors and other related
stress field parameters for a given crack in an arbitrary body at any
instant in time; and (b) a means of defining the next increment of
crack growth in terms of geometrical parameters that are related to
the previously computed information about the crack tip stress field.
The solution to this problem has been attempted by a number of
researchers for certain special cases, using either closed-form,
quasi-static, analytical solutions, or numerical techniques to compute
the small change of direction for each forward increment of crack
extension based on the maximization of the normal tensile stress ahead
of the crack tip [1.3]. However, little or no attention has been
given to the trajectory curvature, which is a point function of
position alonyg any smoothly curving path.

The aim of the present work is to establish the relationship

between the curvature of the crack path and the stress field in the



local region surrounding the tip of a smoothly curving, precpagating
crack. This will be done by first carefully evaluating the magnitude
of the leading non-singular stress terms in the crack-tip stress field
for cracks propagating along smoothly curving paths in a brittle,
isotropic material, and then examining the curvature of the crack path
relative to the magnitude of both the singular and non-singular stress
tield parameters.

The need for considering non-singular stress field parameters in
addition to the stress intensity factor when modelling the stress and
strain distribution around the tip of a stationary crack in a
finite-sized body is well established [1.4]. Several procedures for
reliably evaluating the parameters of interest from full-field
experimental data have been developed in recent years, and it has been
demonstrated that the influence of non-singular stress terms must be
considered even when attention is restricted to accurate
determinations of the singular term alone [1.5, 1.6].

It has also been shown in a previous study, that the leading
non-singular stress field coefficients vary systematically as a
function of crack length for cracks subjected to opening mode loading
and that the magnitude and variation of these parameters depends on
the shape and in-plane dimensions of the particular geometry beiny
considered. The results obtained have proved useful in formulating
criteria that can be utilized to establish, in a quantitative manner,
the size and shape of the singularity-dominated zone around the crack
tip, which was found to be a small fraction of the distance from the

crack tip to the nearest specimen boundary [1.7, 1.8].



As stated previously, the objective of the present work is to
examine the existence of possible relationships between the magnitude
of the non-singular stress effects local to the crack tip and the path
which the crack tip follows, for cases where the crack is propagating
along a smoothly curving path in a brittle, isotropic material. That
such a relationship may exist is suggested by the following. For a
general curve 1in space, any infinitesmal seyment of the curve can
always be considered as a straight line without loss of generality.
However, successful analytical modelliny of a finite, non-zero
curvature requires a non-zero second derivative for any function used
to describe the curve and the resulting radius of curvature is a point
function of position alony the curve. Thus, a rationale for studying
higher order effects when studying crack propagation alony a curved
path is apparent from a geometric viewpoint.

The approach adopted here has been to use dynamic photoelasticity
and a high speed camera system of the Cranz-Schardin type to obtain
full-field information about the stress state surrounding the tip of a
crack propagating in a plate specimen fabricated from a brittle,
birefringent polymer [1.9]. The resulting information was in the form
of isochromatic fringe patterns, or contours of constant maximum
in-plane shear stress, which provided the data base for further
analyses. Local collocation procedures were then employed, in which
the appropriate stress field representations for running cracks were
combined with a multiple data point, overdeterministic, non-linear
algorithm to obtain the stress field parameters of interest in a

least-squares sense [1.10 - 1,12],



Initial work in this study focussed on opening mode cracking, in
which the crack propagated along an axis of symmetry of the specimen
geometry. This provided a comparison of quasi-static and running
crack propagation behaviors in the same specimen configuration and
allowed higher order term influences to be examined 1in a dynamic
setting. The ability to obtain accurate values for the higher order
terms of interest was also established. Further studies were then
undertaken in which a rapidly propagating crack was initiated from a
starter notch in such a manner that the crack followed a smoothly
curving path as a consequence of non-symmetric loading conditions
remote from the crack tip.

The results from the straight crack experiments showed that the
non-singular stress field coefficients varied in a manner similar to
that obtained for static situations in the same geometry, with some
variations in magnitude that could be attributed to crack speed. The
results from the curved crack experiments also showed systematic
variation of the non-singular terms, but more importantly, it was
found that the instantaneous curvature of the crack path was related
to the magnitude of the lowest order non-singular stress terms
associated with the local shear mode of deformation in the vicinity of
the tip of the running crack. Furthermore, the results suggested that
the only singularity associated with a crack propagating along a
curving path in a brittle, isotropic material was that

smoothly

associated with the opening mode stress intensity factor, K.
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CHAPTER 2
REVIEW OF PREVIOUS WORK

The behavior of cracks under mixed-mode, i.e., combined tension
and forward shear, loading conditions has been studied over more than
two decades by different investigators. Most of these studies have
assumed infinite bodies under quasi-static conditions and confined
attention to the singular stress fields in the immediate vicinity of
the crack tip. For a running crack, the need for incorporating the
effects of inertia is generally acknowledged. The major hesitation in
using dynamic analysis methods to address this problem has been the
increased complexity of the analysis and the difficulties encountered
in determining the crack tip stress field parameters of interest when
consideriny running cracks propagating in finite geometries. Despite
the lack of attention to the problem of interest, i.e., non-singular
stress field influences on a smoothly curving crack propagating
in the plane of a finite body, some useful information can generally
be obtained from quasi-static considerations and a brief review of

previous work on the topic is presented below.

2.1 Studies Based on a Maximum Stress Approach

Farly work by Erdogan and Sih [2.1] wused a maximum
circumferential stress criterion to predict the direction of crack
extension of an angled segment emanating from the tip of an originally
straight crack. Each segment of crack extension was assumed to occur

normal to the maximum hoop stress associated with the original crack



tip and attention was given only to the stress field contribution due
to the mode 1 and mode II stress intensity factors.

A first attempt at incorporating possible influences of
non-singular stresses was the work of Williams and Ewing [2.2], who
considered the influence of the constant stress parallel to the
original crack direction, Ty > O the direction of crack extension of
the angled segment. Later work by Finnie and Saith [2.3] and Streit
and Finnie [2.4] corrected some errors in [2.2] and suggested that an
additional parameter that needed consideration was the distance from
the crack tip at which the maximum circumferential stress occurred
relative to some critical distance, r.. The concept of crack path
stability being governed by Tyy WS also examined by Cotterell and
Rice [2.5], who considered quasi-static crack growth of a slightly

curved crack and used perturbation theory for their analysis.

2.2 Studies Based on an Energy Approach

The principle of maximization of the rate of loss of stress field
energy 1is a concept that generally governs macroscopic deformation
behaviors, and as such 1is often encountered in mechanics. It.s
usefulness for studying crack extension behaviors would therefore be
expected and investigations of crack kinking or crack extension along
non-straight crack paths based on enerygy arguments have also been
pursued.  These generally fall into two broad categories. One is
prediction of the direction of crack extension based upon maximization
of the strain energy release rate [2.6 - 2.10]. The other approach is
to use the concept of minimization of the strain energy density

2:lls 2.2 10



Some attention has also been given to considering the direction
along which the in-plane shear mode singularity, KII’ vanishes
[2.13 - 2.16] for an infinitesmally small segment of crack extension.
However, it has been shown in [2.10, 2.16] that a Ky, = 0 condition is

equivalent to maximization of the strain energy release rate for small

kink angles.

2.3 Studies on Dynamic Crack Curving

Some very early work by yoffe [2.17] and later by Sih [2.18]
attempted to bring into the picture the effects of 1inertia and crack
speed. More recently, a much more detailed study of the dynamic crack
curving problem was performed by Ramulu and his co-workers
[2,1% - 2.25].

The result of this work was a set of criteria that were proposed
for dynamic crack curving based on a maximum circumferential stress
theory and a critical distance concept, similar to that previously
suggested by Streit and Finnie [2.4] for the static case. The
proposed criteria were evaluated using dynamic photoelastic data and

reasonable agreement between predictions and experimental observations

was reported.

Though the work by Ramulu, et al., used dynamic stress field

1/2
expressions, the influence of terms of order r / and beyond was

neglected in this study also. Attention was paid only to the opening

and shear mode stress intensity factors, KI and KII’ and the constant

stress term, o... One immediate consequence of using such a stress
0X

field model, that utilized only a very limited number of terms, was to




presuppose that all of the asymmetry in both the local and far-field
regions around the crack tip was due only to the shear mode
singularity.

In addition, since these investiyators recognised that their
stress field representation was valid only in a region of very limited
size around the crack tip, they proceeded to very carefully perform
the evaluation of their proposed criteria using experimental data
taken very close to the crack tip. In some cases, this meant that the
thickness of the specimens used to obtain experimental data greatly
exceeded the size of the region of data acquisition, resulting in
significant three-dimensional effects that were not considered and
which have been shown recently to result in erroneous evaluations of
the stress intensity factors using other optical methods [2.26].

Consequently, while the work of Ramulu, et al., represents the
first systematic attempt to use full-field information about the
crack-tip stress field and to develop a crack curving criterion that
incorporated the influences of crack speed, the problem was approached
from a very restricted viewpoint and could be considered to sutfer
from certain drawbacks that render the conclusions questionable. The
differences between that work and the results of the present study
will be discussed in more detail in subsequent parts of this

dissertation.

= 10 =
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CHAPTER 3
FULL-FIELD REPRESENTATIONS OF THE CRACK-TIP STRESS FIELD

The work discussed here pertains to the analysis of stress fields

associated with two-dimensional cracks under both static and dynamic,

opening and shear mode loading conditions. It is therefore necessary

as a first step, to develop appropriate expressions for the in-plane
used to

stresses for each case, such that these expressions can be

describe the stress field over a reasonable sized region around the

tip of a crack in a finite geometry. The analysis approach that will

be employed will provide a representation of far-field influences on

the Tocal crack-tip stress field in terms of powers of distance from

the crack tip.

3.1 Opening Mode; Static

It has been shown [3.1, 3.,2], that in order to completely

describe the stress state associated with two-dimensional cracks under

static opening mode Tloading, a generalized form of the Westergaard

equations [3.3] is necessary, This generalization follows from an

Airy stress function of the form

(3.1)

from which,

e e



o = ReZ - yImZ' - yImY + 2ReY (3.7}

I

o = Re7Z + yImZzZ' + y ImY' (3.3)
I

and T = -yReZ' - yRe Y* - ImY (3.4)
Xy

where  7(z) = ‘%; ;(z), I(z) = e iz} Z'{z}) = EE'Z(Z)
5 d % 24y . = 9 wiw
and Y(Z) = ‘d—Z‘Y(Z), Y(Z) i Y(Z)’ Y (Z) 4z Y(Z/

are functions of the complex variable, z = x + iy, and the symbols

'Re' and 'Im' have their usual meaning, i.e., the Real and Imaginary

parts of a complex function, respectively.

For opening mode problems, these functions are subject to the

constraints that Re Z(z) = 0 on the crack faces and Im ¥(z) = 0 along

the crack line. Thus, for a single-ended, stress-free crack, with the

origin of coordinates at the crack tip and the negative x-axis

coinciding with the crack faces, as shown in Figure 3.1, the functions

Z(z) and Y(z) can be represented as

n-1/2 (3.5)

i (3.6)

1
~

o

N

and Y(z)
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where the An and Bm are real constants, and the openinyg mode stress

intensity factor, KI’ is related to AU’ i.e., KI = AU/??l

3.2 Shear Mode; Static

The shear mode counterpart for the static problem can be obtained

by following a procedure similar to that described in References [3,1]

and [3.2], and results in an Airy stress function of the form

Fig = Re Y*(z) + y Im Y*(z) + y Im 7%(z) (3.7)

where the symbols have the same meaning as before and the asterisk has

been used (consistently both here and in subsequent sections) to

distinguish the Westergaard type stress functions for shear mode
loading from those used for the opening mode case.
The resulting expressions for the in-plane Cartesian stress

components can then be obtained as

o = Re Y* - y Im Y*' y Im Z*" + 2 Re Z* (3.8)
. k|
o = Re Y* + y ImyYy* + y ImZ* (3.4)
b4
I
= - e L *' - Im Z* (3.10)
and TxyII Y Re Y y Re Z
For the shear mode problem, the functions Z*(z) and Y*(z) are
subject to the constraints that Im Z*(z) = 0 on the crack faces and
Re Y*(z) = 0 along the crack line., Appropriate choices for Z*(z) and
stress-free crack problem, using the

Y*(z) for the single-ended,

coordinate system of Figure 3.1, are then

e



1*(z) (3.11)

i
~
1
-
[
N

YOS 2 (3.12)

m
m=0

il

and  Y*(z)

The functions Z*(z) and Y*(z) are similar to the functions 7(z)
and Y(z) introduced previously for the opening mode problem. The
desired antisymmetry for shear mode loading 1is obtained through use of
the multiplication factor of i = /=1 and the minus sign has been
introduced solely for computational convenience. The Cn and Dm are

real constants and the shear mode stress intensity factor, KII’ is

related to CO, o€ 5 KII = CU/?;:

3,3 Opening Mode; Dynamic

of a semi-infinite crack translating at a fixed

The problem

speed, c, in the positive x-direction under plane-strain conditions

was first considered by Irwin [3.4]. He showed, that the dilatation,

A, and rotation, w, can be expressed, without loss of generality, in

the form
Lo AW o (1= ) Re (7)) (3.13)
ox ay
and
2
b= B o g(1- %) Iz (3.14)
X ay
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where Xl and AZ are functions of the crack speed, c, relative to the
longitudinal wave speed, c;, and the shear wave speed, c,, in the
material, and z; and z, are velocity-transformed coordinates defined
in Figure 3.2. The terms, 1y and r,, denote a pair of velocity-

coupled, complex stress functions of the variables, Z and Zos

respectively, and are used to separate the dilatational and rotational

components of the stress field. The exact form of these functions for

a particular problem depends on the crack problem of interest, and the
constants, o and g, have to be evaluated after makiny a choice for the

pair, ry and r,, SO as to satisfy the specific boundary conditions on

the problem being considered.

Constructing expressions for the strains, and using Hooke's Law,

it can then be shown that the Cartesian in-plane stress components for

the general elastodynamic problem are

2 2 =
o, = ulall+2y®-K)Remn -28kRemnl  (3.15)
2 ’
o, = wl-a(l+ 37 Rer * 262 e rp (3.16)
2
and Ty * W [-2a 3 Im T} + 8 (1 + %) Imry ] (3.17)

where | is the shear modulus, and the other terms are as previously

defined,

For the static openiny mode problem, it has been demonstrated

[3.2, 3.5] that two independent series stress functions are required
. 1) )

to completely describe the stress field in specimens with finite
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boundaries, one beginning with an inverse-square-root singularity and
the other with a constant term. These were denoted 7 and Y,
respectively, and choices that are appropriate for single-ended,
stress-free, stationary cracks under opening-mode loading were
presented in equations (3.5) and (3.6). A similar approach can be

followed to obtain stress functions suitable for the dynamic

opening-mode problem.

A loyicai first choice, similar to equation (3.5), is to define a

pair of functions, Ty and Ty, such that

with the notation Z1 and 22 being introduced for ease of comparison

with the static analog. The Tleading coefficient, Ay, is once again

related to the opening mode stress intensity factor, K, = AO/Z;; and

the leading term 1S the familiar inverse-square-root stress

singularity. For this choice of Ty and Ty, oy = 0 on the crack

faces, and the symmetry condition (t, = 0) along the crack line

; 2
requires that g = 23 o/ (1%} ).

A second choice, which follows from the above, and which is

analogous to equation (3.6), is to define

- 20 =



(3.19)

where the introduction of the symbols Y, and Y, 1is again for
convenience of comparison with the static counterpart. In this case,

the requirement of traction-free crack faces results in

g = a(1+A22)/2x2, with the symmetry condition being automatically
satisfied by the form of the expressions in equation (3.19).

The remaining constant, a, Can be determined from the definition

of the opening mode stress intensity factor

Ky = lim y2ur cyyle,o (3.20)
r-0

2
as au = (1+>\22) / [4x N - (].+A22) Ts
Superposition of the two solutions given by equations (3.18) and

(3.19) yields a general solution to the constant speed, opening mode

elastodynamic crack problem as

- 21 -



(1+A22) 2 2 Re 7
¢ g [ (142X, %-2,%) Re Z; - — Re
X X 1 "2 1 2 2
I 4/\1)\2 _ (1+)\22)2 1+)\2
2 P o -
" (HQAIZ_AZZ) Re Y - (1+3,7%) Re ¥, | (3.21)
(1+2,%) 42 %
Cea [ - (1+A22) Re 7, + —— Re 7,
I 4A1A2 - (1+)\22)2 ' 1+2,"
2
g (1+A22) Re Y, + (1+2, ) Re Y, } (3.22)
(1+A22) Im 7 2 Im Z
T = { = 2 m 1 + Al m Ly
X I, - (142,97 1
(12,7} *
Im Y, } (3.23)

- 2)\1 Im Yl + —2—)‘2——

These expressions reduce to their static counterpart, equations
The Timit

(3.2)-(3.4), in the limit as the crack speed tends to zero.

as ¢ » 0 must, however, be taken with some care, since terms inside
The static

and outside the braces both go to zero and z; » z, > Z.
= 0 1in

equivalent cannot thus be obtained by simply substituting c

equations (3.21)-(3.23).
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3.4 Shear Mode; Dynamic

The shear mode counterpart to eyuations (3.21)-(3.23) can be

obtained from the following considerations. First, equations

(3.13)-(3.17) are general solutions that are not restricted to the

opening mode crack problem. Second, the major difference between

mode I and mode II stress fields is the antisymmetric nature of the

stress field resulting from shear mode loading.

Analogous to equation (3.11), and a logical first step, is to

select the stress functions, I and Tps @S

The boundary conditions for the mode Il problem require that, for

. A 2y /¢ =
this choice of rp and r,, = ofl+x )/2x,, to make %y 0 alony the
crack line. (The other boundary condition, namely that Ty = 0 on the
crack faces is automatically satisfied by the particular choices for

In this case, the leading coefficient, Cy, is related to

ry and FZ.)

the shear mode stress intensity factor, Kij

The second pair of choices for Ty and T,, which follows from

equation (3.12), and is analogous to equation (3.19) is

m=0

= 93 =



R e e o
. i S assee

= 0 on the crack
In this case . 0 along y = 0 and to make Ty

i1 I
£ inition of the mode I
faces requires that g = gkla/(1+A2 ). The defin

Stress intensity factor

(3.26)
KII = ]1!” VZ‘]T[" T

xy’fFU
r-0

2 2]
yields ay = 23, / (4, - (1+2,7) 71
i 21)-(3.23) can then be
The shear mode counterpart to equations (3.21) sl

written as

o = Z)\Z { (l+2Al 2-/\22) Re Yl* = b2 Re 2
- ™ (3.27)
+ (1423 22,7 Re % = (1+3,°) Re Zp* |
4Al/\2 .
= ZAZ {_ (1+)\22) Re Yl* i - > Re Y2
[
S Il - (140,92 2
* S528
- (1+A2 Re Z;* + (1+,\Z 2) Re Z, J ( )
2 *
T = 2 { - 2A1 Im Yl* it ZAI Im Y,
11 Ay - (143,75
2y 2
1#3,°)
2% Im Z* + L___g._ Im ZZ* } (3.29)
- 1 23,

i ic counterparts,

Unce again, these expressions reduce to their static
i i imit 1s taken

equations (3.8)-(3.10), in the Tlimit as ¢ » 0, if the 1

i i i ion.
with some care, as discussed in the previous secti
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3.5 Some General Observations

It has been pointed out in the preceding discussion that, in each
case, the leading term in each of the series stress functions, 7 and

Z*, provides the inverse-square-root stress singularity generally

associated with a crack-tip stress field and that the coefficient of

the leading term is related to the opening (or shear mode) stress

intensity factor.

The leading term of the cecond set of series stress functions, Y,

gives rise to a constant stress in the direction of crack propayation

for the opening mode case, equations (3.6) and (3.19). In this case

the coefficient, By> is related to the familiar oy, -term in Irwin's

with o = 280-

near-field static equations [3.61s ox

However, the leading term, Dys of the similar set of series

stress functions, Y*, that are used for the shear mode case, does not

influence the stress components Of equations (3.8)-(3.10) and

(3.27)-(3.29). Hence, there is no counterpart to the o  -term for

either a stationary or a propagating crack under pure shear loading

the lowest-order non-singular

conditions., This in turn implies that
1/2

term that influences the shear mode stress field is the r'“-term (the
second term in the series stress function, Z*%).
Since the problems being considered here are all linear elastic
in nature, the general expressions for mixed-mode elastostatic or
elastodynamic problems of cracks in finite geometries can be obtained
by simple superposition of the appropriate expressions for openinyg and
shear modes. A comparison ©of the results obtained here with those

« {5 =



developed by other investigators for the static [3.7] and dynamic [3.8
- 3.11] cases, using complex potentials and eigen-function methods,

reveals that these results are functionally equivalent to those given

in the references cited, after suitable changes of wvariables.

However, the results developed here are computationally efficient to

implement, as will be seen in subsequent sections.

The results obtained for the series coefficients from specimens

that are geometrically similar can often be correlated more easily if

the sories stpess functions; I and ¥, are rewritten using

non-dimensional coefficients. Equations (3.5) and (3.6), for example,

can be rewritten as

A
A A i i
20z) = 2 (@) ME L W)
" g (3.30)
K ) [o o]
I SPYT R N W I
2 W -0
and
o0 B )
A -1/¢ - mo m+l/2 m+l/2
¥lz] = 2 (z/w) We -A-“W (z/W)
" n=0 (3.31)
K ” .
M w2y st (2™
W -
real constants (A" =1)

where the A ' and Bml are nNOW dimensionless
n

and W is characteristic in-plane length dimension, such as the
some

_ 26 -



specimen width. Similar results can also be obtained for each of the

other  series stress functions of  equations  (3.11)-(3.12),

(3.18)-(3.19), and (3.24)-(3.25), with the normalization being

performed with reference to either A0 or CU’ whichever 1is more

appropriate for the particular problem being considered.

3.6 Application to Cracks Propagating Along Curved Paths

ns that have been derived and discussed

The stress field expressio

here all pertain to straight cracks, for which the origin of

coordinates has been placed at the crack tip and the negative branch

of the x-axis coincides with the crack faces. These expressions are

also suitable for the representation of curving crack stress fields,

if the x and y directions are taken as the instantaneous tangent and

normal to the crack path, respectively.  However, the region over

which such a stress field representation would be considered
is small relative to the

reasonable is clearly a region whose s1ze

radius of curvature of the crack path at the point in question. Some

care must therefore be exercised 1n selecting a region for data

acquisition and analysis when using straight crack stress functions

for the study of curving crack problems, to ensure that the radius of

large relative to the size of the

Curvature of the crack path is

region from which data is taken for analysis purposes.  Further

comments on this subject will be made later.
Some estimates of the possible errors introduced by using

curved crack problems have been

Straight crack expressions for

curved crack stress field has a

Provided for cases where the
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closed-form solution [3.12]. The conclusion drawn was that, for the

cases of interest in the present study, namely gradually and smoothly

curving cracks, any errors involved would be small provided that the

guidelines given in the precediny discussion were kept in mind.

3.7 Application to Cracks Propagating at Non-Constant Speeds
general expressions, equations

It was pointed out that the

(3.13)-(3.14), followed from a constant crack speed assumption. Since

the problems of interest may involve crack propagation at non-constant

speads, some discussion on this subject fs in oruer.

The constant crack speed assumption and the consequences of

removing this restriction have been studied by several investigators
from an analytical viewpoint [3.13 - 3.17]. An excellent discussion
on the subject has been provided recently by Freund, in which he
argues that since the equation of motion for the crack is a first

order djifferential equation in Terms of crack speed, the crack
velocity (and not the acceleration) changes 1in phase with the
crack-tip driving force [3.18] (In physical terms, this s
equivalent to the statement that the crack-tip singularity field is
massless and has zero inertia.} ThiS allows variations in crack speed

without violating the validity of the stress

a constant crack speed assumption,

aS a function of time,

field expressions derived from

depend only on the instantaneous crack

Since these expressions

velocity
in mind that the crack propagation

It should also be kept

involve continously propagating cracks

Problems of interest here all
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under remote mechanical loading conditions. — Any changes 1in crack

speed that do occur thus take place in a gradual manner and not

abruptly or discontinously, as would be the case in impact or

explosive type loading conditions. If some care is exercised to

ensure that the crack-tip stress pattern of interest for analysis

Purposes is one that is in fact changing gradually with time, it would

appear from the above discussion that equations (3.21)-(3.23) and

(3.27)-(3.29) can be used to describe the running crack stress field

Without error, even when the crack speed is not constant.

cks Propagating in Plate Specimens

3.8 Application to Cra

The general expressions for the stress field, equations

(3.13)-(3.17), were obtained assuming plane-strain conditions. If the
crack is propagating in a plate, the stress state of interest (removed
from the jmmediate vicinity of the crack tip) becomes one of
Plane-stress. In this instance, the longitudinal wave speed, c,,
should be replaced by the plate wave speed, Cp, when carrying out the

Ve]()Cit)"d(?ID(Er1dent coordinate transformations defined in Figure 3.2.
When experimental data is obtained using either surface
Measurements or through-thickness averaging techniques, it is also
Necessary to exercise some degree of care in selecting a region for
data acquisition, to ensure that all data pertain to generalized

Plane-stress conditions.  This imposes a restriction that data be
half the thickness of the

taken no closer to the crack tip than one-

Plate [3,19].
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CHAPTER 4

DETERMINATION OF CRACK-TIP STRESS FIELD PARAMETERS
FROM PHOTOELASTIC DATA

Dynamic photoelastic experiments provide full-field experimental

data for the stress state in a large region around the tips of running

cracks for both straight and curving crack situations. Plate

Specimens fabricated from a transparent, birefringent polymer were

placed such that the plane of the specimen would be perpendicular to

the optical axis of a high—speed, Cranz-Schardin camera system 4.1

4.2, which provided a sequence Of photographs of the stress field in

the specimen during the course of the crack propagation event.

The stress field information was obtained 1in the form of
of constant maximum in-plane

Isochromatic fringes, 1.€., contours

in terms of the in-plane Cartesian stress

shear stress, Ty 91Ven
components by
d
. o s, 2 M (4.1
L - [ (oy GX) Ty )

This was in turn related to the governing optical equations for
isochromatic fringe patterns through the stress-optic law

_Nf /¢t (4.2)
2 Thax N f g

Where N js the photoelastic fringe order at the point of interest,

: . g e i i 1 materi
fo is the fringe sensitivity of the birefringent model m erial, and t

is the model thickness.

7



and Tt developed 1in

T o .
he appropriate expressions for Oy Oy Xy®

terms of the infinite series stress functions, Z, Y, 7*, and Y*,

discussed in the previous chapter, were used with equations (4.1) and

(4-2) to express the experimentally determined isochromatic fringe

order at any point in the field in terms of the unknown coefficients,

An’ Bm’ C,» and Do the known crack speed, ¢, and the position
m
coordinates (r,e) of the point in question. (A detailed derivation of

the expressions for the stress components has been provided in

Appendix A.) The stress field parameters of interest were then

determined using local collocation procedures as described below.

4.1 Parameter Determination Methodology
e application of the local collocation method

The first step in th

to the analysis of a given isochromatic fringe pattern was to define a

region around the crack tip for analysis purposes, extract a large
number of jndividual data points distributed over the entire region,
and determine the coordinates and fringe order at each data point.
These data points were then used as inputs to an over-determined

relating the fringe order and the

System of non-linear equations

series coefficients, and solved 1in 4 least-squares sense for the

best-fit cet of unknown coefficients, following the procedures

Outlined in [4.3 - 4.5] The mathematical details of the procedure

Note that care was taken to exclude data

are given in Appendix B.
he plate thickness of the crack

points that would 1ie within one-nalf t

d in [4.6]. Otherwise, the only factor

tip, for the reasons discussé

In data point selection was fringe clarity.
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A given data set was analyzed using the computer programs listed

in Appendix C. Sequential addition of terms to the truncated form of

the power serjes representation of the stress field provided

successively higher order stress field models, starting with a model

of order 2, and increasing in steps of one until convergence of the
The relationship between the

rP,

results to stable values was obtained.
order of the analysis model, J, and the highest power of radius,

retained in the series stress field representation is given by

A model of order 2 would therefore retain terms up to

B = {d-2}r2,

FO, i.e., AO CO and BO; a model of order 3 would retain terms up to
1/2 .
r i d C,; a model of order 4 would retain

s 185, AO’ CO’ BO’ Al’ an 1
terms up to rl, fiotes N S5 Bys Ais Cys By and D5 and so on.

The highest order model which was needed for a particular data

set depended upon the ¢jze of the data acquisition region and the
distance from the crack tip to the boundaries of the specimen,
Obvious]y, the coefficients of the two series Z* and Y* (Cn and Dm)
entered into the analysis only when the crack was propagating along a

non-straight path.
The average fringe order error, |aN|, for a data set with a total
fined in this study as the average difference

Of K points, has been de
between the specified (input) fringe order, N,, at a given point and
computed from the best-fit set of

the fringe order (at the same point)

This quantity was computed for each analysis model

coefficients, Nc'

Trom

- 36 =



EIREEE S LT (4.3)

and used as a measure of the quality of the fit between the

experimental input data and the computed best-fit coefficient set.
The behavior of |AN| as a function of the order of the analysis model
Was then examined and was typically found to stabilize to a value
between 2% and 5% of the average input fringe order once the stress

field had been modelled well over the region of data acquisition.

The behavior of the leading coefficients of each series was also

examined and showed similar, stable behavior once a good fit had been

achieved.  Finally, each of the coefficient sets computed by the

analysis algorithm was used to reconstruct the fringe pattern over the

region of data acquisition so as to visually confirm that the stress
state around the crack tip had in fact been properly modeled by the
This eliminated the

analysis model selected as being "correct"”.

POSsibility of "false" solutions which can sometimes occur [4.7].

The techniques described above were used to analyze each of the
Crack-tip isochromatic fringe patterns that were obtained from the
dynamic photoelastic experiments. Two illustrative examples, the
first for a straight crack and the second for a curving crack, are

discussed below in more detail.

1 -- Straight Crack

4.2 Illustrative Example No. 1 ==
d above 1is illustrated here through the

The methodology outline

analysis of a crack propagation experiment performed using a 1/2-inch

-



(13 mm) thick ring segment fabricated from Homalite 100 [4.8], a

brittle polymer that has been used extensively in dynamic photoelastic

studies of fracture [4.2]. A total of 16 flash photographs of the

isochromatic fringe patterns associated with the running crack were

available over a range of crack lengths varying from a/W = 0.19 to

a/W = 0.90 for the particu]ar experiment selected for analysis from

the data available in [4.8].

Figure 4.1 shows the isochromatic pattern 145 us after crack

initiation. The crack tip at this particular instant was located at

an a/W of 0.52, and the crack speed, as determined from the slope of

the crack position versus time record, was constant at 15,000
inches/sec (375 m/s; c¢/Cy = 0.31). A total of 60 data points were
taken for analysis purposes from within the circular region of radius
0.75 inches (19 mm; 0.15W) which has been marked on the fringe pattern
in the figure. Note that no data Were taken closer than 1/4-inch
(6 mm) from the crack tip so as to ensure that all data points would
lie within a region of generalized plane stress [4.6].
This data set was input 1o the least-squares algorithm and
analyzed using successively higher order stress field representations
gure 4.2 shows the behavior of the error term

as discussed earlier. Fi

and of the leading series coefficients, Ag,

defined in equation (4.3)
of the analysis model was increased from two

By, and A,, as the order

19

(AO’ BO) to six (AO’ BO’ Al, Bl’ AZ’ BZ
pefore stabilizing to a value of about 3%

). The error term can be seen

to decrease monotonically

increasing order of analysis model is also

and stabilization with
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readily apparent for the singular and leading non-singular
coefficients also.

Figure 4.3 compares the experimental fringe pattern over the data
acquisition region with the computer-generated fringe patterns
corresponding to the best-fit coefficient set from each order model.
It can be seen that a model of order six is required before the
reconstructed pattern fully matches the salient features of the input
experimental pattern. The same conclusion would also be reached from
an examination of the error term in Figure 4.2.

Other noteworthy observations that can be made are as follows:

(a) The inner set of closed isochromatic fringes in Figure 4.3
show little change in size, shape, and orientation between models of
order 4 through 6. This is to be expected since additional
non-singular terms would have greater effects on the far-field
features of the stress field.

(b) Examination of Figure 4.2, and the same data presented in
tabular form in Table 4-1, shows that the singular term, AO, changes
by a significant amount when the rl/z—term is retained 1in the
analysis, but changes by less than 1% beyond a third-order model.
This illustrates the importance of retaining terms of (at least) order
rl/z when attempting to accurately determine even the singularity
alone from photoelastic data and is in agreement with the conclusions
arrived at previously frbm the study of stationary cracks for a

variety of geometries and loading conditions [4.7] as well as optical

methods other than photoelasticity [4.9, 4.10].
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xamination of Figure 4.2 and Table 4-1 shows that
1/2

(c) Further e

the changes in the coefficients of rO and r are small (of the order

of 5% or less) once the analysis models are of order 4 and order 5,

respectively. Reasonably accurate determination of a specific

non-singular stress term is thus obtained once the analysis model

retains at least one additional coefficient beyond the coefficient of

interest in the particular series. This is not surprising, since it

amounts simply to a restatement of a basic principle in numerical

analysis, i.e., the coefficients of an infinite series which has been

truncated at some point can be determined with reasonable accuracy

only up to the term preceding the point of truncation; the last term

absorbs a substantial portion of the error due to truncation.

4.3 I1lustrative Example No. 2 == Curving Crack

ermining the crack-tip stress

While the basic methodol0ogy for det

field coefficients does not change when analyzing photoelastic

at are propagating along curved paths, there are

that need to be kept in mind,

patterns for cracks th

certain special considerations
particularly with regard to selection of a region for data

acquisition. A discussion similar to that of the previous example is

therefore presented below for the case of a smoothly curving crack.

s the crack-tip isochr

shaped specimen under biaxial loading

Figure 4.4 show omatic fringe pattern for a
crack propagating in a cross”
(4.11], and the particular pattern is Frame 12 from a set of 20 high
speed photographs of the runniny crack stress patterns. The asymmetry

y apparent for this case. The crack was

of the pattern is readil
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propagating at a constant speed in the specimen, which was fabricated
in this instance from a 3/8-inch (10 mm) thick sheet of Homalite 100.
The crack speed was determined to be 16,000 inches/sec (415 m/s;
c/cy = 0.33).

The data acquisition region selected for analysis purposes had a
radius of 1/2-inch (13 mm) and is marked on the fringe pattern of
Figure 4.4. The size of the data acquisition region was selected so
that it would provide adequate information about higher order term
influences (based on previous experience) while simultaneously beiny
of moderate size relative to the local radius of curvature of the
crack path, which was of the order of 5 inches (127 mm) in this
instance. The moderate size of the data acquisition region relative
to the local radius of curvature of the crack path allowed the
straight crack stress field expressions developed previously to be
utilized without significant error. The crack-tip coordinate system
was oriented so that the x-direction would correspond to the local
tangent to the crack path, which was established from a post-mortem

examination of the specimen.

A total of 60 data points distributed over the entire region were

selected to form the data set for analysis purposes. However, care

was taken to avoid (a) data closer to the crack tip than about
one-half the specimen thickness (5 mm) as well as (b) data from the
fringes that were very close to the curved crack boundaries, where the
assumption of a locally straight crack would not be valid.

This data set was then analyzed sequentially with models whose

order ranged from two (A,, Cy, By) to six (Ags Cgp» Bp> Ars Cps By Dy
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The changes in the fringe order error with an

A G B D

z» 2y 2 2)'
increase in the order of the analysis model were then examined and
showed the behavior illustrated in Figure 4.5, which also shows the
behavior of the leadinyg coefficients of the series stress functions.
The error term stabilized to an error of about 4% of the averayge input
fringe order once the stress state had been modeled well over the
region of data acquisition. The leading coefficients of each series
were also found to stabilize once a good fit had been achieved and
this is also shown in Figure 4.5.

Each of the coefficient sets obtained from the analysis was used
to reconstruct the fringe pattern over the region of data acquisition
and the results are shown in Figure 4.6. The model of order 5 can
easily be seen to match the salient features of the stress field over
the region of data acquisition; a conclusion similar to that available
from an examination of the behavior of the error term in Figure 4.5,

Comments were made in the discussion of the straight crack
example regarding the need for retaining terms of order rl/z, even
when trying to determine only the singular coefficients, as well as
the need for retaining at least one term in each series beyond the
point of immediate interest 1if reliable and accurate results were
desired. Examination of the results for this particular example,
shown graphically in Figures 4.5 and 4.6 and in tabular form in Table

4-2, shows that the same comments also apply to the parameter

determination problem for curving cracks.
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TABLE 4-1

PARAMETER VALUES COMPUTED FROM SUCCESSIVE ANALYSIS MODELS

FOR THE STRAIGHT CRACK EXAMPLE (FIGURE 4.2)

ORDER OF MODEL (HIGHEST POWER OF r RETAINED)

PARAMETER
2 (9 3y 4l 5 (Y% 6 (rP)

Ay (psi-int/?) 206.9 214.7 216.2 216.2 215.7
% of Final Value 95.9% 99.5%  100.2%  100.2%  100.0%
By (psi-in®) 61,5 82.4 97.7 96.7 94. 4
4 of Final Value 65.1% 87.3%  103.5%  102.4%  100.0%

el , 5

A; (psi-in"t/%) _168.2  -308.9  -327.2  -320.5
% of Final Value 52.5% 96.4% 102.1% 100.0%
|aN| 7.5% 5.1% 3.2% 2.7% 2.7%
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TABLE 4-2

PARAMETER VALUES COMPUTED FROM SUCCESSIVE ANALYSIS MODELS

FOR THE CURVING CRACK EXAMPLE (FIGURE 4.5)

ORDER OF MODEL (HIGHEST POWER OF r RETAINED)

PARAMETER
2 (% 3% e s (P
Ay (psi-in'/?) 603.8  597.3  588.1 590. 4
% of Final Value 102.3%  101.2%  99.6%  100.0%
Co (psi-in'/?) 43.2 44.8 29.2 32.0
% of Final Value 135,04  140.0%  91.3%  100.0%
By (psi-in”) 272.7  310.5  295.1 301.5
% of Final Value 90.5%  102.9%  97.9%  100.0%
Ay (psi-in™1/?) 226.8  -53.9  -39.5
% of Final Value 574.2%  136.5%  100.0%
¢, (psi-in™/?) 242.8  291.3  265.8
% of Final Value 91.3%  109.6%  100.0%
23.8% 6.1% 3.7% 3.5%

[aN|
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Figure 4.1

RING SPECIMEN;a/W=0

52;¢/c,=0.3I

The crack-tip isochromatic fringe pattern recorded 145 us
after rapid crack initiation in a ring segment. The crack
tip is located at a/W=0.52 and the crack is propagating at
a speed of 15,000 inches/sec (c/cp=0.31). The dashed
circle indicates the region of data acquisition,
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RING SPECIMEN; a/W=0.52
c=15000in/s; c/c,=0.3I
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Figure 4.2 The changes with increasing order of analysis model in the

error term and leading series coefficients from local
collocation analyses of the fringe pattern of Figure 4.1.
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RING SPECIMEN;a/W=0.52;c/c,=0.3I

6 PARAMETER EXPERIMENTAL

Figure 4.3 The experimental fringe pattern over the data acquisition
region of radius equal to 0.75 inches and the
reconstructed (computer generated) isochromatic patterns
corresponding to successively higher order analysis
models.  The 2 Parameter (2nd Order) Model retains terms
upto r0, the 3 Parameter (3rd Order) Model retains terms
upto r / , and so on.
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Figure 4.4

The crack-tip isochromatic fringe pattern recorc=: -54 ys
after rapid crack initiation for a crack propagating alonyg
a curved path in a biaxially-loaded, cross-shaped specimen
(Frame 12 from Experiment 11). The crack is propagating
at a constant speed of 16,000 inches/sec (c/cp=0.33) and
the circle shows the region used for data acquisition
purposes.
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Figure 4.5 The chaqges with increasing order of analysis model in the error term and leading series
coefficients from local collocation analyses of the fringe pattern of Figure 4.4,
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Figure 4.6

4 PARAMETER

S5 PARAMETER EXPERIMENTAL

The experimental fringe pattern over the data
0.50 inches and the reconstructed (

successively higher order analysis models.
upto rO, the 3 Parameter (or 3rd Order)

acquisition region of radius equal to
computer generated) isochromatic patterns corresponding to

The 2 Parameter (or 2nd Order) Model retains terms
Model retains terms upto r , and so on,



CHAPTER 5
RESULTS FOR CRACK PROPAGATION
UNDER OPENING MODE AND COMBINED LOADING CONDITIONS
The techniques for determining the stress field parameters of
interest from photoelastic fracture patterns that were described in
the previous chapter were used to analyze experimental data pertaining
to both straight and curving cracks. The results obtained from the

analyses are described in the following sections.

5.1 Results for Crack Propagation Under Opening Mode Conditions

A crack propagation experiment performed using a ring segment
with the geometry and loading shown in Figure 5.1 provided a total of
16 high speed photographs of the isochromatic fringe patterns
associated with the running crack [5.1]. The cspecimen was fabricated
from 1/2-inch (13 mm) thick Homalite 100 sheet and the fringe patterns
were recorded using a Cranz-Schardin type camera system 1 5.2 L

In the particular experiment selected from [5.1] for analysis
purposes, the running crack was initiated from a blunt starter notch
at a crack Jlength to specimen width ratio of ao/w = 0.10 and
propagated ccntinously across the specimen without arresting.  The
crack speed shortly after initiation was determined from the slope of
the crack position versus time record as being 15,000 inches/sec
(375 m/s; c/c2 = 0.31). The crack propagated at this velocity for
about 165 pusec until an a/W of 0.56, after which the crack speed
gradually decreased in the last phases of crack propagation to about

4,000 inches/sec (100 m/s; c/c, = 0.08). Experimental data was thus
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obtained from a single experiment over a wide range of crack lengths
(a/W = 0.19 to a/W =0.90) and crack speeds (c/c2 = 0.31 to
cfcy = 0.08).

The analysis procedure followed for one frame from this
experiment was discussed at some Tength in the previous chapter
(Section 4.2). The same techniques were applied to each of the
sixteen frames in the set and results obtained for the stress
intensity factor, KI’ and for the leading non-singular stress terms,
and Ay, as functions of the crack tip position in the specimen.

The analyses required retention of terms ranging from r1 to rS/Z,

B

depending on the size of the region used for data acquisition purposes
and the distance from the crack tip to the specimen boundaries. The
number of data points for each fringe pattern varied between 40 and
60. As discussed previously, stability of the fringe order error and
the leadinyg stress field coefficients (KI and BO) was the primary
measure used to decide when the stress state was beiny adequately
modelled over the region of data acquisition. The quality of the
match was confirmed for each case by reconstructing the fringe pattern
corresponding to the computed set of coefficients and comparing it
with the experimental data.

Figure 5.2 shows the results for the instantaneous crack-tip
stress intensity factor as a function of a/W. A decreasing K-field is
typical of this particular geometry and loading combination [5.3], and

K. is seen to decrease monotonically from an initially high value to

I
essentially a constant as the crack propagated across the specimen and
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the cr
ack speed decreased from its initial high value to the rath
er

Tow s
peeds recorded during the 1ast few frames.

Th , . . 5 : 3
e variation with crack position of the two leading non-singular

term
S (expressed in dimensi
ssed in dimensionless y : i
form), B, and A", 1S shown in

Figure
s 5.3 and 5.4, respective]y. In both cases, the parameters in

questi i
on are seen to vary in a systematic fashion as the crack length

1nCr‘ea
g . P
es and their general trends are similar to previous results for

stati i
onary cracks in other specimen geometries [5.4, 5.5] The

influy .

ence of the approaching specimen boundary is readily apparent
from

the rather rapid changes in the non-singular terms that take
t 0.8 and the changes in sign and trends

]
Place beyond an a/W of abou

' 4t short crack lengths (a/W = 0.3 or less) are

f
or both B,' and A;
jons also [5.6, 5.71.

0
consi 5
istent with previous observat

5,2
5.2 Results for Cracks Propagating Along Curved Paths

with the geometry shown in

A cross-shaped fracture specimen

Fi i
gure 5.5 had been designed previously for the purpose of studying

¢ under biaxial
applied parallel to the axis of

crach ) X i
ck propagation behavior loading conditions [5.8].

load, Qs
d naturally resuit in a ¢

and cause a rapidly propagating

An
Y eccentricity in the
ombined tension

sym
ymmetry of the specimen, Woul

and .
forward shear loading conditiof

ath. Arrangements were therefore made

Cra
ck to follow a non-straight P

e University of Rhode Island to test a series

Wi
th Dr. A. Shukla of th
i€ bjaxial loading, to obtain the

under eccentr
eeded for detailed analysis.

designated Experiments 11

of
such specimens

d .
ynamic photoelastic data n

The results from two such experiments,
lected for analysis and discussion in the

and
12, respectively, were S€
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present study. The specimens in both cases were fabricated from
3/8-inch (10 mm) thick sheets of Homalite 100 and a Cranz-Schardin
camera was once again used to obtain high speed photographs of the
isochromatic fringe patterns around the tip of the propagating crack.
A sequence of frames showing the changes with crack propagation
in the crack tip fringe patterns from each experiment is shown 1in
Figures 5.6 and 5.7 for Experiments 11 and 12, respectively. In both
cases the fringe patterns show considerable far-field asymmetry,
indicating the presence of a substantial shear mode influence. The
major difference between the two experiments was the magnitude of the
tensile load, Q, applied parallel to the original crack line, with the
load, P, applied normal to the initial crack direction being
essentially the same in both experiments. Experiment 11 had a large,
biaxial tension (about 50% of P), while Experiment 12 had only a small
tensile load (about 10% of P) applied parallel to the initial crack
direction. The fringe patterns recorded in each case confirm this
observation, with the fringes of Experiment 11 (Figure 5.6) showing
the strong backward-lean characteristic of this type of loading [5.9].
In both experiments, rapidly propagating cracks were initiated at
load levels that were high enough to produce crack propagation at an
essentially constant speed of 16,000 inches/sec (400 m/s; c/c2 = 0.33)
over the period of observation. This was one factor in selecting
these two experiments for analysis purposes, since it was considered
desirable to be able to study the non-singular effects on the local

crack-tip stress field and the path followed by the propagating crack
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Without introducing possible additional complexities due to variations

in the crack speed.
The path followed by the propagating crack in each experiment is
shown in Figure 5.8 for the portion of the crack propagation that was

Within the window of observation of the camera system. The position

along each crack trajectory has been defined in terms of normalized
coordinates, X/W and Y/W, oriented along the axes of symmetry of the
Specimen, with the origin located at the starter crack tip, as shown

in Figure 5.5.

Post-mortem examination of the fractured specimens showed that
the crack propagation event occurred without the intervention of any
(This was consistent with the crack-tip

uent analyses and tre magnitudes of

attempts at branching.

K-values obtained from the subsed
both the primary and biaxial loads, P and Q, applied in each case
[5.81.) The resulting fracture surfaces were smooth and the crack
to the plane of the specimen.

Plane remained perpendicular
eriment was traced and this

The crack trajectory for each exp

to digitize the position coordinates of

trace was then used
starting at the tip of

dPproximately 100 points along each crack path,
the starter notch, and continuing well beyond that portion of the
omatic fringe pattern

This digitized description of each crack path was then used to fit a
2
of the form, Y= F(X) =3 ¥ )k + apk

data was available.
Crack path for which isochr

+

4th order polynomial
3 j i dard Tleast-squar

a3X + a4x4, to each crack trajectory using stan quares

obtained, which was then available

techniques. An expression was thus
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to compute the slope of the tangent to the crack path for purposes of
orienting the crack-tip coordinate system used to perform subsequent
analyses of the photoelastic data. Calculations of the curvature of
the crack path as a function of position alony the trajectory were
also made using the polynomial expression, both to ensure that the
size of the data acquisition region(s) used would be moderate relative
to the instantaneous radius of curvature of the path, and to provide
the curvature information that was desired for further studies.

The isochromatic fringe patterns recorded in each experiment were
analyzed using the Tlocal collocation method for parameter
determination that was presented and discussed in the previous
chapter, in which Frame 12 from Experiment 11 was discussed in some
detail as a representative example. Results were thus obtained with a
high degree of confidence for the mode I and mode II stress intensity
factors, KI and KII’ associated with each fringe pattern, as well as
for the leading non-singular stress terms, BO’ Al’ and Cl‘

The data acquisition regions used varied in radius between 1/2
and 3/4 inches (13 to 19 mm) and care was taken to keep the size of
the data acquisition region moderate relative to the radius of
curvature of the crack path, which ranged from 4 to 10 inches (100 to
250 mm) for the two experiments. Data points were not taken very
close to the curved crack boundaries and a region of radius equal to
one-half the specimen thickness (3/16 inch or 5 mm) was excluded for
data acquisition purposes, for the reasons discussed previously. The

number of data points digitized ranged between 50 and 60 for each
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fringe pattern and terms of order r3/2 were found to be required

before a good match was achieved between computed and experimental

Stress states over the reyion of data acquisition.

Figure 5.9 shows the values of Ky and Kpg determined from local

collocation of the the dynamic isochromatic fringe data for the two
experiments. The results have been shown as functions of the time

after rapid crack initiation, since the cracks propagated at a

constant velocity in both experiments, but followed different paths.
intensity factor, Ky, was found to increase

The opening mode stress
Monotonically as the crack propagated into the specimen, changing from
about 1300 psiy/in to about 1600 psivin in a time span of about
175 ysec. This result is consistent with the results one would expect

straight across 2 specimen of this

If the crack had propagated
p, equal to that used in these

Yeometry with an initial applied load,

two experiments [5.8].
mode stress intensity factor,

The calculated values of the shear
ned constant and very close to zero

K> on the other hand remai
ated values that ranged between 2% and 5% of

throughout, with calcul
crack trajectories and changes in

the instantaneous Ky
different in the two

Curvature of the crack paths Were significantly
felt to be particularly interesting

€Xperiments, this result Was
t has been made by other investigators

relative to the assumption tha
is the sole

and the major source of the strong

determinin crack
[5.10]) namE]y that KII faCtor .

Propagation along a curved path

d in fringe patterns such as those presented

aSymmetry that is observe

= BY =



here. The possibility that Kjp was in fact identically zero will be
discussed in more detail in the next chapter.

The results for the normalized opening mode constant stress term,
BOI’ are presented in Figure 5.10. As expected, the results for
Experiment 11 correspond to a large remote tension parallel to the
original starter notch, though BO' does decrease as the «crack
propagates. In Experiment 12, on the other hand, the remote tension
applied prior to rapid crack initiation was smail, and BO' remains
small, positive, and essentially constant over the period of
observation. Note that no results are presented for the corresponding
term, DO’ from the shear mode series stress field representation,
since this term makes no contribution to the stress components.

Lie in the openiny

The results for the normalized coefficient of r
mode series stress field representation, A;', are shown in Figure
5.11. The results from both experiments follow the same trends, with

A,' starting out at small, positive values and changing steadily to

1
larger, negative values as the crack propagates into the specimen.

The normalized shear mode stress field coefficient of rl/z, Cl',
behaves somewhat differently than its opening mode counterpart, as
shown in Figure 5.12. The computed value for Cl' is seen to increase
rather rapidly during the initial stages of crack propagation in
Experiment 11, reaches a maximum and then decreases steadily 1in
magnitude to a final value that is about the same as it had initially.

In Experiment 12, this coefficient behaves somewhat differentiy, with

the results showing that it only undergoes small changes as the crack
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propagates. The sign of the coefficient remains positive throughout

in both cases and the coefficient magnitude is comparable with that of

All‘

Note that the results for Cl' have been normalized with respect

to the magnitude of the opening mode singularity term, AO’ rather than

With respect to the corresponding shear mode term, CO. This has been
done partially so that the values can be more easily compared in

mMaynitude to the results for Al', and also because the instantaneous
values of C, (or KII) were found to be uniformly small compared to
AO (or KI)' The choice of AO as a normalizing factor 1is not
inappropriate, even though the coefficient being discussed 1is
associated with the shear mode stress field, since the purpose of this
Part of the normalization procedure is simply to scale the stress
state at two different instants in time (or two different crack tip
locations) with respect to the overall magnitude of the stress field.
A characteristic length dimension is also needed for normalization
and this was taken to be the specimen

Purposes (see Section 3.5)

for both opening and shear mode

Width, W = 11.5 inches = 292 mm,

Stress field coefficients.
he leading non-singular coefficients

In summary, the results for t
or the curving crack

Of both the opening and shear mode stress fields f
howed a behavior similar to that

Cases that have been presented above S
on, in that these

Obtained previously for opening mode crack propagati
Coefficients were once again found to be smoothly varying functions of
time (or crack tip position). The results for the opening mode stress
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intensity factor were similar in the two cases considered, which is
consistent with the geometry and loading that was employed in the two
experiments. The results for the opening mode constant stress term,
BU', while they were different for the two experiments, were also
consistent with the initial biaxial loading conditions. The
rl/Z component of the opening mode stress field, Al', was found to
have similar values for the two experiments. The shear mode
counterpart, Cl', while it had a magnitude comparable to the opening

mode term, showed a distinctly different behavior for the two cases

presented.
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RING SPECIMEN

of the ring segment used to study

Figur
e 5.1 The geometry and loading
rapid crack propagation under opening mode conditions.
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EXPERIMENT 11

FRAME 16, t=190 us FRAME I7,1=201 us FRAME 18, t=212 us

Figure 5.6 A sequence of frames recorded using a Cranz-Schardin
camera showing the stress field surrounding the rapidly
propagating curving crack of Experiment 1l.
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EXPERIMENT 2

FRAME 10, t=86.5 us FRAME 12, t=151.5 us

FRAME 13,1=158.0 us FRAME 14,t=167.0 us FRAME 15, t=176.5 ».s

) “"
' A

:.Lc/ . C(/A

FRAME 16, 1=183.5 us FRAME 18,1=212.5 us FRAME 19, t=231.5 us

Figure 5.7 A sequence of frames recorded using a Cranz-Schardin

camera showing the stress field surrounding the rapidly
propagating curving crack of Experiment 12.
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CHAPTER 6
DISCUSSION OF RESULTS

Stress field representations suitable for modelling the stress

field surrounding the tip of a crack in a finite-sized body were
developed in Chapter 3 of this dissertation for both stationary and
Funning cracks, under opening mode or combined loading conditions.
Techniques for determining the crack-tip stress field parameters of
Interest from full-field experimental data were presented and their
application to dynamic photoe]astic fracture patterns was discussed in
Chapter 4, The ability to model the stress state in a large region
around the tip of a propagating crack with a high degree of confidence
and accuracy was demonstrated for both straight and curving cracks,
and the advantages of adopting a careful and systematic approach to
the analysis of running crack stress fields were readily apparent from
1Mustrations such as Figures 4.2, 4.3, 4.5, and 4.6.
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6.1 Higher Order Terms in Static and Dynamic Situations

It was pointed out in the Introduction that it was desired to
compare quasi-static and running crack propagation behaviors so as to
allow the influence of higher order terms to be examined in a dynamic
setting. The results for the variation with crack tip position of the
coefficients of the lowest-order, non-singular stress terms (rO and
rl/z), B(J and Al’ were presented in the previous chapter (Figures 5.3
and 5.4) for a crack propagating across a ring specimen with the
geometry shown in Figure 5.1.

A photoelastic model with the same geometry and loading was
prepared and the crack extended in a quasi-static manner by a series
of sawcuts over the range of crack lengths from a/W = 0.10 to
a/W = 0.90, in increments of 0.10. The isochromatic fringe patterns
associated with each crack tip location were recorded and analyzed
using the techniques discussed earlier, to obtain up to the first six
coefficients of the series stress field representation of equations
(3.5) and (3.6), in a manner similar to [6.1].

Figures 6.1 and 6.2 compare the results for the normalized
coefficients, BO' and Al‘, from the static and dynamic experiments.
The strong influence of the specimen boundaries on the local crack-tip
stress field is apparent for very short (a/W < 0.3) and very deep
(a/W » 0.8) crack lengths and the variations with crack position of
these coefficients can be seen to be similar in both cases. At the

short crack lengths, both By' and A;' display a change in sign and

rapid changes as the crack length varies over the ranye a/W = 0.2 to
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a/W = 0.3. At the long crack lengths, there is again a sharp change
in the coefficients with crack Tlength and both BO' and Al' almost
double in magnitude as the crack extends from a/W = 0.8 to a/W = 0.9.
Such behavior 1is in agreement with the observations that have been
made previously for stationary cracks in different mode I fracture
specimens [6.1, 6.2, 6.3].

The two sets of data display a clear separation at the shorter
crack lengths, where the crack was propagating at a high velocity
(c/c, = 1/3) in the dynamic case. However, the static and dynamic
values for the non-singular stress field coefficients merge as the
crack speed decreases to much lower values (c/c2 ~ 1/10). This
suggests that information regarding the relative magnitude and
influence of non-singular stresses that is obtained from studies of

stationary cracks such as [6.1 - 6.3] could be used in a dynamic

setting without significant error, when the crack speed is moderate.

6.2 Effect of Higher Order Terms on the Accuracy of K-Determination

The importance of using higher order models that retain terms
beyond the ro, or constant stress, term when evaluating the stress
field parameters of interest from experimental data is clearly seen in
Figure 6.3. This figure compares the relationships between the crack
tip stress intensity factor, KI’ and the crack speed, c, that would be
inferred for the model material, Homalite 100, from the near-field and
higher-order analyses of the running crack isochromatic fringe
patterns for crack propagation in a ring specimen.

The retention of the terms of order r1/2 and larger in the stress

field model results in both a reduction in data scatter and a
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significant change in the extrapolated value of K corresponding to
zero crack speed, K_, which changes from 380 psiv/in to 430 psivin, or

more than 10%. The first result obviously has implications for the

confidence with which such data can be used in further work. The

second would have a strong influence on the results from any studies
of crack propagation and arrest behavior that were performed using
finite element computer codes, since such computations require a

relationship of this kind as input data for predictive calculations

[6.4, 6.5].

6.3 Examination of a KII = 0 Criterion for a Smoothly Curving Crack

When a crack propagates

along a curvilinear path, the

isochromatic fringes associated with the advancing crack tip can show
considerable asymmetry, as evidenced by the high speed photographs

shown in Figures 5.6 and 5.7 for two such cases. This Tlack of

symmetry is generally ascribed to the presence of a combined opening

and shear mode stress field. However, it has been uncertain as to

whether or not the contribution from the shear mode stress field

includes a mode Il stress singularity, KII'

Analytical studies of crack initiation under combined loadiny

conditions [6.6] and studies of quasi-static, curvilinear crack

propagation [6.7, 6.8] have shown good agreement with experimental
data when the analytical predictions have used a criterion that the
strain energy release rate be a maximum to determine the direction of
It

each locally straight segment used to model the crack trajectory.

has also been shown [6.8, 6.9] that, for quasi-static situations, the
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requirement that the strain energy release rate be maximized along the
preferred crack path is equivalent to the statement that KII = 0.

The possibility that KII may be zero for a propayating crack has
been discussed previously, though somewhat superficially and in a
qualitative fashion [6.10]. It has also been demonstrated, through
the use of computer-generated fringe patterns, that asymmetry in the
crack tip isochromatic pattern can be obtained from a superposition of
mode II non-singular stress terms with a mode I singularity, even in
the absence of KII [6.11]. Recently, the results from studies of
curvilinear crack propagation and crack interaction problems using
finite element methods [6.12, 6.13] showed that the use of a Kip = 0
criterion to determine the direction of each locally straight segment
of forward crack extension provided a good match between computational
and experimental results for the crack trajectory.

The results for the stress field parameters obtained in this
study (Figure 5.9) showed that the apparent value of the shear mode
stress singularity, KII’ calculated from local collocation analyses
using higher order stress field models was small (2-5% of the
instantaneous KI)' Furthermore, careful examination of enlargements
of the crack-tip isochromatics such as those shown in Figures 6.4 and
6.5 indicated that, while in the former case, the asymmetry of the
stress field persisted to within the limits of resolution of the
recording system, in the latter example, the fringes on either side of
the crack path clearly showed an increasing degree of symmetry as one

approached the crack tip. This suggested, in a qualitative sense,
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that th :
e crack-tip stress field could be one consisting of an

opening- ; :
g-mode singularity, coupled with both opening and shear mode

gular stresses. This in turn would imply that the values of

K bei
i
I1 ng calculated by the least-squares analysis algorithm were

Ilfa'lseu o %
fitting parameters compensating for small experimental errors

in the i
input data rather than "tprye" parameters intrinsic to the

Crack-=tj o
tip stress field under consideration.

Ea :
ch data set for the fringe patterns from the two curving crack

experi :
ments analyzed in this study was therefore re-analyzed with a
mod; f i .

ed stress field model in which KII =0 and all other details of

ame as before. Figure 6.6 shows

the .
analysis procedure remained the s
the P

esults from the modified analysis for the behavior of the fringe

order
error and the leading singular and non-singular stress field
coeffici

icients for the same fringe pattern (Experiment 11, Frame 12)

in Section 4.3. A comparison of

that .
was discussed in some detail

that similar, stable behavior of

Figu .

gure 6.6 with Figure 4.5 reveals
tress field coefficients
results for the opening

the e
rror term and the s was also obtained

With
the new model. Furthermore, the final

mode - 1
coefficients, Ki, By'» and Ay’ did not change in either

The major difference betw
t 30%) of the coefficient of r

een the two analyses was

"agnitude or sign.
/2 jq

foun
d to be the elevation (by abou

the
shear mode stress fields Cl', which now became the first
s field representation.

non- .
Symmetric term in the series stres
good match with the ex

her confirmed by Figure 6.7,

perimental data

The ability to achieve @

usi
ng a model in which KII =0 was furt
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which compares the experimental fringe pattern for this example with

the reconstructed patterns corresponding to best-fit coefficient sets

quite evident that either

from the two sets of analyses. It 1is

coefficient set provides an acceptable representation of the crack-tip
stress field over a region of reasonable size, with an analysis model

of similar order (r3/2) being required in each case.

Figure 6.8 shows the results for Cl', the normalized coefficient

of the r1/2 term in the shear mode stress field, that were obtained

from the modified analysis for each frame of Experiments 11 and 12.

The general trends are seen to be the same as those obtained

5.12) but the maygnitude of the coefficient

previously (Figure
increased to larger values with the elimination of SE The results

for the next higher order (rl) shear mode stress field coefficient,

these results displayed

D,, have not been shown here. However,
1

being assigned to that

similar behavior, with higher values

coefficient also, when the stress field representation assumed K;  to

However, the degree of change was of order 5-20%, less than

be zero.
The

the corresponding change in Cl', which was of order 15-40%.

results for the opening mode coefficients, K. BO', and Al" remained

essentially unchanged between the two analyses.

The results from the present study substantiate the idea that

Kip = 0. A plausible scenario for crack propagation along a
curvilinear path would then state that, for a crack propagating in a

brittle, isotropic material, the crack changes direction so as to

continously eliminate any shear mode singularity, when the crack path

« @3 =



s smoothly curving and the loading is applied by mechanical means.

It could be argued that inhomogenities at fine scale would tend to

Provide a propagating crack some degree of choice with regard to the

Preferred direction of crack extension, and that all such directions

Would not necessarily correspond to the zero-Ky; condition that has

been postulated. However, it is assumed here that micromechanisms of
this type would be confined within the Tlimits of the infinitesmal

reqi _ ‘
egion of K-domination and the comments made here are from a more

global, or macroscopic, viewpoint.

Clearly, the discussion presented above has  important
implications insofar as the development of criteria for the preferred
direction of cracking is concerned. A previous attempt at developing
d crack curving criterion [6.14] chose to ascribe all of the observed
NoNn-symmet ric behavior to Kppe The work described in [6.14] employed
a stress field representation in terms of the opening mode parameters,
KI and Ogy» and Kpps which were determined using local collocation

techniques  and dynamic photoe1astic data. A criterion for crack
in terms of these came three stress field

T
Urving was then developed
e to relate the crack trajectory

Coefficients, but no attempt was mad
a careful manner.

curvature with any of the stress field parameters in
uding terms of order T and larger before

The need for incl
has been

he crack-tip stress field

achievs )
Chieving accurate modelling of t
esent study. It has

demonstrated and discussed in Chapter 4 of the pr
least one coefficient beyond the term of

a
10 been shown that at
cal collocation methods ¢

an provide

Interest must be retajned before To
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ac
curate values for a particular coefficient. A lack of attention to
thi ; : : y

S point in [6.14] effectively meant that the accuracy of the values
questionable, as were the computed

co
mputed for KI and G was

non- : .
N-zero results for Ky on which the proposed criterion was based.

Th i :
€ criterion for crack curving that was presented was thus based on

calculated parameters that had, at best, only empirical significance.
Transient mixed-mode crack-tip stress fields that include a
contribution from a mode II singularity could perhaps occur when the
crack propagation event is due to, or is accompanied by, stress wave

] . : . .
0ading generated through the use of explosives or projectile impact

[6.15 - 6.17]. However, such Toading conditions invariably result in
Sudden changes in the crack trajectory and the problem becomes more
One of 'crack kinking' rather than of ‘crack curving'.

in [6.18] for an impact Tloaded fracture

Some results reported
standpoint. Figure 5

S . . 1

PeCimen are particularly interesting from this
Of [6.18] showed two high speed photographs of ¥he running crack
[n Frame 15, the local stress

Stress field, taken 49 usec apart.
State for the propagating crack was very close to pure shear. In the
Next frame, Frame 16, the crack Wwas seen to have changed direction
very sharply at the point where the stress state became almost pure
Mode I and then proceeded to ppopagate essentially perpendicular to

other words, the crack had very quickly

it -
S original direction. In
would be under opening mode

hat the crack tip

orj )
Mented jtself so t
crack tips subjected t

o essentially

condi+ s
Nditions, QOther examples Of

PUre shear loading were also presented in [6.18].
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those cases, the cracks had already arrested and crack reinitiation

dnd further propagation did not occur, thus allowing the almost pure

mode II loading to persist for some time.

6.4 The Relationship Between the Curvature of the Crack Path and the

Components of the Crack-Tip Stress Field in a Local Region
s offered evidence to support the

The preceding discussion ha
contention that a smoothly curving crack in a brittle, isotropic
material will propagate so as to maintain a KII = 0 condition at the
tip of the advancing crack. A logical next step would then be to
establish a relationship between a parameter descriptive of the crack
trajectory, such as the curvature of the crack path, and the remaining
lose vicinity of the

COmponents of the crack-tip stress field in the ¢

Crack tip,

this dissertation, any

As discussed in the Introducticn to

space can always be

nfinitesmal segment of a general curve in
Considered to be a straight Tiné, without Tloss of generality.
non-zero curvature at any point

However, representation of a finite,
he form of the function used to

a
Tong 4 trajectory requires that £
ative, i.e., higher

Model the trajectory yield a non-zero second deriv
Ofder effects must be taken into account. This would suggest that the

uld perhaps be found through a careful

5 .
lationship that is sought cO
®Xamination of the variations in the non-singular stress field

s in the curvature of the crack path.

Parameters that accompany change

e normalized curvature of the crack path,

Figure 6.9 shows th

-1
(R/w) , as a function of the norma

1ized coordinate, X/W, of the crack
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Path for the two experimental examples (Experiments 11 and 12) that

h .
ave been analyzed in detail 1n the present study. The curvature

ehavior of the two examples can be seen to be quite different. For

E i s Ty
Xperiment 11, the curvature increases steadily from its initial value
i :

O a maximum, and then decreases gradually as the crack path becomes

More strajght. In Experiment 12, On the other hand, the curvature is

€ssentially constant for the initial portion of the path, following
Which it begins to decrease, as the crack path becomes closer to a
Straight 1ine. (Recall that a straight line has zero curvature.)

Figure 6.10 shows the data for the curvature corresponding to

as a function of the elapsed time after rapid crack initiation. These
Fesults were first compared with Figure 5.9, which showed the behavior
aS a function of time of the stress intensity factors, K; and K;,
s field model included a KII-term.

t
hat were calculated when the stres
connection between

The Comparison failed to show any readily apparent
rack path and was different

i
he curvature, which varied along each ¢

for the two crack paths, and the value of Kyps which remained small

of K; for both experiments.

a .

na essentially constant at 2-5%
The insensitivity of the apparent Kit value to changes in crack
tention that there is

Path curvature is consistent with the earlier con
associated with curvilinear crack

no ,
shear mode singularity
Any non-zero value of

Propagation along a smoothly curving path.

local stress field information is

K
I1 that is calculated based ©ON
least-squares

her an attempt by @

thepes .
erefore a consequence of €It
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a i : ; 1 .
lgorithm to accomodate minor experimental errors 1in input data

specification or the result of an inadequate number of terms being

re o . . :
etained in the serjes representation.

On the other hand, a comparison of Figure 6.10 with the opening

and shear mode non-singular terms (Figures 5,10, 5.11, 5.12, .and 6.8)
revealed a direct correspondence between the variations in the
value of the normalized

Curvature of the crack path and the

l/Z—term of the shear mode stress field.

coefficient, Cl', of the r

The coefficient Cl' is shown a
Crack path in Figure 6.11 for the WO experiments. While there is

g trend in the magnitude of Cl'

s a function of the curvature of the

s , , .
ome scatter in the data, an increasin

With an increase in crack path curvature is readily apparent, i.e.,

1/Z—term becomes, the more sharply the

T
he larger the shear mode r

cr : ; i
ack is seen to be curving, Furthermore, the available results

SUggest that an extrapolated trend curve would pass through the origin

inconsequential point, since the

0
f the coordinate axes -- a not
ould have no

Straight crack condition corresponding to zero GuFvaEUES Y
Shear associated with it and the stress field coefficient in question

W .
Ould be identically zero.
that there does exist a

The present results establish
f the path followed by a smoothly

r 3
e]at1°“5hip between the curvature 0
ode coefficient of

CUPyin .
Urving crack and the leading non-singular shear m
ce of such a relationship

The existen

t
- Crack-tip stress field.
crack path curvature

b
etween non-singular stress components and the

since it had already been anticipated to

Wa
S not totally unexpected,
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som ) .
e degree from geometric arguments, and these results provide a firm

b . 3 : . . .
d4s1s for further explanatory discussions and investigations of the

9eneral crack trajectory problem from the standpoint of a relationship

between the manner in which the crack curves and the stress field in

the Tocal neighborhood of the tip of the propagating crack.

It would be tempting to claim a direct proportionality between
the instantaneous value of the shear mode rl/z—term at a given
location alony the crack path and the curvature of the crack path at
the same point. That such a proportionality may exist is suggested by
Figure 6.12, in which the shear mode rl/2 coefficient, C;, is once
49ain shown in normalized form, as a function of the curvature of the
crack path. The only difference between Figures 6.11 and 6.12 is
that, in Figure 6.12, the characteristic length dimension used for

Ormalization purposes is the instantaneous radius of curvature of the

than some other dimension related to the

C
fack path itself, rather
idth, W, which was used for

S : _
Pecimen geometry, such as the specimen W
e 6.11 and earlier.
would perhaps be better

nor : . ) . However, such
Malization purposes in Figur ’ a

Statement could e premature at this stage and

study of the influence on such a

f

OMmulated following additional
1 3/2

erms, rand r )

rE]ationship of, at least, the next higher order t

a -
> well as other factors that may become apparent.
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CHAPTER 7

CLOSURE

The ri
‘| .
. primary goal of thi1s study was to establish the relationship
“Elween g
parameter descriptive of the crack trajectory, such as the

the stress state in the close

Cu
Virpature of the crack path, sl
cini
fjnit;ty; of the tip of a smoothly curving crack propagating in a
ody. Fulfillment of this goal required, as 4 first step,
that would be

Fepres
entati

tions of the runniny crack-tip stress field
oth straight and curviny

over : )
a region of reasonable cjze for b

of procedures for determining the

Cracks
» followed by the development
full-field experime

he propagating crack.

Pa ram
et .
ers of interest from tal d
i nta ata related to

the
Stre ;

ss field surrounding the tip of t
were used

ack-tip stress fields and

The + i
, techniques developed to analyze dynamic
Ot()e]as v i
tic fringe patterns of running cr
r and leading non-sin

t and curving cracks.

r‘eSu]t
S w ;

ere obtained for the singula gular stress
t for both straigh
scussed 1in precedin

s can be drawn from

f]e‘l
d
a
parameters of interes
g sections

The
se re

sults have been detailed and di
ortant conclusion

Of th.
is dis
dissertation. Certain 1P
together with some

presented below,

n build upon th

thes

e

results and these are
e foundation that

has
been 1aid here.

d in series form

.|
~=—Lonclusions

{1 .
) Representat k-tip stress fiel

jons of the crac
dures to evaluate

co]]ocation proce

the

Can b
e .
combined with local
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int i
ensity factor(s) and other related stress field parameters

accurate manner from full-field

unding the tip

of 4
nterest in a reliable and
lowing the stress state surro

ex ;
Perimental data, thus al
e modelled with a high degree

of 3 st .
a
tionary or propagating crack to b
of confj
g .
dence in terms of these parameters.
ts of order rl/2 must be

(2 i
) Non-singular stress field componen
the goal

retaij
ned in . .
the series stress field representation even when

is
r‘e]f?CCurate determination of the singular term(s) alone. In general,
) Tab]e values for a specific singular or non-singular stress field
efficient can only be obtained once the model used to describe the
ond the point of interest in

Stress .
£ .
ield retains at least one term bey

the .

particular series, Z Or Y

(3) 71 .
) The order of terms that must be retained SO as to

er a region of given size for a

SuCCes
S
fully match the stress state oV

particu]ar geometry can be

the stress field parameters

Speci fj
ic . . .
crack tip location 11 a

estabj
shed by examining the changes 1N
model, and by com

s with the experimentally

paring the stress

With s
nc - ;
reasing order of analysis

State ;
predicted by a given set of coefficient

Obg
EPVed
stress state over the samé region.

ular stress field coefficients for a

4
X (4) The 1leading non-siny
artic .
ular geometry vary systematically with crack tip position for
s under opening

lose to 4 poundar

mode loading, and

both
stati
ationary and running crack
y of the

take
0 .
N larger values when the crack tip is ¢

and propagating cracks approach

Specj

me .
N. The results for stationary

ate values.

ano
ther as the crack speed decreases to moder
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(5) Th i i
p e singularity associated with the tip of a crack
Fopagatin i
o g continously along a smoothly varying, curvilinear path in
rittle ; , .
, isotropic material 1is that of opening mode, K., and
Shear . | s I n the
singul is i '
N gular term, KII’ ijs identically zero everywhere alony
ac ;
path, in the absence of stress wave loading conditions.
(6)
C The curvature of the path followed by d smoothly curving
rack is
related to the magnitude of the coefficient of the leading

nt of the shear mode stress field, with

nOn_ ¥ p
Singular (rl/z) compone
lar
yer va i
lues of this coefficient, Cys being associated with a more

Sha
PPly curving crack.

o2
‘\L~“§—SS__;'
uggestions for Future Work
1d be used fruitfully

The
methodology developed 1n this study cou
unning crack-tip stress fields

to
Pursu :
e further investigations of T
rom sources other

and to
evaluate stress field parameters using data f
interferometry, holography, or

than
Photoelasticity, such as moire

reas of study that would follow

n
n gages.  Certain specific 3
atuPa]]
y from the present work aré discussed below.
propagating cracks ob

t that it may be

(1 .
) The results for stationary and tained

the 3
p opening mode case using 4 ring segment SUYYES
08sip]
e to take the relative values fOr the non-singular stress field

to the

magnitude of the

COeff' .
1C1
N ents (normalized with regard
ngul aprs
arity and the in-plane specimen dimensions)  from static
coefficients by

corresponding dynamic

Situat i
t]o
ns and obtain the
ccounts for the

that a

1ntr
odycs
€Ing an appropriate normalization factor
y be useful since it

inf]u
e '
Nces of crack speed. This would certainl

» J0% =



would al}
ow ~
the non-singular terms determined for stationary cracks to

be appl;i
pplied : ;
to a wide variety of running crack situations. This would

be .
particul
arly helpful when the experimental data cannot easily be

used to
c i
alculate these coefficients directly, as in the case of the

method
of :
caustics, or for example, when using a limited number of

Strain

a 0 .
gages to study dynamic crack propagation in metals.
terms of order r /¢ when

(2 i
) The importance of retaining

lationship between the crack

atbemot i
pti
Ng to accurately determine the re

intensity factor was

Speed
and )
the instantaneous crack-tip stress

discy
ssed, i '
: There has been considerable discussion (and controversy)
ver th
e
past decade on whether such a relationship s a unique
reat deal of the discussion has

Propert
y for a given material, and a9
results that are

fOCUS
sed
ofy arid beah Fuelad by the differentes in the

specimen geometries and

Obtaj
ned .
" experimentally using different
‘ffere

nt ; . : .
. methods. Since the magnitudes of the various higher order
ermsg

ar . "y

e themselves functions of the crack tip position, specimen

a careful re-examination of the

Yeomet
P
¥s and loading conditions,

y be fruitful and helpful in resolving

Prob]
e
M from this standpoint ma

thic
his issue,
that were studied 1in this

examples
crack propagation in

(3
) The curving crack

disg

er‘ta J

tion were both cases Of constant speed
in fact, an important factor in the

ident ¢
nt]c

a .
1 specimens. This was,
ailed analysis, since it

Select s
10

N of these particular examples for det
s relative to the crack

Was
desj
red to examine the non-singular effect

complexities that could be

Wit .
h a minimum of
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intro . .
duced by varying crack speeds, differences in specimen geometry,

and g : ; . .
pecimen size effects. Clearly, similar studies for non-constant

Crack speed situations would yield additional useful information. The
uestion of specimen size effects bears On the choice of an
APpropriate characteristic length dimension for normalization purposes
4 evidenced by Figures 6.11 and 6.12.  Finally, variations in

Speci
Pecimen geometry could certainly be expected to play a role on Bhe

traj
Jectory followed by a propagating crack.

in the previous discussion that it

(4) It was also pointed out
of the

Woy
1d be premature at the present time t0 try and relate all
path to the changes

Obs
€rved variations in the curvature of the crack
Fxamination of the trajectory

in
the shear mode rl/2 term alone.
nce of the next few hi

cediny paragraph) would be

Pro ; ’
blem with regard to influe gher order terms

(ing
€pendent of the issues raised in the pre

Nee i
ded before an exact relationship could be determined.
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General expressions were obtained in Chapter 3 of this
diSSertation, using complex variables, for the in-plane Cartesian
Stress components for the case of a single-ended, stress-free crack
g and shear

propagating at a constant speed under p]ane—strain openin

¢ are expressed in terms of real

i A
'0de Toading conditions. These result
Variables and combined to form the general solution to the

elastodynamic crack problem in the sections that follow.

A1 .
== _Opening Mode
e opening mode case Were

The Cartesian stress components for th

®Xpressed as

4
2 1%
o = (1+)‘2 ) [ (1+2A B 5, 2) e Ly - 2 Re' Zg
"Xy 4 2\ 2 172 1+,
M - (1430
. Y Aul
+ (1+2x12—A22) Re Yy - (1¥% ) Re Mg A1)
A A
2 12
g = ____ffj;ﬁl_l__._‘ [ - (142 ZYRe Iyt Re Z
Yy . 1.7 2 1+,
M - (12
i <1“22) Re Yp (1+1,7) Re Yy } (A.2)
(1+>\22) + 2, ImZ
T = [ -2y Im 4 1 2
XY 2, 2
4, x, - (1+x2}
e (141,27
2 mY, | (A.3)

& 1ii =



Where .
the velocity-coupled complex stress functions, z, and Z,, and

Y
] B Y2’ were defined as

== i "1 2 C n"l 2
& LA z1“ / Z, = 1 A% / (A.4)
n=0 n=0
B ; : m )
Yl ) Z Bm Zl”] YZ =l Bm % (A.5)
m=0 m=0

rmed coordinates defined in

With . .
1 and z, being the velocity-transfo

Fi <
1guPe 3.2 as

i o d
With
2 11/2
o= [1- <c/c1)2]1/2 y, = [1- (c/cp)® 175 (A7)
Substituting equation (A.6) in equation (A.4) gives
Z) = (Re ;) + i(Im Z;) (A.8)
N . f n-1/2 _; 1 :
= VA pln—1/2 cos(n-1/2) ¢ * 1 LAy P sin(n-1/2) ¢
n
n=0 n=0
ang
(A.9)
Ly = (Re z,) + i(Im ;)
- a=112 cinlfi=
i) A, P2 sin(n-1/2) ¢

1}

LA, 92”'1/2 cos(n-1/2) ¢
n=0

n=0

= [18 =



Similarl ~
y, substituting equation (A.6) in equation (A.5) gives

Y . )
= R .
1 (Re Yl) + i(Im Yl) (A.10)
= ' m 5 .
LB, o cosmg * 1 ) B, plm sinme;
m=0 m=0
and
iy =
2 (Re Y,) + i(lm Vo) (A.11)
= % m »
) B, oy cOSMYy + i) B, pzn] sinmé,
m=0 m=0

(A.8)—(A.11) in equations (A.1)-(A.3)

S ¢
ubstituting equations
for the

expressions opening mode

result .
S in  the following
erms of the real

variables, An,

ela
Stod
i
ynamic stress components in t

B
m* P
1> P
2’ d)lg and ¢ 2
X
n-1/2
cos(n—1/2)¢1

(1+3,%)
b, = 2 2y N
¢ (12 R ) ) AnP
4 L 22 A
My - (1437) g%
A A - _1/:
) i % ) Aann 1/Zcos(n-1/2)¢2
1HZ n=0
+ (1+2>\1 2">\22) 2 BmplmCOS[ﬂ(bl
m=0
At
m=0

« 113 =



fee]

(1+3,)
e { - (1% “} AP " eos(n-
4an - (1+A22)2 2 nzo nf1 shn-1hay
b\ -
2w T
+ 14 k2 L A2 605 (LSl
2 n=0
o) LB
m=0
w107 d Bmozmcosm¢2 f LS
m=0
(142, %)
Z;f_‘———ﬁl————g‘g [ -2y ) Anp1n-l/251”(”’l/2)¢1
1y - (1437 i
, ) n-1/2.;
+ 2N L Ane2 AL
n=0
-2y y Bmplmsinmﬂ

m=0

e

(1+) BYE '
2 J Bpop 51" p(h18)

2A2 m=0
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B2 shear Mode
The expressions for the stress components which represent the

part to equations (A.l)—(A.3) were

e]agt .
odynamic shear mode counter

obtai
tained previously as

2
%xx - 2 [ (142372 ) Re o —L2 pa ¥,
11 4 2\ 2 1 2 1 i B 2
b (1425 =2 0) Re IyF - (1+,7) Re ¥ b (AL15)
42 A
° = ——————fiéi____—__ v 2) Re Y, * * ——l—g-Re Y>>
1 T T { 2 l 1+x22
172 g
2 _
% (1+A22) Re Z;* * (1+1,°) Re Z,* | (A.106)
2, ,
x = i — [ - 2% Im Y * 4 2x1 Im Y2*
'yII 2, 2 1 1
4)‘1)‘2 - (1+x )
(14,9
y ——— Im 22* } (A.17)

2y Im L *
1 ! 2

wh i .
€'e the antisymmetric, Ve1oc1ty—coup1ed, complex stress functions,

7. %
b SR g g Y,* and Y *, were defined as
; . n-1/2 A.18)
= LA =1/2 * = iC. z (A.
L n=0
; m
= 4 S (A.19)
Yl* S Dm Zlm YZ* y =l Y2
m=0 m=0
With |
Z -9 .
1 and Zy, and ) and M defined as before

= 11% =



Su ; . . .
bstituting equation (A.6) in equation (A.18) gives

X =
L% = (Re z)*) + i(Im 2p%) (A.20)
= i pln'l/z sin(n-1/2)e; *+ 1 I -y pln‘”Z cos(n-1/2) ¢
n=0 n=0
and
1% = (Re 2,%) + i(Im %) (A.21)
- 12 . n-1/2 /
) C, pzn /2 sin(n-1/2) ¢y * 1 ) -C 0 cos(n-1/2) ¢,
n=0 n=0
imilarly, substituting equation (A.6) in equation (A.19) gives
Yl* = (Re Yl*) + 'i(Im Yl*) (A.22)
= : M . .a .o i
LD, o Sinmo + 4 §ly? cosméy
m=0 m=0
and
Yor = (Re Yy*) + i(Im Y,*) S
= VD m A ) M cosmo
LYy, P sinmé, Foi) m P2 2
m=0 m=0

w 136 =



T !
he desired expressions for t

COm On o
ponents in terms of the real

% can then be written as

Oy
I1

2

he elastodynamic shear mode stress

variables, Cn, Dm’ p1s P> e and

n—1/251'n(n-l/2)¢>l

2 2 2 ‘
4 2, 2 { (1423 77% ) L Cher
i n=L/2. .
; (1+A22) J e sin(n-1/2) ¢
n=0

2 2

4A1k2

1+x22

- (13,7

+ U&AZ%

_(1+a0)

4A1X2

y —

1+x22

117 =

. M s
) DP1 sinméy
m=0

[e2)

gompzmsinm¢2 } (A.24)

n=0

=]

L CoP1
n=0

n-1/2¢in(n-1/2) 4

) Cnpzn'l/zsin(n—l/2)¢2



- n-1/2
- {1420 " L Gt cos(n-1/2) ¢
Z n=0
(142,27 °
2 ) X C n-1/2
. P2 cos(n-1/2) ¢,
2 n=0

(o]

\ m.
] B oy COSTdy

+2)
m=0
. m
- 2N y Dmpz'cosm¢2 } o (A.26)
m=0
A3
~=_Combined Loading
components given in equations

Su a0
perposition of the stress
provides the gener

a constant speed

al solution for the

(A.12
Jd2)-
4 )-(A.14) and (A.24)-(A.26)
€ss  fj
el ;
d for a crack propagating at under
resulting expressions

ed obeni
Pop opening and forward shear loading. The
he
stresses are presented below.
Qg
x =
T By 7 ey (A.27)
- (1+)\22) ©
(gA [ (12 2., 2) " Pcos(n-1/2)¢
411*2 - (1+ z>2 n i 1
AZ n=0
4aq A
- e o n-1/2.4s(n-1/2) & ]
2
1+A2
Mcosméy

+ ) B, [ (1+2x12-A22)01

m=0
g (1+A22)pzmcosm¢2 1}
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{§c [ (1+2x 25,20
4A1A2 - (1+A22)2 o n !

2
n—l/Zsin(n—1/2)¢l

+

- (1+A22)p2n—1/281n(n—1/2)¢2 ]

o

+ 50, L (1+2)\12—A22)p1msinm¢1

m=0
4, A
172 m_;
- ——— p, S1NMg; i
1+A22 Z YA }
a =
yy ~ O 3
¥ , A.28
(1+A22) o
- : 172
[ 1A, [ * (1+A22)pln / cos(n-1/2) &

4 A ”
-1/2 i
17¢ pzn / cos(n-1/2) ¢ ]

+ e

2

1 }‘2
+ Z Bm [ -
m=0

(1+A22)p1mcosm¢>1

L
+ (1+) ) o9 cosmé, 1}

2 oo
2 { ) Ch [ - (1+A22)p1n 1/251'n(n—1/2)4>1

4)\1)‘2 - (1+)\22)2 n=0
+ (1+A22)p2n—1/251n(n-1/2)¢2 ]

+

+ ) Drn [ -
m=0

(1+x22)plmsinm¢1

4)\1 )\2
gy mmm— pz

1+

Minmo, 1 }
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Xy

(A.29)

Xy B
1 M1
(1+3,7) .
I , 12
SR (YA [ -2y ° "M fsin(n-1/2) ¢
4, - (1+x22)2 =0 ' L |
+ 2N 02n—1/25in(n—1/2)¢2 :
LvE [ -2\ Meinmeo
y s 1 pl ‘].
m=0 2y 2
5 _('1_22,,),_ Msinme, J }
” Py ¢2
&
2)\2 ) :
. n-1/2 ‘
§ §C, [ &4 A BB iR R

1+,27% -
9 pzn 1/20s(n-1/2) ¢, ]

plfllcosﬂ]¢1

m
B 2)\1 Py cosm¢2 ] }
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APPENDIX B

THE LOCAL COLLOCATION ALGORITHM
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B.1 .
=% Governing Equation for the Isochromatic Fringe pattern

ation methods for the analysis of

When implementing local colloc

it is convenient to express the

isochr . .
omatic fringe pattern data,

Pho . .
toelastic fringe order, N, in terms of the maximum in-plane shear
Stress
¥ gyt 98
N f . 2 2 B.l
(N F 2t) Tnax (il
S L T
Oyy XX Xy
D%+ i

Wher : g .
: fo is the fringe sensitivity of the birefringent model material,
t g
t ; =
he model thickness, D = (g ~ o, )/2 and T = Tyye
the terms D and T

Using equations (A.27)-(A.29) of Appendi® Ay

can
be expressed as

D = ) (B.2)
(Oyy ) Oxx)/Z
2 o :
ot (pa L= @) oy Feos(n L)y
n
4x 2, - (1+A22)2 0=0
. iy P pzn'l/zcos(n-1/2)¢? ]
142,
a" - (1+>‘ 2) P mCOSm¢1
+ ) By = 1 1
m=0

+ (1+X22) pzmcosm¢2 ] §

< 8¢ =



2 o0
+ kz 2 { ) Cn L. (1+A12) Bl
ba - (1+A22) =0

n-1/254n(n-1/2) &

+ (1#3)0) ozn_1/251n<ﬂ—1/2)4? !

o

. 9 m_ -
o[- (17) e sinnd

m=0

Bk, B :
, L2 p)sinmg, 1
1+
i (8.3)
T,
Xy
2 e . i :
(1+3,%) o Vesin(n-1/2) ¢

_ T !

4A1>\2 - (1“\22)2 n=0
n-1/2gin(n-1/2) 4, |

+20 P2
. _ o smnlqb1
+ ) B, [ 1 !
m=0 2y 2
1+%,°) )
. ,(_,_,2,-— pzmsmmcpz 1}
2%
) o n-1/2.0s(n-1/2) ¢
L, T A S |
4x, n, - (140,°) 7 p=
1% N 2)?
10 L ittty °
2)\2
) m
. 23 py COSMp
+ ) Dy : i :
m=0
m
& 2A1 % Cosm¢2 J }
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B,
2:2 Mathematical F i
ormulation of the Local Collocation Method
uted into equation (B.1)

Equati
ions (B.2) and (B.3), when substit

1-field isochromatic frinye

Feprese
nt

the general solution for the ful
t speed in the plane

ar -
ound a crack tip propagating at constan

and shear mode Tloading

of
y subjected to combined opening

condyt i
ions, .
. These expressions can be ysed to describe the stress
ate in
a - . . .
ny size region around the crack tip, with the size of the
the number of

region

and . ; _—
the degree of precision desired determining

ust be retained in the truncated form of

terms
» N=N and m=M, that m
o adequately describe

the stress

€ach of
the infinite series in order t

State
0 .
ver the given region.
The
UnknOwn Constants’ AO’ A]_’ P AN, Bop B].’ PERE] BM’

]., LI Y . 2
Cys Dys Doy eee Dy» 11 these series ¢
1sochromat1c fringe data for any

Cl'] s C
an be determined

USTng  experi
perimentally obtained

condition by

employing standard,

r
y and loading
(Recall that

east-squares methods.

Ove
r-d
eterministi
erministic, non-linear, |
ence the stres

S components and therefore

the
term
DO does not influ

dOeS
not .
appear in this development.)
n the

iterative procedure based 0

One
Ne such method utilizes an
Wton-
Raphson method. Consider @ set of functions of the form:
9
k(Ags Cys e Ay Epo Bys Dys ose Ays ON° By Dy) =0 (B.4)
lor's

(n#1)+2(Me1) -1 Taking the Tay

*here | -
1’ 2’ ‘OO,K ,andK>2

es .
expansion of equation (B.4) gives:
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( "
9)ie1 = (g); + (39 %)i B

£ gpeses T
F g awsen e
+ (wk/MNh My Y (wk/%Nh Ay

C Byt (agk/aDM)i Dy (B.5)

Where :
i ]
refers to the ith iteration step, and AAo’ ACO’ ABO’ AAl’ Mjl’

By, o, " . |
see N° N:N’ NSM’ N%4, are corrections to the previous
€Stimat
es of Ay, Cps Bps ALs Cyo By s Dy, eveo Ays Cne By» DOy
respect1Ve]y
is

(B.5) that the desired result

Recoqgnizi
ognizing from equation
uation of the form:

(9,)
k/ s - 3
i+1 = 0 yields an iterative €q

= (g,) =
(agk/BBo)iABO i
(3
+

(3
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which
can b
é i
rewritten in matrix notation as

[g] = [cICa]
where

[g1"

1}

[_915 _923 PRPORORPET —gK]

[ Al &=
AAO ’ A(‘/ ’ ABU 5 L\/\ ) AC 5 AB AI} AA ( R r -
l ] ] ’ ] g @00 l" A/N, /N)M’ N)[vl

89,/
1/ 3Ry 391/ % 391/ 3By 891/ 3h

Lc]

]

/%€y wK/wo wK/Ml 39y / By wK/wMJ

"
8QK/ 3AU 39y

[g]T ;
1S
the transpose of the matrix [9] T
gl, and [A] 15 the transpose of

th
® Matrix [a]
g 2 2(N+1)+2(M+1)—1, equation

Sin
ce m .

atrix [c] is not square
Howevers hat a

n be obtained fro

it can be Sshown t

(B.7
. ) h
as
no unique solution.
m an auxiliary

S0]
utj
on j
n
the least-squares senseé €@

®quat j
100 of the form:
(4] = [d17 ' L9] (8.8)

Where
[d] = [T
Lc]'[c] and [c]T is the tra
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Use of
an i 1
algorithm of this type for jsochromatic fringe pattern

analysi
S requi
quires that equation (B.1) be recast in the form:

(B.9)

9:D2+ 2 _ 2 =
=00 & T (N fj2t)" = 0
Where
the S ~ . .
ubscript, ‘'k', denotes the value of the function at the
ordinates (rk, ek), and at which

pOint .
n .

the field haviny position €O
equations are clearly

the .
fr]n 3
bl ge order is Nk‘ A total of K such
“ded, with :
the total number of data points, Ks exceeding the total

to be determined, that is, K ?

HUmb
er :
0
f unknown coefficients

2(N+1)+2(M+1)_1.

B.3
'\IHIL 3
lementation of the Method
mining the best-fit set of coefficients

Th
e procedure for deter
arized as follows:

a giv :

en fringe pattern can be summ
fringe patterns, for
d select a suff

(re> % N ) s

(a
) from the experimental define a region
iciently large

da -
ta acquisition purposes an
coordinates

number of data points with
distributed over the entire region;
() assume initial valués for the unknowns AO, CO, BO’ e AN’
CN’ BM’ Dys
] and [c] for each

(c
) compute the elements of the matrices (g

data point;
quation (B.8)3

(d)
compute the matrix [a] from €

f the unknowns s i.€es

(e) ;
revise the estimates 0
(Ao)j & AAO

i

(Rg)i+1
(Co)i + A0y

i

(Co)i+1
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(Bglis1 = (By); + My
(A1 = (A)); + M4
(C1)y41 = (Cy); *+ &5
(By)igp = (B); ¥ 8B,
(D1)i41 ° (0)); * ¥
(A)is1 = (A +
(Cydier = (C\)i ¥ ACy
(By)ijs1 ~ (By)i * By
(Dy)iag = Owli ¥ Dy
[A] becomes

(f)
repe
peat steps (c), (d)s and (e) aboveé, until

a
cceptably small.
given

n of the method are

Sey
eral c
(0
omments on the 1mp1ementat10

be]OW.

experience gained from this and

Th
ese are based on the
¢ they may be hel

of fered insofar a

pf‘ev 8
]OUS
studies
, and are pful to

Oth
er 3
Tnve .
Stigat .
ors.
required, K, must exceed

r of data points

ents to he dete i.e K >

*

Firs

t

» the total numbe
rmi ned )

the

tota]

number of unknown coeffici
algorithm

11y been found that the

2(N+

1)+2

(M+1)-1. [t has generd
verdetermination,

dundancy or O

e of redundanc

jcantlye.

Pers
orms
well when the deyree of re
y of 10 or

exce
to
4, On the other hand, a degreé

gPea
dOeS
not appear to improve the results signif

that analyzing

SeCO
nd :

, it has been found
es useful info

Sequ
€ntial .
1y higher order models provid
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Number
of G
coefficients needed to adequately describe the stress state

this is an important point,

Over th .
e region of data acquisition

the s
number of coefficients that must be retained 1S not

ation of the behavior 0

ehavior of the leading

genera]]
y known a priori. Examin f the error

term
lAN,, defined in Chapter 4, and the b

helpful in

this regard, and two

Coeffici
cients is particularly
sly in some detail.

iy
stratj
iv : :
e examples have been discussed previou

arted with a model of order 2

It j

: IS recommended that the analysis be st
BO) and successi

1/2, The analysis ca

he results for the

vely increasing the

Fetaini
ng termg u 0
pto r == Rsy €
p* 70’
n then be

Opder
of the model by powers of T

Start

ed wi .

with an initial estimate for Ay only and t
e used as initial estimates

COeffi .
ci
ents from the 2nd order model can b

fOp
the

3rd order model, and so oOn.
greatly simplified, if it

procedure is
[c] are of the

Thi
rd, the computational
trix

is "
eco .
ynized that the column elements of the ma

fOPm.

agk/ aAn = ZDk(BD/aAn)k + ZTK(BT/SAn)k
39,/ €, = ZDk(aD/aCn)k + 2Tk(aT/aCn)k
39,/ 3B, = ZDk(aD/aBm)k + ZTK(BT/BBm)k
89,/ D, = ZDk(aD/BDm)k + 2Tk(3T/aDm)k
of ) cod N

the required partial derivatives are then easily obtained 1

"
general form from equations (B.2) and (8.3)-

FOu .
rth, it should be recognized th

in th
e .
series y* does not influence the stres
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e would result in 2

ation detailed abov
The

its .

inc : <
lusion in the formul
ero in the matrix [c].

CO]Umn x
wit ;

h entries identically equal to Z
7 would thus be

herefore be exerci

a singular matrix,

matrix B -
(d] formed by taking [C]T[C
sed in

Which
canno :

t be inverted, Some care must t
that are used to implement the

the ]
0gic
of the computer program(s)

QEnera]
SO ;
F Tution schane outlinet aboves
ina]]
Yy, the stress field expressions and the fFormulation of the
the genera] case of @ propagating

method
have both been given for
de conditions.

The same

mo

Cra
ck
Under s
combined opening and shear
pening mode conditions and for

Methog

olog

logy can be used for pure ©
For the

des of 1oading.

S 5

tat]0nary -
a . .
cks under single O combined mo

on given here can be employed

dyna .
nic o 5

pening mode case, the formulati
S involving Cn and Dm.

ences to term

in this case

dire

|

¥, after deleting all refer
is obviously

The
total

n -

umber of unknown coefficients
the appropriate stress

y cracks,

d to obtain expressions

(N+1)
H(M+]
). In the case of stationar

—
pressions from Chapter 3 just be use
of the

) and (B.3) b

imp]ementation

educe to

Simi
ar
to equations (8.2
uytions do r

todynamic sol
peed goes 1O

Mmeth
od,

Note that, while the elas
s the crack S

thej
ir
statj

Zerg ic counterparts 1N the limit 2@
> thi . : ;

is Tlimit cannot D€ obtained computatlonally by simply

e dynamic equations:
med

Spec;
fyin
9 a zero crack speed 17 th
an be perfor

co]location method C

a straigh
tizing system

of the

Impy
Plementation of the local
o ysten in tforward

on .
e1th
er s
a main-frame OF microcomput
based digi

manner
a microcomputer—

I
N the present studys

required data photographs

from

was
us
ed to obtain the
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This data was then

isochromatic fringe patterns to be analyzed.

transferred to a Sperry/1100 main-frame system, on which the analysis

re implemented using BASIC. Listings of sample programs

algorithms we
alysis and for reconstruction of the

used on the Sperry system for an

using the best-fit coefficients are given in

fringe pattern

Appendix C.
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APPENDIX C

LISTINGS OF COMPUTER PROGRAMS

USED TO IMPLEMENT THE LOCAL COLLOCATION METHOD

AND TO RECONSTRUCT THE FRINGE PATTERNS FOR A GIVEN COEFFICIENT SET

USING A SPERRY 1100 SERIES MAIN-FRAME COMPUTER SYSTEM
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C.1 BASIC Program Listing for D

ynamic Mixed-Mode Analysis with K;;

00100
00110
00120
00130
00140
00150
00160
0C170
00180
00190
00200
00210
00220
00230
00240
00250
00260
Q0270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
004460
00470
00480
00420
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000

STRINGS500
PE='#===== —mmmE EEEEEEEEE
Us="’ LSS Tar L Te A
Ve="’ A% VAN AN YA A%L/AO0 = 7 4
We=' B%L = iy Ay AR o 4 B%L/AO = LYt LI DY = %47
Y$= ITER. NO. ERROR DELTA N (FRGS) DELTA N €7 )
REM PROGRAM TO COMPUTE UPTO A EIGHT PARAMETER (15 COEFFICIENT) MODEL
REM AND OUTPUT THE CUEFFICIENTS OF THE SERIES SOLUTION 7O THE
REM DYNAMIC MIXED MODE CRACK PROBLEM
REM PROGRAM USES THE NEHTDN”RAPHSDN NON-L INEAR LEAST SGUARES
REM TECHNIQUE FOLLOWING THE METHOD DUE TO
REM R. J. SANFORD
REM UPTD 2C0 DATA POINTS MAY BE SPECIFIED AND SHOULD BE ENTERED
REM AS DATA STATEMENTS 2500—-.
DIM Z(QOO,S)IN(QOO):R(QOO);G(EOO)
DIM A(15.l):B(15.200),C(200115):D(15,15);5(15;15):F(15:I)IG(ZOO,I)
DIM H(15, 1), 5(200, 15),U aN(40;4):T(lb)
INPUT Rl,KE;Ka;K4-K5:Kb‘ ,C1,C2
READ 7%
PRINT 2%
PRINT ‘NUMBER OF DATA POIN i K1
PRINT ‘LOWEST ORDER MODEL=
PRINT 'HIGHEST ORDER MODEL
PRINT ‘NUMBER DF: ITERATION 4[
PRIMNT ‘MATERIAL FRINGE CONC i KO
PRIMNT ‘MODEL THICKNESS= L
PRINT ‘INITIAL ESTIMATE ﬁK7
PRINT ‘INITIAL ESTIMATE OF K= ='; KB
PRINT ‘CRACHK SPEED ( INCHES/EEC 'ﬂCO
PRINT ‘P-WAVE SPEED ( INCHES/SE =11C£
PRINT ‘S-WAVE SPEED (INC ES = ic2
PRINT /C1="3CO¥ 3 1C/C 724
e ey
= 1, 0=¢( 2) #¥#e
CS=(1. O+C4{-%2)/(4, O*CB*C4 - (1. O+C4**2)‘**2)
C6=2.0*C4/(4.0*C3%C4 = (1_O+C4*%2)**E)
C7=1.0+2.0*C3**2*C4**2
C8=4,0*C3¢C4/(1.0+C4**2)
C9=1. O+CA#¥*
D1=¢(1 O+C4*¢2)**2)/2‘0/C4
MAT Z=ZER(K1,3)
MAT N=ZER(K1)
MAT Q=ZER (K1)
MAT R=ZER (K1)
MAT S=ZER(K1:2*K3—1)
MAT U=ZER(K1;2*K3—1)
MAT READ Z
N1=0
FOR Ji=1 TO K1
R(J1)=Z(J1, 1)
Q(J1)=2(J1,2)
N(J1)=2(J1,3)
N1=N1+N(J1)
NEXT J1
FOR J2=1_TO K1
T=G(J2)%3<141592654/180.0
R=R(J2)
X1=R#C0OS(T)
Xe=X1
Y1=R*SIN(T)*C3
Y2=R*SIN(T)*C4
R1=5GR(X1*%2+Y1”%2)
R2=SGR(X2**2+Y2**2)
IF X1 >= 0 THEN 740 ELSE 770
T1=ATN(Y1/X1)
To=ATN(Y2/X2)
GO TO 830
IF Yi>= 0 THEN 780 ELSE 810
T1=ATN(Y1/X1)+3.141592654
T?=ATN(Y2/X2)+3.141592654
G0 TO 830
T1=ATN(Y1/X1)—3.141592654
T2=ATN(Y2/X2)‘3,141592654
REM

FOR J3=1 TO_K3
IF J3 <= 2 THEN
J7=2#J3-1
JB=J7+1

G0 TO 910
J7=2%J3-2
JB=J7+1
J5=(J3-2) /4
pP1=R1##JD

860 ELSE 890

(

(J3/2) %2

g3 THEN 1050 ELSE 1000
7)=O,5*C5*(—(C9+C

7)#P1#51 + <

o Q#CB#P2#S2)
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C.2 BASIC Program Listing for Dynamic_Mixed-Mode Analysis with K;y= 0

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
o022

00230
00240
00250
00260
00270
00280
00290
0300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880

00890 J

00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000

STR

VD TMZ [T

O0O00ONOTVTVTVIVTITTITIUTITTTT—=TOOOCDT
W o o et = D O T X T

P~OONCUPWTVTVVITTUD
DCUTOZN~

Ede)

HAIZ IR
>>>>>>
—

Nl | O ~~~O
i TedXCcCC T

I

—HADPD<LAD DI XU WD TV>XT~~

L

DA AA=DT VL LXK XTANZZZOTNZ

onN=Ton~-T

INGS500

C7%./A0 Lhh Th

LY TST
A%/ AO

‘AL = A = L CL =

¢ BY = LLLA A B%L/AO = LLL. LT D% = %LLLL D%/AO = LLL. LLLS
/ ITER. NO. ERROR DELTA N (FRGS) DELTA N r

PROGRAM TO COMPUTE UPTO A EIGHT PARAMETER (14 COSFFICIENT) MODEL

AND OUTPUT THE COEFFICIENTS OF THE SERIES SOLUTION TO THE
DYNAMIC MIXED_MODE CRACK PROBLEM; WITH K-II FORCED TO BE ZERO
PROGRAM USES THE NEWTON-RAPHSON NON-L INEAR LEAST SGUARES

TECHNIQUE FOLLOWING THE METHOD DUE TO

R. J. SANFORD

UPTO 200 DATA POINTS MAY BE SPECIFIED AND SHOULD BE ENTERED
AS DATA STATEMENTS 2500--

Z(ZOO»3);N(200),R(200),0(200)
4.1),B(14;200),C(200.14),[)( 4, 1 % 14),F(14,1),G(200, 1)

)

INCHES/SE
c/c2=';CO
)
)

AlL 14, 14),
H(14, 1), 8(200;14).U(200,14);M(40,4).
uT KI.KE,KB,K4,K5.K6.K7;KBaCO,CI.C2
D 7%
NT Z%
NT ‘NUMBER OF DATA POINTS="i K1
NT ‘LOWEST_ ORDER MODEL= " K&
NT ‘HIGHEST ORDER MODEL="; K3
MT ‘NUMBER OF ITERATIONS="; K4
NT ‘MATERIAL FRINGE CONSTANT=';KD5
NT ‘MODEL THICKNESS="i K6
NT ‘INITIAL ESTIMATE OF K-I ='; K7
NT “INITIAL ESTIMATE OF K-1 ='; K8
NT ‘CRACK SPEED ( INCHES/SEC ’5081
= 3 Ce

I
)
MT ‘P-WAVE SPEED (INCHES/SE%
/i

1. 0-(CO/C2) ##d
+CAKx2) /(4. O*C3¥CEH
Ca/ (4. O¥C3#C4 — (1
o OKC3HH2-CA##2
CQ»C4/(1.0+C4**Z)
Chx¥e
+ChEnD) H®2) /2. 0/CA
+ 3)

— (1. O+CA#RD) ¥%2)
L O+CARHD) H#2)
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RXRXEXXZXX
n e e et e
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| O N O
A e N~~~
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o--+0
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~w——X
-

qzees o

i
92654/180. 0

—O

F=Y
-X

3

~

)y #C3
)y #C4
#2+Y1#%2)
#2+Y2HRED)

THEN 740 ELSE 770
)
)

A e~ | = ZNNN

= ON= OO+ N~~~

— NN NN

ZZ DWW ONNMCH I T~
—O XX XX XX

SNO % & —4—

NI

ELSE 810
1592654
1592654

78
1
i

Py~ T

OSSO d SO R A= (L mo——C
o~m

592654

o]
4
4
. 141
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860 ELSE 880

o
mx
pAR]

=75 THEN 890 ELSE 910
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0000009300
TNT QDW=
00000000

J
o

OO ittt TIZ A AN A—A A AT O Z TN Z = =III

02260
02270
99599

nin
N

et bt st

E

N

N7 /N8#100

THEN 1970 ELSE 1950
1-M(13,2)/M(I13-1,2))
002 THEN 1990 ELSE 1970

TO I3
IMAGE US$: M(IQ,1):H(I4.2),M(I4,3).M(I4,4)

— B AT BW
Z—

DUl A~

m oo

e L TR R I = TR D

HENNNN= OO

INNED o~ i

H%x &k NewwowZZA7 HACDI~UWW
=W

1 G | e
-~

LR LR e b P
P ) Sm a0 DI = > D || X
N & R N

DTMIODVUN—~OM~A~AG TN~~~ ~TTMIOWM =TI~~~
—

(17/2)%2 THEN 2220 ELSE 2200
AGE V$: Il:T(IB)*IS,Il.T(IB)/T(l),Il,T(I?)uIB.Il.T(I?)/T(I)

IQ,T(IB)*IB,IQ,T(IB)/T(I).IQ

2T

N
INT IN I
(6]

PRINT IN IMAGE W%: , TCI)#13, 12, T(ID)/TC(1)
7

i
IF K2 <= K3 THEN GO TO 1160
END
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C.3 Sample Data Set from Frame 11, Experiment 12, Curving Crack

FRAME 11, ARUN SHUKLA

2500 REM DATA FROM EXPT-12,
2 CH RADIUS; EXPT. 12i FRAME 11

5501 DATA DATA FROM 1/
2502 DATA 0.500, &.1

R

2
N
Q. 9
5503 DATA O. 448, $.70, 0.9
2504 DATA 0.369, 5.956, Q. D
5505 DATA 0.253, 4. 42, 0.9
5506 DATA 0.232, 15.7, 0.5
5507 DATA 0.312, 20. 4. 0.9
2508 DATA 0. 397, 24. 6, 0.9
5509 DATA 0. 497, 28.2, 0.9
5510 DATA 0.498, 47.7. 1.5
5511 DATA 0. 429, 45.3, 1.5
5512 DATA 0. 344, 42. 3. 1.5
5513 DATA 0. 250, 37. 6. 1.9
5515 DATA 0.209, —18.5 1,3
5516 DATA 0.290, -21.6. 1.5
5517 DATA 0.385, -25.8 1.5
5518 DATA 0.487, —-29.6: 1.5
2519 DATA 0. 445, -151.8, 1.3
2520 DATA 0. 364, -157.5, 1.3
2521 DATA 0.273. -160.1, 1.5
2522 DATA O. 181, -165.2, 1.5
2523 DATA 0. 491, 147.2. 1. 8
2524 DATA 0. 427, 149.8 1.9
0525 DATA 0.341, 152. 4 1.3
0526 DATA 0. 231, 156. 4 1.5
5527 DATA O.233, 170.6. 0.9
0528 DATA 0.328, 167. % 0.3
5529 DATA 0. 412, 166. 4, 0.9
5530 DATA 0. 495, 165 % 0.9
2532 DATA 0.268, $57.0. 2.9
5533 DATA 0. 355, 63. 2, 2.9
2534 DATA 0. 488, 70.1, 2.9
5535 DATA 0. 491, 124.6, 2.9
5536 DATA 0. 414, 129.2, 2.9
5537 DATA O.322, 133. 6, 2.9
5538 DATA 0.252, 13%9. 1, 2.9
0541 DATA 0. 187, —45.2, 2.9
o542 DATA 0.241, —-55. 9% 2.9
5543 DATA 0.272, —67.1, 2.9
5544 DATA 0.285 -84. 7. 2.9
2545 DATA 0.283, -103. 4, 2.3
2544 DATA 0. 282 -120.2, 2.3
2547 DATA 0. 239 -135.5, 2.3
2548 DATA 0. 174, -146. 6, 2.9
2550 DATA 0.227. 72. 7+ 3.9
5551 DATA 0.286, 83.8 3.9
5552 DATA 0. 316, 94.7. 3.5
5553 DATA 0. 294, 108.7. 3.9
5554 DATA 0. 248, 119.0, 3.9
5557 DATA 0.177, —-98. 9 3.9
2558 DATA 0. 165, -80. 6, 3.9
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C.4 Sample Output for Dynamic Mixed-Mode Analysis Retaining KI
I

DATA FROM 1/2 INCH RAD ; 2; ;
D ER OF DATA POINTS=Ig8 EXPT. 12; FRAME 11; URI -- 5/85
LOWEST ORDER MODEL= 2
HIGHEST ORDER MODEL= 8
MATCR 1AL FRINGE CONSTANT
GE CONSTANT=
MODEL THICKNESS= . 413 o0
INITIAL ESTIMATE OF K-I = 1000
INITIAL ESTIMATE OF K-II = 100
CRACK SPEED (INCHES/SEC)= 1
P-WAVE SPEED (INCHES/SEC)= 9. 0F
5-WAVE SPEED (INCHES/SEC)= 3
C/Cl= .19723B&b C/C2= . 33333333

P T A L
5 PARAMETER MODEL —— DYNAMIC MIXED-MODE SoLuTION o oTTEETEEEEsr
. N
(DR Enml Lret e maEn e, el Jo L Te LR Colo
mremimaiimat s E G R sETR iR ar St ar s it
AVERAGE INPUT FRINGE ORDER= 1.B4
ITER. NO. ERROR DELTA N (FRGS) DELTA
1 32. 704 . 6504 35.325§PCT)
2 10. 374 . 3073 16. 7034
3 7. 061 . 2741 14. 8992
4 7.049 . 2723 14. 7964
AO = 566. B3 AO/A0 = 1. 000 CO = -12. 67 = =
BO = 27.98 DO/A0 = 049 DO = 0. 00 88;28 = 0'833
*==:=======:::==:===::==:::::=:==:==:::::::=====:=:===:==:===:= ——————
3 PARAMETER MODEL —-— DYNAMIC MIXED-MODE SOLUTION S
DATA EROM 1/2 INCH RADIUS; EXPT. 12; FRAME 11; URI —— 5/85
P S e e

AVERAGE INPUT FRINGE ORDER= 1. 84

ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 7. 049 L2721 14,7885
e . 289 . 0742 4. 0299
3 . 163 . 0555 3. 0170
4 . 163 . 0555 3. 0175
AQ = 571. 43 AO/AD = 1. 000 co = -16.48 CO/A0 = -. 02
BO = 40. 79 BO/AO = . 071 DO = 0. 00 DO/AO = 0. 000
Al = -52. 90 Al1/AO = ~. 1093 = =-120. 324 C1/A0 = - 211
%:::::::::::::::::::==:==::::::::::::;:::::=======:::::::::::::::===*
4 PARAMETER MODEL —- DYNAMIC MIXED-MODE SOLUTION
%BATA FROM 1/2 INCH RADIUS; EXPT. 12; FRAME 11; URI —-- 5/89
—======:===:::::::::::::::::::::::::::::::::::::::::::::::=:=======*
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 . 163 . 0555 3.0173
2 . 051 . 0292 1. 5876
3 . 050 . 0295 1. 6015
4 . 050 . 0295 1. 6035
AQ = 567. 80 AO/AQ = 1. 000 co = -b. D4 CO/A0 = = 01
BO = 32.70 BO/AQO = . 058 DO = 0. CO DO/AO = 0. 000
Al = -49. 30 AL/AQ = -. 087 Ct = =-149.51 C1/A0 = —. 263
Bl = 2. 80 B1/A0 = . 005 D1 = 120. 36 D1/A0 = .a812
%::===:=========:===::==:==::::==::::==:=::;:::::::::::::;:::=======*
= PARAMETER MODEL -— DYNAMIC MIXED-MODE SOLUTION
DATA FROM 1/2 INCH RADIUS; EXPT. 2; FRAME 11; URI —-- 5/895
%::::::::::::=====:==:==:===:=:==::=::::::::::::::::::::::::::::::::*
AVERAGE INPUT FRINGE ORDER= 1. 84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 . 050 . 0295 1. 6034
2 . 043 . 0273 1. 4847
3 . 043 .oa72 1. 4799
AD = 567. 11 AO/AQ = 1. 000 CO = -b. 86 CO/AD = =, 012
BO = 32. 98 BO/AOQ = 058 DO = 0. CO DO/AO = O.QOQ
Al = -13. 93 AL/AQ = -. 025 C1 = -—148.79 C1/A0 = _.ﬁéc
Bl = -17. 89 B1/A0 = —-. 032 D) = 123. 95 D1/A0 = . 219
A2 = 288 A2/A0 = 076 c2 = 5 55 C2/A0 = 1010
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& PARAMETER MODEL —- DYNAMIC MIXED-MODE SOLUTION
DATA FROM 1/2 INCH RADIUS; EXPT. 12; FRAME 11; URI -- 5/85

pem—ssrmsoEss oSS TR T S S L T ST R R R S SRS aRs FER RS
X S PP IR s
AVERAGE INPUT FRINGE ORDER= 1. 84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)

1 . 043 . 0272 1. 4802

2 L1039 . 0265 1. 4424

3 039 . 0262 1. 4238
AO = 56%9. 05 AQ/AO = 1. 000 CO = ~&. 83 CO/AQ = -. 012
BO = 37.13 BO/AO = 065 DO = 0. 00 DO/AQ = 0. 000
Al = -61. 41 Al1/AO0 = -. 108 Cl = -149 55 Cl1/A0 = - 263
Bl = 1. 49 B1/A0 = 003 D1 = 106. 95 D1/A0 = 188
A2 = 147  A2/A0 = 011 Co = 22. 56 C2/A0 = 040
B2 = 14,11  DB2/A0 = 025 Do = -35 53 D2/A0 = —. 062
—h—:::::::::::z::::::::::::::::::::_—::::::—_—:::::::::::::::::::::::::==::.-.-—_=:::==:==
7 PARAMETER MODEL —— DYNAMIC MIXED-MODE S0OLUTION =
DATA FROM 1/2 INCH RADIUS; EXPT. 2; FRAME 11; URI -— 5/85
-;(-::::::::::::::.::::::: s Emmossr TS TS LSS NS RS EESE EEREERES 3+ 2 22 1 % 23
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)

1 .1039 L0262 1. 4249

2 . 030 . 0260 1.4134

3 . 029 . 0240 1. 302

4 . 029 . 0242 1. 3139
A0 =  568.64  AO/A0 =  1.000 co = -5.04 CO/A0 = —. 009
BO = 44 45 DBO/AD = 078 DO = GO DO/AO =  0.000
Al = -151.08 Al1/AQ = —-. 266 Cl1 = -149.08 Cl1/A0 = —. 262
B1 = 30,15 B1/A0 = 053 D1 = 93.36 D1/AQ = 164
A2 = 17. 19 A2/A0 = 030 ca = 55. 48 C2/A0 = 098
B5 = -48. .47 DB2/A0 = - 085 D2 = -108.08 D2/A0 =  —. 190
A3 = 95. 21 A3/A0 = 167 c3 = 54. 53 C3/A0 = 096
-}::::::::::::::::_—_—:===::::===:=======::::==:=::—:::::::::::::::::—_—::====*
8 PARAMETER MODEL —-- DYNAMIC MIXED-MODE SOLUTION
DATA FROM 1/2 INCH RADIUSS EXPT. 12; FRAME 11; URI —- 5/85

e ST TSSO ES RIS SRS EEEE =S

AVERAGE INPUT FRINGE ORDER= 1. 84

ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 .02 . 0241 1. 38122
2 . 028 . 022 1. 1954
3 . 028 . 0218 1. 1845
AO = 568. 68 AOQ/AO0 = 1. 000 CO &= -5. 31 CO/AQ = -. 009
BO = 44 13 BO/AO = . 078 DO = 0. 00 DO/AO = 0. 000
Al = -—142.57 Al1/AO0 = -. 251 Ci = =153.2 Cl1/A0 = -. 270
Bl = 23. 48 B1/A0 = . 041 Dl = 107. 00 D1/A0 = 188
2 = 26. 41 A2/A0 = 046 2 = 53. 45 c2/A0 = . 094
B2 = =-37. 56 D2/A0 = -. 066 2 = -134.33 D2/A0 = -. 236
A3 = 0. 54 A3/A0 = 089 c3 = 83. 02 C3/A0 = 146
B3 = 2.15 B3/A0 = 057 D3 == -23. 40 D3/A0 = -. 041
oo TEEEETIIEREES mzmrmm ST =ES oo EmE ST T EEEES ST SRR EEEE prrmEErs = sz o 4
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C.5 Sample Output for Dynamic Mixeda-mode Analysis with K

—

—
]
o

DATA FROM 1/2 INCH RADIUS: EXPT. 12; i e
NUMBER OF DATA POINTS= 50 1% FRAME 14 R e
LOWEST ORDER MODEL= 2
HI1GHEST ORDER MODEL= 8
NUMBER OF ITERATIONS= 40
MATERIAL FRINGE CONSTANT= 150
MODEL THICKNESS= . 413
INITIAL ESTIMATE OF K-I = 1000
INITIAL ESTIMATE OF K-II = 100
CRACK SPEED (INCHES/SEC)= 1
P—WAVE SPEED (INCHES/SEC)= 5.07
S—WAVE SPEED (INCHES/SEC)= 3
C/C1=_. 19733866 C/C2= 33333330
> PARAMETER MODEL -- DYNAMIC MIXED-MODE SO NI = o T
DaTA FROM 1/2 INCH RADIUS; EXPT. 12; PRAME 117 ORI ~~"5/as5 ©

AVERAGE INPUT FRINGE ORDER= 1. 84

ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 30. ?32 . 95949 32. 3310
2 8. 804 . 2747 14. 9320
3 7. 394 L2672 14. 5231
4 7. 352 . 2680 14. 5631
AQ = S67. 79 AQ/AO = 1. 000 Co = 0. 00 o] =
BO = 28. 78 BO/AO = . 081 DO = 0. 6o 80?28 = 8 888
EE S 1 e i s T ST T ST T S T S N S E S TS S S S S S ST TR SR E S
3 PARAMETER MODEL -- DYNAMIC MIXED-MODE SOLUTION —— K-II = *
DATA FROM 1/2 INCH RADIUS; EXPT. 12; FRAME 11; URI —- 5/895

e T I I T S SRS SRS IR IS TS S S =Yt

AVERAGE INPUT FRINGE ORDER= 1.84

ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 7. 352 . 2680 14, 5641
2 . 830 . 1053 3. 7224
3 . 712 . 1049 3. 6993
4 . 712 . 1049 5, 7031

= 0. 00 CO/A0 = :
= 0. 00 DO/AO = 0. 000

BO = 37 51 BO/AO = 066 DO
-  -25 b4 AL/A0 = —.080 ~118.00 C1/A0 2 507
*::::::::========:=====:===== === 3+ 11 =========:== mepsmsmm RmEEISTERS ::T:::*
2 PARAMETER MODEL -— DYNAMIC MIXED-MODE SOLUTION —-- K-II = 0
DaTAPRGM 1/2 INCH RADIUS: EXPT. 12; FRAME 11; URI —- 5/85
*=================== =====================:===== EmsmTmmm=E= =mma== ======*
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA_N_(PCT)
1 712 1049 5. 7031
2 L 081 " 0400 51744
3 078 ' 0406 5 2049
a 078 0406 5 2074
AO = S565.28 AO/A0 =  1.000 = 0.00 CO/AO0 =  0.000
BO = 27,43 BO/AO = 049 Do = 3 00 DO/AO =  O.000
Al = -41.83 Al/AQ = -.074 Z 161 99 CirsAQ = -.287
= 4 20 Bi/A0 = 007 - 172,60 Di/a0 = 305
*‘======= ============ :========-—===========:==:===== :::::::::::: ::;;::*
S EARAMETER MODEL —- DYNAMIC MIXED-MODE SOLUTION - K-11 =0
DA ARALENT] /D INGH RADIUS; EXPT. 12 FRAME 11; URI —- 5/83 i
*=============:===== ======:== ===——'============:=:==:====: aEmmo=mma= ===
AVERAGE INPUT FRINGE ORDER= 1. 84
ITER. NO. ERROR DELTA N (FRGS) DELTA_N_(PCT)
1 "078 "0406 2. 2075
2 069 10438 5 3784
3 068 | 0449 5 4411
3 068 0451 5. 4537
AO = 559.39° AO/A0 =  1.000 co = 0.00 CO/A0 =  0.000
BO = i3, D6  BO/AQ = 024 Do = 6 00 DOs/AO =  0.000
AL = 118.13 A1/AQ = 211 81 = -178.60 C1/A0 = ~—.319
Bi = -40.51 B1/A0 = —.072 DI = 253 52 D1/A0 = 353
AZ = 63 81 A2/A0 = 114 83 = 3552 ca2ra0 = -.037



6 PARAMETER MODEL -- DYNAMIC MIXED-MODE SOLU == K- =
DATA FROM 1/2 INCH RADIUS; EXPT. 12; FRAME lIfDURI ~5 é;BS .

T T I I N T N I T T T T I T I N T N S N T T e T N S T T I T S e e =
s TEESEETEmT IS ST oo oy
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 . 068 . 0452 2. 4561
2 . 065 0447 2.4312
3 L 065 . 0445 2.4178
A0 = 561.08 AO0/AO =  1.000 COo = 0.00 GCO/A0 =
BO = 16,06 BO/AO = 029 Do = 0.00 Dosao = o 999
Al = 81.83 AlL/A0 = 146 Cl = -180.38 C1/A0 = -.321
Bl = -24.18 B1/A0 = —.043 Di = 242.26 Di/A0 = 355
A2 = 30. 60  A2/A0 = 055 ca = -7.37 C2/40 = -.013
B2 = 13. 61 B2/A0 = 024 D2 = -29.80 D2/A0 = —. 053
B T e e e ey
7 PARAMETER MODEL -— DYNAMIC MIXED-MODE SOLUTION —- K—-II = O &
DATA FROM 1/2 INCH RADIUS;, EXPT. 12; FRAME 11, URI —-- 5/85
R oo ST S S EST T SEE T E T E S I E E E E E E E E I E E S E E SE E E T T T E S S S S S TS S s == e
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 . 065 . 0444 2.4113
2 . 061 . 0400 2.1750
3 . 039 . 0303 1. 6447
q . 039 . 0305 16593
S 039 . 0305 1. 6583
AQ = 56562 AO/A0 =  1.000 CQ = 0.00 CO/A0 =  0.GO00
80 = 2> 15  BRO/AO = 075 DO = 0.00  DO/AO = 0. 000
Al = -185 91 AL/AO = - 329 C1 = =-160.68 C1/A0 = - 284
Bl = 56. 4 Bi/Aa0 = 100 Di = 140.31 D1/A0 = . 24g
2 = ’7 41  A2/7A0 =  —-.002 2 = S2.28 C2/A0 = . 092
B2 = -76. 23 B2/A0 = = 139 p2 = -111.88 D2/A0 = ~. 198
a3 =  143.45 A3/A0 = 289 €3 = 60. 41  C3/A0 = T107
*=======_—_===-_-=—_—=_—_-===:=====:::'::::::::::::::::::::::::::::::::::—.::::::::::*
8 PARAMETER MODEL -— DYNAMIC MIXED-MODE SOLUTION —- K-II = O
DATA FROM 1/2 INCH RADIUS; EXPT. 12; FRAME 11; URI -- 5/85
*========:=========::::‘—"::_—_:::=:::===:"—:=:==:==::==:===::========:==*
AVERAGE INPUT FRINGE ORDER= 1.84
ITER. NO. ERROR DELTA N (FRGS) DELTA N (PCT)
1 . 039 . 0305 1. 6584
2 . 038 . 0302 1. 6402
] . 038 . 0302 1. 6411
= = 1.000 co = 0.00 CO/AQ =  0.000
a0s w3 “0528 = 074 DO = 0.00 DO/A0 =  0O.000
BO 42.02 BO - ayces = 9
Al = -183.09 Al/A0 = —.324 C1 = -163.69 1/80 = . 289
Bl = 53. 68 B1/A0 = . 095 D1 = 150.40 82/28 = . 266
A2 = 4. 06 A2/A0 = . 007 c2 = 20.82 oD = _.qqg
B2 = -71.53 B2/A0 = . 126 D2 = -128.51 D2/A0 = 227
A3 =  140.6%9  A3/A0 = . 249 c3 = 78. 72 360 = .13
B3 = 18. 95 B3/A0 = . 034 D3 = -13. 62 D = . oas
*===================::=:==:==:==:==::========:===::=====:====:::::;:==.Q

- 143 -



C.6 FOKTRAN Program Listing for Dynamic Mixed-Mode Isochromatic Pio1

C PROGRAM TO GENERATE ISOCHROMATIC FRINGE PLOTS FOR
E ;géSstogggg ?ESEESLE$AA USER DEFINED SIZE PLOT FOQYE?gag SsongRS#IELDS
% NT SPEED EQUATIONS FOR CCMBINED OPENING AND SHEAR MODES

REAL L., M, I0,JO

DIMENSION A(12),C(12)

DIMENSION LABEL(80)

DIMENSION FI(3),FII(3),FT(3)

DIMENSION LEVEL1(120),LEVEL2(120), LEVEL3(120), LEVEL4(120)

M = MUMBER CF PLOTS TO BE MADE WITH SAME VELOCITY, PLOT SIZE, AND
)

VIEWING WINDOW (XMIN, XMAX, YMIN, YMAX
CRACK VELOCITY (USE 250.0 IN/SEC FOR STATIC PROBLEMS)

CO =

C1 = DILATATIONAL WAVE VELOCITY (USE 100, 000. 0 IN/SEC F

c2 = SHEAR WAVE VELOCITY (USE 50, 000. O IN/SEC FOR STATIgRPES$g§C pLoTs)
FSIGMA = MATERIAL FRINGE CONSTANT (PSI-IN/FRINGE)

H = SPECIMEN THICKNESS (INCHES)

10 = PLOT SIZE ALONG WIDTH OF PAPER. MUST BE LESS THAN 12 INCHES ALSO

SHOULD BE SUCH THAT 10#10 WILL BE AM INTEGER, :
) gED$55U?EDAIB THAE LA0%T0 Ik GER, SINCE 10 CHARACTERS/IN

JO = SI LONG LENGTH OF PAPER. CAN DE AS LARGE AS

YGU CAN GVERRIDE FAGE SPACING — ON UNIVAC @HDG, N .Q,BEPB.SANTMSQQVégED
SUCH THAT B#%u00 WILL BE AN INTEGER, SINCE B CHARACTERS/IN IS ASSUMED

IN THAT DIRECTION

¥MIN = MINIMUM X-VALUE FOR PLOT WINDOW
YMAX = MAXIMUM X-VALUE FOR PLOT WINDOW
YMIN = MINIMUM Y-VALUE FOR PLOT WINDOW
YMAX MAX IMUM Y-VALUE FOR PLOT WINDOW
LEFT—-HAND CORMER (XMIN, YMAX) AND GOES ALONG LINES

PLOTTING STARTS AT TOP
OF "CONSTANT TS AT IRECTION CORRESPONDS TO X AND U-DIRECTION CORRESFONDS TO

OOOOOOOOOOOCO(‘)O(’}OOOOGQ(“

NCHES/SEC’, 2X»

1GMA, H
GMA=’,F10. 2, P I-IN/FRINGE’, 5X, 'THICKNESS=", F6. 4,

C
R
$ ‘Ci=’,F10 &,
WRITE (6,303) F
303 FORMAT (2X, 'FS
$ ‘' INCHES")
IMAX=10#10
JMAX=8#J0
XO=XMIN
YG=YMAX
DX=(XMAX—-XMI
DY=(YMAX-YMI
WRITE(&, 305)
WRITE(6, 302)
1

XM
& ‘'YMAX=',

S99 FORMAT ( )
READ(5, 99)N
READ (5,99) CO,C1,C2
READ (5,99) FSIGMA, H
READ (5, 99) 10,J0
. READ(5, 99) XMIN, XMAX, YMIN, YMAX
g,< WRITE OUT BASIC INFORMATION RELATING TO PLOTS
WRITE(6, 300)N -
300 FORMAT(’17,2¥%, '1SOCHRCMATIC FRINGE PLOTS WITH THE FOLLOWING DATA”’,
7, TOTAL OF’, 13, ' PLOTS', //)
WRITE (6,301) €O,C1,C2
301 FORMAT (2X, ‘CRACK VELOCITY=",F 2, © INCHES/SEC’, /., 2X
v T 2 “,F10. 2, * INCHES/SEC’)
s
I

10.
ca=
S

N) /FLOAT (IMAX—1)
N) /FLOAT (UMAX—1)
0, JO
XMIN, XMAX, YMIN, YMAX
M N=',F10A4,5X.’XMAX=’,F10~4,5X;’YNIN=’.F10.4,5L
F10. 4)

WRITE (&, 304) X0, YO, DX, DY

304 FORMAT(2X, ‘PLOT STARTS AT X0="',F
$ 'WITH A PLOT INCREMENT OF DX=",
¢ , 'AND A PLOT INCREMENT OF DY=',

305 FORMAT (//, 2X, ‘PLOT SIZE IS =',F4
CALCULATE VELOCITY FUNCTIONS NEEDE

C3=SQRT(1. 0—(CO/C1) w¥d)
C4=SGRT(1. 0-(CO/C2)##2)
=(1. 0+C4+%%2) /(4. OxC3*C4 — (1. 0+CAa##2) ##2)

o

6=2. O#C4/ (4. O*C3%C4 — (1. 0+Ca##2) #K2)
7=1. 0+2. O#C3##2-CA#**2

B8=4. O#C3#C4/ (1. 0+C4#%2)

9=1, O+Ca4#r
ClO=((14O+C4**2)**2)/2.O/C4

START DO-LCCP FOR EACH INDIVIDUAL PLOT

)
)
1
M
1
4
(0]
a X, ‘» YO=',F10. 4, 5X, /.
75X, IN THE X-DIRECTI
" 5X, ‘IN THE Y-DIRECTI
X%, F4. 1, ’ INCHES’,//

D IN STRESS CALCULATIONS

iglelel

gigislelep]

DO 5 K=1,N

. ZERD OUT COEFFIC
. ZERO OUT COEFFI

DO &6 Ki=1,12

IENTS: A(
CIENTS: C

o000 000

03

=

-
o

FICIENTS AND OTHER INFORMATION FOR PARTICULAR PLOT
Rl LN R RRK=F (COSINE SQUARED) i N1 = 1 FOR LIGHT-FIELD

80 = HEADING LADEL TO BE .
A(I), I=1,N2 = COEFFICIENTS OF MODE I SOLUTION STARTING AT _A(1)
C(I), I=1,N2 = COEFFICIENTS OF MODE 11 SOLUTION STARTING AT Ct1).

[elglelielslielel
Z
8}
(]
Z
C
= 4
=]
m
e
o
m
b
>
o
>
=4
m
-
m
el
0
]
o
o
m
2
m
>
o
-
4
=
=T
20
-3
m
o~
X
b
-0
-
=)
h)
o
mn
)
|
Q
-
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[elele}

000 000 oo

(gieielelel

——Z
e

2
2
1000
1001

O nnOZ

S0O00UDB>D>UBUND——wODwr

POBOROBOvww"O~

), I=1, 80)

18]

il

WR
1002 FORMA
$ F10.
1003 FORMA
% F10.
1004 FORMA
$ F10. 4
1005 FORMAT(
$ F10.4,7X,

START LOOPING OPE

DO 10 J=1, JMAX
Y=YO—-(J-1)#DY

PRINT

~ o~ AR~~~ s~

PINMINPINDS

DHBHDH

—
o

L I

S s s s s+ 0000

RTINS,
SR NN S A A OOD DT

SRS SR S ey

NNNNNINNNT s
D 3. DK 3¢ DK D0, D O b b b pt
COoOEED> B

DU Ul o o —

L}

N FOR EAC

BLANK OUT FIZLD AT EACH L

o b
n
sw s vO

I I g

|
40 CONTINUE

DO 20 I=1, IMAX

X=X0+(1~-1)#DX

IF ( ABS(X) .LT. 0.00001) X=0
X1=X

X2=X

Y1=Y#C3

Ya2=Y#*C4

CALCULATE VELCCITY TRANSFORMED

0=8QRT (X1 ##2+Y1##)
P=5SQRT (X2##2+Y2#¥*2)
L=ATAN2(Y1, X1)
M=ATAN2(Y2, X2)

FI(1),FII(1) = SIGMAX; FI(2),FI11(2) = SIGMAY; FI(3),FII(3) = TAUXY
SET THESE TO ZERO INITIALLY, THEN LOOP THROUGH FOR CALCULATION AND
SUMMATION OF EACH TERM OF SERIES EXPRESSIONS FOR THESE QUANTITIES
DO 21 I1=1,3
FI(I1)=0.0
F11(I11)=0.0
FT(I11)=0.0
21 CONTINUE
DO 30 Ki=1, N2
XK2=FLDAT (K1-2)/2. 0
AI=C5%A (K1)
CII=C6#C (K1)
R1=0#%XK2
R2=P##XK2
COS1=COS(XK2*L)
COS2=COS(XK2#M)
SIN1=SIN(XK2#L)
SIN2=SIN(XK2*M)
IF(K1/2#2 EQ. K1)GO TO 31
FI(1)=FI(1) + AI#(C7#R1%COS1 - C8#*R2#C0OS2)
FI(2)=FI(2) + AI#(-Co#R1%CO51 + Cca#R2#COS2)
FI(3)=F1(3) + Al# (-2, O%C3¥R1¥SIN1 + 2. O#C3#R2#SIN2)
FIT(1)=FII(1) + CII#(C7#R1#SIN1 — Co#R2¥SIN2)
FII(2)=F11(2) + CII#(-C9#R1#SIN1 + Co#R2#SINZ)
FII(3)=F11(3) - ClI#(-2. O#C3#R1#C0OS1 + C10#R2%COS2)
€BnT TnoE
31 CONTIN
FI(1)=FI(1) + AI®*(C7%R1#COS1 - Co#R2#COS2)
FI(2)=F1(2) + AI#(-C9¥R1#COS1 + C9#R2#COS2)
FI(3)=FI(3) + Al% (-2 O¥C3#R1#SIN1 + C1O#R2#SINZ)
FII(1)=FII(1) + CIT#(C7#R1#SIN1 - CB#R2¥SIN2)
FII(2)=FII(2) + CII#(—-CO#R1#SIN1 + CB#R2#SINZ)
FII(3)=FI1(3) — CII#(—2. O#C3#R1#COS1 + 2. O#C3#R2#COS2)
30 CONTINUE
DO 33 I1=1,3
FT(I1)=FI(I1) + FIICI1)
33 CONTINUE

»F10. 4,7X, ‘A2=",F10.4,7X, 'A3=",
»F10. 4)

,F10. 4,7X, ‘Ba2="',F10. 4,7X, 'B3=",
»F10. 4, 7)

,F10.4,7X%, 'C2="',F10. 4,7X, 'C3=",
»F10. 4)

. F10. 4,7X, ‘D2="',F10. 4, 7X, ‘D3="
+F10. 4)

H ROW OF PLOT (CONSTANT Y LINE)

OCATION ALONG ROW

START LOOPING CPERATION FOR EACH LOCATION ALONG A PARTICULAR ROW

00001

COORDINATES ROL, RO2, FEEl, FEEZ2
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[slele}

CALCULATE TAUMAX, FRINGE ORDER, N = TAUMAX#*2%H/FSIGMA, AND INTENSITY FN

TAUMAX=SART(((FT(2)~FT(1))/2. 0)#*2 + FT(3)##2)
XINT1=TAUMAX#2 O#*#H/FSIGMA

XINT=(COS(XINT1#3. 141592654) ) ##2

IF (N1.EG. 0) GO TO 880

XINT=1.0 — XINT

880 CONTINUE

[elgiglgle]

820

F00

930
40

?20
20

a0onn

oo 000

=hh
[elele]
—-C

S

CHECK IF YOU ARE AT CRACK LINE. IF S0, USE SPECIAL SYMBOL TO DEFINE

IF (ABS(Y).GT.DY) GO TO 890
IF(X.GT. 0. 00001) GO TO 890
LEVELL(]) =" ~¢

GO TO 20

CHECK INTENSITY LEVEL TO DECIDE WHICH BAND YCU ARE IN. THEN PUT TOGETHER
APPROPRIATE PATTERN GOF OVERSTRIKES TO OBTAIN DESIRED FRINGE DENSITY aT

THE POINT.
GO TO 200

GO TO 920

A~~~ A~

[ @ h= it g
MmMATMMMTT

RN

GO 20
LEVEL1(I)="X"
GO TO 20
LEVELI(I)="+"
GO TO 20
LEVELI(I)=":"
CONTINUE

END OF LOOP FOR_ONE ROW
PRINT OQUT RESULTS OF COM

WRITE (6, 40C) (LEVEL1(
WRITE (&, 401) (LEVEL2(
WRITE (&, 401) (LEVEL3(
WRITE (&, 401) (LEVELA4(
FORMAT(1X, 120A1, F?. 4
FORMAT ( “+ 7, 120A1)
CONTINUE

END OF PLOT. GO BACK AND PICK UP INFORMATION FOR NEXT PLOT

N, AND FRINGE ORDER OF LAST PIXEL
» XINT1

bt et e g

CONTINUE
THAT ‘S ALL FOR NOW, FOLKS

STOP
END
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C.7 Sample OQutput from Dynamic Mixed-Mode Fringe Plotting Program

PAPAMETER MOCEL

RADIUS -- €

1HCw

§é

12, FRAME 11, CATA FROM

FXPT,

Yt

O T =T F DN 0= A ND DI o (IO 7= VDA N F = (J-F 0D IO 0¥ P F =0 VN = O R D O N =P D

1 N T OO O - ~

rhrosqoqhorpoh4omcmomhwrmmoF@mcmqNOmFN—mmobwONOmowurmNmOﬂm—ﬂuMDOOx:gSNNNm:“ON"ﬁ

4rmﬂrm:;hJDaNNﬂwJo40#0JOﬂmNﬂmJ@thNm4omowOwaOJmNquNDMOOFwowowﬂ:o#mogrlamg:;mmr

— 0000 00 00U = =0 VAT o FIF (A (M 1= 1 0 0 = NI I a8 o AN O - 030 0 0 O OO == Ao
P P et et o ROt R B & S e s b L )

T e e e e 1 o e P e T 1 ¥ e e = = e = = e

ST P 00 0 N R A e
tHOOmE DS -3 .202:
©

txmEmmEox-

CromEmE®S®ex
Bl
D <
ceNaMEEEn O

re@m
cenm

"x.-n---o4
< <
+omm

COmmMm®X+
())----.QKQ .-
®e
-.-----.KO .
-----..HDQQ o
- - .

X @ e <
uuo»noo---------.on
o

TiesrrexIXXXXB0S

ve

R R

-
- <+
> on Bpex
Tommme e
- <
Hemame
o mmm®
Ml
"o+

nnﬁxz-n------xu
Gt ED @ e R

.x.n---nao
Nﬂkh.---ﬁo

R
VKB REEHSIE S ot o
rToom - -

=t
------------u----a---exu
--------- >

-4 -n------
nnn---.'rttlhxnnxnnnxxolol--
D B X < .- .

O e

PR

e ®

-
e EREEERR RO} TP OME A X
me mE o=

ory
vo

Mt N eeEman
B L

-------.---oxo
- me o e

=
-----------
- - - -

O wern
S
=) +o ------------- - -
v nerome -
© yrxammemue
' -

-

------l.
[ .- - - - -------
%) - -------------..
vo u.~o’------~o :::::-:--- -

sesanes BT TR

+ xomm

- 147 -



K=11=0
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Intensity Factors from Isochromatic Crack-Tip Fringe Patterns,"
Mechanics Research Communications, Vol. 6, No. 5, pp. 275-282
T1979) - with H.P. Rossmanith.

ee Parameter Representations of the
and Dynamic Cracks," Proceedings,
Congress on Experimental Mechanics,
(May 1980) - with G.R. Irwin and

A Comparison of Two and Thr
Stress Field Around Static
Fourth SESA International
Boston, Massachusetts, pp. 76-78
A. Shukla.
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“A  Survey of Recent Developments in the Evaluati

. ation of Stre
Intensity Eactors from Isochromatic Crack-Tip Fringe Patternssi
Advances in__Fracture Research (Proceedings of the Fiféh

International Conference on Fracture, ICF5), Cannes, France. D

Francois, editor, pp. 2507-2516 (1981) - with H.P. Rossmanith.

“Analysis of Photoelastic Fracture Patterns with

3 ¢ a Sampled
Leagt—Squares Method, Proceedings, 1981 Annual Spring Meet?ng
Society for Experimental Stress Analysis, Dearborn, Michigan p .
273-276 (June 1981) - with R.J. Sanford. hon

"Two and Three Parameter Representations of Crack-Ti

. A ! > -Tip Stres
Fields," Journal of Strain Analysis, Vol. 17, No. 2 ;; 75?52
(1982) - with G.R. Irwin and A. Shukla. B

“Characterizing Fracture Mechanics Specimens b i
€ k y Photoelast
Metho@s, Proceed1pgs, 1982 SESA/JSME Joint Conference gﬁ
Experimental Mechanics, Oahu-Maui, Hawaii, pp. 263-265 (May 1982)

- with R.J. Sanford.

"Energy Release Rates for Branched Crack Systems," Proceedi
1982 SESA/JSME Joint Conference on Experimental Mechan?g:’

Oahu-Maui, Hawaii, pp. 1092-1095 (May 1982) - with W.L. F
and A. Shukla. e

“Influence of Specimen Size and Shape on the Singularity
Dominated Zone," Fracture Mechanics: Fourteenth Symposium -
Volume I: Theory and Analysis, G.R. Sines and J.C. Lewis

editors, ASIM SIP 791, pp. 1-3 - I-23 (1983) - with G.R. Irwin

and R.J. Sanford.

“Dynamic Crack Growth in Polymers," Proceedings, NSF/USARO
Workshop on Dynamic Fracture, W.G. Knauss, editor, California
Institute of Technology, Pasadena, California, pp. 75-99,
(February 1983) - with W.L. Fourney and R.J. Sanford.

"Stress-Intensity-Factor Determination from Displacement Fields,"
Proceedings, 1983  Annual Spring Meeting, Society for
Experimental Stress Analysis, Cleveland, Ohio, pp. 445-448 (May
1983) - with D.B. Barker and R.J. Sanford.

"Determining Stress Intensity Factors for Running Cracks,"
Modeling Problems in Crack Tip Mechanics, J.T. Pindera, editor,
Martinus Nijhoff Publishers, pp. 207-215 (1984) - with W.L.
Fourney, R.J. Sanford and A. Shukla.

"photoelastic Calibration of the Short-Bar Chevron-Notched

Specimen," Chevron-Notched Specimens: Testing and Stress
H. Underwood, et al., editors, ASTM STP 855, pp.

Analysis, J.
81-9/ (1984) - with R.J. Sanford.




13

14.

Lors

16.

L

18.

19.

205

pAI

2

"Simp]e. Techniques for Generating Computer Fringe Patterns,"
Proceedings, Fifth SESA International Congress on Experimental

Mechanics, Montreal, Canada, pp. 502-505 (June 1984) - with R.J.

Sanford and D.B. Barker.

"Dynamic Crack-Tip Stress Fields in Fracture Test Specimens,"
Proceedings, Sixth International Conference on Fracture, ICF6,

New DelThi, India (December 1984) - with A. ShukTa.

“The Rgcoverabi]ity of Plastic Zone Enerygy 1in Crack Arrest,"
Proceedings, 1985 SEM Spring Conference on Experimental

Mechanics, Las Vegas, Nevada, pp. 13-19 (June 1985) - with W.L.

Fourney, R.E. Link and R.J. Sanford.

“Anq]ysis of Dynamic Fracture Events," Proceedings, 1985 SEM
Spring Conference on Experimentai Mechanics, Las Vegas, Nevada,

pp. 8/2-884 (June 1985) - with G.R. Irwin, W.L. Fourney, and
C.W. Schwartz.

"Computer Generated Fringe Patterns in Speckle Analysis,"
Proceedings of the SPIE International Conference on Speckle, San

Diego, California, pp. 324-331 (August 1985) - with R.J.
Sanford and D.B. Barker.

"Determining K and Related Stress Field Parameters From
Displacement Fields," Experimental Mechanics, Vol. 25, No. 4, pp.
399-407 (1985) - with D.B. Barker and R.J. Sanford.

"The Stress Field Surrounding a Rapidly Propagating Curving
Crack," Fracture Mechanics: Eighteenth Symposium, D.T. Read and
R.P. Reed, editors, ASTM STP 945 (in press - 1987) - with A.

ShukTa.

"Determination of Dynamic Mode I and Mode II Fracture Mechanics
Parameters from Photoelastic Data," Proceedings, VIIIth
International Conference on Experimental Stress Analysis,

Amsterdam, The Netherlands (May 1986) - with A. ShukTa.

"Determining the Stress Field Parameters Associated with Curving
Cracks," Proceedings, 1986 SEM Spring Conference on Experimental
Mechanics, New Orleans, Louisiana, pp. 537/-545 (June 1986) - with

A. Shukla.

"A Method for Determining the Crack Arrest Toughness of Ferritic
Materials," Fracture Mechanics: Nineteenth Symposium, T.A. Cruse,
editor, ASTM STP to appear (1987) - with D.B. Barker, W.R.
Corwin, W.L. Fourney, G.R. Irwin, C.W. Marschall, A.R.

Rosenfield and E.T. Wessel.
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"An Examination of the Zero-Kz Criterion for a Smoothly Curving,
Propagating Crack," to appear in Engineering Fracture Mechanics
(1987) - with G.R. Irwin and A. Shukla.

"Global and Local Energy Release Rates for Branched Crack
Systems," to appear in Experimental Mechanics (1987) - with W.L.
Fourney and A. Shukla.

CONFERENCE PRESENTATIONS

Ls

“Examination_of a Strip-Zone Model in Fracture Mechanics," 18th
Annual Meeting of the Society for Engineering Science,

Providence, Rhode IsTand (September 1981) - with T. Kobayashi.

"The Variation of Non-Singular Stress Function Coefficients in
Different Fracture Test Specimens," 18th Annual Meeting of the
Society for Engineering Science, Providence, Rhode IsTand
(September 1981) - with W.L. Fourney and A. Shukla.

“Plastic Zones 1in Crack Arrest Testing," Presentation to ASTM
Committee E-24 on Fracture Testing, Louisville, Kentucky (April
1983) - with W.L. Fourney and R.J. Sanford.

"The Recoverability of Plastic Crack Opening Displacements,"
Presentation to ASTM Committee E-24 on Fracture Testing,
Pittsburgh, Pennsylvania (November 1983) - with W.L. Fourney,
R.E. Link and R.J. Sanford.

"ASTM Round Robin on Crack Arrest Testing -- A Progress Report,"
Presentation to ASTM Committee E-24 on Fracture Testing, Dallas,
Texas (October 1984) - with W.L. Fourney.

"Analysis of Dynamic Fracture Propagation Using the SAMCR Code,"
21st Annual Meeting of the Society for Engineering Science,
Blacksburg, Virginia {October 1984) - with C.W. Schwartz, W.L.
Fourney and G.R. Irwin.

"ASTM Round Robin on Crack Arrest Testing -- A Progress Report",
Presentation to ASTM Committee E-24 on Fracture Testing,
Charleston, South CarolTina (April 1985) -- with W.L. Fourney.

"Proposed Standard Test Method for Kz Testing", NRC/EPRI Review
Meeting on Crack Arrest Concepts in Nuclear Applications,
Gaithersbury, Maryland (April 1985) - with W.L. Fourney.

"Analysis of Wide Plate Test Results Using the SAMCR Code",
NRC/EPRI Review Meeting on Crack Arrest Concepts in Nuclear
AppTications, Gaithersburg, Maryland (April 1985) - with C.W.
Schwartz, W.L. Fourney and G.R. Irwin.
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"ASTM Round Robin on Crack Arrest Testing -- A Discussion of
Results", Presentation to ASTM Committee E-24 on Fracture
Testing, Nashville, Tennessee (November 1985) - with
W.L. Fourney.

"Results from the ASTM Round Robin on Kiz Testing", NRC/EPRI
Review Meeting on Crack Arrest Concepts in Nuclear Applications,
Gaithersbury, Maryland (April 1986) - with W.L. Fourney.

"Determination of Dynamic Mode I and Mode II Fracture Mechanics
Parameters from Photoelastic Data," Tenth U.S. National Congress
on Applied Mechanics, Austin, Texas (June 1986) - with A. Shukla.

TECHNICAL REPORTS

1,

"Photoelastic Studies of Damping, Crack Propagation, and Crack
Arrest in Polymers and 4340 Steel,” NUREG/CR-1455, University of
Maryland (May 1980) - with G.R. Irwin, W.L. Fourney, D.B.
Barker, R.J. Sanford, J.T. Metcalf and A. Shukla.

"A Photoelastic Study of the Influence of Non-Singular Stresses
in Fracture Test Specimens,” NUREG/CR-2179 (ORNL/Sub 7778/2),
University of Maryland (August 1981) - with R.J. Sanford, W.L.
Fourney and G.R. Irwin.

"Photoelastic Analysis of Metal-Brittle Material Structures,"
Progress Report to Sandia National Laboratories for the period
June 1, 1982 to September 30, 1983, University of Maryland
(September 1983) - with R.J. Sanford and R.E. Link.

"SAMCR: A Two-Dimensional Dynamic Finite Element Code for the
Stress Analysis of Moving CRacks,” NUREG/CR-3891 (ORNL/Sub
7778/3), University of Maryland (November 1984) - with C.W.
Schwartz, W.L. Fourney and G.R. Irwin.

"A Report on the Round Robin Program Conducted to Evaluate the
Proposed ASTM Standard Test Method for Determining the Crack
Arrest Fracture Joughness, Kia, of Ferritic Materials,"
NUREG/CR-xxxx (ORNL/Sub /7778/4), University of Maryland (July
1986) - with D.B. Barker, W.L. Fourney and G.R. Irwin.

THESES

1.

2.

"Non-Singular Stress Effects in Fracture Test Specimens - A
Photoelastic Study," M.S. Thesis, University of Maryland (1985).

“The Stress Field Surrounding the Tip of a Cragk Propagating in
a_ Finite Body," Ph.D. Dissertation, University of Maryland

(1987).






