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Governments around the world are responding to the novel coronavirus (COVID-19)
pandemic! with unprecedented policies designed to slow the growth rate of
infections. Many actions, such as closing schools and restricting populations to their
homes, impose large and visible costs on society, but their benefits cannot be directly
observed and are currently understood only through process-based simulations*™*.
Here, we compile new dataon1,717 local, regional, and national non-pharmaceutical
interventions deployed in the ongoing pandemic across localities in China, South
Korea, Italy, Iran, France, and the United States (US). We then apply reduced-form
econometric methods, commonly used to measurethe effect of policies on economic
growth>$, to empirically evaluate the effect that these anti-contagion policies have
had on the growth rate of infections. In the absence of policy actions, we estimate that
early infections of COVID-19 exhibit exponential growth rates of roughly 38% per day.
We find that anti-contagion policies have significantly and substantially slowed this
growth. Some policies have different impacts on different populations, but we obtain

consistent evidence that the policy packages now deployed are achieving large,
beneficial, and measurable health outcomes. We estimate that across these six
countries, interventions prevented or delayed on the order of 62 million confirmed
cases, corresponding to averting roughly 530 million total infections. These findings
may help inform whether or when these policies should be deployed, intensified, or
lifted, and they can support decision-making in the other 180+ countries where
COVID-19 has been reported’.

The COVID-19 pandemic is forcing societies worldwide to make con-
sequential policy decisions with limited information. After contain-
ment of the initial outbreak failed, attention turned to implementing
non-pharmaceutical interventions designed to slow contagion of the
virus. In general, these policiesaim to decrease virus transmission
by reducing contact among individuals within or between popula-
tions, such as by closing restaurants or restricting travel, thereby slow-
ing the spread of COVID-19 to a manageable rate. These large-scale
anti-contagion policies are informed by epidemiological simula-
tions*>**® and a small number of natural experiments in past epidem-
ics'®. However, the actual effects of these policies on infection ratesin
the ongoing pandemic are unknown. Because the modern world has
never confronted this pathogen, nor deployed anti-contagion poli-
cies of such scale and scope, it is crucial that direct measurements of
policy impacts be used alongside numerical simulations in current
decision-making.

Societies around the world are weighing whether the health benefits
of anti-contagion policies are worth their social and economic costs.
Many of these costs are plainly seen; for example, business restrictions

increase unemployment and school closuresimpact educational out-
comes. Itis therefore not surprising that some populations have hesi-
tated before implementing such dramatic policies, especially when
their costs are visible while their health benefits - infections and deaths
that would have occurred but instead were avoided or delayed - are
unseen. Our objective is to measure the direct health benefits of these
policies; specifically, how much these policies slowed the growth rate of
infections. To do this, we compare the growth rate of infections within
hundreds of sub-national regions before and after each of these policies
isimplemented locally. Intuitively, each administrative unit observed
just prior to a policy deployment serves as the “control” for the same
unitin the days after it receives a policy “treatment” (see Supplemen-
tary Information for accounts of these deployments). Our hope is to
learn from the recent experience of six countries where early spread
of the virus triggered large-scale policy actions, in part so that socie-
ties and decision-makers in the remaining 180+ countries can access
this information.

Here we directly estimate the effects of 1,717 local, regional, and
national policies onthe growth rate of infections across localities within
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China, France, Iran, Italy, South Korea, and the US (see Figure1and Sup-
plementary Table 1). We compile subnational data on daily infection
rates, changes in case definitions, and the timing of policy deployments,
including (1) travel restrictions, (2) social distancing through cancella-
tions of events and suspensions of educational/commercial/religious
activities, (3) quarantines and lockdowns, and (4) additional policies
such asemergency declarations and expansions of paid sick leave, from
the earliest available dates to April 6,2020 (see Supplementary Notes,
also Extended Data Fig. 1). During this period, populations remained
almost entirely susceptible to COVID-19, causing the natural spread of
infections to exhibit almost perfect exponential growth'2. The rate
of this exponential growth could change daily, determined by epide-
miological factors, such as disease infectivity, as well as policies that
alter behavior®, Because policies were deployed while the epidemic
unfolded, we can estimate their effects empirically. We examine how
the daily growthrate of infections in eachlocality changes inresponse
tothe collection of ongoing policies applied to thatlocality on that day.

Methods Summary

We employ well-established “reduced-form” econometric techniques®**
commonly used to measure the effects of events®" on economic growth
rates. Similar to early COVID-19 infections, economic output generally
increases exponentially with a variable rate that can be affected by
policies and other conditions. Here, this technique aims to measure
the total magnitude of the effect of changes in policy, without requir-
ing explicit prior information about fundamental epidemiological
parameters or mechanisms, many of which remain uncertain in the
current pandemic. Rather, the collective influence of these factors is
empirically recovered from the data without modeling their individual
effects explicitly (see Methods). Prior work oninfluenza', for example,
has shown that such statistical approaches can provide important
complementary information to process-based models.

To construct the dependent variable, we transform location-specific,
subnational time-series data on infections into first-differences of
their natural logarithm, which is the per-day growth rate of infections
(see Methods). We use data from first- or second-level administra-
tive units and data on active or cumulative cases, depending on avail-
ability (see Supplementary Information). We employ widely-used
panel regression models** to estimate how the daily growth rate of
infections changes over time within a location when different combi-
nations of large-scale policies are enacted (see Methods). Our econo-
metric approach accounts for differences in the baseline growth rate
of infections across subnational locations, which may be affected by
time-invariant characteristics, such as demographics, socio-economic
status, culture, and health systems; it accounts for systematic patterns
ingrowthrates within countries unrelated to policy, such as the effect
ofthe work-week; itis robust tosystematic under-surveillance specific
to each subnational unit; and it accounts for changesin procedures to
diagnose positive cases (see Methods and Supplementary Information).

Results

We estimate that in the absence of policy, early infection rates of
COVID-19 grow 43% per day on average across these six countries
(Standard Error [SE]=5%), implying a doubling time of approximately
2 days. Country-specific estimates range from 34% per day in the US
(SE=7%) to 68% per day inIran (SE = 9%). We cannot determine if the
high estimate for Iran results from true epidemiological differences,
data quality issues (see Methods), the concurrence of the initial out-
break with amajor religious holiday and pilgrimage (see Supplementary
Notes), or sampling variability. Excluding Iran, the average growth rate
is 38% per day (SE = 5%). Growth rates in all five other countries are
independently estimated to be very near this value (Figure 2a). These
estimated values differ from observed average growth rates because
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the latter are confounded by the effects of policy. These growth rates
are not driven by the expansion of testing or increasing rates of case
detection (see Methods and Extended Data Fig. 2) nor by data from
individual regions (Extended Data Fig. 3).

Some prior analyses of pre-intervention infections in Wuhan suggest
slower growthrates (doubling every 5-7 days)"*® using data collected
before national standards for diagnosis and case definitions were first
issued by the Chinese government onJanuary15,2020%. However, case
datain Wuhan from before this date contain multiple irregularities:
the cumulative case count decreased onJanuary 9; no new cases were
reported during January 9-15; and there were concerns that informa-
tion about the outbreak was suppressed® (see Supplementary Table 2).
When we remove these problematic data, utilizing a shorter but more
reliable pre-intervention time series from Wuhan (January 16-21), we
recover agrowth rate of 43% per day (SE=3%), doubling every 2 days)
consistent with results fromall other countries exceptIran (Figure2a,
Supplementary Table 3).During the early stages of an epidemic, alarge
proportion of the population remains susceptible tothe virus, andif the
spread of the virus is left uninhibited by policy or behavioral change,
exponential growth continues until the fraction of the susceptible
population declines meaningfully**?2, After correcting for estimated
rates of case-detection?®, we compute that the minimum susceptible
fraction across administrative unitsin our sample is 72% of the total
population (Cremona, Italy) and 87% of units would likely be inaregime
of uninhibited exponential growth (> 95% susceptible) if policies were
removed on thelast date of our sample.

Consistent with predictions from epidemiological models we
find that the combined effect of policies within each country reduces
the growthrate of infections by asubstantial and statistically significant
amount (Figure 2b, Supplementary Table 3). For example, alocality in
France with abaseline growth rate of 0.33 (national average) that fully
deployed all policy actions used in France would be expected to lower
its daily growth rate by —0.17 to a growth rate of 0.16. In general, the
estimated total effects of policy packages are large enough that they
canin principle offsetalarge fraction of, or even eliminate, the baseline
growth rate of infections—although in several countries, many locali-
ties have not deployed the full set of policies. Overall, the estimated
effects of all policies combined are generally insensitive to withholding
regional (i.e. state- or province-level) blocks of data from the sample
(Extended Data Fig. 3).

In China, only three policies were enacted across 116 cities early in
aseven week period, providing us with sufficient data to empirically
estimate how the effects of these policies evolved over time without
making assumptions about the timing of these effects (see Methods
and Fig. 2b). We estimate that the combined effect of these policies
reduced the growth rate of infections by — 0.026 (SE =0.046) in the
first week following their deployment, increasing substantially in the
second week to — 0.20 (SE = 0.049), and essentially stabilizing in the
third week near —0.28 (SE=0.047). In other countries, we lack sufficient
data to estimate these temporal dynamics explicitly and only report
the average pooled effect of policies across all days following their
deployment (see Methods). If other countries have transient responses
similar to China, we would expect effects in the first week following
deployment to be smaller in magnitude than the average effect we
report. In Extended Data Fig. 5a and Supplementary Methods Sec-
tion 3, we explore how our estimates would change if we impose the
assumption that policies cannot affect infection growth rates until
after a fixed number of days; however, we do not find evidence this
improves model fit.

The estimates above (Figure 2b) capture the superposition of all poli-
ciesdeployedineachcountry,i.e., they represent the average effect of
policies that we would expect to observeifall policies enacted anywhere
in each country were implemented simultaneously in a single region
of that country. We also estimate the effects of individual policies or
clusters of policies (Figure 2c) that are grouped based on either their
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similarity in goal (e.g., library and museum closures) or timing (e.g.,
policies deployed simultaneously). Our estimates for these individual
effects tend to be statistically noisier than the estimates for all poli-
cies combined. Some estimates for the same policy differ between
countries, perhaps because policies are not implemented identically
or because populations behave differently. Nonetheless, 22 out of 29
point estimates indicate that individual policies are likely contributing
toreducing the growth rate of infections. Seven policies (onein South
Korea, two in Italy, and four in the US) have point estimates that are
positive, six of which are small in magnitude (< 0.1) and not statisti-
cally different from zero (5% level). Consistent with greater overall
uncertainty in these dis-aggregated estimates, some in China, South
Korea, Italy, and France are somewhat more sensitive to withholding
regional blocks of data (Extended Data Fig. 4), but remain broadly
robust to assuming a constant delayed effect of all policies (Extended
DataFig. 5b).

Based ontheseresults, we find that the deployment of anti-contagion
policies in all six countries significantly and substantially slowed the
pandemic. We combine the estimates above with our data on the timing
of the 1,717 policy deployments to estimate the total effect of all poli-
ciesacross the datesin our sample. To do this, we use our estimates to
predictthe growthrate of infectionsin eachlocality oneach day, given
theactual policiesineffect at thatlocation on that date (Figure 3, blue
markers). We then use the same model to predict what counterfactual
growth rates would be on that date if the effects of all policies were
removed (Figure 3, red markers), which we call the “no-policy scenario.”
The difference between these two predictions is our estimated effect
thatall deployed policies had on the growth rate of infections. During
our sample, we estimate that all policies combined slowed the average
growth rate of infections by —0.252 per day (SE = 0.045, p < 0.001) in
China,-0.248 (SE=0.089, p<0.01) in South Korea, —0.24 (SE=0.068,
p<0.001)inltaly,-0.355(SE=0.063,p<0.001)inlIran,-0.123 (SE=0.019,
p <0.001) in France and —0.084 (SE = 0.03, p < 0.01) in the US. These
results are robust to modeling the effects of policies without grouping
them (Extended DataFig. 6aand Supplementary Table 4) or assuming
adelayed effect of policy on infection growth rates (Supplementary
Table5).

The number of COVID-19 infections on a date depends on the growth
rate of infections on all prior days. Thus, persistent reductionsingrowth
rates have acompounding effect oninfections, untilgrowthis slowed
by a shrinking susceptible population. To provide a sense of scale for
our results, we integrate the growth rate of infections in each local-
ity from Figure 3 to estimate cumulative infections, both with actual
anti-contagion policies and in the no-policy counterfactual scenario. To
account for the declining susceptible populationin each administrative
unit, we couple our econometric estimates of the effects of policies
with a Susceptible-Infected-Removed (SIR) model™” that adjusts the
susceptible populationin eachadministrative unit based on estimated
case-detection rates®*? (see Methods). This allows us to extend our
projections beyond theinitial exponential growth phase of infections,
athreshold that many localities cross in our no-policy scenario.

Our results suggest that ongoing anti-contagion policies have already
substantially reduced the number of COVID-19 infections observed
in the world today (Figure 4). Our central estimates suggest that
there would be roughly 37 million more cumulative confirmed cases
(corresponding to 285 million more total infections, including the
confirmedcases)inChina,11.5millionmoreconfirmedcasesinSouthKorea
(38 million total infections), 2.1 million more confirmed cases in Italy
(49 million total infections), 5 million more confirmed cases in Iran
(54 million total infections), 1.4 million more confirmed casesin France
(45 million total infections), and 4.8 million more confirmed cases
(60 million totalinfections) in the US had these countries never enacted
any anti-contagion policies since the start of the pandemic. The magni-
tudes of these impacts partially reflect the timing, intensity, and extent
of policy deployment (e.g., how many localities deployed policies),

and the duration for which they have been applied. Several of these
estimates are subject to large statistical uncertainties (see intervalsin
Figure 4). Sensitivity tests (Extended Data Fig. 7) that assume arange
of plausible alternative parameter values relating to disease dynam-
ics, such as incorporating a Susceptible-Exposed-Infected-Removed
(SEIR) model, suggest thatinterventions may have reduced the sever-
ity of the outbreak by a total of 55-66 million confirmed cases over
the dates in our sample (central estimates). Sensitivity tests varying
the assumed infection-fatality ratio (Supplementary Table 6) suggest
a corresponding range of 46-77 million confirmed cases (490-580
million total infections).

Discussion

Our empirical resultsindicate that large-scale anti-contagion policies
are slowing the COVID-19 pandemic. Because infectionrates in the
countries we study would have initially followed rapid exponential
growth had no policies been applied, our results suggest that these
policies have provided large health benefits. For example, we estimate
that there would be roughly 465 xthe observed number of confirmed
casesin China, 17 xin Italy, and 14 x in the US by the end of our sample
iflarge-scale anti-contagion policies had not been deployed. Consist-
ent with process-based simulations of COVID-19 infections>*89222¢,
our analysis of existing policies indicates that seemingly small delays
in policy deployment likely produced dramatically different health
outcomes.

While the limitations of available data pose challenges to our analysis,
our aimis to use what data exist to estimate the first-order impacts of
unprecedented policy actionsin an ongoing global crisis. As more data
become available, related findings will become more precise and may
capture more complex interactions. Furthermore, this analysis does
notaccount for interactions between populationsin nearby localities',
nor mobility networks*>*#°, Nonetheless, we hope these results can sup-
portcritical decision-making, bothin the countries we study andin the
other 180 + countries where COVID-19 infections have been reported’.

Akey advantage of our reduced-form “top down” statistical approach
is that it captures the real-world behavior of affected populations
without requiring that we explicitly model underlying mechanisms
and processes. This is useful in the current pandemic where many
process-related parameters remain uncertain. However, our results
cannot and should not be interpreted as a substitute for “bottom up”
process-based epidemiological models specifically designed to provide
guidancein public health crises. Rather, our results complement exist-
ingmodels, for example, by helping to calibrate key model parameters.
We believe both forward-looking simulations and backward-looking
empirical evaluations should be used to inform decision-making.

Our analysis measures changesin local infection growth rates asso-
ciated with changes in anti-contagion policies. A necessary condition
for this association to be interpreted as the plausibly causal effect of
these policies is that the timing of policy deployment is independent
of infection growth rates™. This assumption is supported by estab-
lished epidemiological theory™*? and evidence®®?, which indicate
thatinfectionsinthe absence of policy will grow exponentially early in
the epidemic, implying that pre-policy infection growth rates should be
constant over time and therefore uncorrelated with the timing of policy
deployment. Further, scientific guidance to decision-makers early in
the current epidemic explicitly projected constant growthratesinthe
absence of anti-contagion measures, limiting the possibility that antici-
pated changes in natural growth rates affected decision-making??>3°3.,
In practice, policies tended to be deployed in response to high total
numbers of cases (e.g. in France)®, in response to outbreaks in other
regions (e.g. in China, South Korea, and Iran)*, after delays due to
political constraints (e.g. in the US and Italy), and often with timing
that coincided with arbitrary events, like weekends or holidays (see Sup-
plementary Notes for detailed chronologies).
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Our analysis accounts for documented changesin COVID-19 testing
procedures and availability, as well as differences in case-detection
across locations; however, unobserved trends in case-detection could
affect ourresults (see Methods). We analyze estimated case-detection
trends® (Extended Data Fig. 2), finding that this potential bias is small,
possibly elevating our estimated no-policy growth rates by 0.022 (7%)
onaverage.

Itisalso possible that changing public knowledge during the period
of our study affects our results. Ifindividuals alter behaviorinresponse
tonew information unrelated to anti-contagion policies, such as seek-
ing out online resources, this could alter the growth rate of infections
and thus affect our estimates. If increasing availability of informa-
tion reduces infection growth rates, it would cause us to overstate
the effectiveness of anti-contagion policies. We note, however, that if
public knowledge is increasing in response to policy actions, such as
through newsreports, thenit should be considered a pathway through
which policies alter infection growth, not aform of bias. Investigating
these potential effects is beyond the scope of this analysis, butitis an
important topic for future investigations.

Finally, our analysis focuses on confirmed infections, but other
outcomes, such as hospitalizations or deaths, are also of policy
interest. Future work on these outcomes may require additional
modeling approaches because they are relatively more context- and
state-dependent. Nonetheless, we experimentally implement our
approachonthedaily growth rate of hospitalizations in France, where
hospitalization datais available at the granularity of this study. We find
that the total estimated effect of anti-contagion policies on the growth
rate of hospitalizations is similar to our estimates for infection growth
rates (Extended Data Fig. 6¢).
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Fig.1|Dataon COVID-19infections and large-scale anti-contagion policies.
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anti-contagion policies, with height indicating the number of administrative
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policy types are shown per country and missing case dataare imputed unless
allsub-national units are missing. Right: Maps of cumulative confirmed cases
by administrativeunitonthelast date of each sample.
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a Infection growth rate without policy

As percent
Average (6 countries) = 0.36 (43%) Effect size growth

Average (excluding Iran) = 0.32 (38%) ——— (Alog per day) (% per day)
China e 0.31(0.25,0.37)  36.21
Wuhan, China & 0.36 (0.30,0.41) 42.76
South Korea e 0.31(0.18,0.45) 36.89
Italy —e— 0.37 (0.29,0.45)  45.06
Iran —e— 0.52(0.35,0.69) 68.20
France —e— 0.33(0.23,0.43) 38.96
United States e 0.29 (0.16,0.42) 33.78

-0.5 0.0 0.5
Estimated daily growth rate

b Effect of all policies combined
China, Week 1 —— -0.03 (-0.12,0.06) -2.57

China, Week 2 —— -0.20(-0.30, -0.11) -18.45

China, Week 3 —— -0.28 (-0.37, -0.19) -24.35

China, Week 4 —— -0.30 (-0.39, -0.21) -26.07

China, Week 5 e -0.29 (-0.38, -0.20) -25.32

South Korea —_————— -0.49 (-0.79, -0.20) -38.98

Italy ——— -0.45 (-0.66, -0.25) -36.43

Iran — -0.49 (-0.64, -0.34) -38.55

France E -0.17 (-0.21, -0.13) -15.55

United States — -0.38 (-0.57, -0.19) -31.61
-0.5 0.0 0.5

Estimated effect on daily growth rate
¢ Effect of individual policies

Emergency declaration, Week 1 —a— China -0.01(-0.10,0.07) -1.19
Emergency declaration, Week 2 —— -0.17 (-0.26, -0.08) -15.89
Emergency declaration, Week 3 —_— -0.23 (-0.33, -0.14) -20.86
Emergency declaration, Week 4 —_— -0.25(-0.34, -0.16) -22.12
Emergency declaration, Week 5 —— -0.25(-0.34, -0.16) -21.96
Travel ban, Week 1 { 0.02 (-0.02, 0.05) 1.51

Travel ban, Week 2 4 -0.01 (-0.04,0.03) -0.90
Travel ban, Week 3 o1 -0.03 (-0.08,0.02) -3.05
Travel ban, Week 4 -8+ -0.05(-0.10,0.01) -4.69
Travel ban, Week 5 —o— -0.08 (-0.15,0.00) -7.60
Home isolation, Week 1* 4 -0.01(-0.04,0.01) -1.39

4

Home isolation, Week 2* -0.03 (-0.06,0.00) -2.96
Home isolation, Week 3* -0.04 (-0.07, -0.02) -4.40
Home isolation, Week 4* -0.05(-0.08, -0.02) -4.97
Home isolation, Week 5* -0.04 (-0.08,0.00) -4.30
Religious & welfare closure, no demonstration «~— South -0.30(-0.60, -0.01) -26.21

WFH, business closure, other social dist. (opt) —0— Korea -0.08(-0.16,-0.01) -7.96
Emergency declaration - — -0.13 (-0.22, -0.04) -11.93
,,,,,,,, Quarantine inbound travelers 0.02 (-0.02,0.06)  2.02
School closure —— Italy -0.11 (-0.25,0.03) -10.33
Quarantine positive cases —e— -0.08 (-0.19,0.02) -8.06
WFH, no gathering, other social dist. —e— 0.14 (0.01,0.28) 15.49
Travel ban, transit suspension ~—@&—— -0.33 (-0.60, -0.06) -28.18
Business closure — -0.12(-0.31,0.07) -11.40
Home isolation* —j— 0.03 (-0.12,0.18) 2.84
Travel ban (opt), WFH, school closure «—&—— Iran —0.33(-0.51,-0.16) -28.39
Home isolation = —@— -0.15(-0.22, -0.09) =14.27
School closure —4— France -0.01(-0.09, 0.07) ' -0.90
Cancel events, no gathering, other social dist. — -0.24 (-0.38, -0.10) -21.57
National lockdown* —— -0.16 (-0.27, -0.05) -14.79
Slow the Spread Guidelines T®—  United 0.05 (-0.02,0.12) 5.02
Other social distance —— States  —0.25(-0.33,-0.16) -21.81
Paid sick leave — -0.08(-0.20,0.14) -2.66
Quarantine positive cases - -0.06 (-0.12,0.00) -5.92
Travel ban, transit suspension -4 -0.01(-0.07,0.06) -0.80
School closure -1 0.03 (-0.03, 0.09) 2.63
Religious closure L 3 0.01 (-0.03, 0.05) 0.80
Work from home (WFH) s -0.05 (-0.08, -0.01) -4.59
No gathering s 0.01.(-0.06, 0.08) 1.1
Business closure E d =0.06 (-0.10, -0.01) -5.35
Home isolation* - -0.12(-0.17,-0.07) -11.31
-05 0.0 05

Estimated effect on daily growth rate

Fig.2|Empirical estimates of unmitigated COVID-19 infection growth rates
and the effect of anti-contagion policies. Markers are country-specific
estimates, whiskers are 95% Cl. Columnsreport effect sizesasachangein the
continuous-time growth rate (95% Clin parentheses) and the day-over-day
percentage growthrate. (a) Estimates of daily COVID-19 infection growth rates
inthe absence of policy (dashed lines =averages with and without Iran, both
excluding Wuhan-specific estimate). (b) Estimated combined effect of all
policies oninfection growthrates. (c) Estimated effects of individual policies
or policy groups on the daily growthrate of infections, jointly estimated and
orderedroughly chronologically within each country. *Reported effect of
“homeisolation”includes effects of otherimplied policies (see Methods).
China:N=3669; South Korea: N=595, Italy:N=2898, Iran: N=548, France:
N=270,US:N=1238.
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asFigure2.
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Methods

Data Collection and Processing

We provide abriefsummary of our data collection processes here (see
the Supplementary Notes for more details, including access dates).
Epidemiological, case definition/testing regime, and policy data for
each of the six countries in our sample were collected from a variety
of in-country data sources, including government public health web-
sites, regional newspaper articles, and crowd-sourced information on
Wikipedia. The availability of epidemiological and policy data varied
across the six countries, and preference was given to collecting data at
the most granular administrative unit level. The country-specific panel
datasets are at the region level in France, the state level in the US, the
provincelevelinSouthKorea, Italy and Iran, and the city level in China.
Due to data availability, the sample dates differ across countries: in
Chinawe use datafromJanuary 16 -March 5,2020; in South Korea from
February 17 - April 6,2020; in Italy from February 26 - April 6,2020;
in Iran from February 27 - March 22, 2020; in France from February
29 -March 25,2020; and in the US from March 3 - April 6, 2020. Below,
we describe our data sources.

China. We acquired epidemiological datafrom an opensource GitHub
project® that scrapes time series data from Ding Xiang Yuan. We
extended this dataset back in time toJanuary 10, 2020 by manually
collecting official daily statistics from the central and provincial (Hubei,
Guangdong, and Zhejiang) Chinese government websites. We compiled
policies by collecting data on the start dates of travel bans and lock-
downs at the city-level from the “2020 Hubei lockdowns” Wikipedia
page® and various other news reports. We suspect that most Chinese
cities haveimplemented atleast one anti-contagion policy due to their
reported trendsin infections; as such, we dropped cities where we could
not identify a policy deployment date to avoid miscategorizing the
policy status of these cities. Thus our results are only representative
for the sample of 116 cities for which we obtained policy data.

South Korea. We manually collected and compiled the epidemiologi-
cal dataset in South Korea, based on provincial government reports,
policy briefings, and news articles. We compiled policy actions from
news articles and press releases from the Korean Centers for Disease
Control and Prevention (KCDC), the Ministry of Foreign Affairs, and
local governments’ websites.

Iran. We used epidemiological data from the table “New COVID-19
casesinIranby province”*in the “2020 coronavirus pandemicinIran”
Wikipediaarticle, whichwere compiled fromdata provided onthe Ira-
nian Ministry of Health website (in Persian). We relied on news media
reporting and two timelines of pandemic events in Iran*** to collate
policy data. From March 2-3, Iran did not report subnational cases.
Around this period the country implemented three national policies: a
recommendation againstlocaltravel (3/1), work from home for govern-
ment employees (3/3), and school closure (3/5). As the effects of these
policies cannot be distinguished from each other due to the datagap,
we group them for the purpose of this analysis.

Italy. We used epidemiological data from the GitHub repository*® main-
tained by the Italian Department of Civil Protection (Dipartimento
della Protezione Civile). For policies, we primarily relied on the Eng-
lish version of the COVID-19 dossier “Chronology of main steps and
legal acts taken by the Italian Government for the containment of the
COVID-19 epidemiological emergency” written by the Dipartimento
della Protezione Civile*, and Wikipedia*°.

France. We used the region-level epidemiological dataset provided
by France’s government website* and supplemented it with numbers
of confirmed cases by region on France’s public health website, which

was previously updated daily through March 25*2. We obtained dataon
France’s policy response to the COVID-19 pandemic from the French
government website, press releases from each regional public health
site®, and Wikipedia*..

United States. We used state-level epidemiological data from usafacts.
org*®, which they compile from multiple sources. For policy responses,
werelied onanumber of sources, including the U.S. Centers for Disease
Control (CDC), the National Governors Association, as well as various
executive orders from county- and city-level governments, and press
releases from media outlets.

Policy Data. Policiesin administrative units were coded asbinary vari-
ables, where the policy was coded as either 1 (after the date that the
policy was implemented, and before it was removed) or O otherwise,
for the affected administrative units. Whena policy only affected a
fraction of an administrative unit (e.g., half of the counties within a
state), policy variables were weighted by the percentage of people
within the administrative unit who were treated by the policy. We used
the most recent population estimates we could find for countries’
administrative units (see the Population Data section in the Appendix).
Inorder to standardize policy types across countries, we mapped each
country-specific policy to one of thebroader policy category variables
in our analysis. In this exercise, we collected 168 policies for China,
59 for South Korea, 214 for Italy, 23 for Iran, 59 for France, and 1,194
for the United States (see Supplementary Table 1). There are some
cases whereweencode policies that are necessarily in effect whenever
another policyisinplace, dueinparticular to the far-reaching implica-
tions of home isolation policies. In China, wherever home isolation is
documented, we assume alocal travel banis enacted on the same day if
we have not found an explicit local travel ban policy for agivenlocality.
InFrance, we assume home isolation is accompanied by event cancella-
tions, social distancing, and no-gathering policies; in Italy, we assume
homeisolation entails no-gathering, local travel ban, work from home,
and social distancing policies; in the US, we assume shelter-in-place
ordersindicate that non-essential business closures, work fromhome
policies, and no-gathering policies are in effect. For policy types that
are enacted multiple times at increasing degrees of intensity within a
locality, we add weights to the variable by escalating the intensity from
0 pre-policy in steps up to 1 for the final version of the policy (see the
Policy Datasectionin the Appendix).

Epidemiological Data. We collected information on cumulative con-
firmed cases, cumulative recoveries, cumulative deaths, active cases, and
any changes to domestic COVID-19 testing regimes, such as case defini-
tions or testing methodology. For our regression analysis (Figure 2), we
use active cases whenthey are available (for Chinaand South Korea) and
cumulative confirmed cases otherwise. We document quality control
stepsinthe Appendix. Notably, for Chinaand South Koreawe acquired
moregranular datathanthe datahosted onthe Johns Hopkins University
(JHU) interactive dashboard*®; we confirm that the number of confirmed
cases closely match between the two data sources (see Extended Data
Fig.1). Toconduct the econometric analysis, we merge the epidemiologi-
caland policy data to form asingle data set for each country.

Reduced-Form Approach. Thereduced-formeconometric approach
thatwe apply hereisa“top down” approach that describes the behavior
of aggregate outcomes yindata (here, infection rates). Thisapproach
canidentify plausibly causal effects** induced by exogenous changes in
independent policy variables z (e.g., school closure) without explicitly
describingall underlying mechanisms thatlink zto y, without observ-
ing intermediary variables x (e.g., behavior) that might link zto y, or
without other determinants of y unrelated to z (e.g., demographics),
denoted w. Let f(-) describe a complex and unobserved process that
generates infectionratesy:
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Y=f0a(zy, .« Zg), o X (20 oo, Z), Wy <o, Wyy) (o))

Process-based epidemiological models aim to capture elements
of f(-) explicitly, and then simulate how changes in z, x, or w affect y.
This approachis particularly important and useful in forward-looking
simulations where future conditions are likely to be different than
historical conditions. However, a challenge faced by this approach is
that we may not know the full structure of f(-), for example if a patho-
gen is new and many key biological and societal parameters remain
uncertain. Crucially, we may not know the effect that large-scale policy
(2) will have on behavior (x(z)) or how this behavior change will affect
infection rates (f(-)).

Alternatively, one can differentiate Equation 1 with respect to the
k™ policy z;:

Wy _§ o

0z, 4 0x;0z, )

Jj=1
which describes how changes in the policy affects infections through
all Npotential pathways mediated by x;,...,x,. Usefully, for afixed pop-
ulation observed over time, empirically estimating an average value
of the local derivative on the left-hand-side in Equation 2 does not
depend on explicit knowledge of w. If we can observe y and z directly
and estimate changes over time :_y with data, thenintermediate vari-

Z
ables x also need not be observed nor modeled. The reduced-form
econometric approach®* thus attempts to measure aaTydirectly, exploit-
ing exogenous variation in policies z. k

Model. Active infections grow exponentially during theinitial phase of
anepidemic, when the proportion ofimmune individualsin a popula-
tion is near zero. Assuming a simple Susceptible-Infected-Recovered
(SIR) disease model (e.g., ref. [']), the growth in infections during the
early periodis

dl,

=SBV = BV, 3)

where /,is the number of infected individuals at time ¢, S is the trans-
mission rate (new infections per day per infected.individual), y is the
removal rate (proportion of infected individuals recovering or dying
eachday) and Sis the fraction of the population susceptible to the dis-
ease. The second equality holds in the limit S > 1, which describes the
current conditions during the beginning of the COVID-19 pandemic.
The solution to this ordinary differential equation is the exponential
function

Z - eg'(frﬁ)’ (4)
5%

where/, is theinitial condition. Taking the natural logarithm and rear-
ranging, we have

log(l,) - log(l,) =g~ (6~ ). s)

Anti-contagion policies are designed to alter g, through changes to
B,byreducing contact between susceptible and infected individuals.
Holding the time-step between observations fixed at one day (¢,-t,=1),
we thus model gas a time-varying outcome that is alinear function of
atime-varying policy

g, =log(l) —log(l,_) =6, + 8- policy, +¢,, (6)
where 0, is the average growth rate absent policy, policy, is a binary

variable describing whether a policy is deployed at time ¢, and @ is the
average effect of the policy on growth rate gover all periods subsequent

tothe policy’sintroduction, thereby encompassing any lagged effects
of policies. ,isamean-zero disturbance term that capturesinter-period
changes not described by policy,. Using this approach, infections each
day are treated as the initial conditions for integrating Equation 4
through to the following day.

We compute the first differences log(/,)-log(/,_,) using active infec-
tions where they are available, otherwise we use cumulative infections,
noting that they are almost identical during this early period (except
in China, where we use active infections). We then match these data to
policy variables that we construct using the novel data sets we assemble
and applyareduced-formapproach toestimate a version of Equation 6,
although the actual expression has additional terms detailed below.

Estimation. To estimate a multi-variable version of Equation 6, we
estimate aseparate regression for each country c. Observations are for
subnational unitsindexed by i observed for each day t. Because not all
localities began testing for COVID-19 on the same date, these samples
areunbalanced panels. To ensure data quality, we restrict our analysis
tolocalities after they have reportedat least ten cumulative infections.

A necessary condition for unbiased estimates is that the timing of
policy deployment isindependent of naturalinfection growthrates™, a
mathematical conditionthat should be true in the context of anew epi-
demic. Inestablished epidemiological models, including the standard
SIRmodel above, early ratesof infection within a susceptible population
are characterized by constant exponential growth. This phenomenonis
wellunderstood theoretically®**¢, has been repeatedly documented in
past epidemics®?°# as well as the current COVID-19 pandemic™*?, and
implies constantinfection growth rates inthe absence of policy inter-
vention. Thus, we treat changes ininfection growth rates as condition-
allyindependent of policy deployments since the correlation between
aconstant variable and any other variable is zero in expectation.

We estimate a multiple regression version of Equation 6 using
ordinary least squares. We include a vector of subnational unit-fixed
effects 0, (i.e., varying intercepts captured as coefficients to dummy
variables) to account for all time-invariant factors that affect the
local growth rate of infections, such as differences in demographics,
socio-economic status, culture, and health systems®. We include a vec-
tor of day-of-week-fixed effects 6 to account for weekly patternsin the
growth rate of infections that are common across locations within a
country, however, in China, we omit day-of-week effects because we
find no evidence they are presentin the data - perhaps due to the fact
that the outbreak of COVID-19 began during a national holiday and
workers never returned to work. We also include a separate single-day
dummy variable each time thereis an abrupt change in the availability
of COVID-19 testing or a change in the procedure to diagnose posi-
tive cases. Such changes generally manifest as a discontinuous jump
ininfections and a re-scaling of subsequent infection rates (e.g., See
Chinain Figure 1), effects that are flexibly absorbed by a single-day
dummy variable because the dependent variable is the first-difference
of the logarithm of infections. We denote the vector of these testing
dummies p.

Lastly, weinclude avector of P.country-specific policy variables for
each location and day. These policy variables take on values between
zero and one (inclusive) where zero indicates no policy action and
oneindicates a policyis fully enacted. In cases where a policy variable
captures the effects of collections of policies (e.g., museum closures
andlibrary closures), a policy variable is computed for each, then they
are averaged, so the coefficient on this type of variable is interpreted
asthe effectifall policiesin the collection are fully enacted. There are
alsoinstances where multiple policies are deployed onthe same datein
numerous locations, inwhich case we group policies that have similar
objectives (e.g., suspension of transit and travel ban, or cancelling of
events and no gathering) and keep other policies separate (i.e., busi-
ness closure, school closure). The grouping of policies is useful for
reducing the number of estimated parameters in our limited sample



of data, allowing us to examine the impact of subsets of policies (e.g.
Fig. 2c). However, policy grouping does not have a material impact
on the estimated effect of all policies combined nor on the effect of
actual policies, which we demonstrate by estimating a regression
modelwhere no policies are grouped and these values are recalculated
(Supplementary Table 4, Extended Data Fig. 6).

In some cases (for Italy and the US), policy data is available at a
more spatially granular level than infection data (e.g., city policies
and state-level infections in the US). In these cases, we code binary
policy variables at the more granular level and use population-weights
to aggregate them to the level of the infection data. Thus, policy vari-
ables may take on continuous values between zero and one, with a
value of one indicating that the policy is fully enacted for the entire
population. Given the limited quantity of data currently available, we
use a parsimonious model that assumes the effects of policies oninfec-
tion growth rates are approximately linear and additively separable.
However, future work that possesses more datamay be able to identify
important nonlinearities or interactions between policies.

For each country, our general multiple regression model is thus

8= log(/;) = IOg(Ici,tfl)
P )
= eo,ci + 5ct Tt pE::I (ecp : pOIiCypc[[) + &

where observations are indexed by country ¢, subnational unit i, and
day t. The parameters of interest are the country-by-policy specific
coefficients ,,. We display the estimated residuals €, in Extended Data
Fig. 10, which are mean zero but not strictly normal (normality is not
arequirement of our modeling and inference strategy), and we estimate
uncertainty over all parameters by calculating our standard errors
robust to error clustering at the day level®. This approach allows the
covariancein g, across different locations within a country, observed
on the same day, to be nonzero. Such clustering is important in this
context because idiosyncratic events within a country, suchas aholiday
or a backlog in testing laboratories, could generate nonuniform
country-wide changesininfection growthforindividual days not explic-
itly captured in our model. Thus, this approach non-parametrically
accounts for both arbitrary forms of spatial auto-correlation or sys-
tematic misreportinginregions of acountry onany givenday (we note
thatit generates larger estimates for uncertainty than clustering by i).
Whenwereport the effect of all policies combined (e.g., Figure 2b) we
arereporting the sum of coefficient estimates for all policies Z!P;:l 0.,
accounting for the covariance of errors in these estimates when com-
puting the uncertainty of this sum.

Note that our estimates of #and 8, in Equation 7 are robust to sys-
tematic under-reporting of infections, amajor concernin the ongo-
ing pandemic, due to the construction of our dependent variable.
This remains true even if different localities have different rates of
under-reporting, so long as the rate of under-reporting is relatively
constant. To see this, note that if each locality i has amedical system
that reports only a fraction ¢, of infections such that we observe
I= ¢, ratheranactualinfections /, then the left-hand-side of Equa-
tion 7 will be

log(F,) - log(; ) =log (k) ~ log(@f; 1)
=|0g(([)l.) - log(lIJ,) + IOg(In) - IOg(Ii,tfl)
=log(l,) —log( ) =g,

and is therefore unaffected by location-specific and time-invariant
under-reporting. Thus systematic under-reporting does not affect our
estimates for the effects of policy 8. As discussed above, potential biases

associated with non-systematic under-reporting resulting from docu-
mented changes in testing regimes over space and time are absorbed
by region-day specific dummies u.

However, if the rate of under-reporting withinalocality is changing
day-to-day, this could bias infection growth rates. We estimate the
magnitude of this bias (see Extended Data Fig. 2), and verify that it is
quantitatively small. Specifically, if I?tzxpitlit where ¢, changes
day-to-day, then

log(Fy) - log(f, ) =log(y,) - log(y,, ) +8&, (8)

where log(y,)-log(y,.,) is the day-over-day growth rate of the
case-detection probability. Disease surveillance has evolved slowly in
some locations as governments gradually expand testing, which would
cause ¥, tochange over time, but these changes intesting capacity do
not appear tosignificantly alter our estimates of infection growth rates.
In Extended Data Fig. 2, we show one set of epidemiological estimates®
for log(¢;,)-log(¢, .-). Despite random day-to-day variations, which
do not cause systematic biases in our point estimates, the mean of
log(¢;)-log(y; ) is consistently small across the different countries:
0.05in China, 0.064 in Iran, 0.019 in South Korea, - 0.058 in France,
0.031in Italy, and 0.049 in the US. The average of these estimates is
0.026, potentially accounting for 7.3% of our global average estimate for
the no-policy infectiongrowthrate (0.36). These estimates of log(y,)—
log(y, ) also do not display strong temporal trends, alleviating con-
cerns that time-varying under-reporting generates sizable biases in
our estimated effects of anti-contagion policies.

Transient dynamics. In China, we are able to examine the transientre-
sponse of infection growth rates following policy deployment because
onlythree policies were deployed early in a seven-week sample period
during which we observe many cities simultaneously. This provides us
with sufficient data to estimate the temporal structure of policy effects
withoutimposing assumptions regarding this structure. To do this, we
estimate adistributed-lag model that encodes policy parameters using
weekly lags based on the date that each policy is firstimplemented in
locality i. This means the effect of a policy implemented one week ago
is allowed to differ arbitrarily from the effect of that same policy in
the following week, etc. These effects are then estimated simultane-
ously and are displayed in Fig. 2 (also Supplementary Table 3). Such
adistributed lag approach did not provide statistically meaningful
insightin other countries using currently available data because there
were fewer administrative units and shorter periods of observation (i.e.
smaller samples), and more policies (i.e. more parameters to estimate)
inall other countries. Future work may be able to successfully explore
these dynamics outside of China.

Asarobustness check, we examine whether excluding the transient
response from the estimated effects of policy substantially alters our
results. We do this by estimating a “fixed lag” model, where we assume
that policies cannotinfluence infection growth rates for L days, recod-
ingapolicy variable attime ¢t as zeroif a policy wasimplemented fewer
than L days before t. We re-estimate Equation 7 for each value of L and
presentresults in Extended Data Fig. 5 and Supplementary Table 5.

Alternative disease models. Our main empirical specificationis mo-
tivated with an SIR model of disease contagion, which assumes zero
latent period between exposure to COVID-19 and infectiousness. If
werelax this assumption to allow for alatent period of infection, asin
aSusceptible-Exposed-Infected-Recovered (SEIR) model, the growth
of the outbreak is only asymptotically exponential. Nonetheless, we
demonstrate that SEIR dynamics have only a minor potential impact
on the coefficients recovered by using our empirical approach in this
context. In Extended DataFigs. 8 and 9 we present results fromasimula-
tion exercise which uses Equations 9-11, along with ageneralization to
the SEIR model” to generate synthetic outbreaks (see Supplementary
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Methods Section 2). We use these simulated datato test the ability of our
statistical model (Equation 7) to recover both the unimpeded growth
rate (Extended DataFig. 8) as well as theimpact of simulated policies on
growthrates (Extended DataFig. 9) whenapplied to datagenerated by
SIR or SEIR dynamics over awide range of epidemiological conditions.

Projections

Daily growth rates of infections. To estimate the instantaneous daily
growth rate of infections if policies were removed, we obtain fitted
values from Equation 7 and compute a predicted value for the depend-
ent variable when all P, policy variables are set to zero. Thus, these
estimated growthrates g7 policyeapture the effect of all locality-specific
factors on the growth rate of infections (e.g., demographics),
day-of-week-effects, and adjustments based on the way in whichinfec-
tion cases are reported. This counterfactual does not account for
changesininformation that are triggered by policy deployment, since
those should be considered a pathway through which policies affect
outcomes, as discussed in the main text. Additionally, the “no-policy”
counterfactual does not model previously unobserved changes in
behavior that might occur if fundamentally new behaviors emerge
even in the absence of government intervention. When we report an
average no-policy growthrate ofinfections (Figure 2a), itisthe average
value of these predictions for all observations in the original sample.
Location-and-day specific counterfactual predictions (gg‘; p"”cy),
accounting for the covariance of errors in estimated parameters, are
shown as red markersin Figure 3.

Cumulative infections. To provide a sense of scale for the estimated
cumulative benefits of effects shown in Figure 3, we link our
reduced-form empirical estimates to the key structures in a simple
SIR system and simulate this dynamical system over the course of our
sample. The system s defined as the following:

ds
O s ©
di
d—t‘ =(BS:— I, (10)
% i, an

where S, is the susceptible populationand R, is the removed population.
Here g, is a time-evolving parameter, determined via our empirical
estimates as described below. Accounting for changes in S becomes
increasingly important as the size of cumulative infections (/,+ R,
becomes a substantial fraction of the local subnational population,
which occursinsome no-policy scenarios. Our reduced-form analysis
provides estimates for the growthrate of active infections (¢)for each
locality and day, in aregime where S,= 1. Thus we know

dl .
1=, B,V 1)

but we do notknow the values of either of the two right-hand-side terms,
whichare required to simulate Equations 9-11. To estimate y, we note
that the left-hand-side term of Equation 11is

dR;

d . . .
- a(cumulatlve_recoverles + cumulative_deaths)

which we can observein our datafor Chinaand South Korea. Comput-
ingfirstdifferencesin these two variables (to differentiate with respect
to time), summing them, and then dividing by active cases gives us
estimates of y (medians: China=0.11, Korea=0.05). These values differ

slightly from the classical SIR interpretation of ybecause in the public
datawe are able to obtain, individuals are coded as “recovered” when
they no longer test positive for COVID-19, whereas in the classical SIR
model this occurs when they are no longer infectious. We adopt the
average of these two medians, setting y =.08. We use medians rather
than simple averages because low values for /induce a long right-tail
in daily estimates of y and medians are less vulnerable to this distor-
tion. We then use our empirically-based reduced-form estimates of g
(both with and without policy) combined with Equations 9-11to pro-
ject total cumulative cases in all countries, shown in Figure 4. We
simulateinfections and cases for each administrative unitin our sam-
ple beginning on the first day for which we observe 10 or more cases
(for that unit) using a time-step of 4 hours. Because we observe con-
firmed cases rather than total infections, we seed each simulation by
adjusting observed/,on the first day using country-specific estimates
of case detection rates. We adjust existing estimates of case
under-reporting? to further account for asymptomatic infections
assuming an infection-fatality ratio of 0.075%%. We assume R,= 0 on
the first day. To maintain consistency with the reported data, wereport
our output in confirmed cases by multiplying our simulated /, + R,
values by the aforementioned proportion of infections confirmed.
We estimate uncertainty by resampling from the estimated
variance-covariance matrix of all regression parameters. In Extended
DataFig. 7, we show sensitivity of this simulation to the estimated value
of yaswell as to the use of a Susceptible-Exposed-Infected-Recovered
(SEIR) framework. In Supplementary Table 6, we show sensitivity of
this simulationto the assumed infection-fatality ratio (see Supplemen-
tary Methods Section1).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|Validating disaggregated epidemiological data
againstaggregated datafromtheJohns Hopkins Center for Systems
Science and Engineering. Comparison of cumulative confirmed cases froma
subset of regionsinour collated epidemiological dataset to the same statistics
from the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by
theJohns Hopkins Center for Systems Science and Engineering (JHU CSSE)*®.
We conduct this comparisonfor Chinese provinces and South Korea, where the

L}
Apr 6

datawe collectare fromlocaladministrative units that are more spatially
granular thanthe datainthe JHU CSSE database. a, In China, we aggregate our
city-level datato the provincelevel, and b, in Koreawe aggregate province-level
datauptothe countrylevel. Small discrepancies, especially inlater periods of
the outbreak, are generally due toimported cases (international or domestic)
thatare presentin national statistics but which we do not assign to particular
cities (in China) or provinces (in Korea).
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Extended DataFig.2|Estimatedtrendsincase detectionover time within
each country. Systematic trends in case detection may potentially bias
estimates of no-policy infection growth rates (see Equation 8). We estimate the
potential magnitude of this biasusing data from the Centre for Mathematical
Modelling of Infectious Diseases? Markers indicate daily first-differences in
thelogarithm of the fraction of estimated symptomatic cases reported for
each countryovertime. The average value over time (solid line and value

denotedin paneltitle) isthe average growth rate of case detection, equal to
the magnitude of the potential bias. For example, in the main text we estimate
that the infection growthratein the United States is 0.29 (Figure 2a), of which
growthin case detection might contribute 0.049 (this figure). Sample sizes
are75inChina, 4linlIran,40inSouthKorea, 29 inFrance, 40 inlItaly,and32in

the US.
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Extended DataFig. 3 | Robustness of the estimated no-policy growthrateof respectively. Foreachcountry panel,ifasingleregionisinfluential, the

infections and the combined effect of policies to withholding blocks of estimated value whenitis withheld from the sample willappear as an outlier.
datafromentireregions. For each country, we re-estimated Eq. 7 using real Someregions that appear influential are highlighted with an open pink circle.
data ktimes, each time withholding one of the kfirst-level administrative AsinFigure2b of the main text, we estimate a distributed lag model for China
regions (“Adm1,” i.e. state or province) in that country. Each gray circleis either and display each of the estimated weekly lag effects (red circleis the same

(a) the estimated no-policy growth rate or (b) the total effect of all policies “without Hubei” sample for lags). The full sample includes 3,684 observations

combined, fromoneofthesek regressions.Red and blue circles showestimates  in China, 595inSouthKorea, 2,898 inItaly, 548inlran,270in France,and 1,238
fromthe full sample, identical toresults presented in panels Aand Bof Figure2,  inthe US.
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(seeSupplementary Methods Section 3). Ifadelay modelis more consistent
with real world infection dynamics, these fixed lag models should recover
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a,R-squared values associated with fixed-lag lengths varying from zero to
fifteen days. Center valuesrepresent the Rsquared valuein our sample,
whiskersare 95% Cl computed through resampling with replacement.
In-samplefit generally declines or remains unchanged if policies are assumed
to have adelay longer than four days. b, Estimated effects for no lag (the model
reported in the main text) and for fixed-lags between one and five days. Center
valuesrepresent the point estimate, error bars are 95% Cl. Estimates generally
areunchanged or shrink towards zero (e.g. Home isolation inIran), consistent
with mis-coding of post-policy days as no-policy days. The sample size is 595in
SouthKorea, 2,898 inltaly, 548 inIran,270inFrance,and 1,238 inthe US.
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Extended DataFig. 6 | Estimated infection orhospitalization growthrates
withactual anti-contagion policiesand ina“no policy” counterfactual
scenario. a, The estimated daily growth ratesof active (China, South Korea) or
cumulative (all others) infections based onthe observed timing of all policy
deployments within each subnational unit (blue) and in ascenariowhereno
policies were deployed (red). Identical toFigure 3 in the main text, but using an
alternative disaggregated encoding of policies that does not group any
policiesinto policy packages. The sample sizeis 3,669 in China, 595in South
Korea, 2,898 inltaly, 548 inlran,270in France,and 1,238 in the US. b, Same as
Figure 3inthe maintext, but Eq.7isimplemented forasingle example

administrative unit, Wuhan, China. The sample size is 46 observations. ¢, Same
as Figure 3in the main text, but using hospitalization data from France rather
than cumulative cases (the French government stopped reporting cumulative
casesafter March 25,2020). The sample size is 424 observations. For all panels,
thedifference between the with-and no-policy predictionsis our estimated
effect ofactual anti-contagion policies on the growthrate of infections

(or hospitalizations). The markers are daily estimates for each subnational
administrative unit (vertical lines are 95% confidence intervals). Black
circlesare observed changesinlog(infections) (or diamonds for
log(hospitalizations)), averaged across observed administrative units.
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Extended DataFig.7|Sensitivity of estimated averted/delayed infections
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linear scale, trimmed to show details). Figure 4 in the main text uses y=0.079,
which we calculate using empirical recovery/deathrates in countries where we
observe them (Chinaand South Korea, see Methods). If we assume a 14-day
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reported as “recovered” inthe data, we would calculate y=0.18. Figure 4 inthe
main textassumesog=co.
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Extended DataFig. 8| Simulating reduced-formestimates for the no-policy
growthrate of infections for different populationregimes and disease
dynamics. We examine the performance of reduced form econometric
estimators through simulations in which different underlying disease
dynamics are assumed (see SISection 3). Each histogram shows the
distribution of econometrically estimated values across1,000 simulated
outbreaks. Estimates are for the no-policy infection growth rate (analogous to
Figure 2a) when three different policies are deployed at random moments in
time. The black line shows the correct valueimposed on the simulation and the
red histogram shows the distribution of estimates using the regressioninEq.7,
applied to dataoutput fromthe simulation. The grey dashed line shows the
mean of this distribution. The 12 subpanels describe the results when various
values areassigned to the meaninfectious period (y™) and mean latency period
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(0" of the disease. “o="isequivalent to SIR disease dynamics. In each panel,
Sninis the minimum susceptible fraction observed across all 1,000 45-day
simulationsshownineach panel.Inthe real datasets used in the main text, after
correcting for country-specific under-reporting, S,;,across all units analyzed
is 0.72and 95% of the analyzed units finish with S, > 0.91. Biasrefers to the
distancebetween the dashed grey and black line as a percentage of the true
value. a, Simulationsin near-ideal data conditionsin which we observe active
infections withinalarge population (such that the susceptible fraction of the
population remains high during the sample period, similar to those in our data
for Chongqing, China). b, Simulationsin anon-ideal datascenario where we are
only able to observe cumulative infectionsin a small population (similar to
thoseinoursample for Cremona, Italy).
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