
ABSTRACT

Title of Dissertation: ROBUST LEARNING UNDER
DISTRIBUTIONAL SHIFTS

Yogesh Balaji
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Rama Chellappa
Department of Electrical and Computer Engineering

Professor Soheil Feizi
Department of Computer Science

Designing robust models is critical for reliable deployment of artificial intelli-

gence systems. Deep neural networks perform exceptionally well on test samples

that are drawn from the same distribution as the training set. However, they

perform poorly when there is a mismatch between training and test conditions,

a phenomenon called distributional shift. For instance, the perception system of a

self-driving car can produce erratic predictions when it encounters a new test sample

with a different illumination or weather condition not seen during training. Such in-

consistencies are undesirable, and can potentially create life-threatening conditions

as these models are deployed in safety-critical applications.

In this dissertation, we develop several techniques for effectively handling dis-

tributional shifts in deep learning systems.

In the first part of the dissertation, we focus on detecting out-of-distribution



shifts that can be used for flagging outlier samples at test-time. We develop a

likelihood estimation framework based on deep generative models for this task. In

the second part, we study the domain adaptation problem where the objective is to

tune the neural network models to adapt to a specific target distribution of interest.

We design novel adaptation algorithms, understand and analyze them under various

settings. In the last part of the dissertation, we develop robust learning algorithms

that can generalize to novel distributional shifts. In particular, we focus on two types

of shifts - covariate and adversarial shifts. All developed algorithms are rigorously

evaluated on several benchmark datasets.
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Chapter 1: Introduction

1.1 Motivation

Deep neural networks have revolutionized the field of machine learning in

the last decade, achieving impressive performance in several tasks including visual

recognition[5, 6, 7], speech processing [8], natural language understanding [9, 10, 11],

reinforcement learning [12, 13, 14, 15] and robotics [16, 17, 18]. This success is in part

fuelled by the availability of large datasets and powerful computational resources in

the form of modern GPU hardware. In the last decade, significant progress has been

made in designing and deploying efficient deep learning systems in several research,

industrial and consumer applications.

Despite this success, one of the key limitations of deep neural networks is a lack

of robustness to distributional shifts. By distributional shifts, we mean inputs at

test time having different distributional statistics than those in the training datasets.

Deep networks are designed to perform well on samples that are drawn from the

same distribution as the training set. This assumption seldom holds true in prac-

tice as test inputs often include variations not contained in the training datasets.

These variations can be due to differences in the environments in which the models

are deployed, differences in image acquisition, changes in illumination and lighting
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Figure 1.1: Performance of a semantic segmentation model trained on
Cityscapes dataset [19] on (a) in-distribution test image taken from the
Cityscapes test set, and (b) out-of-distribution test image of foggy street
scene taken from Sakaridis et al. [20]. While smooth and consistent
segmentation maps are obtained for in-distribution test images, inferior
predictions are obtained for out-of-distribution inputs. Each color in
prediction maps denote a semantic label.

conditions, etc. While humans are extremely good at reliable decision making un-

der such distributional shifts, performance of deep networks can drop drastically.

This lack of robustness is undesirable and can even be fatal in several safety-critical

applications such as autonomous driving and medical diagnosis.

To illustrate the issue of distributional shift, consider the task of semantic seg-

mentation on street scenes taken from an autonomous driving dataset (Cityscapes [19]).

The objective of semantic segmentation is to assign semantic labels to every pixel

in an image. In the panel (a) of Fig. 1.1, we observe that smooth and meaningful

segmentation maps are obtained on the in-distribution test image i.e., image taken
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from the same dataset in which the model was trained on. In panel (b), we show the

prediction map obtained by the same model when tested on an out-of-distribution

image of a foggy street scene. Such images are not present in the training dataset.

We observe extremely noisy segmentation outputs. If these models are deployed in

the perception system of a real autonomous vehicle, the unreliable predictions these

models produce can result in life-threatening consequences. Hence, there is a press-

ing need to design machine learning systems that are robust to such distributional

shifts. This is the focus of this dissertation.

1.2 Contributions

In this dissertation, we develop several techniques for handling out-of-distribution

inputs in deep learning systems. In this section, we provide a summary of these ap-

proaches.

Likelihood Estimation: In the first part of the dissertation, we focus on detect-

ing out-of-distribution samples using likelihood estimation. The objective is to build

a probability model of data, which can then be used for flagging out-of-distribution

samples as outliers. We utilize deep generative models (Generative Adversarial

Networks, in particular) for this task. Once the probability model is built, we can

utilize the trained model to compute sample likelihoods at test-time. Samples which

are least likely to have been generated from the model can be flagged as outliers.

We develop a theory of likelihood estimation for Generative Adversarial Networks

(GANs), and show how out-of-distribution detection can be performed using GANs
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at test time.

Domain Adaptation: In the second part of the dissertation, we develop adap-

tation algorithms with the goal of improving performance on out-of-distribution

datasets (also called target distributions). To do this, we utilize unlabeled sam-

ples from the target distributions. Models are then trained using a combination

of labeled training data and unlabeled target data so that the performance on the

target distribution improves. This class of techniques is also called unsupervised

domain adaptation. In this dissertation, we develop novel domain adaptation al-

gorithms involving hybrid generative-discriminative approaches and variants of op-

timal transport distances. The developed techniques are extensively evaluated on

several benchmark domain adaptation datasets.

Domain Generalization: In the third part of the dissertation, we focus on the

problem of domain generalization. Unlike domain adaptation, in domain general-

ization, we do not assume access to any target data during training. The goal is to

train models using several training data distributions so that the models can gener-

alize to novel test distributions. In this dissertation, we develop regularized training

mechanisms for deep networks that can generalize to out-of-distribution shifts. In

particular, we learn a regularization function using meta-learning, which can then

used for regularizing the model training. The regularized models are shown be more

robust to out-of-distribution shifts.
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Adversarial Robustness: In the final part of the dissertation, we shift our focus

to a different type of distributional shift, called the adversarial shifts. Adversarial

shifts are noisy inputs which are created by a malicious adversary with the intent

of breaking the machine learning systems. We develop novel training techniques

for improving the robustness of deep networks to these adversarial attacks, while

preserving the generalization on clean unperturbed inputs.

1.3 Organization

In Chapter 2, we introduce some background concepts of object recognition,

generative modeling and optimal transport which will be used in the rest of the

dissertation. Chapter 3 presents likelihood estimation using GANs, and how they

can used for out-of-distribution detection. In Chapter 4, we discuss how unsuper-

vised domain adaptation can be performed using generative adversarial networks.

Novel variants of optimal transport for domain adaptation are discussed in chap-

ters 5 and 6. In Chapter 7, we discuss the meta-learning framework for domain

generalization problem. In Chapter 8, we develop an algorithm for robust training

under adversarial shifts, called instance adaptive adversarial training, and study the

robustness-accuracy tradeoffs. Finally, in Chapter 9, we conclude the dissertation

and suggest some future directions for research.
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Chapter 2: Background

2.1 Object Recognition

In this dissertation, we primarily focus on the classification task. In image

classification, we take as input an image represented as a grid of pixels. The task

is to classify the input image into one of several predefined object categories. An

example is shown in Figure 2.1 - Given these inputs, an object classification system is

required to recognize the images as Robin, mud turtle and persian cat, respectively.

Formally, let X = Rc×h×w denote the input space. Here, c, h and w are

the number of channels, height and width of the image respectively. Let Y =

{1, 2, . . . nc} denote the discrete label space for a classification task with nc labels.

The objective of a learning system is to learn a model F : X → Y that assigns

correct predictions to a test image.

2.1.1 Deep Learning

Classical approaches to solve the object recognition problem comprised of a

two stage process. The first stage involves extracting the feature representations

of inputs, which are consise representations of the images that capture maximum
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Figure 2.1: Image classification task. Given the images shown above as
inputs, an object recognition system should classify the images as Robin,
mud turtle and persian cat, respectively. Figure from Imagenet (Deng
et al. [21])

information needed for a given task. In the second stage, the extracted feature

representations are passed to a machine learning model, which is trained to make

good test-time predictions. Some popular methods for feature extraction include

Scale Invariant Feature Transform (SIFT) [22], Histogram of Oriented Gradients

(HOG) [23], Speeded up Robust Features (SURF) [24], etc. These hand-crafted fea-

tures relied on low-level information such as corners, edges and gradients of images.

Starting 2012, the focus shifted towards end-to-end learning, in which both

the feature extraction and classification steps are embedded into a single model.

Deep neural networks have emerged as the ideal choice for such joint models. While

neural networks were introduced several decades ago [25, 26, 27, 28], it was the work

of Krizhevsky et al. [29] that led to the resurgence of deep networks for large scale

machine learning applications. The availability of large datasets and modern GPU

hardware helped train high capacity deep neural network models, which eventually

resulted in state-of-the art performance on several machine learning tasks.
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Figure 2.2: Architecture of deep convolutional neural network used in
Krizhevsky et al. [29]

For visual recognition tasks, Deep Convolutional Neural Networks (DCNN)

emerged as the most popular architectural choice. DCNNs typically comprise of

the following elements: (1) convolutional layer, that performs convolution oper-

ation on a given input map using weights as filters, (2) max pooling layer, that

performs downsampling operation along the spatial dimension, (3) Rectified Lin-

ear Unit (ReLU), which applies an elementwise non-linear operation of the form

ReLU(x) = max(0, x), (4) Batch Normalization layer, that performs normalization

of the feature maps and (5) Fully connected layers, which are linear transformations

applied on the input feature vector. These componenents are stacked together se-

quentially multiple times, and this results in a deep convolutional neural network.

A visualization of one such DCNN architecture is shown in Figure 2.2.

Over the years, several architectural designs have been proposed for DCNNs [5,

30, 31, 32, 33]. Two prominant architectures that are widely used till date are

Resnet [5] and VGGnet [31]. In VGGnet, authors use small convolutions filter sizes
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(3 × 3 in specific) and make the network very deep (16-19 layer deep). In Resnet,

authors propose using residual connections as a way to avoid the vanishing gradient

problems in model training. This enabled the authors to train models much deeper

(upto 152 layers deep) models. In this dissertation, we mainly use VGGnet and

Resnet in our experiments.

Training: DCNN-based models typically have millions of parameters that

need to be optimized. These models are trained using mini-batch stochastic gradient

descent. For an input x, let Fθ(x) denote the output of the neural network with

parameters θ. Let D = {(xi, yi)}Ni=1 denote the dataset used for training the model.

Let ỹ be the one-hot encoding of the label y. To train the model F (·), we use the

cross-entropy loss given by

Lcls = E(x,y)∼D
[
(ỹ)tFθ(x)

]
(2.1)

Let θ(i) denote the parameters at the ith step of training. Then, the gradient descent

updates of the parameter vector θ can be written as

θ(i+1) = θ(i) − η∇θLcls

Here, η is the learning rate. For a deep neural network, the gradients ∇θLcls for

each layer can be efficiently computed using an algorithm called back-propagation.

Testing: Once the models are trained, they are evaluated by measuring

the performance on a held-out test set. For classification problems, top-1 accuracy,
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precision and recall are some of the commonly used evaluation metrics.

2.2 Generative Models

In the previous section, we discussed the classification task where the objective

was to learn a decision boundary between different object classes. These methods

fall under the category of discriminative modeling. In this section, we will discuss the

other prominent class of approaches in machine learning, called generative modeling.

In generative modeling, the objective is to learn the underlying data distribution

directly. In this dissertation, we focus on deep generative modeling, in which deep

networks are used for the generative modeling task. In particular, we focus on two

types of models - GANs [34] and Variational Autoencoders (VAEs) [35].

2.2.1 Generative Adversarial Networks

Let {x1,x2, . . .xn} ∼ pdata denote the input dataset. The objective of GANs

is to train a model to synthesize samples that resemble the input distribution pdata.

To do this, we begin by generating samples from a prior distribution pz (which

is typically N (0, I)) and passing the samples through a transformation network

G, which is also known as the generator network. The generated samples are then

distinguished from the real samples using a discriminator network D. The generator
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network is trained to fool the discriminator at this task.

z1, z2 . . . zn ∼ pz(z) = N (0, I)

pg(z) := G(pz(z))

Then, the objective of GANs can be written as the following min-max game.

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.2)

As shown in Eq. (2.2), the discriminator response D(x) assigns the probability that

a sample x came from data rather than the generated distribution. The generator

G, on the other hand, minimizes this loss. Hence, the generator G is trained to

generate samples that fool the discriminator. The global optimum is achieved only

when pg = pdata i.e., when generated distribution equals the data distribution. For

the proof of this claim, please refer to Goodfellow et al. [34].

GANs are typically optimized using alternating stochastic gradient descent

updates between discriminator and generator parameters. In practice, this opti-

mization is extremely unstable and often leads to poor local optima. In recent years,

several modifications have been proposed to improve the stability and convergence of

GANs, including novel variants of the GAN objective such as Wasserstein GAN [36],

least squares GAN [37], hinge loss GAN [38] and f-divergence GAN [39], regular-

ization approaches such as gradient penalty [40], spectral normalization [41] and

feature matching [42], and several architectural improvements [43, 44, 45]. These
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Figure 2.3: Photorealistic sample generation from GANs. The figure on
the left shows samples generated from a BigGAN model [43], while the
figure on the right shows the images of faces generated from a StyleGAN2
model [45].

modifications led to significant improvements in the quality of generated samples,

achieving photo-realistic synthesis in several image-based datasets. Some examples

taken from BigGAN and StyleGAN, two of the state-of-the-art GAN models, are

shown in Figure 2.3.

2.2.2 Variational Autoencoders

Recall, that the objective of generative modeling is to estimate the underlying

probability density p(x) of a data distribution. As discussed in the previous sec-

tion, GANs provide a framework for sampling from a generative distribution that

resembles p(x). However, there is no way to compute the sample likelihood scores.

Variational autoencoders, on the other hand, directly optimizes for a lower-bound

of the data likelihood, thereby enabling sample likelihood computation.
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Figure 2.4: Graphical model considered in VAEs. Solid lines denote the
generative model pθ(z)pθ(x|z), while the dashed lines denote the varia-
tional approximation qφ(z|x). Figure taken from Kingma and Welling
[35].

Let D = {xi}ni=1 denote a dataset of n i.i.d samples of some continuous random

variable x. We assume that the data is generated by some random process involving

an unobserved latent variable z. The data generating process consists of the two

steps: (1) The latent variable zi is first generated from some prior distribution

pθ∗(z); (2) The input xi is then generated from the likehood model pθ∗(x|z). Both

prior and likelihood are assumed to come from a parametric families pθ(x|z) and

pθ(z). Estimating pθ(x|z) requires computing pθ(z|x) which is intractable. Hence,

a variational approximation qφ(z|x) is used for approximating pθ(z|x). This leads

to a graphical model as shown in Figure 2.4.
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We can write the marginal likelihood of individual datapoints as follows:

log pθ(x) = log

(∫
pθ(x|z)p(z)dz

)
= log

(∫
pθ(x|z)

q(z)

q(z)
p(z)dz

)
= log

(
Eq(z)

[
pθ(x|z)

p(z)

q(z)

])
≥ Eq(z)

[
log

(
pθ(x|z)

p(z)

q(z)

)]
(Jensen’s Inequality)

≥ Eq(z) [log (pθ(x|z))]−KL(q(z)||p(z))

Since the above inequality holds for every q(z), we replace it with qφ(z|x). This

gives us the following bound.

log pθ(x) ≥ Eqφ(z|x) [log (pθ(x|z))]−KL(qφ(z|x)||p(z)) (2.3)

Eq. (2.3) is the popular Evidence Lower Bound (ELBO). Now, to train a variational

autoencoder, instead of maximizing the data likelihood p(x), we can maximize the

evidence lower bound i.e., r.h.s. of Eq. (2.3). For mathematical convenience, qφ(z|x)

is modeled as a Gaussian distribution N (µφ(x),Σφ(x)). The mean and covariance

of this Gaussian distribution µφ(x) and Σφ(x)) are implemented using a neural

network with parameters φ. The prior distribution p(z) is usually modeled as a

isotropic Gaussian N (0, I).

14



Figure 2.5: VAE framework. The input x is first passed to an encoder
network qφ to produce the mean and covariance vectors. The latents are
then sampled using the reparameterizartion trick. The sampled latents
are reconstructed back ussing a decoder network pθ.

Using these models, the KL divergence term in Eq. (2.3) can be simplified as

KL(qφ(z|x)||p(z)) =
1

2
[tr(Σφ(x)) + µφ(x)ᵀµφ(x)− k − log det(Σφ(x))]

The first term in Eq. (2.3) is tricky as it involves sampling over the distribution

qφ(z|x) and taking the expectation. Taking the gradients of this expectation term

involves backpropagating over the sampling step, which is non-trivial. To fix this

issue, a simple technique called reparameterization trick is used. The idea is to move

the sampling step to an input layer. That is, to sample from N (µφ(x),Σφ(x)), we

can first sample ε ∼ N (0, I) and then compute z = µφ(x) + Σ1/2(x) ∗ ε. Since

sampling ε does not have any parameters, and we can backprogate through the

network φ.

Combining all these tricks, we can train a Variational autoencoder by max-

imizing the expected lower-bound of Eq. (2.3). The framework of variational au-

15



toencoder invoves an encoder network qφ that produces the mean and covariance

vectors, and a decoder model pθ(x|z) that decodes the latents back into the image

space. Please refer to Fig. 2.5 for an illustration. For a complete treatement, please

refer to Doersch [46].

2.3 Optimal Transport

Estimating distances between probability distributions lies at the heart of sev-

eral machine learning and statistics applications. Some distance measures include

KL divergence [47], f -divergence, MMD distance [48], etc. In this section, we dis-

cuss optimal transport which is one popular framework for distributional distance

estimation. Given two distributions, optimal transport finds the minimum cost plan

for transporting one distribution to the other.

Let X denote a compact metric space, and Prob(X ) denote the space of proba-

bility measures defined on X . Given two probability distributions pX , pY ∈ Prob(X )

and a continuous cost function c : X × X → R, optimal transport finds the mini-

mum cost for transporting the density pX to pY . This can be written as the following

optimization problem

W(pX , pY ) = min
π∈Π(pX ,pY )

∫ ∫
c(x,y)π(x,y)dxdy (2.4)

where Π(pX , pY ) is the set of all joint distributions whose marginals are pX and pY ,
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Figure 2.6: Optimal Transport. In the left panel, we show two distri-
butions in red and blue, for which we are interested in computing the
optimal transport plan. The computed transportation plan is shown in
the right panel. The green lines are the couplings i.e., they show how
each point in one distribution is coupled to every point in the other
distribution.

respectively. That is,

Π(pX , pY ) = {π(x,y)|
∫
π(x,y)dx = pY ,

∫
π(x,y)dy = pX}

When the cost function c(x, y) is `2 distance, then the optimal transport distance

is called Wasserstein distance. Observe that Eq. (2.4) is a linear program since the

objective and constraints are both linear in the optimization variable π.

A visualization of the optimal transport computation is shown in Figure. 2.6.

Here, we are interested in computing the optimal transport plan between two mix-

tures of Gaussians shown in red and blue, respectively. The obtained transportation

plan is shown in green lines. We observe that each Gaussian in one mixture distri-
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Figure 2.7: Some samples generated from a Wasserstein GAN trained
on LSUN-Bedrooms dataset. Figure taken from Arjovsky et al. [36].

bution is coupled to the nearest Gaussian in the other distribution.

2.3.1 Kantrovich-Rubinstein Duality

Let us assume that the cost function c(·) is a distance in some metric space.

Then, the following duality holds

min
π∈Π(pX ,pY )

∫ ∫
c(x,y)π(x,y)dxdy = max

φ∈Lip−1

∫
φ(x)dpX −

∫
φ(x)dpY (2.5)

Here, Lip− 1 denotes the set of functions that are 1-Lipschitz. Please refer to [49]

for the proof of this duality. In practice, especially for neural networks, optimizing

the dual form is much easier than the primal since optimization is over a set of

1-Lipschitz functions which are much easier to implement.
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2.3.2 Applications: Wasserstein GAN

One of the popular applications of Wasserstein distance is in training a Gen-

erative Adversarial Network. Given a parameteric model for generating samples, a

Wasserstein GAN can be trained by minimizing the Wasserstein distance between

real data distribution and the generative distribution. As discussed in Sec. 2.2.1,

the generative distribution pg is modeled as a parameteric transformation applied

to a latent space - G(z), where z ∼ N (0, I).

Let pdata denote the input data distribution. Then, the Wasserstein GAN

model can be trained by minimizing

min
G
W (pdata, pg) = min

G
min

π∈Π(pdata,pg)

∫ ∫
c(x,y)π(x,y)dxdy

= min
G

max
D∈Lip−1

Ex∼pdataD(x)− Ez∼pzD(G(z)) From (2.5)

The last equation follows from the Kantrovich-Rubinstein duality, where we replaced

the dual variable φ with D. In this formulation, G is the generator and D is the

discriminator. We observe that this optimization is similar to the GAN objective in

Eq. (2.2), with the difference being the log term in the expectation is replaced with

identity, and 1−Lipschitzness is imposed on the discriminator.

In practice, the generator and discriminator functions are implemented as

deep neural networks. 1-Lipschitz constrained is imposed using tricks such as weight

clipping [36], gradient penalty [40] or spectral normalization [41]. Samples generated

by Wasserstein GAN trained on LSUN-Bedrooms dataset is shown in Fig. 2.7
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Part I

Likelihood Estimation
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Chapter 3: Entropic GANs meet VAEs

3.1 Introduction

Consider an object recognition system that is deployed in the wild. While the

classification model is trained on images of certain pre-defined object categories, it

could encounter noisy out-of-distribution images that do not look like any of the

objects of interest. In this case, our object recognition system should be able to

filter out these anomalous samples instead of making a prediction. One approach

for addressing the out-of-distribution detection problem is to learn a probability

model of the data distribution, and using sample likelihood scores to filter out the

anomalous samples.

Deep generative models provide a framework for modeling the input data

distribution. As discussed in Section. 2.2, VAEs [35] compute a generative model

by maximizing a variational lower-bound on average sample log-likelihoods using an

explicit probability model for the data. GANs, however, learn a generative model

by minimizing a distance between observed and generated distributions without

considering an explicit probability model. Empirically, GANs have been shown

to produce higher-quality generative samples than that of VAEs [50]. However,

since GANs do not consider an explicit probability model for the data, we are
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unable to compute sample likelihoods using their generative models. Obtaining

sample likelihoods and posterior distributions of latent variables are critical in several

statistical inference applications. Inability to obtain such statistics within GAN’s

framework severely limits their applications in statistical inference problems.

In this chapter, we resolve this issue for a general formulation of GANs by

providing a theoretically-justified approach to compute sample likelihoods using

GAN’s generative model. Our results facilitate the use of GANs in massive-data

applications such as model selection, sample selection, hypothesis-testing, etc.

We first state our main results informally without going into technical details

while precise statements of our results are presented in Section 3.2. Let X and

X̂ := G(Z) represent observed (i.e. real) and generative (i.e. fake or synthetic)

variables, respectively. Z (i.e. the latent variable) is the random vector used as the

input to the generator G(.). Consider the following explicit probability model of

the data given a latent sample Z = z:

pX|Z=z(x) ∝ exp(−`(x,G(z))), (3.1)

where `(., .) is a loss function. pX|Z=z(x) is the model that we are considering for the

underlying data distribution. This is a reasonable model for the data as the function

G can be an arbitrarily complex function. Similar data models have been used in

VAEs. Under this explicit probability model, we show that minimizing the objective

of an optimal transport GAN (e.g. Wasserstein GAN [36]) with the cost function

`(., .) and an entropy regularization [51, 52] maximizes a variational lower-bound on
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average sample likelihoods. That is

EpX [log pX(X)]︸ ︷︷ ︸
ave. sample log likelihoods

≥− 1

λ

{
EPX,X̂

[
`(X, X̂)

]
− λH

(
PX,X̂

)}
︸ ︷︷ ︸

entropic GAN objective

+ constants.

This result provides a statistical justification for GAN’s optimization and puts it in

par with VAEs whose goal is to maximize a lower bound on sample likelihoods. We

note that entropy regularization has been proposed primarily to improve computa-

tional aspects of GANs [53]. Our results provide an additional statistical justifica-

tion for this regularization term. Moreover, using the GAN’s training, we obtain

a coupling between the observed variable X and the latent variable Z. This cou-

pling provides the conditional distribution of the latent variable Z given an observed

sample X = x. The explicit model of (3.1) acts similar to the decoder in the VAE

framework, while the coupling computed using GANs acts as an encoder.

Another key question is how to estimate the likelihood of a new sample xtest

given the generative model trained using GANs. For instance, if we train a GAN

on stop-sign images, upon receiving a new image, one may wish to compute the

likelihood of the new sample xtest according to the trained generative model. In

standard GAN formulations, the support of the generative distribution lies on the

range of the optimal generator function. Thus, if the observed sample xtest does not

lie in that range (which is very likely in practice), there is no way to assign a sensible

likelihood score to the sample. Below, we show that using the explicit probability
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Figure 3.1: A statistical framework for GANs. By training a GAN model,
we first compute optimal generator G∗ and optimal coupling between the
observed variable X and the latent variable Z. The likelihood of a test
sample xtest can then be lower-bounded using a combination of three
terms: (1) the expected distance of xtest to the distribution learnt by the
generative model, (2) the entropy of the coupled latent variable given
xtest and (3) the likelihood of the coupled latent variable with xtest.

model of (3.1), we can lower-bound the likelihood of this sample xtest. This is similar

to the variational lower-bound on sample likelihoods used in VAEs. Our numerical

results in Section 3.4 show that this lower-bound well-reflects the expected trends

of the true sample likelihoods.

Let G∗ and P∗X,Z be the optimal generator and the optimal coupling between

real and latent variables, respectively. The optimal coupling P∗X,Z can be computed

efficiently for entropic GANs as we explain in Section 3.3. For other GAN architec-

tures, one may approximate such couplings as we explain in Section 3.4. The log

likelihood of a new test sample xtest can be lower-bounded as
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log pX(xtest)︸ ︷︷ ︸
log likelihood

≥− EP∗
Z|X=xtest

[
`(xtest,G∗(z))

]︸ ︷︷ ︸
distance to the generative model

+H
(
P∗Z|X=xtest

)︸ ︷︷ ︸
coupling entropy

+ EP∗
Z|X=xtest

[
−‖z‖

2

2

]
︸ ︷︷ ︸
likelihood of latent variable

.

(3.2)

We present the precise statement of this result in Corollary 2. This result com-

bines three components in order to approximate the likelihood of a sample given a

trained generative model: (1) if the distance between xtest to the generative model

is large, the likelihood of observing xtest from the generative model is small, (2) if

the entropy of the coupled latent variable is large, the coupled latent variable has

large randomness, thus, this contributes positively to the sample likelihood, and (3)

if the likelihood of the coupled latent variable is large, the likelihood of the observed

test sample will be large as well. Figure 3.1 provides a pictorial illustration of these

components.

To summarize, we have made the following theoretical contributions:

• We have constructed an explicit probability model for a family of optimal

transport GANs (such as the Wasserstein GAN) that can be used to compute

likelihood statistics within GAN’s framework (eq. (3.6) and Corollary 2).

• We have proved that, under this probability model, the objective of an entropic

GAN is a variational lower bound for average sample log likelihoods (Theorem

1). This result makes a principled connection between two modern generative

models, namely GANs and VAEs.
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Moreover, we have made the following empirical contributions:

• We have computed likelihood statistics for GANs trained on Gaussian, MNIST,

SVHN, CIFAR-10 and LSUN datasets and shown the consistency of these em-

pirical results with the proposed theory (Section 3.4).

• We have demonstrated the tightness of the variational lower bound of entropic

GANs for both linear and non-linear generators (Section 3.4.4).

3.1.1 Related Work

Connections between GANs and VAEs have been investigated in some of the

recent works as well [54, 55]. In [54], GANs are interpreted as models performing

variational inference on a generative model in the label space. In [54], observed data

samples are treated as latent variables while the generative variable is the indicator

of whether data is real or fake. The method in [55], on the other hand, uses an

auxiliary discriminator network to rephrase the maximum-likelihood objective of a

VAE as a two-player game similar to the objective of a GAN. Our method is different

from both of these approaches as we consider an explicit probability model for the

data, and show that the entropic GAN objective maximizes a variational lower

bound under this probability model, thus allowing sample likelihood computation

in GANs similar to VAEs.

Of relevance to our work is [56], in which annealed importance sampling (AIS)

is used to evaluate the approximate likelihood of decoder-based generative models.

More specifically, a Gaussian observation model with a fixed variance is used as the
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generative distribution for GAN-based models on which the AIS is computed. Gaus-

sian observation models may not be proper specially in high-dimensional spaces. Our

approach, on the other hand, makes a connection between GANs and VAEs by con-

structing a theoretically-motivated model for the data distribution in GANs. We

then leverage this approach in computing sample likelihood estimates in GANs.

3.2 A Variational Bound for GANs

Let X ∈ Rd represent the real-data random variable with a probability density

function pX(x). GAN’s goal is to find a generator function G : Rr → Rd such that

X̂ := G(Z) has a similar distribution to X. Let Z be an r-dimensional random

vector with a fixed probability density function pZ(z). Here, we assume pZ(.) is the

density of a Gaussian distribution. In practice, we observe m samples {x1, ...,xm}

from X and generate m′ samples from X̂, i.e., {x̂1, ..., x̂m′} where x̂i = G(zi) for

1 ≤ i ≤ m. We represent these empirical distributions by PX and PX̂ , respectively.

Note that the number of generative samples m′ can be arbitrarily large.

GAN computes the optimal generator G∗ by minimizing a distance between

the observed empirical distribution PX and the generative one PX̂ . Common dis-

tance measures include optimal transport measures (e.g. Wasserstein GAN [36],

WGAN+Gradient Penalty [40], GAN+Spectral Normalization [41], WGAN+Truncated

Gradient Penalty [57], relaxed WGAN [58]), and divergence measures (e.g. the orig-

inal GAN’s formulation [34], f -GAN [39]), etc.

We focus on GANs based on optimal transport (OT) distance [36, 49] defined
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for a general loss function `(., .) as follows

W`(PX ,PX̂) := min
PX,X̂

E
[
`(X, X̂)

]
. (3.3)

PX,X̂ is the joint distribution whose marginal distributions are equal to PX and PX̂ ,

respectively. If `(x, x̂) = ‖x− x̂‖2, this distance is called the first-order Wasserstein

distance and is referred to by W1(., .), while if `(x, x̂) = ‖x − x̂‖2
2, this measure is

referred to by W2(., .) where W2 is the second-order Wasserstein distance [49]. The

OT GAN is formulated using the following optimization problem [36, 49]:

min
G∈G

W`(PX ,PX̂), (3.4)

where G is the set of generator functions. Examples of the OT GAN are WGAN

[36] corresponding to the first-order Wasserstein distance 1 and the quadratic GAN

(or, the W2GAN) [59] corresponding to the second-order Wasserstein distance.

Note that optimization 3.4 is a min-min optimization. The objective of this op-

timization is not smooth in G and it is often computationally expensive to obtain a

solution for it [60]. One approach to improve computational aspects of this optimiza-

tion problem is to add a regularization term to make its objective strongly convex

[51, 52]. The Shannon entropy function is defined as H(PX,X̂) := −E
[
logPX,X̂

]
.

The negative Shannon entropy is a common strongly-convex regularization term.

This leads to the following optimal transport GAN formulation with the entropy

1Note that some references (e.g. [36]) refer to the first-order Wasserstein distance simply as
the Wasserstein distance. In this chapter, we explicitly distinguish between different Wasserstein
distances.
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regularization, or for simplicity, the entropic GAN formulation:

min
G∈G

min
PX,X̂

E
[
`(X, X̂)

]
− λH

(
PX,X̂

)
, (3.5)

where λ is the regularization parameter.

There are two approaches to solve the optimization problem 3.5. The first

approach uses an iterative method to solve the min-min formulation [61]. Another

approach is to solve an equivelent min-max formulation by writing the dual of the

inner minimization [52, 60]. The latter is often referred to as a GAN formulation

since the min-max optimization is over a set of generator functions and a set of

discriminator functions (as discussed in Section. 2.3). The details of this approach

are further explained in Section 3.3.

In the following, we present an explicit probability model for entropic GANs

under which their objective can be viewed as maximizing a lower bound on average

sample likelihoods.

Theorem 1. Let the loss function be shift invariant, i.e., `(x, x̂) = h(x− x̂). Let

pX|Z=z(y) = C exp(−`(x,G(z))/λ), (3.6)

be an explicit probability model for X given Z = z for a well-defined normalization

C :=
1∫

x∈Rd exp(−`(x, G(z))/λ)
. (3.7)
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Then, we have

EPX [log pX(X)]︸ ︷︷ ︸
ave. sample likelihoods

≥− 1

λ

{
EPX,X̂

[
`(X, X̂)

]
− λH

(
PX,X̂

)}
︸ ︷︷ ︸

entropic GAN objective

+ constants. (3.8)

In words, the entropic GAN maximizes a lower bound on sample likelihoods

according to the explicit probability model of (3.6).

Proof. Using the Baye’s rule, one can compute the log-likelihood of an observed

sample x as follows:

log pX(x) = log pX|Z=z(z) + log pZ(z)− log pZ|X=x(z) (3.9)

= logC − `(x, G(z))− log
√

2π − ‖z‖
2

2
− log pZ|X=x(z),

where the second step follows from Eq. (3.6).

Consider a joint density function PZ,X such that its marginal distributions

match PZ and PX . Note that the equation 3.9 is true for every z. Thus, we can take

the expectation of both sides with respect to a distribution PZ|X=x. This leads to

the following equation:
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log pX(x) =EPZ|X=x

[
− `(x,G(z))

λ
+ logC − 1

2
log 2π − ‖z‖

2

2
− log pZ|X=x(z)

]
(3.10)

=EPZ|X=x

[
− `(x,G(z))/λ+ logC − 1

2
log 2π − ‖z‖

2

2
− log fZ|X=x(z)

+ log
(
PZ|X=x(z)

)
− log

(
PX|Y=y(x)

) ]
=− EPZ|X=x

[`(x,G(z))/λ]− 1

2
log 2π + logC + EPZ|X=x

[
−‖z‖

2

2

]
+ KL

(
PZ|X=x||pZ|X=x

)
+H

(
PZ|X=x

)
, (3.11)

where H(.) is the Shannon-entropy function.

Next we take the expectation of both sides with respect to PX :

E [log pX(X)] =− 1

λ
EPZ,X [`(x, G(z))]− 1

2
log 2π + logC + EpZ

[
−‖z‖

2

2

]
(3.12)

+ EPX
[
KL
(
PZ|X=x||pZ|X=x

)]
+H (PZ,X)−H (PX) .

Here, we replaced the expectation over PX with the expectation over pX since one

can generate an arbitrarily large number of samples from the generator. Since the

KL divergence is always non-negative, we have

E [log pX(X)] ≥− 1

λ

{
EPZ,X [`(x,G(z))]− λH (PZ,X)

}
+ logC − log(m)− r + log 2π

2
(3.13)
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Moreover, using the data processing inequality, we have H(PZ,X) ≥ H(PG(Z),X) [47].

Thus,

E [log pX(X)]︸ ︷︷ ︸
sample likelihood

≥− 1

λ

{
EPZ,X [`(x,G(z))]− λH

(
PX,X̂

)}
︸ ︷︷ ︸

GAN objective with entropy regularizer

+ logC − log(m)− r + log 2π

2
(3.14)

This inequality is true for every PZ,X satisfying the marginal conditions. Thus,

similar to VAEs, we can pick PZ,X to maximize the lower bound on average sample

log-likelihoods. This leads to the entropic GAN optimization (3.5). This concludes

the proof.

Theorem. 1 has a similar flavor to that of VAEs [62, 63, 64, 65] where a

generative model is computed by maximizing a lower bound on sample likelihoods.

Having a shift invariant loss function is critical for Theorem 1 as this makes the

normalization term C independent from G and x (to see this, one can define y′ :=

y −G(x) in (3.8)). The most standard OT GAN loss functions such as the `2 for

WGAN [36] and the quadratic loss for W2GAN [59] satisfy this property.

One can further simplify this result by considering specific loss functions. For

example, we have the following result for the entropic GAN with the quadratic loss

function.

Corollary 1. Let `(x, x̂) = ‖x− x̂‖2/2. Then, pX|Z=z(.) of (3.6) corresponds to the
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multivariate Gaussian density function and C = 1√
(2πλ)d

. In this case, the constant

term in (3.8) is equal to − log(m)− d log(2πλ)/2− r/2− log(2π)/2.

Let G∗ and P∗X,Z be optimal solutions of an entropic GAN optimization 3.5

(note that the optimal coupling can be computed efficiently using (3.19)). Let

xtest be a newly observed sample. An important question is what the likelihood

of this sample is given the trained generative model. Using the explicit probability

model of (3.6) and the result of Theorem 1, we can (approximately) compute sample

likelihoods as explained in the following corollary.

Corollary 2. Let G∗ and P∗
X,X̂

(or, alternatively P∗X,Z) be optimal solutions of the

entropic GAN (3.5). Let xtest be a new observed sample. We have

log pX(xtest) ≥ −1

λ

{
EP∗

Z|X=xtest

[
`(xtest,G∗(z))

]
− λH

(
P∗Z|X=xtest

)}
(3.15)

+ EP∗
Z|X=xtest

[
−‖z‖

2

2

]
+ constants.

The inequality becomes tight iff KL
(
P∗Z|X=xtest ||pZ|X=xtest

)
= 0, where KL(.||.) is the

Kullback-Leibler divergence between two distributions.

3.3 Dual of Entropic GANs

In Section. 2.3, we discussed the dual formulation of optimal transport. Simi-

larly, the dual formulation of the entropic GAN (3.5) can be written as the following
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optimization [51, 52] 2:

min
G∈G

max
D1,D2

E [D1(X)]− E [D2(G(Z))]− λEPX×PX̂ [exp (v(x, x̂)/λ)] , (3.16)

where

v(x, x̂) := D1(x)−D2(x̂)− `(x, x̂). (3.17)

Moreover, the optimal primal variables P∗
X,X̂

can be computed according to the

following lemma [52]:

Lemma 1. Let D∗1 and D∗2 be the optimal discriminator functions for a given gen-

erator function G according to optimization 3.16. Let

v∗(x, x̂) := D∗1(x)−D∗2(x̂)− `(x, x̂). (3.18)

Then,

P∗
X,X̂

(x, x̂) = PX(x)PX̂(x̂) exp (v∗ (x, x̂) /λ). (3.19)

This lemma is important since it provides an efficient way to compute the

optimal coupling between real and generative variables (i.e. P ∗
X,X̂

) using the optimal

generator (G∗) and discriminators (D∗1 and D∗2) of optimization 3.16. It is worth

2Note that optimization 3.16 is dual of optimization 3.5 when the terms λH(PX) + λH(PX̂)
have been added to its objective. Since for a fixed G (fixed marginals), these terms are constants,
they can be ignored from the optimization objective without loss of generality.
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noting that without the entropy regularization term, computing the optimal coupling

using the optimal generator and discriminator functions is not straightforward in

general (unless in some special cases such as W2GAN [49, 59]). This is another

additional computational benefit of using entropic GAN.

3.4 Experimental Results

In this section, we supplement our theoretical results with experimental val-

idations. One of the main objectives of our work is to provide a framework to

compute sample likelihoods in GANs. Such likelihood statistics can then be used

in several statistical inference applications that we discuss in Section 3.5. With a

trained entropic WGAN, the likelihood of a test sample can be lower-bounded us-

ing Corollary 2. Note that this likelihood estimate requires the discriminators D1

and D2 to be solved to optimality. In our implementation, we use the algorithm

presented in [60] to train the Entropic GAN. It has been proven in [60] that this

algorithm leads to a good approximation of stationary solutions of Entropic GAN.

We also discuss an approximate likelihood computation approach for un-regularized

GANs in [66].

To obtain the surrogate likelihood estimates using Corollary 2, we need to

compute the density P∗Z|X=xtest(z). As shown in Lemma 1, WGAN with entropy

regularization provides a closed-form solution to the conditional density of the latent

variable (3.19). When G∗ is injective, P∗Z|X=xtest(z) can be obtained from (3.19) by

change of variables. In general case, P∗Z|X=xtest(z) is not well defined as multiple z
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can produce the same xtest. In this case,

P∗
X̂|x=xtest(x̂) =

∑
z|G∗(z)=x

P∗Z|X=xtest(z). (3.20)

Also, from Eq. (3.19), we have

P∗
X̂|X=xtest(x̂) =

∑
z|G∗(z)=x

PZ(z) exp
(
v∗
(
xtest,G∗(z)

)
/λ
)
. (3.21)

One solution (which may not be unique) that satisfies both (3.20) and 3.21 is

P∗Z|X=xtest(z) = PZ(z) exp
(
v∗
(
xtest, G∗(z)

)
/λ
)
. (3.22)

Ideally, we would like to choose P∗Z|X=xtest(z), satisfying (3.20) and (3.21) that max-

imizes the lower bound of Corollary 2. But finding such a solution can be difficult

in general. Instead we use (3.22) to evaluate the surrogate likelihoods of Corollary 2

(note that our results still hold in this case). In order to compute our proposed sur-

rogate likelihood, we need to draw samples from the distribution P∗Z|X=xtest(z). One

approach is to use a Markov chain Monte Carlo (MCMC) method to sample from

this distribution. In our experiments, however, we found that MCMC demonstrates

poor performance owing to the high dimensional nature of X. A similar issue with

MCMC has been reported for VAEs in [35]. Thus, we use a different estimator to

compute the likelihood surrogate which provides a better exploration of the latent

space. We present our sampling procedure in Algorithm 1.
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Algorithm 1 Estimating sample likelihoods in GANs

1: Sample n points zi
i.i.d∼ U [−1, 1]

2: Compute ui := pZ(zi) exp (v∗ (xtest, G∗(zi)) /λ)
3: Normalize to get probabilities ũi = ui∑n

i=1 ui

4: Compute L = − 1
λ

[∑n
i=1 ũi`(x

test, G∗(zi)) + λ
∑N

i=1 ũi log ũi

]
−
∑n

i=1 ũi
‖zi‖2

2

5: Return L

3.4.1 Likelihood Evolution in GAN’s Training

In the following experiments, we study how sample likelihoods vary during

GAN’s training. An entropic WGAN is first trained on MNIST dataset. Then, we

randomly choose 1, 000 samples from MNIST test-set to compute the surrogate like-

lihoods using Algorithm. 1 at different training iterations. Surrogate likelihood com-

putation requires solving D1 and D2 to optimality for a given G (refer to Lemma. 1),

which might not be satisfied at the intermediate iterations of the training process.

Therefore, before computing the surrogate likelihoods, discriminators D1 and D2

are updated for 100 steps for a fixed G. We expect sample likelihoods to increase

over training iterations as the quality of the generative model improves.

Fig. 3.2(a) demonstrates the evolution of sample likelihood distributions at

different training iterations of the entropic WGAN. At iteration 1, surrogate likeli-

hood values are very low as GAN’s generated images are merely random noise. The

likelihood distribution shifts towards high values during the training and saturates

beyond a point. Details of this experiment are presented in [66].

37



(a) (b)

Figure 3.2: (a) Distributions of surrogate sample likelihoods at differ-
ent iterations of entropic WGAN’s training using MNIST dataset. (b)
Distributions of surrogate sample likelihoods of MNIST, MNIST-1 and
SVHN datasets using a GAN trained on MNIST-1.

3.4.2 Likelihood Comparison Across Different Datasets

In this section, we perform experiments across different datasets. An entropic

WGAN is first trained on a subset of samples from the MNIST dataset containing

digit 1 (which we call the MNIST-1 dataset). With this trained model, likelihood

estimates are computed for (1) samples from the entire MNIST dataset, and (2)

samples from the Street View House Numbers (SVHN) dataset [67] (Fig. 3.2(b)). In

each experiment, the likelihood estimates are computed for 1000 samples. We note

that highest likelihood estimates are obtained for samples from MNIST-1 dataset,

the same dataset on which the GAN was trained. The likelihood distribution for

the MNIST dataset is bimodal with one mode peaking inline with the MNIST-1

mode. Samples from this mode correspond to digit 1 in the MNIST dataset. The

other mode, which is the dominant one, contains the rest of the digits and has
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relatively low likelihood estimates. The SVHN dataset, on the other hand, has

much smaller likelihoods as its distribution is significantly different than that of

MNIST. Furthermore, we observe that the likelihood distribution of SVHN samples

has a large spread (variance). This is because samples of the SVHN dataset is more

diverse with varying backgrounds and styles than samples from MNIST. We note

that SVHN samples with high likelihood estimates correspond to images that are

similar to MNIST digits, while samples with low scores are different than MNIST

samples. Details of this experiment are presented in [66].

3.4.3 Approximate Likelihood Computation in Unregularized GANs

Most standard GAN architectures do not have the entropy regularization.

Likelihood lower bounds of Theorem. 1 and Corollary. 2 hold even for those GANs

as long as we obtain the optimal coupling P∗
X,X̂

in addition to the optimal generator

G∗ from GAN’s training. Computation of optimal coupling P∗
X,X̂

from the dual

formulation of OT GAN can be done when the loss function is quadratic [59].

For a general GAN architecture, however, the exact computation of optimal

coupling P∗
X,X̂

may be difficult. One sensible approximation is to couple X = xtest

with a single latent sample z̃ (we are assuming the conditional distribution P∗Z|X=xtest

is an impulse function). To compute z̃ corresponding to a xtest, we sample k latent

samples {z′i}ki=1 and select the z′i whose G∗(z′i) is closest to xtest. This heuristic

takes into account both the likelihood of the latent variable as well as the distance

between xtest and the model (similarly to Eq. (3.19)). We can then use Corollary 2
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(a) (b)

Figure 3.3: (a) Sample likelihood estimates of MNIST, Office and CI-
FAR datasets using a GAN trained on the CIFAR dataset. (b) Sample
likelihood estimates of MNIST, Office and LSUN datasets using a GAN
trained on the LSUN dataset.

to approximate sample likelihoods for various GAN architectures.

We use this approach to compute likelihood estimates for CIFAR-10 [68] and

LSUN-Bedrooms [69] datasets. For CIFAR-10, we train DCGAN while for LSUN,

we train WGAN. Fig. 3.3(a) demonstrates sample likelihood estimates of differ-

ent datasets using a GAN trained on CIFAR-10. Likelihoods assigned to samples

from MNIST and Office datasets are lower than that of the CIFAR dataset. Sam-

ples from the Office dataset, however, are assigned to higher likelihood values than

MNIST samples. We note that the Office dataset is indeed more similar to the

CIFAR dataset than MNIST. A similar experiment has been repeated for LSUN-

Bedrooms [69] dataset. We observe similar performance trends in this experiment

(Fig. 3.3(b)).
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Figure 3.4: A visualization of density functions of P∗Z|X=xtest and

pZ|X=xtest for a random two-dimensional xtest. Both distributions
are very similar to one another making the approximation gap (i.e.

KL
(
P∗Z|X=xtest||pZ|X=xtest

)
) very small. Our other experimental results

presented in Table 3.1 are consistent with this result.

3.4.4 Tightness of the Variational Bound

In Theorem 1, we have shown that the Entropic GAN objective maximizes a

lower-bound on the average sample log-likelihoods. This result has the same flavor

as variational lower bounds used in VAEs, thus providing a connection between

these two areas. One drawback of VAEs in general is the lack of tightness analysis

of the employed variational lower bounds. In this section, we aim to understand the

tightness of the entropic GAN’s variational lower bound for some generative models.
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3.4.4.1 Linear Generators

From corollary 2, we note that the entropic GAN lower bound is tight when

KL
(
PZ|X=x||pZ|X=x

)
approaches 0. Quantifying this term can be useful for assessing

the quality of the proposed likelihood surrogate function. We refer to this term as

the approximation gap.

Computing the approximation gap can be difficult in general as it requires

evaluating pZ|X=x. Here we perform an experiment for linear generative models and

a quadratic loss function (same setting of Corrolary 1). Let the real data X be

generated from the following underlying model

pX|Z=z ∼ N (Gz, λI)

where Z ∼ N (0, I)

Using the Bayes rule, we have,

pZ|X=xtest ∼ N (Rytest, I−RG)

where R = GT (GGT + λI)−1.

Since we have a closed-form expression for pZ|X , KL
(
PZ|X=x||pZ|X=x

)
can be com-

puted efficiently.

The matrix G to generate X is chosen randomly. Then, an entropic GAN

with a linear generator and non-linear discriminators are trained on this dataset.
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PZ|X=x is then computed using (3.22). Table 3.1 reports the average surrogate log-

likelihood values and the average approximation gaps computed over 100 samples

drawn from the underlying data distribution. We observe that the approximation

gap is orders of magnitudes smaller than the log-likelihood values.

Additionally, in Figure 3.4, we demonstrate the density functions of PZ|X=x

and pZ|X=x for a random x and a two-dimensional case (r = 2) . In this figure,

one can observe that both distributions are very similar to one another making the

approximation gap very small.

Architecture and hyper-parameter details: For the generator network, we used

3 linear layers without any non-linearities (2 → 128 → 128 → 2). Thus, it is an

over-parameterized linear system. The discriminator architecture (both D1 and D2)

is a 2-layer MLP with ReLU non-linearities (2 → 128 → 128 → 1). λ = 0.1 was

used in all the experiments. Both generator and discriminator were trained using the

Adam optimizer with a learning rate 10−6 and momentum 0.5. The discriminators

were trained for 10 steps per generator iteration. Batch size of 512 was used.

Table 3.1: The tightness of the entropic GAN lower bound. Approximation gaps
are orders of magnitudes smaller than the surrogate log-likelihoods. Results are
averaged over 100 samples drawn from the underlying data distribution.

Noise Approximation Surrogate
dimension gap Log-Likelihood

2 9.3× 10−4 −4.15
5 4.7× 10−2 −15.35
10 6.2× 10−2 −46.3
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3.4.4.2 Non-linear Generators

In this part, we consider the case of non-linear generators. The approximation

gap KL
(
PZ|X=x||pZ|X=x

)
cannot be computed efficiently for non-linear generators as

computing the optimal coupling PZ|X=x is intractable. Instead, we demonstrate the

tightness of the variational lower bound by comparing the exact data log-likelihood

and the estimated lower-bound. As before, a d−dimensional Gaussian data distri-

bution is used as the data distribution. The use of Gaussian distribution enables

us to compute the exact data likelihood in closed-form. A table showing exact like-

lihood and the estimated lower-bound is shown in Table 3.2. We observe that the

computed likelihood surrogate provides a good estimate to the exact data likelihood.

3.5 Conclusion

In this chapter, we have provided a statistical framework for a family of GANs.

Our main result shows that the entropic GAN optimization can be viewed as maxi-

mization of a variational lower-bound on average sample log-likelihoods, an approach

that VAEs are based upon. This result makes a connection between two most-

popular generative models, namely GANs and VAEs. More importantly, our result

Table 3.2: The tightness of the entropic GAN lower bound for non-linear generators.

Noise Exact Surrogate
dimension Log-Likelihood Log-Likelihood

5 −16.38 −17.94
10 −35.15 −43.6
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constructs an explicit probability model for GANs that can be used to compute a

lower-bound on sample likelihoods. Our experimental results on various datasets

demonstrate that this likelihood surrogate can be a good approximation of the true

likelihood function. Although in this chapter we mainly focus on understanding

the behavior of the sample likelihood surrogate in different datasets, the proposed

statistical framework of GANs can be used in various statistical inference applica-

tions. For example, our proposed likelihood surrogate can be used to quantitatively

evaluate the performance of different GAN architectures, quantify domain shifts,

select a proper generator class by balancing the bias term vs. variance, detect out-

lier samples, and can be used in statistical tests such as hypothesis testing, etc. We

leave exploring these directions for future work.
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Part II

Unsupervised Domain Adaptation
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The objective of distributionally robust learning is to train models that per-

form reliably when the test data comes from a different distribution than the training

dataset. Unsupervised domain adaptation comprises of the class of techniques to

adapt models trained on one distribution (source) to a different distribution (target),

with the goal of improving performance on the target distribution.

In general, performing well under any distributional shift is extremely chal-

lenging, and often infeasible [70]. So, the key challenge lies in imposing restrictive

assumptions on the type of distributional shifts. One popular assumption is covari-

ate shift, in which the conditional distribution of labels given inputs is assumed to

be fixed across distributions, while the marginal distributions differ. Formally, let

psrc(x, y) denote the source distribution and ptgt(x, y) denote the target distribution.

Then, under covariate shift assumption,

psrc(y|x) = ptgt(y|x)

psrc(x) 6= ptgt(x)

In this part of the dissertation, we develop algorithms for performing unsupervised

domain adaptation under the covariate shift assumption. We focus on deep adap-

tation, in which we adapt the representations learnt by deep neural networks. In

unsupervised domain adaptation, we are given access to a source dataset Dsrc =

{(xi, yi)}nsi=1 and a target dataset Dtgt = {xi}nti=1. Note that the source dataset is

labeled while the target dataset is unlabeled. The objective is to learn models using

the labeled source and unlabeled target dataset so that performance on the target
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dataset improves.

In supervised deep learning, we train a model by minimizing the cross-entropy

loss on the source dataset (Section. 2.1.1). Due to the presence of domain shift, a

model trained solely on the source data performs sub-optimally on the target [71].

The absence of ground-truth labels on the target distribution prohibits training a

model using cross-entropy loss on the target. The natural question that arises is

how to utilize the unlabeled target distribution in addition to the labeled source to

improve performance on the target. This forms the key challenge in unsupervised

domain adaptation.

In this dissertation, we develop discriminative and generative approaches for

unsupervised domain adaptation problem. The core idea is introduce loss functions

that align the feature spaces of the source and target feature distribtions. In Chapter

4, we use a Generative Adversarial Network (GAN) to perform the feature space

alignment. In Chapters 5 and 6, we develop computationally-efficient variants of

optimal transport distances that can aid the feature space alignment. The developed

algorithms are rigorously evaluated on some benchmark adaptation datasets.
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Chapter 4: Generate to Adapt: Aligning Domains using Generative

Adversarial Networks

4.1 Introduction

In this chapter, we provide an approach for learning a deep feature embed-

ding that is robust to the domain shift between source and target distributions. We

achieve this by using unsupervised data from the target distribution to guide the

supervised learning procedure that uses data from the source distribution. We pro-

pose an adversarial image generation approach to directly learn the shared feature

embedding using labeled data from source and unlabeled data from the target. It

should be noted that while there have been a few approaches that use an adver-

sarial framework for solving the domain adaptation problem [71, 72], the novelty

of the proposed approach is in using a joint generative discriminative method: the

embeddings are learned using a combination of classification loss and an image gener-

ation procedure that is modeled using a variant of Generative Adversarial Networks

(GANs) [34].

Figure 4.1 illustrates the pipeline of the proposed approach. During training,

the source images are passed through the feature extraction network (encoder) to
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Figure 4.1: Illustration of the proposed approach. In the training phase,
our pipeline consists of two parallel streams - (1) Stream 1: classification
branch where F-C networks are updated using supervised classification
loss and (2) Stream 2: adversarial branch which is a Auxiliary Classifier
GAN (ACGAN) framework (G-D pair). F-G-D networks are updated
so that both source and target embeddings produce source-like images.
Note: The auxiliary classifier in ACGAN uses only the source domain
labels, and is needed to ensure that class-consistent images are generated
(e.g) embedding of digit 3 generates an image that looks like 3. In the
test phase, we remove Stream 2, and classification is performed using
the F-C pair.
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obtain an embedding which is then used by the label prediction network (classifier)

for predicting the source label and also used by the generator to generate a realistic

source image. The realistic nature of the images from the generator (G) is controlled

by the discriminator (D). The encoder is updated based on the discriminative gra-

dients from the classifier and generative gradients from the adversarial framework.

Given unlabeled target images, the encoder is updated using only gradients from

the adversarial part, since the labels are unavailable. Thus, the encoder learns to

discriminate better even in the target domain using the knowledge imparted by the

generator-discriminator pair. By using the discriminator as a multi-class classifier,

we ensure that the gradient signals backpropagated by the discriminator for the

unlabeled target images belong to the feature space of the respective classes. By

sampling from the distribution of the generator after training, we show that the

network has indeed learned to bring the source and target distributions closer.

The main contribution of this work is to provide an adversarial image gen-

eration approach for unsupervised domain adaptation that directly learns a joint

feature space in which the distance between source and target distributions is min-

imized. Different from contemporary approaches that achieve a similar objective

by using a GAN as a data augmenter, our approach achieves superior results even

in cases where a standalone image generation process is bound to fail (such as in

the OFFICE dataset). This is done by utilizing the GAN framework to address the

domain shift directly in the feature space learnt by the encoder. Our experiments

show that the proposed approach yields superior results compared to similar ap-

proaches which update the embedding based on auto-encoders [73] or disentangling
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the domain information from the embedding by learning a separate domain classifier

[71].

4.2 Related Work

Earlier approaches to domain adaptation focused on building invariant feature

representations using feature re-weighting and selection mechanisms [74, 75], or

by learning an explicit manifold-based feature transformations that aligns source

distribution to the target [2, 76, 77]. The ability of deep neural networks to learn

powerful representations [5, 29] has been harnessed to perform unsupervised domain

adaptation in recent works [71, 72, 78, 79, 80]. The underlying idea behind such

methods is to minimize a suitable loss function that captures domain discrepancy,

in addition to the task being solved.

Deep learning methods for visual domain adaptation can be broadly grouped

into few major categories. One line of work uses Maximum Mean Discrepancy(MMD)

as a metric to measure the shift across domains. Deep Domain Confusion (DDC) [78]

jointly minimizes the classification loss and MMD loss of the last fully connected

layer. Deep Adaptation Networks (DAN) [79] extends this idea by embedding

all task specific layers in a reproducing kernel Hilbert space and minimizing the

MMD in the projected space. In addition to MMD, Residual Transfer Networks

(RTN) [80] uses a gated residual layer for classifier adaptation. Joint Adaptation

Networks [81] learn a transfer network by aligning the joint distributions of multiple

domain-specific layers across domains based on a Joint Maximum Mean Discrepancy
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(JMMD) criterion.

Another class of methods uses adversarial losses to perform domain adapta-

tion. [71] employs a domain classification network which aims to discriminate the

source and the target embeddings. The goal of the feature extraction network is

to produce embeddings that maximize the domain classifier loss, while at the same

time minimizing the label prediction loss. This is accomplished by negating the

gradients coming from the domain classification network. Adversarial Discrimina-

tive Domain Adaptation (ADDA) [72], on the other hand, learns separate feature

extraction networks for source and target domains, and trains the target CNN so

that a domain classifier cannot distinguish the embeddings produced by the source

or target CNNs.

While methods discussed above apply adversarial losses in the embedding

space, there has been a lot of interest recently to perform adaptation in the pixel

space. Such approaches primarily use generative models such as GANs to perform

cross-domain image mapping. Taigman et al. [82] and Bousmalis et al. [83] use

adversarial networks to map source images to target and perform adaptation in the

transferred space. Coupled GAN (CoGAN) [84], on the other hand, trains a coupled

generative model that learns the joint data distribution across the two domains. A

domain invariant classifier is learnt by sharing weights with the discriminator of the

CoGAN network.

Comparison to other GAN-based DA approaches: While previous ap-

proaches such as [82] and [83] use GANs as a data augmentation step, we use a

GAN to obtain rich gradient information that makes the learned embeddings do-
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main adaptive. Unlike the previous methods, our approach does not completely

rely on a successful image generation process. As a result, our method works well in

cases where image generation is hard (eg. in the OFFICE dataset where the num-

ber of samples per class is limited). We observed that in such cases, the generator

network we use performs a mere style transfer, yet this is sufficient for providing

good gradient information for successfully aligning the domains, as demonstrated

by our superior performance on the OFFICE dataset.

4.3 Approach

Let X and Y denote the input and output space. Since, we consider the

classification problem, the label space is discrete with Nc labels i.e., {1, 2, . . . nc}.

Let Dsrc = {(xi, yi)}nsi=1 and Dtgt = {xi}nti=1 denote the source and target datasets,

respectively. Here, each xi ∈ X and yi ∈ Y . The objective is to train a deep

feature network Fθf : X → Rd that maps images to an embedding space, and a

classifier Cθc : Rd → Y . In domain adaptation, we are interested in improving the

performance of the model on the unlabeled dataset Dtgt.

Several approaches including learning entropy-based metrics [80], learning a

domain classifier based on a embedding network [71] or denoising autoencoders [73]

have been used to transfer information between source and target distributions. In

this work, we propose a GAN-based approach to bridge the gap between source and

target domains. We accomplish this by using both generative and a discriminative

processes thus ensuring a rich information transfer to the learnt embedding.
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We use a variant of GANs, called conditional GANs [85] for modeling the image

distribution. Conditional GANs enable conditioning the generator and discriminator

mappings on additional data such as a class label or an embedding. They have been

shown to generate images of digits and faces corresponding to a given class label or

the embedding, respectively [82]. Training a conditional GAN involves optimizing

the following minimax objective:

min
G

max
D

Ex∼pdata [log(D(x|y)] + Ez∼pz [log(1−D(G(z|y)))]

Here, y is the conditioning variable.

Proposed Approach: In this work, we employ a variant of the conditional

GANs, called Auxiliary Classifier GAN (AC-GAN) [86] where the discriminator is

modeled as a multi-class classifier instead of providing conditioning information at

the input. We modify the AC-GAN set up for the domain adaptation problem as

follows:

(a) Given a real image x as input, the input to the generator network G is

e = [F (x), z,y], which is a concatenated version of the encoder embedding F (x), a

random noise vector z ∈ Rd sampled from N (0, 1) and a one hot encoding of the

class label y ∈ {0, 1}(nc+1). Here, nc is the number of real classes in the dataset, and

the label {nc + 1} is treated as the fake class. For all target samples, since the class

labels are unknown, y is set as the one hot encoding of the fake class {nc + 1}.

(b) We employ a classifier network C that takes as input the embedding gen-

erated by F and predicts a multiclass distribution C(F (x)) - the class probability
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distribution of the input x, which is modeled as a (nc)-way classifier.

(c) The discriminator D takes the real image x or the generated image G(xg)

as input and outputs two distributions: (1) Dgan(x): the probability of the input

being real, which is modeled as a binary classifier. (2) Dcls(x): the class probability

distribution of the input x, which is modeled as a (nc)-way classifier. We use Dcls(x)y

to denote the probability assigned by the classifier mapping Dcls for input x to class

y. It should be noted that, for target data, since class labels are unknown, only

Dgan is used to backpropagate the gradients.

Now, we describe our optimization procedure in detail. To jointly learn the

embedding and the generator-discriminator pair, we optimize the D, G, F and C

networks in an alternating manner:

1. Given source images as input, D outputs two distributions Dgan and Dcls.

Dgan is optimized by minimizing a binary cross entropy loss Lgan,src, while

Dcls is optimized by minimizing the cross entropy loss Lcls,src. In the case of

source inputs, the gradients are generated using the following loss functions:

max
D
Lgan,src + Lcls,src = E(x,y)∼Dsrc

[
log(Dgan(x)) + log(1−Dgan(G(e)))

+ log(Dcls(x)y)
]

2. Using the gradients from D, the generator G is updated using a combination

of adversarial loss and classification loss to produce realistic class consistent
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Algorithm 2 Iterative training procedure of our approach

Require: Number of training iterations = niter
1: for t in 1 : N do
2: Sample k images with labels from source dataset Dsrc: {xsi , ysi }ki=1.
3: Sample k unlabeled images from target dataset Dtgt : {xti}ki=1

4: Sample 2k random noise vectors {zsi}ki=1 and {zti}ki=1 ∼ N (0, 1).
5: Let esi = [F (xsi , z

s
i , yi)] and eti = [F (xti, z

t
i, (nc + 1))] be the concatenated

embeddings to the generator.
6: Update the discriminator using the following loss function:

max
D
Ldisc := Lgan,src + Lcls,src + Lgan,tgt

• Lgan,src = 1
k

∑k
i=1 log(Dgan(xsi )) + log(1−Dgan(G(esi )))

• Lcls,src = 1
k

∑k
i=1 log(Dcls(x

s
i )ysi

)

• Lgan,tgt = 1
k

∑k
i=1 log(1−Dgan(G(eti)))

7: Update the generator, only for source data, through the discriminator gra-
dients computed using real labels.

min
G
Lgen =

1

k

k∑
i=1

− log(Dcls(G(esi ))ysi ) + log(1−Dgan(G(esi ))) (4.1)

8: Update the feature network F using a linear combination of the adversarial
loss and classification loss, while update the classifier C only using the classifi-
cation loss.

min
F

min
C
Lf = Lcls + αLdisc,cls + β Ladv (4.2)

• Lcls = 1
k

∑k
i=1− log(C(F (xsi ))ysi )

• Ldisc,cls = 1
k

∑k
i=1− log(Dcls(G(esi ))ysi )

• Ladv = 1
k

∑k
i=1 log(1−Dgan(G(eti)))

9: end for
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source images.

min
G
Lgen = E(x,y)∼Dsrc

[
− log(Dcls(G(e))y) + log(1−Dgan(G(e)))

]
(4.3)

3. F and C are updated based on the source images and source labels in a tra-

ditional supervised manner. F is also updated using the adversarial gradients

from D so that the feature learning and image generation processes co-occur

smoothly.

min
F

min
C
Lcls = E(x,y)∼Dsrc [− log(C(F (x))y)] ,

min
F
Ldisc,cls = E(x,y)∼Dsrc

[
−α log(Dcls(G(e))y)

]

4. In the final step, the real target images are presented as input to F . The

target embeddings output by F along with the random noise vector z and the

fake label encoding y are input to G. The generated target images G(e) are

then given as input to D. As described above, D outputs two distributions

but the loss function is evaluated only for Dgan since in the unsupervised case

considered here, target labels are not provided during training. Hence, D is

updated to classify the generated target images as fake as follows:

max
D
Lgan,tgt = Ex∼Dtgt [log(1−Dgan(G(e)))]
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In order to transfer the knowledge of target distribution to the embedding, F

is updated using the gradients from Dgan that corresponds to the generated

target images being classified as real:

min
F
Ladv = Ex∼Dtgt [β log(1−Dgan(G(e)))]

The proposed iterative optimization procedure is summarized as a pseudocode

in Algorithm 2. α and β are the coefficients that trade off between the classification

loss and the source and target adversarial losses. Based on our experiments, we find

that our approach is not overly sensitive to the cost coefficients α and β. However,

the value of the parameter is dependent on the application and size of the dataset.

Such specifications are mentioned in the Sankaranarayanan et al. [87].

Use of unlabeled target data: The main strength of our approach is how

the target images are used to update the embedding. Given a batch of target images

as input, we update the embedding F by using the following binary loss term:

min
F
β log(1−Dgan(G(e))) (4.4)

where e is the concatenated input to G as described earlier and β is the

weight coefficient for the target adversarial loss. The use of target data is intended

to bring the source and target distributions closer in the feature space learned by

F . To achieve this, we update the F network to produce class consistent embed-
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dings for both source and target data. Performing this update for source data is

straightforward since the source labels are available during training. Since labels

are unavailable for target data, we use the generative ability of the G-D pair for

obtaining the required gradients.

Given source inputs, G is updated to fool D using gradients from Eq. (4.3)

which provide the conditioning required for G to produce class consistent fake im-

ages. Given target inputs, the update in Eq. (4.4) encourages F to produce target

embeddings that are aligned with the source distribution. As training progresses, the

class conditioning information learned byG during the source update (Eq. (4.3)) was

found to be sufficient for it to produce class consistent images for target embeddings

as well. This symbiotic relationship between the embedding and the adversarial

framework contributes to the success of the proposed approach.

4.4 Experiments and Results

In this section, we perform a thorough experimental study by conducting ex-

periments across three domain adaptation settings: (1) low domain shift and simple

data distribution: DIGITS dataset, (2) moderate domain shift and complex data

distribution: OFFICE dataset, (3) high domain shift and complex data distribution:

Synthetic to real adaptation. By complex data distribution, we denote datasets con-

taining images with high variability and limited number of samples. Our methods

performs well in all three regimes, thus demonstrating the versatility of our ap-

proach.

0Code available at: https://goo.gl/zUVeqC
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4.4.1 Digit Experiments

The first set of experiments involve digit classification in three standard DIG-

ITS datasets: MNIST [88], USPS [89] and SVHN [90]. Each dataset contains digits

belonging to 10 classes (0-9). MNIST and USPS are large datasets of handwritten

Table 4.1: Accuracy (mean ± std%) values for cross-domain recognition tasks over
five independent runs on the digits based datasets. The best numbers are indicated
in bold and the second best are underlined. − denotes unreported results. MN:
MNIST, US: USPS, SV: SVHN. MN→US (p) denotes the MN→US experiment run
using the protocol established in [1], while MN→US (f) denotes the experiment run
using the entire datasets. (Refer to Digits experiments section for more details)

Method MN → US (p) MN → US (f) US → MN SV → MN

Source only 75.2 ± 1.6 79.1 ± 0.9 57.1 ± 1.7 60.3 ± 1.5
RevGrad [71] 77.1 ± 1.8 - 73.0 ± 2.0 73.9
DRCN [73] 91.8 ± 0.09 - 73.7 ± 0.04 82.0 ± 0.16
CoGAN [84] 91.2 ± 0.8 - 89.1 ± 0.8 -
ADDA [72] 89.4 ± 0.2 - 90.1 ± 0.8 76.0 ± 1.8
PixelDA [83] - 95.9 - -
Ours 92.8 ± 0.9 95.3 ± 0.7 90.8 ± 1.3 92.4 ± 0.9

Table 4.2: Accuracy (mean ± std%) values on the OFFICE dataset for the standard
protocol for unsupervised domain adaptation [2]. Results are reported as an average
over 5 independent runs. The best numbers are indicated in bold and the second
best are underlined. − denotes unreported results. We use Resnet-50 model in our
experiments. A: Amazon, W: Webcam, D: DSLR

Method A → W D → W W → D A → D D → A W → A Average

Source only [5] 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
TCA [77] 72.7 ± 0.0 96.7 ± 0.0 99.6 ± 0.0 74.1 ± 0.0 61.7 ± 0.0 60.9 ± 0.0 77.6
GFK [2] 72.8 ± 0.0 95.0 ± 0.0 98.2 ± 0.0 74.5 ± 0.0 63.4 ± 0.0 61.0 ± 0.0 77.5
DDC [78] 75.6 ± 0.2 76.0± 0.2 98.2 ± 0.1 76.5 ± 0.3 62.2 ± 0.4 61.5 ± 0.5 78.3
DAN [79] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4
RTN [80] 84.5 ± 0.2 96.8 ± 0.1 99.4 ± 0.1 77.5 ± 0.3 66.2 ± 0.2 64.8 ± 0.3 81.6
RevGrad [71] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.4 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
JAN [81] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3
Ours 89.5 ± 0.5 97.9 ± 0.3 99.8 ± 0.4 87.7 ± 0.5 72.8 ± 0.3 71.4 ± 0.4 86.5
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digits captured under constrained conditions. SVHN dataset, on the other hand was

obtained by cropping house numbers in Google Street View images and hence cap-

tures much more diversity. We test the three common domain adaptation settings:

SVHN → MNIST, MNIST → USPS and USPS → MNIST. In each setting, we use

the label information only from the source domain, thus following the unsupervised

protocol.

For all digit experiments, following other recent works [71][72], we use a

modified version of Lenet architecture as our F network. For G and D networks,

we use architectures similar to those used in DCGAN [91].

(a) MNIST ↔ USPS

We start with the easy case of adaptation involving MNIST and USPS. The

MNIST dataset is split into 60000 training and 10000 test images, while the USPS

dataset contains 7291 training and 2007 test images. We run our experiments in two

settings: (1) using the entire training set of MNIST and USPS (MNIST↔USPS (f)),

and (2) using the protocol established in [1], sampling 2000 images from MNIST

and 1800 images from USPS (MNIST ↔USPS (p)). Table. 4.1 presents the re-

sults of the proposed approach in comparison with other contemporary approaches.

The reported numbers are averaged over 5 independent runs with different random

samplings or initializations. We can observe that our approach achieves the best

performance in all cases except in the MNIST→ USPS full protocol case where our

accuracy is very close to the best performing method.
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(b) SVHN → MNIST

Compared to the previous experiment, SVHN → MNIST presents a harder

case of domain adaptation owing to larger domain gap. Following other works [71]

[72], we use the entire training set (labeled 73257 SVHN images and unlabeled 60000

MNIST images) to train our model, and evaluate on the training set of the target

domain (MNIST dataset). From Table. 4.2, we observe that our method significantly

improves the performance of the source-only model from 60.3% to 92.4%, which

results in a performance gain of 32.1%. We also outperform other methods by a

large margin, obtaining at least 10.4% performance improvement. A visualization

of this improvement in performance is done in figure 4.2, where we show a t-SNE

plot of the features of the embedding network F for the adapted and non-adapted

cases.

4.4.2 OFFICE experiments

The next set of experiments involve the OFFICE dataset, which is a small scale

dataset containing images belonging to 31 classes from three domains - Amazon, We-

bcam and DSLR, each containing 2817, 795 and 498 images respectively. The small

dataset size poses a challenge to our approach since we rely on GAN which demands

more data for better image generation. Nevertheless, we perform experiments on

the OFFICE dataset to demonstrate that though our method does not succeed in

generating very realistic images, the approach still results in improved performance

by using the generative process to obtain domain invariant feature representations.
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(a) Non adapted (b) Adapted

Figure 4.2: TSNE visualization of SVHN → MNIST adaptation. In (a),
the source data shown in red is classified well into distinct clusters but
the target data is clustered poorly. On applying the proposed approach,
as shown in (b), both the source and target distributions are brought
closer in a class consistent manner.

Training deep networks with randomly initialized weights on small datasets

give poor performance. So, an effective technique used in practice is to fine-tune

networks trained on a related task having large data [92]. Following this rationale,

we initialized the F network using a pre-trained ResNet-50 [5] model trained on

Imagenet. For D and G networks, we used architectures similar to the ones used

in the Digits experiments. It should be noted that even though the inputs are

224×224, the G network is made to generate a downsampled version of size 64×64.

Standard data augmentation steps involving mean normalization, random cropping

and mirroring were performed.

In all our experiments, we follow the standard unsupervised protocol - using

the entire labeled data in the source domain and unlabeled data in the target domain.

Table 4.2 reports the performance of our method in comparison to other methods.
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We observe that our method obtains the state-of-the-art performance in all the

settings. In particular, we get good performance improvement consistently in all

hard transfer cases: A→ W , A→ D, W → A and D → A.

4.4.3 Synthetic to Real experiments

To test the effectiveness of the proposed approach further, we perform experi-

ments in the hardest case of domain adaptation involving adaptation from synthetic

to real datasets. This setting is particularly interesting because of its enormous

practical implications. In this experiment, we use CAD synthetic dataset [93] and

a subset of PASCAL VOC dataset [94] as our source and target sets respectively.

The CAD synthetic dataset contains multiple renderings of 3D CAD models of the

20 object categories contained in the PASCAL dataset. To create the datasets, we

follow the protocol described in [95]: The CAD dataset contains six subsets with

different configurations (i.e. RR-RR, W-RR, W-UG, RR-UG, RG-UG, RG-RR). Of

these, we use images with white background (W-UG subset) as our training set. To

generate the target set, we crop 14976 patches from 4952 images of the PASCAL

VOC 2007 test set using the object bounding boxes provided. The lack of realistic

background and texture in the CAD synthetic dataset increases the disparity from

the natural image manifold, thus making domain adaptation extremely challenging.

Due to the high domain gap, we observed that models trained on the CAD

synthetic dataset with randomly initialized weights performed very poorly on the

target dataset. So, similar to the previous set of experiments, we initialized the F
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Table 4.3: Accuracy (mean ± std%) values over five independent runs on the Syn-
thetic to real setting. The best numbers are indicated in bold.

Method CAD → PASCAL

VGGNet - Source only 38.1 ± 0.4
RevGrad [71] 48.3 ± 0.7
RTN [80] 43.2 ± 0.5
JAN [81] 46.4 ± 0.8
Ours 50.4 ± 0.6

network with pretrained models. In particular, we removed the last fully connected

layer from the VGG16 model trained on Imagenet and used it as our F network.

Note that the same F network is used to train all other methods for fair comparison.

Table. 4.3 reports the results of the experiments we ran on the synthetic to real

setting. We can observe that our method improves the baseline performance from

38.1% to 50.4% in addition to outperforming all other compared methods.

4.4.4 VISDA challenge

In this section, we present the results on VISDA dataset [95] - a large scale

testbed for unsupervised domain adaptation algorithms. The task is to train clas-

sification models on synthetic dataset generated from the renderings of 3D CAD

models and adapt these models to real images which are drawn from Microsoft

COCO [96](validation set) and Youtube Bounding Box dataset [97](test set). We

train our models using the same hyper-parameter settings and data augmentation

scheme as the previous experiment. Table. 4.4 presents the results on the VISDA

classification challenge. We find that our method achieves significant performance

gains compared to the baseline model.
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Table 4.4: Performance (accuracy) of our approach on VISDA classification dataset.

Model
Visda-C: Val

Source-only Adapted Gain

Resnet-18 35.3 63.1 78.7%
Resnet-50 40.2 69.5 72.8%
Resnet-152 44.5 77.1 73.2%

Visda-C: Test

Resnet-152 40.9 72.3 76.7%

4.4.5 Ablation Study

4.4.5.1 Loss Function Analysis

In this experiment, we study the effect of each individual component in out

method to the overall performance. The embedding network F is updated using a

combination of losses from two streams (1) supervised classification stream and (2)

adversarial stream, as shown in Figure 4.1. The adversarial stream consists of the G-

D pair, with D containing two components - real/fake classifier which we denote as

C1, and auxiliary classifier which we denote as C2. We report the performance on the

following three settings: (1) using only the Stream 1 and only using source data to

train - this corresponds to the Source-only setting (2) Using stream 1 + C1 classifier

from stream 2 - this corresponds to the case where source and target embeddings

are forced to produce source-like images, but class information is not provided to

the discriminator and (3) Using stream 1 + stream2 (C1 + C2) - this is our entire

system. For settings (2) and (3) we utilized labeled source data and unlabeled target
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Table 4.5: Ablation study for OFFICE A→W setting.

Setting Accuracy(in %)

Stream 1 - Source only 68.4
Stream 1 + Stream 2 (C1 only) 80.5
Stream 1 + Stream 2 (C1 + C2) 89.5

data during training. Table 4.5 presents the results of this experiment.

We observe that using only the real/fake classifier C1 in the discriminator

does improve performance, but the auxiliary classifier C2 is needed to get the full

performance benefit. This can be attributed to the mode collapse problem in tradi-

tional GANs (we observed that training without C2 resulted in missing modes and

mismatched mappings where embeddings get mapped to images of wrong classes),

hence resulting in sub-optimal performance. Use of an auxiliary classifier objective

in D stabilizes the GAN training as observed in [86] and significantly improves the

performance of our approach.

4.4.5.2 Noise Analysis

The input to the generator network G is e = [F (x), z,y], a concatenated

version of the feature embedding, noise vector z ∈ Rd sampled from N (0, 1) and y,

the one-hot encoding of the class label. In this section, we perform a study of how

the dimensionality of the noise vector z affects the transfer accuracy. In figure 4.3,

the transfer accuracy for the task SVHN→MNIST is plotted against the number of

training epochs. The dimensionality d is varied over the set: {32, 64, 128, 256, 512}.

The following observations can be made: (1) The approach is not overly sensitive
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Figure 4.3: Effect of the noise dimension on classification accuracy for
the transfer task SVHN → MNIST.

to d since all values of d obtain an average performance of 90.5% or more. (2) The

values of dimensionality that is too low (32) or too high (512) result in slightly

suboptimal performance.

4.4.5.3 Generation visualization

In Fig. 4.4, we show some sample images generated by the G network in two

experimental settings - SV HN → MNIST and Office A → W . The top set of

images show the generations when the input to the system are the samples taken

from the source dataset, while the bottom set are the generations when inputs are

the images from the target dataset. We make the following observations: (1) The

quality of image generation is better in the digits experiments compared to the Office

experiments (2) The generator is able to produce source-like images for both the

source and target inputs in a class-consistent manner (3) There is mode collapse in
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Figure 4.4: Example of images sampled from G after training. In each
set, the images on the left indicate the source images and the images on
the right indicate the generated images.

the generations produced in the Office experiments.

The difficulty of GANs in generating realistic images in the Office and synthetic

to real datasets makes it significantly hard for the methods that use cross-domain

image generation as a data augmentation step. Since we rely on the image generation

as a mode for deriving rich gradients to the feature extraction network, our method

works well even in the presence of severe mode collapse and poor generation quality.

4.4.6 Network Architectures and Hyperparameters

This section describes the details of the network architectures used in our

experiments. A detailed description of all the architectures can be found in Fig. 4.5
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DigF1
DigF2

DigC1 DigC2

DigG DigD

OsG OsD

OfC SynC

OfF SynF

Figure 4.5: Network Architectures. Legend: BN - Batch Normalization,
ConvT - Transposed convolution layer.
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Digits experiments: For SV HN →MNIST experiment, we usedDigF1, DigC1,

DigG and DigD architectures mentioned in Fig. 4.5 as our F , C, G and D net-

works respectively. For all other digit experiments, we use DigF2, DigC2, DigG

and DigD. All models were trained from scratch and were initialized using random

Gaussian noise with standard deviation 0.01. We used Adam solver with base learn-

ing rate of 0.0005 and momentum 0.8 to train our models. The cost coefficients α

and β are set as 0.1 and 0.03 respectively based on validation splits. We resize all

input images to 32× 32 and scale their values to the range [0, 1].

OFFICE experiments: For OFFICE experiments, we used OfcC, OsG and

OsD architectures mentioned in Fig. 4.5 as our C, G and D networks respectively.

The F network is initialized with pretrained Resnet50 model trained on ImageNet,

the last layer of which is removed and the resulting 2048 dimensional vector is used

as the feature embedding. We use Adam solver for optimization with a base learning

rate of 0.0004 and momentum 0.7 for all the experiments. The dimension of the

random noise vector is set as 128 and the cost coefficient α and β are both set as

0.01.

Synthetic to Real experiments: Similar to OFFICE experiments, we used

SynC, OsG and OsD architectures mentioned in Fig. 4.5 as our C, G and D

networks respectively. We remove the last layer of the pretrained VGG16 model

trained on Imagenet, and initialize it as our F network. The resulting 4096 dimen-

sional vector is used as the feature embedding. For all the experiments, we used the
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same hyperparameter settings as those used in the Office experiments.

4.5 Conclusion and Future Work

In this chapter, we addressed the problem of unsupervised visual domain

adaptation using a joint adversarial-discriminative approach that transfers the in-

formation of the target distribution to the learned embedding using a generator-

discriminator pair. We demonstrated the superiority of our approach over existing

methods that address this problem using experiments on three different tasks, thus

making our approach more generally applicable and versatile. Some avenues for

future work include using stronger encoder architectures and applications of our

approach to more challenging domain adaptation problems such as RGB-D object

recognition and medical imaging.
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Chapter 5: Robust Optimal Transport

5.1 Introduction

Estimating distances between probability distributions lies at the heart of sev-

eral problems in machine learning and statistics. A class of distance measures that

has gained immense popularity in several machine learning applications is Optimal

Transport (OT) [49]. In OT, the distance between two probability distributions is

computed as the minimum cost of transporting a source distribution to the target

distribution under some transportation cost function. Optimal transport enjoys sev-

eral nice properties including structure preservation, existence in smooth and non-

smooth settings, being well defined for discrete and continuous distributions [49],

etc.

As seen in Chapter 4, one of the fundamental issues in domain adaptation is

the existence of feature space drift between source and target representations. Op-

timal transport can be used for minimizing this feature-space drift. In Wasserstein

distance based domain adaptation, Wasserstein distance between source and target

feature distributions are minimized while training a classifier on source domain us-

ing cross-entropy loss [98]. Similar ideas involving distance minimizaton between

real and generated image distributions can also be used for training a GAN [36].
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(a) Clean dataset

W
dist 

= 11.40

Wasserstein

(b) Dataset with outliers

W
robust 

= 2.95

Robust Wasserstein 

(c) Dataset with outliers

Figure 5.1: Visualizing couplings of Wasserstein distance computation
between two distributions shown in red and blue. In (a), we show the
couplings when no outliers are present. In (b), we show the couplings
when 5% outliers are added to the data. The Wasserstein distance in-
creases significantly indicating high sensitivity to outliers. In (c), we
show the couplings produced by the Robust Wasserstein measure. Our
formulation effectively ignores the outliers yielding a Wasserstein esti-
mate that closely approximates the true Wasserstein distance.

One of the fundamental shortcomings of optimal transport is its sensitivity

to outlier samples. By outliers, we mean samples with large noise. In OT opti-

mization, to satisfy the marginal constraints between the two input distributions,

every sample is weighed equally in the feasible transportation plans. Hence, even a

few outlier samples can contribute significantly to the OT objective. This leads to

poor estimation of distributional distances when outliers are present. An example is

shown in Fig. 5.1, where the distances between distributions shown in red and blue

are computed. In the absence of outliers (Fig. 5.1(a)), proper couplings (shown in

green) are obtained. However, even in the presence of a very small fraction of out-

liers (as small as 5%), poor couplings arise leading to a large change in the distance

estimate (Fig. 5.1(b)).

The sensitivity of optimal transport to outliers is undesirable, especially when
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we deal with large-scale datasets where the noise is inevitable. For instance, the

existence of noisy samples in source and target feature distributions can deteriorate

the performance of domain adaptation systems. This sensitivity is a consequence of

exactly satisfying the marginal constraints in OT’s objective. Hence, to boost OT’s

robustness against outliers, we propose to utilize recent formulations of unbalanced

optimal transport [99, 100] which relax OT’s marginal constraints. The authors of

[99, 100] provide an exact dual form for the unbalanced OT problem. However,

we found that using this dual optimization in large-scale deep learning applications

such as GANs results in poor convergence and an unstable behaviour (see [101] for

details).

To remedy this issue, in this chapter, we derive a computationally efficient

dual form for the unbalanced OT optimization that is suited for practical deep

learning applications. Our dual simplifies to a weighted OT objective, with low

weights assigned to outlier samples. These instance weights can also be useful in

interpreting the difficulty of input samples for learning a given task. We develop two

solvers for this dual problem based on either a discrete formulation or a continuous

stochastic relaxation. These solvers demonstrate high stability in large-scale deep

learning applications.

We show that, under mild assumptions, our robust OT measure (which is sim-

ilar in form to the unbalanced OT) is upper bounded by a constant factor of the true

OT distance (OT ignoring outliers) for any outlier distribution. Hence, our robust

OT can be used for effectively handling outliers. This is visualized in Figure 5.1(c),

where couplings obtained by robust OT effectively ignores outlier samples, yielding a
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good estimate of the true OT distance. We demonstrate the effectiveness of the pro-

posed robust OT formulation in two large-scale deep learning applications of domain

adaptation and generative modeling. In domain adaptation, we utilize the robust

OT framework for the challenging task of synthetic to real adaptation, where our

approach improves adversarial adaptation techniques by ∼ 5%. In generative mod-

eling, we show how robust Wasserstein GANs can be trained using state-of-the-art

GAN architectures to effectively ignore outliers in the generative distrubution.

5.2 Related Work

The use of optimal transport has gained popularity in machine learning [36,

98, 102], computer vision [103, 104] and many other disciplines. Several relaxations

of the OT problem have been proposed in the literature. Two popular ones include

entropy regularization [51, 105] and marginal relaxation [99, 100, 106, 107, 108].

In this work, we utilize the marginal relaxations of [99, 100] for handling outlier

noise in machine learning applications involving OT. To the best of our knowledge,

ours is the first work to demonstrate the utility of unbalanced OT in large-scale

deep learning applications. Only other work that is similar in spirit to ours is [109].

However, [109] provides a relaxation for the Monge unbalanced OT, which is different

from the unbalanced Kantrovich problem we consider in this chapter.
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5.3 Robust Optimal Transport

Our objective is to handle outliers in deep learning applications involving OT.

For this, we use relaxed OT formulations. In this section, we first formally define the

outlier model we use. Then, we discuss the existing marginal relaxation formulations

in OT and the issues that arise in deep learning when using these formulations. We

then propose a reformulation of the dual that is suited for deep learning.

Outlier Model: We consider outliers as samples with large noise. More specifi-

cally, let pX and pY be two distributions whose Wasserstein distance we desire to

compute. Let pX = αpcX + (1 − α)paX ; i.e., the clean distribution pcX is corrupted

with (1 − α) fraction of noise paX . Then, paX is considered an oulier distribution if

W(pcX , pY )�W(paX , pY ). For an example, refer to Fig. 5.1(b).

5.3.1 Unbalanced Optimal Transport

As seen in Fig. 5.1, sensitivity to outliers arises due to the marginal constraints

in OT. If the marginal constraints are relaxed in a way that the transportation plan

does not assign large weights to outliers, they can effectively be ignored. [99, 100]

have proposed one such relaxation using f -divergence on marginal distributions.

This formulation, called Unbalanced Optimal Transport, can be written as

Wub(pX , pY ) = min
π∈Π(pX̃ ,pỸ )

∫
c(x, y)π(x, y)dxdy +Df (pX̃ ||pX) +Df (pỸ ||pY ) (5.1)

78



whereDf is the f -divergence between distributions, defined asDf (P ||Q) =
∫
f(dP

dQ
)dQ.

Furthermore, [100] derived a dual form for the problem. Let f be a convex lower

semi-continuous function. Define r∗(x) := sups>0
x−f(s)

s
where f ′∞ := lims→∞

f(s)
s

.

Then,

Wub(pX , pY ) = max
φ,ψ

∫
φ(x)dpX +

∫
ψ(y)dpY (5.2)

s.t. r∗(φ(x)) + r∗(ψ(y)) ≤ c(x, y)

Computational issues using this dual form in deep learning: Training neu-

ral networks using this dual form is challenging as it involves maximizing over two

discriminator functions (φ and ψ), with constraints connecting these functions. For

χ2 divergence, we derived the GAN objective using this dual and trained a model.

However, we were unsuccessful in making the model converge using standard SGD

as it showed severe instability. Please refer to Balaji et al. [101] for more details.

This limits the utility of this formulation in deep learning applications. In what

follows, we present a reformulation of the dual that is scalable and suited for deep

learning applications.
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5.3.2 Our Duality

We start with a slightly different form than (5.1) where we keep the f -divergence

relaxations of marginal distributions as constraints:

Wrob
ρ1,ρ2

(pX , pY ) := min
pX̃ ,pỸ ∈Prob(X )

min
π∈Π(pX̃ ,pỸ )

∫ ∫
c(x, y)π(x, y)dxdy (5.3)

s.t. Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2.

In this formulation, we optimize over the couplings whose marginal constraints are

the relaxed distributions pX̃ and pỸ . To prevent over-relaxation of the marginals,

we impose a constraint that the f -divergence between the relaxed and the true

marginals are bounded by constants ρ1 and ρ2 for distributions pX̃ and pỸ , re-

spectively. As seen in Fig. 5.1(c), this relaxation effectively ignores the outlier

distributions when (ρ1, ρ2) are chosen appropriately.

Note that the Lagrangian relaxation of optimization (5.3) takes a similar form

to that of the unbalanced OT objective (5.1). Having a hard constraint on f -

divergence gives us an explicit control over the extent of the marginal relaxation

which is suited for handling outliers. This subtle difference in how the constraints

are imposed leads to a dual form of our robust OT that can be computed efficiently

for deep learning applications compared to that of the unbalanced OT dual.

We consider the `2 distance as our choice of cost function in the OT formula-

tion. In this case, the OT distance is also called the Wasserstein distance. In that

case, we have the following result:
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Theorem 2. Let pX and pY be two distributions defined on a metric space. The

robust Wasserstein measure admits the following dual form

Wrob
ρ1,ρ2

(pX , pY ) = min
pX̃ ,pỸ

max
D(.)∈Lip−1

∫
D(x)dpX̃ −

∫
D(x)dpỸ (5.4)

s.t Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2.

Proof. We begin with the primal form of the robust optimal transport defined as

Wrob
ρ1,ρ2

(pX , pY ) = min
pX̃ ,pỸ ∈Prob(X )

min
π

∫ ∫
c(x, y)π(x, y)dxdy

s.t. Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2∫
π(x, y)dy = pX̃ ,

∫
π(x, y)dx = pỸ

The constraint pX̃ , pỸ ∈ Prob(X ) states that pX̃ and pỸ are valid probability dis-

tributions. For brevity, we shall ignore explicitly stating it in the rest of the proof.
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Now, we write the Lagrangian function with respect to marginal constraints.

L = min
pX̃ ,pỸ

min
π>0

max
φ(x),ψ(y)

∫ ∫
c(x, y)π(x, y)dxdy +

∫
φ(x)

(∫
pX̃ − π(x, y)dy

)
dx

+

∫
ψ(y)

(∫
π(x, y)dx− pỸ

)
dy

s.t. Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2

= min
pX̃ ,pỸ

min
π>0

max
φ(x),ψ(y)

∫ ∫
[c(x, y)− φ(x) + ψ(y)] π(x, y)dxdy

+

∫
φ(x)dpX̃ −

∫
ψ(y)dpỸ

s.t. Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2

Since π > 0, we observe that

c(x, y)− φ(x) + ψ(y) =


∞ if c(x, y)− φ(x) + ψ(y) > 0

0 otherwise

Hence, the dual formulation becomes

Wrob
ρ1,ρ2

(pX , pY ) = min
pX̃ ,pỸ

max
φ(x),ψ(y)

∫
φ(x)dpX̃ −

∫
ψ(y)dpỸ (5.5)

s.t. φ(x)− ψ(y) ≤ c(x, y)

Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2

Furthermore, when the distributions lie in a metric space, we can further simplify
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this duality. Define

k(x) := inf
y
c(x, y) + ψ(y) (5.6)

Since the feasible set in the dual problem satisfies φ(x)−ψ(y) ≤ c(x, y), φ(x) ≤ k(x),

and by using y = x in Eq (5.6), we obtain, k(x) ≤ ψ(x). Hence, φ(x) ≤ k(x) ≤ ψ(x).

|k(x)− k(x′)| = | inf
y

[c(x, y) + ψ(y)]− inf
y

[c(x′, y) + ψ(y)]|

≤ |c(x, y)− c(x′, y)|

Hence, k(.) is 1-Lipschitz. Using the above inequalities in (5.5), we obtain,

Wrob
ρ1,ρ2

(pX , pY ) ≤ min
pX̃ ,pỸ

max
k∈Lip−1

∫
k(x)dpX̃ −

∫
k(x)dpỸ

s.t. Df (pX̃ ||pX) ≤ ρ1, Df (pỸ ||pY ) ≤ ρ2

Also, φ(x) = k(x) and ψ(x) = k(x) is a feasible solution in optimization (5.5). Since

(5.5) maximizes over φ(.) and ψ(.), we obtain

Wrob
ρ1,ρ2

(pX , pY ) ≥ min
pX̃ ,pỸ

max
k∈Lip−1

∫
k(x)dpX̃ −

∫
k(x)dpỸ

s.t Df (pX , pX̃) ≤ ρ1, Df (pY , pỸ ) ≤ ρ2
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Combining these two inequalities, we obtain

Wrob
ρ1,ρ2

(pX , pY ) = min
pX̃ ,pỸ

max
k∈Lip−1

∫
k(x)dpX̃ −

∫
k(x)dpỸ (5.7)

s.t Df (pX , pX̃) ≤ ρ1, Df (pY , pỸ ) ≤ ρ2

The above equation is similar in spirit to the Kantrovich-Rubinstein duality. An

important observation to note is that the above optimization only maximizes over

a single discriminator function (as opposed to two functions in optimization (5.5)).

Hence, it is easier to train it in large-scale deep learning problems such as GANs.

Thus, we can obtain a dual form for robust OT similar to the Kantrovich-

Rubinstein duality. The key difference of this dual form compared to the unbalanced

OT dual (opt. (5.2)) is that we optimize over a single dual function D(·) as opposed

to two dual functions in (5.2). This makes our formulation suited for deep learning

applications such as GANs and domain adaptation. Note that the integrals in

opt. (5.4) are taken with respect to the relaxed distributions pX̃ and pỸ which is a

non-trivial computation.

In particular, we present two approaches for optimizing the dual problem (5.4):

Discrete Formulation. In practice, we observe empirical distributions PX and PY

from the population distributions pX and pY . Let {xi}mi=1, {yi}ni=1 be the samples

corresponding to the empirical distribution PX and PY , respectively. Following

[110], we use weighted empirical distribution for the perturbed distribution PX̃ , i.e.,
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PX(xi) = 1/m and PX̃(xi) = wxi .

Let wx = [wx1 , . . . w
x
m]. For PX̃ to be a valid pmf, wx should lie in a simplex

(wx ∈ ∆m) i.e., wxi > 0 and
∑

iw
x
i = 1. Then, the robust Wasserstein objective can

be written as

Wrob
ρ1,ρ2

(PX ,PY ) = min
wx∈∆m,wy∈∆n

max
D∈Lip−1

(wx)
tdx − (wy)

tdy

s.t
1

m

∑
i

f(mwxi ) ≤ ρ1,
1

n

∑
i

f(nwyi ) ≤ ρ2

where dx = [D(x1), D(x2) . . . D(xm)], and dy = [D(y1), D(y2) . . . D(yn)]. Since f(.)

is a convex function, the set of constraints involving wx and wy are convex w.r.t

weights. We use χ2 as our choice of f -divergence for which f(t) = (t − 1)2/2. The

optimization then becomes

Wrob
ρ1,ρ2

(PX ,PY ) = min
wx∈∆m,wy∈∆n

max
D∈Lip−1

(wx)
tdx − (wy)

tdy (5.8)

s.t

∥∥∥∥wx −
1

m

∥∥∥∥
2

≤
√

2ρ1

m
,

∥∥∥∥wy −
1

n

∥∥∥∥
2

≤
√

2ρ2

n

We solve this optimization using an alternating gradient descent between w and D

updates. The above optimization is a second-order cone program with respect to

weights w (for a fixed D). For a fixed w, D is optimized using stochastic gradient

descent similar to [36].

Continuous Stochastic Relaxation. In (5.8), weight vectors wx and wy are

optimized by solving a second order cone program. Since the dimension of weight
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vectors is the size of the entire dataset, solving this optimization is expensive for

large datasets. Hence, we propose a continuous stochastic relaxation for (5.4). Let

us assume that supports of pX̃ and pX match (satisfied in real spaces). We make the

following reparameterization: pX̃(x) = Wx(x)pX(x). For pX̃ to be a valid pdf, we

require
∫
Wx(x)dpX = 1, i.e., Ex∼pX [Wx(x)] = 1. The constraint on f -divergence

becomes Ex∼pX [f(Wx(x))] ≤ ρ1. Using these, the dual of robust Wasserstein mea-

sure can be written as

Wrob
ρ1,ρ2

(pX , pY ) = min
Wx,Wy

max
D∈Lip−1

Ex∼pX [Wx(x)D(x)]− Ey∼pY [Wy(y)D(y)] (5.9)

s.t Ex∼pX [f(Wx(x))] ≤ ρ1, Ey∼pY [f(Wy(y))] ≤ ρ2

Ex∼pX [Wx(x)] = 1, Ey∼pY [Wy(y)] = 1,Wx(x) ≥ 0,Wy(y) ≥ 0

Wx(.) and Wy(.) are weight functions which can be implemented using neural net-

works. One crucial benefit of the above formulation is that it can be easily trained

using stochastic GD.

5.3.3 Can robust OT handle outliers?

Theorem 3. Let PX and PY be two empirical distributions such that PX is corrupted

with γ fraction of outliers i.e., PX = (1 − γ)PcX + γPaX , where PcX is the clean

distribution and PaX is the outlier distribution. Let W(PaX ,PcX) = kW(PcX ,PY ), with

86



k ≥ 1. Then,

Wrob
ρ,0 (PX ,PY ) ≤ max

(
1, 1 + kγ − k

√
2ργ(1− γ)

)
W(PcX ,PY ).

Proof. Let {xai }nai=1 be the samples in the anomaly distribution PaX , {xci}nci=1 be the

samples in the clean distribution PcX , and {yi}mi=1 be the samples in the distribution

PY . We also know that na
na+nc

= γ.

Wrob
ρ,0 (PX ,PY ) is defined as

Wrob
ρ,0 (PX ,PY ) = min

PX̃∈Prob(X )
min
π

∑
i

∑
j

πijcij

s.t.
∑
j

πij = PX̃ ,
∑
i

πij = PY , Dχ2(PX̃ ||PX) ≤ ρ

Let πc∗ and πa∗ be the optimal transport plans for W(PcX ,PY ) and W(PaX ,PY )

respectively. We consider transport plans of the form βπa∗+(1−β)πc∗, for β ∈ [0, 1].

The marginal constraints can then be written as

∫
βπa∗ + (1− β)πc∗dx = βPaX + (1− β)PcX∫
βπa∗ + (1− β)πc∗dy = PY

For this to be a feasible solution for Wrob
ρ,0 (PX ,PY ), we require

Dχ2(βPaX + (1− β)PcX ||γPaX + (1− γ)PcX) ≤ ρ
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The distribution βPaX + (1− β)PcX can be characterized as

[
β

na
, . . .︸ ︷︷ ︸

na terms

,
1− β
nc

, . . .︸ ︷︷ ︸
nc terms

].

Using this, the above constraint can be written as

(β − γ)2 ≤ 2ργ(1− γ) (5.10)

Hence, all transport plans of the form βπa∗ + (1 − β)πc∗ are feasible solutions of

Wrob
ρ,0 (PX ,PY ) if β satisfies (β − γ)2 ≤ 2ργ(1− γ). Therefore, we have:

Wrob
ρ,0 (PX ,PY ) ≤min

β

∑
i

∑
j

ci,j[βπ
a∗
i,j + (1− β)πc∗i,j]

≤min
β
βW(PaX ,PY ) + (1− β)W(PcX ,PY )

s.t. (β − γ)2 ≤ 2ργ(1− γ)

By the assumption, we have:

W(PcX ,PaX) = kW(PcX ,PY )

W(PaX ,PY ) ≤ W(PaX ,PcX) +W(PcX ,PY )

≤ (k + 1)W(PcX ,PY )
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Hence,

Wrob
ρ,0 (PX ,PY ) ≤min

β
(1 + βk)W(PcX ,PY )

s.t. (β − γ)2 ≤ 2ργ(1− γ)

The smallest value β can take is γ −
√

2ργ(1− γ). This gives

Wrob
ρ,0 (PX ,PY ) ≤ max

(
1, 1 + kγ − k

√
2ργ(1− γ)

)
W(PcX ,PY )

Note: The transport plan βπa∗ + (1 − β)πc∗ is not the the optimal transport

plan for the robust OT optimization between corrupted distribution PX and PY .

However, this plan is a “feasible” solution that satisfies the constraints of the robust

OT. Hence, the cost obtained by this plan is an upper bound to the true robust OT

cost.

The above theorem states that robust OT obtains a provably robust distance

estimate under our outlier model. That is, the robust OT is upper bounded by

a constant factor of the true Wasserstein distance. This constant depends on the

hyper-parameter ρ: when ρ is appropriately chosen, robust OT measure obtains a

value approximately close to the true distance. Note that we derive this result for

one-sided robust OT (Wrob
ρ,0 ), which is the robust OT measure when marginals are

relaxed only for one of the input distributions. This is the form we use for GANs

and DA experiments (Section. 5.4).
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Choosing ρ and the tightness of the bound: The constant ρ in our formula-

tion is a hyper-parameter that needs to be estimated. The value of ρ denotes the

extent of marginal relaxation. In applications such as GANs or domain adaptation,

performance on a validation set can be used for choosing ρ. Or when the outlier

fraction γ is known, an appropriate choice of ρ is ρ = γ
2(1−γ)

. More details and

experiments on tightness of our upper bound are provided in Balaji et al. [101].

5.4 Experiments

For all our experiments, we use one-sided robust Wasserstein (Wrob
ρ,0 ) where the

marginals are relaxed only for one of the input distributions. Please refer to Balaji

et al. [101] for more experimental details. Code for our experiments is available at

https://github.com/yogeshbalaji/robustOT.

5.4.1 Domain adaptation

Let Dsrc = {(xsi , ysi )}nsi=1 and Dtgt = {(xti)}nti=1 denote the source and target

distributions, respectively. Let F denote a feature network, and C denote a classifier.

Then, the UDA optimization that minimizes the robust OT distance between source

and target feature distributions can be written as

min
F,C

1

ns

∑
i

Lcls(F(xi), yi) + λ

[
min

w∈∆nt
max
D

1

ns

∑
i

D(F (xsi ))−
1

nt

∑
j

wjD(F (xtj))

]

(5.11)

s.t ‖ntw − 1‖2 ≤
√

2ρnt
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where w = [w1, w2 . . . wnt ]. That is, we minimize a combination of two terms - cross-

entropy loss in source domain and the robust Wasserstein distance between source

and target feature embeddings. Cross entropy loss ensures that we obtain consistent

predictions in the source domain, and the robust Wasserstein term minimizes the

feature space drift.

Algorithm 3 Domain adaptation training algorithm

Require: niter: Number of training iterations, ncritic: Number of critic iterations,
nbatch: Batch size, nweight: Number of weight update iterations

1: Intialize weight bank wb = [w1, w2, . . . wnt ] , where each wi corresponds to weight
of target xti

2: for t in 1 : niter do
3: Sample a batch of labeled source images {xsi , ysi }

nbatch
i=1 ∼ Dsrc.

4: Sample a batch of unlabeled target images {xti}
nbatch
i=1 ∼ Dtdt

5: Obtain the weight vectors wti corresponding to the target samples xti from
the weight bank wb

6: Obtain discriminator loss as

Ldisc =
1

nbatch

∑
i

D(F (xsi ))−
1

nbatch

∑
i

wtiD(F (xti))

7: Obtain source label prediction loss as

Lcls =
1

nbatch

∑
i

Lce(C(F (xsi )), y
s
i )

8: Update discriminator D ← D − ηd∇DLdisc
9: Update feature network and classifier F ← F−ηf∇FLcls, C ← C−ηc∇CLcls

10: if t %nweight == 0 then
11: Update weight bank wb using Algorithm 4
12: end if
13: if t %ncritic == 0 then
14: Update feature network as F ← F + ηf∇FLdisc
15: end if
16: end for

While we describe this formulation for the Wasserstein distance, similar ideas

can be applied to other adversarial losses. For instance, by replacing the second and

third terms of (5.11) with binary cross entropy loss, we obtain the non-saturating
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Algorithm 4 Algorithm for updating weights

1: Form the discriminator vector d = [D(xt1), D(xt2), . . . D(xtNt)]
2: Obtain wb as the solution of the following second-order cone program

min
w

(w)td

s.t ‖w − 1‖2 ≤
√

2ρ1Nt

w ≥ 0, (w)t1 = Nt

3: Return wb

Table 5.1: Cross-domain recognition accuracy on VISDA-17 dataset using Resnet-18
model averaged over 3 runs.

Method Accuracy (in %)

Source only 44.7
Adversarial (no ent) 55.4
Robust adversarial (no ent) 62.9
Adversarial (with ent) 59.5
Robust adversarial (with ent) 63.9

objective. Note that we use the discrete formulation of dual objective (Section 5.3.2)

instead of the continuous one (Section 5.3.2). This is because in our experiments,

small batch sizes (∼ 28) were used due to GPU limitations. With small batch sizes,

continuous relaxation gives sub-optimal performance. The training algorithm we

use is provided in Alg. 3

For experiments, we use VISDA-17 dataset [114], which is a large scale bench-

mark dataset for UDA. The task is to perform 12- class classification by adapting

models from synthetic to real dataset. In our experiments, we use non-saturating loss

instead of Wasserstein to enable fair comparison with other adversarial approaches

such as DANN. In addition to the adversarial alignment, we use an entropy reg-

ularizer on target logits, which is a standard technique used in UDA [115]. The
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Table 5.2: Adaptation accuracy on VISDA-17 using Resnet-50 model averaged over
3 runs.

Method Accuracy (in %)

Source Only 50.7
DAN [79] 53.0
RTN [80] 53.6
DANN [71] 55.0
JAN-A [81] 61.6
GTA [87] 69.5
SimNet [111] 69.6
CDAN-E [112] 70.0

O
u

rs

Adversarial (no ent) 62.9
Robust adversarial (no ent) 68.6
Adversarial (with ent) 65.5
Robust adversarial (with ent) 71.5

adaptation results using Resnet-18, Resnet-50 and Resnet-101 models are shown in

Tables 5.1, 5.2 and 5.3, respectively. Our robust adversarial objective gives con-

sistent performance improvement of ∼ 5% over the standard adversarial objective

in all experiments. By using a weighted adversarial loss, our approach assigns low

weights to samples that are hard to adapt and high weights to target samples that

look more similar to source, thereby promoting improved adaptation. Also, with

the use of entropy regularization, our generic robust adversarial objective reaches

performance on par with other competing approaches that are tuned specifically for

the UDA problem. This demonstrates the effectiveness of our approach.

Ablation: Sensitivity of ρ In Table. 5.4, we report the sensitivity of ρ for both

GANs and domain adaptation experiments. In the case of GANs, performance is

relatively low only for very low values of ρ and stable for higher values. For DA,

sensititivity is low in general. For all DA experiments, we used ρ = 0.2 without
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Table 5.3: Adaptation accuracy on VISDA-17 using Resnet-101 model averaged over
3 runs.

Method Accuracy (in %)

Source only 55.3
DAN [79] 61.1
DANN [71] 57.4
MCD [113] 71.9

O
u

rs
Adversarial (no ent) 65.5
Robust adversarial (no ent) 69.3
Adversarial (with ent) 69.3
Robust adversarial (with ent) 72.7

Table 5.4: Sensitivity Analysis of ρ

GAN exp ρ 0 0.01 0.05 0.1 0.15

CIFAR + MNIST FID 37.5 34.7 31.9 29.9 30.2

DA exp ρ 0.0 0.05 0.1 0.2 0.4

Resnet-18 Acc 59.5 62.8 63.1 63.9 63.6

tuning it individually for each setting.

5.4.2 Generative modeling

In this section, we show how our robust Wasserstein formulation can be used

to train GANs that are insensitive to outliers. The core idea is to train a GAN by

minimizing the robust Wasserstein measure (in dual form) between real and gen-

erative data distributions. Let G denote a generative model which maps samples

from random noise vectors to real data distribution. Using the one-directional ver-

sion of the dual form of robust Wasserstein measure (5.9), we obtain the following
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optimization problem

min
W,G

max
D∈Lip−1

Ex∼pdata [W (x)D(x)]− Ez[D(G(z))]

s.t Ex∼pdata [(W (x)− 1)2] ≤ 2ρ, Ex∼pdata [W (x)] = 1, W (x) ≥ 0

The first constraint is imposed using a Lagrangian term in the objective function.

To impose the second constraint, we use ReLU as the final layer of W (·) network

and normalize the weights by the sum of weight vectors in a batch. This leads to

the following optimization

min
W,G

max
D∈Lip−1

Ex[W (x)D(x)]− Ez[D(G(z))] + λmax
(
Ex[(W (x)− 1)2]− 2ρ, 0

)
(5.12)

We set λ to a large value (typically λ = 1000) to enforce the constraint on χ2-

divergence. A detailed algorithm can be found in Balaji et al. [101]. Our robust

Wasserstein formulation can easily be extended to other GAN objective functions

such as non-saturating loss and hinge loss, as discussed in Balaji et al. [101].

Datasets with outliers: First, we train the robust Wasserstein GAN on datasets

corrputed with outlier samples. For the ease of quantitative evaluation, the outlier

corrupted dataset is constructed as follows: We artificially add outlier samples to

the CIFAR-10 dataset such they occupy γ fraction of the samples. MNIST and

uniform noise are used as two choices of outlier distributions. Samples generated

by Wasserstein GAN and robust Wasserstein GAN on this dataset are shown in
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Resnet DCGAN

(a) Clean dataset

Resnet DCGAN

(b) Dataset with outliers

Figure 5.2: FID scores of GAN models trained on CIFAR-10 corrupted
with outlier noise. In (a), samples from MNIST dataset are used as
the outliers, while in (b), uniform noise is used. FID scores of WGAN
increase with the increase in outlier fraction, while robust WGAN main-
tains FID scores.

Figure 5.3: Visualizing samples and weight histograms. In the top panel,
we show samples generated by WGAN and robust WGAN trained on the
CIFAR-10 dataset corrupted with MNIST samples as outliers. WGAN
fits both CIFAR and MNIST samples, while the robust WGAN ignores
the outliers. In the bottom panel, we visualize the weights (output of
the W (.) function) for in-distribution and outlier samples. The outlier
samples are assinged low weights while in-distribution samples get large
weights.
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Figure 5.4: Visualizing samples generated on Domainnet sketch dataset.
In panels (a), (b) and (c), we show the real data, samples generated by
SNGAN and robust SNGAN, respectively. Robust SNGAN only gener-
ates images of sketches ignoring outliers. In panel (d), we visualize real
samples sorted by weights. Low weights are assigned to outliers, while
sketch images get large weights.

Fig. 5.3. While Wasserstein GAN fits outliers in addition to the CIFAR samples,

the robust Wasserstein GAN effectively ignores outliers and generates samples only

from the CIFAR-10 dataset.

For a quantitative evaluation, we report the FID scores of the generated sam-

ples with respect to the clean CIFAR-10 distribution (Figure 5.2). Since Wasserstein

GAN generates outlier samples in addition to the CIFAR-10 samples, the FID scores

get worse as the outlier fraction increases. Robust Wasserstein GAN, on the other

hand, obtains good FID even for large fraction of outliers. This trend is consistent

for both outlier distributions MNIST and uniform noise.

Next, we train our robust GAN model on a dataset where outliers are natu-

rally present. We use Sketch domain of DomainNet dataset [116] for this purpose.

As shown in Figure 5.4(a), the dataset contains many outlier samples (non-sketch

images). Samples generated by spectral normalization GAN and robust spectral

97



Table 5.5: Quantitative evaluation of robust WGAN on clean datasets. In each cell,
the top row corresponds to the Inception score and the bottom row corresponds to
the FID score.

Dataset Arch WGAN
RWGAN

ρ = 0 ρ = 0.3

CIFAR-10 DCGAN
6.86 6.84 6.91
28.46 29.11 29.45

CIFAR-10 Resnet
7.49 7.35 7.36
21.73 21.98 21.57

CIFAR-100 Resnet
9.01 8.79 8.93
15.60 15.61 15.32

normalization GAN (both using Resnet) are shown in Figure 5.4(b, c). We observe

that the SNGAN model generates some non-sketch images in addition to sketch

images. Robust SNGAN, on the other hand, ignores outliers and only generates

samples that look like sketches.

Clean datasets: In the previous section, we demonstrated how robust Wasser-

stein GAN effectively ignores outliers in the data distributions. A natural question

that may arise is what would happen if one uses the robust WGAN on a clean

dataset (dataset without outliers). To understand this, we train the robust Wasser-

stein GAN on CIFAR-10 and CIFAR-100 datasets. The Inception and FID scores

of generated samples are reported in Table. 5.5. We observe no drop in FID scores,

which suggest that no modes are dropped in the generated distribution.

Usefulness of sample weights: In the optimization of the robust GAN, each

sample is assigned a weight indicating the difficulty of that sample to be generated

by the model. In this section, we visualize the weights learnt by our robust GAN. In
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Figure 5.3, we plot the histogram of weights assigned to in-distribution and outlier

samples for robust WGAN trained on CIFAR-10 dataset corrupted with MNIST

outliers. Outliers are assigned smaller weights compared to the in-distribution sam-

ples, and there is a clear separation between their corresponding histograms. For

the GAN model trained on the Sketch dataset, we show a visualization of randomly

chosen input samples sorted by their assigned weights in Figure 5.4(d). We observe

that non-sketch images are assigned low weights while the true sketch images ob-

tain larger weights. Hence, the weights learnt by our robust GAN can be a useful

indicator for assessing how difficult it is to generate a given sample.

5.5 Conclusion

In this chapter, we proposed the robust optimal transport formulation which

is insensitive to outliers (samples with large noise) in the data. The applications of

previous formulations of robust OT are limited in practical deep learning problems

such as GANs and domain adaptation due to the instability of their optimization

solvers. We derive a computationally efficient dual form of the robust OT objective

that is suited for deep learning applications. We demonstrate the effectiveness of

the proposed method in two applications of domain adaptation and GANs, where

our approach is shown to effectively handle outliers and achieve good performance

improvements.
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Chapter 6: Normalized Wasserstein for Mixture Distributions

6.1 Introduction

Quantifying distances between probability distributions is a fundamental prob-

lem in machine learning and statistics with applications in domain adaptation and

generative modeling. Popular probability distance measures include optimal trans-

port measures such as the Wasserstein distance [49] and divergence measures such

as the Kullback-Leibler (KL) divergence [47]. Classical distance measures, however,

can lead to some issues for mixture distributions. A mixture distribution is the

probability distribution of a random variable X where X = Xi with probability πi

for 1 ≤ i ≤ k. k is the number of mixture components and π = [π1, ..., πk]
T is the

vector of mixture (or mode) proportions. The probability distribution of each Xi is

referred to as a mixture component (or, a mode). Mixture distributions arise natu-

rally in different applications where the data contains two or more sub-populations.

For example, image datasets with different labels can be viewed as a mixture (or,

multi-modal) distribution where samples with the same label characterize a specific

mixture component.

If two mixture distributions have exactly same mixture components (i.e. same

Xi’s) with different mixture proportions (i.e. different π’s), classical distance mea-
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P1 P2

Figure 6.1: An illustration of the effectiveness of the proposed Normal-
ized Wasserstein measure in domain adaptation. The source domain
(shown in red) and the target domain (shown in blue) have two modes
with different mode proportions. (a) The couplings computed by es-
timating Wasserstein distance between source and target distributions
(shown in yellow lines) match several samples from incorrect and distant
mode components. (b,c) Our proposed normalized Wasserstein measure
(6.3) constructs intermediate mixture distributions P1 and P2 (shown in
green) with similar mixture components to source and target distribu-
tions, respectively, but with optimized mixture proportions. This signif-
icantly reduces the number of couplings between samples from incorrect
modes and leads to 42% decrease in target loss in domain adaptation
compared to the baseline.

sures between the two will be large. This can lead to undesired results in several

distance-based machine learning methods. To illustrate this issue, consider the

Wasserstein distance between two distributions pX and pY , defined as

W(pX , pY ) := min
pX,Y

E [‖X − Y ‖] , (6.1)

marginalX(pX,Y ) = pX , marginalY (pX,Y ) = pY

where pX,Y is the joint distribution (or coupling) whose marginal distributions are

equal to pX and pY . When no confusion arises and to simplify notation, in some

equations, we use W(X, Y ) notation instead of W(pX , pY ).
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The Wasserstein distance optimization is over all joint distributions (couplings)

pX,Y whose marginal distributions match exactly with input distributions pX and pY .

This requirement can cause issues when pX and pY are mixture distributions with

different mixture proportions. In this case, due to the marginal constraints, samples

belonging to very different mixture components will have to be coupled together

in pX,Y (e.g. Figure 6.1(a)). Thus, using this distance measure can then lead to

undesirable outcomes in problems such as domain adaptation. This motivates the

need for developing a new distance measure to take into account mode imbalances

in mixture distributions.

In this chapter, we propose a new distance measure that resolves the issue of

imbalanced mixture proportions for multi-modal distributions. Our developments

focus on a class of optimal transport measures, namely the Wasserstein distance

Eq (6.1). However, our ideas can be extended naturally to other distance measures

(eg. adversarial distances [71]) as well.

Let G be an array of generator functions with k components defined as G :=

[G1, ...,Gk]. Let pG,π be a mixture probability distribution for a random variable

X where X = Gi(Z) with probability πi for 1 ≤ i ≤ k. Throughout the chapter,

we assume that Z has a normal distribution.

By relaxing the marginal constraints of the classical Wasserstein distance (6.1),

we introduce the Normalized Wasserstein measure (NW measure) as follows:

WN(pX , pY ) := min
G,π(1),π(2)

W(pX , pG,π(1)) +W(pY , pG,π(2)).
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There are two key ideas in this definition that help resolve mode imbalance issues

for mixture distributions. First, instead of directly measuring the Wasserstein dis-

tance between pX and pY , we construct two intermediate (and potentially mixture)

distributions, namely pG,π(1) and pG,π(2) . These two distributions have the same

mixture components (i.e. same G) but can have different mixture proportions (i.e.

π(1) and π(2) can be different). Second, mixture proportions, π(1) and π(2), are con-

sidered as optimization variables. This effectively normalizes mixture proportions

before Wasserstein distance computations. See an example in Figure 6.1 (b, c) for

a visualization of pG,π(1) and pG,π(2) , and the re-normalization step.

In this chapter, we show the effectiveness of the proposed Normalized Wasser-

stein measure in domain adaptation and generative modeling. In each case, the

performance of our proposed method significantly improves against baselines when

input datasets are mixture distributions with imbalanced mixture proportions. Be-

low, we briefly highlight these results:

Domain Adaptation: In Section 6.4, we formulate the problem of domain

adaptation as minimizing the normalized Wasserstein measure between source and

target feature distributions. On classification tasks with imbalanced datasets, our

method significantly outperforms baselines (e.g. ∼ 20% gain in synthetic to real

adaptation on VISDA-3 dataset).

GANs: In Section 6.5, we use the normalized Wasserstein measure in GAN’s

formulation to train mixture models with varying mode proportions. We show that

such a generative model can help capture rare modes, decrease the complexity of

the generator, and re-normalize an imbalanced dataset.
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6.2 Normalized Wasserstein Measure

In this section, we introduce the normalized Wasserstein measure and discuss

its properties. Recall that G is an array of generator functions defined as G :=

[G1, ...,Gk] where Gi : Rr → Rd. Let G be the set of all possible G function

arrays. Let π be a discrete probability mass function with k elements, i.e. π =

[π1, π2, · · · , πk] where πi ≥ 0 and
∑

i πi = 1. Let Π be the set of all possible π’s.

Let pG,π be a mixture distribution, i.e. it is the probability distribution of

a random variable X such that X = Gi(Z) with probability πi for 1 ≤ i ≤ k.

We assume that Z has a normal density, i.e. Z ∼ N (0, I). We refer to G and π

as mixture components and proportions, respectively. The set of all such mixture

distributions is defined as:

PG,k := {pG,π : G ∈ G, π ∈ Π} (6.2)

where k is the number of mixture components. Given two distributions pX and pY

belonging to the family of mixture distributions PG,k, we are interested in defining

a distance measure agnostic to differences in mode proportions, but sensitive to

shifts in mode components, i.e., the distance function should have high values only

when mode components of pX and pY differ. If pX and pY have the same mode

components but differ only in mode proportions, the distance should be low.

The main idea is to introduce mixture proportions as optimization variables

in the Wasserstein distance formulation (6.1). This leads to the following distance
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measure which we refer to as the Normalized Wasserstein measure (NW measure),

WN(pX , pY ), defined as:

min
G,π(1),π(2)

W(pX , pG,π(1)) +W(pY , pG,π(2)) (6.3)

k∑
j=1

π
(i)
j = 1 i = 1, 2,

π
(i)
j ≥ 0 1 ≤ j ≤ k, i = 1, 2.

Since the normalized Wasserstein’s optimization (6.3) includes mixture proportions

π(1) and π(2) as optimization variables, if two mixture distributions have similar

mixture components with different mixture proportions (i.e. pX = pG,π(1) and

pY = pG,π(2)), although the Wasserstein distance between the two can be large,

the introduced normalized Wasserstein measure between the two will be zero. Note

that WN is defined with respect to a set of generator functions G = [G1, ...,Gk].

However, to simplify the notation, we make this dependency implicit. We would

like to point our that our proposed NW measure is a semi-distance measure (and

not a distance) since it does not satisfy all properties of a distance measure. Please

refer to Balaji et al. [117] for more details.

To compute the NW measure, we use an alternating gradient descent approach

similar to the dual computation of the Wasserstein distance [36]. Moreover, we

impose the π constraints using a soft-max function. Please refer to Balaji et al.

[117] for more details.

To illustrate how NW measure is agnostic to mode imbalances between dis-
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tributions , consider an unsupervised domain adaptation problem with MNIST-2

(i.e. a dataset with two classes: digits 1 and 2 from MNIST) as the source dataset,

and noisy MNIST-2 (i.e. a noisy version of it) as the target dataset (details of this

example is presented in Section 6.4.2). The source dataset has 4/5th fraction as digit

1 and 1/5th as digits 2, while the target dataset has 1/5th as noisy digit 1 and 4/5th

as noisy digits 2. The couplings produced by estimating the Wasserstein distance

between the two distributions is shown in yellow lines in Figure 6.1-a. We observe

that there are many couplings between samples from incorrect mixture components.

The normalized Wasserstein measure, on the other hand, constructs intermediate

mode-normalized distributions P1 and P2, which get coupled to the correct modes of

source and target distributions, respectively (see panels (b) and (c) in Figure 6.1)).

6.3 Theoretical Results

For NW measure to work effectively, the number of modes k in NW formu-

lation (Eq. (6.3)) must be chosen appropriately. For instance, given two mixture

distributions with k components each, Normalized Wasserstein measure with 2k

modes would always give 0 value. In this section, we provide some theoretical con-

ditions under which the number of modes can be estimated accurately. We begin by

making the following assumptions for two mixture distributions pX and pY whose

NW distance we wish to compute. We use X and pX interchangeably for brevity.

• (A1) If mode i in distribution X and mode j in distribution Y belong to the

same mixture component, then their Wasserstein distance is ≤ ε i.e., if Xi and
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Yj correspond to the same component, W(pXi , pYj) < ε.

• (A2) The minimum Wasserstein distance between any two modes of one mix-

ture distribution is at least δ i.e., W(pXi , pXj) > δ andW(pYi , pYj) > δ ∀i 6= j.

Also, non-overlapping modes between X and Y are separated by δ i.e., for

non-overlapping modes Xi and Yj, W(pXi , pYj) > δ. This ensures that modes

are well-separated.

• (A3) We assume that each mode Xi and Yi have density at least η i.e., pXi ≥

η ∀i, pYi ≥ η ∀i. This ensures that every mode proportion is at least η.

• (A4) Each generator Gi is powerful enough to capture exactly one mode of

distribution pX or pY .

Let WN(pX , pY ; k) denote the normalized wasserstein measure computed using k

intermediate components between distribution pX and pY . For the rest of this

section, let us denote WN(pX , pY ; k) by WN(k) for brevity.

Lemma 2. WN(k) is a monotonically decreasing function with respect to k.

Proof. This is because in WN(k + 1), we add one additional mode compared to

WN(k). If we have the mixture weights π(1), π(2) for this new mode to be 0, and

have the same assignments as WN(k) for the rest of the modes of WN(k + 1), we

will obtain WN(k + 1) =WN(k). Since computing WN(k) contains a minimization

over mode assignments, the WN(k + 1) ≤ WN(k) ∀k. Hence, it is monotonically

decreasing.

Lemma 3. Let k∗ = n1 + n2 − r. Then, WN(k∗) ≤ ε.
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Proof. This is because at k = k∗, we can make the following mode assignments.

• Assign n1 + n2 − r modes of the generator distribution to each of n1 + n2 − r

non-overlapping modes in PX and PY with the same mixture.

• Assign the remaining r modes of the generator distribution to the overlap-

ping modes of either pX or pY . WLOG, let us assume we assign them to r

overlapping modes of pX .

• Choose π(1) to be same as π for pX , and assign 0 to non-overlapping compo-

nents of pY .

• Choose π(2) to be same as π for pY , with 0 to non-overlapping components of

pX .

Let us denote nov(X) to be non-overlapping modes of X, ov(X) to be over-

lapping modes of X, nov(Y ) to be non-overlapping modes of Y , and ov(Y ) to be

overlapping modes of Y . Then, under the mode assignments given above, WN(k∗)

can be evaluated as,

WN(pX , pY ) : = min
G,π(1),π(2)

W(pX , pG,π(1)) +W(pY , pG,π(2)).

=
∑

i∈nov(X)

πXi W(pXi , pXi) +
∑

i∈ov(X)

πXi W(pXi , pXi)+

∑
i∈nov(Y )

πYi W(pYi , pYi) +
∑

i∈ov(Y )

πYi W(pYi , pXi)

= 0 + 0 + 0 +
∑

i∈ov(Y )

πYi W(pYi , pXi)

≤ ε
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The last step follows from (A1) i.e., overlapping modes are separated by a Wasser-

stein distance of ε.

Lemma 4. WN(k∗ − 1) ≥ δ
2
η

Proof. By assumption (A2), we know that any two modes have separation of at

least δ. In the distribution pX + pY , there are n1 + n2 − r unique cluster centers,

each pair of clusters at a Wasserstein distance δ distance apart. In WN(k∗− 1), the

generator distribution has n1 + n2 − r − 1 modes, which is 1 less than the number

of modes in PX + PY . Now, let us assume that WN(k∗ − 1) < δ
2
η. Then,

W(pX , pG,π(1)) +W(pY , pG,π(2)) <
δ

2
η

Since each mode of pX and pY has density at least η (by (A3)), the above condition

can be satisfied only if

∀i ∈ [n1], ∃j ∈ [k∗ − 1] s.t. W(pXi ,PGj
) <

δ

2
(6.4)

∀i ∈ [n2],∃j ∈ [k∗ − 1] s.t. W(pYi ,PGj
) <

δ

2
(6.5)

Accounting for r mode overlap between X and Y , there will be n1 + n2 − r unique

constraints in Eq. (6.4) and Eq. (6.5). Since, the generator distribution has only

k∗ − 1 modes, by Pigeonhole principle, there should be at least one pair (i, j) that

is matched to the same Gj. WLOG, let us consider both i and j to belong to PX ,
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although each can either belong to PX or PY . Then,

W(pXi ,Gk) <
δ

2

W(pXj ,Gk) <
δ

2

Then, by triangle inequality, W(pXi , pXj) < δ. This contradicts assumption (A2).

Hence WN(k∗ − 1) ≥ δ
2
η.

Theorem 4. Let pX and pY be two mixture distributions satisfying (A1)-(A4) with

n1 and n2 mixture components, respectively, where r of them are overlapping. Let

k∗ = n1 + n2 − r. Then, k∗ is smallest k for which WN(k) is small (O(ε)) and

WN(k)−WN(k − 1) is relatively large (in the O(δη) )

Proof. From Lemma 3 and Lemma 2, we know that WN(k) ≤ ε ∀k ≥ k∗. Similarly,

from Lemma 4 and Lemma 2, we WN(k) ≥ δ
2
η ∀k < k∗. Hence, k∗ is the smallest

k for which NW (k) is small (O(ε)) and NW (k)−NW (k− 1) is relatively large (in

the O(δη) ).

Note: All assumptions made are reasonable: (A1)-(A3) enforces that non-

overlapping modes in mixture distributions are separated, and overlapping modes

are close in Wasserstein distance. To enforce (A4), we need to prevent multi-mode

generation in one mode of G. This can be satisfied by using a regularization function.

In the above theorem, k∗ is the optimal k that should be used in the Normalized

Wasserstein formulation. The theorem presents a way to estimate k∗. Please refer

to Section 6.6 for experimental results. In many applications like domain adaption,
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however, the number of components k is known beforehand, and this step can be

skipped.

6.4 Normalized Wasserstein in Domain Adaptation

In this section, we demonstrate the effectiveness of the NW measure in Un-

supervised Domain Adaptation (UDA) both for supervised (e.g. classification) and

unsupervised (e.g. denoising) tasks. Note that the term unsupervised in UDA means

that the label information in the target domain is unknown while unsupervised tasks

mean that the label information in the source domain is unknown.

First, we consider domain adaptation for a classification task. Let (Xs, Y s) be

the random variable corresponding to the source data and labels, while X t denote

the random variable corresponding to the target data. Let Dsrc = {(xsi , ysi )}nsi=1

represent the source dataset while Dtgt{xti}nti=1 denote the target dataset (xsi , y
s
i ,x

t
i

are the realizations of the random variables Xs, Y s, X t, respectively). In domain

adaptation, we learn a feature representation to embed the source and the target

samples to a common feature space where the distance between the source and target

feature distributions is sufficiently small, while a good classifier can be computed

for the source domain [71]. In this case, one solves the following optimization:

min
F

EDsrc [Lcls (F (Xs), Y s)] + λ dist
(
F (Xs), F (X t)

)
(6.6)

where λ is an adaptation parameter and Lcls is the classification loss function (e.g.

the cross-entropy loss). The distance function between distributions can be adversar-
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ial distances [71, 72], the Wasserstein distance [98], or MMD-based distances [79, 80].

When Xs and X t are mixture distributions (which is often the case as each

label corresponds to one mixture component) with different mixture proportions,

the use of these classical distance measures can lead to the computation of inappro-

priate transformation and classification functions. In this case, we propose to use

the NW measure as the distance function. Computing the NW measure requires

training mixture components G and mode proportions π(1), π(2). To simplify the

computation, we make use of the fact that labels for the source domain (i.e. Y s)

are known, thus source mixture components can be identified using these labels.

Using this information, we can avoid the need for computing G directly and use the

conditional source feature distributions as a proxy for the mixture components as

follows:

Gi(Z)
dist
= F (Xs

i ), (6.7)

Xs
i = {Xs|Y s = i}, ∀1 ≤ i ≤ k,

where
dist
= means matching distributions. Using (6.7), the formulation for domain

adaptation can be written as

min
F

min
π
Lcls (Xs, Y s) + λW

(∑
i

π(i)F (Xs
i ), F (X t)

)
. (6.8)

The above formulation can be seen as a version of instance weighting as source

samples in Xs
i are weighted by πi. Instance weighting mechanisms have been well
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studied for domain adaptation [118, 119]. However, different from these approaches,

we train the mode proportion vector π in an end-to-end fashion using neural net-

works and integrate the instance weighting in a Wasserstein optimization. Of more

relevance to our work is the method proposed in [120], where the instance weighting

is trained end-to-end in a neural network. However, in [120], instance weights are

maximized with respect to the Wasserstein loss, while we show that the mixture

proportions need to minimized to normalize mode mismatches. Moreover, our NW

measure formulation can handle the case when mode assignments for source embed-

dings are unknown (as we discuss in Section 6.4.2). This case cannot be handled by

the approach presented in [120].

For unsupervised tasks when mode assignments for source samples are un-

known, we cannot use the simplified formulation of (6.7). In that case, we use a

domain adaptation method solving the following optimization:

min
F
Lunsup (Xs) + λWN (F (Xs), F (Xt)) , (6.9)

where Lunsup(Xs) is the loss corresponding to the desired unsupervised learning task

on the source domain data.
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6.4.1 Experiments: UDA for supervised tasks

6.4.1.1 MNIST → MNIST-M

In the first set of experiments1, we consider adaptation between MNIST→

MNIST-M datasets. We consider three settings with imbalanced class proportions

in source and target datasets: 3 modes, 5 modes, and 10 modes. More details can

be found in Balaji et al. [117].

We use the same architecture as [71] for feature network and discriminator.

We compare our method with the following approaches: (1) Source-only which is a

baseline model trained only on source domain with no domain adaptation performed,

(2) DANN [71], a method where adversarial distance between source and target dis-

tibutions is minimized, and (3) Wasserstein [98] where Wasserstein distance between

source and target distributions is minimized. Table 6.1 summarizes our results of

this experiment. We observe that performing domain adaptation using adversarial

distance and Wasserstein distance leads to decrease in performance compared to

the baseline model. This is an outcome of not accounting for mode imbalances,

thus resulting in negative transfer, i.e., samples belonging to incorrect classes are

coupled and getting pushed to be close in the embedding space. Our proposed NW

measure, however, accounts for mode imbalances and leads to a significant boost in

performance in all three settings.

1Code available at https://github.com/yogeshbalaji/Normalized-Wasserstein

114

https://github.com/yogeshbalaji/Normalized-Wasserstein


Table 6.1: Mean classification accuracies (in %) averaged over 5 runs on imbalanced
MNIST→MNIST-M adaptation.

Method 3 modes 5 modes 10 modes

Source only 66.63 67.44 63.17
DANN 62.34 57.56 59.31
Wasserstein 61.75 60.56 58.22
Normalized Wasserstein 75.06 76.16 68.57

6.4.1.2 VISDA

In the experiment of Section 6.4.1.1 on digits dataset, models have been trained

from scratch. However, a common practice used in domain adaptation is to transfer

knowledge from a pretrained network (eg. models trained on ImageNet) and fine-

tune on the desired task. To evaluate the performance of our approach in such

settings, we consider adaptation on the VISDA dataset [114]; a recently proposed

benchmark for adapting from synthetic to real images.

We consider a subset of the entire VISDA dataset containing the following

three classes: aeroplane, horse and truck. The source domain contains (0.55, 0.33, 0.12)

fraction of samples per class, while that of the target domain is (0.12, 0.33, 0.55). We

use a Resnet-18 model pre-trained on ImageNet as our feature network. As shown in

Table 6.2, our approach significantly improves the domain adaptation performance

over the baseline and other compared methods.
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Table 6.2: Mean classification accuracies (in %) averaged over 5 runs on synthetic
to real adaptation on mode imbalanced VISDA dataset (3 classes).

Method Accuracy (in %)

Source only 53.19
DANN 68.06
Wasserstein 64.84
Normalized Wasserstein 73.23

Table 6.3: Mean classification accuracies (in %) averaged over 5 runs on synthetic
to real adaptation on mode balanced VISDA dataset (3 classes).

Method Accuracy (in %)

Source only 60.22
DANN 85.24
Wasserstein 83.47
Normalized Wasserstein 84.16

6.4.1.3 Mode balanced datasets

The previous two experiments demonstrated the effectiveness of our method

when datasets are imbalanced. In this section, we study the case where source and

target domains have mode-balanced datasets – the standard setting considered in the

most domain adaptation methods. We perform experiment on MNIST→MNIST-M

adaptation using the entire dataset. Table 6.3 reports the results obtained. We

observe that our approach performs on-par with the standard wasserstein distance

minimization.
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6.4.2 Experiments: UDA for unsupervised tasks

For unsupervised tasks on mixture datasets, we use the formulation of Eq (6.9)

to perform domain adaptation. To empirically validate this formulation, we consider

the image denoising problem. The source domain consists of digits {1, 2} from

MNIST dataset as shown in Fig 6.2(a). Note that the color of digit 2 is inverted.

The target domain is a noisy version of the source, i.e. source images are perturbed

with random i.i.d Gaussian noise N (0.4, 0.7) to obtain target images. Our dataset

contains 5, 000 samples of digit 1 and 1, 000 samples of digit 2 in the source domain,

and 1, 000 samples of noisy digit 1 and 5, 000 samples of noisy digit 2 in the target.

The task is to perform image denoising by dimensionaly reduction, i.e., given a target

domain image, we need to reconstruct the corresponding clean image that looks like

the source. We assume that no (source, target) correspondence is available in the

dataset.

To perform denoising when the (source, target) correspondence is unavailable,

a natural choice would be to minimize the reconstruction loss in source while min-

imizing the distance between source and target embedding distributions. We use

the NW measure as our choice of distance measure. This results in the following

optimization:

min
F,G

Ex∼Dsrc‖G(F (x))− x‖2
2 + λWN

(
F (Xs), F (X t)

)

where F (·) is the encoder and G(·) is the decoder.
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Figure 6.2: Domain adaptation for image denoising. (a) Samples from
source and target domains. (b) Source and target embeddings learnt
by the baseline model. (c) Source and target embeddings learnt by
minimizing the proposed NW measure. In (b) and (c), red and green
points indicate source and target samples, respectively.

As our baseline, we consider a model trained only on source using a quadratic

reconstruction loss. Fig 6.2(b) shows source and target embeddings produced by

this baseline. In this case, the source and the target embeddings are distant from

each other. However, as shown in Fig 6.2(c), using the NW formulation, the dis-

tributions of source and target embeddings match closely (with estimated mode

proportions) . We measure the `2 reconstruction loss of the target domain, εrec,tgt =

Ex∼Dtgt‖G(F (x))− x‖2
2, as a quantitative evaluation measure. This value for differ-

ent approaches is shown in Table 6.4. We observe that our method outperforms the

compared approaches.

118



Table 6.4: εrec,tgt for an image denoising task.

Method εrec,tgt

Source only 0.31
Wasserstein 0.52
Normalized Wasserstein 0.18
Training on target (Oracle) 0.08

6.5 Normalized Wasserstein GAN

Recall from Sec. 2.2.1 that the goal of GANs is to learn a generative model

that can synthesize samples that resemble the real data distribution. If the real

distribution pX is a mixture one, the proposed normalized Wasserstein measure

(6.3) can be used for learning an effective generative model. Instead of estimating a

single generator G as done in standard GANs, we estimate a mixture distribution

pG,π using the proposed NW measure. We refer to this GAN as the Normalized

Wasserstein GAN (or NWGAN) formulated as the following optimization:

min
G,π

WN(pdata, pG,π). (6.10)

In this case, the NW distance simplifies as

min
G,π
WN(pdata, pG,π)

= min
G,π

min
G′,π(1),π(2)

W(pdata,PG′,π(1)) +W(pG,π, pG′,π(2))

= min
G,π
W(pdata, pG,π). (6.11)
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NWGAN WGAN MGAN

Figure 6.3: Mixture of Gaussian experiments. In all figures, red points
indicate samples from the real data distribution while blue points in-
dicate samples from the generated distribution. NWGAN is able to
capture rare modes in the data and produces a significantly better gen-
erative model than other methods.

There are a few differences between the proposed NWGAN and the existing GAN

architecures. The generator in the proposed NWGAN is a mixture of k models,

each producing πi fraction of generated samples. We select k a priori based on

the application domain while π is computed within the NW distance optimization.

Modeling the generator as a mixture of k neural networks has also been investigated

in some recent works [121, 122]. However, these methods assume that the mixture

proportions π are known beforehand, and are held fixed during the training. In con-

trast, our approach is more general as the mixture proportions are also optimized.

Estimating mode proportions have several important advantages: (1) we can esti-

mate rare modes, (2) an imbalanced dataset can be re-normalized, (3) by allowing

each Gi to focus only on one part of the distribution, the quality of the generative

model can be improved while the complexity of the generator can be reduced. In

the following, we highlight these properties of NWGAN on different datasets.
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6.5.1 Mixture of Gaussians

First, we present the results of training the NWGAN on a two dimensional

mixture of Gaussians. The input data is a mixure of 9 Gaussians, each centered at

a vertex of a 3×3 grid as shown in Figure 6.3. The mean and the covariance matrix

for each mode are randomly chosen. The mode proportion for mode i is chosen as

πi = i
45

for 1 ≤ i ≤ 9.

Generations produced by NWGAN using k = 9 affine generator models on

this dataset is shown in Figure 6.3. We also compare our method with WGAN [36]

and MGAN [121]. Since MGAN does not optimize over π, we assume uniform mode

proportions (πi = 1/9 for all i). To train WGAN, a non-linear generator function is

used since a single affine function cannot model a mixture of Gaussian distribution.

To evaluate the generative models, we report the following quantitative scores:

(1) the average mean error which is the mean-squared error (MSE) between the

mean vectors of real and generated samples per mode averaged over all modes, (2)

the average covariance error which is the MSE between the covariance matrices

of real and generated samples per mode averaged over all modes, and (3) the π

estimation error which is the normalized MSE between the π vector of real and

generated samples. Note that computing these metrics require mode assignments

for generated samples. This is done based on the closeness of generative samples to

the ground-truth means.

We report these error terms for different GANs in Table 6.5. We observe that

the proposed NWGAN achieves best scores compared to the other two approaches.
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Table 6.5: Quantitative Evaluation on Mixture of Gaussians.

Method Avg. µ error Avg. Σ error π error

WGAN 0.007 0.0003 0.0036
MGAN 0.007 0.0002 0.7157
NWGAN 0.002 0.0001 0.0001

Also, from Figure 6.3, we observe that the generative model trained by MGAN

misses some of the rare modes in the data. This is because of the error induced by

assuming fixed mixture proportions when the ground-truth π is non-uniform. Since

the proposed NWGAN estimates π in the optimization, even rare modes in the

data are not missed. This shows the importance of estimating mixture proportions

specially when the input dataset has imbalanced modes.

6.5.2 A Mixture of CIFAR-10 and CelebA

One application of learning mixture generative models is to disentangle the

data distribution into multiple components where each component represents one

mode of the input distribution. Such disentanglement is useful in many tasks such as

clustering. To test the effectiveness of NWGAN in performing such disentanglement,

we consider a mixture of 50, 000 images from CIFAR-10 and 100, 000 images from

CelebA [123] datasets as our input distribution. All images are reshaped to be

32× 32.

To highlight the importance of optimizing mixture proportion to produce dis-

entangled generative models, we compare the performance of NWGAN with a vari-

ation of NWGAN where the mode proportion π is held fixed as πi = 1
k

(the uniform
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Fixing π Learning π

Figure 6.4: Sample generations of NWGAN with k = 2 on a mixture
of CIFAR-10 and CelebA datasets for fixed and optimized π’s. When
π is fixed, one of the generators produces a mix of CIFAR and CelebA
generative images (boxes in red highlight some of the CelebA generations
in the model producing CIFAR+CelebA). However, when π is optimized,
the model produces disentangled representations.

distribution). Sample generations produced by both models are shown in Figure 6.4.

When π is held fixed, the model does not produce disentangled representations (in

the second mode, we observe a mix of CIFAR and CelebA generative images.) How-

ever, when we optimize π, each generator produces distinct modes.

6.6 Ablation: Choosing the number of modes

As discused in Section 6.3, choosing the number of modes (k) is crucial for com-

puting NW measure. While this information is available for tasks such as domain

adaptation, it is unknown for others like generative modeling. In this section, we

experimentally validate our theoretically justified algorithm for estimating k. Con-

sider the mixture of Gaussian dataset with k = 9 modes presented in Section 6.5.1.

On this dataset, the NWGAN model (with same architecture as that used in Sec-

tion 6.5.1) was trained with varying number of modes k. For each setting, the NW
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Figure 6.5: Choosing k: Plot of NW measure vs number of modes.

measure between the generated and real data distribution is computed and plotted

in Fig 6.5. We observe that k = 9 satisfies the condition discussed in Theorem 4:

optimal k∗ is the smallest k for which WN(k) is small, WN(k− 1)−WN(k) is large,

and WN(k) saturates after k∗.

6.7 Conclusion

In this chapter, we showed that Wasserstein distance, due to its marginal con-

straints, can lead to undesired results when when applied on imbalanced mixture

distributions. To resolve this issue, we proposed a new distance measure called

the Normalized Wasserstein. The key idea is to optimize mixture proportions in

the distance computation, effectively normalizing mixture imbalance. We demon-

strated the usefulness of NW measure in domain adaptation and generative model-
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ing. Strong empirical results on all three problems highlight the effectiveness of the

proposed distance measure.
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Part III

Domain Generalization
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Chapter 7: MetaReg: Towards Domain Generalization using Meta-

Regularization

7.1 Introduction

Existing machine learning algorithms including deep neural networks achieve

good performance in cases where the training and the test data are sampled from

the same distribution, but fail to perform well on out-of-distribution inputs. As

discussed in the previous part of the dissertation, one approach for improving per-

formance on such out-of-distribution inputs is domain adaptation, in which we utilize

unsupervised target domain data to adapt our models. However, access to unlabeled

target data might not be available in many real-world settings. Hence, it is critical

to design systems that can generalize to unseen variations in data. This problem,

also called domain generalization, is the focus of this chapter.

In domain generalization, we are provided with multiple labeled source datasets.

The task is to train a robust model using variations in the source domains so that

it generalizes well to novel target domains. Domain generalization is a much harder

problem than domain adaptation as we assume no access to the target information.

Instead, the variations in multiple source domains are utilized to generalize to novel
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Figure 7.1: Illustration of the proposed approach. Figure (a) depicts
the network design - We employ a shared feature network F and p task
networks {Ti}pi=1. Each task network Ti is trained only on the data from
domain i, and the shared network F is trained on all p source domains.
The figure on the right illustrates the optimization updates. At each
iteration we sample a pair of domains (i, j) from the training set. The
black arrows are the SGD updates of the task network Ti trained on
domain i. From each point in the black path, we take l gradient steps
using the regularized loss and the samples from domain i to reach a new
point ∗. We then compute the loss on domain j at ∗. The regularizer
parameters φ are updated so that this meta-loss is minimized. This
ensures that the task network Ti trained with the proposed regularizer
generalizes to domain j.

test distributions.

One popular approach to improve the generalization of a parametric model is

to introduce regularization in the loss function [124]. Several regularization schemes

have been proposed for neural networks including weight decay [125], Dropout [126],

DropConnect [127], batch normalization [128], etc. While these schemes have been

shown to reduce test error on samples drawn from the same training distribution,

they do not generalize when there is a training-test distribution mismatch. In this

chapter, we investigate if a regularization function can be learnt for neural networks
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with the objective of generalizing to out-of-distribution shifts.

Designing such regularizers for achieving cross-domain generalization is a chal-

lenging problem. The difficulty in mathematically modeling domain shifts makes it

hard to design hand-crafted regularizers. Instead, we take a data-driven approach

where we aim to learn the regularization function using the variability in the source

domains. We cast the problem of learning regularizers in a learning to learn, or

meta-learning framework, which has received a resurgence in interest recently with

applications including few-shot learning [129, 130] and learning optimizers [131, 132].

Similar to [129], we follow an episodic paradigm where at each iteration, we sample

an episode comprising meta-train and meta-test data such that the domains con-

tained in meta-train and meta-test sets are disjoint. The objective is then to train

the regularizer such that k steps of gradient descent using the meta-train data re-

sults in a decrease in meta-test loss. This procedure is repeated for multiple episodes

sampled from the source dataset. After the regularizer is trained, we fine-tune a new

model on the entire source dataset using the trained regularizer.

The primary contribution of this work is that we propose a scheme for learning

regularization functions that enable domain generalization. We show how the objec-

tive of domain generalization can be explicitly encoded in a regularization function,

which can then be used to train models that are more robust to domain shifts. This

framework is also scalable as the same regularizer can later be used to fine-tune

on a larger dataset. Experiments indicate that our approach can learn regularizers

that achieve good cross-domain generalization on benchmark domain generalization

datasets.
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7.2 Related work

Meta-learning: The concept of meta-learning (or) learning to learn has a long

standing history, some of the earlier works include [133, 134]. Recently, there has

been a lot of interest in applying such strategies for deep neural networks. One

interesting application is the problem of learning the optimization updates of neural

networks by casting it as a policy learning problem in a Markov decision process

[131, 132]. Few-shot learning is another problem where meta-learning strategies

have been widely explored. Ravi and Larochelle [130] proposes an LSTM-based

meta learner for learning the optimization updates of a few-shot classifier. Instead of

learning the updates, Finn et al. [129] learns transferable weight representations that

quickly adapts to a new task using only a few samples. Other recent applications that

use meta learning include imitation learning [135], visual question answering [136],

etc.

Domain Generalization: Unlike domain adaptation, domain generalization is a

relatively less explored area of research. Muandet et al. [137] proposes domain in-

variant component analysis, a kernel-based algorithm for minimizing the differences

in the marginal distributions of multiple domains. Ghifary et al. [138] attempts to

learn a domain-invariant feature representation by using multi-view autoencoders

to perform cross domain reconstructions. The method in Khosla et al. [139] decom-

poses the parameters of a model (SVM classifier) into domain specific and domain

invariant components, and uses the domain invariant parameters to make predic-
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tions on the unseen domain. Li et al. [140] extends this idea to decompose the

weights of deep neural networks using multi-linear model and tensor decomposition.

Finn et al. [129] recently proposed a model agnostic meta-learning procedure

for the few shot learning problems. The objective of their approach (MAML) is to

find a good initialization θ such that few gradient steps from θ results in a good

task specific network. The focus of the MAML is to adapt quickly in few shot

settings. Recently, [3] proposed a meta learning based approach (MLDG) extending

MAML to the domain generalization problem. This approach has the following

limitations - the objective function of MAML is more suited for fast task adaptation

for which it was originally proposed. In domain generalization however, we do not

have access to samples from a new domain, and so a MAML-like objective might

not be effective. The second issue is scalability - it is hard to scale MLDG to deep

architectures like Resnet [5]. Our approach attempts to tackle both these problems

- (1) We explicitly encode the objective of domain generalization in our episodic

training procedure by using a regularizer to go from a task specific representation to

a task agnostic representation at each episode. (2) We make our approach scalable

by freezing the feature network and performing meta learning only on the task

network. This enables us to use our approach to train deeper models like Resnet-50.

A similar approach for training meta-learning algorithms in feature space has been

explored in a recent work of Zhou et al. [141].
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7.3 Method

7.3.1 Problem Setup

Let X denote the instance space (which can be images, text, etc.) and Y

denote the label space. Domain generalization involves data sampled from p source

distributions and q target distributions, each containing data for performing the

same task. Classification tasks are considered in this work. Hence, Y is the discrete

set {1, 2, . . . nc}, where nc denotes the number of classes. Let Di = {(x(i)
j , y

(i)
j )}nij=1

represent the dataset corresponding to the ith distribution. In the rest of the chapter,

Di is also referred to as the ith domain. Note that every Di shares the same data

and label space i.e., each x
(i)
j ∈ X and y

(i)
j ∈ Y . However, each of the p+ q domains

contain varied domain statistics. The objective is to train models on the p source

domains so that they generalize well to the q novel target domains.

We are interested in training a parametric model MΘ : X → Y using data

only from the p source domains. In this work, we consider MΘ to be a deep neural

network. We decompose the network M into a feature network F and a task network

T (i.e) MΘ(x) = (Tθ ◦ Fψ)(x), where Θ = {ψ, θ}. Here, ψ denotes the weights of

the feature network F , and θ denotes the weights of the task network. The output

of MΘ(x) is a vector of dimension nc with ith entry denoting the probability that

the instance x belongs to the class i. Standard neural network training involves
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minimizing the cross entropy loss function given by Eq (7.1)

L(ψ, θ) = E(x,y)∼D[−y. log(MΘ(x))] =

p∑
i=1

Ni∑
j=1

−y
(i)
j . log(MΘ(x

(i)
j )) (7.1)

Here, y
(i)
j is the one-hot representation of the label y

(i)
j and ‘.’ denotes the dot

product between two vectors. The above loss function does not take into account

any factor that models domain shifts, so generalization to a new domain is not

expected. To accomplish this, we propose using a regularizer R(ψ, θ). The new loss

function then becomes Lreg(ψ, θ) = L(ψ, θ)+R(ψ, θ). The regularizer R(ψ, θ) should

capture the notion of domain generalization (i.e) it should enable generalization to

a new distribution with varied domain statistics. Designing such regularizers is hard

in general, so we propose to learn it using meta learning.

7.3.2 Learning the regularizer

In this work, we model the regularizer R as a neural network parametrized

by weights φ. Moreover, the regularization is applied only on the parameters θ of

the task network to enable scalable meta-learning. So, the regularizer is denoted

as Rφ(θ) in the rest of the chapter. We now discuss how the parameters of the

regularizer Rφ(θ) are estimated. In this stage of the training pipeline, the neural

network architecture consists of a feature network F and p task networks {Ti}pi=1

(with parameters of Ti denoted by θi) as shown in Fig. 7.1. Each Ti is trained only

on the samples from domain i and F is the shared network trained on all p source

domains. The reason for using p task networks is to enforce domain-specificity in
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the models so that the regularizer can be trained to make them domain-invariant.

We now describe the procedure for learning the regularizer:

• Base model updates: We begin by training the shared network F and p task

networks {Ti}pi=1 using supervised classification loss L(ψ, θ) given by Eq (7.1).

Note that there is no regularization in this step. Let the network parameters

at the kth step of this optimization be denoted as [ψ(k), θ
(k)
1 , . . . θ

(k)
p ].

• Episode creation: To train Rφ(θ), we follow an episodic training procedure

similar to Li et al. [3]. Let a, b be two randomly chosen domains from the

training set. Each episode contains data partitioned into two subsets - (1) m1

labeled samples from domain a denoted as metatrain set and (2) m2 labeled

samples from domain b denoted as metatest set. The domains contained in

both the sets are disjoint (i.e) a 6= b, and the data is sampled only from the

source distributions (i.e) a, b ∈ {1, 2, . . . p}.

• Regularizer updates At iteration k, a new task network Tnew is initialized

with θ
(k)
a - the base model’s task network parameters of the ath domain at

iteration k. Using the samples from the metatrain set (which contains domain

a), l steps of gradient descent is performed with the regularized loss function

Lreg(ψ, θ) on Tnew. Let θ̂
(k)
a denote the parameters of Tnew after these l gradient

steps. We treat each update of the network Tnew as a separate variable in

the computational graph. θ̂
(k)
a then depends on φ through these l gradient

steps. The unregularized loss on the metatest set computed using Tnew (with

parameters θ̂
(k)
a ) is then minimized with respect to the regularizer parameters
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φ. Each regularizer update unrolls through the l gradient steps as θ̂
(k)
a depends

on φ through the l gradient steps. This entire procedure can be expressed by

the following set of equations:

β1 ← θ(k)
a

βt = βt−1 − α∇βt−1

[
L(a)(ψ(k), βt−1) +Rφ(βt−1)

]
∀t ∈ {2, . . . l} (7.2)

θ̂(k)
a = βl

φ(k+1) = φ(k) − α∇φL(b)(ψ(k), θ̂(k)
a )|φ=φ(k) (7.3)

Here, L(i)(ψ, θnew) = E(x,y)∼Di [−y. log(Tθnew(Fψ(x)))] (i.e) the loss of task net-

work Tnew on samples from domain i, and α is the learning rate. Eq (7.2)

represents l steps of gradient descent from the initial point θ
(k)
a using samples

from metatrain set, with βt denoting the output at the tth step. Eq (7.3) is the

meta-update step for updating the parameters of the regularizer. This update

ensures that l steps of gradient descent using the regularized loss on samples

from domain a results in task network a performing well on domain b. It is

important to note that the dependence of φ on θ̂
(k)
a comes from the l gradient

steps performed in Eq. 7.2. So, the gradients of φ propagates through these l

unrolled gradient steps.

Since the same regularizer Rφ(θ) is trained on every (a, b) pair, the resulting

regularizer we learn captures the notion of domain generalization. Please refer to

Fig. 7.1 for a pictoral description of the meta-update step. The entire algorithm is
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given in Algorithm 5

7.3.3 Training the final model

Once the regularizer is learnt, the regularization parameters φ are frozen and

the final task network initialized from scratch is trained on all p source domains

using the regularized loss function Lreg(ψ, θ). The network architectures consists of

just one F − T pair. In this chapter, we use weighted `1 loss as our regularization

function, (i.e) Rφ(θ) =
∑

i φi|θi|. The weights of this regularizer are estimated using

the meta-learning procedure discussed above. However, our approach is general

and can be extended to any class of regularizers (refer to Section. 7.5). The use of

weighted `1 loss can be interpreted as a learnable weight decay mechanism - Weights

θi for which φi is positive will be decayed to 0 and those for which φi is negative

will be boosted. By using our meta-learning procedure, we select a common set of

weights that achieve good cross-domain generalization across every pair of source

domains (a, b).

7.3.4 Summary of the training pipeline

The feature network is first trained using combined data from all source do-

mains, and is kept frozen in the rest of training. The regularizer parameters are then

estimated using the meta-learning procedure described in the previous section. As

the individual task networks are updated on their respective source domain data, the

regularizer updates are derived from each point of this SGD path with the objective
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Algorithm 5 MetaReg training algorithm

Require: niter: number of training iterations
Require: α1, α2: Learning rate hyperparameters

1: for t in 1 : niter do
2: for i in 1 : p do
3: Sample nb labeled images {(x(i)

j , y
(i)
j ) ∼ Di}nbj=1

4: Perform supervised classification updates:
5: ψ(t) ← ψ(t−1) − α1∇ψL

(i)(ψ(t−1), θ
(t−1)
i )

6: θ
(t)
i ← θ

(t−1)
i − α1∇θiL

(i)(ψ(t−1), θ
(t−1)
i )

7: end for
8: Choose a, b ∈ {1, 2, . . . p} randomly such that a 6= b

9: β1 ← θ
(t)
a

10: for i = 2 : l do
11: Sample metatrain set {(x(a)

j , y
(a)
j ) ∼ Da}nbj=1

12: βi = βi−1 − α2∇βi−1 [L(a)(ψ(t), βi−1) +Rφ(βi−1)]
13: end for
14: θ̂

(t)
a = βl

15: Sample metatest set {(x(b)
j , y

(b)
j ) ∼ Db}nbj=1

16: Perform meta-update for regularizer φ(t) = φ(t−1)−α2∇φL
(b)(ψ(t), θ̂

(t)
a )|φ=φ(t)

17: end for

of cross-domain generalization (refer Alg. 5). To learn the regularizer effectively at

the early stages of the task network updates, replay memory is used where the reg-

ularizer updates are periodically derived from the early stages of the task networks’

SGD paths. The learnt regularizer is used in the final step of the training process

where a single F − T network is trained using the regularized cross-entropy loss.

7.4 Experiments

In this section, we describe the experimental validation of our proposed ap-

proach. We perform experiments on two benchmark domain generalization datasets

- Multi-domain image recognition using PACS dataset [140] and sentiment classifi-

cation using Amazon Reviews dataset [142]. More details can be found in [143].
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7.4.1 PACS dataset

PACS dataset is a recently proposed benchmark dataset for domain gener-

alization. This dataset contains images from four domains - Photo, Art painting,

Cartoon and Sketch. Following [3], we perform experiments on four settings: In

each setting, one of the four domains is treated as the unseen target domain, and

the model is trained on the other three source domains.

Alexnet The first set of experiments is based on the Alexnet [29] model pretrained

on Imagenet. The feature network F comprises of the top layers of Alexnet model

till pool5 layer, while the task network T contains fc6, fc7 and fc8 layers. For the

regularizer network, we used weighted `1 loss (i.e) Rφ(θ) =
∑

i φi|θi|, where φi are the

parameters estimated using meta-learning. In all our experiments, Baseline setting

denotes training a neural network (Alexnet in this case) on all of the source domains

without performing any domain generalization. Other comparison methods include

Multi-task Autoencoders (MTAE) [138], Domain Separation Networks (DSN) [144],

Artier Domain Generalization (DBA-DG) [140] and MLDG [3]. While some of these

methods were originally proposed for domain adaptation, they were adapted to the

domain generalization problem as done in Li et al. [3].

All our models are trained using the SGD optimizer with learning rate 5e− 4

and a batch size of 64. This is in accordance with the setup used in Li et al. [3].

Table 7.1 presents the results of our approach along with other comparison methods.

We observe that our method obtains a performance improvement of 3.34% over the
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Table 7.1: Cross-domain recognition accuracy (in %) averaged over 5 runs on PACS
dataset using Alexnet architecture. For the baseline setting, the numbers on the
parenthesis indicate the baseline performance as reported by Li et al. [3]

Method Art painting Cartoon Photo Sketch Average

Baseline 67.21 ± 0.72 (64.91) 66.12 ± 0.51 (64.28) 88.47 ± 0.63 (86.67) 55.32 ± 0.44 (53.08) 69.28 (67.24)
D-MTAE ([138]) 60.27 58.65 91.12 47.68 64.48
DSN ([144] 61.13 66.54 83.25 58.58 67.37
DBA-DG ([140]) 62.86 66.97 89.50 57.51 69.21
MLDG ([3]) 66.23 66.88 88.0 58.96 70.01
MetaReg (Ours) 69.82 ± 0.76 70.35 ± 0.63 91.07 ± 0.41 59.26 ± 0.31 72.62

baseline, thus achieving the state-of-the-art performance on this dataset.

textbfResnet One disadvantage with approaches like MLDG [3] is that it requires

differentiating through k steps of optimization updates, and this might not be scal-

able to deeper architectures like Resnet. Even our approach requires a similar opti-

mization process. However, unlike Li et al. [3], we perform meta-learning only on

the task network. Since the task network is much shallower than the feature net-

work, our approach is scalable even to some of the contemporary deep architectures.

In this section, we show experiments using two such architectures - Resnet18 and

Resnet 50.

We use the Resnet-18 and Resnet-50 models pretrained on ImageNet as our

feature network, and the last fully connected layer as our task network. Similar

to the previous experiment, we used weighted `1 loss as our class of regularizers.

All models were trained using SGD optimizer with a learning rate of 0.001 and

momentum 0.9. The hyper-parameters α1 and α2 are both set as 0.001. The results

of our experiments are reported in Table. 7.2. Our method performs better than

baseline in both settings. It is important to note that the baseline numbers for
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Table 7.2: Cross-domain recognition accuracy (in %) averaged over 5 runs on PACS
dataset using Resnet architectures

Method Art painting Cartoon Photo Sketch Average

Resnet-18

Baseline 79.9 ± 0.22 75.1 ± 0.35 95.2 ± 0.18 69.5 ± 0.37 79.9
Metareg (Ours) 83.7 ± 0.19 77.2 ± 0.31 95.5 ± 0.24 70.3 ± 0.28 81.7

Resnet-50

Baseline 85.4 ± 0.24 77.7 ± 0.31 97.8 ± 0.17 69.5 ± 0.42 82.6
Metareg (Ours) 87.2 ± 0.13 79.2 ± 0.27 97.6 ± 0.31 70.3 ± 0.18 83.6

Resnet architectures are much higher than that of Alexnet. Even on such stronger

baselines, our method gives performance improvement.

7.4.2 Sentiment Classification

In this section, we perform experiments on the task of sentiment classification

on Amazon reviews dataset as pre-processed by [145]. The dataset contains reviews

of products belonging to four domains - books, DVD, electronics and kitchen appli-

ances. The differences in textual description of the reviews each of these product

categories manifests as domain shift. Following [71], we use unigrams and bigrams

as features resulting in 5000 dimensional vector representations. The reviews are

assigned binary labels - 0 if the rating of the product is upto 3 stars, and 1 if the

rating is 4 or 5 stars.

We conduct 4 cross-domain experiments - in each setting one of the four do-

mains is treated as the unseen test domain, and the other three domains are used

as source domains. Similar to [71], we used a neural network with one hidden layer
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Table 7.3: Cross domain classification accuracy (x %) averaged over 10 runs on
Amazon Reviews dataset.

Method Books DVD Electronics Kitchen Average

Baseline 75.5 ± 0.52 79.0 ± 0.37 83.7 ± 0.44 84.7 ± 0.63 80.7
Metareg (Ours) 76.1 ± 0.41 79.6 ± 0.32 83.9 ± 0.28 85.1 ± 0.43 81.2

(with 100 neurons) as our task network. All models were trained using an SGD op-

timizer with learning rate 0.01 and momentum 0.9 for 5000 iterations. The results

of our experiments are reported in the Table. 7.3. Since there is significant variation

in performance over runs, each experiment was repeated 10 times with different

random weight initialization and averages of these 10 runs are reported. We observe

that our method performs better than the baseline in all of the settings. However,

the performance improvement is less compared to the previous experiments. This is

because of the nature of the problem and the architectural choice. We would like to

point out that even domain adaptation methods that make use of unlabeled target

data achieve similar gains in performance [71] in this dataset.

7.5 Ablation Study

For all the ablation experiments except 7.5.3, we use the Resnet-18 model

as our neural network architecture, and Art-painting setting in PACS dataset as

our experimental setting, (i.e) we use Art painting domain as the test domain, and

Cartoon, Photo and Sketch as source domains.
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Table 7.4: Effect of different classes of regularization functions.

Baseline DropConnect [127] Default `1 Weighted `1 Weighted `2 2 layer NN

79.9 80.1 79.7 83.7 83.2 83.3

7.5.1 Class of Regularizers

In this experiment, we study the effect of different regularizers on the perfor-

mance of our approach. We experimented on the following class of regularizers: (1)

Weighted `1 loss: Rφ(θ) =
∑

i φi|θi|, (2) Weighted `2 loss: Rφ(θ) =
∑

i φiθ
2
i , and (3)

Two layer neural network: Rφ(θ) = φ(2)T (ReLU(φ(1)T θ)). The performance of these

regularizers are reported in Table. 7.4. We observe that the Weighted `1 regularizer

performs the best among the three. Also, we observed that training networks with

the weighted `1 regularizer lead to better convergence and stability in performance

compared to the other two. We also compare our approach with two other schemes:

(1) DropConnect [127] and (2) Default `1 regularization, which is Weighted `1 reg-

ularization where the weights φi = 1. We observe that both these schemes do not

improve the baseline performance.

7.5.2 Delayed Data Acquisition

In all of the previous experiments, we assumed that the entire training data is

available from the start of the training process. But consider a more general setting

where we train our model on some initial data, but more data gets available over

time. Is it possible make use of the newly available data to improve our models
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(a) No reg (b) Reg, f=0.1 (c) Reg, f=0.5 (d) Reg, f=1

Figure 7.2: Histogram of the weights learnt by the task network. ”No
reg” corresponds to the network without regularizaton, and ”Reg, f=x”
corresponds to the regularized network, where the regualrizer R is
trained only on x% of the data.

without having to perform meta-learning again? We propose the following solution:

Train the feature network, task network and regularizer on the initial dataset. On

the new data, finetune the task network and feature network using the regularizer

trained on the initial data. Note that, we do not perform meta learning again on

the new data, and so this is computationally efficient since meta-learning procedure

incurs significant overhead over a regular finetuning process. With approaches like

MLDG [3], meta-learning has to be performed even on the new data.

We simulate these experimental conditions as follows: In each setting, we

consider a fraction f of the PACS dataset as our intial dataset on which our model

and the regularizer are trained. We then finetune our model on the remaining data

using the trained regularizer. The performance of these models on the test set are

shown in Table. 7.5. We observe that there is little drop in performance for all f

values. Our approach is able to learn good regularizers even with 10% of the entire

dataset.
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Table 7.5: Experiments for training models on less data.

Data fraction f 0.1 0.2 0.3 0.4 0.5 1.0

Accuracy (in %) 82.86 83.11 83.42 83.62 83.60 83.71

Table 7.6: Effect of cross-domain generalization with varying number of layers regu-
larized on PACS dataset using Alexnet model. Cartoon is used as the test domain.

Layers regularized None fc8 fc7 + fc8 fc6 + fc7 + fc8

Accuracy (in %) 66.12 67.31 70.10 70.35

7.5.3 Effect of the number of layers regularized

In our training paradigm, the neural network is decomposed into feature and

task network, and the meta-regularization is performed only on the task network.

Deciding this feature/task network split is a design choice which needs to be un-

derstood. The effect of domain generalization performance on varying the number

of layers is reported in Table 7.6. This experiment is performed using the Alexnet

architecture on PACS dataset with Cartoon as the target domain. We observe that

as the number of regularization layers increases, the generalization performance in-

creases and saturates beyond a point.

7.5.4 Effect of the number of unrolling steps

In this experiment, we examine the effect of number of unrolling SGD updates

in the meta learning process (effect of l) on the cross-domain generalization perfor-

mance. We performed experiments with l = 1, 2, 3, 4, 5. The results are reported in

144



Table 7.7: Effect of number of unrolling steps in Metareg updates.

Number of inner steps l Accuracy (in %)

1 83.41
2 83.57
3 83.71
4 83.66
5 83.72

Table 7.7. Even with a 1- step update, our method achieves good performance im-

provement compared to the baseline. Performance keeps increasing with increasing

l and saturates after l = 3.

7.5.5 When does MetaReg work?

Understanding failure cases is important as it provides better insight on the

workings of our approach. We study this on Rotated-MNIST dataset – dataset

with MNIST digits rotated by 0◦, 10◦, 20◦, 30◦ and 60◦, each of which correponds

to one domain. The benefit of using this controlled dataset is that it is easier to

quantify domain shifts. For instance, 10◦ rotations are closer to 0◦ than 75◦. In

our experimets, the datasets corresponding to 0◦, 10◦ and 30◦ were used as source

domains, and 20◦ and 60◦ rotations are used as target domains. A 2-layer MLP

(784 → 128 → 128 → 10) is used as the task network, no feature network was

used. So, the entire network is regularized. Table 7.8 presents the results of the

cross-domain generalization on these two target domains.

We observe that there is an improvement in the performance on the 20◦ domain

and a drop in performance on the 60◦ domain. This is because the 60◦ domain
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Table 7.8: Effect of cross-domain generalization on the extent of domain shift.

Method Accuracy (in %) on 20◦ domain Accuracy (in %) on 60◦ domain

Baseline 95.9 57.3
MetaReg 96.7 56.8

presents much larger domain shift than the variations represented in the training

set. This suggests that MetaReg works as long as the shifts encountered in the test

set is similar to the variations captured in the training domains.

7.5.6 Visualizing the weights

We plot the histogram of the weights learnt by the task network with and

without the use of our regularizer in Fig. 7.2. The following observations can be

made: (1) For the network with regularization, there is a sharp peak at 0. This is

because the weights θi for which φi are positive are decayed to 0. (2) The weights of

the network with regularization has wider spread compared to the network without

regularization. This is because the weights θi for which φi are negative are boosted,

due to which certain weights have high values.

7.6 Conclusion and Future Work

In this chapter, we addressed the problem of domain generalization by using

regularization. The task of finding the desired regularizer that captures the notion

of domain generalization is modeled as a meta-learning problem. Experiments in-

dicate that the learnt regularizers achieve good cross-domain generalization on the
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benchmark domain generalization datasets. Some avenues for future work include

scalable meta-learning approaches for learning regularization functions over convo-

lutional layers while preserving the spatial dependency between the channels, and

extending our approach to deep reinforcement learning problems.
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Part IV

Robustness to Adversarial Shifts
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Chapter 8: Instance Adaptive Adversarial Training

8.1 Introduction

Distributional shifts in machine learning can exist in several forms. The pre-

vious sections of this dissertation focused on natural shifts, which are distributional

shifts that occur due to natural factors such as variations in environmental condi-

tions, physics of image acquisition, etc. In this chapter, we focus on a different type

of distributional shift, called adversarial shifts. In adversarial shifts, a malicious

adversary creates noisy samples with the intention of breaking the machine learning

system. The objective of the adversary is to create imperceptible noisy images that

fool the machine learning model.

Neural networks are shown to be extremely sensitive to adversarial noise. Ex-

tremely tiny perturbations to network inputs may be imperceptible to the human

eye, and yet cause major changes to outputs. Several papers have demonstrated the

vulnerability of neural networks in white-box settings [146, 147, 148], black-box set-

tings [149, 150], physical attacks [151], etc. This sensitivity is undesirable, especially

as we deploy the models in safety-critical applications.

One of the most effective and widely used methods for hardening networks

to small perturbations is “adversarial training” [148], in which a network is trained

149



Bird

Deer

Figure 8.1: Overview of instance adaptive adversarial training. Samples
close to the decision boundary (bird on the left) have nearby samples
from a different class (deer) within a small Lp ball, making the con-
straints imposed by PGD-8 / PGD-16 adversarial training infeasible.
Samples far from the decision boundary (deer on the right) can with-
stand large perturbations well beyond ε = 8. Our adaptive adversarial
training correctly assigns the perturbation radius (shown in dotted line)
so that samples within each Lp ball maintain the same class.
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using adversarially perturbed samples with a fixed perturbation size. By doing so,

adversarial training typically tries to enforce that the output of a neural network

remains nearly constant within an `p ball of every training input.

Despite its ability to increase robustness, adversarial training suffers from poor

accuracy on clean (natural) test inputs. The drop in clean accuracy can be as high

as 10% on CIFAR-10, and 15% on Imagenet [148, 152], making robust models

undesirable in some industrial settings. The consistently poor performance of robust

models on clean data has lead to the line of thought that there may be a fundamental

trade-off between robustness and accuracy [153, 154], and recent theoretical results

characterized this tradeoff [155, 156, 157].

In this work, we aim to understand and optimize the tradeoff between robust-

ness and clean accuracy. More concretely, our objective is to improve the clean

accuracy of adversarial training for a chosen level of adversarial robustness. Our

method is inspired by the observation that the constraints enforced by adversarial

training are infeasible; for commonly used values of ε, it is not possible to achieve la-

bel consistency within an ε-ball of each input image because the balls around images

of different classes overlap. This is illustrated on the left of Figure 8.1, which shows

that the ε-ball around a “bird” (from the CIFAR-10 training set) contains images

of class “deer” (that do not appear in the training set). If adversarial training were

successful at enforcing label stability in an ε = 8 ball around the “bird” training

image, doing so would come at the unavoidable cost of misclassifying the nearby

“deer” images that come along at test time. At the same time, when training im-

ages lie far from the decision boundary (eg., the deer image on the right in Fig 8.1),
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it is possible to enforce stability with large ε with no compromise in clean accuracy.

When adversarial training on CIFAR-10, we see that ε = 8 is too large for some

images, causing accuracy loss, while being unnecessarily small for others, leading to

sub-optimal robustness.

The above observation naturally motivates adversarial training with instance

adaptive perturbation radii that are customized to each training image. By choosing

larger robustness radii at locations where class manifolds are far apart, and smaller

radii at locations where class manifolds are close together, we get high adversarial

robustness where possible while minimizing the clean accuracy loss that comes from

enforcing overly-stringent constraints on images that lie near class boundaries. As

a result, instance adaptive training significantly improves the tradeoff between ac-

curacy and robustness, breaking through the pareto frontier achieved by standard

adversarial training. Additionally, we show that the learned instance-specific per-

turbation radii are interpretable; samples with small radii are often ambiguous and

have nearby images of another class, while images with large radii have unambiguous

class labels that are difficult to manipulate.

Parallel to our work, we found that Ding et al. [158] uses adaptive margins in a

max-margin framework for adversarial training. Their work focuses on improving the

adversarial robustness, which differs from our goal of understanding and improving

the robustness-accuracy tradeoff. Moreover, our algorithm for choosing adaptive

margins significantly differs from that of Ding et al. [158].
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8.2 Background

Adversarial attacks are data items containing small perturbations that cause

misclassification in neural network classifiers [146]. Popular methods for crafting

attacks include the fast gradient sign method (FGSM) [159] which is a one-step

gradient attack, projected gradient descent (PGD) [148] which is a multi-step ex-

tension of FGSM, the C/W attack [160], DeepFool [161], and many more. All these

methods use the gradient of the loss function with respect to inputs to construct

additive perturbations with a norm-constraint. Alternative attack metrics include

spatial transformer attacks [162], attacks based on Wasserstein distance in pixel

space [163], etc.

Defending against adversarial attacks is a crucial problem in machine learning.

Many early defenses [164, 165, 166], were broken by strong attacks. Fortunately,

adversarially training is one defense strategy that remains fairly resistant to most

existing attacks.

Let D = {(xi, yi)}ni=1 denote the set of training samples in the input dataset.

In this chapter, we focus on classification problems, hence, yi ∈ {1, 2, . . . nc}, where

nc denotes the number of classes. Let Fθ(x) : Rc×m×n → Rnc denote a neural

network model parameterized by θ. Classifiers are often trained by minimizing the

cross entropy loss given by

min
θ

1

n

∑
(xi,yi)∼D

−yi
[

log(Fθ(xi))
]
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where yi is the one-hot vector corresponding to the label yi. In adversarial training,

instead of optimizing the neural network over the clean training set, we use the

adversarially perturbed training set. Mathematically, this can be written as the

following min-max problem

min
θ

max
‖δi‖∞≤ε

1

n

∑
(xi,yi)∼D

−yi
[

log(Fθ(xi + δi))
]

(8.1)

This problem is solved by an alternating stochastic method that takes minimiza-

tion steps for θ, followed by maximization steps that approximately solve the inner

problem using k steps of PGD. For more details, refer to Madry et al. [148].

8.3 Instance Adaptive Adversarial Training

To remedy the shortcomings of uniform perturbation radius in adversarial

training (Section 8.1), we propose Instance Adaptive Adversarial Training (IAAT),

which solves the following optimization:

min
θ

max
‖δi‖∞<εi

1

n

∑
(xi,yi)∼D

−yi
[

log(Fθ(xi + δi))
]

(8.2)

Like vanilla adversarial training, we solve this by sampling mini-batches of images

{xi}, crafting adversarial perturbations {δi} of size at most {εi}, and then updating

the network model using the perturbed images.

The proposed algorithm is distinctive in that it uses a different εi for each

image xi. Ideally, we would choose each εi to be as large as possible without finding
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ε = 0.20 ε = 0.83 ε = 1.71 ε = 1.25

ε
ε

ε

(a) Samples from bottom 1% ε

ε = 28.07 ε = 28.13 ε = 28.23 ε = 28.57

(b) Samples from top 1% ε

Figure 8.2: Visualizing training samples and their perturbations. The
left panel shows samples that are assigned small ε (displayed below im-
ages) during adaptive training. These images are close to class bound-
aries, and change class when perturbed with ε ≥ 8. The right panel show
images that are assigned large ε. These lie far from the decision bound-
ary, and retain class information even with very large perturbations. All
ε live in the range [0, 255].

Algorithm 6 Adaptive adversarial training algorithm

Require: niter: Number of training iterations, nwarm: Warmup period
Require: PGDk(x, y, ε) : Function to generate PGD− k adversarial samples with

ε norm-bound
Require: εw: ε used in warmup

1: for t in 1 : niter do
2: Sample a batch of training samples {(xi, yi)}nbatchi=1 ∼ D
3: if t < nwarm then
4: εi = εw
5: else
6: Choose εi using Alg 7
7: end if
8: xadvi = PGD(xi, yi, εi)
9: S+ = {i | F (xi) is correctly classified as yi}

10: S− = {i | F (xi) is incorrectly classified as yi}
11: minθ

1
Nbatch

[∑
i∈S+
Lcls(xadvi , yi) +

∑
i∈S− Lcls(xi, yi)

]
12: end for
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Algorithm 7 ε selection algorithm

Require: i: Sample index, j: Epoch index
Require: β: Smoothing constant, γ: Discretization for ε search.

1: Set ε1 = εmem[j − 1, i] + γ
2: Set ε2 = εmem[j − 1, i]
3: Set ε3 = εmem[j − 1, i]− γ
4: if Fθ(PGDk(xi, yi, ε1)) predicts as yi then
5: Set εi = ε1
6: else if Fθ(PGDk(xi, yi, ε2)) predicts as yi then
7: Set εi = ε2
8: else
9: Set εi = ε3

10: end if
11: εi ← (1− β)εmem[j − 1, i] + βεi
12: Update εmem[j, i]← εi
13: Return εi

images of a different class within the εi-ball around xi. Since we have no a-priori

knowledge of what this radius is, we use a simple heuristic to update εi after each

epoch. After crafting a perturbation for xi, we check if the perturbed image was

a successful adversarial example. If PGD succeeded in finding an image with a

different class label, then εi is too big, so we replace εi ← εi−γ. If PGD failed, then

we set εi ← εi + γ.

Since the network is randomly initialized at the start of training, random

predictions are made, and this causes {εi} to shrink rapidly. For this reason, we

begin with a warmup period of a few (usually 10 epochs for CIFAR-10/100) epochs

where adversarial training is performed using uniform ε for every sample. After the

warmup period ends, we perform instance adaptive adversarial training.

A detailed training algorithm is provided in Alg. 6.
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(a) CIFAR-10 (b) CIFAR-100

Figure 8.3: Improving the accuracy-robustness trade-off. Our
method (shown in red) which adapts a unique εtr value for each training
instance, outperforms standard adversarial training with any fixed εtr
value (shown in blue). We report natural accuracy and adversarial accu-
racy in response to a PGD-1000 adversarial attack with εte = 8 for each
method. Adaptive training (IAAT) breaks through the Pareto frontier
achieved by standard adversarial training with a fixed εtr.

8.4 Experiments

We evaluate the robustness and generalization of our models using the follow-

ing metrics: (1) test accuracy of unperturbed (natural) test samples, (2) adversarial

accuracy of white-box PGD attacks, (3) adversarial accuracy of transfer attacks and

(4) accuracy of test samples under common image corruptions [4]. Following the

protocol introduced in [4], we do not train our models on any image corruptions.

8.4.1 CIFAR

On CIFAR-10 and CIFAR-100 datasets, we perform experiments using Resnet-

18 and WideRenset-32-10 models following [148, 153]. All models are trained using
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Table 8.1: Improving Robustness-Accuracy Trade-off (CIFAR-10): PGD
attacks are generated with εte = 8. PGD10 and PGD100 attacks are generated with
5 random restarts, while PGD1000 uses 2 random restarts. Our approach significantly
improves natural accuracy with a minor drop in adversarial robustness compared to
adversarial training. Clean performance shown for reference.

Method Natural Whitebox acc. (in %) Transfer (in %) Corruption
acc. (in %) PGD10 PGD100 PGD1000 acc. (PGD1000) acc. (in %)

Resnet-18
Clean 94.21 0.02 0.00 0.00 3.03 72.71

Adv (εtr = 8) 83.20 43.79 42.30 42.36 59.80 73.73
IAAT 87.26 43.08 41.16 41.16 59.87 78.82

WideResnet 32-10
Clean 95.50 0.05 0.00 0.00 5.02 78.35

Adv (εtr = 8) 86.85 46.86 44.82 44.84 62.77 77.99
IAAT 91.34 48.53 46.50 46.54 58.20 83.13

PGD-10 attacks i.e., 10 steps of PGD iterations to craft adversarial attacks during

training. In the whitebox setting, models are evaluated on: (1) PGD-10 attacks

with 5 random restarts, (2) PGD-100 attacks with 5 random restarts, and (3) PGD-

1000 attacks with 2 random restarts. For transfer attacks, an independent copy

of the model is trained using the same training algorithm and hyper-parameter

settings, and PGD-1000 adversarial attacks with 2 random restarts are crafted on the

surrogate model. Additionally, we report accuracy over the 19 corruptions proposed

in CIFAR10-C [4].

Beating the robustness-accuracy tradeoff: In adversarial training, the per-

turbation radius ε is a hyper-parameter. Training models with varying ε produces

a robustness-accuracy tradeoff curve - models with small training ε achieve better

natural accuracy and poor adversarial robustness, while models trained on large ε
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Table 8.2: Improving Robustness-Accuracy Trade-off (CIFAR-100): PGD
attacks are generated with ε = 8. PGD10 and PGD100 attacks are generated with 5
random restarts, while PGD1000 uses 2 random restarts. Our approach significantly
improves natural accuracy with a minor drop in adversarial robustness compared to
fixed adversarial training. Clean performance shown for reference.

Method Natural Whitebox acc. (in %) Transfer acc. (in %)
acc. (in %) PGD10 PGD100 PGD1000 PGD1000

Resnet-18
Clean 74.88 0.02 0.00 0.01 1.81

Adv(εtr = 8) 55.11 20.69 19.68 19.91 35.57
IAAT 63.90 18.50 17.10 17.11 35.74

WideResnet 32-10
Clean 79.91 0.01 0.00 0.00 1.20

Adv(εtr = 8) 59.58 26.24 25.47 25.49 38.10
IAAT 68.80 26.17 24.22 24.36 35.18

have improved robustness and poor natural accuracy. To generate this tradeoff, we

perform adversarial training with ε in the range {1, 2, . . . 8}. Instance adaptive ad-

versarial training is then compared with respect to this tradeoff curve in Fig. 8.3(a),

8.3(b). Two versions of IAAT are reported – with and without a warmup phase.

In both versions, we clearly achieve an improvement over the accuracy-robustness

tradeoff. Use of the warmup phase helps retain robustness with a drop in natural

accuracy compared to its no-warmup counterpart.

Clean accuracy improves for a fixed level of robustness: On CIFAR-10,

as shown in Table. 8.1, we observe that our instance adaptive adversarial training

algorithm achieves similar adversarial robustness as the adversarial training baseline.

However, the accuracy on clean test samples increases by 4.06% for Resnet-18 and

4.49% for WideResnet-32-10. We also observe that the adaptive training algorithm

improves robustness to unseen image corruptions. This points to an improvement
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(a) CIFAR-10 (b) CIFAR-100 (c) CIFAR-100 (d) CIFAR-100

Figure 8.4: Evaluating robustness-accuracy tradeoff in Imagenet.
Models are evaluated on test set containing a mixture of natural and ad-
versarial samples, with τ fraction of adversarial samples. We plot τ
Adversarial accuracy + (1 − τ) Natural accuracy as τ is varied. Archi-
tecture used is Renset-152. Our approach achieves better tradeoff curve
for most test settings.

in overall generalization ability. On CIFAR-100 (Table. 8.2), the performance gain

in natural test accuracy further increases - 8.79% for Resnet-18, and 9.22% for

Wideresnet-32-10. The adversarial robustness drop is marginal.

Maintaining performance over a range of test εte: Next, we analyze the

adversarial robustness over a sweep of test-time ε values for PGD-1000. Fig. 8.5(a),

8.5(b) shows an adversarial training baseline where εtr = 8 performs well at high εte

regimes and poorly at low εte regimes. On the other hand, adversarial training with

εtr = 2 has a reverse effect, performing well at low εte and poorly at high εte regimes.

Our instance adaptive training algorithm maintains good performance over all εte

regimes, achieving slightly lower performance than the εtr = 2 model for small test

εte and dominating all models for larger test εte. Thus, we reiterate that the benefit

of instance adaptative adversarial training is to improve the robustness-accuracy

trade-off.
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(a) CIFAR-10 (b) CIFAR-100

Figure 8.5: Varying attack strengths. Plot of adversarial robustness
over a sweep of test ε. IAAT maintains good performance over the entire
range of test ε.

Interpretability of ε: We find that the values of εi chosen by our adaptive al-

gorithm correlate well with our own human concept of class ambiguity. Figure 8.2

shows that a sampling of images that receive small εi contains many ambiguous

images, and these images are perturbed into a (visually) different class using ε = 16.

In contrast, images that receive a large εi have a visually definite class, and are not

substantially altered by an ε = 16 perturbation.

Robustness to other attacks: For all experiments, our instance adaptive algo-

rithm is trained using only PGD attacks. Table. 8.3 evaluates IAAT and adversarial

training (fixed εtr = 8) on additional adversarial attacks at test time. IAAT achieves

a minor robustness improvement, on average, against other gradient-based attacks,

while significantly improving the natural accuracy.
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Table 8.3: Robustness Across Different Adversarial Attacks (CIFAR-10,
WideResnet 32-10). We report the robustness across 4 different adversarial at-
tacks for both our instance adaptive approach (IAAT) and standard adversarial
training using PGD-10 with fixed εtr = 8. IAAT outperforms standard adversarial
training both on clean data and new test-time attacks on which models were not
trained on. Results in accuracy (%).

Training Algorithm
Test Time Attack Adversarial training IAAT

Natural acc. 86.85 91.34
PGD-1000 [148] 44.84 46.54
DeepFool [161] 65.28 66.58
MIFGSM [167] 54.66 53.99
CW40 [160] 55.62 56.80

Table 8.4: Improving Robustness-Accuracy Trade-off (ImageNet): We re-
port robustness against PGD-1000 attacks whitebox attacks for varying test per-
turbation strengths (εte) - results are in accuracy (%). Additionally, we report
robustness to common image corruptions (ImageNet-C) using the proposed mCE
metric [4]. (↑) indicates higher numbers are better, while (↓) indicates lower numbers
are better. Our approach, IAAT, improves natural accuracy, adversarial robustness
on lower perturbation regimens, and robustness to corruptions.

Method Natural Whitebox acc. (in %) (↑) Corruption
acc. (in %) (↑) εte = 4 εte = 8 εte = 12 εte = 16 mCE (↓)

Resnet-50

Clean 75.80 0.64 0.18 0.00 0.00 76.69
Adv (εtr = 16) 50.99 50.89 49.11 44.71 35.82 95.48

IAAT 62.71 61.52 54.63 39.90 22.72 85.21
Resnet-101

Clean 77.10 0.83 0.12 0.00 0.00 70.37
Adv (εtr = 16) 55.42 55.11 53.07 48.35 39.08 91.45

IAAT 65.29 63.83 56.62 41.51 23.91 79.52
Resnet-152

Clean 77.60 0.57 0.08 0.00 0.00 69.27
Adv (εtr = 16) 57.26 56.77 54.75 49.86 40.40 89.31

IAAT 67.44 65.97 59.28 45.01 27.85 78.53
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Table 8.5: Ablation: Effect of warm-up on CIFAR-10 We find that training
IAAT with warmup is important as it increases the adversarial robustness signifi-
cantly with minor drops in clean performance.

Method Natural Whitebox acc. (in %) Transfer acc.(%) Corruption
acc. (%) PGD10 PGD100 PGD1000 PGD1000 acc. (in %)

Resnet-18
IAAT (no warm) 89.62 40.55 38.15 38.08 58.89 81.10

IAAT (warm) 87.26 43.08 41.16 41.16 59.87 78.82

WideResnet 32-10
IAAT (no warm) 92.62 45.12 41.08 41.11 53.08 84.92

IAAT (warm) 90.67 48.53 46.50 46.54 58.20 83.13

Table 8.6: Ablation: Effect of warmup (CIFAR-100). Warm-up is important
to maintain adversarial robustness of IAAT.

Method Natural Whitebox acc. (in %) Transfer acc.(%)
acc. (in %) PGD10 PGD100 PGD1000 PGD1000

Resnet-18
Adaptive (no warm) 68.34 14.76 13.29 13.30 32.39

Adaptive (warm) 63.90 18.50 17.10 17.11 35.74

WideResnet 32-10
Adaptive (no warm) 75.48 18.14 13.78 13.71 24.00

Adaptive (warm) 68.80 26.17 24.22 24.36 35.18

Table 8.7: Ablation: IAAT vs exact line search. IAAT achieves comparable
accuracies (%) to exhaustive line search for selecting ε (CIFAR-10, Resnet-18).

Algorithm Natural acc. PGD-10 PGD-1000

Full line search 88.67 43.26 41.37
IAAT 87.26 43.08 41.16

163



(a) CIFAR-10 (b) CIFAR-100

Figure 8.6: Instance specific ε chosen vs training epoch. ε values
increase during training as the model becomes more robust.

8.4.2 Imagenet

Following the protocol introduced in [152], we attack Imagenet models using

random targeted attacks instead of untargeted attacks as done in previous experi-

ments. During training, adversarial attacks are generated using 30 steps of PGD.

As a baseline, we use adversarial training with a fixed ε of 16/255. This is the set-

ting used in [152]. Adversarial training on Imagenet is computationally intensive.

To make training practical, we use distributed training with synchronized SGD on

64/128 GPUs. More implementation details can be found in Balaji et al. [168].

At test time, we evaluate models on clean test samples and on whitebox attacks

(PGD-1000) with ε = {4, 8, 12, 16}. Additionally, we also report normalized mean

corruption error (mCE), an evaluation metric introduced in [4] to test the robustness

of neural networks to image corruptions. This metric reports mean classification

error of different image corruptions averaged over varying levels of degradation.
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Note that while accuracies are reported for natural and adversarial robustness, mCE

denotes classification errors, so lower numbers are better.

To measure the tradeoff between robustness and accuracy, we evaluate perfor-

mance on test set containing τ fraction of adversarial samples for a given test εte.

The fraction τ is varied from 0 to 1. When τ = 0, the test set contains only the

natural samples and when τ = 1 it contains only the adversarial samples. Evaluat-

ing over a sweep of τ thus gives a complete characterization of robustness-accuracy

tradeoff. A plot showing this performance curve for Resnet-152 architecture is shown

in Figure. 8.4. For εte = {4, 8}, IAAT consistently outperforms adversarial training

for all values of τ . For εte = 12 and εte = 16, IAAT outperforms adversarial train-

ing for ∼ 75% and ∼ 50% of the curve. Thus, IAAT achieves better tradeoff than

adversarial training. In εte = 16, IAAT achieves comparable tradeoff to adversarial

training. Note that εte = 16 is generally considered a very large perturbation radius

(CIFAR experiments are all evaluated with the standard value εte = 8).

A complete set of results showing natural and adversarial accuracies for various

architectures and test ε is shown in Table. 8.4. We observe a huge drop in natural

accuracy for adversarial training (25%, 22% and 20% drop for Resnet-50, 101 and

152 respectively). Adaptive adversarial training significantly improves the natural

accuracy – we obtain a consistent performance gain of 10 + % on all three models

over the adversarial training baseline. On whitebox attacks, IAAT outperforms the

adversarial training baseline on low ε regimes, however a drop of 13% is observed

at high ε’s (ε = 16). On the corruption dataset, our model consistently outperforms

adversarial training.
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8.5 Ablation experiments

Effect of warmup. Recall from Section 8.3 that during warmup, adversarial train-

ing is performed with uniform norm-bound constraints. Once the warmup phase

ends, we switch to instance adaptive training. From Table 8.5 and 8.6, we observe

that when warmup is used, adversarial robustness improves with a small drop in

natural accuracy, with more improvements observed in CIFAR-100. However, both

these settings improve the accuracy-robustness tradeoff ( Fig. 8.3(a), 8.3(b)).

Instance Specific ε vs Epoch. Next, we visualize the evolution of ε over epochs

in adaptive adversarial training (CIFAR-10). Fig 8.6(a) shows how the average ε

chosen changes during learning while Fig 8.6(b) show how the ε for three randomly

sampled images changes during learning. We observe that average ε converges to

around 11, which is higher than the default CIFAR-10 adversarial training setting

of εtr = 8. In addition, some samples converge to high ε values while others remain

low, showcasing the adaptability of our approach.

Natural sample exposure. Instance adaptive adversarial training uses natural

samples during training as opposed to just using adversarial samples as done in

adversarial training. In this experiment, we intend to study if the improvements in

natural accuracy is an outcome of natural sample exposure during IAAT training.

To do this, we train models using a variation of adversarial training, called mixed

adversarial training, where the loss function used is a linear combination of natural

loss (cross entropy on unperturbed samples) and adversarial loss. That is, models are

trained using α Natural loss + (1−α) Adversarial loss, for a given constant α. A plot
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(a) CIFAR-10 (b) CIFAR-100

Figure 8.7: Effect of incorporating clean data during training.
Comparison of IAAT with mixed adversarial training trained using α Ad-
versarial loss + (1−α) Clean loss. IAAT clearly improves the robustness-
accuracy tradeoff compared to mixed adversarial trianing for all values
of τ .

comparing robustness-accuracy tradeoff for models trained using mixed adversarial

training and IAAT is shown in Figure 8.7(a), 8.7(b). IAAT achives significant

improvement in natural accuracy and the robustness-accuracy tradeoff over mixed

adversarial training. Hence, just exposing natural samples during training does not

help adversarial training generalize better. This shows that improvements achieved

by IAAT is due to the instance adaptive algorithm.

Other heuristics. We are interested in estimating instance-specific perturbation

radius εi such that predictions are consistent within the chosen εi-ball. To obtain an

exact estimate of such an εi, we can perform a line search as follows: Given a dis-

cretization η and a maximum perturbation radius εmax, generate PGD attacks with

radii {iη}εmax/ηi=1 . Choose the desired εi as the maximum iη for which the prediction

remains consistent as that of the ground-truth label. We compare the performance of
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Table 8.8: Comparison with Mixup.

Method Natural Whitebox acc. (in %) Transfer attack (in %)
acc. (in %) PGD10 PGD100 PGD1000 PGD1000

Resnet-18

Mixup 89.47 42.60 38.42 38.49 59.48
IAAT 87.26 43.08 41.16 41.16 59.87

WideResnet 32-10
Mixup 92.57 45.01 36.6 36.44 63.57
IAAT 90.67 48.53 46.50 46.54 58.20

exact line search with that of IAAT in Table 8.7. We observe that exact line search

marginally improves compared to IAAT. However, exact line search is computa-

tionally expensive as it requires performing εmax/η additional PGD computations,

whereas IAAT requires only 2.

Comparison with Mixup A recent paper that addresses the problem of improving

natural accuracy in adversarial training is [169], where adversarially trained models

are optimized using mixup loss instead of the standard cross-entropy loss. In this

paper, natural accuracy was shown to improve with no drop in adversarial robust-

ness. However, the robustness experiments were not evaluated on strong attacks

(experiments were reported only on PGD-20). We compare our implementation of

mixup adversarial training with IAAT on stronger attacks in Table. 8.8. We ob-

serve that while natural accuracy improves for mixup, drop in adversarial accuracy

is much higher than IAAT.
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8.6 Conclusion

In this chapter, we present instance adaptive adversarial training (IAAT), a

method to improve the robustness-accuracy tradeoff for adversarial training. We

show that realizable robustness is a sample-specific attribute: samples close to the

decision boundary can only achieve robustness within a small ε ball, as they contain

samples from a different class beyond this radius. On the other hand samples far

from the decision boundary can be robust on a relatively large perturbation radius.

Motivated by this observation we estimate sample-specific perturbation radii within

which to enforce label consistency. Our proposed algorithm has empirically been

shown to improve the robustness-accuracy tradeoff in CIFAR-10, CIFAR-100 and

Imagenet datasets.
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Part V

Conclusions and Future Research Directions
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Chapter 9: Conclusions and Future Research Directions

9.1 Summary

In this dissertation, we presented several techniques for handling out-of-distribution

shifts in deep learning systems. We presented three broad classes of approaches in-

volving detection, adaptation and generalization to out-of-distribution shifts. In the

first part, we looked at probabilistic modeling of the data using deep generative

models. We showed how GANs can be used for likelihood estimation, which was

then used for detecting out-of-distribution samples as outliers. In the second part,

we looked at adaptation algorithms, where the goal was to adapt the neural networks

to an unlabeled target domain so that the performance on the target distribution

improves. We presented three algorithms - Generate to Adapt, Robust Optimal

Transport and Normalized Wasserstein measure to perform domain adaptation un-

der various settings, and studied their properties.

In the last two parts of the dissertation, we focused on robust training algo-

rithms for generalization to out-of-distribution shifts. In the third part, we proposed

Metareg, an algorithm for learning data-dependent regularization functions using

meta-learning. The regularization function was used for training models that give

better out-of-distribution performance on novel test distributions. Finally, in the
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last part of the dissertation, we proposed Instance Adaptative Adversarial Training,

a robust training algorithm for improving robustness-accuracy tradeoff with respect

to adversarial shifts.

9.2 Future Directions

Online Adaptation: The adaptation algorithms discussed in this dissertation

work on a static setting, one in which both the source and the target domains

are stationary. In real world, however, data distributions change continually with

time. Using the static adaptation algorithms on such dynamic environments can

be undesirable since static algorithms have high sample complexity and can lead

to catastrophic forgetting. Hence, it is desirable to develop scalable adaptation

algorithms that can seamlessly adapt to evolving distributions.

Improved Models for OOD Generalization: Models trained on Imagenet,

while being extremely accurate on the in-distribution validation set, perform poorly

on out-of-distribution datasets such as corruptions [170], paintings, Imagenet rendi-

tions [171], etc. Hence, any downstream visual recognition system that uses these

model weights for fine-tuning will have poor OOD generalization as well. Data

augmentation seems to be the most effective technique for improving OOD gener-

alization, but there still exist a huge performance gap between the in-distribution

and out-of-distribution accuracies [171]. Hence, it is of utmost interest to develop

better training algorithms (such as Arjovsky et al. [172]) that can yield robust and

generalizable models to these unseen out-of-distribution shifts.
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Large Scale Likelihood Estimation: The likelihood estimation framework we

developed in this dissertation fails to work effectively on large-scale datasets. Other

likelihood-based models such as normalizing flows [173] that have been developed

recently can work on large-scale datasets. But, they have several failure modes such

as assigning high likelihood scores to out-of-distribution samples [174]. Hence, it

is of interest to develop likelihood-based generative models that are both scalable,

have good sample generation quality and provide good estimates of sample likelihood

scores for tasks such as out-of-distribution detection.

173



Bibliography

[1] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S.
Yu. Transfer feature learning with joint distribution adaptation. In IEEE
International Conference on Computer Vision, ICCV 2013, 2013.

[2] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel
for unsupervised domain adaptation. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[3] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Learning to
generalize: Meta-learning for domain generalization. CoRR, abs/1710.03463,
2017.

[4] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robust-
ness to common corruptions and perturbations. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?

id=HJz6tiCqYm.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778, 2016.

[6] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-
CNN. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2961–2969, 2017.
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[61] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Sinkhorn-AutoDiff:
Tractable Wasserstein learning of generative models. arXiv preprint
arXiv:1706.00292, 2017.

[62] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644,
2015.

[63] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and Shakir
Mohamed. Variational approaches for auto-encoding generative adversarial
networks. arXiv preprint arXiv:1706.04987, 2017.

[64] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf.
Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

[65] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial vari-
ational Bayes: Unifying variational autoencoders and generative adversarial
networks. arXiv preprint arXiv:1701.04722, 2017.

[66] Yogesh Balaji, Hamed Hassani, Rama Chellappa, and Soheil Feizi. Entropic
GANs meet vaes: A statistical approach to compute sample likelihoods in
GANs. In International Conference on Machine Learning, pages 414–423.
PMLR, 2019.

[67] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsupervised feature learn-
ing, volume 2011, page 5, 2011.

[68] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

[69] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015.

[70] Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems
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man, David Pfau, Tom Schaul, and Nando de Freitas. Learning
to learn by gradient descent by gradient descent. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 29, pages 3981–3989.
Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6461-learning-to-learn-by-gradient-descent-by-gradient-descent.

pdf.

[133] Sebastian Thrun and Lorien Pratt, editors. Learning to Learn. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1998. ISBN 0-7923-8047-9.

[134] Jürgen Schmidhuber. On learning how to learn learning strategies. Technical
report, 1995.

[135] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.
One-shot visual imitation learning via meta-learning. In Proceedings of Ma-
chine Learning Research, 2017.

[136] Damien Teney and Anton van den Hengel. Visual question answering as a
meta learning task. CoRR, abs/1711.08105, 2017.

185

http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf
http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf
http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf


[137] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invari-
ant feature representation. In Proceedings of the 30th International Conference
on Machine Learning, W&CP 28(1), pages 10–18. JMLR, 2013. Volume 28,
number 1.

[138] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi.
Domain generalization for object recognition with multi-task autoencoders.
In 2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, 2015.

[139] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and An-
tonio Torralba. Undoing the damage of dataset bias. In Proceedings of the
12th European Conference on Computer Vision - Volume Part I, ECCV’12,
2012.

[140] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper,
broader and artier domain generalization. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages
5543–5551, 2017.

[141] Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning: Learning to
learn in the concept space. CoRR, abs/1802.03596, 2018.

[142] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with
structural correspondence learning. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’06, 2006.

[143] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg:
Towards domain generalization using meta-regularization. Advances in Neural
Information Processing Systems, 31:998–1008, 2018.

[144] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Kr-
ishnan, and Dumitru Erhan. Domain separation networks. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 29, pages 343–
351. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6254-domain-separation-networks.pdf.

[145] Minmin Chen, Zhixiang Eddie Xu, Kilian Q. Weinberger, and Fei Sha.
Marginalized denoising autoencoders for domain adaptation. In ICML. icml.cc
/ Omnipress, 2012.

[146] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In International Conference on Learning Representations, 2014. URL
http://arxiv.org/abs/1312.6199.

186

http://papers.nips.cc/paper/6254-domain-separation-networks.pdf
http://papers.nips.cc/paper/6254-domain-separation-networks.pdf
http://arxiv.org/abs/1312.6199


[147] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
On adaptive attacks to adversarial example defenses. arXiv preprint
arXiv:2002.08347, 2020.

[148] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rJzIBfZAb.

[149] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box
adversarial attacks with limited queries and information. In International
Conference on Machine Learning, pages 2137–2146. PMLR, 2018.

[150] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and
Matthias Hein. Square attack: a query-efficient black-box adversarial attack
via random search. In European Conference on Computer Vision, pages 484–
501. Springer, 2020.

[151] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples
in the physical world, 2016.

[152] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming
He. Feature denoising for improving adversarial robustness. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[153] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui,
and Michael Jordan. Theoretically principled trade-off between robustness
and accuracy. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 7472–7482, Long
Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.

mlr.press/v97/zhang19p.html.

[154] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. Robustness may be at odds with accuracy. In 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019.

[155] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial vulnerability for
any classifier. In Advances in Neural Information Processing Systems, pages
1178–1187, 2018.

[156] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Gold-
stein. Are adversarial examples inevitable? arXiv preprint arXiv:1809.02104,
2018.

[157] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. The
curse of concentration in robust learning: Evasion and poisoning attacks from

187

https://openreview.net/forum?id=rJzIBfZAb
http://proceedings.mlr.press/v97/zhang19p.html
http://proceedings.mlr.press/v97/zhang19p.html


concentration of measure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4536–4543, 2019.

[158] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang.
Max-margin adversarial (mma) training: Direct input space margin maximiza-
tion through adversarial training. arXiv preprint arXiv:1812.02637, 2018.

[159] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

[160] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 39–57, 2017.

[161] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 2574–2582, 2016.

[162] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
Spatially transformed adversarial examples. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=

HyydRMZC-.

[163] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial exam-
ples via projected Sinkhorn iterations. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research, pages 6808–
6817. PMLR, 2019.

[164] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer
encoding: One hot way to resist adversarial examples. In International Con-
ference on Learning Representations, 2018. URL https://openreview.net/

forum?id=S18Su--CW.

[165] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Pro-
tecting classifiers against adversarial attacks using generative models. In
International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=BkJ3ibb0-.

[166] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean
Kossaifi, Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar.
Stochastic activation pruning for robust adversarial defense. In International
Conference on Learning Representations, 2018. URL https://openreview.

net/forum?id=H1uR4GZRZ.

188

http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=HyydRMZC-
https://openreview.net/forum?id=HyydRMZC-
https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=H1uR4GZRZ


[167] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[168] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adver-
sarial training: Improved accuracy tradeoffs in neural nets. arXiv preprint
arXiv:1910.08051, 2019.

[169] Alex Lamb, Vikas Verma, Juho Kannala, and Yoshua Bengio. Interpolated
adversarial training: Achieving robust neural networks without sacrificing ac-
curacy. CoRR, abs/1906.06784, 2019.

[170] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network
robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261, 2019.

[171] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang,
Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al.
The many faces of robustness: A critical analysis of out-of-distribution gener-
alization. arXiv preprint arXiv:2006.16241, 2020.
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