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Cable bacteria (Ca. Electrothrix) are long, filamentous, multicellular bacteria
that grow in marine sediments and couple sulfur oxidation to oxygen reduction over
centimeter-scale distances via an enigmatic long-distance electron transport
mechanism. They can grow to tremendous densities and strongly modify the sediment
environment in multiple ways, including efficient sulfide removal, stimulation of
sulfate reduction, and alteration of porewater pH distribution. In this thesis, I asked if
cable bacteria can influence the sympatric microbial community composition and
activity, using a time-series manipulation experiment. As anticipated, based on their
influence on sediment geochemistry, cable bacteria growth was associated with the
stimulation of several genera of sulfate-reducing bacteria, and a sulfur-
disproportionating genus (Desulfocapsa). I observed a positive relationship with the
OM?27 clade of the predatory Bdellovibrionota. Finally, I detected evidence of
interaction with two chemoautotrophic sulfur oxidizers (Thiogranum, Sedimenticola),

which are good candidates for further examination of potential electrical connection

with cable bacteria.
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Figure 20 Conceptual diagrams of potential microbial interactions with
cable bacteria. (a.) competition, (b.) syntrophy, (c.) predation,
(d.) indirect association attributed to ecosystem engineering
effects of cable bacteria. Green filamentous multicellular
bacteria represent cable bacteria.
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Introduction and Literature Review

The overarching goal of my thesis is to identify whether there are specific
microbial associations with marine cable bacteria (Ca. Electrothrix). To address this
goal, I performed a manipulation experiment in which I enriched for cable bacteria
growth in a set of slurried sediment cores and inhibited their growth in another set of
otherwise identical sediment cores. I monitored the porewater geochemistry and
microbial community composition over time. To uncover microbial associations with
cable bacteria, I performed Spearman’s Rank correlation on 16S rRNA transcript-
based abundance normalized by microscopy counts data from samples with and
without cable bacteria. In the thesis Introduction, I provide a literature review of cable
bacteria, focusing on their physiology, phylogeny, biogeography, and their effects on
sediment biogeochemistry. My overall goal is to identify potential ecological
interactions with cable bacteria, therefore, I introduce different types of ecological
and physiological microbial interactions, including trophic interactions, resource
competition, cooperation such as syntrophy or electrical connections. I also introduce
the concepts of ecosystem engineering and keystone species, and identify how these
concepts apply to microbial communities. I end the Introduction with the thesis
objectives.

Background on Cable Bacteria

Cable bacteria are long, filamentous, multicellular bacteria that perform long-
distance electron transport by conducting electrons along their length, across

distances of up to 3 centimeters (Nielsen et al., 2010; Pfeffer et al. 2012; Marzocchi et



al., 2014). Cable bacteria filaments connect oxygenated surface sediment, where they
perform cathodic reduction of oxygen or nitrate, with deeper reducing sediment,
where they perform anodic sulfide oxidation (Figure 1). The two redox half-reactions
are spatially separated but are electrically linked by a novel and incompletely
understood mechanism of long-distance electron transport (Nielsen et al., 2010;
Pfeffer et al., 2012; Bjerg et al., 2018; Kjeldsen et al., 2019; Thiruvallur Eachambadi
et al., 2020). Individual cells within a filament appear to be linked continuously with
a ridge compartment containing periplasmic fiber sheath (Cornelissen et al., 2019)
which aids in structural support as well as electrical conductivity (Thiruvallur
Eachambadi et al.,2020). Recent metagenomic evidence suggests that marine and
freshwater cable bacteria (Candidatus Electrothrix and Candidatus Electronema)
conserve energy from the anodic sulfide oxidation, and not from the oxygen or nitrate
cathodic reductions (Kjeldsen et al., 2019).

Two distinct, monophyletic clades represent freshwater (Candidatus
Electronema) and marine (Candidatus Electrothrix) cable bacteria groups, affiliated
to the family Desulfobulbaceae (Trojan et al., 2016). A groundwater clade of cable
bacteria has also been reported (Einsiedl et al., 2015; Miiller et al., 2016), although
their phylogeny is still uncertain. The two candidate genera of cable bacteria are
globally distributed (Malkin et al., 2014; Burdorf et al., 2017). The natural abundance
of Ca. Electrothrix has been reported from marine habitats including the North Sea
(Malkin et al., 2014; van de Velde et al., 2016), Grevelingen (Seitaj et al., 2015; Sulu-
Gambari et al., 2016b), Baltic Sea (Marzocchi et al., 2018), Yaquina Bay (Li et al.,

2020), mangroves (Burdorf et al. 2016), salt marshes (Larsen et al., 2015, Rao et al.,



2016b), bivalve reefs (Malkin et al., 2017), and Southern Mariana Trough (Kato and
Yamagishi, 2016). Coastal sediments with oxygenated overlying water and high
organic matter loads, in particular, appear to provide desirable conditions for the
enrichment of cable bacteria. For example, following a major hydrodynamic inflow
event in the Baltic Sea, reoxygenation of bottom water stimulated cable bacteria
growth (Marzocchi et al., 2018). In Grevelingen, a seasonally hypoxic marine basin,
cable bacteria were observed in high abundance each spring, while Beggiatoa,
another cosmopolitan sulfur-oxidizing bacterium, thrived in the fall (Seitaj et al.,
2015). Cable bacteria are also found in freshwater sediments (Risgaard-Petersen et
al., 2015). Other habitats where cable bacteria may be present include worm burrows,
specifically Chaetopterus tubes. Oxygen is supplied by the irrigation activities of
worms, but the tubes are sufficiently stable to prevent rapid sediment overturning
(Aller et al., 2019). Cable bacteria may also be in direct association with oxygen loss
from root hairs in the rhizosphere of aquatic plants, including seagrasses Halophila
ovalis and Zostera muelleri, as well as Littorella uniflora, Oryza sativa, Lobelia
cardinalis and Salicornia europaea (Martin et al., 2019; Scholz et al., 2019).

Cable bacteria impart large and distinctive biogeochemical effects in surface
sediments wherever they grow abundantly (Figure 1). The growth of cable bacteria
leads to an expansion of a suboxic zone, defined as space devoid of sulfide and
oxygen, through rapid kinetics of sulfide oxidation (Nielsen et al., 2010; Schauer et
al., 2014; Meysman et al., 2015). Cable bacteria activity also alters the distribution of
porewater acidity, generating a pH maximum in the oxic zone by cathodic activity,

and a pH minimum in the suboxic zone by anodic activity (Nielsen et al., 2010;



Meysman et al., 2015). The decrease in pH with depth in sediment, associated with
cable bacteria activity, causes dissolution of FeS and calcium/manganese- carbonates,
leading to mobilization of sulfide, ferrous iron, calcium ions, and manganese ions
(Risgaard-Petersen et al., 2012; Rao et al., 2016a; Sulu-Gambeari et al., 2016b;
Hermans et al., 2020). Dissolved ions including Fe?", Ca?*, and Mn?" diffuse
upwards, where Fe and Mn precipitate as their respective oxides (Rao et al., 2016a;
Sulu-Gambari et al., 2016b; Seitaj et al., 2015) and Ca** precipitates as carbonates at
or near the sediment surface (Rao et al., 2016a). The precipitation of iron-oxides at
the oxic-anoxic interface can affect the biogeochemical conditions for weeks after the
cable bacteria population has declined, by sequestering free sulfides produced by
ongoing sulfate reduction, which may delay the onset of euxinic bottom water
conditions (Seitaj et al., 2015). Cable bacteria may also influence the nitrogen
indirectly, by promoting DNRA via increased availability of Fe?* due to the
dissolution of FeS (Kessler et al., 2019). Cable bacteria can also influence the
phosphorus cycle. Increased precipitation of iron oxides at the oxic-anoxic interface
can retain more phosphorus in the sediment (Sulu-Gambari et al., 2016a). Finally,
cable bacteria demonstrably stimulated sulfate reduction, by providing additional
sulfate at depth in a sulfate-limited freshwater sediment (Sandfeld et al. 2020). As a
consequence of enhanced sulfate reduction, cable bacteria may also decrease
methanogenesis in the same sediments (Scholz et al. 2020).

Marine cable bacteria can grow to dominate in laboratory incubated sediments
(Pfeffer et al., 2012; Schauer et al., 2014). They can grow rapidly in homogenized

sediments with oxygenated overlying water (Schauer et al., 2014; Vasquez-Cardenas



et al., 2015) or without oxygen, but with amendments of nitrate or nitrite as electron
acceptor (Marzocchi et al., 2014). Based on microscopy, cable bacteria have been
reported to grow in association with poised anodes in benthic microbial fuel cells and
bioelectrochemical reactor core tubes (Reimers et al., 2017; Li et al., 2020). Due to
their vertical filamentous elongation, cable bacteria growth can be manipulated in
incubation experiments by placement of barrier filter below the oxic region of
sediment (Pfeffer et al., 2012; Schauer et al., 2014). I employed such a manipulative

experiment to identify potential microbial associations with cable bacteria.
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Microbial Community Interactions

In this thesis, I aim to identify microbial interactions with cable bacteria, using
a correlation analysis approach (Weiss et al., 2016; Liu et al., 2019). In the next
section of the Introduction, I review literature on potential microbial ecological

interactions to inform the interpretation of my correlation results.

Predatory Bacteria (Sideways Control)
Predator-prey interactions play a major role in maintaining biodiversity of

ecosystems, shaping community structure, and regulating nutrient cycles (Berryman,
1992; Jurkevitch, 2007; Chauhan et al., 2009). Microbial (or bacteriovorus) predators
play key roles as top-down (also considered “sideways”) control of microbial
community structures (Jurkevitch, 2007; Pérez et al., 2016). Under oxic conditions
with rich organic matter, predation by bacteria and microfauna can be the most
important factor in controlling bacterial biomass and mortality (Jurkevitch, 2007,
Perez et al., 2016; Tsai et al., 2013; Wang et al., 2020). In contrast, mortality
attributed to viral lysis can be more prevalent in anoxic settings where aerobic
predators are inhibited (Tsai et al., 2013). Bacterial predators employ different
hunting strategies (Perez et al., 2016). Epibiotic predation involves a predator
attaching to the outer surface of the prey cell then consumes the prey from the
outside. Microbial predators can also attack prey by penetrating the periplasm and
consuming from the inside. This endobiotic strategy is typical of most Bdellovibrio
and like organisms (BALOs) (Jurkevitch, 2007; Sockett, 2009). Bdellovibrios are
aerobic, obligate predators of Gram-negative bacteria such as Proteobacteria (Pérez et
al., 2016). Wolfpack or group attack is typically used by Myxobacteria, which are

facultative predators that secrete large quantities of hydrolytic enzymes to degrade



prey cells. Though they may grow without predation, close proximity to prey cells
can trigger a swarming response where predation becomes the dominant tactic
(Wroétniak-Drzewiecka et al., 2016; Mufioz-Dorado et al., 2016). While predators
may control prey density, the diversity of prey can shape predator population
structure (Chen et al., 2011). Bacteriovorax affiliated to BALOs appear to have a
preference in what type of prey to consume, resulting in a prey-based community

structure (Chen et al., 2011).

Competition
Microbial competition sustains community biodiversity through selective

forces that determine evolutional trajectory of the competing players. Microorganisms
compete and co-exist with one another through direct or indirect interactions. In the
environment, microbes may compete for a variety of limiting resources, such as
nutrients required for growth (Hibbings et al., 2010). Heterotrophs and mixotrophs
may compete for organic carbon assimilated for growth (Ward et al., 2011).
Phototrophs may compete for access to light, and/or compete with autotrophs for
access to electron donors and acceptors. For instance, under anoxic, illuminated
conditions, anoxygenic phototrophic bacteria, Thiocapsa, outcompeted an autotrophic
sulfur bacteria, Thiobacillus (Visscher et al., 1992). Conversely, under oxygenated
conditions, Thiobacillus can grow to much higher abundances relative to Thiocapsa.
In sediments, micro-organisms also compete for access to terminal electron
acceptors for respiration. The overall rate of microbial respiration is ultimately
controlled or limited by the organic carbon influx where community composition and
spatial distribution are affected by kinetic and thermodynamic constraints (Jergensen,

2006). Oxic respiration dominates with the highest energy yield, followed by



denitrification, manganese reduction, iron reduction, sulfate reduction, and

methanogenesis (Canfield et al., 2005; Arndt et al., 2013). Microbes that use terminal
electron acceptors with higher redox potential outcompete other microbes by keeping
the products of fermentation low (e.g., H2 and acetate) (Lovley et al., 1982; Schonheit

et al., 1982; Lovley and Phillips, 1987; Lovley and Goodwin, 1988; Jergensen, 2006).

Cooperation: Microbial Syntrophy and Direct Interspecies Electron Transfer
Sharing electrons (or reducing equivalents) is another potential mechanism by
which microbes may interact, particularly in anaerobic sediments. Syntrophy, defined
as “shared feeding”, describes mutualistic metabolism between dependent partners
(Morris et al., 2013). The first syntrophic interactions were discovered between
fermentative bacteria and methanogenic communities (Bryant et al., 1967). This
classic example of syntrophy involves cross-feeding of reducing equivalents, i.e., H2
or formate, between fermenters, which produce Hz from the fermentation of simple
organic monomers, and methanogens, which utilize these products as electron donors
(Stams and Plugge, 2009). In this example, methanogens take advantage of products
of fermenters to reduce COz to CHa4. By consuming the pool of Hz2, methanogens shift
the energy yield of the fermentative reaction towards thermodynamic favorability
(Stams and Plugge, 2009; Morris et al., 2013). Therefore, the two microorganisms
working cooperatively are able to thrive together in a low energy yield system. In the
recent two decades, syntrophic interactions are found to be widespread in anoxic
environments (Morris et al., 2013; Kouzuma et al., 2015). Other syntrophic
relationships include the sharing of sulfur intermediates, or humic substances. For

example, in a co-culture, sulfur-reducing bacteria co-existed with green sulfur



bacteria when both species sustained a desirable level of sulfide, which at high
concentrations can inhibit sulfur reduction (reviewed in Morris et al., 2013).

In addition, syntrophic relationships can exist as electrical connections in the
form of direct interspecies electron transfer (DIET) (Lovley, 2017b). The discovery
of DIET was found in a co-culture with Geobacter metallireducens and Geobacter
sulfurreducens (Summers et al., 2010). Together, G. metallireducens oxidizes ethanol
and donates electrons to G. sulfurreducens to perform reduction of fumarate. During
co-culture, G. sulfurreducens acquired a genetic mutation that promoted the
expression of OmcS, a c-type cytochrome involved in electron transfer. Close
aggregates of the two cells were packed with electrically conductive pili and
cytochromes. Even before the discovery of DIET, extracellular electron transport was
evident in anaerobic microbial cultures with amended electrodes (Bond et al., 2002;
Gregory et al., 2004), through the mechanism of c-type cytochromes (Leang et al.,
2003) as well as the use of pilin-associated nanowires by anaerobes as a conduit for
electron transport (Reguera et al., 2005; Gorby et al., 2006). An increasing number of
syntrophic electron-sharing communities have been uncovered (Shrestha and Rotaru,
2014; Lovley, 2017a).

Cooperative interactions can be stimulated with amendments of conductive
materials such as magnetite or granular activated carbon (Kato et al., 2012a; Kato et
al., 2012b; Liu et al., 2012; Liu et al., 2015). When G. metallireducens was co-
cultured with G. sulfurreducens, they attached to granular activated carbon and
metabolism was stimulated (Liu et al., 2012). A syntrophic relationship was also

observed between G. metallireducens and M. barkeri in the presence of granular
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activated carbon (Liu et al., 2012). In addition, a recent study found aggregates of G.
metallireducens and M. barkeri to share electrons, but when the partners were
cultured with a mutant strain of G. metallireducens unable to produce pili, no
syntrophic interaction was observed (Rotaru et al., 2014). DIET was stimulated again
in the culture with the addition of granular activated carbon. The presence of
conductive materials appears to be energetically beneficial for the electron-sharing
community since it is much more energetically costly to produce pili or cytochromes.
Likewise, magnetite stimulated growth in co-cultures of G. metallireducens and G.
sulfureducens (Liu et al., 2015). Another study found a magnetite-induced syntrophic
relationship between methanogens and Thiobacillus denitrificans which allowed the
oxidation of acetate coupled to the reduction of nitrate (Kato et al., 2012b).

Another example of syntrophic aggregates is the relationship between sulfate-
reducing bacteria (SRB) and anaerobic methanotrophic archaea (ANME) (Boetius et
al., 2000) which have generally been attributed to the sharing of reducing equivalents
such as H> or acetate (Hoehler et al., 1994; Nauhaus et al., 2002). It is thought that
anaerobic oxidation of methane operates as methanogenesis in reverse, supplying Hz
to sulfate-reducing partners (Hoehler et al., 1994; Kevorkian et al., 2020). However,
the true mechanism underlying this syntrophic relationship remains poorly
understood. One proposition suggests that ANME are responsible for reducing sulfate
to elemental sulfur or disulfide, then this sulfur intermediate becomes
disproportionated by a Deltaproteobacteria partner (Milucka et al., 2012). Recent
works identified that the ANME/SRB consortium may operate through DIET

(McGlynn et al., 2015; Wegener et al., 2015). Despite proximity of the aggregated
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cells, it is possible the microbial partners utilize multi-heme cytochromes for direct
electron transfer (McGlynn et al., 2015). Within an ANME and SRB consortia,
genomic results revealed highly expressed genes for extracellular cytochromes in
both partners (Wegener et al., 2015). Furthermore, new evidence showed that ANME
are capable of growing with added electron acceptors such as ferric iron or humic
substances while their sulfate-reducing partners were inhibited (Scheller et al., 2016).
The mechanisms by which species share electrons is an active area of
research. Proposed routes of interspecies electron transfer are by biological means or
through conductive materials (Shrestha and Rotaru, 2014; Lovley, 2017b). Physically,
conductive materials such as magnetite, biochar, granular activated carbon can
facilitate the metabolism of syntrophic communities in co-cultures. Biologically,
syntrophic partners may transfer electrons through the means of close cellular contact,
the use of pili, or the use of c-type cytochromes (Leang et al., 2003; Reguera et al.,
2005; Gorby et al., 2006; Shrestha and Rotaru, 2014). There are currently three model
mechanisms of extracellular electron transport. One, Geobacter sulfurreducens
produce conductive nanowires constructed by c-type cytochrome OmcS, which are
important in transporting electrons to extracellular electron acceptors (Wang et al.,
2019). Two, Shewanella oneidensis MR-1 transport electrons extracellularly with
nanowires based on the MtrCAB porin-cytochrome system with cytochrome OmcA
and flavins (Gorby et al., 2006; Xu et al., 2016). Three, Gram-positive Listeria
monocytogenes affiliated to Firmicutes use a flavin-based electron transport system
facilitated by the FmnB and PplA lipoproteins (Light et al., 2018). Overall, processes

related to DIET remain elusive but new findings lead to exciting new research.
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Ecosystem Engineering
Some microbes can also exert a strong influence on the microbial community

structure and biogeochemical cycling through ecosystem engineering (Gokul et al.,
2016; Roncoroni et al., 2019). Ecosystem engineers are defined as species that affect
community composition through their influence on the environment and distribution
of resources to other taxa. Ecosystem engineering results in the creation,
maintenance, or modification of habitats (Jones et al., 1994). Ecosystem engineering
can affect living spaces, control temperature, light, water, or nutrient availability,
among other influences (Jones et al., 1994; Jones et al., 1997). Ecosystem engineers
can alter the structure of the environment with their biomass, for instance, tree growth
(Jones et al., 1997), coral reefs (Wild et al., 2011), and oyster reefs (Scyphers et al.,
2011; Walles et al., 2015) leads to creation of habitats. Ecosystem engineers can also
transform the environment from one state to another, such as the creation of dams by
beavers (Wright et al., 2002), creek formation by burrowing crabs (Vu et al., 2017),
burrow construction by fiddler crabs (Kristensen et al., 2008), and bioturbation by
worms (Thayer, 1979). Through the modification of habitats, ecosystem engineers
inevitably destroy some niches but at the same time also create new ones (Jones et al.,
1997).

Studies on ecosystem engineers traditionally focused on classical ecology of
macro-organisms like burrowing worms as physical ecosystem engineers (Passarelli
et al., 2014). Apart from macro-organisms, many microorganisms can also be
classified as ecosystem engineers, serving as drivers of nutrient dynamics and
biogeochemical cycling. Ecosystem engineers that alter the physical environment are

also prevalent in the microbial realm. For example, bacterial assemblages that form
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biofilm with extracellular polymeric substances can aid in sediment stabilization and,
therefore, prevent sediment erosion (Gerbersdorf et al., 2009). Ciliates affect the
spatial heterogeneity of bacterial biofilms by crawling and grazing across the
structure (Weerman et al., 2011). Ecosystem engineering microorganisms can also
change the availability of resources for others or by modifying abiotic environmental
conditions (i.e., pH, redox potential), thereby, affect biogeochemical cycling
mediated by other microbial species. Filamentous cyanobacteria found on glacial ice
caps are crucial in the formation of cryoconite aggregates, which harbors a diverse
network of heterotrophs that participate in carbon and nitrogen cycling in Arctic
conditions (Gokul et al., 2016). Notably, ecosystem engineering is distinguished from
trophic interactions or competition. The concept of ecosystem engineers focuses on
the alteration of resource availability and/or habitat modification to other organisms

which can have positive or negative consequences to other species (Jones et al.,

1997).

Keystone Species
Although the keystone species concept was first introduced in the 1960s

(Paine 1969), since its inception, the usage of the term in ecology literature has been
fraught with vague or shifting, sometimes contradictory, definitions (reviewed in
Cottee-Jones and Whittaker 2012). Keystone species are most commonly described as
species which exert disproportionately large impact on the community, relative to
their abundance (Power et al., 1996; Krebs, 2009). A microbial keystone species or
taxon impacts the structure and functioning of the community, which can include
effects from abundant or rare keystone taxa (Banerjee et al. 2018). Specifically,

microbes belonging to the rare biosphere driving biogeochemical cycling can be

14



responsible for ecosystem processes (Jousset et al., 2017). For example,
methanotrophs representing <0.5% of total microbial community provided
disproportionately large effects in regulating methane oxidation from flooded
sediments (Bodelier et al., 2013). In contrast to the definition of an ecosystem
engineer, a species may be defined as keystone if its major impact occurs through
trophic interactions, such as a top predator (Wright and Jones 2006). Here, I will use
the following definition to evaluate if a microorganism is a keystone species (or
taxon): a species that exerts large effects on the community function or structure
relative to its biomass.

Thesis Objectives

In this thesis, I aimed to test if the growth of marine cable bacteria (Ca.
Electrothrix) influences the associated microbial community composition. Cable
bacteria impose a strong influence on the local biogeochemistry raising the possibility
that they may influence the microbial community as ecosystem engineers.
Additionally, as long-distance electron conductors, I hypothesized cable bacteria may
act as electron sinks for chemoautotrophic bacteria co-located at anaerobic depths.
This hypothesis arises from the results of a manipulation experiment, in which
chemolithoautotrophic activity linked to Epsilon-and Gammaproteobacteria sulfur
oxidation was found to be stimulated in the presence of cable bacteria (Vasquez-
Cardenas et al., 2015). When cable bacteria activity was arrested, the authors found
that chemoautotrophic activity was also interrupted, suggesting a potential direct
interaction. To identify microbes that are correlated with cable bacteria, I conducted
a time series incubation experiment using slurried sediment cores. Cable bacteria

growth was inhibited in a set of sediment cores with a barrier filter to prevent growth
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below 0.5 cm, and cable bacteria were allowed to grow freely in another set of cores
without filters. I hypothesized that growth of members of the sulfur-oxidizing
community is coupled to the growth of cable bacteria. Due to ecosystem engineering
effects of cable bacteria, I also hypothesized that sulfate-reducing bacteria will be
positively correlated with cable bacteria as sulfate generated through sulfide oxidation
will benefit the growth of sulfate-reducing bacteria. As sulfate-reducers are likely to
outcompete methanogens for electron donors, I hypothesized that cable bacteria and
methanogens will be negatively correlated, leading to an indirect association between

the two.

Experimental Procedures

Methods Overview

To investigate potential microbial community interactions with marine cable
bacteria, I performed an incubation experiment in which I allowed cable bacteria to
grow freely in one set of sediment cores and, in another set of sediment cores, |
embedded a 0.2 um filter at 0.5 cm depth as a barrier to prevent downward growth of
cable bacteria. Employing a destructive sampling design, I tracked cable bacteria
growth over time and through depth using microscopy. This was combined with
microsensor profiling, and porewater sampling to track the changes in the sediment
associated with cable bacteria growth. Amplicon sequencing of DNA and RNA,
across time and through depth was used to examine the changes in community
composition that occurred concomitantly with cable bacteria growth. In the sediment
cores where cable bacteria were allowed to grow freely, they grew prolifically. I was

able to capture the growth time course of cable bacteria starting with a lag phase of 6
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days, an exponential growth phase between Days 10-20, and followed by senescence
(detected on Day 46). I used Spearman’s Rank correlation based on normalized
transcript data of all microbial taxa to assess which microbes are potentially
associated with the marine cable bacteria.

Sediment Collection and Experimental Setup

Sediment used in the experiment was collected in August 2018 from the main
channel of the Chesapeake Bay at a mesohaline site that experiences severe seasonal
hypoxia (CB4.3C; 38° 33' 18.18" N, 76° 25' 40.584" W). Samples were collected
using a Uwitec gravity core sampler (nylon core liners: 60 cm length; 9 cm inner
diameter). The upper 10 cm of sediment was sub-sectioned and stored in a sealed
glass container in a fridge (dark, 4°C) until the experiment was performed in
December 2018. The in situ conditions of this site are described elsewhere (Malkin et
al., in preparation). Sediments are sulfide rich and are nearly devoid of burrowing
macrofauna. Beggiatoa-like filaments were present in situ, but at low density, and
were not observed by microscopy later during the experiment. Cable bacteria
(Candidatus Electrothrix) were not detected by amplicon sequencing at the time of
sampling but were observed at high relative abundance in the winter and spring (up to
2.0% of 16S rDNA reads; Malkin et al. in prep). Pilot experiments further revealed
that cable bacteria would readily grow in these sediments, given aerobic overlying
water conditions.

To set up the experiment, the collected sediment was homogenized with a
spatula in a glass tank and packed into polycarbonate core liners (8 cm height; 2.5 cm
diameter). During homogenization, oxygenation of the sediment was limited by

directly circulating the headspace of mixing tank with nitrogen gas. The core tubes
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were sealed with neoprene rubber stopper at the bottom, and open at the top. A total
of 70 sediment core tubes were prepared. A subset of sediment cores (n=35) was set
up to block downward cable bacteria growth following a design adapted from Pfeffer
et al. (2012). To accomplish this, a 2.5 cm diameter polycarbonate filter, with 0.2 pm
porosity (Millipore, St. Louis, MO, USA) was embedded at 0.5 cm depth, which was
below the oxygen penetration depth. Filters were secured in place with a specially
constructed filter-holder with a rubber O-ring to ensure a water-tight seal.

All cores were incubated in two identical aerated aquaria filled with artificial
seawater (Red Sea Salt, Red Sea, Houston, Texas) adjusted to in situ bottom salinity
of 15.5 ppt in a climate-regulated environmental chamber at 16°C under dark
conditions. Both tanks were kept oxygenated by continuous bubbling of the overlying
water with needle attached to tubing at 3 spots across the aquarium. All sediment
cores including those with the embedded filter barriers were randomly distributed
between the two tanks. The aquaria were covered with plastic food wrap and
monitored for water evaporation daily and replenished with freshwater if needed.

At each of seven time points (Days 1, 3, 6, 10, 14, 20, 46), three sediment
cores were randomly selected for sampling. Microsensor profiling was first
performed on the cores, followed by sectioning for geochemistry, microscopy, and
nucleic acid analyses. Sediment cores with barrier filters were similarly sampled on
Days 3, 20, 46 for microscopy and nucleic acid analyses. Sediment samples were
sectioned at 0.5 cm increments from the surface to 2 cm for nucleic acids and

microscopy and at 0.5 cm increments to 3 cm for porewater geochemistry analyses.
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Cores sectioned for porewater geochemistry were sectioned in an anaerobic glove bag
(Glas-Col LLC) under a nitrogen atmosphere.

Cell Enumeration

Samples for microbial enumeration were preserved in 96% ethanol (1:1 v/v),
gently mixed with sterile autoclaved toothpicks, and stored at -20°C. For analysis,
sediment-associated microbial cells were carefully separated from sediment grains,
collected on filters, stained with either targeted oligoprobes or general DNA stain
(SYBR Green), and mounted on slides for examination.

Cells were separated from sediment particles using procedures modified from
Kallmeyer et al., (2008) and Lunau et al., (2005). Samples were initially diluted 1:5 in
NaCl solution (20 ppt). Carbonates were dissolved with a mild acid (acetate buffer:
20 mL/L glacial acetic acid and 35 g/L sodium acetate in NaCl, adjusted to pH 4.6)
for 2 hours, which were subsequently separated by centrifugation (3000 g for 5
minutes). Pellets were washed twice with a NaCl solution (20 ppt) by gentle mixing
with autoclaved toothpicks, followed by centrifugation (3000 g for 5 minutes).
Supernatants were collected from all rounds of washing. Following carbonate
removal, cells were detached from sediment particles using a detergent mixture (37.2
g/L disodium EDTA dihydrate, 44.6 g/L. sodium pyrophosphate decahydrate, 1%
Tween 80 [v/v], 50 uL of methanol, and 400 pL of NaCl added to 50 pL of
sediment). The sediment pellet was resuspended into the slurry by gentle stirring with
an autoclaved toothpick. Sample slurries were incubated with rotisserie mixing at
room temperature for at least 30 minutes. Cells were recovered from slurries via
density centrifugation. To accomplish this, Nycodenz® (50% w/v) was added to
below the slurries with a 12-gauge needle (due to high viscosity of the solution) and
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subsequently centrifuged at 3000 g for 10 minutes. The aqueous phase was carefully
collected and combined with supernatant collected earlier. Density centrifugation was
repeated twice. Finally, cells from the supernatant were collected on a filter (0.2 pm
black polycarbonate Whatman Nuclepore) and allowed to air-dry. Separate filters
were prepared for cable bacteria and total cell enumeration, to obtain appropriately
diluted filters. A dilution of 1:5 was prepared for filters for cable bacteria
enumeration. A dilution of 1:50 — 1:100 was used for filters for total cell enumeration.
Filters were kept frozen until staining (-20°C), at which time, filters were
divided into sections for either cable bacteria cell counts, or total cell counts. Cable
bacteria filaments were quantified via fluorescence in situ hybridization (FISH),
following SILVA protocol (Fuchs et al., 2007). The oligonucleotide probe DSB706,
which is specific to most Desulfobulbaceae and Thermodesulforhabdus, was used
with a 40% formamide solution (Manz et al., 1992). Total cell counts were performed
following staining with 1:200 diluted SYBR Green I in 1X TAE (adjusted to pH 7.5)
(Molecule Probes). Cells were stained in the dark for 30 minutes and air-dried
completely. Stained filters were mounted with ProLong™ Gold Antifade Mountant
(Molecular Probes) and stored at -20°C. Cable bacteria were enumerated in 100-200
fields (depending on the density of filaments) at 630X magnification following up-
down transects conducted across the filter. Total cell counts were enumerated at
1000X magnification to capture at least 400 cells in 10-20 randomly selected fields,
using a Zeiss Axiophot Fluorescent Microscope equipped with a digital Zeiss
AxioCam MR camera. Cable bacteria filament lengths were measured in Zeiss Zen

Pro Software (2012).
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At each depth, cumulative cable bacteria filament densities (m cm™) were
calculated to determine total cable bacteria length (m) per volume of sediment (cm?)
examined, thereby allowing comparison with earlier published observations. Depth-
integrated cable bacteria cell density was also determined by multiplying density (m
cm) with depths (cm). Then, cable bacteria cell abundance (cells cm™) were
determined by assuming an average length of 3 pm per cable bacteria cell. Cable
bacteria growth rate and doubling time during exponential growth were calculated
using FISH counts.

Microsensor Profiling

High-resolution microsensor profiling of O2, pH, and H2S was performed on
sediment cores with commercial microsensors operated with a motorized
micromanipulator (Unisense A.S., Denmark). Three sediment cores were examined
by microsensor profiling per sampling time point. Oxygen microsensors had 50 um
tip diameter, and oxygen was profiled at 100 pm resolution to below the oxygen
penetration depth, while overlying water was aerated gently. The pH microsensors
had 200 um tip diameter and H2S had a 50 um tip diameter. Both pH and HzS profiles
were measured at 200 pm resolution until 2 mm, then at 400 um until 4 cm. H2S
measurements were performed in darkness, maintained with black-out curtains
around the room. The initial height of the microsensors were adjusted to the sediment
surface, using a stereo microscope (10X) mounted sideways to observe the sediment
water interface.

The pH microelectrode was calibrated with NBS standards (pH 4, 7, 10). The
Ha2S microsensor was calibrated with a range of NazS standards at 5 concentrations

within the range of 0 to 300 pM. The measurements for the sum of H2S were

21



corrected with corresponding pH, as previously described (Malkin et al. 2014). The
O2 microelectrode was calibrated with a 2-point calibration using 100% air saturation
of bubbled seawater and the anoxic region of sediment. Total diffusive oxygen uptake
(DOU) was calculated from Oz microsensor profiles using Fick’s First Law, as
previously described (Malkin et al. 2014), using an estimated porosity of 0.9.

In sediment cores with barrier filters, microsensor profiling was performed on
days 3, 10, 20, 46 and in two sections, above filter and below filter. The top 0.5 cm
portion of sediment were microsensor profiled until ~0.4 cm. To perform microsensor
profiling below embedded filter, the filter was first removed, and overlying water was
bubbled with nitrogen gas to create anoxic condition before profiling. Microsensor
profiling below the filter was measured starting from ~ 0.6 cm.

Porewater Analyses

Sediments used for porewater analyses were sectioned under anaerobic
conditions in a glove bag and collected in 15 mL polyethylene centrifuge tubes
(Falcon). Porewater was extracted by centrifugation (3500 rpm for 10 minutes).
Subsequently, sealed centrifuge tubes were returned to the glove bag, where
porewater was filtered (0.2 um Target2™ Nylon Syringe Filters) into acid-cleaned
7mL polyethylene tubes, and then aliquoted. For nutrient and anion analyses, filtered
porewater was pipetted into 2 mL cryotubes and frozen (-20°C) until analysis. For
ferrous iron analysis, porewater was preserved in 2 mL cryotubes with trace-metal
grade nitric acid (final pH<2) and stored at room temperature until analysis. NH4"
concentrations were measured colorimetrically following the ammonium indophenol
blue colorimetric method (Solorzano, 1969). Dissolved Fe?" concentration was
quantified with the Ferrozine assay (Stookey, 1970). NH4" and Fe** colorimetric
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assays were measured with Thermo-Scientific GENESYS UV/Vis spectrophotometer
at wavelengths of 640 nm and 562 nm, respectively.

16S rRNA gene (DNA) and transcript (mRNA) Amplicon Sequencing

Samples collected for nucleic acid sequencing were frozen immediately after
sampling in a liquid nitrogen dry-shipper and stored frozen (-80°C). DNA and RNA
were extracted separately from 0.2 mL slurried sediments, according to methods
adapted from Lever et al. (2015). All reagents were sterilized by autoclave or
filtration (0.2 um). During RNA extraction, all working surfaces and equipment were
decontaminated with RNase AWAY™.,

For both DNA and RNA, the extraction proceeded as follows: 0.2 mL aliquots
of sediment samples were first combined with 0.1 M sodium pyrophosphate solution
to prevent nucleic acid adsorption to mineral particles. Carbonates were dissolved
from sediments with a mild acetic acid mixture, as described in Kallmeyer et al.,
(2008), adjusted to pH 4.7, incubated for 2 hours under gentle mixing with rotisserie
assembly, and then washed in TE buffer with gentle mixing for 1 hour (Lever et al.,
2015). Cells were pelleted by centrifugation (10,000 g for 20 minutes; Eppendorf
5424R) and the supernatant containing soluble (i.e., extracellular) DNA was
discarded. Cell lysis was subsequently accomplished using a lysis solution of 0.5%
Triton X-100 and guanidium hydrochloride dissolved in a Tris-HCL and EDTA
solution adjusted to pH 10, combined with bead beating (0.1 mm zirconium silicate
beads coated with PBS; 10 seconds high-speed vortex), followed by a heat-freeze-
thaw cycle (50 °C for 60 minutes, -80 °C for at least 20 minutes, 4 °C until thawed).
The heat-freeze-thaw procedure was repeated 3 times. Following centrifugation

(10,000 g for 20 minutes at 4°C), the supernatant containing the intracellular nucleic

23



acid was carefully pipetted. Extracted DNA or RNA was purified with chloroform-
isoamyl alcohol (CI) (1:1 v/v). Following CI addition, samples were emulsified by
vortex (Vortex Genie II, maximum speed for 10 seconds), then separated by
centrifugation (10,000 g for 10 minutes at 4°C). The top aqueous phase containing the
nucleic acid was carefully pipetted to a new sterile tube. A second round of CI
emulsification was performed with the newly pipetted aqueous phase to ensure
purification. Following centrifugation, the top aqueous phase was pipetted to a new
tube. CI was kept ice-cold for RNA extraction.

The procedures for DNA and RNA precipitation differed slightly. DNA was
precipitated with linear polyacrylamide (LPA, 20 pL mL™") together with PEG-8000
NaCl, and incubated overnight at 4 °C, then centrifuged (14,000 g for 30 minutes at
room temperature). The supernatant was discarded, and the remaining pellet was
washed with 70% ethanol and centrifuged at 14,000 g for 10 minutes, repeated twice.
Extracted samples were air-dried within an hour. Pellets were then dissolved in 100
uL of autoclaved DI and used for downstream analysis. The nucleic acids were
quantitated by fluorometry (Qubit 2.0), using Qubit dsDNA Broad Range assay. For
DNA, further purification was found to be unnecessary. RNA was precipitated with
LPA along with ice-cold isopropanol and 3M NaOAc. Samples were incubated in the
dark overnight at -20 °C, then centrifuged at 14,000 g for 30 minutes at 4 °C.
Supernatant was discarded and ice-cold 70% ethanol was added to wash pellets only
once (centrifuge for 10 mins at 14,000 g). The pellet was air-dried then dissolved in
100 pL of nuclease-free PCR grade water. RNA quantity was measured

fluorometrically using Qubit RNA Broad Range assay Kkit.
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For RNA, further purification, and cDNA synthesis was necessary. Extracted
RNA was further purified with Norgen CleanAll DNA/RNA Clean-Up and
Concentration Kit (Norgen Biotek Corp., Canada), following manufacturer’s Protocol
C. Residual DNA in RNA extracts was digested with two rounds of DNAse treatment
as recommended by Lever et al., 2015. DNase mixture included 2 pLL TURBO DNase
in 10 pul of TURBO DNase buffer (Invitrogen). Following DNase addition, samples
were incubated and shaken gently (600 rpm for 30 minutes at 37 °C; Thermomixer
Comfort R). Genomic DNA and RNA were quantitated with Qubit dsDNA and RNA
Broad Range assay kits using Qubit 2.0 fluorometer to confirm successful DNA
removal. DNase-digested RNA samples were purified again with Norgen CleanAll
DNA/RNA Clean-Up and Concentration Kit (Norgen Biotek Corp.).

Following clean-up and concentration of DNA-free RNA extracts, synthesis
of cDNA was performed with reverse transcription-polymerase chain reaction
following manufacturer protocol of SuperScript III First-Strand Synthesis System for
RT-PCR (Invitrogen). The first reaction mixture (total volume of 10 uL) was
composed of 1uL of 10 mM dNTPs, 1 pL of random hexamers (50 ng/uL), 6uL of
DEPC water, and 2 puL of DNase-digested RNA. RNA-primer mixture was incubated
in an S1000 thermocycler (Bio-Rad Laboratories, Hercules, California, USA) with
the following sequence: 65 °C for Smin, 2 “C for 3min, 4 °C hold. Subsequently,
cDNA synthesis mixture which consisted of 1uL of RNaseOUT (40 U/uL), 1 uL of
SuperScript III RT (200 U/uL), 4 pL of 25 mM MgClz, 2 pL of 0.1M DTT, and 2 pL
of 10X RT Buffer was added to each RNA-primer mixture (final volume of 20 uL).

Samples were incubated in the thermocycler with the following sequence: 25°C for
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10min, 50°C for 50min, 85°C for 5Smin, 4°C hold. Negative controls for each RNA
sample were prepared with 18 puL of nuclease-free water and 2 pL of respective RNA
samples as well as a no-template control. Finally, RNase H (Invitrogen) was added to
each sample as well as negative controls to digest any remaining RNA template and
incubated (37°C for 20 minutes; Bio-Rad) to improve downstream PCR
amplification. RNA and cDNA quantities were again measured with Qubit Broad
Range assays (Invitrogen, Life Technologies, Thermo Fisher Scientific, Waltham,
MA, USA) to ensure quantity and quality.

For amplicon sequencing, the V4-V5 region was amplified using the modified
primer pair of the Earth Microbiome Project (515F-Y/926R; GTG YCA GCM GCC
GCG GTA A)/(CCG YCA ATT YMT TTR AGT TT; Parada et al., 2015). DNA
amplicons were amplified, barcoded, and sequenced at Bioanalytical Services
Laboratory at Institute of Marine and Environmental Technology (Baltimore, MD,
USA). Two-steps of amplification was conducted, first for gene amplification and
second for adding indices. Clean up was accomplished with AMPure XP beads
(Beckman Coulter). DNA sequencing was performed on an Illumina Miseq platform
(2 x 300 bp).

For RNA amplicon sequencing, cDNA products were amplified in-house.
Samples were prepped in triplicates in an AirClean 600 PCR workstation following
Platinum™ Green Hot Start PCR Master Mix protocol (Invitrogen, Life
Technologies). The PCR reaction mixture (total volume 25 pL) consisted of 7.5 puL of
nuclease-free water, 12.5 pL of 2X Platinum Hot Start Master Mix, 1 uL of 10 uM

forward primer, 1 pL of 10 uM reverse primer, and 3 pL of cDNA template. Negative

26



controls were prepared with 3 puL of nuclease-free water instead of DNA template.
The following thermocycler setting was used: 94°C for 2 minutes, 25 cycles of 94°C
for 30 seconds, 55°C for 40 seconds, 72°C for 90 seconds, then 72°C for 5 minutes,
and ended with 4°C hold. Triplicate PCR products were pooled together. Purity and
assessment of amplification were verified with gel electrophoresis using a 1.5 %
agarose gel ran on 120 V for 25 minutes. Loaded gel was carefully stained with EtBr
solution for 15 minutes and visualized under UV light. Amplicon clean-up was
carried out using Zymo Research DNA Clean and Concentrator-5 (Irvine, California,
USA) following the manufacturer’s instructions. cDNA amplicons were sequenced on
an Illumina Miseq platform with v2 kit reagents (2 x 250 bp) by Genewiz Amplicon
E-Z (South Plainfield, NJ, USA).

Bioinformatic Analysis

Raw sequence reads were processed using the DADA?2 pipeline (Callahan et
al., 2016) in R (v 3.6.3, R Core Team), separately for DNA and RNA datasets. Primer
reads were trimmed from sequences using the filterAndTrim function. DNA
sequences were truncated, based on inspection of sequence quality plots, at position
280 and 220 for forward and reverse reads, respectively. cDNA sequences were
truncated at position 240 for forward reads and 220 for reverse reads. The maximum
expected error rate parameter (maxEE) was set to a stringent level (2 for both forward
and reverse reads). After paired reads were merged, chimeras were screened and
removed. Long-tailed reads (>382 nt for DNA; >381 for cDNA; representing <
0.01% reads) were considered to be likely erroneous and removed. Amplicon
sequence variants (ASVs) were taxonomically assigned using SILVA ribosomal SSU
database (v 138, Pruesse et al., 2007; Glockner et al., 2017). Phylogenetic trees were
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constructed with Maximum Likelihood Inference using RAXML (v 8.0; Stamatakis,
2014) after sequence alignment with DECIPHER (Wright, 2015).

The package phyloseq (McMurdie and Holmes, 2013) in R was used to further
prune data and to perform downstream analyses. Only ASVs belonging to the
Domains of Bacteria and Archaea were kept. ASVs without Kingdom assignment and
ASVs without Phylum assignment within Bacteria were considered errors and
removed. Sequences identified as mitochondria (0.09% in DNA, 0% in RNA
datasets), chloroplast (0.22% in DNA, 0.05% in RNA datasets), and ASV singletons
(8.7% in DNA, 1.7% in RNA datasets) were removed. Differences in the
communities with cable bacteria and without cable bacteria were assessed via
principal coordinates analysis (PCoA) and PERMANOVA (permutations = 999)
using the Bray-Curtis dissimilarity distance.

Correlation Analysis

Microbial associations between cable bacteria and their sympatric microbial
community were explored using Spearman’s Rank correlation based on fractional 16S
rRNA transcript abundance data normalized with microscopy counts. Raw
microscopy counts exhibited stochastic variability between depths over time, which
likely reflected methodological variance, rather than changing population sizes. To
eliminate the effect of this methodological variability on the correlation analyses, I fit
the raw counts to two models based on their spatial and temporal distribution. First,
total subsurface bacterial cell abundance was averaged for all depths through time.
Among surface samples, a decline in cell numbers was observed during the first 10
days of the experiment. The raw counts were fit to a natural log decline between Days
3 and 10.
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The fractional transcript abundance was multiplied by the bacterial cell
abundance numbers (FTAXC) to obtain an estimate of the change of transcripts with
depth and time. A similar procedure, though for DNA amplicons, was applied to
quantify changes in abundance of Archaea with sediment depth (Kevorkian et al.
2021) Other estimates of absolute abundances of different microbial taxa have been
based on 16S rRNA gene data (Props et al., 2017; Tkacz et al., 2018; Barlow et al.,
2020). Here, I chose to examine the fractional transcript abundance and FTAxC to
explore ecological interactions among the most active microbial populations.

I performed correlation analysis on the FTAXC of Ca. Electrothrix (marine
cable bacteria) against the FTAXC of all other microbes on the ASV and genus level.
Genera FTAxCs were calculated by agglomerating all ASVs from the same genus
using the tax_glom function in phyloseq. Each set of correlations were performed
independently among surface samples (0 - 0.5 cm) and samples from subsurface
depths (0.5 - 2.0 cm). Spearman’s Rank correlations and p-values were calculated
using package psych (v2.0.9; Revelle, 2020) in R. False discovery rate (FDR) for
multiple testing was calculated according to the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995).

Spearman’s Rank correlation could yield spurious correlation driven by taxa
responding to changes in the sediment unrelated to cable bacteria. Moreover,
Spearman’s Rank correlation assumes independence of the samples which was not
the case in my time-series incubation study. To clearly identify microbes associated
with cable bacteria, the FTAxC time course of the cable bacteria population was also

used as a reference point. The FTAXC of correlated taxa with p-value < 0.05 were
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scrutinized against the FTAXC of cable bacteria. For example, ASVs or genera were
considered potentially associated with cable bacteria only if they were correlated (p <
0.05) and if their FTAxC followed the FTAXC of cable bacteria, including a change
on the last time point after cable bacteria population plummets. In addition,
abundance patterns of ASVs and genera estimated from subsurface samples were
cross-checked with respective depths in the sediment cores where cable bacteria
growth was inhibited. Specifically, an ASV or genus was not considered a potential
associate if its FTAXC trend in sediment cores without cable bacteria behaved
similarly to that of the sediment cores dominated by cable bacteria.

Furthermore, after adjusting the p-values with false discovery rate, the
correlation dataset resulted in high FDR values throughout which suggested
likelihood of numerous false positives. The nature of my experiment was
underpowered and led to numerous correlations, but with weak strength. Correlated
microbes that followed the FTAxC temporal trend of cable bacteria and were
measured with FDR values < 0.6 were considered worthy of further scrutiny and

discussion.

Results

Microscopy Counts

Cable bacteria filaments were not detected by FISH (using oligoprobe DSB-
706; herein “DSB Cells”), on Days 3 or 6 (Figure 2, Table 1). Cable bacteria were
first observed at the sediment surface on Day 10 (length density: 267.0 m cm™) and
their abundance increased and progressed downward, reaching a maximum density of

1063.7 m cm™ at 0.5 — 1.0 cm on Day 20, accounting for 35% of total microbial cells.
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Depth-integrated cable bacteria filament density, estimated to 2 cm, was 133.5 m cm™
and 1154.8 m cm™ for Days 10 and 20. During exponential growth at the surface
between Days 6 to 10, cable bacteria multiplied with a doubling time of <42 hours
(growth rate, =0.40 d!) (Figure 3, Table 2). In the subsurface samples, exponential
growth took place between Days 10 to 20 in which the fastest rate of growth (r=2.38
d!) and doubling time (<7 hours) of cable bacteria was observed at 1.0-1.5 cm depth.
By Day 46, cable bacteria density plummeted to 8.5 m cm™ at the sediment surface,
which represented <1% of all cells, and was not detected in subsurface sediment. In
the cores with barrier filter, no cable bacteria filaments were encountered below the
filter during the entirety of the experiment, indicating successful inhibition of cable

bacteria below the filter (Figure 2g-i).
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Figure 2. Direct microscopy counts of total bacterial abundance using SYBR
Green staining and direct FISH counts of cable bacteria (“DSB cells”) hybridized
with DSB706 oligonucleotide probe. Panels a-f show cell abundances of sediment
cores where cable bacteria grew down to 2 cm. Panels g-i depict cell abundance in
cores with barrier where cable bacteria growth was prevented below 0.5 cm.
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Depth-

Table 1. Cable bacteria “DSB
cells” filament density (m cm” )

distribution through time and
depth and depth-integrated cable

bacteria density (m em” ). Cable

bacteria cells were hybridized
with DSB706 oligonucleotide
probe and measured with

fluorescent in-situ hybridization
(FISH) microscopy.

Time Depth  DSB Density  intergrated
(day) (cm) (m cm '3) DSB Density
(mcm '2)

Day 3 0-0.5 1.0 0.5
05-1.0 n.d.
1.0-1.5 n.d.

Day 6 0-05 3.1 1.6
0.5-1.0 n.d.
1.0-1.5 n.d.

Day 10 0-0.5 267.0 133.5
0.5-1.0 n.d.
1.0-1.5 n.d.

Day14 0-0.5 526.4 788.0
05-1.0 627.5
1.0-1.5 407.4
1.5-2.0 14.6

Day20 0-0.5 848.2 1154.8
05-1.0 1063.7
1.0-1.5 265.8
1.5-2.0 131.8

Day 46 0-0.5 8.5 43
0.5-1.0 n.d.
1.0-1.5 n.d.
1.5-2.0 n.d.

Figure 3. Cable bacteria growth
rate (r) during exponential phase
at each depth.
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Table 2. Cable bacteria growth rate and doubling time during exponential growth
phase at each respective depth.

Cable Bacteria Exponential Growth Rate at Each Depth

Depth (cm) Growth rate (day - ) doubling time (day) doubling time (hour)

0-0.5 0.40 1.73 41.5
0.5-1.0 1.05 0.66 15.9
1.0-1.5 2.38 0.29 6.99
1.5-2.0 0.37 1.89 45.4

Geochemical Characterization

The combined microsensor profile data (O2, pH, and H2S) were indicative of
the development and termination of cable bacteria activity in the sediment cores
across the incubation period (Figure 4a-f). Cable bacteria activity may be identified
by a pH maximum in the oxic zone, indicative of cathodic oxygen reduction or nitrate
reduction, combined with an absence of sulfide, and a corresponding pH minimum
indicative of anodic sulfide oxidation (Nielsen et al. 2010, Meysman et al. 2015).
Sulfide was initially present to the sediment surface on Day 3. The sulfide horizon
progressed downwards, creating a suboxic zone, defined as a space where oxygen and
sulfide are not detectable. The suboxic zone was, on average, 6.8 mm thick on Day 10
and 23.3 mm thick on Day 20. Concomitantly, the pH profile developed a minimum
near the sulfide horizon, initially pH 6.8 at 5.9 mm on Day 10, which progressed
downwards and to lower pH values, reaching pH 5.5 at 15.0 mm by Day 20. A pH
maximum in the oxic zone developed in one of three replicate cores on Day 14 and
two out of three cores on Day 20, reaching pH up to 8.7. After 46 days of incubation,
pH extreme values receded towards neutrality with an average pH 7.6 in the oxic

zone and pH 6.1 in the suboxic zone.
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In contrast, below the embedded filters, the cores with barriers did not indicate
electrogenic sulfide oxidation by cable bacteria (Figure 4g-j). A suboxic zone was not
observed in the profiles below the filter on any days. On Day 10, H2S was detectable
right below the filter at a concentration of 30 uM at 5.8 mm reaching up to 621 uM
by 40 mm. HaS was also detectable near the filter on both Days 20 and 46 between 5
to 6 mm and HzS remained detectable through depth, reaching a mean of 358 uM on

Figure 4. Microsensor profiles of O2 (red), pH (black), and H2S (blue) on 6
sampling timepoints (Day 3, 6, 10, 14, 20, 46). Sediment cores showing
geochemical fingerprint of increasing cable bacteria activity between Days 10
and 20 are depicted in panels a-f. Cores with barrier filter where cable bacteria

growth was inhibited are depicted in panels g-j. Shaded regions indicate
sections of sediment core sampled for DNA and RNA sequencing.
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Day 20 and 216 puM on Day 46 by 40 mm. Also, a pH minimum was absent below
the filter. In the surface sediment above the barrier filter, there was evidence of cable
bacteria activity. For example, a low H2S concentration at a mean of 23 pM was
detected in the top 5 mm. Thus, the barrier was effective in preventing cable bacteria
growth below. The microbial communities of the surface samples (0 -0.5 cm) from
cores with barrier filters were not further examined because cable bacteria were
allowed to grow above the filter and the communities are assumed to be the same as
the cores without barrier filters.

Rates of diffusive oxygen uptake (DOU) extracted from the oxygen
microsensor profiles exhibited different patterns between the two sets of sediment
cores. In sediment cores where cable bacteria were allowed to grow, DOU rates
increased between Days 6 and 20 from 17.0 + 1.7 to 27.8 + 4.0 mmol m™ d! and then
declined (Figure 5; Table 3). In the cores with barrier filters, DOU rates did not
change from Days 3 to 20. On Day 20, DOU was 27.8 + 4.0 mmol m™ d™! in the
sediment cores with cable bacteria and 20.6 = 2.1 mmol m™ d! in the cores with
barrier. A one-sided Student’s t-test identified the values on Day 20 as being close to

significantly different (t-test, df=4, t-value=2.614, p < 0.08). By Day 46, DOU in both

36



sets of cores declined, reaching similar rates (sediment cores with no barrier: 12.5 +

1.2; sediment cores with barrier filter: 12.5 + 1.6 mmol m? d™).

404 a
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Figure 5. Diffusive oxygen
uptake rates through 46 days
of incubation. Fluxes were
calculated from microsensor
profiles using Fick’s First
Law. DOU increased from
Day 10 to 20 and decreased
by Day 46 in (a) sediment
cores where cable bacteria
were allowed to grow. In the
cores with filter barrier (b)
where cable bacteria growth
was inhibited, DOU
remained unchanging until a
decrease on Day 46.

Table 3. Diffusive oxygen uptake rates calculated from microsensor profiles.

Sample Type Day DOU (mmol O , m~ d'l)
Sediment Cores 3 21.7+29
6 170+ 1.7
10 18.8+0.5
14 25.6+8.9
20 27.8+4.0
46 125+1.2
Sediment Cores 3 20.7+ 0.6
with Barrier 10 19.5+1.9
20 20.6 £2.1
46 125+1.6
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During the course of the experiment, porewater ammonium concentrations

exhibited decreasing concentration through time in both cores with and cores without

barrier filters (Figure 6a & b). On Day 1, ammonium concentration was 0.5 mM at

the sediment surface, increasing to 1.9 mM by 3 cm depth. By Day 46, ammonium

concentration had declined to 0.1 mM at the surface and 0.5 mM at 3 cm. The cores

with barrier filters exhibited a similar pattern, but at a slightly lower concentration,

with a maximum detected ammonium of 1.5 mM on Day 1 at 3 cm, and 0.5 mM on

Day 46.
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Figure 6. Porewater
analyses of ammonium and
dissolved iron. Ammonium
concentration decreased
over time in (a) sediment
cores with cable bacteria and
(b) cores with barrier filters
at 0.5 cm depth. (¢) A highly
concentrated peak of
dissolved iron was detected
on Day 20 between 0.5 — 2.0
cm. (d) No dissolved iron
was detected at any depth or
sampling timepoints in the
cores with barrier.



Porewater ferrous iron exhibited a major difference between the two sets of
cores. On all dates in the cores with barrier filters, ferrous iron was not detected
through depth. By contrast, in the sediment cores with cable bacteria at depth, ferrous
iron was not detected through depth on all dates, except on Day 20, when the Fe?
concentration profiles exhibited a maximum concentration of 3462 uM at 1.5 cm
depth (Figure 6¢). The ferrous iron maximum at 1.5 cm decreased to 48 uM by Day

46.

Microbial Community Composition (16S rRNA amplicons from DNA)

The dominant microbial taxa identified by amplicon sequencing were
affiliated to groups belonging to the phyla Acidobacteriota, Bacteroidota,
Calditrichota, Chloroflexi, Desulfobacterota, Proteobacteria, Latescibacterota,
Planctomycetota, and Thermoplasmotota (Figure 7). Archaea were observed in all
samples, with a mean of 5.7% of reads. The most abundant bacterial phyla were
Bacteroidota (mean 18.2% of reads); Proteobacteria (14.3%); Chloroflexi (15.5%);
Desulfobacterota, excluding Ca. Electrothrix (12.8%); Planctomycetota (7.3%); and
Acidobacteriota (5.0%).

ASVs affiliated with Ca. Electrothrix were not detected on Days 3 and 6 at
any depth in the sediment cores (Figure 7 & 9). Reads affiliated to this genus were
first observed at the sediment surface on Day 10 (2.1% of reads) and increased in
relative abundance then progressed downward over time, reaching a maximum 4.4%
at the 1.0-1.5 cm depth interval on Day 20. Ca. Electrothrix reads were detectable
down to the maximum depth examined (2.0 cm) by Day 20. By Day 46, Ca.
Electrothrix reads were detected at <0.2% of reads at all depths. Ca. Electrothrix was
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represented by three ASVs, of which one dominant ASV represented 99.9% of Ca.
Electrothrix reads on average. Dominance did not change during the experiment.
Nucleotide Basic Local Alignment Search Tool (BLASTn; National Center for
Biotechnology Information) revealed 100% sequence similarity between the
dominant ASV and both Ca. Electrothrix communis and Ca. Electrothrix
aarhusiensis. Conversely, in the sediment cores with barrier filters (sequenced at
depths below the filter barrier on Days 3, 20, and 46), ASVs affiliated with Ca.

Electrothrix were not detected in any samples.

Figure 7. Microbial community composition based of 16S rRNA gene amplicon
sequencing data (DNA). Cores were sectioned at 0.5 cm increments down to 2.0

cm and sequenced at 6 sampling timepoints. Cable bacteria presence was detected

in intact sediment cores but not in cores with barrier below the depth of 0.5 cm.
Cable bacteria growth began at the surface. Filaments grew deeper into the cores
by Day 14 and Day 20, then the population declined by Day 46.
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Microbial Community Composition (16S rRNA transcripts from RNA)
Ca. Electrothrix dominated the transcript amplicons on Days 10 to 20. Other

major phyla were represented by Desulfobacterota excluding Ca. Electrothrix
(18.6%), Proteobacteria (14.7%), Bacteroidota (10.9%), Chloroflexi (6.9%), and
Latescibacterota (5.0%). Other taxa detected at >2% of the reads in at least one
sample were affiliated with the phyla Acidobacteriota, Bdellovibrionota,
Calditrichota, Campilobacterota, Nitrospinota, Nitrospirota, Planctomycetota,
Spirochaetota, Asgardarchaeota, Crenarchaeota, Halobacterota, and
Thermoplasmatota (Figure 8).

16S rRNA transcripts affiliated to Ca. Electrothrix largely followed the same
temporal and spatial patterns as the DNA amplicons, but at relative abundance
approximately an order of magnitude greater (Figure 8 & 9). RNA transcripts
affiliated with Ca. Electrothrix were not detected on Days 3 and 6 in the sediment
cores. Transcript reads affiliated to this genus were first observed at the sediment
surface on Day 10 (18.4% reads), and increased in relative abundance, and progressed
downward over time, reaching a maximum of 65.3% of the transcript reads at the 1.0-
1.5 cm depth interval on Day 20. Ca. Electrothrix reads were detectable down to the
maximum depth examined (2.0 cm) by Day 20. By Day 46, Ca. Electrothrix reads
were greatly diminished, detected at a maximum of 2.4%. In the transcript dataset,
forty-five ASVs were affiliated with Ca. Electrothrix. Similar to the DNA dataset,
one ASV affiliated to Ca. Electrothrix was dominant representing 96.2% of Ca.
Electrothrix on average. The same Ca. Electrothrix sequence was dominant in both

DNA and RNA datasets. In the cores with barrier, reads affiliated with Ca.
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Electrothrix were observed at <0.35% below the filter on Days 3 and 20 but were

absent on Day 46.

Figure 8. Microbial community composition based of 16S rRNA transcript
sequencing data (RNA). Cores were sectioned at 0.5 cm increments down to 2.0
cm and sequenced at 6 sampling timepoints. Initial cable bacteria activity was
detected on Day 10. Cable bacteria activity dominated through depth and time
where they accounted for 60% of the community by Day 20 at a depth of 1.0 — 1.5
cm. Relative abundance of cable bacteria decreased by Day 46.
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When comparing the RNA to DNA ratio of Ca. Electrothrix on Days 10, 14,

and 20, there were higher proportions of cable bacteria RNA at the deepest depth

during growth compared to the DNA proportions (Figure 10).

N

2



Figure 9. 16S DNA and RNA relative abundance of Candidatus Electrothrix
(cable bacteria). The relative abundance of cable bacteria in the RNA dataset were
an order of magnitude higher than the DNA relative abundance. Cable bacteria
growth progression can be seen in both sets of data where initial growth began at
the surface on Day 10, followed by an increase in abundance deeper into the
sediment for the next 10 days. Finally, the cable bacteria population encountered a
senescence phase by Day 46. Relative abundance of cable bacteria is plotted in
light grey for the DNA dataset and dark grey for the RNA dataset.
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Figure 10. RNA to DNA ratio of Candidatus Electrothrix (cable bacteria) on
Days 10, 14 and 20 when cable bacteria dominated the microbial population. The
ratio between cable bacteria RNA to DNA increased with depth as cells penetrated
deeper into the sediment to access sulfidic pools.
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Principal coordinates analysis (PCoA) of the FTAxC dataset with Bray-Curtis
dissimilarity distance exhibited three distinct clusters, representing surface samples,
subsurface samples with abundant cable bacteria, and subsurface samples where cable
bacteria were not detected (Figure 11). Among the subsurface samples, clustering
patterns were mainly driven by the presence versus absence of cable bacteria.
Comparing the FTAxC dataset in paired sediment cores with and without filter
barriers revealed the communities were not quite detectably different (depths 0.5-1.5
cm, Days 3, 20, and 46; PERMANOVA; p = 0.12; Contrast 1, Table 4). By contrast,
comparing paired sediment cores with cable bacteria against those without cable
bacteria, the communities were significantly different (depths 0.5-1.5 cm; Days 3, 20,
and 46; p = 0.013; Contrast 2, Table 4). This suggest that the presence of cable
bacteria is driving the differences seen between the samples. To test for a residual
influence of Ca. Electrothrix on the remaining community composition, the same
samples were contrasted, but with Ca. Electrothrix reads excluded from the analysis.
In this case, there were no significant differences in the community composition
between samples with and without cable bacteria (depths 0.5-1.5 cm; Days 3, 20, and
46; p = 0.065; Contrast 3, Table 4).

The surface sediment microbial communities exhibited a different trajectory
over time (Figure 11). Alphaproteobacteria abundance increased over the course of
the experiment at the surface (Figure 8). Bdellovibrionota were abundant (> 2.6%
transcript reads) on Days 10, 14, and 20. Day 46 was unique, with Nitrospinota and

Nitrospirota appearing at > 2% of transcript reads.
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Figure 11. Principal coordinates analysis (PCoA) of FTAxC data using Bray-
Curtis dissimilarity distance. Samples are characterized by core types either with
the presence of filter barrier where cable bacteria were inhibited below 0.5 cm
(circles), or sediment cores without barrier where cable bacteria were absent
(triangle) and where cable bacteria were present (squares). Surface samples with
cable bacteria, below surface samples with cable bacteria, and below surface
samples without cable bacteria formed distinct clusters.
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Table 4. Contrasts between microbial communities in paired sediment cores with
and without a filter barrier as well as cores with and without cable bacteria using
PERMANOVA. Communities contrasted include samples from 0.5-1.0 cm and
1.0-1.5 cm depths on Days 3, 20, and 46 of both sets of sediment cores (filter vs
no filter embedded).

PERMANOVA Homogeneity of
Community Dispersion Test,
Contrast Parameter Df  F.Model Pr(>F) Pr(>F)
Contrast 1 filter absence vs presence 1,10  1.3956 0.12 0.245
Contrast 2 cable bacteria absence vs presence 1,10  3.6731 0.013* 0.325
Contrast 37 cable bacteria absence vs presence 1,10 1.6151  0.065 0.922

T Cable bacteria removed from dataset

Correlation Analysis between FTAXC of Ca. Electrothrix and Other

Microbes

Microbes Positively Correlated with Ca. Electrothrix at the Sediment Surface
Among the surface samples, 43 ASVs were positively correlated (Spearman; p <
0.05; Appendix Table A1) with Ca. Electrothrix, of which 9 ASVs (FDR < 0.6) met
the time course criteria for being likely associated with the growth of Ca. Electrothrix
(i.e., increased in FTAXC during growth of Ca. Electrothrix and decreased in FTAxC

during senescence of Ca. Electrothrix; Figure 12 & 13).
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Figure 12. Ca. Electrothrix FTAXC time course through depth which was used as
a reference point to examine for potential associated ASVs or genera with cable
bacteria (see Methods).
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These ASVs were affiliated to the following phyla: Bdellovibrionota,
Desulfobacterota, Myxococcota, and Proteobacteria. In further detail, a strongly
significant and positive correlation was observed between two ASVs affiliated to the
genus Magnetovibrio and Ca. Electrothrix (FDR < 0.005). ASV_0687, affiliated to
the genus Thioalkalispira-Sulfurivermis had a significant and positive correlation

with Ca. Electrothrix (rho: 0.986; p-value: 3.09E-04; FDR: 0.102). ASV_1463,
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Figure 13. Time course of ASVs identified with robust positive correlations with
cable bacteria (FDR < 0.6) at the sediment surface (0 - 0.5 cm). Taxon identity are
included for each ASV at the finest known phylogenetic resolution.
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affiliated to the genus Haliangium, was weakly correlated with Ca. Electrothrix (rho:

0.943, p-value: 0.005, FDR: 0.323). ASV_0066, affiliated to the genus Desulfocapsa
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also exhibited a weak and positive correlation with Ca. Electrothrix (rho: 0.943; p-
value: 0.005; FDR: 0.323). Positive but not significant correlation was detected
between ASV_0757, belonging to the genus OM27 clade (Bdellovibrionota), and Ca.
Electrothrix (rho: 0.928; p-value: 0.008; FDR: 0.423).

Agglomerated at the genus level, 8 genera were positively correlated (p < 0.05)
with Ca. Electrothrix among surface sediment samples (Appendix Table A2), of
which all genera (FDR < 0.6) met the time course criteria for being likely associated
with Ca. Electrothrix (Figure 14). These microbes affiliated to the genera Aureispira,
Portibacter, and Crocinitomix in Phyla Bacteroidota, OM27 clade (Bdellovibrionota),
Truepera (Deinococcota), Haliangium (Myxococcota), Magnetovibrio
(Proteobacteria), and Diplosphaera (Verrucomicrobiota). Of these, the most closely
correlated genera with Ca. Electrothrix were Magnetovibrio (rho: 0.943; p-value:
0.005; FDR: 0.223) and Haliangium (rho: 0.943; p-value: 0.005; FDR: 0.223).
Additionally, the genus-level OM?27 clade was positively associated with Ca.

Electrothrix with weak strength (rho: 0.829; p= 0.042; FDR: 0.502).
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Figure 14. Time course of genera identified with robust positive correlations with

cable bacteria (FDR < 0.6) at the sediment surface (0 - 0.5 cm).
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Microbes Negatively Correlated with Ca. Electrothrix at the Sediment Surface
Among samples from the sediment surface, 149 ASVs were significantly

negatively (p < 0.05) correlated with the dominant Ca. Electrothrix (Appendix Table
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A1), of which 34 ASVs (FDR < 0.6) fulfilled the time course criteria for being likely
negatively associated with the growth of Ca. Electrothrix (i.e., decreased in FTAxC
during growth of Ca. Electrothrix and increased in FTAXC during senescence of Ca.
Electrothrix; Figure 15). These negatively correlated ASVs affiliated to phyla
Asgardarchaeota, Thermoplasmatota, Acidobacteriota, Bacteroidota,
Desulfobacterota, Fermentibacterota, Latescibacterota, Planctomycetota, and
Proteobacteria. Within Desulfobacterota, 10 ASVs were negatively correlated (FDR <
0.423) with Ca. Electrothrix and met the criteria of likely cable bacteria association.
In detail, these included ASVs affiliated to the genera Desulfatiglans, SEEP-SRB1,
Sva0081 sediment group, Desulfuromusa, and an unidentified genus affiliated to the
family Desulfosarcinaceae. Among Gammaproteobacteria, ASV_0127, affiliated to
the genus Sedimenticola, and ASV_0173, belonging to the class B2ZM28, both
exhibited highly significant and negative correlations with Ca. Electrothrix (rho: -
1.000; p-value < 0.005; FDR: 0). ASV_0345, affiliated to the genus Thiogranum, was
weakly negatively correlated with Ca. Electrothrix (rho: -0.941; p-value: 0.005; FDR:

0.323).
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Among surface sediment samples, when individual ASV abundances were
agglomerated at the genus level, 13 genera were found to be negatively correlated (p
< 0.05) with Ca. Electrothrix (Appendix Table A2), of which 9 genera (FDR < 0.52)
met the time course criteria for being likely negatively associated with cable bacteria
(Figure 16). The nine genera were: Maribacter, JAFR-76, Desulfatiglans, SEEP-
SRBI, Sva0081 sediment group, Desulfuromusa, Halioglobus, Sedimenticola, and
Thiogranum. Similar to correlations found on the ASV level, several genera affiliated
to the phylum Desulfobacterota exhibited negative but not significant correlation with
Ca. Electrothrix, including the genus of Desulfatiglans (rho: -0.829; p-value: 0.042;
FDR: 0.502), SEEP-SRBI (rho: -0.886; p-value: 0.019; FDR: 0.459),

Sva0081 sediment group (rho: -0.943; p-value: 0.005; FDR: 0.223), and
Desulfuromusa (tho: -0.812; p-value: 0.050; FDR: 0.520). Furthermore, negative
correlations were observed in the surface samples between Ca. Electrothrix and
Thiogranum (rho: -0.829; p-value: 0.042, FDR: 0.502) as well as Sedimenticola (rho:

-0.943; p-value: 0.005, FDR: 0.223).
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Figure 16. Time course of genera identified with robust negative correlations

with cable bacteria (FDR < 0.6) at the sediment surface (0 - 0.5 cm).
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Microbes Positively Correlated with Ca. Electrothrix at Subsurface Sediment
Depths (0.5 -2.0 cm)
Among subsurface sediment samples, 144 ASVs were positively correlated (p <

0.05) with Ca. Electrothrix (Appendix Table A1), of which 15 ASVs (FDR < 0.6)
met the time course criteria for being likely associated with Ca. Electrothrix (Figure
17). These ASVs were affiliated to the following phyla: Thermoplasmatota,
Bacteroidota, Calditrichota, Desulfobacterota, Myxococcota, Nitrospinota,
Planctomycetota, and Proteobacteria. Correlation analysis among these samples
revealed positive correlations between Ca. Electrothrix and members of
Desulfobacterota belonging to the genus Desulfatiglans, and the families
Desulfosarcinaceae and Desulfobulbaceae. The positive correlation detected with Ca.
Electrothrix and ASV_0441 (family Desulfobulbaceae) was strongly significant (rho:
0.0891; p-value: 6.09E-08; FDR: 2.71E-04). A significant and positive correlation
was detected between ASV 3457 (order Desulfobacterales) and Ca. Electrothrix
(rho: 0.792, p-value: 1.90E-05, FDR: 0.042). ASV_0453, affiliated with the genus
Desulfatiglans exhibited a weak significant positive correlation with Ca. Electrothrix
(rho: 0.707; p-value: 3.43E-04; FDR: 0.218). Moreover, there was a significant and
positive correlation between Ca. Electrothrix and ASV_1392 (rho: 0.755, p-value:
7.73E-05, FDR: 0.086), which is affiliated to the class Polyangia (Myxococcota).
One ASV affiliated to the genus Nitrospina (tho: 0.684, p-value: 0.001, FDR: 0.276)
was positively correlated with Ca. Electrothrix. ASVs affiliated to the genera
Sedimenticola and Thiogranum also exhibited a positive correlation with Ca.

Electrothrix. In particular, a positive correlation with Ca. Electrothrix was seen with
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ASV 0509 (genus Sedimenticola, tho: 0.585; p-value: 0.005; FDR: 0.497) and

ASV 0080 (genus Thiogranum, tho: 0.643; p-value: 0.002; FDR: 0.299).

Figure 17. Time course of ASVs identified with robust positive correlations
with cable bacteria (FDR < 0.6) at the subsurface sediments (0.5 — 2.0 cm).
Surface samples (grey) were included for additional information and contrast.
Taxon identity are included for each ASV at the finest known phylogenetic

resolution.
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Among subsurface sediment samples, when ASVs were agglomerated to the

genus level, 5 genera were positively correlated (p < 0.05) with Ca. Electrothrix

(Appendix Table A2). Of these, Thiogranum was weakly correlated but met the time
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course criteria for being likely associated with cable bacteria (tho: 0.477; p-value:

0.029; FDR: 0.557; Figure 18).

Figure 18. Time course of genera identified as robustly correlated with cable
bacteria (FDR < 0.6) at the subsurface sediments (0.5 — 2.0 cm). Surface
samples were included for additional information and contrast. Grey plot =
surface samples; green triangles = positively correlated genera; red circles =
negatively correlated genera.

FTAXC (transcripts * cells cm™)

4e+06 8e+06

Oe+00

2e+07 4e+07

0Oe+00

2e+06 4e+06

0e+00

g__Thiogranum

0-0.5cm 0.5-1.0cm 1.0-1.5¢cm 1.5-2.0cm
A
= A/ A
|/ /T
s 4t fa—
Fy

rho: 0.477
pval: 0.029
fdr: 0.557

I I I T

10 20 30 40
g__ Desulfocapsa

0-0.5cm

T T T T
10 20 30 40

0.5-1.0cm

T T T T
10 20 30 40

1.0-1.5¢cm

0 10 20 30 40

1.5-2.0 cm

1

®o00-9—°

rho:-0.779
pval: 3.15e-05
fdr: 0.007

| | | |
10 20 30 40
g__Hypomonas

| | ! I
10 20 30 40

! I I !
10 20 30 40

I I I | |
0 10 20 30 40

0-0.5cm 0.5-1.0cm 1.0-1.5¢cm 1.5-2.0cm
i rho:-0.689
] pval: 0.001
fdr: 0.060
] [ ]
_...._./ _....‘.—.___________.. o0 ——9

10 20 30 40
Time (days)

10 20 30 40
Time (days)

62

10 20 30 40
Time (days)

0 10 20 30 40
Time (days)



f__Desulfosarcinaceae g__Incertae_Sedis
0-0.5¢cm 0.5-1.0¢cm 1.0-1.5¢cm 1.5-2.0cm

* tho: -0.508
= 1 1 = pval: 0.019

_ _ / | fdr: 0.503

6e+05
|

4e+05
|

0e+00
1
|
L ]
|
1

FTAXC (transcripts * cells cm™)
2e+05
| |
| |
H
| |
Y
. —
| |

[ [ ] [ I [ | [ I [ I [ [ [ I [ [
10 20 30 40 10 20 30 40 10 20 30 40 0 10 20 30 40
Time (days) Time (days) Time (days) Time (days)

Microbes Negatively Correlated with Ca. Electrothrix at Subsurface Sediment
Depths (0.5 -2.0 cm)
Among subsurface sediment samples, 102 ASVs were negatively correlated (p <

0.05) with Ca. Electrothrix (Appendix Table A1), of which 6 ASVs (FDR < 0.6) met
the time course criteria for being likely negatively associated with the growth of Ca.
Electrothrix (Figure 19). These ASVs were affiliated with the following phyla:
Bacteroidota, Chloroflexi, Desulfobacterota, and Proteobacteria. Within the genus of
Desulfocapsa, there was a strongly significant negative correlation between

ASV 0066 and Ca. Electrothrix (rho: -0.779; p-value: 3.15E-05; FDR: 0.047).

ASV 0275, affiliated to Gammaproteobacteria, exhibited a strong negative
correlation with Ca. Electrothrix (rho: -0.726; p-value: 1.94E-04; FDR: 0.173). A
negative correlation was also detected between Ca. Electrothrix and ASV_0294,
which was affiliated to the order Ardenticatenales (tho: -0.699; p-value: 4.22E-04;
FDR: 0.234). In addition, ASV_0754 (family Marinilabiliaceae, FDR < 0.374),

ASV 0424 (class Anaerolineae, FDR < 0.452), and ASV_0475 (genus Thiogranum,
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FDR < 0.519) were all observed as weak negative correlations with Ca. Electrothrix

at depth.

Figure 19. Time course of ASVs identified with robust negative correlations
with cable bacteria (FDR < 0.6) at the subsurface sediments (0.5 — 2.0 cm).
Surface samples (grey) were included for additional information and contrast.
Taxon identity are included for each ASV at the finest known phylogenetic

resolution.
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Among subsurface sediment samples, when ASVs were agglomerated to the
genus level, 10 genera were negatively correlated with cable bacteria (Appendix
Table A2). Of these, 3 genera (FDR < 0.503) met the time course criteria for being
likely negatively associated with Ca. Electrothrix (Figure 18). These genera included:

Desulfocapsa, Hyphomonas, and Incertae-Sedis in the family Desulfosarcinaceae. At
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depth, Ca. Electrothrix exhibited strongly significant and negative correlations with
the genus Desulfocapsa (rho: -0.779; p-value: 3.15E-05; FDR: 0.007) as well as

Hyphomonas (tho: -0.689; p-value: 0.001; FDR: 0.060).

Discussion
The central objective of this study was to identify potential associations

between cable bacteria and their sympatric microbes using correlation-based analyses.
Sediment cores were constructed from homogenized sediment obtained from a Mid-
Bay station of Chesapeake Bay. In one set of sediment cores, marine cable bacteria
(Ca. Electrothrix) were allowed to grow unimpeded, and grew to dominate microbial
abundance, while in another set of sediment cores, the downward growth of cable
bacteria was blocked at 0.5 cm depth by embedded barriers made of polycarbonate
filters. The filters allowed for diffusion of porewater constituents, but successfully
blocked the downward growth of filamentous cable bacteria. Using Spearman’s Rank
correlation analysis on FTAXC data at the ASV and genus level, combined with
considerations of temporal trends of microbial FTAxC, I discuss 10 taxa that were
most likely associated, positively or negatively, with the growth of marine cable
bacteria. Based on the ecology of these taxa, I infer their potential interactions with
cable bacteria include predation, competition, and syntrophic relationships. Potential
indirect interactions are also possible, based on biogeochemical impacts imposed by
cable bacteria acting as an ecosystem engineer in the sediments.

Cable Bacteria Growth Progression in Incubation Cores

Over the course of the experiment, cable bacteria growth began with a lag
phase, observed for 6 days, followed by an exponential growth phase, which began at

the sediment surface and progressed downward observed between Days 10-20, and

66



finally terminated with a senescence phase observed by Day 46. On this final date,
there were few filaments observed, and they were only observed at the sediment
surface. Previous laboratory studies have reported a similar time course for cable
bacteria in homogenized sulfidogenic sediments, with cable bacteria abundance
reaching a maximum within 2-4 weeks of incubation in oxygenated water, followed
by a population crash (Schauer et al., 2014; Rao et al., 2016a). Based on microscopy,
cable bacteria accounted for up to 35% of the total microbial cell counts on Day 20,
which is similar to a previous report in which cable bacteria represented up to an
estimated 25% of microbial cells during their peak biomass (Schauer et al. 2014). On
the same date, based on 16S amplicon sequencing data, marine cable bacteria (Ca.
Electrothrix) represented the dominant DNA (up to 5% reads) and RNA pools (up to
64% reads).

The porewater geochemistry revealed by microsensor profiling was consistent
with patterns expected based on the growth and senescence of cable bacteria (Schauer
et al., 2014; Rao et al., 2016a). The microsensor profile data revealed an expansion of
a suboxic zone and increasing acidity at depth during the exponential phase of cable
bacteria growth, indicative of electrogenic sulfide oxidation by cable bacteria. In
tandem with the growth of cable bacteria (Days 6-20), there was also an increase in
dissolved oxygen uptake (DOU), which was followed by a decrease in DOU when
cable bacteria experienced senescence (Day 46). This observed change in DOU is in
line with previous reports which observed increases in DOU during cable bacteria
growth (Schauer et al., 2014; Malkin et al., 2014; Vasquez-Cardenas et al., 2015; Rao

et al., 2016a; Hermans et al., 2020). Moreover, the lack of increase in DOU from
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cores with barrier filters supports that electrogenic sulfide oxidation by cable bacteria
is responsible for increased DOU between Days 10-20 in cores where they are
abundant. While heterotrophic activity maintains a baseline oxygen consumption rate
with the organic matter present, the observed increase in DOU is likely due to the
utilization of another electron donor since no additional organic matter were
supplemented to the cores. The increase in DOU in sediment cores with growing
cable bacteria can be attributed to their ability to exploit FeS pools, which is made
available by acidification of the porewaters through their anodic activity (Risgaard-
Petersen et al., 2012; Larsen et al., 2015, Rao et al., 2016a). The cause of the
senescence of cable bacteria after 46 days of incubation is uncertain but has also been
reported in other studies (Schauer et al., 2014; Vasquez-Cardenas et al., 2015). Cable
bacteria population collapses have been previously explained by the depletion of the
FeS pools (Schauer et al., 2014; Seitaj et al., 2015; Larsen et al., 2015). Based on
genomic studies of cable bacteria, other hypotheses have also been put forward to
explain the senescence of cable bacteria. Specifically, cable bacteria cathodic activity
causes an increase in pH at the sediment surface, which has been hypothesized to
cause protein denaturation of the cells (Kjeldsen et al. 2019). Additionally, viral lysis
has been put forward as a potential controlling mechanism (Kjeldsen et al., 2019).
With this study, I add the hypothesis that cable bacteria populations may be
controlled by bacterial predation (more below).

During exponential growth, cable bacteria cell abundance increased more
rapidly at suboxic depth than at the sediment surface. During exponential growth,

cable bacteria doubling time was under 7 hours at 1.0-1.5 cm depth, and 41.5 hours at
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the sediment surface. Integrated over all depths, cable bacteria experienced a
doubling time of ~28 hours during exponential growth, which is comparable to a
previously study, reporting a net doubling time of ~20 hours (Schauer et al., 2014).
The faster growth rate detected at suboxic depths is consistent with the depth
distribution of cable bacteria 16S rRNA transcript production (Figure 9).
Interestingly, during cable bacteria exponential growth, the RNA to DNA ratio of Ca.
Electrothrix was highest at its deepest depth (Figure 10), indicating higher cable
bacteria transcriptional activity in the suboxic region. The greater RNA to DNA ratio
at depth indicates higher biosynthesis activity, consistent with the faster growth rate
of cells observed at suboxic depths. This observation is consistent with energy
conservation associated with anodic, rather than cathodic activity of cable bacteria
filaments, as recently proposed based on their genome (Kjeldsen et al. 2019).
Specifically, cable bacteria appear to generally lack terminal oxidases, essential for
oxygen reduction to proton translocation, implying the filaments conserve energy
from anaerobic metabolism only (Kjeldsen et al., 2019). Additionally, a study using
NanoSIMS revealed cable bacteria filaments exhibited high assimilation rates of
carbon and nitrogen in the suboxic zone but participate in little biosynthesis in the
oxic zone (Geerlings et al., 2020). My observations further identify cable bacteria
exhibit elevated transcriptional activity and cell growth in the suboxic zone, where
their anodic activity takes place. The reduction of oxygen (or nitrate) by cable
bacteria appears to be primarily a mechanism for electron discharge, rather than a
mechanism for the cells to obtain and conserve energy (Kjeldsen et al., 2019;

Geerlings et al., 2020).
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The development of a pH minimum in the suboxic layer aids in the dissolution
of FeS, in which, a high concentration of Fe*" was generated on Day 20 detected at
1.5 cm in the sediment cores with active cable bacteria. In contrast, the cores with
barriers did not exhibit any peak in Fe*" concentration. The released ferrous iron
diffuses upwards and can result in the formation of iron oxide in the oxic zone
(Risgaard-Petersen et al., 2012; Rao et al., 2016a, Hermans et al., 2020), retention of
phosphorus in the sediment (Sulu-Gambari et al., 2016b), stimulation of dissimilatory
nitrate reduction to ammonium (DNRA) (Robertson et al., 2016; Kessler et al., 2019),
and possibly facilitation of a cryptic iron cycle (Otte et al., 2018). The “engineering”
capacity of cable bacteria extends beyond the iron, sulfur, phosphorus, and nitrogen
cycles. Additionally, elevated acidity in the sediment also influences the manganese

(Sulu-Gambari et al., 2016a) and carbonate (Risgaard-Petersen et al., 2012) cycles.

Direct Microbial Association with Cable Bacteria

Based on correlation analysis, I detected possible direct and indirect microbial

associations with cable bacteria.

Interaction with Sulfur-Oxidizers: Syntrophy vs Competition
Sedimenticola and Thiogranum (Class Gammaproteobacteria) were negatively

correlated with Ca. Electrothrix in the surface sediment. These genera are described
as sulfur-oxidizing chemoautotrophs which grow by oxidation of sulfide, thiosulfate,
tetrathionate, and elemental sulfur coupled with oxygen or nitrate reduction (Flood et
al., 2015b; Mori et al., 2015). Their negative association at the sediment surface

suggest a potentially competitive relationship with Ca. Electrothrix for substrate such
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as sulfide in which Ca. Electrothrix may outcompete other sulfide-oxidizers (Figure
20a).

By contrast, at suboxic depths, Thiogranum was positively correlated with Ca.
Electrothrix. The genus Thiogranum and the type species, Thiogranum longum, are
described as obligate aerobes (Mori et al., 2015), which makes their growth at
sediment depths that are fully anoxic intriguing. It has been frequently observed that
extant microbes in sediments exhibit metabolic capacities that extend beyond the
observed capacities of those in culture (Lenk et al., 2012; MuBBmann et al., 2016;
Dyksma et al., 2016). Therefore, it is possible that the growth of Thiogranum at
suboxic depths reflects more diverse metabolic abilities, including the capacity for
anaerobic respiration or fermentation, than previously reported. An intriguing
alternative hypothesis is that Thiogranum may couple their chemoautotrophic sulfide
oxidization with electron donation directly or indirectly to anodic cells of Ca.
Electrothrix (i.e., utilize Ca. Electrothrix as an electron sink at suboxic depths). A
syntrophic relationship (which is canonically defined as “shared feeding”) may be
plausible between Thiogranum with Ca. Electrothrix if Ca. Electrothrix conversely
provides reduced sulfur intermediates to Thiogranum (Figure 20b). In a '*C-labeling
study, the presence of cable bacteria stimulated chemoautotrophic sulfur oxidation by
Epsilon- and Gammaproteobacteria (Vasquez-Cardenas et al., 2015). When cable
bacteria activity was halted by manipulation, chemoautotrophic sulfur oxidation also
halted. Vasquez-Cardenas et al. hypothesized that the chemolithoautotrophs may be
linked to cable bacteria via electron transport such as using cable bacteria as an

electron sink. Based on my observations, I hypothesize that the increased abundance
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of Thiogranum at suboxic depths alongside Ca. Electrothrix is due to syntrophy,
potentially by electrical connections with Ca. Electrothrix acting as an electron
acceptor. Alternatively, Ca. Electrothrix may solely act as an electron acceptor for
other microbes without gaining any benefits, suggesting a commensal relationship.

At suboxic depths, Sedimenticola was also positively correlated with Ca.
Electrothrix. Unlike Thiogranum, Sedimenticola is known to be capable of oxidizing
sulfur aerobically or anaerobically using electron acceptors such as nitrate or selenate
(Flood et al., 2015a; Narasingarao, P. and Haggblom, 2006). Nevertheless, the
positive correlation between Sedimenticola and Ca. Electrothrix at suboxic depths is
curious and may similarly indicate a syntrophic or commensal relationship. In
sediments with graphite electrodes embedded, Sedimenticola cells colonized as
biofilm on the anode surface likely mediating sulfur oxidation with electron transfer
to the electrode (Matturo et al., 2017). If Sedimenticola can transport electrons
extracellularly, one proposition is that cable bacteria and Sedimenticola cells may be
syntrophic partners involved in interspecies electron transfer and/or the sharing of
sulfur intermediates. However, the mechanism by which Sedimenticola can transfer
electron extracellularly in currently unknown. This potential relationship between Ca.
Electrothrix and chemoautotrophic sulfur oxidizers (Thiogranum and Sedimenticola)
at suboxic depths opens an exciting route to further research on direct interspecies

electron transfer (Lovley, 2017a) in sediment systems.
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Figure 20. Conceptual diagrams of potential microbial interactions with cable
bacteria. (a.) competition, (b.) syntrophy, (¢.) predation, (d.) indirect
association attributed to ecosystem engineering effects of cable bacteria. Green
filamentous multicellular bacteria represent cable bacteria.

a. b.
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Predator-Prey Interactions
I detected positive correlations between Ca. Electrothrix and predatory

microbes belonging to the phylum Bdellovibrionota in the surface sediment and the
phylum Myxobacteria in both the surface and suboxic sediment depths. Specifically,
Ca. Electrothrix was positively correlated with the genus-level OM27 clade (Phylum
Bdellovibrionota). Bdellovibrio and like organisms (BALOs) are aerobic, obligate
predators of Gram-negative bacteria. Previously studied BALOs replicate by
penetrating the periplasmic space of Gram-negative bacteria, where they grow and
divide, and subsequently lyse their prey/host (Jurkevitch, 2007; Sockett et al., 2009;
Pérez et al., 2016). The growth course of BALOs in our surface samples very closely
followed the trend of cable bacteria abundance, suggesting that bacteria affiliated to
the genus-level OM27 clade may be predators of cable bacteria at the oxic sediment
(Figure 20c). In the suboxic zone, viral attack may be more prevalent for bacterial
mortality (Tsai et al., 2013). Other Gram-negative bacteria belonging to
Proteobacteria are also susceptible to attack by BALOs (Pérez et al., 2016). In the
oxic sediment, an increase in Alphaproteobacteria was detected (Figure 7) which may
be vulnerable to predation by BALOs. Cable bacteria, however, are far likelier the
prey/hosts for the OM27 clade because their abundance dropped off the last date,
coinciding with a senescence of cable bacteria, but continued mounting abundance of
Alphaproteobacteria.

Similarly, Haliangium (Phylum Myxococcales) was positively correlated with
Ca. Electrothrix in the sediment surface. Haliangium are described as predatory
swarmers (Fudou et al., 2002). Generally, myxobacteria are facultative predators,

capable of degrading live or dead cells, and specialize in wolfpack group attack with
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secretion of hydrolytic enzymes (Mufioz-Dorado et al., 2016; Pérez et al., 2016).
Unlike BALOs, myxobacteria have a broader host range including Gram-positive and
Gram-negative bacteria (Livingstone et al., 2017) as well as yeast, fungi, protozoa,
and nematode (Pérez et al., 2016). The mode of predation by myxobacteria is induced
by close cell-to-cell proximity (Mufioz-Dorado et al., 2016). The rapid bloom of cable
bacteria makes them a likely prey in which myxobacteria swarms as proximity
increases. At suboxic depths, there was a significantly positive correlation between
Ca. Electrothrix and one ASV of myxobacteria affiliated to the Class Polyangia
(Figure 17). This suggests a possible association or predation by myxobacteria even
in microoxic to anoxic regions. Myxobacteria possess Type IV pili for swarm
communication, motility, and attachment to prey cells (Wrétniak-Drzewiecka et al.,
2016). This is noteworthy because Geobacter sulfurreducens can transport electrons
extracellularly via Type IV pili (Reguera et al., 2005). Moreover, certain strains of
myxobacteria affiliated the genus Anaeromyxobacter are facultative anaerobic
(Sanford et al., 2002) and are able to utilize a broad range of electron acceptors from
oxygen to halophenols to uranium (Wu et al., 2006). Although electrical interaction
between Myxobacteria and other conductive surfaces has not been previously
reported, the relationship between Myxobacteria and Ca. Electrothrix at suboxic

depths was noteworthy and warrants further investigation.

The observation that cable bacteria abundance declines after a period of
prolific growth has been reported in several previous lab studies (Schauer et al., 2014;
Rao et al., 2016a) and one year-round field study in a seasonally hypoxic marine

basin (Seitaj et al., 2015). The senescence (or decline) of cable bacteria has been
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attributed to diminishing stocks of FeS (Schauer et al., 2014; Seitaj et al., 2015).
Alternatively, susceptibility to viral attack, protein denaturation in alkaline conditions
(Kjeldsen et al., 2019), and increased toxicity of accumulated sulfide (Miiller et al.,
2019) have been proposed as mechanisms leading to declines in cable bacteria
activity. Correlation analysis from the present study indicates predation by the
Bdellovibrio-affiliated OM27 clade as another potential mechanism underlying the
declines of cable bacteria, and potentially offers a rationale for cable bacteria
avoidance of the oxic zone (Malkin et al., 2015). That is, in addition to potential
oxidative stress incurred in the oxic zone (Geerlings et al., 2020), my results suggest
that predation by OM27 clade is also likely a serious threat to cable bacteria cathodic
cell survival in the oxic zone. Moreover, in a seasonal study of Chesapeake Bay
surface sediments, we observed a bloom of the OM27 clade co-occurring with a
bloom of Ca. Electrothrix, associated with a rapid influx of phytodetritus from a
sinking spring bloom (Malkin et al. in prep). These observations suggest a potentially
strong relationship between marine cable bacteria and OM?27 clade. These results

emphasize a need to examine predatory effects on cable bacteria more closely.

Indirect Microbial Association with Cable Bacteria

Through the anodic oxidation of sulfide, cable bacteria established an acidic
suboxic zone which facilitates the dissolution of FeS where dissolved iron and excess
free sulfides may diffuse towards the surface (Schauer et al., 2014; Seitaj et al.,
2015). Diffusing ferrous iron oxidizes and precipitates as iron oxides near the surface
which is consistent with previous observations from cores heavily populated with
cable bacteria (Schauer et al., 2014; Seitaj et al., 2015; Risgaard-Petersen et al., 2012;
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Rao et al., 2016b; Hermans et al., 2020). The removal of sulfide on centimeters scale
is a key consequence of cable bacteria metabolism, thereby creating suitable habitat
for taxa inhibited by the presence of sulfide. Earlier studies have shown that toxicity
of hydrogen sulfide can inhibit sulfate-reducing bacteria (Reis et al., 1992) and
nitrifying bacteria (Joye and Hollibaugh, 1995). During this experiment, electrogenic
sulfide oxidation by cable bacteria created a 2 cm thick suboxic zone within 20 days
of incubation, thereby alleviating potential sulfide toxicity within the sediment. For
instance, the removal of H2S from contaminated sediments likely allowed the
enrichment of sulfate-reducing bacteria and in turn, promoted the degradation of
hydrocarbons (Marzocchi et al., 2020). Furthermore, recent works have shown that
increased levels of SO4* driven by electrogenic sulfide oxidation associated with
cable bacteria can stimulate sulfate reduction in freshwater sediments (Sandfeld et al.,
2020) and reduce CH4 emissions from rice-vegetated soils (Scholz et al., 2020). Due
to their profound influence on the environment, cable bacteria may be considered

ecosystem engineers.

Ecosystem Engineering Effects on Sulfur Cycle Players
Some correlations between Ca. Electrothrix and other microbes do not have

an obvious direct ecological interaction but may be associated with the
biogeochemical effects driven by cable bacteria growth. Desulfocapsa were positively
correlated with Ca. Electrothrix in the sediment surface, which I infer may be a
consequence of the influence of cable bacteria on iron cycling and pH levels in the
sediments. Desulfocapsa is an unusual member of the Deltaproteobacteria in that it
appears to be specialized for growth specifically by disproportionation of inorganic

sulfur compounds such as elemental sulfur, thiosulfate, or sulfite to hydrogen sulfide
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and sulfate (Finster et al., 2013), with growth by sulfate reduction occurring only in
certain strains (Janssen et al., 1996). Sulfur disproportionation is only favorable at
sulfide concentration less than 1 mM and is also heavily dependent of pH (Thamdrup
et al., 1993). Cable bacteria may thereby enable the conditions that particularly
benefit sulfur disproportionation, specifically by removing sulfide through
electrogenic sulfide oxidation, by enhancing iron oxide precipitation near the
sediment surface which further provides sulfide scavenging, and by creating alkaline
conditions in the oxic zone (Figure 20d & Table 5). Previous studies have identified
that enrichment of iron oxides promotes the growth of Desulfocapsa by scavenging
sulfide, and thereby driving the disproportionation reaction towards thermodynamic
favorability (Thamdrup et al., 1993; Janssen et al., 1996). Moreover, in the absence of
metal sulfide scavengers, alkaliphilic sulfur bacteria grew by sulfur
disproportionation at pH 10 (Poser et al., 2013). Further experimentation would be
needed to test this hypothesis on the indirect relationship between cable bacteria and
Desulfocapsa.

Conversely, Desulfocapsa was negatively correlated with Ca. Electrothrix at
suboxic sediment depths. The mechanism underlying this relationship is not clear but
could be attributed to thermodynamic constraints. Under conditions of pH 7 and < 1
mM of sulfide, sulfur disproportionation yields very low energy (Table 5),
insufficient for ATP formation which requires at least -20 kJ mol™' (Canfield et al.,
2005). With increased acidity but lower concentration of sulfide, sulfur
disproportionation becomes an endergonic reaction (Table 5). Desulfocapsa may be

inhibited at depth since sulfur disproportionation was not thermodynamically
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favorable with increased acidity (pH 5-6) from anodic activity of cable bacteria.
However, as pH recedes towards neutrality, sulfur disproportionation can become
exergonic again at depth (Table 5). Again, this hypothesis on Desulfocapsa requires

more investigation.

Table 5. Thermodynamics of sulfur disproportionation. Gibb’s free energy of
reaction (AG:°) was calculated based on sediment incubation temperature of 16
°C and estimated concentration of products and varying pH based on the
geochemical effects of cable bacteria. While cable bacteria may decrease the
concentration of free sulfides, the increased acidity led to a less
thermodynamically favorable reaction of sulfur disproportionation. As sulfides
become depleted and pH recedes to neutrality with cable bacteria
disappearance, sulfur disproportionation becomes more thermodynamically
favorable. An increase in pH also led to higher yield exergonic reaction.
Standard-state Gibb’s free energy of formation (AG¢°) of chemical species
were obtained from Stumm and Morgan, 1996. Note, ATP formation requires
a minimum AG;° value of -20 kJ mol™!' (Canfield et al., 2005).

S° disproportionation T(CO| HS @M) [ SO” mM) | pH | AG,” (kJ moI")
48° + 4H,0 — 3HS + SO~ +5H | 16 700 28 7.0 -8.94
200 28 6.0 9.30
20 28 7.0 -34.0
20 28 8.6 77.4

At suboxic depths, I observed microbes from four SRB families
(Desulfatiglandaceae, Desulfobacteraceae, Desulfosarcinaceae, Desulfobulbaceae)
positively correlated with Ca. Electrothrix, which matches my a priori prediction.
Recent studies have demonstrated that sulfide oxidation carried out by cable bacteria
generates sulfate at suboxic depths (Risgaard-Petersen et al., 2012, Rao et al., 2016b),
which in turn stimulates sulfate reduction (Scholz et al., 2020; Sandfeld et al., 2020;
Marzocchi et al., 2020). By contrast, I also anticipated a negative correlation with
methanogens, based on experimental evidence that by stimulating sulfate reduction,
cable bacteria activity also may inhibit methanogenesis (Scholz et al. 2020).

79



However, I did not detect a clear relationship between Ca. Electrothrix and microbes
of the Archaeal taxa. The lack of association may be attributed to a combination of
factors including poor resolution in Archaeal taxonomy and non-steady-state
condition as seen by sulfide and ammonium efflux. These conditions could have
inhibited such relationships which may exist in steady-state systems.

In contrast to the stimulation of SRB observed at suboxic depths, at the
sediment surface, two families of SRB, including microbes affiliated to the genus
Desulfatiglans, SEEP-SRB1, and the Sva0081 sediment group, were negatively
correlated with Ca. Electrothrix. Similarly, Desulfuromusa, an elemental sulfur
reducer (Liesack and Finster, 1994), was negatively correlated with Ca. Electrothrix.
These negative relationships suggest an antagonistic relationship with Ca.
Electrothrix. One plausible explanation is that cable bacteria may be stimulating the
growth of iron reducing bacteria, which in turn are outcompeting the sulfur and
sulfate-reducing bacteria (Lovley and Phillips, 1987), which in the uppermost
sediment layer, would likely be occurring just below the oxic-anoxic interface. As
previously described, cable bacteria strongly influence iron cycling, and promote the
precipitation of iron oxides near the sediment surface (Risgaard-Petersen et al., 2012;
Rao et al., 2016b). A previous study observed a positive correlation between Ca.
Electrothrix and iron-reducing bacteria of the genera Shewanella and Geobacter in a
field study at a Danish Fjord (Otte et al. 2018). Although these taxa were not
specifically observed to correlate with Ca. Electrothrix growth here, it is likely that
some existing relationships were not detected, and this hypothesis could be tested

through future experimentation.
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Ecosystem Engineering Effects on Magnetotactic Bacteria
At the sediment surface (0 — 0.5 cm), there was a significant and positive

correlation between Ca. Electrothrix and Magnetovibrio, which are described as
magnetotactic, and microaerophilic or anaerobic chemolithoautotrophs capable of
using thiosulfate and sulfide as electron donors coupled with oxygen or nitrous oxide
as terminal electron acceptors (Bazylinski et al., 2013). Although the relationship
between cable bacteria and these magnetotactic bacteria is not clear, it is possibly
linked to the iron cycling and sulfide removal associated with cable bacteria activity.
Magnetotactic bacteria have a high growth requirement for iron (Bazylinski and
Frankel, 2004), used to produce magnetosomes, which are composed of either
magnetite (Fe3O4) or greigite (Fe3S4) (Simmonds and Edwards, 2007; Yan et al.,
2012). Magnetotactic bacteria are typically found in microoxic to suboxic zones,
where they commonly co-occur with sulfide oxidizing bacteria (Simmonds and
Edwards, 2007; Yan et al., 2012). It is possible Magnetovibrio benefit from the
ferrous iron made available by cable bacteria activity at suboxic depths and which
diffuses towards the oxic-anoxic interface (Risgaard-Petersen et al., 2012; Rao et al.,
2016a) and/or benefit from the removal of toxic sulfide associated with cable bacteria
activity and their associated iron oxide precipitation at the oxic-anoxic interface.

In the presence of graphite electrodes, Magnetovibrio in anoxic sediments can
colonize and form biofilms on the anode surface, possibly using it as a “snorkel” for
electron transport (Matturo et al., 2017; Marzocchi et al., 2020). It is enticing to
wonder if the positive correlation observed between Magnetovibrio and cable bacteria
could be a result of interspecies electron transfer. Whether ferrous iron liberated by

cable bacteria activity stimulates Magnetovibrio growth, or whether some other
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relationship exists between Magnetovibrio and cable bacteria warrants further

investigation.

Ecological Implications

In this lab-based sediment incubation study, I inferred plausible relationships
that may be occurring between marine cable bacteria and their surrounding microbial
community using a manipulative incubation study. The findings I reported here pose
the need for not only interrogation in the laboratory setting but further reinforcements
with field studies to reveal any ecological relevance. Laboratory experiments are
imperfect and can stray from in situ condition and real interactions in the field. In
particular, the sediment used in this present study was homogenized and packed into
cores which resulted in redistribution of resources. In the lab, organic matter was also
not replenished to the sediments. Nevertheless, the results I presented here aim to
provide a direction for future research efforts.

I found potential interactions with cable bacteria involving direct predation,
resource competition, and syntrophic relationship. Additionally, indirect association
as a result of geochemical modification imposed by cable bacteria is also plausible.
Since cable bacteria grew to dominate the microbial community, the consequences of
their high biomass were, hence, not disproportionate to their impacts on the
environment. Therefore, in this study, cable bacteria were not classified as keystone
species. Overall, due to their strong influence on local sediment biogeochemistry,

cable bacteria likely serve as ecosystem engineers.
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Table A1

Table A2

Appendix

Positively and negatively correlated ASVs (p-value < 0.05) at
the surface (0 - 0.5 cm) and at depth (0.5 - 2.0 cm) with cable
bacteria.

Positively and negatively correlated genera (p-value < 0.05) at
the surface (0 - 0.5 cm) and at depth (0.5 - 2.0 cm) with cable
bacteria.
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