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Rydberg ensembles, atomic clouds with one or more atoms excited to a Ry-

dberg state, have proven to be a good platform for the study of photon-photon

interactions. This is due to the nonlinearities they exhibit at the single photon level

arising from Rydberg-Rydberg interactions. As a result, they have shown promise

for use in a multitude of applications, among them quantum networking.

In this thesis I describe the construction and operation of an apparatus for the

purpose of cooling, trapping and probing Rydberg ensemble physics in a cloud of

87Rb atoms. In addition, I describe a pair of projects undertaken with the apparatus.

In the first, I report our demonstration of a Rydberg ensemble based on-demand

single photon source. Here, we make use of Rydberg blockade to allow us to prepare

a single collective Rydberg excitation in the cloud. The spin wave excitation is then

retrieved by coherently mapping it onto a propagating photon. Our source is highly

pure and efficient, while producing narrow bandwidth and indistinguishable pho-



tons. Such sources are important devices for the purposes of quantum networking,

computation and metrology. Following from this, I describe a collaborative project

where we show time resolved Hong-Ou-Mandel interference between photons pro-

duced by our Rydberg ensemble source, and a collaborators source based on a single

trapped barium ion. This demonstration is a critical step in the entanglement, and

hybrid quantum networking, of these two disparate systems.
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Chapter 1: Introduction

Since its discovery over a century ago, quantum mechanics has become a main-

stay of physics research. However, the emergence of the field of quantum informa-

tion, which seeks to marry concepts from physics and computer science, is relatively

recent. During the 1980s the concept of quantum computers, that is computation

performed with quantum information, started to be discussed by academics such

as Richard Feynman [1] and David Deutsch [2]. Then, in the 1990s, there was an

explosion of interest in the field following the discovery of algorithms such as that of

Deutsch-Jozsa [3], Shor [4] and Grover [5], as well as error correction schemes [6, 7]

that suggested the potential for enormous error-free quantum speedups relative to

classical computation. Parallel to this came the subfield of quantum communica-

tion, concerned with the distribution of quantum information. Here, protocols such

as BB84 [8], E91 [9] and BBM92 [10] promised communications secured by the

laws of nature, while others, like superdense coding [11] and quantum teleporta-

tion [12], found novel ways to use quantum entanglement as a resource. Despite this

interest, practical physical realizations of both quantum computation and commu-

nication are still lacking. For computation, the group at Google has, controversially,

claimed a demonstration of quantum supremacy [13], but large scale universal quan-
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tum computers remain elusive. At the forefront of quantum communications, the

QUESS experiment has managed to demonstrate entanglement over an enormous

distance [14]. However, as a point of comparison, secure key distribution rates based

on this technology still pale in comparison to their classical counterparts [15].

1.1 Quantum Networks

Having run through a brief history of the field, and before we get too ahead of

ourselves, it is perhaps a good idea to define what we mean when we say ‘quantum

information’. Much like the ‘bit’ is the fundamental unit of classical information, the

basic unit of quantum information is the ‘qubit’. While the bit can take either the

value of 0 or 1, the qubit we instead describe by a quantum mechanical wavefunction

|ψ〉 = α |0〉+ β |1〉 , (1.1)

where the coefficients α and β are complex numbers that satisfy |α|2 + |β|2 = 1. If

we measure our qubit, we will find it to be in state |0〉 with a probability P|0〉 = |α|2,

and state |1〉 with a probability P|1〉 = |β|2. Given that, one might be forgiven

for thinking that qubits are simply probabilistic classical bits. However, there is a

major difference due to the complex nature of the coefficients, which can lead to

interferometric phenomenon that would not be seen with probabilistic classical bits.

While the qubit may seem like an abstract concept, it actually has a plethora

of natural physical realizations [16]. For example, a spin 1/2 particle, such as an

electron, has a pair of potential outcomes when the spin is projected onto the z-
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axis, either spin-up or spin-down, which can be thought of as our |0〉 and |1〉 states.

Another physical realization that shall be of interest in this thesis is that of the

photon, where we can use any of a number of the photon properties to encode the

qubit state, such as polarization, temporal mode, frequency, transverse spatial mode

etc. Given their speed of propagation, and their robustness against decoherence due

to weak environmental interactions, flying photons are a natural qubit for quantum

information transfer [17].

While the qubit is the fundamental unit of quantum information, it is perhaps

also important to touch on the idea of entanglement, a fundamental resource within

quantum information. We consider a pair of two or more qubits to be entangled when

we are unable to write their wavefunctions as a tensor product of their individual

wavefunctions. At first glance this results in behavior that may resemble something

like a classical correlation, however, it is important to note that entanglement is a

purely quantum mechanical phenomenon. A classic example (if you will excuse the

pun) of entanglement is that of the so-called Bell states [16]

|Φ±〉 =
|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉√

2

|Ψ±〉 =
|0〉 ⊗ |1〉 ± |1〉 ⊗ |1〉√

2
,

(1.2)

which are considered ‘maximally entangled’, and are critical in many quantum net-

working applications.

Having defined what we mean about quantum information we can now start

to talk about quantum networks. Like its counterpart, a classical network, which
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allows the transfer of classical bits between network nodes, a quantum network fa-

cilitates the transfer of qubits and entanglement between the quantum nodes of its

network. Such a network has a number of critical uses. Most obvious of these would

be for quantum communication, such as the quantum key distribution protocols

like BB84 [8], E91 [9] or BBM92 [10], which require the distribution of qubits or

entangled pairs of qubits between remote nodes that wish to share a one-time pad.

Additionally, quantum networks are also likely to have an important role to play as

quantum computers becomes more mature and need to start communicating with

one another. Indeed, some proposals [18,19] envision large scale quantum computing

achieved using a modular approach where small quantum computer nodes are net-

worked together, similar to classical cluster computing. A further use for quantum

networks relates to quantum sensing. If entanglement can be generated between a

number of network nodes, we then have the ability to perform measurements with

a quantum-enhanced sensitivity [20–22].

The construction of large scale quantum networks is, however, challenging,

primarily due to the fact that quantum information is inherently fragile. The stan-

dard terrestrial method of transporting photonic qubits is along optical fibers. For

the typical silica fibers in current fiber networks, the minimum absorption is seen

in the telecom bands, as we can see in the example1 in figure 1.1, which run from

around 1250-nm to 1700-nm. However, even in the telecom bands the attenuation

is typically2 on the order of 0.2 dB/km. This means that a distance of only 15 km

1taken from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=351
2The example fiber in the figure was chosen as it is a broadband multimode fiber. Lower

attenuation can be achieved with single mode fiber designed at a specific wavelength, see https:

//www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1362 as an example.

4

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=351
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1362
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1362


Figure 1.1: Example silica fiber attenuation curve.

is enough to bring the probability of successful transmission of a photonic qubits to

1/2. Furthermore, despite photons being relatively robust to decoherence, they are

not immune from it with in-fiber effects, such as birefringence, potentially causing

issues [23, 24]. Similarly, satellite based approaches to quantum network construc-

tion are not free from these issues, with turbulence and absorption in the lower

atmosphere leading to both decoherence and loss of flying qubits [14,15,25].

Classically, the problems of networking are solved with the idea of amplifica-

tion and repetition. Light pulses encoding the bits are amplified up and propagated

some distance, where they are again amplified, and so on across the network. How-

ever, this is not possible for qubits in quantum networks due to the no-cloning

theorem [26], a no-go theorem of quantum mechanics that prohibits us from making

copies of an arbitrary quantum state.
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But, where quantum mechanics closes the door of cloning, another one opens

in the form of quantum teleportation [12]. Here, we assume that our two commu-

nicating parties, Alice and Bob, have a shared Bell state pair, with each possessing

one of the qubits. If Alice wants to send a particular qubit to Bob she can perform

a measurement in the Bell-state basis on her two qubits, both the one that is to be

sent, and the one that formed part of the entangled pair. The outcome of this mea-

surement projects Bob’s qubit into some state. But Bob is able to recover the qubit

that Alice wanted to send to him by performing a local operation that depends

on the outcome of Alice’s measurement, which can be communicated classically.

So provided we can generate this entanglement between the pair, we can transmit

quantum information using only classical communication. What we have essentially

done is converted the problem of sending qubits down lossy and/or noisy channels

to a problem of distributing entanglement across the channels. Now this may not

sound like a particularly helpful thing to do. After all to have Alice and Bob share

some entanglement we will certainly have to send some qubits down the channels.

However, the key here is that as we cannot clone the qubit, we essentially get one

shot at the transmission from Alice to Bob. But for the teleportation method we

can keep trying over and over to generate the entanglement until we are successful,

and only then will we attempt the teleportation protocol. This can have a dramatic

increase in the transfer fidelity over the brute force method of simply trying to send

the qubit through a lossy and/or noisy channel..

This, then, brings us on to discussing how to generate entanglement between

two remote and potentially distant parties. Quantum repeaters are an idea that shot
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Figure 1.2: Two node DLCZ setup. Relevant atomic level structure shown on left,
and experimental system on right.

to prominence with the discovery of what is now know as the DLCZ protocol [27].

The idea behind the DLCZ protocol is that Alice and Bob each have an atomic

ensemble, where the atoms are assumed to have a three-level λ like structure, like

that shown in figure 1.2. For a single ensemble, weak excitation of one of the

transitions, which we shall call the |1〉 to |2〉 transition, has the potential to lead to

spontaneous decay from the |2〉 to |3〉 state emitting a photon. On the detection

of a spontaneously scattered photon, as it is unknown which atom in the ensemble

decayed, the ensemble is projected into a collective state known as a spin-wave,

a symmetric superposition with one atom in the |3〉 state and the rest in the |1〉

state. Now, to entangle two separate ensembles we take the spontaneously decayed

photons from both systems and direct them towards a beamsplitter, with a pair

of single photon detectors at the two beamsplitter outputs, as shown in figure 1.2.

The detection of a single photon projects the two ensembles into an entangled state

where one has an excitation and the other does not and vice versa, as we are unable

to determine which ensemble the photon was emitted from.

To entangle distant parties, the DLCZ protocol takes things a step further by
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Figure 1.3: Four node DLCZ setup. Here, black lines joining ensembles indicate
entanglement, and the black arrowed lines indicate the entanglement swapping pro-
cedure.
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envisioning a series of nodes between Alice and Bob, with adjacent nodes located

within some characteristic attenuation length of each other. Each node is assumed

to have an ensemble and performs the entanglement generation protocol described

above, so that pairs of nodes along the chain share entanglement. Next, entangle-

ment swapping is performed. This works by taking a pair of adjacent nodes, which

are not presently entangled with one another, and retrieving their stored excitations

as photons, which are directed to another beamsplitter-single photon detector setup.

The detection of a single photon here heralds the ‘swapping’ of the entanglement

on to the nodes which are next-next-nearest-neighbors, as again we are unable to

determine from which ensemble the photon originated. This entanglement swapping

procedure can then be repeated to entangle more and more distant nodes, until fi-

nally Alice and Bob have a entangled pair of ensembles. A four node example of

this procedure is shown in figure 1.3.

This method of distributing entanglement has an advantage, compared with

the brute force method of locally generating an entangled pair of photonic qubits

and directly transmitting one of them, as photons are only ever required to travel

the distance between nearest-neighbor nodes. However, there are also overheads

associated with the protocol. Using some reasonable estimates, it can be shown [28]

that the DLCZ repeater approach becomes beneficial even for relatively modest

distances, ≈ 500 km, and far outperforms it for greater length scales.

While the DLCZ protocol for quantum repeaters has regimes where it has

considerable gains over direct transmission, it is not without its drawbacks [28].

For one, the ensemble excitation must be performed weakly, so that the probability
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of multiple photon emissions are suppressed, which inevitably means working in a

regime where a single photon emission event is unlikely. This in turn means that

the per-attempt likelihood of generating entanglement between a pair of ensembles

is also small, which will limit how quickly we can generate entanglement between

Alice and Bob. Another, potentially more problematic issue, is the requirement on

stability between the channels linking the nodes to the beamsplitter-photodetection

setups. A differential phase accumulated along the photon paths from the nodes

to the beamsplitter will change the entangled state created upon photon detection.

The differential phase accumulation, therefore, needs to be very well controlled,

which usually means controlling or compensating for path lengths to much better

than an optical wavelength, which is extremely challenging in practice.

As a result there exist a number of subsequent quantum repeater schemes

that have built upon the DLCZ protocol, resolving some of its issues. For the

differential phase issue, the use of coincidence detection of photon pairs from the

two nodes [29, 30], rather than single photon detection, relaxes the experimental

stability requirements. The problem of low probability photon emission is addressed

by using (semi) deterministic single-photon production methods [31–33], which leads

to reductions in entanglement generation times.

We turn now to discussing the practical side of constructing quantum net-

works. As so often happens in physics, the implementation has somewhat lagged

behind theory. At the forefront of the field, in terms of generating entanglement over

long distances, is the satellite based QUESS project [14], mentioned at the outset.

They have been able to demonstrate reasonable fidelity entanglement, ≈ 0.87, over
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a distance just over 1200 km, using direct transmission of entangled photon pairs to

two ground stations from a spontaneous-parametric-downconversion source. How-

ever, the entanglement generation rate of ≈ 1.1 s−1 is likely too low for practical

use. Terrestrially, much higher entanglement generation rates, > 100 s−1, have

been demonstrated between pairs of trapped ions [34], and similarly with quantum

dots [35], albeit at significantly smaller distances of a few meters. Entanglement gen-

eration over large distances and at reasonable rates, therefore, remains an ongoing

experimental goal.

Before concluding our discussion on the present state of quantum networking,

it is important to point out that much of the work in the field has been focused on

the entangling of homogeneous systems, that is systems that inherently possess near-

identical properties. However, given the plethora of different quantum platforms in

the broad field of quantum information, it is likely that future quantum networks

will need to have an architecture featuring heterogeneous nodes [36–38]. Therefore,

it is important that we not only continue to improve the practical implementation

of homogeneous quantum networks, but start to develop hybrid quantum networks

which can leverage the benefits of the differing constituent nodes within the network.

1.2 Thesis Outline and Statement on Contributions

In this thesis I describe the construction of an apparatus for the trapping and

probing of a Rydberg ensemble, and a pair of projects that relate to its use for quan-

tum networking. In this chapter I have provided a brief introduction to the field of
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quantum information, and quantum networking. In chapters 2 and 3 I derive some

experimentally relevant properties of Rydberg atoms and Rydberg ensembles respec-

tively and discuss their implications for designing a Rydberg ensemble experiment.

Chapter 4 contains the description of our experimental apparatus, its construction,

operation, and a few techniques developed to aid in its modification and mainte-

nance. This is followed by an, admittedly verbose, but hopefully useful, discussion

of photonic correlations and the software I developed for their calculation from time

tagged data in chapter 5. In chapter 6, I discuss our development of a Rydberg

ensemble based high-efficiency single photon source, work which was recently pub-

lished [39]. Finally in chapter 7, based on the published work in reference [40], I will

discuss a project where we, along with our collaborators at Army Research Lab,

demonstrated interference between photons generated by our Rydberg ensemble,

and their remotely located trapped ion.

Experimental physics is rarely a solo effort, and the projects I have worked

on have been no exception. Therefore, I want to acknowledge the people who made

the various chapters possible, and try to highlight some specific things that I have

worked on. Starting with the construction of the apparatus, discussed in chapter 4,

this endeavor was primarily undertaken by myself, Dalia Ornelas-Huerta, and Mary

Lyon, with honorable mention to Nathan Fredman. Here, I focused on the in-

vacuum electronics, the magnetic field generation, the current rubidium oven and

optical pumping scheme, janky microwave excitation electronics, computer control,

and data collection.

The correlation software we use, which is the main topic of chapter 5, has
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been a labor of love of mine for over three years now. However, it would not be the

monstrosity it is today without discussions with Dalia, Mary, Steve, and Trey from

my group in addition to Sergey Polyakov, Zachary Levine, Elizabeth Goldschmidt

and James Juno.

The experimental work presented on the on-demand single-photon source in

chapter 6 was undertaken by Dalia, AJ Hachtel and myself. Theory support was

provided by Yidan Wang, Przemek Bienias and Alexey Gorshkov. Here, my efforts

were primarily focused in the identification and (unsuccessful) elimination of the

contaminant states, in addition to some of the early theory work in understanding

our source efficiencies.

As regards the collaborative work discussed in chapter 7, the trapped ion

apparatus, which included the all-important frequency conversion setup, is entirely

the work of John Hannegan and James Siverns. The Rydberg ensemble side of

things was again operated by Dalia, AJ and myself. For this work I was primarily

responsible for the analysis of the data, including the background subtraction, and

the theory for both the stochastic and on-demand cases. A special mention should

go to John Hannegan for his work on determining the messy photon spectrum of the

barium ion, and for his calculations on projected entanglement fidelities and rates

of our hybrid setup.
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Chapter 2: Rydberg Atoms

The term ‘Rydberg atom’ refers to an atom in which one or more electrons

has been promoted to a high principal quantum number, n. In these highly excited

states the electron(s) lie far from the atomic nucleus, which causes the Rydberg

atoms to exhibit various interesting properties. This has led to an explosion in

recent years in the study of Rydberg physics owing to its wide range of applicability

in emerging fields such as quantum optics [41–45], quantum simulation [46–49],

digital quantum computation [50–54] and quantum-enhanced sensing [55, 56]. As a

result, there presently exists a large body of literature, including multiple review

articles [48, 57, 58] and books [59], that discuss at length the properties of Rydberg

atoms. Therefore, rather than a comprehensive review, in what follows I shall discuss

a subsection of those properties which are relevant to the experiments contained

within this thesis.

2.1 Lifetime

The zero-temperature radiative lifetime, τ , of a state, |i〉, can be calculated

τi =

(∑
f

Γf,i

)−1

, (2.1)
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where Γf,i is the spontaneous emission rate from state |i〉 to |f〉, and the sum is taken

over all states to which |i〉 can spontaneously decay. We can write the emission rate

as [60]

Γf,i =
ω3
f,i

3πε0~c3

∣∣∣〈f | d̂ |i〉∣∣∣2 (2.2)

where ωf,i = ωf − ωi is the transition frequency, and d̂ is the dipole operator.

Although the dipole matrix elements,
∣∣∣〈f | d̂ |i〉∣∣∣, are significantly larger between

states where nf ≈ ni, ωf,i is significantly smaller for these transitions. As a result,

for the low angular momentum states of alkali atoms, the sum in equation 2.1 is

dominated by transitions to states with low principal quantum number, where ωf,i

is large. For an alkali atom we can use the Rydberg formula for the binding energy

to find

ωf,i =
Ry

~

(
1(
n∗f
)2 −

1

(n∗i )
2

)
, (2.3)

where n∗(i,f) = n(i,f)− δ(i,f) is the quantum-defect-modified principal quantum num-

ber for the state |i〉 or |f〉, and Ry is the mass-corrected Rydberg constant. For

transitions where ni >> nf we can make the approximation that ωf,i is roughly

independent of ni, while the matrix elements exhibit a scaling [59]

∣∣∣〈f | d̂ |i〉∣∣∣ ∝ (n∗i )
−3/2 . (2.4)

This leads to the following scaling relationship for the lifetime of state |i〉,

τi ∝ (n∗i )
3 . (2.5)
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Figure 2.1: Calculated [61] zero-temperature lifetime of rubidium nS1/2 states. Or-
ange line is cubic fit of form τ = a(n∗)3, with a fitted value of a = 1.257 ns.

This scaling means that the Rydberg state lifetime increases rapidly as a function

of the principal quantum number. We can see this in figure 2.1, which shows the

calculated values [61] for the zero-temperature radiative lifetime of the nS1/2 states

of rubidium.

Until now we have been ignoring any effect of finite temperature on the Ryd-

berg lifetime. However, this is not a luxury we can experimentally afford due to the

interaction of blackbody photons with the atoms. To take account of this interaction

we must modify equation 2.1

τi =

(∑
f

Γf,i + ΓBBf,i

)−1

=

(
1

τ0

+
1

τBB

)−1

, (2.6)

where ΓBBf,i quantifies the transition rate from |i〉 to |f〉 due stimulated emission or
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Figure 2.2: Calculated [61] lifetime of rubidium nS1/2 states at T = 300 K. Orange

line is fit of form τ =
(

1
a(n∗)3 + 1

b(n∗)2

)−1

, with fitted values of a = 1.257 ns and

b = 53.92 ns.

absorption of blackbody radiation, τ0 is the zero-temperature lifetime, and τBB is the

blackbody induced lifetime. It can be shown [59] that, for a near-room temperature

environment, the blackbody decay rate scales as ΓBBf,i ∝ (n∗i )
−2, hence the blackbody

induced lifetime scales as τBB ∝ (n∗i )
2. The effect of blackbody radiation can be

significant in shortening the Rydberg state lifetime, as can be seen in figure 2.2.

Nevertheless, even with this reduction, these states are often long lived enough that

they can be considered metastable for the purposes of applications.
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2.2 Electric Field Sensitivity

An atom in an electric field, ~F , is subject to the Hamiltonian

Ĥ = −d̂ · ~F , (2.7)

where d̂ is again the dipole operator. Treating this perturbatively for a state

|n, l, j,mj〉, the lowest order correction to the energy is the second order, or quadratic

Stark, term

∆E
(2)
n,l,j,mj

= −1

2
α|F |2 = |F |2

∑
n′,l′,j′,m′j

∣∣∣〈n′, l′, j′,m′j∣∣ d̂ |n, l, j,mj〉
∣∣∣2

E
(0)

n′,l′,j′,m′j
− E(0)

n,l,j,mj

, (2.8)

where we have defined the polarizability, α, to describe the state’s electric field sensi-

tivity. The scaling of the terms of the fraction means that the dominant contribution

to the sum comes from nearby states. The denominator of the fraction

E
(0)

n′,l′,j′,m′j
− E(0)

n,l,j,mj
= Ry

(
1

(n∗)2 −
1

(n′∗)2

)
(2.9)

can be expanded in n′∗ about n∗

E
(0)

n′,l′,j′,m′j
− E(0)

n,l,j,mj
≈ 2Ry

(n∗)3 (n′∗ − n∗). (2.10)

Given that we are only interested in terms where n′∗ ≈ n∗, then n′∗ − n∗ is going
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Figure 2.3: Calculated [61] polarizability of rubidium nS1/2 states. Orange line is

fit of form α = a(n∗)7, with fitted value a = 72.91 µHz (V/cm)−2.

to be roughly independent of n. Hence,

E
(0)

n′,l′,j′,m′j
− E(0)

n,l,j,mj
∝ 1

(n∗)3 . (2.11)

The matrix element between two nearby Rydberg states scales as (n∗)2 [59]. We can

therefore see that the Rydberg state polarizability is going to scale as

α ∝ (n∗)7 . (2.12)

This rapid scaling of the polarizability in principal quantum number means that

high-lying Rydberg states are extremely sensitive to electric fields. Figure 2.3 shows

the calculated [61] polarizability of the nS1/2 Rydberg states for rubidium. As can
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be seen, for n > 100, the polarizability becomes such that electric fields of only a

few mV/cm can cause shifts comparable to the inverse lifetime of the Rydberg state.

Therefore, fine control of the electric field is usually required to prevent unwanted

shifts in the Rydberg energy.

2.3 Interactions

In the absence of an electric field Rydberg states do not possess a permanent

electric dipole. However, dipole-dipole interactions between a pair of Rydberg atoms

still occur due to the transition dipole moments of the atomic states. An intuitive

way to understand this phenomenon is to consider a pair of atoms. The first atom,

with an oscillating transition dipole moment, radiates an electric dipole field at the

transition frequency, ω. This electric field can then interact with the second atom.

This results in a potential of the form1

V̂dd =
1

4πε0R3

[
d̂1.d̂2 − 3(d̂1.~n)(d̂2.~n)

]
, (2.13)

where d̂i is the dipole operator for atom i, R is the inter-atomic distance, and ~n

is the unit vector that points along the inter-atomic axis. The potential couples

pair states and leads to an effective interaction between the two atoms. This is

most straightforwardly seen by first considering a Hilbert space consisting of two

pair states, |r1, r2〉 and |r′1, r′2〉, where the subscript labels the atom in the pair. The

1Note that this is strictly speaking valid only when the inter-atomic distance is much larger
than the spatial extent of the electronic wavefunctions of the two atoms
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Hamiltonian for the system, in matrix form in the pair states basis, is

Ĥ =

 0 C3

R3

C3

R3 −∆

 , (2.14)

where C3/R
3 = 〈r1, r2| V̂dd |r′1, r′2〉 and ∆ = Er1 +Er2−Er′1−Er′2 . The eigenenergies

of the Hamiltonian are

E± = −∆

2
± 1

2

√
4

(
C3

R3

)2

+ ∆2. (2.15)

In the limit that R >> 3
√
C3/∆ the eigenstates have barely any admixture, |ψ+〉 ≈

|r1, r2〉 and |ψ−〉 ≈ |r′1, r′2〉, and the eigenenergies have the form

E+ ≈
C2

3

R6∆
=
C6

R6
(2.16)

E− ≈ −∆− C2
3

R6∆
= −∆− C6

R6
, (2.17)

with the atoms exhibiting van der Waals interactions with an interaction strength

defined by C6 = C2
3/∆. In the opposite limit where R << 3

√
C3/∆, the states

heavily admix and the eigenenergies take the form

E± ≈ ±
C3

R3
, (2.18)

i.e. of resonant dipole-dipole form.

There are in general a multitude of pair states for which coupling is non-
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negligible and an exact calculation can become impractical. Instead, to calculate

the interaction strength for a pair of atoms in Rydberg states, we tend to treat

the interaction potential perturbatively. For this thesis we shall be concerned with

interactions between atoms in the same Rydberg state, so let us calculate the lowest

order energy shift to a state |r, r〉, which is given by

∆E(2)
r,r =

∑
|r′,r′′〉6=|r,r〉

|〈r, r|Vdd |r′, r′′〉|2

2E
(0)
r − E(0)

r′ − E
(0)
r′′

=
C6

R6
. (2.19)

While the sum is taken to be over infinitely many pair states, it is in general dom-

inated by only a few states for which both the energy defect, 2E
(0)
r − E(0)

r′ − E
(0)
r′′ ,

is small and the magnitude of the dipole-dipole matrix element, |〈r, r|Vdd |r′, r′′〉|,

is large. This occurs for states n ≈ n′, n′′, where n(′,′′) is the principal number for

state r(′,′′). In this limit the energy defect, following from equation 2.10, scales as

2E
(0)
r − E

(0)
r′ − E

(0)
r′′ ∝ (n∗)−3. While the exact form of the dipole-dipole matrix

elements is somewhat complicated, and is covered in more detail in appendix A,

from inspection we can see that it is going to have a dependence like

〈r, r|Vdd |r′, r′′〉 ∼
〈n, l, j,mj| d̂1

∣∣n′, l′, j′,m′j〉 〈n, l, j,mj| d̂2

∣∣n′′, l′′, j′′,m′′j〉
4πε0R3

, (2.20)

where we have again used the primes to indicate the principal quantum, orbital

angular, total angular and magnetic quantum numbers for the corresponding r’s.

Again considering only low angular momentum states, for which the dipole matrix

elements scale as (n∗)2 [59], then we expect the dipole-dipole matrix element to scale
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Figure 2.4: Calculated [61] C6 coefficients of rubidium nS1/2nS1/2 states. Orange
line is fit of form α = a(n∗)11, with fitted value a = 8.58 nHzµm6.

as (n∗)4. The scaling of the van der Waals coefficient is thus

C6 ∝ (n∗)11 . (2.21)

This scaling can be seen in figure 2.4, which shows the calculated [61] values for the

rubidium
∣∣nS1/2, nS1/2

〉
C6 coefficients. As demonstrated, the rapid scaling of the

C6 coefficient with the principal quantum number means that large energy shifts

can be seen over macroscopic distances. For example a pair of
∣∣100S1/2

〉
atoms

separated by 10 µm experience an energy shift on the order of 50 MHz. A point

of note here is that even though the scaling of the C6 coefficient with n∗ is much

stronger than that for the resonant dipole-dipole interactions, C3 ∝ (n∗)4, it is still

a second-order effect. As with the case where we only considered two pair states,
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Figure 2.5: Cartoon of Rydberg blockade effect for a pair of atoms, alternately
excited from the ground to the Rydberg state.

when the two atoms are sufficiently close together the interactions become resonant

dipole-dipole like with a 1/R3 form.

It is predominantly these large, long-ranged interactions that make Rydberg

atoms well suited for quantum applications. An example of its usefulness can be

see by considering what happens when we attempt to excite a pair of atoms to a

Rydberg state. For ease of discussion let us assume that we can individually address

the two atoms with two light fields, denoted by Rabi frequencies Ω1,2, that couple

some ground state, |g〉, to a Rydberg state, |r〉. We can take our first atom and

excite it to the Rydberg state without issue. With our first atom in the excited state,

we then attempt to excite the second atom to the excited state. If the atoms are far

from each other, no interactions occurs and the excitation of the second atom to the

Rydberg state proceeds without issue. However, if the atoms are closer than what is

known as the blockade radius, rB, the interactions change the |r, r〉 pair state energy
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such that the excitation field is no longer resonant with the |r, g〉 to |r, r〉 transition,

as shown in figure 2.5. This is the principle of so-called Rydberg blockade, which is

the the underlying principle behind a vast majority of the applications that involve

Rydberg atoms [41–54]. It is important to realize that the concept does not just

hold simply for pairs of atoms, but we could also envisage an ensemble of atoms all

within a blockade radius of one another. Here, when we try and excite the atoms

in the ensemble to a Rydberg state, we will only be able to get a single Rydberg

excitation within the entire ensemble. This will be key when we discuss the optical

non-linearities associated with a Rydberg ensemble in the rest of this thesis.
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Chapter 3: Rydberg Ensembles

Having discussed Rydberg atoms, we can now talk about Rydberg ensembles.

Quite simply, these are atomic ensembles where we have promoted one or more

atoms to a Rydberg state. Here, the ensemble nature of the system provides us

with good light-matter coupling [62], while the Rydberg component provides us

with interactions, discussed in the previous chapter. Such systems have already been

shown to be able to produce novel photon-photon interactions [41–43,63], in addition

to being useful tools for the creation of non-classical light [41,64]. Meanwhile, theory

proposals have been put forward for a number of further applications, including

Rydberg-ensemble based quantum repeaters [31,32] for use in quantum networks.

There is a body of literature on the topic of Rydberg ensembles, with some

comprehensive review articles [57, 65]. Therefore, here I shall discuss only a few

of the properties of Rydberg ensembles that inform the experimental design, and

experiments undertaken in the latter chapters of the thesis.

3.1 Electromagnetically Induced Transparency

Let us start by considering a three-level atom with a ladder configuration,

like the one shown in figure 3.1. A weak probe field couples the ground, |g〉, and
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Figure 3.1: Energy level diagram for EIT in three-level ladder configuration.

intermediate excited state, |e〉, while a strong control field couples |e〉 and a Rydberg

state, |r〉. For now, we will not worry too much about the Rydberg nature of state

|r〉, other than acknowledging that it is likely to have a relatively long lifetime

compared with the intermediate state, given what we saw in chapter 2. With the

driving fields as shown in the figure, under the rotating wave approximation we have

a Hamiltonian

Ĥ = ~


0

Ω∗p
2

0

Ωp
2
−∆p

Ω∗c
2

0 Ωc
2

−(∆p + ∆c)

 . (3.1)

We will assume that both the intermediate excited state and the Rydberg state

have finite lifetimes, given by 1/Γ and 1/γ respectively, and we shall take |g〉 to be

infinitely long lived. The evolution of the density matrix of the system, ρ̂, is given
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by the Linblad equation

˙̂ρ = − i
~

[
Ĥ, ρ̂

]
+
∑
i

L̂iρ̂L̂
†
i −

1

2

{
L̂†i L̂i, ρ̂

}
, (3.2)

where the [ ] brackets are taken be the commutator, the { } brackets are taken to

be the anti-commutator, and the L̂i terms are the so-called ‘jump’ operators. For

this system there are two jump operators we need to be concerned with, that corre-

sponding to decay from |e〉 to |g〉, given by L̂1 =
√

Γ |g〉 〈e|, and that corresponding

to decay from |r〉 to |g〉, which is captured by L̂2 =
√
γ |g〉 〈r|.

From the Linblad equation we find

ρ̇gg = Γρee + γρrr −
1

2

(
iΩ∗pρeg + c.c.

)
(3.3)

ρ̇ee = −Γρee −
1

2

(
iΩ∗cρre − iΩ∗pρeg + c.c.

)
(3.4)

ρ̇rr = −γρrr +
1

2
(iΩ∗cρre + c.c.) (3.5)

ρ̇eg = −
(

Γ

2
− i∆p

)
ρeg −

i

2
(Ω∗cρrg − Ωpρee + Ωpρgg) (3.6)

ρ̇rg = −
(γ

2
− i (∆p + ∆c)

)
ρrg +

i

2
(Ωpρre − Ωcρeg) (3.7)

ρ̇re = −
(

Γ + γ

2
− i∆c

)
ρre +

i

2

(
Ω∗pρrg + Ωc (ρrr − ρee)

)
. (3.8)

In general, the system is dynamic with each of the density matrix elements evolv-

ing in time. A solution to the above equations is therefore generally non-trivial.

However, practically speaking, as can be verified numerically for the experimental

parameters we discuss later, the density matrix rapidly approaches a steady state.

Therefore, it is sufficient to look at the steady state solution of the above equations.
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Additionally, we can make another simplification here by assuming we are in the

weak probe limit, i.e. that Ωp << Ωc. In this regime the atoms spend almost all

their time in the ground state, and we can make the approximation ρgg ≈ 1, ρee ≈ 0

and ρrr ≈ 0. This simplifies things further and we find

ρeg ≈
Ωp

2∆p + iΓ− |Ωc|2
2(∆p+∆c)+iγ

, (3.9)

where we have ignored terms higher than linear order in Ωp.

A medium composed of an ensemble of three-level atoms has a probe suscep-

tibility given by [60]

χ = −N cσ0Γ

ω0Ωp

ρeg, (3.10)

where N is the atomic density, ω0 is the ground to excited state resonant frequency,

and σ0 = 2ω0

cε0Γ~ |deg|
2 is the resonant cross-section, with deg = 〈e| d̂ |g〉 as the dipole

matrix element between the excited and ground state. From equation 3.9 we find

the probe susceptibility to be

χ =
N cσ0

ω0

Γ
|Ωc|2

2(∆p+∆c)+iγ
− 2∆p − iΓ

. (3.11)

It is often helpful to separate out the susceptibility into its real and imaginary

parts, corresponding to the dispersive and absorptive properties, respectively, of the
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Figure 3.2: Theoretical EIT transmission curves for a medium with OD = 20,
Γ = 2π × 6 MHz, γ = 2π × 100 kHz and ∆c = 0.

medium

Re [χ] =
N cσ0

ω0

2Γ|Ωc|2δ − 2∆pΓ (4δ2 + γ2)

(4δ2 + γ2)
(
4∆2

p + Γ2
)

+ 2|Ω2
c | (γΓ− 4∆pδ) + |Ωc|4

(3.12)

Im [χ] =
N cσ0

ω0

Γ2 (4δ2 + γ2) + Γγ|Ωc|2

(4δ2 + γ2)
(
4∆2

p + Γ2
)

+ 2|Ω2
c | (γΓ− 4∆pδ) + |Ωc|4

, (3.13)

where we have defined the two-photon detuning δ = ∆p + ∆c for brevity.

In most cases χ is sufficiently small that we can approximate the complex

refractive index as n ≈ 1 + χ/2. From this we find that the transmission, T , of the

probe through medium with a resonant optical depth, OD = σ0

∫
dzN (z), is given

by

T = exp

[
−OD

Γ2 (4δ2 + γ2) + Γγ|Ωc|2

(4δ2 + γ2)
(
4∆2

p + Γ2
)

+ 2|Ω2
c | (γΓ− 4∆pδ) + |Ωc|4

]
. (3.14)
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Figure 3.3: Theoretical Re [χ] curves for a medium with Γ = 2π × 6 MHz, γ =
2π × 100 kHz and ∆c = 0.

Looking at the spectrum for Ωc = 0 and for a finite control field1, as seen in fig-

ure 3.2, we can see the presence of the control field opens up a narrow transparency

window for the probe around ∆p = 0, hence the name ‘electromagnetically induced

transparency’ (EIT).

Another interesting property of EIT comes from the real part of the suscepti-

bility. The group velocity of the probe light in the medium is given by [60] vg = c/ng,

where ng = Re [n] + ωp
dRe[n]
dωp

is the group index. From figure 3.3 we can see that,

when the control field is present, the real part of χ, and thus the real part of the

index of refraction, changes rapidly as a function of the probe frequency inside the

transparency window seen in 3.2. In this region the derivative of Re [n] is large, and

therefore ng can be significantly greater than the phase index of the medium. To

1One might expect things to be nonsensical as Ωc → 0 as we used the fact that Ωc >> Ωp

in deriving the above expressions. However, it is easy to verify that in the limit of Ωc = 0 the
transmission for the two-level system is recovered.
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get a sense of this let us evaluate the group index for the doubly resonant condition,

∆p = ∆c = 0

ng = 1 + ωp
N cσ0

ω0

Γ
(
|Ωc|2 − γ2

)(
γΓ + |Ωc|2

)2 ≈ N cσ0
Γ

|Ωc|2
, (3.15)

where we have used the fact that in most cases |Ωc| >> γ. From this we see

vg ≈
|Ωc|2

Nσ0Γ
. (3.16)

Plugging in some numbers for the rubidium stretched D2 transition [66], σ0 ≈

2.9 × 10−9 cm2, Γ ≈ 2π × 6 MHz, and assuming some reasonable experimental

density, N ≈ 3 × 1011 cm−3, and control field Rabi frequency, Ωc ≈ 2π × 20 MHz,

we find vg ≈ 5 km/s. This phenomenon, where the group velocity of the light

moving through the EIT medium is much less than c, is where the term ‘slow-light’

comes from.

Thus far we have been treating the probe field classically. However, for some

applications this is no longer a correct approach as the flux of probe photons is

sufficiently small. Here, we need to treat the probe as a quantum field. In doing so it

becomes natural to talk about ‘dark-state polaritons’ [67], which are a quasiparticle

superposition of an excitation in the electromagnetic mode of the probe (a probe

photon) and an atomic excitation, in our case to the Rydberg state. Under the

doubly resonant condition discussed above, the polariton field creation operator has

the form [68]

ψ̂†(z) =
ΩcÊ†(z)− g

√
NR̂†(z)√

|Ωc|2 + g2N
, (3.17)
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where g describes the single atom-photon coupling, N is again the atomic density, Ê†

is the creation operator for the probe field, and R̂† is the Rydberg excitation creation

operator. Equation 3.17 allows us to gain some interesting insights into the system.

Firstly we note that the admixture of the photonic and atomic components depends

on the relative coupling strengths Ωc and g
√
N (where the

√
N enhancement arises

from the fact that the states being coupled to are collective excitations which will

be discussed in further detail in the next section). It is this admixture of the

atomic component that is responsible for the reduced group velocity of light traveling

through an EIT medium, seen in equation 3.16. Intuitively, as we reduce Ωc the

polariton becomes more Rydberg-like and the group velocity decreases, and as we

increase Ωc the polariton becomes more photon-like and the group velocity increases.

Taking the idea of slow-light to its extreme, we can think about a probe pulse

which is sent into an EIT medium resulting in a propagating polariton. If we then

turn the control field off, the polariton is completely mapped or stored as a Ryd-

berg excitation. We can then reverse this process by turning the control field back

on, retrieving the pure Rydberg excitation back as a propagating polariton in the

probe mode. This idea of coherently converting a propagating polariton into a pure

atomic excitation and then back again is the underlying principle behind EIT-based

quantum memories, which have been shown to have the high storage efficiencies [69]

and long lifetimes [70] critical for the purposes of quantum networking.
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3.2 Collective Excitations

From equation 3.17, it mathematically makes sense that the turning on and

off of the control field can map from a propagating polariton, to a pure Rydberg

excitation, and back again. However, intuitively it might sound peculiar that the

retrieved polariton would propagate in the same mode as before the storage. If we

think about an ensemble of two-level atoms and direct a resonant photon at the

ensemble, there is no preference for the scattered photon to resume propagation

in the input photon mode, if scattering occurs. The difference in the EIT case is

that the excitation is a collective, or spin-wave excitation. When the control field is

turned off the resulting state we have is a single (assuming a single input photon)

symmetric, Dicke-like [67,71], excited state

|R〉 =
1√
N

∑
j

ei(
~kp+~kc).~rj |g1g2 . . . rj . . . gN〉 , (3.18)

because each of the N atoms is equally likely to be excited. To see why this state

results in directed emissions, it is perhaps easiest to consider an approach similar

to reference [72]. Here, we imagine using a second control field, still resonant with

the |e〉 to |r〉 transition, but with a different wavevector kc′ , to perform a fast π

rotation, resulting in the state

|E〉 =
1√
N

∑
j

ei(
~kp+~kc−~kc′ ).~rj |g1g2 . . . ej . . . gN〉 . (3.19)
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Figure 3.4: Spin-wave emission probability as a function of the angle between the
retrieved and input probe mode for ~kc = ~kc′ . Pr here has been normalized such that
the phase matched probability is equal to unity. For this plot the atom positions
were randomly generated with a Gaussian distribution equivalent to a cloud with
an RMS radius of 20 µm in every direction. The wavelengths for the fields used are
those for Rubidium D2 Rydberg excitations, λc,c′ = 480 nm and λp,r = 780 nm.

The emission probability, Pr, into a mode with polarization Êr, wavevector ~kr, and

corresponding raising operator â†r is given by

Pr ∝
∣∣∣〈G, 1r|(Êr.d̂) â†re−i~kr.~r |E, 0r〉∣∣∣2, (3.20)

where we have used the notation |E, 0r〉 with the first element denoting the atomic

ensemble state, and the second the photon occupation number of the retrieved field,

and where |G〉 has all atoms in the ground state |g〉. Under the assumption that

the matrix elements 〈gj|
(
Êr.d̂

)
|ej〉 are identical for all atoms, then we have

Pr ∝
1

N

∣∣∣∣∣∑
j

ei(
~kp+~kc−~kc′−~kr).~rj

∣∣∣∣∣
2

. (3.21)
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Figure 3.5: Spin-wave emission probability as a function of the angle between the
retrieved and input probe mode for ~kc, ~kc′ at an angle ≈ 128◦ and ≈ 52◦ respectively
to the input probe field. Pr here has been normalized such that the phase matched
probability is equal to unity. For this plot the atom positions were randomly gener-
ated with a Gaussian distribution equivalent to a cloud with an rms radius of 20 µm
in every direction. The wavelengths for the fields used are those for Rubidium D2
Rydberg excitations, λc,c′ = 480 nm and λp,r = 780 nm.

If ~kp + ~kc − ~kc′ − ~kr is non-zero, as we perform the sum we are going to get some

partial cancellations due to the atoms all being located at slightly different positions.

But, when the phase matching condition is met, i.e. when ~kp + ~kc − ~kc′ − ~kr = 0,

all the phase factors add constructively and we see an enhancement in Pr. Under

the condition that ~kc = ~kc′ the phase matching condition is clearly satisfied when

~kr = ~kp, i.e. the retrieved photon is in the same mode as the input probe field,

as seen in figure 3.4. It is this phase matching condition that was implicitly met

when we previously discussed the EIT storage and retrieval. However, one can

also retrieve into a different mode with appropriate choice of the two control fields,

as seen in figure 3.5, where the two control field wavevectors have been chosen so
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that the phase matching condition preferentially retrieves the photon into a mode

counter-propagating that of the input probe field. A further point to make here is

that the enhancement of the phase-matched emission improves with increasing atom

number, and the magnitude of the dipole matrix element of the |g〉 to |e〉 transition.

This means that to achieve high directed retrieval efficiency we want a system which

has a high optical depth [73].

It should be pointed out that we have ignored the effect of any dephasing

mechanisms, such as motional dephasing, or dephasing due to inhomogenous differ-

ential energy shifts, that may occur between the creation of the initial |R〉 spin-wave

and the retrieval of the photon. Such dephasing leads to an overall reduction in the

retrieval probability that tends to worsen as we increase the storage time of the

spin-wave. In practice one has to try to mitigate these dephasing mechanisms,

which usually requires working with a cold atomic sample, and which may place

some more stringent restrictions on the choice of the wavevectors used, over and

above the phase matching condition.

3.3 Rydberg Electromagnetically Induced Transparency

In the previous two sections we have not really troubled ourselves with the Ry-

dberg nature of state |r〉. From equation 3.17 we know that polaritons propagating

in the EIT medium have some admixture of the Rydberg state, and from chapter 2

we know that pairs of Rydberg atoms will interact with each other, meaning that

propagating polaritons in a Rydberg-EIT medium will also interact with one an-
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other. This polariton-polariton interaction allows us to engineer effective optical

non-linearities that are strong even at the single photon level. A prime example

of this is the experiment described in reference [41]. Here, the researchers took a

doubly resonant, ∆p = ∆c = 0, Rydberg-EIT system utilizing a high lying Rydberg

state, n > 77, and high optical depth, OD > 10. They observed that, for a coherent

state input probe, the light exiting the cloud exhibited strong anti-bunching statis-

tics. This behavior is understood fairly intuitively by considering a pair of photons

sent into the medium, one after the other. The first propagates, with a reduced

velocity, through the medium as a polariton. When the second photon enters the

medium, if it is sufficiently close to the first, then the Rydberg-Rydberg interactions

mean that the control field is no longer resonant with the |e〉 to |r〉 transition, and

the photon sees an ensemble of two-level atoms with which it is resonant, and it

has a high likelihood of being scattered away. Therefore, the probability of multiple

photons simultaneously exiting the medium is suppressed.

In addition to that experiment showing dissipative interactions, a wealth of

work has been performed in the dispersive regime. Here, the control and probe

are detuned off single-photon resonance, usually with ∆c,∆p >> Γ, but near two-

photon resonance ∆c ≈ −∆p. In this regime the Rydberg-Rydberg interactions

results in a change in the real part of χ when the two photons are near, with the

imaginary part of χ, related to absorption, being less significant. This provides

more flexibility, allowing one to realize attractive polariton-polariton potentials [42,

43], leading to photon bunching, non-trivial three-photon interactions [63], and,

with some additional couplings, molecular-like [45] and non-lossy repulsive photonic
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interactions [74].

Outside of its use as a diagnostic tool and briefly in chapter 7, we will not be

specifically discussing Rydberg EIT much further in this thesis, although it should

be pointed out that the initial design of the apparatus was made with Rydberg

EIT experiments in mind. We will, however, be making use of a number of the

related phenomena discussed in this chapter, such as collective excitations and the

non-linearities associated with a Rydberg ensemble.
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Chapter 4: Experimental Setup and Techniques

Owing to their low temperatures, and potentially high atomic densities, ultra-

cold atomic system serve as a good test bed for exploring Rydberg ensemble physics.

In this chapter I describe the experimental apparatus and procedures we have de-

veloped for cooling, trapping and probing a 87Rb Rydberg ensemble. Additionally,

I wish to share some tricks and techniques that we have discovered in the hope that

they may benefit future graduate students.

Unfortunately, a graduate student’s career is not full of unmitigated successes.

However, our failures, while often unreported, are as important, if not more so, to

pass on to future generations of graduate students as our successes are. Therefore,

throughout this section I have endeavored to also include details of some of the

apparatus and techniques that were unsuccessful.

4.1 Science Chamber

4.1.1 Chamber Design

Ultracold atomic physics in general requires high vacuum in order to reduce

the collision rate of the atoms of interest with background particles. Thus, we
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Figure 4.1: Render of science vacuum chamber. Note the co-ordinate system here
as it is referenced throughout this chapter.

perform all experiments within a vacuum apparatus, the exterior design of which

is shown in figure 4.1. The central region of this apparatus is our main vacuum

chamber (Kimball Physics 8” spherical octagon chamber)1, which is where atoms

are trapped, cooled and probed. The chamber has ten ports, eight 2.75” conflat

(CF) and two 8” CF flanges, giving us a potential for high optical access. To all

the flanges, except those along the y axis we attach viewports (Kurt Lesker VPZL-

275 for 2.75” flanges and Kurt Lesker VPZL-800 to the 8” flanges), with the 2.75”

viewports off the x axis anti-reflection (AR) coated for 780 nm for the magneto-

optical trapping light. The two viewports along the x-axis are coated for 479 nm,

780 nm and 1004 nm, to be compatible with our 780-nm probe and 479-nm control

Rydberg excitation lasers, as well as our 1004-nm optical dipole trapping light.

1throughout this section I have, where known, tried to include part numbers
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To the main chamber we connect a pair of four-way crosses (Kurt Lesker C-

0275). We attach a further 780-nm AR coated viewport (Kurt Lesker VPZL-275)

to the y-axis flange of both crosses. In addition, an ion pump (Gamma Vacuum

45s TiTan) and D-sub 9 feedthrough (Accu-Glass 9D-275) is attached to one of the

crosses, while the other connects to a bellows and a flange multiplexer (Kimball

Physics MCF275-FlgMplxr-Cr1A5), which houses four MHV and one BNC (Accu-

Glass BNC-GS-133) 1.33” feedthrough. The ion pump, used for maintaining vacuum

in the system, has an additional port which we connect to an all-metal valve. In

normal operation the valve is sealed shut and a blank (Kurt Lesker F0133X000N)

is attached. A breakable glass ampoule (Alfa Aesar 10315-03), containing rubidium

in its natural abundance, is placed inside the bellows.

For all the flange-flange connections we use copper gaskets to create the seal.

This has the potential for causing problems with time dependent magnetic fields,

due to eddy currents. However, we require sufficiently high vacuum, and desired

to bake at sufficiently high temperature, that Viton gaskets were deemed to be

inadequate.

All the viewports are bolted to the chamber along with either one or two

washers, shown in figures 4.2 and 4.3, that have various tapped holes for attaching

hardware directly to the chamber. The 2.75” viewports have a single washer at-

tached that has a set of through holes, which allow the washer to be bolted to the

chamber along with the viewports, and 4-40 tapped holes, at spacings compatible

with the 30mm Thorlabs cage system. The 8” viewports have a pair of washers

that are stacked on top of each other. The inner washer is bolted directly to the

42



Through Hole 1/4-20 Tapped

4-40 Tapped

Figure 4.2: Render of cage washer for 2.75” viewports.
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Figure 4.3: Render of cage washers for 8” viewports. Outer (inner) washer shown
on the left (right).
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Figure 4.4: Image of the interior of the central chamber of the science vacuum
apparatus. Note the co-ordinate system here as it is referenced throughout this
chapter.

chamber, along with the viewport, using through holes, similar to the 2.75” washer.

It has a set of 1/4”-20 tapped holes, which line up with a matching set on the outer

washer allowing the two to be attached together. The outer washer has a num-

ber of additional 1/4”-20 tapped holes that allow equipment to be attached to the

chamber.

4.1.2 In-Vacuum Components

The main chamber houses a number of in-vacuum components, that can be

seen in figure 4.4. These are essential to the experimental operation and each are

discussed in detail below. To hold the components in place they are screwed into

either one or both of a pair of custom designed stainless steel plates. The plates

themselves are fixed to the upper and lower lips of the main chamber using a set
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of groove grabbers (Kimball Physics MCF800-GrvGrb-C01). The groove grabbers

are electrically conductive meaning that the plates are at the same potential as the

chamber, which itself is grounded using a thick metal braid, helping to eliminate

stray electric fields that might cause Stark shifts to the Rydberg states. The plates

both have a set of slits, which sit at 45◦ to the x and y-axes, designed to reduce

undesirable eddy currents. In addition, the plates have an ≈ 1.1” by 1.1” square

hole in their center to allow passage of the z-axis magneto-optical trap (MOT) light.

4.1.2.1 Lenses

Two 1” diameter aspheric lenses (Asphericon AFL25-40) with a numerical

aperture of ≈ 0.3 lie along the chambers x-axis. These are AR coated at 780 nm,

479 nm and 1004 nm and are present to allow tight focusing of the probe and

control Rydberg excitation light, in addition to that of the optical dipole trapping

light. The lenses sit in custom design stainless steel mounts, and are held in place

using a custom PEEK washer and a metal ring, which screws into the mount. The

lens mounts each have a pair of tapped screw holes which line up with through holes

on the lower plate, allowing us to directly attach the two.

A small amount of play exists when screwing the mounts into the plate, allow-

ing for small rotations and displacements of the lenses. In order to ensure correct

positioning of the lenses a custom cuboid aluminum block was machined whose long

side matched the desired distance between the two lens mounts. The lens mounts

were set to be flush with the block while they were being initially screwed into the
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plate. Further fine alignment was performed before sealing the chamber by observ-

ing the back-reflections of visible red light from a fiber pen off the lens pair. Slight

adjustments to the orientation of the lens mounts were made to ensure all the reflec-

tions off the lenses were concentric. To achieve this, some small vertical correction

was required and so a small shim, made out of a folded piece of aluminum foil,

was placed under the negative-x lens mount. During the alignment process a screw

became cross-threaded with the negative-y screw-hole of the positive-x lens mount.

Nevertheless, the mount was able to be aligned and robustly secured to the plate.

In addition to the necessity for the lenses to be parallel, it is also desirable

for the lenses to not be parallel with the x-axis windows, in order to prevent any

etaloning effect. Therefore, the support plates are turned slightly such that the

windows and lenses make a slight angle with each other.

4.1.2.2 Low Voltage Electrodes

Given the sensitivity of Rydberg states to electric fields that we saw in chap-

ter 2, we require precise control of the local electric field felt by the atoms. For this,

we have a set of eight low-voltage electrodes, four attached to each plate in a square,

side length ≈ 1.1”, around the MOT light hole. Each electrode has a pair of tapped

holes which, along with corresponding through holes, allows it to be attached to the

support plates. For each screw we use a pair of ceramic “hat” washers (McAllister

Alumina “hat” washer) on either side of the plate that electrically isolate the screw

and electrode from the plate itself.
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D-Sub 9 Pin Number Electrode

1 X+Z+
2 X-Z+
3 X+Z-
4 X-Z-
5 Y-Z-
6 Y+Z+
7 Y-Z+
8 Y+Z-

Table 4.1: Low voltage electrode connection matrix. Electrodes are labelled by their
position relative to the previously defined experimental axes.

The electrodes are attached to the D-Sub 9 feedthrough with a Kapton-coated

wire ribbon cable (Accuglass KAP-R9). On the feedthrough side the ribbon ca-

ble simply plugs into the D-Sub 9 connector. For each electrode the Kapton was

stripped slightly from the 28AWG wire and the bared wire wrapped directly around

one of the electrode screws. A pinout for this wiring can be found in table 4.1.

During chamber construction each electrode was checked to ensure that it was not

in electrical contact with the plate. However, after pumping down and sealing the

chamber it was discovered that the X-Z- electrode had become shorted to the cham-

ber. While undesirable, full control of the electric field is possible even with one of

the electrodes shorted. Therefore, the problem has not been rectified due to desire

to avoid breaking vacuum.

The two sets of electrodes have an ≈ 34 mm spacing, and when trapped

the atoms sit roughly equidistant between the two. Experimentally, we generate

electric fields by applying a differential potential to electrodes along the desired

axis, e.g. to apply field along the x-direction all the electrodes in the positive-x

direction have some potential applied to them, while those in the negative-x direction
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have the opposite applied. This procedure is always performed ensuring that the

shorted electrode is at ground. We have spectroscopically determined the electric

field at the atoms per volt of differential potential applied to be ≈ 0.14(V/cm)/V,

≈ 0.10(V/cm)/V and ≈ 0.08(V/cm)/V for the z, x and y axes respectively.

4.1.2.3 High Voltage Electrodes and Ion Detection Electronics

It can often be desirable to identify exactly what Rydberg states are present

in a system. One can use state selective field ionization [59] for this purpose, using a

large electric field to selectively ionize certain Rydberg states, with the resulting ions

then detected. To that end, we have a pair of high voltage electrodes in the vacuum

chamber, along with a multi-channel plate detector (MCP) (Photonis Microtron 2

APD 5.5/32/25/8). These all lie along a line which makes an angle ≈ 17◦ to the

y-axis.

One of the electrodes is a solid stainless steel block which sits on the positive-y

side of the chamber. The other electrode is of a similar design but has a circular

hole covered in a wire mesh, with the mesh fixed in place by a circular ring bolted

to the electrode block. The MCP sits in the steel block immediately behind the

mesh covered electrode, with a small set screw securing it in place. All the blocks

are bolted to both the upper and lower plates, with ceramic hat washers again used

for electrical isolation from the plate.

The electrodes and MCP are connected to the various MHV and BNC feedthroughs

using high voltage Kapton coated wire and coaxial cable respectively (Accu-glass
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Figure 4.5: Annotated render of pinout for high voltage feedthrough.

100670 and 100705). The wire is attached to the feedthroughs, the MCP anode and

MCP output tabs by stripping a small amount of insulation from the wire tip and

securing the wire to feedthrough/tab using a barrel connector. Similar to the low

voltage case, the connection to the two electrodes is made by stripping the insula-

tion from the wire and winding the bared conductor around one of the screws which

secure the electrode block to the supporting plate, taking care to ensure there are

no shorts to the plate itself. The outer casing of the MCP acts as its electrode,

which is in electrical contact with the block it sits in, therefore, this is wired up by

also winding a stripped wire around one of the screws securing the MCP block. A

diagram of the pinout for these connections is shown in figure 4.5.

The solid and meshed electrode are separated by a distance ≈ 91 mm, with the
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atoms trapped in a region approximately in the middle of the two. We have spec-

troscopically determined the electric field generated due to a differential potential

between the electrodes to be ≈ 0.03(V/cm)/V.

While the original intention for MCP and high-voltage electrodes was for the

diagnostic purpose of state-selectively field ionizing Rydberg states, several issues

have prevented their use for this purpose. Most fundamentally there seems to be an

issue with using the MCP in the presence of the 479 nm Rydberg excitation light.

When monitoring the MCP we have observed detection events with the 479 nm light

present, even with the absence of trapped atoms. Given that the 479 nm photons

are sufficiently energetic to induce desorption of rubidium atoms from surfaces [75],

our hypothesis is that some fraction of the blue light injected into the chamber is

scattered and proceeds to reflect off the various shiny in-vacuum surfaces. The blue

light rattling around the chamber desorbs rubidium atoms from the interior surfaces,

a process which has the potential to produce ions [76], which are then detected by

the MCP. This issue makes it impossible to perform Rydberg ion detection while

the blue light is present, and even for a time (of order 10s of microseconds) after it

has been extinguished. Therefore, at present, we have been unable to use the MCP.

It should be pointed that there are other groups with similar experimental setups

who do not experience this problem [77], which we believe is due to better shielding

of the MCP from blue light and/or the desorbed ions.

In addition to issues with the MCP, we have a related problem with our high

voltage electrodes when used for field ionization. Large electric fields, of the mag-

nitude required for field ionization, seem to cause some charging effect within the
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chamber when the 479-nm light is present. Similar to with the MCP, we have also

observed this charging when the electric field and blue are not on simultaneously, but

the field is turned on some 10s of microseconds after the light has been extinguished.

We believe that this is also related to desorption of rubidium ions from chamber sur-

faces, which are jettisoned away from the surface by the electric field, leaving the

surface charged. Due to the lack of electrical conductivity and the large potential

for interaction with the blue light, the in-vacuum lenses are likely candidates for

the surfaces becoming charged. As a result of the sensitivity of the Rydberg states

to electric fields, the charging has been observed to produce measurable shifts, e.g.

several MHz for n=96. Therefore, at present, we have also been unable to utilize

the electrodes for their originally intended purpose.

In spite of these issues, the in-vacuum high-voltage electrodes have been given

a new lease of life as microwave antennas, for the purpose of driving microwave

transitions. Given the enormous electric dipole matrix elements between nearby

Rydberg states [65], a relatively small amount of microwave power is required to

produce large Rabi frequencies. For example, for the stretched 139S1/2 to 139P3/2

transition a microwave intensity of ≈ 5 pW/cm2 is sufficient to produce a Rabi

frequency of ≈ 2π × 1 MHz. Even with the sub-optimal design, a modest amount

of RF power, of order a few milliwatts, connected to the solid electrode feedthrough

has been found to be sufficient to produce microwave intensities at the atoms of a

few hundred nW/cm2.

In addition to driving electric dipole transitions between adjacent Rydberg

states, microwaves are also of use for driving magnetic dipole transitions between
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the different sub-levels of rubidium’s 5S1/2 ground state manifold. While the cou-

pling is typically much smaller for these type of transitions, we have observed Rabi

frequencies on the order of ≈ 2π × 1 kHz by applying ≈ 2 W of RF power to

the solid electrode feedthrough. This is sufficiently high for a number of purposes,

such as preparing the cloud in a Zeeman sublevel for which optical pumping is not

straightforward.

Due to the fact that the in-vacuum high-voltage electrodes were not designed

as microwave antennas, they are not natively well impedance matched to any RF

drive. To overcome this, we use a triple stub tuner (Maury microwave 1819B)

which allows us to suppress unwanted reflections that might damage RF generating

equipment.

4.1.2.4 Wiring

The way the vacuum apparatus is configured, wires run from the feedthroughs,

which reside on the two crosses, to various components in the main chamber. This

causes a potential problem as wires dangling in the central region of the cross will

obscure optical access along the y-axis. To eliminate this issue a “false ceiling” was

created using coils of stainless steel wire which run along the inner part of the cross,

as seen in figure 4.6. These are set up so that any wires are pinned between the coil

and the inner wall of the cross, keeping them out of the central region. Additionally,

within the main chamber the wires are strategically routed behind the plates, with

most of the connections to the in-vacuum electronics made to bolts on the outer
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Figure 4.6: Image of one of the crosses during construction showing “false ceiling”.

facing part of the plates.

4.1.3 Initial Vacuum Pump-Down Procedure

Several measures were taken during and after construction of the science cham-

ber to ensure that we could reach the high vacuum required for an ultracold atomic

physics experiment. The metal in-vacuum components, described in the previous

section (electrodes, lens mounts, plates etc.), were electropolished after machining.

Several components were salvaged from old experiments, rather than bought new, or

were deemed to be sufficiently dirty prior to construction. This included the crosses,

bellows, and groove grabbers. These, along with the Allen keys used to tighten the

in-chamber screws, were all cleaned using a standard procedure detailed on the JQI
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wiki2. The chamber was then constructed on an optical table covered in vacuum

compatible aluminum foil, using nitrile gloved hands to ensure no contamination of

the chamber.

Upon completion of the construction of the vacuum apparatus, a roughing

turbopump was connected to the, normally blanked, port of the valve and the valve

was opened. An initial leak test was performed by running the roughing pump for

≈ 17 hours, during which time we observed an exponential decrease in the pressure.

A further test was performed using a residual gas analyzer (RGA), while pumping,

to monitor the helium pressure in the chamber while spraying helium around the

various potential entryways, with no signs of a leak being observed.

The entire vacuum apparatus was then transferred to an oven with an inte-

grated roughing (used for the initial pumping) and ion pump (used for the majority

of the bake duration) and RGA. The system was baked at ≈ 150◦ C for ≈ 1 week,

while constantly pumping. While a higher temperature would have resulted in a

shorter bake time, the custom AR coatings for the in-vacuum lenses and x-axis

viewports were not recommended to exceed 150◦ C. To prevent cracking of the

viewports due to temperature gradients, the oven temperature was ramped up and

down from room temperature to the baking temperature over a period of ≈ 10

hours. Although the temperature was well below the maximum rated temperature

of the on-chamber ion pump magnets, ≈ 250◦ C, out of an abundance of caution we

removed them during the bake.

Post-bake, with the chamber at room-temperature, the magnets were re-

2https://jqi-wiki.physics.umd.edu/d/wiki/lab_tips/vacuum_preparation
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attached to the ion pump and it was turned on. An initial pressure increase was

observed, believed to be due to some arcing within the ion pump causing material

to be ejected into the vacuum system. However, with the oven’s ion pump operating

in combination with the on-chamber pump the pressure was seen to drop back down

relatively quickly. The valve was then sealed shut and the chamber moved to its

present position on the optical table. After sealing the valve the pressure was seen to

decrease about an order of magnitude over a few hours. Since sealing the chamber,

the pressure has been observed to fluctuate within the range 5− 20× 10−10 mBar,

as measured from the current draw of the ion pump. However, these fluctuations

do not seem to be obviously correlated with anything.

4.1.4 Magnetic Field Generation

A pair of coils in anti-Helmoholtz configuration generates a quadrupole mag-

netic field used for the MOT. The coils were salvaged from an old experiment and

each consist of hollow, square-profile Kapton coated tubing wound with seven turns

and seven layers with an inner diameter of ≈ 7 cm and outer diameter of ≈ 13 cm.

The two ends of both coils are stripped of their Kapton, for electrical connection,

and have Swagelok connectors attached to the tips, to allow for water cooling. We

connect the coils such that both current and water are run through the pair in series.

Each coil is epoxied (3M Scotch-Weld 3501) to a 3D printed ABS plastic mount,

which is bolted to the outer washers of the 8” viewports, as shown in figure 4.7.

When mounted to the chamber the coils are separated by ≈ 10 cm, from which we
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Figure 4.7: Cross-sectional render of 8” viewport with quadrupole coil mounted.

calculate the magnetic field gradient in the center of the chamber, along z-axis to

be ≈ 0.9 G/cm/A.

In addition to the quadrupole coils, a set of bias coils are also attached to the

chamber which allow us to produce near-uniform fields across the trapped atomic

cloud in all three axis. These are essential for shimming the magnetic zero of the

MOT, zeroing out stray magnetic fields, defining quantization axes, and lifting Zee-

man degeneracies. For the z-axis bias field, the coils were formed by winding 5 turns

and 2 layers of insulated 22 AWG wire directly around the exterior of the chambers

8” viewports, as seen in figure 4.8. The wire is clamped in place by a series of 3D

ABS printed clips which bolt to the 1/4”-20 screw holes of the 8” viewport outer

washer. Current is run through the coil pair in series in Helmholtz configuration.

The coils have a separation of ≈ 7 cm and an inner diameter of ≈ 20 cm, from which

we expect a field of ≈ 1 G/A at the atoms, which has been verified spectroscopically.

For the x-y plane a set of four coils are mounted to the chamber on the 2.75”
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Figure 4.8: Annotated image of chamber with quadrupole and bias coils mounted.

viewports that lie along the axes ±45◦ to the x-axis. They were formed by winding

four layers by four turns of insulated 22 AWG wire around a 3D ABS printed mount.

Both the coils and mount can be seen in figure 4.8. As the coils were wound, epoxy

(3M Scotch-Weld 3501) was applied to cement the wire in place. The mount has

through holes compatible with Thorlabs 60 mm cage system. We use a 30 mm to

60 mm cage adapter, along with cage rods, to attach the coils to the washers of the

2.75” viewports. Given the ≈ 21 cm separation of the coils pairs and their ≈ 10 cm
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inner diameter we would expect fields on the order of ≈ 0.3 G/A at the atoms.

However, spectroscopically we determine the value to be about half of this. Upon

discovering this suppression, the coil pair was removed and tested off the chamber,

with the field magnitude matching the expected value. In addition, we have observed

hysteresis that we believe to be related to the field suppression issue. This hysteresis

has not been quantified spectroscopically, but measurements performed using a a

single coil mounted on one of the x-y viewports, with a magnetometer placed near

the opposite viewport, indicated a difference of ≈ 0.1 G in the remnant, following

the application of a large field with the coil. A similar effect has been observed in

another, more recently constructed, set of coils. While there appears to be something

within the chamber itself causing the issue, we have, as of today, been unable to

determine its exact origin.

4.1.5 Rubidium Oven

As previously mentioned, the bellows attached to the chamber houses a glass

ampoule containing rubidium. After baking out and sealing the chamber this am-

poule was cracked by bending the bellows. The exposure of the rubidium within the

ampoule results in a vapor within the chamber, from which we load our MOT. We

control the rubidium vapor pressure within the chamber by adjusting the tempera-

ture of the bellows. Temperature control was originally implemented using a Peltier

heat pump, which had one side in thermal contact with the bellows and the other

with a water cooling block. This allowed us to heat up the bellows during the day,
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and cool it at night. However, several catastrophic failures with the water cooling,

including a rather messy leak, convinced us to transition to the current oven design.

The present oven design has the bellows enclosed by set of three metal blocks,

with copper wool wedged between the bellows and blocks to ensure good thermal

contact. The blocks are bolted to a washer, similar to those around the viewports,

fixing them in place around the bellows. These are wrapped in heater tape, which

is then wrapped in aluminum foil to reduce heat loss. We drive the heater tape with

a variac, using a solid state relay to allow power to the tape to be turned on and

off. A thermistor wedged in between the copper wool allows us to monitor the oven

temperature, which we feed back to a standalone computer (Raspberry Pi) which

controls the solid state relay. We implement a rudimentary feedback control system

in software to regulate the temperature to a set point to better than ±5◦C. A web-

GUI interface allows altering of the set temperature as well as the defining of set

temperatures to be implemented at fixed times. Both pieces of software can be found

in https://github.com/acraddoc91/RbRy_Oven_Control. For a typical day the

oven is heated to 60◦C an hour prior to experimental use. We have observed that

lower oven temperatures than this can significantly reduce the final atom density of

the cloud, while much higher temperatures significantly reduce the lifetime of the

clouds. Although an hour seems to be sufficient time for the vapor pressure in the

main chamber to reach acceptable levels for loading the MOT, it should be noted

that it took significantly longer, multiple days, for this to be the case the first time

the oven was turned on.

Rubidium has a tendency to stick to and kill ion pumps [78, 79]. To try and
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Figure 4.9: Atomic level diagram, with relevant experimental couplings. For the
couplings shown to be off-resonant, the detuning (black arrows) is intended to indi-
cate the sign of the detuning from resonance.
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mitigate this as an issue we also constantly heat our ion pump to ≈ 60◦C. The idea

here is that a temperature gradient between the pump and the rest of the chamber

will cause rubidium to diffuse away from the pump.

4.2 Laser Systems and Beam Paths

We perform all experiments with a cloud of atoms in an optical dipole trap.

Several processes are necessary for producing a high density, low temperature, and

high state purity collection of atoms in the trap suitable for the purpose of probing

Rydberg ensemble physics. We first load atoms from the background rubidium vapor

into a MOT, followed by optical molasses to cool the atoms into the optical dipole

trap. The atoms are then optically pumped into a well-defined Zeeman sublevel

prior to probing. Here, I detail the optical schemes for these stages, as well as the

laser systems used in the experiment. Figure 4.9 shows the atomic level system and

indicates the transitions addressed by the various beams/light fields.

4.2.1 Magneto-Optical Trap and Optical Molasses

Three circularly polarized beams, e−2 diameter ≈ 25 mm, are injected into the

chamber, two in the x-y plane and a third along the z-axis, as shown in figure 4.10.

At the exit of the chamber all the beams pass through a quarter waveplate before

being retro-reflected back into the chamber. The two beams in the x-y plane contain

both cooling light, addressing the F = 2 to F′ = 3 transition on the D2 line, and

repump light, addressing the F = 1 to F′ = 2 transition of the D2 line. The beam
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Figure 4.10: Beam schematic for MOT and molasses. Due to the 2D nature of the
diagram, the third MOT beam, which propagates along the z-axis, is difficult to see.
All three beams consist of light with a 780-nm wavelength. Beams are roughly to
scale.

in the z-axis consists only of cooling light.

The cooling and D2-repump light for the MOT and molasses stages originate

from two laser systems, a Toptica TA-pro and DL-pro respectively. A schematic of

the setup for the two laser systems can be seen in figure 4.11. While kHz-narrow

laser linewidths are not required here, some level of frequency stability is. To that

end, light from the D2-repump laser is picked off for the purpose of a saturated

absorption lock. The error signal from the lock is used to feed back to the laser

piezo which controls the grating of the ECDL. As seen in figure 4.12, we lock the

light coming out of the laser to the F = 1 to F′ = 1/0 crossover peak of the D2 line.

To stabilize the light from the cooling laser, we use a further pick off to take
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Figure 4.11: Schematic of laser setup for MOT and optical molasses. Wavelength
for all beams shown is 780 nm.
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Figure 4.12: Atomic level diagram showing laser scheme for the MOT and optical
molasses.

additional light from the D2-repump laser, which we mix using a 50:50 fiber combiner

with light taken from the cooling laser. The mixed light is sent to a high bandwidth

detector (Vescent D2-160), which detects the resulting optical beatnote. We send the

electronic beatnote signal to a phase-locked loop (PLL), the design of which is similar

to that in reference [80], along with a reference tone. We use the output of the PLL

to feed back to the cooling laser current (Mod-DC input). This locking scheme is

beneficial as it allows us to make large, 100s of MHz, on-the-fly changes to the cooling

laser frequency by altering that of the reference3. Additionally, the PLL operates

by trying to match the phase of the beatnote with that of the reference signal which

results in cooling and D2-repump light being phase locked. This actually ends up

3Note that the cooling laser frequency does not instantaneously change when the reference is
altered, with some time taken for the laser to re-lock that is variable, depending on the frequency
jump. For jumps of order tens to hundreds of megahertz this re-lock time is on the order of
hundreds of microseconds to milliseconds.
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being critical for the gray molasses [81] that we will discuss later. In order to prevent

long term drifts from causing mode-hops, we utilize a slower lock which feeds back

to the grating piezo of the cooling seed ECDL, that drives the current feedback to

zero.

For the D2-repump light sent to the chamber, we use a double pass AOM

(Gooch & Housego 3110-197), which allows for rapid adjustment of the D2-repump

frequency, as well as fast shuttering of the light. While for the cooling light, we

use a single pass AOM (Gooch & Housego 3110-197), driven at ≈ 80 MHz, for

fast shuttering. After the AOMs, we combine light from both the cooling and D2-

repump lasers using 50:50 fiber combiner, whose output arms are sent to the science

chamber as the two x-y plane MOT beams. Additional post-AOM cooling light is

coupled into another fiber and sent to the chamber for the z-axis MOT beam.

4.2.2 Optical Pumping

Initialization of all the atoms into a single state is desirable for several reasons.

Firstly, it presents a cleaner system to work with than one in which two or more

Zeeman sublevels are populated. Additionally, as we saw in chapter 3, and as will be

important in the experiments later, having a large OD is advantageous when dealing

with light-matter interactions. We, therefore, want to work in a Zeeman sublevel

for which the probe coupling will have a large Clebsch-Gordan coefficient, as this

maximizes the OD per atom. For the D2 line of rubidium, the maximum transition

strength is on the stretched |F = 2,mf = ±2〉 to
∣∣F ′ = 3,m′f = ±3

〉
transition. As
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Figure 4.13: Beam schematic for optical pumping. Beam consists of D2-repump
light with a 780-nm wavelength, and D1-pump light with a 795-nm wavelength.
Beam is roughly to scale.

such, we optically pump our atoms into the |F = 2,mf = 2〉 state. Experimentally,

this is achieved using a single circularly-polarized beam, e−2 diameter ≈ 8 mm,

injected into the chamber along the y-axis, as shown in figure 4.13. The beam

consists of pumping light, which addresses the F = 2 to F′ = 2 transition on the D1

line, and a repump addressing the F = 1 to F′ = 2 transition of the D2 line. This

scheme pumps atoms into the |F = 2,mf = 2〉 state, which is dark for the pure σ+

polarized beam.

Previously, we had attempted to pump using the same transition on the D2

line. In this scheme off resonant scatter of the |F = 2,mf = 2〉 state off of F′ = 3

can occur, which can lead to depolarization of the cloud. Thus, for the D2 pumping

scheme, there is a delicate balance between pumping fidelity and heating the cloud,
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Figure 4.14: Atomic level diagram showing laser scheme for optical pumping.

with both depending on the pumping duration. In the D1 scheme the scattering of

the dark state only depends on the polarization purity of the beam.

In addition to pumping on the D2 line, historically attempts were made to

perform pumping along the x-axis, which is typically the major axis of the optical

dipole trapped cloud of atoms. The high optical density of the cloud in that direction

exacerbated the problems of depolarization of the D2 pumping scheme. For this

reason, pumping along the y-axis, which is typically the minor axis of the cloud,

was empirically found to be a better approach. However, in order to correctly define

the quantization axis for both probing and pumping, this approach does require

the B-field to be adiabatically swept through ninety degrees between pumping and

probing.
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Figure 4.15: Schematic of setup for D1-pump laser (795-nm wavelength).

The optical pumping beam, shown in figure 4.13, is formed of light from the

D2-repump laser, which we have already discussed, and that of another Toptica

DL-Pro which produces the 795-nm D1 pump. A schematic of the D1-pump laser

setup is shown in figure 4.15. We use a saturation absorption setup to frequency

lock the D1-pump laser, using the grating piezo of the ECDL for feedback, to the D1

F = 1 to F′ = 2 transition, as shown in figure 4.14. An AOM, driven at ≈ 80 MHz,

is used for fast shuttering of the pump light. The D1-pump and D2-repump light

is combined with a 50:50 fiber combiner, with one of the output arms sent to the

chamber.

4.2.3 Optical Dipole Trap

The optical dipole trap is comprised of three separate beams which intersect

inside the chamber, two ‘arms’ that pass through the in-vacuum lens and cross at
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Figure 4.16: Beam schematic for dipole trap. All beams composed of light with a
1004-nm wavelength. Beams not to scale.

69



a shallow angle, and a ‘dimple’ which travels along the y-axis near-perpendicular

to the other arms, shown in figure 4.16. This approach allows for a high degree of

configurability of the shape of the trap, and therefore atomic cloud, by varying the

relative power between the arms and dimple, and/or varying the crossing angle of

the arms.

As seen in figure 4.16, we use a system for the arms where we have a first

beam that propagates through the chamber, which is then recycled into a ‘retro’

beam, counter-propagating the first. This is used to maximize the trap depth for

the optical power available. The arms are coupled into the chamber by a pair of

dichroic mirrors (Chroma T800 DCSPXR), which are shortpass mirrors with a cutoff

wavelength of ≈ 800 nm, allowing us to spatially overlap the Rydberg excitation

and optical dipole trap light. The first arm enters the chamber linearly polarized,

with the polarization along the z-axis. It is aligned off-axis of the first in-vacuum

lens it interacts with, which causes the beam to focus down to a e−2 radius of

≈ 30 µm at a half-angle to the x-axis of4 ≈ 12◦. After passing through the second

in-vacuum lens and exiting the chamber, the beam is roughly collimated. The light

is then directed to a polarizing beam splitter (PBS), telescope and a retarder, to

ensure polarization purity, adjust the longitudinal alignment and polarization of the

retro arm respectively. The retro beam is directed back into the chamber, roughly

mirroring the first beam about the x-axis, so that it focuses down to a similar

waist and subtends a similar half-angle. For the work presented in this thesis we

used a half-wave plate (HWP) for the retarder so that first and retro arms had

4this can be varied by changing the off-axis displacement of the beam on the lens
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Figure 4.17: Atomic level diagram showing laser scheme for dipole trapping.

orthogonal polarization, preventing the formation of an optical lattice. However, we

have recently replaced this with a liquid-crystal retarder (Thorlabs LCC1411-B) to

allow us to dynamically rotate between a standard optical dipole trap and optical

lattice. Due to losses through the chamber, and in the post chamber reshaping and

polarization optics, the retro arm power is ≈ 80 % of that in the first arm. The

dimple beam is elliptically shaped, and when focused down has e−2 radii of ≈ 50 µm

and ≈ 30 µm along the x and z axes respectively. It too is linearly polarized, with

its polarization along the x-axis.

71



For the work shown in this thesis we use ≈ 1004 nm light for our three trapping

beams. This has the advantage that, in theory, we can tune the trapping light to

the ‘magic’ wavelength [82]. Here, the light is near-blue detuned from the 6P1/2

to nS1/2 transition, as shown in figure 4.17, where the Rydberg and ground state

have the same scalar polarizability, which allows us to eliminate inhomogeneous

broadening of the Rydberg-ground state transition due to the trap. However, at

the magic wavelength the vector polarizability of the Rydberg and ground states

can differ significantly. Due to the polarization configuration of the dipole trap

arms, for the work shown in this thesis, we have an inhomogeneous differential

vector shift that makes working at the magic wavelength unfavorable. Therefore,

we work at an empirically determined somewhat magic wavelength, which minimizes

the the inhomogeneous broadening due to the combination of the differential scalar

and vector light shifts. For the Rydberg states we typically work with, n > 80, the

somewhat magic detuning tends to be of order a few hundred megahertz to gigahertz

blue detuned from the 6P1/2 to nS1/2 transition. Going forward, operating the arms

in a lattice configuration, with the polarization of the outgoing and retro arm being

parallel, the vector light shift for both states will disappear, which should permit

working at the actual magic wavelength.

The optical dipole trapping light originates from a 1004-nm Toptica TA-pro,

containing a seed ECDL and a TA, and a standalone Moglabs MOA TA, both shown

in figure 4.18. Some light from the seed ECDL is picked off and sent to a wavemeter

(HighFinesse Angstrom WS/U-2). We use the locking feature of the wavemeter

to stabilize the frequency of light by feeding back to the grating piezo of the seed

72



Wavemeter

To Chamber
For Arms

To Chamber
For Dimple

Toptica TA-PRO

Moglabs MOA

Figure 4.18: Schematic of laser setup for dipole trapping. Wavelength of all beams
shown is 1004 nm.

ECDL. The remaining light from the ECDL seeds a first TA, integrated into the

TA-pro itself, which produces ≈ 1.5 W power. A fraction of this, ≈ 75 mW, is picked

off and sent to seed the Moglabs TA which amplifies the power up to ≈ 1.5 W. The

remaining light from the TA-pro is sent to the chamber to become the dimple beam,

while that from the Moglabs TA forms our dipole arms. Prior to entering the fiber

we send the light from each TA through an AOM (Gooch & Housego 3080-122) for

shuttering. In order to prevent interference between the arms and dimple, the drive

frequency of these two AOMs is offset by 10 MHz. Due to losses from the AOMs,

optics and coupling into the large mode area fibers (NKT Photonics LMA-PM-15)

we are able to get ≈ 750 mW of power delivered to the chamber for both the dimple

and first arm.
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4.2.4 Rydberg Excitation

For coupling the ground and Rydberg state we use a two-photon excitation,

shown in figure 4.9, with a ≈ 780-nm ‘probe’, addressing the D2 line of rubidium,

and a ≈ 479-nm ‘control’, addressing the 5P3/2 to nS1/2 transition. These both pass

on-axis through the in-vacuum lenses, as shown in figure 4.19. In order to minimize

the Doppler broadening of the ground-Rydberg transition we counter propagate the

two beams. The in-vacuum lens focuses the beams down to e−2 radii of ≈ 3.3 µm

and ≈ 18 µm, for the probe and control respectively. We chose this probe waist in

order to reduce the transverse dimension of the probe to be smaller than a blockade

radius5, effectively making all the Rydberg interactions one-dimensional along the

axis of the probe. The choice of control waist is a compromise, on the one hand we

want the beam to be small to ensure a large intensity and thus Rabi frequency of the

control field. However, we also want the beam to be large for two reasons. Firstly,

we want the control Rabi frequency to be homogeneous across the entirety of the

probe. Additionally, as the control field acts as a anti-trap for the rubidium 5S1/2

ground state, the beam also needs to be large enough that it does not significantly

reduce the atom density along the probe path. Outside of the chamber the two

colors are combined and separated on a pair of dichroic mirrors (Semrock FF757-

D101), while also passing through a further pair of dichroic mirrors (Chroma T800

DCSPXR), which allow the spatial overlap of the probe and control with the dipole

trapping light, as previously discussed.

5This waist was chosen along with picking an appropriate Rydberg level where this condition
is met.
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Figure 4.19: Beam schematic for Rydberg excitation. Probe beam (780-nm wave-
length) path shown in red, and control beam (479-nm wavelength) path shown in
blue. Beams not to scale.
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As mentioned, the maximal electric dipole matrix element for the D2 line

occurs for the |F = 2,mf = ±2〉 to
∣∣F ′ = 3,m′f = ±3

〉
transition. Therefore, to

achieve the maximum optical density per atom, the probe is circularly polarized to

address the stretched D2 transition. For this configuration the control field only

couples the 5P3/2 to nS1/2 states if it has the opposite circular polarization. There-

fore, it too is circularly polarized to maximize the Rabi frequency of the control

field.

The laser systems that produce the probe and control light are arguably the

most important in the experiment, warranting their slightly lengthier discussion.

We generate the light for the probe using a Toptica DL Pro ECDL. While the

control field light comes from a Toptica TA-SHG Pro, where a 958-nm seed ECDL

is amplified using a TA, then frequency doubled to 479 nm in a SHG ring cavity.

As we saw in section 2.1, Rydberg states can be extremely long lived. For

the states we shall be experimentally dealing with in this thesis, the state lifetimes

are on the order of 100s of microseconds. As a result, the natural linewidth of the

ground-Rydberg transition is orders of magnitude smaller than that of the free-

running linewidths of the Rydberg excitation lasers, hundreds of kilohertz. We,

therefore, want to spectrally narrow both the probe and control light sent to the

chamber. This is achieved by Pound-Drever-Hall (PDH) locking [83] both the 780-

nm probe and the 958-nm control seed ECDL to a high-finesse ultra-low expansion

(ULE) cavity (custom design Advanced Thin Films coated ULE cavity), which has

a linewidth < 10 kHz.

In order to ensure stability of the lasers locked to the ULE cavity, several
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Figure 4.20: Image of ULE cavity vacuum chamber, used for the two Rydberg
excitation laser PDH locks.

measures are taken to stabilize the cavity itself. Firstly, the cavity is housed inside

its own vacuum chamber, seperate from the main science chamber, which is primarily

comprised of a 6” diameter tee (Kurt Lesker T-0600-275), pumped down to of order

10−8 mBar by a 2 l/s ion pump (Modion C-1765M). Within the chamber the cavity

sits on a custom designed cradle, via a set of Viton pads, with the cradle resting on

the inside wall of the tee on a set of Viton rods. An image of cavity housed within

the tee can be seen in figure 4.20. Furthermore, the exterior of the tee is stabilized

to the ULE cavities zero crossing temperature6, ≈ 33◦C. More extensive information

6This is the temperature at which the derivative of the cavity length as a function of temperature
goes to zero.
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Figure 4.21: Schematic of probe laser (780-nm wavelength) setup

on the design of the ULE cavity system can be found in reference [84], upon which

our system is based.

For the probe ECDL, shown in figure 4.21, the PDH lock is implemented by

taking light and passing it through a fiber coupled electro-optic modulator (EOM)

(Photline NIR-MPX800-LN-0.1), driven at ≈ 18 MHz. This light, ≈ 200 µW, is

then directed to the cavity chamber off a longpass dichroic mirror, with the reflected

power collected on a fast photodiode (Newport New-Focus 1801). The signal from

the photodiode is demodulated and input into a fast analog servo (Vescent D2-125)

which feeds back to the current (Mod-DC input) of the probe laser. As with the

cooling laser, we want to prevent long term laser drifts from causing mode-hopping.

Therefore, we also perform a slower lock with the grating piezo of the ECDL to

drive the current feedback to zero.

We optimize the servo in order to increase the lock bandwidth, as measured by

78



0 200 400 600 800 1000
Frequency (kHz)

0

0.2

0.4

0.6

0.8

1

|P
ow

er
 S

p
ec

tr
u
m

| 
(a

rb
)

Figure 4.22: Power spectrum of in-loop error signal for the probe lock, showing the
servo bump. Black dashed line shows the approximate cavity linewidth.

looking at the Fourier transform of the in-loop error signal. With the servo optimized

and the probe laser locked to the cavity we have verified the laser linewidth, using

a self-heterodyne measurement, to be consistent with less than that of the cavity

linewidth. However, a precise measurement could not be performed due to the

requirement for a longer delay line that we had at hand.

With the probe lock optimized, we observe, in the Fourier transform of the

error in-loop error signal, that noise at frequencies less than ≈ 500 kHz are sup-

pressed, with a ‘servo bump’ at this frequency, shown in figure 4.22. These servo

bumps can be thought of as phase noise on the laser and have been shown to cause

additional dephasing within Rydberg systems [85, 86] when performing two-photon

excitations. Given that the ULE cavity has a linewidth much narrower than that of

the lock bandwidth, this phase noise is not present on the light exiting the cavity.

Therefore, it is the probe laser light from the cavity that we send to the main science
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Figure 4.23: Atomic level diagram showing laser scheme for Rydberg excitation.

chamber, as seen in figure 4.21.

Unfortunately, the cavity resonances do not necessarily align with the atomic

resonances. Therefore, post-cavity we use an AOM (Brimrose GPF-1000-500-.780),

driven at ≈ 1 GHz, either in single or double pass, followed by a double passed

AOM (Gooch & Housego 3080-122), driven at ≈ 80 MHz, to set the exact frequency

of the probe light arriving at the chamber, as shown in figure 4.23. Typically, the

frequency and RF power of the ≈ 1 GHz AOM is not changed, while the lower

frequency AOM is used for shuttering and adjustment of the probe light detuning.

Given the ≈ 1.5 GHz free spectral range (FSR) of the cavity at ≈ 780 nm, by

adjusting the diffraction order taken from the GHz AOM, and its single/double
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pass configuration, we can arbitrarily tune the probe frequency.

A similar locking scheme is used for the control light, albeit with some small

differences. A small amount of light, ≈ 3 mW, is picked off from the seed diode and

passed through a ≈ 1 GHz AOM (Brimrose GPF-1000-500-970), with the positive

first order sent to the ULE cavity, around 50 to 100 µW power. In contrast to the

probe setup, the seed diode current itself is modulated at ≈ 20 MHz to produce

the required sidebands for the PDH lock. At the cavity chamber, the 958-nm light

passes through the longpass dichroic, with the light reflected from the cavity directed

to another fast photodiode (Newport New-Focus 1801). We use the demodulated

photodiode signal as an input for another fast analog servo (Toptica FALC 110),

which feeds back to the current of the control laser (Mod-DC input). The lock

bandwidth for the control is of a similar order of magnitude to the probe. However,

we have seen some variation as the frequency of the ≈ 1 GHz AOM is adjusted,

changing the power arriving at the ULE cavity.

The remaining control seed light, ≈ 40 mW, is amplified using a TA, producing

≈ 1 W seed power, which is then coupled in to a ring cavity with a SHG crystal

inside it, as seen in figure 4.24. At the exit of the ring cavity we can typically

produce ≈ 450 mW at 479 nm. This is sent through a double passed AOM (Gooch

& Housego 3080-125), driven at ≈ 80 MHz, used for fast shuttering and on-the-fly

detuning of the light. After, the light is coupled in to a fiber and sent to the science

chamber. Due to the various losses we are able to obtain a maximum power of

≈ 100 mW of 479-nm light at the atomic cloud.

Ideally, we would perform a similar cavity filtering technique as we have with
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Figure 4.24: Schematic of control laser setup. Wavelength for red colored beams is
958 nm, while blue colored beams are at 479 nm.

the probe for the control light, to eliminate any phase noise outside the lock band-

width. However, it was determined that we would be unable to pass sufficient power

through the ULE cavity to seed the TA, which in turn would have a severe impact

on the output 479 nm power. It should be noted that the SHG ring cavity has a

specified linewidth on the order of ≈ 1 MHz which potentially performs some fil-

tering, but outside of this no further measures were able to be taken to remove the

servo bumps from the control field. Presently, work is ongoing to take the 958 nm

light exiting the cavity to injection lock another SHG system, which is likely to be

beneficial in reducing phase noise on the light sent to the chamber.

Another minor issue with the present control field setup is that of arbitrary
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Rydberg state frequency addressability. This problem has two components, firstly,

the output of the seed ECDL steers slightly as its coarse grating is adjusted. Con-

sequently, as we adjusted the seed frequency to address different Rydberg states the

light must be re-coupled into the TA. However, this is not easily possible past a

certain point as you exhaust the thread of one of the fixed mirrors within the laser

system. Without making more significant changes to the SHG system, this means

there is a Rydberg state below which the available 479-nm power is significantly

lowered. As an example we have observed the power exiting the SHG cavity to

address the 5P3/2 to 54S1/2 transition drops to ≈ 340 mW. This sets a threshold

on the minimum Rydberg state we can easily work with. In addition, as shown in

figure 4.23, the seed ECDL frequency is detuned from the various cavity resonances

using the aforementioned ≈ 1 GHz AOM. Due to power constraints this AOM is run

in single pass configuration, which affords a detuning bandwidth of ≈ ±200 MHz.

This bandwidth is insufficient to span the ≈ 1.5 GHz FSR of the cavity meaning

that the we are unable to arbitrarily set the frequency of the seed, and thus unable

to arbitrarily address any Rydberg state.

As a final point of note for the control laser, we have historically had some

issues associated with getting the ring cavity to lock to the seed light, which is

required to get high efficiency frequency conversion to 479 nm. The problem appears

to be very sensitive to the frequency of the seed light. From discussion with Toptica

the belief is that this issue is related to absorption of the 958-nm light by water vapor.

The ring cavity is designed to be used with a desiccant, however, the presence of the

desiccant did not appear to be sufficient to alleviate the problem. We have taken to
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releasing dry nitrogen into the case of the Toptica TA-SHG Pro and have seen no

further resurgence of this issue.

4.2.5 General Laser System Information

We have already discussed some of the specifics of the various laser systems,

but there are some more general properties that they all share. As we have noted,

for the purpose of fast shuttering of light to the chamber we use AOMs. In all cases

we additionally use slower mechanical laser shutters, based on the design in the JQI

wiki7. The use of both allows for the AOM to be driven to be almost constantly,

which is necessary to prevent drifts due to thermal effects as the AOM heats and

cools.

All light sent to the chamber is delivered along polarization maintaining fiber,

in order to mitigate unwanted polarization drifts. A further precaution against

polarization drifts is taken for all light, other than that for the MOT beams, in a

set of waveplates and PBS after the fiber but prior to the chamber. This effectively

converts any unwanted polarization drifts into power drifts which we have found to

be less problematic.

4.3 Experimental Sequence

In the previous section a brief outline of the experimental sequence was given.

Here I discuss in more detail the steps involved in preparation of the cloud for

7https://jqi-wiki.physics.umd.edu/d/documentation/electronics/hdd_shutter?s[]=

shutter
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Figure 4.25: Waveforms for various parameters during the experimental sequence.
Note that the different segments of the temporal axis (x-axis) are not necessarily to
scale, however, each segment is shown to scale.
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probing. Figure 4.25 shows waveforms for various experimental parameters for the

steps up to, and including the optical molasses.

4.3.1 Magneto-Optical Trap

The first stage in the experimental cycle is the MOT, loaded directly from the

background rubidium vapor. For this, current is run through the quadrupole coils

to generate a quadrupole field, with a gradient of ≈ 15 G/cm in the z-direction. The

cooling power in each of the three MOT beams is ≈ 40 mW, which is ≈ 2π×20 MHz

red detuned from resonance, with the x-y plane beams additionally having ≈ 1 mW

of on-resonance D2-repump power.

To keep the total experimental cycle time short we typically load the MOT for

250 ms. The atom number in the MOT saturates after several seconds of loading,

with the load time used being in the regime where the atom number linearly increases

with load time. However, we have observed that the atom number eventually loaded

into the optical dipole trap saturates on a much faster timescale. Therefore, lim-

ited gain is obtained by increasing the loading time much beyond 250 ms, with a

significant hit to the cycle rate of the experiment.

After the initial MOT loading stage we transition to a compressed magneto-

optical trap (CMOT) by ramping up the quadrupole field from ≈ 15 to ≈ 32 G/cm

over 10 ms. During the field ramp the dipole trapping beams are also ramped on.

The magnetic field is held at this value for a further 12 ms. The intention here

is to shrink the volume of the cloud to better match that of the optical dipole
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trap. This must be done on a long enough timescale that compression occurs, but

quickly enough that the losses associated with a large atomic density do not lead to

a significant depletion of the atom number.

Additional compression of the cloud is performed using a so-called “temporal

dark spot”. Here, the D2-repump and cooling power is decreased to ≈ 20 µW and

≈ 8 mW respectively in each of the relevant beams. Additionally, the cooling light

is further red detuned to 2π × 100 MHz. Due to the small amount of D2-repump

power the atoms are quickly pumped into the F=1 manifold, and are thus dark to

the cooling light. This dramatically reduces the outward radiation pressure, causing

the cloud to briefly collapse in on itself. However, as most of the atoms are not in

a state addressed by the cooling light, the cloud is not particularly well trapped,

therefore, we perform this step only for 8 ms.

4.3.2 Optical Molasses

At the end of the MOT stages the cloud is still relatively hot, 100s of µK,

which is a similar order of magnitude to the depth of dipole trap. Therefore, in

order to effectively load into the dipole trap we further cool the cloud using a gray

optical molasses [81]. Here, the quadrupole field is extinguished and the magnetic

bias fields are all tuned to zero out any stray magnetic field. The D2-repump and

cooling powers are both increased slightly to ≈ 50 µW and ≈ 9 mW respectively in

each of the relevant beams. Additionally, the cooling detuning is increased such that

it is ≈ 2π× 215 MHz red detuned, and the D2-repump light is ≈ 2π× 51 MHz blue
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detuned from their transitions. In this configuration the D2-repump and cooling

light are Raman resonant giving rise to dark states, which slow moving atoms are

able to adiabatically follow. Meanwhile, fast moving atoms are not able to adiabat-

ically follow the dark states and scatter photons, which results in them undergoing

standard optical molasses cooling. This allows us to achieve phase space densities

several times that which are achievable with a standard optical molasses. Empiri-

cally we find 15 ms of gray molasses cooling to be optimal for dipole trap loading,

resulting in in-trap atom densities on the order of 1011 cm−3 and temperatures

≈ 10 µK.

4.3.3 Optical Pumping

Post molasses the atoms are distributed across the ground state manifold. As

mentioned before, we wish to pump them into the |F = 2,mf = 2〉 stretched state.

To this end, we apply a bias field of ≈ 1.5 G along the y-axis and turn on both D1-

pump and D2-repump light in the optical pumping beam, with a power of ≈ 1 mW

and ≈ 250 µW. The optical pumping is performed in-situ in the optical dipole trap,

with the D1-pump light ≈ 2π × 80 MHz blue detuned from resonance, and the D2-

repump 2π×14 MHz red detuned from resonance. We find that the pumping fidelity

reaches near unity for pumping times greater than ≈ 10 ms. However, this step is

performed for a duration of 20 ms to ensure experimental drifts in the pumping

power do not decrease the state preparation fidelity.

At the end of the pumping duration the D1-pump and D2-repump light is
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turned off. The bias field angle is then rotated linearly through ≈ 90◦ over 25 ms till

it is parallel with the probe beam. This has been empirically found to be sufficiently

slow that the atoms adiabatically follow the rotating B-field.

4.4 Computer Control

As may have become apparent when we discussed the experimental cycle,

we have a requirement for accurate and precise temporal control of experimental

parameters. As we will see later, this timing is often required to be good to the

order of 100s of nanoseconds. To that end, we take a similar approach to several

others labs at JQI where a ‘primary’ device (Spincore PulseblasterUSB) is used as

a clock for other ‘minion’ devices. We run a forked version of the JQI’s homegrown

‘Setlist’8 which provides a LabVIEW-based GUI which allows users to easily write

a chronological table of instructions for each device. Extensive documentation for

Setlist already exists, both in the original repository9 and on the JQI wiki10, so here

I shall just discuss the specific details of the computer control pertaining to our

experiment.

As mentioned, we use a Pulseblaster as our primary device, which has twenty-

four11 3.3 V LVTTL outputs that either serve as clock for minion devices, or are

directly connected to pieces of equipment, e.g. AOM drivers, shutter drivers etc.

A set of National Instrument cards (two NI PCI-6733 and two NI USB-6363) pro-

8https://github.com/RbRy/SetList
9https://github.com/JQIamo/SetList

10https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/

setlist/home
11unfortunately, three of these have met an untimely end in the line of duty
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vide twenty12 analog output channels, with an output range ±10 V, and a further

forty-eight13 5 V TTL outputs. For the production of low frequency tones, up to

170 MHz, we use a DDS (Novatech 409B), which has two ‘static’ and a further two

channels capable of cycling through a clock-able frequency list. A signal generator

(Agilent E4426B) provides a method of generating tones up to 4 GHz, however,

the functionality to alter this frequency mid-cycle has not yet been implemented in

Setlist.

Although the control stack thus far described has enabled the relatively pain-

less implementation of experimental procedures, it is not without it quirks. For one,

the maximum current output of the Pulseblaster, and digital and analog outputs of

the National Instrument devices mean that they are unable to drive LVTTL, TTL,

and the full range of voltage outputs respectively into 50 Ω loads. This then leaves

us with the unhelpful situation that either we try to have well impedance-matched

loads, but with a voltage droop, or non-impedance matched loads, leading to ring-

ing of signals which could potentially cause timing issues. To combat this we have

taken an ad-hoc approach using unity gain buffers (Texas Instruments BUF634) on

channels where issues have been discovered.

Prior to each experimental cycle some communication occurs between Setlist

and the various devices it controls. The time it takes to do this is non-negligible,

for example for a procedure including only the Pulseblaster this can be ≈ 100 ms,

whereas for a procedure with all the devices listed above this time can be upwards

12minus two dead
13at time of writing these are all still alive and well
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of a second. This can be problematic for us, where a typical experimental cycle

time, ignoring this ‘dead’ time, is on the order of a few hundred milliseconds, as the

real cycle time can end up being several times longer. For long data taking runs

we have mitigated this dead time problem by programming certain devices outside

of Setlist, with the Novatech and Agilent being the main offenders, and manually

adding the clocking triggers to those devices into the Setlist procedure. One does,

however, need to be careful as those devices can easily become de-synchronized from

the Setlist procedure. As another solution, in some instances we have made use of

the dead time to perform the initial MOT loading, although this has the downside

that there is some fluctuation in the dead time, and thus a fluctuation in the MOT

load time and therefore final atom number loaded into the dipole trap.

The Pulseblaster we use has a design feature/bug that, at the end of the

experimental cycle, it sets all of its digital outputs low. This would normally mean

that the lines would stay low during the dead time, which is not ideal if they are

hooked up to equipment like AOM drivers where, for reasons already discussed, the

driver wants to be on near-constantly. Helpfully, the Pulseblaster has the ability to

program it to wait for an external trigger before continuing. Therefore, a kludgy fix

we implement is, as the final instruction in the procedure, to tell the Pulseblaster

to wait for a trigger that never comes, thereby causing it to retain the final digital

output values till the next experimental cycle. Although this works for a large

amount of the dead time, there is a small period, a few milliseconds, where Setlist

causes the Pulseblaster to reset and its outputs are driven low. For something like

the dead MOT loading this would mean that the MOT light would disappear briefly,
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which is not ideal. For devices where uninterrupted service is required we, therefore,

use the National Instruments card digital lines.

A final quirk of note is related to loops within the experiment. Often for

Rydberg ensemble experiments you want to repeat some small section of the exper-

imental cycle many times14. However, our version of the Pulseblaster has a memory

capable of storing only four-thousand chronological instructions, which is clearly

insufficient. Thankfully the Pulseblaster, and Setlist, have the ability to perform

loops within the procedure, which enables us to perform these repeating sections

of the cycle without exhausting the Pulseblaster memory. The downside is that

Setlist renders non-primary channels, i.e. any that are not from the Pulseblaster,

unchangeable during these loops. To get around this issue, we take the approach of

removing from the Setlist procedure any non Pulseblaster devices that need chang-

ing during the loop, then externally programming those devices and setting their

clocking triggers within Setlist.

4.5 Diagnostic Tools

For determining whether things are working as they should be, either when

implementing/re-tooling one of our experimental schemes, or just for day-to-day

operation, there are a number of tools/techniques we have at our disposal. Here, I

want to touch on how these diagnostic tools operate and where they have proved

useful.

14later we shall discuss procedures where we repeat a 5 µs instruction set ∼ 105 times per
experimental cycle
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Figure 4.26: Example of EIT transmission spectra. Fitted parameters here indicate
an optical depth OD ≈ 37, control Rabi frequency Ωc ≈ 2π × 16 MHz and ground-
Rydberg dephasing rate γ ≈ 2π × 500 kHz.

4.5.1 Spectroscopy

This is by far our most commonly used diagnostic. Here, we take spectra,

monitoring the transmission of the probe light through the cloud as a function of its

frequency. Typically this is performed by taking the light exiting the chamber and

coupling it into a multimode fiber which is connected to a single photon avalanche

detector (SPAD). To obtain a value for the cloud transmission, three separate mea-

surements are taken, one where the atoms and probing light are present, one where

the atoms are not, and a final one with neither present, all taken within the same

experimental cycle. Exact details of the full data collection process are unnecessary
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for the discussion here, but are documented in section 4.6.

Generally we take the obtained spectra and fit it, as we have in figure 4.26,

with the EIT transmission expression derived in equation 3.14. This allows us to

simultaneously extract information about the optical depth, telling us whether our

loading procedure is operating correctly, and the control Rabi frequency and ground-

Rydberg dephasing rate, which together give information on problems coupling to

or problems with the Rydberg states. Slightly more qualitatively, poorness of the

fit, often in the form of some asymmetry in the spectra at the large detunings, can

be indicative of some mis-alignment.

Due to the non-linearities associated with the Rydberg state it is necessary

to perform these spectra at low probe photon flux. Otherwise, the EIT window

can appear suppressed which leads to artificially inflated fitted values of γ. In a

similar vein, even in the absence of the Rydberg control field, where we can ignore

the Rydberg non-linearities, one must still be careful with the probe photon flux so

as not to induce heating within the cloud.

As mentioned, the spectra are taken by coupling the probe light exiting the

chamber into a multi mode fiber. Historically we had attempted to instead couple

the light into a single mode fiber due to the increased spatial filtering of unwanted

light sources, such as that of the dipole trapping light or control field. However, we

noticed that spectra measured with the single mode fiber tended to have a higher

degree of asymmetry, in addition to a larger fitted optical depth, to that measured

with a multi mode fiber. It is believed that this is due to a lensing effect [87] present

due to the high atomic density and the curvature of the cloud. This lensing causes
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the probe light to not only be absorbed but deflected which, for the single mode

fiber, manifests as loss as the fiber coupling is reduced. Therefore, we have moved

away from and advise against extracting parameters from spectra obtained using

single mode fibers in systems similar to ours.

4.5.2 Probe Transmission Imaging

While it is true that the transmission spectroscopy has wide utility in diag-

nosing problems within the cloud, it lacks information about the transverse spatial

degree of freedom of the transmitted light which can occasionally be helpful. We

have found images of the transverse mode of the probe transmitted through the

cloud to be helpful in identifying potential misalignments of the probe with the

atomic cloud and/or control field, as they tend to manifest in asymmetries in the

mode structure.

To obtain this information, rather than sending the probe light post-chamber

to a fiber, we instead direct the light through a set of lenses15 such that the in-

chamber probe focal plane is imaged on to an EMCCD (Andor iXon 3). The high

quantum efficiency of these devices mean that even with the low probe photon flux

required to perform spectra, information about the transverse mode of the probe

light transmitted through the cloud can be obtained often in a single experimental

cycle.

Although imaging of the transverse mode of the probe has been presented

15apologies for the vagueness here, this is not commonly performed, and the imaging system
changes almost every time it is
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here as a diagnostic tool, there has been some discussion of using it to probe useful

physics. For instance if one were able to in some way gate the camera, we could

imagine performing an experiment where we looked at the correlations of the trans-

verse spatial mode of the photons leaving the Rydberg ensemble medium, which to

the best of my knowledge remains an experimentally unexplored problem.

4.5.3 Absorption Imaging

Unlike many other atomic physics experiments, images of the atomic cloud do

not form a primary source of data in the physics we are investigating. However, we

have found absorption imaging to be a useful diagnostic tool, mainly for the purpose

of alignment, some cloud optimizations, and thermometry.

Primarily we perform imaging along the z-axis using light which follows the

same beam path as the z-axis MOT light, but with the opposite polarization. After

the chamber a PBS allows us to separate out the cooling and imaging light. Post-

chamber we use a ≈ 1 : 1 imaging system to form an image of the x-y plane on a

CCD camera (Point Grey Flea3 FL3-GE-28S4M-C). When necessary, imaging along

the y-axis can also be achieved by sending imaging light along the same path as the

optical pumping beam. A pair of lenses post-chamber form an image of the x-z

plane on another CCD camera (Point Grey Flea3 FL3-GE-28S4M-C). We follow

standard absorption imaging practices to determine the transmission through the

cloud, taking three images, one with the atoms and imaging light, one with just the

imaging light, and one with neither.
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Figure 4.27: Schematic for generalized photonic data collection. Only three outputs
are shown for the optical processing here, however, in general this could be any
number.

4.6 Photonic Data Collection

For all the projects discussed within this thesis, the raw data collected is that

of a series of absolute timestamps, or time tags, of photon detection events on a

set of SPADs. Here, I describe the experimental apparatus and software used for

collecting this data.

Generally speaking data is collected using a scheme like that shown in fig-

ure 4.27. The post-chamber probe light is taken, and passed through some optical

processing scheme, such as a Hanbury Brown and Twiss [88] or Hong-Ou-Mandel [89]

interferometer. We couple the outputs of the optical processing into a set of fibers

which are each connected to a SPAD (Excelitas SPCM-NIR-#-FC16). The SPADs

operate in Geiger mode where, with some high probability, photons incident on

the SPAD face cause an electron avalanche event. The avalanche events cause the

16Here, # refers to the dark count rate of the detector. We use both 13 and 14 models
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Channel Purpose

1 Defines measurement ‘windows’
2 Electronic clock/temporal reference

3-8 SPADs

Table 4.2: Time tagger connections.

SPAD to produce a TTL pulse which we send to a time tagging device (Roithner

Laser TTM8000). In addition to the SPADs, we attach several lines from the Pulse-

blaster to the time tagger, as shown in table 4.2, in order to define various temporal

references within the experimental cycle.

For actually collecting data the time tagger is physically connected, via gigabit

Ethernet cable, to a computer upon which we run a small executable17 written

with the time tagger’s C/C++ API. A LabVIEW front-end18 provides a more user-

friendly interface for the executable for setting data collection parameters. We

always operate the time tagger in ‘Continuous-I’ mode19, recording all rising edge

events on the SPAD and clock channels specified in the LabVIEW GUI, and rising

and falling edge events on the ‘window’ channel, defined in table 4.2. The host-

computer-based software continuously reads from the tagger, writing to file the tags

that occur during periods where the ‘window’ channel is high. In this way, we can

filter the tags that occur during some experimentally relevant time period.

Strictly speaking the tags for each event are 64-bit words, with a large number

of the bits reserved for recording the timestamp of the tag, with a temporal resolution

17Github repository for this software: https://github.com/acraddoc91/timeTaggerRbRy
18Github repository for front-end: https://github.com/acraddoc91/DataAcquisitionRbRy
19see user manual: http://www.roithner-laser.com/datasheets/accessories/ttm8000_

manual.pdf
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Bit Purpose

0 High/Low Word Indicator
1-31 Temporal Payload

Table 4.3: Anatomy of time tagger high words.

Bit Purpose

0 High/Low Word Indicator
1-27 Temporal Payload
28 Slope

29-31 Channel Number

Table 4.4: Anatomy of time tagger low words.

of ≈ 82.3 ps. To gain nearly a factor of two compression the tags are actually

recorded as 32-bit ‘high’ and ‘low’ words with structures as defined in tables 4.3 and

4.4 respectively, where the low word is recorded for every event, and the high word

only when it changes.

In ‘Continuous-I’ mode the time tags are referenced such that t = 0 corre-

sponds to the time that the time tagger is initialized. Since this time is pretty

arbitrary, it is, in general, not a very helpful reference point. Therefore, in post

processing we usually re-reference tags to the start of their respective measurement

‘window’ by subtracting off the time tag corresponding to the rising edge on channel

1 of the tagger.

This data collection scheme is not free from its own oddities. Most notable

of these is related to the time tagger resolution. Through use, we have noticed

a peculiar property of the tags produced by the tagger, which is illustrated by

figure 4.28. Here, we have taken a sample data set with a couple hundred thousand
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Figure 4.28: Fraction of tags from time tagger with a temporal payload bit value
equal to one, for several time tagger channels. For the data shown the tags on each
channel are due to SPAD detection events for continuous wave light.

tags, and are looking at the values for each bit of the temporal payload as a function

of the bit and channel number. For almost all the bits the fraction of the tags for

which the bit value is one is about fifty percent, as would be expected for continuous

wave light where the photons are arriving at the detectors randomly. However, for

the zeroth bit there is a clear channel-dependent bias. From discussion with the

manufacturer this is apparently a known problem with the time-to-digital converter

chip. Therefore, we have, and we recommend, ignoring the least-significant bit of

the tagger. While this changes the resolution from ≈ 82.3 ps to ≈ 164.6 ps, this has

not been an issue as the SPADs themselves have a temporal resolution larger than

this, on the order of a few hundred picoseconds.
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A further issue relates to gating. The SPADs themselves are rather delicate

instruments, saturating at a few tens of million detection events per second, with

damage possible at higher rates. Therefore, it is often desirable to temporarily gate

the detectors, for example to protect them from bright light sources. The SPADs

themselves do have a hardware gate. However, when this has been used we have seen

that a detection event is observed with higher than expected probability when the

SPAD is gated on, with the problem getting worse as a function of the light intensity

falling on the SPAD during the time it was gated off. As a result hardware gating,

to protect the SPADs from high intensity light, has been implemented in the form

of AOMs used as shutters. For the situation where gating wants to be performed

not to protect the SPADs, but for temporal filtering, we typically use a software

based approach, where certain regions of time are ignored during post-processing.

4.7 Experimental Techniques

In the process of building (and re-building) the apparatus we have developed a

number of techniques which have greatly accelerated certain tasks. Here, I document

some of these in the hope that it may be helpful for students working on this, and

other projects.

4.7.1 Spatial Alignment

For the apparatus to function properly, we require several tightly focused

beams to all intersect within the chamber. This is non-trivial and a a non-negligible
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fraction of my time as a graduate student has been spent performing intricate align-

ments. However, I have picked up a few tricks that speed up the process that I wish

to pass on.

4.7.1.1 Probe

For our setup we are relatively free to pick an absolute reference within the

chamber, to which everything shall be aligned. The in-vacuum lenses do, however,

provide some constraint as a beam sent off-axis can potentially cause the focused

light to be aberrated. This can be problematic for a beam, such as the probe, where

we desire the transverse mode to be contained with a Rydberg blockade radius.

Therefore, we send our probe beam through the center of the in-vacuum lenses,

with the light entering the chamber collimated. The focus of the probe in-vacuum

then serves as our absolute reference for all the other beams within the experiment.

When sending the probe through the chamber several reflections off the various

surfaces can be seen, albeit faintly as they are all AR coated at the probe wavelength.

Off the two windows we see a set of reflections that are approximately collimated

and, due to the angle of the lenses to the windows, should subtend some angle to the

injected light when correctly aligned. The reflections off the two in-vacuum lenses

are all diverging outside the chamber, with the exception of the reflection off the

curved face of the second encountered lens, which focuses ≈ 2 cm from the input

window. Once the four reflections from the in-vacuum lenses are identified, they can

be used for alignment by walking the probe beam to overlap the input and reflected
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light.

4.7.1.2 Dipole Trap

We align the dipole trapping light such that the trapped atomic cloud is cen-

tered on the focus of the probe beam. This is most straightforwardly accomplished

by red detuning the probe from resonance, usually ≈ 2π × 500 GHz. Here, with a

few hundred microwatts of power the probe beam forms a deep potential capable of

optically dipole trapping atoms, as seen in figure 4.29. Imaging the trapped cloud

allows us to precisely locate the probe focus both transversely, due to its narrow

waist, and longitudinally, due to its short Rayleigh range. By similarly imaging the

trapped atoms in the three dipole beams we are straightforwardly able to identify

and adjust their transverse and longitudinal alignments to overlap with the focus of

the probe.

This technique works well with our two, orthogonal, imaging systems for align-

ing the dipole arms in the three dimensions. However, there is an issue with the

dimple beam in that it propagates along the same direction as the imaging light

when imaging along the y-axis, preventing us from using this technique to set the

z-axis alignment of this beam. Therefore, in order to correctly align the dimple

beam in the z-axis we typically first align the arms, then tune the z-axis alignment

of the dimple beam till it intersects with that of the arms, which can readily be seen

using the z-axis imaging system. Once this coarse alignment is achieved, finer align-

ment is usually performed by monitoring the near-resonance probe transmission as
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Figure 4.29: Absorption image of the trapped atoms formed with the 1004 nm optical
dipole trapping light (top) and the far detuned probe light (bottom). Absorption
image taken with z-axis imaging system. Note the color scales for the two images
are different.

a function of the height of the dimple beam, with the ‘correct’ alignment taken to

be where the absorption is maximized.

When adjusting the alignment of the dipole beams we not only want to ensure

their overlap with the probe focus, but also want to ensure all the dipole beams

propagate in the x-y plane, so as not to distort the cloud shape. For the arms

we can verify straightforwardly through imaging if this is the case, while for the

dimple the condition is practically satisfied owing to the geometry of the system.

Additionally, we want the crossing angle to be symmetric about the probe for the
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two arms, which is guaranteed by requiring the two dipole beams enter the chamber

parallel to and equidistant from the probe. Alignment is thus performed by walking

the beams to meet these additional constraints, along with that of intersecting the

probe.

4.7.1.3 Control Field

For optimal operation the control and probe beams must be overlapped and

counter-propagating. To perform this alignment we first align light in a tracer beam,

of wavelength intermediate between the probe and control fields, usually generated

by a fiber pen with a output wavelength ≈ 650 nm, and emanating from a single

mode fiber. The tracer beam co-propagates with the probe, and is aligned to it

by optimizing the coupling of both beams post-chamber into the same single mode

fiber. We then align the control field light by coupling it into the fiber launch of the

tracer beam. After this procedure the probe and control fields are usually suitably

well overlapped that a Rydberg EIT signal can be observed. Finer alignment of the

control field is then performed by maximizing the doubly resonant (δ = ∆ = 0)

transmission through the cloud.

4.7.2 Polarization Alignment

In addition to spatial alignments, correct polarization alignment at the atoms

for many of the beams is also important. Given that the optical pumping fidelity

is heavily influenced by the polarization purity of the pump beam, its polarization
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needs to be carefully aligned. We do this by increasing the pumping time far past

the saturation time, usually to hundreds of milliseconds. As scattering only occurs

if the light is not perfectly σ-polarized, one can perform the polarization alignment

by performing the pumping and monitoring the atom loss in the cloud. Both the

magnetic field direction during pumping and waveplates that set the pump field’s

polarization in-chamber are adjusted to minimize the atom loss.

A similar method is also performed for fine probe polarization alignment. The

probe field is tuned to the F = 2 to F′ = 2 transition of the D2 line and atom

loss monitored as a function of the magnetic field direction during probing and the

probe waveplates, when probing for a long time. Although atom loss can still occur

with perfect polarization purity, due to off-resonant scatter on the F = 2 to F′ = 3

transition, we have found the technique still provides enough resolution to be able

to tune waveplates and magnetic fields to within a few degrees.

The control field polarization is somewhat less critical than the other two, in

that poor alignment will only lead to a reduction in the control Rabi frequency, as

the π and incorrect σ have nothing to couple to. However, we do want to make the

most of the control power we have. Alignment here is usually accomplished, as with

the fine control beam alignment, by monitoring the doubly resonant (δ = ∆ = 0)

EIT transmission and trying to maximize it. Note here we only adjust the waveplates

associated with control light as the magnetic field direction is fixed when the probe

polarization alignment is performed.
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Figure 4.30: Coincidences measured between two SPADs as a function of delay
time off a generalized Hanbury Brown and Twiss setup, for probe light obtained by
driving the double pass AOM at two tones. The frequency difference between the
tones here is 10 MHz. The blue points represent actual data, while the orange line
is a fit of the form a cos (ω(τ + toff)) + b, with the fitted values being toff ≈ 4.2 ns,
a ≈ 3000 and b ≈ 6000.

4.7.3 Temporal Synchronization

As we shall see later, for a lot of our projects we shall be interested in extracting

information about the system by looking at the coincidence photon detection events

of two or more detectors. Further, we are in general going to be interested in

these coincidence events as a function of detection time between the various SPADs.

Therefore, we want to try and mitigate any inherent unwanted delays that may

exist, be they from optical or electronic path length differences.

By applying two different tones to the probe double pass AOM, the resulting
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light arriving at the chamber has an intensity which oscillates at twice the frequency

difference of the tones. Provided the light passes through the chamber unhindered,

i.e. with no atoms present, and the optical processing resembles that of a generalized

Hanbury Brown and Twiss [88] setup, this beating can be seen in the coincidence

detection events between pairs of SPADs, as seen in figure 4.30. In the absence of any

delay between the detectors a maxima in the coincidence should occur at zero delay

time between the detectors. Any inherent delay will cause an offset in coincidence

space that can be compensated for, which we usually do in software/post-processing.

Care does have to be taken as the temporal offset can be hard to determine

when it becomes of similar, or greater, order to the beat period due to aliasing. To

ensure the temporal offset is correctly identified, we usually take several measure-

ments with progressively increasing beat frequencies.
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Chapter 5: Measurement and Calculation of Photonic Correlation

Functions

Within quantum optics, light is commonly characterized using a set of nor-

malized correlation functions
{
g(n)
}

, where g(n) is referred to as the nth degree of

temporal coherence [90].

5.1 First Order Coherence

The degree of first order coherence quantifies the electric field fluctuations of

the light being measured, and is defined by [90]

g(1)(t, τ) =
〈E−(t)E+(t+ τ)〉t√

〈E−(t)E+(t)〉 〈E−(t+ τ)E+(t+ τ)〉t
, (5.1)

where E+ and E− correspond to the rotating and counter-rotating terms of the

the electric field, and 〈〉t denotes a time averaged quantity. Practically speaking,

measurement of g(1) differs from that of the higher order coherences. Furthermore,

we shall not be concerned with g(1) for the light discussed in the rest of this thesis

and, as such, shall not explore it further.
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5.2 Second Order Coherence

5.2.1 Formal Definition

The degree of second order coherence is formally defined as [90]

g(2)(t, τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t)〉t
〈E−(t)E+(t)〉t 〈E−(t+ τ)E+(t+ τ)〉t

. (5.2)

It quantifies intensity fluctuations of the light, and is an important quantity in the

field of quantum optics, as we shall see later.

5.2.2 Classical Limit

In the classical limit, electric fields commute and we are able to write equa-

tion 5.2 in terms of the intensity, I(t) ∝ E−(t)E+(t), of the light

g
(2)
classical(τ) =

〈I(t)I(t+ τ)〉t
〈I(t)〉t 〈I(t+ τ)〉t

. (5.3)

It should be noted that in equation 5.3 we have dropped the explicit dependence of

g(2) on t, as we shall do for the remainder of this section. This is strictly only correct

to do for stationary light. However, it is not uncommon for the t dependence to be

ignored for non-stationary light, for example pulsed light as in references [41,42,91].

The classical commutativity of the electric field has some important conse-
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quences for g(2). Given the positivity of the variance

Var(A) =
〈
A2
〉
− 〈A〉2 ≥ 0 (5.4)

then it can be seen that

g
(2)
classical(0) =

〈I2(0)〉t
〈I(0)〉2t

≥ 1 (5.5)

Additionally, from the Cauchy-Schwarz inequality, 〈AB〉2 ≤ 〈A2〉 〈B2〉, we can show

g
(2)
classical(τ) ≤

√
〈I(t)〉t
〈I(t)〉t

√
〈I(t+ τ)〉t
〈I(t+ τ)〉t

= g
(2)
classical(0). (5.6)

These two inequalities together preclude the classical production of important quan-

tum optical phenomenon, such as single photons.

5.2.3 Quantum Mechanically

Quantum mechanically we can write the electric field in terms of the raising,

â†, and lowering, â, operators of the electromagnetic field

Ê+ ∝ â, (5.7)

Ê− ∝ â†, (5.8)

allowing us to write equation 5.2 in terms of these quantum operators

g(2)(τ) =

〈
â†(t)â†(t+ τ)â(t+ τ)â(t)

〉
t

〈n̂(t)〉t 〈n̂(t+ τ)〉t
, (5.9)
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where n̂ = â†â is the number operator.

5.2.4 Probabilistic definition

In addition to its formal definition in terms of fields or intensities, I have often

found it intuitive to think about g(2) in a probabilistic way. Working from the

quantum mechanical definition, let us first consider g(2)(τ = 0). We can make use

of the commutation relation,
[
â(t), â†(t)

]
= 1, to write g(2)(τ = 0) purely in terms

of the number operator

g(2)(0) =
〈n̂(t)(n̂(t)− 1)〉t

〈n̂(t)〉2t
. (5.10)

Considering some arbitrary state of light

|ψ〉 =
∞∑
n=0

cn |n〉 , (5.11)

where |n〉 = (â†)n |0〉 is an n-photon Fock state, we see that

g(2)(0) =

〈∑∞
n=2 n(n− 1)|cn|2

〉
t〈∑∞

n=1 n|cn|
2〉2

t

. (5.12)

In the limit that |cn|2 � |cn+1|2, we find

g(2)(0) ≈ 2 〈P2〉t
〈P1〉2t

, (5.13)

where Pi = |ci|2 is the probability of observing i photons. We can see that g(2)(0)

essentially quantifies how likely we are to observe a two-photon event, relative to a
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single photon one. Therefore, g(2)(0) is a useful property for characterizing a single

photon source, for which we want the likelihood of producing multiple photons to

be small.

For sufficiently large τ we can take
[
â(t), â†(t+ τ)

]
= 0, and thus we can write

g(2)(τ) =
〈n̂(t)n̂(t+ τ)〉t
〈n̂(t)〉t 〈n̂(t+ τ)〉t

. (5.14)

Making the assumption that Pn(t)� Pn+1(t), we can write this in terms of proba-

bilities

g(2)(τ) ≈ 〈P1(t)P1(t+ τ)〉t
〈P1(t)〉t 〈P1(t+ τ)〉t

=
〈P (t+ τ | t)〉t
〈P1(t+ τ)〉t

, (5.15)

where P (t + τ | t) is the probability of a photon being present at t + τ given that

one was present at t. Reiterating this in words, g(2)(τ) tells us how likely we are

to observe a photon at a time t + τ , given that we have seen one at t, relative to

random chance.

5.2.5 Measurement

For a classical photon source, with a large photon flux g(2) can be readily

measured using a single standard photodiode up to the bandwidth of the detector,

by measuring the intensity as a function of time and straightforwardly using equa-

tion 5.3. At low enough fluxes, like those we shall be concentrating on in this thesis,

one needs to work with detectors which have resolution at the single photon level.

Ideally a photon-number resolving detector would allow us to use the same mea-
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Figure 5.1: Hanbury Brown and Twiss setup.

surement process as for the bright light source. However, photon-number resolving

detectors typically have a low bandwidth and are not widely commercially available,

making them unsuitable and impractical for all but a narrow subset of applications.

In contrast, single photon detector (SPD) technology is mature enough that high

bandwidth, high quantum efficiency SPDs are commercially available. Generally

speaking, however, SPDs suffer from an issue known as ‘dead time’. That is the

time, once a detection event has occurred, in which a further detection event is

impossible. This makes measurement of g(2) at short delay times impossible with a

single SPD.

To get around this a Hanbury Brown and Twiss setup, shown in figure 5.1,

is commonly employed, utilizing a beamsplitter, which is assumed not to alter the

underlying statistics of the light, and a pair of SPDs. By counting the coincidences

between the two detectors, Ncoincidence, as well as the the single detection events on

the two detectors, N1,2, one can then approximate g(2) [92]

g(2)(τ) ≈ T

∆τ

Ncoincidence(τ)

N1N2

, (5.16)
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Figure 5.2: Generalized Hanbury Brown and Twiss setup.

where T is the total measurement time, and ∆τ is the temporal bin width used for

determining coincidences. This approximation is valid in the regime that P1(t) �

P2(t)� Pn>2(t), which shall be the case for the work in this thesis.

5.3 Higher Order Coherences

For higher order coherences of light, we can generalize most of the expressions

for the second order coherences. The formal definition of the n-th order coherence,

where n > 1, is given by

g(n)(t, τ1, τ2 . . . ) =

〈
E−(t)

∏n−1
i=1 E

−(t+ τi)
∏1

i=n−1E
+(t+ τi)E

+(t)
〉
t

〈E−(t)E(t)〉t
∏n−1

i=1 〈E−(t+ τi)E+(t+ τi)〉t
, (5.17)

which can be written in its classical, quantum, and probabilistic form

g
(n)
classical(τ1, τ2 . . . ) =

〈
I(t)

∏n−1
i=1 I(t+ τi)

〉
t

〈I(t)〉t
∏n−1

i=1 〈I(t+ τi)〉t
, (5.18)

g
(n)
quantum(τ1, τ2 . . . ) =

〈
â†(t)

∏n−1
i=1 â

†(t+ τi)
∏1

i=n−1 â(t+ τi)â(t)
〉
t

〈n̂(t)〉t
∏n−1

i=1 〈n̂(t+ τi)〉t
. (5.19)
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g
(n)
probabilistic(0, 0 . . . ) ≈

n! 〈Pn〉t
〈P1〉nt

, (5.20)

g
(n)
probabilistic(τ1, τ2 . . . ) ≈

〈P (t+ τn−1 | t, t+ τ1, t+ τ2, . . . )〉t
〈P (t+ τn−1)〉t

, (5.21)

where we have taken the probabilistic definitions to lowest order, and made the

assumption Pn(t) � Pn+1(t). Measurement of the higher order coherences can be

performed with a generalized Hanbury Brown and Twiss setup, shown in figure 5.2,

where n SPDs are required to measure g(n).

5.4 Note on Losses

A contributing reason for the ubiquity of the correlation functions,
{
g(n)
}

,

for the measurement of classical and quantum optical photon statistics is their ro-

bustness to loss. This robustness is readily seen classically. Loss simply applies a

scale factor to the light intensity, I ′ = T I, where T is the transmission probability

through some lossy medium. The classical correlation function is modified

g
(n)
classical(τ1, τ2 . . . ) =

〈
T I(t)

∏n−1
i=1 T I(t+ τi)

〉
t

〈T I(t)〉t
∏n−1

i=1 〈T I(t+ τi)〉t

g
(n)
classical(τ1, τ2 . . . ) =

T n
〈
I(t)

∏n−1
i=1 I(t+ τi)

〉
t

T n 〈I(t)〉t
∏n−1

i=1 〈I(t+ τi)〉t

g
(n)
classical(τ1, τ2 . . . ) =

〈
I(t)

∏n−1
i=1 I(t+ τi)

〉
t

〈I(t)〉t
∏n−1

i=1 〈I(t+ τi)〉t
,

(5.22)

which is identical to that without loss.

We can also see this robustness against loss in the quantum world by consid-
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ering an arbitrary state

|ψ〉 =
∞∑
n=0

cn |n〉 =
∞∑
n=0

cn

(
â†
)n

√
n!
|0〉 . (5.23)

Quantum mechanically we can model loss by imagining passing the light through

a beamsplitter with transmission coefficient t =
√
T . We shall assume, without

loss of generality, that t ∈ R, therefore T is identical to the classical transmission

probability we previously defined. For such a beamsplitter the raising operator

transforms as

â† = tb̂† +
√

1− t2ĉ†, (5.24)

where b̂† is the raising operator associated with the transmitted mode, and ĉ† that

for the lost photons. Our state thus transforms

|ψ〉 → |φ〉 =
∞∑
n=0

cn

(
tb̂† +

√
1− t2ĉ†

)n
√
n!

|0〉 . (5.25)

Making use of the binomial expansion this can be written

|ψ〉 → |φ〉 =
∞∑
n=0

cn

n∑
k=0

√
n!

k!(n− k)!
tk
(√

1− t2
)n−k

|k, n− k〉 , (5.26)
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which can also be written in density matrix form

ρ̂ = |φ〉 〈φ| =
∞∑
n=0

∞∑
m=0

cnc
∗
m

n∑
k=0

m∑
l=0

√
n!

k!(n− k)!

√
m!

l!(m− l)!

× tk+l
(
1− t2

)n+m−k−l
2 |k, n− k〉 〈l,m− l| .

(5.27)

Given that the we can only care about the transmitted photons we trace out the

lost photon mode

ρ̂t =
∞∑
n=0

∞∑
m=0

cnc
∗
m

n∑
k=0

√
n!

k!(n− k)!

√
m!

(m− n+ k)!(n− k)!

× t2k+m−n (1− t2)n−k |k〉 〈m− n+ k| ,

(5.28)

to obtain the density matrix for the transmitted mode. Let us now evaluate

〈(
b̂†
)d (

b̂
)d〉

= Tr

[(
b̂†
)d (

b̂
)d
ρ̂t

]
=
∞∑
n=0

|cn|2
n∑
k=d

n!

k!(n− k)!
t2k(1− t2)n−k

k!

(k − d)!

= t2d
∞∑
n=d

|cn|2
n!

(n− d)!
.

(5.29)
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From which we can calculate the d-th order coherence

g(d) =

〈(
b̂†
)d (

b̂
)d〉

〈
b̂†b̂
〉d

=
t2d
∑∞

n=d |cn|
2 n!

(n−d)!

t2d
(∑∞

n=1 |cn|
2n
)d

=

∑∞
n=d |cn|

2 n!
(n−d)!(∑∞

n=1 |cn|
2n
)d ,

(5.30)

which is independent of the loss term.

5.5 Note on Normalization

As seen in the previous sections, the photonic correlation functions contain a

normalization factor. These factors are crucial as they allow for the direct compar-

ison of sources of light without needing to worry about the relative intensities or

brightness of the sources themselves. In the above we have made assumptions about

the stationarity of the light being measured. However, experimentally speaking this

is often not the case either deliberately, as is the case for a pulsed light source,

or as a result of imperfections, as for experimental drifts. Therefore, we need to

take care in how we normalize our correlation functions, as it can have undesired

consequences.

As a demonstration-by-example of this phenomenon let us consider an ex-

periment of the form described in reference [42]. Here, the experimentalists were

interested in measuring the g(2) correlation function of probe light that has passed
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Figure 5.3: g(2) calculated for coherent light with a 50% duty cycle square pulse
envelope using different normalization methods. Equation 5.16 used for blue curve
and equation 5.31 used for orange curve.

through a Rydberg-EIT medium that caused attractive interactions between the

polaritons. In order to avoid unwanted differential light shifts from the trapping

light, the probe and trapping light were strobed out of phase with each other. If

they were to perform the measurement scheme outlined in section 5.2.5 and utilize

equation 5.16 to determine g(2), they would find it would be the product of the

polaritonic correlations of interest, along with an envelope, similar to that shown in

figure 5.3, due to the pulsed nature of the probe light. This is clearly undesirable,

as the uninteresting pulse-shape-induced correlations could obscure the interesting

ones that originate from the physics being probed.
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As an alternative, one can instead calculate

g(2)(τ) =
Ncoincidence(τ)

Ncoincidence(τ + T )
, (5.31)

where T is some fixed time that is chosen to appropriately account for any unde-

sired structure. As an example, for a pulsed source, T could be chosen to be an

integer multiple of the pulse repetition rate, as has been done in the orange curve in

figure 5.3. Or for an experiment where there is a long time scale experimental drift,

T could be chosen such that it exceeds the time scale of the physics-of-interest but

is smaller than that of the drift. In the limit that the light being measured is sta-

tionary then if T is sufficiently large, the arrival of photons should be uncorrelated

with one another, thus

Ncoincidence(τ + T ) =
∆τ

T
N1N2, (5.32)

and we can see that equation 5.16 and 5.31 are equivalent.

This normalization technique, however, is not without its drawbacks. For

instance, one has to be careful in picking T . If it becomes comparable to the

timescale of the correlations of interest, it can potentially wash them out when g(2)

is calculated. Further, the coincidence rate is generally going to be significantly

smaller than the singles count rates on the SPDs. As a result, the uncertainty in

the measured value of g(2) for a given measurement time is increased compared the

traditional normalization method. However, this can be somewhat mitigated by
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sampling several values of T and averaging.

While the normalization technique presented here is specific to calculating g(2),

it is generalized to higher order correlation functions

g(n)(τ1, τ2 . . . ) =
Ncoincidence(τ1, τ2 . . . )

Ncoincidence(τ1 + T1, τ2 + T2, . . . )
(5.33)

where the Ti’s should be chosen such that Ti 6= Tj ∀ i, j.

5.6 Calculation

As has been seen in the previous section, the calculation of photonic autocor-

relation functions, and indeed any correlation function calculated from discretely

sampled data, is essentially a problem of counting coincidences. At face value this

seems like a simple problem. However, it is one that can be computationally expen-

sive. Throughout the course of my graduate studies I have devoted a not insignificant

amount of time into developing various algorithms and related code for the count-

ing of coincidences. Here, I present a semi-chronological report of this work so that

future students may learn from my mistakes.

5.6.1 Problem to be Solved

For what follows, we shall assume that we have performed some measurement

using a pair of SPDs for which we have obtained a time-tagged pair of vectors, u1

and u2, containing the photon arrival times at each detector. Further, we shall

assume, due to the time-tagged nature of the data, that both vectors are chrono-
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logically ordered such that ui+1 > ui. From this data we wish to calculate two-fold

coincidences1 between the two detectors, for some set of delay times, {τi}, and some

time binning, ∆tbin, of the time-tags.

5.6.2 Methods

In the following I present the methods trialed for calculating coincidences. A

brief outline of each method precedes a formal description of the algorithm., which

is then followed by a short discussion on the relative merits and deficiencies of the

approach.

5.6.2.1 Per-Photon Histogramming

In this approach, for each photon from detector 1 we calculate the relative

times of the photons from detector 2 and produce a histogram. Algorithmically:

1. Take tag u1
1 and perform a histogram of u2− u1

1, with desired ∆tbin, to obtain

a histogram vector H1

2. Repeat for all u1
i

3. Calculate coinc =
∑

iHi

This algorithm is relatively simple to code and conceptually is most similar to

how one thinks about coincidences. A single pass through of the algorithm gives us

information for all desired τ ’s. This was the first method we used for calculating

1while the following specifically focuses on two-fold coincidences the techniques are readily
scalable to higher-order
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coincidences, but was found to be prohibitively slow. The algorithm requires the

calculation of N(u1) histograms2, which have a computational complexity equal

to the sum of the length of the vector and the number of histogram bins, and is

likely the main limitation on calculation speed. As such the total complexity of the

algorithm scales as O(N(u1) ∗ N(u2)). This scaling becomes worse for the higher

order correlation functions as the complexity scales multiplicatively in the length of

the vectors involved. For a calculation of n-fold coincidences the complexity goes as

O(
∏n

i N(ui)).

5.6.2.2 Double Histogram

In this approach a pair of histograms for the arrival times of photons from

both detectors are created. Correlations are then calculated from the histograms.

Algorithmically:

1. Histogram, with desired ∆tbin, u1 and u2, from t = 0 to t = max(u1,u2), to

obtain a new set of vectors h1 and h2

2. For τ = n×∆tbin, calculate coinc(τ) =
∑

i h
1
ih

2
i+n

3. Repeat step 2 for each desired τ

This algorithm is also relatively straightforward to implement and was the sec-

ond one attempted for calculating coincidences. However, it was also found to be re-

strictively slow and was soon discarded in favor of a faster method. Here, the limiting

2Henceforth N(u) shall be used as shorthand for the number of elements in a vector u.
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factors in computation speed are the calculation of the vector dot products and the

calculation of the two histograms. As such, the algorithm has portions with compu-

tational complexities scaling as O(N(u1)), O(N(u2)), and O(N({τi})N(h1)N(h2)).

It follows that for nth-order coincidences the algorithm will have parts with com-

plexities scaling with O(N(ui)) and O((N({τi}))n−1
∏n

i N(hi)).

A further problem with this method is that it is not uncommon for the flux of

photons at each detector to be significantly lower than 1
∆tbin

. As a result, hi can be

incredibly sparse and thus inefficient objects to store in memory.

Finally, it is worth noting that this method is less exact than the “per-photon

histogram” method as one picks up rounding errors on both channels when per-

forming the histograms. However, provided ∆tbin is chosen to be smaller than any

structure seen in the correlation function the difference between the two methods is

small.

5.6.2.3 Reduced Double Histogram

This approach makes use of the time-tagged nature of the data by performing

a sorted search to determine the number of instances where the time difference

between photons on the two detectors is equal to τ . Algorithmically:

1. For the desired ∆tbin calculate a new set of vectors v1 = u1 ∆ttagger
∆tbin

and v2 =

u2 ∆ttagger
∆tbin

, where ∆ttagger is the width of the least significant bit of the time

tagger. Here, the elements of vi should be integers, so the scaling should be

performed then rounded
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2. Determine n = τ
∆tbin

3. Create a pair of pointers, i = 0 and j = 0, and a running total of the coinci-

dences, coinc(τ)

4. Perform the following operations until i > N(v1) or j > N(v2):

(a) If v1
i > v2

j + n then increment j by 1

(b) If v1
i < v2

j + n then increment i by 1

(c) If v1
i = v2

j + n then increment coinc(τ), i and j by 1

Note: For simplification the above assumes that there is never more than one

tag within a given ∆tbin. If this is not the case then an extra step is added

to the algorithm where, when v1
i = v2

j + n, one finds si =
∑

k δ(v
1
i − v1

k) and

sj =
∑

k δ(v
2
j − v2

k). The relative quantities are then incremented: coinc(τ) by

si × sj, i by si and j by sj

5. Repeat steps 2-4 for each τ for which coinc(τ) is to be evaluated

This method is essentially the same as the “double histogram” method, and is

one of the those currently in implementation for calculating of coincidences in the

lab. It makes use of the fact that the calculated histograms are likely to be sparse.

Rather than performing the dot product between the two histogram vectors, instead

one looks for the common elements between the two, scaled, time tag vectors, making

use of the fact that the vectors are chronologically ordered.

The limiting factor in computation here is generally going to be the intersection-

like operation which scales additively in the length of the two vectors. This results
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in an overall complexity which scales as O((N({τi}))n−1
∑n

i N(ui)) for n-fold coin-

cidences. Given the additive, rather than multiplicative scaling, of the complexity

with the number of tags, this method should perform well compared to the “per-

photon histogram” method. Additionally, under the assumption the photon flux is

low, this method should also experience a speedup relative to the “double histogram”

method since N(hi) >> N(ui).

As with the “double histogram” method this procedure suffers from being less

exact than the “per-photon histogram” approach due to the rebinning of both sets

of tags during step 1 of the algorithm. However, as was noted above, a suitable

choice ∆tbin can mitigate this issue.

5.6.2.4 Reduced Per-Photon Histogramming

Similar in nature to the “per-photon histogram” method, here we make use

of an additional assumption that the set of delay times, {τi}, are contiguous. As

with the “Reduced double histogram” method we also make use of the chronological

nature of the vectors by performing ordered searches. However, this time a search is

performed for each element in u1 to find the range of elements in u2 that fall within

the range of τ for which we are measuring coincidences. Algorithmically:

1. For the desired ∆tbin calculate a new set of vectors v1 = u1 ∆ttagger
∆tbin

and v2 =

u2 ∆ttagger
∆tbin

, where ∆ttagger is the width of the least significant bit of the time

tagger. Here, the elements of vi should be integers, so the scaling should be

performed then rounded
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2. Create a pair of pointers, i = 0 and j = 0, and a vector to hold the running

number of coincidences, coinc

3. Calculate nmin = min({τi})/∆tbin and nmax = max({τi})/∆tbin

4. Increment i until v1
1 ≤ v2

i + nmin

5. Increment j until v1
1 ≤ v2

j + nmax

6. For each k in the range [i, j − 1] increment coinc (v1
1 − v2

k + nmin) by 1

7. Repeat steps 4-6 for each successive element in v1

This method was born out of discussion with collaborators at NIST and is

one of the two presently being utilized in the lab. It makes use of the fact that

we usually want to calculate coincidences for a contiguous set of delay times when

dealing with photonic autocorrelation functions. In this situation, we can perform

two ordered searches for each element in the first vector, to find the range of elements

in the second vector which have elements that will produce relevant coincidences.

Furthermore, we can make use of the chronological nature of the vectors to provide

the starting point for the successive ordered searches.

The computational complexity mainly arises here in both the pick, steps 4-

5, and the place operations, step 6. The pick steps are essentially just a pair of

intersection-like operations between the two vectors, and have a complexity that

scales as such. The place operation scales linearly in the number of elements

of v1 but has a slightly more complicated relationship to that of v2. In gen-

eral, τmax − τmin is likely to be small relative to the experimental duration, Texp.
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Therefore, for a given element of v1 we expect, for i, j found in steps 4-5, that

j − 1 − i << N(v2). Hence, we expect the n-fold coincidence calculation is going

to have computational complexities which scale something like O
(
(
∑n

i N(ui)
)

and

O

((
τmax−τmin

Texp

)n−1

N(u1)
∏n

i=2N(vi)

)
for the pick and place parts of the algorithm

respectively.

As with the other methods where the re-binning is performed on both sets of

tags in step 1 of the algorithm, this method is slightly less exact. However, we have

already discussed how such an issue can be mitigated.

5.6.3 Computational implementation

From the previous section it can be seen that both the “per-photon histogram”

and “double histogram” methods have poor scaling properties, with both scaling

multiplicatively in the size of vectors which are not necessarily small. Initial inves-

tigations with both of these methods demonstrated them to be prohibitively slow,

potentially taking order(s) of magnitude longer to process the data than to collect

it. In this section we shall, therefore, concentrate on the computational implemen-

tation of the two “reduced” methods. For both I shall describe and benchmark some

optimizations made in the computational implementation of their algorithms.

It should be noted that comparisons of different implementations can be a

little tricky, given that the different methods scale differently as a function of things

like the size of {τi}, or the various vectors. However, to give some sense of how

the different methods, and computational implementations compare, I shall present
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Component Name

CPU AMD RYZEN Threadripper 1950x
GPU 2x Gigabyte GeForce GTX 1080 Windforce OC

Motherboard Gigabyte X399 AORUS Gaming 7
RAM 3x G.Skills Ripjaws V Series 8GB
HDD WD Blue 500GB SSD

Table 5.1: Specifications for computer used for correlations code benchmarking.

benchmarks on a set of 201 data files, whose form is described in section 4.6 of

the previous chapter. The set of files is representative of typical data obtained in

our lab, with each file consisting of a set of tags taken for light sent through a

generalized Hanbury Brown and Twiss configuration, with the outputs monitored

by three SPADs. For each file, data was accumulated over a period of 100 ms,

with the experimental cycle time (including MOT load, optical molasses etc.) being

≈ 500 ms. The data was taken where the light incident on the SPADs had statistics

g(2)(τ) ≈ 1 for all τ , with there being ≈ 6 × 104 recorded tags per detector. All

benchmarks have been performed using a bin size, ∆tbin ≈ 1 ns, on a computer with

specifications as described in table 5.1. The code for the various computational

implementations, as well as that for benchmarking, and the benchmark results is

all contained in a Github repository3 For all the implementations the code consists

of a “C/C++” backend, which does the heavy lifting of the computations, which is

called as a DLL/shared library by a Python frontend, which exposes the backend in

a more user-friendly way.

3https://github.com/acraddoc91/RbRy_Correlations
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5.6.3.1 Reduced Double Histogram

As-written, the algorithm in section 5.6.2.3 is sequential. However, there is no

reason one may not simultaneously calculate the number of coincidences separately

for each τi and/or file. This, therefore, falls into the category of “embarrassingly

parallel” problems [93]. As such, we would expect to see near a one-to-one speedup

in computation as a function of the number of threads used in a multi-threaded

implementation. This behavior is readily in figure 5.4, which shows the time required

for calculating coincidences for 2001 τi’s as a function of the number of threads used.

Here, OpenMP parallel for loops [94] have been used to allow for parallel calculation

of the coincidences for different τi’s, for a given number of processing threads. For

low thread number we observe a one-to-one speedup per thread. Past ≈ 8 threads

the speedup per thread decreases slightly, and at > 32 threads no additional speedup

is seen when increasing the thread count. The former of these effects is likely due to

the overhead associated with creating threads, along with that to read the files from

disk and put them in a format suitable for processing. The latter is related to the

CPU itself, which has 16 cores, each capable of running two simultaneous threads.

Although we can achieve an ≈ 20x speedup just by fully utilizing the threads

on the CPU, we have the issue that the compute time scales linearly with the size of

the set {τi}. Extrapolating from the data in figure 5.4, we would expect something

like calculating the three-fold coincidences, with a similar range of τi’s, to take on

the order of tens of hours for the benchmark data, which is considerably longer than

the time taken to collect the data itself, ≈ 100 s.
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Figure 5.4: Benchmarks for the compute time as a function of threads for a multi-
threaded implementation of the reduced double histogram coincidence calculation
method. Speedup calculated relative to single threaded performance.

Fortunately, the computational algorithm lends itself well to general purpose

GPU computing. This is potentially helpful given the propensity for GPUs to

have significantly more cores than a CPUs, albeit with those cores being slightly

limited compared to their CPU counterparts. The CUDA API [95] was used to

implement the “reduced double histogram: method on the nVidia GPUs stated in

table 5.1. With GPU computation, optimization often requires specific tweaks that

maximize the utilization of the underlying hardware. I do not believe discussion

of those to be helpful here, given how hardware specific they are. However, several

more general purpose optimizations were found for the CUDA based implementation

which warrant a brief discussion.

One of these optimizations was “compute stream concurrency”. The idea here

is that within CUDA, commands are usually queued and executed by the GPU

from a FIFO “stream”. The default behavior is that each GPU has a single stream.

However, occasionally this resulted in sub-optimal performance if a command in
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the stream did not fully utilize the resources of the GPU. I found that creating

multiple streams (16 at time of writing) was able to eliminate this issue with minimal

downside.

Further gains were found by utilizing “pinned memory transfer”. On modern

OSs memory allocated to programs is usually “paged”, a kind of hybrid virtual

memory that uses both the main memory, usually the RAM, and a second, usually

slower, form of storage e.g. a hard disk. This causes issues under CUDA as data

transfer to the GPU from paged memory requires a blocking call on the GPU,

which temporarily suspends computation. With “pinned” memory, which has a

well defined location in the RAM, data transfer is able to occur asynchronously,

and may be performed in one stream concurrently with computation on a different

stream. The use of pinned memory for host-GPU data transfer, combined with the

use of multiple streams, was found to give a performance boost.

A final general tweak that was found to significantly boost performance was

that of “mini-batching”. Normally on the GPU, data, the photon time tags in this

case, resides in the GPU RAM. In the algorithm, each loop requires the comparison

of two (or more for higher order correlations) time tags. On the GPU, this means

there are many threads all trying to simultaneously read from the GPU RAM, with

the memory access being sparse, resulting in the memory becoming a bottleneck in

computation. To get around this we make use of the memory hierarchy of the GPU,

where, for each thread, we load a small buffer of time tags (four for each larger

time tag vector at time of writing) into “shared” memory. The access times for

the shared memory is significantly faster than the RAM due to its on-chip location,
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Figure 5.5: Benchmarks for the CPU and GPU based implementations of the
reduced double histogram method. Speedup here is calculated relative to single
threaded CPU performance.

although it is smaller in size and more limited in terms of its accessibility. Step four

of the algorithm in section 5.6.2.3 is performed on the time tags within these smaller

buffers, with the buffers being refreshed when they are exhausted. It might not seem

obvious that this approach would result in a performance gain as the same number

of tags must be read from the GPU RAM. However, this technique also makes use

of what is called “memory coalescing”, which means that the reading of sequential

values in the RAM can occur with similar speeds to single values, i.e. reading the

four tags to the shared memory buffer is likely to be nearly as fast as only reading

one of those time tags.

Figure 5.5 shows the result of benchmarks performed using the GPU com-

putational approach, as well as that with the multithreaded CPU implementation,

for a range of sizes of {τi}. In all cases, for a small size of {τi} the computation

time approaches some constant related to the overhead in reading and preparing

files from disk, as well as initializing threads/the GPUs. While for a large {τi}
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the compute time scales linearly, as expected. For typical sizes of {τi} in our lab,

≈ 103−104 for calculating g(2), the GPU implementation is at least an order of mag-

nitude faster than for the multithreaded CPU approach. We see that the speedup

compared to the multi-threaded CPU approach saturates at around 30× for a single

GPU, which should carry through when computing higher order correlations where

the multi-dimensionality of the problem means a large number of calculations need

to be performed. We see that the speedup for a pair of GPUs saturates at around

twice that of a single GPU, as expected given the massively parallel nature of the

underlying problem. Therefore, it is anticipated that further speedups could be

gained with the addition of more GPU processing power.

5.6.3.2 Reduced Per-Photon Histogram

As with the “reduced double histogram” method, the algorithm as-written in

section 5.6.2.4 is sequential. However, unlike that method there is not as much

inherently in the algorithm that can be obviously be performed in parallel. Early on

in the code writing process I had expected there to be potential gains to be made

from splitting up the vector v1 and performing steps 2 through 7 in parallel on these

smaller vectors4. However, this turned out to not be overly fruitful. Therefore, for

this method the only real computational optimization I have performed is parallel

processing of data files which, as before, has been implemented using OpenMP

parallel for loops [94]. Figure 5.6 shows the benchmarks for calculating coincidences

4to get the initial pointer values a binary search algorithm was also implemented which pre-
vented issues associated with step 4 and 5 becoming slow for the chronologically later smaller
vector segments.
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Figure 5.6: Benchmarks for the compute time as a function of threads for a multi-
threaded implementation of the reduced per-photon histogram coincidence calcula-
tion method. Speedup calculated relative to single threaded performance.

for 2001 τi’s as a function of the number of threads used. We can see that the

improvement, when increasing the number of threads, deviates very rapidly from

the one-to-one behavior we have previously seen. My speculation is that this is

related to the fact that the HDF5 libraries5 used did not allow parallel file reading,

which would make reading the files from disk a potential bottleneck, at least in this

regime.

A major issue that arises in software development, and in our lab, is the “it

works on my machine” problem, where software fails to operate correctly on a ma-

chine other than the one used for development/testing. This can occur for any

number of reasons, differences in available libraries, operating systems, CPU archi-

tectures etc. Docker [96] provides a remedy to this issue by allowing developers

to write “images”, which can be run by users in a virtualized “container”. There-

fore, a Dockerized version of the software was created, which has proven to be less

5Note that implementation of this method was performed in Linux, whereas the “reduced double
histogram” was written in Windows. I believe there may be a difference in the read time of the
HDF5 files in the two cases.
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Figure 5.7: Benchmarks for the Docker and native based implementations of the
reduced per-photon histogram method.

problematic in terms of portability and debugging. One might expect to see some

performance hit due to virtualization. However, as can be seen in figure 5.7, the

Dockerized and natively compiled version of the software perform similarly in the

regimes benchmarked.

5.6.3.3 Closing Remarks

Given the differing scaling of the computational complexity for the two meth-

ods, we do not necessarily expect there to be a one-size-fits-all fastest solution. In

the benchmarks shown in figure 5.8 we see that this is in fact the case6, with the

“reduced double histogram: method being faster when {τi} is small, and the “re-

6Although it is possible some of this behavior may be related to the conjectured differing HDF5
file read speeds in the two cases
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Figure 5.8: Comparison of the benchmarks for the optimized implementations of
the two methods.

duced per-photon histogram” method quicker when it is large. In practice, because

of its superior compatibility and lesser hardware requirements, we have tended to fa-

vor using the Dockerized “reduced per-photon histogram” software. However, both

software approaches remain in active development.

We have largely been concerned with reducing the processing time required to

calculate coincidences for some benchmark data. However, it is perhaps important

to bear in mind what sent me down this path in the first place. That is that the

more basic methods of calculation took far longer to perform than taking the data

itself. This is problematic in our experiment as we typically need long data runs,

multiple hours, to build up good statistics. Long processing relative to accumulation

times therefore mean a long wait for results, in addition to an inability to know at

some intermediate stage whether the data being taken is worthwhile. In an ideal
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situation we want to perform data processing as fast, if not faster, than the rate at

which it is accumulated. When we consider that the benchmark data took ≈ 100 s

to obtain then, from figure 5.8, we see that the typical {τi} size we use of ≈ 103−104

falls within the regime where real-time processing is possible. We have found this

to be the case in normal lab use, with there rarely being issues with computation

speed when calculating either7 g(2) or g(3).

7I can not comment on higher order correlation functions as we have never needed to calculate
them.
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Chapter 6: On-demand, Pure and Indistinguishable Single Photon

Source Based on a Rydberg Ensemble

Sources that produce on-demand single photons with a high rate, efficiency, pu-

rity, and indistinguishability have a wide range of applications in the fields of linear

optical quantum computing [97], boson sampling [98], quantum networking [14] and

quantum metrology [99]. The forefront of this field is dominated by sources based

on solid state platforms such as quantum dots [100–105], spontaneous-parametric

downconversion [106, 107], and multiplexed sources [108, 109]. However, none of

these sources fulfill all the desired criteria. Additionally, these sources in general,

produce photons which are spectrally incompatible with atomic systems. While this

is by no means essential, there are applications where such compatibility is likely to

be desirable, e.g. hybrid quantum networking.

In addition to solid state sources, there also exists a body of work on devel-

oping sources using atomic systems, for example single atoms [110] or ions [111] in

free space, and cavity coupled single atoms [112–114] and ensembles [115]. While

these have the benefit that they produce photons that are inherently atomically

compatible, they tend to lag behind the solid state sources in terms of their other

properties.
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Figure 6.1: Sequence for on-demand single photon generation.

In this chapter, I report on an efficient single photon source based on a Ryd-

berg ensemble. This chapter is based on work [39] that has recently been accepted

for publication. Dalia Ornelas-Huerta, the first author of the paper, and I are simul-

taneously writing our theses, which both contain chapters based on this publication.

In an effort to minimize overlap, I shall be reporting the main results from the pa-

per, while adding a description of additional work and analysis performed that did

not make it into the paper due to length constraints.

6.1 General Method

With the atoms loaded into the dipole trap, the process of which has been

described in detail in chapter 4, we use a write and retrieve protocol to produce

photons from the ensemble, similar to that described in reference [64]. The pulse
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Figure 6.2: Level scheme for production of on-demand photons.

sequence for this, shown in figure 6.1, is repeated many times per experimental cycle.

For the write stage, the probe and control fields, shown in figure 6.2, are

detuned such that ∆ is much greater than Γ, the 5P3/2 linewidth, but with δ ≈ 0.

By choosing a Rydberg state with a sufficiently high principal quantum number,

and by tuning the shape of the dipole trap, we can work in a regime where the

blockade radius becomes larger than the volume of the system, suppressing multiple

excitations. In this way the write process results in only a single collective excitation

stored in the ensemble.

After the spin wave is written, the control field is brought close to resonance

and turned back on mapping the Rydberg spin wave excitation to a Rydberg po-

lariton, which exits the cloud as photon [73]. As discussed in chapter 3, the spin

wave nature of the excitation means that the photon is preferentially retrieved into

a single mode. Here, the same beam configuration for the control field is used during

both writing and retrieval, so the photon is preferentially retrieved in the forward

142



SPAD-B

SPAD-A

87Rb

479 nm

Short PMF

HWP

Time
Tagger

km SMF

PBS

Filter 780nm

HWP Gating
AOM

Figure 6.3: Experimental setup for production and characterization of single pho-
tons.

direction. Given that the transverse mode of the written spin wave should be set

by the probe, the produced photon should exit the cloud in a similar mode to that

of the probe itself.

After the chamber, the photon is passed through a set of interference filters

(Alluxa 780-1 OD6 and Semrock Brightline 780/12) and a PBS, shown in figure 6.3,

to perform spectral and polarization filtering respectively. An AOM after the filter-

ing stage allows us to gate the light to prevent saturation of the SPADs during the

write stage. We couple the first-order diffracted light from the AOM into a short,

few meter long, polarization-maintaining fiber (PMF) (Thorlabs PM780-HP) and a

long, ≈ 1 km, single mode fiber (SMF). The power between the two fibers can be

adjusted using the prior HWP and PBS shown in figure 6.3. In order to ensure the

transverse spatial mode exiting the short and long arms is the same the km SMF is

butt-coupled to a near-identical fiber to the short PMF. The outputs of both fibers
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are passed through a further polarization filter, not pictured, and directed towards

a 50:50 beamsplitter, whose outputs are coupled into a pair of SMF each connected

a SPAD. We use a HWP to adjust the relative polarization of the two input arms

of the 50:50 beamsplitter. By adjusting the power in the long SMF and short PMF

we are able to switch between performing a Hanbury Brown and Twiss [88] and

self-Hong-Ou-Mandel [89] measurement of the light produced by the system.

6.2 Source Optimizations

The general method, outlined above, has several processes with various pa-

rameters which can be adjusted, changing the properties of the photon source. This

can be a double edged sword, on the one hand it grants us the freedom to alter

the source characteristics, but on the other it makes finding optimal values of the

parameters difficult, given the multi-dimensionality of the optimization problem. As

such, an exhaustive search of the parameter space is near impossible. Nevertheless,

I discuss here some of the reasoning behind the value of the parameters used in the

paper upon which this chapter is based [39].

6.2.1 Single Photon Purity

Tautologically, a single photon source should be a source of single photons.

That is, it should have an output with a g(2)(0) ≈ 0. For our source the suppression

of multi-photon states in the output relies on only a single collective excitation being

written to the ensemble. In experiment, if the Rydberg state principal quantum
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Figure 6.4: Coincidences, as a function of delay time, at the outputs of a Hanbury
Brown and Twiss setup for light produced using n = 120 with two different axial
cloud radii (radius along the probe propagation direction). Coincidences have been
normalized by dividing by the maximum coincidence value. Blockade radius calcu-
lated to be rB = (C6/Ω2−ph)1/6 ≈ 45 µm. Both figures show the same data, with
the right-hand figure zoomed in around τ = 0 to better show the peak there.

number being addressed is too low, then the blockade radius can be small enough,

relative to the cloud length, that multiple excitations are simultaneously stored in

the cloud during the write stage. This was seen in preliminary work performed

at n = 120, where g(2)(0) was observed to have a clear dependence on the axial

radius1 of the cloud, as seen in figure 6.4. Therefore, in order to suppress multiple

excitations, we use a principal quantum number n = 139, for which the blockade

radius is typically2 on the order of rB = (C6/Ω2−ph)1/6 ≈ 60 µm, where Ω2−ph is the

effective two photon Rabi frequency during the write stage. Additionally we use a

shortened cloud, for which the axial radius, σa ≈ 27 µm, is obtained by reducing the

power in the dipole trap arms, with the power in the first arm ≈ 150 mW. Although,

as will be seen later, this did not result in a perfectly pure source, further reduction

of the axial radius of the cloud and/or working with a higher Rydberg state would

1This is the radius along the probe propagation direction
2Note there is some variation due to the dependence of the two-photon write Rabi frequency
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likely have had negative impacts on the other source properties and not been worth

the compromise.

In a previous work [64] on a similar photon production process there was a

suggestion that a dephasing process, during the time the excitations are stored,

could contribute to the suppression of multi-photon output events. We would there-

fore expect g(2)(0) to decrease as the storage time of the excitations are increased.

However, this was, within experimental uncertainties, not observed to be the case in

our system. As a result, we believe the purity of the source to be solely a function

of blockade in the write process, with g(2)(0) being essentially “locked-in” once the

write has been performed.

6.2.2 Source Efficiency

In addition to having a high purity output, it is desirable that a single-photon

source produce photons with high efficiency, i.e. upon request the source produces

a photon, in the desired mode, with some high probability. For our source the

efficiency of photon production is a combination of the efficiency of writing the

initial spin wave, ηw, the efficiency of the storage of that spin wave, ηs, and the

retrieval efficiency of the spin wave into a single photonic mode, ηr. In practice,

we were only able to measure the total photon production efficiency, and not each

of the individual efficiencies. However, the processes are sufficiently distinct from

each other, both in practice and in theory, that it makes sense to talk about them

separately.
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6.2.2.1 Writing

Given our choice of Rydberg state and cloud dimensions, practically the entire

excitation volume is contained within a single blockade radius. Therefore, we can

effectively think of the ensemble as a so-called “superatom”, with a set of Dicke-

like energy levels [71]. For the most part, we can ignore the intermediate
∣∣5P3/2

〉
state, which can be adiabatically eliminated as the write procedure is performed

far from intermediate resonance, ∆ >> Γ. As such, we can consider two Dicke

states, |G〉 a state where all the atoms are in the ground state, and |S〉 a symmetric

superposition state with exactly one Rydberg excitation, coupled with a two-photon

Rabi frequency, Ω2−ph =
Ω′pΩc

2|∆| . Due to the collective nature of the excitation, the

probe Rabi frequency is enhanced by a factor3 [58]
√
N ≈ 20, related to the atom

number, Ω′p =
√
NΩp.

In the absence of any dissipation, the spin wave write procedure could be

performed with perfect efficiency. However, the finite spin wave dephasing rate,

γ ≈ 2π × 90 kHz, and, to a lesser extent, the linewidth of the intermediate state4,

Γ ≈ 2π × 6.8 MHz, set an upper bound on the writing efficiency which can be

obtained. To maximize the fidelity, the write procedure should be performed as

quickly as possible, for which we want to use as large a two-photon Rabi frequency

as is obtainable. However, the control Rabi frequency is limited to Ωc ≈ 2π×7 MHz

by the control power available, ≈ 100 mW due to the necessity to use a double pass

3Note that this factor is omitted when calculating the blockade radius.
4This is the measured value, and is broadened relative to the atomic value, primarily due to

the dipole trap.
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AOM to allow for the dynamic adjustment of the control frequency. For the probe we

do not have such a constraint, but off-resonant scatter from the intermediate state

starts to become an issue at higher probe powers causing the cloud to be rapidly

heated. While this can be mitigated by further detuning from the intermediate

state, the bandwidth of the control double-pass AOM set a limit on how far this

could be pushed.

Optimization of the write process was performed by measuring, as a function of

the write parameters, the overall photon production efficiency averaged over many,

of order several tens of thousand, photon production cycles. The maximum control

Rabi frequency of Ωc ≈ 2π × 7 MHz, along with a probe Rabi frequency of Ωp ≈

2π × 1 MHz, with an intermediate state detuning of ∆ ≈ 2π × 50 MHz, pulsed for

≈ 370 ns were empirically found to be optimal. The ideal two-photon detuning was

found to be δ ≈ −2π × 2 MHz, consistent with its theoretically expected value due

to the imbalance of the two excitation Rabi frequencies, Ω′p and Ωc.

6.2.2.2 Storage

Given the experimental realities of our finite spin wave dephasing, we want to

keep the storage time as short as possible, with the ideal situation being zero storage

time. At present, a technical lower bound on the storage time is set by the switching

time of the double-pass AOM used for the control light. During writing the control

frequency should be far detuned from resonance, but for retrieval it needs to be close

to resonance, a frequency difference of ≈ 2π × 50 MHz. This shift in frequency is
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achieved by using an RF switch (Mini-Circuits ZASWA-2-50DR) to toggle between

two different RF tones being sent to the AOM. Limitations of the AOM system mean

that the minimum time required to make this switch is on the order of ≈ 300 ns.

A storage time of 350 ns is used, with a slight overhead, compared to the switching

time, added to ensure there are not issues resulting from experimental jitter.

6.2.2.3 Retrieval

For an infinitely long-lived spin wave the retrieval efficiency should only depend

on the optical depth of cloud [73]. However, as with the other two stages of the

photon production process, the retrieval efficiency also suffers as a result of spin

wave decay, causing there to be an additional dependence of the efficiency on the

control Rabi frequency and detuning during retrieval.

Given the finite dephasing, it is always preferable to minimize the amount of

time spent in the Rydberg state. Therefore, we perform retrieval using the maximum

available control Rabi frequency. We observe a curious asymmetry in the retrieval

efficiency as a function of the control field detuning during retrieval, as seen in

figure 6.5. This behavior is not expected theoretically [73], and its origin remains a

mystery. To determine the control field detuning for photon production, a similar

curve to that in figure 6.5 was taken, but not normalizing the control field power

to account for the control AOM diffraction efficiency, which peaks at a detuning of

≈ 2π×20 MHz. From that, we find a control field detuning of ≈ 2π×7 MHz during

retrieval to be optimal for photon production.
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Figure 6.5: Normalized photon production efficiency as a function of the control
field detuning during retrieval. All other experimental parameters kept constant.
Control power here is 30% of its max value for all detunings.

For the dipole trap configured to suppress multiple excitations, and using

the standard MOT loading time of 250 ms we obtain an optical depth OD ≈ 13.

Given the control Rabi frequency available, and the dephasing rate, this OD should

theoretically be close to optimal. Experimentally, only minor gains in the production

efficiency, ≈ 10%, were observed when increasing the MOT loading time by an order

of magnitude to increase the optical depth, as seen in figure 6.6. For the rest of the

work shown here we have used a 250 ms MOT loading time, and therefore OD ≈ 13,

which served as a good compromise between retrieval efficiency and experimental

duty cycle.
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Figure 6.6: Normalized photon production efficiency as a function of MOT load
time/optical depth. Note the optical depth is not linear in the MOT load time.

6.3 Source Characterization

A single photon source is fully characterized by relatively few properties, its

efficiency and production rate, and the purity, indistinguishability, single moded-

ness, wavelength and bandwidth of the produced photons. Here, I report on the

measurement of these properties for our source.

6.3.1 Efficiency and Rate

After performing the optimizations described in the previous section we ob-

served peak in-PMF efficiencies up to 0.18(2), after accounting for the SPAD quan-

tum efficiency. Accounting for the losses, listed in table 6.1, along the optical path
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Element Efficiency
Optics transmission 0.75(2)

AOM diffraction 0.79(2)
PMF coupling 0.75(2)

HOM interferometer 0.38(1)
SPAD quantum efficiency 0.67(1)

Table 6.1: List of the efficiencies along the post-cloud probe path.
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Figure 6.7: Left: Average in-fiber efficiency as function of the duty cycle. Right:
Effective fibered rate as a function of the duty cycle. Note, these were taken prior
to full optimization of the photon generation process, hence the lower than reported
fibered efficiency. Production period here is 5 µs.

and in coupling into the PMF, where we have assumed the mode of the single

photons to be identical to that of the probe, we determine the photon generation

probability from the cloud to be 0.40(4). Theoretically modeling the photon pro-

duction process using a Lindblad master equation approach to model the write and

storage processes and the Maxwell-Bloch formalism of reference [73] for the retrieval

process, we expect the source efficiency to be 0.42(3), which is consistent with our

measurement. It should be noted that these experimental values are obtained for a

relatively slow production cycle time, 200 µs, and a small photon producing duty
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Figure 6.8: Left: In-fiber efficiency as function of the production period. Right:
Effective fibered rate as a function of the effective production attempt rate,
Duty Cycle/tperiod. Duty cycle here is 0.2.

cycle5, 20%. Therefore, the effective rate, that is the rate accounting for the duty

cycle of the experiment, of photons into the fiber is low, ≈ 200 s−1.

An increase in the effective photon flux may be obtained by increasing the

production duty cycle, by increasing the amount of time spent producing photons per

dipole trap load. This comes with a reduction in the average per-attempt efficiency,

as seen in figure 6.7. The trade-off exists as a result of the finite lifetime of the dipole

trap, with the efficiency of both the write and retrieve stages being dependent on

the atom number in the cloud.

In a similar vein, the production period may be reduced, to a minimum of

a few microseconds, which can also increase the fibered photon rate. This again

has the downside that it reduces the per-attempt efficiency, as seen in figure 6.8.

The reason for this behavior is two-fold. Firstly, an increase in the repetition rate

increases the scattering rate of the write photons from the cloud, which causes a

5here I am using duty cycle to mean the time spent in the photon producing part of the
experimental cycle, where the other portion of the experimental cycle includes the MOT load,
molasses, optical pumping etc.
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Figure 6.9: On-demand single photon source purity measurement scheme.

decrease in the lifetime of the atomic cloud. The other reason is related to Rydberg

contaminant states, which are themselves an interesting phenomenon that shall be

covered in more detail in a later section.

For much of the remainder of the work, related to characterizing the source, we

used a cycle time ≈ 5 µs and a duty cycle of 60%. This struck a good compromise

between per-photon fibered efficiency, ≈ 0.1, and effective in-fiber photon flux, ≈

1.18× 104 s−1.

6.3.2 Purity

The purity quantifies how likely it is that the output of the source is a single

photon. We define the purity, in terms of the measurable quantity g(2)(0), as 1 −

g(2)(0). For a perfect single photon source g(2)(0) is zero and thus the purity is

one. To measure g(2) for our source, we send all the light output from the chamber
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Figure 6.10: Gating window, shown by black dotted lines, for on-demand single
photon measurements.

to a single fiber, in this case the short PMF, with the other blocked, as shown in

figure 6.9.

Although the post-chamber gating AOM prevents a large amount of the write

pulse from reaching the SPADs, there is a small amount of leakage, that can be

seen in figure 6.10. Therefore, for the calculation of coincidences, we apply a 1.4 µs

gating window, also shown in the figure, to the time tags from both SPADs.

Figure 6.11 shows the coincidences, as a function of delay time, between the

two SPADs for the source. As can be seen, the coincidences at zero time delay are

greatly suppressed. Integrating the area for the raw coincidences around τ = 0 and

comparing it to the areas at a delay time τ = n× tperiod, where here tperiod = 5 µs,

and n is sufficiently large enough for the coincidence events to have no undesired
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Figure 6.11: g(2) measurement for single photon source. Both figures show the same
data, with the right hand being zoomed in around τ ≈ 0. Orange curve shows the
calculated coincidences due to background events.

correlations, we find g
(2)
raw(0) = 0.0145(2). The major reason that g

(2)
raw(0) is non-zero

comes from coincidences due to background events. The dominant source of these

accidental coincidence events in our system are due to coincident detection events

of a produced photon with one unrelated to the photon production process, either

a SPAD dark count, or from room light leakage into the SPAD. From the indepen-

dently measured photon profile, background rate and photon rate, we determine the

magnitude and profile of the coincidences due to background events, shown by the

orange curve in figure 6.11. Subtracting the calculated background and perform-

ing the same analysis of integrating areas in coincidence space, we determine the

background-subtracted g(2)(0) = 5.0(1.6) × 10−4, indicating that our source has a

near-perfect purity.
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Figure 6.12: On-demand single photon source indistinguishability measurement
scheme.

6.3.3 Indistinguishability

We use the indistinguishability of a source to quantify how similar the pho-

tons it produces are. This is an important property for many applications where the

interference of photons is required. Experimentally we measure the ability of the

source to produce indistinguishable photons using a self-Hong Ou Mandel interfer-

ometer. This is implemented by adjusting the power of the post-chamber HWP to

roughly balance the photon flux at the output of the PMF and km SMF. The km

SMF fiber acts as a 4.92 µs delay line. By tuning the production repetition period

to match this delay time, as shown in figure 6.12, we are able to interfere photons

from adjacently produced pulses on the 50:50 beamsplitter. The HWP immediately

prior to the 50:50 beamsplitter allows us to adjust the polarization of the photons

arriving at the two input ports to be either parallel or perpendicular.
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Figure 6.13: Self Hong-Ou-Mandel indistinguishability measurements for single pho-
ton source. Both figures show the same data with the right being zoomed in around
τ ≈ 0. Orange curve shows the calculated coincidences due to background events.

As with the purity measurements, a software gating window is applied to the

time tags when calculating coincidences. We observe a suppression in the number of

coincidences when the photons arriving at the input ports are parallel as opposed to

perpendicular, as seen in figure 6.13. Integrating the area around τ = 0 in both cases

we find the raw visibility to be Vraw = 1−Coincidences‖/Coincidences⊥ = 0.892(6).

Accounting again for accidental coincidences, in addition to slight deviations from

perfection in the transmission and reflection coefficients of the beamsplitter, we

determine the corrected interference visibility to be V = 0.980(7), suggesting our

source produces near-indistinguishable photons.

In contrast to figure 6.11, the peaks at τ 6= 0 in figure 6.13 have differing

heights, and display a slight temporal asymmetry. This is expected behavior. The

differing heights arise from the fact that the beamplitter configuration in figure 6.12

forms several Hanbury Brown and Twiss setups, with differing delay times. While

the temporal asymmetry occurs due to imperfections in the 50:50 beamsplitter.
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These effects are not particularly relevant to the discussion here, but are explored

further in appendix B.

6.4 Contaminants

As briefly touched upon in section 6.2, an interesting issue for our source is

that of Rydberg contaminants, namely the creation of Rydberg states other than

the one targeted by the excitation light. It should be noted that this is not a new

phenomenon, and there is an existing body of experimental [116–118] and theo-

retical [91, 119–122] literature on the subject. However, it poses a challenge for

Rydberg-ensemble based single-photon sources which, outside of the paper [39] this

chapter is based on, remains unexplored.

We first identified contaminant states as a potential issue when we observed

the dependence of the average photon production efficiency on the production cycle

period, which we saw in figure 6.7. Further evidence of a problem came from the

long timescale behavior of g(2) as well as production efficiency measurements made

in pulse trains, both shown in figure 6.14. In this figure the g(2) data shown is

the same as shown in figure 6.11, albeit looking at much larger values of τ , and

where we have integrated the coincidences around the τ = n× tperiod peaks. For the

displayed pulse train measurements we have used a production period of 2.5 µs for

75 production cycles before allowing a “cool down” of 200 µs between trains, where

no production occurs. For the pulse train measurements, we see a clear decay in the

production efficiency as a function of the pulse number within the train, indicative
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Figure 6.14: Left: Area integrated g(2) showing long-time behavior. Right: Normal-
ized production efficiency for a train of 75 pulses with a production period of 2.5 µs,
where the trains are separated by a 200 µs “cool down” time. In both cases the
orange line is a fit, of form discussed in the text, to the data.

of some sort of build up which inhibits the production of photons. The fact that

this decay is also present in g(2) suggests that the successful detection of a photon

projects the cloud into a similar “clean” state that is present after a “cool down”

has occurred in the pulse train measurement. From the data we infer that these

contaminants are produced as a by-product of the photon production process, and

that the presence of a contaminant within the cloud strongly suppresses the further

production of photons.

We can gain further insight into the nature of the contaminant states through

a simple model. We assume that contaminants are created in a clean medium with a

probability Pc and that they have a lifetime in the cloud of τc. In addition, we shall

assume that only a single contaminant may be present in the medium at any given

time, i.e. contaminants blockade the production of further contaminants, and that

contaminants fully blockade the photon production process. Then the probability
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of having a contaminant for the n-th pulse within a pulse train is given by

Pn = Pn−1e
−tperiod/τc + (1− Pn−1)Pc. (6.1)

Solving the recursion relation and using the initial conditions P0 = 0, as the cloud

is clean, and P1 = Pc then we find

Pn =
Pc

1− e−tperiod/τc + Pc

[
1−

(
e−tperiod/τc − Pc

)n]
. (6.2)

For a given attempt in the train, the probability of producing a photon is given by

Pg(n) = Pmax(1− Pn) = Pmax

(
1− Pc

1− e−tperiod/τc + Pc

[
1−

(
e−tperiod/τc − Pc

)n])
,

(6.3)

where Pmax here is the maximum photon production probability. Fitting this to

the pulse train data in figure 6.14, see orange curve, we are able to extract Pc =

1.9(3)× 10−2 and τc = 65(8) µs.

In a similar way we can model the behavior of g(2) by recalling our probabilistic

definition from chapter 5

g(2)(m) ≈
〈Pg(n+m |n)〉t
〈Pg(n+m)〉t

, (6.4)

where the notation should be taken to mean g(2) after summing over coincidences,

and the probabilities as the generation probabilities. The denominator is the time

averaged generation probability, which is the same as the generation probability as
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State Probability

138P3/2 0.217
139P3/2 0.212
138P1/2 0.111
139P1/2 0.104
137P3/2 0.036
140P3/2 0.030

Table 6.2: Decay probability, calculated with reference [61], of the 139S1/2 state
due to blackbody induced transitions at T = 300 K. Only states with a probability
higher than 2% are shown.

n→∞

〈Pg(n+m)〉t = Pmax

(
1− Pc

1− e−tperiod/τc + Pc

)
. (6.5)

While the numerator can be evaluated by recognizing that a photon produced in

pulse n informs us that the cloud was clean at that point, and therefore simply

〈Pg(n+m |n)〉t = Pg(|m|) ∀m 6= 0, (6.6)

where the negative time behavior comes from time-symmetry arguments. Therefore,

we can write

g(2)(m 6= 0) ≈ 1 + Pc

(
e−tperiod/τc − Pc

)|m|
1− e−tperiod/τc

. (6.7)

Fitting this to data, see the orange curve in figure 6.14, we find values, Pc = 7.2(2)×

10−3 and τc = 75(2) µs. Although these differ slightly from those found from the

pulse train fits, most notably in the contaminant creation probability, the two data

sets were taken almost a month apart, with various optimizations being performed

in the interim. As such, the discrepancy is not necessarily surprising.

The initial suspicion was that the contaminants are the product of blackbody-
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Figure 6.15: Normalized retrieval efficiency as a function of microwave time. Mi-
crowaves resonant with 139S1/2 to 139P3/2 transition. Orange curve is a model
assuming a 2π × 14 MHz Rabi frequency and no dissipation.

induced transitions from the target Rydberg state, discussed in chapter 2 when we

talked about the blackbody shortened lifetime of Rydberg states. As can be see in

table 6.2, the dominant blackbody decay path of the 139S1/2 state is to the (139±1)P

states. To investigate this idea of blackbody contaminants further, we attempted to

produce our own artificial contaminant states. This was accomplished by performing

the write stage of the photon production, then using a resonant microwave field to

transfer the excitation to a nearby P state. Confirmation of the ability to transfer

the excitation to the P state was obtained by performing the retrieval part of the

photon production procedure and observing clear Rabi flopping, seen in figure 6.15,

in the retrieval probability as a function of the microwave duration.
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Figure 6.16: Normalized photon production efficiency of second cycle as a function of
the microwave time in the first cycle. Microwaves resonant with 139S1/2 to 139P3/2

transition. Orange curve to guide the eye is of form 1− a sin2 (Ω tmicrowave/2), where
Ω = 2π × 14 MHz and a ≈ 0.4.

The first in the series of experiments performed with the microwaves was to

look at the behavior of subsequent photon production in the presence of the artificial

P states. For this, we performed pairs of photon production cycles with a large “cool

down”, 100 µs, between pairs. In the first production cycle of the pair, we applied

resonant microwaves during the storage time for a time tmicrowave, whereas the second

cycle was performed as normal. As seen in figure 6.16, the second cycle experiences

a suppression in the production efficiency in phase with the flopping of the first cycle

to the 139P3/2 state.

Again using the pairs of production cycles, we then probed the lifetime of the

artificial contaminants. Here, we use tmicrowave = 100 ns, to convert any stored target
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Figure 6.17: Lifetime measurement of artificially created contaminant. Pairs of pro-
duction cycles are performed where we use microwaves, resonant with 139S1/2 to
139P3/2 transition, to transfer the first Rydberg excitation to an artificial contam-
inant state. The second cycle is performed as normal. Plotted is the normalized
production efficiency, as a function of the delay time between the two cycles. Or-

ange curve is fit of form a
(

1− be−tdelay/τ139P3/2

)
, where a = 0.93(4), b = 0.43(8) and

τ139P3/2
= 100(40) µs.

excitation in the first production cycle to a 139P3/2 state, then the second production

cycle is performed as normal after some delay, tdelay, with a “cool down” period,

500 µs, between cycle pairs. As expected, we see an increase in the production

efficiency of the second cycle as the delay time between the cycles is increased, which

can be seen in figure 6.17. From this we extract a lifetime for the created 139P3/2

in the cloud of τ139P3/2
= 100(40) µs. This lifetime is consistent with that seen

for the naturally occurring contaminants, however, it is considerably less than the

calculated blackbody lifetime of the state, ≈ 850 µs. Similar experiments performed
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Figure 6.18: Contaminant production probability as a function of the peak atomic
density of the cloud. tstorage fixed at 350 ns.

with 138P3/2 corroborate the findings presented here.

Although there was a similarity in behavior of the naturally and artificially

created contaminants states, a number of observations indicate that the natural con-

taminants do not arise from blackbody decay. Firstly, attempts were made to “clean

out” the cloud after the photon production cycle by applying microwaves resonant

with the prominent blackbody decay channels, along with the resonant control light.

These were found to be unsuccessful in reducing the presence of contaminants within

the cloud. Additionally, Pc, measured with the pulse train method, was seen to have

a dependence on the cloud density, shown in figure 6.18. Finally, the dependence

of Pc on the spin wave storage time, shown in figure 6.19, indicates a decay signif-

icantly faster, a few tens of microseconds, than would be expected for blackbody
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Figure 6.19: Contaminant probability as a function of the spin wave storage time.
Atomic density fixed at ≈ 4× 1011 cm−3.

decay. Given this behavior we believe the natural contaminants to be produced

by collisional processes between Rydberg and ground state atoms, similar to those

described in reference [120]. In that work they discuss multiple collisional processes,

some of which result in states that would not be cleaned in the manner attempted

with microwaves. Due to the aforementioned issues with our state sensitive field

ionization setup we are both unable to fully confirm this hypothesis, nor are we able

to easily alleviate the issue.

6.5 Issues, Improvements and Outlook

We have already discussed the contaminant states at length, which cause there

to be a trade-off between the production efficiency and rate. Eliminating this prob-
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lem is therefore highly desirable. A field ionizing pulse after each production cycle is

likely to be the most optimal solution, as it ensures a clean cloud for each production

cycle. This is not feasible in our current setup, due to the limitations of our high

voltage in-vacuum electronics, discussed in chapter 4. Failing this, the effect of the

contaminants can be mitigated by reducing their production probability. This could

be achieved either by reducing the time spent in the Rydberg state, or, if the con-

taminants are caused by collisional processes, by reducing the mean atom number

encompassed by the Rydberg electron. For both of these, a reduction of the Ryd-

berg principal quantum number would be helpful, in terms of increasing the control

field matrix element and decreasing the Rydberg orbital radius. However, the trap

geometry would need to be adjusted to ensure suppression of multiple excitations

with the shrinking blockade radius.

Another issue relates to the electric field sensitivity of the Rydberg state. At

n = 139 the polarizability is α ≈ 62 GHz/(V/cm)2 [61]. This means a field of

only a few mV/cm is necessary to shift the Rydberg state such that the probe and

control are no longer at the optimal two-photon detuning. Annoyingly, the stray

fields in the lab were found to drift on the order of tens of mV/cm over the course

of a few hours. Therefore, for the longer data-taking runs required for the purity,

indistinguishability and experiment in the following chapter, it was necessary to

frequently adjust the applied field. This was done on-the-fly using a grad-student

PID by monitoring the production efficiency and altering the applied fields to re-

maximize it when it was seen to fall. Although this mode of operation worked fine

for experiments shown in this thesis, it is unlikely to be practical for any longer
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Figure 6.20: Photon production probability as a function of the spin wave storage
time.

term operation, or for a lab where the stray fields drift more rapidly. An obvious

solution would be to implement an automated PID to feedback and zero out the

fields. However, the need for such a PID would rapidly become unnecessary if the

principal quantum number were lowered, given the (n∗)7 scaling of the polarizability.

A major limitation on the production efficiency is the finite lifetime of the Ry-

dberg spin wave, which can be seen in figure 6.20, which affects every stage of the

production cycle. The lifetime, on the order of microseconds, is significantly smaller

than that of the Rydberg state itself, as a result of dephasing of the stored spin

wave. There are a number of dephasing mechanisms at play in the system related

to, motion of the atoms during storage, differential scalar light shifts, collisional

shifts of the Rydberg state etc. From calculations, none of the known dephasing

mechanisms seem to fully account for the observed lifetime. However, other exper-
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iments performed with Rydberg spin waves have demonstrated significantly longer

lifetimes [123,124], so there is potential scope for improvement.

Rather than increasing the lifetime of the Rydberg spin wave, an alternative

solution, and one that is being actively worked on, is the idea of shelving the Rydberg

excitations. Here, after the write stage we would apply a second set of pulses with

the control and a shelving beam, coupling the Rydberg and some other “shelving”

ground state, different from the one the ensemble is initialized in. This would map

the Rydberg spin wave into a spin wave that is a symmetric superposition state

with exactly one atom in the shelving state. A benefit here is that ground state

spin waves can be made to have lifetimes that are near infinite in relation to our

experimental cycle times [70]. Additionally, the effective time spent in the Rydberg

state would be restricted to the duration of the write and shelving processes, which

is far smaller than at present. Further, the lack of need to change the control

frequency mid-production cycle means we could increase the control Rabi frequency

by working with a single pass, rather than double pass AOM.

While useful for the purpose of increasing the efficiency of the single photon

source, the idea of spin wave shelving has a number of further uses. For one, it is

a crucial step for modifying the source to generate photon-spin entanglement [31,

32], and therefore for the creation of a Rydberg-ensemble based quantum repeater.

Another potential avenue of research would be in using the shelving for creating

more exotic states of light. For example, in a similar vein to reference [125], we

could imagine preparing arbitrary atomic spin wave Fock states. By applying a

near-resonant shelving beam these could be read out as a photonic Fock state.
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Along the same lines, we could even think about making arbitrary photonic states,

in a similar manner to that in reference [126]. Slightly more ambitiously still, with

the ability to shelve into multiple states of the ground manifold there is the potential

to make more exotic and potentially useful photonic states, such as N00N states.
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Chapter 7: Quantum Interference Between Photons from an Atomic

Ensemble and a Remote Atomic Ion

Advances in the distribution of quantum information will likely require en-

tanglement shared across a hybrid quantum network [36–38]. The complimentary

strengths and functions of the different quantum systems gives heterogeneous net-

works an advantage over those consisting of identical nodes. Many protocols for gen-

erating remote entanglement require interference between photons produced by the

different network nodes, which has largely prevented investigations into photonic-

based hybrid entanglement, owing to the large differences in the spectral character-

istics of single photons generated by different quantum systems [28,30,36]. Although

this is not a physical limitation [127,128], vanishing entanglement generation rates,

along with the necessity for detectors with bandwidths orders-of-magnitude greater

than currently available has prohibited the linking of heterogeneous systems. Over-

coming this spectral disparity will allow for the construction of hybrid networks

with practical entanglement rates and expanded capabilities compared to a net-

works based only on homogeneous components [36].

Two of the leading systems in the field of quantum information are Rydberg

atoms, which we have already discussed at length, and trapped ions. The strong
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optical nonlinearity exhibited by neutral-atom Rydberg ensembles enables the con-

struction of single-photon sources [64], gates [53], and transistors [129]. Strong

light-matter interactions make them well suited as quantum memories [123], and for

implementing quantum repeaters [31, 32]. Furthermore, arrays of Rydberg atoms

are a powerful new platform for quantum simulation [46, 130]. Trapped ions are

leading candidates for quantum computation, communication, and simulation with

good matter-to-photon conversion [131–138]. Their continued success owes to long

coherence and trapping lifetimes [135], high fidelity operations [136], and ease of

generating ion-photon entanglement [137,138].

In this chapter, I describe the observation of high-visibility Hong-Ou-Mandel

(HOM) interference [89] between photons generated from a rubidium atomic en-

semble and a trapped barium ion after closely matching their center frequencies via

difference frequency generation (DFG) [139]. Recognizing that this is a key step

towards the entanglement of these two systems, towards the end of the chapter we

shall explore the feasibility of generating hybrid ion-atomic ensemble remote entan-

glement. This chapter has been adapted from a published work [40] which was a

collaboration between our lab and Qudsia Quraishi’s trapped barium ion group.

7.1 Experimental Configuration

This experiment, shown in figure 7.1, spans two buildings. Building A contains

a single trapped 138Ba+ ion as well as two DFG setups. Building B contains the

previously described 87Rb atomic ensemble and a HOM interferometer to measure
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Figure 7.1: Joint experimental layout. Here VBG and ULEC stand for volume
Bragg grating and ultra low expansion cavity respectively.

two-photon interference. In this section I describe the various components that

make up the total experimental setup.

7.1.1 Barium Trapped Ion Details

The configuration of the experiment in building A, and level scheme for the

barium ion are shown in figure 7.2. Here, a single 138Ba+ is confined and Doppler

cooled using a radio-frequency Paul trap [140] and 493-nm light. An additional

laser at 650-nm is used as a re-pumper. The ion emits single photons near 493 nm

via spontaneous emission from the 6P1/2 excited state to the 6S1/2 ground state.

Photon collection is performed with a custom coated, ex-vacuo 0.4 NA objective,
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Figure 7.2: Experimental layout and energy level diagram for barium ion system.

corresponding to about 4% collection of light emitted by the ion. The total photon

collection efficiency out of the SMF is ≈ 1%. The collected photons are spatially

combined with the pump laser on a dichroic mirror before passing through a 20X

objective and coupled into a wave guide in the periodically poled lithium niobate

crystal, DFG-1 (SRICO Model: 2000-1005). Here, DFG converts the 493-nm pho-

tons to 780 nm, whilst preserving their quantum statistics [139,141]. The converted

and unconverted photons, as well as pump light, exit through a fiber butt-coupled

and glued to the output of the wave guide. The light from DFG-1 is passed through

a set of interference filters (two each of Semrock: LL01-780-25 and FF01-1326/SP-

25) and a volume Bragg grating (OptiGrate BP-785) to filter out the pump, noise

photons, and unconverted photons [142]. Finally, the remaining 780-nm single pho-

tons are passed through a polarization filter before being coupled into the PMF
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connecting to Building B. The single-photon conversion efficiency, measured as the

ratio between the number of output 780-nm photons after the Bragg grating and the

number of 493-nm photons before combination with the pump, is ≈10% on average,

with fluctuations that are attributed to photo refractive effects caused by the high

intensity pump light [143–145]. Due to these effects, the experimental run time is

limited to about 10 hr before the pump must be turned off for an extended period

of time (10 hr) to allow the crystal to recover.

To ensure the converted ion-produced photons are at a similar frequency as

those produced by the atomic ensemble, a second frequency conversion setup, DFG-

2, is used. Laser light at 493-nm, with a known detuning from the photons emitted

by the ion (± 10 MHz), is combined with the same pump light used in DFG-1,

producing continuous wave light at 780-nm. The 780-nm light from DFG-2 is com-

bined with frequency-locked 780-nm light from building B onto a fast photodetector

(Electro-Optics Technology ET-2030A), with which we measure an optical beat note.

We use the beat note to produce an error signal, which is then used to feed back to

the pump laser’s frequency control. We stabilize and set the frequency of the output

780-nm light from both DFG setups. Uncertainties in the center frequency of the

converted 780-nm single photons were present in the experiment due to uncertain-

ties in the ion spectroscopy, and drifts in the 493-nm and 650-nm laser wavemeter

locks. This affects the two-photon interference and is investigated in a later section.
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Figure 7.3: Experimental layout and energy level diagram for atomic ensemble sys-
tem.

7.1.2 Atomic Ensemble Details

As the primary focus of this thesis, the atomic ensemble experiment has al-

ready been discussed in detail. However, for the sake of completeness, I include the

brief description of the experiment from the published work.

The atomic-ensemble source uses Rydberg blockade [146] to produce single

photons, utilizing a typical Rydberg polariton experimental layout [41, 129]. The

ground,
∣∣5S1/2, F = 2,mF = 2

〉
, and Rydberg states,

∣∣nS1/2, J = 1/2,mJ = 1/2
〉

are

coupled using a two-photon transition, via an intermediate state,
∣∣5P3/2, F = 3,mF = 3

〉
,

shown in figure 7.3. The 780-nm probe light that has passed through the cloud is

collected and coupled (≈ 70% efficiency) into a PMF. We operate with Rydberg

levels with principal quantum numbers, n ≥ 120, where the blockade radius is sig-

nificantly larger than the probe beam waist, making the medium effectively one

dimensional [41]. The atomic ensemble has a lifetime of ≈ 1 s, limited by the back-

ground vapor pressure. Thus, to maintain reasonable atom numbers over the course
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Figure 7.4: Experimental layout for HOM interferometer.

of the measurements, we periodically reload the ensemble.

7.1.3 HOM Interferometer

Light from both sources is transmitted to the interferometer setup, shown in

figure 7.4, by PMF. At the output of each fiber we use a PBS, not pictured, to clean

the polarization of the light before it passes to the 50:50 beasmplitter. For the light

from the atomic-ensemble source, a HWP after the PBS allows us to adjust the

relative polarization of the two sources at the 50:50 beamsplitter. We couple the

output ports of the 50:50 beamsplitter to a pair of SMFs with similar mode field

diameters to the input PMFs, which are connected to a pair of SPADs (Excelitas

SPCM-780-13). Immediately prior to both output SMFs we use a bandpass filter

(Semrock Brightline 780/12) to remove stray light. We use a time-tagger (Roithner-

Laser TTM8000) to record timestamps for SPAD detection events, from which we

use software to calculate coincidences.
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Figure 7.5: g(2)(τ) for stochastically produced photons from the ion source.

7.2 Interference for Stochastically Produced Photons

First we consider the case of interference where each source continuously pro-

duces single photons with stochastic arrival times.

7.2.1 Trapped Ion Stochastic Photon Production

For the case of stochastic photon generation, the ion is constantly Doppler

cooled with Rabi frequencies of ≈ 2π× 25 MHz and ≈ 2π× 11 MHz, and detunings

≈ 2π× (−99) MHz and ≈ 2π× 29 MHz, for the 493-nm and 650-nm beams respec-

tively. The average count rate of converted photons throughout the experiment,

Rion, measured as the sum of counts on SPAD A and B in Building B, is ≈ 400

s−1. Figure 7.5 shows g
(2)
ion(τ) for the resulting 780-nm photon stream. We measure
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Figure 7.6: g(2)(τ) for stochastically produced photons from the atomic ensemble
source.

g
(2)
ion(0) = 0.05(8) after background subtraction. Here, the g

(2)
ion dip width is set by

the effective Rabi frequency (≈ 2π × 100 MHz) of the driving 493-nm light, which

additionally dictates the emitted photon’s bandwidth.

7.2.2 Atomic Ensemble Stochastic Photon Production

To produce a stochastic photon stream from the atomic ensemble source, we

tune the probe and 479-nm control fields to their respective atomic resonances,

∆ = δ = 0 (see figure 7.3). Rydberg EIT ensures that only single photons propagate

through the medium without large losses [41]. In steady-state operation at a high

Rydberg level, n = 120, and large optical depth, OD ≈ 30, we observe a background

subtracted g
(2)
atom(0) = 0.119(7), shown in figure 7.6. This is significantly larger
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Figure 7.7: Normalized coincidences for the cases where the relative polarization of
the two sources at the interferometer are parallel, n‖(τ), and perpendicular, n⊥(τ).

than the value of g(2)(0) we saw in the previous chapter for the on-demand source.

However, this is not necessarily surprising given the differing mechanisms which set

g(2)(0) in both cases. Here we attribute the non-zero value to finite probe beam

size and input photon flux effects [41, 91]. The width of the g
(2)
atom dip is set by

the Rydberg-EIT bandwidth [41]. However, in contrast to the barium ion, the

majority of the photons exiting the medium have similar spectral bandwidths to the

input probe field [147]. We measure an average photon count rate throughout the

experiment, Ratom, of ≈ 104 s−1, with an experimental duty cycle of 0.56, where the

off time is used for reloading.

7.2.3 Stochastic Hong-0u-Mandel Results

The background-subtracted normalized coincidences for the HOM interference

are shown in figure 7.7 for the cases where the relative polarization at the interfer-

ometer of the photons from the two sources are parallel, n‖(τ), and perpendicular,
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Figure 7.8: Beamsplitter input and output operators. Input photons are represented
by the raising operators â† and b̂† for the atomic-ensemble and ion sources respec-
tively, with x̂† and ŷ† representing photons exiting each of the two output ports.

n⊥(τ). We define the visibility of the interference

V =
n⊥(0)− n‖(0)

n⊥(0)
(7.1)

and observe V = 0.43(9) using 1-ns bins.

For a perfect 50:50 beamsplitter two factors can contribute to a non-unity

visibility: multiphoton events from either of the sources, quantified by g(2)(0), and

distinguishability. Given that g(2)(0) is not perfectly zero for either of the sources,

let us determine the suppression of V due to multiphoton events from either of the

two sources. The relation between the input and output bosonic operators shown
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in figure 7.8 is given by

â†
b̂†

→ 1√
2

1 i

i 1


x̂†
ŷ†

 . (7.2)

Initially, we consider the case where a single photon from the atomic ensemble,

represented by â†atom, and a single photon from the ion, represented by b̂†ion, are

present at separate inputs of beamsplitter. For such an input state we have:

|1atom, 1ion〉in = â†atomb̂
†
ion |0, 0〉out

→ 1

2

(
x̂†atom + iŷ†atom

)(
ix̂†ion + ŷ†ion

)
|0, 0〉out .

(7.3)

To take into account the distinguishability between the two input photons, we define

x̂†atom = x̂†

ŷ†atom = ŷ†

x̂†ion =
√
c x̂† +

√
1− c x̂†n

ŷ†ion =
√
c ŷ† +

√
1− c ŷ†n,

(7.4)

where c is a real number, 0 ≤ c ≤ 1, that parameterizes the mode overlap of the two

photons. Here x̂†n and ŷ†n consist of all modes orthogonal to x̂† and ŷ†, respectively,
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i.e. 0 = 〈0| x̂nx̂† |0〉 = 〈0| ŷnŷ† |0〉. From equation 7.3 and 7.4 we find

|1atom, 1ion〉in → |ψout〉

|ψout〉 =
i

2

(√
2c |2, 0〉out +

√
1− c |1&1n, 0〉out +

√
2c |0, 2〉out +

√
1− c |0, 1&1n〉out

)
+

√
1− c
2

(|1, 1n〉out − |1n, 1〉out) ,

(7.5)

where we use the notation |1&1n, 0〉out and |0, 1&1n〉out to denote instances where

the photons exit the same port of the beamsplitter, but are otherwise in orthogonal

modes. The probability, P|1,1〉in→1,1, of finding a photon at both output ports is then

given by

P|1,1〉in→1,1 = |〈1, 1|ψout〉|2 + |〈1, 1n|ψout〉|2 + |〈1n, 1|ψout〉|2

=
(1− c)

2
.

(7.6)

From this, we can see that a value of c = 1 corresponds to perfect interference, with

zero probability of finding photons at both output ports simultaneously. Similarly,

a value of c = 0 corresponds to no interference between the photons, with equal

probability for the photons to exit the same port, or separate ports.

We now repeat the same procedure for the situation where two photons from

the atomic-ensemble source are present at the beamsplitter with none from the ion
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source, i.e. |2atom, 0〉in

|2atom, 0〉in =
1√
2

(
â†atom

)2

|0, 0〉out

→ 1

2
√

2

(
x̂† + iŷ†

)2 |0, 0〉out

→ 1

2

(
|2, 0〉out − |0, 2〉out + i

√
2 |1, 1〉out

)
.

(7.7)

Using a similar procedure as for the |1, 1〉 input state, the probability of finding a

photon at both output ports is P|2,0〉in→1,1 = 1/2. From symmetry this is the same

for the case of the |0, 2ion〉in input state, i.e. P|0,2〉in→1,1 = 1/2.

For near-single photon sources, such as those used in this work, input states

with total photon number > 2 occur with negligible probability. We now calculate

the coincidence rate, ignoring such terms

R(τ = 0) =
PatomPion

∆τ
P|1,1〉in→1,1 +

P2×atom

∆τ
P|2,0〉in→1,1 +

P2×ion

∆τ
P|0,2〉in→1,1, (7.8)

where Patom(ion) and P2×atom(ion) are the probabilities of having a single and two

photons from the specified source in a time interval, ∆τ , respectively.

For the case of continuously produced photons, we can rewrite the single pho-

ton probability in terms of the singles rates, Ratom(ion), Patom(ion) = Ratom(ion)∆τ .

Additionally we can make the approximation g
(2)
atom(ion)(0) ≈ 2P2×atom(ion)/P

2
atom(ion)

which is nearly exact in the limit of small photon flux [92], as is true for our exper-
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iment. Equation 7.8 can then be written

R(0) = ∆τRatomRion

[
(1− c)

2
+

1

4

(
Ratom

Rion

g
(2)
atom(0) +

Rion

Ratom

g
(2)
ion(0)

)]
= ∆τRatomRion

[
(1− c)

2
+

1

4

(
rg

(2)
atom(0) + r−1g

(2)
ion(0)

)]
,

(7.9)

where r = Ratom/Rion. From equation 7.9 we can calculate the expected normalized

coincidences as a function of c, g(2)(0) for the two sources and r

n(0) =
R(0)

R(0)
∣∣
c=0, g

(2)
atom(0)=1, g

(2)
ion(0)=1

=
2 (1− c) + rg

(2)
atom(0) + r−1g

(2)
ion(0)

2 + r + r−1
.

(7.10)

Assuming no interference (c = 0) in the perpendicular case, and making no

assumptions about the overlap in the parallel case, we can calculate an expected

visibility

Vexp =
n⊥(0)− n‖(0)

n⊥(0)

=
n(0)

∣∣
c=0
− n(0)

n(0)
∣∣
c=0

= 1−

(
2(1− c) + r‖g

(2)
atom(0) + r−1

‖ g
(2)
ion(0)

) (
2 + r⊥ + r−1

⊥
)(

2 + r⊥g
(2)
atom(0) + r−1

⊥ g
(2)
ion(0)

)(
2 + r‖ + r−1

‖

) .

(7.11)

If we assume the rates are similar in the parallel and perpendicular measurements,

r = r⊥ = r‖, equation 7.11 reduces to

Vexp = c

[
1 +

rg
(2)
atom(0) + r−1g

(2)
ion(0)

2

]−1

. (7.12)
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In the limit that g
(2)
atom(0) = g

(2)
ion(0) = 0 we see that the visibility is equal to

the mode overlap of the photons from the two sources, c. However, given a finite

g(2)(0) for either source the visibility is reduced, due to multi-photon events, by a

factor

fmp =

[
1 +

rg
(2)
atom(0) + r−1g

(2)
ion(0)

2

]−1

. (7.13)

Given the independently measured g(2)(0) for the sources and ratio, r, from

equation 7.13 we determine fmp = 0.41(1), where we have assumed the flux from the

two sources is constant throughout the experiment, which is a valid approximation

for this data. The observed V = 0.43(9) can thus be attributed entirely to multi-

photon events, and therefore is consistent with perfect bunching of photons from the

two sources. Additionally, we note that n‖(0) and n⊥(0) are in agreement with the

values expected from the measured g(2)(0)’s, shown by the bands in figure 7.7, which

are calculated using equation 7.10. Due to the disparity in the spectral widths of

the photons produced by the sources, the width of the HOM dip, seen in figure 7.7,

is almost entirely determined by the temporally narrower ion-produced photon.

7.3 Interference for On-Demand Produced Photons

To be useful for quantum networking, the photons should arrive on demand

in well-defined temporal modes [148]. To this end, we investigate two-photon inter-

ference in the case where a single photon from each source arrives at a known time

relative to an experimental trigger shared between the two buildings.
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Figure 7.9: Photon profile and area-integrated g(2)(τ) for on-demand photons pro-
duced by the trapped ion source.

7.3.1 Trapped Ion On-Demand Photon Production

To produce on-demand single photons from the ion, we use a process similar to

that described in [142]. First, the ion is pumped into the D5/2 manifold using only

the 493-nm laser for 750 ns. Due to the polarization of the 493-nm light, the ion is

pumped, with equal likelihood, into any one of the Zeeman sub-levels. This light is

then turned off, and we wait for for 60 ns to ensure any laser scatter is not detected

during the photon extraction phase. A 200 ns pulse of 650-nm light, separate from

that used to Doppler cool, is then used to excite the ion to the P1/2 manifold, from

which a 493-nm photon may be emitted, ≈ 75% branching ratio. This 650-nm

light is linearly polarized, and propagates along the quantization axis, with a Rabi

Frequency of ≈ 2π× 30 MHz and detuning of ≈ 2π × 29 MHz. The 650-nm light

is then turned off, and after a short period, 60 ns, with no light, Doppler cooling of

the ion is resumed, for a minimum of 500 ns.

We detect a photon at the output of the HOM interferometer with a proba-
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Figure 7.10: Photon profile and area-integrated g(2)(τ) for on-demand photons pro-
duced by the atomic-ensemble source.

bility of ≈ 2× 10−5 per attempt. From a Hanbury Brown and Twiss measurement

performed on the 493 nm light prior to conversion we find g
(2)
ion(0) = 0(1)×10−2 after

background subtraction, as shown in figure 7.9. Photons are emitted from the ion

with a nearly exponential decaying temporal profile, with a decay constant, ≈ 50 ns,

set by the effective Rabi frequency of the 650-nm retrieval pulse.

Due to the magnetic bias field, ≈ 5 G, splitting the Zeeman states in the

6S1/2 and 5D3/2 levels, combined with the near-equal population distribution in the

5D3/2 manifold following pumping, the average photon spectrum consists of several

distinct peaks. This affects the shape of the interference dip, and is discussed in

more detail below.

7.3.2 Atomic-Ensemble On-Demand Photon Production

For the atomic-ensemble source, we generate on-demand photons using the

write and retrieve protocol, documented in chapter 6. Although this has been thor-

oughly discussed in that chapter, I am again including the brief description of the
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protocol from the published work for completeness.

A Rydberg spin wave is written to the cloud using coherent control and probe

pulses, detuned far from intermediate resonance, ∆� Γ, the linewidth of the inter-

mediate state, and close to two-photon resonance, δ ≈ 0. Rydberg blockade during

the write process ensures that a single Rydberg spin wave excitation is stored in the

medium. The control field is tuned close to resonance and then turned on, retrieving

the spin wave as a single photon with a spatial mode similar to the input probe light.

After accounting for background coincidences, we measure1 g
(2)
atom(0) = 0(1)× 10−4,

with a per-attempt detection probability ≈ 3 × 10−2 at the outputs of the HOM

interferometer. The temporal profile of the retrieved photon is determined by the

control Rabi frequency, ≈ 2π×7 MHz, intermediate state detuning during retrieval,

≈ 2π × 7 MHz, and optical depth, ≈ 10, of the cloud [149]. Figure 7.10 shows the

temporal profile of the atomic-ensemble produced photon, also well approximated

by a decaying exponential, with a decay constant ≈ 120 ns.

7.3.3 Synchronization and Measurement Scheme

Given the on-demand nature of the two sources, synchronization is necessary

to control the arrival times of the photons at the interferometer. To synchronize

the two experiments we operate in primary-minion configuration with the atomic-

ensemble lab, in building B, as the primary and the ion lab, in building A, as the

minion. In the ensemble lab we generate 1064-nm optical pulses using an AOM

1Note that there is a small discrepancy between the value of g(2)(0) reported here compared to
the previous chapter. This is likely due to the different gating methods used.
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with laser light. These are sent over fiber to the ion lab where the optical pulse

is converted to TTL, using a high bandwidth (Thorlabs PDA05CF2) photodiode,

which triggers photon production. Due to drifts in the power of the 1064-nm optical

pulse, we observe small drifts (≤ 20 ns over several hours) in the ion-produced

photon arrival time relative to that generated by the atomic-ensemble.

To measure the visibility in a single experimental run, instead of using polariza-

tion to make the photons distinguishable, we use a procedure where the ion-produced

photons alternately arrive simultaneously on the beamsplitter with the atomic-

ensemble produced photons,with identical polarization, interleaved with pulses when

their arrival times are not overlapped, depicted in figure 7.11. Our experimental se-

quence consists of requesting photons from the atomic ensemble at a rate of 200 kHz,

while the ion produces photons at 400 kHz. To ensure the photon profiles overlap,

even with the temporal drifts, we offset the average arrival time of the ion pro-

duced photon ≈ +40 ns relative to atomic-ensemble produced photon. Calculations

indicate that with this offset, such temporal drifts have negligible effect on the

two-photon interference. We observed no measurable drift between the temporally

overlapped and non-overlapped photons produced by the ion, which have a tempo-

ral separation of 2.5 µs. Due to the finite lifetime of the atomic-ensemble trap, we

operate at an experimental duty cycle of 0.6.

Along with events on SPAD A and B we additionally record timestamps for an

electronic reference, which defines an absolute time reference within the 5-µs pulse

cycle. This reference was provided by the same electronics that controlled the arrival

time of the photons produced by the two systems. Throughout the experiment we
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Figure 7.11: Photon profiles for the two sources for one measurement period.

observed no drift between the arrival time of the atomic-ensemble produced photon

and the electronic reference.

7.3.4 On-Demand Hong-Ou-Mandel Results

Due to the relatively low flux of ion-produced photons at the output of the

interferometer, we perform software gating to improve the signal-to-noise ratio of

the coincidences for the on-demand interference. We calculate coincidences, C(t, τ),

between the two SPADs as a function of the relative time τ between events on

SPAD A and B, and the time t between the event on SPAD A and the electronic

clock, shown in figure 7.12. We take two windows, denoted by the regions between

the dashed-black lines in figure 7.12, and calculate C(τ) =
∑

t∈tw C(t, τ), where tw

are the set of times in the windows. For our data, we chose a 120-ns window size,

encompassing ≈ 80% of the area of the ion-produced photon, that provided a good

compromise between data accumulation rate and signal-to-noise. This method is
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Figure 7.12: Photon profiles and three-fold coincidences for on-demand photons.
Gating window shown by black dotted line. Coincidences are calculated between
the two SPADs as a function of relative time between events on the two SPADs, τ ,
and the absolute time within the pulse sequence, t.

equivalent to a physical gate on the SPADs over the time period of integration.

Due to the large disparity, ≈ ×103, in the ion and atomic-ensemble-produced

photon detection probabilities, coincidences between any two independent ion-produced

photons are negligible. Ignoring background coincidences, which will be discussed

later, features in C(τ) around τ = 0 arise from instances where the atomic-ensemble-

produced and ion-produced photons are overlapped, while features around τ =

±(2.5 + 5k) µs, for k ∈ Z, arise from instances where the two photons are not over-

lapped. To directly compare the cases where the photons are overlapped to the case

where they are non-overlapped, we temporally shift the C(τ) curve. Additionally,

we average together several of these temporally shifted curves in order to reduce our

uncertainties for the non-overlapped case. Procedurally, we take a set of C(τ ′) curves

and shift each curve by an amount τk = (2.5 + 5k) µs to obtain a set {C(τ ′ + τk)}.

We then average to obtain the non-overlapped curve, 〈C(τ = τ ′ + τk)〉k, shown in

figure 7.13. For the data presented in figure 7.14, the non-overlapped curve was
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Figure 7.13: Method for determining temporally overlapped and non-overlapped
coincidences. Upper plots show coincidences after gating. These are then time
shifted and averaged to give lower plot.

constructed using −5 ≤ k ≤ 4.

A non-negligible number of background coincidence events were recorded dur-

ing the data taking. These are predominantly due to coincidences between the

atomic-ensemble produced photon and background events on the SPADs either due

to dark counts, or ambient light leakage. We calculate the expected background

coincidence curve, shown in figure 7.13, from the independently measured exper-

imental singles and background rates from the two SPADs. For this calculation
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Figure 7.14: Normalized coincidences for on-demand interference measurements.

the same gating described above is used. To obtain the final coincidence curves,

shown in figure 7.14, the expected background is subtracted from the overlapped

and non-overlapped coincidences and the resulting curves scaled by the same factor.

Using equation 7.1 for the visibility, where n‖ and n⊥ correspond to the the tem-

porally overlapped and non-overlapped coincidences respectively at zero time delay,

we calculate a visibility of V = 1.1(2), indicating perfect two-photon interference.

However, the visibility on its own does not tell the whole story. The width of

the dip in coincidence space contains additional information about the interference

between the photons, in addition to setting a limit on the usability of the interfer-

ence, as we shall see later. Therefore, it is important to understand what sets the

width of the interference dip. To theoretically model the coincidence profile we shall

consider the case where we have two single photons incident on two different input

ports of a 50:50 beamsplitter, as in figure 7.8. We assume that the photons have

the same transverse-spatial and polarization mode but may have different temporal

modes, ζi. The probability of detecting a photon at time t0 in one detector followed
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by a detection in the other detector at time t0 + τ is given by [127]

P (t0, τ) =
1

4
|ζatom(t0)ζion(t0 + τ)− ζatom(t0 + τ)ζion(t0)|2 . (7.14)

Under the assumption that the photon is transform limited we can write

ζi(t) = ai(t)e
−iωit, (7.15)

where ai(t) is given by the temporal envelope of the photon and ωi the center

frequency. Without loss of generality, we assume ai(t) ∈ R , ∀ t. We thus have

P (t0, τ) =
1

4

[
a2

atom(t0)a2
ion(t0 + τ) + a2

atom(t0 + τ)a2
ion(t0)

−2 cos(∆ω τ)aatom(t0)aatom(t0 + τ)aion(t0)aion(t0 + τ)] ,

(7.16)

where ∆ω = ωion − ωatom is the center frequency difference between the two pho-

tons. In general, we are interested in the coincidence profile as a function of the

relative detection time on two detectors. This is determined from equation 7.16 by

integrating over t0

Ctheory(τ) ∝
∫
dt0 P (t0, τ), (7.17)

where the integral is taken with limits such that any temporal gating is accounted

for. For the remainder of this work we take the integral to be over a region that

encompasses ≈ 80% of the area of the ion-produced photon, to reproduce the effect

of the gating of the SPAD in the experiment. Note that it is this gating which is

responsible for the asymmetric shape seen in the experimental and the theoretical
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Figure 7.15: Comparison to data of time resolved HOM theory, including accounting
for non-transform limited barium photon due to the branching ratio of the 6P1/2

state.

coincidence curves shown.

Using equation 7.16 and 7.17, along with the profiles for the two photons

shown in figures 7.9 and 7.10, we compare the expected and observed shapes of the

HOM dip, shown in figure 7.15, assuming the photons are transform limited and

have identical center frequencies. To obtain the curve where the two photons do not

interfere, we note that in the limit ∆ω →∞ the final term in equation 7.16 oscillates

rapidly as a function of τ and will average to zero with a finite detection bandwidth.

A qualitative discrepancy is seen between the experimental observations and what is

theoretically expected in the case where ∆ω = 0. However, the experimental data,

outside of the dip around τ ≈ 0, matches what we would expect for non-interfering

photons.

There are several explanations why the experimentally observed dip is narrower
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than that expected by the theory discussed above. Thus far we have assumed

∆ω = 0 and that the single-photon pulses are transform limited. These assumptions

are broken in the experiment in the following ways:

• for the ion, decay from the 6P1/2 manifold to the 5D3/2 manifold and subse-

quent re-excitation during the extraction phase destroys the transform limited

character of the produced photons

• experimental uncertainties in the detunings of the 493-nm and 650-nm laser

frequencies from their corresponding resonance frequencies causes uncertain-

ties in ∆ω

• drift on the ion laser locks produces a corresponding drift in ∆ω

• the scheme used to pump the ion into the 5D3/2 manifold, as well as Zeeman

splitting, causes the ion to emit photons at multiple frequencies

Let us explore the effect of these on the interference profile.

Following the initial excitation from the 5D3/2 manifold to the 6P1/2 manifold,

the ion can decay to either to the ground state with ≈ 75% probability, emitting a

493-nm photon, or back to the 5D3/2 manifold with ≈ 25% probability.

If the latter occurs, re-excitation to the 6P1/2 manifold will result in emission

of a 493-nm photon delayed relative to the photon that would have been emitted if

the decay to the 5D3/2 manifold did not occur. This creates a temporally length-

ened observed photon shape but leaves the spectrum unchanged [150], resulting in

a non-transform limited average temporal profile. To account for this we calculate
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the transform limited pulse shape for the ion-produced photons by numerically solv-

ing optical Bloch equations. To determine the expected coincidence curve when no

scatter back to the 5D3/2 state occurs, we use equation 7.16 along with the ion’s

transform-limited pulse shape. For the case where a single scattering event back

to the 5D3/2 state occurs, equation 7.16 is again used along with the ion-produced

photon’s transform-limited profile, but here we add a probabilistic temporal dis-

placement to account for the photons delayed emission. The total non-transform

limited theory curve, shown in figure 7.15, is the sum of these two coincidence

curves weighted by the branching ratio. We do not account for higher-order pro-

cesses, where the ion scatters back to the 5D3/2 state more than once. As we see

in figure 7.15, taking into account the non-transform limited character of the ion-

produced photon only marginally alters the expected coincidence curve from that

where we assume the two photons to be transform limited.

While an effort was made to ensure that the photons produced by the two

sources had identical center frequencies, there were uncertainties in the actual value

of ∆ω, predominantly due to the limited resolution of the ion spectroscopy and drifts

in the ion laser locks. From equation 7.16 it can be seen that a non-zero value of ∆ω

gives rise to an oscillating envelope to the final term. This can cause a reduction

in the width of the HOM dip, as seen in figure 7.16, where we have used a value of

∆ω = 2π × 20 MHz.

Throughout the experiment the ion was subjected to a magnetic bias field

(≈ 5 Gauss), lifting the degeneracy of the Zeeman sub-levels for the three states,

as shown in figure 7.17. Additionally, the ion is pumped such that the Zeeman
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Figure 7.16: Comparison to data of time resolved HOM theory, when accounting
for constant center frequency difference, ∆ω = 2π × 20 MHz, between the photons
from the two sources.

states of the 5D3/2 are populated equally. Thus the 493-nm photons were emitted

with a frequency shift given by the differential shift between the initial and final

Zeeman sub-levels. While the spectrum of a single ion-produced photon is practically

monochromatic with a narrow spectral bandwidth, the average spectrum of the ion

source consists of several spectral peaks separated by these differential shifts and

weighted by their likelihood. To account for this we modify equation 7.16

P (t0, τ) =
1

4

[
a2

atom(t0)a2
ion(t0 + τ) + a2

atom(t0 + τ)a2
ion(t0)

−2aatom(t0)aatom(t0 + τ)aion(t0)aion(t0 + τ)
∑
i

ci cos((∆ωi + ∆ω)τ)

]
,

(7.18)

where ci and ∆ωi are the weighting and differential shifts due to Zeeman splitting,

and
∑

i ci = 1. Given the population spread across the 5D3/2 sub-levels, as well
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Figure 7.17: Barium Photon Frequencies Including Zeeman Splittings. In our ex-
citation scheme, all possible Zeeman sublevels of 5D3/2 are equally populated, and
only σ excitation transitions are used. a Possible excitation and decay paths involv-
ing the

∣∣6P1/2,m = −1/2
〉

state of 138Ba+. b, possible excitation and decay paths
involving the

∣∣6P1/2,m = 1/2
〉

state of 138Ba+. c, shows the polarization and de-
tuning of the resulting 493-nm photons relative to the center of all possible emission
frequencies.

as the polarization and propagation direction of the 650-nm excitation light, we

expect photons to be emitted from the ion at several frequencies around a mean

value with near-equal probability, shown in figure 7.17. As seen in figure 7.18, this

type of probabilistic spectrum gives rise to a narrowed HOM dip with subsequent

oscillations in coincidence space appearing less pronounced.

Due to the way the DFG light was frequency stabilized, it is likely that the ion-

produced photon frequency drifted relative to that of the atomic-ensemble produced
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Figure 7.18: Comparison to data of time resolved HOM theory, when accounting for
the probabilistic spectrum of the ion-produced photon due to the Zeeman splitting
of the 5D3/2 and 6S1/2 manifolds, and equal initial state population across the 5D3/2

manifold.

photon. To include this drift in the theory we modify equation 7.16

P (t0, τ) =

∫ ∞
−∞

d∆ω
e
− (∆ω−∆ω0)2

2σ2
∆ω

σ∆ω

√
2π

P (t0, τ)

=
1

4

[
a2

atom(t0)a2
ion(t0 + τ) + a2

atom(t0 + τ)a2
ion(t0)

−2 cos(∆ω0τ)e−
1
2
σ2

∆ωτ
2

aatom(t0)aatom(t0 + τ)aion(t0)aion(t0 + τ)
]
,

(7.19)

where we have assumed a Gaussian profile to the drift with an average detuning,

∆ω0, and variance, σ∆ω. Using values, ∆ω0 = 0 and σ∆ω = 2π × 10 MHz in

figure 7.19, we see that the theoretical HOM dip narrows while not exhibiting the

large oscillations characteristic of a static frequency offset between the two photons.
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Figure 7.19: Comparison to data of time resolved HOM theory, when accounting
for relative drift of the center frequencies of the two photons over the course of the
experiment due to laser drift. For the plot, σ∆ω = 2π × 10 MHz and ∆ω0 = 0.
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Figure 7.20: Comparison to data of time resolved HOM theory, when accounting
for the combination of experimental imperfections. Theory curve calculated from
equation 7.20 showing the combination of the separate experimental imperfections
described in figures 7.15, 7.16, 7.18 and 7.19.
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To account for all the effects discussed above, equation 7.16 becomes

P (t0, τ) =
1

4

[
a2

atom(t0)a2
ion(t0 + τ) + a2

atom(t0 + τ)a2
ion(t0)

−2A(t0, τ)
∑
i

ci cos (∆ωi + ∆ω0)τe−
1
2
σ2

∆ωτ
2

]
,

(7.20)

where we have modified the original aatom(t0)aatom(t0+τ)aion(t0)aion(t0+τ) term from

equation 7.16 to include the non-transform limitedness of the ion produced photon,

denoted by A(t0, τ). We use equation 7.20, with the values used for the individual

plots in figures 7.15, 7.16, 7.18 and 7.19, which represent reasonable experimental

estimates, to produce the theory curve in figure 7.20, which more closely matches

the data. The factors discussed which pose the largest problems, namely effects

which cause the center frequencies of the two sources to be different either through

experimental drift, constant offsets or differential Zeeman shifts, are correctable.

Therefore, there is scope to increase the HOM dip width which, as we shall see,

would be beneficial for future projects relating to entanglement generation.

7.4 Outlook

Having observed interference between photons generated from two fundamen-

tally different quantum sources, a natural next step is to think about entangling

these two systems. There are multiple ways in which this may be achieved, but

let us focus on two that are likely to be experimentally viable, and explore their

feasibility.

Let us first discuss the entanglement scheme considered in the published work,
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which is similar to that in references [30,137]. Here, we would extend the HOM in-

terferometer into a Bell-state analyzer, shown in figure 7.21a, requiring the addition

of a pair of PBSs and two extra SPADs. An additional requirement for this scheme

is that the ion and atomic-ensemble produce photons which are polarization qubits,

entangled with their respective sources. In the case of the ion source this is rela-

tively straightforward requiring the minimal change during the production process of

pumping into one of the stretched states of the 5D3/2 manifold [151]. Although this

is slightly more complicated for the atomic-ensemble source, as we have discussed

in previous chapters, proposals do exist [31,32] for producing polarization-ensemble

entangled photons. For the purposes of analysis, we will assume for both sources

that we can produce polarization qubit photons perfectly entangled with an inter-

nal degree of freedom of their source, with their otherwise being no change to the

source properties. Furthermore, we shall assume that the detectors have negligible

background counts, which is potentially realizable by changing from using SPADs

to single nanowire single photon detectors (SNSPDs).

As derived in the published work [40], the fidelity for this entanglement gen-

eration scheme is given by

F =
1 + V

2
, (7.21)

where V is the HOM visibility. The entanglement generation rate may be esti-

mated from the number of coincidences observed in the τ = 0 bin for the non-

overlapped case of the on-demand measurement, divided by the experimental run-

time, ≈ 21 hours. For the entanglement scheme in figure 7.21, only half the Bell
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Figure 7.21: Setup to herald entanglement between distant matter qubits. a, in-
coming photons have their polarizations entangled with their corresponding matter
qubit’s internal states. A 50:50 BS is used to interfere the two photons, allowing for
the heralding of entanglement between the matter qubits after detection using PBSs
and SPDs. b, different combinations of detector clicks correspond to the detection
of certain photonic bell states. Depending on which set of detectors click (labeled
in a), different entangled states between the matter qubits can be heralded. In the
case of any individual detector clicking, the Φ+ and Φ− photonic bell states cannot
be distinguished from one another, resulting in a failed attempt to entangle the
matter qubits. All other combinations of detector clicks not shown should not be
possible in the case of perfect two-photon interference, and are ignored in the case
of imperfect interference.

states may be heralded, hence we would expect the entanglement generation rate

to be half the coincidence rate observed in experiment. However, in the experiment

only half the ion produced photons sent to the DFG setup are converted due to

polarization filtering. For the entanglement generation scheme both polarizations

would be required to be converted and the factor of two, lost from the heralding

process, would be recovered. In the previous section the data shown used a 5-ns

bin-width, for which we saw a visibility of V = 1.1(2) with ≈ 40 coincidences in the

τ = 0 bin in the non-overlapped case. This allows us to extrapolate an entanglement
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Figure 7.22: Inferred entanglement fidelity and generation rate as a function of the
coincidence bin width.

generation rate of ≈ 5× 10−4 s−1 with perfect fidelity. By increasing the bin width

used for the heralding process, the entanglement generation rate can be increased,

at the expense of reducing its fidelity, as shown in figure 7.22. Although nowhere

near high enough for any practical purposes, the values we predict are compara-

ble to those achieved in the first experiments using the same scheme with pairs of

homogeneous trapped ion qubits [152,153].

For this avenue of entangling the two systems, there exists several potential

improvements. Most straightforwardly, there are improvements that can be made

on the ion experiment that could increase the photon rate including increasing the

collection efficiency with a higher NA lens, increasing the initial fiber coupling effi-

ciency, improving the DFG efficiency, and reducing optical losses present from fiber

butt couplings and in the the optics in the DFG filtering stage. For the interfer-

ometer an increase in the quantum efficiency of the detectors, by transitioning from

using SPADs to SNSPDs, would also be a simple beneficial experimental change.

Based on conservative estimates, we anticipate all these together having the poten-
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Figure 7.23: Theoretical entanglement fidelity and rate speedup as a function of
bin width assuming imperfection free interference. Speedup is relative to 5-ns bin
width.

tial to increase entanglement generation rates by almost two orders of magnitude,

≈ ×50. In addition, resolving the issues described in the previous section that cause

the narrowing of the interference dip is also likely to be beneficial, as it would signif-

icantly reduce the fidelity hit seen when using large bin widths. Figure 7.23 shows

the fidelity and rate speed-up, relative to a 5-ns bin width, for the theory where

there are no dip-narrowing experimental imperfections. We can see that if we are

able to eliminate the issues, we would be able to use large coincidence bin widths,

gaining us more than an order of magnitude in rate with reasonable entanglement

fidelity. With these improvements, our rates could start to approach 1 s−1, moving

us into a regime where we could start thinking about interesting applications of such

an entangled hybrid system.

An alternative to the method discussed above/in the published work, and one

that we have been actively pursuing, is the so called “shoot and catch” method, that

makes use of the atomic ensembles ability to act as a quantum memory. Here, the
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ion source would generate ion-entangled photons that would be sent to the atomic-

ensemble. With the ensemble we would store the photon, most likely using an EIT

based protocol that maps the photonic qubit states into different spin wave excita-

tions within the cloud, similar to what is described in reference [154]. This scheme

confers multiple benefits over the previously described one. Firstly, the generation of

photon-ensemble entanglement is not required, which is potentially non-trivial to im-

plement. Additionally, without the need for the optical non-linearities derived from

the Rydberg states, the storage could be performed using a λ-like EIT scheme where

the spin wave coherence would be between two states from the ground state mani-

fold, for which high efficiency and long-lived storage has been demonstrated [69,70].

Furthermore, no projective Bell-state measurement is required, which inherently

limits the entanglement generation probability of the previous scheme by a factor of

two or more, due to optical losses, detector quantum efficiencies, and the imperfect

heralding efficiency. While we expect this entanglement generation scheme to be

superior, our implementation still remains in its infancy and, therefore, it is difficult

to make any concrete predictions as to entanglement rates or fidelities.
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Chapter 8: Conclusion and Outlook

In this thesis I have described an experimental apparatus that has been con-

structed for the purpose of trapping a high optical density ensemble of ultracold

atoms, which are addressed by a pair of beams for the production of Rydberg exci-

tations. I have described a project where we have used this apparatus to develop an

on-demand high efficiency, high purity and high indistinguishability single photon

source, and a further project where we demonstrated Hong-Ou-Mandel interference

between photons from our source and photons from a collaborators trapped barium

ion. Both of these experiments serve as a proof-of-concept for more ambitious future

projects.

In the case of the single-photon source, we have been actively working on trying

to get some shelving system working, whereby we can transfer the written Rydberg

spin-waves to a ground state spin-wave with a much longer lifetime. As relates

to the source itself, this is likely to provide an increase in our photon production

efficiency. Additionally, it will open up a number of other avenues of research. For

one, it will enable us to transform our source into a quantum repeater node that

can produce photon-ensemble entanglement. Thinking further down the road, this

would allow us to start to explore the possibility of creating a Rydberg-ensemble
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based quantum network. Shelving should allow us to create arbitrary photonic

states, and potentially even interesting entangled photonic states, which have a

number of applications in fields such as quantum optics and quantum metrology.

For the barium ion collaboration, the obvious next step is to try and entangle

the ion and atomic ensemble. There is a couple of ways of achieving this, one of which

relies on us being able to develop the single photon source into the repeater node

capable of generating photon-ensemble entanglement. The other method, which

seems most straightforward from preliminary discussions, involves having the ion

“shoot” an ion-entangled photon, and then having the atomic ensemble “catch” it,

storing the photon while mapping its qubit states to some ensemble degrees of free-

dom. With that accomplished, we can start to think about demonstrating quantum

networking protocols between the two disparate network nodes, like quantum tele-

portation or quantum key distribution, and potentially even some practical uses of

a hybrid ion-Rydberg ensemble system.
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Appendix A: Detailed C6 Coefficient Calculations

Here, I provide a more detailed calculation of the C6 coefficients discussed in

chapter 2. There, we were considering the dipole-dipole operator

V̂dd =
1

4πε0R3

[
d̂1.d̂2 − 3(d̂1.~n)(d̂2.~n)

]
, (A.1)

with the d̂1,2 being the dipole operator for atom 1 and 2 respectively, and ~n the unit

vector along the inter-atomic axis. We can define the spherical operators

d̂0 := d̂z (A.2)

d̂+ := − d̂x + id̂y√
2

(A.3)

d̂− :=
d̂x − id̂y√

2
. (A.4)

Using these definitions, along with assuming, without loss of generality, that ~n

subtends an angle θ to the quantisation axis1 z, we can write the dipole-dipole

1there’s an implicit assumption here that the azimuthal angle φ = 0. However, a non-zero value
results in the matrix elements have a phase factor which is irrelevant as we’re interested in the
absolute value of the matrix elements.
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potential as

V̂dd =
1

4πε0R3
[
1− 3 cos2 θ

2
(d̂1,+d̂2,− + d̂1,−d̂2,+ + 2d̂1,0d̂2,0)

+
3 sin θ cos θ√

2
(d̂1,+d̂2,0 − d̂1,−d̂2,0 + d̂1,0d̂2,+ − d̂1,0d̂2,−)

− 3 sin2 θ

2
(d̂1,+d̂2,+ + d̂1,−d̂2,−)],

(A.5)

where the first number in the subscript for d̂ indicates the atom the operator corre-

sponds to, and the second symbol indicates the type of the spherical operator. In this

thesis we’ve been concerned with the Rydberg blockade arising from van der Waals

interactions between a pair of identical Rydberg states. Therefore, let us concentrate

on matrix elements of the form

〈r, r| V̂dd |r′, r′′〉 , (A.6)

where |r〉(
′,′′) =

∣∣∣n(′,′′), l(
′,′′), j(′,′′),m

(′,′′)
j

〉
are some Rydberg states. Making use of

Clebsch-Gordan coefficients

Cj,1,j′

mj ,q,m′j
=
〈
jmj1 q

∣∣j′m′j〉 , (A.7)

we can write the dipole-dipole matrix elements in terms of reduced dipole matrix

elements [60]

213



〈r, r|Vdd |r′, r′′〉 =
〈r| |d̂| |r′〉 〈r| |d̂| |r′′〉

4πε0R3
×[

1− 3 cos2 θ

2
(Cj,1,j′

mj ,1,m′
j
Cj,1,j′′

mj ,−1,m′′
j

+ Cj,1,j′

mj ,−1,m′
j
Cj,1,j′′

mj ,1,m′′
j

+ 2Cj,1,j′

mj ,0,m′
j
Cj,1,j′′

mj ,0,m′′
j
)

+
3 sin θ cos θ√

2
((Cj,1,j′

mj ,1,m′
j
Cj,1,j′′

mj ,0,m′′
j

+ Cj,1,j′

mj ,0,m′
j
Cj,1,j′′

mj ,1,m′′
j
)− (Cj,1,j′

mj ,−1,m′
j
Cj,1,j′′

mj ,0,m′′
j

+ Cj,1,j′

mj ,0,m′
j
Cj,1,j′′

mj ,−1,m′′
j
))

−3 sin2 θ

2
(Cj,1,j′

mj ,1,m′
j
Cj,1,j′′

mj ,1,m′′
j

+ Cj,1,j′

mj ,−1,m′
j
Cj,1,j′′

mj ,−1,m′′
j
)

]
.

(A.8)

As established in chapter 2, the C6 coefficient for a pair state is defined in

terms of the perturbative second-order energy shift

∆E(2)
r,r =

∑
|r′,r′′〉6=|r,r〉

|〈r, r|Vdd |r′, r′′〉|2

2E
(0)
r − E(0)

r′ − E
(0)
r′′

=
C6

R6
. (A.9)

Let us now calculate the C6 coefficient for pair states which are experimentally

relevant to this thesis, namely |r〉 = |n, S, 1/2,mj〉. For the |r, r〉 pair state, we

can see from equation A.9 that the only pair states that will contribute to the C6

coefficient are those where both |r′〉 and |r′′〉 are P states. Here, we can make use

of the fact that we can further reduce the dipole matrix elements

〈n, l, j| |d̂| |n′, l′, j′〉 = (−1)j
′+l+1+s

√
(2j′ + 1)(2l + 1)


l l′ 1

j′ j s

 〈n, l| |d̂| |n′, l′〉 , (A.10)

allowing us to write the energy shift of the |r, r〉 pair state in terms of a sum over
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the principal quantum numbers of the P states

∆E(2)
r,r =

∑
n′,n′′

∣∣∣〈n, S| |d̂| |n′, P 〉∣∣∣2∣∣∣〈n, S| |d̂| |n′′, P 〉∣∣∣2
81 (4πε0R3)2 ×[

(25− 3 cos 2θ)

2EnS1/2
− En′P3/2

− En′′P3/2

+
(7− 3 cos 2θ)

2EnS1/2
− En′P1/2

− En′′P1/2

+

(
11 + 3 cos 2θ

2EnS1/2
− En′P1/2

− En′′P3/2

+
11 + 3 cos 2θ

2EnS1/2
− En′P3/2

− En′′P1/2

)]
.

(A.11)

For rubidium, the dominant contribution to the sum comes from the terms where

n′ = n, n′′ = n − 1 and vice versa. Therefore, the C6 coefficient for a pair of

|r〉 = |n, S, 1/2,mj〉 states is given by

C6 ≈
2

81 (4πε0)2

∣∣∣〈n, S| |d̂| |n, P 〉∣∣∣2∣∣∣〈n, S| |d̂| |n− 1, P 〉
∣∣∣2×[

(25− 3 cos 2θ)

2EnS1/2
− EnP3/2

− E(n−1)P3/2

+
(7− 3 cos 2θ)

2EnS1/2
− EnP1/2

− E(n−1)P1/2

+

(
11 + 3 cos 2θ

2EnS1/2
− EnP1/2

− E(n−1)P3/2

+
11 + 3 cos 2θ

2EnS1/2
− EnP3/2

− E(n−1)P1/2

)]
.

(A.12)

Although not utilized in the experiments presented in this thesis, the |r〉 =

|n,D, j,mj〉 states are also accessible with our setup. Calculation of C6 coefficients

for these |r, r〉 states is slightly more complicated. Firstly, the C6 coefficient is

different for each j, mj pair. Additionally, there are a larger number of couplings

that need to be accounted for in performing the calculation. As a point of comparison
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to the S states, and because they are likely to be the states that would be addressed

experimentally, let us focus our efforts on the stretched |r〉 = |n,D, 5/2, 5/2〉 states.

Again making use of equation A.10, we can write the second order energy shift of

the |r, r〉 pair states

∆E
(2)
r,r =

1

(4πε0R3)2

∑
n′,n′′


∣∣∣〈n,D| |d̂| |n′, P 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, P 〉∣∣∣2

4

9 sin4 θ

2EnD5/2
− En′P3/2

− En′′P3/2

+

∣∣∣〈n,D| |d̂| |n′, F 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, P 〉∣∣∣2
784

(
(72 + 48 cos 2θ) sin2 θ

2EnD5/2
− En′F5/2

− En′′P3/2

+
305 + 180 cos 2θ + 75 cos 4θ

2EnD5/2
− En′F7/2

− En′′P3/2

)

+

∣∣∣〈n,D| |d̂| |n′, F 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, F 〉∣∣∣2
57624

(
1680 + 780 cos 2θ − 300 cos 4θ

2EnD5/2
− En′F7/2

− En′′F5/2

+
39025− 28500 cos 2θ + 1875 cos 4θ

2EnD5/2
− En′F7/2

− En′′F7/2

) .
(A.13)

This can be simplified by noting that the hyperfine splitting of the nF states is

small for large n (EnF5/2
−EnF7/2

< 1 MHz for n > 55), allowing us to set EnF7/2
≈

EnF5/2
= EnF

∆E(2)
r,r ≈

1

(4πε0R3)
2

∑
n′,n′′


∣∣∣〈n,D| |d̂| |n′, P 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, P 〉∣∣∣2

4

9 sin4 θ

2EnD5/2
− En′P3/2

− En′′P3/2

+

∣∣∣〈n,D| |d̂| |n′, F 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, P 〉∣∣∣2
112

47 + 24 cos 2θ + 9 cos 4θ

2EnD5/2
− En′F − En′′P3/2

+

∣∣∣〈n,D| |d̂| |n′, F 〉∣∣∣2∣∣∣〈n,D| |d̂| |n′′, F 〉∣∣∣2
8232

5815 + 3960 cos 2θ + 225 cos 4θ

2EnD5/2
− En′F − En′′F

)

 .
(A.14)

For rubidium, the dominant contribution to the sum comes from the nDnD →

(n + 1)P (n − 1)F and nDnD → (n + 2)P (n − 2)F channels. Therefore, we can
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Figure A.1: Angular dependence of C6 coefficient for different |r, r〉 pair states.
Values calculated using reference [61].

approximate the C6 coefficient for a pair of |r〉 = |n,D, 5/2, 5/2〉 states

C6 ≈
2

(4πε0)
2

47 + 24 cos 2θ + 9 cos 4θ

112


∣∣∣〈n,D| |d̂| |n− 1, F 〉

∣∣∣2∣∣∣〈n,D| |d̂| |n+ 1, P 〉
∣∣∣2

2EnD5/2
− E(n−1)F − E(n+1)P3/2

+

∣∣∣〈n,D| |d̂| |n− 2, F 〉
∣∣∣2∣∣∣〈n,D| |d̂| |n+ 2, P 〉

∣∣∣2
2EnD5/2

− E(n−2)F − E(n+2)P3/2

 .

(A.15)

From equations A.12 and A.15 we can see that there is an angular dependence

to the C6 coefficient for both the pairs of nS and pairs of nD states. However,

as can be seen in figure A.1, the variation is small for the nS state pair. Here

the asymmetry arises due to the hyperfine splitting of the nP states, with the C6

coefficient becoming spherically symmetric in the limit that the splitting goes to
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zero. For the pair of nD states, and non-zero orbital angular momentum states in

general, the angular variation is not the result of some small splitting, and can be

large, possibly even exhibiting zeroes.
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Appendix B: Calculation of Expected Coincidences for Self-Hong-

Ou-Mandel Measurement

SPAD-B

SPAD-A

Short Arm

Long Arm

tpulse

Figure B.1: Schematic for self-HOM measurement.

Here, I derive expressions for the expected behavior of a self-HOM taken with

a pulsed source. The experimental setup in mind here is the one shown in figure B.1,

where we have a pulsed source incident on a beamsplitter, whose outputs are sent

to a long and a short delay arms. Both delay lines are directed towards a further

beamsplitter, whose outputs we’re going to monitor for coincidences.

In order to perform the calculations there’s some assumptions we need to

make and some parameters we want to define. To start, we’ll assume that our

source produces photons with an efficiency Pph, with a period of tpulse. Additionally,
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we’ll assume that the source is reasonably good in terms of purity, so that we

can ignore high order multi-photon events and make the approximation g(2)(0) ≈

2P2

P 2
1

, where Pn is the probability of the source producing an n-photon pulse. We’ll

use the probability Pshort to denote the probability of a photon incident on the

first beamsplitter propagating to the second beamsplitter along the short arm, and

similarly for Plong along the long arm1. This allows us to treat the general case for

the splitting ratio at the first beamsplitter, along with accounting for loss incurred by

traversing the long and short arms. We’ll assume that that the second beamsplitter

is a perfect 50:50 splitter. Finally, when we discuss coincidences, we’ll assume that

we’re performing a sum over peaks in coincidence space, so that we’re agnostic to

the shape of the photons.

Let us consider the situation where the delay and the pulse spacing are matched,

as was the case for the self-HOM measurements taken in chapter 6. Here, we expect

to get coincidences at delay times between the detectors of τ = ktpulse, where k is an

integer. It is, perhaps, easiest to determine the magnitude of coincidences as a func-

tion of k by considering the permutation of outcomes for pairs of photons arriving

at the first beamsplitter. I’ll describe photons in terms of the chronological order in

which they arrive at the first beamsplitter. First, let’s consider what happens if we

have two photons in the same pulse, which happens with a probability g(2)(0)P 2
1 /2:

1Note that Pshort and Plong do not necessarily sum to one due to loss along the two arms.
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First Photon Second Photon Probability Coincidence Time

Short arm Short arm
P 2
short

2
0

Long arm Long arm
P 2
long

2
0

Short arm Long arm
PlongPshort

2
±tpulse

Long arm Short arm
PlongPshort

2
±tpulse

Table B.1: Outcomes for two photons in the same pulse.

Note that here I’ve talked about the ‘first’ and ‘second’ photon but in reality they

are incident on the first beamsplitter simultaneously. Next when the two photons

come from nearest neighbor pulses:

First Photon Second Photon Probability Coincidence Time

Short arm Short arm
P 2
short

4
±tpulse

Long arm Long arm
P 2
long

4
±tpulse

Short arm Long arm
PlongPshort

4
±2tpulse

Long arm Short arm (1− c)PlongPshort
2

0

Table B.2: Outcomes for two photons in the adjacent pulses.

Here, I have used c to parameterize the mode overlap of the two photons, as we did

in chapter 7. Then for next-nearest neighbors:

First Photon Second Photon Probability Coincidence Time

Short arm Short arm
P 2
short

4
±2tpulse

Long arm Long arm
P 2
long

4
±2tpulse

Short arm Long arm
PlongPshort

4
±3tpulse

Long arm Short arm
PlongPshort

4
±tpulse

Table B.3: Outcomes for two photons in the adjacent but one pulses.

We could continue on considering next-next-nearest neighbors, next-next-next-nearest
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neighbors and so on. However, the table for these will look largely the same as for

the next-nearest neighbors, albeit with the coincidence time increased. Collating

these together we can write down the expected number of coincidences

C(0) ∝ g(2)(0)P 2
1

2

(
P 2
short

2
+
P 2
long

2

)
+ (1− c)P 2

1

PlongPshort
2

(B.1)

C(±tpulse) ∝
g(2)(0)P 2

1

2

PlongPshort
2

+ P 2
1

(
P 2
short

4
+
P 2
long

4
+
PlongPshort

4

)
(B.2)

C(|τ | ≥ 2tpulse) ∝ P 2
1

(
P 2
short

4
+
P 2
long

4
+
PlongPshort

2

)
. (B.3)

It is useful to normalize by dividing by C(|τ | ≥ 2tpulse)

C̄(0) =
g(2)(0)

(
P 2
short + P 2

long

)
+ 2(1− c)PlongPshort

(Pshort + Plong)
2 (B.4)

C̄(±tpulse) =
(g(2)(0)− 1)PlongPshort

(Pshort + Plong)
2 + 1. (B.5)

In the self-HOM experiment performed in chapter 6 we tried to adjust the splitting

at the first beamsplitter such that the power arriving at the second beamsplitter

for the two arms was approximately equal, Pshort ≈ Plong, which explains why the

height of the ±tpulse peaks in figure 6.13 are approximately 75% of the ±tpulse peaks.

The above math, however, does not explain the asymmetry we see between the

heights of the ±tpulse peaks. This arises from the fact that the second beamsplitter

isn’t perfectly 50:50, combined with the way the coincidence delay time is defined

in terms of detection times on the two SPADs, τ = tA − tB. To see why this is the

case, let’s consider the case where the transmission, T , of the second beamsplitter is
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slightly higher than 50%, and thus the reflection slightly lower. Looking at figure B.1

this means that a photon coming from the short arm is more likely to end up going

to SPAD-A, and a photon from the long arm to SPAD-B. So we’re more likely

to get coincidences, if the two photons took different arms, from the short arm

photon going to SPAD-A and the long arm photon going to SPAD-B than the other

way around. Now let’s go ahead and consider a pair of photons that are temporally

separated by n pulse periods, and to see the origin of the asymmetry we only need to

consider what happens when the two photons take different arms. If the first photon

takes the short arm, and the second the long arm then we can get a coincidence at

τ = (n + 1)tpulse with probability ∝ T 2 or at τ = −(n + 1)tpulse with probability

∝ (1 − T )2. But if the first photon takes the long arm, and the second the short

arm we can get a coincidence at τ = −(n − 1)tpulse with probability ∝ T 2 or at

τ = (n− 1)tpulse with probability ∝ (1−T )2. If we’re looking at large τ = ktpulse all

this doesn’t matter as we get contributions from pulses separated by k−1 and k+1,

so we get something which looks like ∝ (T 2 + (1 − T )2) = 1. However, for k = 1

the k − 1 term would be where the two photons came from the same pulse, which

is suppressed as g(2)(0) ≈ 0 for a good source, with a similar argument able to be

made for k = −1 with the k + 1 term. This leads to the slight asymmetry between

the number of coincidences seen in figure 6.13, where the direction and magnitude

of asymmetry depends on the SPAD, fiber and beamsplitter configuration.
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Butscher, Hans Peter Büchler, and Tilman Pfau. An experimental and the-
oretical guide to strongly interacting Rydberg gases. Journal of Physics B:
Atomic, Molecular and Optical Physics, 45(11):113001, 2012.

[66] Daniel A Steck. Rubidium 87 D Line Data. Available online at
http://steck.us/alkalidata (revision 2.2.1, 21 November 2019).

[67] M. Fleischhauer and M. D. Lukin. Dark-State Polaritons in Electromagneti-
cally Induced Transparency. Physical Review Letters, 84(22):5094–5097, 2000.

[68] Przemyslaw Bienias. Few-body quantum physics with strongly interacting Ry-
dberg polaritons. PhD thesis.

[69] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao
Hung, Chih-Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, Ite A. Yu, and Ying-
Cheng Chen. Highly efficient coherent optical memory based on electromag-
netically induced transparency. Physical Review Letters, 120(18):183602, 2018.

[70] Y. O. Dudin, L. Li, and A. Kuzmich. Light storage on the time scale of a
minute. Physical Review A, 87(3):031801, 2013.

[71] R. H. Dicke. Coherence in Spontaneous Radiation Processes. Physical Review,
93(1):99–110, 1954.

[72] M. Saffman and T. G. Walker. Creating single-atom and single-photon sources
from entangled atomic ensembles. Physical Review A, 66(6):065403, 2002.
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Richard J. Warburton, and Peter Lodahl. Indistinguishable and efficient sin-
gle photons from a quantum dot in a planar nanobeam waveguide. Physical
Review B, 96(16):165306, 2017.

[105] Hélène Ollivier, Ilse Maillette de Buy Wenniger, Sarah Thomas, Stephen C.
Wein, Abdelmounaim Harouri, Guillaume Coppola, Paul Hilaire, Clément
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