ABSTRACT

Title of Dissertation: BUILDING SECURE AND RELIABLE
DEEP LEARNING SYSTEMS
FROM A SYSTEMS SECURITY PERSPECTIVE

Sanghyun Hong
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Tudor Dumitras
Department of Computer Science

As deep learning (DL) is becoming a key component in many business and safety-
critical systems, such as self-driving cars or Al-assisted robotic surgery, adversaries have
started placing them on their radar. To understand their potential threats, recent work
studied the worst-case behaviors of deep neural networks (DNNs), such as mispredictions
caused by adversarial examples or models altered by data poisoning attacks. However,
most of the prior work narrowly considers DNNSs as an isolated mathematical concept, and
this perspective overlooks a holistic picture—leaving out the security threats that involve
vulnerable interactions between DNNs and hardware or system-level components.

In this dissertation, on three separate projects, I conduct a study on how DL systems,
owing to the computational properties of DNNs, become particularly vulnerable to existing
well-studied attacks. First, I study how over-parameterization hurts a system’s resilience
to fault-injection attacks. Even with a single bit-flip, when chosen carefully, an attacker
can inflict an accuracy drop up to 100%, and half of a DNN’s parameters have at least one-

bit that degrades its accuracy over 10%. An adversary who wields Rowhammer, a fault



attack that flips random or targeted bits in the physical memory (DRAM), can exploit
this graceless degradation in practice. Second, I study how computational regularities
compromise the confidentiality of a system. Leveraging the information leaked by a
DNN processing a single sample, an adversary can steal the DNN’s often proprietary
architecture. An attacker armed with Flush+Reload, a remote side-channel attack, can
accurately perform this reconstruction against a DNN deployed in the cloud. Third, I will
show how input-adaptive DNNSs, e.g., multi-exit networks, fail to promise computational
efficiency in an adversarial setting. By adding imperceptible input perturbations, an
attacker can significantly increase a multi-exit network’s computations to have predictions
on an input. This vulnerability also leads to exploitation in resource-constrained settings
such as an IoT scenario, where input-adaptive networks are gaining traction. Finally,
building on the lessons learned from my projects, I conclude my dissertation by outlining

future research directions for designing secure and reliable DL systems.
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Chapter 1: Introduction

A sound mind in a sound body.

— Thales of Miletus.

ver the past few years, machine learning has enabled breakthroughs in many
O applications, from object recognition [2], speech recognition [3] to language
translation [4], where human inputs and supervision are required previously. Most of
these advancements have been driven by deep neural networks (DNNs). Trained on
large-scale datasets collected from various sources, DNNs start outperforming humans.
For example, in object recognition, one of the most difficult tasks in computer vision, a
convolutional neural network trained on millions of natural images performs better than
humans since 2015 [2]. Nowadays, a network trained on an extensive collection of books
is used as a backbone for DNNs in language tasks [5]. As shown successful, they are
becoming a core component of safety- or security-critical systems, such as self-driving
cars [6], robotic surgery [7], or brain implants [8], and compose deep learning systems.
Despite their remarkable successes, we often face catastrophic failures of deep
learning systems in real-world environments. The Death of Elaine Herzberg happened

in Tempa, Arizona, in 2018 could be such an example—a self-driving car on testing by



Uber hit a pedestrian riding a bicycle, and she died for her injuries from the accident [9].
From the investigation conducted by the National Transportation Safety Board (NTSB),
the object recognition networks that identify obstacles from camera inputs could not spot
the bicycler who had appeared in front of the vehicle. In addition to this reliability
failure, we have seen security failures. In Black Hat USA 2019, researchers from Tencent
bypassed Apple’s FacelD by simply wearing glasses with adversarial patterns on their
faces [10]. These examples suggest that an adversary can exploit the failure modes of

DNNss to manipulate a victim’s systems, which raises an important research question:

How can we build secure and reliable deep learning systems?

As understanding failure modes is the first step towards answering this question,
researchers in adversarial machine learning study attack surfaces of deep learning systems.
Their focus is to identify properties of DNNs that can lead to the worst-case behaviors of
the systems. Prior work, for example, exposed that DNNs’ predictions are sensitive to
small changes in their inputs and demonstrated adversarial examples [11]. An adversary
can craft human-imperceptible perturbations that fool the decisions of a victim DNN once
they are added to clean inputs [12, 13, 14, 15, 16, 17, 18, 19]. Another line of work
showed data poisoning attacks [20, 21, 22, 23, 24]. DNNSs, unlike the traditional software
that performs predefined behaviors, can learn correct behaviors from observations. A
motivated attacker can exploit this property to alter the behaviors of deep learning systems.

This attack could be useful when the attacker cannot modify a systems’ inputs.

However, those work focuses only on the limited attack surfaces, such as predictions
manipulated by adversarial examples or by data poisoning attacks, and leaves out many

2



other attack surfaces in deep learning systems. In practice, deep learning systems rely on
various system components, such as hardware, system software, communication networks,
or humans who operate them, to perform DNN computations. As shown in security, each
of those components is equally subject to adversarial pressure. In addition, there are
advancements in components to enable faster and resource-efficient DNN computations—
just as we had the “AlexNet moment” when DNN computations become practical by using
GPUs. Yet, the vulnerability of those new components in adversarial settings have not
been fully understood. In consequence, a motivated attacker can exploit such weaknesses
in system components or combine them with the properties of DNNs to pose critical

security (or reliability) threats to deep learning systems.

This dissertation presents my first step towards building secure and reliable deep

learning systems—characterizing new threats. Specifically, I explore this hypothesis:

DNNs have computational properties, that traditional software does not have,

which makes them particularly vulnerable to existing, under-examined attacks.

To conduct this study, I employ a new perspective: DNNs—like any other software—a
computational tool running on computer systems. Unlike previous studies that mostly
examine the security of individual components, this systems security perspective allows
us to focus on the desired properties that secure and reliable systems should have. Armed
with this perspective, I examine whether deep learning systems are able to satisfy those
properties in adversarial settings. Over the three research projects, corresponding to three
desired properties: (1) I first study attack vectors an adversary can exploit to prevent a

system from satisfying each property. The adversary here can utilize existing attacks,



but under-examined against deep learning systems, such as hardware-level attacks, or
well-studied threats such as adversarial input perturbations for different attack objectives.
(2) T then characterize the vulnerabilities of DNNs that I identify in the above step.
In particular, I examine the impact of various factors—that an adversary or a victim
can control over a DNN—on the vulnerabilities, e.g., datasets (or tasks), architecture
choices, training procedures, or its representations in a system. (3) To understand the
practical impacts, I further study the exploitation of those vulnerabilities in typical DNN

deployment scenarios. (4) I finally discuss some directions for building defenses.

1.1  Approach: A Systems Security Perspective

How can we build secure and reliable deep learning systems?
To provide answers to the main research question, we need to address two key challenges.

(1) This study requires both systems and machine learning expertise. For example, to
understand how cache-based side-channel attacks [25, 26, 27, 28] work, the knowledge
of memory architectures is essential. In addition, to analyze their impact on systems
in practice, we should also know how the memory architectures are used to form
computing environments, e.g., the cloud. Separately, in machine learning, expertise
in understanding how DNNs work and developing tools for analyzing their behaviors
is necessary for characterizing the vulnerability of DNNs in adversarial settings.
Such efforts often result in identifying distinct behaviors of DNNs under adversarial
pressure [29, 30], which becomes key ideas in developing defense mechanisms by

suppressing malicious behaviors.



(2) The lack of a holistic perspective. Prior work in systems and machine learning
studies the security of deep learning systems separately, which leads to a false sense
of security. For instance, a common belief in machine learning is that DNNs are
resilient to small perturbations to their parameters [31, 32, 33]. In consequence, it
has been believed that deep learning systems will be fault-resilient—a small number
of faults cannot make the systems lose their functionalities. Prior work on systems
security also contributed to this view—causing random errors, such as random bit-
flips in memory—is an ineffective attack [34, 35]. However, I will show later in my
work [36] that a single bit-flip in the in-memory representation of a DNN can lead to
an accuracy drop over 10%, and an adversary can exploit this vulnerability by using

fault attacks, e.g., Rowhammer, to make a victim system easily unavailable.

My approach here to address those challenges is to have:

A systems security perspective on studying the security of deep learning systems.

This holistic approach allows us to focus more on the security of a system as a whole than
the security of each specific component—in this context, DNNs—of a system. In systems
security, there are the desirable properties that any system should have to be secure and

reliable. Regardless of how a system is composed, the system should satisfy them.

In this dissertation, I focus on the following three properties: (1) Graceful degradation:
a system should be fault-tolerant—it maintains limited functionalities even when a large
portion of it has been destroyed [37, 38, 39]. (2) Confidentiality: a system should not
reveal its secrets, such as data or algorithms. (3) Computational efficiency: a system is
desirable when it utilizes computationally efficient algorithms [40, 41].

5



A clear advantage of focusing on those system properties is that it enables us to
consider attack methodology and objectives that are under-studied in prior work. For
example, hardware or system-level threats such as fault-injection or side-channel attacks
have not been considered as a practical attack vector against deep learning systems.
However, as my approach considers the vulnerability in hardware or system software,
they become a viable methodology that an adversary can exploit. Separately, most of the
prior work manipulates a DNN’s predictions that are only relevant to the availability of
deep learning systems. Nevertheless, my studies concern other attack objectives, such as
jeopardizing computational efficiency. It is unclear whether (and how) an adversary can
achieve those goals. From this unique view, this dissertation exposes new threats causing

unexpected damage to a system and ultimately tackles the false sense of security.

1.2 Desired System Properties

In this section, I provide an overview of each research project that corresponds to the study

of each desired system property. Each study answers the following research questions:
On systems security side:

(1) How vulnerable are each desired property of deep learning systems to an adversary?
(2) How can the attacker exploit this vulnerability in practical settings?

(3) How can we defeat (or mitigate) the vulnerability by using system-level defenses?
On machine learning side:

(1) What are the computational properties of DNNs influence the vulnerability?

(2) What are the distinct internal behaviors we observe from a DNN under this threat?



(3) How can we suppress those adversarial behaviors by using DNN-level defenses?

1.2.1 Graceful Degradation

A system is secure and reliable when it can tolerate failures. In machine learning, DNNs
have been shown to tolerate faults [31]: cumulative changes to their parameters (e.g.,
pruning, quantization, or random noise) result in a graceful degradation of classification
accuracy [32, 33, 42, 43]. However, the limits of this natural resilience are not well-
understood in the presence of small adversarial changes to the DNN parameters’ underlying

memory representation, such as bit-flips that may be induced by hardware fault attacks.

My first study examines the effects of bitwise corruptions on 19 DNN models—six
architectures on three image classification tasks. We show the graceless degradation of
DNNs induced by a single bitwise corruption. Most models have at least one parameter
that, after a specific bit-flip in their bitwise representation, causes an accuracy loss of
over 90%. We employ simple heuristics to efficiently identify the parameters likely to
be vulnerable. We estimate that 40-50% of the parameters in a model might lead to an
accuracy drop greater than 10% when individually subjected to such one-bit perturbations.
We also show that this vulnerability is prevalent—the number of vulnerable parameters in

a model are similar across different datasets, architecture choices, or training techniques.

To demonstrate how an adversary can take advantage of this vulnerability, we study
the impact of an exemplary hardware fault attack, Rowhammer, on DNNs. Specifically,
we show that a Rowhammer-enabled attacker co-located in the same physical machine

can inflict significant accuracy drops (up to 99%) even with single bit-flip corruptions and



no knowledge of the model. Our results expose the limits of DNNs’ resilience against
parameter perturbations induced by real-world fault attacks. We conclude by discussing

possible defenses and future research directions towards fault attack-resilient DNNSs.

1.2.2 Confidentiality

Novel data processing pipelines and network architectures increasingly drive the success
of deep learning. In consequence, the industry considers top-performing architectures as
intellectual property (or trade secrets) and devotes considerable computational resources
to discovering such architectures through neural architecture search. This practice provides
an incentive for adversaries to steal these unique architectures; when used in the cloud,
to provide Machine Learning as a Service, the adversaries also have an opportunity to
reconstruct the architectures by exploiting a range of hardware side-channels. However, it
is challenging to reconstruct those unique components without knowing the computational
graph (e.g., the layers, branches or skip connections), the architecture configurations (e.g.,

the number of filters in a convolutional layer) or the specific pre-processing steps.

My second study shows that an adversary can extract this confidential information
by exploiting hardware-level side-channels. To this end, we presents an algorithm that
reconstructs the key components of a novel deep learning systems by exploiting a small
amount of information leakage from a cache side-channel attack, Flush+Reload [26].
We exploit the computational regularities that DNNs have: A DNN processes an input
sequentially with its layers, and the time it takes to process the input depends on its

layer configurations. Flush+Reload reliably extracts the sequence of computations and



the timing for each computation. Using those information, our attack generates candidate
DNN architectures from the sequence and eliminates incompatible candidates through a
parameter estimation process. This is a prevalent vulnerability as popular deep learning

libraries, e.g., PyTorch and Tensorflow, implement DNN computations in the same way.

In our experiments, we demonstrate that one can reconstruct MalConv [44], a novel
data pre-processing pipeline for malware detection, and ProxylessNAS-CPU [45], a novel
network architecture for the ImageNet classification optimized to run on CPUs, without
knowing the architecture family. In both cases, we achieve 0% error. Our results suggest
that hardware side-channels are a practical attack vector against MLaaS, and more efforts
should be devoted to understanding their impact on the security of deep learning systems.

Finally, we conclude by discussing some potential defenses against this new threat.

1.2.3 Computational Efficiency

Recent increases in the computational demands of DNNs, combined with the observation
that most input samples require only shallow models, have sparked interest in input-
adaptive multi-exit architectures such as MSDNets [46] or Shallow-Deep Networks [29].
Those architectures enable faster inferences and could bring DNNs to low-power devices,
e.g., in the Internet of Things (IoT). However, it is unknown whether the computational
efficiency provided by this approach is robust against adversarial pressure. In particular,
an adversary may aim to slowdown adaptive DNNs by increasing their average inference

time—a threat analogous to the denial-of-service attacks from the Internet.

My last work shows that an adversary can jeopardize the computational savings



provided by input-adaptive inference mechanisms. We study this threat systematically
by experimenting with three generic multi-exit DNNs (based on VGG16, MobileNet,
and ResNet56) and a custom multi-exit architecture (MSDNet), on two popular image
classification benchmarks (CIFAR-10 and Tiny ImageNet). To this end, we show that
adversarial example-crafting techniques can be modified to cause slowdowns. We also

propose a metric for comparing the impact of our attacks on different architectures.

Our experiments show that the slowdown attack reduces the efficacy of multi-exit
DNNs by 90-100%, and it amplifies the latency by 1.5-5x in a typical 1oT deployment.
We also show that it is possible to craft universal, reusable perturbations and that the
attack can be effective in realistic black-box scenarios, where the attacker has limited
knowledge about the victim. Finally, we show that adversarial training provides limited
protection against slowdowns. These results suggest that further research is needed for

defending multi-exit architectures against this emerging threat.

1.3 Contributions

In summary, this dissertation makes the following contributions:

This dissertation tackles the conventional perspective on the security of deep
learning systems and makes a step towards characterizing new threats. To this
end, I employ a systems security perspective that views DNNs as a computational
tool running in systems. Using this holistic approach, I expose emerging threats that
exploit new attack vectors, e.g., hardware-level attacks, or study new objectives,

e.g., reconstructing unique DNN architectures or reducing computational savings
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of input-adaptive DNNs. Over the three research projects, I show that deep learning
systems are more vulnerable to those new threats than we previously assumed. My

findings suggest that further research is required for defending against the threats.

In the study that examines the graceless degradation of deep learning systems:

This study shows that DNN models are more vulnerable to bit-flip corruptions
than previously assumed. In particular, I show that adversarial bitwise corruptions
induced by hardware fault attacks can easily inflict severe indiscriminate damages
by drastically increasing or decreasing the value of a model parameter. This work
shows that on average, ~50% of model parameters are vulnerable to single bit-flip
corruptions, causing relative accuracy drops above 10%, and that all the networks

that we examine include parameters that can cause an accuracy drop of over 90%.

This work conducts comprehensive analysis of DNN models’ behavior against
single bit-flips and characterize the vulnerability that a hardware fault attack
can trigger. | examine the impact of various factors: the bit position, bit-flip
direction, parameter sign, layer width, activation function, normalization, and model
architecture. The analysis shows that the vulnerability is prevalent—the max. accuracy

drop and the number of vulnerable parameters are the same across all the DNNs.

Based on this analysis, I examine the impact of practical hardware fault attacks
in a representative deep learning scenario. I show that a Rowhammer-enabled
attacker can inflict significant accuracy drops (up to 99%) on a victim’s DNN

running in the cloud even with constrained bit-flip corruptions and no knowledge of
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the model. I further show that the same attacker can inflict an accuracy drop of over

10% within a minute even when the attacker cannot control the bit-flip locations.

In the study that examines the confidentiality of deep learning systems:

My work shows that an adversary can steal unique deep learning systems by
exploiting hardware side-channel attacks. To this end, I design an algorithm that
reconstructs the key components of a victim deep learning system by exploiting a
small amount of information leakage from a cache side-channel attack, Flush+Reload.
I show that Flush+Reload reliably extracts the computational trace and exposes
the time each computation takes in a practical cloud scenario. Using the extracted
information, the attacker estimates the computational graph and the architectural

configurations.

This study also shows that the attacker can reconstruct unique architectures
in practical scenarios. In evaluation, I show the reconstruction of two unique
DNN architectures with no error: (1) ProxylessNAS-CPU, a novel architecture for
object recognition found from neural architecture search and (2) MalConv, a novel

manually-designed data pre-processing pipeline for malware detection.

This study further shows that the vulnerability to our reconstruction attack is
prevalent. I first show the reconstruction of a network architecture by exploiting
the vulnerability shared across common deep learning frameworks, PyTorch and
TensorFlow. More importantly, I also show that computational regularities of DNNs

make the vulnerability to reconstruction attacks difficult to defeat.
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In the study that examines the computational efficiency of deep learning systems:

This is the first study that examines the robustness of input-adaptive multi-exit
DNNs against adversarial slowdowns. To this end, I first show that examples
crafted by prior evasion attacks fail to bypass the victim model’s early exits. I then
show that an adversary can adapt such attacks to the goal of model slowdown by
modifying its objective function—the DeepSloth attack. This work also proposes an

efficacy metric for comparing slowdowns across different multi-exit architectures.

My work conducts a comprehensive evaluation of this new vulnerability. I
experiment with three generic multi-exit DNNs (based on VGG16, ResNet56 and
MobileNet) and a specially designed multi-exit architecture, MSDNets, on two
popular image classification benchmarks (CIFAR-10 and Tiny ImageNet). The
results show that DeepSloth reduces the efficacy of multiexit DNNs by 90-100%,
i.e., the perturbations render nearly all early exits ineffective. In a scenario typical
for IoT deployments, where a DNN is partitioned between the edge and the cloud,

DeepSloth amplifies the latency by 1.5-5x%, negating the benefits of partitioning.

This study also shows that this is a prevalent vulnerability. I show that it is
possible to craft a universal DeepSloth perturbation, which can cause slowdowns
on either all or a class of inputs. While more constrained, this attack still reduces
the efficacy by 5-45%. Further, I observe that DeepSloth can be effective in some

black-box scenarios, where the attacker has limited knowledge about the victim.

Finally, I show that a standard defense against adversarial samples—adversarial
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training—is inadequate against DeepSloth. I expose a tradeoff between being
efficient, robust against standard adversarial examples, and resilient to DeepSloth.
This suggests that further research is needed for protecting input-adaptive multi-exit

networks against this emerging security threat.

1.4 Dissertation Structure

This section describes the structure of this dissertation. In Chapter 2, I introduce basic
concepts that I will use throughout this dissertation. Here, I also review literature relevant
to my works. In Chapter 3, I present my first work that exposes the graceless degradation
of DNNs under hardware fault attacks. Next, I present my second work on attacking the
confidentiality of DNNs by reconstructing their unique architectures from hardware side-
channels (Chapter 4). In Chapter 5, I present my last work on nullifying computational
savings provided by input-adaptive DNNs via adversarial input perturbations. Finally, I

conclude this dissertation and discuss future research directions (in Chapter 6).
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Chapter 2: Backgrounds and Related Work

If I have seen further it is by standing on the shoulders of Giants.

— Isaac Newton, 1675.

his chapter provides an overview of the background knowledge that is necessary
T to understand and discuss the three emerging threats this dissertation presents. At
first, these attacks target the core component of a system, i.e., neural networks. Hence,
I overview how neural networks work, especially in classification settings, and how we
train and deploy them in practice (Section 2.1). In Section 2.2, I discuss the conventional

attacks on neural networks and defenses against them studied in the literature.

2.1 Neural Network

A neural network is a function f : X — ) that operates as a sequence of layers
transforming an input x from the domain X < R? to an output y from the range ) <
R™. In a neural network, each layer contains neurons that apply a linear and non-linear
transformation to their inputs—the outputs (activations) of the previous layer’s neurons.

The number of neurons in a layer is called its width, and the total number of layers is
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its depth. The i-th layer computes f;(a) = g;(w; - a + b;), where g¢; represents a non-
linear activation function, and w;, b, are the trainable parameters (the weights and biases,
respectively). The most commonly used activation function is ReLU(a) = maz(a, 0),
and the activation function is often followed by other optional layer structures such as

dropout [47], pooling, or batch normalization [48].

A fully-connected network contains exclusively layers that connect each neuron in
one layer to every neuron in the following layer. To make more efficient use of each
parameter, convolutional neural networks [49] apply a two dimensional convolution over
the input and are thus more time- and space-efficient. To maintain efficiency, the window
size of the convolution is typically small (e.g., 3 x 3 or 5 x 5). The convolutional neural
networks use the same filters for every window, called weight sharing, making them

require far fewer parameters than fully-connected networks.

In this dissertation, we will focus on neural networks in classification settings where
the output y is a probability distribution over n class labels. The raw output of f(x) is
referred to as its logits, and the softmax o(-) is applied to convert logits into a probability
distribution. The inferred label of an input x by a network is then defined as y =
argmazx; o(f(x)) where i € {1,2,...,n}. In case of converting an oracle label j into
a distribution, one commonly uses one-hot encoding y; = 1,(j), i.e., a vector y; has one

only at the index 7 and zero at the others.

16



2.1.1 Training and Inference of Neural Networks

Training. Neural networks are trained by empirical risk minimization (ERM). Given a
dataset for training D, < A’ x ), training minimizes the empirical risk E vy~ [L(f(x), y)].
Here, L is the loss function that quantifies how correct (or incorrect) the prediction of a
network f(x) is for an input x and its oracle label y. A commonly used loss function is

the cross-entropy loss.

Stochastic gradient descent (SGD) is the de-facto approach for minimizing the loss.
Known as the backpropagation algorithm [50] in the context of neural networks, SGD
updates network parameters 6 with the gradients computed over a randomly sampled

mini-batch B at each iteration ¢:

1
6t+1 <~ Qt —-n- @ Z VQtﬁ(f9t<XZ‘), YI)

i€eB

where 7 is the learning rate and controls the magnitude of updates made at each iteration.
During training, the network is tested based on how well it generalizes to the unseen

samples in D;; < D and not in the training data D,..

Inference. Once the network converges to an acceptable error rate, training stops, and the
network, along with its parameters 6, will be stored as a model fy. During inference (or
testing), we load this model into the memory and produce the prediction for a given input

sample, usually not in the training data. We here fix the values of model parameters 6.

17



2.2 Related Work

This section discusses two conventional attacks relevant to our work.

2.2.1 Adversarial Examples

Szegedy et al. [11] were the first work that exposed the sensitivity of neural networks
to test-time input perturbations. They found that the total amount of perturbations to an
input required to change a network’s prediction on it is small and called samples with
such perturbations as adversarial examples. Inspired by this work, a vast literature [51,
52,53,54, 55, 56, 57] presented algorithms for crafting strong adversarial examples—i.e.,

samples that fool a model’s predictions with only small perturbations and high confidence.

Projected Gradient Descent (PGD) [54] is the most popular algorithm that computes

adversarial input perturbations v for a test-time input (x, y) as follows:
vt = HHUH@«(W +asgn(V,L (fe(x),y)))

where ¢ is the current attack iteration; « is the step-size; II is the projection operator that
bounds the perturbation on ||v||,, < € and L is the loss function. At each iteration ¢, this
attack makes an update to the perturbations towards increasing the loss value on (x,y).

PGD is commonly used for evaluating the reliability of a model’s predictions on inputs.

Transferability of adversarial examples. The attacks above assume a white-box adversary

who knows a victim model’s internals and uses them for crafting adversarial examples.
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However, there are scenarios where an adversary does not have the knowledge of a victim
model. This black-box adversary can exploit a surrogate model instead for launching
the attack and still hurt an unknown victim [55, 56, 57]. This transferability leads to

adversarial examples in more practical black-box scenarios.

Adversarial training. Although many defenses [58, 59, 60, 61, 62] have been proposed

against this threat, adversarial training (AT) has become the frontrunner [54].

2.2.2 Data Poisoning

Poisoning attacks [20, 21, 22, 24, 63, 64, 65] exploit the training process to manipulate
a trained model’s behavior by injecting maliciously crafted samples, i.e., poisons, into
the training set. If a model is trained on the contaminated training set, the attacker
can (1) prevent the trained model from generalizing well to the test data [20, 21] or (2)
cause misclassifications of specific test-time samples, i.e., targets, without degrading the
generalization performance of the model [22, 24, 63, 64, 65]. The former attacks are
known as indiscriminate poisoning while the latter is targeted poisoning. Data poisoning
is highly effective in attack scenarios where an adversary cannot control the test-time

samples (unlike adversarial examples) or an attacker cannot alter the training procedures.
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Chapter 3: Graceless Degradation Caused by Hardware Fault Attacks

There is no more great danger than underestimating your enenty.

— Lao Tzu’s The Art of War (S. Griffith, Trans.), 1971 [66].

n 1990, Dr. Yann Lecun, a computer scientist and a professor at New York University,
I published the seminal paper “Optimal Brain Damage.” [31]. This is the first work
that reported the graceful degradation property: typically, cumulative changes to the
network’s parameters result in a graceful degradation of classification accuracy. This
property has been harnessed in a broad range of techniques, such as network pruning [32],
which significantly reduces the number of parameters in the network and leads to improved
inference times. Besides structural resilience, DNN models can tolerate slight noise in
their parameters with minimal accuracy degradation [67]. Researchers have proposed
utilizing this property in defensive techniques, such as adding Gaussian noise to model
parameters to strengthen DNN models against adversarial examples [43]. As a result, this
natural resilience is believed to make it difficult for attackers to significantly degrade the

overall accuracy by corrupting network parameters.
Recent work has explored the impact of hardware faults on DNN models [34, 42,

68]. Such faults can corrupt the memory storing the victim model’s parameters, stress-
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testing DNNs’ resilience to bitwise corruptions. For example, Qin et al. [42], confirming
speculation from previous studies [32, 34], showed that a DNN model for CIFAR10 image
classification does not lose more than 5% accuracy when as many as 2,600 parameters
out of 2.5 million are corrupted by random faults. However, this analysis is limited
to a specific scenario and only considers accidental errors rather than attacker-induced
corruptions by means of fault attacks. The widespread usage of DNNs in many mission-
critical systems, such as self-driving cars or aviation [69, 70], requires a comprehensive

understanding of the security implications of such adversarial bitwise errors.

In this chapter, we explore the security properties of DNNs under bitwise errors that

can be induced by practical hardware fault attacks. Specifically, we ask the question:

How vulnerable are DNNs to the atomic corruption

that a hardware fault attacker can induce?

Here, we focus on single bit-flip attacks that are realistic as they well-approximate the
constrained memory corruption primitive of practical hardware fault attacks, such as
Rowhammer [71]. To answer this question, we conduct a comprehensive study that

characterizes the DNN model’s responses to single-bit corruptions in each of its parameters.

First, we implement a systematic vulnerability analysis framework that flips each
bit in a given model’s parameters and measures the misclassification rates on a validation
set. Using our framework, we analyze 19 DNN models; consisting of six different
architectures and their variants on three popular image classification tasks—MNIST, CIFAR10,
and ImageNet. Our experiments show that, on average, ~50% of model parameters
are vulnerable to single bit-flip corruptions, causing relative accuracy drops above 10%.
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Further, all 19 DNN models contain parameters that can cause an accuracy drop of over
90%'. These show that adversarial bitwise errors can lead to a graceless degradation of

classification accuracy; exposing the limits of DNNs’ resilience to numerical changes.

Our framework also allows us to characterize the vulnerability by examining the
impact of various factors: the bit position, bit-flip direction, parameter sign, layer width,
activation function, normalization and model architecture. Our key findings include:
1) the vulnerability is caused by drastic spikes in a parameter’s value; 2) the spikes in
positive parameters are more threatening, however, an activation function that allows
negative outputs renders the negative parameters vulnerable as well; 3) the number of
vulnerable parameters increases proportionally as the DNN’s layers get wider; 4) two
common training techniques, e.g., dropout [72] and batch normalization [73], are ineffective
in preventing the massive spikes bit-flips cause; and 5) the ratio of vulnerable parameters
is almost constant across different architectures (e.g., AlexNet, VGG16, and so on).
Further, building on these findings, we propose heuristics for speeding up the analysis

of vulnerable parameters in large models.

Second, to understand the practical impact of this vulnerability, we use Rowhammer [74]
as an exemplary hardware fault attack. While a variety of hardware fault attacks are
documented in literature [74, 75, 76, 77], Rowhammer is particularly amenable to practical,
real-world exploitation. Rowhammer takes advantage of a widespread vulnerability in
modern DRAM modules and provides an attacker with the ability to trigger controlled

memory corruptions directly from unprivileged software execution. As a result, even a

I'The vulnerability of a parameter requires a specific bit in its bitwise representation to be flipped. There also
might be multiple such bits in the representation that, when flipped separately, trigger the vulnerability.
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constrained Rowhammer-enabled attacker, who only needs to perform a specific memory
access pattern, can mount practical attacks in a variety of real-world environments, including

cloud [78, 79], browsers [71, 80, 81, 82], mobile [82, 83], and servers [84, 85].

We analyze the feasibility of Rowhammer attacks on DNNs by simulating a Machine-
Learning-as-a-Service (MLaaS) scenario, where the victim and attacker VMs are co-
located on the same host machine in the cloud. The co-location causes the victim and the
attacker to share the same physical memory, enabling the attacker to trigger Rowhammer
bit-flips in the victim’s data [78, 79]. We focus our analysis on models with an applicable
memory footprint, which can realistically be targeted by hardware fault attacks such as

Rowhammer.

Our Rowhammer results show that in a surgical attack scenario, with the capability
of flipping specific bits, the attacker can reliably cause severe accuracy drops in practical
settings. Further, even in a blind attack scenario, the attacker can still mount successful
attacks without any control over the memory locations of the bit-flips. Moreover, we also
reveal a potential vulnerability in the transfer learning scenario; in which a surgical attack

targets the parameters in the layers victim model contains in common with a public one.

Lastly, we discuss directions for viable protection mechanisms, such as reducing
the number of vulnerable parameters by preventing significant changes in a parameter
value. In particular, this can be done by (1) restricting activation magnitudes and (2) using
low-precision numbers for model parameters via quantization or binarization. We show
that, when we restrict the activations using the ReLUG6 activation function, the ratio of

vulnerable parameters decreases from 47% to 3% in AlexNet, and also, the accuracy drops
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are largely contained within 10%. Moreover, quantization and binarization reduce the
vulnerable parameter ratio from 50% to 1-2% in MNIST. While promising, such solutions
cannot deter practical hardware fault attacks in the general case, and often require training
the victim model from scratch; hinting that more research is required towards fault attack-

resilient DNNs.

3.1 Preliminaries

Here, we provide an overview of the required background knowledge.

3.1.1 Single Precision Floating Point Numbers

The parameters of a DNN model are usually represented as IEEE754 32-bit single-precision
floating-point numbers. This format leverages the exponential notation and trades off the
large range of possible values for reduced precision. For instance, the number 0.15625
in exponential notation is represented as 1.25 x 273, Here, 1.25 expresses the mantissa;
whereas —3 is the exponent. The IEEE754 single-precision floating-point format defines
23 bits to store the mantissa, 8 bits for the exponent, and one bit for the sign of the value.
The fact that different bits have different influence on the represented value makes this
format interesting from an adversarial perspective. For instance, continuing or example,
flipping the 16th bit in the mantissa increases the value from 0.15625 to 0.15625828;
hence, a usually negligible. On the other hand, a flipping the highest exponent bit would
turn the value into 1.25 x 2'2°. Although both of these rely on the same bit corruption

primitive, they yield vastly different results. In Section 3.3, we analyze how this might
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lead to a vulnerability when a DNN’s parameters are corrupted via single bit-flips.

3.1.2 Rowhammer Attacks

Rowhammer is the most common instance of software-induced fault attacks [71, 78, 79,
80, 81, 82, 83, 85]. This vulnerability provides an aggressor with a single-bit corruption
primitive at DRAM level; thus, it is an ideal attack for the purpose of our analysis.
Rowhammer is a remarkably versatile fault attack since it only requires an attacker to
be able to access content in DRAM; an ubiquitous feature of every modern system. By
simply carrying out specific memory access patterns—which we explain in Section 3.4—
the attacker is able to cause extreme stress on other memory locations triggering faults on

other stored data.

3.2 Threat Model

Prior work has extensively validated a DNN’s resilience to parameter changes [31, 32,
34, 42, 43, 67], by considering random or deliberate perturbations. However, from a
security perspective, these results provide only limited insights as they study a network’s
expected performance under cumulative changes. In contrast, towards a successful and
feasible attack, an adversary is usually interested in inflicting the worst-case damage

under minimal changes.

We consider a class of modifications that an adversary, using hardware fault attacks,
can induce in practice. We assume a cloud environment where the victim’s deep learning

system is deployed inside a VM—or a container—to serve the requests of external users.
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For making test-time inferences, the trained DNN model and its parameters are loaded
into the system’s (shared) memory and remain constant in normal operation. Recent

studies describe this as a typical scenario in MLaaS [86].

To understand the DNN’s vulnerability in this setup, we consider the atomic change
that an attacker may induce—the single bit-flip—and we, in Section 3.3, systematically
characterize the damage such change may cause. We then, in Section 3.4, investigate the
feasibility of inducing this damage in practice, by considering adversaries with different

capabilities and levels of knowledge.

Capabilities. We consider an attacker co-located in the same physical host machine as the
victim’s deep learning system. The attacker, due to co-location, can take advantage of a
well-known software-induced fault attack, Rowhammer [78, 79], for corrupting the victim
model stored in DRAM. We take into account two possible scenarios: 1) a surgical attack
scenario where the attacker can cause a bit-flip at an intended location in the victim’s
process memory by leveraging advanced memory massaging primitives [78, 83] to obtain
more precise results; and 2) a blind attack where the attacker lacks fine-grained control
over the bit-flips; thus, is completely unaware of where a bit-flip lands in the layout of the

model.

Knowledge. Using the existing terminology, we consider two levels for the attacker’s
knowledge of the victim model, e.g., the model’s architecture and its parameters as well
as their placement in memory: 1) a black-box setting where the attacker has no knowledge
of the victim model. Here, both the surgical and blind attackers only hope to trigger

an accuracy drop as they cannot anticipate what the impact of their bit-flips would be;
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and 2) a white-box setting where the attacker knows the victim model, at least partially.
Here, the surgical attacker can deliberately tune the attack’s inflicted accuracy drop—from
minor to catastrophic damage. Optionally, the attacker can force the victim model to
misclassify a specific input sample without significantly damaging the overall accuracy.
However, the blind attacker gains no significant advantage over the black-box scenario as

the lack of capability prevents the attacker from acting on the knowledge.

3.3 Single-Bit Corruptions on DNNs

In this section, we expose the vulnerability of DNNs to single bit-flips. We start with
an overview of our experimental setup and methodology. We then present our findings
on DNNSs’ vulnerability to single bit corruptions. For characterizing the vulnerability,
we analyze the impact of 1) the bitwise representation of the corrupted parameter, and
2) various DNN properties; on the resulting indiscriminate damage®. We also discuss the
broader implications of the vulnerability for both the blind and surgical attackers. Finally,

we turn our attention to two distinct attack scenarios single bit-flips lead to.

3.3.1 Experimental Setup and Methodology

Our vulnerability analysis framework systematically flips the bits in a model, individually,
and quantifies the impact using the metrics we define. We implement the framework using

Python 3.7° and PyTorch 1.0* that supports CUDA 9.0 for accelerating computations by

2We use this term to indicate the severe overall accuracy drop in the model.
Shttps://www.python.org
*https://pytorch.org
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using GPUs. Our experiments run on the high performance computing cluster that has 488
nodes, where each is equipped with Intel E5-2680v2 2.8 GHz 20-core processors, 180 GB
of RAM, and 40 of which have 2 Nvidia Tesla K20m GPUs. We achieve a significant

amount of speed-up by leveraging a parameter-level parallelism.

Datasets. We use three popular image classification datasets: MNIST [87], CIFAR10 [88],
and ImageNet [2]. MNIST is a grayscale image dataset used for handwritten digits (zero
to nine) recognition, containing 60,000 training and 10,000 validation images of 28x28
pixels. CIFAR10 and ImageNet are colored image datasets used for object recognition.
CIFAR10 includes 32x32 pixels, colored natural images of 10 classes, containing 50,000
training and 10,000 validation images. For ImageNet, we use the ILSVRC-2012 subset [89],
resized at 224x224 pixels, composed of 1,281,167 training and 50,000 validation images

from 1,000 classes.

Models. We conduct our analysis on 19 different DNN models. For MNIST, we define a
baseline architecture, Base (B), and generate four variants with different layer configurations:
B-Wide, B-PReLU, B-Dropout, and B-DP-Norm. We also examine well-known LeNet5
(L5) [87] and test two variants of it: L5-Dropout and L5-D-Norm. Table 3.1 describes
those architectures. For CIFAR10, we employ the architecture from [63] as a baseline
and experiment on its three variants: B-Slim, B-Dropout and B-D-Norm. In the following
sections, we discuss why we generate these variants. For CIFAR10, we also employ two
off-the-shelf network architectures: AlexNet [91] and VGG16 [92]. For ImageNet, we

use five well-known DNNs to understand the vulnerability of large models: AlexNet,
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Base ‘ Base (Wide) ‘ Base (Dropout) ‘ Base (PReL.U)

Layer Type  Layer Size ‘ Layer Type Layer Size ‘ Layer Type Layer Size \ Layer Type Layer Size

Conv (R) 5x5x10 (2) | Conv (R) 5x5x20 (2) Conv (R) 5x5x10 (2) Conv (P) 5x5x10 (2)
Conv (R) 5x5x20 (2) Conv (R) 5x5x40 (2) Conv (-) 5x5x20 (2) Conv (P) 5x5x%20 (2)

- - - - Dropout (R) 0.5 - -
FC (R) 50 FC (R) 100 FC (R) 50 FC (P) 50
- - - - Dropout (R) 0.5 - -

FC (S) 10 FC (S) 10 FC (S) 10 FC (S) 10
Base (D-BNorm) ‘ LeNet5 [90] ‘ LeNet5 (Dropout) ‘ LeNet5 (D-BNorm)
Layer Type  Layer Size \ Layer Type Layer Size \ Layer Type Layer Size \ Layer Type Layer Size

Conv (-) 5x5x10 (2) Conv (R) 5x5x6 (2) Conv (R) 5x5x6 (2) Conv (-) 5x5x6 (2)
BatchNorm (R) 10 - - - - BatchNorm (R) 6
- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
Conv (-) 5x5x20 (2) | Conv (R) 5x5x16 (2) Conv (R) 5x5x16 (2) Conv (-) 5x5x16 (2)
BatchNorm (R) 20 - - - - BatchNorm (R) 16
- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
- - Conv (R)  5x5x120 (2) | Conv (R)  5x5x120 (2) Conv (R) 5x5x120 (2)
- - - - - - BatchNorm (R) 120
Dropout (R) 0.5 - - Dropout (R) 0.5 Dropout (R) 0.5
- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
- - Conv (R) 5x5x120 (1) Conv (R)  5x5x120 (1) Conv (R) 5x5x120 (1)
FC (R) 50 FC (R) 84 FC (R) 84 FC (R) 84
Dropout (R) 0.5 - - Dropout (R) 0.5 Dropout (R) 0.5
FC (S) 10 FC (S) 10 FC (S) 10 FC (S) 10

Table 3.1: Network Architectures used for MNIST. We take two base architectures
(Base and LeNet5) and make four and two variants from them, respectively. Note that we
highlight the variations from the base architectures in red color.

VGG16, ResNet50 [93], DenseNet161 [94] and InceptionV3 [95]°.

Hyper-parameters. We use the following hyper-parameters for training. In MNIST, we
use SGD, 40 epochs, 0.01 learning rate (Ir), 64 batch, 0.1 momentum, and adjust learning
rate by 0.1, in every 10 epochs. In CIFARI10, we use: (1) SGD, 50 epochs, 0.02 Ir, 32
batch, 0.1 momentum, and adjust Ir by 0.5, in every 10 epochs (for Base models); (2)
300 epochs, 0.01 Ir, 64 batch, 0.1 momentum, and adjust Ir by 0.95, in every 10 epochs
(for AlexNet); and (3) 300 epochs, 0.01 Ir, 128 batch, 0.1 momentum, and adjust Ir by
0.15, in every 100 epochs (for VGG16). In our experiments on transfer learning scenarios

(Sec 3.3.6), we fine-tune VGG16 pre-trained on ImageNet, on GTSRB, using: SGD, 40

The pre-trained ImageNet models we use are available at:
https://pytorch.org/docs/stable/torchvision/models.html.
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epochs, 0.01 Ir, 32 batch, 0.1 momentum, and adjust Ir by 0.1 and 0.05, in 15 and 25
epochs. We fine-tune ResNet50 pre-trained on ImageNet, on Flower102, using: SGD, 40
epochs, 0.01 Ir, 50 batch, 0.1 momentum, and adjust Ir by 0.1, in 15 and 25 epochs. In

both scenarios, we freeze the parameters of the first 10 layers.

Metrics. To quantify the indiscriminate damage of single bit-flips, we define the Relative

Accuracy Drop as:

(Accpm'stine - ACCcorrupted)
Accpm'stine

RAD =

where Accpristine and AcCeorrypted denote the classification accuracies of the pristine and
the corrupted models, respectively. In our experiments, we use [RAD> 0.1] as the
criterion for indiscriminate damage on the model. We also measure the accuracy of each
class in the validation set to analyze whether a single bit-flip causes a subset of classes
to dominate the rest. In MNIST and CIFAR10, we simply compute the Top-1 accuracy
on the test data (as a percentage) and use the accuracy for analysis. For ImageNet, we
consider both the Top-1 and Top-5 accuracy; however, for the sake of comparability, we
report only Top-1 accuracy in Table 3.2. We consider a parameter as vulnerable if it, in its
bitwise representation, contains at least one bit that triggers severe indiscriminate damage
when flipped. For quantifying the vulnerability of a model, we simply count the number

of these vulnerable parameters.

Methodology. On our 8 MNIST models, we carry out a complete analysis: we flip each
bit in all parameters of a model, in both directions—(0—1) and (1—0)—and compute the
RAD over the entire validation set. However, a complete analysis of the larger models

requires infeasible computational time—the VGG16 model for ImageNet with 138M
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parameters would take ~ 942 days on our setup. Therefore, based on our initial results, we

devise three speed-up heuristics that aid the analysis of CIFAR10 and ImageNet models.

Speed-up heuristics. The following three heuristics allow us to feasibly and accurately

estimate the vulnerability in larger models:

o Sampled validation set (SV). After a bit-flip, deciding whether the bit-flip leads to a
vulnerability [RAD> 0.1] requires testing the corrupted model on the validation set;
which might be cost prohibitive. This heuristic says that we can still estimate the model
accuracy—and the RAD—on a sizable subset of the validation set. Thus, we randomly
sample 10% the instances from each class in the respective validation sets, in both CIFAR10

and ImageNet experiments.

e Inspect only specific bits (SB). In Sec 3.1, we showed how flipping different bits of
a IEEE754 floating-point number results in vastly different outcomes. Our the initial
MNIST analysis in Sec 3.3.3 shows that mainly the exponent bits lead to perturbations
strong enough to cause indiscriminate damage. This observation is the basis of our SB
heuristic that tells us to examine the effects of flipping only the exponent bits for CIFAR10
models. For ImageNet models, we use a stronger SB heuristic and only inspect the most
significant exponent bit of a parameter to achieve a greater speed-up. This heuristic causes
us to miss the vulnerability the remaining bits might lead to, therefore, its results can be

interpreted as a conservative estimate of the actual number of vulnerable parameters.

o Sampled parameters (SP) set. Our MNIST analysis also reveals that almost 50% of

all parameters are vulnerable to bit-flips. This leads to our third heuristic: uniformly
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sampling from the parameters of a model would still yield an accurate estimation of the
vulnerability. We utilize the SP heuristic for ImageNet models and uniformly sample a
fixed number of parameters—20,000—from all parameters in a model. In our experiments,
we perform this sampling five times and report the average vulnerability across all runs.
Uniform sampling also reflects the fact that a black-box attacker has a uniform probability

of corrupting any parameter.

3.3.2 Quantifying the Vulnerability That Leads to Indiscriminate Damage

Table 3.2 presents the results of our experiments on single-bit corruptions, for 19 different
DNN models. We reveal that an attacker, armed with a single bit-flip attack primitive, can
successfully cause indiscriminate damage [RAD> 0.1] and that the ratio of vulnerable
parameters in a model varies between 40% to 99%; depending on the model. The consistency
between MNIST experiments, in which we examine every possible bit-flip, and the rest, in
which we heuristically examine only a subset, shows that, in a DNN model, approximately
half of the parameters are vulnerable to single bit-flips. Our experiments also show small
variability in the chances of a successful attack—indicated by the ratio of vulnerable
parameters. With 40% vulnerable parameters, the InceptionV3 model is the most apparent
outlier among the other ImageNet models; compared to 42-49% for the rest. Here, we

define the vulnerability based on [RAD> 0.1].
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Figure 3.1: The vulnerability of 15 DNN models using different criteria. We plot the
vulnerable parameter ratio based on the different RADs that an attacker aims; five from
MNIST (left), five from CIFAR10 (middle), and five from ImageNets (right).

We also examine how the vulnerability changes within the range [0.1 < RAD< 1].
Figure 3.1 describes the vulnerability on a specific RAD criterion; for instance, in MNIST-
L5, the model has 40% of vulnerable parameters that cause [RAD> 0.5], which estimates
the upper bound of the blind attacker. In MNIST, CIFARI10, and two ImageNet models,
the vulnerability decreases as the attacker aims to inflict the severe damage. However, in
ImageNet, ResNet50, DenseNet161, and InceptionV3 have almost the same vulnerability
(~50%) even with the high criterion [RAD> 0.8]. In the following subsections, we

characterize the vulnerability in relation to various factors and discuss our results in detail.

3.3.3 Characterizing the Vulnerability: Bitwise Representation

We characterize the interaction how the features of a parameter’s bitwise representation
govern its vulnerability.

Impact of the bit-flip position. To examine how much change in a parameter’s value
leads to indiscriminate damage, we focus on the position of the corrupted bits. In Figure 3.2,
for each bit position, we present the number of bits that causes indiscriminate damage

when flipped, on MNIST-L5 and CIFAR10-AlexNet models. In our MNIST experiments,
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Figure 3.2: The impact of the bit position. This plot shows the number of vulnerable
parameters in bit positions from 32nd to 24th in the log-scale.

we examine all bit positions and we observe that bit positions other than the exponents
mostly do not lead to significant damage; therefore, we only consider the exponent bits.
We find that the exponent bits, especially the 3 1st-bit, lead to indiscriminate damage. The
reason is that a bit-flip in the exponents causes to a drastic change of a parameter value,
whereas a flip in the mantissa only increases or decreases the value by a small amount—
[0,1]. We also observe that flipping the 30th to 28th bits is mostly inconsequential as
these bits, in the IEEE754 representation, are already set to one for most values a DNN

parameter usually takes—[3.0517 x 1077, 2].

Direction Models (M: MNIST, C: CIFAR10)
(32-24th bits) M-B M-PReLU M-L5 C-B C-AlexNet

(0—-1) 11,019 21,711 28,902 314,768 1,185,964
(1—0) 0 0 0 0 0

Total 11,019 21,711 28,902 314,768 1,185,964

Table 3.3: The impact of the flip direction. The number of effective bit-flips in three
MNIST and two CIFAR10 models.

Impact of the flip direction. We answer which direction of the bit-flip, (0—1) or (1—0),
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leads to greater indiscriminate damage. In Table 3.3, we report the number of effective bit-
flips, i.e., those that inflict [RAD ¢ 0.1] for each direction, on 3 MNIST and 2 CIFAR10
models. We observe that only (0—1) flips cause indiscriminate damage and no (1—0)
flip leads to vulnerability. The reason is that a (1—0) flip can only decrease a parameter’s
value, unlike a (0—1) flip. The values of model parameters are usually normally distributed—
N (0, 1)—that places most of the values within [-1,1] range. Therefore, a (1—0) flip, in
the exponents, can decrease the magnitude of a typical parameter at most by one; which
is not a strong enough change to inflict critical damage. Similarly, in the sign bit, both
(0—1) and (1—0) flips cannot cause severe damage because they change the magnitude
of a parameter at most by two. On the other hand, a (0—1) flip, in the exponents, can
increase the parameter value significantly; thus, during the forward-pass, the extreme

neuron activation caused by the corrupted parameter overrides the rest of the activations.
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Figure 3.3: The impact of the parameter sign. The number of vulnerable positive and
negative parameters, in each layer of MNIST-LS5.

Impact of the parameter sign. As our third feature, we investigate whether the sign—
positive or negative—of the corrupted parameter impacts the vulnerability. In Figure 3.3,
we examine the MNIST-L5 model and present the number of vulnerable positive and

negative parameters in each layer—in the log-scale. Our results suggest that positive
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parameters are more vulnerable to single bit-flips than negative parameters. We identify
the common ReLU activation function as the reason: ReLU immediately zeroes out
the negative activation values, which are usually caused by the negative parameters.
As a result, the detrimental effects of corrupting a negative parameter fail to propagate
further in the model. Moreover, we observe that in the first and last layers, the negative
parameters, as well as the positive ones, are vulnerable. We hypothesize that, in the
first convolutional layer, changes in the parameters yield a similar effect to corrupting
the model inputs directly. On the other hand, in their last layers, DNNs usually have the

Softmax function that does not have the same zeroing-out effect as ReLLU.

3.3.4 Characterizing the Vulnerability: DNN Properties

We continue our analysis by investigating how various properties of a DNN model affect

the model’s vulnerability to single bit-flips.

Impact of the layer width. We start our analysis by asking whether increasing the width
of a DNN affects the number of vulnerable parameters. In Table 3.2, in terms of the
number of vulnerable parameters, we compare the MNIST-B model with the MNIST-B-
Wide model. In the wide model, all the convolutional and fully-connected layers are twice
as wide as the corresponding layer in the base model. We see that the ratio of vulnerable
parameters is almost the same for both models: 50.2% vs 50.0%. Further, experiments
on the CIFAR10-B-Slim and CIFAR10-B—twice as wide as the slim model—produce
consistent results: 46.7% and 46.8%. We conclude that the number of vulnerable parameters

grows proportionally with the DNN’s width and, as a result, the ratio of vulnerable
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Figure 3.4: The impact of the activation function. The number of vulnerable positive
and negative parameters, in each layer of MNIST-PReL.U.

parameters remains constant at around 50%.

Impact of the activation function. Next, we explore whether the choice of activation
function affects the vulnerability. Previously, we showed that ReLU can neutralize the
effects of large negative parameters caused by a bit-flip; thus, we experiment on different
activation functions that allow negative outputs, e.g., PReLLU [96], LeakyReLLU, or RReLLU [97].
These ReLU variants have been shown to improve the training performance and the
accuracy of a DNN. In this experiment, we train the MNIST-B-PReLLU model; which

is exactly the same as the MNIST-B model, except that it replaces ReLU with PReLLU.
Figure 3.4 presents the layer-wise number of vulnerable positive and negative parameters

in MNIST-B-PReLU. We observe that using PReLU causes the negative parameters to
become vulnerable and, as a result, leads to a DNN approximately twice as vulnerable as

the one that uses ReLU—50.2% vs. 99.2% vulnerable parameters.

Impact of dropout and batch normalization. We confirmed that successful bit-flip
attacks increase a parameter’s value drastically to cause indiscriminate damage. In consequence,
we hypothesize that common techniques that tend to constrain the model parameter values

to improve the performance, e.g., dropout [72] or batch normalization [73], would result
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Figure 3.5: The impact of the dropout and batch normalization. The distributions of
the parameter values of three CIFAR10 models variants.

in a model more resilient to single bit-flips. Besides the base CIFAR10 and MNIST
models, we train the B-Dropout and B-DNorm models for comparison. In B-Dropout
models, we apply dropout before and after the first fully-connected layers; in B-DNorm
models, in addition to dropout, we also apply batch normalization after each convolutional
layer. In Figure 3.5, we compare our three CIFAR10 models and show how dropout and
batch normalization have the effect of reducing the parameter values. However, when
we look into the vulnerability of these models, we surprisingly find that the vulnerability
is mostly persistent regardless of dropout or batch normalization—with at most 6.3%

reduction in vulnerable parameter ratio over the base network.

Impact of the model architecture. Table 3.2 shows that the vulnerable parameter ratio is
mostly consistent across different DNN architectures. However, we see that the InceptionV3
model for ImageNet has a relatively lower ratio—40.8%—compared to the other models—
between 42.1% and 48.9%. We hypothesize that the reason is the auxiliary classifiers in
the InceptionV3 architecture that have no function at test-time. To confirm our hypothesis,
we simply remove the parameters in the auxiliary classifiers; which bring the vulnerability
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ratio closer to the other models—46.5%. Interestingly, we also observe that the parameters
in batch normalization layers are resilient to a bit-flip: corrupting running_mean and
running_var cause negligible damage. In consequence, excluding the parameters in
InceptionV3’s multiple batch normalization layers leads to a slight increase in vulnerability—

by 0.02%.

3.3.5 Implications for the Adversaries

In Sec 3.2, we defined four attack scenarios: the blind and surgical attackers, in the black-
box and white-box settings. First, we consider the strongest attacker: the surgical, who
can flip a bit at a specific memory location; white-box, with the model knowledge for
anticipating the impact of flipping the said bit. To carry out the attack, this attacker
identifies: 1) how much indiscriminate damage, the RAD goal, she intends to inflict, 2) a
vulnerable parameter that can lead to the RAD goal, 3) in this parameter, the bit location,
e.g., 31st-bit, and the flip direction, e.g., (0—1), for inflicting the damage. Based on
our [RAD> 0.1] criterion, approximately 50% of the parameters are vulnerable in all
models; thus, for this goal, the attacker can easily achieve 100% success rate. For more
severe goals [0.1 <RAD< 0.9], our results in Appendix ?? suggest that the attacker can
still find vulnerable parameters. In Sec 3.4.3, we discuss the necessary primitives, in a

practical setting, for this attacker.

For a black-box surgical attacker, on the other hand, the best course of action is
to target the 31st-bit of a parameter. This strategy maximizes the attacker’s chance of

causing indiscriminate damage, even without knowing what, or where, the corrupted
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Figure 3.6: The security threat in a transfer learning scenario. The victim model—
student—that is trained by transfer learning is vulnerable to the surgical attacker, who can
see the parameters the victim has in common with the teacher model.

parameter is. Considering, the VGG16 model for ImageNet, the attack’s success rate
is 42.1% as we report in Table 3.2; which is an upper-bound for the black-box attackers.
For the weakest—black-box blind—attacker that cannot specifically target the 31st-bit,
we conservatively estimate the lower-bound as 42.1% / 32-bits = 1.32%; assuming only
the 31st-bits lead to indiscriminate damage. Note that the success rate for the white-box
blind attacker is still 1.32% as acting upon the knowledge of the vulnerable parameters
requires an attacker to target specific parameters. In Sec 3.4.4, we evaluate the practical

success rate of a blind attacker.

3.3.6 Distinct Attack Scenarios

In this section, other than causing indiscriminate damage, we discuss two distinct attack
scenarios single bit-flips might enable: transfer learning and targeted misclassification.

Transfer learning scenario. Transfer learning is a common technique for transferring
the knowledge in a pre-trained feacher model to a student model; which, in many cases,
outperforms training a model from scratch. In a practical scenario, a service provider

might rely on publicly available teacher as a starting point to train commercial student
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models. The teacher’s knowledge is transferred by freezing some of its layers and embedding
them into the student model; which, then, trains the remaining layers for its own task. The
security risk is that, for an attacker who knows the teacher but not the student, a black-
box attack on the student might escalate into a white-box attack on the teacher’s frozen
layers. The attacker first downloads the pre-trained teacher from the Internet. She then
loads the teacher into the memory and waits for the deduplication [98] to happen. During
deduplication, the memory pages with the same contents—the frozen layers—are merged
into the shared pages between the victim and attacker. This essentially promotes a blind
threat to the victim’s memory to a stronger surgical threat to the attacker’s own memory.
In consequence, a bit-flip in the attacker’s own pages can also affect the student model in

the victim’s memory.

We hypothesize that an attacker, who can identify the teacher’s vulnerable parameters
and trigger bit-flips in these parameters, can cause indiscriminate damage to the student
model. In our experiments, we examine two transfer learning tasks in [99]: the traffic
sign (GTSRB) [100] and flower recognition (Flower102) [101]. We initialize the student
model by transferring first ten frozen layers of the teacher—VGGI16 or ResNet50 on
ImageNet. We then append a new classification layer and train the resulting student
network for its respective task by only updating the new unfrozen layer. We corrupt
the 1,000 parameters sampled from each layer in the teacher and monitor the damage to
the student model. Figure 3.6 reports our results: we find that all vulnerable parameters
in the frozen layers and more than a half in the re-trained layers are shared by the teacher

and the student.
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Figure 3.7: The vulnerable parameters for a targeted attack in 3 DNN models. Each
cell reports the number of bits that lead to the misclassification of a target sample, whose
original class is given by the x-axis, as the target class, which is given by the y-axis. From
left to right, the models are MNIST-B, MNIST-L5 and CIFAR10-AlexNet.

Targeted misclassification. Our main focus is showing DNNs’ graceless degradation, but
we conduct an additional experiment and ask whether a single bit-flip primitive could be
used in the context of targeted misclassification attacks. A targeted attack aims to preserve
the victim model’s overall accuracy while causing it to misclassify a specific target sample
into the target class. We experiment with a target sample from each class in MNIST or
CIFAR10—we use MNIST-B, MNIST-L5 and CIFAR10-AlexNet models. Our white-
box surgical attacker also preserves the accuracy by limiting the [RAD< 0.05] as in [63].
We find that the number of vulnerable parameters for targeted misclassifications is lower
than that of for causing indiscriminate damage. In Figure 3.7, we also see that for some
(original—target class) pairs, the vulnerability is more evident. For example, in MNIST-
B, there are 141 vulnerable parameters for (class 4—class 6) and 209 parameters for (class
6—class 0). Simlarly, in CIFAR10-AlexNet, there are 6,000 parameters for (class 2—class

3); 3,000 parameters for (class 3—class 6); and 8,000 parameters for (class 6—class 3).
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3.4 Exploiting The Vulnerability Using Rowhammer

In order to corroborate the analysis made in Sec 3.3 and prove the viability of hardware
fault attacks against DNN, we test the resiliency of these models against Rowhammer. At
a high level, Rowhammer is a software-induced fault attack that provides the attacker with
a single-bit write primitive to specific physical memory locations. That is, an attacker
capable of performing specific memory access patterns (at DRAM-level) can induce
persistent and repeatable bit corruptions from software. Given that we focus on single-
bit perturbations on DNN’s parameters in practical settings, Rowhammer represents the

perfect candidate for the task.

3.4.1 Backgrounds on Rowhammer

DRAM internals. In Figure 3.8, we show the internals of a DRAM bank. A bank is a bi-
dimensional array of memory cells connected to a row buffer. Every DRAM chip contains
multiple banks. The cells are the actual storage of one’s data. They contain a capacitor

whose charge determines the value of a specific bit in memory. When a read is issued to

( Row Buffer J ( Row Buffer J

Figure 3.8: DRAM bank structure. Figure 3.9: Double-sided Rowhammer.
Zoom-in on a cell containing the capacitor =~ Aggressor rows in blue color, and a victim
storing data. row is colored in red
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a specific row, this row gets activated, which means that its content gets transferred to the
row buffer before being sent to the CPU. Activation is often requested to recharge a row’s

capacitors (i.e., refresh operation) since they leak charge over time.

Rowhammer mechanism. Rowhammer is a DRAM disturbance error that causes spurious
bit-flips in DRAM cells generated by frequent activations of a neighboring row. Here,
we focus on double-sided Rowhammer, the most common and effective Rowhammer
variant used in practical attacks [78, 82, 83]. Figure 3.9 exemplifies a typical double-sided
Rowhammer attack. The victim’s data is stored in a row enclosed between two aggressor
rows that are repeatedly accessed by the attacker. Due to the continuous activations of
the neighboring rows, the victim’s data is under intense duress. Thus, there is a large

probability of bit-flips on its content.

To implement such attack variant, the attacker usually needs some knowledge or
control over the physical memory layout. Depending on the attack scenario, a Rowhammer-
enabled attacker can rely on a different set of primitives for this purpose. In our analysis,
we consider two possible scenarios: 1) we initially consider the surgical attacker; that
is, an attacker with the capability of causing bit-flips at the specific locations, and we
demonstrate how, under these assumptions, she can induce indiscriminate damage to a
co-located DNN application. 2) We then deprive the attacker of this ability to analyze the
outcome of a blind attacker and we demonstrate that, even in a more restricted environment,

the attacker can still cause indiscriminate damage by causing bitwise corruptions.

45



DRAM #(0—1)flips DRAM #(0—1) flips

A2 21,538 | A4 5,577
E2 16,320 11 4,781
H 1 10, 608 J1 4,725
G.1 7,851 E 1 4,175
Al 4,367 | A3 1,541
F 1 5927 | C. 1,365

Table 3.4: Hammertime database [1]. We report the number of (0—1) bit-flips in 12
different DRAM setups. (The rows in gray are used for the experiments in Figure 3.10.)

3.4.2 Experimental Setup

For our analysis, we constructed a simulated environment® relying on a database of the
Rowhammer vulnerability in 12 DRAM chips, provided by Tatar et al [1]. Different
memory chips have a different degree of susceptibility to the Rowhammer vulnerability,
enabling us to study the impact of Rowhammer attacks on DNNs in different real-world
scenarios. Table 3.4 reports the susceptibility of the different memory chips to Rowhammer.
Here, we only include the numbers for (0— 1) bit-flips since these are the more interesting
ones for the attacker targeting a DNN model according to our earlier analysis in Sec 3.3.3

and Sec 3.3.4.

We perform our analysis on an exemplary deep learning application implemented
in PyTorch, constantly querying an ImageNet model. We use ImageNet models since
we focus on a scenario where the victim has a relevant memory footprint that can be

realistically be targeted by hardware fault attacks such as Rowhammer in practical settings.

®Note that we first implemented all the steps described in our paper on a physical system, considering using
end-to-end attacks for our analysis. After preliminary testing of this strategy on our own DRAMs, we
concluded it would be hard to generalize the findings of such an analysis and decided against it—in line
with observations from prior work [1].
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Network  Vuln. Objects Vuln. Params  #Hammer Attempts
(Vuln./Total)  (in 20k params) (min/med/max)

AlexNet 7/16 9,522 4/64 /4,679
VGG16 12/32 8,140 4/64/4,679
ResNet50 9/102 3,466 4/64/4,679
DenseNet161 63 /806 5,117 4/64 /4,679
InceptionV3 53 /483 6,711 4/64/4,679

Table 3.5: Effectiveness of surgical attacks. We examine five different ImageNet models
analyzed in Sec 3.3.

While small models are also potential targets, the number of interesting locations to
corrupt is typically limited to draw general conclusions on the practical effectiveness of

the attack.

3.4.3 Surgical Attack Using Rowhammer

We start our analysis by discussing a surgical attacker, who has the capability of causing
a bit-flip at the specific location in memory. The two surgical attackers are available: the
attacker with the knowledge of the victim model (white-box) and without (black-box).
However, in this section, we assume that the strongest attacker knows the parameters to
compromise and is capable of triggering bit-flips on its corresponding memory location.
Then, this attacker can take advantage of accurate memory massing primitives (e.g.,

memory deduplication) to achieve 100% attack success rate.

Memory templating. Since a surgical attacker knows the location of vulnerable parameters,
she can template the memory up front [78]. That is, the attacker scans the memory by
inducing Rowhammer bit-flips in her own allocated chunks and looking for exploitable

bit-flips. A surgical attacker aims at specific bit-flips. Hence, while templating the
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memory, the attacker simplifies the scan by looking for bit-flips located at specific offsets
from the start address of a memory page (i.e., 4 KB)—the smallest possible chunk allocated
from the OS. This allows the attacker to find memory pages vulnerable to Rowhammer
bit-flips at a given page offset (i.e., vulnerable templates), which they can later use to

predictably attack the victim data stored at that location.

Vulnerable templates. To locate the parameters of the attacker’s interest (i.e., vulnerable
parameters) within the memory page, she needs to find page-aligned data in the victim
model. Modern memory allocators improve performances by storing large objects (usually
multiples of the page size) page-aligned whereas smaller objects are not. Thus, we
first analyze the allocations performed by the PyTorch framework running on Python to
understand if it performs such optimized page-aligned allocations for large objects similar
to other programs [102, 103]. We discovered this to be the case for all the objects larger
than 1 MB—i.e., our attacker needs to target the parameters such as weight, bias, and so

on, stored as tensor objects in layers, larger than 1 MB.

Then, again focusing on the ImageNet models, we analyzed them to identify the
objects that satisfy this condition. Even if the ratio between the total number of objects
and target objects may seem often unbalanced in favor of the small ones’, we found that
the number of vulnerable parameters in the target objects is still significant (see Table 3.5).
Furthermore, it is important to note that when considering a surgical attacker, she only
needs one single vulnerable template to compromise the victim model, and there is only

1,024 possible offsets where we can store a 4-byte parameter within a 4 KB page.

"The bias in convolutional or dense layers, and the running_mean and running_var in batch-norms
are usually the small objects (; 1 MB).
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Memory massaging. After finding a vulnerable template, the attacker needs to massage
the memory to land the victim’s data on the vulnerable template. This can be achieved,
for instance, by exploiting memory deduplication [78, 79, 81]. Memory deduplication is
a system-level memory optimization that merges read-only pages for different processes
or VMs when they contain the same data. These pages re-split when a write is issued
to them. However, Rowhammer behaves as invisible bit-wise writes that do not trigger
the spit, breaking the process boundaries. If the attacker knows (even if partially) the
content of the victim model can take advantage of this merging primitive to compromise

the victim service.

Experimental results. Based on the results of the experiments in Sec ?? and Sec ??,
we analyze the requirements for a surgical (white-box) attacker to carry out a successful
attack. Here, we used one set of the five sampled parameters for each model. In Table 3.5,
we report min, median, and max values of the number of rows that an attacker needs to
hammer to find the first vulnerable template on the 12 different DRAM setups for each
model. This provides a meaningful metric to understand the success rate of a surgical
attack. As you can see in Table 3.5, the results remain unchanged among all the different
models. That is, for every model we tested in the best case, it required us to hammer
only 4 rows (A_2 DRAM setup) to find a vulnerable template all the way up to 4,679 in
the worst case scenario (C_1). The reason why the results are equal among the different
models is due to the number of vulnerable parameters which largely exceeds the number
of possible offsets within a page that can store such parameters (i.e., 1024). Since every

vulnerable parameter yields indiscriminate damage [RAD> 0.1], we simply need to
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identify a template that could match any given vulnerable parameter. This means that
an attacker can find a vulnerable template at best in a matter of few seconds® and at worst
still within minutes. Once the vulnerable template is found, the attacker can leverage
memory deduplication to mount an effective attack against the DNN model—with no

interference with the rest of the system.

3.4.4 Blind Attack Using Rowhammer

While in Sec 3.4.3 we analyzed the outcome of a surgical attack, here we abstract some
of the assumptions made above and study the effectiveness of a blind attacker oblivious
of the bit-flip location in memory. To bound the time of the lengthy blind Rowhammer

attack analysis, we specifically focus our experiments on the ImageNet-VGG16 model.

We run our application under the pressure of Rowhammer bit-flips indiscriminately
targeting both code and data regions of the process’s memory. Our goal is twofold: (1) to
understand the effectiveness of such attack vector in a less controlled environment and
(2) to examine the robustness of a running DNN application to Rowhammer bit-flips by
measuring the number of failures (i.e., crashes) that our blind attacker may inadvertently

induce.

Capabilities. We consider a blind attacker who cannot control the bit-flips caused by
Rowhammer. As aresult, the attacker may corrupt bits in the DNN’s parameters as well as
the code blocks in the victim process’s memory. In principle, since Rowhammer bit-flips

propagate at the DRAM level, a fully blind Rowhammer attacker may also inadvertently

8We assume 200ms to hammer a row.
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flip bits in other system memory locations. In practice, even an attacker with limited
knowledge of the system memory allocator, can heavily influence the physical memory
layout by means of specially crafted memory allocations [104, 105]. Since this strategy
allows attackers to achieve co-location with the victim memory and avoid unnecessary
fault propagation in practical settings, we restrict our analysis to a scenario where bit-
flips can only (blindly) corrupt memory of the victim deep learning process. This also
generalizes our analysis to arbitrary deployment scenarios, since the effectiveness of blind

attacks targeting arbitrary system memory is inherently environment-specific.

Methods. For every one of the 12 vulnerable DRAM setups available in the database,
we carried out 25 experiments where we performed at most 300 “hammering” attempts—
value chosen after the surgical attack analysis where a median of 64 attempts was required.
The experiment has three possible outcomes: (1) we trigger one(or more) effective bit-flip(s)
that compromise the model, and we record the relative accuracy drop when performing
our testing queries; (2) we trigger one(or more) effective bit-flip(s) in other victim memory
locations that result in a crash of the deep learning process; (3) we reach the “timeout”
value of 300 hammering attempts. We set such “timeout” value to bound our experimental

analysis which would otherwise result too lengthy.

Experimental results. In Figure 3.10, we present the results for three sampled DRAM
setups. We picked A_2, I_1, and C_I as representative samples since they are the most,
least, and moderately vulnerable DRAM chips (see Table 3.4). Depending on the DRAM
setup, we obtain fairly different results. We found A_2 obtains successful indiscriminate

damages to the model in 24 out of 25 experiments while, in less vulnerable environments

51



140 - DRAM
Configuration
A2
1207 o 11
c1
100 ~
2 80
2
# 60
40 1
B o ()
20 1 e 0® o
o ()
o{ @0 ©
0 50 100 150 200 250

# Hammer attempts

Figure 3.10: The successful runs of a blind attack execution over three different
DRAM setups (A _2-most, I_I-least, and C_I-moderately vulnerable). We report the
success in terms of # flips and #hammer attempts required to obtain an indiscriminate
damage to the victim model. We observe the successes within few hammering attempts.

such as C_I, the number of successes decreases to only one while the other 24 times
out. However, it is important to note that a timeout does not represent a negative result—
a crash. Contrarily, while C_/ only had a single successful attack, it also represents a
peculiar case corroborating the analysis presented in Sec ??. The corruption generated in
this single successful experiment was induced by a single bit-flip, which caused one of the
most significant RADs detected in the entire experiment, i.e., 0.9992 and 0.9959 in Top-
1 and Top-5. Regardless of this edge case, we report a mean of 15.6 out of 25 effective
attacks for this Rowhammer variant over the different DRAM setups. Moreover, we report
the distribution of accuracy drops for Top-1 and Top-5 in Figure 3.11. In particular, the
median drop for Top-1 and Top-5 confirms the claims made in the previous sections, i.e.,

the blind attacker can expect [RAD> (.1] on average.

Interestingly, when studying the robustness of the victim process to Rowhammer,
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Figure 3.11: The distribution of relative accuracy drop for Top-1 and Top-5. We
compute them over the effective # flips in our experiments on the ImageNet-VGG16
model.

we discovered it to be quite resilient to spurious bit-flips. We registered only 6 crashes
over all the different DRAM configurations and experiments—300 in total. This shows
that the model effectively dominates the memory footprint of the victim process and
confirms findings from our earlier analysis that bit-flips in non-vulnerable model elements

have essentially no noticeable impact.

3.4.5 Synopsis

Throughout the section, we analyzed the outcome of surgical and blind attacks against
large DNN models and demonstrated how Rowhammer can be deployed as a feasible
attack vector against these models. These results corroborate our findings in Sec 3.3
where we estimated at least 40% of a model’s parameters to be vulnerable to single-bit
corruptions. Due to this large attack surface, in Sec 3.4.3, we showed that a Rowhammer-
enabled attacker armed with knowledge of the network’s parameters and powerful memory
massaging primitives [78, 79, 83] can carry out precise and effective indiscriminate attacks

in a matter of, at most, few minutes in our simulated environment. Furthermore, this
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property, combined with the resiliency to spurious bit-flips of the (perhaps idle) code
regions, allowed us to build successful blind attacks against the ImageNet-VGG16 model

and inflict “terminal brain damage” even when the model is hidden from the attacker.

3.5 Discussion

In this section, we discuss and evaluate some potential mitigation mechanisms to protect
against single-bit attacks on DNN models. We discuss two research directions towards
making DNN models resilient to bit-flips: restricting activation magnitudes and using
low-precision numbers. Prior work on defenses against Rowhammer attacks suggests
system-level defenses [106, 107] that often even require specific hardware support [74,
108]. Yet they have not been widely deployed since they require infrastructure-wide
changes from cloud host providers. Moreover, even though the infrastructure is resilient
to Rowhammer attacks, an adversary can leverage other vectors to exploit bit-flip attacks
for corrupting a model. Thus, we focus on the solutions that can be directly implemented

on the defended DNN model.

3.5.1 Restricting Activation Magnitudes

In Sec 3.3.4, we showed that the vulnerable parameter ratio varies based on inherent
properties of a DNN; for instance, using PReLLU activation function causes a model to
propagate negative extreme activations. We hypothesize that an activation function, which
produces its output in a constrained range, would make indiscriminate damage harder

to induce via bit-flips. There are several functions, such as Tanh or HardTanh [109],
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Network Train Baseacc. #Params Vulnerability

Base (ReLLU) Scr 98.13 10,972 (50.2%)
Base (ReLUG6) Scr 98.16 21.840 313 (1.4%)
Base (Tanh) Scr 97.25 ’ 507 (2.3%)
Base (ReLUG6) Sub 95.71 542 (2.4%)
AlexNet (ReLU) - 56.52/79.07 20.000 9.467 (47.34%)
AlexNet (ReLU6) Sub  39.80/65.82 (6iM) 560 (2.8%)
AlexNet (ReLUA) Sub  56.52/79.07 1,063 (5.32%)
VGG16 (RelLU) - 64.28 / 86.56 20.000 8,227 (41.13%)
VGG16 (ReLU6) Sub  38.58/64.84 (13’8M) 2,339 (11.67%)

VGGI16 (ReLUA)  Sub  64.28/86.56 2,427 (12.14%)

Table 3.6: Effectiveness of restricting activation.

that suppress the activations; however, using ReLU-6 [110] function provides two key
advantages over the others: 1) the defender only needs to substitute the existing activation
functions from ReLLU to ReLLU6 without re-training, and 2) ReLUA functions allow the
defender to control the activation range by modifying the A, e.g., using A > 6 to minimize
the performance loss the substitution causes. A defender can monitor the activation
values over the validation set and to determine an activation range that only suppresses
the abnormal values, potentially caused by bit-flips. In our experiments on ImageNet-
AlexNet, we set the range as [0, max|, where max is determined adaptively by observing

the maximum activation in each layer (ReLU-A).

Experiments. We use three DNN models in Sec 3.3: the MNIST-B, ImageNet-AlexNet,
and ImageNet-VGG16 models. We evaluate four activation functions: ReLU (default),
Tanh, ReLLU6, and ReLUA (only for AlexNet and VGG16); and two training methods:
training a model from scratch (Scr) or substituting the existing activation into another

(Sub). In our notation, we denote the model’s name together with its activation function,
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e.g., AlexNet (ReLU6) For larger models, we also rely on our speed-up heuristics for

estimating the vulnerability.

Table 3.6 shows the effectiveness of this defensive mechanism. For each network
(Column 1), we list the training method, the base accuracy, the number of sampled
parameters, and the vulnerability (Column 2-5). We find that, in some cases, restricting
activation magnitudes with Tanh and ReLLU6 reduces the vulnerability. For instance, in
the MNIST models, we observe that the ratio of vulnerable parameters drops to 1.4-2.4%
from 50%; without incurring any significant performance loss. Further, we discover that
the substitution with ReLU6 achieves a similar effect without re-training; however, it
fails to prevent the vulnerability in the last layer, which uses Softmax instead of ReLU. In
AlexNet and VGG16, we also observe a decrease in the ratio of vulnerable parameters—
47.34% to 2.8% and 41.13% to 11.67%—; however, with significant loss of accuracy.
To minimize the loss, we set the range of activation in AlexNet (ReLUA) and VGG16
(ReLUA) by selecting the maximum activation value in each layer. We see that ReLUA

leads to a trade-off between the ratio of vulnerable parameters and the accuracy.

Takeaways. Our experimental results on restricting activation magnitudes suggest that
this mechanism 1) allows a defender to control the trade-off between the relative accuracy
drop and reducing the vulnerable parameters and 2) enables ad-hoc defenses to DNN
models, which does not require training the network from scratch. However, the remaining
number of vulnerable parameters shows that the Rowhammer attacker still could inflict

damage, with a reduced success rate.
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Network Method Base acc. #Params Vulnerability

L5 - 99.24 62,598 30,686 (49.0%)
L5 8-bit Quantized 99.03 62,600 0 (0.0%)
L5 XNOR Binarized 98.39 62,286 623 (1.0%)

Table 3.7: Effectiveness of using low-precision.

3.5.2 Using Low-precision Numbers

Another direction is to represent the model parameters as low-precision numbers by
using quantization and binarization. In Sec 3.3.3, we found that the vulnerability exploits
the bitwise representation of the corrupted parameter to induce the dramatic chances in
the parameter’s value. We hypothesize that the use of low-precision numbers would make
a parameter more resilient to such changes. For example, an integer expressed as the
8-bit quantized format can be increased at most 128 by a flip in the most significant bit—
8th bit. Therefore, the attacker only can cause restricted increases in a model parameter.
Training models using low-precision numbers are supported by the popular deep learning
frameworks such as TensorFlow®. The victim can train and deploy the model with quantized

or binarized parameters on these frameworks.

Experiments. To test our hypothesis, we use 3 DNN models: the MNIST-L5 (baseline)
and its quantized and binarized variants. To quantize the MNIST-L5 model, we use the
8-bit quantization in [33, 99], which converts the model parameters in all layers into
integers between 0 and 255. For the binarization, we employ XNOR-Net [111], which
converts the model parameters to -1 and 1, except for the first convolutional layer. Using

these variants, we evaluate the vulnerability to single bit-flips and report the accuracy,

9https ://www.tensorflow.org/lite/performance/post_training_quantization
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total parameters and vulnerability; without the speed-up heuristics.

Table 3.7 shows the effectiveness of using low-precision parameters. For each
network (Column 1), we report the quantization method, the accuracy, the number of
vulnerable parameters and their percentage (Columns 2-5). We find that using low-
precision parameters reduces the vulnerability: in all cases, the ratio of vulnerable parameters
drops from 49% (Baseline) to 0-2% (surprisingly 0% with the quantization). We also
observe that, in the binarized model, the first convolutional and the last classification
layers contain most of the vulnerable parameters; with 150 and 420 vulnerable parameters,

respectively. This also corroborates with our results in Sec 3.3.3.

Takeaways. Even if 8-bit quantization mitigates the vulnerability, in a real-world scenario,
training a large model, such as [4], from scratch can take a week on a supercomputing

cluster. This computational burden lessens the practicality of this defensive mechanism.

3.6 Conclusions

This work exposes the limits of DNN’s resilience against parameter perturbations. We
study the vulnerability of DNN models to single bit-flips. We evaluate 19 DNN models
with six architectures on three image classification tasks and estimate that 40-50% of
a DNN’s parameters are vulnerable. An attacker, with only a single-bit corruption of
these vulnerable parameters, can cause indiscriminate damage [RAD> 0.1]. We further
characterize this vulnerability based on the impact of various factors: the bit position,
bit-flip direction, parameter sign, layer width, activation function, training techniques,

and model architecture. To demonstrate the feasibility of the bit-flip attacks in practice,
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we leverage a software-induced fault injection attack, Rowhammer. In experiments with
Rowhammer, we find that, without knowing the victim’s deep learning system, the attacker
can inflict indiscriminate damage without system crashes. Lastly, motivated by the attacks,
we discuss two potential directions of mitigation: restricting activation magnitudes and
using low-precision numbers. We believe that our work is an important step for understanding
and mitigating this emerging threat that can compromise the security of critical deep

learning systems.
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Chapter 4: Jeopardizing Confidentiality via Side-Channel Attacks

In this case, love just lost Germany the whole bloody war.

— The Imitation Game, 2014.

o continue outperforming state-of-the-art results, research in deep learning has
T shifted from manually engineering features to engineering deep learning systems,
including novel data pre-processing pipelines [44, 112] and novel neural architectures [45,
113]. For example, a recent malware detection system MalConv, with a manually designed
pipeline that combines embeddings and convolutions, achieves 6% better detection rate
over previous state-of-the-art technique without pre-processing [44]. In addition to designing
data pre-processing pipelines, other research efforts focus on neural architecture search
(NAS)—a method to automatically generate novel architectures that are faster, more
accurate and more compact. For instance, the recent work of ProxylessNAS [45] can
generate a novel architecture with 10% less error rate and 5x fewer parameters than
previous state-of-the-art generic architecture. As a result, in the industry such novel deep
learning architectures are kept as trade secrets or intellectual property as they give their

owners a competitive edge [95].

These novel deep learning architectures are usually costly to obtain: generating the
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NASNet architectures [113] takes almost 40K GPU hours and the MalConv authors had to
test a large number of failed designs in the process of finding a successful architecture. As
a result, an adversary who wishes to have the benefits of such deep learning architectures
without incurring the costs has an incentive to steal them. Compared to stealing a trained
model (including all the weights), stealing the architectural details that make the victim
deep learning system novel provides the benefit that the new architectures and pipelines
are usually applicable to multiple tasks. Training new deep learning systems based on
these stolen details still provides the benefits, even when the training data is different.
After obtaining these details, an attacker can train a functioning model, even on a different
data set, and still benefit from the stolen deep learning architectures [112, 114]. Further,
against a novel system, stealing its architectural details increases the reliability of black-
box poisoning and evasion attacks [115]. Moreover, stealing leads to threats such as
Camouflage attacks [116] that trigger misclassifications by exploiting the image scaling

algorithms that are common in DNN pre-processing pipelines.

The emerging Machine-Learning-as-a-Service (MLaaS) model that offers deep learning
computation tools in the cloud makes remote hardware side-channel attacks a practical
vector for stealing deep learning architectures [117]. Unlike prior stealing attacks, these
attacks do not require physical proximity to the hardare that runs the system [118, 119] or
direct query access to train an approximate model [86]. Cache side-channel attacks have
especially been shown as practical in cloud computing for stealing sensitive information,
such as cryptographic keys [117]. Cache side-channel attacks are ubiquitous and difficult

to defeat as they are inherent to the micro architectural design of modern CPUs [120].
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In this chapter, considering the incentives to steal a novel deep learning architectures
and applicability of cache side-channel attacks in modern deep learning settings, we
design a practical attack to steal novel deep learning architectures by leveraging only
the cache side-channel leakage. Simulating a common cloud computing scenario, our
attacker has a co-located VM on the same host machine as the victim deep learning
system, and shares the last-level cache with the victim [117]. As a result, even though
the VMs are running on separate processor cores, the attacker can monitor the cache
accesses a deep learning framework—PyTorch or TensorFlow—makes while the victim

system is running [117].

The first step of our attack is launching a cache side-channel attack, Flush+Reload [121],
to extract a single trace of victim’s function calls (Section ??). This trace corresponds to
the execution of specific network operations a deep learning framework performs, e.g.,
convolutions or batch-normalizations, while processing an input sample. However, the
trace has little information about the computational graph, e.g., the layers, branches or
skip connections, or the architectural parameters, e.g., the number of filters in a convolutional
layer. The limited prior work on side-channel attacks against deep learning systems
assumed knowledge of the architecture family of the victim DNN [122, 123]; therefore,
these attacks are only able to extract variants of generic architectures, such as VGG [92]
or ResNet [93]. To overcome this challenge, we also extract the approximate time each
deep learning operation takes, in addition to the trace, and we leverage this information
to estimate the architectural parameters. This enables us to develop a reconstruction

algorithm that generates a set of candidate graphs given the trace and eliminates the
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incompatible candidates given the parameters (Section 4.3). We apply our technique to
two exemplar deep learning architectures: the MalConv data pre-processing pipeline and

a novel neural architecture produced by ProxylessNAS.

4.1 Related Work

Here, we discuss prior efforts in both crafting and stealing network architectures. There
is a growing interest in crafting novel DL systems as they significantly outperform their
generic counterparts. The immense effort and computational costs of crafting them,

however, motivates the adversaries to steal them.

4.1.1 Effort to Design Deep Learning Systems

Creating deep learning systems traditionally takes the form of human design through
expert knowledge and experience. Some problems require novel designs to manipulate
the input in a domain-specific way that DNNs can process more effectively. For example,
MalConv malware detection system [44] uses a manually designed pre-processing pipeline
that can digest raw executable files as a whole. Pseudo LIDAR [112], by pre-processing
the output of a simple camera sensor into a LIDAR-like representation, achieves four
times better object detection accuracy than previous state-of-the-art technique. Moreover,
recent work also focuses on automatically generating optimal architectures via neural
architecture search (NAS). For example, reinforcement learning [124] or gradient-based
approaches [45] have been proposed for learning to generate optimal architectures. Even

though NAS procedures have been shown to produce more accurate, more compact and
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faster neural networks, the computational cost of the search can be an order of magnitude

higher than training a generic architecture [113].

4.1.2 Effort to Steal Deep Learning Systems

Prior work on stealing DNN systems focus on two main threat models based on whether
the attacker has physical access to the victim’s hardware. Physical access attacks have
been proposed against hardware accelerators and they rely on precise timing measurements [125]
or electromagnetic emanations [118]. These attacks are not applicable in the cloud setting
we consider. The remote attacks that are applicable in the cloud setting, on the other hand,
have limitation of requiring precise measurements that are impractical in the cloud [123].
Further, the attack without this limitation [126] requires the attacker to know the family
the target architecture comes from; thus, it cannot steal novel architectures. In our work,
we design an attack to reconstruct novel DL systems by utilizing a practical cache side-

channel attack in the cloud setting.

4.2 Extracting the Sequence of Computations via Flush+Reload

4.2.1 Threat Model

We consider an attacker who aims to steal the key components in a novel DL system,
i.e., a novel pre-processing pipeline or a novel network architecture. We first launch
a Flush+Reload [121] attack to extract cache side-channel information leaked by DL

computation. Our target setting is a cloud environment, where the victim’s DL system is
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deployed inside a VM—or a container—to serve the requests of external users. Flush+Reload,
in this setting, is known to be a weak, and practical, side-channel attack [117]. Further,
as in MLaaS products in the cloud, the victim uses popular open-source DL frameworks,

such as PyTorch [127] or TensorFlow [128].

Capabilities. We consider an attacker that owns a co-located VM—or a container—
in the same physical host machine as the victim’s system. Prior work has shown that
spinning-up the co-located VM in the third-party cloud computing services does not
require sophisticated techniques [129, 130, 131, 132, 133]. Due to the co-location, the
last-level cache (L3 cache) in the physical host is shared between multiple cores where
the attacker’s and victim’s processes are; thus, our attacker can monitor the victim’s
computations leaked at the L3 cache. We also note that, even if the victim uses GPUs, our
attacker can still observe the same computations used for CPUs via cache side-channels

(see our discussion in Appendix A.2).

Knowledge. We consider our attacker and the victim use the same version of the same
open-source DL framework. This is realistic, in MLaaS scenarios such as AWS SageMaker
or Google Cloud’s AutoML, as cloud providers recommend practitioners to use the common
frameworks to construct their systems'. These common practices also allow our attacker
to reverse-engineer the frameworks offline and identify the lines of code to monitor with

the Flush+Reload technique.

"For example, AWS provides convenient deployment options for both PyTorch and TensorFlow: https:
//docs.aws.amazon.com/sagemaker/latest/dg/pytorch.html, and https://docs.aws.amazon.com/
sagemaker/latest/dg/tf.html.
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4.2.2 Flush+Reload Mechanism

Flush+Reload allows an adversary to continually monitor victim’s instruction access patterns
by observing the time taken to load them from memory. This technique is effective to
extract the computation flow of the victim’s program when the attacker and victim share
memory (i.e., a shared library or page deduplication [81]). The attacker flushes specific
lines of code in a shared DL framework from the co-located machine’s cache-hierarchy
and then measure the amount of time it takes to reload the lines of code. If the victim
invokes the monitored line of code, the instruction will be reloaded into the shared cache,
and when the attacker reloads the instruction, the access to it will be noticably faster. On
the other hand, if the victim does not call the monitored line of code, the access to it will
be slower because the instruction needs to be loaded from main memory (DRAM). By

repeating this process, our attacker can tell when a victim has accessed a line of code.

4.2.3 Overview of Our Attack Procedure

Online (Co-located) Offline (Separate)

(D Identify the lines of code to monitor
@ Monitor the lines of code via Flush+Reload
(@ De-noise the Flush+Reload observations
@ Profile the computations

(® Perform the reconstruction process

Figure 4.1: Overview of our attack procedure. Our attacker only requires to be online
(co-located) while the attacker is monitoring the computations of a victim DL system.
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In Figure 4.1, we illustrate our attack procedure. We split the steps into two phases: the
online phase and the offline phase. In the online phase (step 2)), the attacker needs co-
location to monitor the computations from the victim’s system. In the offline phase (steps

D, @, @, and (5)) attacker does not require the co-location with the victim.

(D First, our attacker analyzes the open-source DL framework to identify the lines of code
to monitor. The attacker monitors the first line of each function that corresponds to the
start of a DL computation.

@ Next, the attacker spins up a co-located VM and launches the Flush+Reload attack to
extract the trace of victim system’s function calls. As the trace does not depend on the
input sample, we only require to extract a single trace from one full invocation of the
victim system.

B Since the raw observations with Flush+Reload are noisy, the attacker applies filtering
to highlight the regularities of DL computations reflected in the trace.

@ To estimate the architectural parameters, e.g., the input/output channels, kernel size,
or strides, our attacker creates a lookup tables of timings and performed number of
matrix multiplications by collecting traces from various parameter combinations.

(® Finally, using the victim’s computational trace lookup tables for estimating architectural

parameters, the attacker starts reconstruction to steal the victim’s DL system (Sec 4.3).

4.2.4 Monitoring the Toy Network Computations via Flush+Reload

Experimental Setup. We implement our attack on Ubuntu 18.04 running on a host

machine equipped with the Intel E3-1245v6 3.7GHz processors (8 cores, 32GB memory
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ToyNet (PyTorch) Raw Trace Processed Trace

ToyNet (nn.Module) :
; _ . 52230076,Conv2d [0] Conv2D,52230076,1,2
1f, lace= :

Toghes. salfys imit . [1] BatchNorm2D,54230076,0,0
self.cl = nn. (3,10,1,1) 53440820,GEMM(conv) [2] Conv2D,55600076,10,10
self.bl = nn. (10) 53440820,GEMM(oncopy) [3] BatchNorm2D,59268076,0,0
self.cz — . Lo 2000 . [4] ReLU6,59880076.0,0
celf.r2 = nn. (inplace) 54242076,BatchNorm2d [5] TensorAdd,60270076,0,0

(self, x): 55600076,Conv2d
i ziﬁ Eii 56040820,GEMM(conv)
skip x. # skip connection 56040820,GEMM(0HCOpy)
X self. (x) .o
x = self.b2(x) 59268076,BatchNorm2d
x = self.r2(x) . 59880076,ReLU6
X skip # skip connection

% 60270076,add

Figure 4.2: Extracted traces while ToyNet is in use. In the left, we place our network
definition in PyTorch. We show the raw trace from Flush+Reload (middle) and the de-
noised trace (right).

and 8MB cache shared between cores). For the step (I), we analyze two popular open-
source DL frameworks, PyTorch and TensorFlow, and identify the list of functions to
monitor (see Appendix A.1 for the full list of functions). We leverage the Mastik toolkit [ 134]
to launch the Flush+Reload attack, and while a victim DL system is running on a VM, our
attacker monitors the list of functions—step (2). For the reconstruction process conducted

in offline after the extraction, we use Python v3.6? to implement the procedure.

ToyNet Results. In Figure 4.2, we demonstrate the extracted trace via Flush+Reload
while ToyNet is processing an input. ToyNet is composed of one convolution followed
by a batch-norm and one depthwise convolution followed by a batch-norm and a ReLU
activation. The 1st convolution has the parameters (in, out, kernel, stride) as (3, 10, 3, 1),
and the depthwise convolution’s parameters are (10,10, 1,1). The network has a skip
connection that adds the intermediate output (from the 1st convolution) to the final output.

During inference, we feed in an input with dimensions 3x32x32.

2https://www.python.org
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In the middle panel of Figure 4.2, we also show the raw—noisy—trace from the
Flush+Reload output. The trace only includes cache-hits where the attacker’s accesses to
the lines of code are faster, i.e., when the victim invokes the function. Each element of
the trace includes a timestamp and a function name. The name corresponds to the ToyNet
layers, such as Conv2d and BatchNorm2d, and it also contains additional information

such as the tensor (add) and the BLAS operations, e.g., GEMM(oncopy).

Our attacker filters the raw trace according to the regular patterns in the DL computation.
For example, a long function call, e.g., Conv2d in the ToyNet trace, can appear multiple
times in the trace, as the cache can hit multiple times during Flush+Reload. In this case,
we condense the multiple occurrences into a single invocation using a heuristic based
on how close the timestamps are. We also observe the matrix multiplications such as
GEMM(conv) and GEMM(oncopy) while DL computation is being processed. We count
the individual occurrences and sum them up them based on the timestamp. After obtaining

the processed trace (in the right panel), the attacker starts the reconstruction procedure.

4.3 Reconstructing Novel Deep Learning Systems

After processing the Flush+Reload trace, our attacker reconstructs the key components
of the victim’s DL system. In this process, the attacker aims to generate the candidate
computational graphs of the victim system and to eliminate the incompatible candidates
by estimating the correct parameter set for each computation. For instance, in our ToyNet
example, the attacker wants to identify the computational orders and the location of the

start and end of a branch connection (computational graph). Also, the same attacker
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wants to estimate the parameters for each computation; for example, the input/output
channels and the kernel size in the 1st Conv2d. In this small network that has one branch,
there are only 10 candidate computational graphs; however, considering all possible
combinations of parameters, this will result in untractable number of candidates. Prior
work, in reconstruction, only considered generic architectures such as VGGs or ResNets
with the unrealistic assumption that an attacker knows the architecture family (backbone);
however, as our aim is to steal novel DL systems, we do not make this assumption. To

overcome this problem, we design a reconstruction procedure, which we describe next.

Knowledge of Our Attacker in Reconstruction. Here, we consider our attacker knows

what tensor operations and functions to monitor in the victim’s open-source DL framework.

These functions are model-independent; they correspond to architectural attributes designated

by the deep learning framework (see Appendix A.l1). We show that this knowledge is
sufficient to reconstruct novel data-preprocessing pipelines, such as MalConv, that are

usually shallower than the network architectures.

To reconstruct the deeper network architecture automatically designed by NAS
algorithms, we assume our attacker has some knowledge about the NAS search space—
e.g., NASNet search space [113]—the victim’s search process relies on. This knowledge
includes the list of layers used and the fact that a set of layers (known as blocks) are
repeatedly used such as Normal and Reduction Blocks in NASNet. We make this assumption
because, from the sequence of computations observed via Flush+Reload, our attacker can
easily identify a set of layers and the repetitions of the layers. However, we do mot assume

how each block is composed by using the layer observations directly; instead, we identify

70



candidate blocks by using a sequence mining algorithm. We demonstrate that, under these
assumptions, our attack reconstructs the ProxylessNAS-CPU in 12 CPU hours rather than

running a NAS algorithm from scratch that takes 40k GPU hours?.

4.3.1 Overview of Our Reconstruction Procedure.

We first focus on the invariant rules in the computations used for DL computations. For
instance, there are unary operations and binary operations. The tensor addition used to
implement a skip connection is binary operation; thus, our attacker can supplement the
reconstruction process by pruning the incompatible candidates. We also exploit the fact
that computation time is proportional to the number of element-wise multiplications in a
computation. In the ToyNet example, the time the 1st convolution (2 million cycles) takes
is shorter than the 2nd depthwise convolution (3.668 million cycles); thus, our attacker
further eliminates the candidates by comparing the possible parameters for a computation

with her offline profiling data—the lookup table.

Our reconstruction procedures consist of two steps:

(D Generation: The attacker can generate the candidate computational graphs from the
Flush+Reload trace based on the invariant rules in DL computations. Using the rules,
our attacker reduces the number of candidates significantly.

@) Elimination: Our attacker compares the time for each computation takes with profiling

data and prunes the incompatible candidates. We estimate the parameters sequentially

3Note that ProxylessNAS starts its searching process from a backbone architecture such as NASNet; thus,
even if the paper reported a search took 200 GPU hours, this number does not include the time spent
searching a backbone architecture, i.e., the 40k GPU hours to find NASNet.
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Reconstruction Errors

Victim Type # Candidates # Compatibles Topology (GED) Parameters (¢;)
MalConv Pre-processing Pipeline 20 1 0 0
ProxylessNAS-CPU  Deep Neural Network 180,224 1 0 0

Table 4.1: Reconstruction results. We report the number of candidates and compatible
architectures. Also, we report the reconstruction errors in the resulting topology and
parameters, and they are 0%.

starting from the input. When the output dimension from a candidate does not match

with the observation, we eliminate.

Error Metrics. To quantify the error of our reconstruction result, we use two similarity
metrics. First, we use the graph edit distance (GED) [135] to compare the reconstructed
computational graph with that of the victim. Second, we use the ¢;-distance to compute

the error between the estimated architectural parameters and those in the victim system.

Victims. We first reconstruct the MalConv [44], a novel data pre-processing pipeline
that converts the binary file into a specific format so that a neural network can digest
easily. Also, we show that our attacker can reconstruct the novel ProxylessNAS [45]
architecture that shows the improved accuracy on the ImageNet classification with the

less computational cost on a CPU.

4.3.2 Reconstructing Novel Pre-processing Pipelines

Here, we elaborate the reconstruction process of the MalConv [44] data pre-processing
pipeline. MalConv receives the raw bytes of . exe files and determines whether the file
is malicious or not. The uniqueness of MalConv comes from the way that it treats the

sequence of bytes: 1) Code instructions in binary file are correlated spatially, but the
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correlation has discontinuities from function calls and jump commands that are difficult
to capture by the sequence models, e.g., RNNs. 2) Also, each sequence has the order
of two million steps which far exceedes the length of an input to any previous neural
network classifier. MalConv tackles this problem by pre-processing the sequence of
bytes (Figure 4.3). It first splits the upper four bits and the lower four bits (narrow
operations) of a byte information; this helps the network capture the locality of closer
bytes and distant bytes. Next, the pipeline uses one dimensional convolution to extract
such localities and performs the element-wise multiplications of two outputs. Before
feeding this information to the neural network, the pipeline uses max-pooling to reduce
the training time caused by processing inputs with large dimensions. All these heuristics
are examined manually (see Section 4 of the original paper); thus, our attacker can save

time and effort by stealing the pipeline.

MalConv Novel Pre-processing Pipeline Processed Trace
(8, 2000000) (4, 2000000) (128, 4000) (128,4000)  [0] Embedding,4,0
‘ narrow H Convild Max Pool ‘ {H g:gizz;ﬁ%;gg}oo’o
(128, 1) [3] Conv1d,941689,8371993
[4] narrow,9473620,0
(2000000, 8) (8, 2000000) [5] Conv1d,10144145,8355807
Embedding __lEnspose (128,1) [6] Sigmoid,18655690.5,0
’ [71 * (multiply),18775738,0
[8] MaxPool1d,18835039,0
[9] transpose, 18949264,0
(8, 2000000) (4, 2000000) (128, 4000) [10] Linear,18949546,96

[11] Linear,18949831,0
[12] Sigmoid,18949905,0

‘ narrow H Convid

Figure 4.3: MalConv and the extracted trace. While the MalConv (left) is processing a
sample, we extract a trace via Flush+Reload and process the trace (right) for the pipeline
reconstruction.

Generate Computational Graphs. The first step of our attacker is to reconstruct the
computational graph candidates for the victim pipeline from the Flush+Reload trace. As

we can see in the trace in Figure 4.3, the attacker cannot simply connect the components
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in the traces sequentially because the branch connection, e.g., [7] * (multiply). Also,
from this component, our attacker knows which is the end of a branch but cannot know
when the branch has started. We solve this problem by populating all possible candidates

and pruning them later with the parameter estimation.

Algorithm 1 Populate computational graphs Generated Candidates
1: procedure POPULATEGRAPHS(T')

2. t=T.pop() R e
3:  if ¢ is empty then [

4: g = Create AGraph(t)

5: [ = CandzdateLzst() Embedding —~{ Transpose

6: =1 v g

7: return [

8: else ‘ narrow H Convild °
9: if ¢ is unary operator then

10: | = PopulateGraphs(T)

11: for gin/ do

12: C'TeateAnEdge(t,g) ‘ narrow H Convid e

13: end for I—
14: return l Embedding —'{ Transpose

15: else if ¢ is binary operator then
16: for each preceding layer e in 7" do
17: Tl, TT = Spllt(T7 t) ‘ narrow H Convld ‘ °
18: Il = PopulateGraphs(Tl)
19: Ir = PopulateGraphs(Tr)
20: for each gl,gr of il X Irdo o
21: g = Compose(el, er) |
22: l = l v g ‘ narrow H Convld | e
23: end for
24: end for —
25: return [ embedding —-{ Transpose |———
26: end if
27:  end if
narrow Convild
28: end procedure % I ‘ ‘ °

Figure 4.4: The algorithm for searching candidate computational graphs. We show
the algorithm to populate the candidates of MalConv (left) and the samples (right).

Our algorithm populates the candidate computational graphs (see Figure 4.4). Our
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solution uses a recursive algorithm. Given a trace from Flush+Reload (7"), we pop each
computation ¢ from the back and construct the list of candidates [. At a high-level, the
algorithm first traverses all the possible connections starting from the last computation to
the first by using recursion. Then, when the base condition is met (i.e., the algorithm
arrives the first computation, Embeddings), we backtrack the recursions to construct
the list of candidate computational graphs. We focus on the computation type in this
backtracking process; there are unary and binary computations. For the unary operations,
we simply connect the current and preceding computations. However, for the binary
operations, we split all the preceding computations into a set of two lists. Each set of two
lists corresponds to a branch, and we continue backtracking for each branch and include

all of the construction into our results. At the end, we found 20 candidates.

Eliminate Candidates with Computational Parameters. Next, our attacker further
prunes the candidates based on the computational parameter estimation process. Our
attacker, most importantly, focuses on the fact that computation time is dependent on the
size of the matrix multiplication. This enables our attacker to profile the computational
time taken for a set of parameter combinations in advance. The attacker is able to perform
this offline by taking advantage of cloud infrastructure: that the hardware and software
stacks composing the cloud are consistent*. In the MalConv reconstruction, we profile
the timing of the convolution and linear operations. For the convolutions, we consider
input/output channels {1, 2,22, ..., 28}, kernels {1, 3, 5,7, 11, 100, 200, 500, 1k, 10k}, and

strides {1, 2, 5, 10, 100, 200, 500, 1k, 10k }. For the linear layers, we use input {22, ..., 211}

4

https://aws.amazon.com/ec2/instance-types/
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and output dimensions {1, 10, 16, 20, 32, 40, 100, 128, 256, 512, 1k, 1024, 2048}.

Once our attacker has the timing profiles with these parameter combinations, the
attacker defines the potential parameter sets for the convolutions and linear layers. Then,
the attacker checks, in each candidate, if the computational graph returns the correct
output dimension (1,) for the input (8,2000000). In this pruning process, there are the
other operations such as Sigmoid, * (multipy), transponse, narrow, or pooling. We applied
the universal rules for each case: 1) the Sigmoid and multiply do not change the input/output
dimensions, 2) the transpose only swaps two dimensions in an input, 3) the narrow
slice one chosen dimension, e.g., (8,2000000) to (4,1000000); thus we consider all the
possible slice in checking, and 4) the pooling only requires us to estimate its window
size, so we match this value to the stride of a preceding convolution. At the end of this
parameter estimation, we can narrow down to only one architecture with the correct set

of computational parameters, i.e., 0% error.

4.3.3 Reconstructing Novel Network Architectures

Here, we show our attacker is able to steal a novel network architecture by describing
the reconstruction process of the ProxylessNAS-CPU [45] that improves the accuracy
of existing architecture, MobileNetV2 [136], and also reduces the computation time.
Indeed, the NAS search procedure warm-starts from an over-parameterized MobileNetV2
as a backbone; however, in our attack, we hypothesize our attacker is not aware of the
backbone. Instead, we assume our attacker only knows the search space of MNasNet [137]

(see Appendix A.4) where the authors come up with the MobileNetV2, opposed to the
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recent attacks in Sec 4.1.

Knowing the search space does not, however, reduce the amount of efforts by our
attacker in reconstruction. The network architectures found from the NAS procedure
commonly are wide and deep, and they include multiple branch connections; thus, our
attacker requires to consider exponential number of candidate computational graphs and
the computation parameters, which makes the attack infeasible. To tackle this issue, we
focus on the NAS procedure—this process factorizes the entire architecture into blocks
by their functions. For instance, NASNet [113] is composed of normal cells (blocks) and
reduction cells. Within each block, the process considers the architecture combinations
that provides the optimal performance. Thus, we first identify the potential blocks before

we initiate the process for reconstructing candidate computational graphs.

Block Size Counts Identified Block
1 1 AvgPool2d, Linear
2 38 Conv2d - BatchNorm2d
3 19 Conv2d - BatchNorm2d - ReLU
4 5 Conv2d - BatchNorm2d - Conv2d - BatchNorm2d
5 17 DepthConv2d - BatchNorm?2d - ReLU6 - Conv2d - BatchNorm2d
6 10 DepthConv2d - BatchNorm2d - ReLU6 - Conv2d - BatchNorm2d - add
7 0 -
8 15 Conv2d - BatchNorm2d - ReLU6 - DepthConv2d - BatchNorm2d - ReLUG6 - Conv2d - BatchNorm2d
9 8 Conv2d - BatchNorm2d - ReLUG6 - DepthConv2d - BatchNorm?2d - ReLU6 - Conv2d - BatchNorm2d - add

Table 4.2: The 9 candidate blocks identified from the Flush+Reload trace.

Identifying Candidate Blocks. We utilize the frequent subsequence mining (FSM)
method to identify the blocks composing the ProxylessNAS-CPU architecture. Our FSM
method is simple: we iterate over the Flush+Reload trace with the fixed windows and
count the occurrences of each subsequence. Since the attacker knows that in the search
space that the victim uses, a maximum of nine computations are used to compose a

block, we consider the window size from one to nine. Once we count the number of
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occurrences for each subsequence (candidate blocks), and we prune them based on the
rules in the search space: (1) a Conv2d operation is followed by a BatchNorm, (2) a
block with a DepthConv2d must end with a Conv2d and BatchNorm (for a depthwise
separable convolution), (3) a branch connection cannot merge (add) in the middle of the
block, and (4) we take the most frequent block in each window. In Table 4.2, we describe
the 9 identified blocks. We then run the generation process of reconstructing candidate
computational graphs with the blocks instead of using each computation in the trace. At

the end, we have 180,224 candidate computational graphs.

Processed Trace Identified Block Estimated Parameters

[8] Conv2d,305693984,1,20 [B-8] Conv2d,1,20 C1:24 in, 144 out channels
[9] BatchNorm2d,323455984,0,0 [B-8] BatchNorm2d,0,0 144 in/out channels

[10] ReLU6,376113984,1,1 [B-8] ReLU6,0,0

[11] DepthConv2d,426259984,143,205 [B-8] DepthConv2d,143,205 144 in/out channels

[12] BatchNorm?2d,585059984,0,0 [B-8] BatchNorm2d,0,0 144 in/out channels

[13] ReLU6,592321984,0,0 [B-8] ReLU6,0,0

[14] Conv2d,609547984,1,7 [B-8] Conv2d,1,7 144 in, C2:32 out channels

[B-8

[15] BatchNorm2d,614331984,0,0 | BatchNorm2d,0,0 C5:32 in/out channels

Figure 4.5: The reconstruction of the ProxylessNAS-CPU architecture. From
the Flush+Reload trace (left), we find the candidate block (middle) and estimate the
computation parameters (right).

Eliminate Candidate with Computational Parameters. For each candidate composed
of known blocks, our attacker estimates the computation parameters. However, the number
of parameter combinations are also exponential; for example, within the search space, a
Conv2d can have any number of input/output channels, kernel size {1, 3,5}, and strides
{1,2}. Thus, we focus on the computation rules in a block. (1) We first found that

DepthConv2d is only possible to have the same in- / out-channels. Also, the channel size

can be identified by the number of GEMM(conv) operations. For example, in Figure 4.5,
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the DepthConv2d has 143 GEMM(conv) invocations, which is close to the channel size.
Since commonly the operation has an even number of channels, the attacker can easily
reduce the candidates to 142 or 144. (2) We also know that the number of GEMM (oncopy)
invocations is proportional to the matrix multiplication size in a Conv2d; thus, the attacker
compares the offline profiling results with the processed traces and estimate the parameters.
For instance, the 1st Conv2d has 20 GEMM(oncopy), and we approximately have a set
of input dimensions, e.g., (20-30,112,112) from the previous block estimation. Thus, our
attacker only profiles the variations of input channels {20 — 30}, kernels {1, 3,5}, and
strides {1, 2}—total 60 cases and check if there is a match. Moreover, (3) the Conv2d
after DepthConv2d is the pointwise linear operation whose kernel and stride is one,
which will further reduce the attacker’s efforts. Our attacker runs this elimination process
and finally narrows down to only one architecture with the correct set of computational

parameters, i.e., 0% error.

4.4 Discussion

We discuss defense mechanisms that prevent our attacker from reconstructing the victim’s
DL system with an exact match. Prior work on defenses against cache side-channel
attacks proposed system-level solutions [120, 138, 139]. However, applying them requires
infrastructure-wide changes from cloud providers. Also, even if the infrastructure is
resilient to cache side-channel attacks, an attacker can leverage other attack vectors to
leak similar information. Thus, we focus on the defenses that can be implemented in DL

frameworks.
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We design our defense mechanisms to obfuscate what the attacker observes via
cache side-channels by increasing the noise in computations supported by DL frameworks.
We discuss four approaches that blend noise into components of a DL framework; however,
these mechanisms introduce a computational overhead by performing additional operations.
This highlights that defending against our attack is not trivial and efficient countermeasures

require further research.

Padding Zeros to the Matrix Multiplication Operands. Our reconstruction algorithm
estimates the computational parameters such as kernel sizes or strides based on the time
taken for matrix multiplication. Hence, we consider increasing the size of operands
randomly by padding zeros to them. We keep the original sizes of the operands and,
after the multiplication of augmented tensors, we convert the resulting tensor into that
of the correct dimensions by removing the extra elements. With the augmentation, our
attacker finds it difficult to reconstruct the victim’s DL system exactly by monitoring a
single query. However, if our attacker can observe computations with multiple queries,

the attacker can cancel-out the noise and estimate the parameters correctly.

Adding Null/Useless Network Operations. This reconstruction attack assumes all the
computations observed in the Flush+Reload trace are used to compute the output of a
DL system. Thus, a defender can modify the victim’s architecture so that it includes
the identity layers or the branches whose outputs are not used. We hypothesize a small
number of null/useless operations will not increase the attacker’s computational burden
significantly; this addition only increases the time needed to reconstruct the victim’s

architecture by a few hours. If the defender includes an excessive amount of null/useless

80



layers or branches, this can significantly increase the reconstruction time. However, this
defense suffers from two issues: 1) the defense may still not make the reconstruction
impossible, and 2) the victim also requires to perform the additional operations, which

increases network evaluation time significantly.

Shuffling the Computation Order. We have seen in popular DL frameworks that, once a
network architecture is defined, the computational order of performing operations is also
invariant. We are able to shuffle the computation order of the victim’s DL system each
time when the system processes an input. In particular, we can identify the dependency of
operations in a victim’s DL system and compute the independent operations in a different
order each time. This approach will make the observations from cache side-channels
inconsistent, which results in the exponential number of candidate architectures that our
attacker needs to consider. However, to compute the independent operations separately,
the defender needs to store intermediate results in memory while processing an input;

thus, this approach increases the space overhead of the DL computations.

Running Decoy Operations in Parallel. Lastly, we can make a DL framework run
separate networks (decoy operations) in parallel on the same physical host. These networks
obfuscate what our attacker will observe via Flush+Reload. Here, the attacker cannot
reconstruct the victim architecture by monitoring a single query because the computational
order does not reflect how the victim’s architecture is defined. However, if our attacker
can observe the computations over multiple queries, the attacker can use the frequent
sequence mining (FSM) that we used in the block identification to identify a repeated

set of operations and can reconstruct the victim architecture. This defense also increases

81



network evaluation time by running extra operations on the same machine.

4.5 Conclusions

This work presents an attack that reconstructs a victim’s deep learning system through the
information leakage from a cache side-channel, Flush+Reload. We steal key components
of the victim’s system: a novel pre-processing pipeline and a novel network architecture.
Observing the deep learning computations and the time to complete each computation
enables the attacker to populate all candidate computational graphs and prune them with
our parameter estimation process. In experiments, we demonstrate the feasibility of this
reconstruction attack by reconstructing MalConv, a unique pre-processing pipeline for
malicious file detection, and ProxylessNAS-CPU, a unique architecture for the ImageNet
classification optimized to run on CPUs. We do this with 0% error. As novel deep
learning systems become trade secrets, our results highlight the demands for future work

on defenses against model theft.
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Chapter 5: Reducing Computational Efficiency via Adversarial Examples

Take time for all things: great haste makes great waste.

— Benjamin Franklin.

he inference-time computational demands of deep neural networks (DNNs) are
T increasing, owing to the “going deeper” [140] strategy for improving accuracy:
as a DNN gets deeper, it progressively gains the ability to learn higher-level, complex
representations. This strategy has enabled breakthroughs in many tasks, such as image
classification [141] or speech recognition [142], at the price of costly inferences. For
instance, with 4 x more inference cost, a 56-layer ResNet [93] improved the Top-1 accuracy
on ImageNet by 19% over the 8-layer AlexNet. This trend continued with the 57-layer
state-of-the-art EfficientNet [143]: it improved the accuracy by 10% over ResNet, with

9x costlier inferences.

The accuracy improvements stem from the fact that the deeper networks fix the
mistakes of the shallow ones [46]. This implies that some samples, which are already
correctly classified by shallow networks, do not necessitate the extra complexity. This
observation has motivated research on input-adaptive mechanisms, in particular, multi-

exit architectures [29, 46, 144, 145]. Multi-exit architectures save computation by making
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Figure 5.1: Simple to complex inputs. Some Tiny ImageNet images a multi-exit model based
on VGG-16 can correctly classify if computation stops at the 1%¢, 5", and 14" layers.

input-specific decisions about bypassing the remaining layers, once the model becomes
confident, and are orthogonal to techniques that achieve savings by permanently modifying
the model [32, 33, 146, 147]. Figure 5.1 illustrates how a multi-exit model [29], based
on a standard VGG-16 architecture, correctly classifies a selection of test images from
‘Tiny ImageNet’ before the final layer. We see that more typical samples, which have
more supporting examples in the training set, require less depth and, therefore, less
computation.

It is unclear whether the computational savings provided by multi-exit architectures
are robust against adversarial pressure. Prior research showed that DNNs are vulnerable
to a wide range of attacks, which involve imperceptible input perturbations [11, 51, 145,
148]. Considering that a multi-exit model, on the worst-case input, does not provide any

computational savings, we ask:

Can the savings from multi-exit models be

maliciously negated by input perturbations?

As some natural inputs do require the full depth of the model, it may be possible to craft
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adversarial examples that delay the correct decision; it is unclear, however, how many
inputs can be delayed with imperceptible perturbations. Furthermore, it is unknown if
universal versions of these adversarial examples exist, if the examples transfer across
multi-exit architectures and datasets, or if existing defenses (e.g. adversarial training) are

effective against slowdown attacks.

We consider a new threat against DNNs, analogous to the denial-of-service (DoS)
attacks that have been plaguing the Internet for decades. By imperceptibly perturbing
the input to trigger this worst-case, the adversary aims to slow down the inferences
and increase the cost of using the DNN. This is an important threat for many practical
applications, which impose strict limits on the responsiveness and resource usage of DNN
models (e.g. in the Internet-of-Things [147]), because the adversary could push the victim
outside these limits. For example, against a commercial image classification system,
such as Clarifai.com, a slowdown attack might waste valuable computational resources.
Against a model partitioning scheme, such as Big-Little [149], it might introduce network
latency by forcing excessive transmissions between local and remote models. A slowdown
attack aims to force the victim to do more work than the adversary, e.g.. by amplifying the
latency needed to process the sample or by crafting reusable perturbations. The adversary
may have to achieve this with incomplete information about the multi-exit architecture

targeted, the training data used by the victim or the classification task.

To our best knowledge, we conduct the first study of the robustness of multi-exit
architectures against adversarial slowdowns. To this end, we find that examples crafted

by prior evasion attacks [145, 150] fail to bypass the victim model’s early exits, and
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we show that an adversary can adapt such attacks to the goal of model slowdown by
modifying its objective function. We call the resulting attack DeepSloth. We also propose
an efficacy metric for comparing slowdowns across different multi-exit architectures.
We experiment with three generic multi-exit DNNs (based on VGG16, ResNet56 and
MobileNet) [29] and a specially-designed multi-exit architecture, MSDNets [46], on two
popular image classification benchmarks (CIFAR-10 and Tiny ImageNet). We find that
DeepSloth reduces the efficacy of multi-exit DNNs by 90-100%, i.e., the perturbations
render nearly all early exits ineffective. In a scenario typical for [oT deployments, where
the model is partitioned between edge devices and the cloud, our attack amplifies the
latency by 1.5-5x, negating the benefits of model partitioning. We also show that it is
possible to craft a universal DeepSloth perturbation, which can slow down the model on
either all or a class of inputs. While more constrained, this attack still reduces the efficacy
by 5-45%. Further, we observe that DeepSloth can be effective in some black-box
scenarios, where the attacker has limited knowledge about the victim. Finally, we show
that a standard defense against adversarial samples—adversarial training—is inadequate
against slowdowns. Our results suggest that further research will be required for protecting

multi-exit architectures against this emerging security threat.

5.1 Related Work

In this section, we review the prior work’s effort to reduce the computational requirement

of DNNs and make them available in resource-constrained deployment scenarios.
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5.1.1 Efficient Input-Adaptive Inference

Recent input-adaptive DNN architectures have brought two seemingly distant goals closer:
achieving both high predictive quality and computational efficiency. There are two types
of input-adaptive DNNs: adaptive neural networks (AdNNs) and multi-exit architectures.
During the inference, AANNs [151, 152] dynamically skip a certain part of the model
to reduce the number of computations. This mechanism can be used only for ResNet-
based architectures as they facilitate skipping within a network. On the other hand, multi-
exit architectures [29, 46, 144] introduce multiple side branches—or early-exits—to a
model. During the inference on an input sample, these models can preemptively stop
the computation altogether once the stopping criteria are met at one of the branches.
Kaya et al. [29] have also identified that standard, non-adaptive DNNs are susceptible
to overthinking, i.e., their inability to stop computation leads to inefficient inferences on
many inputs.

[153] presented attacks specifically designed for reducing the energy-efficiency of
AdNNSs by using adversarial input perturbations. However, our work studies a new threat
model that an adversary causes slowdowns on multi-exit architectures. By imperceptibly
perturbing the inputs, our attacker can (i) introduce network latency to an infrastructure
that utilizes multi-exit architectures and (ii) waste the victim’s computational resources.
To quantify this vulnerability, we define a new metric to measure the impact of adversarial
input perturbation on different multi-exit architectures (Section 5.2). In Section 5.4, we
also study practical attack scenarios and the transferability of adversarial input perturbations

crafted by our attacker. Moreover, we discuss the potential defense mechanisms against
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this vulnerability, by proposing a simple adaptation of adversarial training (Section 5.5).

To the best of our knowledge, our work is the first systematic study of this new vulnerability.

5.1.2 Model Partitioning

Model partitioning has been proposed to bring DNNs to resource-constrained devices [147,
149]. These schemes split a multi-exit model into sequential components and deploy
them in separate endpoints, e.g., a small, local on-device part and a large, cloud-based
part. For bringing DNNSs to the Internet of Things (IoT), partitioning is instrumental as it
reduces the transmissions between endpoints, a major bottleneck. In Section 5.4.1, on a

partitioning scenario, we show that our attack can force excessive transmissions.

5.2 Experimental Setup

Datasets. We use two datasets: CIFAR-10 [88] and Tiny-ImageNet [154]. For testing the

cross-domain transferability of our attacks, we use the CIFAR-100 dataset.

Architectures and Hyper-parameters. To demonstrate that the vulnerability to adversarial
slowdowns is common among multi-exit architectures, we experiment on two recent
techniques: Shallow-Deep Networks (SDNs) [29] and MSDNets [46]. These architectures
were designed for different purposes: SDNs are generic and can convert any DNN into
a multi-exit model, and MSDNets are custom designed for efficiency. We evaluate an
MSDNet architecture (6 exits) and three SDN architectures, based on VGG-16 [92] (14

exits), ResNet-56 [93] (27 exits), and MobileNet [136] (14 exits).
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Figure 5.2: The EEC curves. Each shows the fraction of test samples a model classifies
using a certain fraction of its full inference cost. ‘EFCY is short for the model’s efficacy.

Metrics. We define the early-exit capability (EEC) curve of a multi-exit model to indicate
the fraction of the test samples that exit early at a specific fraction of the model’s full
inference cost. Figure 5.2 shows the EEC curves of our SDNs on Tiny ImageNet, assuming
that the computation stops when there is a correct classification at an exit point. For
example, VGG-16-based SDN model can correctly classify ~50% of the samples using
~50% of its full cost. Note that this stopping criterion is impractical; in Section 5.3, we

will discuss the practical ones.

We define the early-exit efficacy, or efficacy in short, to quantify a model’s ability of
utilizing its exit points. The efficacy of a multi-exit model is the area under its EEC curve,
estimated via the trapezoidal rule. An ideal efficacy for a model is close to 1, when most
of the input samples the computation stops very early; models that do not use their early
exits have 0 efficacy. A model with low efficacy generally exhibits a higher latency; in a

partitioned model, the low efficacy will cause more input transmissions to the cloud, and
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the latency is further amplified by the network round trips. A multi-exit model’s efficacy
and accuracy are dictated by its stopping criteria, which we discuss in the next section.

As for the classification performance, we report the Top-1 accuracy on the test data.

5.3 Attacking the Multi-Exit Architectures

Setting. We consider the supervised classification setting with standard feedforward DNN
architectures. A DNN model consists of /N blocks, or layers, that process the input
sample, z € R?, from beginning to end and produce a classification. A classification,
F(z,0) € R™, is the predicted probability distribution of x belonging to each label
y € M = {1,...,m}. Here, 0 denotes the tunable parameters, or the weights, of the
model. The parameters are learned on a training set D that contains multiple (z;,y;)
pairs; where y; is the ground-truth label of the training sample z;. We use 6; to denote
the parameters at and before the i** block; i.e., §; = 6,,1 and Oy = 0. Once a model is

trained, its performance is then tested on a set of unseen samples, S.

Multi-Exit Architectures. A multi-exit model contains K exit points—internal classifiers—
attached to a model’s hidden blocks. We use F; to denote the i*" exit point, which is
attached to the j* block. Using the output of the j** (j < N) block on z, F; produces an
internal classification, i.e., F;(z, 0;), which we simply denote as F;(x). In our experiments,
we set K = N for SDNs, i.e., one internal classifier at each block and K = 6 for
MSDNets. Given F;(z), a multi-exit model uses deterministic criteria to decide between
forwarding = to compute F;,;(z) and stopping for taking the early-exit at this block.

Bypassing early-exits decreases a network’s efficacy as each additional block increases
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the inference cost. Note that multi-exit models process each sample individually, not in

batches.

Practical Stopping Criteria. Ideally, a multi-exit model stops when it reaches a correct
classification at an exit point, i.e., argmax e Ffj )(x) = ¢; = y; y is the ground-truth
label. However, for unseen samples, this is impractical as y is unknown. The prior work
has proposed two simple strategies to judge whether g; = y: F;(x)’s entropy [46, 144] or
its confidence [29]. Our attack (see Section 5.3) leverages the fact that a uniform F;(z)
has both the highest entropy and the lowest confidence. For generality, we experiment

with both confidence-based—SDNs—and entropy-based—MSDNets—strategies.

A strategy selects confidence, or entropy, thresholds, 7;, that determine whether
the model should take the 7*" exit for an input sample. Conservative 7;’s lead to fewer
early exits and the opposite hurts the accuracy as the estimate of whether ¢; = y becomes
unreliable. As utility is a major practical concern, we set 7;’s for balancing between
efficiency and accuracy. On a holdout set, we set the thresholds to maximize a model’s
efficacy while keeping its relative accuracy drop (RAD) over its maximum accuracy
within 5% and 15%. We refer to these two settings as RAD<5% and RAD<15%.

Table 5.2 (first segment) shows how accuracy and efficacy change in each setting.

5.3.1 Threat Model

We consider an adversary who aims to decrease the early-exit efficacy of a victim model.
The attacker crafts an imperceptible adversarial perturbation, v € R? that, when added to

a test-time sample = € S, prevents the model from taking early-exits.
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Capabilities. The attacker is able to modify the victim’s test-time samples to apply the
perturbations, e.g., by compromising a camera that collects the data for inference. To
ensure the imperceptibility, we focus on /., norm bounded perturbations as they (i) are
well are studied; (i1) have successful defenses [54]; (iii) have prior extension to multi-exit
models [145]; and (iv) are usually the most efficient to craft. We show results on /5 and ¢;
perturbations in Appendix A.7. In line with the prior work, we bound the perturbations as

follows: for CIFAR-10,

V||l < € =0.03[150],

v||; < 8[155] and ||v||> < 0.35 [156];

for Tiny ImageNet, ||[v|| < € = 0.03 [65], ||v|]; < 16 and [|v]|2 < 0.6.

Knowledge. To assess the security vulnerability of multi-exit architectures, we study
white-box scenarios, i.e., the attacker knows all the details of the victim model, including
its D and 6. Further, in Section 5.4.2, we study more practical black-box scenarios, i.e.,

the attacker crafts v on a surrogate model and applies it to an unknown victim model.

Goals. We consider three DeepSloth variants, (i) the standard, (ii) the universal and (iii)
the class-universal. The adversary, in (i) crafts a different v for each x € §; in (ii) crafts
a single v for all z € §; in (iii) crafts a single v for a target class ¢ € M. Further,
although the adversary does not explicitly target it; we observe that DeepSloth usually
hurts the accuracy. By modifying the objective function we describe in Section 5.3, we
also experiment with DeepSloth variants that can explicitly preserve or hurt the accuracy,

in addition to causing slowdowns.

5.3.2 Motivating Examples

We discuss two exemplary scenarios where an adversary can exploit the slowdown attacks.
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* (Case 1) Attacks on cloud-based IoT applications. In most cases, cloud-based IoT
applications, such as Apple Siri, Google Now, or Microsoft Cortana, run their DNN
inferences in the cloud. This cloud-only approach puts all the computational burden on
cloud servers and increases the communications between the servers and IoT devices. In
consequence, recent work [157, 158, 159] utilizes multi-exit architectures for bringing
computationally expensive models, e.g. language models [160, 161], in the cloud to [oT
(or mobile) devices. They split a multi-exit model into two partitions and deploy each
of them to a server and IoT devices, respectively. Under this scheme, the cloud server
only takes care of complex inputs that the shallow partition cannot correctly classify
at the edge. As a result, one can reduce the computations in the cloud and decrease

communications between the cloud and edge.

On the other hand, our adversary, by applying human-imperceptible perturbations, can
convert simple inputs into complex inputs. These adversarial inputs will bypass early-
exits and, as a result, reduce (or even offset) the computational and communication

savings provided by prior work.

Here, a defender may deploy DoS defenses such as firewalls or rate-limiting. In this
setting, the attacker may not cause DoS because defenses keep the communications
between the server and IoT devices under a certain-level. Nevertheless, the attacker
still increases: (i) the computations at the edge (by making inputs skip early-exits) and
(i1) the number of samples that cloud servers process. Recall that a VGG-16 SDN model
classifies 90% of clean CIFAR-10 instances correctly at the first exit. If the adversarial

examples crafted by the attacker bypass only the first exit, one can easily increase the
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computations on [oT devices and make them send requests to the cloud.

¢ (Case 2) Attacks on real-time DNN inference for resource- and time-constrained
scenarios. Recent work on the real-time systems [162, 163] harnesses multi-exit architectures
and model partitioning as a solution to optimize real-time DNN inference for resource-
and time-constrained scenarios. [162] showed a real-world prototype of an optimal
model partitioning, which is based on a self-driving car video dataset, can improve

latency and throughput of partitioned models on the cloud and edge by 6.5-14 x.

However, the prior work does not consider the danger of slowdown attacks; our threat
model has not been discussed before in the literature. Our results in Sec 5.4 suggest
that slowdown can be induced adversarially, potentially violating real-time guarantees.
For example, our attacker can force partitioned models on the cloud and edge to use
maximal computations for inference. Further, the same adversarial examples also require
the inference results from the model running on the cloud, which potentially increases
the response time of the edge devices by 1.5-5x. Our work shows that multi-exit

architectures should be used with caution in real-time systems.

5.3.3 Standard Adversarial Attacks Do Not Cause Delays

NETWORK | NO ATTACK | PGD-20 PGD-20 (AvG.) PGD-20 (Max.) | UAP

VGG-16 0.77/89% | 0.79/29% 0.85/10% 0.81/27% 0.71/68%
RESNET-56 | 0.52/87% | 0.55/12% 0.82/ 1% 0.70/ 6% 0.55/44%
MOBILENET | 0.83/87% | 0.85/14% 093/ 3% 0.89/12% 0.77760%

Table 5.1: Impact of existing evasion attacks on efficacy. Each entry shows a model’s
efficacy (left) and accuracy (right) when subjected to the respective attack. The multi-exit
models are trained on CIFAR-10 and use RAD<5% as their early-exit strategy.
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To motivate DeepSloth, we evaluate whether previous adversarial attacks have any effect
on the efficacy of multi-exit models. These attacks add human-imperceptible perturbations
to a victim’s test-time samples to force misclassifications. We experiment with the standard
PGD attack [150]; PGD-avg and PGD-max variants against multi-exit models [145] and
the Universal Adversarial Perturbation (UAP) attack that crafts a single perturbation for
all test samples [164]. Table 5.1 summarizes our findings that these attacks, although
they hurt the accuracy, fail to cause any meaningful decrease in efficacy. In many cases,
we observe that the attacks actually increase the efficacy. These experiments help us to

identify the critical elements of the objective function of a slowdown attack.

5.3.4 The DeepSloth Attack

The Layer-Wise Objective Function. Figure 5.3 shows that the attacks that only optimize
for the final output, e.g., PGD or UAP, do not perturb the model’s earlier layer representations.
This does not bypass the early-exits, which makes these attacks ineffective for decreasing
the efficacy. Therefore, we modify the objective functions of adversarial example-crafting
algorithms to incorporate the outputs of all F;|i < K. For crafting /., {5 and ¢;-bounded
perturbations, we adapt the PGD [150], the DDN [165] and the SLIDE algorithms [155],
respectively. Next, we describe how we modify the PGD algorithm—we modify the
others similarly:

vt+1=H]|vHoo<e (vt+ozsgn< Z Z L(F;(x +v) )))

zeD’ O<i<K

Here, ¢ is the current attack iteration; « is the step size; II is the projection operator
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that enforces ||v||, < € and L is the cross-entropy loss function. The selection of D’
determines the type of the attack. For the standard variant: D' = {z}, i.e., a single test-
time sample. For the universal variant: D' = D, i.e., the whole training set. For the
class-universal variant against the target class i € M: D' = {(x,y) € D]y = i}, i.e.,
the training set samples from the i** class. Finally, j is the target label distribution our

objective pushes F;(x) towards. Next, we explain how we select 3.

Pushing F;(z) Towards a Uniform Distribution. Despite including all F}, attacks such
as PGD-avg and PGD-max [145] still fail to decrease efficacy. How these attacks select
1y reflects their goal of causing misclassifications and, therefore, they trigger errors in
early-exits, i.e., argmax;c Fi(j ) (x) = §y # y. However, as the early-exits still have high
confidence, or low entropy, the model still stops its computation early. We select § as
a uniform distribution over the class labels, i.e., 7 = 1/m. This ensures that (z + v)
bypasses common stopping criteria as a uniform F;(z) has both the lowest confidence and

the highest entropy.

5.4 Empirical Evaluation

Here, we present the results for ¢, DeepSloth against two SDNs—VGG-16 and MobileNet-
based—and against the MSDNets. In the Appendix, we report the hyperparameters; the
/1 and /5 attacks; the results on ResNet-56-based SDNs; the cost of the attacks; and some
perturbed samples. Overall, we observe that /,,-bounded perturbations are more effective
for slowdowns. The optimization challenges might explain this, as ¢; and (5 attacks are

usually harder to optimize [53, 155]. Unlike objectives for mispredictions, the objective
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for slowdowns involves multiple loss terms and optimizes over all the output logits.

5.4.1 White-Box Scenarios

NETWORK MSDNET VGG16 MOBILENET
SET. RAD<5% RAD<15% | RAD<5% RAD<I15% || RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.89/85% 0.89/85% || 0.77/88% 0.89/79% || 0.83/87% 0.92/79%

TI 0.64/55% 0.83/50% || 0.39/57% 0.51/52% || 0.42/57% 0.59/51%
DEEPSLOTH

C10 0.06/17% 0.06/17% | 0.01/13% 0.04/16% || 0.01/12% 0.06/16%

TI 0.06/ 7% 0.06/ 7% || 0.00/ 2% 0.01/ 2% || 0.02/ 6% 0.04/ 6%

UNIVERSAL DEEPSLOTH
C10 0.85/65% 0.85/65% | 0.62/65% 0.86/60% | 0.73/61% 0.90/59%
TI 0.58/46% 0.81/41% | 031/47% 0.44/44% | 0.33/47% 0.51/43%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.82/32% 0.82/32% || 0.47/35% 0.78/33% | 0.60/30% 0.85/27%
TI 041/21% 0.71/17% || 0.20/28% 0.33/27% | 0.21/27% 0.38/25%

Table 5.2: The effectiveness of /,, DeepSloth. ‘RAD<5,15%’ columns list the results
in each early-exit setting. Each entry includes the model’s efficacy (left) and accuracy
(right). The class-universal attack’s results are an average of 10 classes. ‘TI’: Tiny
ImageNet and ‘C10’: CIFAR-10.

Perturbations Eliminate Early-Exits. Table 5.2 (second segment) shows that the victim
models have ~ 0 efficacy on the samples perturbed by DeepSloth. Across the board,
the attack makes the early-exit completely ineffective and force the victim models to
forward all input samples till the end. Further, DeepSloth also drops the victim’s accuracy
by 75-99%, comparable to the PGD attack. These results give an answer to our main
research question: the multi-exit mechanisms are vulnerable and their benefits can be
maliciously offset by adversarial input perturbations. In particular, as SDN modification

mitigates overthinking in standard, non-adaptive DNNs [29], DeepSloth also leads SDN-

97



based models to overthink on almost all samples by forcing extra computations.

Note that crafting a single perturbation requires multiple back-propagations through
the model and more floating points operations (FLOPs) than the forward pass. The high
cost of crafting, relative to the computational damage to the victim, might make this
vulnerability unattractive for the adversary. In the next sections, we highlight scenarios
where this vulnerability might lead to practical exploitation. First, we show that in an [oT-
like scenarios, the input transmission is a major bottleneck and DeepSloth can exploit it.
Second, we evaluate universal DeepSloth attacks that enable the adversary to craft the

perturbation only once and reuse it on multiple inputs.

Attacking an IoT Scenario. Many IoT scenarios, e.g., health monitoring for elderly [166],
require collecting data from edge devices and making low-latency inferences on this data.
However, complex deep learning models are impractical for low-power edge devices, such
as an Arduino, that are common in the IoT scenarios [167]. For example, on standard
hardware, an average inference takes MSDNet model on Tiny ImageNet 35M FLOPs and

~10ms.

A potential solution is sending the inputs from the edge to a cloud model, which
then returns the prediction. Even in our optimistic estimate with a nearby AWS EC2
instance, this back-and-forth introduces ~11ms latency per inference. Model partitioning
alleviates this bottleneck by splitting a multi-exit model into two; deploying the small
first part at the edge and the large second part at the cloud [149]. The edge part sends
an input only when its prediction does not meet the stopping criteria. For example, the

first early-exit of MSDNets sends only 5% and 67% of all test samples, on CIFAR-10
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and Tiny ImageNet, respectively. This leads to a lower average latency per inference, i.e.,

from 11ms down to 0.5ms and 7.4ms, respectively.

The adversary we study uses DeepSloth perturbations to force the edge part to send
all the input samples to the cloud. For the victim, we deploy MSDNet models that
we split into two parts at their first exit point. Targeting the first part with DeepSloth
forces it to send 96% and 99.97% of all test samples to the second part. This increases
average inference latency to ~11ms and invalidates the benefits of model partitioning. In
this scenario, perturbing each sample takes ~2ms on a Tesla V-100 GPU, i.e., the time

adversary spends is amplified by 1.5-5x as the victim’s latency increase.

Reusable Universal Perturbations. The universal attacks, although limited, are a practical

as the adversary can reuse the same perturbation indefinitely to cause minor slowdowns.
Table 5.2 (third segment) shows that they decrease the efficacy by 3—21% and the accuracy

by 15-25%, over the baselines. Having a less conservative early-exit strategy, e.g., RAD<15%,
increases the resilience to the attack at the cost of accuracy. Further, MSDNets are fairly
resilient with only 3-9% efficacy drop; whereas SDNs are more vulnerable with 12—
21% drop. The attack is also slightly more effective on the more complex task, Tiny
ImageNet, as the early-exits become easier to bypass. Using random noise as a baseline,

i.e., v ~ U%(—¢, ¢), we find that at most it decreases the efficacy by ~3%.

In the universal attack, we observe a phenomenon: it pushes the samples towards
a small subset of all classes. For example, ~17% of the perturbed samples are classified
into the ’bird’ class of CIFAR-10; up from ~10% for the clean samples. Considering

certain classes are distant in the feature space, e.g., "truck’ and bird’; we expect the class-
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universal variant to be more effective. The results in Table 5.2 (fourth segment) confirm
our intuition. We see that this attack decreases the baseline efficacy by 8-50% and the
accuracy by 50-65%. We report the average results across multiple classes; however, we

observe that certain classes are slightly more vulnerable to this attack.
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Figure 5.3: Visualising features against attacks using UMAP. VGG-16’s 3rd (left), 8th
(middle), and 14th (right) hidden block features on CIFAR-10’s ’dog’ class (Best viewed
in color, zoomed in).

Feature Visualization of DeepSloth. In Figure 5.3, to shed light on how DeepSloth
differs from prior attacks, e.g., PGD and PGD-avg, we visualize a model’s hidden block
(layer) features on the original and perturbed test-time samples. We observe that in
an earlier block (left panel), DeepSloth seems to disrupt the original features slightly
more than the PGD attacks. Leaving earlier representations intact prevents PGDs from
bypassing the early-exits. The behaviors of the attacks diverge in the middle blocks
(middle panel). Here, DeepSloth features remain closer to the original features than prior
attacks. The significant disruption of prior attacks leads to high-confidence misclassifications
and fails to bypass early-exits. In the later block (right panel), we see that the divergent

behavior persists.

Preserving or Hurting the Accuracy with DeepSloth. We answer whether DeepSloth

can be applied when the adversary explicitly aims to cause or prevent misclassifications,

100



while still causing slowdowns. Our main threat model has no explicit goal regarding
misclassifications that hurt the user of the model, i.e., who consumes the output of the
model. Whereas, slowdowns additionally hurt the executor or the owner of the model
through the computations and latency increased at the cloud providers. In some ML-
in-the-cloud scenarios, where these two are different actors, the adversary might aim to
target only the executor or both the executor and the user. To this end, we modify our
objective function to push Fj(x) towards a slightly non-uniform distribution, favoring
either the ground truth label for preventing misclassifications or a wrong label for causing
them. We test this idea on our VGG-16-based SDN model on CIFAR-10 in RAD<5%
setting. We see that DeepSloth for preserving the accuracy leads to 81% accuracy with
0.02 efficacy and DeepSloth for hurting the accuracy leads to 4% accuracy with 0.01
efficacy—the original DeepSloth led to 13% accuracy with 0.01 efficacy. These results
show the flexibility of DeepSloth and how it could be modified depending on the attacker’s

goals.

5.4.2 Towards a Black-Box Attack: Transferability of DeepSloth

Transferability of adversarial examples imply that they can still hurt a model that they
were not crafted on [13, 56]. Even though white-box attacks are important to expose
the vulnerability, black-box attacks, by requiring fewer assumptions, are more practical.
Here, on four distinct scenarios, we investigate whether DeepSloth is transferable. Based
on the scenario’s constraints, we (1) train a surrogate model; (2) craft the DeepSloth

samples on it; and (3) use these samples on the victim. We run these experiments on
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CIFAR-10 in the RAD<5%.

Cross-Architecture. First, we relax the assumption that the attacker knows the victim
architecture. We evaluate the transferability between a VGG-16-based SDN and an MSDNet.
They are all trained using the same D. We find that the samples crafted on the MSDNet
can slowdown the SDN: reducing its efficacy to 0.63 (from 0.77) and accuracy to 78%
(from 88%). Interestingly, the opposite seems not to be the case: on the samples crafted
against the SDN, the MSDNet still has 0.87 efficacy (from 0.89) and 73% accuracy (from
85%). This hints that DeepSloth transfers if the adversary uses an effective multi-exit

models as the surrogate.

Limited Training Set Knowledge. Second, we relax the assumption that the attacker
knows the victim’s training set, D. Here, the attacker only knows a random portion of D,
i.e., 10%, 25%, and 50%. We use VGG-16 architecture for both the surrogate and victim
models. In the 10%, 25% and 50% settings, respectively, the attacks reduce the victim’s
efficacy to 0.66, 0.5, 0.45 and 0.43 (from 0.77); its accuracy to 81%, 73%, 72% and 74%
(from 88%). Overall, the more limited the adversary’s D is, the less generalization ability

the surrogate has and the less transferable the attacks are.

Cross-Domain. Third, we relax the assumption that the attacker exactly knows the
victim’s task. Here, the attacker uses D; to train the surrogate, different from the victim’s
D altogether. We use a VGG-16 on CIFAR-100 as the surrogate and attack a VGG-
16-based victim model on CIFAR-10. This transfer attack reduces the victim’s efficacy to
0.63 (from 0.77) and its accuracy to 83% (from 88%). We see that the cross-domain attack

might be more effective than the limited D scenarios. This makes DeepSloth particularly
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dangerous as the attacker, without knowing the victim’s D, can collect a similar dataset
and still slowdown the victim. We hypothesize the transferability of earlier layer features
in CNNs [168] enables the perturbations attack to transfer from one domain to another,

as long as they are similar enough.

Cross-Mechnanism. Finally, we test the scenario where the victim uses a completely
different mechanism than a multi-exit architecture to implement input adaptiveness, i.e.,
SkipNet [151]. A SkipNet, a modified residual network, selectively skips convolutional
blocks based on the activations of the previous layer and, therefore, does not include any
internal classifiers. We use a pre-trained SkipNet on CIFAR-10 that reduces the average
computation for each input sample by ~50% over an equivalent ResNet and achieves
~94% accuracy. We then feed DeepSloth samples crafted on a MSDNet to this SkipNet,
which reduces its average computational saving to ~32% (36% less effective) and its
accuracy to 37%. This result suggests that the two different mechanisms have more
in common than previously known and might share the vulnerability. We believe that
understanding the underlying mechanisms through which adaptive models save computation

is an important research question for future work.

5.5 Standard Adversarial Training Is Not a Countermeasure

In this section, we examine whether a defender can adapt a standard countermeasure
against adversarial perturbations, adversarial training (AT) [54], to mitigate our attack.
AT decreases a model’s sensitivity to perturbations that significantly change the model’s

outputs. While this scheme is effective against adversarial examples that aim to trigger
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misclassifications; it is unclear whether using our DeepSloth samples for AT can also
robustify a multi-exit model against slowdown attacks.

To evaluate, we train our multi-exit models as follows. We first take a base network—
VGG-16—and train it on CIFAR-10 on PGD-10 adversarial examples. We then convert
the resulting model into a multi-exit architecture, using the modification from [29]. During
this conversion, we adversarially train individual exit points using PGD-10, PGD-10
(avg.), PGD-10 (max.), and DeepSloth; similar to [145]. Finally, we measure the efficacy
and accuracy of the trained models against PGD-20, PGD-20 (avg.), PGD-20 (max.), and

DeepSloth, on CIFAR-10’s test-set.

ADV. TRAINING | NO ATTACK | PGD-20 PGD-20 (AvG.) PGD-20 (MAX.) | DEEPSLOTH

UNDEFENDED 0.77/89% | 0.79/29% 0.85/10% 0.81/27% 0.01/13%
PGD-10 0.61/72% | 0.55/38% 0.64 /23% 0.58/29% 0.33/70%
PGD-10 (AvG.) 0.53/72% | 0.47/36% 0.47/35% 0.47/35% 0.32/70%
PGD-10 (MAX.) | 0.57/72% | 0.51/37% 0.54 /30% 0.52/34% 0.32/70%
OURS 0.74/772% | 0.71/38% 0.82/14% 0.77/21% 0.44/67%
OURS + PGD-10 | 0.61/73% | 0.55/38% 0.63/23% 0.58/28% 0.33/70%

Table 5.3: Evaluating adversarial training against slowdown attacks. Each entry
includes the model’s efficacy score (left) and accuracy (right). Results are on CIFAR-
10, in the RAD<5% setting.

Our results in Table 5.3 verify that AT provides resilience against all PGD attacks.
Besides, AT provides some resilience to our attack: DeepSloth reduces the efficacy to
~0.32 on robust models vs. 0.01 on the undefended one. However, we identify a trade-off
between the robustness and efficiency of multi-exits. Compared to the undefended model,
on clean samples, we see that robust models have lower efficacy—0.77 vs. 0.53~0.61. We
observe that the model trained only with our DeepSloth samples (Ours) can recover the
efficacy on both the clean and our DeepSloth samples, but this model loses its robustness
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against PGD attacks. Moreover, when we train a model on both our DeepSloth samples
and PGD-10 (Ours + PGD-10), the trained model suffers from low efficacy. Our results
imply that a defender may require an out-of-the-box defense, such as flagging the users
whose queries bypass the early-exits more often than clean samples for which the multi-

exit network was calibrated.

5.6 Conclusions

This work exposes the vulnerability of input-adaptive inference mechanisms against adversarial
slowdowns. As a vehicle for exploring this vulnerability systematically, we propose
DeepSloth, an attack that introduces imperceptible adversarial perturbations to test-time
inputs for offsetting the computational benefits of multi-exit inference mechanisms. We
show that a white-box attack, which perturbs each sample individually, eliminates any
computational savings these mechanisms provide. We also show that it is possible to
craft universal slowdown perturbations, which can be reused, and transferable samples,
in a black-box setting. Moreover, adversarial training, a standard countermeasure for
adversarial perturbations, is not effective against DeepSloth. Our analysis suggests that

slowdown attacks are a realistic, yet under-appreciated, threat against adaptive models.
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Chapter 6: Conclusion

his dissertation tackles the conventional perspective on studying the security of
T deep learning systems and takes a step towards building secure and reliable deep
learning systems. To this end, this dissertation proposes employing a systems security
perspective. In contrast to the prior work that considers DNNs as a mathematical, isolated
concept, we view them as a computational tool running on computing platforms. This
unique perspective makes us realize: (1) DNNs can become vulnerable to adversaries
who exploit the vulnerability in system components that they rely on, and (2) they have
computational properties that make DNNs particularly vulnerable to such attackers. We

are therefore can study new attack vectors or objectives under-examined in the prior work.

My dissertation focuses on the three desired system properties that any computer
systems should satisfy: graceful degradation, confidentiality, and computational efficiency.
In particular, I study attack vectors, such as, hardware fault attacks, side-channels, and
adversarial input perturbations, that an adversary can use for jeopardizing the three desired
properties of deep learning systems. I then characterize the vulnerability of DNNs to those
attacks and demonstrate scenarios where an adversary exploits them in practice. From the

research projects that I conducted, I reached the following conclusion:

DNNs have computational properties that traditional software does not have,
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which makes them particularly vulnerable to adversaries. An adversary, owing
to their computational properties, can facilitate existing attack vectors to cause
unexpected damage to deep learning systems. Moreover, some of the attacks an

adversary exploits have been considered ineffective against traditional software.

6.1 Summary

Here, we re-articulate the contributions that this dissertation makes:

In Chapter 3: This dissertation exposes the graceless degradation of DNNs under bitwise
corruptions in their memory representations. Our study examines 19 DNNs, trained on
three popular benchmarks for object recognition, showing that a single bit-flip can inflict
the accuracy drop of a DNN up to 99% when the bit-flip is at a specific location. We also
find that ~50% of a DNN’s parameters contain at least one bit that degrades its accuracy
over 10%—the empirical upper bound found by prior work. Furthermore, the analysis
of DNNs with different datasets, architecture configurations, and training procedures
allows us to conclude that this vulnerability is prevalent. To demonstrate the practicality
of exploiting this vulnerability, we examine an adversary who facilitates a prominent
hardware fault attack, Rowhammer. A Rowhammer attacker who can control the bit-flip
location can inflict the accuracy drop of a DNN running inside a virtual machine (VM)
from 0-99%. Moreover, the blind attacker who randomly flips bits in memory can also

cause an accuracy drop of over 10% within a minute without any system crashes.

In Chapter 4: We show that an adversary can steal a unique DNN architecture from a
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small amount of information leakage observed from side-channel attacks. We identify the
computational regularities that a DNN’s computations have, which allows an adversary to
estimate (1) a sequence of layers accessed by a DNN while processing input and (2) the
time it takes to process the input in each layer. One can hardly expect such regularities
from the conventional software; an adversary who launches the same attack may face
the path explosion problem. We show that a cache side-channel attack, Flush+Reload,
reliably extracts the sequence and timings while a DNN processes a single input. Based
on this finding, we present an algorithm that reconstructs a DNN architecture from the
computational trace extracted via Flush+Reload. In our evaluation, we consider an adversary
who monitors a victim’s VM running a DNN remotely via Flush+Reload and demonstrate
the reconstruction of two unique architectures: (1) MalConv: a unique data pre-processing
pipeline for malware detection and (2) ProxylessNAS-CPU: a unique architecture found

by neural architecture search, with no reconstruction error.

In Chapter 5: We show that the computational savings promised by input-adaptive multi-
exit DNNs are a house of cards in an adversarial setting. We first argue that this attack
objective is orthogonal to the traditional attacker’s—i.e.., causing misclassifications. To
this end, we show that the standard adversarial examples reduce the computations required
for (mis-)predictions than clean inputs. We then craft the objective of an adversarial-
example crafting algorithm (PGD) to increase the computations of multi-exit architectures.
We call this resulting attack DeepSloth. In evaluation, the white-box DeepSloth that
individually crafting adversarial perturbations for each sample can completely offset the

computational savings of a victim multi-exit model. A universal perturbation crafted

108



with multiple samples can also reduce the computational savings up to 45%. We further
show that the DeepSloth transfers to a model with different datasets, architectures, and
input-adaptive mechanisms. Moreover, we examine the practicality of this attack in
a typical scenario that facilitates multi-exit DNNs, e.g., the Internet of Things (IoT),
and demonstrate that DeepSloth can increase the latency of a victim’s system by 1.5-
5x. We finally examine the effectiveness of standard defenses against adversarial input
perturbations, i.e., adversarial training, and expose a trade-off between efficiency, robustness

to adversarial examples, and robustness to DeepSloth.

6.2 Vision and Future Work

This dissertation opens up many research challenges and opportunities.

Exposing new threats to deep learning systems caused by hardware-level attacks.
Recent studies [169, 170, 171] exposes various hardware-level attacks, and they pose
security threats to systems. For example, Bulck et al. [169] showed that an adversary
can exploit Linux’s page-fault mechanisms to break the confidentiality guaranteed by
Intel® SGX. However, it is unknown whether an adversary can utilize this threat to
attack deep learning systems. As shown in Chapter 3, 4 and 5, existing attacks can pose
unexpected damage, or oftentimes, can be more effective against deep learning systems.
The emergence of new computing hardware, such as GPUs, Tensor Processing Units
(TPUs)!, or Quantum Processing Units (QPUs)?, can also enlarge attack surfaces that an

adversary can exploit. It is unknown how vulnerable the hardware is and how an adversary

]https://cloud.google.com/tpu

thtps://www.dwavesys.com
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can exploit the vulnerability; for example, a motivated attacker may use quantum-level
interference to risk the availability of deep learning systems. In future work, to build
secure and reliable deep learning systems, we need to study the worst-case behaviors of

new hardware in adversarial settings.

Hardware-level attacks as a vehicle to understand DNN models. My dissertation
exposes new security threats to under-examined attack methods such as hardware fault
attacks or side-channels. However, to come up with defense mechanisms against those
threats, it is essential to understand the root cause: Why do DNNs have computational
properties that an adversary can exploit with hardware attacks? To answer this question,
we can study the empirical connections between hardware attacks and their impact on
generalization measures. As the initial work on adversarial examples [11], we use bitwise
corruptions (bit-flip attacks) as a tool for quantifying the sensitivity of model parameters
to perturbations. Such quantification enables us to define the relationship between a
generalization property and the vulnerability to our attacks. Building on this connection,

I expect to propose defense mechanisms against the new threats.

Hardware-software co-design for building secure and reliable deep learning systems.
After we study “emerging security threats” and “their root-causes”, we can ask the question:
how can we defeat them? One way to think about the solution is to take a hardware-
software co-design approach. Defense mechanisms solely depend on machine learning
may fail at some point. For example, in Chapter 5, we demonstrate that a standard defense
against adversarial input perturbations, i.e., adversarial training, cannot provide sufficient

resilience to DeepSloth. On the other hand, defenses that rely on hardware or system-
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level mechanisms cannot defeat our new threats. We show in Chapter 3 that hardware-
level defenses against Rowhammer are not effective against the blind attacker. Thus, I
envision characterizing the limits of existing defenses against new threats and combining

both hardware- and machine learning-level defenses to close the attack surfaces
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Appendix A: Experimental Details and Additional Experiments

A.1 Lines of Code Monitored via Flush+Reload

Table A.1 shows the exact lines of code we monitor in the PyTorch and TensorFlow
frameworks. We use PyTorch v1.2.0' and Tensorflow v1.14.0°. In both frameworks, we
can monitor a similar set of DL computations in the C++ native implementations. It allows
an adversary to use one algorithm for attacking models running on both frameworks. We
also can see the back-end libraries supporting the matrix multiplications are different, i.e.,
PyTorch is compiled with OpenBLAS, whereas TensorFlow uses Eigen and MKL-DNN.
However, they both implement the matrix multiplications using GOTO’s algorithm [172].
Therefore, our attacker can monitor the same information—the number of iterations of

for-loops—and finally, estimate the overall size of matrix multiplication.

A.2 Applicability to GPUs

Our attack is not fundamentally different for GPUs. In most deep learning frameworks,
when a network performs a computation, it invokes the same function implemented in

C++, and the function decides whether the back-end computation can use GPUs or not.

1https://github.com/pytorch/pytorch/commit/8554416a199c4cec01c6Oc7Ol5d83Old2bb39b64
2https://github.com/tensorflow/tensorflow/commit/87989f69597d6b2d60de8f112e1e3cea23be7298
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Framework Computations  Line of Code

Conv2d aten/src/ATen/native/LegacyNNDefinitions.cpp:49
Convld aten/src/ATen/native/Convolution.cpp:448
BatchNorm aten/src/ATen/native/Normalization.cpp:428
FC (Begin) aten/src/TH/generic/THBIlas.cpp:329
FC (End) aten/src/TH/generic/THBIlas.cpp:499
ReLU6 aten/src/ATen/LegacyTHFunctionsCPU.cpp:21320
< Core (C++) Sigmoid aten/src/ATen/native/UnaryOps.cpp:191
5 AvgPool aten/src/ATen/native/Adaptive AveragePooling.cpp:324
= MaxPool aten/src/ATen/native/Pooling.cpp:50
A Embeddings aten/src/ATen/native/Embedding.cpp:15
add aten/src/ATen/native/BinaryOps.cpp:46
* (multiply) aten/src/ATen/native/BinaryOps.cpp:88
transpose aten/src/ATen/natinsve/TensorShape.cpp:643
narrow aten/src/ATen/native/TeorShape.cpp:364
GEMM(conv) driver/level3/level3.c
OpenBLAS GEMM(oncopy) kernel/x86_64/sgemm _ncopy_4_skylakex.c:54
Conv2d core/kernels/conv_2d.h:81
BatchNorm core/kernels/fused batch_norm op.cc:254
DepthConv2d core/kernels/depthwise_conv_op.cc:161
Core (C++) FC core/kernels/matmul_op.cc:542
B ReLU6 core/kernels/relu_op_functor.h:68
é AvgPool core/kernels/avgpooling_op.cc:80
5 TensorAdd core/kernels/cwise_ops_common.h:93
72}
E‘» Eigen #FCNodes src/Core/products/GeneralMatrix Vector.h: 155
GEMM src/cpu/gemm/gemm_driver.cpp:242
(loop)M-outer src/cpu/gemm/gemm_driver.cpp:349
MKL-DNN (loop)K src/cpu/gemm/gemm _driver.cpp:355
(loop)N src/cpu/gemm/gemm_driver.cpp:372

(loop)M-inner src/cpu/gemm/gemm_driver.cpp:387

Table A.1: Monitored lines of code in PyTorch and TensorFlow.

This practice® maximizes the hardware compatibility of a framework; however, this also
makes the framework vulnerable to our attacker who can still observe the common functions
listed in Table A.1 by monitoring the shared cache. On GPUs, the timings would be
different, so we would have to profile the computational times, e.g., the time taken for the
matrix multiplication with various sizes of tensor operands. However, on both CPUs and

GPUs, the computation time is proportional to the size of tensor operands, which enables

3Customization of operations in TensorFlow: https://www.tensorflow.org/guide/create_op
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our attacker to estimate the architecture parameters with timing observations.

A.3 ToyNet Computations Monitored in PyTorch and TensorFlow

Input

Processed Trace (PyTorch) Processed Trace (TensorFlow)
_ 7Batch Nu:::a"“’
sl (0] Conv2d, 52230076, (1 and 2) [0] Conv2d, 4717917, (20 and 15)
“' 2920110 [1] BatchNorm2d, 54230076, 0 [1] BatchNorm2d, 4725816, 0
\ [3] Conv2d, 55600076, (10 and 10) [2] DepthwiseConv, 4725912, 0
\ [4] BatchNorm?2d, 59268076, 0 [3] BatchNorm2d, 4726228, 0
@ " [5]ReLUS6, 59880076, 0 [4] ReLU6, 4727308, 0
(6] add, 60270076, 0 [5] TensorAdd, 4727644, 0

Output

Figure A.1: The traces extracted from PyTorch and TensorFlow via Flush+Reload.
We illustrate the ToyNet architecture on the left. The sequence of computations observed
from our attack are listed in the middle (PyTorch) and the right (TensorFlow).

Figure A.1 describes the reconstruction process of a small network in both the PyTorch
and TensorFlow frameworks. On the left, we have the ground truth of the ToyNet architecture,
which represents an example of a possible residual block in a victim network. In the
middle and right, we show the observations of an adversary monitoring both PyTorch
and TensorFlow code. The first entry indicates the monitored function corresponding to
the desired architectural attribute. The second entry indicates the timestamp at which the
adversary observes these functions, and the last entry is the number of general matrix
multiplication (GEMM) function calls for the given layer observation.

Naming conventions vary slightly between the two frameworks, but the information
inferred is the same. The adversary attacking both networks sees function calls that

correspond to architectural attributes in the same order: Conv2d, BatchNorm2d, Conv2d

/ DepthwiseConv, BatchNorm2d, ReLU6, and TensorAdd. PyTorch does not distinguish
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between Conv2d and DepthwiseConv, but as stated in 4.3.1, we can differentiate the
layers by timing data. Additionally, PyTorch and TensorFlow use different linear algebra
libraries to perform matrix computation, so the implementations differ slightly. However,
they both use variations on matrix multiplication algorithms that take into account system-
level optimizations, such as cache size (e.g., GOTO’s algorithm [172]). In both cases, we
observe operations in nested iterations of these implementations and are able to monitor
instructions that correspond to the size of the matrices being multiplied, giving an adversary

the ability to estimate the parameters of the convolution layers.

To perform the estimations of these layer parameters, the adversary can profile
candidates offline on similar hardware. They can then create a data set of candidate
parameters for given observation ranges. For instance, the number of observed GEMM
calls in the PyTorch example for the depthwise convolution layer gives the attacker the
information that there are 10 output channels, and therefore also ten output channels in the
Ist convolution. Additionally, the observed GEMM calls for the 1st convolution layer give
the candidate kernel sizes of 3 and 5. Likewise in TensorFlow, the observed instructions fit
the candidate kernel sizes of 3 or 5, and 0-24 output channels. Therefore, these exploitable

vulnerabilities exist independent of the specific deep learning framework a victim is using.

A.4 MNasNet Search Space

Tan et al. [137] utilize a hierarchical search space over six parameters: ConvOp, KernelSize,
SERatio, SkipOp, FilterSize, and #Layers. They choose to partition a CNN into a known,

finite set of blocks and then further divide these blocks into possibly repeated layers.
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The number of repeats per layer in a given block i is a searchable parameter N;, which
is bounded at +1 the number of layers in MobileNetV2 on which block ¢ is based.
These layers are further divided into three possible network layers (ConvOp): regular
convolution, depthwise convolution, or mobile inverted bottleneck convolution. Additionally,
the network layer parameters can vary. These parameters include the convolution kernel
size (KernelSize), the squeeze-and-excitation ratio (SERatio), a possible skip op (SkipOp),
and the output filter size (FilterSize). The squeeze-and-excitation ration (SERatio) of a
given layer varies between 0 and 0.025; the convolution kernel size varies between 3 and
5; the skip op is either pooling, identity residual, or no skip; and the filter size varies
between 0.75, 1.0, and 1.25 the filter size of the corresponding block in MobileNetV2.
Overall, this gives a claimed typical search space size of 10'® possibilities with 5 blocks,
3 average layers per block, and 432 options for the sub-search space of each block. This
size compares to the per-layer approach with the same parameters that have a search space

size 10%.

A.5 Hyper-parameters for DeepSloth

We use the following hyper-parameters to craft adversarial perturbations.

(,-based DeepSloth. We find that /,,-based DeepSloth does not require careful tuning.
For the standard attack, we set the total number of iterations to 30 and the step size to
a = 0.002. For the modified attacks for hurting or preserving the accuracy, we set the
total number of iterations to 75 and the step size to o = 0.001. We compute the standard

perturbations using the entire 10k test-set samples in CIFAR-10 and Tiny Imagenet. For
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the universal variants, we set the total number of iterations to 12 and reduce the initial
step size of a = 0.005 by a factor of 10 every 4 iterations. To compute a universal
perturbation, we use randomly chosen 250 (CIFAR-10) and 200 (Tiny Imagenet) training

samples.

(5-based DeepSloth. For both the standard and universal attacks, we set the total number
of iterations to 550 and the step size v to 0.1. Our initial perturbation has the /5-norm
of 1.0. Here, we use the same number of samples for crafting the standard and universal

perturbations as the /,,-based attacks.

¢1-based DeepSloth. For our standard ¢;-based DeepSloth, we set the total number of
iterations to 250, the step size « to 0.5, and the gradient sparsity to 99. For the universal
variants, we reduce the total number of iterations to 100 and set the gradient sparsity to
90. Other hyperparameters remain the same. We use the same number of samples as the

{y-based attacks, to craft the perturbations.

A.6 Cost of Crafting DeepSloth Samples

ATTACKS | TIME (SEC.)
PGD-20 38
PGD-20 (AvG.) 48
PGD-20 (MAX.) 475
DEEPSLOTH 44
UNIVERSAL DEEPSLOTH 2

Figure A.2: Time it takes to craft adversarial examples.

In Table A.2, we compare the cost of DeepSloth with other attack algorithms on a VGG16-

117



based CIFAR-10 model—executed on a single Nvidia Tesla-V 100 GPU. For the universal
DeepSloth, we measure the execution time for crafting a perturbation using one batch (250
samples) of the training set. For the other attacks, we measure the time for perturbing the
whole test set of CIFAR-10. Our DeepSloth takes roughly the same time as the PGD
and PGD-avg attacks and significantly less time than the PGD-max attack. Our universal

DeepSloth takes only 2 seconds (10x faster than DeepSloth) as it only uses 250 samples.

A.7 Empirical Evaluation of ¢; and /5 DeepSloth

NETWORK MSDNET VGG16 MOBILENET
SET. RAD<5% RAD<15% || RAD<5% RAD<I15% || RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.89/85% 0.89/85% || 0.77/89% 0.89/79% || 0.83/87% 0.92/79%

TI 0.64/55% 0.83/50% || 0.39/57% 0.51/52% | 0.42/57% 0.59/51%
DEEPSLOTH

C10 0.36/51% 0.35/51% || 0.12/36% 0.34/45% | 0.18/41% 0.49/53%

TI 0.23/37% 0.51/40% || 0.08/22% 0.15/25% | 0.08/33% 0.19/35%

UNIVERSAL DEEPSLOTH
C10 0.89/83% 0.89/83% | 0.75/85% 0.88/75% | 0.82/85% 0.92/77%
TI 0.64/55% 0.83/50% | 0.38/57% 0.51/52% | 0.41/57% 0.59/51%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.88/73% 0.88/73% || 0.69/78% 0.86/67% | 0.76/74% 0.89/65%
TI 0.64/54% 0.83/49% |/ 0.39/59% 0.50/58% | 0.41/60% 0.58/53%

Table A.2: The effectiveness of /; DeepSloth. ‘RAD<5,15%’ columns list the results in
each early-exit setting. Each entry includes the model’s efficacy score (left) and accuracy
(right). The class-universal attack’s results are an average of 10 classes. ‘TI is Tiny
Imagenet and ‘C10’ is CIFAR-10.

Table A.2 and Table A.3 shows the effectiveness of /;- and />-based DeepSloth attacks.
Our results show that the ¢;- and ¢,-based attacks are less effective than the ¢.,-based
attacks. In contrast to the /,,-based attacks that eliminate the efficacy of victim multi-exit
models, the /- and /5-based attacks reduce the efficacy of the same models by 0.24~0.65.
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NETWORK MSDNET VGG16 MOBILENET
SET. RAD<5% RAD<15% || RAD<5% RAD<15% || RAD<5% RAD<I15%

BASELINE (NO ATTACK)
C10 0.89/85% 0.89/85% || 0.77/89% 0.89/79% || 0.83/87% 0.92/79%

TI 0.64/55% 0.83/50% |/ 0.39/57% 0.51/52% || 0.42/57% 0.59/51%
DEEPSLOTH

C10 0.52/64% 0.52/64% || 0.22/60% 0.45/62% || 0.23/46% 0.48/55%

TI 0.24/42% 0.52/44% || 0.13/35% 0.21/36% || 0.12/38% 0.25/40%

UNIVERSAL DEEPSLOTH
C10 0.89/81% 0.89/81% | 0.75/87% 0.88/76% | 0.81/84% 0.92/76%
TI 0.63/54% 0.82/48% | 0.38/56% 0.51/52% | 0.41/56% 0.58/51%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.88/73% 0.88/73% || 0.71/81% 0.86/70% || 0.76/76% 0.89/66%
TI 0.64/53% 0.83/49% || 0.38/57% 0.50/57% | 0.41/58% 0.58/53%

Table A.3: The effectiveness of /> DeepSloth. ‘RAD<5,15%’ columns list the results in
each early-exit setting. Each entry includes the model’s efficacy score (/eft) and accuracy
(right). The class-universal attack’s results are an average of 10 classes. ‘TI’ is Tiny
Imagenet and ‘C10’ is CIFAR-10.

Besides, the accuracy drops caused by ¢;- and ¢5-based attacks are in 6~21%, smaller
than that of /,-based DeepSloth (75~99%). Moreover, we see that the universal variants
of /1- and ¢5-based attacks can barely reduce the efficacy of multi-exit models—they

decrease the efficacy up to 0.08 and the accuracy by 12%.

A.8 Empirical Evaluation of DeepSloth on ResNet56

Table A.4 shows the the effectiveness of our DeepSloth attacks on ResNet56-base models.
Our results show that ResNet56-based models are vulnerable to all the /., ¢5, and ¢;-
based DeepSloth attacks. Using our /,-based DeepSloth, the attacker can reduce the
efficacy of the victim models to 0.00~0.01 and the accuracy by 39~68%. Besides, the

{5, and ¢;-based attacks also decrease the efficacy to 0.04~0.18 and the accuracy by
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NETWORK RESNET ({4) RESNET (¢;) RESNET ({5)
SET. RAD<5% RAD<15% || RAD<5% RAD<15% || RAD<5% RAD<I15%
BASELINE (NO ATTACK)
C10 0.52/87% 0.69/80% | 0.52/87% 0.69/80% | 0.51/87% 0.69/80%
TI 0.25/51% 0.39/46% | 0.25/51% 0.39/46% | 0.25/51% 0.39/46%
DEEPSLOTH
C10 0.00/19% 0.01/19% | 0.05/43% 0.18/47% | 0.06/45% 0.17/48%
TI 0.00/ 7% 0.01/ 7% || 0.04/27% 0.10/28% || 0.05/34% 0.13/35%
UNIVERSAL DEEPSLOTH
C10 0.35/63% 0.59/60% | 0.49/84% 0.68/75% | 0.48/85% 0.67/76%
TI 0.25/25% 0.34/37% | 0.25/51% 0.39/46% | 0.25/51% 0.38/46%
CLASS-UNIVERSAL DEEPSLOTH
C10 0.23/33% 0.48/29% | 0.39/70% 0.60/61% | 0.39/71% 0.60/61%
TI 0.11/21% 0.23/18% | 0.23/51% 0.36/46% | 0.23/50% 0.36/46%
Table A.4: The effectiveness of DeepSloth on the ResNet-based models.

‘RAD<5,15%’ columns list the results in each early-exit setting. Each entry includes
the model’s efficacy score (left) and accuracy (right). The class-universal attack’s results
are an average of 10 classes.

11~44%. Compared to the results on MSDNet, VGG16, and MobileNet in Table A.2

and A.3, the same attacks are more effective. The universal variants decrease the efficacy

up to 0.21 and the accuracy up to 24%. In particular, the /5, and ¢;-based attacks (on C10

models) are effective than the same attacks on MSDNet, VGG16, and MobileNet-based

models.

A.9 Adversarial Examples from Standard Attacks and DeepSloth

Figure A.3 shows the adversarial examples from the PGD, UAP and our DeepSloth.
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Figure A.3: Adversarial examples from the standard and our DeepSloth attacks. The
leftmost column shows the clean images. In the next four columns, we show adversarial
examples from PGD, PGD (avg.), PGD (max.), and UAP attacks, respectively. The last
four columns include adversarial examples from the three variants of DeepSloth. Each
row corresponds to each sample, and the last row contains the average (;,s-norm of the
perturbations over the eight samples in each attack.
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