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ABSTRACT

On Numerical Analysis in Residue Number
Systems

Title of thesis:

George Edward Lindamood, Master of Arts, 1964

Thesis directed by: Professor Werner C. Rheinboldt

Recent attempts to utilize residue number systems
in digital computers have raised numerous questions about

adapting the techniques of numerical analysis to residue

number systems. Among these questions are the fundamental

problems of how to compare the magnitudes of two numbers, how

to detect additive and multiplicative overflow, and how to

divide in residue number systems. These three problems are

treated in separate chapters of this thesis and methods are

developed therein whereby magnitude comparison, overflow

detection,, and division can be performed in residue number

systems. 1In an additional chapter, the division method is

extended to provide an algorithm for the direct approxi-

mation of square roots in residue number systems. Numerous

examples are provided illustrating the nature of the problems



considered and showing the use of the solutions presented in
practical computations. 1In a final chapter are presented the
results of extensive trial calculations for which a conven-
tional digital computer was programmed to simulate the use

of the division and square root algorithms in approximating
quotients and square roots in residue number systems. These
results indicate that, in practice, these division and

square root algorithms usually converge to the quotient or

square root somewhat faster than is suggested by the theory.
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INTRODUCTION

A. Residue Number Systems. Residue number systems,

in which an integer x 1is represented by its residues

with respect to one or more mutually prime moduli

0’ Mmyse..,m_ , were known to the ancient Chinese. 1In
fact, the so-called "Chinese Remainder Theorem" was stated
in a restricted form by Sun-Tsu in the First Century A.D.
(See Dickson [3], pp. 57-64.) In modern terminology, the

Chinese Remainder Theorem can be stated in the following

form:

If mo.ml,...,mn are mutually prime (positive) integers,

the congruences

X =a, (modm.,), i=20,1,...,n, (0.1)
: 1
have a unique simultaneous solution modulo M = momy .. .m .
If M, = M/m.l and x, 1is the unique integer modulo m,
such that
x.M. =1 (mod m.), i =0,1,...,n,
g | i

then x satisfies the congruences (0.1) simultaneously

if and only if x is of the form



M + x.M R A + kM,

XO an 1 lal XnMnan

where k 1is an integer.

The proof of this theorem can be found in most books on

elementary number theory. (For example, see Hardy and

Wright [10], pp. 94-95, or Griffin [8], pp. 79-80.)

.

If x satisfies the congruences (0.1) simultane-
ously, and vy satisfies the congruences
y = bi (mod mi), = 0,y .es,ny
simultaneously, then it follows from the above theorem
that
z= x +y (mod M)

if and only if

z =¢,= a, *b, (mod m.), i =20,1,...,n,
i N i
and that
w = xiy (mod M)
if and only if
w=d, =a,b, (mod m.,), i =0,1,...,n. r
i IR i ?
B. Modular Arithmetic Computers. It was the above

property of multiplication in residue number systems i
which first prompted Miroslav Valach, Professor in the

Institute of Mathematical Machines, Prague, Czechoslovakia,



to suggest a digital computer based on a residue number system.
(See Valach [28].) In all digital computers then existing
(1955), multiplication was performed by a technique of

r epeated addition and "shifting" which took several times as
long as one addition. Valach and his colleague, Antonin
Svoboda, recognized that, if a residue number system were used
in a "modular arithmetic" computer, multiplication could

be performed as fast as addition, so that the speed of

computation would be increased appreciably for most problems.

At a conference in Darmstadt in 1955, Howard Aiken
and Warren Semon, then Director and Assistant Director, respec-
tively, of the Harvard Computation Laboratory, were introduced
to the concept of modular arithmetic computers by Svoboda.
Upon their return to the United States, Aiken and Semon began
their own investigation of the application of residue number
systems to digital computers, and in 1956 they submitted a
report on their work to the WrightlAir Development Center,
Wright-Patterson Air Force Base, Ohio. (See Reference [1],
a revised version of that report.) As a result, the United
States Air Force became sufficiently interested in modular
arithmetic computers to support considerable research into

their design and use. Among those funded by the Air Force




for such studies were: Aiken and Semon and their staff at

the Harvard Computation Laboratory (see References [4] and

[11] ); Harvey Garner and his associates at the University
of Michigan (see References [5] - [7], [13], and [18];

Lockheed Missiles and Space Company, Sunnyvale, California
(see References [2], [15], [17], and [27] ); Scope, In-

(see Reference [19] );

corporated, Falls Church, Virginia

and Westinghouse Electric Corporation, Baltimore, Maryland
(see References [16], [20], and [32] ). It was at Westing-
house in 1962 that the author became interested in the
problems involved in adapting residue number systems for

use in modular arithmetic computers and it was there that

he began the investigation which eventually let to this

thesis.

Problems in Modular Arithmetic Computer Design.

C.

The problems encountered by the investigators of modular

arithmetic computers are of two types: first, those con-

cerned with the "logical" organization of such computers
and the development of the attendant circuitry; and second,

those concerned with the theoretical difficulties in perform-

ing numerical analysis in residue number systems. The prob-

lems of the first type are the usual problems associated with



the design of any new computer, except that using residue

number systems promises several interesting possibilities
for more economical logical design than that in conventional

computers. (An exploration of some of these possibilities

will be the subject of a thesis by Robert L. Beadles which
will be submitted to the University of Pittsburgh in partial

fulfillment of the requirements for the degree of Master of

Science in Electrical Engineering.)

on the other hand, are more acute in that, if they are not

solved, modular arithmetic computers will be unable to per-
form several very fundamental operations and therefore will

be incapable of handling a large class of computational

problems.

The purpose of this thesis is to present solutions to

some of these theoretical problems in modular arithmetic

computer design. In particular, this thesis treats the

problems of how to compare the magnitudes of two numbers,

how to detect overflow resulting from addition and multi-

plication, how to divide, and how to take square roots in

residue number systems. In Chapters I - IV below, each of

these problems is discussed in turn. Solutions are given,

along with appropriate proofs, and examples are included

The theoretical problems,



Also, specific mention should be made of those men whose

ideas directly influenced the form of the results contained

in this thesis. First, credit for suggesting various facets

of the magnitude comparison methods described in Chapter I

should be given to Garner [7], H.,S. Shapiro [22], and

Valach [30]. By using their ideas, it remained only for
the author to combine their methods into a single, systematic

approach and to provide the necessary proofs. Next,

recognition should be given to the author's former super-

visor at Westinghouse Electric Corporation, Mr. George

Shapiro, who suggested using a table of powers of two

(stored within the computer) in performing multiplicative

overflow detection, division, and square root extraction
l
|
|
l

——

and who also suggested that quotients and square roots in i
!
I

residue number systems be approximated by the quotient

of an integer and an integral power of two. By following

these suggestions, it was not too difficult for the author

to work out the overflow detection, division, and square

root procedures given in Chapters II, III, and IV, respec-

tively. Last, credit is due to the author's thesis

advisor, Dr. Werner Rheinboldt, for encouraging the author

to investigate the practical behavior of the division and

square root algorithms by programming the University of




Maryland's IBM 7090 computer to simulate modular arithmetic
computers in performing divisions and square root extractions
by these methods. BY using these simulation programs,
several thousand "sample" divisions and square root ex-

tractions were completed in a matter of minutes.

Finally, it should be added that, while the algorithms
given in this thesis are rather long and complicated, they
are, to the best of the author's knowledge, the most effi-
cient solutions yet obtained for the problems considered.
That is, judging from estimates of the number of operations
required, these algorithms seem to use less computer time
for their execution than the other existing solutions and
- what is more important when one is designing a computer -
they appear to require no special circuitry for their
implementation, since they rely heavily on "standard"
computer operations such as addition and "bit testing."
Thus, it is the author's hope that these methods for
comparing magnitude, detecting overflow, dividing, ex-
tracting square roots will comprise a contribution to the
adaptation of residue number systems for use in digital
computers and that this thesis will help remove a barrier

in making modular arithmetic computers usable for general

types of computation.




CHAPTER T

MAGNITUDE COMPARISON

A. Ordering in Residue Number Systems. Since most

computer applications involve some use of the order proper-

ties of the real numbers, magnitude comparison is an essential

operation in all digital computers. In conventional digital
computers, magnitude comparison is performed simply by a
sequence of "bit tests" which is the logical equivalent of
the usual method of comparing two integers. (See Theorem 1.2
below.) In modular arithmetic computers, however, magnitude
comparison must be performed in a residue number system
where such operations are not so simple. To show that this

is the case, let us consider several examples.

Given a residue number system with moduli m, = T

5 = 1 3, and m, = 2, suppose we wish to find the

=
|

(921

=
il

smallest of the three "numbers"
B 4, 2, 1} & (&, 3 0; OF ¢ {5, 3, ; 1§
in this system. (Here the "number"

19, & 2, 1%



represents the integer x such that

3 (mod 7); x

X

2 (mod 3); x

i

X

From the Chinese Remainder Theorem

one solution, namely

x = 59,

which satisfies these congruences a

0 X <210=m3m

Hence, we write
{3; 4, 2, L}=
Since each of the residues in the n
{1, 3, o, o}
is less than or equal to the corres
the other two numbers, we might exp
{1, 3, 0, 0}
is the smallest of the three. Our
however, since
{1, 80, 0F %
is smaller than
{5, 3; 1, 1} =

but not smaller than

¢

{3, e 2:00%

4 (mod 5);
=1 {(mod 2).

we know there is exactly

nd the condition

2™ Mo

59. )

umber

ponding residues in

ect that

expectations are wrong,

78

103,

59.

10



Next, we might try ordering these three numbers "lex-
icographically;" that is, we might order the numbers by
ordering their "first" residues (those with respect to m3),

then their "second" residues (those with respect to m2),

and so forth. But this ordering would give the result

{1, 3, 0, o} < {3, 4, 2, 1} < {5, 3, 1, 1}

or equivalently,
78 « B9 < 103,

which is obviously wrong. Similarly, "reverse lexico-

graphic" ordering, in which the "last" residues (those

with respect to mo) are ordered first, would give
{1, @, b, o} =< {5, 8, 1,1} <{3, 4, 2, i}
or
78 < 103 < 59.
More counter-examples can be found to show that other

ordering schemes on the residues are equally unsuccessful.

To examine another aspect of this problem, let us

consider the numbers
{oy 85 1y 83 o La o B et s ol 4,2, 1)
in the same residue number system as before. Upon observ-

ing that each of the residues in the first number are ex-—

actly one less than the corresponding residues in the

11

“x

BOSLTIRASS AN
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last, we might conclude (correctly) that
{2, 3, 1, o} = 58

represents the "next smaller" integer than
{3, 4, 2, 1} ~ 59,

(By definition, all numbers in a residue number system

represent integers.) But it is not so obvious from their

residues that
{4, 0, 0, 0§ & 60
is the "next number greater" than
{3, 4, 2, 1} =~ 59
in this system. Furthermore, this problem becomes even

more difficult when we consider the "second number greater"

and so forth.

In our third and final example, suppose we provide
for negative numbers in the above residue number system
by decreeing that all integers x such that

M/2 = 105 < x <210 =M = m3m2mlmo
be regarded as representing the negative integers -104
through =-1. The rule of correspondence is
X «> X - M
(That is, we restrict our residue number system to the M

consecutive integers -104 through 105 instead of the




.,

1.3

integers 0 through 209 used in the two preceding ex-

amples.) Suppose we now wish to determine the signs of the

numbers

{4, 1, 1, l} and {4, 3, 2, l}

in this system; that is, we wish to determine whether these

numbers are greater or less than
{o, 0, 0, 1} =~ 105

in the "old" residue number system. It is not at all clear

from the residues in these numbers that

{4, 1, 1, 1} 2 151 «— -59

is negative, while

{4, 3, 2, 1} » 53

is positive. Hence, it seems that the residues in a num-

ber cannot even be trusted to tell us whether or not that

number is positive. In fact, about all they can be

trusted to tell us is whether or not the number is zero,

since a number is zero if and only if all its residues are

zZero.

As these examples clearly show, there is no obvious
ordering scheme for the residues in these numbers which

agrees with the "natural" ordering of the integers repre-

sented or which gives any significant information about

TWIRARTRASARLNY, OF WMETNL anG LASEUARY
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the signs of those integers. Therefore, our first problem
is to devise some other method for using the residues in two
numbers in a residue number system to determine which number
represents the larger or smaller integer. The solution we
shall give is based upon a generalization of the "positional

notation" commonly used for the integers themselves.

B. Mixed-Radix Notation. As is well known in mathema-

tics, we may represent any non-negative integer x in the

form

n n-1
= + ... F +
X anr =+ an_lr alr aO" (1.1)

by using any integer r >1 as a "radix." 1In referring

to this representation for x, we usually indicate the radix
by using an appropriate adjective, such as "decimal" or
"octal", and mention only the coefficients ai in a given

order, say, anah l"'alaO' Moreover, if we require those

coefficients to be integers satisfying

0 a, <r, f1=0, 1,.:., 1,
then the above representation is unique. (That is, there
is exactly one such representation for every non-negative
Clearly, this representation may be extended

integer x.)

to negative integers by prefixing the entire representation

with a minus sign.




LI

If y 1is another non-negative integer satisfying

n n-1
= e +
vy bnr 5 bn_lr + -+ blr bo / (1.2)

the coefficients bi again being integers such that

0 < bi <r, i=0,1,..., n,
then we may compare the magnitudes of x and y by com-
paring their coefficients a, and bi' respectively, in

"lexicographic" order. That is, we first compare a and

b ; 1if a_ =D we compare a and Db ; and so
H R n' B n-1
forth until either we reach a, = bO or we find an index
such that a. # b.. In the former case, x and y are
J J

obviously equal. In the latter case, x and y are un-

equal, and if j is the largest index i such that

a. #Db., then x >y 1if and only if a_. > b,.
b 3 k8 7 ]

Let us now formally summarize these properties of this
notation - commonly called "positional notation" - by

stating two theorems:

Theorem 1.1 (Uniqueness of Representation) - If the

coefficients a, in expression (l1.1) are integers

satisfying

0 a, < r, 128 0, Ll;isay I,

then they are uniquely determined by x.

* Kk %
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Tt follows from this theorem that a, # b. for some
i

index i implies that x # y, since otherwise a a ...a.a
n n-1 10

and b b l"'blb would be distinct representations of the
n n-

same integer. Hence, x ¥ y if and only if a, £ bi Fesa

at least one index 1.

Theorem 1.2 (Magnitude Comparison) - If x and vy

are unequal non-negative integers Satisfying (1.1) and

(1.2) respectively, if all ai's and bi's are non-

negative inteqers less than r, and if Jj is the largest

index i such that a, # b., then x >y if and only if
a, > B
J J
* ok %k

The proofs of these theorems can be obtained quite

easily with the aid of the following lemma:

f the coefficients ai in expression

Lemma 1.1 -~

(1.1) are integers satisfying
0 ga, <xr, 1=0, 1,..., n.
then””
j j-1 -2
r 4+ a, r + ... + a.r +
7 %5 j=2 1 20

(1.1) whenever Jj is any integer such that

holds for

0 <j <ntl.

* k% %




1.7

Since both these theorems and this lemma are widely
known to be true and since their proofs can be found in
numerous books on real analysis, we state them here without
proof. However, we shall soon give these proofs for a more
general notation when we state and prove Lemma 1.2 and

Theorems 1.3 and 1l.4.

Let us now broaden somewhat the scope of these theorems
by extending them to apply to a more general notation. In

particular, let us replace the radix r in (1.1) with

r all of which are integers

several radices rn, 0’

ro_qrecer
greater than one, and let us rewrite (1.1) in the form

...r_+ a r ¥ e T+ ...

S anrn—lrn—z 0 n-1 n-2 n-3 0

... +ar_ + a (1.3)
where the coefficients a, are integers such that

0 ga, « ¥.; 1= 0, 1,00+, N,

A | q

The representation of the integer x by the coefficients

a. obtained in this manner is called "mixed-radix notation”
in contrast with the "fixed-radix notation" associated with
(1.1) above. This notation has essentially the same pro-
pertiééwaS'thOSeﬂéiVen?in"the5abbve‘lemma and theorems for

fixed-radix notation. Indeed, Lemma 1.1 and Theorems 1,1

and 1.2 are but restricted versions - for the special case

e

B

'y T

G I TN
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in which all the r;'s are equal to r - of the following

Llemma and theorems.

1f the coefficients a; in expression

Lemma 1.2 -

(1.3) are inteqers satisfying

then
! a.,. . r, swel o ¥ e
i 1%5-2°""Fo > ¥j-173-273-3"""70

e
...+alro ao

holds for (1.3) whenever j is any integer such that

b€ 4 & Btd,

it follows from the condi-

Proof: If 0 < j < ntl,
tions on the coefficients a. that
r TR T - - JORR, . S T |
i gag =i Jel 52 0
= s -1)r, .r. ... :
(rj—l ) G2 53 rO B
AR , =1 =
(rl )rO + (rO 1)

s

This is the desired result.

Theorem 1.3 (Uniqueness of Mixed-Radix Representation}

- Under the conditions given in Lemma 1.2, the coefficients

(1.3) are uniquely determined by x.

ai in expression

RANG Lisuatay

SANAMERSATT GF ARy
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Proof: Assume that both (1.3) and

X =cr r SRS oL N o i ) es s,
n n-1"n-2 0 n-1"n-2"n-3 0
o = M N
170 0
are expressions for x such that the same radices r, a

used in both expressions and such that the a,'s and c,'s
0 1§ :

are non-negative integers less than r. for 3 = 0; 1,.:44
Assume also that a, # c; for some index i and let j Dbe
the largest such index. Then,
(cj - aj)rj-lrj-Z"'rO * (cj_l - aj-l)rj-er-B"'rO
# san # (cl - al)rO 5 (cO - ao)
= X - X
= 0.
Let us now assume without loss of generality that
aj < cj. Then, it fol;ows from the above equation that
rj_lrj_z...r0 < (cj - aj)rj—lrj—2"‘ro
= BBy T Byt Tsagee sty
+ ... + (a.l - cl)rO + (aO - CO)
aj_lrj_er_3...rO +
+ a;rq + ag,
since the ai's and ci's are non-negative integers.
But this contradicts Lemma 1.2. Therefore, ai = c, must
hold for i= o0, 1,..., n, which is the desired result.

* * %
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Theorem 1.4 (Magnitude Comparison in Mixed-Radix

and y be distinct non-negative

Notation) - Let X

inteqers such that x satisfies (1.3) and y satisfies

y = bnrnwlrn—Z"'rO + bn—lrn—2rn—3"'r0 + ...

+ blro + bo, f1.4)

where the T.'s .are the same in (1.3) and (1.4) and

are non-negative integers less than

If j is the largest index i

then x >y Aif and only if a. >b,.
i J J

Proof: In the light of Theorem 1.3, it 1s obvious

from the assumption that X # vy that J exists and that

it will be sufficient to show that aj < bj implies

X <y and aj > bj implies X 2 Y-

If we assume that aj < bj, then it follows from

Lemma 1.2 that

- s i wE B, «fi sieis
(bj aj)rj-lrj—z O'> j-1 j-2 0

Vi

2 (a. - b, ;o
R I R B R B R B
$ sew T a s
( 1 bl)rO
+ - —
(a0 bo)’

gince the a.'s and 1. 'g are non-negative integers.
4 1



Therefore,
Yy'= X =
- . o o + b - a ., )r 4 N )
(b aj)rj—lrj—z 0 ( j_l J“‘l _-2 j-3 0
* ouu * (bl - al)rO + (bO - ao)
> 0F

which is equivalent to X < 7¥.

s, P bj' we need only interchange the
J
in the above expression to obtain x -y

Similarly,
a.'s and b,'s
1 i

Hence, the proof is complete.

* Kk 0k

As in the fixed-radix notation associated with (1.1),

negative integers may be

by placing a minus sign before the entire representation.

However, another representation, in which the minus sign is

replaced by the use of both positive and negative coeffi-

cients, suggests itself. In particular, let us require as

before that the radices I. be integers greater than one

and that the coefficients a, in (1.3) Dbe integers.

But now let the ai's satisfy

lail & T/ (1.5a)

if r. is an odd integer, and
i

-~ ¥ /% < By & By Fa5 (1.5b)

21

represented in mixed-radix notation



if r. is an even integer. (There is no reason why we
i

couldn't have a; satisfy

- r. /2 €4, « £, /2
1 i i
instead of (1.5b) above, when I, is even. If we did

w o and  "g" signs would have to be inter-

this, a few <

changed in Lemma 1.3 and Theorems 1.5 and 1.6 below, but

the lemma and theorems themselves would remain essentially

intact. There is, however, a slight advantage in our using

the restriction (1.5b), but we shall postpone our ex-

planation of it until we have proved Lemma 1.3 below.)

With these new conditions on the coefficients ai, the

notation resulting from (L,3) 1is called "two-sided

mixed-radix notation.”

In order that this new notation retain the desirable

uniqueness and ordering properties of "ordinary" mixed-

radix notation set forth above in Theorems 1.3 and 1.4,

it is necessary to require that at most one of the radices

r. be even. (Since it will soon become necessary for
1

adices to be mutually prime, the restriction of

those r

at most one even radix 1is a natural one and certainly

retains sufficient generality for our purposes.)

Furthermore, to insure that the numbers representable in

22
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two-sided mixed-radix notation are distributed "symmecricaliy"
about zero, it is also necessary to stipulate that, if any

of the radices is even, it be designated ot

We shall now show that integers represented in this two-
sided mixed-radix notation may be compared exactly as in
their "ordinary" positional notation; i.e., by comparing

their "coefficients" in lexicographic order.

* Kk %

Lemma 1.3 - For any integer j such that

0 < j g ntl,

provided that

the following inequalities hold for (1.3),

the a.'s are integers satisfying the conditions (l.5a)

i
and (1.8bl: 4if r, is an even integer (and RN
SEERERRE o are odd),
R
—(rj_lr 2...ro)/2 < aj e j_3...r0 + ...
2 s +
bagrg a,
€ (rj_lrjm) .ro)/z;
if © is an odd integer (as are r., r,,..., r_),
O B i 2 n
oo o B
251 3-2%5-3"" o]
+ z 3 .= Ll 2,
cen t fagrg] +fag] < lEy g g T
Proof: To avoid tedious repetition, we shall prove

this lemma and the two theorems following it only for the
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For the other case, where rO

case where rO is even.

is odd, the proofs are guite similar.

From the conditions (L.5) on the coefficients a_,
1

it follows that

oo vl 2
§-1%5-2" %0/

e gy “BryieeeTe
+ (rl —l)rO + ro] /2

-(r

oo e + esw B E;Y. * 38
< a5 T4 5%4-3""""0 170 * %o

< [}rjwl ~l)rj_2rj‘3...r0
-, + ro] /2

+

. (rl

: % =B 2
(rj_lrj_2 ro)/ "
for any integer J such that

0 < j g ntl.

This is the desired result.

If we required that
2,
- ro/2 Sao < ro/

when r is an even integer, then the conclusion of the

preceding lemma would be that

ro)/z saj—lrj~2rj—3"'ro +

+
alro + ao

..ro)/2

—(rj_lrj_z...

<(rj—lrj—2’



Tf this were the case, if J n+l,

when r0 is even.

and if x were the integer
_(rj—lrj—2"'r0)/2'
then the radices T . T _qr-°°/ ry would be (barely)

sufficient to determine the two-sided mixed-radix repre-

sentation of x via (1.3), but they would not be suffi-

cient to determine the same representation for lxl,

(That is, an additional radix T .4 would be needed to

determine the two-sided mixed-radix representation for

le.) However, if we assume that the conditions (1.5)

hold, then Lemma 1.3 assures us that whenever the radices

rn, E g r, are sufficient to determine the two-
sided mixed-radix representation of an integer x, they

are also sufficient to determine the same representation

of IX ’ (but not conversely) .

a, satisfy

" rO/Q <aO < r0/2

when rO ig even.

Theorem 1.5 (Uniqueness of Two-Sided Mixed-Radix

Notation) - Under the conditions (1.5), the two-
\

) coefficients a, in  (1.3)

sided mixed-radix (integer

are uniquely,determined by X

This is why we prefer that

25
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and its two-sided mixed-radix

Proof: Assume that x

c6afficients &, wsatisfy (1.3) and (1.5), respectively..
i

Assume also that x also satisfies

cn—lrn—Zrn-B"'ro  oww s

wew F Clro + CO,

where the same radices r. are used in both the above

expression and (1.3), L being even and all other

r.'s odd. and where the c,'s are integers such that
l !

v, /2, g 2= L, 2;eesp D
lciI % 1/

and

It then follows immediately from these conditions on the

a.'s and c.'s that
1 i

Now assume further that a; A cy for some index i

and let j Dbe the largest such index. Then, as in the

proof of Theorem 1.3, we have

. - a, ¥, . oses
(cj - aj)rj—lrj—2°"r0 + (CJ_l j—l) j=2F4-3"""Fo
+ pae + (e - aj)ry * (cy = 2g)
= xXx = X

= 0.

=3
3

£3%
.

2 3
L= X

i E 3
SA IS O 1

WRANS
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Assuming (without loss of generality) that a_j < C,
- J

and combining this with the above results gives

j-lrj—2"'r0
£ (o, - aj)rj_lrj_z...rO
= (aj-l - cj—l) J_er_3...ro Y
g (al - cl)rO e (aO - co)
4 (rj_l —l)rj_2r3_3...rO + & e
wun | [Es = l)rO =+ (rO—l)
= j—lrj—2 -eTy 1
< rj-lrj—2"’r0’
which is clearly a contradiction. Hence, a, = c, muet
hold for i = 0, l,..., I which completes the proof.

* % %

Theorem 1.6 (Magnitude Comparison in Two-Sided Mixed-

Bwdide: aldfion) s Gek & and y be distinct integers

satisfying (l.3) an (1.4) respectively, where the

same radices I, are used in both expressions. Let the

satisfy the conditions (1.5)

Coefficients a; iR (1.3)
and the coefficients b. in: (1.4) satisfy the similar
b 8

conditions:

|bi1 < ri/2,

- ry/2 < b, < ro/2:
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if r is an even integer;

|bi| < ri/2, 4 = @), Ljpwsse Wi

be the largest index

X r ig an odd inteder. Let J

0 =i e

gl

i such that a, .7 b, . Then, x >y if and only if

i
a, >
J bj'
Proof: As for Theorem 1.4, the existence of Jj 1is

Juaranteed by the assumption that X # y; and as in the

Proof of Theorem 1.4, it is sufficient here sto show that
aj < bj implies x <Y and that aj > bj implies X > Y.

As in the proof of Theorem 1.5, it follows from the

conditions on the a.'s and bifs that
il

; g i
a; = by € ¥y

Assuming now that o < bj,

b, - ' o
( 3 aj)r_.lmirj_2 0

Ty %5200
> rj—lrj—z"'ro -1
= (rj—l —l)rj__2 J__3.-,.1:0 4+  ees
son ¥ (g -1)ry + (T -1)
g (ajul B bj—l) j-2 3_30.“r0 il
u gy 4 bl)ro " (ao . bO)
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ol W (DG S al)rO # by = ao)
> 0,

which is equivalent to X <7¥-

Similarly, if aj > bj’ interchanging the ai's and

b 's in the above eXPressions gives X - y> P This

i
completes the proof.
% * %

At this point, let us pause to reflect upon what we

have established in these theorems, We have shown (in

Theorems 1.4 and 1.6) that, if we can determine the ("or-

dinary" or two-gided) mixed-radix coefficients of integers

from their residues in a residue number system, then we

can compare the magnitudes of those integers by comparing

their coefficents in lexicographic order - that is, Dby

"bit testing" in a computér- Furthermore, we have shown

in Lemma 1.3 and Theorem 1.5 that, if we use the two-

sided mixed-radix coefficients of an inkeger ¥, We oan

determine the sign of x from the sign of its "leading”

(or highest order) non-zero coefficient, since it follows



immediately from that lemma that the signs of x and its

leading non-zero coefficient are identical. Therefore, by

introducing the above mixed-radix notations and by showing

that integers may Pe€ uniquely represented and readily com-

pared in these notations, we have reduced - or at least,

trans formed - the problem of magnitude comparison and sign

detection in residue number systems to one of converting

integers from their residue representation to their mixed-

We now turn our attention to the

radix representation.

"new" problem of performing that conversion.

to Mixed-Radix Notation. In order

e Conversion

to obtain some information about the relationship between

the mixed-radix coefficients for an integer x and the

residues of X, let us examine (1.3) more closely.

Since all of the terms except the last on the right side

of that equatdion contain Ig ag a factor, it is immedi-
ately obvious that

x = 3, (mod ro).

Therefore, X - 2, is exactly divisible by r, and

is an integer. Combining this definition of X, with

(1.3) gives

30
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X, = e + . &
1 anrn—-lrn—2 o an-lrn—2rn—3 o il

=+ a2rl Gy 2 al,

from which it is again obvious that

xlz a, (mod rl).

By continuing in this manner. we may define the integers

Xl
27 Kgreows X by
= - . ] .=ll 21---/
R a;_1)/Ti1r ¢ n, (1.6)
where x = x. From this definition and from (1L.3) it

0
follows that x. also gsatisfies
i
T, = S L - g g sesk, +
1 anrn-lrn—Z rl n-1"n-2 n-3 i
.. +oa, 4T + a,
i+l171i i’

n, so that gz_definition

X.= a (mOd ri)l i= 0, Lyessp M (1.7)

adices rO, Xy seeer T oo

If we now assume that the r .

are the mutually prime moduli for a residue number system,

then we may use the congruences (L.7) to deduce the

mixed-radix coefficients 2j of an integer x from the
residue representations of ¥ (= X), Xqsec-0 3D X, in

that number system. That is, from the residues 490’ Y01

- dO of x such that
n
= sy i = 0,1,0c0, 1y
Xq = X = doy (mod ri)' ‘
a by calculating the

we Shall»find”the”coefficients ol



resid 5w
idues of Xl' x2, 0i

this, we note first that

)

a, = dOO (mod s

since x is congruent to both a, and dOO modulo .

and since "congruence" is an equivalence relation.

If we now assume slightly more than this, i.e., that

a =«
0 00’

elementary properties of congruences that

_ _ _ = . - d d .
rgx, = X - ag = x = dgq dos 00 (mod r,) (1.8)
where i = 0, l,..., 1- But since the radices ri are

me, we can eliminate «r

assumed to be relatively pri "

from (1.8) by defining djj to be the uniquely deter-

mined integer modulo T such that

= —d (mOd ri)l i=ll 2’--.; ) o I

rody; = 901 T 00
It then follows from this definition, the congruences

(1.8), and the elementary properties of congruences that

x, = d (mod ri), i=1, 2,..., N,

1T 1
In particular, we have

a; = d;q (mod r,).
Since Xl is congruent to both al and dll modulo rl'

and X from the d_.'s. To do

then it follows immediately from (1L.6) and the

812



if we assume the slightly stronger condition

Again,

that

we may repeat the above line of reasoning to obtain

= e d . ,i=1'1 2;-.., n,
rox, = dli dll (mo rl)

as in (1.8). Furthermore, if we define d,. to be the

21

uniquely defined integer modulo T, such that

- o mod r.),i= 1.
rdy; = 9 i
it follows as before that

— mdr,) i =2, 3,5, 1,
Ty dZi L :

and that

622 (mod r2).

N
il

By again assuming that a, = d,,» 85 = dyy,  ete.

we can repeat this same procedure again and again to ob-

tain g 's. 4. .'s, etc. by defining djy to be the
3i 77 41 ] ]

unique integer modulo T, such that

= = mOd r.), i~= Oﬂli'--l n,

x = %= dg; L
and
_ _ (mod r.), (1L.9)

j-1"3i ~ LT T | j-1,3-1 i
for i = Je Jhid | mwyahd 3T Ly Zsewep B If we assume
for some j such that O < j §n that

1 = j"ll Js , Ny,

x
1l
o]
E)
Q
o}
=

33
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and: that
e d e
?3-1 7 3-1,3-1
it follows immediately from (lL.6), (1.9), and the rela-

tive primeness of the moduli 5 that

o X, = X, - a, =  d., ., - d

j=173 g1 j=1 j=1,1i j-1,j-1
= rj—ldji (mod ri)
and
.= . d Ts) 3 = e 9L, w0 ey )
X d]l (mo l) Ty 1 n

Thus, by using induction on j and applying (1L.7), we
obtain the proof of

Theorem 1.7 (Residue to Mixed-Radix Conversion) - If

)

the residues dji modulo r. satisfying (1.9) are

chosen in such a way that

d..= a. (mod r.)
Gl i i
implies that
d..:a, l:Oill y I,
il 1
1 e |
then the integers dOO’ dll’ , dnn are precisely the
mixed~radix coefficients ao, al,..., an, respectively,
appearing in (1.3).
* ok %

Obviously, the key point in this theorem is that the

congruence of 4., and a; (moad ri) must imply the

stronger condition that dii =a., for G = 1@, L,.s.
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To guarantee that this is the case, we€ need only require

that the residues dji be subject to the same conditions

as the coefficients ai. This gives

d.. - a,| < T,
ii i i
divides (d.. - a.)

which when combined with the fact that ri ii
1

- which is equivalent to

d.. = a, (mod r,) -
11 1 1
= a;. Moreover, it

does indeed yield the result that d;;

is clear from this that whether the mixed-radix coefficients @

referred to in Theorem 1.7 are the ordinary or two-sided

variety depends entirely upon the restrictions placed on

the residues d... In particular, if we require that the
.4

integers 4., (which are, by definition, residues modulo
/b

r.) satisfy

0 d.., < TX..

then the integers doo, l]_' in Theorem 1.7 are
ts for x. If, on the

the ordinary mixed-radix coefficien

other hand, we require that the dji"s satisfy

2/ (l.lOa
—r0/2 < dpg < rO/ )

'dji]<-fi/2, 4= 0,1,:000 D

(1.10b)

1f rO is even, and
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LA

d A& @y Lprens B el
|94 < 472 (1.10c)

wh ; ' d .o
en rO is odd, then the integers dOO' 117 ) dnn are

the two-sided mixed-radix coefficients for X. Thus, by

equating the mutually prime moduli for a residue number sys-

tem with the radices I of mixed notation and by subject-

ing the residues in that system to the same conditions as

those on the mixed-radix coefficients, we can obtain - via

equations (1.6). (L.7), and (L.9) above - either the

ordinary or the two-sided mixed—radix coefficients of an b

Integer from its residues.

It is interesting to note that, 1if all the residues

in the residue number system are made to satisfy the con-

ditions (1.10) which give the two-sided mixed-radix co-

efficients via Theorem 1.7, the modular arithmetic com-

nly about half as

bPuter using these residues requlres o

much circuitry as the one using the non-negative residues

which give the ordinary nixed-radix coefficients. The

t the former computer need only

TYeason for this is tha
Compute with the integers o thru M/2 plus a "sign bit
f the integers

whereas the latter computerl must use all o

product of the moduli.)

0 thru M-1. (M is the



To illustrate the conversion algorithm of Theorem 1.7

for ordinary mixed-radix notation, let us reconsider the

first example given at the beginning of this chapter.

(See pp.9-11.) since the even modulus 2 is used, we

must set Eo = 2: the other moduli may be indexed arbitrar-

llYl say,

3, r. = 5, and r, = Ta

1 2

i

r

Using the residues given previously for

v = 59, y = 78, and z = 103,

we obtain the ordinary mixed-radix coefficients for x,

Y, and z from their respective sets of residues dji

which are given in Table I.

The first row in each set of residues in Table I con-

tains the pesldues doo’ dOl' dOZ' 603 of the correspond-
ing integer x, y, Or Z modulo Tgs Fpr T2 Gy, PR TR
ly. The second row of each gset is calculated from the

(L.9) and contains the

first in accordance with equation
inte modulo T.s Yo r respective-
gers dj;s 9150 913 1’ T2 3

ly, such that

d = - o mod ro)l l:ll 21 3%
rody; = Yoi G [ i
(For instance, for x = 59 the second row in Table I

Contains

37




T - Ordinary Mixed-Radix Notation

Table
r3 = 7 r 5 rl = 2
- i 0 2 3
]
0 1 4 3
i - 4 il 59
9 - 4 2
2 = - 1
, g " 2 3
J
0 0 3 1
1 = 4 4 78
1 +—
2 & 3 6
J I N E
3 N - 2
; i T 0 2 3
J :
0 1 3 5
1 - i1 2 103
T B L e
2 _ 2 3
]
3 e - 3
A

38
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d = = =
11 2, dlZ 4, and d13 1,

which satisfy the congru€nces

o = 2 - e

2 dll 1 = 1 (mod 3)
2'612 =4 -1 = 3 (mod 5)
2-dl3 =3 -1 = 2 (mod 7),

respectively.) gimilarly, the third row of each set is

calculated from the second and the fourth row is calcu-

lated from the third, again by using equation (1.9).

From the "diagonal" entries for X in Table I, we

obtain the ordinary mixed-radix coefficients for x:

= +
X = a3r2rlro + a,r I + a Ty ag
= r + d,.r_ -+ d

= 4,5 T * 9225170 7 1170 © "00

1(5-3:2) + 4932 + 2{2) + L

il

= 59

or, by using the more concise notation

a ] = [833: 9550 9117 Yool

we have

x ~ [1, 4, 2. 1]
Similarly, for y and 2 W€ have
+ D2}y + 0

il

y 2(5+3-2) + 3(3°2)

98 s (B B, Op 0]

il

and

39
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z = 3(5.3.2) + 2(3-2) + 0(2) + 1

= 103 ~ [31 2! OI l]°

Now we can compare X, y, and Zz by applying Theorem

1.4: the "leading" coefficients for X, ¥. and z are all

reduces to comparing

Unequal, so comparing X, Y, and z
their leading coefficients. Since
L €2 % 3y

We conclude that

[1, 4, 2, 1] < [2, 3, 0, 0] < [3, 2, 0, 1]

or

* &€ YL &

Hence, x = 59 ~ {3, 4, 2, 1}  is the emallest of the

three numbers x, y, and 2.

To illustrate the use of two-sided mixed-radix
Notation, let us now consider the integers given in the
Seconqg example at the beginning of this chapter. (See

PP.11-12) For

u =58 21{2, 3, L 0}, v =60~ {4, 0, 0, 0},
sndl . = 50 & (3 3 2 i

We must adjust some of the residues so that they all sat-

i . ;
Sfy the conditions (1.10). This Fhvee
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u @ {2, -2, i, O}, v x {;3, 0, o, O}I

w m.{3l _ll _ll l%’

~r

and

The residues dji for u, v, and w are given in
ik . :
able II. The successlve YOWS of residues for each of wu,

x, y, and z in

V, and w are obtained exactly as for

Table 1 except that the dji's in Table II satisfy the

conditions (1.10). Thus, we have

= + d r + d
u = dgr,r Tyt dx%1%0 T 1170 - 00

2(5-3-2) + 0(3:2) - 1(2) + O

il

= 58
oF, in th ' t
e more conclse notation,

u - [2, Ol —ll O]/-

alsO

14

v = 2(5-3:2) + 0(3-2) + 0(2) + 0

= 60 e d [2, O, Ol O]

and

Applying Theorem 1.6 to compare U, V, and w, we see

u and w are the

t i
hat the first three coeffic1ents for

]
Ame: 2, 0, -1. Hence, we compare u and w by



Table II - Two-Sided Mixed-Radix Notation
= 7 - = t—4
fy r, 5 r, 3 r, 2
; i 0] 1 2 3
\
0 0 1 -2 2
1 S K N AP L @ = 58
2 - - 0 -
——
3 - - - 2
T T o | 1| 2 3
j .,
0 0 0 0 -3
S
1 - 0 0 2 v = 60
1
2 - = 0 3
.._._——-4L—-————-*—'_—’_"
3 L1 = o 2
[ —
. 1 0 1 2 3
J
0 7 | =1 ) =L 3
_____4___——-—"——""——[—‘——'_—-
1 - =1 -1 it w = 59
._4__._——4———’—‘7——'—‘
2 - = 0 3
,—’—"—""—'——"
3 _ - - 2
N B

42
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comparing their last coefficients, 0 and 1, respec-

tively, from which we conclude that

(2, 0, =l. 0] < 1[2, O, -1, 1]

or

u < we.

Similarly, the first two coefficients of v and w are

the same, so we compare V and w by comparing their

third coefficients, 0 and -L/ respectively. We get

[21 ol Ol l] > [21 Ol —ll l]

or

xamples that a fair

It might be noted from these €

amount of Computation is needed €O obtain all the resi-

dues d necessary to convert an integer from residue

J1

notation to mixed-radi This computation can

«x notation.

be performed most quickly and efficiently in a modular

permanently stored table of

arithmetic computer if @

residues is used to neliminate" the moduli Ty, Ty, «--s

i i t -
Ty im the congruences (1.9) from which the success

are calculated. Such a table

lve rows of residues dji

consists of the integers i such that

_,__O, i-—-o, l[ o e oy jl

S..
J1
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and

rs.. = 1 (mod r.), i= j+l, J42, 000y N,

J J1 1
where
J': O, l,.--,’ n""l-
The entries s .. in this table are€ used to calculate the
ji
residues g .. from the congruence
§4
d,, = (¢ - 4, . )s. , , (mod r;) (1.11) :
o (dj-l,i J—l,j_l) j-1,1 i ;

Which is equivalent to (1.8} (Note, however, that this

table can pe used for only one particular ordering of the i
; : ‘ ‘ ' i

Moduli ¢ r, r . If the moduli are re-indexed, a
poeer Ty

different table is required. In practice, though, it is

Very doubtful whether more than one "indexing” would ever ?

be necessary.) gsince the calculations required in (1.11)

€an be performed s imultaneously for a fixed j and for

rithmetic computer, only

il O | in a modular a

rosey D
Oon . L i 4 - eeded t
€ subtraction and one multiplication are n to

=1 | - -rom the preceding
leulate each row of residues dji from the preceding

One ‘ i s sy L, Are

- Hence, when the ntl modull g« iy " "n

USed in the computer, the entire conversion process can
. B

b . e an £ -

¢ accomplished with n gubtractlons and n maltl

Plications,



To illustrate the use of such a stored table, let

Us use the table of residues Sji given in Table III to

convert to two-sided mixed-radix notation the numbers

5 & [wB, Ly L. 13 and g~ {-3, -2, -1, 1}

given in the third example at the beginning of this

Chapter. (We are now using residues satisfying (1.10) .)

The resulting sets of residues dji for p and g are

given in Table III. The first rows in those sets are

Simply the residues of p and d modulo T, Ly Ege Tgv
and fourth rows are

respectively, and the second, third,

calculated from the first rows by using (L.1L).

For gq = 53 the calculation of the second row 1is

Performed as follows: the residue dOO is subtracted

from each of the residu€s d50" dyy- Ay dys in the

first row, the four subtractions‘being performed simul-
espect to the four

taneously and independently with r

Moduli X ow By gt Iy respectivelya This gives
gle Lo 1 (mod 2)
1@ =L = 1 (mod 3)
5 B =2 = 1 (mod 5)
3 = -3 - 1 (mod 7] s

NeXt, the residues obtained from these SUbtraCtions are
m : : ’ "
Ultiplied by the entries Sgo’ So1 S02’ $03" in the
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first row of the stored table, respectively, the multi-

plications being performed simultaneously modulo rO’ T
ll

This gives the residues d
3 10’ dll’

Toe Tou respectively.

d; 5. d,, in the second row:
le = 0 = 0(0) (mod 2)
dll = -1 = 1(-1) (mod 3)
dlZ = 1 = 2(-2) (mod 5)
dl3 = -2 = 3(-3) (mod 7).

Similarly, the third row of residues for d is calcu-

lated from the second Iow by first subtracting dll from

each d , d i ; .
of the elements le' dll’ 12 13 in the second

row and then multiplying the results by the respective

in the gsecond row of the

element 5
S Slo, bll, Slzi 513
stored table. Finally. the last row of residues for g

is calculated from the third row bY subtracting d22

from ea = 4 and multiplyin th
ch of ds0 621, d22, 23 plying e
oy & 1
esults by the elements Sop7 Sy17 S22 Sygt respectively,
£ the stored table of sji's. The

1n the last row O
calculation of the residues dji for P & -59 1s per-

£ .
ormed in the same manner:-

Note that, whereas PreViOUSly in (1.9) the residues

d]l were undefined for g S ] , wWe now have djl
w : . , it
hen i < j, which results from setting Sji



T ) .
Table III - Mixed-Radix Conversion by Stored Table

r, = = = -
] 7 r, 5 r, 3 s 2
3 i 0 i) 2 j‘“
0 G o =l | =2 ] =8
2 0 0 2 -2 °
— I
2 0 0 0 3
.——____’_____‘_——‘
3 g 0 1 2 3
0 1 1 L f =2
(R
0 . 0 " 9 p = -59
(e
2 0 0 3
Ao, (N
3 0 0 o | -2
e
. e
3 i 0 1 2 3
L@ 1 | -1 |-2 |3
LR
. 0 " 5 2 g = 53
i
T Jim oo ild2 %
3
0 0 0 2
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i < j. wWe do this merely for the sake of convenience in

bPerforming the above calculations in a computer.

tained in this way are the two-sided mixed-radix co-=

€fficients for P and 4, reSpectively. Hence, from Table

IIT  we have

= f & 8.5, + 4
& Ay r,rTg * d,2%1%0 1150 00
= =2(5+3°2) + 0(3-2) + g2y + 1
and
q = 2(5-3-2) - ii3=2) = 1(2) + L,
or

p o~ [=2, 6, 0, 1] and g ~ [2/ -1, -1, 1].

Since the leading non-zero coefficients for p and ¢

Are -2 and 2, respectively. we conclude immediately

t , -
hat P is negative and 9 18 positive.

We have now shown how magnitude comparison can be

Performed for integers in residue number systems by cal-
Culating the mixed-radix coefficients from the residues of
e given integers and then compar ing those coefficients
in lexicographic order. We have also shown how the sign
T integer can be Jetermined from its leading non-zero



two-sided mixed-radix coefficient. Finally, we have shown

how the calculation of the mixed-radix coefficients from

the residues of an integer can be performed efficiently

in a modular arithmetic computer by using a stored table

of residues. Thus, we have added magnitude comparison

and sign detection to the set of operations which can be

Performed readily in a modular arithmetic computer. We

shall now make use of these€ operations in devising methods

to perform other fundamental operations in these computers.
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CHAPTER IT

OVERFLOW DETECTION

A. oOverflow in Residue Number Systems. noverflow"

h occurs when a

is the term designating the situation whic

digital computer generates a number "too large" for it-

Self; that is, when some operation performed by the com-

Puter regults in a numpber outside the range of numbers the

Computer is designed to handle normally. 1f overflow

occurs, the computer in some manner ntruncates" the num-
ber beyond its range to produce a number which is within

its range and which is used in place of the original one

1n subsequent calculations. But since certain important

arithmetic properties of the original number may not be

erroneous answers may re-—

Preserved in this fruncation,

Sult uynless the overflow is detected and the subsequent

Calculations are modified accordingly. Therefore, some

Means of detecting overflow under program control must

b :
€ provided in every digital computer.
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In "conventional" digital computers using, for example,

N-digit binary numbers, one or more nextra" high-order

digits are built into the register (called the accumulator)

where arithmetic operations take place. When some opera-

tion produces a number requiring more than N digits for

1ts binary representation, overflow OoCCUIrS and is detected

immediately by a necarry" into oné or more of the extra

digits in the accumulator. special wtransfer-on-overflow”

instructions are used by the computer programmer to test

these high-order digits to getermine if it is necessary

to "shift" the number in the accumulator to compensate

for the overflow.

In modular arithmetic computers, this situation is

Slightly different. overflow gtill occurs whenever some

OPeration produces a number beyond the computer range,

rations are performed modulo

but since all arithmetic ope
M. the product of the moduli, in these computers, no
"carries" are ever generated. For instance, in a mod-
“lar arithmetic computer in which the moduli are 2, 3.

: e is the set of all in-

» and 7 and the computer rand

tegers from -104 to 105 inclusive, overflow occurs

w
hen the numbers

5l



{1, -2, 0, 0} ~ 78 and {3, -Ls _1, 1} & 59

are added. The "true" sum, 137, of these numbers is out-

side the computer range, so it ijs "truncated” to give

the unique integer x modulo M (= 210) within the com-

Puter range and such that

x = 137 (mod 210} .

Thus

x = {-3, 2, -1 1} & =73

is the “computed" sum of 78 and 59 in this computer,

which is a most astounding result since we usually expect

the sum of two positive integers to be positive.

In general, whenever the sum, difference, Or product

°f two integers in a modular arithmetic computer lies

outside the computer's range. the "computed” result will

e the unique integer which is within the computer range

and which is congruent modulo (M - To the "true” sum, dif-

e this form of trumcation may

& "
€rence, or product. whil

gnore all overflows and yet ob-

Permit the programmer to i

tain the corpect results in many cases; i€ is still often

or not the computed sum, dif-

ne
Cessary to know whether

ference, or product is exactly equal to the true result.

Therefore, we shall now consider the problem of detecting
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overflow in residue number systems. We shall make no re-

Strictions on the moduli used (other than those needed

for magnitude and, where applicable, sign detection)  but

we shall allow the computer range to be only the integers
M - 1

through

v the integers -

through M-1 inclusive,

M -1 _ .
i 5 inclusive (where M 1S odd), or the integers

M ; .
5 * 1 through % inclusive (where M is even).

The reason for restricting ourselves to only three pos-

sible ranges for the computer is that, for a given set of

Moduli, the behavior of overflow varies considerably with

the range #ised. (Also, it 18 extremely unlikely whether

any range other than thesé would be useful in a practical

Modular arithmetic computer .) Finally, since addition,

Subtraction. and multiplication are the only arithmetic

OPerations which can cause overflow in a modular arith-

Mmetjc computer, we shall treat only the detection of

AWditive overflow (which includes overflow resulting

from subtraction) and multiplicative overflow.

To detect overflow occurring

B. Additive Overflow-

in addition and subtraction iP modular arithmetic com-

Puters, we compare the magnitude of the computed sum OI

difference with that of one of the (two) addends or that

53



of the minuend. We determine whether OX not overflow has

Occurred by checking to see€ if the computed sum of differ-

ence satisfies the order relations which normally hold

between the true sum or difference and the addends or

Minuend. Tf these relations are not satisfied by the com-

Puted result, we conclude that overflow has occurred.

For the case in which the computer range consists of

the integers 0 through M-1, we define 2 and w to

be the computed sum and difference, respectively, of the

lntegers x and y. We assume that X and y are

as are Z and w. Since, by

With«
thin the computer range.
definition,

zZ

an . .
d since, by the above assumptlon,

g & ®+ Y < 2M,

& :
t follows jimmediately that whenever overflow occurs in

addition - that is, x + ¥y M - then z is given by

HEn
c
€, when overflow occurs: we have

Z<Xr

P i i he oth
Ce y 4is less than M by assumptlion. On t other

h
and, then

if no overflow occurs:
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Cle :
arly, since the above expressions for z are "sym-—

me 1 " " .
trical® in x and Yy, the game relations hold between

2 and y .

it follows from the assumptions

In the same manner,

on
X and y that

M <x -y < M.

Since

w = X-Y (mod M),

it j
1s then clear that W is given by

we X =¥ + M

whe . .
never overflow occurs in subtraction - that is, when-

eVer x . . l
-y <0. Thereforé, gince y 18 l€ss than M,

it
follows as before that

w > X

wWhe '
never overflow occurs. On the other hand, if no over=

W
occurs, then we have
N B I

Th ;
18 proves

verflow petection) - In the

is the set of integers

Theorem 2.1 (Additive O

fesig
——=ZU€ number
system whos€ rangé€

overflow occurs in

frOm
=== 0 through M-1 inclusive:



s than either

addition if and only if the computed sum is les

ction if and

of the addends and overflow occurs in subtra

han the minuend.

only if the computed Jifference is greater t

* kK

For example, in the residue number system based on the

moduli 2, 3, 5, and 7 and whose range€ is 0 through

209, we detect overflow in the addition and subtraction

of

and

1
i
=
N
~
@
Ca
=
EN
[\
<
—
=
LS

'y‘
bY noting that their sum

gy = 8 (ke 8w S 0/

iS less than x (and less than Y) and that their dif-

ference

w = 174 = {6, 4, 0, O_}
is greater than x. As before, we perform these compari-

mixedwradix notation

Song and % to

by converting 2z, W/

i icients as rescribed
and comparing their mixed-radiX coefficl P

N Theorem 1.4:
» 1] ~ %7
Z A [0, l: l, 0] < [3, 0y 01, ]

x ~ [5, 4, 0, iy #
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For the case where M is an odd integer and the

. inclusive,

Computer range is - ~ 3 through + ~— 5

w ; . Lo ;
€ may consider overflow 1n addition and subtraction

the subtraction of y from

Simultaneously by regarding

X as the addition of (-y) to ¥, ¥ and y both being

Integers within the computer range. Therefore, we define

Z to be the computed sum of x and Y. or equivalently,

the computed difference of x and y', where y' = =Y.

Now, if x and y have opposite signs or if either is

z ) ;
€ro, overflow is impossible gsince X t Y must lie between

¥ and y and therefore must be within the computer range.

then it follows from

Sut are both positive,

» if x and vy
T

he assumptions on the computer range that
0 <x +y <M,

So
that overflow occurs whenever

M/2 <x t+Y < M.

Since 7 jg also within the computer range - that is,
-M/2 < z Zm/2 = (211
e Since, by definition,
z mig oy e M), (2.2)
Lt follows that
-M/2 < 3 g = <0.
overflow

He o
Nce, when x and y are poth positive and



58

O . p . i .
Ccurs, =z is negative. Similarly, if X and y are both

n o gl 3
egative and overflow occurs, 2 must be positive since

(2.1), (2.2), and

M<x+y <-M/2

mply that

0 <z= x+yt M <M/2.

M

r range is — T + 1

For the case where the compute

we may reason almost exactly as we have done

i

through M
2

immediately above, except that we must provide for the case

Where y' = M/2. wWe do this simply by regarding the subtrac-

tion of M/2 as the addition of M/2 since both operations

9ive the same computed result. Then, it follows as before

i
hat overflow is impossible whenever X and y have

o . , ;
Pposite signs or whenever either is 2Zero. If x and Y

are o
positive, then from

0 < x < M/2, o<y <M/2, -M/2 <z <M/2,

an
d (2.2) it follows that

M/2 <X+ Y M
and

g = X+Y 7 M
1.4 overflow occurs Hence, if both X and y are positive

pe negative OT gzero. Similarly,

and o .
overflow occurs, z will
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i
f x and y are both negative, then

-M/2 <x <0 and -M/2 <y <O.

I
f overflow occurs, then

_M<x+y <-W2,
So that

z = x +y + M

Therefore, if overflow occurs when both x and y are

ne ; _ .
gative, z is positive.

x and y have

Now let us consider what happens it

t
he same sign and overflow does not occur. If no overflow

OCcurs, then 2z is simply the true sum of x and Y and

henCem‘ 2z has the same sign as both X and vy, regardless

O

Theorem 2.2 (Additive overflow petection) - If the
o ; L through

SO '
=Mputer range is the set of integers

p————

M
+ -1 . _
‘\3*‘ or - _%_ + 1 through inclusive, then over-

and only 1L poth summands are non-

i i uted sum is zero
while their computef =—— =— ——

£l
Ow ; i i ;
==X Occurs in addition it

Zero
and have the same sidh

Orh
== 0as the opposite sign-

! &

For example, using the moduli 2. B, P& and 7 and the
Co __I\_/l__ _
Nputer range - _%_ +1 = ~Jo4 through > 105
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in our residue number system, W€ detect overflow in the
a : .
ddition of the integers

x = 83 % Gl; -2, «L,]}

and

71 = {1, 1., =L 1}

e their computed sum

y =
b . '
Y noting that both are positive whil

5 = -56 x {0, -1, L 0}

1) ) :
S negative. We determine the signs of X, Y. and =z from

the signs of their leading two-sided mixed-radix coefficients:

X ~ [3, =1, =L, 11:

o ™~ ["‘2[ li —ll O]'

f additive overflow

This completes our treatment O

detection. We turn now to the problem of detecting over-

£l .
OW in multiplication in residue number systems.

C. Multiplicative overflow. Detecting multiplicative

ov :
®rflow in modular arithmetic computers 18 somewhat more

e overflow, primarily

Aiffq ,
fficult than detecting additiV

be (ks , ,
€Cause the numbers generated in multiplication may be

Ilfa
ther" outside the computer range than those generated

igs the largest of the abso-

in o
addition. That is, if K

n the computer range, then

lut .
€ values of the integers withl
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t ]
he absolute value of the true sum of two numbers 1n the

L2,
omputer cannot exceed 2K, while the absolute value of their

true product may be as large as K2 . Therefore, the re-

latj . : :
ationship between their trué and computed products 1s, 1n

general, more complex than that petween their true and com-=

Puted sums. However, it turns out that the technique of

itude of the computed result with

o .
Omparing the sign and magn

s done above to detect additive

T
hose of the operands, as wa

n many instances to detect

ov i
€rflow, can still be used 1

mu s . g
ltiplicative overflow.

If gz is the computed product of the integers x and

Y in some residue number system. then 2z should be zero

if and only if at least one of = and Yy are Z8ro- Hence,

i .
f 2 = 0, multiplicative overflow has occurred if x and

Y !
are both non-zero. And 5

IXI > 1 and lYt > L

then bOth

IX‘ and |z|>|1/|

s
houla pe true, at least s© long as no overflow has occurred.
’

The

refore, if either of
o <] e lel el

icative overflow

h .
°lds for x and Yy non-zeroy then multipl
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must have occurred. Furthermore, ¢ x and y have the same

Sign, then =z should be positive; and if X and y Thave

OPposite signs, 2 should be negative. Hence, overflow is

also indicated by the presence of the "wrong" sign on Z.

But while these tests are sufficient to detect multi-

Plicative overflow, they are not necessary. (For a counter-

©Xample, consider the multiplication of 16 by itself in the

residue number system with moduli 2. 3, 5 and 7 and with
®ither the range O through 209 ©of the range -104 through

105.) Therefore, we must find a method for detecting multi-

Plicative overflow when the above sign and magnitude tests

do not indicate that overflow has occurred. That is, we must

as g
Certain whether or not
Ix.ylz |x|o|yI > K,

Where Kk ig the maximum absolute value of the integers

¥ithin the computer range when 2z has the "proper" sign

And when both

and 0 < |)’| < |Z| <K

o <[] <af <
Ix[ and |y‘

Are satisfied. To do this, we Shall compare

Wi
th the (positive) square root of K.
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Let i i
k Dbe the unique positive integer such that

2
W2 og k<) (2.3)
let
d
be the non-negative integer such that
2
¥+ a = K (2.4)

and 1
et ;
us assume for convenience that \Xl zlyl. We may

Compare » :
IX' and lyl with k by defining the integers a

and b by
i a = |x| = & and b = |y| - k. 12:5]
.hen, if s gf. B must also be < 0 since lxl > ‘yl
Mplies a »b. In that case, W€ have

x| o]y] = Oerarieem) € K < K
Which means that overflow does not occur- gimilarly, if
ks 0, then a > 0 also and we have

||+ |y| = (k+a) (kD) 2 k+1)° > K,

wWhich 4
is precisely the condition for overflow. Therefore,

1
a ;
<0, there can be no multiplicative overflow since

both IXI
and |y] are less than the sgquare root of Kj

ang 4
1f
b > 0, there must be overflow pbecause both |xl and

ly
ar
| € greater than the square root of K.

ot overflow occurs when

T - .
o determine whether or P

ase), let us

a >
0 1 13 .
and b ¢ 0 (which is the remaining €

exa .
m
ine the equation
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(k + a)(k + b)

.

y| =

|X‘Y| Ix

2
x° + (a + Dk + ab.

i

S - . ) . )
ubstltutlng ® -~ 4 for k in this equation gives

IX'Yl = Ko=d +  fa# b)k + ab

B ; ;
rom which it follows that overflow oOCCUrs = that 1s,

!X'Yl >K - if and only if

(a + bk + ab > d. [ 2s8)

B : ;
Ut since we are assuming that a >0 2 b, it follows that

(a + b)k + ab <(a + bk,

¢ that if a g'bl, then

(a + b)k + ab < (a + bk <0 gad.

C g 2 :
ombining this result with (2.6), we conclude that a <|b|

imp7 -
Plies that overflow does not occur.

Finally, if a > lbl’ (which is now the only remaining case),

w o g g
€ adg b2 to both sides of (2.6) and apply the definitions

2 " :
( *5)  to the left side of the result. This gives

(a + bk + ab b2 = & * b)e(k + b)

(a + b)lyl,

!

g the conclusion that

wh i .
ich, when combined with (2-6)« yield

rflow occurs if and only if

yl >d + b2

(a + D)
No , ;
W, if no overflow occurs iD multiplyind (a + b) by IYI'
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' ; 2
we can readily compare (a + b)olyw with d + Db to determine

0 : ;
onclusively whether or not overflow occurs 1in calculating Xy.

On the other hand, if (a + b).lyl overflows, then it follows

from (2.6) that |x ’Yl must also overflow (and hence that

Xy overflows). These conclusions stem from the inequalities

0oglp| = - = ¥~ |y | <k

and

(a + b)-|y|:>K = d+ k2> da + b2,

which follow from our definitions.

r tests are inconclusive and 1if

Therefore, if all othe

he detection of overflow in multi-

a'>|b| and a>O0» b, then t

Plying x and vy depends upon the detection of overflow in

Multiplying (a + P) by |y|, Wwhat we do in that case 1is

define
Xl by

and repeat the entire procedure to try to determine whether

O not |X1'Y| _ le"ly l la 5 bl.'yl overflows. If

I‘leCe
ssary, we define an Xy an X3 or even an ¥, .

obtaining cach x. from the preceding one in exactly the
1

s
ame way as X .« obtained from X-. Eventually. for some
1 1S

t this procedure

= i, hak

i’ sSome test such as a $|b|

Since

el > Polrbal oo



This follows from

IXI = a+k>aza+th = X, >0

Sin -
ce b g0; similar relations hold for X; and X,

Thus, we have obtained an iterative PT

tec 3 3
ting multiplicative overflow, a

is given j : i 4
n in Figure I. Let us now formalize this pro-

ceq o
ure for overflow detection py stating it as

Theorem 2.3 (Multiplicative overflow Detection-

the largest of the absolute

B

Me
thod 1) - Let K

val
Yalues of the integers in 2 residue number system. Let

k .
and d be integers as defined above in (2.3) and
(2.
4) and assume for convenieagg that [x‘ )Iyl, Let
X = = = % = =3
o %, T fyl k, and a, |x0| k.

and
=4 let Z bg}the gomguted Qroduct Qﬁ_ Xi and Y.

% 0 pr if any of the con-—

Ehgg X
y overflows if P

diti
==lons A.- D. holds for 1= O:
e g, b, gpllEdey ¥ O FW

L
B. z, has the grong sian (z; 7 0);

C. 0 <[z < x| 7

D. 0 < [z] <} ]
if either of the

Bheedeleti

Mo
re
\O\
ver, xy does not overflow

etc.

ocedure for de-

"flow chart" of which
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(@ ' 5
conditions E. - F. holds for i O

E. a, gO0;

i
B
a, <] -
Al
If none of A. - F. holds for a given i, define
b
i+1 and aiiq as follows:
X = = il .
i+1 a, +b and 34 Fial K

I
if any of A. - D. holds gor 132 l. XY overflows;

overflows if and only

2f' a4
LI either of E. - F. holds, XY
if
(a. + b) | *&T b’
|zo] = o ! .
* Kk ¥

The proof of this theorem is implicit in the

di : A
Scussion which preceded it, but two clarifying

ce the sign and mag-

Sta 1
tements are needed. First, sin

nji .
tude tests related to conditions He = D. are

Compl ) e
etely independent of those related to conditions

£ A. - D. is

E
e truth of any ©

- and F., since th

SUFFq s 3 .
fficient to guarantee that multiplicative overflow

oc . .
Curs in calculating 2. and since the truth of
i
ei
ther of E. and F. is sufficient to guarantee
that : g
overflow does not occur in calculating z g

will ever

Lol
lows that none of the conditions A. - D.

be
i : i
ue whenever either E. ©F F. is true. and yice

68



S

vers .
vVersa, (Note that condition E. is actually super-

fly ;
ous since a, € © certainly implies aiSFﬂ, which

is .
condition F.) Second, since the algorithm is Je-

pen ; .
dent upon the assumption that ,xilzlyl, one might

thi
nk that an interchange of x's and Y'S is

Nece .
ssary whenever none of A. - F. is satisfied

for . P .
a given i and it happens that lxi+l| is less

than Iyl ' ) .
. However, since b € 0 it follows

fro-

m the definition of 2a..q that, in that case, con-
i

regardless

diti
lon E . . it
. would be satisfied by 2j41

of
whether or not X and y @are interchanged.
i

In
o .
ther words, if for someé i we have

lxi+1| < .yl while lxil z |Y L then Xy
OverflowS if and only e 6 zl > d + bz, SO that we

Neednp!
n't bother to interchang€ Xirl and y. (In
li

ght of this, it also follows that condition D. is

Supe4 ) , P
rfluous, since, by the assumption that IXI ZfIYIr

COn 2 i .
dition p. implies the weaker condition c.)

this algorithm for

To illustrate the use of

det
ecti _ ,
Cting multiplicative overflow., let us consider the

Multy ; . ;
tlpllcation of % = 29 and vy = 9 ¥ a re51due
105. Using

nUmb
er system whose range 1S -104 through

the
a - "
bove definitions gives

69
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K= 105, T o=, 10, d= 5,
B = 51, a, = 19, and b= -1.
Sin
ce none of the conditions &--~ F. 1is satisfied for
the
se values of X (=xo), Y. Zy a, and b, we cal-
Culate
Xl = aO + b = 18

and
the (computed) product 24 = w48 of %4 and VY-

Sin
o “y is negative while both ¥, and y are posi-

tiv
e, we now find that condition B- ‘is satisfied. Thus,

we
conclude that XY overflows.

It should be noted that when the computer range 1is

not " .
symmetric" about zero: as in the preceding example,

it 4
1S necessary to use two K's and two d's - €.9.:

for the above

K
105, k' = 104, & = 5 and 4@' = 4
=b ; ;
mple., opne K and the correspondlng d are to be
and Y §bould pe positive -

uSed

when the product of ¥

that ; ;
t is, when x and Y have the game sign - and the

ot
her KX ang 4 (denoted by XK' and 4' for the
negative. In

abo
Ve example) when the product should be

thi
S . .
way, we may provide for the situatlo

oy .
€rflows but 'XI' Iyi does not. (In the above ex-
am

Ple, this could happen only when the true product XY



is -
105.) Clearly, this modification to the procedure

i ;
given in Theorem 2.3 1is not needed whenever the computer

range “i_s " coon 1
: symmetric about zero - SaY¥s the integers

M -1
F through + x ; : _ or consists entirely of

-

Noti« ;
N-negative numbers -~ say, the integers 0 through

M- g

After picking a few "sample" multiplications at ran-

d .
oM and using the above algorithm to determineé whether

Or :
ot multiplicative overflow occurs 1n each case, Wwe€

bee _
9in to feel that instances in which it 18 necessary to

Ca
lculate an X, an Xy or even an ¥y, to deter-

mi ey ; _
nNe conclusively whether or not multiplicative overflow

Oc
Curs are probably quite rare. Nevertheless, the pos-

Sibiq ;
bility of guch cases does oxist and motivates us to

Se . o .
®k a faster method of detecting multipllcative over-

e tests, 1.€ conditions

D. in Theorem 2.3, &Y€ inconclusive.

D. Multiplicative overflow continued) . Let us

ude tests A. - D.

assume that the sign and magnit

desop s .
Seribed above have been applied to X, Y and thear
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Comput
ed product z with the result that none of the con-

s also assume that

ditions A. - D. is satisfied. Let u

|X| 2 |Y| and that our computer range is either the set
of integers - M ;:l through s M_é—l or the set of
integers - _%_ i1 through _5—' Thus, bPY assumption
wWe have

o < Jul < Il € Izl €
N '
oW, instead of comparing lxl and IY| with k as be-

istence of a table of

fOre
, let us postulate the €x
from which we

Power
s of two, stored within the computer,

Can o i
btain unique integers P such that

gB=t o |x| £ 2P and 2

If
we ;
define n to be the unigque integer such that

: n+l
g M2 <2 (2.8)
ang j§
f p+ g gn, then it follows immediately that
+ n
|xy| = |x|:]y]| € P4 = 28 4 ¢ 2" ¢ W2,
_ that 1is. |xy| s M/2 -

which
means that overflow

doe
s
not occur. Similarly: if ptdsz?® + 3, them WS

have

M/2 < 21’1+l < 2P+q'2

lndicates that XY overflows.
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If p+q=n+1, then it follows that

2n—l 2p+q—2 <|x|'lYI < 2p+q _ 2n+l <M,

s
o that any overflow can pe detected by the presence of

T " " "
he "wrong” sign on 2 or by the fact that 2 < 0 while

x
# 0 # y. Finally, if p+ag=2n + 2, then we have
1 -2
2" = 2P+q <|X~“YI€

-
hich means that the wrongd sign on % (or

h o s
ave indicated any overflow such that

M/2 <|x | - |y| ¢ M

Oor such that

am/2 < | x| - | v | < M.

Therefore, if p+ 4= D + 2, 4t remains for us to

dij . .
lstinguish between two cases:?
A - M <|x| . |y| < 3M/2;

...2n<‘x|- ly’\< M/2.

Case

Case B

rflow and in Case B there

Cl. . )
early, in Case A there is ove

is
no overflow.

cases A and B, let us define

To distinguish petween
2p—l and |y|. Then,

z
1 to be the computed product of

in
Case A, we have

M2 <|x/2| | y| 2
g g,

p—l .ly‘ gzp—l

wh i . :
hich means that 2z, Wwill pe negative ©OF gero. But, 1n
1



Case B, we have
2n—l _ 2p+q-3 <:/X/21’IY/ < 29-1 -/y/

<[ =[]y | sm/2,

which indicates that =z, will be positive. Therefore,

1

when p+ gqg=n+ 2, Xy overflows if and only if z, .

the computed product of 2p-l and ly/, is negative or

zero. This completes the proof of

Theorem 2.4 (Multiplicative Overflow Detection -

Let =z be the computed product of x and

Method II) -

y, where /x/) /y/, in a residue number system in which

the absolute value of all integers is no greater than

M/2. If x #0#y, let P, and n be the positive in-

(2.7) and (2.8), and let =z, be the

tegers satisfying 7

-1
computed product of 2p and IY L Then, xy overflows

if and only if one o more of the following conditions 1s

usfatiu

satisfied:
% z =@ while BF0FY

B. z has the wrond sign (z # 0);

c. o <[z] <|x]:
pD. p+g=nt 32

E. p+g=nt 2 and %; < 0.

* * *

Interestingly enough it is also possible to deter-
Mine whether or not multiplicative overflow occurs when
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y using the additive overflow

n +
l1 ¢ p+g ¢nt 2 b

det !
ection procedure. 1f we define € and d to ke o B

t
egers such that
_ 29t (2.9)

c = |x| - 2p—l and d = |Y|
then we have
|x|-|y| = pra-2 . o gioP ™l + ca. (2.10)
From (2.7) ana (2.9) if follows that
0 <c <2P’1 and 0 <d g 2971,

SO .
that each of the four terms on the right side of (2 ,10)

is
not greater than
pra-2 g 3" & W2

He , ’ .
Nce, it follows that XY overflows if and only LT 2

addi+ [ ’
ditive overflow occurs in calculating the sum in the

ri :
ght side of equation (2.10) -

ing additive overflow to de-

While this technique of U®
te ;
St multiplicative overflo¥ seems simpler than using 2

as
Prescribed in Theorem 9 14 it turns out that one to
thr "

®e magnitude comparisons (two to six conversions from

regj .
ldue to mixed-radix notation) are required to deter-

low occurs in (2.10).

Mineg
whether or not any additive overf

whil .
e o . . . . d X
.Only one sign test (one residue to mixed-radl

Con
vVersi : g : B
rsion) is necessary t© check condition E. in Theorem
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prescribed in Theorem 2.4 is

2.4
- Hence, using 2z; @8

"fa n
Ster than using equation (2.10) .

It should be mentioned that the requirement of a

Stor
ed table such as is needed for the overflow detection

Proc :
edure given in Theorem 2.4 is quite reasonable. The

it need contain

tab .
le itself would not be very large since

only th g
ose (positive integer) Ppowers of two within the

Com
puter range. Furthermore. the integers P and d

wou ;
1d be obtained easily from the table by @ simple "look-

up" g L
procedure in which the mixed-radiX coefficients of

X
l I and |y| would be compared with those of the powers

of
two stored in the tableé. and the mixed-radix €O-

effi~s
lcients of IX | and Iy} would already have been com-

d magnitude tests

Pute .
d in order to perform the sign an

.

To illustrate the use of Theorem 2.4, let us consider
th .
€ multiplication of ¥ = .31 and Y T g in the residue

and the range is -104

n Um‘b
er system in which M = 210

since the computed

e
ugh 105. First, we€ note that:

Prog¢
duct of x and y in this system is 2 = _38, none of

the e h
eonditinne B QAR Theorem 2.4 ;s satisfied.



nd ,
, we obtain p=5 and a7 2

that
pt+ta = 8 =z, m+ 2,
SinCe
n = 6, Next, calculating 2 gives
op-l.|y| = 168 = 128 = -82 (mod 210)
Oor
2 =
1 = -82. since condition E. is now satisfied,

mult.
ipl; .
Plicative overflow is indicated.

F
Or comparison, we note that using (2.10) to detect
Overf

1 .

ow in the above example requires at least one mag-

nit
Ude _ .
Comparison (meaning two residue to mixed-radiX

o
OnVerS lOn . . ,
s) to detect additive overflow 11

lx|.|yl

LAl 4 a-2PTh + cd

il

2p+q—2 + C
= 26 + 15.22 + 4-24 + 15-4

64 + 60 * 64 + 60.

o £;
thd the sign of Z-

W .
€ have now shown how t© detect overflow resulting

Tom
addition, subtraction, and multiplication in modular
Arj

Bl o .

Metic computers - Or: at least, in those having cer-

ta

ln "

In all cases concerned,

Sel n
ect" computer ranges:-

s are necessary to

Wo
Oor
m . i
ore mixed-radix conversion

77



det
ermi ,
ne whether or not overflow has occurred, and 1n some

instan .
ces, considerably more computation than that is

neCe
ssa
ry to confirm the presence or absence of overflow.

This
means that overflow detection in modular arithmetic

Compu .
Puters will always be somewhat slower than in compar-

able
conventional digital computers and that, in general,
for overflow

More .
complicated circuitry will be needed

det
ect 3 ; 5
tion in modular arithmetic computers - However, thils

hand4
lcap is not as great as it might ceem, since over-
w . R o
detection tests need not be ucsed as often 1n mod-

s in conventional computers.

ular 4 o
arithmetic computers 2
The

reagon for this is that, unlike the truncation in con-

n used in residue number

vent 4
1 :
Onal computers, the truncatlo
Syst
®ms often permits the correct answers to be obtained
€ven +
though overflows may have occurred at many inter-

medi
ate steps in the calculations. For examplé., in cal-
CuUlat 4 :
ting the partial sum of an alternating series, the
completely

prOgrammer of the modular arithmetic computer may
l9nore the fact that the indlvidual terms 1D the series
Verflow if he is certain that the partial sum itself will
b

€ Within the computer randge- 1n fact, this particular
property of residue number systems will be used extensively

culation$s needed 1n

in
pe ;
rforming some of the jmportant cal

78



ods described in the next

the qivies
ivision and square root meth

poi
WO chapters.

W detection in modular

Therefore, although overflo

more cumbersome than might

Arith
met j :
tic computers 18 somewhat

t is possible to detect

be d
esi :
ired, we have shown that 1

o
verflow and we have given methods whereby the de-

a reasonable amount of com-

teCt'
don e
an be accomplished in

Putin '
g time. Although we have found it necessary to intro-

d

UCe a small table of powers of two in order to allow a
m

dore efficient method - namely, that of Theorem 2.4 - for
Etecting multiplicative overflow, we shall find in the
i

°llowing two chapters that thiS came table can also be
u

S€d to facilitate other very important operations in

Mog
ula :
r arithmetic computers-

19



CHAPTER III

DIVISION

Division in Residue Number Systems. Normally,

x by y in any

A,

when we speak of the division of, say,

number system, we are referring to the process of obtaining

the solution =z of the linear equation

yz = X.

Assuming that multiplication is commutative and asso-
ciative' in the number system, the existence of such a 2z

(for all x) is equivalent to the existence of a multi-
-1 ek
such that

plicative inverse y of vy

where 1 denotes the multiplicative identity, (See
i -1
24.) Clearly, if such an inverse 'y

) _ -1
exists, then 2z = xy .

Jacobson [14], p.

In a commutative ring, the existence of a multiplica-
tive inverse for any element y 1s dependent in part upon
whether or not y is a zero divisor - that is, whether
in the ring such that

or not there exists a w # 0

80



. X n art' i
1C 1f we S a multi—
pl icative iIl-

£
Or the zero divisor Y., then

we have
-] -

which contradicts the definitj
oR ef W, Hence, i
’ lf y

is a zero divisor, then it has i
NOo multiplicatij i
ative inverse,

and "division" by y is not Possible

It is not hard to verify that, under addition and

multiplication modulo M, the product of the moduli

residue number systems are always commutative rings. How-

ever, unless M 1is a prime, in which case it is the only

modulus, all residue number systems contain non-zero ele-

ments which are zero divisors. (See Jacobson [14], pp

66-68.) In particular, if y is any non-zero integer
in a residue number system and if Y 1is not relatively
prime to all the moduli for the system, then y 1is a zero

divisor and has no multiplicative inverse. Hence, unless

y 1is relatively prime to all the moduli, division by vy

is impossible - that is, for each x in the residue number

system,
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either has no solution 2z or has several different
solutions. (For example, in the residue number system
pased on the moduli 2, 3, 5, and 7, there exists no
integer 2z such that
36°z = 59 (mod M),

but there are five solutions to

-95°z = 20 (mod M):
z = 2, z = 44, z = 86, z = -82, and z = -40.) Further-
more, even if the multiplicative inverse of an integer y
does exist in a residue number system, the solution 2z
to (3.1) is not the quotient one would expect from most
computers unless x 1s an exact (integer) multiple of Y.
The reason for this is that the multiplication in (3.1)
is performed modulo M. (For example, in the residue
number system used above, the solution z to (3.1) for
x =78 and y = 37 1is =z = -66.) Hence, even when
division is possible in a residue number system, the quo-
tient obtained in many cases - in fact, in most cases - 1is

not suitable for use in most computer applications.

There are also zero divisors in the number systems
used in conventional digital computers, but there the

problem discussed above is avoided by using a different
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def s
initj
ion o ol e
f division. In particular, when a number X

18 iy
divided by a no .
n-zero number y 1D a conventional

Qi
gital c
omputer, the "quotient" which results is usually

the (1]
inte . "
gral portion" of the tru€ quotient - that is,

the
great :
est integer not exceeding |x/y\, preceded by

the
Proper sj
sign. To obtain this nquotient” in conventional

diq
gltal
computers, "division” is usually performed by a

Sequ
EnCe .

of subtractions and nghifts" which amounts to
of times

gener
ati .
ng the quotient by counting the number

the
divi
sor can be subtracted from the dividend pefore

Si
dn change occurs.

not carry over this new

The .
re :
is no reason why W€ can

def v
inits
1o . ; ;
n of quotient for use 1n residue number systems
Or
e some other defin-

14

fOr
o
hat matter, why we€ cannot us

iti
s of quot' " TR
& ient such as, saY¥:s the "nearest integer
o
jderable difficulty

X/y :
However, we do encounter cons

in
Carr .
Ying over to residue number systems the method of

ivig

lon ;
by subtracting and "Shifting." In ParthUlar'

t in modular

Sip
Ce §
Sl .
a gn determination is MOT€ dgifficul
ity
met 4
r . computers than in other digital computers (the
eSUl
ts
©f Chapter I notwithstanding), the method of

Simp ¢
B ' -
epeated subtraction of the divisor from the dividend



S T i e AR

L% Prohibitively time consuming and jnefficient. Further-
More, if we try to speed up this procedure by using the
technique of "shifting" used in conventional computers,

we find that performing a "shift" in residue number sys-

tems is equivalent to performing the division itself.

Therefore, we shall now seek some other procedure
whereby we can conveniently calculate someé reasonable
approximation to the quotient of the (non-zero) integers
¥ and y in a residue number system. We shall present
a new method for finding the nearest integer to (or the
integral portion of) the quotient x/y, and then show how
this method can be extended to give a much better approxi-
mation to that quotient. Finally, we shall apply these
new "division" methods to enable modular arithmetic com-
puters to perform "floating-point" arithmetic - a capa-
bility heretofore possessed only by conventional digital

computers.

B. Division Algorithms for Residue Number Systems.

Let us now assume that x and y are non-zero integers in

a residue number system whose range consists of the integers

_M.;_,]; 5 el

5 through + ——5—— (if M 1is odd) or - —%— + 1
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th
tough —%— (if M 1is even). Let us assume further that

t
here exists a table of powers of two from 2 through
n
2
where, as in (2.8), n is the integer such that
: (3.2}

2® ¢ M2 < 2™

Asg : .
W€ explained in Chapter II, we may obtain from this

tab
le the non-negative integers p and g such that

p-1 5
2 < |x|g 2P and 2ql<[y]<2q. (3.3)
F
TOm these inequalities it then follows that
b-g-1 _
2 - 2Pt < [l ]
=3 -g+1
(23] « 257297 = P (3.4)

So .
that it seems reasonable to choose

p-g
z = 2
1
as : :
a first approximation to fx/yl. However, if /XI <Iy,,
then the nearest integer 2z to ’x/y[ must be either zero
©F one. In that case, we may ignore 2z, and choose

between the two possible values for z by calculating

2/X’ and comparing it with ’yf. TE
0 < afx| <[ vl
then

[x/y| < 172,

so that we should set z = 0. But if 2[x| >|y|, then

12 € |xv| < L,



Moreover, since

~ie Should set 2z = 1.
[ <]y | < w2

we 1. |
e 2/X, < M, so that the computed product Z,XI will

be ) :
Negative if multiplicative overflow OCCULS. Hence, 1if
the .
e fomputed preduct 2/xl < 0, then the true product
Satisfies
2fx| > w2 5[y ]
and
We shoulg again set z = 1.
On the other hand, if lx/ > Iyl, then the nearest
int
e /X/Y’ is greater than or equal to one. AR
in . “
this Case, p-g > 0 so that z; is an integer. If
We der.
®fine the integer e; by
_ - : 35}
[ - |¥ ]2 (

el L

ang .
“OMbine this definition with (3.3) and with the

defi,.
ing s

ttion of z,, we have
2P 20 Pg < o < 2P - g9 1P (3.6)

Or i
-1
e, < B,
But ] l
* Since (}(/ < M/2, it follows that p n+l. Hence,

ey < oP1 < 2P gmy2,

Why
is within the computer range.

means that el

86
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Now, if B, ¥ 0, it then follows from y # O and
t o= a| - |wlc ey = (lx/y‘ B Zl)'l v |
e zl is exactly equal to |X/y , SO that we may set
ik 'x/yl - namely,

z
1 to obtain the nearest integer to

/g
Y' itself. 1If, however, €, £ 0, we then turn to the

e ; :
°f powers of two to obtain the non-negative integer

g
i} SuCh that
X & rl
. Bl
2 . < lel' 2 - ( )

Sihce

ey | = !}X/y\ -z ,“ v |,

it £
ol
lows from this definition of I Bt

Jrama-l _ prilgd <[l - 2 |

< o¥1/39°1 = 5 e 1 (3.8)
H
[ L, e Hhen

1 2 e

By "X/Y' - le > 2rl—q—l > 2_l = 172,
r - 32 surely not the nearest integer to ,x/y' Since
1 29 alge implies that 2rl—q ig an integer, it seems
ieasonable' in view of (3.8, &0 use this quantity as a
correction" to z.. Furthermor€: inasmuch as € is

Ne
Jat; _ . b . we
e if z > |x/y| and positive if 71 < | /9|
i , .
Use ‘ ) a roximation
2 this correction to obtair a second pp
z, bY

2 to
|X/Y| by defining theé integel 72
r1~d

z. = z, + (si2° ey



AS we did for zZ,, we calculate e, from 2, by

Cals
klng i a0 in
(3.9)
= - o Z, o
ei lx l ’y l 1

I '
g ¥ i nteger
B # 0, we define r, to be the non-negative 1 g

Sa+t

Hsfying

p = i (3010)
a1 1« leil < 2 1,
we define

epea )it
Hifig this procedure for i =2, 3re0°1
the
iy # 0 and
Xt approximation to lx/yl whenever €,
r'
o¥i™9, (3.11)
Z. = gz, + (sign ei)‘ ®
Then ) 1+1 il
iy €, >0 for any i, W€ have
e (z. + ¥
i+ = - _ -4y Z )
. lx ’ ly '“ Zi+1 lx' | | L
, 2r1”q
= e, -~ ]Y'
i

QOmb .
inj “ ,
N9 this with (3.10) gives

) I rs=d
wa¥i-l o, oTE 1 . g% <ei+1

1. ri- ri-1 r3.12)
¢l o g ki e 2
Or
r’u—a
2 b
Simil Iei+l, =
a :
rly: 1L e, < 0, then we have
' P
e. = e, * Iy | B
from i+l i
which
we obtain
» - =
Y o S o 29 1,ri"4 < e;yq
g ek (P 1
< _2ri-l & 2q2 i 2
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or
r.-1

lei+1| <2nin,
Hence, either ei+l = 0 or else it follows from (3.10)
that

Tiv1 € &5 = 1.

Thus, eventually. for some i, either e. = 0, j
i , G

which case z = Zi 1s exactly lX/yI, Or else we have

ri < 9. If, in the latter case, ri < 9-2, then it

follows from (3.9) that

[xry] = 2] = el v| < 2"F292

¥ s =gl "
=2lq <2l=l/2v

so that setting =z

Il
N

5 makes z the nearest integer

to |x/y|. On the other hand, if r, = g

i - 1, then

(3.9) gives

1/4

Il
\S)
Il

24728 < ey ]y |

“x/Y' - zil Z prifa®l = 0P g

Il

in which case z, differs from the nearest integer

z to lx/yl by at most one. 1In this case, we calcu-

late 2ei and compare it to e. and ly L Tif 2ei
i

and ei have opposite signs, then multiplicative over-
flow must have occuryed in calculating 2e.,, so that
2 1

2|ei| is clearly greater than Iy’. (Overflow occurs



in
2 .
. if and only if ;
y 1 Zei and e, have opposite signs

2 : -
|e;| < 2-2%1 = S REPCIPE e S
On th
€ othe: , .
er hand, if 2e; and e,

have the same sign,

ang l y | ‘
dlrectlyo If

the
n i+

. -1/2 < ,x/y‘ -z < 1/2,

Nat gat+ '

i etting z = z, again makes , the nearest
Intege, i

| =k + 1/2 for some non-

to
Neg lx/ylu (If 'X/yl
‘ atiVe 4
integer %k, we round the 1/2 wypward" to ob~-
gative and 2ei overflows

2¢;< - ’yl

s
in
2 i
K+ 1, 1I£f @& is ne

Ot ¢

2 =2, - 1 to get
(3.14)

Ang . ~1/2 < ‘x/yl _z < L1l/2.
ig
e N
2e ; 1s positive and either 2@.,l overflows of
12|y | 4
oy + we then set 2z # z. + 1 to arrive at (3.14) .
‘Us i
’ we q
Chy, have obtained a division algorithm. a "EloW
rton

and weé have estab-

OF ik 4

L & which appears in pigure IL.

e

Non, m 3.1 (pivision algorithm) - Let X and Y ke
.n o

wx\.

P

int : :
; integers in a residu€ number 2 stem .t
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all integers are not greater than M/2

absolute values of

the non-negative integers defined by

Let p and g ke

(3.3) and let z be the integer determined as follows:

1. 1f lx |<|y|, set z =0 if 0 < 2[x| <'y‘,
and set z =1 if 2[x[<0 or 2|x|2]v]-

4% A& IX‘> IYI' REE By =

by (3.9)- If =, = 0 for any 1i, set .
s i

2P and calculate ey

3. JIf e, # 0 for any i, let r be the non-

(3.10). ___f_ ri 2 q.,

tive integer satisfying

nega

calculate 2, . by (3.11) and go back to step

e f r. =q-1,

2 above to calculate . .
a2 s = i+l e i

have opposite

calculate Z2e;. If 2e. and e,
— i et i i

have the same sign and

signs or hi 2ei and ei
either of

2e, <-|v| ox 2y >|v]

+ (sign e.)"1l.

z = 2,
1 1

Otherwise, set 2 = 2,-

Then, z satisfies

172 € |xsy| -2 <172

that is, =z is the nearest integer to lx/y,.
* Kk %
Once having obtained the nearest integer 2z to
orem, we

lx/yl by the procedure given in the above the




Figure II - Division Algorithm

i
DIvIsTOM

Eiet ),

ineraast ¢
[ by wunt

Set 2 Do ¢: and
- 26, have the
T+ (sign e ) same ﬂin.’

prvrsToN

COMPLETED
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easil
y obtai
o tain the nearest integer to x/y by changing
sign of
z to minus whenever X and y have opposite

The signs themselves

signs
and . .
) leaving it plus otherwise.
an b
€ determi
B .
ined from the mixed-radix coefficients of

X
and
Y whi
hich are used to obtain P and q from the

if we wish, Wwe may use

tabl
€ o
" f powers of two. Note that,
ve a .
lgorithm to obtain the "integral portion” z'

QRE
e
quoti
tient by setting gt =2z -1 whenever

iX|~|y
otherwise.

. 7 1 .
is negative and z' = 2

Note
& , v

lso that the above algorithm 18 independent of
and assumes

the
modul i
used in the residue number system
M -1
through

m—————

Onl
y that the ;
L M computer range ig from -~ 5
‘EE‘E or M M
from - — +1 through —5—° The residue

for
nultq .
plicative overflow in calculating

we make implicit use of the

H
Owever
’

i 5

n calculating €;:
i

ems,

due numper syst

Ove
rflo
w
and truncation properties of resi
4 not work pro-

So
that
t .
his part of the above algorithm ma

ntional digital

Perl
Y fo
Vg
- the number systems used 1in conve
Pute
rs 1 i
. In particular, in the discu551on which prec
s g within the C

R
v that ¢€;

eded

om-

Th
eore
m
3.1, we proved onl
that 18 we proved that € is

but
er
fange for each 1 -~
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1n the
computer range and that, for each 1 e
’ o {ual <ley |

ut overflow in

-~

but
we ;
ls did not prove anything at all abo
e int
ermedi .
iate results used 1n calculating ¢€;- In general,

the
Se j
ntermedi
ediate results are not within the computer range

So
that myieq ik .
plicative overflow usually occurs in the cal-

Cul
atig
G I
yl-zi. But, because€ all operations are
e number system, the

pEr
QOrformed modulo M in the residu
e
PutedCt result is still obtained when we gubtract the com=
I aSPrOduct ok ‘y l and Z from lx L Hence, although
Sumptions are made about the particular residue num-

n Theorem Bl

bey
gorithm given i

SYS‘
tem being used, the al
+ the calculations

WEYS
es
Yath .
er important use of the fact tha

Are
(as opposed to the

ou
gh we can provée only that ri+l< r, - 1, HeE

rem 3.1 usually con=

faey .

ergesli the algorithm given in Theo

Ang Quite rapidly to 2: For example. if x'= 136,047

th By, e apply Theorem 3.1 a8 follows to obtain
l600,5529¢.a:

e ne

First Arest integer 2z tO lx/yl _
frOm thlnce ‘X|>(Y‘u we obtain P _ 18 and 4947 i
¢ table of powers of tWO- getting
P = o1t = 2048

le
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giVeS
- e, = 136,047 = g5 2048 = -38,033.
+ Sinc _ ;
- e r, =16 1s greater than d = 7, we cal-
ate
22 by
7z = 2048 - 29 = 1536
Then f 2 ’
’ Yo
I By & 5487 and T, = 13, Wwe obtain
zy = 1536 + 26 = 1600,
e e =
Sinee 3 47, and r, 6.
r, =
o 3 = gq-1, we calculate 2€3 = 94, which is clearly
eater
o}
han IY '= g85. Hence, W€ set
z = + = 1601,
23 1 6
‘x/y).

Whi
ch
1ls 3
indeed the nearest integer to

resting feature of the above

Pe
rhaps the most inte
tended to provide

div 4
lsiop
n
procedure is that it can be €X
|X/y|

In particular,

than the nearest

a
b

etter approximation to

the

inte
ge .

r obtained in Theorem 3.1
fled to yleld an

al
h
m of Theorem 3.l canb pe modi

in the form w-zj, where W is

ap
prOX o
lmatio
§ %0 |x/y|
an s
Inte
(=] 4 g ¥
ger in the residue number system amdl 3 A8 a

Ne
gatj
e aget i _ ,P™@ and the definition
(3 5) . Using Zl =

. " |
T we were able to show 11l the proof of

e

Theg b
Tem B W

* a

'el| % 2P
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Henc
e .
] lf we .
define wl and fl respectively by

W, = - .
i zZ_ e J sl © -
the . g % 2P~9") ana £, =2 | = |- | v |w,
N we !
ave
wh 2P‘q"'3 < 2n+l—q < 2n < M/2
Enever
6% j.pp=03 1 (3.15)
421
.. If g =0, then » y’ = 1 and no elaborate
ig, we may set

Lvias
w procedure is necessaryi that
S
i*2 ~, where
to 033 »pt
Obtain
Alsg w2l = farel =l
0 lf i
j satisfies (3.15). then we have, 28 in (3.6)q
273,p-1 o iy R
ey 2 . sl P43 g £ K2 ol 2% 1,p-q-]
hicy gi 1
l\res
-j=-1 n
£ p-3-1 2" < W2
Hence ( 11 <4 N W
to satisfy {3.15), we are assured

ge.

th
at
t .
o thtegers .thin the computer ran
w3 and fl are Wil

If '
I , e
= 0, ‘then lx/y, = wlnzJ and our division

ig
Qom
plet
ed. oOtherwise, as iB (3.7):

we define the non-

Ne
gatj
ve integer
Sl by
s (-]
,s1-1 <’fl, Sl



and ' . 3
P By B4, W€ obtain a better approx1matlon w2.2
to
lx/y' by setting
= i £.)2 v
W, w, + (sign l)
defining

Cle
arly, we may continue this procedure as pefore,

4 :
he lnteger f, by

i
= g ~ ]y (3.16)
£, = 2 | | BARS
an ! 3 .
e fi # 0, defining the non-negative integer S; by
(3.17)

2514 <,fi’ <2°t.
.2j to lx/yl is

if
sl > q, the next approximation Waigl
defined by
si—d 3.18
W - ws + (sign fi)'z o ( )
Th i+l 1
u .
Sv Af £, >0, then
4.81—-d
f‘ = f = ’y "2
By . isd 1 '
1t follows as before in (3.12) that
o o1 i 8i=d,d
_,Si 1 _ 251 1 sR1 %2 < fi+l
L =1
€ gk zq_lZSi_q - ZSl 4
Ang .
1f
fi < 0, then
si~d
= £, * -
£y £, |y |

i+l

_2§l—l Zsi + Zq— 2
35535 si—l
< _pSi7h 4 Jp B = 2
The
e )
fore, in either case.,
Si—l

Gl RN T,

97
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at 1
it follows from (3.17) that
c 1< 5 1 (3.19)

we must have that £. = O,
1

Hen
ce
. eventually for some i

R .
Whlch CHEE W 5
I i°2 = lx/yl, or else we must have s, < d-
s
r &
1R 4 - 2/ then
‘lx/y - j j i g4 ,.a-1 2
bl - e <P S i
S, =
i = =
e 1, we compare Z’fi’ with 'y’ and set
(3.20)

w = ' :
W + (sign fi) 1

1f
2 |f ;
Th l i,>| yl. Ootherwise, 1if 2,fil<|y,, we set w = Wi
S Again gives
o] - vl < 27
hm whose "flow chart" 18

' we ok .
tain a division algorit
put which is

€s
“entialyy
the same as that given in Figure I,
n to the quot-

Ca
Pah
le of et | “
ing a more accurate approximatio

ie
nt

tha

n
199 the algorithm of Theorem 3.1l This completes the
The
Or

==2Iem 3.2 (Dpivision Algorithm = Extended Form) - ZLet
Q ==
\Qg o i | .
be non-zero integers in 2 residue number systefl in
s are not greater than

&hlgh th
e
1€ absolute values of the inteqgeX
s defined by

4,
)
Let | | |
3 3) P and g be the non-negative integer
0 let s |
J b == N Ee B Eositive integer satisfylng {320, let
\ew . .'——""
iiteger satisfyind (3.15), and Jet w be the integer

de

te
W‘\
ned as follows:
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(el 0 -7
If g=0, set w= |x|-2 q
2
If g #0, setw=0_i_f_p—q-j+l<0 or if
p-g-j+1 = 0 and 2—J+l,x| <,y'. If p-g-j+1 = 0

2p—q-j and calculate fl

1f £. =0 for some i, set W = W,.

by (3.16). _
= 4
s. be the non-negative

%. Ig £, 4 0 for any i let S8
integer satisfying (3.17) - if 8y > d. define
Wiel =22 (3.18) and 92 back to step 3 o calculate
fi+l' If s; = qg - L, calculate 2‘fi] and *obtain
w from w, by (3.20) if 2|fil>'y|. otherwise,

—
W satisfies
j j
el -2

sk is L -4
is, w differs from 2 JIx/yl py at mes-

x * %

g of the algorithm

On
9i € of the more desirable feature
lyve
n i .
in this theorem is that J ™ pe changed in SUET
Qes ¢

Sive n ﬂ
¢ "iterationg" -~ that is. 3 may decrease€ as 1
i 111 still
for any L fi41 wil

1
nQreases
: In particular,
by as much

decrease€ j

e

in ;

Ak the computer range€ if we

i ;

|, " 1 n.
i ¥n-s. + 1 for the (1 + 118t iteratlo

A
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ti,

by a factor ofF 2 -3}

Doj
lng L s
thls inCreaSGS -

but
v by
(3.19) and the gefinition of 1ty we have

S S N
Ifml g PPLR gt Lti ¢ 2" w2,
eration in order to

Hen
Ce
. W
o e may decrease J with each it
tain
7 f e
| I ncreased accuracy in the approximation w. 2 of
X/y
r However, in order to keep W within the computer
ange
a
§ we decrease ], W€ must also require that
0> 3 » p-a"" # 1)="34n" (3.21)
Slnce
~q+l
IX/yl ¢ 279,
kee
Ping =+ .
9 J in the interval speCified in (3.21) gives
—g-j+1ls n
[Wi] £ 2p 9 J B; g ) <M/20
Ang
1f
£ - ,
de il £ 0, then ’x/yl gzp q,, so that we may further
Qrea
S ; d
e -7 to p ~-d - n. Note that, as for the ¢&; s

min
in Theorem 3,2 are

in
The
Oor
em 3.1, the integers i

try - However, if the multiplica
Ctio '
% are performed modulo M in a residué number
£, of the computed pro-

Sys
o
€, 5he. o .
duct omputed difference i
. ol
273 |
IXI and [yi'WJ will gtill be correct.
1
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As bef
& ;
re in Theorem 3.1, our proof of Theorem 3.2

Juarant '

imatiOnees h ;n (3.19) - only that the error 1in the approx-
factor Ofwi'2 to ,X/Y, will diminish by approximately a
T two in each successive iterat%on. Cases actually
" WEnely, wasw 'X/yl =1/3 or 2/3 - in which the
converges in exactly this way

Algor
r ;

1thm of Theorem 3.2
we cannot hope to

~ that :
btain BBy By =g = L= that
i e a "sharper" estimate of convergence than that given
above proof. However, 2% the followind example
gives,

Sy
ggest
Sl .
the algorithm of Theorem 3.2 actually

ence considerably greater

i
n many
. ate of convergd

th
e mi .
inimal rate given ip the proof-

let us assume

it Theorem 3 o i

To 3 .
illustrate the use ©
he eight moduli

oy
Tesique
u | t
number system to be pased on

gince this gives

7 o
, 11, 13, 17, and 19-

22 _ 4,194,304, we have

M/2
= 4,84

9,845 and since 2
nd the remarks

0 =
= 25
heorell 3.2 a
= 829,314

If we now apply T
ent of X

fo1
lOw'
in :
g it to approximate the quott

= . i ¢ ermi
Our with the maximal accuracy P
Yegj

S1ldye nu . 59 .
mber system, W€ optain firsts

an
; (3.15y.
g =50, @5 i § =3



b i i kel i

Hen

Ce, for the first "iteration" we set

o o 20-13-(=3) 510 = 1024
;=

an ; ]

i -3. cCalculating fl from (3.16) AR

_ 4
£ = 53.829,314 - 6057-1024 = 432,14
£ cond
l"OIn which we get " - 19 uslng (3017)0 For the se
! 1
4
terationy we set
Wy & Wy ¥ 25174 = 1024 + 2 7 AL,

q crease

d Since we wish to obtain maximal accuracy, we de
1) by

£ & ) Sl + l = 4a P
9lves 5§ = -7 and, by multiplyind 72
- 17,408 proceeding

W

De . .
NSate for the change in J+ "2

Wit : escribe

Th . : le IV
eorem 3.2, we obtain the results given in Tab

Fro that weé
m o = ""141 SO

4 (3.21),  we calculate that Imin

Al = 13.  The
t the algorithm when J = -14 and % by

I‘es
ulti
N9 approximation,
_14 _ 136,91827392- 7
2,243,269 - 2 = 130

di
ffers frOm

by ,X/yl B J . 1orably less

ap .
proleately 0.00000245;

th
an
!
he Maximum error

- LB L 003052 ¢~
23 1 = 2 = 0.00

Preg.
di
Cteq in Theorem 3.2-

102
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Table — IV

-

Application of Theorem 3.2: Sample Division Problem

X = 829,314

y = 6,057 [x/y| = 136.91827637. ..

i W, i f. S. w,ij Error = x/y = w.-2j
& 3 ¥ § 1. ‘

1 1,024 - 432,144 19 128.00000000,.. +8.91827637... \

2 17,408 = 711,936 20 136.00000000. +0.91827637. .. |

3 140,288 =10 -506,880 19 137.00000000. -0.08172363... é

4 2,243,584 -14 -1,907,712 21 136.93750000 . -0.01922363... %

5 2,243,328 -~14 -357,120 19 136.92187500,.., -0.00359863. ..

6 2,243,264 -14 30,528 15 136.91796875. .5  +0.00030762. ..

7 2,243,268 -14 6,300 13 136.91821289...  +0.00006348. ..

8.2 243,268 =14

243 8 136.91827392... +0.00000245. ..



IS e
e

Note
that , i )
, in this example, W would still be within

the
COmp
uter g
a . .
nge if J were decreased to -15. However,

if
thi
S wer
e do
ne, w would not pe less than or equal to

2r1
ety 2 2
2
h s which i . .
Jmi is the criteria by which we determined
n® Hence 4
Iy ¢ 1t 1 3
will happen occasionally that we can still
ake J (one)

ke
&p
w .
withi
in the computer randge when we It

le
Ss than ]
T In that case We have

maihn

n
& pr 27 < w < M/2.
Obabi .
lit
y of these caseS. i which we obtain slightly
ent with the range

le
Ss
th

an the

Of y, e "maximal" accuracy consist
e
resid
" u . .
e number system, ¢anll be minimized py choosing

he
Mody T +
’ . system such that thelr product is as

a poweT of two

elg
Se

a
t S Possible
hat , but not less than,
Power pej n+l
Ry 2 . where n satisfies (3.2) -

Now
we ) ' .
rlumbe have shown how tO perform ngivision” 1n residue
r
Syst
ems. The algorithms W€ have given may be used
ro the quotient or

is an

is a negative

© In .
particular, we have illustr

ox
Mple
th oW the

uexponentu j

e
al
9or ithm
of Theorem 3:2 7Y
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ApPpr
OxXimat i
1.0 .
n consistent with keeping W within the

Co
TPuter range
algor i . Next, we shall show how these division
ithms
Ca
n be used to help perform other useful

Op
erat i
lOns .
i
n modular arithmetic computers.

In most digital

£: Floati 4
ng-Polint Arithmetica

Com
Pute
rs pr L .
larg provision is made for representing very
e int
eger
s and very small fractions bY what 18
”scientific notation,”
"six—hundred pillion"
L
6 x 10

Esse
nti
ally the equivalent of

Th
at -
ls, i
¢ 1N
stead of representing

by
600
. 000, 0
, 000,000, the more compact notation

is
Useqg
¢ and 1]
Mmilq instead of representing npinus two
lont
t.hsll by _O —-6 ) '
igie .000002, -2 » 10 is used. In
al ¢
om
Notat puters, Ehe equivalent of this scientific
ion j
1ls .
dlgit achieved by reserving @ certain number of
I !
n
each "number" for the "mantissa” 6 and

e

- and using t+he other digits

in
Eha
abox
ove examples
e ex-

fo
X
t
he HeXpOne i ‘ "
Mnp] o nt - 11 and -6 1n the aboVv
]
c Th l
= BOmp e programmer then has the option of
ne as pbeing in

te
garding th
the e numbers within the machi

which he calls “fixed—point”

Ord.
lna
ry radix notation:

ati
On
¥ 1O .
notat‘ r in the above equivalent
lon
+ Which he calls "floating—point
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Heh
Ce
+ he h
a .
S a choice of two sets of rules by which

adqj
ltip
ns
, Ssub : .
tractions, multiplications, and divisions

Are
Perfg
rmed wi i
ithin the computer: "fixed-point“

arit
hmet .
lc " .
and "floating-point” arithmeticCe

FOr
e}(am ‘
ple, in the IBM 7090 computer a widely-

r may be regarded as @

Us
P large
a numbe

35-bj e
Lt bi
lnar K]
y integer, preceded py a "sign pit," or as

qQ
n bit and

P
it bi
inary fraction, preceded by a sig

The programmer

ed p
Yy an 8-bit binary exponent .

may .

Sbit :fUCt the 7090 to add two numbers as signed
B he malnary integers by using an "ADD" instruction,
Y use a "Fap" (floatind add) instruction,
nghift” the 27-bit fraction

Wh 3
lQh
Causes the 7090 t
o
ponding expon

in
One
of ¢
he addends until the corres ent
efore adding the

Wreeyg . .
Cwg 27Wlth that of the other addend b
StrUQtihbit fractions. In the game manner: other in-
Simy arons may be used to cause the 7090 to perform
dividin R s & subtractingd: multiplying, and
9 fixed- and floating-POin® numbexr s+
&
modulolearly' addition, subtraction, and multiplication
ger" givision of

M, .
and the "nearest inte
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Theorem %

Valent, O;l are the modular arithmetic computer 's equi-
mUltiPliCat%he 7090's fixed=point addition, subtraction,
“ltieg y ion, and division. But because of the diffi-
n performing the nghifts" necessary to align the
¢ computers,

®Xpo
nents
of
the operands in modular arithmeti
of the 7090's

we

1o
atin
g=poi
point arithmetic operations-.
£ Theorems 3k

£i
ng
: b :
y using the division procedures ©

ang
3.2
S flOa : .
ting-point arithmetic operations can be per-
relatively

fo
Imeq ;
ln m
od g
ular arithmetic computers in @
we may represent

Sty
ai
gh
tforward manner In par
n modular arith-

Very e

Met§ o Coge integers or very small fractions 1
within tIPUters in the form x02j, is an integer
residue = Elsdapeitt computer range and represented in
' form and where J 18 another integer. probably re-

pre
Sent
ed j
in the usual binary forme.

TS .l
Sim .
plify the nghifting” P

Brg
Perl
Y th
e two operands for floatind
t the operands are

v Lk
e 7090 computer agsumes th3
that 1S«

-

n
n .
float ormalized" form
in
9=poi
in
t representation of @ non-zer

Jug
So
that the absolute value of the b



in ¢
he
Tepres
e i .
ntation is less than 1 put not less than

1/2
-point form by @

(Zer $
o
. is represented in floating
€Xpon
ent
and a zero fraction.) After performing

-1 PO
atln - . !
g-point arithmetic operation: the 7090

auto
all .
y adjusts the fraction and the exponent in

the
t & :
o put it back into ”normalized" forme

t00, floating—point

In
mody .
lar arithmetic computers:

th
e
Operand
S haVe be " 5 " N
en normalized in some way -

pOs
Sibl
@ normalizati ' .
Ny jon of the non-z€ro floatlng—p01nt
o
j SO

that

.
might be to

X
Satisfies

(3.2) - ExX-

Where
efined abov

n o
is the integer d
his way would

pro-

Pre
Ssj
ng
a .
floating-point number in t

e
the
maxi i
imum number Of significant digits ©

computer range -

Wit
h keeping
x within the

Ho

We

Ver
¢ We feel that anot

InQd
u
o simpler

ar
= Rl o :
hmetic computers leads t

Poj
ari
2er, thmetic operations-
nuy
ber in th j fer to adj
e form x27 we pre er

Q
XPOnent
hat X

J in such a way t

108



2m—l & lX t< 3

Wher
e
m is -
the positive integer defined by

oo 5

rticular,

(3.22)

the operation

In
addit j
1
o on to simplifying, in pa
flo !
atin )
g-poil - ' .
point multiplication, this form of normal-
d and sub-

e

Yyi
elds reasonably simple floating ad
ed advantadge

tra
ct o
Perati
that ations as well and it has the add
the L
Lrte

ger x can be represented py its residues

proper) sub-

Tespe
c
set t to each of the modnli En.- 8ene (
Of m .
oduli whose m )
®Xpop product exceeds 2 while the
ent .
J 1 .
is carried as @ "residue“ for one (ox more)

of
o
he moduli.,

jyvision algorithms

We
sha
11 now describe how the d

2 can be used to per-

iy

€n
aboy .

ve in Theorems 3.1 and 3-
odular

rations in m

Y Unl
ess stated otherwise:

low;
lng .
will be understood to result in

ined in Theorem 3.1.

eger
o4
‘the quotient as expla

1
xed-Point to Floatil _point conversion:
-point is

to floating

Con=

v
Qrting 5
nu .
mber from fixed-

109
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tially a "normalize” operatione If the fixed-point
Numb :
er v is zero, setting the floating-point number

w23
to zero - that is, settind a=3j=0 -~ completes
the
conversion. Otherwise, W€ obtain from the table of
p OWe
rs of two the non-negative integer P such that

P < v < 2P

and ! .

compare p with the integer M gefined above 1n
(B, ”

22) " L€ P < m, we set u = V'2m p and ] = p—m;

& .

P =m, we set v = v and = 0; and if p > M

we divi -
divide v by P get u equal t

o the result, and

Se ;
R

nt Conversion. I1f

2. Floating-Point to Fixed~Poi

J in normalized floating-

J <0 for the number u°2
Point form, we convert un2j to the fixed-point number
V by dividing u bY 2”j and settingd vy equal to

u: and if

T

he result. 1f 3 y set v =
J >0, we multiply U by 23 to obtain V. checking
we wishe

fo . '
r multiplicative overflow if

3. Floating-Point Magnitude Comparison.

ol . ;

he distinct normalized floatingwp01nt number s
i k

.9) and b = gl (3.23)

Ggiven

a= 4



111

etermj
in :
e the signs of a and p from the signs of

u
and 5
! IeSpectivel i i i
Yo which are obtalned in turn from

the
twO .
~51d ,
ed mixed-radix coefficients of u and V. 1

a
and
b n .
ave different signs, whichever of a and b

is
POSi ;
tive is obviousl
y the greater- If, @ and b have
and conclude that,

the
Same g j
sign, we compare Jj and k

if a and

Bihe .
zed, a 5. b

b

a
a
nd b are both normali
dAre
he ’
ang gative and j <k ©OF ;f a and b are positive
» and vice versa. i i k, then @ > Db if

and
°nly if
' m > Va

ction. given

4
\;\’F“l‘ v s
ocating-Point Addition and suptra
defined

a and b

th
e
alj
abov lzed floating—point numbers
e .
LR ;
Poj (3.23), we shall calculate the normalized floating-
nt
n .
e R o - g ¢ be D8R differ-

c = t-2
a gimilar

can be obtained in

€n
Ce
of tp
e
numbers a and b
irstv we com-

~b. F

whereé
(3.22),

Anpey. -
R by adding a and b's
-
thep th ~ lj ) k,’ If | & >
e : € smaller of Ia l and Ib' i
®ating-point representatio? o
AR -

di
ti
on
1ls
e, W BRE Rarmed. Hence., W€ 5imply set
e Set & >k
- j £ 3K

<k

and

j w and 1=3 *
whe

n ) ) we set

r 3. Ootherwiseér £ &M



il=52

w =u + v~2r and h = 3j 1if Jj <k; we set w = u-2r + v

and h =%k if j > k; and we set w =u + v and
h=3j=%k if j = k. Then, w-2h is the floating-point
sum of a and b, but since w=2h is not normalized,
we must now perform a "normalization" operation to obtain
c. From the table of powers of two we obtain the integer
p such that

2p'l<|x|<2p (3.24)
and we compare p with the integer m defined in (3.22).

w*2p-m

If p >m, we set t = and i =h +p -m; if

p=m, we set t =w and i =h; and if p <m, we set

t equal to the quotient obtained by dividing w by

B and set 1 = h + p - M.

5. Floating-Point Multiplication. Given the normal-
ized floating-point numbers a and b as in (3.133),
we calculate their product ¢ = t°2i as follows. We
multiply u and v to obtain w. If w = 0, we set
t = i = 0; otherwise, we find the integer p satisfying
(3.23) and set t equal to the quotient of w and

2P ana i = i +k +p - m.



Given the normalized

6. Floating-Point Division.
floating-point numbers a and b as in (3.23), we
shall find the normalized floating-point number c = t~2i

=1=0. 1If

such that ¢ = a/b. If a = 0, we set t

b = 0, we do not proceed with the division, but rather

such as turning on an error

we give some indication
that division by zero was

indicator in the computer

attempted. Otherwise, we know that u and v are both
non-zero and that their absolute values are greater than
is the

m
2 where m

4

R but less than or equal to

2
Hence, we may divide

u

integer satisfying (3.22).

as prescribed in Theorem 3.2, taking the
is the result of

5 IS Lo

by v
-m+l., If w

that theorem equal to
i=0 if w =0, and if

that division, we set t

w # 0, we obtain from the table of powers of two an

integer r such that

If r £#p - that is, .r <p - Wwe set t = 2w and
i=jj~-k~m; i1f r = p, We set t = w and
i=3-%k-m+1.

113
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Th

Theorem:se procedures show how the division algorithms of
definiti Bl @AE S8 . ISERE combined with a suitable
compcheron ef "normalization" to provide modular arithmetic
S with the capability of per forming floating-point
"normalization”

arit
hmet 5
tic o
perations. Because of the
ations except

used'
e in theseé oper

no X
Wwh overflow is possibl
fre
a ver
y large floating-point number 1S5 converted to

he floating-point arith-

£i
Xeq
~Point
. Clearly, however,t
slower and

Met
ilc
Oper .
a 3 .
tions described above are somewhat

o
Ore
Com
Plicated than their fixed

the
fSame
c
an be said of the floating

At least,

-point operations in

floating~point

conventu
arithm lonal digital computers.
Mot ©tic operations are now possible¢ in modular arith-
nowlezomputers’ whereas, to the pest of the author 's
khown ?e, they had not even been attempted with previously
division methods. (T0 j1lustrate the working® of

f1
Oat.u
lng~
point arithmetic oper@

Co,
mputers
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that the division algorithms given above in Theorems 3.1

and 3.2 decrease the error in approximating the quotient

by a factor of two in each "iteration", we shall see in

Chapter V that, in practice, these procedures usually

converge much faster than that. In the meantime, we
shall devote our attention to showing how these division

procedures can be modified to approximate the square roots

of integers in residue number systems.



CHAPTER IV

SQUARE ROOTS

culations in Digital Computers.

A. Square Root cal

Since the arithmetic operations executable by digital compu-

ters are restricted to the nrational" operations, add,

subtract, multiply, and divide, irrational guantities such
as square roots must be approximated in these computers

through the use of only rational operations. The most common

method used for calculating an approximation to the square

|

| root of a positive number in digital computers is the

| Newton-Raphson iteration. For a positive number x, this
iterative method yields a sequence eh approximations '

as follows: from

to the positive square root y of X

the next approximation

any approximation Y. to Y.
yi+l is calculated by
= L + # (4al)

If the first approximation Y, is any positive number,

then it can be shown that the sequence Y, converges to

116
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y
and
that
the
convergence, in general, is rather rapid

(Se
debrand [12], pp. 447-44
, pp. 447-448.)

In
mOdul
ar ar 4 .
Square ithmetic computers: however: calculating
oots b
t
y the NeWtOn—Raphson method presents some

gion is required

prob
le
ms
I ’ pri s
in each marily becauseé at least one divi
m iterat "
10 "
n. If we rewrite (4.1) in the equi-

val
ent

2
(y. + x)
a Vi = 2y, (4.2)
hq ; 2y . ' ;
1f we T I 1
divisio he algoritm of Theorem 3,1 to perform the
n b
£ Yy 2y, . .
¥y Yy then we obtailn only the nearest integer
i+1’ Which rai
ises the unpleasant question of how the
ed by

Co
Nye
Tge
nce of
the Newton-Raphson method is affect
nd—off errors- Further-

Toducin
g theSe rath .
er 51zeable rou

ble overflow in calcu-

o
Te
’ we
muSt
also worry about possi

la
Ei
hg

the

n

try Al umerator of the fraction in

avoid ,

this overflow bY using (4.1),

a
9re
\ at
|near er error in Y
est i+l
int
eger" e s i
ger" division needed in
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(4.1} s (4.2}, Dot then we are forced to calculate the suc-

Ceeding vy.'s in floating-point arithmetic, which results in
i
a rather excessive amount of computation just to approximate

A square root in a modular arithmetic computer.

Thus, we are led to seek a method by which we can approxi-
Mate square roots in modular arithmetic computers without using
division. In the method we shall give below, we shall avoid
division simply by modifying the division algorithm-itself to
e can calculate directly the

vield a new algorithm by which w

Successive approximations to a square roct.

ue Number Systems.

B. A Square Root Algorithm for Resid

gexr and let Y be its positive

let x pe any positive inte
Square root. We shall now describe«@wpmocedure'w&ereby we
=an obtain an approximation to y in the feorm z-27, where
is an integer in the residue number system and J is eith-
©r zero or a negative integer- If j = 0, our procedure will
Parallel the division procedure of Theorem 3.1 and will yield
the nearest integer to Y. and if j < 0, our proceduze'W1ll
be more like the division procedure of Theorem 3.2 in that it
Will yield a closer approximation to y than the nearest

LT teger i
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As in both of the division procedures given in Theorems

3.1 and 3.2, we begin our square root approximation algorithm

by using the stored table of powers of two to determine the

non-negative integer P such that

gl zeig 85, (4.3)

From this definition of P it follows that

2(p-l)/z & o <2p/2 (4.4)

so that, since one of the numbers (p-1)/2 and p/2 must

29 a5 our first approximation

be an integer, we pick 2z, =

q = [gﬂ, (4.5)

Following the

to vy, where

the largest integer not exceeding pra.

L in Theorem 3.1, we now

pattern used to calculate the e:.L s

define g, by

From this definition and from the definition of 2z, it

2
7

follows that
;p—l)/z)

2 p
2"-°'l - (2p/2) < g4 < 27 - (2%

so that
|90] € S

initi i em 342,
Recalling now the definition of Wy in Theor
\ a-Jj
' ' th z, = 2
we replace our first approxlmatlon Zq to y Wil 1
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where 4 i an integer satisfying

g ] »(p-n-1}/2. (4.6)

(As before, we define n to be the positive integer such

that

P gyae gt (4.7)

Where u is the product of the moduli in the residue number
System.) Replacing also g, by 9, where I is defined

by
=27 2
gl= 2 o X —zl 7
wWe have
=24 p-lzn—p+l - on M/2
g, =2 9| €2 <M/
and
o g% = g Wb & B i,
Zl S

r than one. Hence, both zl

Since n is clearly greate
hin the range of our residue number

and g, are integers wit
System.

gt t z '2j is ex-
= = X2 so tha 1
Lf gl = 0, then zl
# 0, we
the square root of x. If 9, # W

actly equal to Y.
0,1 L G Since

of gy 18 i

Note that the differential dg;
b-
duce g to zero to o
we ghould correct g, b¥ dg, to redu 1
n to Yy, we€ should have

tain the desired approximatio

dgl L "gl
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or equivalently,
dz., =

which is essentially how Y, is obtained from Yy in the

Newton-Raphson iteration. Here, however, we avoid the divi-

by approximating 2z, with 2°77, where

il
ok [P‘;—] ' (4.8)

is the non-negative

sion by 221

by approximating ]gll with 2tl, where t;

integer satisfying
t1-1 t
2 ey & £

and by approximating dz; with
2t1/2.25—j i 2tl+j—s-l.
Thus, we define our second approximation z, to y by
.2tl+j-s_1'

] -+ i
z, 2y (sign gl)

As for Theorems 3.1 and 3.2, repeating this reason-
ing for Z, Zy and so forth leads to an iterative procedure,
h is given in Figure III. We now sum-

a "flow chart" of whic

marize this procedure in

uare Root Algorithm) - Let X be a posi-

Theorem 4.1 (59

residue number system in which all integers

tive integer in a

are between -M/2 and +M/2. Let p, 9, 1, Do and s be

(4.3), (4.5), (4.6),

pe the integer defined as follows:

Let z L&

(4.7), and (4.8),

integers satisfying

respectively.




Figure III - Square Root Algorithm

( seen )
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2q_J and calculate 91 by

=27 2

= 2 . - . .

95 X z, (4.9)
for any i set 2 = &-

1f g, =0

2. If g, # O et t; ke the non-negative integer

ek & lgi| & 2, (4.10)
i TR J. calculate 2;.1 from

Zigr = %17 (sign gi)'zti+j_s—l (4.11)
and return to step 1 to calculate 9Ji41°

set 2 = Z e
o il

3, TE &, €&~y
== i

4. g £, B8 = gat o' # Ay + (sign g.)-1 and
== i e 1 i ==

-2 2
calculate ¢' = 7l x - 2" - i Igw < F;.y
= i
therwise., gel . 2 = Ty~

set Z T z's O

Then =z catisfies
2], x - z2| & 1427

2
that i . . j .
that 1s, 2 is the nearest integer to y-2-~, where y Ais
the positive square root of X-
the

proof: The proof of this theorem is by induction,
idea being to show that t; decreases as ; increases or
else that an exact approximation z; to the gsquare root 1S
obtained (in which case t;i1 is not defined) - TIn order
1so necessary to establish upper and

to show this, it is a



lower bounds on the integers z, . In particular, our in-
duction hypotheses are
<t ,<p -1 (4.12)
and
g~dgE=t g z; £ 27358, (4.13)
where s is defined by (4.8). Since we have already

shown in the remarks preceding the theorem that

EAR

and since, by definition,

2, = D z, = 2792

according as p 1S odd or even, it follows immediately

that the induction hypotheses are satisfied when e 1,

Let us now assume that these hypotheses are satisfied when

124

i is some integer k »1 and let us show that this implies

that (4.12) and (4.13) hold for 1i = k+l.

We begin by obtaining bounds on 2_jy - 2y First,
from (4.4), (4.8), and (4.13), we have
,=3,8 o =3 (PHL/2 | =i (e-1)/2 , (p-1) /2,
= 2~j2(p—l)/2 + 2_.].23_l < 2—jy + Zy
< 273282 4 273p% = I pP/2 4 5 PP/
< 2_j2(p+3)/2 2 2-j25+l’

when p is odd; and similarly,
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-4 | -j.s- -3
3, (p=1)/2 | 5=3p8-1 ¢ 273y 2,
2—3[2P/2 n 2p/2]

= 2
,-15 (pt2)/2 _ ,=3p8%1

even. Hence, we have

s -] -j, s+l

when p is
2732

(4.10), it follows that

From this, (4.9), and
tk =27 P 3 -7 \ -
2 > (2 X z, (2 "y # Zk) ,2 y - zk,
_j s’ _j
> 2792%.]27%y - zk]

and that

tx-1 -2 _ 2 - e S |p=3
2 £ 8TE -, (27 7y + 2) '2 y - zkl
-j, s+l -3
<272 1279y - Zk,'
Hence, we have
tr+j-s
il (4.15)

2tk+3's-2 <277y - z, < 2

s necessary to split our induction

At this point it i
In the first of these cases - Case

proof into two casés.

to be an odd integer, and in the

A - we shall assumeé P
Case B - Wweé shall assume P to be even.

Second case -
is less than the

In Case A we shall show first that Zk+l

upper bound given in (4.13) and then that t, 4 is less
and 2z, are on "opposite” sides

th
an tk whenever 2z, .4
A, we shall show that tk+l < tk

of 2_Jy. Next in Case
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whe =]
never z, .4 and "z, are on the same side of 27y,
whi :

ich will complete the proof of (4.12) for i = k+l.

ishing a slightly stronger result than

Fi
inally, by establ
e the induction for

i<k, we shall complet

(4.12) For
C
ase A Dby proving that 2, .4 is greater than the lower

b .
ound in (4.13). In Case B, our proof will be essen-
y

lally the same as in Case A, pbut because the different

yields gifferent bounds on 2z,

v
alue of s in Case B

(4.13), it will be necessary

1 ; ;
n our induction hypothesis

ps of the proof som In parti-

ewhat.

t

O rearrange the ste
o ] ;
ular, we shall show first 1n Case B that Zk+l is grea-

(4.13) and then we shall

t ;
er than the lower bound given in
z, > 2_jy.

establish (4.12) for the situation in which 2z,
(4.12) holds for i = k+1 when-

Next, we shall show that
ever gz and & are both less than Z’jy and then, b
k k+1 Y

sult than (4.12)

ghtly gtronger re

is less than the upper

again establishing a sli

fOr 1

i < k, we shall show that Zy .1
bound given in (4.13) . Finally, W€ shall complete the in-
duction for Case B DY showing that (4.12) also holds

we proceed now with

when gz -7
e R € ¥ <kl
g 53
Case A. If 2y 2J >y, then 9y g D
F4=g=1 =3
pERFI=E g g B I2

= Z -
(4.13). And if

k

Pr+1
ction hypothesis

by (4.11) and the indu



(4.11) we have
Bl i (P31 /2

g Q% % y, then by (4.4) and

k
+j—-8~ A
2tk et < 2 Jy +

T i
< 2—j2p/2 £ 2—2j2j+(p—5)/2
- 2—j2(p-5)/2.(25/2 f 1) < ,=35(p-5)/2 (53
_ i) /2 o 78, (4.16)
Hence, =z < 2—j28, which shows that the upper bound in

k+1

(4.13) holds for i = k*l.

Let us now consider what happens when (2_jy = Zk)
and (2—jy = Zk+l) have different signs = that is, when
zk'2j and zk+l-2J are on opposite sides of Y. It then

follows from (4.11)
+j-s-1 -3
Jtkti=s-l > |27y - 2|

that

so that, by (4.15) , we have
] tr+j-s-1 -3
-J k*J = 1273y -
< 2tk+j—S—l B 2tk+j—s—2

£ .4+ j-5-2
_ otk"J :

Henc i —j2s it follows that
e, since Z, .9 < 2 '

S5
o2 7Y 7 Pl

o -]
= (2 yt %4
e (4.17)

lgk+1|
- s+ ty+j-s-2

< 2772° 1.p%"] =
Therefore, 1if zk.zj and zk+l-2J are on opposite gides

< L T L.

of v, then it follows that tk+l € by
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A i et
L
P o s e =T E
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and (2_j =
Y = Zypr)

On i =
the other hand, if (2 JY - Zk)
(4.15) we have

have
t .
he same sign, then by (4.11) and
5=J, - B | tyt+j-s-1 i
4 Zk+l| IZ y = 2y}~ 2
< 2tk+j—s B 2tk+j—s—l
_ 2tk+j—s—l-
Henc
o o
. Ppen whis mnd from Zyuy &2 j,8 it follows that

_.j "
)e|2 7Y T kel

o -]
(2 7Y+ il
t

2k, (4.18)

! 2—jzs+l_2tk+j—s—l :
J

< tk z. 22

ng+ﬂ

It
nNow foll v ]
ows t J
hat tk 1 whenever k and 2 <2
coupling this with the result

Are
on the same side of Y-
(4.12)

of th
€ preceding paragraph completes the proof that

is .
satisfied for i = ktl.

e shown for Case A is that

Now all that remains to b

the

lower bound in (4.13) holds for i = k+l. In order
to

s )
how this we first note that if we have t. = t, for
i i+l i
i < k, then it follows from (4.11) that
ti+j-s

= + i .2

Zi42 z; (sign gi)

) it follows that 2, and 2. (and
i+2 i

27Jy, so that by

But
then by (4.15
(4.17)

z
posite gides of

i+l) are on oOp

W€ have t. g &, 42 Hence, we have established a alight-
i+2 N i ? '

(4.12) : namely . that for any posi-

ly
Stronger result than

jesheked
ve integer i < kv
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£.5 % Bl Bl Bpn By = O (4.19)
wh ; .
ere t. ¢ P - 1. It is this stronger form of (4.12)
od 4 g-
hat enables us to Prove that 2Z,.q 2 2 12° & and thus com-
plete the induction.
If =z > Z - that is Z -2j L\ yo T then by th
kel © 7k P % e
induction hypothesis (4.13) we have
e,
Zk+l>zk>2 . ]

But if Z .
k+1 < Zk’ then it follows from (4.11) that Z

greater than 2 Jy. by definition,

since,

must have been
t integer

=4 , there must exist 2@ larges

Zy is less than o L
m <k such that 2, < 3"y, Then, by (4.17) we have
t -
tm+l < hr
so that
_ tk+j—S—l
zk+l = zk 2
= z * 2tm+3'5'1 | 2tm+l +j-s=-1 _
m
N 2tk+j—s—l
L T
> z 2tm+j s-1 _ 2tm j-s-1 _ .
m m
Thig
ollows from the fact that tm+l’ tm+2""' tk-l must
if two

be a strictly decreasing sequence, since otherwise,
were equal, some 2 woyld be less than

of these ¢t,'®
o I3
14 con=

_.j ' .
2 "y, by (4.19), for m <h £ K gince this wou
it follows immediately from

tradict the definition of m,
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the j ,
e induction hypothesis applied to 2 that
m
-j,s-1
Zyp i1 2 2, > 2 "2 .
(4.13) for i = k+1 and ends

Th i
is completes the proof of

Our :
sonsideration of Cese &

.29 <y, then

Cas
Case B. If 2,
-9, 8=l
2
2 > %y # .
b ) i
Y the induction hypothesis (4.13) . And if Zk-2j > Vo
then
tk+j—(P+2)/2
7 = Z - 2
k+1 k - 2) /2
-] ~2j, txti-(P*
s 27y - 2
: " _4) /2
L gy (P 1372 _ 3P Y72
z'jz(p_z)/z = 2_325—1.
g in (4.13) holds for 1 = k+1.

He
Nce, the lower boun

. 4
gsume momentarlly that 2y 2J >y, so that

tion hypothe (4.13) . Then

Let us now a
sis

Z —l
kt] <z £2 J5% py the induc
if : . BB follows from (4.11)
Zk+l'2:J is also greater than Y
an
d (4.15) that t +‘ l
#J ktJ-s-
2™ | = [27y - % 2
L E Zk+l j t +j—s—l
-s-1

tyt]
5tk

!
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Hence, we have |
' -1
= w2 - Z
ng+l, = (27 ) : Y7 Tkl
- +j-s-
< 2 jzs+l_2tk |
2tk (4.20)
-3 then t £ t -
Therefore, if 2, > Zx4l 7 e & K+l S Tk
j 2

8 j then it follows from
> Y > Zga1 "

Similarly, if zk-2

(4.11) and (4.15) that .
,tti-s-1 > |27 - zk|

and that ' —‘
g g=grl o ,2 Jy - Z
27y - Zk+l‘ <HE . 2k
ty+j-s-1 tgt+]-s-
2|3 - 2
£+ j-5-2
= pokvd .
From this we have .
"'j |2 Ty - 2
lg l, = 8 ¥ T Zk+]_) k+1
k+ 2_j25+l 2tk+j—s—2
< .
Stk-L (4.21)
j t, - 1.
= then t €
Hence, if 2y > 2 jy P TS k+1
o Then
i than 2 7Y /
e that 2 is less
Now let us assum k
= have :
il % s R ; tk+J—s—l
k ktl '2-Jy -z = B
— 1 3 k
; JY ! Zk+l' tr+9-s-1
< 2k"J

and
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3 ) 1
(277y + Z 02 Y T ke

1l

[gk+ll
< 2—jzs+l_2tk+j—s—l

ok,

By combining this result with (4,20), 1t follows that

are on the same side

t whenever zk and zk+l

t
k+1‘< %
e 2—jy- However, as pefore in Case A, if this happens

i < k, then it follows

and if t, - ¢+ for some integer

' txtj-s
= z. + (sign , Ji#2 "
Zi+2 i (Big gl

it follows that and =z. are on

i+2 1
also holds for

Hence, by (4.15), z

opposite sides of 27Jy so that (4.19)
-3, and i<k

Case B whenever Z; w g

let m be the largest in-

Now if 2z, < 2_Jy < Zypy1’

k
_Jy. (We kno

w that such an m €exX-

teger such that Zg > 2

’jy by dJefinition.) = Toel, by (4.21)

ists since z, > 2

we have
t -1
Bl ™ o
SO that
ty+j-s-1
z = 2z, * 2 K
k+l k ' ) —_
= z - Stmtd=s=l 4 2 m+l *J 3
m .
ptrtI-s=t, (4.22)
! must be a gtrictly decreasing
* k-1

Since
Cntl” Ent2’
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hat m<h <k

Sequ
quence - otherwise for some h such t
we _a
would have 2z, > 2 Jy, contradicting the definition of
m ’
. it fol ; ,
ollows from (4.22) that Zp41 < 2y which gives
._j s
i Zp1 S 2 2
Y the induction hypothesis (4.13) applied to  Zny- Thus,
as 1
in (4.21) we have
-7 _ tk+j—S—2
12 vy Zyyl < 2
and
-j,8*1. tk+j—s-2 N tk—l
£ 2 72 2 = & 2
lgk+1|
Ther
efore, tk+l & tk _ 1 whenever 2y and  Zy41 are on
opposite sides of 2'jy, This proves (4.12) -~ and also
4,19y = for CAHS B.
z is clearly less than 2—32S when-

k+1
-J and since we

Finally, since€
never %y < Zyppl < 2 ¥

e < zk or whe
-

have already shown in (4.22) that zk+l< 2 I2 whenever
(4.13)

it follows that

the upper pound in

z |
k< 2 7Y < Zpq1’
holds for i = k+l/ which completes the proof for Case B-
induction principle it follows that (4 12) and
i since

By the
sitive integer

or every po
and B, we

(4.13) are satisfied i
poth cases

(4.19) il o)

A

we proved the result
have actually shown that the zi's converge to Y with a
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gt a factor of two for every

re "
ase in the error MY at lea
then it follows

two "nag
iterations." Finally, if t < s=Js
fr
om (4.15) that
- .+ - -1
e Zi} < 2ti+3 8 g3 = 172+
But i
1f t, = g=j, then we have
-5
273y -zl <t

sired rgsult 2 by at most

SO
that z, giffers from the de
and 9’

1.
The final comparison petween i

as prescribed

hat whichever of zi

assures us t

o o1
step 4 of the pheorem
1 value assigned to 2o

ig the fina

and gz ;
is closer to Y
e root of an

g the squar

proximatin
ﬂjy will always

Not
e that since we 3re ap

e petweel 5z and 2

in
teger, the gifferenc
1/2, and hence z-2j will differ

b .
e strictly less than
j'l. This comple

tes the proof of

i
om y by lesS than 2

Theorem 4.1-
*x * %

As in the division algorithm of Theorem 3.2, the
m Lol 1AY be decreased in guccessive

in Theore
for every

:pOnent 3
J
i ease

1
" gi+1

the (i+l)st
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bl
,573 py (4.13), it follows

VAN

H
owever, since Z;
L

that
25 1< g M2 -
- whenever

that i : a8
t is, 2z, is within the computel range

j is not less than
(4.24)

- T
min

s = No
4.1 to obtain the nearest

o i AT Theorem

Thus, we set 3

integer to the positive square square root of & positive

integer or we may make j negative and obtain a more
rease J to

on to the r0O 1f we dec

ac ) ,
curate approximatl
tion to the root

3min' we obtain the most accurate approxima
that is consistent with keepind the integer 7z in Theorem
e of the residue number system. And

4 . .
.1 within the rand
t satisfies

j we pge = @8 long as 1
t the error
s than 23-L,

regardless of the
Theorem sl guarantees tha

0 > 4 .

2z J : -
>Jmin

ation to the root is les

in the final approxim

As an example of usind this procedure to obtain an
uare root of an integer. let us now
J  to the

approximation to 2 54
ze2

ccugate app

of &

roximation

calculate the most a
consistent with

positive square root ¥ - 627,323
e number gystem

he range ©

e O % 13,

keeping 2z within t £ the residu
whose moduli are 9, 34 5s 17, and 19- From



(4.3

) and (4.7). respectively, we have
p = 20 and n = 22,
and (4.24), respectively,

)
nd by (4.5), (4.6), (4-8)

we have
p = 10, 35 = =L, s = 10, and e wl 2,
i min
hen, our fi: ; . =] ’
irst approx1matlon to 2 7Y is
g T ,11 = 2048
1
we have

and
, calculating 9; from (4.9):

gl = 220627,323 - (2048)2 = al,685,012.
Py 5
om il apd, (@al0R, $ha25%e and (4.11), we obtain
9
t, = = = 4"'2=l‘.,
1 21, W 0 and 2, 2048 536
Th P
e results of the calculations for the remaining

it :
erations are given in Table V.

Note that in the fourth iteration of thi

wehaVe
=l4=s-’j.

ty

H
Owever, since

4 e > =12 = Jpin

at this point, W€ do not proceed with steP &
by W4 = 4,

so tha

4. .
1. For, when we decreasé j

eed an inte

w_t - '
272%™ o is ind ger, t we may cont1l
Moreover s again in the geventh

wi J
ith a fifth iteratione

of Theorem

we find that
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s calculation,
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Table V =

Application of Theorem 4.1l: Sample Square Root Calculation
X = 627,323 y = 792.,0372465...
‘ 3 3,2
. :‘2

J 94 ti 23 2 (21 )
£ ¥ 2,048 -1 -1,685,012 21 1024.0000000 1,048,576.0000
2 1,536 -1 149,996 18 768.0000000 589,824.,0000
3 6,400 -3 -811,328 20 800.0000000 640,000.0000
4 12872 -4 15,104 14 792.0000000 627,264.0000
5 202,760 -8 622,528 20 792.0312500 627,313.5009 .
6 405,524 -9 -754,064 20 792,0390625 627,325.8765. .4
i 811,046 -10 227,932 18 792.0371093.: - 627,322.7826, .-

3,244,185 -12 =-2,841,157 == 792,0373535% ¢ e 627,323:1693¢5 s

,3-1 _ =13 _

= 0.0001221 %4 Error = 0.0001070...
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iteration we have

but since

we proceed as in step 4 of Theorem 4.1 to calculate

z' = 3,244,185. Since
|g| = 2,841,157 < 3,646,912 = 22W7|g7b,
we set z = z' to obtain the final approximation
ge2d = 3. 244,185:2 1% = 792.0373535...

which differs from Y = 792.0372465... by less than

2371 = 2~13 = o0.0001221....
Thus, when J is being decreased from iteration to
arisons made between ti

should be replaced

iteration, the comp and s = J

in steps 2, 3, and 4 of Theorem 4.1
by comparisons between £ +w' and. s = Js where w'
is the value of J in the ith iteration minus the value
sult.

of 4§ desired in the final re

As the above example suggests, the square root al-

1 often yields successive approximations

gorithm of Theorem 4.

guare root y at a rate considerably

converging to the s

e minumum of one binary "pit" of accuracy

faster than th

tions established in And as we

per two itera the proof.
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Shall see in the next chapter, this algorithm does indeed
Produce in practice a sequence of approximations converging
at a rate several times faster than is predicted in the proof.
Moreover, it is interesting to note that an estimate of the
Number of operations necessary in using floating-point arith-

Metic in conjunction with the Newton-Raphson method in a mod-
Ular arithmetic computer to calculate an approximation to the

SQuare root of 627,323 with the same accuracy as obtained in

that the Newton-Raphson method re-

the above example indicates
ch computational effort as the

Quires nearly three times as mu

above algorithm.

a Residue Number System.

C. Floating-Point Operations o)

can be utilized to cal-

hm of Theorem 4.1

Clearly, the algorit
t of a positive

Culate approximations to the positive square roo
oint form in a modular arithmetic

Rumber given in floating-p
X = u-2k

if the positive number

Computer, In particular,
oating—point form specified in

iS given in the normalized fl
), then an approximation to

109

the preceding chapter (pp. 108~
If k

culated as follows:

the Square root of x may pe cal
is even, set

F % L] k
18 0dd, set v = 2u and h = (k-1)/2; if
Ve roximation 2z to
V=14 and h = k/2. Next, calculate an app
and J = m/2;,

the ; 4.1
he Square root of V using Theorem



where m is the integer satisfying (3.22). Then y = 2.2
where i = j + h, is the desired floating-point approximation

to the positive square root of X.

To illustrate the use of this procedure in approximating

n floating-point form as well the

a square root of a number i’

floating—point operations described

use of some of the other
in the preceding chapter (pp- 109-113), let us now show how
e used to calculate the greater root of

these operations can b

2
x° - 5x - 7

= 0
in a residue number system whose moduli are 2, 3, 5, 7, 1L;
m = 10, soO that the

(3.22) we have

13, 17, and 19. From

normalized floating-point representations of the coefficients

on are

in the above equati
7

p = -5= -640°2" ',

a=1¢= 1024-2'10,

and ¢c = -717 -896«2_7

nt arithmetic operations to evaluate

i -b +‘/b2 - 4ac
= 2a

Using floating-poi

v

we first calculate 2a. since the constant "two" in nor-
malized floating-point form 1S 1024-2—9 we multiply
LO24 = -8 -10 . . . p

2 by 1024-2 as outlined 1n the description of
floating—point‘multiplication in the preceding chapter (p.112) .
7 which, when normalized, gives

We obtain 1,048,576-2’
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o e AQARD ST

In a similar manner we calculate
2¢c = —917,504-2'l6 = -896-2‘6,

(2a) « (2¢) = 4ac = 917,504-2_’14 . B9 0"

and
p? = 409,600-2'14 = 800-2‘5
as outlined in the preceding

from b2

Next, we subtract 4ac
traction (pp. 1ll-

chapter under floating-point addition and sub

112) and obtain

b2 - 4dac = 1606 = sgmea™
2 .
e square root of p° - 4ac as outlined above

Approximating th
gives
[
-7

\/bz - dac = 932-2

from this, W€ obtain

-b + J@? - 4ac = 15722
as outlined in the

Subtracting b
7 =
= 786-2 6

Finally, dividing this result by 2a
preceding chapter (p- 113), we obtain
X = 786-2'7 - 6.140625,
puted approximation to the solution
X = é‘igégz = 6.1400554 4 ¢«

lar arithmetic com

which is our com

puters can be

ave shown how modu

tiply. divide,
-point arithmetic.

Thus , we h
and approximate square

used to add, subtract, mul
roots in either fixed-point OT floating
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While the square root approximation procedure given in

Theorem 4.1 above is somewhat complicated and while it may

y in some instances, the results of

converge rather slowl
extensive trial calculations using this procedure indicate
that i1t converges sufficiently rapidly to be more efficient

- on the average - than using floating-point arithmetic

re accurate than using

and the Newton-Raphson method and mo
-Raphson method 1in

~-point operations with the Newton

fixed
To examine in more detail

modular arithmetic computers.
avior of this square root algorithm, let

the practical beh
hose trial

us now turn our attention to the results of -t

calculations.



CHAPTER V

COMPUTER SIMULATION

gimulation Programs . In order to obtain a

A.

better idea about how the division and square root

procedures of Theorems 3.2 and 4.1, respectively,

two simulation programs

might behave in practice,
were written to perform those procedures on the IBM
7090 computer. Under the control of the input data,
these programs per form ntypical” divisions and square
root approximations, record the amount of computation
required for each, and check the accuracy of each
Through the useé of these pro-

approximation obtained.

grams, it 1is possible to compute geveral thousand
quotients and square roots 1in a rather short time, SO
that detailed information about the practical be-
havior of the division and square root procedures can
be obtained without resorting to hours of laborious

hand ealculations. For simplicity in programming,
most of the calculations in both the division and the
square root simulation programs are performed in

143



normal 7090 (floating—point) binary arithmetic. The

simulation programs use residue arithmetic only when

the error estimates fi and 95 defined respectively

are to be calculated. gince

by (3.16) and (4.11)

the special truncation and overflow properties of

residue number systems are necessary to obtain the
correct values for these quantities. To calculate fi

mber systems, the

and g, in the specified residue nu
simulation programs use special subroutines, Other
subroutines are also used to simulate the use of the

stored table of powers of two.

The division simulation program, written partly
in FORTRAN II and partly in FAP, accepts as input
data the moduli to be used and the number of divisions
to be performed. For each division, it obtains a di-
vidend and divisor by using random digits ¢from a
number" generating subroutine to give the number of
digits ingthe dividend, the number of digits in the
divisor, then the dividend itself, and finally the
divisor itself. (8ince the division procedure be-
haves no differently for positive or negative numbers,
only positive gividends and divisors are used.) Using

"random

144
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Table VI - Division Simulation Program Results

Moduli are T

11 13 23 29 31
M = 20,697,677 M/2 = 10,348,838 n = 23
Dividend Divisor Quotient J
2,993,174 625,186 5,020,219 -20 = 4.78765392
502,614 6,759 4,873,400 -l6 = 74.36218262
5 40,290 4,263,381 -35 = 0.00012407
2 92 5,934,180 -28 = 0.02210654
- 855,024 5,157,832 -40 = 0.00000469
7,786,191 3 5,190,794 -1 = 2,585,397,
835,659 171 5,004,180 =10 = 4,886.89453125
846 20,079 5,655,072 =27 = 0.04213357
675,797 59 5,864,543 - 9 = 11,454.18554687
49,722 13 7,833,127 -11 = 3,824.76904297
48,827 424 7,546,996 -16 = 115.15802002
6 25 8,053,064 =25 = 0.24000001
9,176 13 5,782,292 -13 = 705.84619141
93,846 69,368 5,674,355 =22 = 1.35287166
72,946 7,091,970 5,522,101 -29 = 0.01028571
Average number of bits per iteration = 2.836 - 1 exact

R
» 247 o
§ 35 o8
~ < @) g é’u
~ A O &
G By
§ fy 554
N Q
10 24 2.400
10 26 2.600
8 37 4.625
1L 30 2:727
9 41 4.556
9 Exact
9 24 2.667
8 28 3.500
9 24 2,667
7 24 3.429
10 26 2.600
7 26 3.714
9 24 2.667
12 24 2.000
i3 31 2.385
solution.
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t 1 1" ] .
he "randomly generated gividend and divisor, the program
next begins the division procedure described in Theorem 3.2

and "iterates" with that procedure until it obtains the most
accurate approximation to the gquotient consistent with the
range of the residue number system being used. Finally,
the program checks the accuracy of the approximation ob-
tained and the number of niterations"” which were required
to attain it. After printing out the dividend, the
divisor, the approxima£ion obtained, and the information
ed and the accuracy obtained,

about the iterations requir

o the "random number" sub-

the division program returns t
nd and the divisor for the

routine to calculate the divide
next division. Table vI contains a sample of the output

generated by this simulation program.

The square root simulation program operates in
except that

he division program,

much the same way as t
the "random number” generator is not used. Tnstead,
ched cards the smallest and

the program reads from pun
ose square roots are to be

largest positive numbers wh
t to be used in obtaining

calculated and the incremen
een the smallest and largest

other numbers which are betw
For

o to be calculated.

and whose sgquare roots are als
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Table VII

- Sguare Root Simulation Program Results

5
w o8 J
w (g
Moduli are 8 25 27 29 37 47 g = & " oo
M = 272,327,400 M/2 = 136,163,700 n= 27 g A d © R

2 & e T L8

Number Root j Root 2 =¥ o9

e L'SI q v
136,164 96,732,230 -18 = 369.00417328 136,164.078 11 28 2.545
340,751 76,511,857 -17 = 583.73914337 340,751.387 11 34 3.091
545,338 96,792,703 -17 = 738.46971893 545,337.523 12 29 2.417
749,925 113,505,966 -17 = 865.98179626 749,924.469 11 28 2.545
954,512 128,056,202 -17 = 976.99128723 954,511.969 13 28 2.154
1,159,099 70,557,007 -16 = 1076.61448669 1,159,098.750 13 28 2.154
1,363,686 76,530,948 -16 = 1167.76959228 1,363,685.812 8 29 3.625
1,568,273 82,071,200 -16 = 1252.30712891 1,568,273.141 14 28 2.000
1,772,860 87,260,388 -16 = 1331,48785400 1,772,859.891 13 28 2.154
1,977,447 92,157,855 -16 = 1406.21726990 1,977,447.000 9 29 3.222
2,182,034 96,807,874 -16 = 1477.17092895 2,182,033.937 11 29 2.636
2,386,621 101,244,557 -16 = 1544,86933899 2,386,621.250 10 28 2.800
2,591,208 105,494,789 -1l6 = 1609.72273254 2,591,207.250 12 29 2.417
2,795,795 109,580,335 -16 = 1672.06321716 2,795,795.373 9 27 3.000
3,000,382 113,518,906 -l6 = 1732.16104126 3,000,381.844 13 28 2.154
Average number of bits per iteration = 2.594 = 0 exact solutions.



148

each of these numbers, the program approximates the positive

square root by the procedure described above in Theorem

4.1, "iterating" over and over until the best approximation

to the square root consistent with the range of the number

system is obtained. After checking the accuracy of the

approximation and the number of "iterations" required,

the program prints out the number whose square root

was approximated, the approximation itself, the square

of the approximation (for comparison with the original
number whose root was calculated), and the information
about the accuracy obtained and the iterations required.
Finally the program adds the aforementioned increment

to the number whose root was just approximated and ob-
tains the next number whose square root it is to calculate.

Table VIT contains a sample of the output generated

by this simulation program.

B. Simulation Results. The simulation programs

were run on the IBM 7090 computer at the University

of Maryland's Computer Science Center. Eleven different

sets of moduli, ranging from 2, 3, 5, and®#* 7 to 8,

25, 27, 29, 37, and 47, were tried to determine whether

or not changing the residue number system - that 1is,



has any effect on the behavior

the computer range

of the division and square root procedures. In general

changing the moduli produced no noticeable effect, at

least in the average rates of convergence for the

two procedures. The accuracy of the approximations

increased as the computer range increased; but then, so

did the number of iterations.

In all, over 6400 divisions and 6400 square
The

roots were calculated by the simulation programs.
total computing time was 35-40 minutes. For the

iterations were required

divisions, from 1 to 25

for each approximation, while for the square roots

the number of iterations ranged from 2 to 2L

The accuracy attained in the approximations was,

sions than for the square

in general, higher for the divi
roots. For example, slightly over 10% of the division
approximations were exactly equal to the quotient,
0.33% of the square root} approximations

while only
"non-exact"

Also the accuracy of the

were exact.
ns than

approximations was greater for the divisio
the approximations being often as

for the square roots,
"more accurate" than predicted

great as 20 binary bits

149
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in Theorem 3.2 for division while seldom more than 6

or 7 bits more accurate than predicted in Theorem 4.1

for square roots.

The most significant results obtained from the

simulation programs were that the division and square

on the average, considerably

root procedures converge,

more rapidly than is suggested by the proofs of

Theorems 3.2 and 4.1, respectively. In particular,

for all of the more than 6400 divisions performed,

the average rate of convergence for the division pro-

cedure was 3.021 binary bits of accuracy per iteration,

and for about the same number of square roots, the

square root procedure converged at an average rate o)

For the division program,

2.617 bits per iteration.
ation runs

the rate of convergence obtained in the simul
1 binary bit of

ranged from as low as the minimal
Theorem

accuracy per iteration predicted in the proof of

8.2 bits per iteration. In the

3.2 to as high as
the rate of convergence was

square root simulation,
as low as 1.2 binary bits per iteration and as high

as 12 Dbits.



Clearly, these results from the simulation programs
emphasize the practical value of the division and square
root procedures developed in Theorems 3.2 and 4.1,
Not only do these procedures converge considerably more

rapidly in practice than is proved in the above theorems,
but also the computational effort they require to ob-
tain the approximations is considerably less than for
re root procedure yet devised

any other division or squa

for residue number systems.

5.1



CONCLUSION

ave treated four problems: how to

In this thesis weé h
two numbers, how to detect additive

compare the magnitudes of
and multiplicative overflow, how to divide, and how to
idue number systems. In

approximate square roots in res
inary positional notation

Chapter I, we showed how the ord
e extended to 2 mixed-radix notation

for integers can b
he larger and smaller

which can then be used to determine t
sidue number system. In Chapter IIL,

of two numbers in a Ire€
P determine whether

n techniquée to hel

we used this compariso
or not overflow occurs in addition, sttracﬁion, and multi-
plication in a residue number system. We gave simple
necessary and sufficient conditions for additive overflow
and we presented two methods for detecting multiplicative
r the latter multiplicative overflow detection

overflow. Fo
wers of two,

procedure, we introduced the use of a table of PO
o used in Chapters TII and IV to implement

which we then als
t algo-

ision algorithm and a square roo

respectively a div
In Chapter 111, we

rithm for residue number systems .
ion algorithm can be used to provide

showed how the divis
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g from the nearest integer

approximations to a quotient rangin
sible for the residue

to the most accurate approximation pos
We also showed how the division

number system being used.
algorithm may be applied to provide modular arithmetic com-
ility for performing floating-point

puters with the capab
nted an algo-

In Chapter IV, we prese

arithmetic operations.
oximating

pbe avoided while appr

rithm in which division can
stem, and

n a residue number sY

the square root of a number i
n approx-

pe used to obtain a

we showed how this algorithm can
quare root with any degree of accuracy from
ible

imation to the s
proximation poss

the nearest integer to most accurate ap

for the residue number system used.

we have provided examples illustrating

In each instance,
1 computations and

n are used 1in actua

how the procedures give
ons for these

e necessary computati

we have explained how th
a modular arith-

d conveniently in

can be per forme

procedures
metic computer. Finally, in Chapter V, wé described how a
was programmed to simulate the

conventional digital computer
in a modular

use of the division and sguare root algorithms
g trial calculations. From

arithmetic computer o performin
the sample calculations performed py the cimulation programs.
we found that the convergence of these methods 18 consider-

cated by the proofs of

ably faster in practice than was indi



th ) y

e pertinent theorems 11 Chapters IIT and IV. Thus, we€
ha

ve not only presented solutions to the four problems we
e also shown that theseé solutions

considered, but weé hav

il applications.

a . .
re workable 1n practica

At this point it might be well to ask what problems
related to the use of residue number gystems in digital
computers have we not solved. In addition to the many prob-
lems related to the electronic engineering and design of
re are gtill numerous open

omputers.

modular arithmetic €
just a

of which weé shall mention

theoretical” questions.
t considered

in the preceding chap-

st, we have no
our Or

few, Pir
r or not 2@ table of powers of three oOT e
he table

ters whethe
stituted for t

some other PpoOS
of powers of £wWo which we used in the multiplicative over-
re root Pro-

and the squa

the division,
rties

flow detection,
cedures. Because€ of the reliance on the specific prope
of the powers of two at various critical points in the proofs
related to these€ procedures, it is the author“s opinion that
rs of an integer greater than two would

using a table of powe
ocedures

complicate considerably any extensions of the PT
or entirely gifferent

such extensions.

given. Nevertheless.
methods, pare no doubt possible and would probably convexrge
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faster than the methods given above for division and square
root approximation, Next, it might be inquired whether or
orithm given in Chapter IV can be

not the square root alg
extended to provide approximations to real roots of degree
higher than two O more generally, whether the algorithm
mate real roots of polynomial

xtended to approxi
ely different

can be e
equations. Such extensions, OY methods entir
bviously quite desirable, but

orem 4.1, the

from that given aboveé, are O

f the proof of The

in view of the complexity ©
author feels that finding them would be rather difficult.
number systems

instead of trying to force residue

Finally.,
to perform calculations for problems pased in the real or
er systems, it might be asked whether OT not

rational numb
in number theory -

there exist problems - in particular,
which can be stated directly in terms of residues and
congruences and for which a digital computer using a residue
number system would be petter guited than conventional
digital computers . 1f such problems exist, the author is
he feels that learning @

re of them, but
heory to carry ©
he whole effort

presently unawa
ut such an

sufficient amount of number t
inquiry should be rewarding enough to make t

worthwhile.

185



BIBLIOGRAPHY

ork on the application of residue

Since much of the W
number systems to gigital computers has peen published in
rather cbscure€ journals and reports, the author has attempted
y all references known to him

to include in this pibliograpkt
and pertaining so the use of residue numober systems in digital
e interested in examining some of these

Sompiterd. | o Thes
references, the followind informaticn may be of assistance-
Referenceés (1], [11]. [13]. [17], [19] . and [32]
below are United gtates ALT Force Tecknical Reports which
were submitted under contracts with the Electronic Tech-
nology Laboratory: Aeronautical gystems pivision. united
Wright—Patterson air Force Base ohio
orts

States Air Force.

Qualified requesters may obtail
from the Defensé Documentatlon C

156



157

. o 'I .I
The journal, Stroje Na gpracovénl Informaci, referred to

in References [23], [24], [28], [30], and [31] below, #&s pub-
li&hed by the Laboratof Matematitkych Strojf,,Ceskoslovenskd
Akademie Véd (Laboratory of Mathematical Machines, Czecho-
slovakian Academy of Sciences), Prague, Czechoslovakia. The
title means "Machines for Processing Information." Sbornik
I-VIITI (Volumes 1-8) of this journal are available at the
Library of Congress under call number QA76.S84.

(1] Aiken, H.H. and Semon, W. Advanced Digital-Computer
Logic. ASD Technical Report No. 59-472, Wright-
Patterson Air Force Base, Ohio: Aeronautical
Systems Division, United States Air Force, 1959.

[2] Cheney, P.W. "A Digital Correlator Based On the Resi-
due Number System," IRE Transactions on Electronic
Computers, EC-10 (March, 1961), pp. 63-70.

[3] Dickson, L.E. History of the Theory of Numbers,
Vol. II. New York: Chelsea Publishing Company,

1952..
[4] Eastman, W.L. "Sign Determination in a Modular Number
System, " Proceedings of a Harvard Symposium on

Digital Computers and Their Applications, 1961,
pp. 136-162. Cambridge, Massachusetts: Harvard
University Press, 1962.

[5] Garner, H.L. "Error Checking and the Structure of
Binary Addition." Ph.D. Dissertation. Ann
Arbor, Michigan: University of Michigan, 1958.

(6] . "The Residue Number System," Proceedings of
the Western Joint Computer Conference, 1959,
pp. 143-153.




[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

IRE Trans-

"The Residue Number System, "
EC-8 (June,

Electronic Computers,

©

actions on
1959), pp. 140-147.

Elementary Theory of Numbers. New York:

1954.

Griffin, H.
McGraw-Hill Book Company,

Guffin, R.M. "A Computer For Solving Linear Simul-
taneous Equations Using
IRE Transactions gg,Electronic computers, EC-11

(April, 1962), pp. 164-173.

tion to the

E.M. An Introduc
oxford Uni-

4th ed. London:

Hardy, G.H. and wright,

Theory of Numbers,
versity Press, 1960.

Harvard Computation Laboratory, Harvard University.
ASD Technical

ular Number Systems .

Notes on Mod

Report No. 61~12, Wright-Patterson Air Force

Base, Ohio: Aeronautieal Systems Division,
1961.

United States Air Force,

to Numerical Analysis.
1956.

Hildebrand, F.B. Introduction
-Hill Book Company,

New York: McGraw

Information Systems Laboratory.,
Residue Number Systems‘ggg_ggmpgggggu
cal Report No. 61-483. Wright-Patterso
Base, Ohio: Aeronautical SYS

States Air Force, 1961.

Jacobson, N. Lecturgg‘ig_ébstggggﬂéigebra, vol., I.
van Nostrand Company,

Princeton, New Jersey: D

1951.
Keir, Y.A., Cheney, P.W., and Tannenbaum,
Residue Num

and Overflow Detection in
IRE Transactions _E.Electronic Computers.,

(August, 1962), pp. 501-507.

EC-11

and Shapiro, G. ”Magnitud&PCompari~
w Detection in Modular Arithmetic

Lindamood, G.E.
v (October, 1963),

son and Overflo
Computers,“ SIAM Review,

PP- 342-350.

the Residue Number System, '

158

University of Michigan.
ASD Techni-
n Air Force

tems Division, United

M, "Division
ber Systems,"



[(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

159

Lockheed Missiles and Space Company . Modular Arith-
metic Technques ASD Technical Report No. 62-686.
Wright- _Patterson Air Force Base, Ohio: Aeronautical
Systems Division, United States Air Force, 1962.

Rozenberg, D.P. "An Investigation of the Algebraic
Properties of the Residue Number System." Ph.D.
Dissertation. Ann Arbor, Michigan: University

of Michigan, 1961.

Scope, Incorporated. Computer Applications of Residue
Class Notations. ASD Technical Report No. 61-189.
Wright-Patterson Air Force Base, Ohilo: Aeronautical
Systems Division, United States Air Force, 1961.

Shapiro, G. "Gauss Elimination for Singular Matrices,"
Mathematics of Computation, XVII (October, 1963),
pp. 441-445.

Shapiro, H.S. "Some Notes on Modular Arithmetic and
Parallel Computation," Mathematics of Computation,
XVI (April, 1962), Ppp- 218-222.

s Private communication. May, 1962.
Svoboda, A. "Application of the Korobov Sequence in
Mathematlcal Machlnes,‘ Stroje Na ZEraCOVanl

Inﬁgrmac1, Sbornlk IIT (1955), pp. 61-76 (1956) .

BT “The Rational Number System of Re51dual
Claebes, Stroje Na Zpracovanl Informaci, Sbornik
vV (1957), pp. 9-37.

"The Numerical System of Residual Classes in

Mathematical Machines," Proceedings: Congreso
Internacionale de Automatica, Madrid, 13-18
October 1958, pp. 388-397. Madrid: Instituto

de Electricidad y Automatlca, Consejo Superior
de Investigaciones Cientificas, 1961.

i L "The Numerical System of Residual Classes in
Mathematical Machines," Information Processing:
Proceedings of the International Conference on
Information Processing, Paris, 15-20 April. 1959
pp. 419-422. Paris: UNESCO, 1960.

y



[27]

t28]

[29]

[30]

[31]

[32]

160

"Sign Detection in Nonredundant Residue
IRE Transactions on Electronic

Szabo, N.
494-500.

Number Systems," .
, 1962), pp-.

Computers, EC-11 (August

"Vznlk Kodu A Ciselné Soustavy Zbyt-
o/ ”

Valach, M.
kovych Trld Stroje Na Zpracovani Informaci,
Sbornik III (1955), pp. 211-245 (1956).

"Abbildung der Zahlen und der Arithmetischen
Aktuelle Probleme

Operationen in Restklassen,
Bericht tber das Interna-

im Rechnentechnik:
tionale Mathematiker-Kolloquium, Dresden, 22-27
November 1955, pp. 57-59. Berlin: VEB Deut-
scher Verlag der Wissenschaften, 1957

. '"The Translation of Numbers from the System

of Remainder Classes to a Polyadlc System by
Change of Scale of Period, StrojeAgg,Zpracovéni

(1956), pp. 53-64.

Informac1, Sbornik IV

¢ Stroje

"Operatozove Obvody, "

.and Svoboda, A,
Na Zpracovanl Informac1, Sbornik III ql955),

(1956) .

pp. 247-295
Modular Arith-

Westinghouse Electric Corporation.
I ASD Technical Report

metic Computing Technigques.
No. 63-280., Wright-Patterson Air Force Base, Ohio
Aeronautical Systems Division, United States Air

Force, 1963,



	211022781
	1484631



