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Recent attempts to utilize residue number systems 

in digital computers have raised numerous questions about 

adapting the techniques of numerical analysis to residue 

number systems. Among these questions are the fundamental 

problems of how to compare the magnitudes of two numbers, how 

to detect additive and multiplicative overflow, and how to 

divide in r e sidue number systems. These three problems are 

treated in separate chapters of this thesis and methods are 

developed thereinwhereby magnitude c omparison, overflow 

detection_, , and division can be performe d in residue number 

systems. In an additional chapter, the division method is 

extended to provide an algorithm for the direct approxi-

mation of square roots in residue number systems. Numerous 

examples are provided illustrating the nature of the problems 



considered and showing the use of the solutions presented in 

practical computations. In a final chapter are presented the 

results of extensive trial calculations for which a conven-

tional digital computer was programmed to simulate the use 

of the division and square root algorithms in approximating 

These quotients and square roots in residue number systems. 

results indicate that, in practice, these division and 

square root algorithms usually converge to the quotient or 

square root somewhat faster than is suggested by the theory. 
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INTRODUCTION 

A. Residue Number Systems. Residue number systems, 

in which an integer x is represented by its residues 

with respect to one or more mutually prime moduli 

were known to the ancient Chinese. In 

fact, the so-called "Chinese Remainder Theorem" was stated 

in a restricted form by Sun-Tsu in the First Century A.D. 

(See Dickson [3], pp. 57-64.) In modern terminology, the 

Chinese Remainder Theorem can be stated in the following 

form: 

If m ,m , ... ,m 
0 1 n 

are mutually prime (positive) integers, 

the congruences 

X a. 
l 

(mod m . ) , i = 0, 1 , ... , n, 
l 

(0.1) 

have a unique simultaneous solution modulo M = m
0

m1 ... mn. 

If M . = M/ m. 
l l 

and 

such that 

x.M. = 1 
l l 

X. 
l 

is the unique integer modulo 

(mod m. ) , i = 0, 1, ... , n, 
l 

m . 
l 

then x satisfies the congruences ( 0. 1) simultaneously 

is of the form 

1 



where k is an integer. 

The proof of this theorem can be found in most books on 

elementary number theory. (For example, see Hardy and 

Wright [10], pp. 94-95 , or Griffin [8] , pp. 79-80.) 

If 

ously , 

x satisfies the congruences (0 .1) 

and y satisfies the congruences 

y = b. 
i 

(mod m . ) , i = 0 , 1 , ... , n , 
i 

simultane-

simultaneously, then it follows from the above theorem 

that 

if and only if 

z - c. - a + 
i l -

and that 

if and only if 

w = d. =a .,b . 
i l i 

z 

b. 
i 

w 

- X ± y (mod M) 

(mod m . ), i = 0,1, ... , n, 
i 

xiy (mod M) 

(mod m.) , 
i 

i = 0,1, ... ,n. 

B. Modular Arithmetic Computers. It was the above 

property of multiplication in residue number systems 

which first prompted Miroslav Valach , Professor in the 

Institute of Mathematical Machines , Prague , Czechoslovakia, 

2 
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3 

to suggest a digital computer based on a residue number system. 

(See Valach [28] .) In all digital computers then existing 

(1955), multiplication was performed by a technique of 

r epe a tea addition and "shifting" which took several times as 

long as one addition. Valach and his colleague, Antonin 

Svoboda, recognize d that, if a residue number system were used 

in a "modular arithmetic" computer, multiplication could 

be performed as fast as addition, so that the speed of 

computation would be increased appreciably for most problems. 

At a confe rence in Darmstadt in 1955, Howard Aiken 

and Warren Semon, then Director and Assistant Directo~ respec­

tively, of the Harvard Computation Laboratory, were introduced 

to the concept of modular arithmetic computers by Svoboda. 

Upon their return to the United States, Aiken and Semon began 

their own invest igation of the application of residue number 

systems to digital computers, and in 1956 they submitted a 

report on their work to the Wright Air Develoµnent Center, 
I 

Wright-Patterson Air Force Base, Ohio. (See Reference [l], 

a revised version of that report.) As a result, the United 

States Air Force became sufficiently interested in modular 

arithmetic computers to support considerable research into 

their design and use. Among those funded by the Air Force 



for such studies were: Aiken and Semon and their staff at 

the Harvard Computation Laboratory (see References [4] and 

[11] ); Harvey Garner and his associates at the University 

of Michigan (see References [SJ - [7], [13], and [18 ]; 

Lockheed Missiles and Space Company, Sunnyvale, California 

(see References [2], [15], [17], and [27] ); Scope, In-

corporated, Falls Church, Virginia (see Reference [19] ); 

and Westinghouse Electric Corporation, Baltimore, Maryl a nd 

(see References [16], [20], and [32] ) • It was at Westing-

house in 1962 that the author became interes ted in the 

problems involved in adapting residue number systems for 

use in modular arithmetic computers and it was there that 

he began the investigation which eventually let to this 

thesis. 

c. Problems in Modular Arithmetic Computer Design. 

The problems encountered by the investigators of modular 

arithmetic computers are of two types: first, those con-

cerned with the "logical" organization of such computers 

a nd the development of the attendant circuitry; and second , 

those concerned with the theoretical difficulties in perform-

ing numerical analysis in residue number systems . The prob-

lems of the first type are the usual probl ems associated with 

4 
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the design of any new computer, except that using residue 

number systems promises several interesting possibilities 

for more economical logical design than that in conventiona l 

computers. (An exploration of some of these possibilities 

will be the subject of a thesis by Robert L. Beadles which 

will be submitted to the University of Pittsburgh in partial 

fulfillment of the requirements for the degree of Master of 

Science in Electrical Engineering.) The theoretical problems, 

on the other hand, are more acute in that, if they are not 

solved, modular arithmetic computers will be unable to per­

form several very fundamental operations and therefore will 

be incapable of handling a large class of computational 

problems. 

The purpose of this thesis is to present solutions to 

some of these theoretical problems in modular arithmetic 

computer design. In particular, this thesis treats the 

problems of how to compare the magnitudes of two numbers, 

how to detect overflow resulting from addition and multi-

plication, how to divide, and how to take square roots i n 

residue number systems. In Chapters I - IV below, each of 

these problems is discussed in turn. Solutions are give n, 

along with appropriate proofs, and examples are includ e d 



dAlso, specific mention should be made of those men whose 

ideas directly influenced the form of the results contained 

in th.is thesis. First, credit for suggesting various facets 

of the magn itude comparison methods described in Chapter I 

should be given to Garner [7], H. S. Shapiro [ 22 ), and 

Valach [ 30] . By using their ideas, it remained only for 

the author to combine their methods into a single, systematic 

approach and to provide the necessary proofs. Next, 

recognition should be given to the author's former super­

visor at Westinghouse Electric Corporation, Mr . George 

Shapiro, who suggested using a tabl e of powers of two 

(stored within the computer ) in performing multipl icative 

overflow detection, division, and square root extraction 

and who also suggested that quotients and square roots in 

residue number systems be approximated by the quotient 

of an integer and an integral power of two. By following 

these suggestions , it was not too difficult for the author 

to work out the overflow detection, division, and square 

root procedures given in Chapters II, III, and IV, respec -

tively. Last, credit is due to the author's thesis 

advisor , Dr. We:r:n&n ,Rheinboldt , for encouraging the author 

to investigate the practical behavior of the division and 

square root algorithms by programming the University of 

7 



Maryland 's IBM 7090 computer to simulate modular arithmetic 

computers in performing divisions and square root extractions 

by these methods. By using these simulation programs, 

several thousand "sample" divis ions and square root ex­

tractions were completed in a matte r of minutes. 

Finally , it should be added that, while the algorithms 

given i n this thesis are rather long an d complicated , they 

are, to the bes t of the author 's knowledge, the most effi­

cient solutions yet obtained for the problems consid ered . 

That is, Judging from estimates of the number of operations 

required, these algori thms seem to use less computer time 

for their execution than the other existing solutions and 

- what is more important when one is designing a computer_ 

they appear to re uire no special circuitry for their 

implementa .ion, since they rely h eavily on "standard" 

computer operat ions such as addit ion a nd "bi t testing. " 

Thus, it. is the author ' s hope that thes e meth ods for 

comparing magnitude, detecting overflow, dividing, ex -• 

tracting square roots will compris e a contribution to the 

adaptation of residue number systems for u se in d igital 

computers and that this thesis will help remove a barrier 

in making modular arithmetic computers usable for general 

types of computation. 

8 



CHAPTER I 

MAGNITUDE COMPARISON 

A. Ordering in Residue Number Systems. Since most 

computer applications involve some use of the order proper-

ties of the real numbers, magnitude comparison is an essential 

operation in all digital computers. In conventional digital 

computers, magnitude comparison is performed simply by a 

sequence of "bit tests" which is the logical equivalent of 

the usual method of comparing two integers. (See Theorem 1.2 

below.) In modular arithmetic computers, however, magnitude 

comparison must be performed in a residue number system 

where such operations are not so simple. To show that this 

is the case, let us consider several examples. 

Given a residue number system with moduli m
3 

= 7, 

m = 3 t 

l 
and m

0 
= 2, suppose we wish to find the 

smallest of the three "numbers" 

{3, 4, 2, 1} (1, 3, o, o} ; [ s, 3, 1, 1 } 

in this system. (Here the "number" 

{3, 4, 2, 1~ 

9 



represents the integer x such that 

x - 3 (mod 7) ; 

x - 2 (mod 3 ) ; 

x - 4 (mod 5) ; 

x _ l (mod 2) . 

From the Chinese Remainder Theorem we know there is exactly 

one solution, namely 

X = 59, 

which satisfies these congruences and the condition 

Hence, we write 

{3, 4, 2, 1} ~ 59. 

Since each of the residue s in the number 

(1, 3, o, o} 

is less than or equal to the corresponding residues in 

the other t wo numbers , we might expect that 

{1, 3, o, o} 

is the smallest o f the three. Our expectations are wrong, 

however, since 

{1, 3 I 0 , o} "V 78 "---

is smaller than 

{s, 3 I l, 1} ~ 103, 

but not smaller than 

{ 3 I 4, 2, 1} "-' 59. -,_., 

10 



Next, we might try ordering these three numbers "lex­

icographically;" that is, we might order the numbers by 

ordering their "first" residues (those with respect to m
3

), 

then their "second" residues (those with respect to m
2

), 

and so forth. But this ordering would give the result 

{1, 3, o, o} < {3, 4, 2, 1} < (5, 3, 1, 1} 

or equivalently, 

78 < 59 < 103, 

which is obviously wrong. Similarly, "reverse lexico­

graphic" ordering, in which the "last" residues (those 

with respect to m
0

) are ordered first, would give 

{1, 3, o, o] < {5, 3, 1, 1} < (3, 4, 2, 1} 

or 

78 < 103 < 59. 

More counter-examples can be found to show that other 

ordering schemes on the residues are equally unsuccessful. 

To examine another aspect of this problem, let us 

consider the numbers 

{2, 3, l, o} {4, o, o, o} {3, 4, 2, 1} 

in the same residue number system as before. Upon observ-

i ng that each of the residues in the first number are ex­

actly one less than the corresponding res i dues in the 

11 



last, we might conclude (correctly) that 

{ 2, 3, 1, o} ~ 58 

represents the "next smaller" integer than 

{ 3 t 4 t 2 t 1} ~ 5 9 o 

(By definition, all numbers in a residue number system 

represent integers.) 

residues that 

But it is not so obvious from their 

{ 4 / 0 t O t O} ~ 60 

is the "next numbe r greater" than 

{3, 4, 2, 11 ~ 5 9 

in this system. Furthermore, this problem b ecome s even 

more difficult whe n we consider the "second number greater" 

and so forth. 

In ·our th i r d a nd final example, suppose we provi d e 

for negative numbers in the above r es i due number system 

by decreeing t hat all integers x suc h that 

be regarded as representing the negat ive integers -104 

through -1. The rule of correspond e nce is 

X<-~X-M 

(That is, we restrict our residue number system to the M 

consecutive integers -104 through 105 instead of the 

12 



integers 0 through 209 used in the two preceding ex-

amples.) Suppose we now wish to determine the signs of the 

numbers 

{4, 1, 1, 1} and {4, 3, 2, 1} 

in this system; that is, we wish to determine whether these 

numbers are greater or less than 

{o, o, o, 1l 105 

in the "old" residue number system. It is not at all clear 

from the residues in these numbers that 

{4, 1, 1, 11 ~ 151 ~ -59 

is negative, while 

{4, 3, 2, 1) ~ 53 

is positive. Hence, it seems that the residues in a num-

ber cannot even be trusted to tell us whether or not that 

number is positive. In fact, about all they can be 

trusted to tell us is whether or not the number is zero 
' 

since a number is zero if and only if all its residues are 

zero. 

As these examples clearly show, there is no obvious 

ordering scheme for the residues in these numbers which 

agrees with the "natural" ordering of the integers repre­

sented or which gives any significant information about 

13 
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the signs of those integers. Therefore, our first probl em 

is to devise some other method for using the residues in two 

numbers in a residue number system to determine wh ich number 

represents the larger or smaller integer. The solution we 

shall give is based upon a generalization of the ''positional 

notation" commonly used for the integers themselves. 

B. Mixed-Radix Notation. As is well known in ma hema-

tics, we may represent any non-negat ive integer x in the 

form 

n 
x == a r 

n 
n-1 

+ a r 
n-1 

by using any integer r > l 

{ 1 .1) 

as a " radix ." In referring 

to this representation for x, we usually indic te the radix 

by using an appropriate adjective, such as ''decimal" or 

"octal", and me,1 tion only the coefficients a. 
l 

in a given 

order, say, a , 1 . .. a 1a 0 . Moreover, if we require those 
n -· . 

coefficients to be integers satisfy ing 

a . 
. 1 

< r, i = 0, l, . . . , n, 

then the above representation .is unique. (That is, there 

is exactly one such representation for every non-negative 

integer x.) Clearly, this repres entation may be extend 

to negative integers by prefixing the entire representation 

with a minus sign. 



I f y is another non-negative integer satisfying 

n n - 1 
y = bnr + bn_1r + . . . + b

1
r + b

0
, (l. 2) 

the coeff i cients b , again being integers such that 
l 

0~b . <r, 
l 

i = 0, 1, ... , n , 

then we ma y compare the magnitudes of x and y by c om-

paring their coefficients a. and b., 
l l 

respectively , i n 

"lexicograph i c" order. That is, we first compare a and 
n 

b . 
I 

n 
if a = b 

n n' 

forth unti l e ither 

we compare 

we reach ao 

a 
n-1 

= b 

and 

0 
or we 

b l; n-

find 

such t hat a. =/ b . . In the former case, X and 
J J 

obviously 

e qua l , and 

a . =/b, , 
l l 

equal. In the latter case, 

i f j is the largest index 

t hen x > y if and only if 

X and y 

i such 

a . > b . . 
J J 

and so 

an index 

y are 

a re un -

that 

j 

Let u s n ow f ormally summarize these properties of this 

notation - commonly called "positional notation" - by 

stat i ng two theo rems: 

'rheorem 1.1 (Uniqueness of Repr esenta t i on) - I f the 

coefficients a. in expression 
l 

satisfying 

(l. l) are integer s 

O ~a.< r, 
l 

i = 0, 1, ... , n, 

~ they are uniquely determined !2y_ x. 

* * * 

15 
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It follows from this theorem that a. t- b 
l i for some 

index a a 1· .. a a 
n n- 1 0 i implies that x I- y, since otherwise 

and b b b b would be distinct representations of the 
· n n-1 · · · l 0 

same integer. Hence, x I- y if and only if a . I- b. for 
l l 

at l east one index i. 

* * * 

Theorem 1.2 (Magnitude Comparison) - If x _and y 

~ u n equal non-negative integers satisfying ( l. l) .fill9. 

( 1. 2) respectively, if all 

negative integers less than 

index i such that 

a. > b .• 
J ] f 

a. I- b. , 
l l 

a, IS 
l 

and b. 's 
l 

r, and if j 

then x > y 

* * * 

are non-• ---
is the largest, 

if and only if 

The proofs of these theorems can be obtained qu i te 

easily with the aid of the following lemma: 

Lemma 1.1 - If the coefficients ai in expressiQQ 

(1.1) are .integers satisfying 

0 ~a.< r, 
l 

i = 0, 1 , . .. , n. 

j j-1 · j-2 
r > a . r + a . 2 r + . . . + a

1
r + a 

J-1 J- 0 

holds for. ( l. l) whenever j is any integer such that. 

0 < J ~ n+l . 

* * * 



Since both these theorems and this lemma are widely 

known to be true and since their proofs can be found in 

numerous books on real analysis, we state them here witho u t 

proof. However, we shall soon give these proofs for a more 

general notation when we state and prove Lemma 1.2 and 

Theorems 1.3 and 1.4. 

Let us now broaden somewhat the scope of these theorems 

by extending them to apply to a more general notation. In 

particular, let us replace the radix r in ( 1.1 ) with 

17 

several radices r I r l' ... , ro, n n-
all of which are integers 

greater than one, and let us rewrite ( 1.1) in the form 

X = 

where the coefficients a. are integers such that 
l 

0 ~a . < r., i = 0, 1, ... , n. 
l l 

( l. 3) 

The representation of the integer x by the coefficients 

a. obtained in this manner is called 
l 

"mixed-radix notation" 

in contrast with the "fixed-radix notation " associated with 

( l. l) above. This notation has essentially the same pro -

fixed-radix notation. Indeed, Lemma 1.1 and Theorems 1 . 1 

and 1.2 are but restricted versions - for the special case 



in which ali the r. 's 
1 are equal tor - of t6e following 

lernma and theorems. 

* * * 

Lemma 1.2 - If the coefficients 

(1.3) are intege rs satisfying 

a. 
1 

in expression 

then -
O ~a. <r ., 

1 1 
i = 0, 1, ... , n, 

r _. 1
r. 2 

•.. r 0 
> a . 

1
r. 

2
r. -:, ... r

0 
J- J- J- J- J-~ + •.. 

+ alrO + ao 

hold~ for (1.3) whenever j is any integer~ that 

o < j ~ n+l . 

Proof: If O < j ~ n+l, it fol lows f rom the condi­

that 
tions on the coefficients a . 

l 

. r > 
Lr . 2··· 0 

I - - J-

= 

This is the desired result. 

r . 
1
r. 2 

.. . r - l 
J- J- 0 

(r. 1 -l )r. 2r. 3 
•.. r + ... 

J- J- J- G 

+ (r. -l)r + (r
0 

-1) 
.l 0 

a . 1 r . 2 r . 
3 
•.. r + ... 

J- J - J - 0 

* * * 

Theorem 1.3 (Uniqueness of Mixed-Radix Representation} 

- Under the conditions given in Lemma 1.2, ~ coefficients 

ai in expression (1.3) ~ uniquely determined E.Y. x. 

18 



Proof: Assume that both (1. 3) and 

X = c r 
1

r 2 ... r 0 
+ c 

1
r 

2
r 

3 
. . . r

0 
+ ... 

n n- n- n- n- n-

are expressions for x such that the same r a d ices 

used in both expressions and such that the a , IS 
l 

r 

a nd 

19 

l 

C 's 
i 

are non-negative integers less than r. 
l 

for i= 0, 1, . . . , n . 

Assume also that a./ c. for some index i and l e t J be 
l l 

the largest such index. Then, 

(c . - a . ) r . 
1

r . 
2 
... r

0 
+ (c . 

1 
- a . 

1
) r . 

2
r . 

3 
. . . r 0 J J J- J- J- J- J- J-

+ ... + (cl - al)rO + (co - aO) 

= X - X 

= 0. 

Let us now assume without loss of generali ty t h at 

a . < C . • 
J J 

Then, it follows from the above equation tha t 

(c . - a . ) r. 
1

r . 
2 
•.. r

0 J J J- J-

= (a . l - c . 1 ) r . 2r . 3 ... ro 
J- J- . J - J -

+ + (al - cl)ro + (ao - c o) 

a . lr . 2r . 3 ... ro + 
J- J- J-

since the a. 's and c. 's are non-negative integers . 
l l 

But this contradicts Lemma 1.2. Therefore, a. = c. must 
l l 

hold for i = o, l, ... , n, which is the desire d resul t . 

* * * 



Theorem 1 . 4 (Magnitude Comparison in Mi~ed-Radix 

Notation ) - Let x anQ y be dist inct non-negative 

integers ~~ch ~htl x satisfies (1 . 3) and y satisfies 

y = b r 
1

r 
2 

. .. r
0 

+ b 1 r 2 r 3 . . . r 0 + 
n n- n- n- n- n-

a .' s 
l 

r ' s are the §.ill!!§. in 
i 

(1. 3) and 

( 1. 4) 

( 1 . 4) 

b . ' s 
l. 

are non - negative integers le§.§_ than 

r f i _Q£ i-= 0 , 1 , . .. , n o If j i s the largest index i 

~uch that --- --- a . / b . , 
l .l 

if ang_ .Q!!lY. if a . > b . . 
J J 

Proof : In the light of Theorem 1.3 , it is obvious 

from the assumpt i on that x :/, Y that j ex i sts and that 

it will be suff i c i ent to show that a . < b . 
J J 

i mpl ies 

x < y and a . > b 
J J 

.implies x > y. 

If we assume that then it follows from 

Lemma 1.2 that 

(b . -· a . ) r . 1 r . 2 . . . r 0 ~ r J. 1 r J. 2 ... r 0 
J J J-· J- . . - - · 

> aj - lrJ-2rj_3· · ·ro + ... 

+ alrO + ao 

20 

~ (a . 1 
J-

-b . )r . r 
J-1 J-2 j-3 " · .ro 

+ + (al - bl)ro 

+ (ao - bo) ' 

s i nce the a . ' s and b . ' s are non-negat i ve i ntegers . 
l. 1 



Therefore, 

y - X = 

(b . - a . ) r . 1 r . 2 . . . r O + (b . 1 
- a . 

1 
) r . 

2 
r . . . . r 

J J J- J- J- J - J - J -3 0 

+ + (bl - al)rO + (bO - aO) 

> 0, 

which is equivalent to x < y. 

Similarly, if a . > b., 
J J 

we need only interchange the 

a. 's and b. 's in the above expression to obtain x _ y 

i i 

Hence, the proof is complete . 

* * * 

As in the fixed-radix notation associa ted with (1 . 1), 

negative integers may be represented in mi xed-rad ix notation 

by placing a minus sign before the entire representat ion . 

However, another representation, .in which the minus s i gn .i s 

replaced by the use of both positive a nd negative coe ffi­

cients, suggests .itself. In particular , l e t u s r e qu ire as 

before that the rad.ices 

and that the coefficients 

r . be in tegers grea t er than one 
i 

a. 
i 

But now let the a. 's satisfy 
i 

if r . .is an odd .integer, and 
i 

in ( l. 3) 

- r./2 < a. ~ r./2, 
1. i i 

be i ntegers . 

( J • 5 ) 

( l. 5b) 

21 
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if r . is an even integer. 
l 

(There is no reason why we 

couldn 't have a . satisfy 
l 

instead of (1. Sb) 

- r ./2 .,,., a < /2 
~ . r . 

l l l 

above , when r . is even. 
l 

If we did 

this , a few " <" and "<" signs would have to be inter-

changed in Lemma 1.3 and Theorems 1.5 and 1.6 below , but 

the lemma and theorems themselves would remain essentially 

intact . There i s , however , a slight advantage in our using 

the restriction (l.Sb) , but we shall postpone our ex-

planation of it until we have proved Lemma 1. 3 below.) 

With these new conditions on the coefficients a . , the 
i 

notation result.inq from ( 1. 3) is called "two-sided 

mixed-radix notation. " 

In order that this new notat i on retain the desirable 

uniqueness and ordering properties of "ordinary" mixed­

radix notation set forth above .in Theorems 1.3 and 1.4, 

it i s necessary to require that at !!!,2St _2!}_e of the radices 

r . be even. 
i 

(Since it will soon become necessary for 

those radices to be mutually pr i me , the restriction of 

at most one even radix i s a natural one and certainly 

retains sufficient generality for our purposes.) 

Furthermore, to .insure that the numbers representable in 

22 
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two-sided mixed-radix notation are distributed "symrnet:r icall i,," 

about zero, it is also necessary to stipulate that, if uny 

of the radices is even, it be designated 

We shall now show that integers represented in this two ­

sided mixed-radix notation may be compared exactly as in 

their II ordinary II positional notation; i.e . , by comparing 

their "coefficients" in lexicographic order. 

* * * 

Lemma 1.3 - For any integer j such that 

0 < j ~ n+l, 

the following inequalities hold for (1. 3) / provided that, 

and 

• • • I 

if 

a, IS 
l 

are integers satisfying the conditions (1.5a ) 

(1.Sb): if r
0 

is an even integer (and r
1

, r
2

, 

r 
n 

are odd), 

-(r . 1r. 2 ...
 r

0
) / 2 < a . 1 r . 2r. 3 ...

 r
0 

+ ... 
J- J- J- J- J-

(r . 
1

r ... . r
0

) /2 ; 
J- J -

is an odd integer (as are ---

a· lr · 2r · 3 · · · ro / + J- J- J-

. . . + < (r . lr . 2··· ·o ) /2. 
J- J-

Proof: To avoid tedious repetition, we shall prove 

this lemma and the two theorems fol l owing it on l y for I l H~ 

C 

.. 
,I .. . , 



case where is even. For the other case, where 

is odd, the proofs are quite similar. 

From the conditions (1.5) on the coefficients 

it follows that 

-(r . 
1

r . 
2 

. .. r 0 )/2 
J- J-

= [(r . 
1 

-1) r . 2r . 3 . . . r 0 + ... 
J - J- J-

. . . + (r
1

-l)r0
+r0 ];2 

< a . lr . 2r . 3 · · ·ro 
+ 

J- J- J-

< [ (r j-1 
- l)r . 2r . 3· .. ro 

J- J-

= 

... + (rl 

( r . 
1 

r . 
2 
... r O) / 2 , 

J- J-

for any integer j such that 

-l)r + 
0 

0 < j ~ n+l. 

This i s the desired result. 

* * * 

If we required that 

+ alrO 

+ 

ro] /2 

+ ao 

a . , 
l 

when ro 
i s an even integer, then the conclusion of the 

preceding lemma would be that 

-(r . 
1

r . 
2 
... r 0 )/2 

J- J-

~a . lr . 2r . 3 . .. ro + ... 
J- J- J-

< (r . 
1

r . 
2 
... r 0 )/2 

J- J-

24 



when ro is even. If this were the case, if j == n+l , 

and if x were the integer 

-(r. 
1
r. 

2 
... r

0
)/2, 

J- J-

then the radices rn, rn-l' ... , r 0 
would be (barely) 

sufficient to determine the two-sided mixed-radix repre­

sentation of x via (1.3), but they would not be suffi­

cient to determine the same representation for / x /. 

(That is, an additional radix r 
n+l would be needed t o 

determine the two-sided mixed-radix representation fo r 

However, if we assume that the c ondit i ons (1. 5 ) 

hold, then Lemma 1.3 assures us that whenever the rad i ce s 

rn, rn-l' ... , r
0 

are sufficient to determine the two -

Sided mixed-radix representation of an inte g er x, t h ey 

are also sufficient to determine the same representation 

of / x / (but not conversely). 

a 0 
satisfy 

when is even. 

* * * 

This is why we prefer tha t 

Theorem 1.5 (Uniqueness of Two-S ided Mixed-Rad ix 

Notation) - Under the conditions (1.5), the t wo -

£ided mixed-radix (integer) coefficients 

~~ uniquely determined !?.Y, x. 

a . 
] 

·-
in ( 1. 3 } 

25 
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Proof : Assume that x and its two-sided mixed-radix 

coeffic ients ai satisfy (1.3) and (1.5), respectively • . 

Assume also t h at x also satisfies 

X c r l r 2 . . . ro 
n n- n-

+ c 
1

r 2
r ... r + 

n- n- n-3 O ··· 

where the same radices r . are used in both the above 
]_ 

e x pression and (1 . 3), 

ri's odd, and where the 

r
0 

being even and all other 

c. ' s are integers such that 
]_ 

and 

< r ./2, 
]_ 

i = l, 2, •.• , n , 

It then f ollows immediately from these conditions on the 

a . ' s and c . ' s that 
]_ ]_ 

r. -1, 
]_ 

i = 0, 1,. , ., n . 

Now assume fur ther that a . I c . 
]_ ]_ 

for some index 

and let j b e the largest such index ~ Then, as in the 

proof of Theorem 1 . 3, we have 

]_ 

(c . - a.)r. lr . 2 · ··ro + 
J J- J-

( c . 
1 

- a . 
1

) r . 
2

r . . . ,, r 
J- J - J- J-3 0 

J 

+ + (cl - al)ro + (co - ao) 

= X - X 

= o. 



► 

Assuming (without loss of generality) that a 

and combining this with the above results gives 

r. lr. 2···ro 
J- J-

~ (c. - a.)r. 1
r. 2 ••• r 0 

J J J- J-

= 

= 

< 

(a . 1 - c. l)r. 2r. 3···ro + 
J- J- J- J-

··· + (al - cl)rO + (aO - co) 

(r . 
1 

-l)r . 2
r. 3 •.. r 0 + 

J- J- J-

••• + (r 1 
- l)r 0 + (r 0-l} 

r. r . 2 
... r 0 - 1 

J-1 J-

r. lr . 2···ro' 
J- J-

. < C. 
J J 

which is clearly a contradiction. Hence, 
a. = c. mu t 

1. 1. 

hold for i = o, 1, ... , n, which complete s the proof. 

* * * 

Theorem 1.6 (Magnitude Comparison in Two-Sided Mixed-

Radix Notation) _ g!. x ~ y be dist inct integers 

satisfying 

same radices 

(1.3) 

r. 
1. 

and (1.4) respectively, where the 

-
-

are used in both expressions. ----
coefficients a . in (1.3) satisfy ~ conditions (l. ~ ) 

1. 

~n1111£ coefficients 

.£_onditions: 

,2nd 

b. _i!l · (1.4) 
1. 

satisfy the similar 

r ./2, 
l. 

i=l, 2 , ••• , n 

2 7 



► 

i 

is ~ ~ integer; 

is 9Jl odd integer. 

such that a. 
l 

b .. 
l 

i=O, 1, ••. , n, 

l&1. j ~~largest index 

X > y if and onl_y if 

a. > b .. 
J J 

Proof: 
As for Theorem 1.4, the existence of j is 

guaranteed by the assumption that x I y; and as in the 

proof of Theorem ;J.. .4, it is sufficient here :,to show that 

implies x < y and that 
a. > b. 

J J 
implies x > y. 

As in the proof of Theorem 1.5, it follows from the 

conditions on the a, IS 
l 

and b. 's 
1 1 

that 

r . -1, i = 0, ,1, .•• , ~-

1 

Assuming now that a. < b . , we have 
J J 

( b J. - a . ) r . 1. r . 2 ••• r 0 
J J - . J-

~ r. lr. 2 •.• ro 
J- J-

> r . 
1

r . 
2 

• •• r O - 1 
J- J- + 

(rj-1 -l)rj-2rj_3···ro 

.. . t (rl -l)ro + (ro -1) 

~ (aj-1 - bj-l ) rj-2rj_3 · · · ro 

... + (al - bl)ro + (ao 

+ .•• 

28 



Bence, 

y - X = 

(b . - a . ) r . 1 r . 2 . . . r O 
+ (b . 1 

- a . 
1 

) r . r :r· 

J J J- J- J- J- J-2 · _3· · · 

+ + (bl - al)ro + (bo - ao) 

> 0, 

Which is equivalent to x < y. 

Similarly, if a. > b., 
J J 

interchanging the a 's 
i 

b 's in the above expressions gives x - y> 0. This 

i 

completes the proof. 

* * * 

and 

At this point, let us pause to reflect upon what we 

have established in these theorems, We have shown (in 

Theorems 1.4 and 1.6) that, if we can determine the ("or­

dinary" or two-sided) mixed-radix coefficients of integers 

from their residues in a residue number system, then we 

can compare the magnitudes of those integers by comparing 

their coefficents in lexicographic order - that is , by 

"bit testing" in a computer. Furthermore, we have shown 

in Lemma 1.3 and Theorem 1.5 tha t, if we use the two-

Sided mixed-radix coefficients of an integer x, we can 

determine the sign of x from the sign of its "leading " 

(or highest order) non-zero coefficient, since it f ollows 

29 



immediately from that lemma that the signs of x and its 

leading non-zero coefficient are identical. Therefore, by 

introducing the above mixed-radix notations and by showing 

that integers may be uniquely represented and readily com­

pared in these notations, we have reduced - or at least, 

transformed - the problem of magnitude comparison and sign 

detection i n residue number systems to one of converting 

integers from their residue representation to their mixed­

radix representation. We now turn our attention to the 

"new" probl em of performing that conversion . 

c. Conversion to Mixed-Radix Notation. In order 

to obta in some information about the relationship between 

the mixed-radix coefficients for an integer x and the 

residues of x, let us examine (1.3) more closely. 

Since all of the terms except the last on the right side 

of that equation contain r 0 
as a factor, it is immedi­

ately obvious that 

X = a 
- 0 

Therefore , x _ a
0 

is exactly divisible by r
0 

and 

is an integer. 

(1 . 3) gives 

x
1 

= (x - a 0
)/r0 

Combining this definition of x 1 
with 

30 



a r 1 r 2 ...
 r 1 + a 1

r 2
r 3 

... r 1 
+ ... 

n n- n- n- n- n-

. . . + a2r 1 + al' 

from which it is again obvious that 

By continuing in this manner, we may define the integers 

x. = (x. 1 
- a. 1

)/r. 1
, 

l l- l- l-
i=l, 2, ... , n, 

where XO= x. 

follows that X. 
l 

From this definition and from ( 1. 3) 

also satisfies 

x. = a r r ... r. + a 1 r 2r 3 
••• r. + ... 

i n n-1 n-2 1 n- n- n- 1 

... + a. 1
r. + a., 

1+ l l 

for i = 0,1, ... , n, so that 12.Y_ definition 

( 1. 6) 

it 

(mod r.), 
l 

i = 0, 1 , . . . , n. ( 1. 7) 

If we now assume that the radices rl , ... ' r ' n 

are the mutually prime moduli for a residue number system, 

then we may use the congruences (1. 7) to deduce the 

mixed-radix coefficients a. 
1 

of an i n teger x from the 

residue representations of x (= x 0 ) , xl ' ·· ·, and x in 
n 

that number system. That is, from the residues d
00

, a
01

, 

• • • I d 
On 

of X 

X = X =: 
0 

such that 

(mod r . ), 
1 

We shalL find -th~ coefficients a. by calculating the 
1 
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residues of xl' x2,···, and X from the doi's. To do 
n 

this, we note first that 

ao - doo (mod r O) t 

since X is congruent to both ao and doo modulo r 
0 

and since "congruence" is an equivalence relation. 

If we now assume slightly more than this, i.e., that 

aO == dOO' then it follows immediately from (1. 6) and the 

elementary properties of congruences that 

(mod r. ) 
l 

(1.8) 

where i == O, 1 , ... , n. But since the radices r . are 
l 

assumed to be relatively prime, we can eliminate r 
0 

from (1.8) by defining dli to be the uniquely deter-

mined integer modulo r. 
l 

such that 

(mod r . ) , 
l 

l = 1, 2, ... , n. 

It then follows from this definition , the congruences 

(1.8), and the elementary properties of congruences that 

(mod r. ) , 
l 

i = 1 , 2 , ... , n. 

In particular, we have 

since i s congruent to both a 1 
and dll modulo 
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Again, if we assume the slightly stronger condition 

that 

al= all' 

we may repeat the above line of reasoning to obtain 

r X - d a 
1 2 = li - 11 

(mod r . ) , i = l , 2 , •.. , n, 
l 

as in (1.8) . Furthermore, if we define d 2
i to be the 

Uniquely defined integer modulo r. 
l 

such that 

(mod r . ) , i = l , 2 , ••• , n, 
l 

it follows as before that 

X = d 
2 - 2i 

ana that 

(mod r . ) , i = 2, 3, ... , n, 
l 

By again assuming that a 2 
= d 22 , a 3 = d

33
, etc. 

We can repeat this same procedure again and again to ob-

tain 
d .. 
Jl 

to be the 

r. 
l 

such that 
Unique integer modulo 

X - X - d 
0 - Oi 

(mod r. ) , 
l 

l = 0 , 1, . . . , n, 

ana 

r d -
j-1 ji = d. 1 .­

J- I l 
d . 1 . 1 

J- I J-
· (mod r. ) , 

l 
(1. 9) 

for i = j ~ j+.l . ... , n • ,and j = 1, 2, ... , n. If we assume 

for some j such that O < j ~ n that 

X , 
J-1 a . 1 . 

J- ,l 
(mod r.), 

l 

i = j-1, j, ... , n , 
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and that 

it follows i mmediately from (1. 6)' (1.9), and the rela-

tive primeness of the moduli 

and 

r x = x - a 
j-1 j j-1 j-1 

X' = d" 
J J l 

(mod r . ) , 
l 

= 

l 

that 

d. 1 . 
J- ' l 

r. 
1

d . . 
J- Jl 

d . 1 . 1 J- I J-

(mod r . ) 
l 

j, j+ 1 , ... , n. 

Thus , by using induction on j and applying 

obtain the proof of 

( 1. 7) , we 

Theorem 1.7 (Residue t o Mixed-Radix Conversion) - If 

d . . modulo r. satisfying 
Jl l 

the residues (1. 9) 

chosen in such a way that 

d .. = a. 
ll l 

implies that 

d . . = a . , 
l ]_ ]_ 

(mod r.) 
]_ 

i = 0, 1, ... , n, 

are 

then the integers d 00 , d
11

, ... , dnn are precisely the 

mixed-radix coefficients 

a ppearing in (1.3). 

Obviously , the key point 

congruence of ,d. . . and a. 
ii ]_ 

stronger condition that d .. 
]_ ]_ 

a I 
n respectively , 

in this theorem lS that the 

(:nod r. ) 
]_ 

must imply the 

= a• I 
l 

for i = 0, 1 , • • • I n. 

34 
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To guarantee that t his is the case, we need only requ i r e 

that the residues d .. be subject to the same cond i t i ons 

Jl 

as the coefficients a . . 
1 

This gives 

Id.. - a./ < r. , 
11 1 1 

35 

Which when combined with the fact that r . 
1 

divides (d .. - a . ) 
11 1. 

- Which is equivalent to 

d . . 
11. 

a. 
1 

(mod r.) -
1 

does indeed yield the result that d . . = a . • 
11 1 

Moreover, i t 

is clear from this that whether the mixed-radix coeffic i e nt s 

referred to in Theorem 1.7 are the ordinary or two-sid e d 

Variety d e pends entirely upon the restrictions place d o n 

the residues d . .. In particular, if we require tha t the 

Jl 

integers a . . 
Jl 

(which are, by definition , r e sidues modul o 

ri) satisfy 

0~ d .. < r., 
Jl 1 

i = 0, 1, ... , n , 

then the integer s a
00

, a
11

, • • • I 
d 

nn 
1.n Theorem 1.7 are 

t h e ordinary mixed-radix coefficie n ts for x. 

othe r hand, we require that the d .. 'ssa tis fy 
Jl 

i = 0,1, . .. , n 

if r 1· s 
0 even, and 

If, on the 

(l . l0a) 

(l.lOb) 



i = 0, 1, ... , n ( l. lOc) 

When is odd, then the integers are 

the two-sided mixed-radix coefficients for x. Thus, by 

equating the mur.ually prime moduli for a residue number sys­

tem with the radices r. of mixed notation and by subject-

1 

ing the residues in that system to the same conditions as 

those on the mixed-radix coefficients, we can obtain - via 

equations (1.6), (1.7), and (1.9) above - either the 

ordinary or the two-sided mixed-radix coefficients of an 

integer from its residues. 

It is interesting to note that, if all the residues 

in the residue number system are made to satisfy the con­

ditions (1.10) which give the two-sided mixed-radix co­

efficients via Theo rem 1.7, the modular arithmetic com­

PUter using these residues requires only about half as 

much circuitry as the one using the non-negative residues 

Which give the ordinary mixed-radix coefficients. The 

reason for this is that the former computer need only 

Compute with the integers o thru M/2 plus a "sign bit" 

Whereas the latter computer must use all of the integers 

0 thru M-1. (Mis the product of the moduli.) 
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To illustrate the conversion algorithm of Theorem 1 • 7 

for ordinary mixed-radix notation, let us reconsider the 

first example given at the beginning of this chapter. 

(See pp. 9-11.) Since the even modulus 2 is used, we 

must set r
0 

= 2; the other moduli may be indexed arbitrar­

ily, say, 

and = 7. 

Using the residues given previously for 

X = 59, y = 78, and z = 103, 

We obtain the ordinary mixed-radix coefficients for x , 

Y, and z from their respective sets of residues 

Which are given in Table I. 

a . . 
Jl 

The first row in each set of residues J_n Table I con­

tains the residues a
00

, a 01
, a02 , d 03 of the correspond-

ing integer r Z modulo 
x, y, 0 

ly. The second row of each set is c alculated from the 

first in accordance with equation (1. 9) and contains the 

integers 
all' dl2' dl3 

modulo rl, r2, r3 respective-

ly, such that 

a - a 
Oi 00 

(mod r . ) , 
l 

i = l, 2, 3 . 

(For instance, for x = 59, the second row in Table r 

contains 

37 
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Table I - Ordinary Mixed-Rad i x No t at ion 

~ 
0 1 2 3 

... 

0 1 2 4 3 

1 - 2 4 1 

~ 
X = 59 ::i . 

2 - - 4 2 ~ ,... , .. 
- 1 • 

3 - -
,... 

~ 
0 1 2 3 

,., 
~ .. ,, .. 
d 

0 0 0 3 l 
, ... 

1 - 0 4 4 y = 78 

2 - - 3 6 

- 2 
3 - -

~ 
0 l 2 3 

0 1 1 3 5 

1 - 0 1 2 z = 103 

2 - - 2 3 

- 3 
3 - -
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dll = 2, dl2 = 4, and dl3 = 1, 

Which satisfy the congruences 

2·dll = 2 l l (mod 3) 

2·dl2 - 4 l - 3 (mod 5) 

2·dl3 - 3 l = 2 (mod 7) I 

respectively.) Similarly, the third row of each set is 

calculated from the second and the fourth row is calcu-

lated from the third, again by using equation (1.9). 

From the "diagonal" entries for x in Table I, we 

obtain the ordinary mixed-radix coefficients for x: 

X = a3r2rlr0 + a2rlr0 + alrO + ao 

d33r2rlr0 + d22rlr0 + dllrO + dOO 

= 1(5·3·2) + 4(3·2) + 2(2) + l 
= 

= 59 

or, by us ing the more concise notation 

We have 

x "'-' [ 1, 4, 2, l] . 

Similarly, for y and z we have 

Y = 2(5·3·2) + 3(3·2) + 0(2) + 0 

= 78 /\.J [2, 3, 0, OJ 
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z == 3(5•3·2) + 2(3·2) + 0(2) + 1 

== 103 rv [3 , 2, 0, l]. 

Now we can compare x, y, and z by applying Theorem 

1 •4 : the "leading " coefficients for x, y, and z are all 

unequal, so comparing x, y, and z reduces to comparing 

their leading coefficients. Since 

1 < 2 < 3, 

we conclude that 

[l, 4, 2, l] < [2, 3, 0, 0] < [3, 2, 0, lJ 

or 

X < y < Z. 

Bence 
I X = 59 ~ (3 , 4, 2, 1} is the smallest of the 

three number s x, y, and z. 

To illustrate the use of two-sid ed mixed-radix 

notat· 
· 

ion, let us now consider the integers given in the 

second 
h' h t 

example at the beginning oft is cap er. (See 

PP.ll-12.) For 

u == 58 ~ {2, 3, 1, o}, 

and w = 59 ::: [3, 

V = 60 ~ {4, 0, 0, 0}, 

1}' 4, 2, 

we must ' d th t th 11 t 
adjust some of the resi ues so a ey a sa -

isf 
y the conditions (l.10). This gives 
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u ~ [2, -2, 1, o}, V ~ [-3, 0, 0, 01, 

and w ~ [3, -1, -1, it 

The residues d .. for u, v, and w are given i n 

Jl 

Table II. The successive rows of residues for each of 

v, and w are obtained exactly as for x, y, and z in 

Table I except that the d .. 's 
Jl 

in Tabl e II satisfy the 

conditions (1.10). Thus, we have 

u = d33r2rlr0 + d22rlr0 + dllrO + 

= 2(5·3·2) + 0(3-2) - 1 (2) + 0 

= 58 

or, in the more concise notation, 

also 
I 

ana 

u -"-' [ 2, 0, -1, OJ ; 

V = 2 (5•3•2) + 0(3•2) + 0(2) + 0 

= 6 0 ""' [ 2, 0, 0, OJ 

w = 2(5•3-2) + 0(3·2) - 1(2) + 1 

= 59"' [2, O, -1, lJ. 

doo 

Applying Theorem 1.6 to compare u, v, a nd w, we s ee 

that the first three coefficients for u and w are the 

same: 2, 0, -1. Hence, we compare u and w by 
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Table II - Two-Sided Mixed-Radix Notation 

::: 7 
r'.3 

~ -
0 

1 

2 

3 

0 

0 

-

-

-

0 
~ . -

0 0 

1 -

2 -

3 -

~~ 0 

0 1 

1 -

2 -

3 -

1 2 3 

1 -2 2 

-1 -1 1 u = 58 

- 0 3 

- - I 2 

1 2 3 

0 0 -3 

0 0 2 V == 60 

- 0 3 

- 2 - ----
1 2 3 

-1 -1 3 

- 1 -1 1 w = 59 

- 0 3 

- 2 -
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comparing their last coefficients, 

tively, from which we conclude that 

0 and 1 re , spec-

[2, 0, -1, OJ < [2, 0, - 1, l] 

or 

u < w. 

Similarly, the first two coefficients of v a nd w a r e 

the same, so we compare v and w by comparing their 

th ird coefficients, O and -1, respectively. We get 

[2, 0, 0, l] > [2, 0, -1, l] 

or 

V > W . 

It might be noted from these examp l e s t hat a fair 

amount of computation is needed to obta i n a ll the r esi-­

dues d . . n e c es sary to convert an integer from res i due 

Jl 

notation to mixed-radix notation. Th i s computat i on can 

b e Pe rformed most qu i ckly and e f f ic i ently i n a modular 

a r· 
d 

lthmetic computer if a permanently store t able of 

res i dues is used to "eliminate " t he modul i r 0
, r

1
, . . . , 

r 
n - 1 in the c o ngruences 

ive rows of r e sidues d .. 
Jl 

c o ns i sts of the integers 

( 1. 9) from wh i ch t h e succ e ss -

a re calculated. Such a tabl e 

s . . such t hat 
Jl 

s .. == o, 
J l 

i == O, l, . . . , j , 
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ana 

r . s .. 
J Jl 

'Where 

l (mod r . ), 
l 

i -· j+l, j+2, •.. , n, 

j = 0, 1, ... , n -• l. 

The entries s . . in th is table are used to calculate the 
J ·1 

residues a . . from the congruence 
Jl 

d J. :i· = ( d . l . - d . l . l) s . l . (mod r . ) ( l . 11) 
J-· ,1 J- ,J- J- , :1 1. 

'Which is equivalent to (1.9). (Note, however, th.at Lhis 

table can be used for only one particular order i ng of the 

moduli rol r11• •'I rn• 
If the modul l are re-indexed, a 

it is 
diff erent table is required. 

In practice , though, 

very a oubtful whether more than one "indexing" would ever 

be necessary.) 
Since the calculations required in (1.11) 

can be performed simultaneously for a fixed j and for 

i =:: 0 , 1, ... , n i n a modu lar arithmetic computer, only 

one subtraction an d one multiplication are needed to 

calculate each row of residues d . . from the preceding 
J 1. 

on e. Hence, when the n+l moduli r 0 , r 1 , ... , rn are 

Usea . in the computer, 
the entire conversion process can 

be accomplished with n subtract.ions and 
n multi-

:Pl.icat·· ions. 
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To illustrate the use of such a stored table, let 

us Use the table of residues s .. given in Table III to 

Jl 

convert to two-sided mixed-radix notation the numbers 

p ~ {-3 I 1, 1, 1) and q ~ {-3, -2, -1, 1] 

given in the third example at the beginning of this 

chapter. (We are now using residues satisfying (1.10) .) 

The resulting sets of residues d .. 
Jl 

for p and q are 

given in Table III. The first rows in those sets are 

s· imply the residues of p and q modulo r 0
, r 1

, r
2

, r
3

, 

respectively, and the second, third, and fourth rows are 

calculated from the first rows by using (1.11). 

For q = 53 the calculation of the second row is 

Performed as follows: the residue d 00 
is subtracted 

from each of the residues d
00

, d 01
, d 02 , d 03 

in the 

f" lrst row, the four subtractions being performed simul -

taneously and independently with respect to the four 

r r r respectively . 

O' l' r2, 3' 

0 l - l 
-

l = -1 l 

2 - -2 l 

3 _ -3 - l 

(mod 2) 

(mod 3) 

(mod 5) 

(mod 7) . 

This gives 

~ext, the residues obtained from these subtractions are 

~Ultiplied by the entries s 00
, sol' so2' 5 03' in the 
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first row of the stored table, respectively, the multi ­

plications being performed simultaneously modulo 

r2' r 3 , respectively. This gives the residues a
10

, a
11

, 

d1 2 1 d 13 
in the second row: 

dlO = 0 - 0 (O) (mod 2) 

dll = -1 - 1(-1) (mod 3) 

d = 1 
12 

- 2(-2) (mod 5) 

dl3 = - 2 - 3 (-3) (mod 7) • 

Similarly, the third row of residues for q is calcu­

lated from the second row by first subtracting a
11 

fr om 

each of the elemen ts a
10

, a
11

, a12
, a13 

in the second 

row and then multiplying the results by the respective 

elements slO' sll ' sl2 ' sl3 
in the second row of the 

stored table. Finally, the last row of residues for q 

is calculated from the third row by subtracting a
22 

from each of ~ a a a and multiplying the 

u20' 21' 22' 23 

results by the elements s20' s21' s22' s23' respectively, 

in the last row of the stored table of s . . 's. 
Jl 

The 

calculation of the residues 

formed in the same manner. 

d .. 
Jl 

for p = -59 is per-

Note that, whereas previously in (1. 9) the residues 

d were undefined 
ji 

f er l < j, we now have a .. = 0 
Jl 

when i < j I which results from setting s . . = 0 for 
Jl 
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.'.table III - Mixed-Radix Conversion by Stored Table 

~ 0 1 2 3 

0 0 -1 -2 -3 
~ 

1 0 0 2 -2 s .. 
Jl 

2 0 0 0 3 
,_ 

-

-~ 
0 1 2 3 

0 1 1 1 -3 
..__ 

1 0 0 0 -2 
p == -59 

'-----

2 0 0 0 -3 
~ 

3 0 0 0 -2 
,.___ 

:R 0 1 2 3 

0 1 -1 -2 -3 
...._ 

1 0 -1 1 -2 
q == 53 

---
2 0 0 -1 2 

-
3 0 0 0 2 

.___ 
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i ~ . 
J. We do this merely for the sake of convenience in 

Performing the above calculations in a computer. 

The "diagonal" elements - d
00

, d 01
, d 02

, d 03 
ob­

t . 
ained in this way are the two-sided mixed-radix co-

efficients for p and q, respectively. Hence, from Table 

I rr 

ana 

or 

we have 

p == 

== 

d33r2rlr0 + d22rlr0 + dllrO + dOO 

-2(5·3·2) + 0(3·2) + 0(2) + l 

q = 2(5·3·2) - 1(3·2) - 1(2) + l, 

P /\., [ -2, 0 , 0, l] and q "'--' [ 2, -1, -1, l ) . 

Since the leading non-zero coefficients for p and q 

-2 and 2, respectively, we conclude immediately 

that p is negative and q is positive. 

We have now shown how magnitud e compari son can be 

Performed for integers in residue number systems by cal ­

culat· ing the mixed-radix coefficients from the residues of 

the · given integers and then comparing those coefficients 

in lex · icographic order. we have also shown how the sign 

of an · 
· 1 d · 

integer can be determined from its ea ing non-zero 
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two-sided mixed-radix coefficient . Finally, we have shown 

how the calculation of the mixed-radix coefficients from 

th e residues of an integer can be performed efficiently 

in a modular arithmetic computer by using a stored table 

of residues. Thus, we have added magnitude comparison 

ana sign detection to the set of operations which can be 

Performed readily in a modular arithmetic computer. We 

sha11 now make use of these operations in devising methods 

to Perform other fundamental operations in these computers. 
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CHAPTER II 

OVERFLOW DETECTION 

A. Overflow in Residue Number Systems. "Overflow" 

is th e term designating the situation which occurs when a 

dig ' t 1 al computer generates a number "too large" for it-

that is, when some operation performed by the com­

PUter results in a number outside the range of numbers the 

computer is designed to handle normally. If overflow 

occurs, the computer in some manner "truncates" the num­

ber b 
eyond its range to produce a number which is within 

its 
range and which is used in place of the original one 

in b 
su sequent calculations . But since certain important 

arith · 
b 

metic properties of the original num er may not be 

Preserved in this truncation, erroneous answers may re­

sult Unless the overflow is detected and the subsequent 

ca1cu1 t · 
d · 1 

a ions are modified accor ing Y· Therefore, some 

means of detecting overflow under program control must 

be p . 
rovided in every digital computer. 
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In "conventional" digital computers using, for example, 

N-digit binary numbers, one or more "extra" high-order 

a· 
igits are built into the register (called the accumulator) 

where arithmetic operations take place. When some opera-• 

t· 
ion Produces a number requiring more than N digits for 

its b · inary representation, overflow occurs and is detected 

immediately by a "carry" into one or more of the extra 

a . . 
igits in the accumulator. Special "transfer-on-overflow" 

instructions are used by the computer programmer to test 

these h' igh-order digits to determine if it is necessary 

to II , 

shift" the number in the accumulator to compensate 

for th e overflow. 

In modular arithmetic computers, this situation is 

s1· 
ightly different. overflow still occurs whenever some 

operation produces a number beyond the computer range, 

but since all arithmetic operations are performed modulo 

the product of the moduli, in these computers, no 

" carries" are ever generated. For instance, in a mod -

lllar . 
. 

arithmetic computer in which the moduli are 2, 3 , 

S, and 7 and the computer range is the set of all in-

tegers from -104 to 105 inclusive, overflow occurs 

when 
the numbers 
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{l , -2, 0 o, l. 
I 'J 78 and {3, -1, -1, 1) 59 

are added. The "true" sum, 137, of thes e numbers is out-

s·a 1 e the computer range, so it is "truncated" to give 

the · unique integer x modulo M (= 210) within the com-

PUter range and such that 

X = 137 (mod 210). 

'I'hus 
I 

X Z {-3, 2, -1, l} ~ -73 

is th e "compu tea " sum of 78 and 59 in this computer , 

Which is a most astounding result since we usually expect 

th e sum of two positive integers to be positive. 

In general, whenever the sum, difference, or product 

Oft Wo integers in a modular arithmetic computer lies 

0Utsia e the computer's range, the "computed" result will 

be the unique integer which is within the computer range 

and Which is congruent modulo M to the "true" sum, di£-

ference , or product. While this form of truncation may 

Permit 
l a 

the programmer to ignore all over£ ows an yet ob-

tain th e correct results in many cases, it is still often 

nece ssary to know whether or not the computed sum, dif -

ference , or product is exactly equal to the true result. 

~herefore 
bl fa 

, we shall now consider the pro em o etecting 
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overfl . 
ow in residue number systems. We shall make no re-

str · • 
ictions on the moduli used (other than those neede d 

for ma . 
gnitude and, where applicable, sign detection) , bu t 

we h 8 a11 allow the computer range to be only the in teg ers 

0 

M - l 

through M-1 inclusive, the integers 2 
through 

+ ~ 
2 inc lusive (where M is odd), or the intege rs 

M 
- 2 + l through M 

2 
inclusive '(where M is even). 

'I'he 
r eason for restricting ourselves to only three pos-

Sib 
le ranges for the computer is that , for a given s e t of 

rnoaui · 
i, rhe behavior of overflow varies consider ably with 

the r ,, 
ange used. 

. • 

(Also, it is extremely unlike ly whe ther 

any range other 
ld b fl · · 

than these wou e use u in a p r act i c a l 

rnoau1 . 
ar arithmetic computer.) Finally, since add i t ion , 

s ubtract· ion, and multiplication are the only a ri thmetic 

ope rations whic h can cause overflow in a modular a r ith­

metic 
computer, we shall treat only the detection of 

aadit· 
ive overflow (which includes overflow re s ul ting 

f:r orn 
subtraction) and multiplicative overflow. 

~ Additive Overflow. To detect overflow occurring 

in aaa. . 
ition and subtraction in modula r arithmetic com-

PUters 
, we compare the magnitude of the c omputed s um or 

a· 
~f ference with that of one of the (two) addend s or that 
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of the minuend. We determine whether or not overflow has 

occurred by checking to see if the computed sum of differ­

ence t · . 
sa 1sf1es the order relations which normally hold 

betw 
. 

een the true sum or difference and the addends or 

minuend. If these relations are not satisfied by the com-

Puted result, we conclude that overflow has occurred. 

For the case in which the computer range consists of 

the 1· ntegers 
d f · d t 

0 through M-1, we e ine z an w o 

be the computed sum and difference, respectively, 0£ the 

integers x and y. we assume that x and y are 

With . 
in the computer range, as are z and w. Since, by 

def · .l.nition 

and since 
I 

I 

Z = X + Y 

b y the above assumption, 

(mod M) 

Q < x + y < 2M, 

it f 0 llows immediately that whenever overflow occurs in 

aaait . 
. . 

.l.on - that is, x + y ~ M - then z is given by 

Z == X + y - M. 

Bene 
e, When overflow occurs, we have 

z < x, 

y is less than M by assumption. On the other 

hana 
' if no overflow occurs, then 
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Z = X + y ~ X. 

Clearly, since the above expressions for z are "sym-

metrical" in X and y, the same relations hold betwee n 

ana y. 

In the same manner, it follows from the assumptions 

on X and y that 

- M < x - y < M. 

Since 

w - X - y (mod M) I 

it is then 
given by 

clear that w is 

w = X - y + M 

Whenever overflow 

X - y < 0. 

occurs in subtraction 

Therefore, since y 

t hat i s, when­

is less than M, 

it f 1 0 lows as before that 

W > X 

When 
ever overflow occurs. on the o ther hand, if no over-

flow 
occurs, then we have 

w = X - y , X. 

'!'his Proves 

~orem 2.1 (Additive overflow Detection) - In t h e 

~ number system whose range i s the set of integers 

0 _t,hrough M-1 inclusive, over flow occurs in 
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~dfil tion if and only if the computed ~ is less th~ either 

.2.f ~he addends and overflow occurs in subtraction if and 

.2..,n1_y_ .if ~ computed difference is greater than the minuend. 

* * * 

For example, in the residue number system based on the 

moduli 2, J, 5, and 7 and whose range is O through 

209 , we detect overflow in the addition and subtraction 

Of 

X -

and 

y = 

by noting that t heir sum 

z = 

91 {o, 1, 1, 1} 

127 ~ [1 , 2, 1, lJ 

s ~ [ 1 , 3, 2, oJ 

is less than x (and l ess than y) and t hat their dif-

ference 

is greater than x. 

sons b Y converting 

w-= 174 ~ {6, 4, o, o} 

As before, we perform these compari­

z , w, and x to mixed -radix notation 

ana comparing their mixed-radix coefficients as prescribed 

in 'lYL 
.i.ueorem 1 .4: 

z "- [O, l, 1, OJ < [ 3 , 0, 0, 1) ~ x~ 

[ 5, 4, 0, OJ > [3, 0, 0, 1) x. 
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For the case where M is an odd integer and the 

computer range is M - l 
2 

through + 
M - l 

2 
inclusive, 

We may consider overflow in addition and subtraction 

s· 
imultaneously by regarding the subtraction of y f rom 

as the addition of (-y) to x, X and y both being 

integers · h · 
Th f d · 

wit in the computer range. ere ore, we efine 

to be the computed sum of x and y, or equivalently, 

the 
computed difference of x and y', where y' = -y. 

~ow, if 
X and y have opposite signs or if either is 

Ze:r 0 ' overflow is impossible since x + y must lie between 

ana 

But 'f 
I i 

y 

X 

and therefore must be within the computer range. 

and y are both positive, then it follows f rom 

the 
assumptions on the computer range that 

0 < X + y < M11 , 

so that 
overflow occurs whenever 

M/ 2 < x + y < M. 

z is also within the compute r range - that is, 

-M/ 2 < z < M/2 

q nd since 
, by definition, 

Z =: X + y (mod M) , 

it 
follows that 

-M/2 < z = x + y - M < 0 . 

(2 .1) 

(2. 2) 

X and y are both positive and over f l ow 
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occurs 
I z is negative. Similarly, if x and y are both 

negative and overflow occurs, z must be positive since 

(2.1) , (2 ) .2 , and 

-M < x + y < -M/2 

irnp1y that 

0 < z = x + y + M < M/2 . 

For the case where the computer range is 

M 

M 
2 + l 

through -2 
, we may reason almost exactly as we have done 

immediately above, except that we must provide for the case 

where Y' = M/2. We do this simply by regarding the subtrac-

tion of M/2 as the addition of 

give the same computed result. 

M/2 since both operations 

Then, it follows as before 

that 
overflow is impossible whenever x and y have 

0 PPos·t Le signs or whenever either is zero. If x and y 

are 
Positive , tl1 e n from 

0 < X ~ M/2, 0 < y ~ M/ 2, -M/2 < z ~ M/2, 

a
nd 

<2 .2) it follows that 

M/ 2 < X + Y ~ M 

z = X + y - M 

if 
overflow occurs. Hence , if both x and y are pos itive 

ana 
overflow occurs, z will be negative or zero. Similarly , 
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if X and y are both negative, then 

-M/2 < X < 0 

It 

and -M/2 < y < 0. 

overflow occurs, then 

- M < x + y ~ -M/2, 

so that 

z = X + y + M. 

'I'herefore 
I if overflow occurs when both X and y are 

negative 
I z is positive. 

Now let us consider what happens if x and y have 

the same sign and overflow does not occur. If no overflow 

Occurs, then z is simply the true sum of x and y and 

hence ... z has the same sign as both x and y, regardless 

Of the 
computer range. This completes the proof of 

Theorem 2.2 (Additive Overflow Detection) - If the 

com 
~ range is the set of integers 

M - 1 
2 

through 

-+-~ 
2 or M - --

2 
+ 1 through 

M 

2 
inclusive, then over-

flow 
~ .££curs i.!l addition if and only if both summands are~-

~l:'o ad 
~ -!k. have the~ sign while their computed sum is~ 

o:r- h 
-.::.. ~ the 

~ opposite sign . 

* * * 

For example, using the moduli Z, 3, 5, and 7 and the 

computer 
range 

M 

2 
+ 1 = -104 through 

M 

2 
= 105 
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in 
our residue number system, we detect overflow in the 

addition of the integers 

X = 8 3 ~ [-1 1 - 2 1 
-1 I 1] 

y = 71 ':::: [ l, l , -1, 1] 

by noting that both are positive while their computed sum 

z = -56 ~ {o, -1, l, 0] 

is 
negative. w d t · th · f d 

e e ermine e signs o x, y , an z from 

the s . 
igns of their leading two-sided mixed-radix coeffic ients: 

x "" [3 , -1, -1, l]; y ""[2, 2, -1, l]; 

z ~ [-2 , 1 , -1, OJ. 

Th i s completes our treatment of addit i ve overflow 

cletect · 
ion. We turn now to the problem of detecting over-

flow . 
in mult iplication in residue number systems. 

L Multiplicative overflow. Detecting multiplicat ive 

o"erflo••· ·~ in modular arithmet ic computers is somewhat more 

a · 
lfficuit 

· · 1 

than detecting additive overflow, primari y 

bee 
ause the numbers generated in mult i plication may be 

''f 
a:r-ther" 

h th t d 

outside the computer range tan ose genera e 

in aad · 
lt ion. That is, if K is the largest of the abso-

lute 
Values of the integers within the computer range, then 
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the ab 1 
so ute value of the true sum of two numbers in the 

comput 
er cannot exceed 2K, while the absolute value of their 

true Product may be as large as K2 Therefore, the re -

lationshi'p between their true and computed products is, in 

general, more complex than that between their true and com­

PUtea sums. However, it turns out that the technique of 

comparing the sign and magnitude of the computed result with 

those 
of the operands, as was done above to detect additive 

overflow, can still be used in many instances to detect 

znu1 t · 1 . 1 P icative overflow. 

If z is the computed product of the integers X and 

y in some residue number system, then z should be zero 

if ana only if at least one of X and y are zero. Hence, 

if 2 : 0, multiplicative overflow has occurred if x and 

y 
are both non - zero. And if 

/x I ~ 1 
and 

and 

Shou1a be true, at least so long as no overflow has occurred. 

'I'herefore . f 
, J. either of 

hoias for 
X and y non-zero , t h e n mul tiplica t i v e ove rflow 
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must h 
ave occurred. Furthermore , if x and y have the same 

s · 1.gn , then z 

opposite signs, 

should be positive; and if x and y have 

z should be negative. Hence, overflow is 

also indicated by the presence of the "wrong" sign on z. 

But wh i le these tests are sufficient to detect multi-

Plicat· 1.ve overflow , they are not necessary. (For a counter-

exam 1 
Pe, consider the multiplication of 16 by itself in the 

resia 
Ue number system with moduli 2, 3 , 5, and 7 and with 

either 
the range o through 209 or the range -104 through 

los.) Therefore, we must find a method for detecting multi-

Plicat· 
1.ve overflow when the above sign and magnitude tests 

do not indicate that overflow has occurred. That is, we must 

ascert . 
a1.n whether or not 

where K is the maximum absolute value of the integers 

Within 
the computer range, when z ha s the "proper" sign 

ana when both 

0 < /x I ~ /z / ~ K 
and 0 < I y I ~ I z I ~ K 

are 
satisfied. we shall compare IX I and I Y I 

To do this, 

With the 
(positive) square root of K. 



let 

Let k be the unique positive integer such that 

a 

2 
< (k+l) I 

be the non-negative integer such that 

a = K, 

(2. 3) 

(2. 4) 

ana let us assume f · th t 
or convenience a / x / ~ /y /, We may 

compare /x/ d an /y/ with k by defining the integers a 

ana b by 

a= /x/ k and b = /y/ 

Then 
I if a ~ 0 I b must also be 

implies a ~ b. In that case, we have 

2 
(k+a)•(k+b) ( k ~ K, 

- k. ( 2 . 5) 

since /x/ 

which means that overflow does not occur. Similarly, if 

b > 0, then a > 0 also and we have 

(k+a ), (k+b) (k+l) 
2 

> K, 

which . 
is precisely the condition for overflow. Therefore, 

if a ~O , there can be no multiplicative overflow since 

both /xj and /YI are less than the square root of K· I 

ana if b must be overflow because both /x/ and 

> 0, there 

h, I are greater than the square root of K. 

To determine whether or not overflow occurs when 

a > o 
and b ~ o (which is the remaining case) , let us 

e){amine 
the equation 
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/x,y/ = /x/ • /y/ = (k + a),(k + b) 

= k2 + (a + b)k + ab. 

Substituting 
2 

K - d for k in this equation gives 

/x, y/ = K - d + (a + b)k + ab 

from Which it follows that overflow occurs that is, -

/x,y/ > K if and only if 

(a + b)k + ab > d. ( 2. 6) 

But since we are assuming that a > 0 ~ b, it follows that 

(a + b)k + ab ~ (a + b)k, 

so that if a ~ /b/, then 

(a + b)k + ab ~ (a + b)k ,a ~ d. 

Cornbin . 

j j 
ing this result with (2.6), we conclude that a , b 

irnpli es that overflow does not occur. 

Finally , if a > /b /, (which is now the only remaining case), 

we add b2 to both sides of ( 2. 6) and apply the definitions 

( 2. 5) to the left side of the result. This gives 

(a + b) k + ab 
2 

+ b = (a + b)•(k + b) 

= 

which 
'When combined with (2.6), yields the conclusion that 

overflow 
occurs if and only if 

2 
l> d + b . 

if no overflow occurs in multiplying (a+ b) by 



we can readily compare 
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(a+ b)•/ y/ with d + b
2 

to determine 

conclusively whether or not overflow occurs in calculating xy. 

On the other h and, if (a+ b). / y / overflows, then it follows 

from (2. 6) that /x • y/ must also overflow (and hence that 

xy overflows). These conclusions stem from the inequalities 

0 ~ /b / = -b = k - / y / < k 

and 

(a+b) •/ y j> K = d+k
2
>d+b

2
, 

Which follow from our definitions. 

Therefore, if all other tests are inconclusive and if 

a > /b / and a > o~ b, then the detection of overflow in multi-

Plying X and y depends upon the detect ion of overflow in 

multipl . ying (a+ b) by / y /. What we do in that case is 

define by 

== a + b 

and repeat the entire procedure to try to determine whether 

= 
overflows. If 

nee e ssary, we define an x2, an x3, or even an xk+l' 

0 bt . aining each X. from the preceding one in exactly the 

l 

same way as is obtained from x. Eventually, for some 

)( 

i' some test such as a ~/ b / will halt this procedure 

8 ince 

... , etc. 



This follows from 

IX I = a + k > a ~ a + b = xl > 0 

Since b ~ 0; similar r e lations hold for xl and etc. x2, 

Thus, we h ave obtained an iterative procedure for de­

tecting mul tipl i c a tive overflow, a "flow chart" of which 

is · 
given in Figure I. Let us now formalize this pro-

cedur 
e for overflow detection by stating it as 

.Theorem 2.3 (Multiplicative Overflow Detection-

Method 
I) - Let K be the largest of the absolute 

~ Qf .th.£ i ntegers in a residue number system. Let 

k 
be integers as defined above in ( 2. 3) and 

and assume for convenieece that fxl ~ /yf. ~ 

~ let 
-------.:::. 

xy 

z . 
i 

k , and 

be the computed product of 

a0 = /x0 / - · le~ 

X . 
i 

and y. 

overflows if b > 0 or if any of the con-

a· 
~ A.- D. holds for i = 0 : 

A. 

B. 

c. 

z . 
i 

Z , 
i 

0 < 

0 < 

= 0 wh i le x . I o I y ; 
i 

has the wrong_ s i gn (z . 
i 

~ 

/zi/ < /xi/ 

I 2 i / < I y I· 
xy ~ not overflow if e i ther 

0) ; 

of the 
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.f._igure I 

Ii frHer \ 
of x, a.nJ , 

Y ~ ew- o ? / 
. - - -· -- , 

Multiplicative Overflow Detection - Method I 

- - - _f,~ ~"- - -

5-Lt (, = 0 

\'o = >< 

b!::/yl-k 

Co,., rv+JI... 

~i.:::: X(· y 

--•--~ y~s : ._ ..-......; , 
----- , 

rs 
L= o ? 
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cona·t· 
~ 

E. 

F . 

!f 
-.....;. none of ~-
x , 

l + l and -
x . 
l+l 

E . - F. holds for 

a. ~ 0; 
l 

ai ~1 b/ 

A. F. holds for a 
---

a . l l + 
as follows: 

a . + b and 
l 

a . l 1+ 
= 

i = 

given 

A. - D . holds for i ~ l, 

0: 

i, define 

k. 

xy overflows; 

if . 
---c:.. ~ of E. - F. holds , xy overflows if and only 

it --.;:;, 

= 

* * * 

2 
> d + b . 

The proof of this theorem is implicit in the 

a · .1.scuss · .1.on which preceded it, but two clarifying 

statements are needed. First , since the sign and mag-

nitua 
e tests related to conditions A. - D. are 

Completely independent of those related to conditions 

E ana F., s i nce the truth of any of A. - D. is 

8Uff · 
.1.cient to guarantee that multipl i cat i ve overflow 

Occurs in 
calculating Z , I 

l 

and since the truth of 

E . and F. is sufficient to guarantee 

that 
overflow does not occur in calculating Z , f it 

l 

follows that none of the condit i ons A. - D. will ever 

be true 
whenever either E. or F. is true, and vice 

68 



versa ( ~ Note that condition E. is actually super­

fluous since a . ~ 0 
J_ 

certainly implies a i ~jb j , which 

is condition F.) 
Second, since the algorithm is de-

pendent upon the assumption that /xi / ~ I Y j , one might 

th ink that an interchange of 

necessary whenever none of 

x ' s 

A. - F. 

and y's is 

is satisfied 

for a given 

than 

i and it happen s that 

However, s inc e b ~ 0, 

is less 

it fo l lows 

from the definition of 
that, .in that case, con-

dition E . would be satisfied by 

of whether or not and y 

regardless 

are interchanged. 

In other words, if for some i we have 

while 
then xy 

2 

overf lows if and only if 
> d + b , so tha t we 

need I n t bother 

light of 

t o interchange 
and y. 

i t also fo l lows that condition 

(In 

D. 

this, 

superfl uous, since , by 
the assumption that Ix I ~ 

Condit ' 1.on D. implies the weaker cond it ion C . ) 

To illustrate the u s e of this algorithm for 

is 

detect' d ing multiplicative overflow, let us consi er the 

Plication of x = 29 and y = 9 in a residue rnu1ti . 

nurnb er system whose r a nge is -104 through 105. Using 

the above d efinitions gives 
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K == 105 , k = 10, d = 5, 

a 0 
= 19 , and b = -1. 

Since 
none of the conditions A . - F. is saiisfied for 

these Values of y , and b, we cal-

culate 

xl = ao + b = 18 

a.na the (computed) product zl = -48 of xl and y. 

Since z is negative while both and posi-

1 
xl 

y are 

tive 
I we now f i nd that condit i on B. · is satisfied. Thus, 

We 
conclude that xy overflows. 

It should b e noted that when the computer range is 

II 

symmetric " about zero, as in the preceding example, 

it is necessary to use two K ' s and two d ' s -~, 

I<::::: las 
I K' = 104, d = 5 I 

and d' = 4 for the above 

One K and the corresponding d are to be 

Usea When the product of x and y should be positive -

is , when X and y have the same s i gn - and the 

K and d (denoted by K' and d' for the 

above 
example) when the product should be negative. In 

this 
way, we may provide for the situation where xy 

OV-e.l:'fl ows but does not . (In the above ex-

a.mPle th ' 
h t d t 

' is could happen only when t e rue pro uc xy 



is -los.) Clearly, this modification to the procedure 

given in h 
T eorem 2.3 is not needed whenever the computer 

.t'ange i' s " 
symmetric" about zero say, the integers 

M - l -~ 
through 

M - l 
+ 

2 2 
or consists entirely of 

non-negative numbers 

M - 1 

- say, the integers O through 

After picking a few "sample" multiplications at ran ­

dom 
a na Using the above algorithm to determine whether 

OJ:' 
not ffiUlt . l . . 

. h 

ip icative overflow occurs in eac case, we 

beg i n to 
feel that instances in which it is nece ssary to 

calculate an 
x 2' an or even an t o deter-

Inine 
conclusively whether or not multiplicative overflow 

Occurs 
are probably quite rare. Nevertheless, the pos-

Sibil. 
ity of s uc h cases does exist and motivates us t o 

Seek 
a faster me thod of detecting multiplicative over-

flow 
when the sign and magnitude tests , i . e., conditions 

A. - D. 
in Theorem 2.3, are inconclus i ve. 

~Multiplicative overflow (continued). Let us 

now 
assume that the sign and magnitude tests A. - D. 

a 
e sc r ibe d 

d th · 

above have been applied to x, y, an e ~r 
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computed product z with the result that none of the con-

ditions A. - D. is satisfied. Let us also assume that 

and that our computer range is either the set 

Of · integers M - 1 
2 

through 

through 

+ 

M 

M - 1 
2 

or the set of 

integers M 
2 

+ 1 2 • 
Thus, by assumption 

we have 

0 < /y/ ~ fx/ ~ I 2 
/ 

~ M/2. 

Now instead IX I /y/ with 
, of comparing and k as be-

fore let postulate the existence of a table of 

I us 

Powers of 

. 

two , stored within the computer , from which we 

can b 0 tai· n · · 
unique integers p and q such that 

2 P-1 < I X I ( 2 p and 
( 2 • 7) 

!f we define n to be the unique integer such that 

n 
2 ~ M/ 2 

n+l 
< 2 , 

( 2. 8) 

ana if 
immediately that 

p + q ~ n, then it follows 

/xy/ == IX I.- / y I ~ 
2P . 2q = 

2p+q ~ 2n ..._ ~ M/ 2, 

'whi ch is , I xy I > M/ 2 

means that overflow - that 

does 
not occur. Similarly , if P + q ~ n + 3 , then we 

M/2 = 
p-1 q-1 

2 • 2 

which 
i nd icates that xy overflows. 
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If p + q = n + 1, then it follows that 

= 

So that any overflow can be detected by the pres ence of 

II the wrong" sign on z or by the fact that z = 0 whil e 

X ::/ 0::/y. Finally, if p + q = n + 2, then we have 

2n == p+q-2 </x/ I y I ~ 2p+q 2
n+2 

~ 2M, 

2 
. = 

--.: 

Wh ' 
ich means that the wrong sign on z (or z = 0) will 

have · indicated any overflow such that 

M/2 < I X I . I y I ~ M 

or such that 

3M/2 < I x / · I y I ~ 2M . 

Therefore, if p + q = n + 2, it remains for us to 

d. . 
i st inguish between two cases: 

Case A 

Case B 

M </ x / I y I ~ 3M/2 : 

2n < { x / . / y / ~ M/2. 

Clearly, in case A there is overflow and in Case B there 

is n 0 overflow. 

To distinguish between Cases A and B, let us defin e 

z 

p-1 I I 
1 to be the computed product of 2 and Y · Then, 

in Case A, we have 

Wh' 
ich means that will be n egative or zero. But, in 
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Case B, we have 

2n-l= 2~q-3 </x/2 /·/Y/ 

< I x I· / Y / ~ M/2 , 

p -l I I ~ 2 . y 

which indicates that z
1 

wil l be positive . Therefore, 

when p + q = n + 2 , xy overfl ows if and only if z 
l' 

the computed product of 2 p -l and / y / , is negative or 

zero. This completes the proof of 

Theorem 2 . 4 (Multiplicative Overfl ow Detection -

Method II) Le t z be the com puted prod uct of x a nd 

y, where / x / ~ / y / , in ~ residue number sys tern i n which 

the absolute va lue of a ll integers is no greater than 

M/2 . If x IO I y , l et p, q , and n be the positive in-

tegers satisfying (2 . 7) a nd (2.8 ) , and l e t z
1 

be t h e 

computed product of 
p-l 

2 and / y /· x y overflows 

if and only ~f ~ _QE. ~ of the fo l lowing conditions is 

satisfied: 

A. z = O while x IO I y; 

B. z has~ wron~ sign 

C. O <{z / </ x /: 

D. p + q = n + 3; 

E. p + q = n + 2 and -
* * * 

(z I O) ; 

Interestingly e nough , it is also possible to deter­

mine whether or not multiplicat ive overflow occurs wh e n 
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n + l ~ P+q (n+2 by using the additive overflow 

detect · 
ion procedure. If we define c and d to be in-

tegers 
such that 

C ::: I X I 
then We have 

/ x/·/y/ ::: 

From (2. 7) and 

0 < C 

2 p
-1 

p+q-2 
2 + 

( 2. 9) 

p-1 
~2 

and d = I y I q-1 
2 I ( 2. 9) 

C•2 
q-1 d . 2P-l 

+ .. + ed. (2.10) 

if follows that 

and 

so that each f 
. . 

o the four terms on the right side of (2.10) 

is 
not greater than 

p+q-2 
2 

IIence 
' it follows that xy overflows if and only if 

cl.ddit · 
ive overflow occurs in calculating the sum in the 

l:' . 
.l.ght Side of equation (2 .10). 

While this technique of using additive overflow to de­

tect mu1t · lplicative overflow seems simpler than using z
1 

as 
Prescribed i'n Th 2 4 i' t turns out that one to 

eorem . , 

th.:re 
e magnitude comparisons (two to six conversions from 

l:'esia 
Ue to mixed-radix notation) are required to deter-

lnine 
Whether or not any additive overflow occurs in (2 . 10), 

Wh· 
.I.le only 

· d d ' 

one sign test (one residue to mixe -ra ix 

conv 
ers ion) · 

k d · t · 

is necessary to chec con i ion E . in Theorem 
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Hence , using z 1 
as prescribed in Theorem 2.4 is 

"faster" 
than using equation (2 . 10) . 

It should be mentioned that the requirement of a 

Sto 
red table such as is needed for the overflow detection 

Proced 
Ure given in Theorem 2.4 is quite reasonable. The 

table · 
itself would not be very large since it need contain 

only th 
ose (positive integer) powers of two within the 

cornputer 
range . Furthermore , the integers p and q 

would be 
obtained easily from the table by a simple "look-

Up •• 
Procedure in which the mixed-radix coefficients of 

and /Y/ would be compared with those of the powers 

Oft 
wo stored in the table, and the mixed-radix co-

eff · 
lcients of / x / and / y / would already have been com-

PUted · 
in order t o perform the sign and magnitude tests 

A . - D . 

To illustrate the use of Theorem 2 °4, let us consider 

the 
rnultiplication of x = -31 and y = 8 in the residue 

nurnbe 
r system in which M = 210 anq the range is -104 

through 
105 . First, we note that , since the computed 

Product 
of x and y in this system is z = -38, none of 

the 
conditions · Th em 2 4 is satisfied . 

A . - c . in eor . 
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we obtain p = 5 and q = 3, from which we find 

P + q = 8 + 2 = n , 

Since 
n = 6. Next, calculating gives 

= 16·8 = 128 -82 (mod 210) 

2
1 = -82 . Since condition E. is now satisfied, 

rnu1 ti . 
Plicative overflow is indicated. 

F'or 
comparison, we note that using (2.10) to detect 

overfl 
ow in the above example requires at least 

llitua 

one mag-

e comparison 

canv 
ersions) 

(meaning two residue to mixed-radix 

On1 Y one 

ta f· 
1.na t 

to detect additive overflow in 

= 
p+q-2 

2 

6 2 4 

= 2 + 15-2 + 4·2 + 15 •4 

64 + 60 + 64 + 60. 

resia· ' to mixed-radix conversion was required 

he sign of 

We h 
ave now shown how to detect overflow resulting 

f:toin 
aaait· l.on, subtraction, and multiplication in modular 

Ql:"ithnt 
etic 

t computers_ or, at least, in those having cer-

c\in" 
select" 

d 

two c0mputer ranges. In all cases concerne, 

o:r more . 
mixed-radix conversions are necessary to 
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deter . 
mine whether or not overflow has occurred , and i n some 

instances 
, considerably more computation than that i s 

necessary to conf.1.rm the presence or absence of overflow. 

'I'h is 
· means that overflow detect ion in modular arithmetic 

cornp t 
u ers will a lways be somewhat slower than i n compar-

able 
conven tional digital computers and that , i n general, 

rno:i:-e 
compl icated circuitry will be needed for overflow 

detect · 
1.on i n modular arithmetic computers. However , th i s 

handicap . 
1.s not as great as it might seem , since over-

flow 
detection tests need not be used as often i n mod-

llla:i:- ar . 
1.thmetic computers as in conventional computers . 

'I'he 
l:'eason for this i s that ? unlike the truncation in con-

"ent · 
l.ona1 comp ters , the truncation used in residue number 

systems often 
permits the correct answers to be obtained 

eve 
n 

th ough overflows may have occurred at ma ny i nter ­

Inea . 
1.ate steps in the calculations For example , i n cal-

cu.lat · 
1.ng the partial sum of an alter nating series , the 

P:i:-og 
:i:-arnmer of the modular arithmet.Lc c omputer may completely 

ignore the 

. 

fact that the individual terms i n the series 

ove:r-f 
low 1.f he is certain that the partial sum itself will 

be Wi th1· n 
the computer range. In fact , this particular 

P:tope 
rty of residue number sys tems will be used extensively 

in 
Pe:r-forming some of the i mportant calculations needed ln 



I 

l 

the a 
ivision and square root methods described in the next 

two 
chapter s. 

The refor e, although overflow detection in modular 

cl.t·. l.thmet · 
l.c computers is somewhat more cumbersome than might 

be des · 
J.red, we have shown that it is possible to detect 

such 
overflow and we have given methods whereby the de-

tecti 
on can be accomplished in a reasonable amount of com-

Although we have found it necessary to intro-

duce a 
sma11 table of powers of two in order to allow a 

lllol:'e 
efficient me.thod _ namely, that of Theorem 2.4 - for 

detect · 
J.ng multiplicative overflow, we shall find in the 

following 
two chapters that this same table can also be 

Usea to 
facilitate other very important operations in 

llloaular 
arithmetic computers. 
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CHAPTER III 

DI VISION 

A " Divis ion in Residue Number Systems. Normally , 

when we speak o f the d i vision of , say , x by Y in any 

numbe r system, we are referring to the process of obtaining 

the s o lut i on z of the linear equation 

y z x . 

As sumi ng that multiplication is commutative and asso-· 

c i at ive · in t h e number system, the existence of such a z 

(f or a ll x ) i s equivalent to the existence of a multi-

p lica t ive i n ve r s e 
-1 

y of y 

-1 
y · y 

such that 

-1 
y · Y l, 

whe r e 1 d e no t e s the multiplic ativ e identity, (See 

Jacobson [ 14] I P o 24 0) Clearly, if s uch an inverse 

exis t s , t h e n 
-1 z ,:: xy 

-1 
y 

I n a c ommutative ring, the existence of . a multiplica-· 

t ive i n v erse for any element y is dependent in part upon 

wh e the r ~ r not y is a zero divisor - that is, whether 

o r no t t h ere exists a w IO in the ring such that 

80 



yw = 0, where 0 denotes the add't· 
1 ive identity in the 

ring. In particular, 

-1 y 

if 
we assume there exists a multi-

plicative inverse for the zero d . . 
ivisor y, then 

we have 

w = l ·w = -1 -1 
(y ·y)w = Y (yw) = Y-1-o = 

0, 

which contradicts the definition of 
w. Hence , if y 

l·s a zero divisor, then it has n l · 
o mu tiplicative inverse, 

a nd "division" by y is not possible . 

It is not hard to verify that, under addition and 

multiplication modulo M, the product of the moduli, 

res idue number systems are always commutative rings . How-

ever, unless M is a prime , in which case it is the only 

modulus, all residue number systems contain non-zero ele-

ments which are zero divisors. 

66-68.) In particular, if y 

(See Jacobson [14], pp. 

is any non-zero integer 

i n a residue number system and if y is not relatively 

prime to all the moduli for the system, then y is a zero 

divisor and has no multiplicative inverse. Hence, unless 

y is relatively prime to all the moduli, division by Y 

h · f each x ;n the res;due number is impossible - tat is , or ~ ~ 

system, 

yz = X (mod M) ( 3. l) 
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either has no solution z or has several different 

solutions. (For example , in the residue number s ystem 

based on the moduli 2 , 3, 5, and 7, there exists no 

integer z such that 

36 • z = 59 {mod M) , 

but there are five solutions to 

-95°2 = 20 (mod M): 

z = 2 , z = 44 , z = 86 , z = - 82, and z - -40.) Further-

more, even i f the multiplicative inverse of an integer y 

does exist in a residue number system , the solution z 

to (3.1) is not the quotient one would expect from most 

computers unless x is an exact ( integer) multiple of y . 

The reason f or this is that the multiplication in (3.1) 

i s performed modulo M. {For example, in the residue 

number sys tem used above , the solution z to (3 . 1) for 

x = 78 and y = 37 is z = -66. ) Hence, even when 

division i s possible in a residue number system, the q uo-

tient obtained in many cases in fact , in most cases - is 

not suitable for use in most computer applications . 

There are also zero divisors in the number systems 

used in conventional digital computers , but there the 

problem discussed above is avoided by using a different 
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definit ' ion of division. 
In particular, when a number x 

is a , ivided by a non-zero number y in a conventional 

digital computer, the "quotient" which results is usually 

the , a portion" of the true quotient - that is, 'integr 1 . 

the s integer not exceeding greate t . 
lx!YI, preceded by 

the Proper si gn . To obtain this 
"quotient" in conventional 

a· l.gita1 computers I 

"division" is usually performed by a 

Seq Uence of subtractions and "shifts" which amounts to 

ing the quotient by counting the number of times generat · 

the a . . ivisor can be subtracted from the dividend before 

as · ign change occurs. 

There · • is no reason why we cannot carry over this new 

def · 
l.nition of quotient for use in residue number systems 

O:t ' for . that matter, why we cannot uses-• other defin-

quotient such as, say, the "nearest" integer 1ti0 n of 

to 
X/y o However, we do encounter considerable difficulty 

in carrying h d f over to residue number systems the met o o 

a · l.Vis ' l.on by 

s· 1 nce sign 

cl:t . 
l.thrnet · le 

subtracting and "shifting . " 
In particular, 

determination is more difficult in modular 

computers than in other digital computers (the 

:tesu1 ts of Chapter I 

repeated subtraction of the divisor from the dividend 

notwithstanding), the method of 

s · 1.rn!>le 
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i s Prohibitively time consuming and inefficient. Further-

more , if we try to speed up this procedure by using the 

t e chnique of "shifting" used in conventional computers, 

w e find that performing a "shift" in residue number sys­

tems is equivalent to performing the division itself. 

There fore , we shall now seek some other procedure 

WG reby we can conveniently calculate some reasonable 

app roximation to the quotient of the (non-zero) integers 

X and y in a residue number system . We shall present 

a new method for finding the nearest integer to (or the 

i ntegral p ortion of) the quotient x / y, and then show how 

hi s method can be extended to give a much better approxi-

ma ion to that quotient . Fina lly , we shall apply these 

new "divis ion" methods to enable modular arithmetic com-

pu t ers to perform "floating- point" arithmetic - a capa ­

bility heretofore possessed only by conventional digital 

computers . 

Division Algorithms for Residue Number Systems . 

Let u s now assume that x and y are non - zero integers in 

a residue number system whose range consists of the integers 

M 1 
2 

through + 
M 

2 
1 

(if M is odd) or 
M 

2 
+ 1 
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(if M is even). Let us assume further that 

there 2
1 

exists a table of powers of two from through 

2n 
Where, as in (2.8), n is the integer such that 

( 3. 2) 

As we 
explained in Chapter II, we may obtain from this 

table 
the non-negative integers p and q such that 

P-1 I 
2 < X I ~ 2P and ( 3. 3) 

Frorn 
these inequalities it then follows that 

( 3. 4) 

s o that it seems reasonable to choose 

= 

as a first approximation to / x / y /. However, if / x / < / y /, 

then the 
nearest integer z to /x/ y / mus t be either zero 

or one. 
In that case, we may ignore z

1 
and choose 

between the two possible values for z by calculating 

and comparing it with / y /· If 

O < 2/x/ </y/, 

then 

/ x / y / < 1/2 , 

so that we should set z = O. But if 2/x / ~ /y / , then 

1 / 2 ~ / x / y / < l, 



I 

I 
I 
I 

.... 

So 'w 

e Should set z = 1. Moreover, since 

I X I < I y I ~ M/2 I 

we have / 
2 X I < M, 

be 
so that the computed product 2/x/ will 

negative 
if multiplicative overflow occurs . Hence, 

th:e 
'
00111PUted pr0duct 2/x/ < O, then the true product 

satisf. J.es 

and ..,, 
e should again set z = 1. 

On the other hand, if the nearest 

is greater than or equal to one . Also, 

p-q ~ 0 so that is an integer . If 

we def . 
ine the · .1.nteger by 

and 

/y/ •z1 . (3.5) 

comb . 
.1.n e thi s definition with ( 3.3) and with the 

def · lnit · 
lon of 

I X I 

z 1
, we have 

< e 
l 

I I 
< 2p-l 

el . 

~ M/ 2, it follows that p ~ n+l. 

p-1 .,,- n 
< 2 ~ 2 ~ M/ 2, 

is within the computer range . 

( 3 . 6) 

Hence, 

if 
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Now, if 

that 

el= 0, it then follows from y i O and 

e 1 = I X I - I y I . 
I y I 

zl = ( Jx/yJ 
z ) . 

1 

z is l exactly equal I x/yJ , to so that we may set 

to obtain the nearest integer to /x/yJ 
- namely, 

itself 

tab1 e of powers 

If, however I 

e
1 

i O, we then turn to the 

of two to obtain the non-negative integer 

t 
l such that 

.:.. 1 ( 3. 7) 

s· l.nce 

it fo11 ows from this definition of 
that 

(3. 8) 

r 1 ~ q, then 

Jx/y J. 
since 

z 
l is surely not the nearest integer to 

t 
l ~ q also i· 1 . 2r1-q . . t t mp ies that is an integer, i seems 

eas 
(3 8) t Us

e this quantity as a 
onable . 

,, , in view of 
Co:r tect · ion" to is ~•gat · z

1
. Furthermore, inasmuch as e

1 

l.Ve if j j lttay zl > I x/y I and positive if z 1 < x/Y ' we 

Use this . . correction to obtain a second approximation 

• I 0 

to jx/yJ by defining the integer z 2 

e ) 2
r1,-,q_ 

z2 = zl + (sign 1 

by 
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As we did for z
1

, we calculate 
from by 

tak . l.ng i ==: 2 in 
( 3 0 9) 

lf 
e2 I o, we define 

to be the non-negative integer 

sau J.Sfy · ing 

Rer-. 

r · -1 
2 l 

we define 
J:'eati 

t he ng th is procedure for i = 

next approximation to /x/y/ whenever e . -1- 0 and 
l 

t 
i ~ q by 

Z , 
i+l 

z . + 
l. 

r • - q 
(sign e . ) • 2 

1 
o 

1. 

(3 . 11 ) 

'.!.'hen i f e . > 0 
l 

for any i, we have 
(z . + 2r i-q ) 

1. e 
i+ l ==: I X I - I y I O 2 i+l = 

= 

Cornb1.· n . · ing this with 

S:i_l"t\ . 
J.la:r1 y I if 

IX I - I y I . 
ei - I y I · 

gives 

r •- 1 
2 1. • 

ri-q 
2 • 

(3.12 ) 

88 



or 

Hence, either 

that 

I. e j < 2r i -1 
i+l 

e. l = 0 1.+ or else it follows from (3.10) 

r. - l. 1. 

Thus, eventually . for some · 'th 1., e1. er e. = O, in 
1. 

which case z = z. is exactly 1. lx/y [, or else we have 

r. < q. If, in the latter case, r. ~ q-2, then it 1. 1. 

follows from ( 3. 9) that 

I fx1y 1 -
2 i I = lei[!l y I < 2r1/2 q-1 

= r--q+l 2 1. ~ 
-1 

2 = 1/2 , 

so that setting z = z makes 
i z the nearest integer 

to 

( 3. 9) gives 

On the other hand, if r. = q - l, then 
1. 

1 / 4 = 2-
2 

= 2ri-
1

; 29 < jei]l!Yj 

= j[x/y [ - zij < 2ri/2q-l = 2° = 1, 

in which case z. differs from the nearest integer 1. 

z to [x/y[ by at most one. In this case, we calcu-

late 2e . and compare it to e. and I y 1· If 2e . 
1. 1. 1. 

and e. have 
1. 

opposite signs, then multiplicative over-

flow must have occur~ed in calculating 

is clearly greater than [ y [. 

2e., so that 
1. 

(Overflow occurs 

89 



<~ 
.i. ~ 

2e 
l i f and only if 2e 

if 2e . 
l 

i and ei have opposite signs 

and e . 
l 

have the same sign, 

over-fl 

a 
ow has occurred, 

tld / y I 
so we may compare 2e . 

l 

d:i..r·ec tly O 
If 

z =: z. 
l 

( If 

< 2e . 
l 

again makes z 

/x/y/ ::: k + l / 2 

the nearest 

for some non -

k, we round the 1 / 2 "upward " to ob-

2e 
i 

If e . 
1 

i s negative and 

a nd e . are negativ e ,md 

z . - 1 
l. 

l 

to get 

~l/2 < / x/y/ - z < 1. / 2 0 

2e . 
1. 

2e . < 
l 

ov erflows 

(3 . 14 ) 

is Pos i t ive and either 2e . 
l 

overflows or 

~lls 
We then set 

2 = z . ~ l to arrive at 

l 

(3 . 14 ) 0 

, We ha 

QQa Ve obtained a division algor ithm, a '·flow 

-1:'t ,, 

Of Which 
appears in Figure II, and we have estab-

'l'h e 

~ ~ (
Division Algorithm ) - Let x and y be 

~eqe,-.c- · 

· h . h th 

---..::.::....: :in a residue number system . .1:-.!l w ic ~ 

- - ---- =.;,; __ 
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absolute values of all integers~ not greater than M/2 . 

~ p and q be the non-negative integers defined £Y. 

(3.3) .and let z be the integer determined~ follows: 

1. 

2. 

3 • 

If / x / </ y /, set z = 0 if 0 <2/x/</y/, 

and set z = l if 2 /x / <o or 2/x/~/y/. 
----
If / x / ~ / y / , set z = 2p-q 

l 
and calculate el 

RY (3.9). If e. 
1. 

0 for any i, set z = z .. 
1. 

If e. IO for any i, let 
1. 

r. 
1. 

be the non--- --

negative integer satisfying (3.10). If r. ;;►, q, 
1. 

calculate z. l EY 
1.+ 

2 above to calculate 

(3.11) 

e. 1 · 
1.+ 

and 3.£ back to step 

If r. = q - 1, 
1. 

calculate 2e . . 
1. 

If 2e . and e. have opposite 
1. 1. 

signs or if 

either of 

is~' set 

2e. 
1. 

and e. 
1. 

have the~ sign and 

z - z. + ( sign e . ) · 1. 
l 1. 

Otherwise, set z = z .• 
1. 

z satisfies 

-1/2 ~ /x/y/ - z <l/2 ; 

z is the nearest integer to 

* * * 

Once having obtained the nearest integer z to 

by the procedure given in the above theore m, we 
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Figure II - Division Algorithm 

---®-~ Fi'n ..{ p,i, 
S-Lt- L=- 1, 

~I= l f'-1, 

Ts 
f--',....--< ze, " - I y I 

ly !~2tt 7 
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can ea . sily obtain the nearest integer to 
x/y by changing 

y have opposite the sign of z to minus whenever X and 

s · 1.gns and leaving it plus otherwise. The signs themselves 

can be determined from the mixed-radix coefficients of 

and q from the 
and y which are used to obtain p 

table of Note that, 
if we wish, we may use 

powers of two. 

the above algorithm to obtain 

Of th e quotient b y setting z' 

Ix I - IY I •Z is negative and 

the "integral portion " 
z' 

whenever 

Z I ::: Z 
otherwise. 

Note also that the above algorithm is independent of 

moduli used in the residue number system and assumes the 

M - 1 through 
only that the compute r range is from 2 

or from _ ~ + 1 through ~. The residue 

n"Llrnber system itself comes into play only when we allow 

multiplicative overflow in calculating 
2

/ x 1 an.d 

2

e i. for 

93 

Bowe Ver · f th ' in calculating e., we make implicit use o e 

overf1 i ow and truncation properties of residue number systems, 

at 
th

is part of the above algorithm maY not work pro-so th 

Per 1 ,, 
:t for th 

com PUters 

'.l'heor em 3.1 

d 
;n conventional digital 

systems use _._ 

In 
the d

;scussion which preceded 
e number 

particular, in _._ 

I 
we proved onlY that 

e. 
i 

is within the com-

is 

:Pu.ter 
range for each i 

that is, we proved that 
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With' . in the computer range and that , for each i , 

- b ut wed' id not prove anything at all about overflow in 

the · 1.ntermed· 
iate results used in calculating e . o In general, 

these . 1 intermediate results are not within the computer range 

so th iplicative overflow usually occurs in the cal-at mult. . . 

CUlat· 
ion o f j I y ,zi. ,. 

But, because all operations are 

l?e:rfo rmea modulo M 
in the residue number system , the 

Co:r :tect result is 
still obtained when we subtract the com~ 

l?Utea 
Product of and z. 

i 
from 

Hence , although 

few ions are made about the particular residue num-assumpt · 

be:r system b · 1 
erng used the algorithm given in Theorem 3 . 

ltlak ' 
es rather 

use of the fact that the calculations 
important 

a:re 
Performed 

in a residue number system (as opposed to the 

nult\b er systems used in conventional digital computers). 

Although we can prove only that 

i , 

for 

the algorithm given in Theorem 3.1 usually con-

r i+l < r i - 1 

:x: = 136 , 047 
Ve:r ges quite rapidly to z 0 

For example , if 

we apply Theorem J.l as follows to obtain 

1600.5529,· • = 
integer z to 

I x I> j y j , we obtain 

the table of powers of two. 

z = 
1 

p = 18 

setting 

and q = 7 



gives 

Ne:x:t 
I 

CUlate 

'l'hen 
I 

since 

z 
2 

from 

95 

e
1 

= 136,047 

rl ~ 16 is greater than q ~ 7, we cal-

85•2048 = -38,033. 

by 

z2 = 2048 
29 = 1536. 

e2 = 5487 and r2 = 13, we obtain 

and 

Since q-1, 
we calculate 2e

3 
= 94, which is clearly 

great er than I Y I = 85. Hence, we set 

z = 

Which is indeed the nearest integer to 

Perhaps the most interesting feature of the above 

a· l.Vis· l.on 
procedure is that it can be extended to provide 

than the nearest 
a rnuch better a pproximation to 

jx/yj 

rn particular, the 
integ er obt · ained in Theorem 3.1. 

a1 gorithm 
of Theorem 3 1 can be modified to yield an 

a . j where 
P.Prox. imation to jx/yj 

in the form 
w• 2 , 

an . 

w is 

l.nteger in the residue nurnber system and j is a 

negat· 
l.ve it p-q d f' · t · n eger. using z ~ 2 and the e ini ion 

(3.si 1 for f f e

1

, we were able to shoW in the proo c 

'l'heo .... .... em 3 .1 that 



Bene e, if 

w -1 -

we define 

then We h ave 

When ever 

w
1 

and 

2p-q- j and 

respectively by 

•na O ~ j ~ P - n - 1 (3.15) 

q ~ 1 0 If 
div · q = 0 , then j y I = 1 and no elaborate 

l.sio n procedur . 
w [ e is necessary; that is, we may set 

:::: x I,.. 2-j , where 

to obta · in 

Wh· l.ch gives 

O ~ j ~ p-n , 

:::: jx1y1 :::: I X I· 
then we have, 

as in (3.6), 

(3.15), 
we are assured 

96 

lie11 Ce 'by that choosing 

the integers 

j to satisfy 

and 

are within the computer range . 

1x1Y I :::: 

as in 
(3. 7) , 

and our division 

we define the non-



and if sl ~ q, we obtain a better approximation 

to I x/yj by setting 

w
2 

~ w
1 

+ (sign £1 )·2s f<-'<J, 

Clearly, we may 
continue this procedure as before, defining 

the · integer f. 
l 

by 
(3.16) 

fi = 2-j/xl-/y j•wi 

and, if defining the non-negative integer 
s . by 

l 

(3.17) 
2si-l <lfij ~2si. 

l:f s i ~ q, the next approximation 

j 
w. 1' 2 i+ 

def · 1.nea by 

wi+l = 

fi > 0, then 

a fi+l = 
nd. it follows as before in 

(3.12) that 

cll'ld it 

s·-1 -2 l = 

then 

s · -1 .. , .. ,
2
si-q2q < f 2 l - i+l 

follows as in (3 . 13) that 

in eithe'r case, 
s·-1 < 2 J._ I 

to I x/y / is 

(3.18) 
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so that 
it follows from 

98 

(3. l 7) that 

(3.19) 

for some i we must have that 

= /x/y/, or else we must have 

f . == 0 , 
l 

- 2 , then 

w = w . + (sign f . ) •l 

l 
l 

j-1 
2 • 

and set 

(3.20) 

we set w == w . . 
l 

d ivision algorithm whose "flow chart " i s 

same as that given in Figure II, but which is 

Of · 

ie g iving a more accurate approxi mation to the guot-

11t th 

p~00 
an 

th e a lgorithm of Theorem 3 . 1. 

:f Of 

This completes the 

(Division Algor ithm - Extended Form) - Let 

be n 

b 
. 

-.c:. _on-zer£ integers in~ residue num er system 2J2 

Values of the integers are not greater than 

q be the non-negative integers defined .!2y 

(3 . 2), let 

be the integer 



One 

l. If / x /-2-~ - q = 0, ~ w = 

2. If -I - q 0, set w = 0 if p-q-j+l < 0 or if --

P-q-j+l = 0 and 2-j+ll XI</ y I· If p-q-j+l = 0 

~ 2 -j+ll I I I 
X ~ y I set w = 1. 

3 • If 
p-q-j 

4. 

- p-q-j ~ 0, set wl = 2 and calculate fl 

If -
(3 . 16). 

f.-/ O 
l. 

If f . = 0 
l. 

for some 
-----

w = w i. 

for any i, let s . 
l 

be the non-negative 

l.!:!teger satisfying (3.17). If s. ) q, define 
l. 

f . 
1.+ l. 

w from -- W . 
l. 

~ w = w . • 
l. 

~tisfies 

s
1 

= q - 1, calculate 2/fi/ and , obtain 

Qy_ (3.20) if 2Jfi/> / y /· Otherwise, 

/fx/y/ -w-2j/~2j-l; 

di!_~ from 2-j {xly/ 12.Y. ~ most 1/2 . 

* * * 

of the more desirable features of the algorithm 

th · 1.s theorem is that j may be changed in sue-

that is I j may decrease as i 

In particular, for any i, fi+l 

With · 
1.n the 

d e j 

will still 

by as much 

t i ::::: 

computer range if we ecreas 

n - s . + l 
l. 

for the (i + l)st iteration. 
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Doin . g this · increases W . i+l 
and 

t • 
by a factor of 2 

1
' 

hut , by (3.19) a nd the definition of 
t ., we have 

1. 

Bence 
• We may decrease j 

with each iteration in order to 

of 

incre ased accuracy in the approximation 

within the computer 
in order to keep w. 

1. However I 

:tange as we decrease j , 
we must also require that 

> (p - q - n + 1 )~ J. min· 
(3.21) 

Sin Ce 

0 ~ j 

interval specified in j in the · 

< 
2p-q-j+l. 

n 
_. ~ 2 

gives 

~ M/2 . 

I wil 

jx/y I ~ 2p-q , 
so that we 

may further 
Ana. . 

< 0 , l.f f 

dee 1 
then 

for the e . ' s 

:tea Se Note that, as 
j 
min 

to p - q - n. 

in 'l' hear em 3 
'>l>,, • 1 • the integers f . in Theorem 3 . 2 are 

4
Ys 1. 

With' ~ in the 

1. 

~es~l computer range, but the intermediate 

ts -· th "'"Y be · e products 2-j i" j and I yl · wi, in ( 3.16 ) 

out . 
side th · 1 · · o,,

0 

e range and maY thus cause multLP 1cat1ve 

tt'>ct · However, if the multiplications and the sub-:tflow 

l.on are 
'" performed modulo M in a residue number 

.x St: ern , th ,.::i e COm t d ~uct puted difference f. of the compu e pro-

s 2-j 1 Ix I and IY j -wi will still be correct -



As bf . 
e ore in Theorem 3.1, our proof of Theorem 3 . 2 

- in (3.19) - only that the error in the approx-

to will diminish by approximately a 

facto .... 
"- Of tw . 

0 
in each successive iteration. ; Cases actually 

exist 

- namely, when /x/y/ = 1/3 or 2/3 - in which the 

a1go . 
i:- J..thm 

of Theorem 3.2 converges in exactly this way 

is 
I 

obta. 
l.n a ,, h 

. so that we cannot hope to 

s arper" estimate of convergence than that given 

in the 
above proof. 

.Sl.J.rr 
:,gests 

However, as the following example 

. ' the algorithm of Theorem 3.2 actually gives , 

l.n, 
inany 

cases, a rate of convergence considerably greater 

'than the 
minimal rate given in the proof. 

'.l'o . 
illustrate the use of Theorem 3.2, let us assume 

Oq.l:' 
.residue 

<, 3 

, S, 7, 11 13, 17, and 19. Since this gives 

11/< 
J 

:::::: 
4

, 849,845 2 22 = 4 , 194,304, we have 

21 :::::: 
22 

and since 

:fol Jf We now apply Theorem 3.2 and the remarks 

low · 
l.ng it to approximate the quotient of 

cl'tlq 

y:::::: 6 , 057 

number system to be based on the eight moduli 

X = 829 , 314 

Oq.l:' 

.residue 

· f1."rst from 

number system, we obtain , 
With the maximal accuracy permitted by 

(3 . 3) 

p = 20, q = 13, and j = -3 . 
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Bene e , fort s iteration" we set he fir t 11 · 

w = 220-13 ·-·( -3) 10 1 == 2 == 1024 

ana j === -3. Calculating fl from (3.16) gives 

f:rorn Which 

it e:rat· ion 
' 

f = 23 8 1 • 29 , 314 - 6057-1024 == 432 , 144 

we get using (3.17 ) . 
For the second 

we set 

and w - w + 2 s 1 -q 6 since 2 - 1 ~ 1024 + 2 ~ 1oss , 
we wish to obta1.· n 

maximal accuracy , we decrease 

j by 

'l'h · t
1 

== n - s 1 + 1 == 4 . 

l.s . 
to 

gives t1 o

0

~ i - - 7 and , by multiplying w2 by 2 

Pensate With for the change in j , w ~ 17 , 408 , proceeding 

~e 2 1he and following iterations as prescribed in second 

o:rern 3 . 2 
F':rorn ' 

we obtain the results given in Table rv . 
so that we 

( 3 .21 ) halt · we calcu late that 

the algo . te r1. thm when j == -14 

S'l.J.lt · l.ng app rox i mation , 

== .-14 , 

s . < q == 13. 
l. 

The 

by 
aPP:ro:xi th mately Oo00000245 , 

which is considerablY less 

an the 
maximum error 
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Table I V ~ Applicacion of Theorem 3.2: Sample Di v isi on Problem 

X = 829r314 Y = 6r05 7 /x/y/ = 136. 9l82l6:r7 ••• 

i W. j f . s , w , , 2 j Error= x/y - w.• 2j .1. l l l l 

1 1,024 -3 432, 144 19 128. 00000000 ,· . ~ +8 091827637 ••• 

2 17,408 -7 711,936 20 136.00000000 , +0.91827637 • • • 

3 140,288 - 10 -506,880 19 13 7 . 00000000 ., --•• -0.0817 2363 •• • 
I-' 

4 2,243,584 -14 -1, 907,712 21 136.93750000 . -0.01922363 ~--
0 
w 

5 2,243,328 -14 -357,120 19 13 6 • 9 218 7 5 0 0 ., , ,;:.· -0.00359863 ••• 

6 2 , 243,264 ~14 30,528 15 136.91796875 , ·t, +0.00030762 ••• 

7 2,243,268 -14 6 , 300 13 136 .91821:2.69 , . • +0.00006348 ..• 

8 2,243 , 269 -14 243 8 136.91827392 • • • +0.00000245 .•• 

~ 



Note that , in this example, w 
would still be within 

the 
computer range if j were decreased to 

-15- However , 

if th· l.s were done w 
would not be less than or equal to 

2n ~ 222 
' 

which is th 
e criteria by which we determined 

Bence . 
' it will happen occasionaJly that we can still 

w . withi 
le n the computer range when we make j (one) 

ss th Jmin ° In that case we have an • 

'l'he of these cases , in which we obtain slightly P:tobab . . l 1.lity 
ess maximal " accuracy consistent with the range than II • the 

Of the 
residue 

the number system , can be minimized by choosing 

modul i <la of that system such that their product is as 

Se as that possible , but not less than , a power of two 

Powe:r b e ing 2n+l , where n satisfies (3 , 2), 

Now we h 
"luni, ave shown how to perform "division" in residue 

e:r The algorithms we have given maY be used 
-1- systems 
~C) • 

CJive ither t ' t a <l an integer approximation to the quo ,en or e· 

Ose:r int approximation in the form wt.!i , where w is an 

ege:r 
in the · is a negative 

residue number system and J 

In particular , we have illustrated in the above 

al how the "exponent" j can be manipulated so that 

CJo:rithm 
of Theorem 

3
_
2 

yields the most accurate 
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consistent wi'th k . eeping w within the approx · imation 

comput er range. 

algorith 

Next , we shall shoW hoW these division 

ms can be used 
to help perform other useful 

operat · ions · in modular arithmetic computers . 

.£,. Float · com i ng-Point Aritbmetic.o:. 

PUters 

In most digital 

provision is d 
lar ma e for representing very 

ge . integers 
es and very small fractions by what is 

sent · ia1.1 ?hat . y 
the equivalent of "scientific notation." 

is . , instead f 
by 

O 
representing "six-hundred billion" 

600 . 000 , 000 11 is , 000 , the more compact notation 6 < 10 

Used , and i illill. nSt ead of representing "minus two 
-6 

,-2 l( 10 
is used- In 

l.onths " dig · by -0.000002 , 

1.ta1 n computers the equivalent of this scientific 

Otat · , dig · i s achieved by reserving a certain number of l.on . 

l.ts in each " 
number" for the "mantissa" 

in th e above examples 

6 and 

and using the other digits 

the" exponent" 

The 
re computer programmer then bas the option of 

gara · the e numbers within the machine as being in 

radix ,iotation, which be calls "fixed-point" 

11 and -6 

1.ng th 

ora · 1.nary 

l1otat· l.on 
I 

or in the above equivalent of scientific 

which he calls "floating-point" notation-l1ot at · l.on 
I 
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Bene e, heh c oice of two sets of rules by which as a h . 

addit· ions ' subtractions 
•re • multiplications, and divisions 

Perf ormed · within the •r j_ thrn computer , " fixed-point " 

oating-point" arithmetic. etic and "fl . 

For e x ample 
Used ' 

lar ge-scal 

in the IBM 7090 computer, a widely-

computer , a number maY be regarded as a 

35 e 
-b· l. t binary · 

a integer , preceded by a "sign bit , " or as 

27 - bit inary fraction , preceded by a sign bit and 

:fo11 O'Wed 

b' 

tnay . 
l.nstruct 35_b . 

the 7090 to add two numbers as signed 

it b ' or he integers by using an 

by an 
8-bit binary exponent. The programmer 

"ADD" 
instruction, 

1.nary · 
instruction , 

may 'wh · use a "FAD" 
l.ch 

(floating add) 
27-bit fraction 

"shift" the caus . es the 7090 to 
ll) 

0 ne of th 
e addends until the corresponding exponent 

-w · 1th that of the other addend before adding the 

ractions. In the same manner, other in-27-b · 1.t f 

•i~ · may be used to cause the 7090 to perform 
St.:i:-1, -<Ct . ions 

llar o 

d

. peratio · 1 · g and lv· ns in subtracting, multlP yin, 

ld· i.n g fixed- and floating-point numbers-

Clear1 ~oq Y, addition , subtraction, and multiplication 

'\.l.lo 
M., and the "nearest integer" division of 
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'l'heo rem 3 .1 a 
equi-

v re the modular arithmetic computer's 

alents of the 7090's 
fixed-point addition , subtraction , 

But because of the diffi -rnu1t. 1 Plicat· ion, and division. 

•~h e "shifts" necessary to align the cu.it · J.es in performing th 

.c--Onents th of 
th

e operands in modular arithmetic computers, 

ese comput float · ers previously had no equivalents of the 7090's 

J.ng- p . oint a . find rithmetic operations, 

that a 'by using 
the division procedures of Theorems 3.1 

na 3 e2 • float ' 
ing-point arit-tic operations can be per-

•tta · · arithmetic computers in a relatively 
:l:o rmea in modular . 

J.ghtfor ver ward mannero 

y lar ~•t · ge integers or verY small fractions in modular arith-

J.c . computers j 
WJ. th . in the form x. 2 , where x is an integer 

In particular , we maY represent 

. in the " f . 
i x ed- point " computer range and represented in 

tes · J.due f 
h . orm and where . 
.c--re J 

sent ea . in the usual binary form• 

is another integer , probably re-

'I'o 
~t simplify the "shifting" processes necessary to align 

Oper1y •tat· the two operands for floating- point arithmetic op-

J.on s, the 
9.i.v 7090 

en 

computer assumes that the operands are 

in II tl normalized" form 

oat in jo g - point representation of a non- zero number is ad-

Stea so that the absolute value of the binary fraction in 



in the rep ion is less than 1 but not less than res en tat .. . 

(Zero . is represented . 
in floating-point form by a 

2ero expo nent and a 
After performing 

••ch zero fraction.) 

float · 1.ng-point · •~toma . arithmetic operation, the 7090 

ti.call the Y adjuSt S the fraction and the exponent in 

result. to put it back into "normalized" form. 

I n modular 
arithmetic computers, too , floating-point 

operations may be simplified by assuming that 

operands 

o.:tithrn etic 

the h have been "normalized" in some way. one 

-1:"ClSs. ization of the non-zero floating-paint l.ble normal· 

might be to qdjust the exponent 

sati s fies 
n 

~ 2 I 

j 

{3 0 2) 0 

so 

J;l:t ess· i.ng a ,fl · 
~id eating-point number in this way would pro-

e the With ximurn nwnber of significant digits consistent 

n is th · e integer defined above in 

ma · 

keep· 1.ng X 

within the (fixed-point) computer range. 

~Odu1 we feel that another form of normalization for 
I-low ever, 

ar ar · 1.thmetic computers 
J;lo· l.:nt arithm <:e:i:-

0 

etic operations. 

numb er · 

leads to simpler floating-

In particular, for a non-

e){ .1.n the form 
Po:ne nt j in such a way that 

X 
satisfies 
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I 

I 

2m-l < / / m 
x ( 2 , 

In is th 
e positive integer defined by 

.!11 
addit · 

m = [n;l}. (3 . 22) 

1.on t o . 

Off 
s1.mplifying , in particular, 

10ati 

the operation 

. ng-point multiplication, this form of normal­

Yield l.zat • l.on 

t 
s reasonably simple floating add and sub-

l:'act 
Operations 

that 
as well and it has the added advantage 

the 

With 
integer x can be represented by its residues 

l:'espect 

set 
to each of the moduli in some (proper) sub-

Of mo dul i 

e~ 
Whos e product 

.Ponent . 
J is carried as 

Of t h 
e Inoduli . 

exceeds 
while the 

a "residue" for one (or more) 

now describe how the division algorithms 

in Theorems 3 . 1 and 3.2 can be used to per­

float . 

q 
1.ng - point arithmetic operations in modular 

:Ci.thin 
e tic 

ab computers with numbers normalized as described 

OiTe 
t.Jn1 

i 
ess stated otherwise , a ll divisions in the 

Olloi,.,, · 
J.ng . 

int WJ.ll be understood to result in the nearest 

ese:r-
t o th 

3 l 

e quotient as explained in Theorem • • 

v 
to Floatin -Point Conversion . Con-

e.i:-t. J.ng-
a number from fixed- to floating- point is 
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I 

I 
I 
I 

I 
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essentially a 
"normalize" operation~ If the fixed-point 

V is zero, setting the floating-point number 

to zero 

conversion. 

that is , setting u = j = 0 completes 

Otherwise, we obtain from the table of 

.Powers f 
0 two the non-negative integer p such that 

2p-l < I V I ~ 2P 

a.na compare p with the integer m defined above in 

If p < m, we set 
m-p 

u = v•2 and j = p-m: 

P == m, we set U = V and j = 0: and if P > m, 

we divide 
V by 

p-m 
2 , set u equal to the result , and 

2..:..,, Floating-Point to Fixed-Point Conversion . If 

j <o for the number 

.Point form , 

u •2j in normalized floating­

U•2j to the fixed-point number 

" 

j ). 

we 

by dividing 

If 

convert 

u by 
-j 

2 and setting v equal to 

j = o, we simply set v = u; and if 

O, We multiply u by to obtain v , checking 

:fo:r . 
multiplicative overflow if we wish . 

l._. Floating-Point Magnitude Comparison. 

th
e di· sti· net 

· · t b s 

normalized floating-poin num er 

a = and 
k 

b = v-2, 

Given 

(3.23) 



wed 
ete.t'mine 

ll 

th e signs of a and b from the signs of 

and " 

the ' .t'espectively , which are obtained in turn from 

two-s •d 
l ed · 

q 
mJ.xed-radix coefficients of u and v . If 

and 
b have d'ff 

is 
i erent signs, whichever of a and 

Posit· li!e . 

the 
ls obviously the greater. 

same 

b 

If a and b have 

Sign, 
we compare j and k and conclude that, 

b 
and b are both normalized, a> b if a and 

j < k or if a and b are positive 

and Vice versa 

~--· 
If j = k , then a> b if 

U > V. 

E'loat · 

the 
in -Point Addition and Subtraction. 

no.rm 

Given 

21.lized 

qb 0 

floating -point numbers a and b 

"e . .:i.n 

defined 

J;)oint (
3

•
23 ), we shall calculate the normalized floating -

C == such that C = a+ b. The differ-

the numbers a and b can be obtained in a similar 

by 
adding a and 

b' = -b. First , we com-

b ', where 

the .r :::: / j - k / . 

nth 
e sm l 

the :f1 21. ler of / a / and / b / is too small to affect 

-toat · 

a· .:i.ng-po, t 
. 

l er when the ad-

i1::_ . 
~n representation of the arg 

io11 .is 
Performed 

If r > m, where m is defined in (3.22) , 

Hence , we simply set C = a that 

Set t 

and C = b if 

:::: u 
if j >k 

and i = j 

when .t' > m. 
r ( m, we set 

Otherwise, if 

Ill 
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r 
w = u + v·2 and h = j if j < k; we set 

r 
W = u•2 + V 

and h = k if j > k; and we set w = u + v and 

h = j = k if j = k. Then , 
h 

w·2 is the floating- point 

sum of a and b , but since 
h 

w • 2 is not normalized, 

we must now perform a "normalization" op~ration to obtain 

c . From t h e t able of powers of two we obtain the integer 

p such that 

p-1 
2 < IX I~ 2P 3 024) 

and we compare p with the integer m defined in ( 3 . 22) . 

I f p > m, we set t = w·2 
p-m i and = h + p - m; 

p = m, we set t = w and i = h; and if p < m, we 

t equal to the quotient obtained by dividing w b y 

p - m 
2 and set i = h + p - m. 

if 

set 

5. Floa ting-Point Multiplication. Given the normal -

ized floating - point numbers a and b as in (3 . 33) , 

i 
c = t · 2 as follows . we calculate t heir product We 

multiply u and v to obtain w . I f w = 0 , we set 

t = i = O; otherwise , we find the integer p satisfying 

( 3 .2 3) and set t equal to the quotient o f w and 

p-·m 
2 and i = j + k + p - m. 



6.. Floating-Point Division. Given the normalized 

floating-point numbers a and b as in (3.23), we 

shall find the normalized floating-point number c = t - 2 1 

such that c = a/b. If a= 0, we set t = i = O. If 

b = 0, we do not proceed with the division, but rather 

we give some indication such as turning on an error 

indi cator in the computer that division by zero was 

attempted . Otherwise, we know that u and v are both 

non- zero and that their absolute values are greater than 

m- 1 m 
2 but l~ss than or equal to 2 , where m is the 

integer satisfying (3.22). Hence, we may divide u 

by v as prescribed in Theorem 3.2, taking the j in 

that theorem equal to -m+l. If w is the result of 

that division , we set t = i = 0 if w = 0, and if 

w IO , we obtain from the tabl e of po~ers of two an 

integer r such that 

2r-l < / w / ,< 2r. 

I f r Ip that is, r < p we set t = 2w and 

i = .j k - m: if r = p, we set t = w and 

i = j - k - m + 1. 

* * * 
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These procedures 

'I'heor 

show how the division algorithms of 

can be combined with a suitable ems 3 · 1 and 3 • 2 

def · l.nition Of II 

corn normalization" to provide modular arithmetic 

Puter s w· 
ar · 

1th th
e capability of performing floating-point 

Because of the "normalization" J.thmetic operation s . 

Usea 
I no over flow . 15 

possible in these operations except 

large floating-point number is converted to \</here a very 

Clearly, however, the floating-point arith-

operations 
described above are somewhat slower and 

than their fixed-point counterparts, but lllore 
com 1 · p icated 

the t s ame can be . 
said of the floating-point operations in 

•rith igital computers . At 1east, floating-point 
con Vent · ional a . . 

Inet · operations are now possible, in modular arith-metic 

J.c <no rs, whereas, to the best of the author ' s 

<no;, ' hey had not even been attempted with previouslY 

compute 

Wleage t 

n a · lVision methods . 

float · ing-p . 
Co oint arithmetic operations in modular arithmetic 

lllpu t ers ~erf 'we shall use some of the above procedures to 

(To illustrate the workings of 

orm Corn some floating-point operations in an illustrative 

PU tat . ion near ) 
the end of the next chapter . 

'l'his 
Cl presentat · of floating-point arithmetic con-

Udes ion our a · · d nlltnb iscussion of division methods in resi ue 

er systems . Although we have been able to prove onlY 



that the division algorithms given above i n Th e orems 3 . 1 

and 3.2 decrease the error in approximating the quotient 

by a factor of two in each "iteration" , we shall see in 

Chapter V that , in practice, these procedures u s ually 

converge much faster than that. In the meantime , we 

shall devote our attention to showing how these division 

procedures can be modified to approximate the square roots 

of integers in residue number systems . 
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CHAPTER IV 

SQUARE ROOTS 

A . Square Root Calculations in Digital Computers . 

Since the arithmetic operations executable by digital compu­

ters are restricted to the "rational" operations, add , 

subtract, multiply, and divide, irrational quantities such 

as square roots must be approximated in these computers 

through the use of only rational operations . The mos t common 

method used for calculating an approximation to the square 

root of a positive number in digital computers is the 

Newton-Raphson iteration. For a positive number x , 

i terative method yields a s equence of approximations 

this 

y, 
1. 

to the positive square root y of x as follows: from 

any approximation y, 
1. 

to y, the nexL approximation 

Yi+l is calculated by 

½ ( y . + x/y . ) . 
1. 1. 

(4 . 1) 

If the first approximation y
O 

is any positive number, 

then it can be shown that the sequence 

116 

y. 
1. 

converges to 
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y ana th at the (See convergence, in general, is r th · Eildebrand a er rap i d. 
[l 2 ], PP· 447-448.) 

In modular 
1.c computers, however, calculating 

arithmet· 

by the N 
ewton-Raphson method presents some square roots 

P:tob1 ems 'prim ·i ar1. Y because 
at least one division is required 

in the equi-
in 

"al 

each.,. iteration." 

ent form 

y. = i+l 

If we rewrite 

. 2 
(y. + x) 

l. 

2y . 
l. 

(4.1 ) 

( 4. 2) 

3.l 
to perform the 

ana . 
J.f w the algoritm of Theorem 

2
Yi' then we obtain only the nearest integer 

':/ . 

dih ' VJ. S • ion 

to 

e use 

by 

0

on raises the unpleas ant question of hoW the i+1' which · 

>ntrod of 
th

e Newton-Raphson method is affected bY "er . gence 

Ucing 
~ore 

th
ese rather sizeable round- off errors- Further-

' We 
also =rrY about possible overflow in calcu­

nu=rator of the fraction in (4.2 ), a

nd 

if we 

J. must 
at. J.ng 

t:ry to 

the 

av0 · 

)"\ id thi (4 1) then we must 
~•rt s overflow by usin9 • , 
ly ivisions per iteration , ~ich introduces possi• 

than that arisin9 from the one 
orm b two d . . 

a great Yi+l our other ''h er qea error in 
:test 

q]_ t 
e:rnat· ive . 

'lsor· is to minimize the round-off error bY usin9 the 

J.thm 
of Theorem 3.2 to perform the divisions in either 

integer" d. . . . 1v1s1on needed 1.n 
(4.2 ) . 
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(4 . l ) (4.2), but then we are for ced to calculate t he s u c ­

cee d ing Yi ' s in floating-point arithmetic, wh .ich results in 
or 

a. r ::i. t her excessive amount of computation just to approxima te 

a 
3

q uare root in a modular arithmetic computer . 

Thu s, we a re led to seek a method by wh i ch we can app:r oxi-­

ma t e square roots in modul ar arithmetic computers without using 

di v .1. s.ion. In the method we shall giv e below, we shall a v oid 

:l i ·,
7

.ls i on s i mply by modifying the divi sion algorithm · ts e lf to 

Yl-e lj a new algorithm by which we can calculate directly t e 

8 Uc ci=> · • · 
t 

--ssive approximat.1ons to a square roo . 

A Square Root Algorithm for Residue Number sy~ t ~..:.. 

x b~ any positive integer and let y be its posit i ve 

squa r e roo t . We shall now describe, e1..-_l:.:i>T'Ocedure · ~ereby we 

:o tain an approximation to y .in the form z . .2J, whe r e 

is .:ln inte g er in the residue number sys tem and j is e ith-

z ero o r a negative integer . If J - O, our proc edure wi l 

P ~rallel the division procedure of Th eorem 3 . 1 and will y i e ld 

the ne . 
· • arest integer to y, and if j < 0 , our procedure wi l 

b e more like the division procedure of Theorem 3 . 2 i n t ha t i t 

'Wi ll Yield a closer approximation to y than the nearest 

n t e g e r . 
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As in both of the division procedures given in Theorems 

3 -1 and 3.2, we begin our square root approximation algorithm 

by using the stored table of powers of two to determine the 

non-negative integer p such that 

p-1 p 
2 <x ~2. 

From this def i nition of p it follows that 

2 (p-1)/2 < y ~ 2p/ 2 

( 4. 3) 

(4. 4) 

so that , since one of the numbers (p-1) / 2 and p/2 must 

be an integer, we pick zo = 2q as our first approximation 

to y, where 

q = [J], 
the largest integer not exceeding 

Pattern used to calculate the 

define 

g = 
0 

e . 0 s 
l 

( 4. 5) 

p / 2 . Following the 

in Theorem 3.1 , we now 

From this def i nition and from the definition of z 0 
it 

follows that 

so that 

Recalling now the definition of w1 in Theorem 3.2, 

we replace our f i rst approximation to y with 
q-j 

zl = 2 , 
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Where j is an i nteger satisfying 

0 ~ j ) (p-n-1)/2. ( 4 0 6) 

(As before 
I we define n to be the pos itive integer such 

that 

(4. 7) 

Where M is the product of the modul i in the residue number 

system.) 

by 

Re placing also g 0 
by g1 , where g 1 

is defined 

-2j 
2 •x 

we have 

-2 j / / p-1 n-p+l = = 2 . g 0 
~ 2 2 

ana 

since n is clearly greater than one. Hence , both 

ana are integers within the range of our residue number 

system. 

If g
1 

= 0, then z = X • 2-
2

] 
l 

so that 

actly equal to y , the square root of x. 

note that the differential of is 

we should correct by to reduce g 1 

is ex-

Since 

to zero to ob-

tain the desired approximation to y , we should have 
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or equivalently, 

Which is essentially how y
2 is obtained from in the 

Newton-Raphson iteration. Here, however, we avoid the divi-

sion by 2z1 
by approximating z

1 
with s-j 

2 , where 

S = [ ~] I 
(4. 8) 

by approximating /g
1

/ with 

integer satisfying 

2t1 where 
I 

is the non-negative 

2t1-l < /g1/ < 2tl, 

ana by approximating dz
1 

with 

2tl/2·2s-j = 2t1+j-s-l_ 

Thus, we define our second approximation z
2 

to 

) . 2 t1+j-s-l 
gl . 

y by 

As for Theorems 3.1 and 3.2, repeating this reason­

ing for z 2
, z 3

, and so forth leads to an iterative procedure , 

a "flow chart" of which is given in Figure III. 

rnarize this procedure in 

We now sum-

Theorem 4.1 (Square Root Algorithm) - Let x be a posi­

!_ive integer in a residue number system in which all integers 

~ between -M/2 and +M/2. Let p, q, j, n, and s be 

~ satisfying (4.3), (4.5), (4.6), (4. 7), and (4.8) / 

~spectively. Let z be the integer defined as follows: 



~tcl<ea+..._~ 
I ilt.l"<TA:f-l. {_ , 

1) ,1 611\~ 

Figure III - Square Root Algorithm 

r. 
~L-=- 0 

7 

BtGI:N 
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3 • 

4. 

l. ~ 
q-j and calculate £Y 

zl = 2 
gl 

2. 

-2j 2 
g, = 2 •X - z. 

l 
l 

( 4. 9) 

If g, = 0 for ~ i,
 set z = z .. 

l 

l 

If gi I 0, let ti be the non-negative integer 

satisfying 
(4.10) 

If t. > s - j, calculate z . 1 
from 

l 
------ 1+ 

z. 
1 

= z. + (sign g . )·2ti+j-s-l (4 . 11) 

1+ l 
l 

and return to step l 

If t . < s - j, set z 

l 

If t . = s - j, set z' 

l 

calculate g' = 
-2j 

2 •X 

to calculate 

= z .. 
l 

= Z, + (sign 
l 

,2 
z . If 

g . 1 · 
1+ 

g . ). l 
l 

I g I I < 

and 

lg i I· 

set z = z'; otherwise, set z = z . . 
l 

~ z satisfies 

{ 
-2j 

2 •X - z
2

/ < 1/2; 

z i s the nearest integer to y-2j, where y is 

..th£ positive square root of x. 

Proof: The proof of this theorem is by i nduction, th e 

i d e a being to show that t . decreas es as i i ncreases or 

l 

else that an exact approximation z . 
l 

to the s quare root is 

ob t ained (in which case t . l 
1+ 

is n o t define d). In order 

t o s how this, it is also necessary t o establ ish upper and 



lower bounds on the integers z . . 
i 

In particular , our in-

duction hypotheses are 

and 

where s is 

t . < t. l < p - l 
i i-

-j s-1 
2 2 < z . < 2-j2s 

i I 

defined by (4 . 8). Since we 

shown in the remarks preceding the theorem 

and since, by definition , 

p-1 
2 

or z = 
1 

(4.12 ) 

(4.13) 

have already 

that 

124 

according as p is odd or even, it follows immediately 

that the induction hypotheses are satisfied when i - 1. 

Let us now ass ume that these hypotheses are satisfied when 

1 is some integer k ~l and let us show that this implies 

that (4.1 2 ) and (4.13) hold for i = k 1. 

We begin by obtaining bounds on First, 

fr om ( 4 . 4 ) , ( 4 . 8 ) , and (4 .13) ,wehave 

2-j2s = 2-j2(p+l) /2 = 2-j[2(p-l ) /2 + 2(p-l)/2] 

= 2-j2 (p-1) /2 + 2-j2s-l < 2-jy + zk 

< 2-j2p/ 2 + 2-j2s = 2-j[2P/2 + 2(p+l ) / 2 ] 

< 2-j2(p+3)/2 = 2-j2s+ l , 

when p is odd; and similarly, 
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+ z 
k 

2p/2] 

= 2-j2 (p+2) /2 = 2-j2s+l 
I 

when p is even. Hence, we have 

( 4 .14) 

From this, (4 9) d . , an (4.10), it follows that 

a nd that 

Bence , we have 

( 4 .15) 

At this point it is necessary to s plit our induction 

Proof into two cases. In the first of these cases Case 

A we shall assume p to be an odd integer, and in the 

second case Case B we shall assume p to b e even. 

In Case A we shall show first that is less than the 

Upper bound given in ( 4 .13) and then that tk+l is less 

than tk whenever and are on "opposite" sides 

Next in Case A, we shall show that tk+l ~ tk 



Whenever and are on the same side of 2-jy, 

Wh ' 
ich will complete the proof of (4.12) for i = k+l. 

Finally, by establishing a slightly stronger result than 

(4.12) 

Case A 

bound in 

for i < k, we shall complete the induction for 

by proving that z 
k+l 

is greater than the lower 

(4.13). In Case B, our proof will be essen-

tially the same as in Case A, but because the different 

Value of s in Case B yields different bounds on zk 

in our induction hypothesis (4.13) , it will be necessary 

to rearrange the steps of the proof somewhat. In parti-

CUlar, we shall show first in Case B that z 
k+l is grea-

ter than the lower bound given in (4.13) and then we shall 

establish (4.12) for the situation in which zk > 2-jy . 

Next , we shall show that (4.12) holds for i = k+l when-

ever 
zk and zk+l. 

are both less than 2-jy and then , by 

again establishing a slightly stronger result than (4.12) 

for i < k, we shall show that 2 k+l 
is less than the upper 

bound given in (4.13). Finally , we shal l complete the in-

duction for case B by showing that (4.12) a lso holds 

We proceed now with 

Case A. If z ·2j > y, then gk < 0 and 

k 
tk+j-s-1 < zk ~ 

2-j2s 

2
k+l = zk - 2 

by (4.11) and the induction hypothesis (4.13). And if 
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z · 2 j 
) 

k < Y, then by (4.4 and (4.11) we have 

z = 
k+l 

= 

zk + 2tk+j-s-l < 2-jy + 2p-l+j-(p+3) / 2 

2-j2p/2 + 2-2j2j+(p-5)/2 

= (4.16) 

Bence, zk+l < 2-j2s, which shows that the upper bound in 

(4.13) holds for i = k+l. 

Let us now consider what happens when 

ana have different signs that is , when 

are on opposite sides of y. It then 

follows from (4.11) that 

2 tk+j-s-1 > /2-jy - zk/ 

so that , by (4.15), we have 

Bence 
' since 

/gk+l I 

Therefore, if 

{ - j / 2 tk+ j - s -1 - / 2 - jy - zk / 

2 y - zk+l = 

2
k+l 

= 

< 

z -2 
k 

< 2-j2s, 

(2-jy + 

< 

= 

it 

2
tk+j-s-l _ 2 tk+j-s-2 

2
tk+ j -s-2 

follows t hat 

zk+ l ) • / 2 - j y - zk+l/ 

-j s+l tk+j-s-2 
2 2 ·2 = 

tk-1 
2 • (4.17) 

j and are on opposite s i des 

of y , then it follows that tk+l ~ tk - 1. 
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On the other hand, if 

have t 
he same sign, then by 
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(2-jy - zk) and (2-jy - zk+l) 

(4.11) and (4.15) we have 

= / 2 - j y - zk / - 2 tk+ j - s -1 

< tk+j-s tk+j-s-l 

2 - 2 

= 
tk+j-s-l 

2 . 

f 

-j s 

r om this and from zk+l < 2 2 , it follows that 

f gk+lf = (2 -jY + 2 k+l) • f 2 -jy - 2 k+l f 

< 2-j2s+l.2tk+j-s-l = 2tk_ (4.18) 

lt now 
follows that 

whenever and 

a r e 
on the same side of y. Coupling this with the result 

Of the 
Preceding paragraph completes the proof that (4.12) 

is s t. 
a lSfied for i = k+l. 

Now all that remains to be shown for Case A is that 

the 
lower bound in (4.13) holds for i = k+l. In order 

to h 
sow this we first note that if we have t . l = t . 

l+ l 
for 

i < k , then it follows from (4. l l) that 

But then by (4.15) it follows that z. 2 i+ 
and z . 

l 
(and 

zi+1> are on opposite sides of 2-jy , so that by (4.17) 

We have Hence, we have established a s light-

ly stronger result than (4.12): namely , that for any posi-

ti Ve · 
integer i < k, 

( 



Where t. ~ p - l. 
l. ~ 

and 

It is this stronger form of 

(4.19) 

( 4 .12) 

129 

that enables us to prove that zk+l ~ 2-j2s-l and thus com­

Plete the induction. 

If that is, z -2j < y 
k 

then by the 

i nauction hypothesis (4.13) we have 

But if z < zk, then it follows from 

k+l 

(4.11) that 

must have been greater than 2-jy. Since, by definition, 

2 1 is less than 2-jy, there must exist a largest integer 

m < k such that 

so that 

z 
m 

= 

= z 
m 

z 
m 

This follows from the fact that 

Then, by ( 4 . l 7) we have 

z . 
m 

t , t 2
, ... , tk 1 

must 

m+l m+ -

be a strictly decreasing sequence, since otherwise, if two 

of these ti's were equal, some zh wo4ld be less than 

by ( 4 . 19) , for m < h < k . Since this would con-

tradict the definition of m, it follows immediately from 



the · induction h th . ypo esis applied to 

'I'his completes the proof of (4.13) 

our co . 
nsideration of Case A. 

£ase B. If z ·2j < y, then 
k 

that 

for i = k+l 

by the induction hypothesis (4.13). And if 

z 
k+l 

= 

> 

z - 2tk+j-(p+2)/2 

k 
-j 

2
-2j

2
tk+j-(p+2)/2 

2 y -

> 2-j[2 (p-l) /2 - 2 (p-4) /2 ] 

= 
-j s-1 

2 2 . 

and ends 

Fiene e, the lower bound in (4.13) holds for 1 = k+l. 

Let us now assume momentarily that zk · 2j > Y, so that 

2 . 
k.+1 <zk ~2-J2s by the induction hypothesis (4.13). Then 

if 

cl.na 

2 k+l ·2j is also greater than y , it follows from (4.11) 

( 4 .15) that 

== 

< 

== 

2tk+j-s - 2tk+j-s-l 

tk+j-s-1 
2 
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Hence, we have 

== 

< 
(4 . 20 ) 

== 

Therefore, if zk > zk+l ► 2-jy, then tk+l ~ tk . 

Similarly, if zk-2j > y > zk+l·2i, t hen it follows from 

(4.11) and (4.15) that 
2tk+j-s-l > 12-jy - zkl 

and that 

From this we have 

== 

< 

== 

< 

== 

2
tk+j-s-l _ 2tk+j-s-2 

tk+j-s-2 2 . 

( 2 - j y + zk+ 1 ) • J 2 - j y - zk+ 1 I 

2
-j

2
s+l_

2
tk+j-s-2 

(4.21 ) 
tk-1 2 • 
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The n , 

Now let us assume that zk 

if j zk<zk+l <2-y,wehave 

12-iy - zk+l l ~ J2-iy - zkJ 

< 

and 



= ( 2 - jy + z > • / 2 - jy z I 
k+l - k+l 

< 2-j 2s+l. 2
tk+j-s-l 

= 2 tk_ 

By combining this result with (4o2O) , it follows that 

tk+l < tk 

Of 2-jy. 

whenever 

However , 

and are on the same side 

as before in Case A , if this happens 

ana 2· f t . = t . 
i+l l 

for some integer i < k , then it follows 

from (4.11) that 

= 

Bence , by (4.15), it follows that z . 2 i + 
and z . 

l 
are on 

0 PPosite sides of 2-jy so that (4 . 19) also holds for 

Case B whenever z . > 2-jy and i < k. 

l 

Now if zk < 2-jy < zk+l ' let m be the largest in-

teger such that z > 2-jy. 
m 

(We know that such an m ex-

ists since 21 > 2-jy by definition . ) 

We have 

Then , by ( 4 . 21) 

so that 

Since 

= 

= z 
m 

tm+j-s-1 2
t m+l +j-s-1 

- 2 + + . . . 

... + 2
tk+j-s-l (4.22) 

must be a strictly decreas i ng 
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Seq Uence otherwise for some h such that rn < h < k 

we would 
j 

have zh > 2- y, contradicting the definition of 

rn 
it follows from (4 .22 ) that Z I 

m 
which gives 

by the 
induction hypothesis (4.13) applied to 

as in (4.21) we have 

12 -jy _ / tk+j-s-2 

zk+l < 2 

I I 
-J· s+l tk+j-s-2 

< 2 2 ·2 
= 

gk+l 

'1'herefore 
, tk+l < tk - l whenever and 

z . 
rn 

are on 

Thu s , 

0
PPosite sides of 2-jy. This proves ( 4 .12) and also 

(4.19) for Case B. 

Finally, since is clearly less than when-

or whenever 

-j 

zk < zk+l < 2 y , and since we 

have 1 a ready shown in (4.22) that 
-j s 

zk+l ~ 2 2 whenever 

2
1- < 2 - jy 

· f 11 th t 

~ 
< zk+l' it o ows a the upper bound in (4 .13) 

holds for i = k+l, which completes the proof for Case B. 

By the induction principle it follows that (4.1 2) and 

(
4 .l3) are satisfied for every positive integer i. Since 

we Proved the result (4.19) in both Cases A and B, we 

have actually shown that the z 's converge to y with a 

i 
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decrease 
in the error by at 

two., . 

least a factor of two for every 

.1.terations." Finally, if 

.froin 

t . < s-j, 
J. 

then it follows 

(4 .1s) that 

/2 - j y - z./ < 2ti+j - s < 2 - l = l/2. 

J. 

ti; s j, then we have 

so that z . 
J. 

differs from the desired ~esult z by at most 

The final comparison between g . 
J. 

and g' as prescribed 

i:n s t
ep 4 of the ti)eorem assures us that whichever of z . 

J. 

Z' is closer to y is the f i nal value assigned to z. 

lilote t 
hat since we are approximating the square root of an 

integer 
, the difference between z and 

be st . 
r.1.ctly less than 1/2, and hence 

will always 

will differ 

y by less than 

4.1 . 

j-1 
2 0 This completes the proof of 

* * * 

As in the division algorithm of Theorem 3.2 , the 

e )(Ponent j in Theorem 4.1 may be decr eased in successive 

" . 
l.terations." In particular, since t . l ~ t. 

1+ J. 
for every 

i 
and since a decrease of one in j causes an increase 

in by a factor of four, j may be decreased i n 

the ( i+l)st iteration by as much as 

wi = [n ; ti] . 
( 4.23) 

', . 



I-Iowever , since 

that 

2
s-j 

z. ( 
i 

by (4.13), it f0Il0ws .. 

n 
z. ( 2 ( M/2 

i 

that is 
I z. is within the computer range 

i 

whenever 

j is not less than 

j . = s - n. 
min 

(4.24) 

'.l'hu 
s , We set j = 0 in Theorem 4 . 1 to obtain the nearest 

integer to the positive square square root of a positive 

integer or we may make j negative and obtain a more 

accurat 
· · h t 

e approximation tote roo. If we decrease j to 

jmin' we obtain the most accurate approximation to the root 

that · · · · th . t 

is consistent with keeping e in eger z in Theorem 

Within the range of the residue number system. And 

regardless of the j we use as long as it satisfies 

0 2 . 
7' ] 

Theorem 4.1 guarantees that the error 

in the final approximation to the root is less than 2j-l. 

As an example of using this procedure to obtain an 

approximation to a square root of an integer, let us now 

calculate the most acct,Gte approximation z•2j to the 

Positive square root y of x = 627,323 consistent with 

keeping z within the range of the residue number system 

Whose moduli are 2 3 5 7 11, 13, 17, and 19. 

I I I I 

From 
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and by 

we h ave 

and (4o 7), respectively, we have 

p = 20 and n = 22, 

(4.S), (406), (408 ), and (4.24), respectively, 

P = 10, j = - 1, s = 10, and 

'.l''hen 
I our f .irst approximation to 

calculating 

.is 

. 11 

z = 2q=J = 2 = 2048 

l 

from (4o9), we have 

(4.10), ( 4.23 ), and (4oll ), we obtain 

and z = 2048 - 2
9 = 1536. 

2 

'.I'he 
results of the calculations for the remaining 

iterat · 
ions are given in Table V. 

Note that in the fourth iteration of this calculation, 

we have 

IIowever 
I since 

t4 = 14 = s - j. 

]. • ~4 > - 12 = j . 
m.1.n 

at this point, we do not proceed with step 4 of Theorem 

401 0 
F or, When we decrease j by 1, W4 = 4, we £.ind that 

2 w2 t4 +j =s ~l is indeed an integer, so that we may continue 

w . 
.I.th a fifth iteration. Moreover, again in the seventh 
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Tabl e V ~ Applicat.ion o f Theorem 4.l ~ Samp le Square Root Cal culat ion 

1. 

2 

3 

4 

5 

6 

7 

X c::: 627 , 323 

j 

2,048 -l 

1. ,536 -1 

6,400 -3 

12, 672 -4 

2 0 2,760 - 8 

405,524 -9 

811,046 -10 

3,244 , 185 -12 

2j-l - 2-13 

g . 
]. 

-l,685,01.2 

1.49,996 

-811,328 

15,104 

622,528 

-754,064 

227,932 

-2,841,157 

t . 
]. 

21 

18 

20 

14 

20 

20 

18 

--

= 0.0001221 • •• 

y = 792 00372465 ••• 

z . • 2 j 
]. 

1024.0000000 

768.0000000 

800.0000000 

792.0000000 

792.0312500 

792.0390625 

792.0371093 ••• 

792.0373535 ••• 

Error 

(zi•2j)2 

1,048, 5 76 . 0000 

589,824.0000 

640,000.0000 

627,264.0000 

627,313.5009 ••• 

627,325.8765 ••• 

627,322.7826 ••• 

627,323.1693 ••• 

= 0.0001070 ••• 



iteration we have 

t7 = 18 < 20 = S = j I 

but since 

t 7 + w7 = s - j 

we p r oceed a s i n step 4 of Theorem 4.1 to calculate 

z ' = 3,244 , 185 . Since 

/ g '/ = 2,841 , 157 < 3,646 , 912 = 

we s et z = z' to obtain the final approximation 

z •2j = 3,244,185•2 -
12 = 792.0373535 ••• 

Which diffe rs f r om y = 792.0372465 ••• by less than 

j - 1 -13 
2' ,1 , = 2 = 0 • 0 0 0 l 2 21 •••• 

Thus, when j is being decreased from iteration to 

iteration , the comparisons made between t . 
]. 

and s - j 

i n steps 2, 3, and 4 of Theorem 4.1 should be replaced 

b y c ompariso ns between t . + w' 
]. 

and s ~ j, where w' 

is the value of j in the ith iteration minus the value 

of J desired in the final resu l t . 

As the above example suggests, the square root al 

g or ithm of Theorem 4.1 often yields successive approximations 

converging to the square root y at a rate considerably 

faster than the minumum of one binary "bit" of accuracy 

per two iterations established in the p r oof. And as we 
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shall see i' n the next chapter, th ' l 'th d · 
is a gor1. m oes indeed 

Produce · . 
in practice a sequence of approximations converging 

at a rate several times faster than is predicted 1.·n the p rouf. 

Moreover, it is interesting to note that an estimate of the 

number of operations necessary in using floating-point arith ­

metic in conj unction with the Newton-Raphson method in a mod­

Ular- arithmetic computer to calculate an approximation to the 

square r oot of 627,323 with the same accuracy as obtained in 

the above example indicates that the Newton-Raphson method re-

quires nearly t hree times as much computational effort as the 

above algorithm. 

Floating Point Operations in a Residu e Number System . 

Clearly , the algorithm of Theorem 4.1 can be ut ilized to cal­

cu late approximations to the positive square root of a positive 

number given in floating-point form in a modular arithmetic 

k 

Computer . • 1 i· f the positive number x = u. 2 
I n particu ar, 

is given in the normalized floating-po i nt form s pecified in 

the Preceding chapter (pp . 108-109), then an a pproximation to 

t h e square root of x may be calculated as follows: If k 

is odd , set v = 2u and h = (k-l) / 2 ; if k is even, set 

and h = k/2. 
Next, calculate an approximat ion z 0 

the 
Th em 4 l a nd j = .. lm/2/ , 

. square root of v , using eor . L J 
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where m is the integer satisfying (3.22). Then , 
i 

Y = Z-2 , 

Where i = j + h, is the desired floating-point approximation 

to the positive square root of x. 

To illustrate the use of this procedure i n approximating 

a square root of a number in floating-point form as well the 

Use of some of the other floating-point operations described 

in the preceding chapter (pp. 109-113), let us now show how 

these operations can be used to calculate the greater root of 

2 
x - 5x - 7 = 0 

in a residue number system whose moduli are 2 , 3, 5, 7, 11 , 

13, 17, and 19. From (3.22) we have m = 10, so that the 

normalized floating-point representations of the coefficients 

in the above equation are 

-10 
a= l = 1024·2 , 

-7 

and c = -7 = -896·2 . 

Using floating-point arithmetic operations to evaluate 

-b + ✓b2 - 4ac 

X = 2a 

we first calculate 2a . Since the constant " two " in nor-

malized floating-point form is 1024• 2-
9 , we mul tiply 

by 
-10 

1024·2 as outlined in the description of 

floating-point multiplication in the preceding chapter (p.112 ). 

We obtain l,048,576·2-l 7 which, when normalized, gives 



-9 
2a = 1024·2 . 

In a similar manner we calculate 

and 

2c = -917,504·2-
16 = -896· 2-6 , 

(2a) · (2c) = 4ac = 917,504·2 - 14 = -896·2-5 
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Next, we subtract 4ac f b 2 tl ' d · th 
rom as ou ine in e preceding 

Chapter under floating-point addition and subtraction (pp . Ill -

112) and obtain 

2 
-5 -4 

b - 4ac = 1696·2 = 848·2 . 

2 

Approximating the square root of 

gives 

b - 4ac as outlined above 

- 4ac 
-7 

= 932 · 2 . 

Subtracting b from this, we obtain 

= 

Finally, dividing this result by 2a as outlined in the 

Preceding chapter (p. 113) , we obtain 

X = 786•2-
7 = 6.140625 , 

Which is our computed approximation to the solution 

5 + v53 
X = 2 

= 6.140055 .... 

Thus , we have shown how modular arithmetic computers can be 

Used to add , subtract, multiply , divide, and approximate square 

roots in either fixed-point or floating-point arithmetic. 
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While the square root approximation procedure given in 

Theorem 4 . 1 above is somewhat complicated and while it may 

converge rather slowly in some instances , the results of 

extensive trial calculations using this procedure i ndicate 

that i t converges sufficiently rapidly to be more efficient 

on the average than us i ng floating-point arithmetic 

and the Newton-Raphson method and more accurate than using 

f i xed-point operations with the Newton-Raphson method in 

modular arithmetic computers o To examine in more deta i l 

the practical behavior of this square root algorithm, let 

us now turn our attention to the results of those trial 

calculations " 



CHAPTER V 

COMPUTER SIMULATION 

A . Simulation Programs. In order to obtain a 

better idea about how the division and square root 

procedures of Theorems 3.2 and 4 . 1, respectively, 

mi ght behave in practice, two simulation programs 

were written to perform those procedures on the IBM 

7090 computer . Under the control of the input data , 

these p r ograms perform "typical" divisions and square 

r oot approximat i ons, record the amount of computat ion 

required for each, and check the accuracy of each 

approximat i on obtained . Through the use of these pro-

grams , i t i s possible to compute several thousand 

quotients and square roots in a rather short time, so 

t ha t deta i led i nformation about the practical be­

h a vior of the division and square root procedures can 

be obta i ned without resorting to hours of laborious 

hand calculations . For simplicity in programming, 

most o f the calculations in both the d i v i sion and the 

square root simulation programs are performed i n 
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I 

normal 7090 (floating-point) binary arithmetic. 

simulation programs use residue arithmetic ~ only when 

the error estimates f. and g, defined respectively 

l l 

by (3.16) and (4.11) are to be calculated~ since 

the special truncation and overflow properties of 

residue number systems are necessary to obtain the 

correct values for these quantities . To calculate f. 
l 

and g, in the specified residue number systems , the 

l 

simulation programs use special subroutines~ Other 

subroutines are also used to simulate the use of the 

stored table of powers of two . 

The division simulation program, written partly 

in FORTRAN II and partly in FAP, accepts as input 

data the modul .i to be used and the number of divisions 

to be performed . For each division , it obtains a di­

vidend and divisor by using random d igi ts +frqm a "random 

number " generating subroutine to give the number of 

digits inrthe dividend, the number of digits in the 

divisor, then the dividend itself, and finally the 

divisor itself . (Since the division procedure be-

haves no differently for positive or negative numbers, 

only positive dividends and divisors are used.) Using 
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Table VI - Division Simulation Program Results 

Moduli are 7 11 
M = 20,697,677 

13 23 29 31 

Dividend 

2,993,174 
502,614 

5 
2 

4 
7,786,191 

835,659 
846 

675,797 
49,722 
48,827 

6 
9,176 

93,846 
72,946 

Divisor 

625,186 
6,759 

40,290 
92 

855,024 
3 

171 
20,079 

59 
13 

424 
25 
13 

69,368 
7,091,970 

M/ 2 = 10,348,838 

Quot ient J 

5,020,219 -20 = 
4,873,400 -16 = 
4,263,381 -35 = 
5,934,180 -28 = 
5,157,832 -40 = 
5,190,794 - 1 = 
5,004,180 -10 = 
5,655,072 -27 = 
5,864,543 - 9 = 
7,833,127 -11 = 
7,546,996 -16 = 
8,053,064 -25 = 
5,782,292 -13 = 
5,674,355 -22 = 
5,522,101 -29 = 

n = 23 

4.78765392 
74.36218262 

0.00012407 
0.02210654 
0.00000469 

2,595,397. 
4,886.89453125 

0.04213357 
11,454.18554687 

3,824.76904297 
115.15802002 

0.24000001 
705.84619141 

1.35287166 
0.01028571 

(/} 
(/} C' 

g 
."( 

-/.J 
ftJ 

g -/.J ftJ 
."( A/ ~e '4 C' ii 

""( 

-/.J 
ftJ 

ii 
-/.J 

½ 

10 
10 

8 
11 

9 
9 
9 
8 
9 
7 

10 
7 
9 

12 
13 

0 ftJ -/.J A/ ."( t!; 
:y '4 

(/} ::J 
-/.J CJ A/ 

""( 0 
t:tJ 

."( CJ (lJ 

t:tJ ftJ 0., 

24 2.400 
26 2.600 
37 4.625 
30 2.727 
41 4.556 
Exact 
24 2.667 
28 3.500 
24 2,667 
24 3.429 
26 2.600 
26 3.714 
24 2 . 667 
24 2.000 
31 2.385 

Average number of bits per iteration= 2.836 1 exact solution. 
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t he "randomly generated" dividend and divisor, the program 

next begi ns the division procedure described in Theorem 3 . 2 

a nd " i terates" with that procedure until it obtains the most 

a ccurate approximation to the quotient consistent with the 

r ange o f t he residue number system being used . Finally, 

the p r ogr am checks the accuracy of the approximation ob­

t ained and the number of "iterations" which were required 

to attain it " After printing out the dividend, the 

divisor , the approximation obtained, and the information 

about the iterations required and the accuracy obtained , 

t he division program returns to the "random number" sub­

r outine to calculate the dividend and the divisor for the 

next division " Table VI contains a sample of the output 

generated by this simulation program. 

The square root simulation program operates in 

much the same way as the division program, except that 

t he "random number" generator is not used. Instead, 

t he program reads from punched cards the smallest and 

largest positive numbers whose square roots are to be 

c alculated and the increment to be used in obtaining 

o t h er numbers which are between the smallest and larges t 

a nd whose square roots are also to be calculated . For 
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Table VII Square Root Simu lation Program Results 

0 

§ 
""( 

-/.J 
tr! 

Moduli are 8 25 

M = 272,327,400 
27 29 37 47 

M/ 2 = 136 ,163,700 27 
§ 

""( 

-/.J 

G1 .}J tr] 
""( .L., 

..Q ::J 
CJ 

'4 G1 if 
0 tr! -/.J 

Number 

136,164 
340,751 
545,338 
749,925 
954,512 

1,159,099 
1,363,686 
1,568,273 
1,772,860 
1,977,447 
2,182,034 
2,386, 621 
2,591,2 0 8 
2,795,795 
3, 000 ,382 

Root 

96,732,230 
76,511,857 
96,792,703 

113,505 ,966 
128,056,2 0 2 

70,557, 00 7 
76,530,948 
82,071,200 
87,260,388 
92,15 7, 855 
96,807,874 

101,244,557 
105,494,789 
1 09,580, 33 5 
113,518,906 

j 

-18 = 369. 00417328 
583.73914337 
738.46971893 
865.98179626 

-l.7 = 
-17 = 
-1 7 = 
-1 7 = 976.99128723 

= 1076.61448669 -1 6 
-1 6 = 1167.76959228 

1252.30712891 -1 6 = 
-1 6 
-1 6 
-1 6 
-1 6 
- 1 6 
- 16 
- 16 

= 1331,48785400 
= 1406 .21726990 
= 1477.17092895 
= 1544,869 33899 
= 1609.72273254 

= 1 672 . 063 21716 
= 1732.16104126 

2 
Root 

n = 

136,164.078 
340,751.387 
545,337.523 
749,924.469 
954,511.969 

1,159,098.750 
1,363,685.812 
1,568,273.141 
1,772,859.891 
1,977,447.000 
2,182,033.937 
2,386,621.250 
2,591,207.250 
2,795,795.375 
3,000 ,381.844 

f 
-/.J 

'-t 

11 
11 
12 
11 
13 
13 

8 
14 
13 

9 
11 
10 
12 

9 
13 

.L., ""( 
(/J ::J 

-/.J CJ .L., 
~~ 

~'4 
""( 0 

Cl} 

""( CJ <lJ 
Cl} lrJ ~ 

28 2.545 
34 
29 
28 
28 
28 
29 
28 
28 
29 
29 
28 
29 
27 
28 

3.091 
2.417 
2.545 
2.154 
2.154 
3.625 
2.000 
2.154 
3.222 
2.636 
2 . 800 
2.417 
3 . 000 
2.154 

Average number of bits per iteration= 2.594 O exact solutions. 
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each of these numbers , the program approximates the positive 

square root by the procedure described above in Theorem 

4 "1 , "iterating" over and over until the best approximation 

to the square root consistent with the range of the number 

system is obta i ned o After check i ng the accuracy of the 

approximation and the number of "iterations" required , 

the program prints out the number whos_e square root 

was approximated , the approximation itself , the square 

of the approximation (for comparison with the original 

number whose root was calculated) , and the information 

about the accuracy obtained and the iterations required . 

Finally the program adds the aforementioned i ncrement 

to the number whose root was just approximated and ob -

tains the next number whose square root it is to calculate . 

Table VII contains a sample of the output generated 

by this simulation program " 

S i mulation Results " The simulation programs 

were run on the IBM 7090 computer at the Univers i ty 

of Maryland ' s Computer Science Center . Eleven d ifferent 

sets of moduli , rang i ng from 2 , ~, 5 , and · 7 to 8, 

25 , 27 , 29 , 37, and 47, were tried to determi ne whe t her 

or not c hanging the residue number system - that is , 

I 

I 
I 

I 

I 

I 
I 

I 
I 

I 

I 

I 

I 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I 
I 

I 
I 

I 

I 

I 

I 
I 

I 
I 

I 

I 
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the computer range has any effect on the behavior 

of the division and square root procedures. In general, 

changing the moduli produced no noticeable effect, at 

least in the average rates of convergence for the 

two procedures . The accuracy of the approximations 

increased as the computer range increased;but then, 

did the number of iterations. 

In all, over 6400 divisions and 6400 square 

so 

roots were calculated by the simulation programs. 

total computing time was 35-40 minutes. For the 

The 

divisions , from 1 to 25 iterations were required 

for each approximation, while for the square roots 

the number of iterations ranged from 2 to 21. 

The accuracy attained in the approximations was, 

i n general, higher for the divisions than for the square 

roo ts . For example, slightly over 10% o f the division 

approximations were exactly equal to the quotient , 

while only 0 . 33% of the square root l approximations 

were exact . Also the accuracy of the "non- exact" 

approximations was greater for the divisions than 

for the square roots, the approximations being often as 

great as 20 binary bits "more acc urate " than predicted 
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in Theorem 3 o2 for division while seldom more than 6 

or 7 bits more accurate than predicted in Theorem 4 . 1 

for square roots . 

The most significant results obtained from the 

simulation programs were that the division and square 

root procedures converge, on the average, considerably 

more rapidly than is suggested by the proofs of 

Theorems 3 o2 and 4 ol, res pectively . In particular, 

for all of the more than 6400 divisions performed, 

the average rate of convergence for the division pro­

cedure was 3 0021 binary bits of accuracy per iteration, 

and for about the same number of square roots, the 

square root procedure converged at an average rate of 

2 . 617 bits per iteration . For the division program, 

the rate of convergence obtained in t he simulation runs 

ranged from as low as the minimal l binary bit of 

accuracy per iteration predicted in the proof of Theorem 

3 o2 to as high as 8 02 bits per iteration . In the 

square root simulation, the rate of convergence was 

as low as 1 . 2 binary bits per iteration and as high 

as 12 bits . 
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Clearly, these results from the simulation programs 

emphasize the practical value of the division and s quare 

root procedures deve l oped in Theorems 3 . 2 and 4 . 1 ~ 

Not only do these procedures converge considerably more 

rap id ly i n practice than is prov ed in the above theorems, 

:but also the computational effort they require to ob­

tai n the approximations is considerably less than for 

any other divi s ion or square root procedure yet devised 

for residue number systems . 
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CONCLUSION 

In this thesis we have treated four problems: how to 

compare the magnitudes of two numbers, how to detect additive 

a
nd multiplicative overflow, how to divide , and how to 

approximate square roots in residue number systems. In 

Chapter I , we showed how the ordinary positional notation 

for integers can be extended to a mi xed - radix no'ta-tion 

Which can then be used to determine the larger and smaller 

of two numbers in a residue number system. In Chapter II, 

We used this comparison technique to help determine whether 

or not overflow occurs in addition , subtrac_tion, and multi­

Plication in a residue number system. We gave simple 

necessary and sufficient conditions for additive overflow 

and we presented two methods for detecting multiplicative 

overflow. For the latter multiplicative overflow detection 

Procedure, we introduced the use of a table of powers of two, 

Which we then also used in Chapters III and IV to implement 

respectively a divisioh algorithm and a square root alga-

rithm for residue number systems. In Chapter III, we 

showed how the division algorithm can be used to provide 
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approximations to a quotient ranging from t he n e a res t i n teger 

to the most accurate · · 
approximation possible for the residue 

numbe r system being used. We also showed how the division 

algorithm may be applied to provide modular arithmetic com­

puters with the capability for performing floating-point 

arithmetic operations . In Chapter IV, we presented an algo-

rithm in which division can be avoided while approximating 

the square root of a number in a residue number system , and 

we showed how this algorithm can be used to obtain an approx­

imation to the square root with any degree of accuracy from 

the nearest integer to most accurate approximation possible 

for the residue number system used. 

In each instance, we have provided examples illustrating 

how the procedures given are used in actual computations and 

we have explaine d how the necessary computations for these 

procedures can be performed convenie ntly in a modular ar i th ­

met i c computer. Finally , in Chapte r V , we de s cribed how a 

conventional digital computer was programmed to simul · · h 

use of the division and square root algorithms in a modular 

arithmetic computer in performing trial calculations. From 

t he sample calculations performed by the simulation p rograms , 

we found that the convergence of these methods is c onside r ­

a b l y faster in practice than wa s ind 'ca ted by t h e proofs o f 



th · 
e pertinent theorems in Chapters III and IV. Thus , we-

h ave not only presented solutions to the four probl ems we 

considered, but we have also shown that these solutions 

are workable in practical applications. 

At this point it might be well to ask what problems 

related to the use of residue number systems in digital 

computers have we not solved . In addition to the many prob-

lems related to the electronic engineering and design of 

modular arithmetic computers , there are still numerous open 

"theoretical" questions, of which we shall mention just a 

few . First , we have not considered in the preceding chap-

t ers whether or not a table of powers of three or four or 

some other positive integer can be substituted for the table 

of powers of two which we used in the multiplicative over­

flow detection , the division , and the square root pro­

cedures . Because of the reliance on the specific properties 

of the powers of two at various c~it i cal points in the proofs 

r elated to these procedures , it is the author ' s opinion that 

Using a table of powers of an integer greater than two would 

complicate cQnsiderably any extensions of the procedures 

given . Nevertheless , such extensions , or entirely different 

methods, ~.are no doubt possible and would probably converge 
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faster than the methods given above for division and square 

root approximation . Next, it might be inquired whether or 

not the square root algorithm given in Chapter IV can be 

extended to provide approximations to real roots of degree 

higher than two or, more generally, whether the algorithm 

can be extended to approximate real roots of polynomial 

equations . Such extensions, or methods entirely different 

from that given above, are obviously quite desirable, but 

in view of the complexity of the proof of Thedrem 4 . 1, the 

author feels that finding them would be rather difficult . 

F inally, instead of trying to force residue number systems 

t o perform calculations for problems based in the real or 

r ational number systems, it might be asked whether or not 

there exist problems - in particular, in number theory 

which can be stated directly in terms of residues and 

congruences and f or which a digital computer using a residue 

number system would be better suited than conventional 

d i g i tal computers. If such problems exist , the author is 

presently unaware of them, but he feels that learning a 

suffic i ent amount of number theory to carry out such an 

i nquiry should be rewarding enough to make the whole effort 

wor thwhile . 
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