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Chapter 1: Introduction

Cluster algebras were first defined in the early 2000s by S. Fomin and A.

Zelevinsky [1–4] as an explanation of certain functional recurrences called Y-systems

and as a way of organizing particular bases in the theory of quantum groups. They

have since enjoyed many applications to other areas such as Teichmüller theory [5,6],

representation theory [7,8], supersymmetric Yang-Mills theory [9], and recently they

were used in a vital way in a proof of Zagier’s conjecture in weight 4 [10].

Essentially, a cluster algebra provides an atlas of coordinate charts on a vari-

ety, called a “cluster variety”, along with transition maps which satisfy a number

of interesting and important properties. The coordinate variables of each chart are

called the “cluster variables”, and the transition maps are called “mutations” be-

tween the clusters. The data that controls the mutations is encoded by a “quiver”

which underlies each cluster. The cluster algebra is the Z algebra generated by all

of the cluster variables, and the cluster variety is the algebraic variety obtained by

gluing an algebraic torus for each cluster along the mutation maps.

One often finds that there are sequences of mutations which returns you to

a cluster with the same underlying quiver, but with new cluster variables. The

collection of such transformations forms a group called the “cluster modular group”.
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When the cluster algebra at hand has finitely many clusters, this group is finite and

one may easily compute all of the information that the cluster algebra encapsulates

directly. However, most cluster algebras are not “finite type” and have infinitely

many clusters.

This thesis is an attempt to introduce and study a collection of functions

assigned to any cluster variety that are invariant under specified subgroups of the

cluster modular group. It is our hope that these functions will encode important

information about infinite sequences of mutations, and that they will in some ways

behave like cluster variables which live outside of the reach of regular mutation.

1.1 Motivation

Important examples of cluster algebras arise in a natural way from coordinate

rings of double Bruhat Cells, flag varieties and Grassmannians [3, 11]. These typi-

cally give cluster algebras of “Geometric Type” meaning that the combinatorial data

underlying the algebra has a simple description in terms of quivers and mutations.

In their seminal papers [5, 12, 13], Fock and Goncharov construct algebraic

versions of higher Teichmüller spaces consisting of particular types of representations

of surface groups into semi simple split real Lie groups. They explicitly construct all

such representations and show that they may be realized as the positive real valued

points of a pair of cluster varieties called a cluster ensemble. These cluster ensembles

have a number of novel properties, e.g. there is a duality between a cluster ensemble

associated with the surface S and Lie group G and the ensemble associated with
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the same surface and the Langlands dual group.

Most of these examples are not associated with cluster algebras that have

finitely many clusters.

Example 1.1.1. The coordinate rings of the affine cones over the Grassmannians of

k planes in n space, Gr(k, n), have a cluster algebra structure on them, as shown by

Scott [11]. These algebras only have finitely many clusters when (k−2)(n−k−2) < 4.

One notices from this example, that there is not an obvious change in the

structure of the Grassmannian when we consider one associated with a finite type

cluster algebra and one associated with an infinite type cluster algebra. This leads

us to the problem of determining what information encoded in the structure of finite

type cluster algebras carry over into the infinite type setting, and what information

is lost or modified. Mutation invariant functions are examples of new phenomenon

appearing in the infinite type setting, and we find that they appear naturally as a

part of the solution to this problem.

1.1.1 Canonical basis

An important problem which arises in the study of all forms of cluster algebras,

is the task of finding a “canonical basis” of a cluster algebra. Such a basis gives

a basis of the cluster algebra as a vector space and satisfies some particularly nice

positivity properties. For cluster algebras with finitely many clusters, this basis

simply consists of the cluster variables [14]. When the cluster algebra has infinitely

many clusters, there are usually basis elements that do not appear in any cluster;
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this is our primary example of information encoded in finite type cluster algebras

that must be modified in the infinite type setting.

Canonical bases have been studied by Zelevinsky in [15] for an “affine Ã1

type” cluster algebra, by Muskier, Shiffler, and Williams in [16] for cluster algebras

associated with surfaces, and by Geiss, Leclerc and Schröer in [17] for more general

algebras.

Through their duality map, Fock and Goncharov construct a canonical basis

for the cluster ensemble associated with surface group representations into G =

PSL(n,R). Gross, Hacking, Kontsevich and Keel construct canonical basis for clus-

ter ensembles satisfying some technical conditions in [18]. Their basis, called the

“theta basis”, is constructed using entirely different machinery than that of Fock

and Goncharov.

Our notion of mutation invariant function produces elements of canonical bases

in many cases.

Example 1.1.2. Let C be the cluster algebra associated with an affine Ã1 quiver, as

studied in [15]. We describe this algebra in examples 1.2.1 and 3.1.1. We write {ai}

for the collection of cluster variables found by mutations. The invariant F =
a20+a21+1

a0a1

is an example of an element of a canonical basis of a cluster algebra which is not

a cluster variable. Let Ck(x) be the normalized Chebychev polynomial defined by

Ck(λ+ λ−1) = λk + λ−k. A canonical basis of this cluster algebra is given by

B =
{
{ai|i ∈ Z}, {Ck(F )|k ∈ Z>0}

}
. (1.1)

This same basis is computed in many different ways, and it is not clear why
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the exact same function F appears each time. This function is realized as a cluster

character in [8, 17], a trace function in [5], a theta function in [18], an element of

the bracelet basis of a surface skein algebra in [16, 19] among others. Viewing the

functions associated with each of these constructions individually, we may see that

they always produce manifestly mutation invariant functions. Our classification

theorem essentially says that they must all be functions of the same invariant. We

conjecture (see 6.6.1) that there is a canonical basis of mutation invariants which

unifies these different constructions.

1.1.2 Other examples

Several other examples of cluster ensemble invariants have already been noted

in the literature, but they have not been studied in a unified way. Of these examples,

the invariant of the Markov quiver, shown in example 3.1.3, is probably the most well

known and studied. This function is essentially the classical Markov Diophantine

equation x2+y2+z2 = 3xyz, and its mutation invariance encodes the transformation

of Markov triples (x, y, z)→ (x, y, x
2+y2

z
) .

Some examples of similar Diophantine equations arising from cluster algebras

were studied in [20], and we recall such an equation in example 3.2.2. The invariants

of the Somos 4 and 5 sequences studied in [21] are further examples, shown in

example 3.3.1. The invariants in each of these examples provide useful tools for

understanding the number theoretical properties of each sequence.

We also generalize the invariant of the Markov quiver in a different way. This
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quiver can be seen to be related to the Dynkin diagram of an “affine-extended”

or “Elliptic” root system of type A
(1,1)
1 introduced by Saito [22]. We call quivers

associated to these types of root systems “doubly extended” type quivers and we

show invariants for types D
(1,1)
4 and G

(3,3)
2 in examples 3.2.4 and 3.2.3.

1.1.3 New ingredients and their inspiration

All of these previously studied functions are invariant under the action of a

single mutation. The primary new ingredient of this paper is the introduction of

an action of cluster modular group on the function fields of the ensemble. We show

that each of the previously known examples can be realized as elements of invariant

rings in regards to this group action. This will allow us to generalize these examples

to invariants associated to more complicated mutation sequences and subgroups of

the cluster modular group.

We hope that this theory provides a method to understand and tame the

infiniteness of certain cluster ensembles. When the cluster modular group is infi-

nite, we naturally have some infinite repeating structures underlying the exchange

complex of the associated ensemble. This is often encoded by the cluster modular

group; when there are cluster modular group elements of infinite order, we have

sequences of mutations which send us to clusters which have the same underlying

quiver, but new cluster variables. Invariants for these elements provide us with ra-

tional functions whose value and formula is the same on each cluster obtained along

this mutation sequence.
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Often, we may use the invariance of a function to study the limiting behavior

of the cluster variables found along a mutation path. Recently, a cluster algebraic

interpretation of some of the “symbols” of 8 particle N = 4 SYM scattering am-

plitudes has been studied in [23–25]. These symbols are related to the limiting

structure of an affine cluster algebra and were studied using an invariant of the Ã1

affine cluster algebra. We briefly show a similar analysis of this limiting behavior in

example 3.1.1.

This analysis can be rephrased in terms of hyperbolic geometry, as example

3.1.1 shows. The Ã1 cluster ensemble is associated with a hyperbolic structure on an

annulus, and the relevant mutation path corresponds to a Dehn twist on the annulus.

We generalize this analysis to a pair of pants in chapter 4, and this becomes a critical

ingredient in the proof of our main theorems.

The key ingredient towards understanding the limiting behavior is the unquan-

tized skein algebra associated with a marked surface studied in the context of cluster

algebras by [19,26]. We find that sequences of cluster variables which appear along

mutation paths corresponding to Dehn twists always satisfy linear recurrences, and

we write these recurrences explicitly in terms of elements of the skein algebra.

1.2 Summary of Main Results

Our primary result is the classification of mutation invariant functions asso-

ciated with some particularly simple mutation sequences on cluster varieties which

can be built from surfaces. The main tools for this classification will come from the
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geometry and topology underlying these surfaces.

Teichmüler spaces of surfaces provide some of the simplest and most important

examples of cluster varieties. For technical reasons the surfaces we consider are

allowed to have boundary components and punctures, but they must have at least

one marked point on each boundary and the total number of marked points and

punctures must be more than 1.

Given such a surface, S, one may consider the Teichmüler space T (S), which

we think of as the moduli space of hyperbolic structures on S. These structures are

required to have cusps at each puncture and marked point. Hyperbolic structures

on a surface encode a representation ρ : π1(S)→ PSL(2,Z) called the “monodromy

representation”. Each element δ ∈ π1(S) is mapped to a matrix called the mon-

odromy operator of δ.

One may construct a cluster variety associated with S. The main topological

ingredients are “arcs” on S which are non self intersecting isotopy classes of paths

between marked points and punctures on S. We can construct a cluster variety, AS,

where the cluster variables correspond to arcs, the clusters correspond to triangula-

tions of S and the mutations corresponds to “flips” of triangulations. The positive

real valued points of AS parameterize points in T (S) along with a “decoration”

consisting of horocycles around each cusp. The mapping class group is naturally a

subgroup of the cluster modular group of this cluster variety. Moreover, the mon-

odromy representations associated with points of T (S) can be expressed rationally

in terms of the cluster variables, and we call Tr(ρ(δ)) the “trace function” associated

with δ.
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We will focus on classifying invariants for particular types of mutation se-

quences, namely those that correspond to Dehn Twists. There is a natural collec-

tion of arcs and closed curves on S which are invariant after applying a Dehn twist

about δ, namely those arcs and closed curves which do not intersect δ. The cluster

variables and trace functions associated with these arcs and curve are examples of

invariant functions on AS. Our main theorem 5.1.1 implies in this case that

Theorem 1.2.1. The ring of invariant rational functions for the action of a Dehn

twist about δ on AS is generated by traces of monodromy operators on S associated

with closed curves that do not intersect δ, and cluster variables associated with arcs

that do not intersect δ.

This theorem is easily rephrased in terms of the skein algebra of the surface.

The primary method for this will arise from the geometric interpretation of many

cluster ensembles coming from Teichmüller theory, hyperbolic geometry, and skein

algebras of surfaces.

Corollary 1.2.1. The invariant ring for a Dehn twist about δ on A is exactly the

the subalgebra of the skein algebra of S consisting of elements corresponding to skeins

which do not intersect δ

Example 1.2.1. We will illustrate this theorem with an example. We let S be an

annulus with one marked point on each boundary component, as shown in figure

1.1. There are infinitely many clusters and cluster variables in AS. There are two

cluster variables associated with the two boundary arcs, and these appear in every

cluster. There are infinitely many possible interior arcs, and each cluster contains
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two of them which do not cross. These arcs may be identified by their winding

number around the closed curve δ.

We write an for the cluster variable with winding number n, and write c, d

for the cluster variables for the outer and inner arcs. Our clusters and mutations

(omitting the variables c, d) look like

. . . (a−1, a0) (a0, a1) (a1, a2) (a2, a3) . . . . (1.2)

The formula for cluster variable mutation relates the new cluster variable obtained

by flipping an arc to the cluster variables in the original cluster. Explicitly, we have

an+1 =
a2
n + cd

an−1

(1.3)

and the cluster algebra is given by

Z[ai]. (1.4)

Every rational function in the cluster variables can be written as a rational function

in {a0, a1, c, d}.

The cluster modular group of this cluster algebra is the group ΓS = Z. This

corresponds to the mapping class group of S, and we write γ for the generator that

is a clockwise Dehn twist about the arc δ on S. There is an action of ΓS on the

rational functions of AS. This is given by

γ({a0, a1, c, d}) = {a1,
a2

1 + cd

a0

, c, d}. (1.5)

One may compute the trace function associated with δ and find that

Tr(ρ(δ)) =
a2

0 + a2
1 + cd

a0a1

:= F (a0, a1, c, d). (1.6)
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Figure 1.1: An annulus with one marked point on each boundary component.

This function is invariant under the action of ΓS since

γ(F ) =
a2

1 + (
a21+cd

a0
)2 + cd

a1
a21+cd

a0

=
(a2

1 + cd)

(a2
1 + cd)

1 +
a21+cd

a20
a1
a0

=
a2

0 + a2
1 + cd

a0a1

= F. (1.7)

Theorem 1.3.1 implies that

F(a0, a1, c, d)ΓS = F(F, c, d) (1.8)

where F is our fixed coefficient field.

1.3 Structure of this Thesis and Main Results

Chapter 2 reviews the technical details behind cluster ensembles and Te-

ichmüler theory, and introduces the notion of a mutation invariant function. Chapter

3 shows many examples of invariant functions in detail. In chapter 4, we prove some

11



foundational results about invariants, show geometric constructions of them, and

use them to compute sequences of cluster variables.

Chapter 5 contains the proof of our main theorem:

Theorem 1.3.1 (Theorem 1). Let S be a marked surface, and let (AS,XS) be the

cluster ensemble associated with S. Let γ be the cluster modular group element

corresponding to a Dehn twist about δ, a simple closed curve on S.

1. The ring F(XS)〈γ〉 is generated by traces of monodromy operators of excised

closed curves on S and invariant X coordinates for an excising triangulation

of δ.

2. The ring F(AS)〈γ〉 is generated by traces of monodromy operators of excised

closed curves on S and invariant A coordinates of an excising triangulation of

δ.

We also extend this to cluster ensembles associated with general mutation

finite quivers and trivial coefficients:

Theorem 1.3.2. Let Q be a Tp,q,r, X6 or X7 Quiver of figures 5.9 or 2.3 and let

(A,X ) be the cluster ensemble associated with Q. Let γ = {1, (12)} ∈ ΓQ be a cluster

Dehn twist in cluster modular group of (A,X ). Let x3, . . . , xm be the X coordinates

associated with nodes that are connected to nodes 1 and 2.

1. The invariant ring F(XS)〈γ〉 is generated by the function G(x1, x2) = (x2(x1+1)+1)2

x1x2
,

x3(x2(x1 + 1) + 1), . . . , xm(x2(x1 + 1) + 1) and the remaining X coordinates

not connected to nodes 1 and 2.

12



2. The Invariant ring F(AS)〈γ〉 is generated by ρ∗
√
G and A coordinates associ-

ated to nodes other than node 1 and 2.

Chapter 6 discusses some corollaries of the main theorems and some conjec-

tures about the general nature of mutation invariants. We prove a conjecture of [27]

on the structure of “affine A coordinates”

We give strong evidence through an abundance of examples of a deeper theory

underlying the existence and structure of cluster ensemble invariants. We show in

each example a correspondence between invariants on the A and X spaces via de-

nominator vectors. We prove this correspondence in the surface case. We also show

evidence that there should be a basis of A invariants such that the cluster modular

group acts on this basis by positive Laurent polynomials. This is a generalization

of the Laurent phenomenon of a cluster algebra. These conjectures together should

be related to the duality conjectured in [5] and proved in [18].

We strongly suspect that the existence of invariants will always be related to

some other important manifestation of the ensemble, be it geometric or number

theoretic.

This thesis is primarily a continuation and restructuring of the author’s pre-

vious work initiated in [27].

13



Chapter 2: Preliminaries on Cluster Ensembles

We will recall the basic notions of a cluster ensemble introduced by Fock and

Goncharov in [12]. This consists of a pair of positive spaces (A,X ) along with a

map ρ from A to X , a notion of seeds and mutations, and a group Γ that acts by

automorphisms of the entire structure. We will, however, simplify these definitions

to emphasize a more concrete and computational framework in which to introduce

and study invariants. We introduce an action of Γ on the field of rational functions

on each of the A and X spaces. Our notion of an invariant function will be in regards

to this group action. We will also review the notions of a hyperbolic structure on a

surface, the Teichmüller space of a surface, and the skein algebra of a surface and

show how these are naturally related to cluster ensembles.

2.1 Quivers and Mutations

Our first simplification is to only consider cluster ensembles of “geometric”

type, meaning that we can use quivers to define our ensembles.
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2.1.1 Quivers

Definition 2.1.1. A quiver is a directed and weighted graph with no self loops or

2 cycles. We think of a quiver as a graphical representation of a matrix, M , called

the exchange matrix which has entries [εij] equal to the number of arrows from node

i to node j. We denote the set of nodes of Q by N(Q) and we usually refer to them

by their index in this set.

We will allow non-symmetrically weighted arrows between nodes, to account

for non skew-symmetric exchange matrices. These arrows are labeled with a pair of

weights. In this case we require that the exchange matrix is skew-symmetrizable,

meaning that there is a diagonal matrix, D, such that MD−1 is skew-symmetric.

The matrix D associates to each node a multiplier, di.

In the various diagrams of quivers in the paper, we label the multipliers of our

nodes as superscripts in brackets and label the edges by the weights, where no label

means weight 1, a double arrow means weight 2, a single label means a symmetric

weight and a pair of weights for an arrow from node i to node j is −εji, εij1.

Definition 2.1.2. We will call a quiver simply laced, in analogy with Dynkin dia-

grams, if its exchange matrix is skew symmetric and non simply laced otherwise.

Two quivers are isomorphic if there is a map between their nodes that makes

their associated exchange matrices identical. In other words, their exchange matrices

are identical after conjugation by a permutation matrix.

1This ordering is meant to agree with Berhnard Keller’s java applet Quiver Mutation in

JavaScript.
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2.1.2 Mutation of quivers

Quivers will underlie the coordinate atlases of our cluster ensembles and mu-

tations will give the transition maps between coordinate charts.

Definition 2.1.3. A mutation of a quiver Q at node i, written µi(Q), generates a

new quiver by the following two operations

1. For every pair of nodes j, k with weighted arrows j
a,b−→ i

c,d−→ k, add an arrow

of weight ac, bd from j to k.

2. Swap the direction and weights of all the arrows coming into and out of node

i.

Definition 2.1.4. The set of all quivers up to quiver isomorphism obtained by all

possible sequences of mutations of a particular quiver is called the mutation class

of the quiver, denoted by µ(Q).

Definition 2.1.5. It is useful to include nodes in a quiver that we do not allow

mutations at. These nodes are called frozen and we write Qµ for the subquiver of Q

consisting of non frozen nodes and the arrows between them. We call this subquiver

the mutable portion of Q. The rank of a quiver is equal to #N(Qµ).

Remark 2.1.1. When considering an isomorphism of quivers, we generally ignore

their frozen nodes and only consider maps between their mutable portions. In

this way, we have that two quivers with the same mutable portions have the same

mutation class. We will call an isomorphism including a map on frozen nodes a

frozen isomorphism or quivers.
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1 2[3] 3[3]1,3

(a) Q
G̃2

.

1 3[3]

2[3]

1,3

3,1

(b) µ2(Q
G̃2

).

Figure 2.1: Two quivers of type G̃2

Example 2.1.1. Let QG̃2
be the quiver shown in figure 2.1a. We read the pair of

arrow weights as “1 in , 3 out” meaning that the matrix associated to this quiver is

0 3 0

−1 0 1

0 −1 0


. We may take D = diag(1, 3, 3) so that nodes 2 and 3 get multipliers

of 3. This quiver is associated to a root system of affine type G̃2, where node

1 is associated with the larger root and nodes 2 and 3 are associated with the

smaller roots. µ2(QG̃2
) is shown in figure 2.1b. The exchange matrix changes to

0 −3 3

1 0 −1

−1 1 0


after mutating.

2.1.3 Folding of quivers

The relationship between the classical “folding” of the simply laced Dynkin

diagrams to form the non simply laced diagrams can be extended to quivers. We
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refer to [28] for full details about folding of quivers.

Essentially, to fold a quiver we will group its nodes into disjoint sets and

perform mutations by requiring that we mutate all the nodes of a given set together.

We call the operation of mutating each of the elements of a set of nodes in turn a

“group mutation”. This does not depend on the order of mutations when there are

no arrows between any two nodes in the set, i.e. each of the mutations of nodes in

the set commute with each other.

With this in mind, we have the following definition:

Definition 2.1.6. A folding of a quiver, Q, with n nodes is a choice of k non empty

and disjoint sets of nodes whose union contains all of the nodes of Q satisfying the

following conditions:

1. The nodes contained in a given set have no arrows between themselves.

2. Condition 1 is satisfied after any number of group mutations of these fixed

sets.

These properties will always be satisfied when Q is the quiver which is an

orientation of a simply laced finite, affine or doubly extended Dynkin diagram and

the sets are given by the orbits of nodes under an automorphism of Q.

In this situation, all of the mutation structures we will be interested in studying

will be the same for the folding of Q and for a particular skew-symmetrizable quiver.

Let K1, . . . , Kk be the groups of nodes in this folding and let mij be the total

number of arrows from nodes in Ki to nodes in Kj. Then we can construct a skew-

symmetrizable quiver Qfold with k nodes respectively and arrows of weight
mij
|Ki| ,

mij
|Kj |
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from node Ki to node Kj.

Example 2.1.2. We may obtain the quiver QG̃2
of example 2.1.1 by folding a quiver

associated with an Ẽ6 Dynkin diagram in the following way:

3′ 3[3]

2′ 2[3]

3 2 1 2′′ 3′′ 1

Fold

1,3

(2.1)

2.1.4 Important mutation classes of quivers

The combinatorial properties of a cluster ensemble are controlled by the mu-

tation class of the quiver, µ(Q), underlying its seeds. Before we give the definitions

of a cluster ensemble, we will briefly discuss some important mutation classes of

quivers.

Quivers which have a finite mutation class are called “finite mutation type”.

For the most part, all of the examples and situations we will consider will be with

finite mutation type quivers. These quivers are classified in [28, 29]. Importantly,

all of the non simply laced finite mutation class quivers can be obtained by folding

a simply laced one.

The classification of finite mutation type quivers can be split in two ways.

First, we find that these quivers are either associated with Dynkin diagrams, called

Dynkin-type, or are of non-Dynkin type. The Dynkin-type quivers are then split

into finite, affine or doubly extended types. These mutation classes contain quivers

which are orientations of the Dynkin diagrams of finite, affine, or affine-extended
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Finite Affine Doubly Extended Exotic

E6 Ẽ6 E
(1,1)
6 X6

E7 Ẽ7 E
(1,1)
7 X7

E8 Ẽ8 E
(1,1)
8

Figure 2.2: The exceptional (non surface) quivers.

2 4

1 3 5

6

(a) X6

2 4

1 3 5

6 7

(b) X7

Figure 2.3: The exotic non-surface finite mutation quivers

root systems respectively.

We refer to [22] for a background on our notations used in regards to affine

extended root systems. These Dynkin diagrams are shown in Appendix A.

Secondly, we may see that every simply laced finite mutation class quiver can

either be obtained as the mutation class of a quiver associated with a triangulation

of a marked surface (see section 2.4) or is one of 11 exceptional examples listed in

figure 2.2. The non-simply laced finite mutation class quivers can all be obtained

by folding a simply laced one, as shown in [28].
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2.2 Positive spaces and Cluster Ensembles

We will simplify the notion of positive space of [12] in hopes of making com-

putations more concrete.

Definition 2.2.1. A positive chart will simply mean an algebraic torus, (Gm)n,

along with a distinguished coordinate chart consisting of its n characters. A map

between positive charts is called a positive map and satisfies the property that

pullback of the distinguished coordinate variables of the target is a rational function

with positive integral coefficients.

A positive variety is a variety obtained by gluing positive charts together with

positive maps. We write Pos for the category of positive varieties.

Remark 2.2.1. Each positive variety, X, has a well defined set of positive real

valued points denoted by X(R>0). This has a structure of a real manifold. Positive

maps ψ : X → Y induce homeomorphisms X(R>0)→ Y (R>0).

Definition 2.2.2. A positive space is a collection of positive varieties along with

invertible positive maps between them. Equivalently, A positive space is a functor

from a groupoid to the category of positive varieties.

Let Q be a quiver with mutable nodes N1, · · · , Nm. Let α = {α1, · · · , αm}

be algebraically independent generators of the function field F(α1, · · · , αm). We

associate these variables variables to the nodes of Q in an obvious way.

Definition 2.2.3. The pair of a quiver along with variables associated to its nodes

is called a seed, denoted by i = (Q,α). The field F(α) is the function field of the
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seed. The positive chart with characters given by the seed variables is called the

Seed Torus of i.

Definition 2.2.4. Two seeds are isomorphic if there is a quiver isomorphism which

induces an isomorphism of the associated function fields. When there are frozen

node, we also require that the fields generated by the frozen variables are isomorphic.

Definition 2.2.5. We can mutate seeds as follows: Given a seed i = (Q,α), we

construct a seed µi(i) = (µi(Q), α′) where the new quiver is given by mutating Q at

node i and we associated a new collection of variables α′ = {α′1, · · · , α′m}.

Equipped with the notions of quivers, mutations and seeds, we can define the

pair (AQ,XQ) of positive spaces associated to an initial seed with quiver Q. Both

of these spaces will be defined by generating a collection of seeds by mutating an

initial seed generated from Q, but in each case we define different positive maps

between the seed torus of i and µ(i).

2.2.1 The A space

LetQ be a quiver with mutable nodesN1, · · · , Nn and frozen nodes Fn+1, · · · , Fm.

Let a = {a1, · · · , an, fn+1, · · · , fm} be algebraically independent generators of the

function field F(a1, · · · , an, fn+1, · · · , fm) called the initial variables. We associate

these variables to the nodes of Q in the obvious way to make a seed i = (Q, a).

Definition 2.2.6. We call these particular seed variables A coordinates. The A

coordinates associated to the frozen nodes are called coefficients. We write Ai for
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the positive chart with coordinate variables given by the seed i = (Q, a). This seed

is called the initial seed associated with Q.

Mutation of Q at a node i produces a new seed consisting of a new quiver

µi(Q) and a new collection of variables a′. We define a map µi : Ai → Aµi(i) by

µ∗i (a
′
j) =


1

ai
(
∏
εik>0

ak
εik +

∏
εik<0

ak
εik) i = j

aj i 6= j

. (2.2)

We can thereby write all of the new A coordinates obtained by mutations in

terms of the initial A coordinates.

Definition 2.2.7. Each collection of A coordinates generated in this way is called a

cluster, and the F-subalgebra of F(a1, · · · , an)[fn+1, · · · , fm] generated by the clus-

ters of A coordinates obtained from all possible sequences of mutations at non-frozen

nodes is the cluster algebra associated to the quiver Q, denoted by C(Q).

Definition 2.2.8. AQ is the positive space obtained from the positive charts asso-

ciated to every seed generated by mutation of i and maps given by the mutation

isomorphism for each mutation. We describe this space as a functor in section 2.3.

2.2.2 The X space

The X space will have a definition similar to that of the A space, but with

a different exchange rule. In the case that Q has frozen nodes, we will not include

extra variables, and we may essentially ignore these nodes in the definition.

Given a quiver, Q, with mutable nodes N1, · · · , Nn, we associate independent

variables x = {x1, · · · , xn} called X coordinates. This pair is called an X seed, also
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denoted by i. Mutation of Q at node i produces a new X seed, i′ consisting of a

quiver µi(Q) and a new collection of X coordinates, x′. We define a map of positive

varieties µi : Xi → Xµi(i) by

µ∗i (x
′
j) =


x−1
i i = j

xj(1 + x
− sgn εji
i )−εji i 6= j

. (2.3)

We note that we do not assign variables for the frozen nodes in Q.

Definition 2.2.9. XQ is the positive space consisting of the positive varieties asso-

ciated to every seed generated by mutation and maps given by the above mutation

isomorphism for each mutation.

2.2.3 Cluster Ensembles

It is worth viewing these positive spaces as two different functors from the

same groupoid.

Definition 2.2.10. The Seed groupoid Gi is the groupoid with one object for each

seed obtained from mutations of i and maps given by mutation paths. We do not

include any notion of seed isomorphism in this definition.

Remark 2.2.2. This notion of seed groupoid is not the same as that of Fock and

Goncharov in [5]. Their notion is the same as our notion of cluster modular groupoid

in section 2.3.

We may view theA and X spaces associated with the same seed as two different

functors A,X : Gi → Pos, where we assign positive charts to each seed and maps

according to the appropriate mutation rules.
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Definition 2.2.11. Given an initial quiver, Q, we write (AQ,XQ) for the pair of

positive spaces generated by using Q along with independent variables for each node

as a seed for each space, where XQ = XQµ since we do not assign X coordinates to

the frozen nodes. This pair of spaces is the cluster ensemble associated to Q. The

rank of this ensemble is #N(Qµ). We often drop the subscripts when Q is implied.

Remark 2.2.3. The positive varieties Ai and Xi associated to the initial seed Q

provides a base point of each space. Changing Q to any other quiver in µ(Q) gives

the same positive space, just with a different base point.

The final important property of a cluster ensemble is a natural transformation

ρ : AQ → XQ. ρ has a simple definition in terms of the initial coordinates. If

(a1, · · · , an, an+1, · · · , an+f ) and (x1, . . . , xn) are the initial A and X coordinates and

the exchange matrix of Q is [εij], then we have that ρ∗(xi) =
∏
i

a
εij
i . ρ commutes

with mutations and provides a map of positive spaces.

Example 2.2.1. We illustrate these definitions with a well known example. Let Q

be a quiver with two mutable nodes, 1 and 2, with a single arrow from node 1 to

node 2. Each mutation of Q gives an isomorphic quiver, and so all of the seeds we

obtain by mutation are isomorphic.

We compute cluster variables using the A mutation rule. This is shown in

figure 2.4. We see that after 5 mutations we return to the original cluster variables.

Thus this seed is not identical to the original seed since the variables have switched

places. After 5 more mutations we return to a seed which is identical to the initial

seed.
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(
a2+1
a1
← a2

)
(
a1 → a2

) (
a2+1
a1
→ a2+1+a1

a1a2

)
(
a2 ← a1

) (
a1+1
a2
← a2+1+a1

a1a2

)
(
a1+1
a2
→ a1

)

µ2µ1

µ1

µ2µ1

Figure 2.4: The five A seeds with different cluster variables.

The cluster algebra C(Q) is the algebra

C(Q) = F[a1, a2,
a2 + 1

a1

,
a1 + 1

a2

,
a2 + 1 + a1

a1a2

] (2.4)

The positive spaces AQ and XQ each consist of 10 distinct positive charts with

positive maps given by the mutation rules. For example, if i is the initial X seed

with variables x1, x2 and µ1(i) = i′ with associated variables x′1, x
′
2 then we have the

positive map given by

µi : Xi → Xi′ , µ∗i (x
′
1, x
′
2) = (x−1

1 , x2(1 + x1)). (2.5)

The map ρ : AQ → XQ is given in terms of the initial coordinates by

ρ∗(x1, x2) = (a2, a
−1
1 ) (2.6)

2.3 The Mutation Structures of a Cluster Ensemble

The mutation class of a quiver underlying a seed of a cluster ensemble controls

many of that ensembles properties. The most well known example of this is the fact
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that a cluster ensemble has finitely many clusters if and only if its quiver is of finite

type, see [2]. We call these cluster ensembles “finite type” and refer to them by the

name of their Dynkin diagram.

We will be generally interested in “mutation finite” cluster ensembles, i.e.

ensembles for which their underlying quiver has a finite mutation class. When this

quiver is of Dynkin type, we will refer to that ensemble as being that particular

type.

Mutation finite cluster ensembles which are not of finite type have infinitely

many clusters, but only finitely many quivers up to isomorphism underlying their

seeds. A natural way to study such a situation is to study the group of transfor-

mations which act by permuting different clusters associated with isomorphic seeds.

Such a transformation is determined entirely by where it sends a single cluster, since

the other clusters may all be obtained by mutations from a given one. We call this

type of transformation an automorphism of the mutation structure of our cluster

ensemble.

2.3.1 The cluster modular group

Our current notion of seed groupoid has different objects for all seeds obtained

by mutations. It is natural to define a groupoid with objects corresponding to seeds

up to seed isomorphism; This will allow us to define the cluster modular group.

Definition 2.3.1. A seed i′ obtained by a sequence finite of mutations, P = µi1 ◦

µi2 ◦ . . . , from an initial seed i is cluster equivalent to i if the map P : Ai → Ai′ is
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simply a permutation of the A coordinate variables. In other words, the seeds i and

i′ have the same unordered collection of cluster variables.

Remark 2.3.1. We defined this notion in terms of the A mutation rule, but it is

equivalent to the condition that P : Xi → Xi′ is a permutation of the X coordinate

variables. It is always the case that two cluster equivalent seeds are isomorphic.

A seed isomorphism σ : i→ i′ induces a map on the varieties associated with

each seed by σ∗(α′σ(i)) = αi.

Definition 2.3.2. A pair {P, σ} of a mutation path and seed isomorphism is called

a trivial cluster transformation if the composition of the mutation path and seed

isomorphism induces the identity map on the A and X varieties.

A trivial cluster transformation must consist of a path to a cluster equivalent

seed along with a seed isomorphism which induces the identity permutation on the

cluster variables.

Definition 2.3.3. The cluster modular groupoid, GQ, is the groupoid with objects

given by seeds obtained from mutating the seed i up to seed isomorphism. The

maps are given by pairs of mutation sequences and seed isomorphisms up to those

which are trivial cluster transformations. The group associated with this groupoid

is called the Cluster Modular Group.

This group can be considered as the group of symmetries of the “exchange

complex” of the cluster ensemble, see section 2.4 of [12], but we will not need this

notion here.
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We will give a concrete description of the cluster modular group in terms of

sequences of mutations and isomorphisms of quivers.

Fix a seed i with quiver Q. Let Γ̃i =
{
{P, σ}

}
where P is a sequence of

mutations and σ is an isomorphism Qµ → P (Q)µ. Because P transforms Q into

an isomorphic quiver, we may compose these mutation paths. We write paths of

mutations as a sequence of the node names read from left to right. The action of σ

as an element of the symmetric group is written with the standard left action.

Since each mutation is an involution, we have that Γ̃i is a subgroup of (Z/2Z∗k)o

Sk where Z/2Z∗k is a free product of cyclic groups and the right hand side of the

semidirect product acts by permuting the factors.

Remark 2.3.2. Γ̃i acts on the elements of the seeds of A and X coordinates whose

underlying quiver is isomorphic to Q. P provides a path to a new seed and σ

provides a map between the initial seed variables and the final variables. We note

that σ is only an isomorphism of quivers, not of seeds, which is why this action is

nontrivial.

Definition 2.3.4. The cluster modular group based at i, Γi is defined to be Γ̃i

modulo the subgroup generated by trivial cluster transformations.

Our definition currently depends on the choice of initial seed i. If i′ is any

other seed mutation equivalent to i, then Γi′ ' Γi, with the isomorphism given by

conjugation of paths by a mutation path between i and i′.

Definition 2.3.5. The cluster modular group, ΓQ : GQ → Grp, is defined to be

the functor from the cluster modular groupoid which assigns the group Γi for each
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seed i along with group isomorphisms given by conjugation by mutation paths. An

element of the cluster modular group is a collection of elements γi ∈ Γi which are

mapped to each other by the group isomorphisms defined for each mutation path.

Remark 2.3.3. We will often simply refer to the group Γi as the cluster modular

group, knowing that we really have a collection of isomorphic groups for each seed

isomorphism class. We will also simply refer to elements of the abstract group Γi as

elements of the cluster modular group, knowing that these elements take on different

presentations depending on which seed we are interested in.

Example 2.3.1. Let’s examine the cluster modular groupoid and group of a type

A2 cluster ensemble, continuing example 2.2.1. The quiver of a A2 cluster ensemble

consists of two nodes, 1 and 2, with a single arrow between them. As we saw, each

of the new seeds we obtained by mutations are isomorphic to the original seed. Thus

the cluster modular groupoid only has one object. Therefore, each map is a cluster

modular group element.

Mutation at node 1 produces a quiver that is isomorphic to the starting quiver

(after permuting the nodes). We can represent this group element by γ = {1, (12)}.

This element clearly generates the cluster modular group. The only relation is that

γ5 = e. This relation comes from the fact that 5 consecutive applications of γ

reproduces the original cluster variables. Thus the cluster modular group is Z/(5Z).

We can see the distinction between the seed groupoid and cluster modular

groupoid quite clearly in this example. The seed groupoid has many more objects

than we really need.
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1

3 2

(a) Q1

1

3 2

(b) Q2

1

3 2

(c) Q3

1

3 2

(d) Q4

Figure 2.5: Choices of quiver isomorphism classes in the mutation class of a quiver

of type A3.

Example 2.3.2. If we take a quiver of type A3 as our initial seed, it is easy to

compute the cluster modular groupoid and cluster modular group. We can do this

by taking a representative for each of the quivers in the mutation class of our seed

and then writing all of the possible pairs of mutation paths and quiver isomorphisms

between them. A choice of possible representatives for the quiver isomorphism

classes is shown in figure 2.5 and a diagram of the groupoid is shown in figure 2.6.

It is not too difficult to compute the cluster modular group by checking that every

map from Q1 to itself is generated by the two maps shown in the figure. These two

elements commute and the top has order 2 and the bottom has order 3. Thus the

cluster modular group is Z/6Z.
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Q3

Q1 Q2

Q4

{1,()}

{3,(23)}

{1,()}

{<>,(123)}

{1231,(23)}

{2,()}

{3,()}

{<>,(23)}

Figure 2.6: The cluster modular groupoid of the A3 cluster ensemble. A selection

of non-identity maps are shown.

2.3.2 Action of the cluster modular group on functions

Given (A,X ) a cluster ensemble, we wish to define a notion of a field of rational

functions on the A and X spaces.

There is a natural functor from the category of positive varieties to the category

of function fields over F obtained by associating a positive variety its function field.

We write F(A) for the composition of the functor realizing our positive space A with

this functor. This will give us a notion of rational functions on a positive space.

Concretely, F(A) provides us with a function field, F(Ai), for each seed i.

When we change to another quiver, Q′ ∈ µ(Q) we can pull back functions along

P : Ai → Ai′ to obtain an isomorphism

F(Ai) ' F(Ai′). (2.7)

We will occasionally write F(A,X ) for the functions on a cluster ensemble.
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Again fix a starting seed i with quiver Q. We can now define an action of Γi

on the rational functions on the AQ or XQ space.

Let γ ∈ Γi. Given f ∈ R(Ai) we can define γ(f)(a1, . . . , an) = P (σ(f)), where

σ acts as a map from the cluster variables on the initial seed i to the seed P (i) and

P acts by pullback along P : Ai → AP (i). We define an action on elements of F(Xi)

in an analogous way.

Elements in ΓQ act via natural transformations F(A) → F(A) and F(X ) →

F(X ) where we act on each function field as above.

Definition 2.3.6. Given f ∈ F(Ai) or f ∈ F(Xi) we call the set Γi(f) the exchange

class of f . ΓQ(f) provides a set of exchange classes for each quiver isomorphism

class in the mutation class of Q.

Example 2.3.3. Let Q = Q1 of figure 2.5. Let f ∈ F(AQ) be given by

f(a1, a2, a3) =
a1 + a2 + a3

a1a2a3

. (2.8)

Then we may compute that {1231, (23)}(f) = f−1. Lets write this out in detail.

We write ai, bi, ci, di, ei for the variables on each of the five seeds found along the

path. The important exchange relations are

µ∗1(b1) =
a2 + a3

a1

µ∗2(c1) =
1 + b1

b2

(2.9)

µ∗3(d3) =
1 + c1

c2

µ∗1(e1) =
d2 + d3

d1

(2.10)

and all other exchange relations are trivial.

The isomorphism (23) provides the map {a1, a3, a2}
(23)−−→ {e1, e2, e3} and the

mutation path acts on (23)(f) by pullback. Writing the value of f by abuse of
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notation, we compute that

{1231, (23)}(f) =µ1 ◦ µ2 ◦ µ3 ◦ µ1

(
(23)(

a1 + a2 + a3

a1a2a3

)

)
=

µ1 ◦ µ2 ◦ µ3 ◦ µ1

(
e1 + e3 + e2

e1e3e2

)
= µ1 ◦ µ2 ◦ µ3

(
d1 + 1

d2d3

)
=

µ1 ◦ µ2

(
c2

c3

)
= µ1

(
b2b3

b1 + 1

)
=

a1a2a3

a1 + a2 + a3

= f−1.

We clearly have that {<>, (123)}(f) = f . Therefore, the cluster modular

group ΓQ = Z/6Z acts on f via the quotient group Z/2Z.

Definition 2.3.7. Let Γ◦ ⊂ ΓQ be a functor which assigns a subgroup Γ◦i ⊂ Γi for

each seed i. The invariant field for Γ◦ on AQ or XQ is a collection of invariant fields

F(Ai)
Γ◦i or F(Xi)

Γ◦i respectively for each seed i.

It is not clear from this definition that this collection of invariant rings is non

empty. It is most likely not true that there are invariants for any cluster ensemble

with non-trivial cluster modular group, but we will not discuss this here.

Remark 2.3.4. We generally write elements of these rings in terms of the initial

seed, i, associated with Q.

2.3.3 Folding of cluster ensembles

When our cluster ensemble is associated with a non-skew symmetric quiver

which can be obtained by folding, there is a natural relationship between the A and

X coordinate variables which gives a map between the functions defined on each

space. Let R be a quiver obtained by folding Q and let j, i be seeds associated with

R,Q respectively. Let Ki be the sets of nodes of Q which are folded to obtain R.
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Picking an order to mutate the nodes in each set realizes the seed groupoid

associated with R as a subgroupoid of the seed groupoid of Q. Pulling the functors

AQ,XQ : Gi → Pos back along this inclusion gives functors ÂQ, X̂Q : Gj → Pos.

There is a natural transformation, η : AR,XR → ÂQ, X̂Q which maps the positive

charts (Aj,Xj) to (Ai,Xi) defined on coordinates by assigning all of the cluster

variables associated to nodes in Ki to the cluster variable associated to the folded

node in j. We can think of this map as being similar to a diagonal embedding of

the varieties (Aj,Xj) in (Ai,Xi).

Pull back along this embedding gives a map between the functions F(Ai,Xi)
fold−−→

F(Aj,Xj) for each seed i which folds to a seed for the cluster ensemble associated

with j. This map does not depend on the order of the nodes chosen for each set.

Since elements of F(AQ,XQ) are collections of functions on each positive variety

which agree along mutation paths, we can define a map

F(AQ,XQ)
fold−−→ F(AR,XR) (2.11)

by folding the functions on the positive varieties coming from seeds in Gi appearing

in the subgroupoid associated with j. This map is clearly surjective.

We can also realize the cluster modular group Γj as a sub-quotient of the

cluster modular group Γi, where the “sub” comes from only considering sequences

which mutate the folding sets together, and “quotient” being that we ignore auto-

morphisms which map the folding sets into themselves. Thus, if γ ∈ Γi is an element

which can be mapped into Γj, then we get a map

F(AQ,XQ)〈γ〉
fold−−→ F(AR,XR)〈γ〉 (2.12)
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on the invariant rings.

2.4 Preliminaries on Hyperbolic Geometry and Teichmüller spaces

We will recall some background about hyperbolic structures on surfaces and

their moduli spaces

2.4.1 Hyperbolic space

Recall that the hyperbolic place, H2, has two important models, the Poincaré

disk, {z ∈ C, |z| < 1} and upper half plane , {z ∈ C,=(z) > 0}. These two models

are related by a Mobius transformation mapping the upper half plane into the unit

disk.

The boundary of the hyperbolic plane, ∂H2, is identified with RP1 = R∪{∞}.

This identification is quite natural in the upper half plane model, but we may also

label points on the boundary in the disk model with elements of R ∪ {∞}. Points

on the boundary are called cusps. There is a natural cyclic order on the points of

∂H2. There are two choices for this, which we may fix by deciding if a given triple

of points is positively or negatively orientated. As a convention we will fix (∞, 1, 0)

as a positive triple.

Each of these models comes equipped with a complete Reimannian metric, g

with constant curvature equal to −1. The group of isometries of H2 is identified

with the group of Mobius transformations which fix the upper half plane, and is

isomorphic to PSL(2,R).
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Name Example Trace Fixed Points

Elliptic


cos(θ) − sin(θ)

sin(θ) cos(θ)

 Tr < 2 One point in H2

Parabolic


1 a

0 1

 Tr = 2 One point on ∂H2

Hyperbolic


λ 0

0 λ−1

 Tr > 2 Two points on ∂H2

Figure 2.7: The conjugacy classes of non-identity elements in PSL(2,R)

The elements of PSL(2,R) are in 3 distinct non identity conjugacy classes.

They are shown in figure 2.7

We will also need to recall the notion of a ”horocycle” about a boundary point

on H2. These are curves on H2 with constant curvature and which only touch touch

the boundary at a single point. In the disk model, they are given by circles which

are tangent to a boundary point, and in the upper half plane model, they are given

by tangent circles or horizontal lines (these lines are the horocycles tangent to the

point∞ ∈ ∂H2). Each parabolic element of PSL(2,R) fixes a single boundary point

and translates points in H2 along the horocycles touching this point.
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2.4.2 Hyperbolic structures on surfaces

Let S be a surface of genus g with b boundary components, p punctures, and

n marked points on the boundary. Let B be the set of boundary curves, P be the

set of punctures and M be the set of marked points on the boundary. Let S◦ be

S − {B ∪ P} = ∂S, the interior of S.

Definition 2.4.1. We call S a marked surface if it satisfies that each boundary

component has at least 1 marked point on it and that n−3χ(S) = 6g−6+3b+3p+n >

0.

Definition 2.4.2. An arc on S is an isotopy class of paths between two marked

points or punctures on S. A closed curve on S is an isotopy class of embeddings of

the circle on S. A closed curve is called simple if it has a representative isotopy class

which does not intersect itself. An Ideal Triangulation of S is a maximal collection

of pairwise non-intersecting arcs on S.

Each marked surface admits an ideal triangulation, and every such triangula-

tion has the same cardinality, N = 6g − 6 + 3b+ 3p+ 2n.

Definition 2.4.3. A hyperbolic structure on S is a Riemannian metric, g, on S

satisfying the following properties:

1. g has constant curvature equal to −1.

2. g has finite area.

3. g takes punctures and marked points to cusps.

38



4. the arcs of B −M are geodesics of g.

There are several important equivalent ways of defining a hyperbolic structure.

The hyperbolic metric on S locally defines a map S → H2. In other words, for any

point q on S◦ there exists U ⊂ S , q ∈ U with U isometric to an open set of H2.

Definition 2.4.4. Let S̃ be the universal covering space of S and let π be the

covering map S̃ → S. This local isometry can be extended to an immersion

Dev : S̃ → D ⊂ H2 (2.13)

where D is some subset of H2, called the developing map. Any element δ ∈ π1(S)

corresponds to a deck transformation of S̃ over S, and the developing map takes

such transformations to hyperbolic isometries of H2. Thus, the developing map gives

a representation

ψ : π1(S)→ Isom(H2) = PSL(2,R) (2.14)

called the monodromy representation.

Let Γ be the image of π1(S) under ψ. Then Γ is a discrete subgroup of

PSL(2,Z), and ψ takes loops homotopic to punctures to parabolic elements in Γ.

Γ acts on D by isometries, so D/Γ naturally has a hyperbolic structure which is

isometric to the structure on S.

This situation is encompassed in the following commutative diagram:

S̃ D

S D/Γ

Dev

π

'

. (2.15)
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Essentially, the developing map allows us to view a hyperbolic structure on a surface

as directly coming from the canonical hyperbolic metric on H2.

Example 2.4.1. The surface S = S0,1,1,2, a once punctured digon is shown in figure

2.8. The monodromy representation takes the element of π1(S) corresponding to δ

to the parabolic element γ ∈ PSL(2,R) which fixes p ∈ H2 and moves n1 to γn1.

2.4.3 Teichmüller space

The notion of Teichmüller spaces comes from several different perspectives.

For us, we will consider the Teichmüller space of a surface, T (S) as the moduli

space of hyperbolic structures on S up to an equivalence relation. To aid with our

definitions, we need the notion of a marked hyperbolic structure on S.

Definition 2.4.5. A marked hyperbolic structure on S is a triple (M, g, φ) such that

φ : S →M is a homeomorphism and (M, g) is a hyperbolic structure on the surface

M .

Definition 2.4.6. Two marked hyperbolic structures on S, (M, g, φ) and (M ′, g′, φ′)

are equivalent if there is a homeomorphism, ψ : M → M ′ such that the pullback

of g′ along ψ is g and φ′−1 ◦ ψ ◦ φ : S → S is isotopic to the identity map. The

Teichmüller space of S, T (S) is defined to be the set of marked hyperbolic structures

on S up to equivalence.

There are several important equivalent ways of describing T (S). In view of

developing maps and monodromy representations, we can see that two equivalent

marked hyperbolic structures gives rise to an isometry, ψ̃ of H2 such that Dev(M̃) =
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(a) S

(b) Dev(S)

Figure 2.8: The surface S along with its developing image in H2.
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ψ̃(Dev(M̃ ′) which descends to the map ψ on the quotients. Furthermore, the two

groups Γ = ψ(π1(M)) and Γ′ = ψ′(π1(M ′)) are conjugate in PSL(2,R) by the

element ψ̃. Thus, we have the following proposition:

Proposition 2.4.1. In the absence of marked points, the Teichmüller space T (S) is

equivalent to the set of representations, ψ : π1(S)→ PSL(2,R), up to conjugation by

PSL(2,R) such that ψ is discrete, faithfull, and sends loops homotopic to punctures

to parabolic elements.

2.5 Coordinates on Teichmüller Space

We will review three different coordinate systems on several variations of Te-

ichmüller space.

Let S be a marked surface. For the first two coordinate systems, we will fix

an ideal triangulation ∆ of S.

2.5.1 Teichmüller X space

Let N◦ = 6g − 6 + 3b+ 3p+ n be the number of interior arcs of ∆.

Definition 2.5.1. The Teichmüller X space of S, TX (S), is defined to be the real

manifold homeomorphic to (R>0)N
◦

with a positive real valued coordinate for each

interior arc of ∆. We call these coordinates the X coordinates of TX (S).

The main ingredient of our first set of coordinates will be the cross ratio of

four points on RP1.
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Definition 2.5.2. Let (z1, z2, z3, z4) be four points in R ∪ {∞}. The cross ratio,

r(z1, z2, z3, z4) is defined to be

r(z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z1 − z4)
(2.16)

This particular choice of cross ratio has the property that it is a positive real

number for any positively oriented quadruple of points.

Identifying ∂H2 with RP1, we see that the cross ratio is a PSL(2,R) invariant

for four points on ∂H2. There is a natural way to assign a cross ratio to each interior

(non boundary) edge in our ideal triangulation ∆.

We may lift ∆ to a triangulation, ∆̃ of S̃ and embed this in H2 via the de-

veloping map. Thus each interior edge, ẽ, in ∆̃ is identified with the four points

in ∂H2 of the square containing the edge after developing. Picking z1 to be one of

the endpoints of ẽ and the other three points z2, z3, z4 to cyclically oriented from

z1 allows us to assign the cross ratio r(z1, z2, z3, z4) to the edge ẽ. The particular

choice of endpoint for z1 does not change the assigned cross ratio.

We assign cross ratios to the interior edges, denoted xe of ∆ by choosing a

lift of them to ∆̃ and assigning the cross ratio of the lift as before. This does not

depend on the choice of lift since the difference of lifts is described by an isometry

of H2.

Definition 2.5.3. An opening, Ŝ of a marked surface, S, is a hyperbolic surface

where the punctures on S have been replaced with geodesic boundary components,

along with a choice of orientation of each new boundary.

An ideal triangulation of S can be lifted to a triangulation of Ŝ where the
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arcs which touch the punctures are lifted to arcs which spiral around the boundaries

in the direction which agrees with their chosen orientation. The collection of sur-

faces which are openings of S are parameterized by signed lengths of their geodesic

boundaries, {lp} for p a puncture, where the sign indicates whether the orientation

of the boundary component agrees with the orientation of S. The situation when

the boundary has length 0 is equivalent to there being a puncture on the opened

surface

Proposition 2.5.1 (Thurston-Fock). Any collection of 6g−g+3b+3p+n positive

real numbers can be realized as the cross ratio coordinates of an opening of S. In

other words TX (S) parameterizes hyperbolic surfaces which are openings of S.

Part of the proof of this proposition is an explicit construction of a represen-

tation π1(S) :→ PSL(2,R) leading to a hyperbolic structure on an opened surface.

We recall the basic principals of this construction

For each puncture p on S there is an important associated product of X

coordinates given by

pX =
∏
e|p∈∂e

xe = elp (2.17)

which is equal to the exponential of the signed boundary length.

Proposition 2.5.2. The Teichmüler space T (S) embeds in TX (S) as the submani-

fold where pX = 1 for each puncture of S.
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2.5.2 Decorated Teichmüler space

Decorated Teichmüller space, denoted TA(S), introduced by Penner in [30]

parameterizes hyperbolic structures on S along with a “decoration” of S, consisting

of a choice of horocycle around each puncture and marked point. Choices of horo-

cycles on S correspond via the developing map to collections of horocycles around

the cusps of D ⊂ H2 which are fixed by the group Γ.

Again we fix ∆ an ideal triangulation of S. Let N = 6g− g + 3b+ 3p+ 2n be

the number of arcs in ∆.

Definition 2.5.4. The decorated Teichmüller space, TA(S), is defined to be the real

manifold homeomorphic to (R>0)N with a positive real valued coordinate for each

arc of ∆. We call these coordinates the A coordinates of TA(S).

There is a natural way to assign a positive real number for every (including

boundary arcs) edge, e ∈ ∆ using our decoration. Let le be the signed length of e

measured between the horocycles on the endpoints of e, where the sign is positive

if the lifts of the horocycles do not intersect in H2 after developing and negative

otherwise. We assign the “λ length”

ae = exp(le/2) (2.18)

to each arc in ∆.

Proposition 2.5.3 (Penner [31]). Every collection of N = 6g − g + 3b + 3p +

2n positive real numbers appears as the lambda lengths of a decorated hyperbolic
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structure on S. In other words, TA(S) parameterizes decorated hyperbolic structures

on S

Proposition 2.5.4 (Penner [31]). The natural map TA(S) → T (S) forgetting the

decoration is a fibration, with fibers homeomorphic to (R>0)n+p parameterized by

the lengths of the decorating horocycles

There is a natural relationship between the lambda lengths of a decorated

hyperbolic structure and cross ratios. We have a map ρ : TA(S) → TX (S) defined

on coordinates by fixing ∆ an ideal triangulation of S and defining

ρ∗(xe) =
λ12λ34

λ23λ14

(2.19)

when xe = r(z1, z2, z3, z4) and λij is the lambda length of the arc connecting the

marked points corresponding to zi and zj. This map is the inspiration of the map

ρ : A → X of a cluster ensemble.

2.5.3 Representations from points in Teichmüller spaces

Points in TA(S) and TX (S) naturally give rise to representations π1(S) →

PSL(2,R) with desired properties. Part of the proofs of the propositions in the

previous two sections is an explicit calculation of this representation. We will review

these ideas here.

Given S a marked hyperbolic surface with ideal triangulation ∆ we can con-

struct a “fatgraph” on S as follows. Let F̃ be the dual graph to ∆, i.e, F has one

vertex for each triangle in ∆ and edges between vertices whenever two triangles
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share an edge, and edges to the boundary whenever a triangle contains a boundary

component . Then we generate the fatgraph, F from F̃ by replacing each vertex

with a triangle of three “short edges” connecting the three “long edges” edges at its

vertices, see figure 2.9 for an example.

This fatgraph can be used to construct a representation ψ : π1(S)→ PSL(2,R)

for a point in TX (S) in the following way. We will first assign matrices to the edges

of F . To each long edge of F which crosses an interior arc e ∈ ∆, we assign the

matrix Xe =


0 −√xe

(
√
xe)
−1 0

 where xe is the X coordinate associated with the

arc e. The three short edges will be assigned the matrices

R =


1 1

−1 0

 , L =


0 1

−1 −1

 (2.20)

Let γ ∈ π1(S). We may homotope γ to our fat so that γ may be obtained by

following along segments of F . We then obtain ψ(γ) by first picking a segment to

begin and then multiplying the matrices for each consecutive segment obtained from

following γ, using R whenever we use a short edge to turn right and L whenever we

turn left.

Example 2.5.1. Continuing example 2.4.1, the fatgraph for ∆ is shown in figure
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Figure 2.9: The fatgraph for a triangulation of a punctured digon.

2.9. We can see that the element δ ∈ π1(S) can be represented by the matrix

X1RX2R =


√
x1x2 0

1√
x1

+ 1√
x2

1√
x1x2

 . (2.21)

This matrix has trace equal to 2 exactly when x1x2 = 1

We may use this to compute the traces of monodromy operators associated

with a hyperbolic structure on a surface in terms of X coordinates, and we may use

the map ρ : TA(S)→ TX (S) to write these formulas in terms of the A coordinates.

2.6 Cluster Ensembles associated with Surfaces

In many cases, cluster ensemble invariants have a geometric interpretation

coming from the relationship between cluster ensembles and the Teichmüller theory
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of surfaces. We refer to [13] and [32, 33] for background on the ingredients of a

cluster ensemble associated to a hyperbolic surface. We recall some of these ideas

here.

2.6.1 Quivers from triangulations

Let S be a marked surface. Given ∆ a triangulation of S, we associate a

quiver, Q∆, as follows: For each edge e ∈ ∆ we add a node Ne and for each triangle

t ∈ ∆ we add a clockwise oriented cycle of arrows between the nodes associated with

the edges of t. In the situation where we have arrows between two nodes in opposite

directions, we cancel them, as shown in example 2.6.2. The nodes associated to

boundary edges are frozen. There are −3χ(S) + 2n total nodes and n frozen nodes.

There is one caveat to this construction when S has punctures. In this case

it may be possible to have a “self folded” triangle in an ideal triangulation of S see

figure 2.10a. In this case, the construction mentioned above does not produce the

correct quiver. However, we can always find a triangulation of S with no self folded

triangles, and use this to construct a quiver associated with the triangulation.

Mutation of nodes in Q∆ corresponds to a “flip” or “Whitehead Move” in

∆ at the corresponding arc. A flip is the operation of removing the specified arc,

and replacing it with the unique new arc which forms a new triangulation. Again,

there is a caveat to this when S has punctures. The interior arc of a self folded

triangle cannot be flipped, but the corresponding node in the quiver can be. This

is addressed in [32] by the addition of “tagged” arcs. Essentially, we replace the
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(a) Arcs in a punctured digon.

(b) The tagged arc flip graph.

Figure 2.10: Untagged vs tagged arcs in a punctured digon.

outside arc of a self folded triangulation with a tagged arc as shown in figure 2.10.

There is then a rule for flipping tagged arcs which agrees with the mutation rule for

quivers. With this addition, we may always flip any arc and this always agrees with

mutation of corresponding quivers. We do not need the details of this in general.

We can generate a graph associated to S where the nodes correspond to tri-

angulations (possibly with tagged arcs) and the edges correspond to flips of trian-

gulations. We call this graph the “flip graph” of S.

Let i be the seed obtained by using Q∆ as its underlying quiver.

Proposition 2.6.1 ( [32]). The flip graph of S agrees with the cluster modular

groupoid of i in the following way: If the triangulation of S, ∆′, is obtained from ∆ by

two different paths of flips, then the two seeds obtained from i by the corresponding
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paths of mutations are isomorphic.

The cluster ensemble generated by using Q∆ as a seed is closely related to the

Teichmüller theory of S. We will usually refer to this seed simply as ∆ when it is

understood that we mean the seed associated with the triangulation ∆.

The positive real valued points of the positive varieties A∆ and X∆ are exactly

the Teichmüller spaces TA(S) and TX (S) defined in the previous section. We write

(AS,XS) for the cluster ensemble generated from any triangulation of S.

Importantly, one checks that the associated A and X exchange relations cor-

respond exactly to the change in the lambda lengths and cross ratios after flipping.

Thus, the cluster ensemble encodes the spaces TA(S) and TX (S) along with specified

coordinate systems for each ideal triangulation.

Example 2.6.1. Let S be a disk with n marked points on the boundary. The

cluster ensemble encodes some well known algebraic objects. The cluster algebra

associated with AS is the affine cone coordinate ring of the Grassmannian Gr(2, n),

see [11]. The space XS is essentially the moduli space M0,n of genus zero curves with

n distinguished points see example 1.3 of [12].

For any n, there are finitely many triangulations, and thereby finitely many

clusters. We can also see that there is always a triangulation for which the associated

quiver is an orientation of an An Dynkin diagram. Thus this cluster ensemble is of

type An.

Example 2.6.2. Following example 2.4.1, we can construct the quiver for this

surface and triangulation. Figure 2.11 shows the construction of the quiver. Notice
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Figure 2.11: Generating the quiver for the surface S and ∆. The two middle arrows

are removed.

that we cancel the arrows between nodes 1 and 2. The quiver, Q∆, we obtain is

1

[3] [4]

2

. (2.22)

We can see that flips at arcs 1 or 2 will generate self folded triangles. We can see

what the quivers associated to these triangulations should be by mutating the corre-

sponding nodes of Q∆. We cannot flip arc 1 and then flip arc 2 without introducing

tagged arcs. This is necessary since we can mutate node 1 and then node 2 of Q∆

without issue.

The cluster ensemble associated with S has four clusters and the flip graph of

S has four nodes. This is shown in figure 2.11.
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2.6.2 Action of the mapping class group

We can define an action of the mapping class group, MCG(S), on the triangu-

lations of S and hence identify the mapping class group as a subgroup of the cluster

modular group, ΓS of our cluster ensemble (AS,XS). We give an explicit construc-

tion of this subgroup here. We refer to [34] section 2 for computations involving the

mapping class group of selected surfaces.

Given f ∈ MCG(S) we can define γf ∈ ΓS as follows: f gives a new triangula-

tion of S and hence by [32] there is a path of flips, Pf , taking ∆ to f(∆). f defines

a map between the edges of ∆ and f(∆) and it preserves the adjacency relations

between the triangles of ∆. This means that ∆ and f(∆) have the same associated

quivers. P defines a map between the nodes of Qf(∆) and P (Q∆) since these quivers

come from the same triangulation. Let σf,P be the isomorphism of quivers Q∆ to

P (Q∆) defined by the composition

σf,P : Q∆
f−→ Qf(∆)

P−→ P (Q∆). (2.23)

Thus to f we associate γf = {Pf , σf,P}.

It is not immediately clear that this does not depend on the choice of path,

P . Let {P, σ} and {R, τ} be two possible representatives of γf . Then we have

{P, σ}{R, τ}−1 = {P, σ}{τ−1(R−1), τ−1} = {Pστ−1(R−1), στ−1}. (2.24)

We need to show that this element is a trivial cluster transformation. στ−1 is

the quiver isomorphism from R(Q∆) to P (Q∆) coming from the fact that these

both correspond to the same triangulation of S. The composite mutation path,
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Pστ−1(R−1), consists of following P and then following R−1 back to our initial

cluster. This introduces a permutation on the cluster variables determined by the

map τσ−1 : P (Q∆) → R(Q∆). Together these permutations act trivially on the

cluster variables, and γf is well defined in the cluster modular group.

For all but finitely many quivers associated with surfaces, the cluster modular

group is essentially equal to the mapping class group, see [35] proposition 8.5. For

the remaining surfaces, one may check case by case that MCG(S) is always a finite

index normal subgroup of Γ.

2.6.3 Skein algebras of surfaces

The skein algebra associated with a marked surface will play a key role in

understanding the relationships between invariant functions on a cluster ensemble

associated with a surface. We refer to [26] for full details on the relationship between

skein algebras and cluster algebras associated with surfaces. We note that we will

always be considering the unquantized version of the skein algebra.

Let S be a marked surface.

Definition 2.6.1. A Skein on S is any collection of arcs on S or closed curves on

S. We do not require that these arcs or closed curves do not intersect each other or

themselves.

Definition 2.6.2. The Skein Algebra, Sk(S) is the algebra with generators given

by the skeins on S subject to the Skein relations, see figure 2.12

The cluster algebra associated with S, A(S), is naturally contained in the
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(a) The skein relation for a crossing.

(b) A contractible closed curve is equal to

−2.

,

(c) A contractible arc is equal to zero.

Figure 2.12: The skein relations for arcs and curves on a marked surface.
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Figure 2.13: Computing the element δa1a2 in Sk(S).

skein algebra. The skein relation is simply another description of the A exchange

relation.

Let T be the collection of trace functions for closed curves on S. These func-

tions also naturally form a subalgebra of the skein algebra associated with skeins

which do not include marked points. The following proposition is a natural descrip-

tion of the skein algebra of a surface, see [6].

Proposition 2.6.2. The skein algebra of S is generated by the elements of A(S)

and T .

This proposition essentially means that we may use skein relations to write

any skein as products and sums of skeins with no crossings.

Example 2.6.3. We can compute the element of the skein algebra corresponding

to the arc δ on the surface S from example 2.4.1. We can see that

δa1a2 = a1a2 + a1a2 (2.25)

as shown in figure 2.13. Thus δ = 2 in the skein algebra. This is expected, since

this element must be the same as the trace of the monodromy operator associated
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with δ which is 2, since this arc is homotopic to a puncture and we are computing

this from a point in TA(S).
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Chapter 3: Examples of Mutation Invariant Functions

We now compile many interesting examples of mutation invariants.

3.1 First Examples

Example 3.1.1. First we cover example 1.2.1 in a bit more detail.

Let Q be a quiver of type Ã1 shown in figure 3.1. Lets first understand the

cluster ensemble associated with this quiver. The seed groupoid looks essentially as

follows, with pairs of A and X coordinates shown on the nodes of Q to represent

the seeds i, µ1(i) = i′ and µ2(i) = i′′:

(a′′1, x
′′
1) (a1, x1) (a′1, x

′
1)

(a′′2, x
′′
2) (a2, x2) (a′2, x

′
2)

µ1 µ2 µ1 µ2
. (3.1)

Each of these seeds has the same underlying quiver so the seed groupoid only has one

object and has maps indexed by Z. Thus, the cluster modular group is isomorphic

to Z and has the same presentation at every seed. A generator of this group is given

by

γ = {1, (12)} ∈ ΓQ ' Z. (3.2)

The positive varieties Ai and Xi are both homeomorphic to (Gm)2. The mu-
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1 2

Figure 3.1: Quiver of type Ã1.

tations induce birational maps according to the mutation rules. For example, we

have

µ∗1(a′1, a
′
2) = (

1 + a2
2

a1

, a2) (3.3)

µ∗1(x′1, x
′
2) = (x−1

1 , x2(1 + x1)2). (3.4)

The map ρ : Ai → Xi is given on coordinates by

ρ∗(x1, x2) = (a2
2, a
−2
1 ). (3.5)

The action of ΓQ on F(Ai) and F(Xi) is given by

γ(a1, a2) = (a2,
1 + a2

2

a1

) (3.6)

γ(x1, x2) = (x2(1 + x1)2, x−1
1 ). (3.7)

It is not too difficult to write an invariant for ΓQ on AQ. The function

F (a1, a2) =
1 + a2

1 + a2
2

a1a2

(3.8)

is invariant. We also have an invariant for this group on XQ :

G(x1, x2) =
(x2(x1 + 1) + 1)2

x1x2

. (3.9)

It is easy to check that ρ∗(G) = F 2

Let us interpret these invariants in terms of hyperbolic geometry. The Ã1

affine ensemble is associated to an annulus with one marked point on each boundary
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component (see figure 3.2). The quiver for this triangulation is shown in figure 3.3.

There are two frozen nodes and coefficients to account for the boundary arcs on S,

call the variables on the A space associated with them c, d. The cluster modular

group corresponds exactly to the mapping class group of S and the generator γ =

{1, (12)} corresponds to a Dehn twist about δ. If we take the trace of the monodromy

operator, ψ(δ), associated with the closed curve δ, we find that on the X space

Tr(ψ(δ)) =
x2(x1 + 1) + 1
√
x1x2

. (3.10)

This is exactly the square root of G(x1, x2) from before. Furthermore, we have

ρ∗(
√
G(x1, x2)) =

a2
1 + a2

2 + cd

a1a2

= F (a1, a2, c, d) (3.11)

which is the previous invariant we found, taking into account the new coefficients.

We can also investigate the limiting behavior of the cluster variables via the

hyperbolic geometry of S and the skein algebra of S.

Let us explicitly compute the element of Sk(S) corresponding to the simple

closed curve δ on S. Call this element Fsk. We find using a skein relation that

a1Fsk = a2 + µ2(a2) = a2 +
a2

1 + cd

a2

=
a2

1 + a2
2 + cd

a2

. (3.12)

Thus Fsk = F is simply another incarnation of the same invariant found earlier.

The invariance of F can be seen since the closed curve δ does not change when we

do a Dehn twist.

Let {an} = γn−1(a1) = {a1, a2,
1+a22
a1

, . . . } be the sequence of cluster variables

obtained after repeated applications of γ. Then, applying γn−1 to our previous skein
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Figure 3.2: The surface S, along with a choice of triangulation. δ is the generator of

the fundamental group and the mapping class γ corresponds to a Dehn twist about

δ.

relation and using the invariance of F , we find the linear recurrence

an+1 = anF − an−1. (3.13)

We can explicitly write a solution for this linear recurrence in terms of the initial

[3]

1 2

[4]

Figure 3.3: The quiver associated with a marked annulus.
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two cluster variables a1, a2 and the coefficients c, d. Let

λ =
F +
√
F 2 − 4

2
= exp(arccosh(F/2)) (3.14)

be such that λ+ λ−1 = F . λ is the eigenvalue of a matrix representing ρ(δ). Let

w = a2 − a1λ
−1 w′ = −a2 + a1λ. (3.15)

Then we have that

an =
1

λ− λ−1
(wλn + w′λ−n). (3.16)

The A coordinates correspond to lambda lengths associated to the two interior

arcs on S. After many applications of γ, their lambda lengths grow like multiples

of λ. One may check that there is exactly 1 closed geodesic on S with the same

homotopy class as δ and that its hyperbolic length is equal to 2 arccosh(F/2). Thus,

the multiplier λ is essentially the lambda length of the arc δ. This should make

intuitive sense, since each time we twist, we are adding approximately the length

of this geodesic to each arc, so in terms of lambda-lengths, we multiply by the

exponential of half of the length.

Example 3.1.2. The mutation class of a quiver of type Dn has an element that

looks like a directed n-cycle, as shown in figure 3.4. Let Q be this quiver. The

cluster modular group for Q is Z/nZ × Z/2Z generated by r and t in each of the

factors1. The function

F (a1, a2, . . . , an) =
1

a1a2

+
1

a2a3

+ · · ·+ 1

ana1

(3.17)

1This is not quite true when n = 4, but the given function is still an invariant.
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3 4

2 5

1 n

Figure 3.4: Qn−cycle. This quiver is simply an n cycle of nodes and arrows.

is an element of F(AQ)<r> and satisfies t(F ) = F−1. This is a generalization of

example 2.3.3.

Example 3.1.3. Let (AQ,XQ) be the cluster ensemble with trivial coefficients as-

sociated with the Markov quiver, Q, of figure 3.6a. The function

F (a1, a2, a3) =
a2

1 + a2
2 + a2

3

a1a2a3

(3.18)

is an invariant function for all of ΓQ = PSL(2,Z) on AQ. The function

G(x1, x2, x3) = x1x2x3 (3.19)

is an invariant for ΓQ on XQ.

The function F encapsulates the Diophantine properties of the Markov num-

bers. The Markov numbers are generated by evaluating theA coordinates at (1, 1, 1).

We write these as triples of integers (x, y, z). Since F (1, 1, 1) = 3, we have that the

Markov numbers all satisfy x2 + y2 + z2 − 3xyz = 0.

If we freeze any one of the nodes in Q, then remaining mutable portion is a

quiver of type Ã1. We can use the invariant in the exact same way as example 3.1.1

to study the limiting behavior of mutations on this modified quiver. In this way we

recover similar analysis of [36].
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Figure 3.5: The surface S1,0,1,0 with a choice of triangulation and associated quiver.

There is a simple geometric interpretation of the invariant of the Markov

quiver. If S = S1,1 is a torus with one puncture then the cluster ensemble asso-

ciated to S is of type A
(1,1)
1 see figure 3.5. If we have a hyperbolic metric on S

with the puncture at infinity and a horocycle around the puncture, then the theory

of lambda lengths implies that the function F is simply the formula for half the

length of the horocycle in terms of the A coordinates. Since the length of the horo-

cycle is independent on the triangulation and there is only one topological type of

triangulation, F must be invariant under exchanges.

3.2 Invariants for Doubly Extended Quivers

Quivers associated with doubly extended Dynkin diagrams all have similar

properties to the Markov quiver, which is of type A
(1,1)
1 . We will show several

examples of invariants which are analogous to the Markov invariant.
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1

3 2

22

2

(a) The Markov quiver.

Also associated with a

punctured torus and of

doubly extended type

A
(1,1)
1 .

1[4]

3 2

4,11,4

2

(b) BC
(2,1)
1 .

1

3[4] 2[4]

1,44,1

2

(c) BC
(2,4)
1 .

Figure 3.6: Quivers associated with doubly extended Dynkin diagrams with 3 nodes.

Example 3.2.1. Let Q be a quiver of type BC
(2,1)
1 Then the function

F (a1, a2, a3) =
a4

1 + (a2 + a3)2

a2
1a2a3

(3.20)

is an element of F(AQ)ΓQ .

Example 3.2.2. Let Q be a quiver of type BC
(2,4)
1 The function

F (a1, a2, a3) =
a2

1 + 2a1(a2
2 + a2

3) + a4
2 + a4

3

a1a2
2a

2
3

(3.21)

is an element of F(AQ)ΓQ . This function and its Diophantine properties were studied

by Lampe in [20]. It was shown that all solutions for the equation F (x, y, z) = 7

could be obtained from the initial solution F (1, 1, 1) = 7 by cluster mutations. It

would be interesting to study this type of Diophantine problem for other invariant

functions.
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Example 3.2.3. A quiver of type G
(3,3)
2 has two quiver isomorphism classes. Let

Q be the isomorphism class shown in figure 3.7. we can see that the element γ =

{1, (12)} is in ΓQ. It is not hard to compute that

1→ N(γ)→ ΓQ → D12 → 1 (3.22)

where N(γ) is the normalizer of the element γ and D12 is the dihedral group with

12 elements. The functions

F1(a1, a2, a3, a4) =
(a3

1 + a3
2)(a1 + a2) + a3a4(2a2

1 + a1a2 + 2a2
2) + a2

3a
2
4

a2
1a

2
2a3a4

(3.23)

and

F2(a1, a2, a3, a4) =
(a1 + a2)2 + a3a4

a1a2a2
3

(3.24)

are elements of F(AQ)N(γ).

Example 3.2.4. A quiver of typeD
(1,1)
4 has 4 mutation classes, call themQ1, Q2, Q3, Q4,

see figure 3.8. Let Q4 be our seed. The cluster modular group can be written as an

extension

1→ Z ∗ Z→ ΓQ4 → Aut(F4)+ → 1 (3.25)

where Aut(F4)+ is orientation preserving group of automorphisms of the F4 root

1[3]

4 3[3]

2[3]

2

1,3

3,1

Figure 3.7: Quiver of type G
(3,3)
2 .
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system of order 1152. This group is generated by the orientation preserving elements

of the Weyl group W (F4) along with the duality autormorphism.

We will see below why Z ∗Z is a normal subgroup. W (F4) is generated in the

quotient by the elements of Aut(Q4) and the paths {1231, (23)} and {14, (2356)}.

An element of F(AQ4)
Z∗Z is

F (a1, a2, a3, a4, a5, a6) =
(a1a4 + a2a5 + a3a6)2

a1a2a3a4a5a6

(3.26)

There is also an X invariant

G(x1, . . . , x6) = x1x2x3x4x5x6. (3.27)

These are not the only functions in its exchange class, that is to say that

Aut(F4)+ acts non trivially on this function. After applying the element {1231, (23)},

we obtain the functions

F456 =
a1a4 + a2a5 + a3a6

a4a5a6

G456 = x4x5x6 (3.28)

There are 24 different functions in the exchange class of F . They are

F, F−1, F456, F−1
456,

a1

a4

(3.29)

along with each of their images under the automorphism group of Q4.

There is a relationship with these functions and the invariant of the Markov

quiver. If we fold Q4 by associating nodes 1 and 4, 2 and 5, 3 and 6, we obtain

a quiver of type A
(1,1)
1 . Under this folding, each of these functions becomes an

invariant function for a cluster algebra of type A
(1,1)
1 . In other words, if we set

a1 = a4, a2 = a5, a3 = a6 then our functions become either 1, F ′ or F ′2, where F ′ is

the invariant of example 3.1.3.
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There is also a relationship between these invariants and the invariants of the

BC
(2,1)
1 ensemble of example 3.2.1. We can fold Q1 to obtain a quiver of type BC

(2,1)
1

by associating nodes 2, 3, 5, and 6. We can find invariants for AQ1 by pulling our

set of invariants on AQ4 back along a mutation path between these two quivers. In

doing so, we obtain the functions

F1425 =
(a1 + a4)2 + a2a3a5a6

a1a4a2a5

, F−1
1425, F23 =

a2

a3

(3.30)

and each of their images under the action of Aut(Q1), as elements of F(AQ1)
Z∗Z.

Each of these clearly folds to an invariant of the BC
(2,1)
1 algebra by setting a2 =

a3 = a5 = a6.

Example 3.2.5. The Weyl group, W (D4) = Z3
2 o S4, is a normal subgroup of the

modular group of the D
(1,1)
4 cluster ensemble. For a simple presentation for this, take

Q1 as our initial quiver and look at the subgroup generated by the Aut(Q1) = S4

and the path {214, (142)} ∗ {314, (143)}−1. This generates W (D4) as a subgroup of

Z4
2 oS4 generated by the elements of S4 and the element ((1,−1, 0, 0), id). We have

an exact sequence:

1→ W (D4)→ Γ→ PSL(2,Z)→ 1 (3.31)

Consider Q4 as our seed. The function

F (a1, a2, a3, a4, a5, a6) =
(a1a4 + a2a5 + a3a6)3

a1a2a3a4a5a6

(3.32)

is an element of F(AQ4)
W (D4).
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1

6 2

5 3

4

2

(a) Q1

1

6 2

5 3

4

(b) Q2

1

6 2

5 3

4

(c) Q3

1

6 2

5 3

4

(d) Q4

Figure 3.8: Quivers of type D
(1,1)
4 .

3.3 Examples from Somos Sequences

Example 3.3.1. The Somos 4, 5 and 6 sequences can be associated to cluster

algebras in a simple way2. If we look at the variables on the A space generated

by starting with quivers Qs4 , Qs5 or Qs6 and following the mutation paths γ4 =

{1, (1234)} , γ5 = {1, (12345)} or γ6 = {1, (123456)}, we obtain the respective

Somos sequences by evaluating all of the initial cluster variables at 1. Explicitly,

2This Somos 6 sequence is not the most famous instance, see [37] for a discussion of the example

shown here.
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1 2

4 3

3

(a) Qs4.

3

2 4

1 5

(b) Qs5.

3 4

2 5

1 6

(c) Qs6.

Figure 3.9: Quivers for the Somos 4, 5 and 6 sequences.

these sequences can be obtained by the recurrence

Xn+kXn = Xn+1Xn+k−1 +Xn+bk/2cXn+dk/2e (3.33)

with {X1, X2, . . . , Xk} all equal to 1 for k = 4, 5, 6 respectively. This gives the

sequences

S4 = {1, 1, 1, 1, 2, 3, 7, 23, 59, 314, . . . } (3.34)

S5 = {1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, . . . } (3.35)

S6 = {1, 1, 1, 1, 1, 1, 2, 3, 4, 8, 17, 50, 107 . . . }. (3.36)

There are invariant functions on each of these cluster ensembles for these

mutation paths. The functions

F4(a1, a2, a3, a4) =
a2

1a
2
4 + a1a

3
3 + a4a

3
2 + a2

2a
2
3

a1a2a3a4

(3.37)

F5(a1, a2, a3, a4, a5) =
a2

1a
2
4a5 + a1a

2
2a

2
5 + a1a

2
3a

2
4 + a2

2a
2
3a5 + a2a

3
3a4

a1a2a3a4a5

(3.38)
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and

F6(a1, a2, a3, a4, a5, a6) =

a2
1a2a5a

2
6 + a2

1a4a
3
5 + a3

2a3a
2
6 + a1a

2
3a4a

2
5 + a2

2a3a
2
4a6 + a1a3a

3
4a5 + a2a

3
3a4a6 + a3

3a
3
4

a1a2a3a4a5a6

(3.39)

are elements of F(AQs4)<γ4>, F(AQs5)<γ5> and F(AQs6)<γ6> respectively.

Explicitly, this means that each of these functions has the same value when

applied to a consecutive collection of numbers from its respective sequence. For

example, we see that

F6(1, 1, 1, 1, 1, 1) = 8
?
= F6(1, 2, 3, 4, 8, 17) (3.40)

=
4624 + 2048 + 6936 + 2304 + 3264 + 1536 + 3672 + 1728

3264
= 8 (3.41)

The functions F4 and F5 have appeared in [21] in relation to the number

theoretic properties of the Somos sequences e.g. one may compute the j−invariant

of an elliptic curve associated with the sequences using the values of these functions.

While the cluster algebra interpretation of the Somos sequences has been studied,

the mutation invariant formulation of these functions is new.

These functions for general periodic quivers are studied in [38].
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Chapter 4: First Properties and Construction of Invariants

In this chapter we prove some theorems about the abstract structure of mu-

tation invariants, and show some basic constructions of them. We also do some

computations which will be help full in the proof of our main theorem.

4.1 Basic properties of mutation invariant functions

First, we consider properties and constructions of invariants that can be used

in general.

4.1.1 Trivial Invariants

Since it respects mutations, the map ρ : A → X gives a map

ρ∗ : F(X )Γ◦ ∪ {∞} → F(A)Γ◦ ∪ {∞} (4.1)

by pullback. This is very useful for studying the invariants on the A space when

there are nontrivial coefficients. However, since ρ is not surjective or injective in

general, we cannot say much about the image of the set of X invariants under ρ∗.

Definition 4.1.1. A rational function in the coefficients of A is called a trivial A

invariant.
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These functions are clearly unchanged by the action of cluster modular group

elements.

We can understand what functions pull-back to trivial A invariants via ρ∗ as

follows: any vector, v = (v1, . . . , vn) of the kernel of the exchange matrix gives such a

function since ρ∗(
∏

xvii ) is a function just of frozen variables, see section 2.3 of [12].

These functions are called “Casimir” functions.

Definition 4.1.2. A X invariant that is also a Casimir function will be called a

Casimir X invariant.

Example 4.1.1. The type An cluster ensembles have an interesting Casimir X

invariant when n is odd. The cluster modular group of the type An cluster ensemble

is Z/(n + 3)Z, generated by γ. Take Q to be the quiver in figure 4.1 and let

G(x1, . . . , x2n+1) = x1x3 . . . x2n+1. Then G is a trivial Casimir in F(XQ)Z/mZ, where

m = n+3
2

. G satisfies γ(G) = G−1.

1 2 ... 2n+ 1

Figure 4.1: Quiver of type A2n+1.

4.1.2 Invariants of Subensembles

The invariants of the A space and X space of an ensemble respect inclusions

of “subensembles” in different ways.

Definition 4.1.3. Let Rµ ⊂ Qµ be a subquiver of the mutable portion of Q. Let

R be the quiver obtained from Q by freezing all the nodes in N(Q) − N(Rµ). We
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consider (AR,XR) to be a subensemble of (AQ,XQ).

Let γR = {PR, σR} be an element of the cluster modular group of R that

extends trivially to an element of the modular group of Q, i.e. there exists γQ =

{PR, σQ} where σQ|R = σR and σQ does not permute any of the frozen nodes in R.

Remark 4.1.1. In all our applications, we will need to construct a unique extension

of cluster modular group elements in ΓR.

We can now state the following pair of propositions:

Proposition 4.1.1. F(AQ)<γQ> is exactly F(AR)<γR>. Furthermore, evaluating

the variables associated to the nodes in N(Q) − N(Rµ) at 1 gives a map of sets

F(AQ)<γQ> ∪ {∞} → F(ARµ)<γR> ∪ {∞}.

Proposition 4.1.2. We have a natural inclusion F(XR)<γR> ⊂ F(XQ)<γQ>. Fur-

thermore, evaluating the variables associated to nodes in N(Qµ)−N(Rµ) at 0 gives

a surjection of sets F(XQ)<γQ> ∪ {∞} → F(XR)<γR> ∪ {∞}.

Proof. The first proposition follows from the fact that the mutation rule on the

A space only changes the variable being mutated. The first part of the second

proposition follows since the X coordinates are unchanged when frozen variables are

added. The only thing left to prove is that evaluating the nodes in N(Qµ)−N(Rµ)

at 0 gives a map from F(XQ)<γQ> to F(XR)<γR>. The surjection is obvious because

of the inclusion of rings.

Let r = #N(Rµ) and renumber the nodes of Q so that the first r nodes are

the nodes in N(Rµ). Let Gi(x1, . . . , xn) = xi and let j = σ−1(i). Then for any i > r,
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we have

γQ(Gi) = xjhj(x1, . . . , xr) (4.2)

, where hj is some rational function that does not depend on any xi, i > r. This fol-

lows since we never mutate at node i in γQ, and the X mutation rule only multiplies

coordinates by functions of those which are mutated.

Let K = F[xr+1, . . . , xn] and L = F(x1, . . . , xr) = F(XR). Then, γQ acts on

any monomial term in K by multiplication by an element of L. Now we write any

function, g = p
q
∈ F(XQ) = F(x1, . . . , xn), as a ratio of two polynomials in K with

coefficients in L. Let p0, q0 ∈ L be the constant terms of p and q. Now we may see

that if g is invariant then we have

pγQ(q) = qγQ(p) (4.3)

which implies by comparing constant terms that

p0γQ(q0) = q0γQ(p0) (4.4)

and so we have that p0
q0
∈ L is invariant.

Corollary 4.1.1. The dimension of the field extension F(XQ)<γQ>/F(XR)<γR> ≤

n− r.

Proof. This follows from the proof of the previous theorem. Since γQ acts on each

monomial in K independently by multiplication by elements in L, any basis of

F(XQ)〈γQ〉/F(XR)<γR> can be written as a basis of monomials in K with coefficients

in L. Now we may see that any particular monomial in K can only be associated
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with one independent invariant, since the ratio of two such invariants is in F(XR)〈γQ〉.

The corollary now follows from realizing that there are at most n− r algebraically

independent monomials in K.

Remark 4.1.2. The evaluation maps should be considered to be related to pro-

jective maps of varieties which have the corresponding invariant rings as function

fields. However, it is not clear that these varieties actually exist.

Combining these two propositions together, we may state the following useful

theorem.

Theorem 4.1.1. Let Q be a quiver and let R be a quiver obtained by deleting some

subset D ⊂ N(Q) of the nodes of Q. Let A(D) and X (D) be the collections of A

and X coordinates associated with the nodes in D. Suppose that there is an element

γ ∈ ΓR such that γ does not mutate at any node in R adjacent to a node in D. Then

there exists γQ ∈ ΓQ which restricts to γR and we have

1. F(AQ)〈γQ〉 = F(AR)〈γR〉(A(D))

2. F(XQ)〈γQ〉 = F(XR)〈γR〉(X (D))

or to write simply

F(AQ,XQ)〈γQ〉 = F(AR,XR)〈γR〉(D). (4.5)

Proof. Our element γQ can be constructed from γR by extending the quiver isomor-

phism of γR to all of Q.
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Since γR does not mutate at any node adjacent to the nodes in D, we may

construct a new quiver R′ where we freeze every node of R which is adjacent to any

node in D and naturally think of γR as an element in ΓR′ . Then adding the nodes

of D to R′ as frozen nodes does not change the mutation structure of the ensemble

associated with F′ since the new nodes are only connected to frozen nodes. Adding

these nodes simply adds coefficients which appear in every cluster, but do not effect

the exchange relations in any way.

Now, since γR returns R to an isomorphic quiver, it also does the same for R′.

Finally, we may find our desired isomorphism of Q by attaching the nodes in D to

R′ before and after applying γR and choosing the map which gives an isomorphism

between these two quivers.

Denote by Q′ the quiver obtained from Q by freezing all the nodes in D along

with nodes adjacent to those in D. We have µ(Q′) = µ(R′). Now we have

F(AQ)〈γQ〉 = F(AQ′)〈γQ〉 = F(AR′)〈γR〉(A(D)) = F(AR)〈γR〉(A(D)) (4.6)

where the first and third equality follow from proposition 4.1.1 the second equality

follows from our realization that the A coordinates for D are trivially invariant and

that AR̃ and AR′ have the same mutation structure.

For the X space, we have by proposition 4.1.2

F(XR)〈γR〉 ⊂ F(XQ)〈γQ〉 (4.7)

is a field extension of degree less than #D by corollary 4.1.1. We can also can see

that

F(XR)〈γR〉(X (D)) ⊂ F(XQ)〈γQ〉. (4.8)
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4 1 m− 1

3 2 m

Figure 4.2: Quiver with double edge and oriented cycles.

This must be an equality since we may write a basis of R(XQ)〈γQ〉 over F(XR)〈γR〉 in

terms of monomials in X (D), but every such monomial is contained in F(XR)〈γR〉(X (D)).

Example 4.1.2. Let R be the quiver shown in figure 4.2, and let Q be any quiver

which is obtained by adding nodes to R which are only connected to nodes 3, . . . ,m.

Let D be the set of these new nodes. We have γ = {1, (12)} ∈ ΓR,ΓQ. Then theorem

4.1.1 implies that

F(AQ,XQ)〈γ〉 = F(AR,XR)〈γ〉(D). (4.9)

4.2 Invariants Of Ensembles Associated With Surfaces

Our main source of invariants of cluster ensembles associated with surfaces will

be from trace functions associated to closed curves on S. Our formulas in section

2.5.3 show how we may write the monodromy operator associated with traversing a

closed curve, δ, in terms of the A and X coordinates of a triangulation of S. This

allows us to assign a trace function of the A and X coordinates for each closed curve

δ on S. The formula for a trace function only depends on the order that δ touches

the arcs of the triangulation. Therefore, this formula must remain the same if we
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Figure 4.3: The arcs near a boundary with one marked point.

apply a mapping class to S which fixes δ, and it thereby gives rise to an invariant

function.

4.2.1 Calculating trace functions

It will be important to know what the exact formula for the trace of a mon-

odromy operator for a closed loop on S is in terms of the A and X coordinates in

a special case.

Let S be a marked surface and assume that S has a boundary component with

exactly one marked point. Let δ be a closed curve on S homotopic to this boundary

component and let {e1, e2, . . . , ek} be the arcs in an ideal triangulation of S which

touch the marked point on this boundary, see figure 4.3.

We can write an explicit formula for the trace of the monodromy operator

associated with δ in terms of the X coordinates. Recall the matrices associated to

arcs in ∆ and the matrices R and L from section 2.5.3. Call the matrices associated

to {e1, e2, . . . , ek} {X1, . . . , Xk}. Choosing the orientation of δ shown in figure 4.3,
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we compute that

ρ(δ) = X1RX2R . . .Xk. (4.10)

With a little bit of work, we find

Tr (ψ(δ)) =
1

√
x1x2 . . . xk

( i=k∑
i=1

j=i∏
j=1

xj + 1
)
. (4.11)

This is a rational function in the X coordinates exactly when the product under the

square root is a square.

4.2.2 Other types of surface invariants

We can produce A invariants by clever use of the following fact about lambda

lengths. Let S be a hyperbolic surface decorated with horocycles, t ∈ ∆ be a

triangle, and let h3 be the segment of the horocycle bounded between edges 1 and

2, see figure 4.4. Then the hyperbolic length h3 is
λ3

λ1λ2

, see lemma 4.4 of [31].

We can use this formula to write a function that evaluates to the length of a

horocycle about a marked point on our surface in terms of the A coordinates of a

given triangulation. This function is preserved under the action of mapping classes

since the total length of the horocycle and the topology of the triangulation are

preserved. It is important to notice that this expression will not be invariant under

any mapping class that permutes this marked point with another.

We can construct an invariant for the entire mapping class group by summing

all of the lengths of horocycle segments on S. Let et1, et2, et3 be the three edges of
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Figure 4.4: An ideal hyperbolic triangle with horocycle segments around its three

vertices.

a triangle t ∈ ∆. This invariant is given by the formula

∑
t∈∆

a2
et1

+ a2
et2

+ a2
et3

aet1aet2aet3
. (4.12)

We can easily produce Casimir X invariants associated to each puncture on

S by taking the product of the X coordinates associated to edges touching the

puncture. These are the functions pX mentioned in 2.17.

Example 4.2.1. We can interpret the invariants of example 3.2.4 using a surface.

The cluster ensemble associated to S = S0,0,4,0, a four punctured sphere, is of type

D
(1,1)
4 . If we take a triangulation of S that topologically looks like a tetrahedron,

then the quiver associated with this triangulation is Q4 from figure 3.8 and the

length of a particular horocycle around a puncture is given by a function like F456.

The function G456 is the X invariant associated a puncture on S. We have that

PMCG(S) = Z ∗ Z (4.13)

and hence we have that these functions are invariant under the subgroup claimed.
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Remark 4.2.1. We note that specifying a values for horocycle lengths and fixin

pX = 1 for every puncture are the relations between TA(S), TX (S) and T (S). We

may think of these functions as being the “gluing equations” for a hyperbolic struc-

ture on S.

One can interpret the invariance of these expressions as a way of stating that

the action of the mapping class group does not change the topological structure of

the surface and hence does not change the conditions that must be satisfied for there

to be a hyperbolic structure on it.

4.3 Sequences of A coordinates from Dehn twists

As we saw in example 3.1.1, the invariant function (the trace function) of the

Ã1 affine ensemble was essential for understanding the sequence of cluster variables

obtained along the mutation path we were considering. We will need to understand

the sequences of A coordinates found by doing Dehn twists on general surfaces.

In most cases, we can arrange that the closed arc which we are twisting lives in a

cylinder on S and thereby simply apply the analysis of 3.1.1. The only new case we

will need to consider is when our surface is a pair of pants with one marked point

on one of its boundaries. This surface is not a marked surface, since there are no

marked points on two of its boundaries, but we may still consider its skein algebra.

Let S be this surface, shown in figure 4.5. Two arcs from the marked point to

itself is shown, call these arcs a0 and b0. Let A,B,K be the elements of the skein

algebra of S associated with closed curves homotopic to the three boundaries as
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Figure 4.5: A pair of pants with one marked point before and after performing a

Dehn twist about the bottom boundary

shown in the figure. Furthermore let f be the arc from the marked point to itself

which is homotopic to K. Let {an}, {bn} be the sequence of arcs obtained after

performing n clockwise Dehn twists about K. Using several Skein relations, we may

first compute that

a0K = b0 + b1 + fA (4.14)

see figure 4.6. Multiplying through by K and using similar skein relations, we find

a0K
2 = b0K + b1K + fAK = a−1 + a0 + fB + a0 + a1 + fB + fAK. (4.15)

Thus, we find that {an} again satisfies a linear recurrence:

an+1 = an(K2 − 2)− an−1 − f(AK + 2B). (4.16)

We may solve this recurrence explicitly. Let K = λ+ λ−1 and let

w = a1 − a0λ
−2 +

f(AK + 2B)

K2 − 4
(λ−2 − 1) (4.17)

w′ = −a1 + a0λ
2 − f(AK + 2B)

K2 − 4
(λ2 − 1). (4.18)
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Figure 4.6: The Skein relations obtained from computing a0K. This is a zoomed in

view near the points where the crossings occur

Then we have

an =
1

λ2 − λ−2
(wλ2n + w′λ−2n) +

f(AK + 2B)

K2 − 4
. (4.19)

Furthermore, using more skein relations we may compute that

ww′ =
K2(A2 +B2 +K2 + ABK − 4)

K2 − 4
(4.20)

w − w′ = 2a1 − a0(K2 − 2) + f(AK + 2B) = a1 − a−1. (4.21)

Thus w and −w′ are roots of the following polynomial equation

w2 − (a1 − a−1)w − K2(A2 +B2 +K2 + ABK − 4)

K2 − 4
= 0. (4.22)

This analysis can be applied whenever we are in a situation where we have an

A coordinate in a surface cluster algebra which lives in a pair of pants on S. This

will allow us to compute sequences of A coordinates for Dehn twists which do not

84



live in cylinders on S. We simply need to evaluate the trace functions for K,A,B in

terms of the other A coordinates, then we may use our explicit formula to compute

the sequence.
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Chapter 5: Surface Invariants

Now we will state and prove our main theorems. We concentrate first on

ensembles associated with surfaces, but we show that the same proof ideas work for

mutation finite cluster ensembles as well.

5.1 Invariants of Surface Cluster Ensembles

In this section, we will classify the invariants in the situation where our clus-

ter ensemble is associated with any surface and we are considering invariants with

respect to the action of a single Dehn Twist.

Let S = Sg,b,p,n be a marked surface. We will construct invariants rings for

the cluster ensembles associated with ideal triangulations of S by using particular

initial triangulations obtained by “excising” our given Dehn twist.

Definition 5.1.1. We say a simple closed curve, δ on S is genus 0 on S if cutting

along δ leaves S connected, or if we can find a marked point or puncture on both

connected components of S after cutting.

When δ is genus 0, we may pick an ideal triangulation of S which cuts excises

a cylinder containing δ in the following way: pick any two, not necessarily distinct

marked points or punctures on S, p1, p2 along with curves c1 from p1 to one side of
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Figure 5.1: The construction of arcs which excise a given closed curve.

δ and c2 to the other side of δ. We can always find these curves since δ is excisable.

We then begin a triangulation of S by first using the arc e1 obtained by following

c1, traversing δ and then following c1 back to p1 and a similarly constructed arc e2.

This procedure is shown in figure 5.1.

When δ is not genus 0, we may still find one marked point and curve coming

to δ from one side. In this case we can construct e1 and we cut out a surface of

genus g from S with one boundary. We say that δ is genus g, and we may again

complete

Definition 5.1.2. A triangulation of S which contains the arcs ei arcs is called an

excising triangulation for δ The arcs of an excising triangulation which intersect δ

are called the interior arcs and the arcs who’s associated quiver nodes are connected

to the nodes of the interior arcs are called boundary arcs.

See figure 5.2 for a examples of various genus curves on a surface.

Every simple closed curve on S and choice of excising triangulation determines
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Figure 5.2: The blue closed curve is genus 0, and the red closed curve is genus 1.

two important subensembles. We denote by (Aδ,Xδ) the subensemble obtained by

freezing all of the nodes other than the interior arcs. When delta is genus 0, this

subensemble is of type Ã1, and we say that it is of genus g type otherwise.

We denote the subensemble obtained by freezing all of the nodes other than

the interior arcs and boundary arcs by (Abδ,X b
δ ). We have

(Aδ,Xδ) ⊂ (Abδ,X b
δ ) ⊂ (A,X ) (5.1)

.

Definition 5.1.3. We call the coefficients of Aδ for any choice of excising triangu-

lation the invariant A coordinates for δ

Let m be the total number of interior and boundary arcs. Suppose that δ

is genus 0 on S. Then there are 2 interior arcs of our triangulation and between

2 and 4 boundary arcs. Number nodes of the quiver associated with our excising
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triangulation with the first being the interior arc on the source of the double edge,

then the second interior arc, then the boundary arcs, then the rest.

Definition 5.1.4. The functions x3(x2(x1+1)+1), . . . , xm(x2(x1+1)+1), xm+1 . . . , xN

are called invariant X coordinates for our excising triangulation when δ has genus

0 on S

Suppose now that δ is genus g > 0. There are now 1 or 2 boundary arcs. let

xI be the product of the X coordinates associated with the interior arcs. Recall

that the total number of interior arcs is 6g− 2, and number the nodes of the quiver

with the boundary arcs first, then interior, then the rest.

Definition 5.1.5. The functions xIx1, . . . , xIxm−(6g−2), xm+1, . . . xN are called the

invariant X coordinates for our excising triangulation when δ has genus g on S.

Definition 5.1.6. In any case, the A coordinate functions for arcs of our excis-

ing triangulation which do not intersect δ (non interior arcs) are the invariant A

coordinates for our excising triangulation.

Definition 5.1.7. The closed curves that have representatives that are fully con-

tained in the excised surface are called the excised closed curves.

In figure 5.2, the excised curve for the blue curve are simply curves which wrap

around the excised cylinder a number of times. The excised curves for excising the

red curve are curves which are contained in the genus 1 surface.

Let γ be the cluster modular group element corresponding to a Dehn twist

about δ. Our main theorem can be stated as follows:
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Figure 5.3: The triangulation and associated quiver when g = 1 quiver

Theorem 5.1.1. 1. The ring F(XS)〈γ〉 is generated by traces of monodromy oper-

ators of excised closed curves on S and invariant X coordinates for an excising

triangulation of δ.

2. The ring F(AS)〈γ〉 is generated by traces of monodromy operators of excised

closed curves on S and invariant A coordinates of an excising triangulation of

δ.

We note that in the X case, not every trace function is itself a rational function

because of the square roots that we have seen 4.2.1. However, the generators we

need are simply those trace functions which are rational.

Before tackling the main theorem, we will treat the case where S is either

a cylinder or surface of genus g with one boundary component. This surface for

g = 0, g = 1, g > 1 is shown in figure 5.3. We also fix a triangulation ∆ and

associated quiver Q of each of these surfaces, shown in figures 5.3,5.5 and 5.4

Lemma 5.1.1. Let S = S0,2,0,2 be an annulus with one marked point on each bound-

ary or let S = Sg,1,0,1 be a surface of genus g with one boundary component and a
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Figure 5.4: The triangulation for when g > 1. Each of the g handles is associated

with 4 arcs of the triangulation as figure 5.3, and each of non-handle pairs of pants

is associated with 2 arcs if the triangulation.

9

4 10

5 8 11

3 6 7

1 2 11

[f ] 12

Figure 5.5: The quiver Q when g > 1
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single marked point on the boundary. Let δ be a simple closed curve on S homo-

topic to the boundary component. Let γ ∈ ΓS be the cluster modular group element

corresponding to a Dehn twist about δ.

1. The ring R(XS)〈γ〉 is generated by traces of of monodromy operators about

simple non-excisable closed curves and by squares of traces of monodromy op-

erators about simple excisable closed curves on S.

2. Then the ring R(AS)〈γ〉 is generated by traces of monodromy operators about

simple closed curves on S and frozen variables.

Proof. We will first treat the A case with g > 0. Let m = 6g − 2 and let

h(x1, . . . , xm+1) ∈ R(AS)〈γ〉 be an invariant function. Let {a1, . . . , a6g−2, f} be our

collection of A coordinates for ∆ triangulation of S show in figure. The coordinate

f is the frozen variable.

Then let {ain} be the sequence of coordinates obtained from acting on our

initial set by γn. The invariance of h implies that

h(a1, . . . , am, f) = h(a1n , . . . , amn , f). (5.2)

. Let h̃ be defined by

h̃(
1

y1

,
y2

y1

,
y3

y1

, . . . ,
ym
y1

, ym+1) = h(y1, . . . , ym+1). (5.3)

Then from the invariance of h we have

h(a1, . . . , am, f) = lim
n→∞

h(a1n , . . . , amn , f) = h̃(0, λ2, . . . , λm, f) (5.4)

where λi = limn→∞
yi
y1

. We can compute λi explicitly using the analysis of section

4.3.
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Figure 5.6: Two arcs in ∆ along with the pants that they live in.

Each of the arcs in ∆ can be seen to live in a pair of pants in the following

way. We may generate each arc by following a path from the marked point to a

closed curve, Ai, then traveling around this closed curve and finally going back to

the marked point. This arc lives in a pair of pants with boundaries Ai, Bi, K where

K = ∂S and Bi is the closed curve which is homotopic to the generator of H1(S)

equal to [A] + [K]. This situation is shown in figure 5.6.

In the continuation, we will use Ai, Bi, K to refer interchangeably to the el-

ements of the skein algebra of S or the traces of monodromy operators associated

with their respective closed curves. Let K = λ + λ−1 as before. By our analysis of

sequences of A coordinates we have

ain =
1

λ2 − λ−2
(wiλ

2n + w′iλ
−2n) +

f(AiK + 2Bi)

K2 − 4
(5.5)
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where

wi = ai1 − ai0λ−2 +
f(AiK + 2Bi)

K2 − 4
(λ−2 − 1) (5.6)

w′i = −ai1 + ai0λ
2 − f(AiK + 2Bi)

K2 − 4
(λ2 − 1). (5.7)

Thus, we find that

λi =
wi
w1

(5.8)

Thus, any invariant function only depends on {λ2, . . . , λm, f}. Thus our field

of invariants contains all of the rational functions in the lambda’s which are also

rational functions in the A coordinates. Clearly, wi is an element in the field ex-

tension R(AS)(λ) over R(AS). Let T ⊂ R(AS) be the field generated by traces of

closed curves on S and f . We will show that each λi is an element in T (λ). The

following tower of fields shows the situation:

R(AS)(λ)

λi
?
∈ T (λ) h ∈ R(AS)

T

2∞

2 ∞

(5.9)

Let σ : R(AS)(λ) → R(AS)(λ) be the field automorphism which sends λ to

λ−1. Then we have

σ(wi) = −w′i = −w−1
i

(K2(A2
i +B2

i +K2 + AiBiK − 4)

K2 − 4

)
(5.10)

and so

σ(λi) =
w′i
w′1

= λ−1
i

(A2
i +B2

i +K2 + AiBiK − 4

A2
1 +B2

1 +K2 + A1B1K − 4

)
. (5.11)
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(a) ai is separate from a1
(b) ai is contained in a1

Figure 5.7: The two possibilities for the arrangement of arcs a1 and ai

Thus λiσ(λi) ∈ T . We wish to now prove that λi + σ(λi) ∈ T . This calculation is

more involved. There are two possibilities for how the arcs a1 and ai are situated

on S. ai is either contained in a1 or is separate, as figure 5.7 shows

We treat the separate case here. The non separate case follows since if ai is

contained in a1 then we can find an arc which is separate from both, b, and write

ai
a1

=
ai
b

b

a1

. (5.12)

For the sake simplifying notation lets write an = a1n ,cn = ain , w1 = wa, wi =

wc and A1 = A,B1 = B,Ai = C,Bi = D, as figure 5.8 shows.

We need to compute W := waw
′
c + w′awc . From our formulas we first find

W = −2a1c1 − 2a0c0 + (K2 − 2)(a1c0 + a0c1)− (a1 + a0)f(CK + 2D)

−(c1 + c0)f(AK + 2B) +
f 2(AK + 2B)(CK + 2D)

K2 − 4
.

Next we will calculate K2(a1c0 + a0c1) using skein relations. There are essen-

tially two generic possibilities for how the arcs a0and c0 are situated on S. The arc
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Figure 5.8: The collections of arc and closed curves for the calculation of W in the

separate case

c0 is either contained in a0, like the four colored arc of figure 5.4, or they are sep

We will treat the first case shown in figure 5.8

For the first case, we compute

K(a0c1) = b1c1 + a0d0 + f(c1A+ e1 + a0C) (5.13)

K(a1c0) = a1d0 + b1c0 + f(a1C + e0 + c0A+ a0C + b1D) (5.14)

+ f 2(AD + CB + E +KF +KAC). (5.15)

So we have

K(a1c0 + a0c1) = (c0 + c1)fA+ (a0 + a1)fC (5.16)

+ b1(c1 + c0 + fD) + d0(a0 + a1) + a0fC + (e0 + e1)f (5.17)

+ f 2(AD + CB + E +KF +KAC). (5.18)
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Using skein relations for Kd0 and Kb1 we find

K(a1c0 + a0c1) = (c0 + c1)fA+ (a0 + a1)fC (5.19)

+ 2b1d0K − d0fB + a0fC + (e0 + e1)f (5.20)

+ f 2(AD + CB + E +KF +KAC). (5.21)

And using a different skein relation for d0fB we find

d0fB = a0fC + (e0 + e1)f + f 2E. (5.22)

So now multiplying through by K and using the above, we have

K2(a1c0 + a0c1) = (c0 + c1)fKA+ (a0 + a1)fCK (5.23)

+ 2b1d0K
2 + f 2(AD + CB +KF +KAC). (5.24)

Lastly we have

b1d0K
2 = (a0 + a1 + fB)(c0 + c1 + fD) (5.25)

= a0c0 + a1c1 + a0c1 + a1c0 + (c0 + c1)fB + (a0 + a1)fD + f 2BD. (5.26)

So finally we have

K2(a1c0 + a0c1) = (c0 + c1)(fKA+ 2B) + (a0 + a1)(fCK + 2D) (5.27)

+ 2a0c0 + 2a1c1 + 2a0c1 + 2a1c0 (5.28)

+ f 2(AD + CB +KF +KAC + 2BD). (5.29)

At long last we have

W = f 2(AD + CB +KF +KAC + 2BD) +
2f 2(AK + 2B)(CK + 2D)

K2 − 4
. (5.30)
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Thus λi satisfies a quadratic polynomial equation with coefficients in T , and is

not fixed by σ. Moreover, any other automorphism which moves λ must also move

λi. Thus T (λi) = T (λ) for all i and so h ∈ T (λ). Then since h ∈ R(AS) is fixed by

σ, we have h ∈ T .

The A case when g = 0 follows by essentially the same argument, only simpler.

Now we will treat the X case. We can see that in each case the map ρ∗ :

R(X ) → R(A) is injective since there are are no punctures and there is only one

marked point on each boundary. Furthermore, one may check that this map is still

injective even if we remove the variables associated with the frozen nodes.

Thus we may compute the invariant ring by determining which functions pull

back to A invariants after evaluating the frozen variables at 1. Clearly, we may

obtain all such functions by pulling back trace functions in the X coordinates, since

the only other elements of the A invariant ring are generated by the frozen variables.

Now, we will determine which closed curves have traces which are rational

functions in the X coordinates. Let θ be a closed curve on S which is excisable.

Since there is only one marked point on S, these curves are exactly the closed curves

which leave S connected after cutting. We may pick a triangulation of S which only

touches θ once, since we may find two paths from the marked point to ether side

of θ and pick the arc which concatenates these paths. Based on the analysis of

section 4.2.1, the trace of the monodromy operator associated with θ must have a

square root in the denominator when computed with a triangulation which has an

arc which only touches it once.

Thus the only closed skeins which have trace functions that are rational func-
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tions in the X coordinates are those for which have even intersection number with

every arc. This completes the theorem on the X space.

Now we are ready to prove the general case.

Proof. First, we pick an excising triangulation of δ. We will first compute the ring

of invariants for (Abδ,X b
δ ) associated with this triangulation. Let (A′,X ′) be the

cluster ensemble obtained by using the same quiver associated with (Abδ,X b
δ ) but

with all of the frozen node removed. Call by D the set of these nodes. We can find

a mutation sequence representing γ which does not mutate at any of the boundary

arcs, since we could cut along the boundary arcs to make a surface with them as

actual boundaries and consider γ in this surface.

Thus by theorem 4.1.1 we have

R(AS,XS)〈γ〉 = R(Abδ,X b
δ )〈γ〉(D). (5.31)

We only need to compute R(Abδ,X b
δ )〈γ〉

Lemma 5.1.1 exactly computes R(Aδ,Xδ)〈γ〉. The theorem on the A space now

follows from proposition 4.1.1 applied to Aδ ⊂ Abδ.

The invariant X functions for δ defined in 5.1.5 can be checked to be invariant

under the action of γ. Since these invariant X coordinates are degree 1 in the

boundary X coordinates, theorem 4.1.2 implies that these functions together with

the elements of R(Xδ)〈γ〉 must generate all of R(X b
δ )〈γ〉. This completes the theorem

on the X space
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The following corollary follows from direct inspection.

Corollary 5.1.1. The invariant ring for a Dehn twist about δ on AS is exactly

the the subalgebra of the skein algebra of S consisting of elements corresponding to

skeins which do not intersect δ

5.2 Invariants on Affine, Doubly Extended and Exotic Ensembles

We will give a classification of the invariants for analogues of Dehn twists

on affine type and doubly extended type cluster ensembles with trivial coefficients.

These classifications will all follow from the following corollary of theorem 5.1.1

Following example 4.1.2, let R be the quiver shown in figure 4.2, and let Q be

any quiver which is obtained by adding nodes to R which are only connected to nodes

3, . . . ,m. Let D be the set of these new nodes. We have γ = {1, (12)} ∈ ΓR,ΓQ.

Let

G(x1, x2) =
(x2(x1 + 1) + 1)2

x1x2

(5.32)

F (a1, a2, a3, . . . , am) = ρ∗
(√

G
)

=
a2

1 + a2
2 + a3 · · · am
a1a2

(5.33)

Then the proof of theorem 5.1.1 and theorem 4.1.1 implies the following corol-

lary:

Corollary 5.2.1.

F(AR)〈γ〉 = F(F, a3, . . . , am) (5.34)

F(XR)〈γ〉 = F (G, x3(x2(x1 + 1) + 1), . . . , xm(x2(x1 + 1) + 1)) (5.35)

F(AQ,XQ)〈γ〉 = F(AR,XR)〈γ〉(D). (5.36)
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The Ãp,q, D̃n, A
(1,1)
1 and D

(1,1)
4 affine and doubly extended type cluster ensem-

bles are associated to an annulus with p and q marked points on each boundary

and a twice punctured disk with n− 2 marked points on the boundary respectively,

see [32] examples 6.9 and 6.10. The E type affine and doubly extended cluster en-

sembles are not associated to surfaces, but there is an analogue coming from the

notion of a “cluster Dehn Twist” of Ishibashi in [39].

5.2.1 Tp,q,r Quivers

Each of the affine ADE mutation classes contain the quiver Tp,q,r, where

1
p
+ 1
q
+ 1
r
< 1, see figure 5.9 , [40]. For Ãp,q, we have (p, q, r) = (p, q, 1) , for D̃n we have

(p, q, r) = (n− 2, 2, 2), and for Ẽn we have (p, q, r) = (n− 3, 3, 2). We will use this

quiver as our initial seed. We associate variables (a1, a2, b2, . . . , bp, c2, . . . , cq, d2, . . . , dr)

for the variables on theA space and variables (x1, x2, y2, . . . , yp, z2, . . . , zq, w2, . . . , wr)

for the variables on the X space in an obvious way.

The E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 cluster ensembles are associated with Tp,q,r quivers with

(p, q, r) equal to (3, 3, 3), (4, 4, 2), (6, 3, 2) respectively. The A and D type doubly

extended ensembles are not quite explicitly Tp,q,r quivers, but have quivers with

analogous properties, see figures 3.6a and 3.8a

The cluster modular groups of the cluster ensembles associated with Tp,q,r

quivers and the X6, X7 (see figure 2.3) quivers have the element γ = {1, (12)} ∈ ΓQ.

In the case that this ensemble is associated with a surface, this element corresponds

to a Dehn twist. In the non surface cases, we refer to this element as a cluster Dehn
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1 P2 ... Pp−1 Pp

Rr Rr−1 ... R2

2 Q2 ... Qq−1 Qq

Figure 5.9: General form of a Tp,q,r quiver.

twist.

Let Q be a non-surface type mutation finite quiver with, as in table 2.2.

Definition 5.2.1. An element γ ∈ ΓQ is called a cluster Dehn twist if there is some

seed i for which γ ∈ Γi is represented by a single mutation at a node on a double

edge. An element τ ∈ ΓQ is called a partial cluster Dehn twist if some power of it is

a cluster Dehn twist.

Remark 5.2.1. Ishibashi does not make a distinction between partial and non-

partial cluster Dehn twists.

Remark 5.2.2. A finite index subgroup of the cluster modular group ΓQ for any

mutation finite quiver is always generated by partial cluster Dehn twists as shown

in [35] for surfaces, [40] for doubly-extended types and [41] for the affine and exotic

types. In most cases, we actually obtain the full cluster modular group this way.

When we have a cluster Dehn twist, γ = {1, (12)}, represented by mutation

at a node on a double edge, we may define A and X trace functions for γ.

Definition 5.2.2. The function G(x1, x2) = (x2(x1+1)+1)2

x1x2
is the cluster trace function

for γ on the X space and ρ∗
√
G is the cluster trace function for γ on the A space.
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Again, there is a notion of invariant A and X coordinates for γ

Definition 5.2.3. The collection of A coordinates associated to nodes other than

node 1 and 2 are the invariant A coordinates for γ. The functions {xk(x2(x1 + 1) +

1), xl} when the node for xk is connected to nodes 1 and 2, and the node for xl is

not connected to nodes 1 or 2 are the invariant X coordinates for γ.

We will classify the invariants for these ensembles for the subgroup generated

by γ = {1, (12)}

Theorem 5.2.1. The invariant functions for any cluster Dehn twist are generated

by the cluster trace function for γ and the invariant A and X coordinate functions.

This follows from corollary 5.2.1.

5.2.2 Invariants for partial Dehn twists

Suppose that (A,X ) is a finite mutation type cluster ensemble and τ ∈ Γ is

a partial cluster Dehn twist satisfying τn = γ for some cluster Dehn twist γ and n

minimal.

The cyclic group Cn = Z/nZ acts on these γ invariant A and X functions in

an obvious way: since τn = γ we can see that the action of τ on these coordinates

descends to an action of Cn = 〈τ〉/〈γ〉. This gives us the following proposition

Proposition 5.2.1. R(A,X )〈τ〉 = (R(A,X ))〈γ〉)Cn .

This can be used to compute the invariant rings for any partial Dehn twist by

studying the action of Cn on the invariant ring associated with γ. These invariant

rings will simply consist of symmetric functions in the elements of (R(A,X ))〈γ〉).
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Chapter 6: Further Problems and Applications

We will discuss some various applications, properties and conjectures about

mutation invariant functions.

6.1 Affine A coordinates

We can use the theorems at the end of chapter 5 to answer a question posed

in [27] about the A coordinates appearing on the tails of a Tp,q,r quiver. Let Q be

a Tp,q,r quiver which is of affine type (so 1/p + 1/q + 1/r − 1 > 0). Then by the

calculation of the cluster modular group of affine cluster algebras done in [40], we

have that the cluster modular group is generated by the commuting partial cluster

Dehn twists τp, τq, τr satisfying τ ii = γ = {1, (12)} along with the elements of AutQ.

Thus, there is only one distinct cluster Dehn twist for any affine cluster ensemble.

We call the A coordinates which appear on nodes other than 1 and 2 for any

seed with quiver isomorphic to Q “affine A coordinates”. Let F be the cluster trace

function for γ, {α} be the set of initial affine A coordinates and let R = F[α±1, F ]

be the ring generated by F and Laurent polynomials in {α}

Theorem 6.1.1. The affine A coordinates are elements of R

Proof. We know from the Laurent phenomenon that all of the A coordinates are
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Laurent polynomials in the initial A coordinates. Furthermore, we know that all of

the affine A coordinates are invariant functions under the action of γ. Thus, these

affine coordinates are elements of F(α, F ). Let A be the ring of Laurent polynomials

in the initial cluster variables.

Now we will show that F(α, F ) ∩ A = R. Let x = a1
a2

. First, we notice that

F = x+ x−1 +
b2c2d2

a1a2

(6.1)

and

F n = (x)n + (x)−n + . . . . (6.2)

Now we show that the only elements of F(F ) ∩ A are polynomials in F . Suppose

that

P (F )

Q(F )
=
h

b
∈ A (6.3)

is a Laurent polynomial in A with Q and P relatively prime. Then if Q(F ) is

not a monomial in {α}, then there must be a cancellation between the numerator

and denominator. This cannot happen if Q and P are relatively prime, since F is

algebraically independent over F. Thus we have that Q(F ) must be a monomial in

A. This can not happen unless Q is constant since F = x + x−1 modulo b2 and we

see that every non constant polynomial in F must have xn +x−n as its leading term

in x. Thus F(α, F ) ∩ A = R.

Now we see that the elements of F(F ) ∩A and F(α)∩A generate F(α, F )∩A

since the elements in α are algebraically independent with a1 and a2.
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This theorem naturally has an analogue for surface cluster algebras. Let S be a

marked surface and let γ ∈ ΓS be the cluster modular group element corresponding

to a Dehn twist about a simple closed curve δ and let F be the trace function for

this curve. Let {α} be the set of A coordinates in an excising triangulation for δ

that do not intersect δ and let R = F[α±1, F ]. Then we have

Theorem 6.1.2. The A coordinates for arcs on S that do not intersect δ are ele-

ments of R

The proof of this theorem follows from the same argument as the previous

theorem.

6.2 Invariants for Cluster Dehn Twists on General Mutation Finite

Types via folding

We have only completed our classification for simply laced finite mutation type

ensembles. We will not treat the general case here, but it should be easy to obtain

from what we have already completed. We may conjecture that the folding map of

invariants is always surjective.

Conjecture 6.2.1. Let R be a quiver obtained by folding a quiver Q. Then the

map:

F(AQ,XQ)〈γ〉
fold−−→ F(AR,XR)〈γ〉 (6.4)

is surjective.
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We believe that this should follow from our classification in the case where Q

is a surface or mutation finite quiver, and γ is a cluster Dehn twist.

6.3 Further Geometric structures related to invariants

We suspect that the analysis of section 5 extends to cluster ensembles associ-

ated to the higher Teichmüller spaces of Fock and Goncharov in [5]. The mapping

class group of the surface will again be a canonical subgroup of the cluster modular

group of these ensembles. As before, it is possible to compute traces of monodromy

operators about loops on the surface in terms of the X coordinates, and these will

give X invariants for mapping classes that preserve the given loop.

There is also evidence that invariant functions may aid in the analysis of the

gluing equations for more general geometric structures on manifolds, generalizing

remark 4.2.1. The work of Nagao, Terashima, and Yamazaki in [42] gives indications

of this via their notion of a “parameter periodicity equation”.

6.4 Correspondence between A and X Invariants

We will give some evidence for a correspondence between the invariants of the

A and X spaces via “denominator vectors”.

Definition 6.4.1. The denominator vector of a Laurent polynomial is the vector

of exponents appearing in the denominator of the polynomial written as a single

fraction. If there are monomial factors in the numerator, we include these as negative

valued exponents in the denominator.
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Definition 6.4.2. We call a pair of bases or partial bases for A and X invariants

that correspond via denominator vectors a correspondence basis.

Through all of the examples of section 3, we can explicitly see examples of

correspondences between theA and X invariants. In the cases where no X invariants

are given, there are trivial X invariants corresponding via denominator vectors to

each of the A invariants.

Example 6.4.1. Explicitly, this correspondence for the invariants of example 3.2.4

are as follows:

(a1a4 + a2a5 + a3a6)2

a1a2a3a4a5a6

←−−−→ (x1x2x3x4x5x6)−1

(a1a4 + a2a5 + a3a6)

a4a5a6

←−−−→ (x4x5x6)−1

a1

a4

←−−−→ x1

x4

We can show this correspondence when our cluster ensemble is associated with

a surface, S, and we are considering invariants for a Dehn twist about δ on S. This

correspondence is very clear when δ has genus zero on S. Let ∆ be an excising

triangulation of δ and number the arcs as definition 5.1.5.

In this case, the correspondence basis is given by the following table:

6.5 Laurent Property of Invariants

Many of the examples of A invariants are Laurent polynomials in the A coor-

dinates. This is not be true in every case, as the functions of example 3.2.4 include

inverses of Laurent polynomials too. However we may conjecture the following:
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Type of invariant A X

Trace function of δ ρ∗(
√
G(x1, x2)) G(x1, x2) = x2(x1+1)+1

x1x2

Boundary arcs a3, . . . , am x3(x2(x1 + 1) + 1), . . . , xm(x2(x1 + 1) + 1)

Nonboundary arcs am+1, . . . , aN xm+1, . . . , xN

Conjecture 6.5.1. There is a basis of F(XQ)Γ◦ with corresponding basis of F(AQ)Γ◦

such that Γ acts on the basis of F(AQ)Γ◦ by positive Laurent polynomials.

The examples of section 3, other than example 3.2.5, give ample evidence for

this conjecture. This conjecture also implies, following theorem 6.1, That all of the

A coordinates appearing on the tails of the Tp,q,r quiver are Laurent polynomials in

the the initial invariants. This is easy to verify case by case, and is probably not

too difficult to prove in general.

It seems that in some cases that there is a stronger version of this phenomenon.

We may occasionally find a correspondence basis such that the action of the cluster

modular group sends the basis to Laurent monomials in the basis. In other words,

we can pick a basis that gives a representation

Γ/Γ◦ → GL(2,Z) (6.5)

Surprisingly, we have that the action of Γ on the X invariants is also by Laurent

monomials and the induced representation seems to be identical in this case.
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Example 6.5.1. Continuing example 3.2.3, we can take (F1, F2) as a possibly par-

tial basis of invariants. Then one may check that the paths τ = {34, (12)} and

r = {414, (132)} generate D12 and we have that τ((F1, F2)) = (F1, F1/F2) and

r((F1, F2)) = (F1/F2, F1). Thus we have the representation

π : D12 → GL(2,Z) (6.6)

given by

π(τ) =


1 1

0 −1

 π(r) =


1 1

−1 0

 (6.7)

6.6 Coefficients and Canonical Bases

Throughout our study of mutation invariants, we have mostly ignored coeffi-

cients on the A space. It is natural to wish to study invariants for more general

coefficients, but there are some immediate problems one encounters. For example,

take the Markov quiver, example 3.1.3, and add “principal coeffiecents” i.e. one

frozen node for each unfrozen connected with a single arrow. Mutations return us

to a quiver with isomorphic mutable portion, but the frozen nodes are connected

differently. We therefore, cannot expect to construct a mutation invariant function

which is identical after each mutation.

There should still be some more general notion of invariant which addresses

this problem. If we are in a situation where there are non-trivial X invariants, one

may pull them back to the A space and obtain functions which are invariant in some
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[f1] [f2]

1 2

[f1] [f2]

1 2

Figure 6.1: Ã1 quiver with principal coefficients before and after applying γ.

sense. We expect that these functions will be elements of the “Canonical basis” of

the cluster algebra associated with the A space.

Example 6.6.1. For example, if we take an Ã1 cluster ensemble with principal

coefficients, we can pull our X invariant,
√
G(x1, x2), of example 3.1.1 back to the

A space. We find

ρ∗(G(x1, x2)) = F (a1, a2, f1, f2) =
a2

2f1f2 + f2 + a2
1

a1a2

√
f1f2

(6.8)

Mutations will change how each mutable node is connected with the frozen nodes,

so this function will only be invariant up to multiplying its arguments by products of

the coefficients. The element γ = {1, (12)} is still an element of the cluster modular

group. We find

γ(F ) =
a2

2f2 + 1 + a2
1f1

a1a2

√
f1f2

= F (a1

√
f1f2, a2

√
f2/f1) (6.9)

Thus F is invariant up to multiplying its arguments by functions of the frozen

variables. This should be related to the notion of a “cluster quasi-homorphism”

of [43].

The function F appears as theta function in the sense of [18]. The computation

of the theta function of the limiting ray in the cluster scattering diagram associated
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with the Ã1 cluster algebra in [44], shows

θ(a1, a2, x1, x2) = a1a
−1
2 (x2(x1 + 1) + 1) (6.10)

which after applying ρ∗ to the X coordinates we have

θ(a1, a2, f1, f2) =
a2

2f1f2 + f2 + a2
1

a1a2

(6.11)

which is essentially the function F .

Remark 6.6.1. The expression of the theta function in equation 6.10 is essentially

the form of the invariant X coordinates of 5.1.5, imagining that there is a third

mutable node connected to nodes 1 and 2 in an oriented cycle.

The fact that a theta function associated with a limiting ray of the scattering

diagram is in some way an invariant function should make intuitive sense. Whenever

the scattering diagram is mutation invariant under the mutation path which takes us

towards a limiting ray, the theta function associated with this ray will be invariant

too. Our classification theorem for surface cluster algebras shows us that the theta

functions associated with Dehn twists should be related to the trace function for

the curve we are twisting. This gives a natural relation between theta functions and

trace functions.

It is conjectured in [18] that the “theta basis” of a surface cluster algebra

should be the same as the basis of trace functions constructed in [5]. Our classi-

fication of mutation invariants should act as a stepping stone between these two

constructions. Interestingly, the construction theta basis makes no reference to any

surface underlying the combinatorial structure of the algebra. Similarly, our notion
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of mutation invariant does not require any data which is not intrinsic to the cluster

algebra, but the classification of invariants is only visible when considering surfaces.

There are several other instances of the same invariant function. In [8], we

can see the appearance of the cluster trace function of the affine cluster algebras

appearing as the “cluster character” of a module with dimension vector given by

the longest root in the affine root system in the associated cluster category. This

cluster character can be seen to be mutation invariant by theorem 3.1 of [45]. Again,

our classification of mutation invariants helps explain why we see the same function

appear.

We can consider the following conjecture as a way of organizing these ideas:

Conjecture 6.6.1. Let Q be a mutation finite quiver. There is a canonical basis of

invariant functions for any cluster Dehn twist. The union of these bases over every

cluster Dehn twist is the canonical basis of the cluster algebra C(Q).
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Appendix A: Dynkin Diagrams

A.1 Finite Dynkin Diagrams

(a) An
(b) Dn

(c) E6 (d) E7

(e) E8

Figure A.1: Simply Laced Finite Dynkin Diagrams
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(a) Bn

(b) Cn

(c) F4 (d) G2

Figure A.2: Folded Finite Dynkin Diagrams

A.2 Affine Dynkin Diagrams

(a) Ãn (b) D̃n

(c) Ẽ6

(d) Ẽ7

(e) Ẽ7

Figure A.3: Simply Laced Affine Dynkin Diagrams
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(a) B̃n

(b) C̃n (c) F̃4

(d) G̃n

Figure A.4: Folded Affine Dynkin Diagrams

A.3 Doubly-Extended Dynkin Diagrams

(a) A
(1,1)
1 (b) D

(1,1)
4

(c) E
(1,1)
6 (d) E

(1,1)
7

(e) E
(1,1)
8

Figure A.5: Simply Laced Doubly Extended Dynkin Diagrams
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