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Although the internet enables many important functions of modern life, it is also a 

ground for nefarious activity by malicious actors and cybercriminals. For example, 

malicious websites facilitate phishing attacks, malware infections, data theft, and 

disruption. A major component of cybersecurity is to detect and mitigate attacks enabled 

by malicious websites. Although prior researchers have presented promising results – 

specifically in the use of website features to detect malicious websites – malicious 

website detection continues to pose major challenges. This dissertation presents an 

investigation into feature-based malicious website detection. We conducted six studies on 

malicious website detection, with a focus on discovering new features for malicious 

website detection, challenging assumptions of features from prior research, comparing 

the importance of the features for malicious website detection, building and evaluating 



 

 

detection models over various scenarios, and evaluating malicious website detection 

models across different datasets and over time. We evaluated this approach on various 

datasets, including: a dataset composed of several threats from industry; a dataset derived 

from the Alexa top one million domains and supplemented with open source threat 

intelligence information; and a dataset consisting of websites gathered repeatedly over 

time. Results led us to postulate that new, unstudied, features could be incorporated to 

improve malicious website detection models, since, in many cases, models built with new 

features outperformed models built from features used in prior research and did so with 

fewer features. We also found that features discovered using feature selection could be 

applied to other datasets with minor adjustments. In addition: we demonstrated that the 

performance of detection models decreased over time; we measured the change of 

websites in relation to our detection model; and we demonstrated the benefit of re-

training in various scenarios.  
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Chapter 1: Introduction 

 Background and Motivation 

 The Impact of Cybersecurity 

The internet has changed the way we live and work. Over the years, more and 

more aspects of human life have become reliant on the internet. From organizing our 

personal lives to banking and entertainment, the internet plays a large part in how we, as 

humans, exchange information. Pew Research [1] reported that as of 2019, 90% of all 

U.S. adults used the internet. As of June 2019, roughly 58.8% of the world’s population 

(4.536 billion people) use the internet, up from 5.8% in December 2000 [2]. In addition 

to the increasing numbers of people accessing the internet, the internet has a large 

financial impact and is a common place to conduct business. Digital Commerce 360’s [3] 

analysis of U.S. Department of Commerce data estimated that consumers spent $513.61 

billion dollars online in 2018, up 14.2% from online spending in 2017. Although the 

internet has added efficiency to our lives by facilitating communication and changing the 

way we live, the emergence of the internet has also created an opportunity for criminals 

and other nefarious actors to conduct malicious activity. 

The threat from malicious cyber actors is so great that corporate and government 

entities allocate substantial budgets toward detecting, preventing, and remediating cyber 

threats. The financial impact on corporations is large, with Cavusoglu et al. [4] reporting 

in their study of the financial impact on firms with breaches that firms in their sample lost 

2.1% (or $1.65 billion) of their market capitalization within two days of announcement of 

a cyber breach. Experts [5] have projected that more than $1 trillion dollars will be spent 

on digital security globally on an annual basis. Large corporations such as Bank of 
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America and J.P. Morgan Chase spend as much as $500 million each year on 

cybersecurity [6]. Breaches and incidents can be large in terms of the number of people 

and accounts affected and in terms of the loss of money due to litigation and business 

impact. The Yahoo! breach in 2014 resulted in theft of personal information from more 

than 500 million accounts [7]. The Epsilon hack had a financial impact totaling upwards 

of $4 billion [8]. Dyn, which was the victim of a DDoS attack by the Mirai botnet in 2016 

[9], lost roughly 8% of its customers due to the impact of the attack [10]. Given the 

potential for tremendous repercussions from cyber threats, industry and government 

entities recognize the need to protect their assets and their businesses against such 

attacks. 

Cyber-attack goals depend on the motivations of the attacker. Attackers 

commonly seek to either steal information, infect a victim’s network, or disrupt a 

victims’ ability to function. Stealing personal information may enable an attacker to 

misuse the victim’s identity, resulting in financial loss. Information theft also may 

facilitate blackmailing of the victim. Disruption can harm the victim’s reputation or 

simply stop victims from performing their functions. Infection can facilitate information 

stealing and disruption.  

 Websites as Attack Enablers 

Malicious actors can conduct many types of attacks. The most prevalent attacks 

include phishing [11], drive-by downloads [12], denial of service (DoS) [13], or other 

kinds of attacks caused by infection. Phishing occurs when an attacker tries to “trick” a 

victim into entering personal or sensitive information, visiting a malicious website, or 

opening or interacting with a malicious email or link. Phishing detection is typically 
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focused on examining a website or email for suspicious indicators. Drive-by downloads 

occur when a user visits a website and falls victim to malicious code execution that 

typically occurs when the website is being rendered. JavaScript [14] on the website is a 

common attack vector for drive-by downloads. DoS attacks can occur from compromised 

devices or from specific malicious domains. Infection can take many forms, with the 

most sophisticated form resulting in command and control (C2) [15] with a malicious 

website or server. C2 activity occurs when an attacker has compromised a network or 

asset in the network and is running malware on the compromised network. This malware 

typically receives commands or exfiltrates data from or to the C2 infrastructure. The C2 

infrastructure can specify actions to take inside the victim’s network. To communicate 

with this malware, the attacker needs a malicious website or domain. For each of the 

attacks we have discussed thus far, attackers also require a website or domain from which 

to conduct the malicious activity. Detecting malicious websites and blocking 

communication with them is a major component of cybersecurity. 

 The Case for New Detection Techniques 

Cyber threats and cyberattacks increase in complexity over time, making it a 

challenge to detect them. There is a constant battle between attackers and defenders, both 

of which are looking for an advantage. Defenders are at an inherent disadvantage, given 

the need to consider all aspects of their systems and defend each one properly. An 

attacker, on the other hand, has only to identify a weakness or two in order to conduct an 

attack. Furthermore, defenders must account for unknown vulnerabilities that may exist 

in their systems. These vulnerabilities are often in third-party software that defenders did 

not create. Unfortunately, vulnerabilities are common and sometimes disclosed without 
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remediation mechanisms or patches. For example, Risk Based Security [16] reported that 

22,000 vulnerabilities were disclosed in 2018 without fixes being provided, a trend that is 

expected to continue. 

Defenders have access to a number of tools for detecting and preventing attacks, 

including anti-virus software, network intrusion detection systems, denylists, threat 

intelligence, etc.  Over the years, these tools have evolved to keep up with threats. For 

example, the Morris Worm, an early self-propagating virus, took advantage of a security 

flaw in the sendmail function in Unix [17]. Such security threats encouraged the creation 

of anti-virus software. Early anti-virus software detected viruses by examining hashes of 

files or strings specific to known malware. However, once anti-virus tools began 

detecting viruses with hashes and strings, malware began to adapt by creating variants 

with different binary signatures. At this point, detecting malware with hashes alone 

became infeasible. The anti-virus community adjusted, beginning to detect malware 

families instead of specific files and binaries by using signatures that applied to several 

binaries instead of to a single binary. Evolution by attackers and defenders is natural and 

will continue. With this research, we aimed to assist the detection community by 

exploring additional mechanisms and insights for detecting malicious websites. 

 The Current State of Malicious Website Detection 

The techniques for detecting malicious websites have evolved over the years. A 

common method that is still used today for validation involves visiting a website to 

analyze the web response, analyzing the instructions executed when rendering the 

webpage, and comparing the observations to known malicious behavior. Researchers also 

can instrument their systems to look for other potential malicious activity that results 
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from visiting a webpage. For example, if a user fetches a webpage in Firefox and 

observes an unexpected event such as an attempted registry change (on Windows) [18] or 

observes an unlikely file change, this may be an indication of a malicious webpage. 

Although this method can be used for validation, it faces two challenges. First, it is time 

consuming and requires additional resources for visiting each website, recording effects, 

and verifying whether the website is malicious. Websites can change very quickly, 

making this effort more complicated. Secondly, this approach may miss malicious 

websites with malicious behavior that does not match a known signature [19].  

Another common technique for detecting malicious websites is to collect 

“features” and use them to create signatures or models for malicious website detection. 

This approach is the foundation of the research in this dissertation. In this paradigm, 

features or observational characteristics – the Uniform Resource Locator (URL) [20] 

structure or Hypertext Markup Language (HTML) [21] tags on the page, for example – 

are extracted from a website. These features are then turned into rules, signatures, or 

models to detect other malicious websites. While this approach provides less certainty 

regarding a website’s maliciousness (the results are typically presented as a probability of 

the website being malicious), the approach can capture commonalities that may exist 

among malicious websites, thereby facilitating detection. Although using features to 

detect malicious websites is increasingly common, it does have challenges. To perform 

this approach, the researcher or practitioner must choose which features to collect. Prior 

researchers have typically collected well-known features to detect malicious websites, but 

rarely re-evaluated whether those features were still useful or whether other features 

could also be used to identify malicious websites. Additionally, the most successful 
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studies tended to evaluate an approach on a dataset consisting of a single threat. 

Narrowing experiments to a single type of threat served to focus the research on that 

specific attack, but also required a priori knowledge of the threat, making it less 

applicable when a priori knowledge is unavailable.  

 Research Scope 

 Detecting Malicious Websites 

Although attacks can be detected in many ways, we focused this study on 

detecting a fundamental enabler of malicious activities – the website. The primary ways 

that websites can be misused include: 1) tricking a user into entering sensitive 

information or “faking” a legitimate website (creating what is also known as a phishing 

website); 2) delivering malicious content; and 3) serving as a communication point to 

malware and other malicious software. These misuses are illustrated in Fig. 1-1, 1-2, and 

1-3 below.  

 

 
Fig. 1-1.    An example of a phishing website from  

Lehigh.edu (Image courtesy of Pixabay [22].) 
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Fig. 1-2.    A simplified view of drive-by down-load  

infections (Images courtesy of Pixabay [22].) 

 

 

 
Fig. 1-3.    A simplified view of C2 (Images  

courtesy of Pixabay [22].) 

 

 

 Identifying and Comparing New Features for Malicious Website Detection 

Although using features that have already demonstrated potential for detecting 

malicious websites is a popular approach in prior research, there has been little emphasis 

on finding new features for malicious website detection. For example, the <iframe> has 

been a feature used for malicious website detection since at least 2008 [23]. Similarly, the 

number of “.” characters in a URL is a feature that has been used for malicious website 
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detection since at least 2007 [24]. In this research, we evaluated and identified new 

features for malicious website detection.  

In addition to identifying new features for malicious website detection, we also 

quantified and compared the performance of the new features for detecting malicious 

websites and compared it to those of features from prior research. Specifically, we 

compared the rank and importance of those features (both new features and those 

identified in prior research). We determined the importance of each feature by defining 

by how much it contributed to and influenced the performance of the malicious website 

detection models it produced. Additionally, we gathered performance metrics on 

detection models built with learning algorithms [25] and with features identified in our 

approach, as well as with models built from features from prior research.  

 Evaluating our Approach over Multiple Scenarios 

We then went on to evaluate the identified features and their respective detection 

models across a variety of scenarios. Scenarios included sampling to balance our dataset, 

feature transformation, and principal component analysis (PCA) [28] to create meta-

features and components. Such evaluations increased assurance that our approach, 

results, and observations were not specific to a single experimental scenario and would 

prove valid should future researchers replicate our study with different setups.  

We explored sampling scenarios to account for our dataset imbalance and 

explored feature transformation to evaluate whether combinations of features could 

improve malicious website detection. We also experimented with the class weight 

parameter as another method of balancing our datasets. Lastly, we performed 

hyperparameter tuning and cross-validation of our models [26] in order to achieve the 
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best performance metrics for our detection models. Parameters were specific to the 

respective classifiers. 

 Bridging a Gap Between Research and Industry 

With this research, we endeavored to bridge research and industry gaps in 

malicious website detection. Although existing research has demonstrated success in 

various studies, the problem of malicious website detection persists. There are 

differences, of course, between an environment in which research is conducted and an 

operational scenario. First, research operates on in-depth knowledge of the malicious 

dataset under study, a factor that often influences the features collected for detection. For 

example, researchers who focused on detecting phishing websites would collect HTML 

and other visual features from webpages since these have been demonstrated to detect 

phishing attacks. In an operational scenario, however, the goal is to prevent the network 

from accessing malicious websites regardless of their nature. To more closely replicate an 

operational environment, we used datasets consisting of common threats, specifically: 

phishing, drive-by downloads, and C2 URLs. Additionally, we treated our evaluation as a 

“black box,” with the ultimate concern being whether or not the malicious website was 

detected. A second difference between research environments and operational scenarios 

involves the features under study. Researchers often select features ahead time (a priori), 

based on the threat or based on what is known to be effective. This assumes that attack 

techniques do not evolve over time. We bridged a third gap between research and 

industry scenarios by limiting our features to those that could be gathered from a 

response to a web request. The benefit of using such features is that they can be 

gathered in the course of normal interactions with websites. Other research has used 
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additional features like domain name system (DNS) requests or search engine ranking, 

but this would require additional overhead and depends on those services being available.  

 Analysis on Different Datasets and Over Time  

Finally, we focused this research on analyzing the applicability of findings from 

this study to other datasets and on conducting a study of feature-based malicious website 

detection over time. Researchers typically face the challenge of generating results that are 

specific to a study’s individual dataset, which in this field often consists of gathering data 

applicable to a single threat and gathering it at a single point in time. To address that 

limitation, we explored whether and how the detection models and their features could be 

applied to other datasets. Additionally, we conducted research on an additional dataset 

that was gathered over time. 

 Research Questions and Approach 

In conducting this research, we evaluated an approach for identifying features for 

malicious website detection in various scenarios and over time. We approached our work 

on the basis of the 13 research questions outlined in the following sections.  

 Research Question 1 

With our first research question, we addressed how well our approach aligned 

with or diverged from prior research. In our survey of prior research on malicious website 

detection, we observed that several features were reused for malicious website detection, 

opening the opportunity to identify new features. We hypothesized that by considering 

additional features (many of which had never been studied for malicious website 

detection in the past), we would identify new features as being important to the detection 

of malicious websites. With RQ1, then, we investigated how the features identified 
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through our approach differed from those gathered from prior research. RQ1 is stated as 

follows:  

RQ1: How do the features identified compare with prior research? 

 Research Question 2 

We used our second research question to investigate whether the identification 

and incorporation of new features improves malicious website detection. Although we 

captured many performance metrics for the models we built, we focused our discussion 

and performance comparison on the Matthews Correlation Coefficient (MCC) [27] since 

it handles imbalanced datasets. To do so, we built detection models from features 

identified in our research and in prior research, comparing the respective MCCs from 

models built from features exclusively from prior research. We repeated this approach 

under two feature transformation scenarios – feature transformation with feature selection 

and feature transformation with PCA [28]. Hence, RQ2 is stated as follows: 

RQ2: Do the additional features identified improve malicious website detection? 

 Research Question 3 

Our third research question enabled us to examine the effect of dataset imbalance, 

a constraint that is common to malicious website detection experiments. The datasets 

used for malicious website detection experiments typically contain imbalance – an 

unequal number of malicious and benign websites. To investigate the effects of 

conducting experiments with an imbalanced dataset, we trained our models on different 

samplings of our training dataset. We then evaluated the models to determine the impact 

on overall detection performance. Hence, RQ3 is stated as follows: 
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RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios? 

 Research Question 4 

Here, we aimed to compare the performance of features identified in our approach 

to the performance of those features identified in prior research. To do so consistently, we 

built all of the models with the default parameters provided by [29]. However, it was 

possible that we could obtain better results by performing hyperparameter tuning and 

cross-validation of our models. Therefore, we focused RQ4 on hyperparameter tuning 

and cross-validation of our models, stated as follows:  

RQ4: Does hyperparameter tuning and cross-validation improve our results? 

 Research Question 5 

We focused the fifth research question on the results of using all features in this 

study followed by feature selection to discover features for malicious website detection. 

Using the webpage content features, URL features, and Hypertext Transfer Protocol 

(HTTP) header features as the basis for the detection model provided the best 

understanding of how discovering features (versus selecting them ahead of time) 

performed. RQ5 is stated as follows:  

RQ5: Is feature discovery feasible for malicious website detection? 

 Research Question 6 

Even if the discovered features (those features identified through feature 

selection) performed well, we still would have little understanding as to whether it was 

worthwhile to re-select features or if those from prior research were sufficient. To address 
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that gap in understanding, we needed to provide a comparison. RQ6, then, is stated as 

follows. 

RQ6: How do discovered features’ detection ability compare to those from prior 

research? 

 Research Question 7 

The features used in this research can all be derived from the response to a web 

request. As such, the features were available to a normal web browser or HTTP 

environment and did not require any additional resources for collection. Although this set 

of features was limited, it could be used to supplement any other that is available based 

on the specific operational scenario. Hence, we arrived at RQ7, stated as follows. 

RQ7: Can a discovery approach be applied to several threats when only features 

from a web response are available? 

 Research Question 8 

We leveraged three datasets in conducting this study. Prior research has 

demonstrated the difficulty of applying detection models built from one dataset to 

another. However, to verify or refute this observation from prior research, we explored 

RQ8, stated as follows: 

RQ8: How robust are malicious website detection models when applied to a new 

dataset? 

 Research Question 9 

The next area of focus – a follow-on to the previous research question – addressed 

whether the features identified throughout this research, not just the models built from 
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them, could be used to build detection models on another dataset. RQ9 is stated as 

follows: 

RQ9: How do the features identified perform on a new dataset? 

 Research Question 10 

In the next area of focus, we explored whether we could apply aspects from the 

previous research questions to the new dataset to improve malicious website detection. 

RQ 10 is stated as follows: 

RQ10: What aspects from prior experiments can we apply to a new dataset? 

 Research Question 11 

All prior research questions were explored in the context of two datasets, both of 

which were captured at a single point in time. At this point in the research, we shifted our 

approach, focusing the last three research questions on temporal aspects of malicious 

website detection. The first aspect of our temporal study included an evaluation of the 

how detection performance changes over time, with RQ11 stated as follows: 

RQ11: How does detection performance change over time? 

 Research Question 12 

The internet is dynamic, with websites commonly assumed to change over time. 

Prior research has demonstrated that the web changes, but this assumption must be 

revisited for the purpose of this dissertation. To seek a rationale for the results of the 

previous research question, we explored RQ12, stated as follows: 

RQ12: Do websites change over time? 
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 Research Question 13 

Once we determined whether websites changed over time, we went on to explore 

the degree of change. We did so by comparing the change in features as a function of 

time (1 week, 2 weeks, … 11 weeks), gathered from several measurements. Research 

Question 13 is stated as follows: 

RQ13: If websites change over time, how much do they change over time? 

 Contributions 

Our contributions are listed below. 

1. We identified new features for malicious website detection and validated the 

use of features from prior research in malicious website detection. 

2. We quantified and compared the performance improvement when 

incorporating new features for malicious website detection. 

3. We evaluated this approach on a dataset consisting of several types of 

malicious websites in order to demonstrate the approach’s potential and 

explored additional datasets. 

4. We evaluated and compared the performance of our detection method over 

several scenarios, varied the ratio of benign to malicious websites, used 

feature transformation, and performed hyperparameter tuning and cross-

validation to explore consistency. 

5. We demonstrated the feasibility of discovering features for malicious website 

detection and the advantages of doing so over choosing features a priori. 

6. We quantified the performance of detection models over time and compared 

the degree of website change over time. 
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 Dissertation Outline 

Figure 1-4 shows a detailed overview of the structure of this dissertation. We have 

structured this dissertation in the following manner. In Chapter 2, we present a survey of 

related work on malicious website detection. Chapter 3 details our methodology. In 

Chapters 4–6, we describe the independent studies conducted on different types of 

features for malicious website detection, dividing the material with: the webpage content 

in Chapter 4, the structure of the website URL in Chapter 5, and the HTTP headers from 

the website in Chapter 6. In each of these chapters, we address research questions 1-4 and 

we outline the similar methods of feature selection, feature ranking, and model training 

and evaluation applied in each, with the main difference being the type of features 

studied. The works described in Chapters 4 and 6 have been published [30], [31] and 

have been presented at two conferences. In Chapter 7, we address research questions 5-7 

and explore our use of all the features studied to that point – webpage content, URL 

structure, and HTTP headers for detection. Chapter 8 investigates research questions 8-10 

and includes details regarding our application of models and features identified through 

this dissertation to a different dataset. In Chapter 9, we conclude with research questions 

11-13 and outline the portion of the research aimed at determining whether and how the 

models for malicious website detection and the features for detection changed over time. 

We discuss limitations in Chapter 10. Finally, we present a summary of the research and 

findings in Chapter 11.  
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Fig. 1-4.    A detailed overview of this dissertation 

(Images courtesy of Pixabay [22].)
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Chapter 2:  Background and Related Research 

 Introduction 

The techniques for detecting malicious websites have evolved over the years, as 

have the features used to detect them. The three facets common to all approaches to 

detecting malicious websites are: 1) the set of features that characterize a website; 2) the 

method(s) or model(s) used to make the determination; and 3) the dataset(s) used for 

training and validating the methods used to make the determination. In this chapter, we 

provide a survey of related research into each of these facets of malicious website 

detection. Additionally, we discuss four additional relevant aspects: 1) potential 

validation methods on an additional dataset; 2) potential practical implementations; 3) 

relevant performance metrics; and 4) measure of change in a website and training and 

evaluating detection models on different points in time. 

 An Overview of Features for Malicious Website Detection 

The first aspect of malicious website detection is the set of features or quantifiable 

attributes that characterize a website. These features serve as the basis for determining 

whether a website is malicious. Researchers have drawn on a diverse set of features, 

including features in the following three categories: host information, webpage content, 

and communication data. The features in these categories include: the URL, the content 

of the webpage, network traffic to and from the website, information available in the 

DNS [32] and registration records, geographic properties, and certificate information 

[33].  
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 Host Information 

For our purposes, we define host information as being all aspects of a website that 

must be in place before the website is accessed. Examples of host information include the 

URL, information found in the domain name registration system, and the website 

certificate. In this section, we discuss the URL features that are the most prevalent host 

information features used in prior research for malicious website detection. 

2.2.1.1 URL Word-Based Features 

Word-based features are motivated by the observation that phishing URLs often 

contain specific words or can be tokenized based on specific delimiters for further 

analysis. One of the early word-based approaches in malicious website detection and 

classification came from [34], who discovered a list of words notably found in phishing 

website URLs. These words, which included “webscr,” “secure,” “banking,” “ebayisapi,” 

“account,” “confirm,” “login,” and “signin,” were used as a group of features to detect 

phishing URLs. The words “login” and “signin” were found to be particularly prominent 

on their phishing dataset. Ma et al. [35] expanded on this approach and implemented a 

method that separates the path in the URL by special delimiter characters (“/,” “?,” “.,” 

“=,” “-,” “ and “_”) into tokens for further analysis. This approach, referred to as a “bag 

of words” approach, is a common approach to URL feature generation. Ma et al. [36] 

repeated this approach with the addition of an online learning algorithm and continued 

the research [37]. The “bag of words” approach for phishing detection has also been used 

by other researchers [38]-[40] and is one of the primary methods for analyzing URLs. 

Word-based features and the “bag of words” approach can be used to detect all types of 
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malicious website URLs, but the approaches have been used predominantly to detect 

phishing URLs. 

2.2.1.2 Special Characters and URL Structure Features 

Researchers also have explored the use of special characters and the URL 

structure for detecting malicious websites and URLs. This differs slightly from using 

special characters as delimiters for the “bag of words” approach. One characteristic in the 

structure of the URL is the presence of an internet protocol (IP) address [41]. IP 

addresses can be substituted for hostnames and are sometimes used by malicious websites 

to hide malicious domain names for phishing, drive-by downloads, or C2 websites. 

Researchers [42] stated that IP addresses in URLs could be indicative of a malicious URL 

and used the presence of an IP address in the URL as a feature. In addition, they also 

counted the number of hosts in the URL that could be determined by counting the 

number of “.” characters in the URL. The number of dots is motivated by an observation 

that malicious websites use multiple hostnames in order to appear more legitimate. He et 

al. [43] also considered the presence of the “@” character as a feature. Authors [44] 

reused the features mentioned thus far and added the presence of a “shifted” URL, 

multiple top-level domains (TLDs), misspelled domain names, modified URL encoding, 

and modified or mismatched port numbers, along with adding whether the URL was a 

short or a “tiny” URL. IP addresses, multiple hosts, having several TLDs in the URL, 

URL length features, and other special characters have all been used in some manner or 

permutation by researchers [40], [45]-[49] as features for detecting malicious URLs. 

Basnet et al. [50] used the presence of special characters as features and evaluated feature 

selection techniques on phishing datasets. The features mentioned in this section have 
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primarily been used to detect phishing websites, though some features – including the 

length of the URL, the number of dots (.) in the URL and ratios of characters to numbers 

– have proven successful in detecting other threats such as drive-by downloads and C2 or 

bot URLs. 

Lin et al. [51] reused many features and presented an approach that used ratios 

within website URLs. Examples of ratios include: the length of the domain name divided 

by the length of the entire URL; the length of the path divided by the length of the URL; 

and the length of the argument field divided by the length of the URL. In addition to 

these ratios, [51] also used specific patterns such as letter-digit-letter and the longest 

word length as features. Ahluwalia et al. [52] focused on a specific type of threat – 

domains generated by a domain generation algorithm (DGA) [53] – and solely used URL 

length, number of vowels and consonants, and digits in the second level domain name to 

detect this specific type of malicious URL. The approaches based on ratios and the 

analysis of the distribution of vowels, consonants, and digits have primarily been 

leveraged to detect malicious URLs used by bots or C2 traffic with a detection and false 

positive rate (FPR) of 98.96% and 2.1%, respectively [52]. 

2.2.1.3 Additional Approaches with URL Features 

Researchers [54] took an approach toward URL analysis that defined and used the 

Kolmogorov complexity of the URL string to identify malicious URLs. This approach 

did not require a priori knowledge and could be combined with other methods discussed 

in this section. Kheir et al. [55] classified C2 connections via statistical clustering of the 

URLs generated by a malware testbed. In [56], the authors used character n-grams from 

N = 1 to N = 10 appearing in the URL string to classify malicious URLs. Distinguishing 
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factors for [56] were their evaluation of the effectiveness of their n-gram approach on 

phishing as well as on spam URL datasets and their comparison of the respective 

performance on these datasets. 

 Webpage Content 

Webpage content consists of the information gathered from the webpage that is 

available when navigating to the website URL. All webpage content features can be 

extracted from the webpage. This section includes a review of those features extracted 

from the webpage that are relevant for malicious website detection.  

2.2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF) and Its 

Applicability in Webpage Content 

Term frequency-inverse document frequency (TF-IDF) is a statistical measure 

used to evaluate the importance of a specific word to a document [57]. It has been used in 

malicious website detection in several ways. The main methods involving TF-IDF are 

search engine and comparison based. 

The authors of CANTINA [24] and CANTINA+ [46] extracted the top K words 

from a webpage and performed a Google search of those K terms. The authors then 

examined the top N returned results, with whether the webpage appeared in the top N 

results being used as a feature for malicious website detection. The researchers varied K 

(the number of terms) and N (the number of results), with that approach, along with the 

Google search engine, being used by [42]. Researchers [58] used TF-IDF to compare the 

contents of a candidate webpage with the contents of the TLD webpage of the candidate 

webpage. The larger the difference, the more likely it was that the candidate webpage 

was malicious. He et al. [43] used the difference between the candidate webpage and the 
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TLD page as part of a macro feature they referred to as “URL Identity.” In addition, the 

author of CANTINA+ [46] used TF-IDF to find the presence of specific sensitive words 

throughout the webpage. Researchers primarily used the TF-IDF approach, regardless of 

the specific implementation, as a means of identifying phishing websites. 

2.2.2.2 Webpage Content - Structural Content - Tags and Attributes 

HTML elements and attributes, as well as the document object model (DOM), are 

the defining portions of webpage structure and have served as a basis for multiple 

features for malicious website detection. One well-studied feature is the <iframe>. 

Provos et al. [59] studied the prevalence of drive-by downloads on the web and 

<iframe>s that are often used in malicious content injection common in drive-by 

downloads. Although <iframe>s facilitate content injection and drive-by downloads, 

other structural information can identify other attacks, such as phishing. Whitaker et al. 

[42] used a simple feature – whether the webpage has a password field – as one of many 

features to detect phishing webpages. Authors [43] expanded on this by extracting other 

features including <meta> tag and description tags, the <title> tag, and all text fields 

inside the <body> tag as feature sets to detect phishing websites. Other authors including 

[44], used similar features. Xiang et al. [46] captured the presence of “bad forms,” that is, 

forms with a specific structure (structures where the form was an HTML <form>, where 

keywords were related to sensitive information, and where there was a specific action 

attribute as a feature).  

Basnet et al. [50] expanded the selection of structural features to include password 

fields, as well as counts of various tags within the webpage, including <iframe>s and 

<frame>s. Drew and Moore [60] extracted input HTML elements and performed 
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multiple stages of clustering to identify criminal websites that share commonalities. 

Corona et al. [61] took an overall approach similar to the TF-IDF difference between top 

webpage and candidate webpage. Instead of using terms, they used the difference in 

HTML between the candidate webpage and the TLD webpage. Borgolte et al. [62] aimed 

to detect malicious campaigns, extracted different features, and ignored visual 

differences.  

Researchers also examined a group of features related to the URLs and to links 

present in a webpage. Several HTML elements have the href and src attributes, which 

specify links or references to additional resources such as files. The type of resource 

depends on which HTML element specifies the href or src attributes. The resources 

referenced by the href or src attributes can be on the webpage (like a section), or can 

be in another domain or website. Researchers [42] extracted features describing the 

extent to which links and images reference other domains outside of the TLD for that 

webpage. He et al. [43] did the same, extracting the base domain by extracting the href 

attributes from the <a> and <area> elements, while [48] only used the <a> tag in their 

identity builder. Gastellier-Prevost et al. [44] expanded their feature set to other HTML 

elements with the href attribute. With CANTINA+, the authors [46] checked whether 

the majority of URLs in the webpage were within the same domain as the candidate 

webpage. Le et al. [63] used the presence of external links in <frame> tags to capture a 

macro feature they called “foreign contents.” With BINSPECT, the authors [47] counted 

the total number of links and split them into categories similar to those created by other 

authors, including same-origin and different-origin. Eshete et al. [47] also counted the 

number of external JavaScript files in the URLs on the webpage. Like the researchers 
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who had examined URLs and their relationships to TLD webpages, [50] checked whether 

the respective <iframe> links pointed to internal or external resources or to other 

denylisted URLs and expanded on that research in a later study [64]. 

2.2.2.3 Webpage Content - Defining Page Content Behavior with JavaScript 

Behavioral features of a website come primarily in the form of JavaScript, an 

object-oriented programming language and a foundational technology of the modern 

web. Because JavaScript is a powerful language that can be misused by attackers, it has 

been of interest to various researchers. JavaScript is most commonly misused to enable 

drive-by downloads. JavaScript Anomaly-based Analysis and Detection (JSAND) 

creators [65] focused on identifying malicious webpages with drive-by downloads by 

extracting JavaScript features, gathering features by executing the JavaScript in a 

sandbox and recording features during execution. Although the researchers collected 

several features, they focused their study primarily on the detection and execution of 

suspicious behavior, including suspicious methods and sequences of method calls, the 

presence of likely shellcode, and indicators of JavaScript obfuscation (a method used to 

hide malicious code from someone analyzing the script). Canfora and Corrado [66] also 

leveraged JavaScript features in research focused on the detection of malicious websites. 

The authors addressed features such as the presence of suspicious methods, specific 

sequences of method calls, and indicators of obfuscation. In addition, they compared 

groups of features in order to determine which features were best able to detect malicious 

websites. They found that JavaScript played a significant role in malicious website 

detection. 
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Other authors approached JavaScript analysis in malicious webpages from the 

abstract syntax tree (AST). Rieck et al. [67] proposed Cujo, which has both static and 

dynamic (execution) analysis components. Cujo is trained on reports detailing benign and 

malicious code, with its performance evaluated with either static features or dynamic 

features alone or with static and dynamic features combined. The authors found that 

using static and dynamic features together improved their accuracies compared to using 

static and dynamic features in isolation. Curtsinger et al. [68] used a mostly static 

JavaScript analysis approach, but made the argument that static analysis was a challenge 

for malicious JavaScript because malicious JavaScript is most likely obfuscated and 

hence is difficult to analyze statically. As a result, they hooked the JavaScript runtime to 

get the de-obfuscated JavaScript before analyzing the JavaScript AST statically. 

Researchers [69] used JStill to leverage the AST, but created four categories: 1) 

JavaScript native functions, 2) JavaScript built-in functions, 3) DOM methods [70] (those 

methods that operate on the DOM), and 4) user-defined functions that group their 

features. With JStill, the researchers captured three differences between malicious and 

benign method invocations: 1) the method arguments, 2) the method definition, and 3) 

the context of a method invocation. Kapravelos et al. [71], with Revolver, also used the 

AST with a focus on AST similarity between known malicious and candidate ASTs.  

2.2.2.4 Combining Page Structure and Behavior for More Holistic Malicious 

Detection 

Although structural features like TF-IDF, HTML, links, and URLs in the page, 

along with behavioral features like JavaScript, can be extracted independently to identify 

malicious websites, they are often combined. Researchers [23] described three categories 
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of features that combined structural and behavioral features. These features describe the 

exploit, the exploit delivery mechanism, and whether there are attempts to hide elements 

or scripts on the malicious webpage. The authors incorporated specific tags like <frame> 

and <iframe>, as well as indicators of JavaScript obfuscation, among their feature set. 

Choi et al. [72] also looked for the presence of suspicious native JavaScript methods like 

escape(), eval(), link(), unescape(), exec(), link(), and search(), 

combining them with HTML features including tag counts, and counts of zero size, and 

thus invisible, <iframe> tags. Heiderich et al. [73] proposed ICEShield, which lightly 

instruments JavaScript and detects attacks against the DOM tree. This approach 

combined attacks against the DOM with additional heuristics centered around previously 

studied HTML tags and considered the presence of suspicious Unicode as an additional 

feature. With Prophiler, [45] examined the src attributes of <iframe> tags, hidden 

elements, <iframe>s with small areas, and other features commonly found in malicious 

webpages. They also extracted 25 features around JavaScript code. With BINSPECT, the 

authors [47] extracted 25 webpage content features, primarily from prior research, 

including document length, number of words, lines, spaces, average word length, hidden 

elements, and presence of suspicious methods. In addition to capturing a better 

representation of the website, combination approaches are more applicable to detecting a 

wider range of attacks, as in the case of BINSPECT [47], which detected various 

malicious websites, including phishing and drive-by downloads, with 97% accuracy. 
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 Communication Data Features 

Communication data features describe the facet of the website that characterizes 

how a client communicates with the website. This includes protocol information, 

metadata from the communications, and traffic summary statistics.  

2.2.3.1 Communication Data Features – HTTP Headers 

HTTP [74] is the primary application level protocol used throughout the web. As 

such, HTTP features are studied and used to detect malicious websites. HTTP features 

are most commonly used to detect C2 traffic and HTTP requests generated from 

malware. Authors [75] and [76] clustered HTTP communications from known malware 

and generated signatures. Researchers [55] executed malware in a sandbox that generated 

HTTP communications and took a clustering approach to grouping URLs in the malware-

generated HTTP traffic to classify the C2 communications. 

Tao et al. [77] gathered HTTP header features from interaction with a webpage 

and recorded attributes from the HTTP requests and responses over a session to a 

candidate webpage. The authors combined these features with non-HTTP features to 

detect malicious websites. Zhang et al. [78] examined features over a session, but focused 

specifically on redirect chains (one or more redirects) between the initial URL and 

destination. Brezo et al. [79] proposed a method of detecting malicious web requests by 

using machine learning and HTTP and transmission control protocol (TCP) 

characteristics. Although they found TCP features, such as packet length, to be the most 

influential in their study, HTTP characteristics still were among the top 10 most relevant 

features. Xu et al. [49] used 15 HTTP header features in addition to taking a “crosslayer” 

approach that used application, network, and webpage level characteristics. Specifically, 
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they reused the HTTP header content-length, which also was used by [79]. 

Researchers [80] proposed ExecScent, which generated control protocol templates 

(CPTs) from clusters of HTTP requests associated with C2 traffic. CPTs are defined by 

the URL, HTTP headers, and the destination IP address. Researchers [40] and [81] used 

HTTP headers – including the response code, HTTP method, and Boolean values such 

as if the HTTP response content is zipped – in their feature set for malicious website 

identification. Zarras et al. [82] created a method that learned how HTTP based malware 

worked and learned the structure of the HTTP requests sent. They leveraged header 

chains and templates like CPTs to use header chains to detect C2 traffic. Researchers [83] 

used Phishmon to examine the headers and used the length of the respective header 

values as features to detect phishing webpages. 

 The Methods and Models for Detection 

The next aspect of malicious website detection is the method or model used to 

make the determination of whether a website is malicious. The method or model uses 

features that characterize the website to make the determination. In our literature survey, 

we found three types of methods that researchers used for detecting malicious websites: 

1) heuristics, 2) clustering, and 3) supervised machine learning techniques.  

 Heuristics 

Heuristics are simple approaches or rules that have been applied to detecting 

malicious websites. Their use was more prevalent in earlier research. Recent research has 

tended to favor the use of machine learning techniques. The main benefit of heuristics is 

their simplicity and intuitiveness, though they rely strongly on preconceived notions of 

malicious behavior or attributes. Seifert et al. [23] presented one of the earlier approaches 
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that leveraged heuristics to identify malicious websites. Their approach used many 

features in HTTP responses and the webpage HTML. Prakash et al. [84] used denylists 

as the basis to detect phishing attacks. Researchers [44] defined 20 heuristics from lists 

and acceptlists and implemented them in an anti-phishing toolbar called Phishark to 

differentiate between legitimate and phishing websites. Wang et al. [85], with Phishnet, 

evaluated rule-based and classifier-based approaches for identifying webpages that lead 

to drive-by downloads. In their study, the rule-based system outperformed their classifier, 

further motivating the continued use of heuristics. Nguyen et al. [86] created a heuristic 

with weights for six features to detect phishing websites. Ghafir and Prenosil [87] 

extended this idea, using threat intelligence to automatically update their denylist, which 

was leveraged to identify C2 traffic based on denylists of malicious IPs. Seshagiri et al. 

[88] created heuristics for known attack patterns with JavaScript and HTML. Authors 

[89] created the Phidma algorithm consisting of five layers in a pipeline to identify the 

webpage as legitimate, the five layers being: 1) acceptlist, 2) page features, 3) search 

engine, 4) URL similarity, and 5) accessibility. Heuristics are still relevant; however, 

most researchers in the field of malicious website detection leveraged more sophisticated 

machine learning techniques. 

 Clustering 

Clustering has an advantage over heuristics in that it does not require 

preconceived notions of what malicious looks like. Clustering groups similar data, but 

usually requires larger amounts of data to create more defined clusters. Clustering has 

been successful in identifying several threats including threats detected via the webpage 

and via HTTP traffic.  
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Borgolte et al. [62] searched for new web infection campaigns by looking at two 

versions of the webpage, extracting differences in their DOM and assigning the 

difference to specific clusters. Drew and Moore [60] identified criminal websites by 

clustering websites based on metrics gathered from the HTML on the page. Researchers 

[75], [76] performed coarse grained clustering which measures the statistical similarity of 

the HTTP requests including total number of requests, number of GET and POST 

requests, and fine-grained clustering, which considers the structural similarity of the 

HTTP communications generated from malware in their testbed to generate detection 

signatures. Authors [90] built CyberProbe, which probes different servers and builds 

signatures known as fingerprints by clustering request-response pairs (RRPs) in the 

generated traffic. Kheir et al. [55] presented Webvisor, which records HTTP requests 

from known families of malware and then performs clustering of the generated URLs to 

build signatures for C2 channels. Zarras et al. [82] used a dataset of 40,000 malicious 

HTTP requests from 24 malware families and requests to the top 1,000 domains 

from Alexa to generate 7,000,000 HTTP requests and built HTTP templates from 

clustered HTTP headers.  

 Supervised Learning 

The most common method of detecting malicious websites is to build models 

using supervised machine learning techniques. The features are extracted from known 

benign and known malicious websites to build models using one or more supervised 

learning algorithms. Some researchers [40],[42]-[43],[61] and [91] used one classification 

algorithm. This approach has shown success, with [91] being able to classify phishing 

webpages written in English with an area under the curve (AUC) of 0.999. Authors [42] 
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focused on classifying a “large” number of phishing webpages and training their logistic 

regression (LR) classifier [92] on millions of webpages. They evaluated their classifier on 

165,382 phishing webpages during the first six months of their study. Authors [43], [61] 

used a support vector machine (SVM) [93] classifier with a different set of features and, 

unlike [42], used a smaller evaluation dataset of 200 legitimate and 325 phishing 

webpages in their experiment. Authors [40], [43] also leveraged an SVM-based classifier 

while [91] used a gradient-boosting (GB) classifier [94].  

Other scholars [35],[45]-[47],[49]-[50],[72],[83], [95] used up to seven different 

algorithms. Ma et al. [35] leveraged an LR classifier (a naïve Bayes [96] and SVM-based 

classifier) and also recorded the time to test and train their classifiers. Canali et al. [45] 

used random tree [97], random forest (RF) [98], naïve Bayes, LR, J48 [99], and Bayesian 

networks [100] and compared their respective performances. RF was the best performing 

classifier over different feature sets. Similarly, [46] used Bayesian networks, J48, RF, 

AdaBoost (AB) [101], LR, and SVMs. Choi et al. [72] included RakEl [102] and multi-

level K-nearest neighbor (ML-KNN) [103]. Basnet et al. [50] used seven supervised 

classifiers and then combined them with a customized version of the confidence-

weighted, majority-vote algorithm [104]. In [50], the authors used naïve Bayes, RFs, and 

LR classifiers. Researchers [49] performed a similar study with four classifiers and found 

J48 to be the best performing. Researchers [95] also demonstrated applicability of 

decision tree classifiers, particularly J48. Phishmon creators [83] used similar algorithms, 

but added classification and regression trees [105] into their study. 

Authors [106] used batch learning, where models are built on the whole dataset at 

once, while others [107] used online learning, where models were updated as data was 
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made available. Ma et al. [36] continued their work from [35], but with online learning 

algorithms including Perceptron [108], LR, Passive-Aggressive algorithm [109], and 

confidence-weighted algorithm. Both [39] and [64] used batch learning and online 

learning as well. Other authors, including [48], applied more than one classifier, usually 

in sequence, in their detection schemes. Several algorithms were used, including 

AdaBoost, Bayesian networks, CART, confidence-weighted, C4.5 [110], GB, J48, K-

nearest neighbor (KNN) [111], LR, naïve Bayes, Perceptron, RF, random tree, and 

SVMs. 

 Validation 

Ground truth datasets used for training and evaluation make up the next 

component of malicious website detection. Currently, no standard dataset exists for 

training machine-learning algorithms to detect malicious websites, though some datasets 

have been reused by several researchers. We identified three types of datasets used in 

malicious website detection: 1) well-known datasets, 2) custom datasets, and 3) 

proprietary datasets provided by an external organization. Well-known datasets are 

commonly used as ground truth for malicious and benign websites. Examples of such 

datasets include Alexa.com [112] for benign domains or Phishtank [113] for malicious 

domains (in the case of phishing related studies). Multiple researchers [24], [44], [47]-

[49], [61], [73], [77], [86], [89], [114]-[117] used these predefined datasets. Researchers 

who used the second type of dataset – a custom dataset, commonly generated “randomly” 

or by a crawler – include [23], [35]-[37], [40], [42]-[46], [49]-[50], [62], [64], [66]-[67], 

[69], [72], [81], [91], [95], and [118]-[119]. Although the random and crawler-based 

approach can be used for both benign and malicious dataset generation, it has been more 
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commonly used to generate data for benign websites. Moreover, this type of method can 

be combined with well-known datasets. The third type of dataset is a dataset provided by 

external organizations. These datasets, used by [55], [91], [119]-[120], are not as 

common. The nuances and differences among datasets used by prior researchers can be 

subtle. As a result, we created Table 2-1 below to briefly describe these works and their 

benign and malicious datasets. A value of “-“ indicates that the specific field was not 

applicable in the respective study or that the author used a custom dataset specific to the 

study. A “*” character indicates that some or all of the data was provided by an 

unspecified external organization. 
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Table 2-1.  
Datasets from Prior Research (Prior Research  

Leveraged Various Datasets Derived from Numerous  

Sources) 

Datasets from Prior Research 

Work Year Benign Dataset Source Malicious Dataset Source 

[114] 2006 - [121]-[122] 

[24] 2007 [123] [113] 

[23] 2008 [124]-[125] [126] 

[35] 2009 [124]-[ 125] [113],[127] 

[36] 2009 [125] * 

[77] 2010 [112] [128]-[130] 

[42] 2010 - [131], * 

[67] 2010 [112],[132] [133] 

[116] 2011 [112], [121],[123] [113],[122] 

[44] 2011 [112], [135]-[136] *, - [113],[137] 

[45] 2011 [112], [132] [133] 

[63] 2011 [125], [134] [130],[138]-[139] 

[37] 2011 [125] * 

[46] 2011 [124]-[125] [113], [141]-[ 140] 

[47] 2012 [112], [124]-[ 125] [113],[132],[142] 

[50] 2012 [124]-[125] [113] 

[86] 2013 [124] [113] 

[49] 2013 [112] [130], [143]-[146] 

[48] 2013 - [113] 

[62] 2013 - [133] 

[64] 2014 [124]-[125] [113] 

[69] 2014 [112] [147] 

[40] 2014 - - 

[117] 2014 [124] [113] 

[118] 2015 [112] [147]-[150] 

[120] 2015 [151] [151] 

[55] 2015 - [147], [152] 

[115] 2016 [112] [113] 

[66] 2016 - [153] 

[91] 2016 [154] [113] 

[95] 2016 [124] [113], [155] 

[89] 2017 [156] [113] 

[61] 2017 - [113] 

[116] 2018 [157] [113] 

[119] 2018 - [158] 
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Some prior researchers performed analysis on datasets derived from different 

sources. These datasets can vary temporally (identified in Table 2-2 below as “temporal”) 

or can be drawn from a different corpus (identified in Table 2-2 below as “corpus”). 

Table 2-2 provides a summary of the works of researchers who performed analysis on 

different datasets and how they differed, with “Y” meaning “yes” and “N” meaning “no.” 

 
Table 2-2.  

Prior Research Occasionally  

Tested Detection Methods on  

Different Datasets 

Application to Another Dataset 

Research Corpus Temporal 

[35] Y N 

[38] Y N 

[42] N Y 

[43] Y N 

[45] N Y 

[46] Y N 

[50] N Y 

[63] Y N 

[64] Y N 

[65] Y N 

[82] N Y 

[159] Y N 

[160] Y N 

[161] Y N 

 

 

 Practical Implementation 

An additional component, often specified in the related research, is the 

incorporation of detection models into a practical solution. Rieck et al. [162] tested 

Botzilla on a live university network by incorporating their approach in the open-source 

flow monitor Vermont [163]. They deployed their solution at the central gateway of a 

university network to monitor uplink traffic. Given high network traffic volume, they 
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only monitored the first 256 bytes of each flow to keep stream reassembly to a minimum. 

Cujo, developed by [67], was embedded in a web proxy between the web client and the 

web service. Cujo performed the analysis before data were sent to the web client and 

webpages containing drive-by downloads were blocked. Authors [164] divided their 

solution for detecting clickjacking attacks into two components – a detection unit and 

testing unit. The detection unit combined two browser plugins and the testing unit was a 

single browser plugin. Gastellier-Prevost et al. [44] took a similar approach, 

implementing the Phishark toolbar as a Firefox add-in. Ghafir and Prenosil [87] 

leveraged additional servers to passively analyze network traffic looking for denylist hits. 

Their approach also updated their denylist from various intelligence feeds. DeltaPhish 

was wrapped inside a web application firewall that served as proxy between the user and 

the website in Corona et al.’s [61] live implementation. 

 Performance Metrics 

Performance metrics include the FPR, false negative rate (FNR), true positive rate 

(TPR), true negative rate (TNR), accuracy (ACC), AUC, Precision (Prec), Recall (Rec), F 

Score, and MCC. In some cases, authors specified other metrics such as detection and 

error rate. Currently there is no standard set of metrics used for evaluation that is 

consistent across malicious website detection studies. To better understand the capability 

of prior approaches, we listed related research, the relevant performance metrics, and the 

results. Table 2-3 below lists those works that were most similar to our research, as well 

as those that provided concrete numbers (as opposed to graphs and visualizations alone). 

The table also includes the results from the respective research that we identified as the 

“best” or as capturing the most “representative” reflection of their approach. Many of the 
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works provided several measurements with slightly different features and datasets and 

quantified additional performance aspects like time. Therefore, the selection of the “best” 

or most “representative” result was somewhat subjective. A value of “-“ indicates that the 

respective metric was not discussed in the respective related research. 

  



 

39 

 

Table 2-3.  
Prior Researchers Did Not Use a Standard Performance Metric 

Performance Metrics from Related Research 

Related 
Research Year TPR TNR FPR FNR ACC AUC Prec. Rec 

F 
Score MCC 

[24] 2007 0.97 - 0.06 - - - - - - - 

[23] 2008 - - 0.0588 0.4615 - - - - - - 

[35] 2009 - - - - 0.99 - - - - - 

[77] 2010 - - 0.001 - 0.922 - - - - - 

[67] 2010 0.944 - 0.00002 - - - - - - - 

[65] 2010 -  - 0.002 - - - - - - 

[42] 2010 - - 0.0003 - - - 0.9754 0.9497 - - 

[45] 2011 - - 0.0988 0.0077 - - - - - - 

[43] 2011 0.9733 - 0.0145 - - - - - - - 

[46] 2011 0.9424 - 0.01948 - - - - - 0.9607 - 

[37] 2011 - - 0.0152 0.0255 - - - - - - 

[44] 2011 - - - - - - - - - - 

[47] 2012 - - 0.189 0.011 0.97 - - - - - 

[54] 2012 0.969 0.9315 0.071 0.031 - - - - - - 

[48] 2013 0.969 - 0.0125 - - - - - - - 

[49] 2013 - - 0.03676 0.09127 0.95161 - - - - - 

[86] 2013 - - - - 0.97 - - - - - 

[165] 2013 - - 0.081 0.017 0.965 - - - - - 

[69] 2013 - - 0.0175 0.0053 - - - - - - 

[40] 2014 - - 0.063 0.076 - - 0.935 0.924 0.93 - 

[117] 2014 - - 0.013 - 0.995 - - - - - 

[159] 2014 - - 0.002 0.005 - - - - - - 

[64] 2014 - - 0.0024 0.0075 - - 0.9955 0.9925 0.994 
0.99

1 

[118] 2015 - - 0.00212 

0.00849

2 - - - - - - 

[81] 2015 - - - - - - 0.935 0.924 0.93 - 

[66] 2016 - - - - - 0.891 0.819 0.819 0.819  

[91] 2016   0.0005   0.999 0.956 0.958 0.957 - 

[95] 2016 - - 0.177 0.022 0.939 -  - - - 

[52] 2017 -  0.021 - - - - - - - 

[89] 2017 0.9054 0.9418 0.0582 0.0946 0.9272 - - - - - 

[56] 2017 - - - - 0.9848 - - - - - 

[83] 2018 -  0.013 - 0.954 - - - - - 

[166] 2018 - - - - 0.964 - 0.964 0.964 0.963 - 

[116] 2018 - - 0.004 - - - 0.997 - - - 
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 Measuring Website Change 

For the portion of the research detailed in the ninth chapter of this dissertation, we 

measured the change in a website. It is often assumed that websites change, and prior 

researchers have quantified and measured such change. Researchers [167], motivated by 

the potential benefits of using caching servers, conducted one of the earliest studies in 

measuring change on the web. They found that only 22% of the web resources referenced 

in their traffic dataset were accessed more than once, with half of the 22% being accessed 

from multiple reference sources. In addition, they studied other changes on the webpage, 

including changes in hrefs (hyperlinks), images, email address, telephone number, and 

URL strings in the body of the webpage. Cho and Garcia-Molina [168] instrumented a 

crawler and crawled more than 700,000 pages, capturing whether a webpage changed 

(based on the MD5sum of the webpage). They reported that 40% of all webpages in their 

evaluation dataset changed in less than a week, breaking down which webpages changed 

based on the domain (.com, .netorg, .edu, and .gov). Fetterly et al. [168] expanded on this 

work by monitoring changes in other aspects of the website, including the webpage 

length and HTTP response code. Fetterly expanded on [170] in [171], shifting focus to 

determine how many webpages were duplicates and finding that 29.2% were very similar 

to other webpages and that 22.2% were near-identical. Brewington and Cybenko [172] 

monitored change and the lifetime of the webpages to model and infer change rates.  

Lim et al. [173] measured frequency of web document change over time but did 

so on a “word” level. Ada et al. [174] examined webpage changes at a finer level than 

previous work by developing an algorithm that tracked the movement of DOM elements 

within the documents and evaluated the persistence of structural elements. Kwon et al. 
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[175] proposed criteria and a new metric for measuring webpage change based on six 

types of changes associated with webpages: “add,” “drop,” “copy,” “shrink,” “replace,” 

and “move.”  

Although past researchers have emphasized the broad study of how websites 

change, we have not identified any metrics useful for our purpose of evaluating detection 

models over time. Although these studies have established that websites change over 

time, we revisited this assumption in Chapter 9. 

 Summary 

From this literature review, we identified three common facets of malicious 

website detection: 1) the features used, 2) the method(s) or model(s) used to make the 

determination, and 3) the dataset(s) for training and evaluation of the models. We 

summarized studies that were performed on different datasets, identified prior research 

that incorporated research methods into practical solutions, and discussed performance 

metrics used in the prior studies. Additionally, we discussed research that measured 

websites and their change over time. 
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Chapter 3: Methodology 

 Overview 

In our research, we evaluated a method for detecting malicious websites, 

leveraging features proposed in prior research, and also identifying new relevant features 

through statistical analysis. This method can be repeated to adapt with the evolution of 

threats and malicious techniques. Ultimately, we envision the repetition of this method 

over time, in order to identify sets of features and evaluate them for their applicability in 

detecting malicious websites. Although we focused on identifying and evaluating new 

features for malicious website detection and did not develop a new tool, the features that 

were identified and evaluated can be used as part of an additional layer of protection that 

can be hosted in a browser. Figure 3-1 below shows a potential use case wherein a 

detector built from a model using our method could examine and adjudicate the webpage 

before rendering it in a user’s browser. Images courtesy of [22]. Our research consisted of 

several steps leading to malicious website models that can be placed in a user’s browser 

environment as shown in Figure 3-1. 
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Fig. 3-1.     Methods explored in this research can be applied with other security solutions 

 

 

 High Level Approach 

We sought to identify and evaluate features for malicious website detection and 

evaluate them over time. We also compared the features identified by our approach to 

those identified in prior research in terms of rank and importance and in terms of the 

ability of the detection models they yield. We evaluated this approach over various 

scenarios, datasets, and over time. At a high level, we followed the overall approach 

outlined below. Steps 1-4 correspond to Chapters 4-6. Step 5 corresponds to Chapter 7. 

Step 6 corresponds to Chapter 8 and step 7 corresponds to Chapter 9. 

1. Step 1: Select datasets 

a. Choose malicious and benign datasets for the research. 

i. There are 3 datasets (Dataset 1, Dataset 2, and Dataset 3). 

2. Step 2: Discover features 
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a. Identify potential features from prior research that represent the three 

facets that characterize a website (host information, webpage content, 

and communication data). 

b. Expand on features from prior research and incorporate new, unstudied 

features. 

c. Select features for malicious website detection. 

3. Step 3: Build detection models 

a. Individually evaluate feature-based malicious website detection using 

features from three facets that characterize a website (host information, 

webpage content, and communication data) by building detection 

models from supervised machine learning techniques over three 

scenarios. Scenarios include no-sampling, over-sampling, and under-

sampling of the dataset to account for class imbalances between our 

malicious and non-malicious datasets. 

b. Rank the importance of features with regard to their ability to detect 

malicious websites.  

c. Apply pair-wise feature transformation techniques to identify 

additional features, followed by feature selection and PCA, and rebuild 

the models to further investigate the consistency of our approach over 

multiple scenarios. 

d. For training and evaluation of the models, use an 80:20 split of 

training to testing data, that is: 80% of the data is used to build the 

models, with the remaining 20% being used to evaluate the models. 
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e. When applicable, compare the performance of models built with the 

features identified with the performance of models built with features 

from prior research. 

4. Step 4: Tune and cross-validate 

a. Perform hyperparameter tuning and cross-validation of the detection 

models in an attempt to improve performance and demonstrate 

consistency in our models’ detection ability. 

b. Repeat steps 3a, 3b, 3c, and 4a on a training-to-testing split of 70:30 to 

demonstrate that our results are not a product of the initial 80:20 

training-to-testing split from step 3d. 

5. Step 5: Combine features for improved detection 

a. Repeat steps 2 through 4, but use all of the categories of features to 

achieve better detection. 

b. Compare results to features used in prior research. 

6. Step 6: Evaluate on another dataset 

a. Apply the RF model built in Chapter 7 to a new dataset (Dataset 2). 

b. Capture performance metrics on the model. 

c. Retrain a new model on the new Dataset 2, with features identified 

from Dataset 1. 

d. Investigate incorporating data from both datasets in training and 

evaluation. 

7. Step 7: Explore detection performance over time 
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a. Measure the performance of a model trained on Dataset 1 and 

evaluated on another dataset (Dataset 3). 

b. Investigate the impact of model re-training on performance, using: 

i. various feature sets, and 

ii. different training intervals. 

c. Evaluate website change over time. 

i. Quantify the number of features (and their importance) relevant 

to malicious website detection change over time with statistical 

tests.  

 Step 1: Select Datasets 

 Dataset 1 

There are many methods for choosing a benign dataset, but there are two popular 

paradigms – either create a new dataset or leverage existing datasets. Creating a new 

dataset has the advantage of enabling the researcher to select websites deemed 

representative of the websites on the internet or websites that are more relevant to the 

research topic. The disadvantage of creating a new dataset, on the other hand, is that it 

requires building a method of gathering relevant websites, such as a crawler, which could 

influence or sway results. Researchers can attempt to minimize influence on their dataset 

selection, but a practical way to remove researcher influence is to use a dataset provided 

by an external party. In our research, we chose a well-known and commonly used benign 

dataset source, the Alexa top one million domains (Alexa Top 1M) provided by [176]. At 

least 10 studies on malicious website decision used the Alexa Top 1M domains as a 

source of benign websites. In addition to being used as the foundation of the benign 
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dataset in prior research, we performed an additional check with threat intelligence 

information to ensure that the respective domains found in the Alexa Top 1M were not 

commonly involved in attacks. 

Like the benign website dataset, malicious website datasets typically come from 

two places – a custom or an existing dataset. Just as we chose an existing dataset (the 

Alexa Top 1M) for the benign websites studied, we chose to use a dataset provided by an 

external party – Cisco Talos [177] – for the malicious websites. The dataset consists of 

malicious websites representing several classes of attacks including drive-by downloads, 

phishing websites, and C2 website URLs. By using the dataset provided by Cisco Talos, 

we lessened our influence over the dataset. Specifically, we did not choose the actual 

entries in the list. Additionally, the malicious dataset provided by Cisco Talos allowed us 

to evaluate our approach on an aggregation of websites associated with several types of 

threats and, therefore, attacks. This contrasts with previous researchers, who typically 

focused on a single type of attack or had a priori knowledge into exactly which types of 

threats were present in their malicious dataset. The combination of the benign and 

malicious portions of this dataset are referred to as Dataset 1. It is used primarily in 

Chapters 4–7 and is leveraged minimally in Chapters 8 and 9. Dataset 1 was collected in 

August 2018. 

 Dataset 2 

We derived Dataset 2 from the websites in the Alexa Top 1M collected in January 

2019. Once the collection was complete, we labeled the data using open source threat 

intelligence information provided by Cymon.io [193]. That is, we labeled entries that 

were present in the Cymon.io data as malicious and labeled entries that were not present 
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in the Cymon.io data as benign. Like Dataset 1, Dataset 2 can be viewed as being 

provided from an external source, with the choice of entries being outside of our control. 

We used Dataset 2 in the portion of the research outlined in Chapter 8. 

 Dataset 3 

We collected Dataset 3 over a period of 12 weeks, beginning February 2nd, 2020 

and ending April 19th, 2020. We derived this dataset from the Alexa Top 1M as well. On 

February 2nd, 2020, we conducted a query through Censys [176] to determine the Alexa 

Top 1M. After doing so, we began collection of these websites over the following week. 

On each subsequent week (February 9th, February 16th, February 23rd, etc.), we repeated 

the query to Censys, beginning the last collection on April 19th, 2020. We limited 

analysis to the entries that were consistent throughout each week – a total of 106,776 

websites (106,776 websites were present in the Alexa Top 1M on the query conducted 

each week on February 2nd, February 9th, … and April 19th). We used Google Safe 

Browsing [132] as the source of ground truth and labeled our data based on the rating 

provided by this service. This dataset, consisting of 106,766 websites that were 

consistently present in the Alexa Top 1M for a period of 12 weeks and were labeled 

based on Google Safe Browsing, is referred to as Dataset 3 and is used in Chapter 9. 

 Step 2: Discover Features 

The next step in our research centered on the discovery of which features to use to 

detect malicious websites. We surveyed academic and industry papers to determine the 

features that were commonly used to detect malicious websites. Although each researcher 

approached the detection of malicious websites in a slightly different way, we were able 

to summarize the types of features collected into three facets depicted in Figure 3-2: 1) 
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host information, 2) webpage content, and 3) communication data. These three facets 

describe a website, with each facet consisting of at least one category of feature. For 

example, WHOIS information and website URL structure are both categories of features 

in the host information facet. Images courtesy of [22]. 

 

 
Fig. 3-2.    Defining a website with three facets 

 

 

Host information: We define host information as all information that must be in 

place before the website is accessed, e.g., URL, DNS information, and the presence of 

SSL certificates. 

Webpage content: Webpage content consists of information gathered from the 

webpage fetched from the website URL. It includes the HTML, JavaScript, and any other 

information present on the webpage. Unlike host information, webpage content can be 

swapped out (in the case of updated HTML pages) without having to re-register the 

domain, URL, or any other corresponding information. 

Communication data: We define communication data as information flowing to 

and or from the website. It can contain details at the traffic, protocol, or metadata levels 
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and governs the method or way to communicate with the website, e.g. HTTP headers, 

traffic statistics, and summaries of traffic flow over a period of time. 

There are many categories of features that comprise these three facets, including: 

the structure of the URL, DNS record information, registration information, HTML and 

JavaScript characteristics, information gathered from TCP sessions, and HTTP metadata. 

Although many features exist, we limited our study of features to those that we could 

extract, just as a browser retrieves a website. Doing so reduced overhead during feature 

collection and increased the feasibility of this approach being integrated into a browser or 

other web client. Specifically, we used the URL structure as our host information 

features, we used the HTML and JavaScript on the webpage as our webpage content 

features, and we used the HTTP headers from the website as our communication data 

features. Refer to Appendices A, B, and C for a full list of features studied in this 

research. 

 Extensive Feature Consideration 

Although prior research efforts identified features for detecting malicious 

websites, the researchers often relied on preconceived notions of the features to use. In 

some cases, these features have not changed over the years. For example, [23] counted 

the number of <iframe> elements on a webpage in their study and additional authors 

included this feature as well. Although [23] conducted their research more than 11 years 

ago, they helped establish the use of <iframe> information for detecting malicious 

websites. This single example illustrates the tendency of researchers to assume the 

relevance of certain features, based on their prevalence in prior research. In our research, 
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we included features gathered from previous studies, but also incorporated additional 

features and used additional techniques to determine which were useful.  

 Feature Selection Process 

By gathering an extensive number of features, we ran the risk of overfitting our 

models, which would inhibit detection capability on unknown datasets. Also, using too 

many features could negatively impact computation performance for detection model 

building and evaluation. Thus, making detection decisions with hundreds or thousands of 

features was impractical. We sought, therefore, to identify a smaller set of relevant 

features for potential incorporation into a detector. To find such a set of features, we 

performed a series of feature selection steps after completing our feature collection, 

thereby identifying relevant features. We performed the six steps listed below to select 

features from our feature set. 

1. Remove features for which all the features have the same value. 

2. Remove features that have the same value at least 95% of the time. 

3. Determine the variance inflation factor (VIF) [178], which measures 

multicollinearity (high correlations among independent variables), values for 

each feature and iteratively identify features that have a VIF > 5 [179]. 

4. Determine which features have similar VIF values and high correlation to 

each other (we defined high correlation as having a correlation coefficient 

greater than 0.7 [180]). 

5. Iteratively repeat Step 4 and remove the highly correlated feature with the 

higher VIF from our feature set. 
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6. At this point, if our feature set consists of 50 or fewer features, we have 

arrived at our final feature set. If there are more than 50 features, however, we 

eliminate features even further with the use of XGBoost (XGB) [181], a GB 

algorithm. First, we calculate the feature importance – a metric between 0 and 

1 that measures how much that feature impacts the algorithm’s ability to make 

a determination regarding whether or not a website is malicious. We then 

iteratively input each feature importance as a threshold to the 

SelectFromModel technique [29], which is a transformer used to select 

features based on their weights. This produces sets of features that have a size 

“n” and corresponding threshold “t.” With each set of “n” features associated 

with each threshold “t,” we rebuild our XGB models to obtain an ACC for 

each set of ‘n’ features. We then iterate through the list of sets with “n” (the 

number of features) decreasing and identify relative maxima in the respective 

accuracies produced by the set of “n” features. When a relative maximum in 

ACC is observed, we stop and use the associated feature set as our final set. 

An example of this is seen in Chapter 4, Section 4.6.1. In Chapter 7 and 9, we 

observed that performing this step could directly (without Steps 3–6) produce 

a set of features for detection; hence, we skipped Steps 3–6 when performing 

feature selection in Chapters 7 and 9. 

 Step 3: Build Detection Models 

 Supervised Machine Learning Techniques 

We used supervised machine learning classifiers to build our models. In its 

simplest form, supervised learning involves mapping input variables to an output variable 
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via a mapping function. However, the mapping function is learned from an algorithm that 

requires a known or labeled dataset as input. In our work, we had access to a corpus of 

labeled training data, both malicious and benign websites, which made a supervised 

learning approach feasible. The supervised classifiers used to build our models belong to 

several classes of machine learning algorithms: nearest neighbors [111], generalized 

linear models (GLMs) [92], ensemble methods [182], and neural networks (NNs) [183]. 

Among the models, four are ensemble methods and provide a measure of feature 

importance: adaptive boosting (AB), extra trees (ET), RF, and GB. The other models do 

not provide a measure of feature importance, but represent other classes of algorithms: 

bagging classifier (BC) [184] is an ensemble method [182], LR is a GLM, and KNN is a 

nearest neighbor [111] method. Covering additional classes of algorithms (other than 

those that incorporate feature importance), provides better insight into the effectiveness 

of the features identified and demonstrates consistency across various learning 

algorithms.  

In this research, we leveraged: FPR, FNR, ACC, AUC, MCC, Prec, and Rec. We 

chose these metrics based on our motivation to present thorough and transparent results, 

on the prevalence of the metrics in previous research, and on the ability of the metrics to 

describe the detection ability of our models based in various ways. 

1. Accuracy (ACC) 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP is the number of true positives, TN is the number of true negatives, 

FP is the number of false positives, and FN is the number of false negatives. 

 

2. False Positive Rate (FPR) 
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𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

3. False Negative Rate (FNR) 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 

4. AUC is the area under the receiver operating characteristic (ROC) curve that 

plots the TPR vs FPR at each classification threshold. The AUC (lightly 

shaded) for a given ROC curve is shown below. 

 
 

5. MCC is a measure of the quality of a binary classifier and ranges between -1 

and 1, with 1 representing a perfect classifier, 0 representing a random 

classifier, and -1 indicating complete disagreement between the prediction and 

actual value. 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∙  𝑇𝑁) − (𝐹𝑃 ∙  𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 

 

6. Precision quantifies the number of correct positive classifications made and is 

defined as follows:  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 

 

7. Recall is a metric that describes how many positive cases the model finds 

from among all of the positive cases and is defined as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

We focused our discussion in this research on the MCC since it incorporated the 

number of true positives and true negatives as well as false positives and false negatives 

in its value. 

 Importance Determination 

Determining the most useful features for malicious website detection is a key task 

for building models that are not overfit and can be applied in a practical setting. To do so, 

we needed a method of ranking the importance of the potential features for malicious 

website detection. Fortunately, machine learning techniques such as AB, ET, RF, XGB, 

and GB algorithms can be used to build detection models and have the ability to provide 

feature rankings. Supervised machine learning techniques – including ensemble methods 

[182] and decision trees – have shown promise in prior studies. More importantly, each 

of these models provides a feature importance metric – a number between 0 and 1 that 

indicates how much the feature contributed to the model’s classification decision. This 

importance metric allowed us to determine which features contributed the most to 

malicious website detection and to create a ranking of features. The sum of these feature 

importance metrics equals 1. A feature was considered more important (and higher 

ranked) than another feature if it had a higher importance.  

Specifically, the models that calculate feature importance use decision trees and 

the Gini impurity [185] as the basis to determine feature importance. It is the foundation 
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for measuring feature importance and is calculated in a two-step process. First, we 

determine the Gini impurity [185] for a specific feature branch in the decision tree: 

𝑖(𝑡) = 1 − ∑ 𝑝2(𝑗|𝑡)

𝑘

𝑗=1

 

where i(t) is the Gini impurity for the feature branch in the decision tree, t is the branch 

condition for the feature, k is the number of possible output categories (in our case k = 2 

for malicious and not malicious), and p is the probability of each outcome in k given t. 

The total Gini impurity of that feature is created by taking a weighted sum of the 

respective indices per feature branch: 

𝐺(𝑓) =  ∑ 𝑖(𝑡) ∗ 𝑝(𝑡)

𝑁

𝑡=1

 

where G(f) is the total Gini impurity for a feature f, i(t) is the impurity of the respective 

branch, N is the total number of branches, and p(t) is the probability of that condition 

over the total dataset. The lower the Gini impurity, the more useful (important) the 

feature is in the decision tree and the higher it should be placed in the tree. Specific 

details on the implementation used in our study are available in [29]. In Chapters 4–7 we 

created a ranking that enabled us to make comparisons to features used in prior research. 

 

 Scenarios and Feature Transformation 

Datasets used to detect malicious websites commonly contain class imbalances 

(i.e., the size of the malicious dataset and the size of the benign dataset often differ from 

one another). This is true for prior research and was true for our research as well. We 

acknowledge that our Dataset 1 was unbalanced and sought to examine whether and how 
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this affected the performance of our detection models. We used three sampling scenarios: 

1) no-sampling (using the dataset as is); 2) over-sampling (incrementally over-sampling 

the malicious dataset to make the number of benign and malicious websites equal); and 3) 

under-sampling (sampling the benign dataset to lower the number of benign websites to 

equal the number of malicious websites). We performed over-sampling using the 

Synthetic Minority Over-Sampling Technique (SMOTE) [186] from [187], while under-

sampling was random. We applied each of our machine learning algorithms to the three 

sampling scenarios, yielding several models for analysis (multiple models per sampling 

scenario). Class-balancing also was explored by changing the class weight [29] 

parameter of the models. However, this was shown to have little effect on performance 

and involved performing an exhaustive grid-search on the weight parameters. 

In addition to the no-sampling, over-sampling, and under-sampling scenarios, we 

created two more scenarios using feature transformation techniques – feature 

transformation with feature selection (FT w/FS) and feature transformation with PCA 

(FT w/PCA). Feature transformation enabled us to create additional features using pair-

wise arithmetic operations (addition, multiplication, and division). After creating these 

new features, we independently performed additional feature selection and PCA to 

identify relevant features and components, respectively. We performed feature 

transformation with pair-wise feature transformations (addition, multiplication, and 

division) with the help of a Python library, featuretools [188]. The additional 

feature selection included the use of correlation [189], SelectKBest (scoring function chi-

square), recursive feature elimination (RFE), and SelectFromModel [29] to select a 

subset of features. We input the transformed features into these four techniques and 
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selected features that were identified by at least three of these four techniques. PCA 

created new features, also known as components, by reducing the features to “n” 

principal components that captured a large portion of variance in the data. We used two 

techniques to accomplish feature transformation – feature transformation with feature 

selection and feature transformation with PCA – applying them exclusively to the no-

sampling scenario. With the addition of these two-feature transformation cases, we had 

several models for analysis (models repeated over the five scenarios, which consisted of 

three sampling scenarios and two feature transformation scenarios). Figure 3-3 below 

shows the scenarios we used in this study. 

 
Fig. 3-3.    Several sampling and feature transformation scenarios  

were used throughout this research 

 

 

In Chapters 4 and 6, we rebuilt these sets of models on two sets of features – those 

identified by our approach and those used in prior research. Doing so allowed us to 

compare the effect of the newly identified features in this research. Chapter 5 is unique 

from Chapters 4 and 6 in its focus on a set of features (URL structure) that have been 

extensively studied. Thus, we did not make a comparison between new features and 

features from prior research since prior research has covered many of the possible URL 

features and the distinction between those that are new and those that are from prior 

research is not clear. 
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 Step 4: Tune and Cross-Validate  

 Hyperparameter Tuning and Cross-Validation 

Once we had the performance metrics for each of the models in the respective 

scenarios, we performed cross-validation and hyperparameter tuning for two reasons: 

first, to improve the performance of the models, and second, to demonstrate the 

consistency of the models with and without hyperparameter tuning and cross-validation. 

We used a decision tree classifier as the base estimator and StratifiedKFold [190] for 10-

fold cross-validation. We used ACC, Prec, Rec, and F1 score as potential scoring metrics. 

We performed hyperparameter tuning and cross-validation on the best model in each of 

the five scenarios (no-sampling, under-sampling, over-sampling, feature transformation 

with feature selection, and feature transformation with PCA). 

 Validation with Another Data Split 

In our study, we trained and tested our models using an 80:20 split of train to test 

data. We used 80% of the dataset to train and used the remaining 20% to test our models. 

This approach is common in prior research. We used the same 20% to evaluate our 

models to ensure consistency. To further demonstrate that our results were not a product 

of our initial 80:20 split of training to testing data, we rebuilt our models in the various 

scenarios and performed hyperparameter tuning and cross-validation, starting with a 

70:30 split of train to test data. We then compared these results to the tuned and cross-

validated models built with the 80:20 split. 
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 Step 5: Combine Features for Improved Detection 

 Combined Features in this Study 

In this step, we built detection models over various scenarios on a set of features 

derived from all categories of the features in our study. We also built models with 

features exclusively from prior research. 

 Additional Detection Models 

We built models using nine different supervised learning models and two models 

from unsupervised learning techniques on two feature sets – those identified in this 

dissertation and those from prior research. We performed feature selection by following 

the same procedure detailed in Section 3.3.2 of this chapter. The supervised learning 

models included KNN, AB, ET, RF, GB, XGB, BC, NNs, and a voting classifier (V) 

[191] built form the RF, ET, and GB. We excluded LR in this study because it 

consistently proved to be one of the worst performing models from the prior steps. We 

gathered feature importance from the AB, ET, RF, GB, and XGB algorithms. The 

unsupervised models included one-class SVMs and autoencoders [192], both of which 

have been used for malicious website detection. 

 Hyperparameter Tuning and Cross-Validation 

We performed hyperparameter tuning and cross-validation as outlined in Step 5. 

However, we also varied the Scikit-Learn [29] class weight parameter, which 

penalized missed classifications for the positive (malicious) or negative (benign) classes 

in the classification. We varied the Scikit-Learn class weight parameter in this step as 

an alternative to sampling. 
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 Step 6: Evaluate on Another Dataset  

 Model Application to a New Dataset (Dataset 2) 

We then applied to a new dataset the best performing RF classifier built thus far 

(the classifier that performed well in our studies thus far and performed well in prior 

research). The new dataset (Dataset 2) consisted of the Alexa Top 1M domains. We 

defined malicious websites as those websites that were in the Alexa Top 1M and that also 

were identified in threat intelligence information provided by Cymon.io [193]. We 

defined benign websites as those from the Alexa Top 1M that were not present in the 

Cymon.io dataset. We directly applied the model trained from Step 5, captured the 

performance metrics, and explored any differences. 

 Retrain with Features Identified in Prior Studies (Section 3.3) 

We also explored the capabilities of the features identified in our first dataset 

(Dataset 1) to another dataset (Dataset 2) by re-training a model based with the features 

identified from Dataset 1 on Dataset 2 and evaluating the detection ability of the new 

model on Dataset 2. We then evaluated the performance and determined whether new 

features derived from the newer dataset (Dataset 2) could be incorporated to improve 

detection.  

 Leverage Two Datasets for Training and Evaluation 

In Step 6, we explored the use of two different datasets for training and 

evaluation. Furthermore, we made observations on the impact and feasibility of doing so. 
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 Step 7: Explore Detection Performance Over Time 

 Measure the Performance of a Model Trained on Dataset 1 and Evaluated on 

Dataset 3 

We required a well-performing model for evaluating detection performance over 

time. To that end, we first examined the performance of an RF model built on Dataset 1 

and evaluated on Dataset 3. We evaluated how consistently the entries in the dataset were 

classified and how well the model performed.  

 Investigate the Impact of Model Retraining on Performance 

We then investigated the impact of model re-training by re-training an RF model 

on the first snapshot of Dataset 3 and evaluating on the proceeding snapshots in Dataset 

3. The model was trained using three sets of features – the identified features from 

Dataset 1 (the features in Chapter 7), the features used in prior research, and a new set of 

features re-selected on Dataset 3. We then re-trained on each week and evaluated the 

performance on subsequent weeks. Finally, we re-trained the model using all past data 

(instead of a single snapshot) and evaluated the model on the subsequent weeks.  

 Evaluate Website Change Over Time 

The internet is a fast-changing environment and websites change over time. These 

changes can occur in areas that may influence detection models, including the features 

that are used for detection. Hence, we measured the change in the websites over time 

(based on the features used in our detection models). We used four tests –the t-test for 

related samples, the two-sample Kolmogorov-Smirnov (KS) test, the k-sample Anderson-

Darling test [198]-[199], and the Kruskal Wallis H test [200]-[201] – summarized as 

follows:  
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▪ The related (dependent) t-test [194]-[195] tests whether means of two 

related samples are the same and the t-statistic is given by: 

𝑡 =
𝑚

𝑠/√𝑛
 

where: 

• m is the mean differences of all the paired measurements, 

• n is the sample size, and 

• s is the standard deviation of the differences 

If the t-statistic is greater than a critical value, the null hypothesis of equal 

means can be rejected. 

▪ The two-sample KS test [196]-[197] tests that two samples come from the 

same distribution. The KS statistic (D below) is expressed by: 

𝐷 = | 𝐸1(𝑖) − 𝐸2(𝑖)| 

where E1 and E2 are the empirical distributions for the two samples. We can 

reject the null hypothesis that the two samples come from a common 

distribution if the following is true: 

𝐷𝑛,𝑚 > 𝑐(𝛼)√
𝑛 + 𝑚

𝑛 ⋅ 𝑚
 

α 0.1 0.05 0.025 0.01 0.005 0.001 

c(α) 1.22 1.36 1.48 1.63 1.73 1.95 

 

where: 

• D is the KS statistic, 

•  is the significance level, 

• c() is the critical value per significance level, and 
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• n and m are the sizes of the samples. 

▪ The k-sample Anderson-Darling test [198]-[199] tests the null hypothesis 

that the populations for which two or more groups were drawn are 

identical. The Anderson-Darling (A) statistics is described below: 

𝐴 =
𝑛 − 1

𝑛2 (𝑘 − 1)
 ∑ [

1

𝑛𝑖
∑ ℎ𝑗

(𝑛𝐹𝑖𝑗 − 𝑛𝑖𝐻𝑗)
2

𝐻𝑗(𝑛 − 𝐻𝑗) −
𝑛ℎ𝑗

4

𝐿

𝑗=1
 ]

𝑘

𝑖=1
 

where: 

• Ai are the populations we are considering, 

• ni = the total number of data points from Ai, 

• xij is the jth observation in ith group, 

• n = the total number of data points for all ni, 

• L = the number of distinct data points in the combined sample, 

• z* = z1, z2, ... zL are the distinct values in the combined data set 

ordered from smallest to largest, 

• hj = number of values in the combined samples equal to zj, 

• Hj = number of values in the combined samples less than zj plus 

one half the number of values in the combined samples equal to zj, 

• Fij = number of values in the ith group (Ai) which are less than zj 

plus one half the number of values in this group which are equal to 

zj , and 

• k = number of groups. 

The null hypothesis is that the samples were drawn from the same population 

and can be rejected if the test statistic is greater than a critical value. 
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▪ The Kruskal Wallis H test [200]-[201] determines whether medians of two 

or more groups are different. The H statistic is given by: 

𝐻 = [
12

𝑛 (𝑛 + 1)
 ∑

𝑇𝑗
2

𝑛𝑗

𝑐

𝑗=1
] − 3(𝑛 + 1) 

where: 

• n = sum of sample sizes for all samples, 

• c = number of samples, 

• Tj = sum of ranks in the jth sample, and 

• nj = size of the jth sample. 

If the H statistic is greater than a critical value, we can reject the null 

hypothesis that the medians are the same. 

All four of these tests allowed us to determine whether two samples or sets of data 

came from a similar distribution and formed the basis for how we determined whether 

websites (and their features) have changed. Their application is discussed in detail in 

Chapter 9. 

 Summary 

In this section we discussed our methodology. We started with a high-level 

description of our approach then discussed the steps taken in this dissertation. The first 

step included selection of three datasets used in the proceeding chapters. We then 

discussed our approach to discover features for malicious website detection through 

extensive feature consideration and through a process of feature selection. The next step 

in our methodology is the creation and evaluation of detection models from distinct types 

of features – webpage content, URL, and HTTP headers, with various learning 

algorithms in different scenarios. We further investigated detection performance by 
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performing tuning and cross-validation of the models. After this investigation, we 

performed studies to measure the detection performance when leveraging all three types 

of features (webpage content, URL, and HTTP headers) in this dissertation. We shifted 

emphasis in the later portion of this dissertation and performed an investigation of the 

effectiveness of the models built thus far and the features identified when applied to 

another dataset. We concluded our methodology with steps for our temporal study of 

malicious website detection.  
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Chapter 4: Webpage Content Features Analysis  

 Introduction 

In this chapter, we explore an approach using only webpage content for three 

reasons. First, prior research places little emphasis on finding new features derived from 

webpage content to detect malicious websites, which can lead to potential missed 

detection opportunities. For example, the <iframe> HTML element has been considered 

a means of detecting malicious websites for more than 11 years without re-evaluation. 

Second, security operations centers (SOCs) or incident response teams can gather 

webpage content features with little effort and incorporate them into signatures to detect 

malicious websites. Third, most prior research focused on detecting either phishing 

websites or drive-by downloads. While these results were promising, they required a 

priori knowledge of the target website, which is not a viable solution for a SOC or an 

incident response team. We then evaluated the ability of webpage content features in 

order to detect malicious websites on a diverse dataset (Dataset 1) containing several 

types of malicious websites to gain insight into their performance when a priori 

knowledge is not available. Our contributions are outlined below.  

• We re-evaluated the importance of features for detection of malicious website 

from prior research and provided a ranking of webpage content features to 

detect malicious websites. 

• We created an approach using webpage content to identify 26 features, 17 of 

which were introduced in our study, to detect malicious websites with an 

average ACC, AUC, and MCC of 89.15%, 0.867, and 0.641, respectively, 

across all sampling and feature transformation scenarios. 
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• Our approach identified 26 features, with 17 of them introduced in our study, 

whose models produced an average MCC that was 0.005 higher than models 

built with features identified in prior research and did so with 48% fewer 

features. 

• We identified features, both new and from prior research, that showed 

promise for detecting websites involved in phishing attacks, drive-by 

downloads, and C2 activities. 

 Related Research 

Researchers have used features gathered from webpage content – both the HTML 

and the JavaScript on a webpage – to detect malicious websites separately and 

collectively. Provos et al. [59] examined drive-by downloads, commonly enabled by the 

<iframe> HTML element. Zhang et al. [24] looked for the <input> tag accompanied 

by the words “credit card” and “password” as indicators of phishing websites. Xiang et 

al. [46] built a framework to detect phishing websites using features gathered from the 

URL structure and HTML on the webpage. Both [24] and [46] used approaches for 

phishing website detection that relied on the assumption that phishing websites will often 

try to “trick” a user into entering sensitive information.  Whittaker et al. [42] applied 

statistics to use of the password field and to links on the webpage to build a classifier 

with a TPR of 95% against websites involved in phishing attacks. Marchal et al. [91] 

used the links on the webpage, in conjunction with URL features and the Alexa ranking 

of the domain, as a set of features to detect phishing websites and achieved an AUC of 

0.999 for English webpages. Arab and Sohrabi [202] used a list of website features 
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derived from many aspects of a website to create clusters for phishing website detection 

and achieved 99% accuracy on their dataset of 200 websites. 

Other authors focused solely on gathering features from the JavaScript on the 

webpage. Curtsinger et al. [68] detected JavaScript malware with an AST based approach 

by instrumenting the browser with a “de-obfuscator” to get a better representation of the 

actual JavaScript on the webpage and produced an FPR of 0.0003%. JStill [69] used the 

fact that malicious JavaScript is often obfuscated and used practical examples on 

malicious JavaScript techniques, including data obfuscation, ASCII encoding, and logical 

structure obfuscation and produced an FPR of 1.75% and 0.53%. Researchers [119] used 

JaSt to detect and analyze obfuscated JavaScript, using entirely static analysis that 

yielded an ACC of nearly 99.5% when used with an RF classifier.  

HTML and JavaScript have often been studied independently and have also been 

combined for malicious website detection. In an influential paper, [23] gathered features 

from the <script> and <frame> elements to achieve an FPR of 5.88% and an FNR of 

46.15%. Researchers [45], with Prophiler, extracted both HTML and JavaScript features 

to create a “fast filter” for detecting drive-by downloads and achieved an FPR of 9.88% 

and FNR of 0.77%. Researchers [47] and [165] collected suspicious HTML features 

along with the counts of suspicious JavaScript methods such as eval(), 

charCodeAt(), unescape(), and others that are known to be associated with 

malicious JavaScript. They achieved accuracies of 97.8% and 96.5%, respectively. 

Authors [49] and [66] used the respective counts of suspicious JavaScript methods and 

specific HTML tags in their feature collection to achieve an ACC of 96.39% and an AUC 

of 0.891, respectively. 



 

70 

 

 Research Questions 1–4 

We created four research questions to explore the effectiveness of this approach 

and the webpage content features we identified as features for malicious website 

detection. These questions focused on using webpage content features – that is, the 

HTML and JavaScript on the webpage – as the sole source of features for detection of 

whether the website was malicious. 

 Research Question 1 

Our first question aided in determining how well our approach aligned with or 

differed from prior research. Some previous researchers used webpage content to detect 

malicious websites, but did not evaluate features that have not demonstrated potential for 

malicious website detection. We considered 17,746 features in total, gathered from the 

HTML and JavaScript on the webpage. While no definitive list of webpage content 

features currently exists, certain HTML and JavaScript features have been commonly 

reused in prior research. We hypothesized that our approach, which considered 17,746 

features, many of which had never been studied for malicious website detection, would 

identify new features that were important to the detection of malicious websites. 

Research Question 1 is stated as follows: 

RQ1: How do the features identified compare with prior research? 

 Research Question 2 

Our second research question investigated whether the incorporation of these 

features improved malicious website detection. This was done by comparing the MCCs 

for models built with the features identified by our approach to the MCCs of models built 

with features from prior research. We added assurance to our approach by performing 
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feature transformation techniques with feature selection and PCA, comparing the 

respective MCCs. Hence, RQ2 is stated as follows: 

RQ2:  Do the additional features identified improve malicious website detection? 

 Research Question 3 

Our third research question focused on the robustness of our approach by 

investigating how our results changed in different sampling scenarios – that is, whether 

our approach yielded consistent results in the cases of no-sampling, over-sampling, and 

under-sampling of our dataset. In security research, class imbalances between the benign 

and malicious datasets are common. We also had an imbalance of malicious and benign 

websites in our dataset. Hence, we state RQ3 as follows: 

RQ3:  Do our results change with no-sampling, under-sampling, and over-

sampling scenarios? 

 Research Question 4 

Our fourth research question enabled us to explore additional validation of our 

results by performing hyperparameter tuning and cross-validation in an attempt to 

improve our results. Hyperparameter tuning and cross-validation could enable us to build 

better detection models. RQ4 is stated as follows:  

RQ4:  Does hyperparameter tuning and cross-validation improve our results? 

 Feature Consideration 

 JavaScript Methods 

From our literature review, we observed that the presence and counts of 

JavaScript methods are often used as a JavaScript feature for malicious website detection. 

Method counts are defined as the number of invocations of a specific method found on a 
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webpage. For example, extracting the method count for the method eval on the 

following code snippet would result in a value of 2 – that is, we count two invocations of 

the method eval: 

console.log(eval('3 + 2') === eval('5')); 

JavaScript methods of interest from previous research fall into three loose 

categories – 1) obfuscation methods, 2) suspicious methods, and 3) methods that act on 

the Window or DOM objects. These categories are considered loose because potential 

exists for a method to be found in more than one category. For example, obfuscation 

methods are often considered suspicious, but suspicious methods exist that are not related 

to obfuscation. In addition, methods that act on the DOM and Window objects can also 

be considered suspicious, yet they maintain some uniqueness because they act upon the 

DOM and Window objects. 

4.4.1.1 Obfuscation Methods 

Obfuscation is a technique used by malicious JavaScript writers to hinder analysis 

of their code, thus making it more difficult to analyze it and to detect it as malicious 

JavaScript code. Obfuscated JavaScript is challenging to read, but it contains certain 

characteristics useful for determining whether it is malicious. These obfuscation 

characteristics include use of specific methods such as replace and unescape. The 

snippet of code below from [203] shows normal JavaScript and its obfuscated equivalent. 

▪ No obfuscation: 

alert( 'Hello, world!' ); 

▪ Obfuscation : 

var _0x1dc7 = ["\x48\x65\x6C\x6C\x6F\x2C\x20\x77\x6F\x72\x6C\x64\x21"];alert(_0x1dc7[0]) 



 

73 

 

4.4.1.2 Suspicious Methods 

Methods are considered suspicious for many reasons, including their presence in 

specific types of attacks. The code snippet below from [204] uses events to send a user to 

a fake website when they try to go to the previous webpage. 

function addBackClickAd(options) {a 

  if (options['backClickAd'] && options['backClickZone'] && typeof 

window['history']['pushState'] === 'function') { 

    if (options['backClickNoHistoryOnly'] && window['history'].length > 

1) { 

      return false; 

    } 

    // pushes a fake history state with the current doc title 

    window['history']['pushState']({exp: Math['random']()}, 

document['title'], null); 

    var createdAnchor = document['createElement']('a'); 

    createdAnchor['href'] = options['url']; 

    var newURL = 'http://' + createdAnchor['host'] + '/afu.php?zoneid=' + 

options['backClickZone'] + '&var=' + options['zoneId']; 

    setTimeout(function () { 

      window['addEventListener']('popstate', function (W) { 

        window['location']['replace'](newURL); 

      }); 

    }, 0); 

  } 

} 

4.4.1.3 Methods that Act on the Window or DOM Objects 

The DOM is the internal representation of the webpage document and the 

Window object represents the browser window. It is common for malicious JavaScript to 

manipulate or misuse properties of both the DOM and Window objects to facilitate 

attacks. The example below shows malicious JavaScript that manipulates the DOM from 

[205].  

(function () { 

    var qk = document.createElement('iframe');  // creating an 

iframe 

 

    qk.src = 'http://xxx.tld/wp-includes/dtd.php';  // pointing 

it at a webpage 

 

    /* 

    making the iframe only take up a 1px by 1px square 

    in the top left-hand corner of the web page it is injected 

into 

    */ 
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    qk.style.position = 'absolute'; 

    qk.style.border = '0'; 

    qk.style.height = '1px'; 

    qk.style.width = '1px'; 

    qk.style.left = '1px'; 

    qk.style.top = '1px'; 

 

    /* 

    Adding the iframe to the DOM by creating a <div> with an ID 

of "qt" 

    (If the div has not been created already) 

    */     

    if (!document.getElementById('qk')) { 

        document.write('<div id=\'qk\'></div>'); 

        document.getElementById('qk').appendChild(qk); 

    } 

})(); 

Table 4-1 lists commonly studied JavaScript methods involved in obfuscation, 

considered suspicious, and that act upon the DOM and the Window objects. 
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Table 4-1.  
Certain JavaScript Methods Were Considered Suspicious  

and Have Been Studied in Prior Research 

Commonly Studied JavaScript Methods 

Method Motivation 

createElement 
This method modifies the data object model 

(DOM). 
write This method modifies the DOM, writes a string. 

charCodeAt 
This method is considered suspicious and has been 

used in JavaScript obfuscation.  

Concat 
This method manipulates strings and is associated 
with obfuscation. 

escape 
This method is considered suspicious and has been 

used in obfuscation. 

eval 
This method is considered suspicious and enables 
the execution of a string as code. 

exec 
This method is considered suspicious and can be 

used in obfuscation. 
fromCharCode This method has been associated with obfuscation. 

link 
This global method is considered suspicious and 
has appeared in many types of attacks. 

parseInt 
This method has been associated with malicious 

combinations of methods. 

replace 

This method is commonly used in obfuscation. 
This method has also been shown to be used in 

conjunction with shellcode.  

search 
This global method is considered suspicious and 
has appeared in many types of attacks. 

subString 
This method associated with string manipulation 

and obfuscation. 

unescape 

This method is considered suspicious and has been 
used in obfuscation. This method has also been 

shown to be used in conjunction with shellcode. 

addEventListener 
Event attachments can be considered suspicious 
under certain circumstances. 

setInterval 

The method is involved in executing code after a 

certain time interval and has been used in drive-by 

download attacks. 

setTimeout 

The method is involved in executing code after a 

certain time interval and has been used in drive-by 

download attacks. 

 

 

Although we extracted the counts for the methods in Table 4-1, we also included 

another 384 methods found on Mozilla Developer Network (MDN) [206] and W3Schools 

[207]. MDN and W3 were consulted because they are intended for JavaScript developers 

and contain extensive and up-to-date information on JavaScript. The additional 384 

methods were chosen for our study because they are related to previously studied 

methods, albeit there is little published research about the use of these methods for 

detecting malicious websites. For example, only two methods that act on the DOM have 

been studied in previous research reviewed; we added an additional 46 DOM methods to 
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our feature set in addition to the two DOM methods, write and createElement, listed 

in Table 4-1. With our approach, we captured methods that are relevant as well as 

methods from previous research, and we explored other methods that may be relevant for 

detecting malicious websites. For a complete list of all JavaScript method counts 

collected in this chapter, please see Appendix B.  

 HTML Characteristics 

Another feature-rich aspect of webpage content is the HTML. When a browser 

loads a webpage, it uses the HTML to determine how to represent the webpage to the 

user. HTML defines the structure of the webpage, including visual characteristics, 

specific elements, and attributes. It consists of elements – also referred to as tags – 

specified by <element_name> and of attributes specified within an element. We refer to 

an attribute within a specific element as an element-attribute pair.  

The HTML code example below represents a webpage that specifies links to two 

websites – CNN and Google.  

<html> 

<body> 

<a href=http://www.cnn.com/> 

<br/><br/> 

<a href=http://www.google.com/> 

   </body> 

</html> 

Although this example is small, it contains several features we can collect: the 

count of <body>, <a>, and <br> elements, as well as details about the href attribute in 

the <a> element (also referred to as the a_href element-attribute pair). Running this 

HTML through the feature collector we developed created a feature vector like the one 

shown below. 

<a> count=2 

<body> count=1 
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<br> count=1 

Total out of domain URLs=2 

Total HTML Tags=5 

Total href attributes=2 

<a href =”http*”>=2 

<a href =”*.com”>=2 

This vector can be interpreted as: “This HTML contains five tags, two href 

attributes, one <body> element, two <a> elements, and one <br> element. Two of the 

links on the webpage point to resources outside of the domain, two of the href attributes 

on the <a> element point to a resource specified over the HTTP protocol, and two href 

attributes point to a .com URL.” Other research typically counts specific elements such 

as <iframe>. We took a more expansive approach, expanding our collection of element 

counts to include many HTML elements. Please see Appendix B for a complete listing of 

elements collected in this chapter. Additionally, we expanded analysis of element-

attribute pairs that specify resources via URLs. URLs specified on a webpage are 

interesting because they can reference a resource and have many properties that translate 

to potential features. These properties can be extracted and used for malicious website 

detection. While we included element-attribute pairs from previous research, we also 

expanded and analyzed webpage URLs and additional element-attribute pairs not 

previously studied. For a complete listing of element-attribute pairs we collected in this 

chapter, please refer to Appendix C. Table C-1 in Appendix C also specifies the attributes 

for additional URL analysis for the respective elements. This is specified in the last 

column of Table C-1. The last feature we collected is the number of small elements of a 

specified HTML type. Previous research captured the presence of small <iframe>s and 

<frame>s. We did the same, but we also included other elements that have size 
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attributes. An element is considered small if it has a height or width of less than or equal 

to two pixels. 

 Feature Collection 

We wrote our collection scripts in Python and used Pyselenium [208] to fetch 

the webpage and retrieve the information. Pyselenium was chosen for its ability to 

parse the HTML and extract values and attributes. We extracted JavaScript method 

counts by searching for a method call on the webpage to speed up extraction for potential 

implementation into a detector. HTML feature extraction was more complex because a 

page can have several instances of a specific element and those elements can contain 

various attributes. Furthermore, not all attributes are guaranteed to be present in each 

element. To account for this, we created a simple algorithm to aide our HTML feature 

extraction. The pseudo-code for HTML feature extraction is shown below. Special 

elements are specific elements where we extract additional attributes such as features 

regarding the resource URLs (for example href), whether the element is “small,” etc. 

elements = ALL_HTML_ELEMENTS 

for elem in elements: 

 count = get_total_element_count(elem) 

 if elem is special_element: 

  special_attributes = get_special_attributes(elem) 

   for special_attribute in special_attributes: 

    extract_attribute(elem, special_attribute) 

 Learning, Feature Selection, and Sampling Techniques in Webpage Content 

Analysis 

 Feature Elimination Process 

We then sought to shrink our feature set of 17,746 webpage content features to a 

smaller, more useful set of no more than 50 features. The number 50 was chosen 

subjectively, but it also is approximately the number of features used to detect malicious 
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websites in prior research. For example, [45] used 77 features with Prophiler, while [47] 

used 30 features with BINSPECT. We followed the approach outlined in Section 3.3.2, 

determining which features had strong association with the dependent variable, whether 

the website was malicious, and which had no relationship or a weak relationship with the 

dependent variable. We identified and removed features specific to our dataset, as well as 

features that are the same for most of the dataset. Hence, we removed features that had 

the same value 95% or more of the time. This eliminated 17,525 features and left us with 

221 features. We then evaluated the remaining 221 features to identify those that had a 

high multicollinearity. Removing features with high multicollinearity was required in 

order to ensure that we analyzed a set of independent features. We quantified collinearity 

with the VIF [177]. First, we computed the VIF for each feature. We then identified 

features that had a VIF > 5, as used in [179]. Among our list of features with a VIF 

greater than five, we then determined which features had similar VIF values, thereby 

showing that they had correlations similar to those of the other variables and had high 

correlation to each other. We considered a high correlation to be a correlation of greater 

than 0.7, as used in [180]. Among the highly correlated features with similar VIF values, 

we dropped the feature with the higher VIF. This process resulted in 43 features removed, 

leaving us with 178 features.  

Since we had more than 50 features remaining, we continued to remove features 

using the XGB algorithm. XGB is a GB algorithm that also computes feature importance. 

To remove additional features, we first calculated the feature importance for each feature 

in the set of 178. This was done by building a model from a 70:30 split of training to test 

data. Once we had the importance values for the 178 features, we then iteratively input 
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each feature importance as a threshold to the SelectFromModel technique [29], a 

transformer used to select features based on their weights to produce a set of features. 

This produced a set of features for each threshold. We then used each set of features 

associated with each threshold and rebuilt our XGB models to obtain an ACC for each set 

of features. At this point in our analysis, we have a list of sets consisting of a threshold 

“thresh,” number of features “n,” set of features “f,” and an ACC. An example is below. 

… 

Thresh=0.009, n=31, f=[..], Accuracy: 90.58% 

Thresh=0.010, n=26, f=[..], Accuracy: 90.62% 

Thresh=0.010, n=26, f=[..], Accuracy: 90.62% 

Thresh=0.010, n=26, f=[..], Accuracy: 90.62% 

Thresh=0.013, n=23, f=[..], Accuracy: 90.58% 

… 

There are three entries for a threshold of 0.010 because the threshold 0.010 

appeared three times in the list of feature importance values for the 178 features. We then 

iterated through the list of sets with “n” decreasing and identified relative maxima in the 

respective ACC. We found a relative maximum at n = 26 and used the features associated 

with this relative maximum as our final feature set. 

 Machine Learning Models, Sampling, and Feature Transformation 

To ensure that we identified a relevant set of features, we evaluated the 

effectiveness for detecting malicious websites by building eight models using supervised 

machine learning algorithms discussed in Section 3.4.1. 

For all models, we split training and testing data using an 80:20 ratio, a common 

train/test split for data. Our overall dataset is imbalanced, with 34,778 benign websites 

and 5,931 malicious websites. To address this and to ensure that our results were not the 

product of our benign-to-malicious website ratio, we performed the sampling procedure 

outlined in Section 3.4.3. 
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For no-sampling, we used 27,822 benign websites and 4,745 malicious websites 

in our training set. Under-sampling resulted in 4,745 malicious websites and 4,745 

benign websites in the under-sampled training set. For over-sampling, we arrived at a 

balanced training set with 27,822 benign websites and 27,822 malicious websites. 

The websites used in the testing dataset remained consistent across all machine 

learning models and sampling approaches for the training data so that we could compare 

model results and identify whether any single sampling technique led to a better model. 

We ensured that there was no overlap between any training and testing data. We also 

built models in feature transformation scenarios as discussed in Section 3.4.3. Figure 3-3 

from Chapter 3 provides a summary of the feature selection and sampling techniques.  

 Results 

 RQ1: How do the Features Identified Compare with Prior Research? 

RQ1 compared the features identified in our approach with those from prior 

research in terms of ability to detect malicious websites. To examine this question, we 

leveraged our four ensemble methods (RF, AB, ET, and BC), all of which captured the 

notion of feature importance. The higher the importance, the more the feature contributed 

toward determining whether the website was malicious. The identified 26 features are 

shown below in Table 4-2, along with their rank and importance, separated by a “:” in the 

no-sampling, over-sampling, and under-sampling scenarios. Shaded rows designate new 

features we identified in our research. Unshaded rows designate features studied in prior 

research for identifying malicious websites or traffic. 



 

82 

 

Table 4-2.  
Feature Selection Identified 26 Webpage Content Features for Detection 

26 Identified Webpage Content Features Ranked  

Feature No-sampling Over-sampling Under-sampling 

Total HTML Tags 1: 0.3206 1: 0.2705 1: 0.2239 

Total href attributes 2: 0.1025 2: 0.1190 2: 0.1723 

<link href> OoD 3: 0.0644 3: 0.0943 3: 0.1018 

<p> count 4: 0.0567 5: 0.0601 4: 0.0642 

<a href=”https*”> 5: 0.0554 8: 0.0403 6: 0.0581 

Count of <meta> tag 6: 0.0515 6: 0.0471 8: 0.0340 

<script_async=true> 7: 0.0462 7: 0.045 5: 0.0634 

<link type=”text/css”> 8: 0.0298 9: 0.0327 11: 0.0257 

<script src> OoD 9: 0.0289 14: 0.0141 7: 0.0535 

<link href=”http*”> 10: 0.0271 11: 0.0224 10: 0.0283 

push() 11: 0.0258 4: 0.0627 9: 0.0325 

<link href=”*.css”> 12: 0.0258 12: 0.0205 13: 0.0125 

indexOf() 13: 0.0175 25: 0.0071 16: 0.0119 

<form action=”http*> 14: 0.0168 19: 0.012 12: 0.0136 

<strong> count 15: 0.0151 15: 0.0132 18: 0.0114 

<iframe src=”https*”> 16: 0.015 10: 0.0271 24: 0.0078 

Count of <center> tag 17: 0.0141 16: 0.0131 19: 0.0093 

setTimeout() 18: 0.0136 26: 0.0066 15: 0.0121 

<a href=”*.com”> 19: 0.0133 13: 0.0186 20: 0.0090 

document.write() 20: 0.0112 17: 0.0129 22: 0.0084 

addEventListener() 21: 0.0096 20: 0.011 14: 0.0124 

get() 22: 0.0093 21: 0.0107 26: 0.0023 

<link type=”application/rsd+xml”> 23: 0.0079 22: 0.0103 21: 0.0088 

find() 24: 0.0077 24: 0.0078 25: 0.0035 

<link rel=”shortlink”> 25: 0.0073 23: 0.0085 23: 0.0080 

replace() 26: 0.0069 18: 0.0123 17: 0.0114 

 

 

We repeated this exercise on features from prior research, with their respective 

ranking and importance shown in Table 4-3 below. 
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Table 4-3.  
50 Webpage Content Features from Prior Research Showed 

Inconsistent Rank in Sampling Scenarios 

50 Webpage Content Features from Prior Research Ranked 
Feature No-sampling Over-sampling Under-sampling 

Total HTML Tags 1: 0.3190 1: 0.2694 1: 0.2452 
Count of <meta> tag 2: 0.0620 7: 0.0437 7: 0.0507 
<a href> OoD 3: 0.0583 2: 0.0688 2: 0.1071 
Total href attributes 4: 0.0534 6: 0.0509 5: 0.0665 
Count of <div> tag 5: 0.0462 17: 0.0182 11: 0.0292 
Count of <a> tag 6: 0.0457 4: 0.0669 3: 0.0734 
<link href> OoD 7: 0.0437 3: 0.0671 4: 0.0684 
<script src> OoD 8: 0.0408 5: 0.0563 6: 0.0564 
Count of <link> tag 9: 0.0330 13: 0.0234 10: 0.0296 
Total <img src> 10: 0.0307 9: 0.0342 8: 0.0415 
<img src> OoD 11: 0.0252 11: 0.0285 13: 0.0218 
Count of <title> tag 12: 0.0245 15: 0.0196 18: 0.0086 
createElement() 13: 0.0238 8: 0.0395 12: 0.0276 
Count of <img> tag 14: 0.0207 12: 0.0255 9: 0.0351 
<script type= 

”text/javascript”> 15: 0.0198 16: 0.0191 14: 0.0182 
Count of <input> tag 16: 0.0164 20: 0.0094 20: 0.0069 
Count of <iframe> tag 17: 0.0152 14: 0.0223 15: 0.0166 
<form action> OoD 18: 0.0150 10: 0.0341 16: 0.0119 
replace() 19: 0.0136 19: 0.0134 17: 0.0110 
Count of <style> tag 20: 0.0077 26: 0.0058 21: 0.0064 
escape() 21: 0.0075 22: 0.0079 22: 0.0063 
addEventListener() 22: 0.0072 21: 0.0086 19: 0.0077 
setTimeout() 23: 0.0072 24: 0.0064 24: 0.0061 
substring() 24: 0.0071 33: 0.0020 33: 0.0018 
concat() 25: 0.0064 23: 0.0065 34: 0.0013 
document.write() 26: 0.0063 31: 0.0031 32: 0.0025 
fromCharCode() 27: 0.0059 27: 0.0056 25: 0.0059 
<img srcset> OoD 28: 0.0058 25: 0.0063 23: 0.0062 
search() 29: 0.0054 28: 0.0052 26: 0.0054 
charCodeAt() 30: 0.0053 39: 0.0003 43: 0.0003 
<audio src> OoD  31: 0.0051 29: 0.0052 27: 0.0052 
<iframe src> OoD  32: 0.0033 32: 0.0025 28: 0.0043 
parseInt() 33: 0.0030 18: 0.0136 31: 0.0030 
<base href> OoD 34: 0.0021 30: 0.0042 30: 0.0035 
unescape() 35: 0.0021 34: 0.0020 29: 0.0037 
eval() 36: 0.0010 35: 0.0009 38: 0.0005 
Count of <frame> tag 37: 0.0008 43: 0.0003 39 0.0005 
exec() 38: 0.0007 38: 0.0005 35: 0.0007 
Count of <object> tag 39: 0.0006 37: 0.0006 37: 0.0005 
<frame src> OoD 40: 0.0006 42: 0.0003 41: 0.0004 
<embed src> OoD 41: 0.0005 40: 0.0003 40: 0.0004 
hidden <iframe> 42: 0.0004 36: 0.0008 36: 0.0006 
Count of <embed> tag 43: 0.0003 41: 0.0003 42: 0.0003 
<area href> OoD 44: 0.0002 46: 0.0001 46: 0.0001 
<object data> OoD 45: 0.0002 44: 0.0002 45: 0.0002 
setInterval() 46: 0.0001 45: 0.0001 47: 0.0001 
link() 47: 0.0001 48: 0 44: 0.0003 
<source src> OoD 48: 0.0001 47: 0.0001 48: 0.0001 
<video src> OoD 49: 0 49: 0 50: 0 
<source srcset> OoD 50: 0 50: 0 49: 0 

 

 

4.7.1.1 Features Identified in Previous Research  

Table 4-2 displays the 9 of 26 identified features that have been studied in 

previous research. They can be grouped and summarized in the manner outlined below. 
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• Two of the nine previously studied features centered around the number of 

HTML tags on the webpage. Tag counts were useful for identifying phishing 

websites in prior research. The <meta> tag was specifically used. 

• Three of the nine previously studied features were gathered from the links and 

URLs found on the webpage. Six features are JavaScript methods studied in 

relation to malicious website detection. Links and URLs on the page were of 

particular interest if they pointed to out-of-domain (OoD) resources and were 

of interest since they could specify additional content that may be malicious 

without including malicious contents on the specific webpage. 

• The final four features from prior work were counts of JavaScript methods 

that are considered suspicious or have been associated with JavaScript 

obfuscation. Another was a method that acts on the Window object,  

4.7.1.2 New Features Identified 

Table 4-2 identifies the 17 of 26 identified features that, to the best of our 

knowledge, have not been studied in prior research. They can be grouped and 

summarized in the manner outlined below. 

• Three of the features were counts of tags that have not been studied for 

malicious website detection. Although tags have been studied, these three, to 

our knowledge, have not been selected for study in prior research. 

• Four of the features were counts of additional JavaScript methods that are not 

common in studies to detect malicious websites. 

• Six of the new features were gathered from the URLs specified in tags on the 

page.  
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• The remaining four features were specific values for attributes in several 

HTML tags.  

4.7.1.3 Features Ranking Analysis 

For the features identified by our approach in Table 4-2, the top three features are 

consistent and have the same rank in all scenarios. They are the count of all tags, the 

count of all href attributes, and the number of out-of-domain OoD href attributes in the 

<link> tag, having a total importance of 0.4875, 0.4838, and 0.4980, respectively. The 

features identified by our approach account for 40.61%, 41.97%, and 41.53%, 

respectively, of the total feature importance in the sampling scenarios in Table 4-2. Five 

of the features are counts of tags and account for 0.4016 average feature importance. 

Eight of the features are counts of JavaScript methods and account for 0.109 average 

feature importance. Seven of the features are related to the URLs on the webpage and 

account for 0.3577 average feature importance. The final six features are specific 

attribute values and account for 0.1313 of total feature importance. 

When considering the 50 features from prior research in Table 4-3, in all three 

sampling scenarios, the total HTML tags (the first feature listed in Table 4-3) accounts 

for the most importance (0.3190, 0.2694, and 0.2452, respectively) and the importance 

difference between the first and second ranked feature is larger than the difference 

between the any other two consecutively ranked features. Thirteen of the 50 features are 

associated with tag counts, 17 are specific JavaScript method counts, and 16 are gathered 

from URLs on the webpage, two with specific values of attributes, and four with the 

counts of specific attributes. On average, we found that the most important features 

studied in prior research were gathered from counts of tags, URLs on the webpage, 
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counts of JavaScript methods on the webpage, and other specific attributes found in tags 

on the webpage accounting for an average total feature importance of 53%, 34%, 10%, 

and 2%, respectively. 

Our approach identified 26 features, nine of which are from prior research, while 

the other 17, to the best of our knowledge, were new. The nine features account for 

roughly 40% of the total feature importance. For the 26 features identified by our 

approach, the top three are consistent across sampling scenarios and account for roughly 

half of the total feature importance. 

 RQ2: Do the Additional Features Identified Improve Malicious Website 

Detection? 

We then investigated the performance of models built in our study in sampling 

and feature transformation scenarios. To do so, we built two sets of models with the 26 

features identified by our approach and with the 50 features from prior research. We 

evaluated performance for the test dataset when using the no-sampling, under-sampling, 

and over-sampling training sets. Table 4-4 provides the FPR and FNR, the ACC, the 

AUC, and MCC for the 26 and 50 features and are separated by a “/.” We focused on 

MCC to drive the discussion because MCC is a balanced metric that considers the four 

quadrants of the confusion matrix and works well even when the dataset is imbalanced. 

Table 4-5 provides the Prec and Rec of the respective models. In addition to sampling 

scenarios, we performed two sets of feature transformations on the 26 features identified 

by our approach and the 50 features gathered from prior research. These results are 

shown in Tables 4-4 and 4-5 below. 
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Table 4-4.  

Identified Webpage Content Features Slightly Outperformed Features from Prior Research 

Model Performance (50 Features from Prior Research / 26 Identified Features) in Sampling Scenarios 

Model 

No-sampling Over-sampling Under-sampling 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 
0.0844/ 

0.0865 

0.1239/ 

0.1264 

0.9097/ 

0.9075 

0.8958/ 

0.8934 

0.7003/ 

0.6942 

0.0399/ 

0.0423 

0.8344/ 

0.8261 

0.8427/ 

0.8419 

0.5628/ 

0.5657 

0.1899/ 

0.1937 

0.0409/ 

0.0397 

0.8569/ 

0.8377 

0.8386/ 

0.8424 

0.5510/ 

0.5612 

0.1576/ 

0.1860 

LR 
0.0861/ 
0.0961 

0.2262/ 
0.1797 

0.8931/ 
0.8915 

0.8437/ 
0.8620 

0.6246/ 
0.6386 

0.1814/ 
0.1870 

0.0532/ 
0.0474 

0.8375/ 
0.8335 

0.8826/ 
0.8827 

0.5956/ 
0.5925 

0.1936/ 
0.1943 

0.0474/ 
0.0482 

0.8279/ 
0.8271 

0.8794/ 
0.8786 

0.5843/ 
0.5828 

RF 
0.0805/ 

0.0835 

0.1198/ 

0.1148 

0.9136/ 

0.9118 

0.8998/ 

0.9008 

0.7110/ 

0.7083 

0.0998/ 

0.0902 

0.0898/ 

0.0890 

0.9016/ 

0.9099 

0.9051/ 

0.9103 

0.6944/ 

0.7131 

0.1201/ 

0.1047 

0.0715/ 

0.0798 

0.8870/ 

0.8989 

0.9041/ 

0.9076 

0.6718/ 

0.6925 

AB 
0.0808/ 
0.0847 

0.2229/ 
0.1747 

0.8981/ 
0.9019 

0.8481/ 
0.8702 

0.6378/ 
0.6642 

0.1488/ 
0.1337 

0.0773/ 
0.0673 

0.8617/ 
0.8760 

0.8868/ 
0.8994 

0.6233/ 
0.6530 

0.1533/ 
0.1504 

0.0673/ 
0.0557 

0.8593/ 
0.8635 

0.8896/ 
0.8969 

0.6238/ 
0.6360 

GB 
0.0806/ 

0.0819 

0.1647/ 

0.1505 

0.9069/ 

0.9078 

0.8772/ 

0.8837 

0.6794/ 

0.6867 

0.1234/ 

0.1110 

0.0790/ 

0.0798 

0.8830/ 

0.8935 

0.8987/ 

0.9045 

0.6612/ 

0.6814 

0.1328/ 

0.1312 

0.0673/ 

0.0657 

0.8768/ 

0.8784 

0.8998/ 

0.9015 

0.6543/ 

0.6580 

ET 
0.0814/ 
0.0842 

0.1222/ 
0.1156 

0.9125/ 
0.9110 

0.8981/ 
0.9000 

0.7075/ 
0.7063 

0.1000/ 
0.0904 

0.0890/ 
0.0956 

0.9016/ 
0.9087 

0.9054/ 
0.9069 

0.6947/ 
0.7079 

0.1110/ 
0.1118 

0.0698/ 
0.0806 

0.8949/ 
0.8927 

0.9095/ 
0.9037 

0.6882/ 
0.6795 

BC 
0.0817/ 

0.0844 

0.1206/ 

0.1156 

0.9125/ 

0.9109 

0.8988/ 

0.8999 

0.7081/ 

0.7060 

0.1028/ 

0.0939 

0.0840/ 

0.0881 

0.8999/ 

0.9069 

0.9065/ 

0.9089 

0.6930/ 

0.7065 

0.1161/ 

0.1134 

0.0748/ 

0.0782 

0.8899/ 

0.8917 

0.9044/ 

0.9041 

0.6762/ 

0.6786 

NN 
0.0880/ 
0.0985 

0.1422/ 
0.1039 

0.9039/ 
0.9006 

0.8848/ 
0.8987 

0.6804/ 
0.6870 

0.1342/ 
0.1269 

0.0565/ 
0.0632 

0.8771/ 
0.8824 

0.9045/ 
0.9049 

0.6595/ 
0.6665 

0.1693/ 
0.1775 

0.0457/ 
0.0341 

0.8489/ 
0.8436 

0.8924/ 
0.8941 

0.6166/ 
0.6138 
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Table 4-5.  

Identified Webpage Content Features Slightly  

Outperformed Features from Prior Research (cont.) 

Model Performance (50 Features from Prior Research / 26 

Identified Features) in Sampling Scenarios 

Model 

No-sampling Over-sampling Under-sampling 

Prec Rec Prec Rec Prec Rec 

KNN 
0.6424/ 

0.6359 

0.8760/ 

0.8735 

0.4180/ 

0.4155 

0.1655/ 

0.1738 

0.3771/ 

0.4140 

0.1430/ 

0.1622 

LR 
0.6086/ 
0.5964 

0.7737/ 
0.8202 

0.4747/ 
0.4686 

0.9467/ 
0.9525 

0.4600/ 
0.4588 

0.9525/ 
0.9517 

RF 
0.6542/ 

0.6472 

0.8801/ 

0.8851 

0.6121/ 

0.6362 

0.9101/ 

0.9109 

0.5723/ 

0.6033 

0.9284/ 

0.9201 

AB 
0.6247/ 
0.6278 

0.7770/ 
0.8252 

0.5177/ 
0.5470 

0.9226/ 
0.9326 

0.5130/ 
0.5208 

0.9326/ 
0.9442 

GB 
0.6419/ 

0.6421 

0.8352/ 

0.8494 

0.5636/ 

0.5892 

0.9209/ 

0.9201 

0.5487/ 

0.5521 

0.9326/ 

0.9342 

ET 
0.6512/ 
0.6450 

0.8777/ 
0.8843 

0.6120/ 
0.6338 

0.9109/ 
0.9043 

0.5918/ 
0.5874 

0.9301/ 
0.9193 

BC 
0.6508/ 

0.6446 

0.8793/ 

0.8843 

0.6066/ 

0.6270 

0.9159/ 

0.9118 

0.5797/ 

0.5846 

0.9251/ 

0.9217 

NN 
0.6278/ 
0.6115 

0.8577/ 
0.8960 

0.5488/ 
0.5610 

0.9434/ 
0.9367 

0.4939/ 
0.4851 

0.9542/ 
0.9658 

 

 

Without sampling, the MCC was slightly higher for four of the eight models (LR, 

AdaBoost, GB, and NN), when considering the 26 features instead of the 50 previously 

studied features (on average, 0.6865 for the 26 features and 0.6812 for the 50 features). 

When over-sampling, the average MCC increased (0.6144 for 26 the features and 0.6015 

for the 50 features) when considering 26 features instead of the previous studied 50 

features. With over-sampling, the MCC was higher for all models except LR when 

considering the 26 features instead of the 50 previously studied features. When under-

sampling, the average MCC increased (to 0.5910 for the 26 features and to 0.5842 for the 

50 features). With under-sampling, the average MCC was higher for all eight models 

except LR, ET, and NN for the 26 features versus the 50 previously studied features. In 

each of our sampling scenarios, we observed overall improvement when building models 

with our 26 identified features compared to the 50 previously studied features. Although 

the improvement was not large, it was achieved with roughly half of the features, 17 of 
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which are not commonly used for malicious website detection. This suggests that 

additional features, outside of those identified in prior research, should be explored for 

their use in malicious website detection.  

We also performed feature transformation with the process in Section 3.4.3 on the 

26 features to investigate combinations of features that could improve performance and to 

evaluate the effects on the models. The 26 features were transformed into 1,326 feature 

combinations. We then performed feature selection on these feature combinations, using 

four different techniques: correlation, SelectKBest (scoring function chi-square), RFE, 

and SelectFromModel [29]. We kept the feature combinations selected by at least three of 

these techniques, yielding 40 transformed features. We then rebuilt the eight models with 

these 40 transformed features. We repeated this approach with the 50 features from prior 

research, with the results shown in Tables 4-6 and 4-7 under FT w/FS. 

We then determined whether PCA could reduce the 1,326 features to “n” 

components, mixtures, or combinations of variables that captured the maximum variance. 

By using a cumulative scree plot, we identified 150 components that captured 79.9% of 

the variance (see Figure 4-1) from the 26 identified features and rebuilt the models with 

the components. We repeated this approach on the 50 features from prior research, 

identifying 300 components that captured 81.2% of the variance (see Figure 4-2) with the 

results shown in Tables 4-6 and 4-7 under FT w/PCA.  

  



 

90 

 

 
Fig. 4-1.    150 components are created from 26 identified webpage  

content features 

 

 

 
Fig. 4-2.     300 components are created from 50 identified  

webpage content features 
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Table 4-6.  
Model Performance (50 Webpage Content Features from Prior Research / 26 Identified Webpage Content 

Features) with Feature Transformation 

 

 
Table 4-7.  

Model Performance (50 Webpage  

Content Features from Prior Research /  

26 Identified Webpage Content Features)  

with Feature Transformation (cont.) 

Model Performance (50 Webpage Content 

Features from Prior Research / 26 Identified 

Webpage Content Features) with Feature 

Transformation 

Model 

FT w/FS FT w/PCA 

Prec Rec Prec Rec 

KNN 
0.7393/ 

0.7668 

0.1297/ 

0.1231 

0.6368/ 

0.6352 

0.8752/ 

0.8693 

LR 
0.5493/ 
0.5575 

0.8236/ 
0.8219 

0.6111/ 
0.6201 

0.7936/ 
0.8544 

RF 
0.6496/ 

0.6456 

0.8810/ 

0.8793 

0.6534/ 

0.6480 

0.8752/ 

0.8760 

AB 
0.6314/ 
0.6208 

0.8194/ 
0.7820 

0.6324/ 
0.6360 

0.8302/ 
0.8477 

GB 
0.6448/ 

0.6451 

0.8444/ 

0.8410 

0.6460/ 

0.6442 

0.8535/ 

0.8510 

ET 
0.6491/ 
0.6455 

0.8818/ 
0.8818 

0.6517/ 
0.6465 

0.8752/ 
0.8810 

BC 
0.6486/ 

0.6435 

0.8801/ 

0.8801 

0.6480/ 

0.6447 

0.8777/ 

0.8818 

NN 
0.5682/ 
0.5701 

0.8968/ 
0.8727 

0.6277/ 
0.6226 

0.8893/ 
0.8910 

 

 

  

Model Performance (50 Webpage Content Features from Prior Research / 26 Identified Webpage Content Features) with 

Feature Transformation 

Model 

FT w/FS FT w/PCA 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 
0.0079/ 
0.0064 

0.8702/ 
0.8768 

0.8647/ 
0.8650 

0.5609/ 
0.5583 

0.2720/ 
0.2719 

0.0864/ 
0.0864 

0.1247/ 
0.1306 

0.9078/ 
0.9070 

0.8943/ 
0.8914 

0.6957/ 
0.6916 

LR 
0.1170/ 

0.1129 

0.1763/ 

0.1780 

0.8742/ 

0.8774 

0.8533/ 

0.8544 

0.6038/ 

0.6095 

0.0874/ 

0.0906 

0.2063/ 

0.1455 

0.8949/ 

0.9012 

0.8531/ 

0.8818 

0.6363/ 

0.6730 

RF 
0.0822/ 
0.0835 

0.1189/ 
0.1206 

0.9123/ 
0.9109 

0.8993/ 
0.8978 

0.7081/ 
0.7043 

0.0804/ 
0.0824 

0.1247/ 
0.1239 

0.9130/ 
0.9114 

0.8974/ 
0.8968 

0.7078/ 
0.7043 

AB 
0.0828/ 

0.0827 

0.1805/ 

0.2179 

0.9027/ 

0.8973 

0.8683/ 

0.8496 

0.6639/ 

0.6376 

0.0835/ 

0.0840 

0.1697/ 

0.1522 

0.9037/ 

0.9059 

0.8733/ 

0.8818 

0.6701/ 

0.6814 

GB 
0.0805/ 
0.0801 

0.1555/ 
0.1589 

0.9083/ 
0.9082 

0.8819/ 
0.8804 

0.6861/ 
0.6847 

0.0809/ 
0.0814 

0.1464/ 
0.1489 

0.9093/ 
0.9086 

0.8862/ 
0.8848 

0.6916/ 
0.6890 

ET 
0.0825/ 

0.0838 

0.1181/ 

0.1181 

0.9121/ 

0.9110 

0.8996/ 

0.8990 

0.7080/ 

0.7054 

0.0809/ 

0.0834 

0.1247/ 

0.1189 

0.9125/ 

0.9113 

0.8971/ 

0.8988 

0.7067/ 

0.7057 

BC 
0.0825/ 
0.0844 

0.1198/ 
0.1198 

0.9119/ 
0.9103 

0.8988/ 
0.8978 

0.7069/ 
0.7031 

0.0825/ 
0.0841 

0.1222/ 
0.1181 

0.9115/ 
0.9108 

0.8975/ 
0.8988 

0.7052/ 
0.7049 

NN 
0.1180/ 

0.1139 

0.1031/ 

0.1272 

0.8841/ 

0.8840 

0.8894/ 

0.8793 

0.6535/ 

0.6435 

0.0913/ 

0.0935 

0.1106/ 

0.1089 

0.9057/ 

0.9042 

0.8989/ 

0.8987 

0.6960/ 

0.6930 
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The MCC improved only in the LR model when comparing the models built with 

the prior 50 features to the models built with the 26 features identified in the feature 

transformation with feature selection case. Additionally, in this case, the average MCC 

decreased from 0.6253 to 0.6201 when using the 26 features instead of the 50 features 

from prior research. Also, when considering the impact of feature transformation with 

feature selection on the 26 features compared to no feature selection, feature 

transformation with feature selection reduced the average MCC from 0.6865 to 0.6201. 

When we applied PCA to the transformed features, the MCC only increased in two of the 

models – LR and AB – when considering the 26 features identified in our research rather 

than the 50 previously studied features, but the average MCC increased from 0.6887 to 

0.6929. When considering the impact of feature transformation with PCA on the 26 

features compared to no feature transformation, feature transformation with PCA 

increased the average MCC from 0.6865 to 0.6929. 

Although the features we identified did not greatly improve malicious website 

detection (there was only an increase of 0.005 in the average MCC overall), the features 

we identified did improve malicious website detection with 48% fewer features in the 

scenarios without feature transformation and in the feature transformation with PCA. 

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling Scenarios? 

RQ3 addressed the sensitivity of our approach and the impact of dataset 

imbalance. Sampling is especially important in malicious website classification because 

researchers (ourselves included) use datasets that are imbalanced. There is neither a 

standard that dictates when to perform sampling nor a standard of how much of an 
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imbalance between malicious and non-malicious should be used to train and test 

malicious website detection models. Hence, exploring whether sampling affects the 

results is worthwhile. We compared the feature rankings and the overall performance of 

our classifiers. 

In the ranking of the 26 features identified in our research, the top three were 

consistent in the three-sampling scenarios. Although these were only three consistent 

rankings, they accounted for approximately 50% of total feature importance. We did 

however, observe some change in the MCC over the sampling scenarios with MCCs of 

0.6865, 0.6144, and 0.5910, respectively, in the no-sampling, over-sampling and under-

sampling scenarios. In case of the 50 features gathered from prior research, the only 

ranking that was consistent was the first, with the MCCs for the respective sampling 

scenarios being 0.6812, 0.6015, and 0.5842, respectively, for the no-sampling, over-

sampling, and under-sampling cases. 

The answer to RQ3 was mixed. We observed that rankings were not consistent, 

though the rankings of the features with the highest importance demonstrated 

consistency. The MCCs, however, were more consistent across the sampling scenarios. 

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our 

Results? 

We performed hyperparameter tuning and cross-validation to explore their effects 

and to provide assurance that results in Tables 4-4, 4-5, 4-6, and 4-7 were comparable to 

the tuned and cross-validated results. In each scenario – no-sampling, over-sampling, 

under-sampling, feature transformation with feature selection, and feature transformation 

with PCA – we chose the best performing model, built from the 26 features, and 
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proceeded to tune the parameters and cross-validate. We leveraged a decision tree 

classifier as the base estimator and StratifiedKFold [190] for 10-fold cross-validation. 

None of the MCC results from the five models improved, with the average MCC only 

decreasing from 0.7051 to 0.6999, suggesting that using the default parameters in [29] for 

our models in Tables 4-4, 4-5, 4-6, and 4-7 was sufficient.   

We also needed to ensure that our results were not dependent on the 80:20 split of 

train/test data. To do this, we repeated our approach, as well as parameter tuning and 

cross-validation of the best models, but on a 70:30 split of training to test data instead of 

80:20. Tuning and cross-validation did not improve any of the models for the 70:30 split, 

but the average MCC decreased from 0.7043 to 0.6908. Without tuning and cross-

validation, the average MCC was 0.7043 and 0.7051, respectively, with the 70:30 and 

80:20 split. With tuning and cross-validation the average MCC was 0.6908 and 0.6999, 

respectively, with the 70:30 and 80:20 split. The results were similar, suggesting that we 

were not dependent on the train/test split. Full results are shown in Table 4-8 below. 
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Table 4-8.  

Cross-Validation and Hyperparameter Tuning Slightly  

Improved Webpage Content Models 

Cross-Validation and Hyperparameter Tuning Webpage Content 

Models 

Model Scenario - Split MCC Scoring Metric 

ET No-sampling - 70:30 0.6880 recall macro 

ET Over-sampling - 70:30 0.6865 accuracy 

ET Under-sampling - 70:30 0.6763 recall macro 

RF FT w/ FS - 70:30 0.6984 balanced accuracy 

ET FT w/ PCA - 70:30 0.6906 balanced accuracy 

RF No-sampling - 80:20 0.7029 precision macro 

RF Over-sampling - 80:20 0.7126 balanced accuracy 

RF Under-sampling - 80:20 0.6808 accuracy 

ET FT w./FS - 80:20 0.6977 balanced accuracy 

ET FT w/ PCA - 80:20 0.7055 balanced accuracy 

 

 

Although we tuned our model hyperparameters and cross-validated, we did not 

see improvement of the average MCC in the 80:20 and 70:30 cases.  

 Conclusion 

This chapter included a comprehensive evaluation of webpage content features to 

demonstrate the potential of using webpage content features alone to detect malicious 

websites and to determine whether new, unstudied webpage content features could 

improve malicious website detection. We analyzed webpage content features from 5,931 

malicious websites and from 34,778 benign websites. Malicious websites were identified 

by Cisco Talos, while benign websites were gathered from the Alexa Top 1M. We 

collected 17,746 webpage content features from these websites and identified 26 for 

further analysis, of which, 17, to the best of our knowledge, were new. We built and 

evaluated eight models and ensured that our results were not greatly impacted by our 

dataset imbalance by performing no-sampling, over-sampling, and under-sampling 
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scenarios. We further demonstrated consistency in our results by performing feature 

transformations, rebuilding the models, and comparing results. 

We compared the results from models built with the 26 features identified by our 

approach with results from models built with 50 features gathered from prior research. 

Additionally, we observed that the relative importance of the features decreased gradually 

with rank except for the first, and in some cases the second, ranked feature. The average 

MCC for the 26 features identified from our research was slightly higher than the average 

MCC for the 50 previously studied features, but used roughly half of the features. When 

considering the 26 selected features, feature transformation with feature selection 

decreased the MCC, while feature transformation with PCA increased the average MCC. 

Our results indicated the existence of a broader set of webpage content features that can 

be used for malicious website detection than those features commonly studied by 

previous researchers.  
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Chapter 5:  URL Features Analysis 

 Introduction 

A URL specifies the internet location of a resource – most commonly a website. 

The URL allows for the retrieval of documents, webpages, and other files across the 

internet and can do so with or without the actual IP address. Although website URLs 

have legitimate uses, they also enable many threats on the internet. URLs can point to 

phishing websites, to websites that conduct drive-by downloads, or to C2 websites, for 

example. Prior research has noted that malicious URLs often have a distinct structure 

when compared to benign URLs. Thus, the structure of the URL has been explored for 

malicious website detection and we conduct an additional analysis in this chapter. Our 

contributions are detailed below.  

• We demonstrated the potential of using only URL features as a means to 

detect malicious websites on a dataset consisting of multiple types of threats. 

• Among the 41 features we identified, we introduced five features focused on 

the number of English words of a given length that had not been studied in 

terms of detecting malicious websites. 

• We observed that counts of the letters in the English alphabet account for an 

average of 35% of feature importance across our sampling scenarios. 

• When considering the 41 selected features, feature transformation with feature 

selection and PCA decreased the MCC compared to the no-sampling scenario 

with no feature transformation. 
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 Related Research 

In this section, we summarize previous research and the use of URL features for 

malicious website detection. URL features have been used in many works and this 

section groups together works that have commonalities. 

Early research by [34]-[37] and [40] leveraged a “bag-of-words” approach that 

separates the URL based on special characters (“=,” “.,” “?” etc.) and examined the 

resulting tokens. In addition to using special characters as delimiters, researchers have 

used the presence or counts of specific special characters as features for malicious 

website detection [24], [40], [43]-[44], [46]-[50], [64], [81], [89], [116]. The “.” character 

is heavily used because it separates domain names including TLDs and subdomains in the 

URL. Another feature, the URL length, is one of the features most prevalently leveraged 

in prior research. Prior researchers noticed that malicious URLs are typically longer (or 

shorter) and hence the url length has been used to detect malicious websites [40], [44], 

[47], [49], [51], [64], [81], [89]. 

Some methods for detecting malicious URLs also take the structure of the URL 

(protocol, host, subdomain, domain, path, query parameters) into consideration and were 

demonstrated in  [40], [42], [47], [81], [86], [91], [117]. Although this approach 

facilitates the extraction of more features, it presents a problem in potential test sets in 

that benign sets, such as ours, are usually the home pages of the domain, while test sets 

for malicious websites may have multiple subdomains, different paths, and varying query 

parameters. Such features would not be applicable to benign websites. Furthermore, to 

create a benign test set of URLs that have paths would require use of a web crawler or 

similar method that could introduce influence into the study. Another structural property 
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used in prior research is the presence of an IP address or a port number in the URL and 

has been studied by [24], [42]-[46], [48]-[50], [64], [81], and [116]. 

URL characteristics have been used to detect bots and malicious traffic. Kheir et 

al. [55] detected C2 communications through the clustering of URLs generated by 

malware. Yadav et al. [209] developed a method to detect DNS “fluxing” by examining 

bigrams in algorithmically generated URLs. Researchers [44] used the presence of 

multiple TLDs, which can be expressed as n-grams, in the domain as another feature. 

Huang et al. [160] proposed a method for dynamically extracting patterns from URLs (as 

opposed to n-grams) for malicious URL detection. Daeef et al. [95] used n-grams in 

conjunction with separating URLs into host, path, and query segments. Verma and Das 

[56] also used n-grams and extracted overlapping sequences of consecutive characters in 

the ranges of N = 1 to N = 10 and discussed the speed of their n-gram feature extractor. 

Authors [52] distinguished between algorithmically generated domains (AGDs) and 

human generated domains (HGDs), using url length, vowels, consonants, and digits, 

while [116] used the ratio of the number of specific characters over the total url 

length, among others factors, in their set of 41 features. 

Whether using a “bag-of-words” approach, a structural approach, or a length-and-

character approach, n-grams present in a URL have played a key role in the detection of 

malicious websites. As such, we used n-grams as the main set of features in our malicious 

website detection experiments. We extracted features from previous research and added 

several new features from n-grams based on English words, TLDs, file extensions, and 

well-known ports, with the goal of identifying new URL-based features for malicious 

website detection and building capable detection models. 
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 Research Questions 

We created three of our research questions with the aim of exploring the 

effectiveness of our approach and at assessing the URL features we identified as features 

for malicious website detection. These three research questions focus on using features 

derived from the URL as the sole source of features for the detection of malicious 

websites. 

 Research Question 1 

Previous research applied several techniques and features to the analysis and 

detection of malicious website URLs. Currently, no definitive list of URL features exists, 

though certain features have been used extensively in prior research. Given that URLs 

have been analyzed in many ways and that diverse features have already been used in 

malicious website detection, we postulated that additional features might be relevant for 

malicious website detection. We hypothesized that our approach, which considered 

28,162 features, many of which had never been studied for malicious website detection, 

would identify new features of importance in the detection of malicious websites. RQ1 is 

stated below. 

RQ1:  How do the features identified compare with prior research? 

 Research Question 3 

This second question (third of our 13 research questions) focused on the 

consistency of our approach by investigating if our results changed across three sampling 

scenarios: no-sampling, under-sampling, and over-sampling. Class imbalances between 

the benign and malicious datasets are common in security research. With this question, 
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we analyzed whether our model performance changed across three sampling scenarios. 

We stated RQ3 as follows:  

RQ3:  Do our results change with no-sampling, under-sampling, and over-

sampling scenarios? 

 Research Question 4 

With this research question, we explored the use of hyperparameter tuning and 

cross-validation on our results. These techniques have the potential to improve our 

models and aided us in understanding how much our models could be improved (if at all). 

These additional methods gave our results more credence. RQ4 is as follows:  

RQ4: Does hyperparameter tuning and cross-validation improve our results?  

 Feature Consideration 

URLs have several characteristics we can extract. URL features are created by 

examining properties and patterns in the URL strings. In our approach, we leveraged 

features from previous research and expanded our study to include features not 

previously used in previous research. For a full list of URL features used in this study, 

please refer to Appendix A. 

 N-gram Approach 

We took an n-gram approach that looked for specific n-grams in the URL. The n-

gram approach is inspired by the “bag-of-words” approach used by many authors to 

detect phishing URLs and is influenced by the fact that n-grams have been used in 

several ways to successfully detect malicious websites. Our n-grams, however, were 

shaped by the n-grams used in previous research and extended to include additional 

relevant n-grams. Our first set of n-grams consisted of all English words. We used [210] 
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as our source of words. Specifically, we looked for the counts of all words from the 

dictionary with a length of four letters or more. We chose a word length of four letters in 

order to filter out simple connecting words such as “the” or “and.” We extracted the 

specific word, counted the number of times it was present in the URL, and counted the 

number of unique words of a given length that were present in that URL. For example, in 

the URL homedepot.com, we would identify the words home and depot resulting in a 

value of one for word_count_4 and word_count_5.  The next n-grams we extracted were 

the presence of TLDs like .com, .net, or .us, motivated by the fact that multiple 

TLDs have been used in malicious website detection. We used the list of TLD names 

from the Internet Corporation for Assigned Names and Numbers and the list of file 

extensions from [211]. The third set of n-grams we extracted was the presence of file 

extensions. URLs can point to files (.exe, .zip, etc.), with previous researchers 

focusing on whether a URL points to an executable file.  

 Character Distributions 

Character distributions and the number of certain special characters (the “.” and 

the “-,” for example) are known features for malicious website detection. In addition to 

special characters, regular characters such as consonants, vowels, and digits also have 

been used to detect malicious websites. Typically, different ratios of characters are 

grouped together to detect bot URLs and URLs generated by DGAs. We extended these 

approaches by capturing the total number of digits, vowels, consonants, and special 

characters, as well as the counts for each type of character. 
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 Specific Features 

Lastly, we collected those features that are specific to the URL structure. We first 

checked for the presence of an IP address in the URL, since an IP address substituted for 

a hostname is a known technique for obfuscating a malicious URL. In addition to IP 

addresses, we also looked for the presence of port numbers. If we found a port number in 

a URL, we recorded it and checked to see whether it is a well-known port number. Well-

known port numbers include 22 for ssh, 25 for smtp, and 53 for DNS, among others.  

 Learning, Feature Selection, and Sampling Techniques in URL Analysis 

 Feature Selection 

After initial collection of the 28,162 URL features, we analyzed which features 

had a strong association with the dependent variable (i.e., whether the website was 

malicious) and eliminated any redundant features (those that had no relationship or a 

weak relationship with the dependent variable). We removed those features that had the 

same value at least 95% of the time, thereby eliminating 28,121 features and resulting in 

a final set of 41 features.  

 Machine Learning Models, Sampling, and Feature Transformation 

We evaluated the feature set against eight different supervised classifiers 

discussed in Section 3.4.1 and recorded their performance metrics. For all models, we 

split training and testing data using an 80:20 ratio, a common train/test split for data. Our 

overall dataset was imbalanced: we had 39,877 benign websites and 6,894 malicious 

websites. To address this and to ensure that any results were not the product of our 

benign-to-malicious website ratio, we trained the models using different samples of the 

benign and malicious datasets in the three sampling scenarios discussed in Section 3.4.3.  
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For the no-sampling scenario, we used 31,892 and 7,985 benign websites and 

5,525 and 1,369 malicious websites, respectively, in our training and testing sets. Under-

sampling resulted in 5,525 malicious websites and 5,525 benign websites in the under-

sampled training set. Over-sampling with the SMOTE technique [186] from [187] 

produced a balanced training set with 31,892 benign websites and 31,892 malicious 

websites. We also built models with transformed features created from the process in 

Section 3.4.3. 

The websites used in the testing dataset remained consistent across all models and 

sampling scenarios for the training data so that we could compare model results and 

identify whether a sampling technique led to a better model. We ensured that there was 

no overlap between training and testing datasets.  

 Results 

 RQ1: How do the Features Identified Compare with Prior Research? 

With RQ1, we investigated whether or not our approach identified previously 

studied URL features as important. To do so, we leveraged our four ensemble methods 

(RF, AB, ET, and BC), all of which captured the notion of feature importance – a 

normalized metric between 0 and 1.0 for each respective feature. The top 41 features are 

shown below in Table 5-1, along with their respective rank in the no-sampling, over-

sampling, and under-sampling cases and with their respective header field. The white 

rows indicate features previously studied in prior research for the identification of 

malicious websites, while the shaded rows are features that, to our knowledge, are new. 

Rank and importance are separated by a “:” character. 
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Table 5-1.  

The Top Seven URL Features Had Consistent Rank 

41 Identified URL Features Ranked 

URL Feature No-sampling Over-sampling Under-sampling 

Total Extensions in URL 1 : 0.1978 1 : 0.1874 2 : 0.1657 
URL Length 2 : 0.1815 2 : 0.1133 1 : 0.2105 

Count of ‘.’ character 3 : 0.0726 3 : 0.0685 3 : 0.0796 
Count of ‘w’ character 4 : 0.0699 4 : 0.0496 4 : 0.0503 

number of consonants in the URL 5 : 0.0520 6 : 0.0386 5 : 0.0475 
number of digits in the URL 6 : 0.0430 5 : 0.0485 6 : 0.0408 

Total TLDs in URL 7 : 0.0343 8 : 0.0335 7 : 0.0398 
Count of ‘z’ character 8 : 0.0298 14 : 0.023 8 : 0.0319 
Count of .com in URL 9 : 0.0235 21 : 0.016 11 : 0.0200 

Count of 4-character words 10 : 0.0221 18 : 0.0201 9 : 0.02919 
Number of vowels in the URL 11 : 0.0197 23 : 0.0146 10 : 0.0249 

Count of ‘i’ character 12 : 0.0156 7 : 0.03385 13 : 0.0186 
Count of ‘b’ character 13 : 0.0132 19 : 0.0186 12 : 0.0193 
Count of ‘y’ character 14 : 0.0131 20 : 0.0168 18 : 0.0112 
Count of ‘l’ character 15 : 0.0128 12 : 0.0273 15 : 0.0127 
Count of ‘m’ character 16 : 0.0120 27 : 0.0082 17 : 0.0117 
Count of ‘o’ character 17 : 0.0119 15 : 0.0223 14 : 0.0137 
Count of ‘t’ character 18 : 0.0114 10 : 0.0278 20 : 0.0110 
Count of ‘p’ character 19 : 0.0113 16 : 0.0208 32 : 0.0060 
Count of ‘n’ character 20 : 0.0111 30 : 0.0060 16 : 0.0125 
Count of ‘x’ character 21 : 0.0109 33 : 0.0043 23 : 0.0107 
Count of ‘f’ character 22 : 0.0108 25 : 0.0112 22 : 0.0109 
Count of ‘r’ character 23 : 0.0106 11 : 0.0277 21 : 0.0110 
Count of ‘h’ character 24 : 0.0098 26 : 0.0107 24 : 0.0098 
Count of ‘g’ character 25 : 0.0094 35 : 0.0038 25 : 0.0091 
Count of ‘e’ character 26 : 0.0084 22 : 0.0158 19 : 0.0110 
Count of .i in URL 27 : 0.0080 38 : 0.0026 26 : 0.0079 

Count of ‘j’ character 28 : 0.0077 40 : 0.0019 41 : 0.0025 
Count of ‘s’ character 29 : 0.0069 9 : 0.02914 31 : 0.0061 
Count of .net in URL 30 : 0.0067 28 : 0.0080 28 : 0.0071 
Count of ‘c’ character 31 : 0.0064 24 : 0.0120 27 : 0.0074 
Count of ‘a’ character 32 : 0.0060 29 : 0.0061 29 : 0.0065 
Count of ‘u’ character 33 : 0.0057 17 : 0.0207 30 : 0.0064 

Count of 5-character words 34 : 0.0056 31 : 0.0060 33 : 0.0058 
Count of ‘d’ character 35 : 0.0055 13 : 0.0236 35 : 0.0053 

Count of 6-character words 36 : 0.0046 32 : 0.0050 34 : 0.0055 
Count of ‘k’ character 37 : 0.0043 34 : 0.0041 36 : 0.0043 
Count of ‘v’ character 38 : 0.0033 37 : 0.0031 39 : 0.0033 

Count of 7-character words 39 : 0.0033 36 : 0.0031 38 : 0.0033 
Count of ‘-’ character 40 : 0.0031 39 : 0.0025 37 : 0.0034 

Count of 8-character words 41 : 0.0025 41 : 0.0018 40 : 0.0030 
 

 

5.6.1.1 Features Identified in Previous Research  

In our list of 41 features, 36 had been used in prior research, while the remainder 

were introduced in our study. The url-length consistently ranks highly and has been 

used by nearly all research that uses any URL features. The number of file 

extensions in the URL also ranked highly. While no research of which we are aware 

has used this feature explicitly, some scholars have examined whether or not the URL 
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points to a specific type of file, so we included this feature as a prior feature. Counts of 

the special characters “.” and “-“ also appear in our list and, like url-length, are very 

commonly studied features. However, we found it surprising that the count of “-“ was 

ranked so low (40, 39, and 37, respectively, in the no-sampling, over-sampling, and 

under-sampling cases), given its frequent use in prior research. Distributions of vowels, 

digits, and consonants have been used to identify C2 websites, in particular, and appeared 

on our list. We also observed that the count of every letter with the exception of “q” 

ranked on our list.  

5.6.1.2 New Features Identified 

Thirty-six of the 41 features were identified in prior research or were closely 

related enough to be considered part of prior research. However, our research identified 

five new features that can facilitate malicious website detection. These five features all 

represent the number of English words of a given length in the URL. Certain words have 

been associated with phishing websites [34], though, to our knowledge, no approaches 

have incorporated the length of words present in the URL. We also observed that all 

letters of the alphabet contributed to the detection of the malicious website except for the 

letter “q.” 

5.6.1.3 Features Ranking Analysis 

We used ensemble methods (RF, AB, ET, and GB) to understand feature 

importance. Table 5-1 presents the 41 features, along with their average respective rank 

and importance with no-sampling, under-sampling, and over-sampling using the four 

ensemble methods [182]. We observed that the first two features were consistently 

ranked as the top two features both with and without sampling and had an importance 
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much higher than the remaining 36 features. Specifically, url-length and the number 

of file extensions had a combined importance of 0.3793, 0.3008, and 0.376, 

respectively, in the no-, over-, and under-sampling cases for the 41 features. We also 

observed that the feature rank and importance were similar when considering no-

sampling, over-sampling, or under-sampling, with the top six features being the same 

(but in different order) in the various sampling scenarios. These six features accounted 

for 0.6170, 0.5063, and 0.5947, respectively, of cumulative importance. In the previous 

section, we noted that counts of specified characters, with the exception of the letter “q,” 

appeared in our list. When we summed the respective importances of the counts of letters, 

we got cumulative importances of 0.3191, 0.4263, and 0.3044, respectively, in the no-

sampling, over-sampling, and under-sampling cases. 

URL features have been extensively studied in prior research. Thus, we only 

identified five new features, all of which centered around the counts of words of specific 

lengths that were present in the URL. Our approach identified features from prior 

research, reinforcing the importance of character counts for malicious website detection. 

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling scenarios? 

We then investigated model performance for the test dataset when using the no-

sampling, under-sampling, and over-sampling scenarios. Tables 5-2 and 5-3 provide FPR, 

FNR, ACC, AUC, MCC, Prec, and Rec for the three sampling. We focused on the 

average MCC of all models to motivate the discussion of our results. Averaging the MCC 

also provided an overall idea of how well the models performed, taking into account the 

respective performances of each model into a single metric.  
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Table 5-2.  

URL Features Produced High Detection Metrics with 41 Identified URL Features in Sampling Scenarios 

Model Performance (41 Identified URL Features) in Sampling Scenarios 

Model 

No-sampling Over-sampling Under-sampling 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 0.0032 0.2652 0.9584 0.8658 0.8254 0.0735 0.1359 0.9174 0.8953 0.7135 0.0316 0.1789 0.9469 0.8947 0.7878 

LR 0.0144 0.2454 0.9518 0.8701 0.7973 0.0705 0.1169 0.9227 0.9063 0.7330 0.0731 0.1242 0.9194 0.9013 0.7223 

RF 0.0073 0.1994 0.9646 0.8967 0.8527 0.0111 0.1928 0.9623 0.8980 0.8432 0.0496 0.1293 0.9387 0.9106 0.7731 

AB 0.0148 0.2564 0.9499 0.8644 0.7887 0.0476 0.1855 0.9322 0.8834 0.7397 0.0923 0.1227 0.9033 0.8925 0.6846 

GB 0.0124 0.2199 0.9572 0.8839 0.8212 0.0279 0.1885 0.9486 0.8918 0.7921 0.0585 0.1264 0.9316 0.9076 0.7536 

ET 0.0074 0.2023 0.9640 0.8951 0.8503 0.0088 0.1928 0.9643 0.8992 0.8515 0.0501 0.1227 0.9393 0.9136 0.7763 

BC 0.0101 0.2053 0.9613 0.8923 0.8386 0.0103 0.1987 0.9622 0.8955 0.8424 0.0554 0.1315 0.9335 0.9066 0.7575 

NN 0.0247 0.1585 0.9557 0.9084 0.8218 0.0397 0.1651 0.9450 0.8976 0.7745 0.0909 0.1191 0.9050 0.8950 0.6898 

 

 
Table 5-3.  

URL Features Produced High Detection Metrics with 41  

Identified URL Features in Sampling Scenarios (cont.) 

Model Performance (41 Identified URL Features) in Sampling Scenarios 

Model 

No-sampling Over-sampling Under-sampling 

Prec Rec Prec Rec Prec Rec 

KNN 0.9748 0.7348 0.6683 0.8641 0.8168 0.8210 

LR 0.8998 0.7545 0.6822 0.8831 0.6724 0.8758 

RF 0.9497 0.8005 0.9254 0.8071 0.7506 0.8707 

AB 0.8961 0.7436 0.7458 0.8144 0.6197 0.8772 

GB 0.9151 0.7801 0.8328 0.8115 0.7191 0.8736 

ET 0.9487 0.7976 0.9404 0.8071 0.7501 0.8772 

Bag 0.9307 0.7947 0.9304 0.8013 0.7290 0.8685 

NN 0.8539 0.8414 0.7828 0.8349 0.6242 0.8809 
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Without sampling, the average MCC was 0.8245. When over-sampling, the 

average MCC was 0.7862. In the under-sampling case, the average MCC was 0.7431. 

Throughout various sampling scenarios, this method showed promise for malicious 

website detection.  

We also explored the model performance with transformed features created from 

the process in Section 3.4.3. We performed feature-transformation for the 41 features in 

order to determine whether we could improve upon the performance (increase the 

average MCC). We transformed the original 41 features into 3,321 features. We then 

performed feature selection on the 3,321 features with the four different techniques from 

Section 3.4.3, resulting in 33 transformed features. 

We also attempted to determine whether PCA could reduce the transformed 

features to a group of components that captured the maximum variance among the data. 

Using a cumulative scree plot, we found that 110 components captured 80.65% of the 

variance in the dataset for 41 identified features (see Figure 5-1). We used these 110 

components in our subsequent analyses to assess their performance detecting malicious 

websites. Results are shown in Tables 5-4 and 5-5. 
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Fig. 5-1.    110 components are created from 41 URL features 

 

 

Table 5-4.  

URL Features Produced High Detection Metrics with 41 identified URL  

Features in Feature Transformation Scenarios 

Model Performance (41 Identified URL Features) with Feature Transformation 

Model 
FT w/FS FT w/PCA 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 0.0169 0.2220 0.9531 0.8805 0.8044 0.0020 0.3908 0.9411 0.8036 0.7467 

LR 0.0164 0.2885 0.9438 0.8475 0.7617 0.0140 0.2257 0.9550 0.8801 0.8117 

RF 0.0138 0.2301 0.9546 0.8781 0.8097 0.0113 0.3185 0.9438 0.8351 0.7591 

AB 0.0170 0.3112 0.9399 0.8359 0.7433 0.0198 0.2827 0.9417 0.8488 0.7536 

GB 0.0160 0.2498 0.9498 0.8671 0.7888 0.0124 0.2535 0.9523 0.8671 0.7990 

ET 0.0160 0.2264 0.9532 0.8788 0.8044 0.0055 0.3740 0.9406 0.8102 0.7434 

BC 0.0148 0.2243 0.9546 0.8805 0.8101 0.0132 0.2776 0.9482 0.8546 0.7801 

NN 0.0104 0.2243 0.9583 0.8827 0.8254 0.0232 0.1812 0.9537 0.8978 0.8114 

 

 

Table 5-5.  

URL Features Produced High Detection Metrics with 41 Identified  

URL Features in Feature Transformation Scenarios (cont.) 

Model Performance (41 Identified URL Features) with Feature Transformation 

Model 

FT w/ FS FT w/ PCA 

Prec Rec Prec Rec 

KNN 0.8875 0.7779 0.9811 0.6092 

LR 0.8814 0.7114 0.9044 0.7742 

RF 0.9054 0.7699 0.9120 0.6815 

AB 0.8739 0.6888 0.8614 0.7173 

GB 0.8891 0.7501 0.9116 0.7465 

ET 0.8921 0.7735 0.9511 0.6260 

Bag 0.9000 0.7757 0.9040 0.7224 

NN 0.9275 0.7757 0.8583 0.8188 
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For feature transformation with feature selection, the MCC was 0.7934. With 

feature transformation with PCA, the average MCC was 0.7756. Both show promise that 

our approach can detect malicious websites however, we found that feature 

transformation with feature selection and PCA both worsened the average MCC when 

compared to the no-sampling case. 

We next used dataset sampling to investigate the consistency of our approach and 

its robustness over class imbalance. The MCCs were 0.8245, 0.7862, and 0.7431 for 41 

features identified in our approach, showing slight variation from the no-sampling 

scenario, where the MCC was 0.8245 , to the under-sampling case, where the MCC was 

0.7431. The MCC for the over-sampling case was 0.7862. Nevertheless, all three 

scenarios still showed promise for malicious website detection.  

We observed slight disparities in model performance across the sampling 

scenarios and observed that the set of the top six most important features were consistent, 

accounting for 0.6170, 0.5063, and 0.5947, respectively, of cumulative importance in the 

no-sampling, under-sampling, and over-sampling scenarios. 

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our 

Results? 

In this step, we investigated the impact of hyperparameter tuning and cross-

validation on our results. We performed hyperparameter tuning and cross-validation on 

our dataset and re-evaluated our models with a 70:30 split of train to test data instead of 

the initial 80:20 split. Doing so ensured that our models were not overfit and that they 

had the potential to improve our models. Furthermore, this reinforced that our 

observations were not dependent on the initial 80:20 split of data. 
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We performed hyperparameter tuning and cross-validation on the best performing 

models in each scenario – no-sampling, over-sampling, under-sampling, feature 

transformation with feature selection, and feature transformation with PCA. In the 80:20 

case, all five models improved, but the average MCC only increased from 0.8258 to 

0.8343, suggesting consistency of the results in Tables 5-2, 5-3, 5-4, and 5-5 even when 

we tuned the parameters and performed cross-validation. 

In the 70:30 case, tuning and cross-validation improved three of the five models 

for the 70:30 split, but the average MCC only increased from 0.8303 to 0.8399. Without 

tuning and cross-validation, the average MCC was 0.8303 and 0.8258, respectively, with 

the 70:30 and 80:20 splits. With tuning and cross-validation, the average MCC was 

0.8399 and 0.8343, respectively, with the 70:30 and 80:20 splits. The small difference 

between results in the different splits suggested that we were not dependent on the 

train/test split. Results are shown in Table 5-6 below. 

 
Table 5-6.  

Cross-Validation and Hyperparameter Tuning Slightly  

Improved URL Models 

Cross-Validation and Hyperparameter Tuning URL Models 

Model Scenario – Split MCC Scoring Metric 

ET No-sampling - 70:30 0.8655 balanced accuracy 

ET Over-sampling - 70:30 0.8596 balanced accuracy 

KNN Under-sampling - 70:30 0.8236 precision weighted 

NN FT w/ FS - 70:30 0.8382 accuracy 

LR FT w/ PCA - 70:30 0.8124 recall weighted 

RF No-sampling - 80:20 0.8572 recall weighted 

ET Over-sampling - 80:20 0.8567 balanced accuracy 

KNN Under-sampling - 80:20 0.8163 precision weighted 

NN FS w/ FT - 80:20 0.8303 accuracy 

LR FS w/PCA - 80:20 0.8107 precision weighted 

 

 

In Research Question 4 (three of 13), we determined two ways of validating our 

results. First, we performed hyperparameter tuning and cross-validation. Secondly, we 
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rebuilt and performed hyperparameter tuning and cross-validation on our eight models on 

a 70:30 split of the data. While we observed improvement after performing 

hyperparameter tuning and cross-validation, the improvement was small. 

 Conclusion 

This chapter included a comprehensive evaluation of URL features for assessing 

whether additional URL features improve malicious website detection. We analyzed 

URL data from 6,894 malicious and 39,877 benign websites. We based our dataset of 

malicious websites on those identified by Cisco Talos and based our dataset of benign 

websites on the Alexa Top 1M. We collected 28,162 URL features from these websites 

and identified 41 for further analysis, including five newly identified features. We applied 

eight models and ensured robustness of our methodology by using three sampling 

scenarios – no-sampling, over-sampling and under-sampling. 

Among the 41 features, the top six were consistent across the sampling scenarios 

and accounted for approximately 55% of the total feature importance. Also, we found the 

count of individual characters to be of importance in malicious website detection, 

accounting for an average importance value of approximately 35% over the three 

sampling scenarios. Lastly, we observed that counting the number of words of a given 

length may be an additional useful feature for malicious website detection. 
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Chapter 6:  HTTP Features Analysis 

 Introduction 

This chapter includes a comprehensive evaluation of an HTTP header-only 

approach to malicious website detection aimed at assessing whether additional HTTP 

header features can improve malicious website detection. Our contributions in this 

chapter are listed below. 

• We demonstrated the potential of using HTTP header features alone as a 

means of detecting malicious websites. 

• We introduced 11 new HTTP header features not previously considered as 

aiding in the detection of malicious websites. 

• Eight of the 22 features, three of which were newly identified by our 

approach, ranked as the most important features and represented 80% of 

feature importance. 

• The average MCC for the selected 22 features was better than the average 

MCC for the 11 previously studied features across our three sampling 

scenarios. 

• We found that applying PCA to the 22 selected features improved malicious 

website detection.  

 Related Research 

Features gathered over a session have been used to identify malicious websites 

and traffic. Authors [77] gathered features from HTTP requests and responses over a 

session and combined them with non-HTTP features in an attempt to detect malicious 

webpages. Authors [40], [49], and [81] took similar approaches, combining non-HTTP 
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features with specific metadata gathered from the interaction with a website. These 

approaches obtained detection rates of up to 96%. Researchers [212] used the Content-

Type header as a means of distinguishing between different types of HTTP traffic, while 

[213] used HTTP application level features to distinguish different attack classes in 

traffic to their honeypot. These approaches demonstrate that specific HTTP features show 

potential for identifying malicious activity. However, prior researchers limited 

themselves to a small list of features or required additional non-HTTP features to achieve 

their performance metrics. With Phishmon, researchers [83] considered all HTTP headers 

as potential features, but used lengths of the respective headers.  

Other approaches demonstrated that HTTP traffic generated by malware can be 

used to build signatures or fingerprints for detection. Authors [75]-[76] clustered the 

HTTP communications generated to and from HTTP-based malware on their testbed to 

create signatures. Brezo et al. [79] recorded HTTP traffic over a session and produced a 

list of the influential features for malicious traffic identification that consisted of TCP and 

HTTP features. They found the Content-Length header to be of importance. ARROW, 

by [78], generated signatures from redirect chains captured in HTTP traces. Kheir et al. 

[55] clustered HTTP traffic in order to classify the C2 communications. With BotHound, 

[82] found that malicious communications may have similar User-Agent strings in 

requests. Generating signatures or fingerprints for malicious HTTP communications 

was also used in [80], [162], [212], [214]-[215]. 

 Research Questions 

We created four research questions aimed at exploring the effectiveness of our 

approach and the header features we identified as features for malicious website 
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identification. With these four questions, we focused on using HTTP headers as the sole 

source of features for detection of malicious websites. 

 Research Question 1 

With our first question, we compared the features identified in our approach with 

those gathered from prior research. Previous researchers used HTTP headers to detect 

malicious websites, but their use is limited. Furthermore, we did not consider session-

based features, focusing instead on features extracted from the HTTP responses 

headers. While no definitive list of HTTP headers and features to use for malicious 

website detection exists, we created an approach designed to create such a list. 

Additionally, researchers have identified a select few HTTP header features for actual use 

in detecting malicious website detection. We hypothesized, however, that with our study 

of 672 features, many of which had never been explored for purposes of malicious 

website detection, we could identify new important features for the identification of 

malicious websites. To that end, we compared the header features identified by our 

approach with the header features used by previous authors. Research Question 1 is stated 

as follows: 

RQ1:  How do the features identified compare with prior research? 

 Research Question 2 

With RQ2, we investigated whether the incorporation of these new features would 

improve malicious website detection. To accomplish this, we compared the MCCs with 

and without the additional 11 features identified in this work. We also built models with 

transformed features created from performing feature transformation techniques with 
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feature selection and with PCA, further comparing the respective MCCs. RQ2, then, is 

stated as follows: 

RQ2:  Do the additional features identified improve malicious website detection? 

 Research Question 3 

We focused RQ3 on the consistency of our approach in sampling scenarios. In 

other words, we sought to determine whether our approach yielded consistent results in 

the cases of no-sampling, over-sampling, and under-sampling of our dataset. We, like 

other security researchers, worked with an imbalanced dataset. In this question, we 

analyzed how our models performed in the no-sampling, over-sampling, and under-

sampling cases. RQ3 is stated as follows: 

RQ3: Do our results change with no-sampling, under-sampling, and over-

sampling scenarios? 

 Research Question 4 

We used RQ4 to enable our exploration of additional tuning methods to our 

results. Although we were working with a single dataset, we intended to evaluate and 

include additional methods that would give our results more credence. Our fourth 

research question is stated as follows:  

RQ4: Does hyperparameter tuning and cross-validation improve our results? 

 Feature Consideration 

 Extractable HTTP Features 

Previous researchers have used HTTP traffic to identify and detect malicious 

websites, using two approaches. First, they applied HTTP traffic characterization, which 

involves the recording of HTTP traces and other features from known malicious websites 
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or from malware communicating with malicious websites. Although this approach has 

been used in bot detection, it requires additional dependencies and additional setup 

compared to the methodology we used for this research. HTTP traffic characterization 

also presents challenges of combining HTTP trace features with the other features studied 

in this research. 

Previous researchers also employed a second method of exploiting HTTP traffic 

for detecting malicious websites – they used specific HTTP headers as part of a larger set 

of features. Although HTTP headers have been used in feature sets for malicious website 

detection, few researchers have emphasized HTTP headers, and none, to our knowledge, 

have used them outside of a “flow-based” method. We hypothesized that the lack of 

inclusion of HTTP headers in malicious website identification has resulted from the fact 

that HTTP header analysis is messy. First, while headers are specified in the HTTP 

specification, they also can be defined by users. Secondly, since the values in the HTTP 

headers can vary significantly, the process of researching and recording the possible 

values for headers is a tedious one. Lastly, in the process of collecting our HTTP headers, 

we observed that the values and the names of the headers frequently contained 

inconsistencies or misspellings that necessitated a pre-processing step. For example, we 

noticed the presence in our collection of two HTTP headers: Accept-Encoding and 

Accept-encoding. These headers are the same header but would be viewed as unique 

values without an additional pre-processing step because of the capitalization difference. 

There are other differences among headers as well, including misspellings of specific 

headers. 
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 HTTP Feature Collection 

An HTTP header is a key-value pair within an HTTP request or response, 

both of which may contain multiple headers. The example below shows the HTTP 

request headers generated during a web request. Bolded items are the header names 

(keys), while non-bold items are the corresponding values. We use the symbol “…” to 

indicate places where values were truncated due to length. 

Accept                       */* 

Accept-Encoding gzip, deflate, br 

Accept-Language en-US,en;q=0.5 

Authorization SAPISIDHASH 1550122185_7937eb6... 

Connection keep-alive 

Content-Length 3878 

Content-Type application/json 

Cookie 
YSC=b-ooV1KIyCk; 

VISITOR_INFO1…4555ce3QEAAAAdGxpcGn7+2... 

 

 

For commonly used headers, please refer to MDN [206]. HTTP responses have 

a similar structure of key-value pairs. In this portion of the study, we performed a GET 

request to the selected websites, recording the headers present in the response. We 

only considered response headers.  

HTTP feature collection took place in August 2018. We used the Python 

requests library [216] to make GET requests to the websites and collected HTTP 

features in the associated response. Upon receiving responses, we parsed and 

recorded the headers and values. The collection included features defined in the HTTP 

specification as well as custom headers defined by specific websites. We then examined 

the HTTP specification to determine whether the headers had a finite group of values. For 

example, the Content-Security-Policy header can have a finite group of directives 

in the header’s value. Based on those directives, we collected additional features that 

captured whether the specific directive was present in the header. Another group of 
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features we gathered was defined by key-value pairs, which exist in the directives of 

certain headers. The example below shows a possible Cache-Control header. 

Cache-Control: public, max-age=31536000 

The public directive indicated that the response might be held in any cache, and 

the max-age directive was set to 31,536,000 seconds. Our method captured both of these 

features. Overall, data collection resulted in a total of 672 HTTP features.  

 Learning, Feature Selection, and Sampling Techniques in HTTP Header 

Analysis 

 Feature Selection 

After collecting the 672 HTTP header features, we analyzed which of the features 

had strong association with the dependent variable (i.e., whether the website was 

malicious), eliminating any redundant features (i.e., those that had no relationship or a 

weak relationship with the dependent variable). We followed the process in Section 3.4.3. 

First, we removed the 399 features for which all the websites’ HTTP response headers 

had the same value. Next, we removed features specific to our dataset by removing those 

that had the same value at least 95% of the time, thereby eliminating 245 features. We 

then evaluated the remaining 28 features to identify those features that had a high 

multicollinearity. Removing features with high multicollinearity ensured that we 

analyzed a set of independent features. Collinearity can be quantified by the VIF [177]. 

First, we determined the VIF values for each feature. We then iteratively identified 

features that had a VIF > 5, per [179]. Among our list of features with a VIF > 5, we 

determined which of the features had similar VIF values and high correlations to one 

another. We defined high correlation as having a correlation of greater than 0.7, as in 
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[180]. Among the highly correlated features with similar VIF values, we then removed 

those with the highest VIFs from our feature set, leaving us with final set of 22 features. 

 Machine Learning Models, Sampling, and Feature Transformation 

We created two feature sets, the first of which included the 22 features identified 

by our approach and the second of which consisted of the 11 features identified in our 

approach that had also been studied in prior research. We evaluated the feature sets 

against eight different supervised classifiers discussed in Section 3.4.1, recording their 

performance metrics. For all models, we split training and testing data using an 80:20 

split, which is a common train/test split. Our dataset was imbalanced, with 39,835 benign 

websites and 6,021 malicious websites. To address the imbalance and to ensure that our 

results were not a product of our benign-to-malicious split, we trained the models using 

different samples of the benign and malicious datasets. Specifically, we performed no-

sampling, under-sampling, and over-sampling of the training dataset, which yielded three 

different training datasets that we used to evaluate models.  

For no-sampling, we used 31,853 benign websites and 4,831 malicious websites 

in our training set. For under-sampling, we used the full set of malicious websites in the 

training set and selected a subsample from the benign websites to arrive at a training set 

of 4,831 malicious and benign websites respectively. For over-sampling, we derived a 

balanced training set of 31,853 benign websites and 31,853 malicious websites. The 

websites used in the testing set remained consistent across all models and sampling 

approaches so that we could compare results. Training and testing datasets did not 

overlap. Figure 3-3 provides a summary of the feature transformation and sampling 

techniques.  
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 Results 

 RQ1: How do the Features Identified Compare with Prior Research? 

With RQ1, we investigated whether our approach identified previously studied 

HTTP headers as important. To do so, we leveraged our four ensemble methods (RF, AB, 

ET, and BC), all of which captured the notion of feature importance – a normalized 

metric between 0 and 1.0 for each respective feature. Table 6-1 below displays the top 22 

features, along with their respective rank in the no-sampling, over-sampling, and under-

sampling cases and their respective header fields. That is, the “Feature” column specifies 

the header and, in some cases, specifies the value of that header. For example, content-

encoding gzip specifies that the header content-encoding has a value gzip. The 

shaded rows are the new headers identified by our approach, while the unshaded rows 

indicate the headers gathered from previous scholarship. The ranking and respective 

importance values are separated by a “:” in the data columns. Table 6-2 shows the 

rankings from header features from prior work. 
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Table 6-1.  

The Top 8 Identified HTTP Header Features Accounted for 81.62% of Importance 

22 Identified HTTP Header Features Ranked 

Feature No-sampling Over-sampling Under-sampling 

content-length 1 : 0.3313 2  : 0.2208 1 : 0.2531 
content-encoding gzip 2 : 0.2070 1 : 0.2512 2 : 0.2528 
transfer-encoding chunked 3 : 0.0808 4  : 0.0862 3 : 0.0930 
content-type text/html 4 : 0.0746 6 : 0.0388 8 : 0.0272 
vary accept 5 : 0.0487 3 : 0.0904 4 : 0.0694 
server apache 6 : 0.0408 7 : 0.0375 5 : 0.0400 
cache-control max-age 7 :0.0263 5 : 0.0487 6 : 0.0386 
connection keep-alive 8 : 0.0250 8 : 0.0280 7 : 0.0383 
cache-control no-store 9 :0.0219 12 :0.0187 11 : 0.0204 
pragma no-cache 10 : 0.0213 10 : 0.0213 9 : 0.0271 
server nginx 11 : 0.0202 9 :0.0226 10 :0.0207 
cache-control private 12 : 0.0136 15 : 0.0170 13 : 0.0150 
expect-ct max-age 13 : 0.0135 14 : 0.0171 17 : 0.0104 
x-content-type-options nosniff 14 : 0.0132 19 : 0.0099 22 : 0.0048 
connection close 15 : 0.0129 20 : 0.0093 18 : 0.0093 
cache-control must-revalidate 16 : 0.0122 16 : 0.0118 16 : 0.0118 
via 1.1 17 : 0.0094 11 : 0.0189 14 : 0.0138 
vary age 18 : 0.0089 18 : 0.0102 12 : 0.0150 
cache-control no-cache 19 : 0.0074 17 : 0.0102 19 : 0.0091 
strict-transport-security max-age 20 : 0.0052 13 : 0.0189 20 : 0.0090 
x-xss-protection 21 : 0.0041 22 : 0.0059 15 : 0.0121 
cache-control public 22 : 0.0017 21 : 0.0072 21 : 0.0089 

 

 
Table 6-2.  

The Top 3 HTTP Header Features from Prior Research Were Consistent  

in Sampling Scenarios 

11 HTTP Header Features from Prior Research Ranked 

Feature No-sampling Over-sampling Under-sampling 

content-length 1 : 0.4473 1 : 0.3585 1 : 0.3753 
content-encoding gzip 2 : 0.2277 2 : 0.3077 2 : 0.3481 
content-type text/html 3 : 0.1653 3 : 0.0999 3 : 0.0949 
server apache 4 : 0.0485 5 : 0.0561 4 : 0.0522 
cache-control max-age 5 : 0.0242 4 : 0.0621 5 : 0.0375 
server nginx 6 : 0.0236 6 : 0.0368 6 : 0.0245 
cache-control no-cache 7 : 0.0183 8 : 0.0184 8 : 0.0150 
cache-control private 8 : 0.0148 7 : 0.0213 7 : 0.0150 
cache-control no-store 9 : 0.0135 9 : 0.0142 9 : 0.0134 
cache-control must-revalidate 10 : 0.0085 11 : 0.0118 10 : 0.0121 
cache-control public 11 : 0.0083) 10 : 0.0132 11 : 0.0120 

 

 

6.6.1.1 Features Identified in Previous Works  

Researchers [40], [49], [75], [79] used content-length and content-

encoding headers in their research on malicious websites and behavior, with content-

length being a measure of the length in bytes of the content of the HTTP request or 

response. The content-length header is especially descriptive because there can be 
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great variation in this feature and there is no standard maximum content-length for 

responses. Content-encoding specifies the compression scheme used for the 

content of the HTTP requests. Gzip, compress, deflate, identity, and br are all 

different types of encodings, but the identity value indicates no compression of the 

content. Compression or zipping is a well-known technique for preventing security 

scanners from flagging on signatures in the content. Security scanners will raise an alert 

if incoming or outgoing content matches on a known malicious pattern, also referred to as 

a signature. We observed that the gzip encoding is of particular importance as noted in 

Table 6-1 and is studied with other zipped encodings by [40]. We were not surprised by 

its inclusion in the list of HTTP header features that are important for malicious website 

detection. The content-length header and the gzip value of content-encoding 

are ranked highly in all three cases, further validating their importance and inclusion in 

prior and future work. Tao et al. [77] used the content-type header in their HTTP 

feature set gathered over a session. 

Further review of this list showed a large number of cache-control directives 

(six of 22) present in our list. The cache-control header specifies details about the 

caching mechanisms and can be present in HTTP requests and responses. In total, 

the six cache-control directives (max-age, no-store, no-cache, must-

revalidate, and public) hovered around the middle of our rankings, with max-age 

being ranked as high as 5th in the under-sampling case and public and as low as 22nd in 

all three cases. In our literature review, we found that [212] examined the cache-

control header, though it was not heavily used elsewhere. Since six of the top 22 

features were related to the cache-control header, we validated the need to collect the 
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cache-control header and further found that six specific directives can be used to 

detect malicious websites and should be included in further studies.  

In addition, we found that features specified in the server header can help detect 

malicious websites. In practice, the use of the server header is not recommended, since 

it could leak information about the website to the benefit of attackers. The inclusion of 

the server header in a response does not necessarily show a positive correlation to a 

website being malicious, but our work showed that the server header should be 

collected and that certain details about the server (whether it is an apache and nginx 

server) can help detect malicious websites. This validates the inclusion of the server 

header used in previous work [49] as a detector of malicious websites.  

6.6.1.2 New Features Identified 

The transfer-encoding header with the value chunked is viewed as a simple 

way to evade security scanners and its presence on this list of HTTP header features for 

malicious website identification is justified. This feature has not been studied in previous 

works, but is ranked highly in all sampling scenarios. The specific value of chunked 

indicates that content will arrive in chunks, thus making it harder to signature. To build 

intuition, consider the challenge of a security scanner that must piece together various 

chunks of data in order to make a determination on whether or not the content is 

malicious or hits a security signature. Having chunked data can make this problem more 

challenging. 

The vary header, including a value of accept and the value of the age directive, 

are on our list, the former being highly ranked in all three scenarios with rankings of 5, 3, 

and 2, respectively, for no-sampling, under-sampling, and over-sampling. The vary 
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header describes behavior of the HTTP cache and tells the HTTP cache on the client 

which fields should be extracted from the response versus those that can originate from 

the HTTP cache. In our experiment, we found that vary specified the accept and age 

headers in our top 22, though the value of accept was consistently highly ranked. This 

header is also somewhat unique because its fields specify additional headers that should 

be processed differently by the client. 

The via header with a value of 1.1 was also flagged for further investigation, 

though it did not appear in previous works and was not necessarily mapped to a known 

threat. The via header describes proxy behavior in several ways. In our experiment, the 

1.1 indicated the protocol version of HTTP. Although proxies are known to be used in 

malicious activity, the evidence from this experiment was not strong enough to conclude 

that this was the case. Nevertheless, the via header, if equal to 1.1, should be collected 

during future work with a focus on the protocol version, despite the fact that these values 

are not associated with a well-known threat or technique. 

The inclusion of the pragma header in our list was of particular interest. Its value 

of no-cache did not rank very high, but it is a general header for HTTP/1.0 (not the 

current version) and its behavior, when present in responses, is not defined in the 

HTTP specification. To our knowledge, this header and its respective values are not 

associated with any known threat, but we recommend its use and further exploration 

since it represents an unpredictable part of the HTTP specification (undefined behavior 

when included in response headers) and was on our list of 22 features. 

The keep-alive and close values for the connection header indicate 

whether or not the connection is to be kept open or closed and are not linked to any 
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known threats that we have identified. However, their importance is noted and they 

should be studied further. 

The expect-ct header is another header used for defensive purposes, and max-

age is a specific directive for this header. This header specifies that the browser checks 

the website’s certificate to ensure that it is listed in the public Certificate Transparency 

logs. This header is set by the server requested. Because of the appearance of this header 

in our list, we recommend that it be examined and that the max-age directive be included 

in future feature sets. The presence of the strict-transport-security header 

informs the browser that the website should only be accessed over HTTPs and not over 

HTTP. The presence of the x-xss-protection header tells the browser to stop loading 

the page if the browser detects a cross-site scripting attack. The x-content-type 

header with value of nosniff tells the browser not to attempt to interpret the 

multipurpose internet male extension (MIME) type sent. Older browsers would attempt 

“MIME sniffing,” where the browser would attempt to interpret the content and 

execute/render the contents. Doing so enables attackers to lie about the content type as a 

mechanism for hiding malicious code and objects. With the nosniff value in the x-

content-type header, attackers cannot lie about the content type because the browser 

will not render or execute a content type if it detects a different type than the type 

specified. 

6.6.1.3 Features Ranking Analysis 

We observed that the top two features, both of which were prevalent in prior 

research, had an importance much higher than the remaining 20 features (content-

length had an importance of 0.33 and content-encoding gzip had an importance 
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of 0.21 without sampling) both with and without sampling. We also observed that the 

feature rank and importance were similar when considering over-sampling or under-

sampling. We also observed that the top eight features were the same with and without 

sampling. The cumulative importance of these eight features was 0.83, 0.80 and 0.81 for 

no-sampling, over-sampling and under-sampling, respectively.  

Table 6-2 provides the feature rank and importance for the 11 features gathered 

from prior research. Compared to the 22 features, the first two features had higher 

importance (0.45 instead of 0.33 and 0.23 instead of 0.21) in the case of no-sampling. 

The combined feature importance for the top two features ranged from 0.66 to 0.72 for 

no-sampling, over-sampling, and under-sampling. As for the 22 features on our list, the 

feature rank and importance were similar when considering over-sampling or under-

sampling. We also observed that the top five features were the same with and without 

sampling. The overall importance of these five features was 0.91, 0.88, and 0.91 for no-

sampling, over-sampling, and under-sampling, respectively. 

Overall, we identified 11 features that, to the best of our knowledge, have not 

been used for malicious website detection. The other 11 we identified have been used by 

prior researchers. The new features accounted for roughly a third of overall feature 

importance (32%, 31.55%, and 30.24% in the no-sampling, over-sampling, and under-

sampling scenarios, respectively). 

 RQ2: Do the Additional Features Identified Improve Malicious Website 

Detection? 

We went on to investigate model performance for the test dataset when using the 

no-sampling, under-sampling, and over-sampling. We compared the results of using our 
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expanded feature set of 22 features to the results of using the 11 features previously 

identified from prior research. Tables 6-3 and 6-4 provide the FPRs, FNRs, ACCs, 

AUCs, Precs, Recs, and MCCs. Tables 6-5 and 6-6 show these metrics for the feature 

transformation cases. We focused on the MCC to drive the discussion regarding our 

results. The best result in each column is bolded. A “/” separates the metric for models 

built with the 11 features from that of the models built with the 22 features. 
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Table 6-3.  

Identified HTTP Header Features Outperformed Features from Prior Research inn Sampling Scenarios 

Model Performance (11 HTTP Header Features from Prior Research / 22 Identified HTTP Header Features) in Sampling Scenarios 

Model 
No-sampling Over-sampling Under-sampling 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 
0.0057/

0.0061 

0.7865/

0.6932 

0.8929/

0.9047 

0.6038/

0.6502 

0.3923/

0.4865 

0.0268/

0.0975 

0.7512/

0.1252 

0.8791/

0.8988 

0.6109/

0.8885 

0.3254/

0.6548 

0.0321/

0.1083 

0.7773/

0.1251 

0.8711/

0.8894 

0.5952/

0.8832 

0.2762/

0.6347 

LR 
0.0774/

0.0840 

0.4537/

0.3302 

0.8737/

0.8839 

0.7343/

0.7928 

0.4563/

0.5367 

0.1795/

0.1644 

0.1621/

0.1058 

0.8227/

0.8431 

0.8291/

0.8648 

0.5012/

0.5595 

0.1789/

0.1647 

0.1596/

0.1126 

0.8235/

0.8420 

0.8307/

0.8613 

0.5037/

0.5546 

RF 
0.0965/
0.0819 

0.1336/
0.1470 

0.8986/
0.9096 

0.8848/
0.8855 

0.6510/
0.6714 

0.1166/
0.1166 

0.1033/
0.0882 

0.8850/
0.8870 

0.8900/
0.8975 

0.6349/
0.6451 

0.1290/
0.1319 

0.0966/
0.0815 

0.8751/
0.8746 

0.8871/
0.8932 

0.6187/
0.6243 

AB 
0.0828/
0.0808 

0.3226/
0.2638 

0.8860/
0.8954 

0.7972/
0.8276 

0.5449/
0.5920 

0.1787/
0.1552 

0.1176/
0.1151 

0.8291/
0.8499 

0.8517/
0.8648 

0.5324/
0.5662 

0.1716/
0.1593 

0.1462/
0.1151 

0.8316/
0.8463 

0.8410/
0.8627 

0.5224/
0.5604 

GB 
0.0793/

0.0794 

0.2823/

0.1983 

0.8943/

0.9051 

0.8191/

0.8611 

0.5819/

0.6414 

0.1369/

0.1225 

0.1016/

0.1042 

0.8676/

0.8798 

0.8806/

0.8866 

0.6027/

0.6243 

0.1439/

0.1284 

0.0957/

0.1025 

0.8622/

0.8749 

0.8801/

0.8845 

0.5959/

0.6157 

ET 
0.0983/

0.0835 

0.1277/

0.1436 

0.8978/

0.9086 

0.8869/

0.8863 

0.6516/

0.6703 

0.1188/

0.1181 

0.1025/

0.0848 

0.8832/

0.8861 

0.8892/

0.8984 

0.6316/

0.6448 

0.1309/

0.1336 

0.0983/

0.0739 

0.8733/

0.8740 

0.8853/

0.8961 

0.6145/

0.6265 

BC 
0.0953/

0.0811 

0.1235/

0.1445 

0.9010/

0.9105 

0.8905/

0.8871 

0.6603/

0.6748 

0.1192/

0.1170 

0.1016/

0.0882 

0.8830/

0.8867 

0.8895/

0.8973 

0.6315/

0.6445 

0.1280/

0.1424 

0.1016/

0.0789 

0.8753/

0.8657 

0.8851/

0.8892 

0.6169/

0.6095 

NN 
0.0972/

0.0840 

0.2067/

0.1756 

0.8885/ 

0.9040 

0.8905/ 

0.8871 

0.5992/

0.6473 

0.1227/

0.1218 

0.1100/

0.0865 

0.8788/

0.8826 

0.8895/

0.8973 

0.6199/

0.6370 

0.1221/

0.1221 

0.1151/

0.0882 

0.8787/

0.8822 

0.8851/

0.8892 

0.6175/

0.6357 
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Table 6-4.  

Identified HTTP header Features Outperformed Features  

from Prior Research in Sampling Scenarios (cont.) 

Model Performance (11 HTTP Header Features from Prior Research 

/ 22 Identified HTTP Header Features) in Sampling Scenarios 

Model 

No-sampling Over-sampling Under-sampling 

Prec  Rec Prec  Rec Prec  Rec 

KNN 
0.8466/ 

0.8816 

0.2134/ 

0.3067 

0.5803/ 

0.5719 

0.2487/ 

0.8747 

0.5076/ 

0.5461 

0.2226/ 

0.8747 

LR 
0.5126/ 
0.5429 

0.5462/ 
0.6697 

0.4102/ 
0.4476 

0.8378/ 
0.8941 

0.4118/ 
0.4453 

0.8403/ 
0.8873 

RF 
0.5721/ 

0.6081 

0.8663/ 

0.8529 

0.5340/ 

0.5381 

0.8966/ 

0.9117 

0.5106/ 

0.5093 

0.9033/ 

0.9184 

AB 
0.5494/ 
0.5759 

0.6773/ 
0.7361 

0.4238/ 
0.4594 

0.8823/ 
0.8848 

0.4258/ 
0.4529 

0.8537/ 
0.8848 

GB 
0.5743/ 

0.6007 

0.7176/ 

0.8016 

0.4944/ 

0.5215 

0.8983/ 

0.8957 

0.4835/ 

0.5102 

0.9042/ 

0.8974 

ET 
0.5693/ 
0.6043 

0.8722/ 
0.8563 

0.5294/ 
0.5359 

0.8974/ 
0.9151 

0.5066/ 
0.5080 

0.9016/ 
0.9260 

BC 
0.5781/ 

0.6110 

0.8764/ 

0.8554 

0.5289/ 

0.5373 

0.8983/ 

0.9117 

0.5112/ 

0.4908 

0.8983/ 

0.9210 

NN 
0.5488/ 
0.5938 

0.7932/ 
0.8243 

0.5193/ 
0.5276 

0.8899/ 
0.9134 

0.5192/ 
0.5266 

0.8848/ 
0.9117 

 

 

Without sampling, the MCC was higher for all eight models when considering the 

22 features instead of the 11 previously studied features (on average, 0.615 compared to 

0.57). When over-sampling, the average MCC increased from 0.56 to 0.62 when 

considering the set of 22 features instead of the set of 11 previously studied features. 

With over-sampling, the MCC was higher for all eight models when considering the set 

of 22 features instead of the set of 11 previously studied features. When under-sampling, 

the average MCC increased from 0.545 to 0.61 when considering 22 features instead of 

the previously studied 11 features. With under-sampling, the MCC was higher for all 

eight models other than BC when considering the 22 features instead of the 11 previously 

studied features.  

We performed feature transformation on the 22 features to determine whether 

there were combinations of features that improved performance. We used the feature 

transformation process in Section 3.4.3 to transformation the original 22 features were 
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transformed into 946 features. We then performed feature elimination on the 946 features 

using four different techniques from Section 3.4.3 and kept features selected by at least 

three of these techniques, leaving 36 in total.  

We also determined whether PCA could reduce the 946 transformed features to 

some “n” number components while capturing the maximum variance. Using a 

cumulative scree plot, we found that by using 117 components, we were able to capture 

95% of the variance for the 22 features and that by using 56 components, we captured 

95% of the variance. Using these 117 and 56 components, we attempted to see how our 

models performed. Results are shown in Tables 6-5 and 6-6. 
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Fig. 6-1.    22 header features yielded 117 components 

 

 

 
Fig. 6-2.    11 header features yielded 56 components 
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Table 6-5.  

Identified HTTP Header Features Outperformed Features from Prior Research  

in Feature Transformation Scenarios 

Model Performance (11 HTTP Header Features from Prior Research / 22 Identified HTTP Header Features) 

with Feature Transformation 

Model 
FT w/FS FT w/PCA 

FPR FNR ACC AUC MCC FPR FNR ACC AUC MCC 

KNN 
0.0806/ 
0.0912 

0.3705/ 
0.1907 

0.8817/ 
0.8958 

0.7743/ 
0.8590 

0.5137/ 
0.6221 

0.0238/ 
0.0815 

0.6638/ 
0.1521 

0.8931/ 
0.9092 

0.6561/ 
0.8831 

0.4277/ 
0.6688 

LR 
0.0870/ 

0.0776 

0.4058/ 

0.4176 

0.8715/ 

0.8782 

0.7535/ 

0.7523 

0.4734/ 

0.4842 

0.0828/ 

0.0845 

0.4067/ 

0.2176 

0.8751/ 

0.8981 

0.7552/ 

0.8488 

0.4816/ 

0.6169 

RF 
0.0874/ 
0.0909 

0.2831/ 
0.1899 

0.8871/ 
0.8962 

0.8146/ 
0.8595 

0.5641/ 
0.6232 

0.0967/ 
0.0830 

0.1285/ 
0.1462 

0.8991/ 
0.9087 

0.8873/ 
0.8853 

0.6542/ 
0.6696 

AB 
0.0858/ 

0.0031 

0.4117/ 

0.8815 

0.8718/ 

0.8829 

0.7512/ 

0.5576 

0.4715/ 

0.2907 

0.0942/ 

0.0804 

0.1815/ 

0.2075 

0.8944/ 

0.9030 

0.8621/ 

0.8560 

0.6226/ 

0.6327 

GB 
0.0825/ 
0.0908 

0.3142/ 
0.2159 

0.8873/ 
0.8929 

0.8015/ 
0.8466 

0.5516/ 
0.6052 

0.0923/ 
0.0803 

0.1638/ 
0.1689 

0.8983/ 
0.9081 

0.8719/ 
0.8753 

0.6385/ 
0.6599 

ET 
0.0873/ 

0.0910 

0.2823/ 

0.1890 

0.8873/ 

0.8962 

0.8151/ 

0.8599 

0.5650/ 

0.6236 

0.0982/ 

0.0829 

0.1310/ 

0.1462 

0.8975/ 

0.9088 

0.8853/ 

0.8854 

0.6496/ 

0.6699 

BC 
0.0856/ 
0.0907 

0.2848/ 
0.1899 

0.8884/ 
0.8964 

0.8147/ 
0.8596 

0.5665/ 
0.6237 

0.0974/ 
0.0820 

0.1294/ 
0.1487 

0.8983/ 
0.9092 

0.8865/ 
0.8846 

0.6521/ 
0.6700 

NN 
0.0836/ 

0.0907 

0.2949/ 

0.2268 

0.8889/ 

0.8916 

0.8147/ 

0.8596 

0.5634/ 

0.5978 

0.0819/ 

0.0820 

0.2840/ 

0.1789 

0.8918/ 

0.9053 

0.8865/ 

0.8846 

0.5751/ 

0.6492 

 

 
Table 6-6.  

Identified HTTP Header Features Outperformed  

Features from Prior Research in Feature  

Transformation Scenarios (cont.) 

Model Performance (11 HTTP Header Features from Prior 

Research / 22 Identified HTTP Header Features) with Feature 

Transformation 

Model 

FT w/FS FT w/PCA 

Prec Rec Prec Rec 

KNN 
0.5376/ 

0.5694 

0.6294/ 

0.8092 

0.6779/ 

0.6078 

0.3361/ 

0.8478 

LR 
0.5042/ 

0.5277 

0.5941/ 

0.5823 

0.5164/ 

0.5797 

0.5932/ 

0.7823 

RF 
0.5499/ 

0.5704 

0.7168/ 

0.8100 

0.5732/ 

0.6051 

0.8714/ 

0.8537 

AC 
0.5054/ 

0.8493 

0.5882/ 

0.1184 

0.5643/ 

0.5949 

0.8184/ 

0.7924 

GB 
0.5532/ 

0.5627 

0.6857/ 

0.7840 

0.5744/ 

0.6067 

0.8361/ 

0.8310 

ET  
0.5506/ 

0.5703 

0.7176/ 

0.8109 

0.5687/ 

0.6054 

0.8689/ 

0.8537 

BC 
0.5543/ 

0.5710 

0.7151/ 

0.8100 

0.5711/ 

0.6073 

0.8705/ 

0.8512 

NN 
0.5567/ 

0.5596 

0.7050/ 

0.7731 

0.5657/ 

0.5986 

0.7159/ 

0.8210 

 

 

For feature transformation with feature selection, the MCC was higher for the 

models (other than AB), when considering the set of 22 features instead of the set of 11 

previously studied features. When considering the 22 features instead of the 11 
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previously studied features, the average MCC improved from 0.53 to 0.56. However, 

when considering the 22 features, FT w/FS reduced the average MCC from 0.615 to 0.56 

when compared to no feature transformation. 

For FT w/PCA, the MCC was higher for all eight models when considering the 22 

features instead of 11 previously studied features. The MCC average also improved from 

0.59 to 0.65. When compared to no feature transformation, the average MCC improved 

from 0.615 to 0.65. 

When considering the effect of feature transformation on our model performance, 

we found that FT w/ FS worsened the average MCC, while FT w/PCA improved the 

average MCC. Thus, we demonstrated that, compared to the case without sampling and 

without feature transformation, feature transformation with PCA improved the results but 

feature transformation with feature selection worsened them. We observed improvement 

in 38 of the 40 models when adding the new features and postulated that additional HTTP 

header features can improve malicious website detection. 

 RQ3: Do our Results Change with No-sampling, Under-sampling, and Over-

sampling Scenarios? 

In posing RQ3, we addressed the sensitivity of our approach and its robustness in 

dataset sampling. Sampling is important in malicious website classification because 

researchers, ourselves included, work with various datasets that may or may not have 

class imbalance. In other words, there may be more malicious than non-malicious 

websites used in the training and test sets or vice versa. Currently, no standard exists for 

whether or not to perform sampling, nor is there a set standard regarding how much of a 

class imbalance between malicious and non-malicious websites should be present for 
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training and testing malicious website detection models. Hence, exploring whether or not 

sampling had an effect was worthwhile. We compared two parts of our results – the 

feature rankings and the overall performance of our classifiers. 

The features rankings were stable, with the top eight from Table 6-2 and the top 

five from Table 6-3 being the same. The MCC was 0.5671, 0.5599, and 0.5457 for the 11 

features in the no-, over-, and under-sampling cases, and was 0.6150, 0.6220, and 0.6076 

for the 22 features in the no-, over-, and under-sampling cases. Thus, we observed that 

result, feature ranking, and importance, were fairly consistent in the different sampling 

scenarios. 

 RQ4: Does Hyperparameter Tuning and Cross-Validation Improve our 

Results? 

In this last step, we used RQ4 to investigate how we could add additional 

assurance to our approach and evaluated the effect of tuning our models. After 

researching common techniques, we decided to perform hyperparameter tuning and 

cross-validation on our dataset and to re-evaluate our models with a 70:30 split of train to 

test data instead of the initial 80:20 split. By doing so, we could investigate that our 

models were not overfit, we could potentially improve our models, and we could ensure 

that our observations were not dependent on the initial 80:20 split of data. 

We performed hyperparameter tuning and cross-validation on the best performing 

models in each of the five scenarios – no-sampling, over-sampling, under-sampling, 

feature transformation with feature selection, and feature transformation with PCA. In the 

80:20 case, all five models improved, but the average MCC only increased from 0.652 to 

0.657, suggesting validity of the results in Tables 6-3, 6-4, 6-5, and 6-6. 
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In the 70:30 case, tuning and cross-validation improved three of five models for 

the 70:30 split, but the average MCC only increased from 0.653 to 0.655. Without tuning 

and cross-validation, the average MCC was 0.653 and 0.652, respectively, with the 70:30 

and 80:20 splits. With tuning and cross-validation, the average MCC was 0.655 and 

0.657, respectively, with the 70:30 and 80:20 splits. The small difference between results 

in the different splits suggests that we were not dependent on the train/test split. Results 

are shown in Table 6-7. 

 
Table 6-7.  

Cross-Validation and Hyperparameter Tuning Slightly  

Improved HTTP Header Models 

Cross-Validation and Hyperparameter Tuning HTTP Models 
Model Scenario - Split MCC Scoring Metric 

ET No-sampling - 70:30 0.6497 balanced accuracy 

KNN Over-sampling - 70:30 0.6784 precision weighted 

RF Under-sampling - 70:30 0.6414 precision weighted 

RF FT w/ FS - 70:30 0.6301 precision micro 

BC FT w/PCA - 70:30 0.6773 Recall 

BC No-sampling - 80:20 0.6764 f1 weighted 

KNN Over-sampling - 80:20 0.6722 precision weighted 

NN Under-sampling - 80:20 0.6400 Recall 

BC FT w/FS - 80:20 0.6249 f1 weighted 

BC FT w/PCA - 80:20 0.6713 Recall 

 

 

In this fourth research question, we determined two ways of validating our results. 

First, we performed hyperparameter tuning and cross-validation. Secondly, we rebuilt 

and performed hyperparameter tuning and cross-validation on our eight models on a 

70:30 split of the data. We observed that while hyperparameter tuning and cross-

validation improved our results, the improvements were not large. 

 Conclusion 

This chapter detailed our comprehensive evaluation of HTTP header features to 

assess whether additional HTTP header features could improve malicious website 

detection. We analyzed HTTP headers from 6,021 malicious websites and from 39,853 



 

138 

 

benign websites. We used a dataset of malicious websites identified by Cisco Talos and 

used a set of benign websites from the Alexa Top 1M (Dataset 1). We collected 672 

HTTP header features from these websites, identifying 22 for further analysis, including 

11 that were newly identified. We applied eight models, ensuring the robustness of our 

methodology by performing no-sampling, over-sampling and under-sampling. 

Of the 22 features studied, we found eight to be consistently ranked as the most 

important features, representing 80% of feature importance. Of those eight important 

features, three were features identified by our approach. The average MCCs for the 

selected 22 features were consistently better than for the 11 previously studied features. 

When considering the 22 selected features, FT w/PCA increased the MCC. Our results 

indicated the existence of a broader set of HTTP header features that are applicable for 

malicious website detection, beyond those that have been commonly studied by prior 

scholars. In addition, our results showed consistency over various scenarios.  
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Chapter 7: Combined Web Request Features Analysis 

 Introduction 

In this chapter, we present a comprehensive evaluation of discovery of features 

for malicious website detection with webpage content, URL, and HTTP header features 

instead of a priori selection of features. We do so by collecting features from a 

response to a web request. Our dataset (Dataset 1) consists of benign websites from 

the Alexa Top Domains [112] provided by [176]. The malicious websites consist of 

phishing webpages, drive-by downloads, and other malicious websites including 

command and control (C2) URLs provided by the Cisco Talos Intelligence Group [177]. 

We apply a series of feature selection techniques to discover features suitable for 

detection of malicious websites. We investigate their detection performance using 

unsupervised and supervised learning algorithms in various sampling and feature 

transformation scenarios. We compare the detection performance of the discovered 

features to the detection performance provided by features from prior research. Overall, 

we find: 

• The discovery approach identifies features used in prior research, and new 

features and feature combinations; 

• The discovery approach produces features that yield similar (and slightly 

better on average without model tuning and slightly worse with model tuning) 

performance to features from previously published but requires fewer features 

for the same level of performance; and 
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• The discovery approach identifies features that produce better meta-features 

via feature transformation further demonstrating benefits over selecting 

features a priori.  

We make the following contributions: 

• We demonstrated the potential for discovering features for malicious website 

detection by achieving a best-classifier ACC, AUC, MCC, Prec, and Rec of 

98.38%, 0.9464, 0.9174, 0.9555, 0.8982, respectively, with tuning and overall 

averages of 96.62%, 0.9251, 0.8432, 0.8560, and 0.8723, respectively, across 

several machine learning models built with default parameters; and 

• We showed that new features must be discovered and evaluated for their ability 

to detect malicious websites by demonstrating that supervised models built 

from discovered features, 12 of which were newly identified and 22 of which 

had been used in prior research, outperformed models built with features from 

prior research by an average MCC of 0.0208 with 66% fewer features when 

using default parameters. 

 Related Research 

Machine learning has been applied in many cybersecurity studies and has shown 

potential to detect various threats and malicious websites. Three threats are commonly 

detected in prior research – phishing webpages, drive-by downloads, and C2 

infrastructure. 

Ma [35] used the URL structure and host-based properties gathered from other 

sources (IP denylists, WHOIS, domain name properties, and geographic properties) with 

naïve Bayes [96], and LR [92] classifiers. They continued in [36]-[37], using similar 
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features and adding the use of online learning [217] to detect malicious URLs. 

CANTINA [24] relied primarily on features from the webpage content and created 

heuristics, evaluating the framework based upon 100 legitimate URLs from a prior study 

[123] and 100 URLs from PhishTank [113]. CANTINA+ [46] improved upon this 

approach by adding features and training and by testing models built from various 

machine learning methods. The authors relied on subject matter expertise to select 

features and used search engine features derived from search results. Whittaker et al.[42] 

used an LR classifier and used millions of URLs for evaluation. Marchal et al. [91] took 

an approach similar to that of the CANTINA+ authors, gathering 212 features, 

differentiating between languages on the webpage, and analyzing the URL structure more 

than CANTINA and CANTINA+ authors had. Their method used a GB [94] algorithm. 

Phishmon [83] leveraged HTTP header features for their phishing detection mechanism 

and Li et al. [218] used feature transformation to perform better phishing detection. 

JSAND creators Cova et al. [65] identified malicious JavaScript with 10 features 

associated with drive-by downloads. Their approach relied on instrumenting a browser, 

executing the code, and recording the events. Rieck et al. [67] used Cujo to perform static 

and dynamic analysis of JavaScript. The static analysis relied on lexical tokens and the 

dynamic analysis relied on known attack patterns. The sequences from static and 

dynamic analysis were transformed into Q-grams – a sequence of “q” words within the 

code execution – that were then used to train an SVM. Curtsinger et al. [68] used Zozzle 

to perform static analysis by first de-obfuscating the JavaScript and creating features 

from two parts – the context in which it appeared (try/catch block, etc.), and some text. 

They used contexts relevant to malicious JavaScript detection. Features were selected and 
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used to train a naïve Bayesian classifier on 919 malicious entries and 7,976 benign 

samples and achieved a false positive rate of 0.0003% on 1.2 million files. Revolver was 

used to examine the AST created from the JavaScript, to create sequences of nodes, and 

to compare the similarity to known malicious sequences. Researchers [45] used Prophiler 

to detect drive-by downloads with features commonly used in phishing detection 

(webpage content). They trained their model on 787 samples of drive-by downloads with 

HTML elements, static JavaScript features, URL features, and features from DNS. Zhang 

et al. [78] used Arrow to detect drive-by downloads with HTTP traces pulled from logs 

instead of from the JavaScript. JavaScript analysis was the source of features used in 

studies to detect drive-by downloads, though researchers also have used other features 

commonly associated with phishing detection. 

Authors in [75]-[76] performed clustering on high-level features (total number of 

HTTP requests, number of GET/POST requests, response lengths, etc.) and on 

lower-level features such as specific headers, and creating HTTP traffic clusters to derive 

signatures for C2 (bot) URLs. Researchers [80] used ExecScent which focused on 

clustering requests and built templates for detection from HTTP traffic clusters, and 

derived signatures from the URL path length, query component, user-agent string, and 

other headers. These features and similar features have been used in other studies as well, 

with [55] using them to compare distances of clusters of HTTP requests by extracting 

the URL path, URL parameters, and URL method (GET, POST, etc.). Zarras et al. [82] 

used header chains (sequences of HTTP headers) for their detection method, creating 

signatures from clustering. Researchers [219] also aimed to detect bots and gathered 

“flow-based” features (extracted from network traffic) over a period of time to do so. 
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Yadav et al. [209] sought to detect DGAs [53] by examining features purely from domain 

names.  

Although researchers aimed to detect differing threats, some were able to detect 

multiple threats with various types of features. For example, [47] used features to detect 

phishing webpages and drive-by downloads, while [49] selected various feature types – 

webpage content, flow-based features, URL features, etc. – and leveraged [220] as their 

dataset. 

 Research Questions 5–7 

 Research Question 5 

 Prior studies have relied on preconceived notions of relevant (a priori) features – 

URL length, <iframe>s, etc., for detection. This reliance has demonstrated success 

however attacks change over time [221], as do the technologies used by attackers and as 

well as developers of benign websites. There is a need to re-evaluate the features used to 

detect malicious websites. For example, HTML5 [222], released in 2014, introduces new 

tags (elements). Hence, features that were new to HTML5 could not have been included in 

research prior to 2014. Additionally, there are techniques such as feature selection [50] that 

can be employed to discover features which may be more applicable to the detection of 

malicious websites. RQ5, stated as follows: 

RQ5: Is feature discovery feasible for malicious website detection? 

 Research Question 6 

Even if feature discovery is feasible, there is no guarantee that it is better than 

selecting features a priori. To date, there is little insight into how discovered features’ 

detection ability compares to those from prior research. RQ6, with which we investigated 
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how discovered features performed compared to those gathered from prior research, is 

stated as follows: 

RQ6: How do discovered features’ detection ability compare to those from prior 

research? 

 Research Question 7 

Once we’ve established the feasibility of discovered features and compared their 

detection ability to the detection ability of a priori features from prior research, we then 

investigated operational constraints. A constraint within an operational scenario is that a 

network is exposed to various threats simultaneously. Denylists (among other tools) are 

used to prevent communication with the malicious website. Some prior researchers 

worked successfully to identify specific threats: [91] focused on phishing, [67] focused 

on drive-by downloads, and [75]-[76] focused on detecting C2 infrastructure. In this 

study, we gain insight into whether features could be used to detect a group of threats, 

regardless of their nature.  

Success in an operational scenario also depends on the availability and choice of 

features used. For example, phishing is typically best detected from HTML on a 

webpage, drive-by downloads are best detected by the JavaScript, and C2 infrastructure is 

best detected by the URL structure or HTTP headers. When a user (or service) retrieves a 

malicious website, there may not be information about the type of threat or the relevant 

features for detecting the malicious website. Furthermore, a website could be a phishing 

website, could result in a drive-by download, and could serve as C2 infrastructure. 

Additionally, some features that are useful for detection may not be available in a timely 

manner. DNS information, search engine results, and WHOIS features, for example, all 
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show promise for detection, but we cannot guarantee that these features are available 

when determining whether to block communication with a website. This chapter 

leveraged features derived from the web response, which was derived directly from the 

website. 

It is unclear whether discovering features can be applicable to an operational 

environment. Hence, we arrived at RQ7, stated as follows: 

 

RQ7: Can a discovery approach be applied to several threats when only features 

from a web response are available? 

 Methodology 

Figure 7-1 provides an overview of the seven-step analytical process we used in 

this chapter which can be viewed as a culmination of Chapters 4-6. Images courtesy of 

Pixabay [22]. 
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Fig. 7-1 A process for discovery and evaluation of features for malicious website detection 

 

 

 Dataset Selection 

 Our dataset (Dataset 1) consists of two portions – benign entries from the 39,877 

Alexa top domains, and 6,894 malicious entries provided by Cisco Talos Intelligence 
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download, and C2). Both datasets are provided by external organizations and are not hand-

selected or created for the purpose of this study.  

Because we obtained the dataset of malicious websites from a third party, we 

exerted no influence over its size. To select a size for the benign dataset, we first 

surveyed prior research. Dataset sizes varied widely in prior scholarship. Researchers 

[68] used 919 malicious entries and 7,976 benign samples in their training and they 

evaluated their method on 1.2 million files. On the other hand, authors [91] used 1,213 

malicious samples and 5,000 benign samples in their training and used 1,553 entries in 

their testing set. For this research, we made the decision to select 39,877 entries for our 

benign dataset. Both small and large datasets have their own respective advantages, with 

smaller datasets allowing for focus and deeper analysis of a few samples, and larger 

datasets potentially being more representative. In order to account for the dataset 

imbalance, we performed sampling which is discussed in Section 7.4.4. 

 Features for Malicious Website Detection 

This chapter leveraged features from Chapters 4-6. Please refer to Chapters 4-6 

Sections 4.4, 5.4, and 6.4 for complete details. 

 Feature Collection, Selection, and Transformation 

7.4.3.1 Feature Collection 

We performed feature collection in August of 2018, recording the content and the 

HTTP headers from GET requests and discarding entries for which the GET requests 

failed. We retrieved 34,742 entries from among the top 39,877 domain names in the 

Alexa Top 1M and retrieved 4,441 entries from among the 6,894 Cisco Talos entries. 

Failed requests were due to causes including: timeouts, firewalls blocking our IP 
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address, or the web URL no longer being valid (more prevalent in the malicious dataset). 

We collected 46,580 features in total – 28,162 derived from the URL, 17,746 derived 

from the webpage content, and 672 derived from the HTTP response headers.  

7.4.3.2 Feature Selection 

We split our dataset into two portions – a training set (80% of total data), and a 

testing set (20% of total data). The training set is used for feature selection and model 

building, and the testing set is placed aside for evaluation. To perform feature selection 

we used the feature selection process with XgBoost described in Section 3.3.2 and the 

initial steps yielded a list of sets each containing three elements - a threshold ‘thresh,’ 

number of features ‘n,’ set of features ‘f,’ and an accuracy. Our goal was to achieve the 

best performance with few features. Thus, we iterated through the sets consisting of 

threshold, number of features, and accuracy (with ‘n’ decreasing) and looked for a 

relative maximum in accuracy. The presence of a relative maximum in accuracy, as ‘n’ 

decreases, is how we determined which set of features to use for detection. We find a 

relative maximum accuracy at n=36 features as shown below. 

Thresh=0.001, n=105, Accuracy: 97.78% 

… 

Thresh=0.006, n=43, Accuracy: 97.72% 

Thresh=0.007, n=36, Accuracy: 97.75% 

Thresh=0.009, n=26, Accuracy: 97.69% 

We calculated the correlation [223] of the features and observed that two features 

had high correlation to other features in the list. We removed the features with high 

correlation and arrived at 34 features. These 34 features are the discovered features. We 

have also identified 99 features used in prior research which are referred to as the 99 a 

priori features. 
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7.4.3.3 Feature Transformation 

Although we have 34 discovered and 99 a priori features to build our detection 

models, we also compared their effectiveness by comparing the detection abilities of 

features they can produce. As such, we performed feature transformation on the 34 

discovered and 99 a priori features to form additional features and evaluate their ability 

to detect malicious websites. We performed two types of feature transformation scenarios 

– feature transformation with feature selection (FT w/FS) and feature transformation with 

principal component analysis (FT w/PCA) from Section 3.4.3 in order to build a better 

understanding of how the discovered features detection ability compares to that of the a 

priori. Both involved first transforming the 34 discovered and 99 a priori features into 

new features which we referred to as the transformed features. Since feature 

transformation produced many features, we then performed feature selection with 

additional selection techniques and dimensionality reduction with PCA respectively to 

generate a smaller set of features (components in the case of PCA) to build our detection 

models. 

Once we transformed the 34 and 99 features, we then performed feature selection 

on the transformed features using four different techniques: Correlation as used in [189], 

Select K Best (scoring function chi-square), Recursive Feature Elimination (RFE), and 

Select From Model in the feature transformation with feature selection case. The choice 

of these techniques is motivated by prior research and current data science techniques. 

We input transformed features created from the addition, multiplication, and division 

transformations into each of these four techniques which produced four sets of features. 

We kept (selected) the transformed features that at least three of these techniques select 
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as relevant. For the feature transformation with PCA case, we performed PCA on the 

transformed features to create ‘n’ components, mixtures, or combinations of variables 

that capture the maximum variance, which are then used to build detection models. By 

using a cumulative scree plot, we identified components that capture maximum variance 

between the features within the data. 

 Sampling 

Our dataset has imbalance, 6,894 malicious websites to 39,877 benign websites, 

which could influence the detection performance of models built in this study. To account 

for this potential impact, we created three sampling scenarios for the training data from 

which we will build supervised learning models no-sampling – training data are used as 

is; over-sampling – malicious websites are over-sampled with the SMOTE technique 

[186] provided by [187] to equal the number of benign websites; and under-sampling – 

benign websites are randomly under-sampled to equal the number of malicious websites. 

 

 Unsupervised and Supervised Learning 

We leveraged unsupervised and supervised learning to build malicious website 

detection models. We captured the ACC, AUC, MCC, Prec, and Rec for each model. We 

focused our discussion on the MCC. 

Unsupervised learning in the form of clustering and anomaly detection is 

commonly used to detect malicious websites and traffic and has been used in prior 

research as in [65] and [75]-[76]. Clustering is more applicable to distinguishing and 

discovering different classes within the data. For example, [80] used clustering to 

distinguish HTTP traffic among different families of malware. Since we have only two 

data classes (malicious and non-malicious), we chose to leverage an anomaly detection 
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approach where benign websites are the normal case and the malicious websites are 

anomalous. We built unsupervised models with default parameters using Autoencoders 

[192] and a One Class SVM  from the 34 discovered features, 99 a priori features, 

transformed features using the FT w/FS technique, and transformed features using the FT 

w/PCA technique. 

We also leveraged nine supervised learning algorithms to detect malicious 

websites because supervised learning is more common: nearest neighbor [111], ensemble 

methods [182], and NNs [183]. The choice of building nine models was motivated by two 

factors. First, we wanted to explore performance of various models built with the 

discovered and a priori features to gain a more thorough understanding of the features’ 

detection ability. Second, we found that [47] leveraged seven different supervised 

algorithms which were combined with a voting [191] algorithm. Of our nine models, five 

are ensemble methods and provide a measure of feature importance [185] based on the 

Gini Impurity: AB [101], ET [97], RF [98],GB, and XGB. Feature importance enabled us 

to examine which features contribute the most to the classification decision and allows us 

to create a ranking of the most importance features for detection. We also built a Voting 

classifier (V) [191] created from the RF, ET, and GB classifiers.  The other three models 

did not provide a measure of feature importance however provided additional insight into 

how the selected features perform across well-known machine learning algorithms and 

enable a more thorough comparison of the two sets of features. They were the BC [184], 

an ensemble method, KNN, a nearest neighbor method, and NNs. When building the 

models, we chose to use the default parameters provided by [29] for the respective 

models in an effort to reduce subjectivity and to be consistent. Our analysis in Sections 
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7.5.2 through 7.5.4  was done on the models built with default parameters. We did 

however, perform hyperparameter tuning and cross-validation where we varied the model 

hyperparameters and adjusted the training and testing data with Kfold [190] validation. 

Doing so attempted to improve our models and provided better insight into their 

performance of the features by lessening the reliance on the initial 80:20 training to test 

split of data. 

 Hyperparameter Tuning and Cross-Validation 

In our last step, we performed hyperparameter tuning and cross-validation on our 

supervised models to improve our models and validate our results built from default 

parameters. We chose the best performing model from each scenario – no-sampling, 

over-sampling, under-sampling, FT w/FS, and FT w/PCA and tuned the hyperparameters 

and performed cross-validation. We used StratifiedKFold [190] for 10-fold cross-

validation [26] and explored several scoring metrics (accuracy, precision, recall) provided 

by [29] when performing Grid Search [224] in our attempt to maximize our performance. 

 For added assurance that our results were not a result of our initial 80:20 train to 

test split, we repeated our training, sampling, and feature transformation approach with a 

70:30 split of training to testing data and again performed hyperparameter tuning and 

cross-validation. We also performed hyperparameter tuning and 5-fold cross-validation 

on the Voting classifier. 

 Results 

 Unsupervised Results 

In the unsupervised case, we observed an average ACC, AUC, MCC, Prec, and 

Rec of 88.72%, 0.8076, 0.5491, 0.7277, and 0.8141, respectively, with discovered 
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features and observed an average ACC, AUC, MCC, Prec, and Rec of 88.39%, 0.7556, 

0.4699, 0.6237, and 0.8264, respectively, with a priori features. Full results are shown in 

Figures 7-2 and 7-3. 

 

 
Fig. 7-2. Autoencoders perform better with transformed features 

 

 

 
Fig. 7-3. One-class SVMs perform well with feature transformation with feature selection  

and perform poorly with feature transformation with PCA 

 

The unsupervised models did not perform well, though we saw improvement (on 

average) when using the discovered features versus the a priori – an average increase in 

MCC of 0.0793. The detection results were not great; hence, we focused most of our 

analysis on supervised methods.  
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 Feature Selection Importance 

Rankings of the 34 discovered features are shown in Table 7-1 in the no-

sampling, over-sampling, and under-sampling scenarios. Shaded rows mark the new 

features. Rank and importance are separated by a “:” character. 
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Table 7-1.  

Feature Selection Identified 22 Features Used in Prior  

Research and 12 that Were New 

34 Discovered Features Ranked 

Feature No-sampling Over-sampling Under-sampling 

Total HTML Tags 1 : 0.1311 1 : 0.1318 1 : 0.1138 

URL Length 2 : 0.1285 2 : 0.0845 2 : 0.0926 

Total Extensions in URL 3 : 0.1137 3 : 0.0717 4 : 0.0622 

Count of ‘w’ character 4 : 0.0734 5 : 0.0575 5 : 0.0563 

Count of ‘.’ character 5: 0.0494 7 : 0.0410 9 : 0.0401 

content-encoding gzip 6: 0.0383 6 : 0.0489 8 : 0.0443 

<a href> relative 7 : 0.0379 21 : 0.0179 13 : 0.0269 

Count of <meta> tag 8 : 0.0322 4 : 0.0590 7 : 0.0499 

<a href> OoD 9 : 0.0301 17 : 0.0212 6 : 0.0499 

server apache 10 : 0.0242 20 : 0.0182 16 : 0.0227 

Count of ‘z’ character 11 : 0.0236 25 : 0.0145 21 : 0.0138 

<link type=”text/css”> 12 : 0.0235 9 : 0.0348 10 : 0.0383 

<img src=”http*”> 13 : 0.0215 24 : 0.0149 32 : 0.0073 

Count of ‘i’ character 14 : 0.0196 15 : 0.0265 22 : 0.0137 

Count of <p> tag 15 : 0.0190 18 : 0.0193 14 : 0.0255 

push()  16 : 0.0178 14 : 0.0273 15 : 0.0236 

Count of ‘l’ character 17 : 0.0168 11 : 0.0318 34 : 0.0070 

url extension is .com 18 : 0.0158 22 : 0.0162 23 : 0.0137 

Count of ‘y’ character 19 : 0.0155 34 : 0.0033 30 : 0.0079 

vary user-agent 20 : 0.0154 27 : 0.0121 27 : 0.0109 

Total href attributes 21 : 0.0146 10 : 0.0339 3 : 0.0739 

<a href=”https*”> 22 : 0.0140 30 : 0.0086 11 : 0.0337 

<link href> OoD 23 : 0.0136 8 : 0.0371 12 : 0.0278 

cache-control max-age 24 : 0.0130 13 : 0.0276 18 : 0.0187 

Count of ‘p’ character 25 : 0.0124 32 : 0.0053 26 : 0.0114 

<form action=”http*”> 26 : 0.0121 26 : 0.0132 33 : 0.0071 

Count of <a> tag 27 : 0.0115 16 : 0.0250 19 : 0.0186 

transfer-encoding chunked 28 : 0.0113 12 : 0.0286 17 : 0.0224 

Count of ‘f’ character 29 : 0.0102 29 : 0.0092 28 : 0.0099 

<script async=”true”> 30 : 0.0090 23 : 0.0160 20 : 0.0160 

via 1.1 31 : 0.0089 28 : 0.0120 24 : 0.0129 

<a href=”http*”> 32 : 0.0087 33 : 0.0042 31 : 0.0077 

Count of <center> tag 33 : 0.0069 19 : 0.0187 25 : 0.0114 

<iframe src=”*..html”> 34 : 0.0063 31 : 0.0083 29 : 0.0081 

 

 

The total number of HTML tags and the URL lengths were consistent across the 

sampling scenarios and accounted for an average 22.7% of total feature importance. Half 

of the features (17 of 34) were from the webpage content and accounted for 43% of total 

feature importance, and, of the webpage content features, only one feature – counts of the 

push() method – was a JavaScript feature. Eleven of the 34 features were URL features 

that accounted for 44% of total feature importance, with the remaining six features being 

HTTP headers that accounted for 13% of total feature importance. Four of the top five 
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features with the highest average importance were URL features (URL length, total 

extensions in the URL, the count of “w” characters, and the count of “.” characters), 

accounting for approximately 31% of total feature importance. Nine of the features were 

HTML features that represented resources via the src or href attributes or other 

attributes that can specify resources. They accounted for 17% of total feature importance. 

Twelve of the 34 features, accounting for 17% of total feature importance, have not been 

studied for their role in malicious website detection.  

The total number of HTML tags was the most important feature and was part of a 

webpage’s content complexity [225]. More content requires additional analysis of 

whether the webpage is malicious and provides added opportunities for placing malicious 

content inside the webpage. For example, a webpage consisting only of text will not 

cause a drive-by download, whereas a page with various links, JavaScript, and other 

resources such as <iframe>s, may enable a drive-by download. The next feature 

identified – URL length – is one that has been frequently used in prior works. This 

feature was not surprising since attackers use “tiny” as well as longer URLs [226].  

URL features, especially the counts of the respective characters in the URL, were 

observed to be helpful for detecting malicious websites. The count of “w” characters, 

along with counts of “z,” “I,” “l,” “y,” and “p” characters, all appeared on our list. There 

were no specific known associations between these characters and malicious URLs, 

though all of the characters, with the exception of “i” and “l,” are infrequently used in the 

English language. The characters “z,” “y,” “p,” and “w” occur 0.27%, 1.77%, 3.16% and 

1.28% of the time, respectively [227]. The characters “i” and “l,” however, have been 

prevalent in Kwyjino malware [209]. Furthermore, features derived from character 
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counts, including ratios, distance vectors, and similarity, have been studied to detect bots 

and C2 URLs [52] when used in conjunction with unsupervised learning techniques such 

as clustering or anomaly detection. Lastly, character counts and related metrics were 

necessary for further study of URLs generated by DGAs. Hence, character counts (and 

features derived from them) were relevant.  

The first HTTP header features we observed have been used in specific attacks 

and included features that describe how data is packaged in a response and how long 

data should be kept by a client. The gzip content-encoding header extracted from 

the HTTP response has legitimate uses, but it can be used to evade network scanners 

[228]. Chunked responses, which also appeared on the list, are similar in that they are 

specified in a response header, they have legitimate purposes, and they can be used by 

attackers [228]. The cache-control header, studied by [49], and max-age directive 

can be used by attackers to require a cache to hold a malicious response for a long 

period, thereby enabling a cache-poisoning attack [229].  

Other HTTP headers appeared on the list and were the server header with a 

value of apache. Apache servers have had many well-known security issues with some 

enabling backdoors (control) for attackers [230]–[234]. The via [206] header is added by 

proxies that have legitimate uses, but also are well-known to be used by attackers [234]- 

[235]. The vary header can be used by requests or responses. When used by 

responses with a value of user-agent, it specifies whether responses will be 

cached based on the user-agent string. This feature is well-known for being 

misunderstood and misused by developers [236]. 
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We also observed many webpage content features related to links and URLs on 

the webpage. The total number of relative links or resources (as opposed to absolute 

links) that point to resources within the page (or relative to the page) is one of the higher 

ranked features, is an extension of features used in [47], and is known to be used by 

attackers. It is also a measure of content-complexity [225]. Using relative links has the 

advantage of decreasing the chances of detection for attackers. For example, if the 

webpage is fetched and successfully loaded, it has gotten past some network-level 

defenses or other security solutions [237]. Furthermore, relative URLs are known to be 

leveraged by attackers. Recently, attackers have used relative URLs [237] to bypass 

Microsoft’s ATP for phishing detection. Additionally, the number of OoD links on the 

page (URLs that are out of the current domain) ranked as a feature. The more links on a 

webpage, the more opportunities for potential malicious URLs, only one of which must 

be effective to cause an infection. We also found that the structure of the URLs on the 

webpage were present in our features. For example, we observed that the protocol (http 

vs https) for certain resource references (such as image, links) helped with detection, 

though they were not highly ranked. The <iframe> is well-known for its ability to detect 

drive-by downloads [59] and we observed that .html files in the <iframe> src 

attribute made the list. 

The next webpage content features deal with specific tags (elements on the 

webpage). The <meta> tag is known to be associated with malicious redirects [238]. 

Two other tags that appeared were counts of <p> and <center> tags. Both are 

formatting tags that specify how text should be rendered. Although they have no known 

relation to malicious websites, the counts may provide additional insight as to the level of 
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care that attackers take in formatting their text, information that would be of interest for 

phishing detection. The other feature, <link type>, identifies references to .css 

resources. Although this has legitimate uses, CSS files have also been used for attacks 

[239]. 

We observed that one JavaScript feature  – counts of the push() method – made 

our list. JavaScript methods can identify obfuscated JavaScript, but the push() method 

is not highly related to malicious JavaScript. Although it made our list, it did not rank 

highly and it should be noted that although this study performed static analysis, dynamic 

analysis has been shown to be better suited for malicious code detection. In fact, most 

prior research required de-obfuscation before analysis of code, as in [65] and [68]). 

Although we found just one count of a JavaScript method, the async=true attribute on 

the <script> tag is a potential attack vector (it instructs the browser to continue 

rendering third party libraries in the JavaScript). 

We then performed feature ranking of the 99 a priori features. Webpage content 

features accounted for 40% of total feature importance, while URL features accounted for 

48% of total feature importance, and HTTP features accounted for 12% of total feature 

importance. Whereas the top two features in Table 7-1 were consistent, none of the top 

features in Table 7-2 were consistent. Also, we observed that some a priori features had 

little to no importance in our study. Full rankings for the 99 a priori features in sampling 

scenarios are in Table 7-2.  
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Table 7-2.  

The Importance of 99 Features from Prior Research Was  

Inconsistent Across Sampling Scenarios 

99 Features from Prior Research Ranked 

Feature No-sampling Over-sampling Under-sampling 

Total HTML Tags 1 : 0.1159 6 : 0.0382 1 : 0.1358 
Total Extensions in URL 2 : 0.0957 3 : 0.0520 5 : 0.0493 
URL Length 3 : 0.0926 4 : 0.0499 3 : 0.0520 
Count of ‘w’ character 4 : 0.0585 5 : 0.0493 4 : 0.0499 
Count of ‘.’ Character 5 : 0.0460 9 : 0.0229 11 : 0.0215 
<a href> OoD 6 : 0.0291 15 : 0.0189 6 : 0.0382 
Total href attributes 7 : 0.0283 10 : 0.0219 2 : 0.0559 
server apache 8 : 0.0261 11 : 0.0215 10 : 0.0219 
content-encoding gzip 9 : 0.0255 2 : 0.0559 7 : 0.0372 
Count of <link> tag 10 : 0.0241 19 : 0.0175 12 : 0.0196 
Count of <meta> tag 11 : 0.0221 7 : 0.0372 8 : 0.0229 
Total TLDs in URL 12 : 0.0207 33 : 0.0090 20 : 0.0172 
content-language text/html 13 : 0.0195 18 : 0.0183 13 : 0.0194 
Count of ‘z’ character 14 : 0.0190 23 : 0.0151 19 : 0.0175 
<link href> OoD 15 : 0.0153 20 : 0.0172 22 : 0.0165 
Count of <a> tag 16 : 0.0144 12 : 0.0196 9 : 0.0229 
Count of 4-character words 17 : 0.0142 27 : 0.0125 23 : 0.0151 
Count of ‘y’ character 18 : 0.0141 49 : 0.0046 56 : 0.0034 
url extension is .com 19 : 0.0135 41 : 0.0055 26 : 0.0133 
Total <img src> 20 : 0.0134 16 : 0.0187 15 : 0.0189 
content-length 21 : 0.0134 36 : 0.0082 17 : 0.0187 
<form action> OoD 22 : 0.0133 22 : 0.0165 21 : 0.0168 
Count of <div> tag 23 : 0.0130 25 : 0.0134 14 : 0.0191 
cache-control max-age 24 : 0.0128 21 : 0.0168 16 : 0.0187 
Count of ‘i’ character 25 : 0.0128 8 : 0.0229 24 : 0.0147 
Count of ‘l’ character 26 : 0.0122 14 : 0.0191 49 : 0.0046 
Count of <style> tag 27 : 0.0113 58 : 0.0031 34 : 0.0090 
<script src> OoD 28 : 0.0090 46 : 0.0049 18 : 0.0183 
Count of ‘p’ character 29 : 0.0090 26 : 0.0133 27 : 0.0125 
Count of <title> tag 30 : 0.0087 1 : 0.1358 41 : 0.0055 
Count of ‘f’ character 31 : 0.0084 30 : 0.0104 31 : 0.0101 
<script type=text/javascript> 32 : 0.0077 37 : 0.0073 28 : 0.0120 
Count of ‘d’ character 33 : 0.0076 17 : 0.0187 35 : 0.0085 
Count of ‘s’ character 34 : 0.0074 28 : 0.0120 32 : 0.0092 
Count of 5-character words 35 : 0.0072 38 : 0.0066 62 : 0.0021 
Count of ‘o’ character 36 : 0.0068 29 : 0.0114 44 : 0.0050 
cache-control no-store 37 : 0.0063 57 : 0.0034 29 : 0.0114 
url extension is .i 38 : 0.0063 40 : 0.0063 46 : 0.0049 
replace()  39 : 0.0063 34 : 0.0090 40 : 0.0063 
Count of ‘u’ character 40 : 0.0060 43 : 0.0051 30 : 0.0104 
Count of <img> tag 41 : 0.0059 61 : 0.0027 36 : 0.0082 
<img srcset> OoD 42 : 0.0059 39 : 0.0065 45 : 0.0050 
Count of ‘b’ character 43 : 0.0058 32 : 0.0092 60 : 0.0028 
Count of ‘e’ character 44 : 0.0057 45 : 0.0050 58 : 0.0031 
addEventListener()  45 : 0.0054 44 : 0.0050 33 : 0.0090 
<base href> OoD 46 : 0.0042 76 : 0.0004 74 : 0.0006 
Count of ‘t’ character 47 : 0.0042 59 : 0.0030 48 : 0.0049 
Count of <iframe> tag 48 : 0.0041 63 : 0.0021 55 : 0.0037 
Count of ‘x’ character 49 : 0.0040 70 : 0.0010 72 : 0.0007 
Count of ‘c’ character 50 : 0.0039 47 : 0.0049 47 : 0.0049 
Count of ‘r’ character 51 : 0.0037 51 : 0.0045 65 : 0.0014 
Count of ‘m’ character 52 : 0.0037 55 : 0.0037 52 : 0.0045 
Count of ‘h’ character 53 : 0.0036 35 : 0.0085 66 : 0.0013 
Count of ‘a’ character 54 : 0.0032 13 : 0.0194 61 : 0.0027 
server nginx 55 : 0.0031 54 : 0.0039 38 : 0.0066 
createElement () 56 : 0.0031 24 : 0.0147 25 : 0.0134 
Count of ‘n’ character 57 : 0.0029 52 : 0.0045 50 : 0.0045 
cache-control no-cache 58 : 0.0029 56 : 0.0034 57 : 0.0034 
Count of 6-character words 59 : 0.0028 31 : 0.0101 63 : 0.0021 
Count of 7-character words 60 : 0.0027 64 : 0.0019 64 : 0.0019 
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99 Features from Prior Research Ranked 

Feature No-sampling Over-sampling Under-sampling 

Count of <input> tag 61 : 0.0023 65 : 0.0014 43 : 0.0051 
Count of ‘k’ character 62 : 0.0022 66 : 0.0013 67 : 0.0012 
Count of ‘g’ character 63 : 0.0021 50 : 0.0045 37 : 0.0073 
<img src> OoD 64 : 0.0019 62 : 0.0021 42 : 0.0053 
Count of ‘-’ character 65 : 0.0019 42 : 0.0053 39 : 0.0065 
Count of ‘v’ character 66 : 0.0016 69 : 0.0010 59 : 0.0030 
write()  67 : 0.0015 74 : 0.0006 69 : 0.0010 
cache-control must-revalidate 68 : 0.0014 48 : 0.0049 54 : 0.0039 
Count of ‘j’ character 69 : 0.0013 71 : 0.0009 68 : 0.0011 
Count of 8-character words 70 : 0.0012 72 : 0.0007 73 : 0.0007 
cache-control private 71 : 0.0012 53 : 0.0041 53 : 0.0041 
substring() 72 : 0.0011 80 : 0.0002 70 : 0.0010 
url extension is .net 73 : 0.0011 67 : 0.0012 71 : 0.0009 
<iframe src> OoD 74 : 0.0010 60 : 0.0028 51 : 0.0045 
escape()  75 : 0.0005 79 : 0.0002 75 : 0.0005 
cache-control public 76 : 0.0004 68 : 0.0011 78 : 0.0003 
setTimeout()  77 : 0.0004 84 : 0.0001 81 : 0.0002 
parseInt()  78 : 0.0003 78 : 0.0003 77 : 0.0004 
concat()  79 : 0.0003 73 : 0.0007 85 : 0.0001 
Count of <frame> tag 80 : 0.0002 83 : 0.0002 80 : 0.0002 
<frame src> OoD 81 : 0.0002 81 : 0.0002 79 : 0.0002 
unescape()  82 : 0.0002 82 : 0.0002 76 : 0.0004 
exec() 83 : 0.0002 75 : 0.0005 84 : 0.0001 
fromCharCode()  84 : 0.0001 88 : 0.0001 83 : 0.0002 
Count of <object> tag 85 : 0.0001 89 : 0.0001 87 : 0.0001 
<area href> OoD 86 : 0.0001 77 : 0.0004 89 : 0.0001 
<embed src> OoD 87 : 0.0001 85 : 0.0001 82 : 0.0002 
eval()  88 : 0.0001 87 : 0.0001 91 : 0 
search()  89 : 0.0001 91 : 0 93 : 0 
Count of <embed> tag 90 : 0 90 : 0 90 : 0 
charCodeAt ()   91 : 0 95 : 0 86 : 0.0001 
<object data> OoD 92 : 0 92 : 0 88 : 0.0001 
hidden <iframe> 93 : 0 86 : 0.0001 92 : 0 
setInterval()  94 : 0 94 : 0 96 : 0 
<source src> OoD 95 : 0 93 : 0 94 : 0 
<source srcset> OoD 96 : 0 97 : 0 95 : 0 
link()  97 : 0 98 : 0 97 : 0 
<audio src> OoD 98 : 0 96 : 0 98 : 0 
<video src> OoD 99 : 0 99 : 0 99 : 0 

 

 

 Sampling Scenarios 

In the no-sampling scenario, we observed that two out of the nine models improve 

when using discovered features versus a priori features. The average accuracy, AUC, 

MCC, Precision, and Recall changed by -0.03%, 0.0045, -0.001, -0.013 and 0.01, when 

using discovered versus a priori features respectively. In the no-sampling scenario the 

discovered feature set performs nearly as well as the a priori feature set albeit with 66% 

fewer features. Results are shown in Figure 7-4, and full results shown in Appendix D. 
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Fig. 7-4. Discovered features performed approximately  

as well as the prior features in the no-sampling scenario 

 

 

In the over- and under-sampling scenarios, we observed that three and two out of 

the nine models improved with discovered features versus a priori features, respectively. 

The average accuracy, AUC, MCC, Precision, and Recall changed by -0.2%, 0.006, -

0.007, -0.027, 0.016, in the over-sampling scenario and -0.37%, -0.0008, -0.01, -0.019, 

0.0049 in the under-sampling scenario with discovered features. Hence, we observed 

similar behavior as in the no-sampling scenario. Results are shown in Figure 7-5 and 

Figure 7-6, with full results shown in Appendix D. 

 

 
Fig. 7-5. Discovered features performed approximately  

as well as the a priori features in the over-sampling scenario 
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Fig. 7-6. Discovered features performed approximately  

as well as the a priori features in the under-sampling scenario 

 

 

 Feature Transformation 

We now discuss the results of using features created through transformation of the 

features and the components created by performing FT w/FS and FT w/PCA on these 

features. For the transformed features (2,278 features were created from the 34 

discovered features, and 19,503 from the 99 a priori features) we observed a change in 

accuracy in AUC, MCC, Precision, and Recall of 0.23%, 0.0113, 0.0129, -0.0006, 

0.0231, respectively, and all nine models improved when using features created from 

discovered features versus a priori features – 88% fewer created features.. The effect of 

the feature transformation with feature selection is shown in Figure 7-7 and full results 

are found in Appendix D. 
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Fig. 7-7. Discovered features out-performed the a priori  

features in the feature transformation with feature selection 

 

 

The discovered features also appeared to produce better components from PCA 

and did so with fewer features. One hundred and twenty-five components were created 

from the 34 discovered features with PCA, compared to 750 components created from the 

99 a priori features. With components from discovered features compared to the 

components created from a priori features, we observed a change in ACC, AUC, MCC, 

Prec, and Rec of 7.65%, 0.0743, 0.1099, 0.0789, 0.0658, respectively, and eight of the 

nine models demonstrated overall improvement compared to using models built with the 

components from the a priori features. The effect of the feature transformation with PCA 

is shown in Figure 7-8, with full results shown in Appendix D. 

 

 
Fig. 7-8. Discovered features out-performed a priori features  

in the feature transformation with PCA 
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 Hyperparameter Tuning and Cross-Validation 

 We tuned the best performing model in each scenario built from an 80:20 split of 

train to test data (no sampling, over-sampling, under-sampling, FT w/FS, and FT 

w/PCA). In this section, we compare the results of the tuned models to their respective 

non-tuned counterparts. With tuning, only one of the models built with the 34 discovered 

features achieved a higher MCC, and the average MCC of the tuned models was 0.004 

less than the average MCC of the non-tuned models. When performing hyperparameter 

tuning and cross-validation on the models built from 99 a priori features, we observed 

that the average MCC improved by 0.007 compared to the non-tuned models and all five 

of the best performing models improved. 

 For further assurance that our results were not a product of our initial 80:20 

split, we repeated our approach with a 70:30 split of training to testing data. We observed 

that the average MCC increased by 0.011 when tuning, and four of the five best 

performing models improved when tuning models built with the 34 discovered features 

compared to their non-tuned counterparts. When performing hyperparameter tuning and 

cross-validation on the models built from 99 a priori features, we observed that the 

average MCC improved by 0.011, and all five of the best performing models improved. 

Full results are available in Table 7-3 which show the model used, scenario, MCC, and 

scoring metric used during tuning achieve the respective MCC. Results from the a priori 

features are separated by a “/” from the results of the discovered features. 
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Table 7-3.  

Hyperparameter Tuning and Cross-Validation  

Slightly Improved Detection Performance for  

Discovered and A Priori Features 

Cross-Validation and Tuning for A Priori / Discovered 

Model Scenario - Split MCC Scoring Metric 

BC 

RF 
No - 70:30 

0.9027/ 

0.8926 

precision weighted 

balanced accuracy 

RF 

RF 
Over - 70:30 

0.8802/ 

0.8830 

precision weighted 

precision weighted 

BC 

ET 
Under - 70:30 

0.8113/ 

0.7967 

precision weighted 

recall weighted 

BC 

BC 
FT w/ FS - 70:30 

0.8865/ 
0.8920 

precision weighted 
precision weighted 

NN 

NN 
FT w/ PCA - 70:30 

0.8853/ 

0.8744 

recall 

recall 

BC 

RF 
No - 80:20 

0.9066/ 

0.8942 
precision weighted 
precision weighted 

RF 

ET 
Over - 80:20 

0.8819/ 

0.8718 

precision weighted 

precision weighted 

RF 

ET 
Under - 80:20 

0.8174/ 
0.8049 

precision weighted 
recall weighted 

RF 

RF 
FT w/ FS - 80:20 

0.8841/ 

0.8843 

precision weighted 

precision 

NN 

BC 
FT w/ PCA - 80:20 

0.8863/ 
0.8792 

recall 
precision weighted 

 

 

We then performed hyperparameter tuning and cross-validation of the voting 

classifier. Full results for each scenario are shown in Table 7-4. 

 
Table 7-4.  

Hyperparameter Tuning and Cross-Validation Slightly  

Improved Detection Performance for Discovered and  

A Priori Features 

MCC of Tuned Voting Classifier in Different Scenarios 

Scenario No Over Under FT w/ FS FT w/ PCA 

70/30 Discovered 0.9144 0.9066 0.8231 0.8966 0.2406 

70/30 Prior 0.9281 0.9192 0.8375 0.8911 -0.4314 

80/20 Discovered 0.9174 0.9071 0.8177 0.8973 -0.0275 

80/20 Prior 0.9264 0.9226 0.8295 0.8884 -0.3831 

 

 

Hyperparameter tuning and cross-validation showed that the default parameters 

for all models, except the voting classifier, performed similarly to the tuned classifiers. 

The voting classifier improved when we performed tuning (except when used with PCA). 
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We observed that while the discovered features performed better with default parameters, 

they performed slightly worse during hyperparameter tuning. 

 RQ5: Is Feature Discovery Feasible for Malicious Website Detection? 

In RQ5 we examined the detection ability of discovered features. With the 

discovered features we can obtain a best classifier performance of an MCC 0.7043 using 

unsupervised learning techniques, and 0.9174 using supervised learning techniques. The 

unsupervised results were not promising however unsupervised techniques are not as 

common for detecting malicious websites (except for C2 traffic). The supervised results 

suggested that a discovery approach can be used however, for further insight into their 

feasibility, we need to compare our approach and results with prior research that uses the 

notion of a priori features.  

Ma in [35] leveraged URL and host-based (DNS queries, WHOIS properties, and 

geographic information) and incorporated online learning in [36]-[37] and an SVM 

classifier to identify malicious URLs. Ma used strictly URL and host-based features. We 

both investigated different training scenarios however Ma focused on training an SVM 

several times with online learning while we focused on sampling, feature transformation, 

and evaluated nine different algorithms. Additionally, we both accepted our malicious 

dataset from external parties though their dataset consisted of millions of URLs while 

ours included ~47000 entries. Given the design of our experiments we also quantified 

best-case performance differently – Ma with error rate (best-case 2.6%) while we focused 

on MCC (best-case 0.9174) due to our dataset imbalance. Whittaker [42] also took an 

online approach and trained and evaluated an LR classifier on millions of webpages (with 

different algorithms), focused on phishing, and presented their results as a tradeoff 
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between precision and recall with their best performance being a precision and recall over 

0.95 respectively. Prophiler [45] also focused on classifying a large number of malicious 

webpages with an evaluation dataset of almost 19 million webpages and achieved a false 

positive and false negative rate of 9.88% and 0.77% with HTML, JavaScript, URL, and 

host features. They used naïve Bayes, random forest, logistic regression, and other 

decision tree algorithms. 

CANTINA+[46], like us, extracted webpage features and investigated several 

learning algorithms -support vector machines, logistic regression, Bayesian networks, J48 

decision tree, random forest, and adaboost. Unlike us and like Ma, they relied on external 

sources (for example Page Rank) for features which differed from our approach of only 

using web response features. Their study included two phishing sets of 1,595 and 624 

webpages respectively. They achieved a true positive and false positive rate of 4.24% and 

1.948% respectively. 

Marchal [91] detected phishing with a GB (provided by Scikit Learn) classifier 

with high performance metrics (an AUC up to 0.999 compared to our AUC of 0.9464) 

and differentiated themselves by detecting phishing webpages in different languages. 

They selected 212 features (including the URL and webpage content) for detection, many 

of which overlap with other prior works. Their dataset consisted of 150,000 legitimate 

phishing URLS and 3,366 phishing URLs. Like our study, they performed cross-

validation. 

Phishmon [83] achieved an accuracy of 95.4% (compared to our accuracy of 

98.38%) with a false positive rate of 1.3% on a dataset of 17,508 legitimate and 4,807 

phishing webpages. Their approach, unlike other approaches and like our approach, 
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incorporated all HTTP headers in conjunction with webpage content features for 

detection. They used four different classifiers (classification and regression trees, k 

nearest neighbor, adaboost, and random forest) and provided a notion of feature 

importance. 

BINSPECT [47] who has a similar approach (aside from feature discovery) to our 

own used several machine learning classifiers (J48, random tree, random forest, naïve 

bayes, bayesian networks, support vector machine, and logistic regression) and some of 

our discovered features overlap with their features. However, our study discovered all our 

features and did not require external sources such as search engine results. We also 

differed in that our dataset contained C2 URLs while theirs did not. Our accuracies were 

similar – their accuracy is 97.81% compared to our accuracy of 98.38%. In addition, we 

observed that 22 of the 34 features discovered have been used in prior research. 

Additionally, most of the features in the discovered list have some known association 

with attacks or malicious techniques. Cova [65] leveraged a priori features that can 

identify malicious or suspicious JavaScript and anomaly detection to create JSAND. 

They evaluated their approach on 823 samples from four different data sources and 

achieved a false negative rate of 0.2%. Xu [49] took the closet approach to our own 

regarding the features for detection. However, they also included other features like 

network traffic summaries, which required additional overhead, and they performed 

feature selection from their a priori features for detection. Their approach evaluated four 

different classification algorithms - naïve Bayes, logistic regression, support vector 

machines, and J48 and achieved a best-case 99.986% accuracy and they noted the five 

most selected features.  
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Basnet [50] used correlation-based feature selection and wrapper feature selection 

to find relevant features among 177 URL, webpage content, and search engine features 

along with a naïve Bayes, logistic regression, and random forest classifier. They observed 

wrapper-based feature selection techniques could improve false negative rates by 44.5% 

while we found that feature selection generally decreased classifier performance. Li 

[218], like our study, performed feature transformation during their detection of 

malicious URLs and did so on seven domain-based, 21 host-based, six reputation-based, 

and 28 lexical features. Their goal was to demonstrate the benefit of feature 

transformation when used with different algorithms and noted that feature engineering 

improved detection rates from 68% to 86%, 58% to 81% and 63% to 82% for KNN, 

SVM, and NNs classifiers respectively. Their best accuracy was measured at 97.80%. 

There are similarities are well as differences between our approach and results 

from those of prior research. First, we note that our results are comparable (and often 

better) than those from prior research however true comparison is difficult. Marchal [91]  

and Xu [49] have achieved highly accurate results with a priori features however this was 

done on phishing alone in the case of Marchal, and with additional features like network 

traffic statistics as in the case of Xu. Marchal and Xu provided better results than any 

prior research we have encountered. Second, we observed that features derived from a 

web response are simpler to gather. Page rank, WHOIS information, network traffic 

statistics all require additional instrumentation and overhead. Based on our detection 

metrics as well as on comparisons to prior research, we postulate that feature discovery is 

feasible for malicious website detection. 
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 RQ6: How do Discovered Features’ Detection Ability Compare to Those 

from Prior Research? 

With RQ6, we compared the ability of the a priori features from prior research to 

the ability of those found via our discovery approach. In the sampling scenarios, we saw 

little change in detection performance when using discovered features versus a priori 

features. However, we did obtain similar detection metrics with fewer features. With 

feature transformation, the discovered features outperformed the a priori features. Hence, 

we postulated that discovered features can be used to create better transformed features 

for detection and also require fewer features for detection. During tuning of the models, 

we noted that the a priori features slightly outperformed the discovered features. Thus, 

we answered RQ6 in a mixed fashion. The discovered features performed nearly as well 

as the a priori features, with slight differences depending on the scenario, but they did so 

with fewer features.  

 RQ7: Can a Discovery Approach be Applied to Several Threats when Only 

Features from a Web Response are Available? 

With RQ7, we explored whether the discovery approach can be applied to a set of 

several threats with a limited number of features (those that can be gathered from the 

response to web request). We designed our experiment to simulate the real-world 

constraints by using a dataset consisting of several threats and by leveraging techniques 

from prior research. Our limited insight into these threats (we did not hand select them 

nor were they homogenous) also simulated real-world constraints. In addition, we 

included C2 URLs in our dataset, an element that is often not absent from other studies 

that detected multiple types of threats. To examine this research question, we looked 
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further into the performance metrics. Overall, our ACC, AUC, and MCC performed well 

and were comparable to (and sometimes exceeded) the accuracy of other approaches. 

However, our findings do suggest that this approach alone is not enough. To further 

examine whether this approach can be a supplement to other detection capabilities, we 

examined the FPR of our models since a large number of false positives [240] poses a 

challenge for practical detection solutions. The FPR of our best performing model in the 

no-sampling scenario was 0.3% (the tuned voting classifier) and our worst performing 

classifier in the no-sampling case (AB) had an FPR of 1.326% which bodes well for 

inclusion into a practical solution. Furthermore, the features extracted in this approach 

can be extracted from a web request response and can be added to other security 

solutions. As a result, we postulated that a discovery approach, while not sufficient in 

isolation, can be used as a supplement to other detection techniques. 

 Conclusions 

We performed a comprehensive evaluation of discovering features for malicious 

website detection. We built two unsupervised learning models and nine supervised 

detection models over various sampling and feature transformation scenarios. Based on 

our study, we postulated that discovering features (versus selecting features a priori) was 

feasible and performed nearly as well as the features from prior research, but did so with 

fewer features.  
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Chapter 8: Evaluation on an Additional Dataset  

 Introduction 

Feature-based malicious website detection has shown promise in prior research as 

well in our studies (see Chapters 4–7). Thus far, our experiments gathered a dataset 

(Dataset 1) and split it into two portions – a training portion and a testing portion. We 

were able to achieve high performance metrics in Chapter 7, with MCCs of up to 0.9281 

but we performed our study on a single dataset that was created from a single point in 

time. Although this approach is common, it leads to a lack of insight into how the models 

built (and their features) would perform on additional datasets that may have been 

gathered at another point in time. In an operational scenario, a detection model must work 

on different datasets regardless of time of collection or dataset source. Using a single 

dataset for training and testing provided limited intuition regarding the feasibility of 

training models using features and applying it to an operational scenario.  

In this chapter, we explore the application of the models and features identified in 

Chapters 4–7 to a different dataset. This new dataset (Dataset 2) differs from the dataset 

used in Chapters 4–7 in three ways: 1) the benign portion consists of more entries, 2) the 

malicious dataset is derived from another source, and 3) the dataset was collected at a 

different point in time. The first dataset, referred to as Dataset 1 and used in Chapters 4–

7, consisted of domains gathered from the top 39,877 websites in the Alexa Top 1M and 

6,894 websites provided by Cisco Talos. We collected Dataset 1 in August of 2018. The 

second dataset, referred to as Dataset 2, consisted of websites from the Alexa Top 1M 

collected four months later in December of 2018. We segmented this dataset into two 

portions – benign websites and malicious websites. In the malicious portion of the 
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dataset, we grouped those websites in the Alexa Top 1M that appeared in threat 

intelligence information from Cymon.io [193]. We created the benign dataset from 

websites in the Alexa Topo 1M that did not appear in the Cymon.io threat intelligence 

information. Throughout this chapter, we report the various experiments performed on 

Dataset 2 with the goal of better understanding how the models and features discovered 

in Chapters 4–7 would perform on an additional dataset. In this portion of the study, we 

made the following contributions: 

• We demonstrated that the 34 features identified in Chapter 7 served as a 

foundation for detection, but required adjustments in order to be effective; 

• We compared features for detection over two datasets gathered from different 

sources at different points in time; and 

• We identified two additional features that greatly improved detection on 

another dataset. 

 Related Research 

Ma et al. [35] used two different benign sources (Yahoo! and DMOZ) and two 

different malicious sources (PhishTank and Spamscatter). From the benign and malicious 

datasets, the authors created four datasets in which the benign and malicious dataset 

combinations were Yahoo-PhishTank, Yahoo-Spamscatter, DMOZ-PhishTank, and 

DMOZ-Spamscatter. They trained an LR classifier on each set and evaluated the model 

on each set. They received low error rates (0.9%, 1.24%, 1%, and 3.01%) when training 

and testing on the same dataset, but observed error rates of up to 44% when training and 

evaluating on a different dataset. They repeated this approach of training and evaluating 

on different datasets in subsequent research [64], [159], [161]. JSAND creators [65] 
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accomplished a similar goal in their evaluation. They trained their models on two known 

datasets: 1) “known-good,” consisting of webpages from Google, Yahoo, and Alexa with 

malicious websites removed; and 2) “known-bad,” consisting of URLs from datasets used 

in prior research (spam trap, SQL injection, malware forum, and wepawet). Although 

they did not focus on evaluating a separate dataset, they identified 137 URLs as 

malicious (on the separate dataset), with 15 being false positives. Le et al. [63] trained 

their detection mechanism on a group of malicious websites and evaluated them on 

another set of benign websites and malicious websites. Blum et al. [38] trained their 

models on University of Alabama phishing websites and evaluated them on other feeds 

from Cyveillance, observing error rates as high as 30% when the training sets and testing 

set were from different sources. Researchers [160] also provided a training and testing 

dataset from different sources.  

He et al. [43] built their dataset with the combination of websites from multiple 

sources – Alexa, 3Sharp, and Phishtank – but they evaluated their detector on two 

datasets. They derived the datasets from the same source, but collected them at different 

points in time. They observed that their detector performed well, with a TPR of 97% and 

FPR of 4%. CANTINA+ authors [46] conducted several experiments on phishing 

webpages, including collecting two datasets of phishing websites from the same source, 

achieving a TPR of 93.47% and FPR of 0.608%.  

Prior researchers have reported mixed results. Some have observed similar 

performance when applying their methods to other datasets (either gathered from a 

different source or collected at a different point in time), while others have seen 

performance decreases. We made two observations. First, we observed that performance 
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decreased when researchers trained and tested on datasets composed of different threats 

([35], for example), while researchers tended to report consistent performance when 

focused on detecting one type of threat. Secondly, we observed that researchers were 

more likely to show consistent performance when data collections occurred closer in time 

(authors [45] with Prophiler, for example). Based on these observations, we analyzed our 

detection performance on an additional dataset. 

 Research Questions 

In this section we list the research questions addressed in Chapter 8 

 Research Question 8 

With this research question, we explored the ability to apply models built from 

data derived from one dataset to models built from data derived from another dataset. To 

that end, we examined the performance of the best-performing RF model (built from 34 

features as detailed in Chapter 7 and trained on Dataset 1) when evaluated on Dataset 2. 

We stated RQ8 as follows:  

RQ8:  How robust are malicious website detection models when applied to a new 

dataset? 

 Research Question 9 

We crafted this research question to guide our investigation into the effectiveness 

of the features identified in Chapter 7 and their ability to detect malicious websites on a 

new dataset. We used a series of feature selection techniques to identify the features 

noted in Chapter 7, some of which had been used in prior research, while others had not. 

We re-trained models on our new dataset, but limited our features to the 34 identified in 

Chapter 7. By doing so, we gained insight into the robustness of the features identified 
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from our previous work and determined whether they could be applied to additional 

datasets. RQ9 is stated as follows: 

RQ9:  How do the features identified perform on a new dataset? 

 Research Question 10 

Although we evaluated the features identified in Chapter 7 and the robustness of 

the model built in Chapter 7, here we investigated how we could leverage on a new 

dataset other aspects of the experiment results reported in Chapters 4–7. We aimed to 

identify which aspects, if any, from our prior experiments could be leveraged on this new 

dataset. RQ10 is stated as follows: 

RQ10:  What aspects from prior experiments can we apply to a new dataset? 

 Feature Consideration, Dataset, Analysis Approach 

 Feature Consideration 

In Chapter 7, we captured the performance of our detection models constructed 

with 34 features that we identified through feature selection and with 99 features gathered 

from prior research. In this chapter, we focus on the 34 features identified in Chapter 7 

(referred to as the “identified features”), but expand our analysis to the 99 features 

gathered from prior research and reported in Chapter 7 (referred to as the “prior 

features”), as well as to 288 additional features (referred to as the “features after the first 

feature-selection step”). As reported in Chapter 7, we obtained these 288 features by 

dropping from our dataset those features that were consistent at least 95% of the time and 

by dropping from our dataset those features with high VIF values before application of 

the XGB algorithm. 
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 Datasets 

In the study portion reported in this chapter, we continued to make use of Dataset 

1, though we focused our evaluations on a Dataset 2 consisting of the Alexa Top 1M 

websites. We selected as malicious websites those from the Alexa Top 1M that were 

found in threat intelligence data provided by Cymon.io [193]. For benign websites, we 

chose those that appeared in the Alexa Top 1M but did not appear in the Cymon.io threat 

intelligence information. For clarity, we refer to the dataset used in Chapters 4–7 as 

Dataset 1 and to the new dataset of Alexa/Cymon.io websites as Dataset 2. 

 Analysis Approach 

To explore additional (and larger) datasets, it was necessary for us to perform 

analysis more efficiently than we had performed the analysis in previous portions of our 

inquiry. Thus, we narrowed our focus to an RF classifier, which had proven to be the 

among best performing classifiers in our prior studies and performed well in related 

research as well. Additionally, we leveraged the class weight parameter available in 

the SciKit library, which can be an alternative to over-sampling and under-sampling.  

 Results 

 RQ8: How Robust are Malicious Website Detection Models when Applied to 

a New Dataset? 

We began our investigation by applying to Dataset 2 the RF model built in the no-

sampling scenario with the 34 features in Table 7-1.  

8.5.1.1 Evaluation on Previous Models 

First, we evaluated the performance on the new dataset of our best-performing 

model from Chapter 7, the RF model. We built this RF model with the 34 features 
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identified in Chapter 7. Table 8-1 below shows the performance of the RF model on 

Dataset 2, the new dataset of Alexa Top 1M with Cymon.io [193] threat intelligence data 

as ground truth. 

 
Table 8-1.  

Applying the Best Random Forest Classifier Built in Chapter 7  

from Dataset 1 to Dataset 2 Yielded Poor Detection Results 

Detecting Malicious Websites in Dataset 2 with a Model Built with Dataset 1 

FPR FNR ACC AUC MCC Prec Rec 

0.5599 0.4846 0.4432 0.4778 -0.0179 0.0384 0.5154 

 

 

As shown in Table 8-1, results demonstrated poor metrics and an inability to 

classify the new dataset. This observation was similar to that made by Ma et al. [35], who 

observed high errors when training and testing datasets from different sources. This 

observation prompted further investigation into the datasets and potential causes. 

However, from the results in Table 8-1, we observed that we could not directly apply the 

model derived from Dataset 1 to Dataset 2. 

8.5.1.2 Feature Correlation Investigation 

To investigate potential causes for the poor performance of our model, we began 

to examine Dataset 2 and compare it to Dataset 1. We first analyzed the correlation of 

each variable to the target variable (whether the website is malicious) in order to 

determine whether there were differences between the respective correlations for the 

features in Dataset 1 and Dataset 2. We did this on three different sets: the 34 features 

identified by our research and reported in Chapter 7; the 99 features gathered from prior 

research and reported in Chapter 7; and the 288 features remaining after removing 

features that were consistent at least 95% of the time and that had high VIF values before 

application of the XGB algorithm. By expanding our analysis to the 99-feature and 288-
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feature sets, we gained insight into whether there were additional features that had high 

correlation with the target variable, in case they were applicable to Dataset 1 but not to 

Dataset 2 or vice versa. Tables 8-2 and 8-3 show the correlation values for the 34 features 

and the 99 features on Dataset 1 and Dataset 2. Table D-1 in Appendix D shows the 

correlation values for the 288 features on Dataset 1 and Dataset 2. 

 
Table 8-2.  

The 34 Features Identified for Detection in  

Chapter 7 Had Different Correlation Values  

for Dataset 1 and Dataset 2 

Correlation with Maliciousness for Identified on Datasets 1 and 2 

Feature Dataset 1 Dataset 2 

URL Length 0.5245 0.0188 
Count of ‘.’ character 0.5078 0.0159 
Total Extensions in URL 0.4672 0.0006 
content-encoding gzip 0.4350 0.0027 
Count of ‘w’ character 0.3821 0.0022 
Count of ‘z’ character 0.3129 0.0074 
Count of ‘y’ character 0.2854 0.0103 
transfer-encoding chunked 0.2797 0.0102 
Count of ‘i’ character 0.2566 0.0096 
Total HTML Tags 0.2370 0.0007 
<script async=”true”> 0.2170 0.0100 

Total href attributes 0.1946 0.0001 
cache-control max-age 0.1934 0.0108 
Count of ‘l’ character 0.1934 0.0101 
Count of <a> tag 0.1867 0.0009 
<link href> relative 0.1857 0.0009 
<link href> OoD 0.1822 0.0173 
<a href> OoD 0.1748 0.0019 
<link type=”text/css”> 0.1704 0.0148 
Count of ‘f’ character 0.1655 0.0057 
Count of ‘p’ character 0.1493 0.0055 
<a href=”https*”> 0.1490 0.0041 
<iframe src=”*..html”> 0.1221 0.0046 
url extension is .com 0.1415 0.0205 
via 1.1 0.1085 0.0135 
Count of <p> tag 0.1048 0.0032 
Count of <meta> tag 0.1008 0.0103 
<a href=”http*”> 0.0995 0.0062 
<form action=”http*”> 0.0832 0.0045 
server apache 0.0745 0.0043 
<img src=“http*”> 0.0708 0.0095 
push() 0.0471 0.0008 
Count of <center> tag 0.0335 0.0035 
vary user-agent 0.0226 0.0083 
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Table 8-3.  
The 99 Features from Prior Research Had Different Correlation Values  

for Dataset 1 and Dataset 2 
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Table D-1 in Appendix D shows that the count of “-“ characters had high 

correlation with the target variable. From Tables 8-2 and 8-3, we observe that the features 

that have high correlation with the target variable in Dataset 1 no longer have a high 

correlation with the target variable in Dataset 2. This suggests there are differences 

between these datasets and this is one potential cause for the poor performance. We did 

notice however, that counts of the “-“ had high correlation (0.3660) in Table D-1 

(Appendix D). This observation is noted for the remainder of this experiment. 

8.5.1.3 T-SNE Analysis 

Given the poor results in Table 8-1, we also analyzed the distribution of features. 

We analyzed the distribution of the 34 features used to build the model, the 99 features 

gathered from prior research, and the set of 288 features remaining after removal of 

consistent features and high-VIF features. We applied t-distributed stochastics neighbor 

embedding (t-SNE) [241] (a non-linear, dimensionality-reduction technique that helps 

visualize high-dimensional data) on the 34 features and on each individual feature 

category. We used t-SNE, an exploratory analysis technique, to visually compare the 

features from both sets. We took a sample of 5,000 websites from both datasets in each 

case. We first performed t-SNE on the 34 features. Results are shown in Figure 8-1. 
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Fig. 8-1.    T-SNE analysis performed on the features identified in Chapter 7 from a sample of 5,000 

websites from Dataset 1 and Dataset 2 showed no clusters for malicious websites 

 

 

We then separately performed t-SNE on the webpage content, URL, and HTTP 

header features. Results are shown in Figure 8-2, Figure 8-3, and Figure 8-4 below. 

 

 
Fig. 8-2.    T-SNE analysis performed on the webpage content features collected  

in Chapter 4 from a sample of 5,000 websites from Dataset 1 and Dataset 2  

showed no clusters for malicious websites 
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Fig. 8-3.    T-SNE analysis performed on the URL features collected  

in Chapter 5 from a sample of 5,000 websites from Dataset 1 and  

Dataset 2 showed clusters for malicious websites on Dataset 1 

 

 

 
Fig. 8-4.    T-SNE analysis performed on the HTTP header features collected  

in Chapter 6 from a sample of 5,000 websites from Dataset 1 and Dataset 2  

showed no clusters for malicious websites 

 

 

We did not observe any clusters for the malicious websites in Figures 8-1 and 8-2, 

though we did see a cluster in Figure 8-3 (URL features) for Dataset 1 that was not 
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present from Dataset 2. Additionally, we observed that URL features (see Chapter 5) 

produced higher accuracies compared to the other features. We also observed a small 

cluster in Dataset 1 (see Figure 8-4). These are additional potential explanations for the 

failure of the model from Chapter 7 to detect malicious websites in Dataset 2.  

8.5.1.4 Statistical Tests on Dataset 1 and Dataset 2 

We then performed further statistical tests to probe the differences between 

Dataset 1 and Dataset 2. First, we performed a two-sample KS test [197] to determine 

whether the 34 features from Datasets 1 and 2 were from the same distribution. The test 

is more suited for continuous variables and is conservative for discrete variables. 
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Table 8-4.  

The KS Statistics for the Identified Features  

from Chapter 7 for Dataset 1 and Dataset 2  

Demonstrated that the Identified Features Were  

Not from the Same Distribution 

Kolmogorov-Smirnov Statistic for the Features Identified in 

Chapter 7 

Feature statistic p-value 

URL Length 0.1622 0 
<link type=”text/css”> 0.1455 0 
server apache 0.1176 0 
<a href> relative 0.116 0 
Count of <a> tag 0.1148 0 
Total HTML Tags 0.1118 0 
<a href> OoD 0.1102 0 
<iframe src=”*..html”> 0.1079 0 
push() 0.1054 0 
<img src=”http*”> 0.1012 0 
<script async=”true”> 0.0967 1.37E-305 
Total HTML Tags 0.0942 1.87E-289 
<a href=”https*”> 0.089 1.84E-258 
Count of <meta> tag 0.0859 5.84E-241 
Count of <p> tag 0.0845 4.83E-233 
<link href> OoD 0.084 2.10E-230 
Count of ‘l’ character 0.0792 8.19E-205 
Count of ‘i’ character 0.0611 3.33E-122 
<a href=”http*”> 0.0525 1.76E-90 
via 1.1 0.0421 2.18E-58 
<form action=”http*”> 0.0372 1.58E-45 
content-encoding gzip 0.0324 8.81E-35 
vary user-agent 0.0316 3.82E-33 
Count of ‘p’ character 0.0273 8.39E-25 
Count of ‘w’ character 0.0242 1.26E-19 
cache-control max-age 0.0242 1.58E-19 
Count of ‘z’ character 0.0235 1.82E-18 
url extension is .com 0.0217 8.33E-16 
Total Extensions in URL 0.0204 5.52E-14 
transfer-encoding chunked 0.0169 8.30E-10 
Count of ‘.’ character 0.0161 6.88E-09 
Count of ‘y’ character 0.0065 0.0802 
Count of ‘f’ character 0.0065 0.0839 
Count of <center> tag 0.0047 0.3592 

 

 

The KS statistic, sometimes referred to as the D value, is the max distance 

between the two samples (the supremum). The null hypothesis stated that there was no 

difference between the two distributions. Thus, we can reject the null hypothesis if: 

𝐷𝑛,𝑚 > 𝑐(𝛼)√
𝑛 + 𝑚

𝑛 ⋅ 𝑚
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and where: 

 

α 0.1 0.05 0.025 0.01 0.005 0.001 

c(α) 1.22 1.36 1.48 1.63 1.73 1.95 

 

 

Generally speaking, one can reject the null hypothesis  < 0.05, which makes D = 

0.007643 for our sample sizes m = 817,130 and n = 39,183. For all of the features except 

for the counts of the characters “y” and “f” and the count of the <center> element, we 

can reject the null hypothesis. Additionally, we observed small p-values except for the 

count of <center> elements, which is further evidence that we cannot reject the null 

hypothesis for this feature. This served as further evidence that Datasets 1 and 2 were not 

from the same population. 

We then investigated the association between categorial features (those present in 

the HTTP header features) by calculating Pearson’s chi square of association [242] and 

Cramer’s phi [243] on the features from Datasets 1 and 2. Results are shown in Table 8-5. 

 
Table 8-5.  

Pearson's Chi Square and Cramer's Phi Showed that the Categorical  

Features Had Different Levels of Association with Maliciousness for  

Dataset 1 and Dataset 2 

Association between respective features and maliciousness for HTTP columns for Dataset 1 / 2 

Features Pearson Chi-square Cramer's phi p-value 

cache-control set max-age 1466.8135 / 102.8165 0.1935 / 0.0109 0 / 0 

content-encoding gzip 7416.1314 / 6.7207 0.4351 / 0.0028 0 / 0.0095 

server apache 217.9999 /16.2768 0.0746 / 0.0043 0 / 0.0001 

transfer-encoding chunked 3066.5364 / 92.4559 0.2798 / 0.0103 0 / 0 

vary user-agent 20.1741 / 60.374 0.0227 / 0.0083 0 / 0 

via 1.1 461.5291 / 159.1664 0.1085 / 0.0135 0 / 0 

 

 

In Table 8-5, we first noticed large differences in Pearson’s chi-squared value 

calculated on Dataset 1 compared to those calculated on Dataset 2, which suggested that 

the features of Dataset 1 had a stronger association with a website being malicious. We 
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also observed a difference in Cramer’s phi (with 1 indicating total association and 0 

indicating no association) between the respective datasets; specifically, the respective 

features for training and testing had a higher association in Dataset 1 than Dataset 2. This 

illustrated another difference between our two datasets. The p-value was low, indicating a 

significant result. 

We observed that our best performing model from Chapter 7 was unable to 

accurately detect malicious websites in our new dataset. Upon further investigation, 

however, we observed various differences in the respective datasets that helped to explain 

this observation. However, for RQ8, we observed that we could not apply our best model 

to another dataset with success. 

 RQ9: How do the Features Identified Perform on a New Dataset? 

Dataset 2 (the Alexa Top 1M with Cymon.io data) differed from Dataset 1 (the 

Alexa with Cisco Talos data) in several ways. First, Dataset 2 was much larger than 

Dataset 1 (approximately one million websites and approximately 47k websites, 

respectively). Secondly, the malicious websites from Dataset 2 were gathered from threat 

intelligence instead of from a security vendor. Thirdly, the two datasets were collected at 

different points in time. Thus, they were ultimately different datasets. In RQ8, we 

observed that we could not directly apply a detection model built in Chapter 7 to the 

Dataset 2. However, we still needed to investigate whether the features identified in 

Chapter 7 could successfully build detection models on this new dataset. With this 

research question, then, we explored how well the features from our prior models 

performed on a new (and different) dataset. 
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8.5.2.1 Retraining for Malicious Website Detection 

We first explored building detection models on our second dataset, but with 

features identified in Chapter 7. We split our data into training and testing data and used 

the 34 features identified in Chapter 7, the 99 features gathered from prior research, and 

the 288 features achieved by dropping from our dataset those features that were 

consistent at least 95% of the time and by dropping from our dataset those features with 

high VIF values. Results are shown in Table 8-6 below. 

 
Table 8-6.  

Retraining on the New Dataset 2 Slightly Improved Detection Ability,  

But Was Not Sufficient 

Performance when Training a Random Forest Classifier on Dataset 2 with Features from Dataset 1 

Features FPR FNR ACC AUC MCC Prec Rec 

34 Identified in Ch7 0.0001 0.9905 0.9587 0.5046 0.0827 0.7741 0.0094 

99 from Prior Research 0.0007 0.9704 0.9582 0.5143 0.1315 0.6419 0.0295 

288 After First Feature Selection Step 0.0038 0.9117 0.9584 0.5422 0.1968 0.4972 0.0883 

 

 

We saw slightly better results for the 34 features than for the random forest 

classifier in Table 8-1, with Table 8-6 showing an increase in MCC as we went from 34 

features, to 99 features, and then to 288 features. However, we observed that we could 

not simply re-train our model on that new dataset “as is” and that considering additional 

features could be warranted. 

8.5.2.2 Investigating Additional Features  

In prior experiments, we noted the ability of the 34 features to detect malicious 

websites, though in the previous step we observed that the 34 features did not perform 

well even when we re-trained our models on the new dataset (though re-training did show 

improvement over using the model from Chapter 7 “as is”). It was possible, then, that 

additional features might improve our detection capabilities.  
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During our exploration, we identified two features that might show promise – the 

number of special URL characters and the number of “-“ characters. To gain further 

assurance regarding the promise of those two features, we first measured the correlation 

(Pearson’s correlation coefficient) of the respective feature with the target variable 

(whether the website was malicious). Full results are show in Table 8-7 below.  

 
Table 8-7.  

Pearson's Correlation Between Features  

and Maliciousness in Dataset 2 Suggested  

Ability of Two New Features for Detection 

Correlation Values for Features in Dataset 2 

Features Correlation 

Count of ‘-’ character 0.3660 

Number of Special Chars in URL 0.2456 

Count of 4-character words 0.0314 

Total TLDs in URL 0.0303 

URL extension is “.c” 0.0277 

Count of ‘a’ character 0.0262 

URL TLD “co” Count 0.0257 

<link href=”https*”> 0.0252 

<link rel=https://api.w.org/*> 0.0248 

<link type=”application/rsd+xml”> 0.0245 

<link rel=”EditURI”> 0.0245 

<link rel=”wlwmanifest”> 0.0243 
<link 

type=”application/wlwmanifest+xml”> 
0.0243 

<link rel=”shortlink”> 0.0243 

<link rel=”canonical”> 0.024 

<meta http-equiv=”content-type”> 0.0234 

<meta http-equiv=”Content-Type“> 0.0234 

<link rel=”dns-prefetch”> 0.0219 

server nginx 0.0219 

URL extension ”.com” 0.0205 

URL TLD “com” 0.0205 

Count of ‘u’ character 0.0199 

escape() 0.0196 
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In Table 8-7, we observed that the correlation value between these two new 

features was considerably higher than the rest of the features we had identified thus far. 

This suggested that we might want to consider using them. 

8.5.2.3 Varying Ratios of Training to Testing Data  

Since we had identified additional features that might improve our detection 

capability, we now rebuilt our RF model with these two features. Additionally, we varied 

the train-to-test ratio (see Table 8-8 below). We tuned the model parameters with an F1 

scoring metric. 

 
Table 8-8.  

Incorporating Two Additional Features Greatly Improved  

Detection Ability 

Performance when Retraining a Random Forest Classifier on Dataset 2 with 

Identified +2 Features with Various Training: Testing Ratios 

Training : 

Testing FPR FNR Acc AUC MCC Prec Rec 

70% : 30% 0.0772 0.2151 0.9174 0.8549 0.4591 0.3067 0.7868 

60% : 40% 0.0774 0.2127 0.9169 0.8537 0.4574 0.3058 0.7848 

50% : 50% 0.0774 0.2116 0.9146 0.8521 0.4512 0.2991 0.7839 

40% : 60% 0.0778 0.2105 0.9170 0.8554 0.4589 0.3061 0.7883 

30% : 70% 0.0620 0.2724 0.9145 0.8518 0.4508 0.3052 0.7894 

20% : 80% 0.0783 0.2128 0.9160 0.8544 0.4562 0.3036 0.7871 

10% : 90% 0.0791 0.2121 0.9153 0.8543 0.4544 0.3012 0.7878 

 

 

After incorporating the two additional features, we saw a large performance 

increase that was consistent across Dataset 2. From this observation, we postulated that 

the features from Chapter 7 remained relevant, though some slight modifications would 

need to be made in order to improve malicious website detection. 

8.5.2.4 Identifying Training to Testing Ratio 

We had observed that the addition of the two features – the number of special 

characters and the number of “-“ characters – improved malicious website detection. We 

also observed that the MCC remained fairly consistent as we varied the training-to-testing 
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ratio. As a result, we further investigated how much training data was actually needed to 

build the models thus far. Results are shown below in Table 8-9. We tuned the model 

parameters and also performed grid search on the class weight parameter of the 

Scikit-Learn [29]. In Table 8-9 below, we report that we received consistent results 

even when we used just 3% of the data for training. 

 
Table 8-9.  

Detection Performance When Incorporating Two Additional Features Remained Consistent with 3% of 

Data Used for Training 

Performance when Retraining and Tuning a Random Forest Classifier on Dataset 2 with Identified +2 Features with 

Lower Training Ratios 

Train: 

Test Split FPR FNR ACC AUC MCC Prec Rec 

Grid Search of 

Class Weight 

0.05:0.95 0.0796 0.2160 0.9146 0.8521 0.4512 0.2991 0.7839 No 

0.03:0.97 0.0797 0.2165 0.9145 0.8518 0.4508 0.2989 0.7834 No 

0.03:0.97 0.0747 0.2312 0.9187 0.8470 0.4548 0.3087 0.7687 Yes 

 

 

In RQ9, we observed how well the features identified in Chapter 7 performed on a 

new dataset. Alone, and even with re-training, the 34 features did not demonstrate the 

ability to detect malicious websites. Upon further investigation, however, we identified 

two additional features that greatly complemented the detection ability of the 34 

identified features. As such, we observed that we could reuse the features from our 

previous studies, though we also needed to investigate potential additions.  

 RQ10: What Aspects from Prior Experiments Can We Apply to Our New 

Dataset? 

In RQ8, we observed that our best performing models from Chapter 7 did not 

perform well on the new dataset. However, we did observe differences in the respective 

training and evaluation datasets. With RQ10, we investigated the impact of using aspects 

of both models on detection capability. 
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8.5.3.1 Training Dataset Evaluation 

For the first step, we trained the models with both Dataset 1 and Dataset 2 and 

evaluated the models using Dataset 2. Results appear in Table 8-10 below. 

 
Table 8-10. 

Incorporating Dataset 2 Into Training Did Not Improve Detection Ability  

on Dataset 2 When Using Identified Features 

Performance when Training a Random Forest Classifier with Identified on Dataset 1 and 2 and 

Evaluating on Dataset 2 with 34 Identified Features 

Fraction of Dataset 1: 

Fraction of Dataset 2 FPR FNR ACC AUC MCC Prec Rec 

0.8 Dataset 1: 0.01 Dataset2 0.6536 0.3917 0.3572 0.4773 -0.0189 0.0387 0.6082 

0.8 Dataset 1: 0.05 Dataset2 0.7293 0.3129 0.2879 0.4788 -0.0189 0.0392 0.6870 

0.8 Dataset 1: 0.1 Dataset2 0.7094 0.3350 0.3060 0.4777 -0.0195 0.0390 0.6649 

0.8 Dataset 1: 0.2 Dataset2 0.7221 0.3196 0.2946 0.4791 -0.0185 0.0392 0.6803 

0.8 Dataset 1: 0.3 Dataset2 0.7366 0.2991 0.2815 0.4820 -0.0162 0.0395 0.7008 

0.8 Dataset 1: 0.4 Dataset2 0.7138 0.3204 0.3024 0.4828 -0.0151 0.0396 0.6795 

0.8 Dataset 1: 0.5 Dataset2 0.6357 0.4109 0.3735 0.4766 -0.0193 0.0386 0.5890 

 

In Table 8-10, we see that models trained with Datasets 1 and 2 were unsuccessful 

at detecting malicious websites in Dataset 2. Therefore, we investigated whether we 

could incorporate new data into the training of our models to detect threats from Dataset 

1 as well as Dataset 2. We did this on the set of 34 features as well as on the set of 99 

features gathered from prior research. We also varied the train to test split by training on 

20%, 30%,..,70% and evaluating on 80%, 70%,..,30% respectively. 

 
Table 8-11.  

Training Models with Both Dataset 1 and Dataset 2 Slightly Improved Detection  

on Both Datasets When Using Identified Features 

Performance with Identified Features When Training Using Dataset 1 and 2 and Testing on Dataset 1 and 2 

Train / Test Split FPR FNR ACC AUC MCC Prec Rec 

20:80 0.0014 0.9211 0.9574 0.5387 0.2292 0.7199 0.0788 

30:70 0.0013 0.9183 0.9576 0.5401 0.2368 0.73967 0.0816 

40:60 0.0013 0.9162 0.9576 0.5411 0.2403 0.74231 0.0837 

50:50 0.0013 0.9121 0.9580 0.5432 0.2468 0.74524 0.0878 

60:40 0.0014 0.9114 0.9583 0.5435 0.2461 0.7360 0.0885 

70:30 0.0015 0.9100 0.9583 0.5442 0.2476 0.7339 0.0899 
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Table 8-12.  

Training Models with Both Dataset 1 and Dataset 2 Slightly Improved  

Detection on Both Datasets When Using Features from Prior Research 

Performance when Training a Random Forest Classifier with Prior Features Using Dataset 

1 and 2 and Testing on Dataset 1 and 2 

Train / Test Split FPR FNR ACC AUC MCC Prec Rec 

20:80 0.0008 0.9190 0.9578 0.5401 0.2489 0.8153 0.0809 

30:70 0.0008 0.9160 0.9579 0.5415 0.2537 0.8172 0.0839 

40:60 0.0009 0.9082 0.9580 0.5454 0.2647 0.8131 0.0917 

50:50 0.0010 0.9072 0.9579 0.5458 0.2645 0.8047 0.0927 

60:40 0.0012 0.9002 0.9582 0.5492 0.2717 0.7908 0.0997 

70:30 0.0012 0.9010 0.9582 0.5488 0.2709 0.7917 0.0989 

 

We observed that with training, we could slightly improve our detection ability 

when training and evaluating on both datasets. However, we noted a very high FNR, 

which implied that this technique, despite producing a high accuracy, was not feasible. 

We further investigated the impact of over-sampling with two separate techniques: 

SMOTE [186] (provided by [187]) and adaptive synthetic sampling (ADASYN) [244].   

 
Table 8-13.  

Over-Sampling Slightly Decreased Detection Performance When  

Training Models with Both Dataset 1 and Dataset 2 and Evaluating  

on Dataset 1 and Dataset 2 with Identified Features 

Performance when Training a Random Forest Classifier with Over-sampling on Dataset 1 

and 2 with Identified Features and Evaluating on Dataset 1 and 2 

Over-sampling method FPR FNR ACC AUC MCC Prec Rec 

SMOTE 0.0048 0.9074 0.9547 0.5438 0.1947 0.4730 0.0925 

ADASYN 0.0037 0.9120 0.9556 0.54212 0.2018 0.5247 0.0879 

 

 
Table 8-14.  

Over-Sampling Slightly Decreased Detection Performance When Training  

Models with Both Dataset 1 and Dataset 2 and Evaluating on Dataset 1  

and Dataset 2 with Prior Features 

Performance when Training a Random Forest Classifier with Over-sampling on Dataset 1 and 2 

with Prior Features and Evaluating on Dataset 1 and 2 

Over-sampling method FPR FNR ACC AUC MCC Prec Rec 

SMOTE 0.0066 0.8229 0.9566 0.5852 0.2976 0.5573 0.1770 

ADASYN 0.0081 0.8013 0.9556 0.5952 0.3079 0.\5344 0.1986 

 

We observed slight average improvement as well as high FNRs when using the 

prior features versus the features we identified. 
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 Discussion 

We first observed that even our best model performed poorly when applied “as-

is” to another dataset. However, there were differences in the dataset, particularly in the 

URL features that were identified by t-SNE plots. This result was not surprising, given 

that prior authors had often received high error rates when evaluating their models on 

different datasets without any re-training. Additionally, we found that there were several 

differences in the respective features’ correlation and association to maliciousness 

between the datasets. We also observed that the features from the respective datasets did 

not come from the same distribution.  

Secondly, we found that the 34 features we identified in Chapter 7 and the 

features gathered from prior research demonstrated potential for detection on a new 

dataset, however new features needed to be incorporated to make the detection models 

successful. Specifically, we explored the potential of other features via correlation, which 

motivated their incorporation into a detection mechanism. Once we incorporated these 

features, we saw large improvement in our detection ability.  

Thirdly, we observed that even when we used both Dataset 1 and Dataset 2 for 

training, we were still unable to detect malicious websites in Dataset 2. However, the 

models trained from Datasets 1 and 2 were better able to detect malicious websites from 

Datasets 1 and 2, but missed a substantial portion of websites, as demonstrated by the 

high FNR. 

 Conclusion 

In this chapter, we detailed our investigation through three research questions that 

explored the application of models trained on one dataset to another dataset. We first 
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observed that a model trained on another dataset could not be applied “as-is” to another 

dataset with guaranteed success. This result reflected findings of prior authors, who had 

often received high error rates when evaluating their models on different datasets without 

any retraining.  

Secondly, we found that the 34 features identified in Chapter 7 demonstrated 

slight potential on a new dataset and served as a good foundation for features, though 

modifications were required. Specifically, these features could be reused, but other 

features needed to be incorporated based on the dataset. Once we incorporated two new 

features derived from Dataset 2, we observed improvement in our detection ability.  

Thirdly, we observed that even when we used both Dataset 1 and Dataset 2 for 

training, we still were unable to detect malicious websites in Dataset 2. While the models 

trained from Datasets 1 and 2 showed slight improvement, we still missed a substantial 

portion of malicious websites. 
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Chapter 9: A Temporal Evaluation of Feature-Based Malicious Website Detection  

 Introduction 

Web security is a fast-moving field. Attackers and defenders are constantly 

creating new techniques to confront each other [221] and detecting malicious websites, 

used by attackers for phishing, drive-by downloads, and C2, is a challenge. The 

adversarial environment of web security and relationship between offensive and 

defensive practitioners motivates research and industry to continuously explore new 

techniques and tools. Defenders in research and industry have used features and machine 

learning to detect malicious websites yielding promising results. However, several studies 

including [42], [50], [64], [75], and [159] have observed that detection models do not 

remain robust over time. Other studies like [91] have shown success when training and 

testing on data gathered across different points in time. There is a lack of clarity 

regarding the ability of detection models to remain robust over time. Given that attacks 

change over time, there is an inherent assumption that detection models, especially those 

built with either supervised or unsupervised learning on current or past data, will 

eventually become inaccurate. This assumption however, has been minimally explored.  

In this chapter, we perform a temporal evaluation of feature-based malicious 

website detection. We study 106,766 websites from the Alexa Top 1M [112] provided by 

[176] over a period of 12 weeks. We use Google Safe Browsing [132] to label the 

websites as malicious or benign. We build detection models with the random forest 

algorithm and three sets of features gathered from a response to web request – 34 

identified in Chapter 7 from a dataset (Dataset 1) provided by Cisco Talos Intelligence 

Group [177], 99 gathered from prior research, and 41 re-selected from the dataset used in 
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this study (Dataset 3). We analyze the impact of re-training and measure the change in 

websites and detection performance over time. Overall, we observe that 1) detection 

models slowly degrade over time with an exponential decay however improve to a power 

decay with re-training, and 2) websites (as defined by their features) change more as time 

grows. 

We make the following contributions: 

• We present, to our knowledge, the first study of feature-based malicious 

website detection that focuses on detection performance and change over 

time; 

• We demonstrate that while retraining detection models improves performance 

and can result in a slower performance degradation, performance still 

decreases over time; and 

• We present a new method of analyzing and measuring change in website 

datasets which enables further statistical analysis. 

 Related Research 

Related research in studying websites over time falls into two categories - 

research focused on if and how the internet and webpages change over time, and research 

into malicious website detection that includes temporal aspects (a model trained at one 

point in time and applied on data from a later point in time). 

Researchers in the first group focused on examining the dynamic nature of the 

web. Websites change with some studies having quantified and measured this change. 

Web crawlers, which iterate webpages and the internet, are useful in studying website 

changes. For example, [168] used a crawler to determine that 40% of all webpages in 
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their dataset were subject to change (based on the MD5sum). The MD5sum determines 

whether a sequence of bytes (in the form of a webpage [168]) changes. Features like the 

webpage length and HTTP response code can also be used to determine change. For 

example, [168] monitored changes in the website. Researchers [173] and [174] leveraged 

additional features including word level and DOM-related features to characterize 

website changes and HTML element persistence. HTTP status codes have been combined 

with approaches from [170] and are used to determine the similarity of webpages to each 

other, as in [169]. In [170] Fetterly expanded on [171] and observed that 40% of 

webpages in their dataset changed within a week. Authors [172] aimed to infer change 

rates of webpages on the web. Researchers in [175] proposed criteria and a new metric to 

measure website change though this metric was not presented in the context of malicious 

website detection. 

While studying detection performance over time has not been the primary focus in 

malicious website detection research, a few works have evaluated their detection methods 

on the same dataset at a later point in time. Zarras et al. [82] evaluated Bothound on data 

collected over time. On the first evaluation, their technique identified 718 domains as 

malicious, 74.7% of which were found in denylists. On the second dataset, collected one 

week later, they found that an additional 59 identified domains (for a total of 82.9%) 

were now on denylists. Their approach specifically identified malicious domains 

generated by malware. Basnet et al. [64] observed over a 900% increase in the error rate 

(from 0.42% to 3.82%) when training and testing on dataset separated by three months 

and investigated different training frequencies. They concluded that models must be re-

trained to adjust to changing phishing tactics.  
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Other studies have not shown much performance decrease when training and 

testing models on data collected at different times however, in such studies, the 

difference between training and evaluation is closer than in the studies that show a larger 

performance decrease. Prophiler [45] achieved an FPR of 9.88% and an FNR of 0.77%, 

but did so on a validation dataset collected immediately following the training dataset. 

Some researchers have incorporated temporal aspects by evaluating live feeds of data. 

Ma et al. in [36]-[37] ingested live feeds of data from a Webmail provider containing 

samples of spam and phishing URLs, and leveraged online learning to investigate 

different training regimens. They showed the benefits of continuous training and 

observed a decrease in the cumulative error rate from approximately 2% to 1% over a 

100-day period. CANTINA+ [46] observed a 92.25% true positive and a 1.375% false 

positive rate when training on a dataset and evaluating on another dataset two weeks 

later. Whittaker et al [42] were able to achieve a phishing detection true positive rate of 

91.85% and a false negative rate of 0.01% when training on three months of data and 

evaluating on another dataset two weeks later. Marchal et al. [91] achieved highly 

accurate results (an AUC of 0.999) on phishing webpage detection and trained and tested 

on datasets gathered one month apart. 

In this chapter we focus on observing and measuring malicious website detection 

performance and change over time. Like others including [36]-[37], [42], [46], [64],  and 

[91] we perform analysis of detection models that were trained and evaluated on datasets 

gathered at different times. Also like [36]-[37] and [64], we investigate different training 

frequencies. The differentiators in our study are that we 1) make the performance change 

over time our main focus, 2) substantiate our observations regarding the performance 
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change with measurable rationale, and 3) limit our analysis to the same dataset gathered 

over time. 

 Research Questions 

 Research Question 11 

This research question focuses on the investigation of the performance of 

detection models over time. In Chapter 7, we were able to build several detection models, 

with our best performing model achieving an MCC of 0.9174 with features we identified 

through feature selection. However, we had little insight into how these models would 

perform over time and did not have insight into their consistency when applied on a new 

dataset. In the portion of our research outlined in Chapter 8, we demonstrated that re-

training and adjusting models was needed when applying models built from one dataset 

to another. Specifically, models trained on one dataset could not necessarily be applied to 

another. Prior researchers have observed different results. Some have seen performance 

decrease as in [64] when their training and testing sets were collected at different times 

and some, like [91], have been able to achieve high detection metrics when separating 

their training and testing set by a few weeks. Insight into if and how detection models 

change over time may influence if and when a researcher or practioner decides to re-

evaluate or re-train their detection models. The differences of results presented in prior 

research and the knowledge gained from studying performance over time leads us to the 

next research question. RQ11, then, is stated as follows: 

RQ11:  How does detection performance change over time? 
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 Research Question 12 

To understand whether detection models can remain robust over time (and to 

determine the potential reasons they remain robust or fail to do so), we first must 

understand whether websites change over time. Based on prior research, we hypothesized 

that websites change over time and that malicious website detection models will 

eventually become irrelevant and no longer be able to distinguish between benign and 

malicious websites, though we had not yet established this in our research. To do so, we 

determined whether the features that compose a website (and are used for detection) 

change over time. Gaining insight into feature change (and whether they are capable of 

detecting malicious websites or were related to features that have demonstrated the ability 

to detect malicious websites) was a necessary step for constructing models that remain 

relevant over time. RQ12 is stated as follows: 

RQ12:  Do websites change over time? 

 Research Question 13 

We extended RQ12 further in our final research question by evaluating website 

change more thoroughly by examining feature change over time. Specifically, we 

gathered several data points regarding the number of features that changed when we 

compared the time between data collections. Access to 12 weeks of data enabled us to 

perform various comparisons (comparing the snapshot of week one to week two, week 

one to week three, and week one to week four, then comparing the snapshot of week two 

to week three, week two to week four, etc.). RQ13 is stated as follows: 

RQ13:  If websites change over time, how much do they change over time? 
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 Approach 

Our approach is comprised of three steps. In the first step we collected our dataset 

(Dataset 3) over a period of 12 weeks that was derived from the Alexa Top 1M and 

Google Safe Browsing. In the second step we selected feature sets to build detection 

models – 34 features identified in Chapter 7, 99 features from prior research (also used in 

Chapter 7), and a set of features re-selected from Dataset 3. In the final step we build and 

evaluate detection models across snapshots and compare the websites (and their features) 

from the respective snapshots to each other. The process is depicted in Figure 9-1 below.  

 
Fig. 9-1.    Three step approach for temporal evaluation of feature-based malicious website detection 

(Images courtesy of Pixabay [22].) 
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 Dataset Collection 

We derived the dataset from the websites that were consistently present in the 

Alexa Top 1M over a period of 12 weeks. The choice of a period of 12 weeks was 

derived from prior studies. Fetterly collected webpages over a 10- and 11-week period in 

[169] and [170], respectively. Basnet [64] observed a 900% increase in error rate when 

using training and testing datasets separated by three months. Beginning on February 2nd, 

2020, we performed a query via Censys for the Alexa Top 1M. Over the following week, 

we gathered features from the websites by performing an HTTP GET request to each 

website. On each of the following weeks for a total of 12 weeks, we re-performed the 

query for up-to-date Alexa Top 1M data and re-performed our gathering of data from the 

respective websites. We limited our analysis to websites that were present in the Alexa 

Top 1M during all 12 weeks. Hence, our final dataset consisted of snapshots of 106,766 

websites that remained consistent over the 12-week period. Table 9-1 shows the number 

of websites on the Alexa Top 1M that were consistent over the respective time periods. 
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Table 9-1.  

A Fraction of the Websites in the Alexa 

Top 1M Were Consistent Over Time 

Number of Consistent Websites in Alexa Top 1M 

Start Date - End Date Common Websites 

2/2/2020-2/9/2020 364,106 

2/2/2020-2/16/2020 281,515 

2/2/2020-2/23/2020 238,459 

2/2/2020-3/1/2020 203,145 

2/2/2020-3/8/2020 185,673 

2/2/2020-3/15/2020 164,776 

2/2/2020-3/22/2020 144,578 

2/2/2020-3/29/2020 129,295 

2/2/2020-4/5/2020 118,418 

2/2/2020-4/12/2020 111,618 

2/2/2020-4/19/2020 106,766 

 

Ground truth data (the designation of which websites were malicious and which 

were benign) consisted of data gathered from Google Safe Browsing. We labeled this 

dataset (106,776 websites labeled with Google Safe Browsing) as Dataset 3.  

 Feature Set Selection 

We narrowed our focus to the 34 features identified in Chapter 7 and to the 99 

features gathered from prior research and also used in Chapter 7. The 34 features have 

been identified in our studies (Chapter 7) as being able to detect malicious websites with 

an MCC of up to 0.9281 on a prior dataset. The 99 features have been vetted throughout 

prior research. Additionally, we re-performed the feature selection process from Chapter 

7 on the new dataset in order to arrive at a third set of features for analysis in case the 34 

features and 99 features were not effective on this new dataset. We used Esprima [245] 

to parse the content of the HTTP response. 

 Analysis Approach 

Our analysis was divided into three sections corresponding to the three proposed 

research questions. The process is detailed below. 
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Step 1: Investigate model performance over time 

• Evaluate prior model performance 

o Train an RF [98] model using Dataset 1 (from Chapters 4–7), using 

the 34 features identified in Chapter 7 and the 99 features gathered 

from prior research; 

o Evaluate the performance of the RF model trained on Dataset 1 

relative to the respective snapshots (collection of benign and 

malicious websites) of Dataset 3 – the 106,766 websites, that are 

consistent across the 12 weeks – and record the result; 

o Identify the following: 

▪ The number of website detection outcomes that are consistent 

throughout the 12 weeks, 

▪ The number of website detection results that changed 

classification, and 

▪ The accuracy of the detection results based on the ground truth 

data; 

• Retrain and evaluate a new RF model 

o Retrain an RF detection model on the first snapshot of Dataset 3 

(the Alexa Top 1M that are consistent over the 12 weeks beginning 

February 2, 2020) with Google Safe Browsing as ground truth; 

o Evaluate the performance of the model trained on the first snapshot 

compared to the remaining 11 snapshots and evaluate the 
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performance including whether detection performance increases, 

decreases, or remains constant over time; 

o Retrain an RF model on each snapshot of Dataset 3 (and evaluate it 

on the later snapshots) to determine the following: 

▪ Whether performance increases or decreases, and 

▪ How the performance compares to the model trained on the 

first snapshot of data and evaluated based on the proceeding 

snapshots;  

o Retrain an RF model on all previous snapshots of Dataset 3 and 

evaluate on all proceeding snapshots to determine: 

▪ Whether performance increases or decreases, and 

▪ How the performance of the model trained on the first snapshot 

of data and evaluated on the proceeding snapshots compares to 

the performance of the model trained on all previous snapshots 

and evaluated on the proceeding snapshots. 

Step 2: Determine whether websites (composed of features) change over time 

We hypothesized that we would see some change in performance over time and 

we performed this step to gain insight into potential reasons. For this step, we evaluated 

each feature in isolation to determine whether it changed. We defined a website as a set 

of key-value pairs where the key is the feature and the value is the respective 

quantification of that feature. As such we defined a website as the following: 

𝑊 = 𝐹ሼ𝑓𝑒𝑎𝑡𝑢𝑟𝑒1: 𝑁, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2: 𝑀, … . 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡: 𝑍ሽ 
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where W is the website, F is a set of key-value pairs, feature1, feature2, …featuret are the 

features, and N, M, and Z are integers (the respective values of each feature).  

With this definition of a website, we derived a histogram from the values of a 

specific feature in a snapshot. Figure 9-2 below provides a contrived example (not based 

on real data and only used for demonstrative purposes) of a feature in a specific snapshot 

– the number of HTML tags - which is a feature we collected in this study. This is one 

example and we applied this approach to the other features in each weekly snapshot.  

 

 
Fig. 9-2.   Distribution of the number of HTML tags 

 

We derived a histogram from the collection of measurements for each feature in 

each snapshot. The x axis represents the value of the feature and the y axis represents 

how many websites have the specific of that feature. The histogram in Figure 9-2 can be 

read as; two websites have a zero for the value of the “Number of HTML Tags” feature, 

three websites have a value of one for the number of HTML tags,…, and three websites 

have a value of 11 for the number of HTML tags. This histogram was created for each 

feature in each snapshot. This view of the data formed the basis for the statistical tests 
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used to determine which features changed and which did not change from snapshot to 

snapshot. We leveraged one strategy incorporated by industry and four statistical tests. 

First, we investigated the pairwise correlation between each feature in the respective 

snapshots, a strategy frequently employed by industry for determining whether a model 

should be re-trained. Next, we used four statistical tests – the t-test for related samples 

[194]-[195], the two-sample KS test [196]-[197], the k-sample Anderson-Darling test 

[198]-[199] (where k =2), and the Kruskal Wallis H test [200]-[201]. The related t-test for 

the null hypothesis determined whether the two related or repeated samples had identical 

average values, relied on dependent observations, and assumed normality. However, 

since our sample size is large (greater than 31) we rely on the Central Limit Theorem 

[246] should any data be non-normal. Furthermore, [247] validates the reliance on the 

Central Limit Theorem for large (and potentially non-normal) datasets. The two-sample 

KS tested that two independent samples were drawn from the same distribution and 

required independent observations. The k-sample Anderson-Darling [198]-[199] tested 

that k-samples were drawn from the same population and required independent 

observations. The Kruskal Wallis H test [200]-[201] tested whether the population 

median of all the groups was equal (the test is a non-parametric version of ANOVA 

[248]) and also required independent observations. We considered two possibilities of the 

samples in our dataset – the samples are dependent (or related) and the samples are 

independent. An argument can be made for both cases. In the case of dependent 

observations, the most appropriate test was the related t-test, since the samples could be 

considered related (the same websites collected over time). However, given the dynamic 

nature of the internet and the novelty of studying feature change in this manner, we also 
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adopted the view that websites collected at different times could be considered 

independent, or not related. Hence, we also used the other three tests – the two-sample 

KS test [196]-[197], the k-sample Anderson-Darling [198]-[199], and the Kruskal Wallis 

H test [200]-[201] – and observed the outcomes. 

 Results 

 RQ11: How does Detection Performance Change Over Time? 

For this research question, we applied to Dataset 3 the RF model built from 

Dataset 1 with 34 features identified in Chapter 7 and the RF model built from Dataset 1 

with 99 features gathered from prior research. Tables 9-2 and 9-3 below present a 

summary of the number of websites that were consistent and the number of websites that 

changed. 

 
Table 9-2.  

The Detection Model Built from  

Dataset 1 with 34 Features  

Remained Consistent on Dataset 3 

Website Prediction Based on Mode Trained on 

Dataset 1 and 34 Identified Features 

Consistency Status Number Percent 

Consistent Benign 89257 83.6 

Consistent Malicious 438 0.4 

Failed Collection 7794 7.3 

Changes 9277 8.7 

 

 
Table 9-3.  

The Detection Model Built from  

Dataset 1 with 99 Features  

Remained Consistent on Dataset 3 

Website Prediction Based on Mode Trained on 

Dataset 1 and 99 Prior Features 

Consistency Status Number Percent 

Consistent Benign 89204 83.5 

Consistent Malicious 491 0.5 

Failed Collection 7794 7.3 

Changes 9277 8.7 
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Tables 9-2 and 9-3 show the metrics of classification consistency from the models 

built from the 34 features and 99 features from Dataset 1 and applied to Dataset 3. In both 

cases approximately 84% of the websites were consistently classified as benign; 0.4% of 

the websites were consistently classified as malicious; 7% had at least one failure during 

collection; and 9% changed their classification over the 12 weeks. Although we had 85% 

of the websites with no collection failures (the connection timed out, the connection was 

blocked, etc) that were consistent with respect to their classification by the models built 

in Chapter 7, we did not yet know how well those the respective models performed (if 

they were accurate). To determine this, we captured performance metrics and used 

Google Safe Browsing as the ground truth. Results are shown in Tables 9-4 and 9-5. 
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Table 9-4.  

The Model Trained on Dataset 1 with 34 Features  

Performed Consistently Poorly When Applied to Dataset 3 

Performance of Random Forest Classifier Trained On 34 

Identified Features on Dataset 1 Applied to Dataset 3 Over Time 

Week FPR FNR AUC MCC Prec Rec 

2/2/2020 0.0044 0.9822 0.5066 0.0311 0.0989 0.0177 

2/9/2020 0.0045 0.9829 0.5062 0.0289 0.0934 0.0170 

2/16/2020 0.0045 0.9833 0.5060 0.0279 0.0907 0.0166 

2/23/2020 0.0046 0.9830 0.5061 0.0281 0.0909 0.0169 

3/1/2020 0.0045 0.9829 0.5062 0.0291 0.0938 0.0170 

3/8/2020 0.0045 0.9833 0.5060 0.0281 0.0918 0.0166 

3/15/2020 0.0045 0.9829 0.5062 0.0288 0.0928 0.0170 

3/22/2020 0.0045 0.9826 0.5063 0.0295 0.0949 0.0173 

3/29/2020 0.0046 0.9831 0.5060 0.0279 0.0907 0.0168 

4/5/2020 0.0046 0.9823 0.5065 0.0299 0.0952 0.0176 

4/12/2020 0.0047 0.9831 0.5060 0.0276 0.0896 0.0168 

4/19/2020 0.0046 0.9838 0.5057 0.0267 0.0884 0.0161 

 

 
Table 9-5.  

The Model Trained on Dataset 1 with 99 Features  

Performed Consistently Poorly When Applied to Dataset 3 

Performance of Random Forest Classifier Trained On 99 Prior 

Features on Dataset 1 Applied to Dataset 3 Over Time 

Week FPR FNR AUC MCC Prec Rec 

2/2/2020 0.0035 0.9837 0.5063 0.0326 0.1108 0.0162 

2/9/2020 0.0036 0.9841 0.5061 0.0313 0.1067 0.0158 

2/16/2020 0.0036 0.9840 0.5061 0.0316 0.1076 0.0159 

2/23/2020 0.0036 0.9837 0.5062 0.0322 0.1090 0.0162 

3/1/2020 0.0035 0.9840 0.5061 0.0317 0.1081 0.0159 

3/8/2020 0.0035 0.9845 0.5059 0.0310 0.1069 0.0154 

3/15/2020 0.0035 0.9845 0.5059 0.0307 0.1055 0.0154 

3/22/2020 0.0036 0.9842 0.5060 0.0313 0.1073 0.0157 

3/29/2020 0.0036 0.9846 0.5058 0.0298 0.1030 0.0153 

4/5/2020 0.0036 0.9838 0.5062 0.0318 0.1079 0.0161 

4/12/2020 0.0037 0.9846 0.5058 0.0297 0.1025 0.0153 

4/19/2020 0.0036 0.9849 0.5056 0.0292 0.1018 0.0150 

 

 

In both cases, the models built on the 34 identified features and 99 prior features 

performed only slightly better than random on each snapshot. (We saw an MCC of 

0.0311 for the model built with the 34 features, and an MCC of 0.0326 for the model 

built with the 99 features.) We went on to investigate the performance of models over 

time, our primary goal being to gauge how long models would remain accurate for 

detection before becoming out-of-date. To that end, we trained an RF detection model on 

the first week of collection and evaluated its performance on the remaining 11 weeks of 

collection. We used Google Safe Browsing as ground truth data for evaluating the 
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accuracy. For re-training, we used the 34 identified features from Chapter 7 derived from 

Dataset 1, the 99 features gathered from prior research, and 41 re-selected features from 

Dataset 3. We performed re-selection on Dataset 3 in case there was another set of 

features that better suited Dataset 3, following the same process outlined in Chapter 7 for 

feature selection. Figure 9-3 below shows the performance of the models trained on the 

first week of collection and applied to the 11 subsequent weeks. We focused on the MCC 

and FNR. The FPR is not shown because it only changed slightly and was very low 

(approximately equal to or less than 0.01% over all measurements). Full results can be 

found in Appendix D. 

 

 
Fig. 9-3.   Performance consistently decreased when training on the first snapshot of Dataset 3 and 

evaluating on future snapshots 

 

 

In all three cases, we observed a decrease in MCC over the 12 weeks; over the 

same period, we observed an increase in the FNR with all three sets of features. We also 

observed that the model built from 99 features performed slightly better over time than 

the model built with 34 features, although both models exhibited similar behavior with 
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respect to performance degradation over time. We observed that the model built from re-

selected features outperformed the model built from 34 features from Chapter 7, but it 

underperformed when compared to the model built from the 99 features gathered from 

prior research. Additionally, we observed that the performance (MCC) of models built 

from all three feature sets decreased with an exponential decay N = N0e
-λt which we 

determined by performing linear and non-linear regressions on the sequence of data 

finding the regression with the smallest error. On the linear regressions, we observed R2 

values 0.9803, 0.9918 and 0.9961, for the 34, 99, and re-selected features with p-values 

of 5.43E-9, 1.04E-10, and 3.56E-12, respectively. 

We then examined whether and how re-training could improve the ability to 

distinguish between benign and malicious websites. To do so, we re-trained on each week 

and evaluated on all subsequent weeks. The results were similar when re-training on the 

different snapshots. See Figure 9-4 for the results of re-training on the sixth week. Full 

results appear in Appendix D. 

 

 
Fig. 9-4.   Performance temporarily increased when retraining, but still consistently decreased over time 
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When re-training on the sixth snapshot (taken March 8th, 2020), we observed a 

performance increase when applying the re-trained models (with 34, 99, and re-selected 

features, respectively) to the following weeks, followed by a decrease similar to the 

model performance from Figure 9-3. After re-training, we also observed that the 

performance for all three feature sets decreased according to a power rule N = N0t
-n based 

on the result of performing non-linear and linear regressions. On the linear regressions, 

we observed R2 values 0.9499, 0.9719 and 0.9825, for the 34, 99, and re-selected features 

with p-values of 9.5E-4, 2.9E-4, and 1.1E-4, respectively. Additionally, the MCC and 

FNRs of models trained on the snapshot taken the week of March 8th, 2020 and evaluated 

on the data from weeks 6, 7, …11, was approximately equal to the MCC and FNR of the 

model trained on February 2nd, 2020, and applied to the February 9th, 2020, snapshot 

(Figure 9-3). 

 

 
Fig. 9-5.   Model performance improved and remained more robust when training on several snapshots  

of prior data 
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We then evaluated the impact of using all of the previous weeks as training data 

instead of using just the previous week. Results are shown in Figure 9-5, with full results 

appearing in Appendix D. When doing so, we noted improvement in the performance 

(MCC and FNR). We observed a decrease in performance on the subsequent weeks, 

though the decrease was slower than that for the models that were trained on a single 

snapshot of data. Again, the model built from 99 features performed the best and the re-

selected features outperformed the 34 features identified in Chapter 7, though the 

difference between the three was smaller (see Figure 9-5 versus Figures 9-4 and 9-3). 

Figure 9-5 displays the observed power decrease for the 34 features and the re-selected 

features and there is an observed exponential decrease for the 99 features. On the linear 

regressions, we observed R2 values 0.9869, 0.9919 and 0.9914, for the 34, 99, and re-

selected features with p-values of 6.38E-5, 2.41E-5, and 2.75E-5, respectively.  Thus, we 

observed that the model’s ability to distinguish between malicious and benign websites 

decreased over time, specifically, with a rise in FNR. 

With RQ11, we investigated the performance of detection models over time. To 

do so, we first examined the models built from Dataset 1 (see Chapter 7). We found 

consistency in the number of benign and malicious websites, with approximately 92% of 

the websites maintaining the same classification over time (based on our RF model built 

on Dataset 1 with 34 identified features and with 99 features gathered from prior 

research). Although our model was consistent, it performed poorly. Thus, the model built 

from Dataset 1 was not able to distinguish between malicious and benign websites. The 

performance (MCC) of the models was approximately 0, indicating that the classifier was 
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roughly random and therefore did not provide insight into detection ability over time and 

was not useful for this study. 

In order to create a model that performed well, we re-trained three RF models 

with different feature sets on the first snapshot of data from Dataset 3 (the Alexa Top 1M 

domains that were consistent over 12 weeks, with the Google Safe Browsing as the 

ground truth). That is, we re-trained on the first snapshot of data (gathered February 2nd, 

2020) and evaluated the performance on the subsequent weeks. When doing so, we 

observed an MCC of 0.8960 and an FNR of 0.1906, followed by a performance decrease 

(a decrease in the MCC) and an increase in the FNR for each subsequent week when 

using the 34 identified features. The FNR on the last snapshot (taken April 19th, 2020) 

was 48.46% for the model built from 34 identified features. This result was similar to 

results for the models built with 99 features and with re-selected features. The decrease in 

performance was exponential over time without re-training, but by the sixth week of 

evaluation, we observed FNRs of approximately 30% for the 34 and 41 re-selected 

features, and of approximately 20% for the 99 features gathered from prior research. 

These results (and additional results from the other feature sets) indicated that while 

detection models may be sufficient for the short term, they cannot be guaranteed to work 

for an extended period of time. This observation aligned with general intuition about the 

dynamic nature of the internet in an adversarial environment of threat detection. 

However, the large performance decrease was due to the increasing FNR. The FPR 

stayed lowed during each iteration (we recorded a max FPR of 0.0032%, 0%, 0.0085%, 

for the models built from 34, 99, and re-selected features, respectively). This bodes well 
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for potential incorporation into detectors since triaging false positives is a major problem 

for security teams [240]. 

Re-training frequently (in this case, every week) improved performance 

temporarily, but still resulted in a performance decrease over time with all three feature 

sets. However, re-training on all prior snapshots resulted in better performing models that 

remained more robust (their performance decreased more slowly). Additionally, re-

training slowed the performance degradation from e-t to t-n in five of the six re-training 

scenarios based on finding the respective regression with the lowest error. As a result, we 

postulated that detection models decrease in performance over time, need re-training, and 

benefit from re-training on various instance of past data. 

 RQ12: Do Websites Change Over Time? 

In this next step, we determined whether websites changed over time by 

examining whether the features that composed those websites changed. To do so, we first 

examined the pairwise correlations between the respective features to determine any 

changes. We examined the pairwise correlations between every feature in the respective 

snapshots (6,160 feature pairs in total) and did so for each feature studied in this chapter. 

For example, we calculated the correlation between the “Number of HTML tags” feature 

and the number of <a> tags and did this for each of the twelve snapshots. To determine if 

there were any changes in the pairwise correlations, we looked for outliers as defined by 

the IQR (Inter Quartile Range) among the sequence of 12 measurements for each 

pairwise correlation. When doing so on all possible feature pairs, we identified 41 feature 

pairs (out of 6,160 possible feature pairs) of which each had a single outlier 

measurement. That is, 41 feature pairs had only a single outlier measurement of the 12 



 

219 

 

total measurements and the other 6,119 feature pairs had no outlier measurements. Thus, 

our analysis did not reveal much change in pairwise correlations between the respective 

snapshots. We next applied four statistical tests to features in the respective snapshots to 

determine if the feature changed. We did this in a pairwise manner (from the February 2nd 

snapshot to the February 9th snapshot, from the February 2nd snapshot to the February 16th 

snapshot, etc.). Results are shown in Figure 9-6 with a significance level of 10%, chosen 

because we manually inspected the data and observed many p-values just over 0.05 and 

chose 0.10 (10%) in order to capture these features. We ignored URL features since they 

do not change. 

 

 
Fig. 9-6.    More features changed as the time period lengthened 

 

All four tests showed that the number of changing features increased as the time 
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KS and Kruskal Wallis H test [200]-[201], we observed a greater change for the time 

period of February 2nd through March 22nd than for the time period of February 2nd 

through March 29th . All of the data points compared the features collected on February 

2nd to the end date separated by a “-.” 

In addition to measuring the number of features that changed over the respective 

time periods, we also examined the feature importance associated with the respective 

features that changed. Figure 9-7 shows the total importance of the features that changed 

within the three feature sets between February 2nd and April 19th. 

 
Fig. 9-7.    The features that change represented more than 1/3 of total feature importance 

 

 

Of the features that changed over the time period measured, approximately 38%–

40% of the total feature importance was contained in these features across the three 

feature sets. Thus, the features that changed were influential in determining whether or 

not a website was malicious in that they captured non-trivial amount of feature 

importance. Additionally, approximately 24%-37% of the features in the respective 

datasets were URL features (which do not change over time). Figure 9-8 shows the 

cumulative importance of URL features.  
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Fig. 9-8.    More than 20% of total feature importance was derived from URL features 

 

 

After identifying the total importance from the features that changed over time, 

we then examined how much total importance changed over each week. This was 
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test. 
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Fig. 9-9.    Feature importance changed more as the time gap became larger when using the  

related sample t-test 

 

Results from this test showed less than a 0.02 change in feature importance from 

February 2nd, 2020 to March 8th, 2020 over the three feature sets within the first few 

weeks. We then examined the feature importance that changed when we considered as 

“changed” those features that changed on at least one of the four tests. This is shown in 

Figure 9-10. 
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Fig. 9-10.     When using several tests, feature importance changed more as the time gap increased 

 

 

The results shown in Figure 9-10 are similar to the results shown in Figure 9-9 in 

that the first few weeks showed little importance change followed by larger importance 

change in the last weeks. Thus, we observed that the features that compose websites do 

change and that those features accounted for roughly 40% of the total feature importance 

in the respective feature sets, confirming that websites do change over time. 

With RQ12, we investigated whether websites changed over time. We focused the 

analysis on the features that compose a website and on those used for discriminating 

between malicious and benign websites. All four statistical tests demonstrated that the 

number of features that change over time increased. Additionally, we found that the 

features that change over time accounted for a non-trivial amount of feature importance 

in our detection model. Thus, we postulated that websites, as defined by their features 

that can be used for malicious website detection, change over time. 
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 RQ13: If Websites Change Over Time, How Much do They Change Over 

Time? 

To answer RQ13, we used techniques and tests similar to those used in RQ12, but 

we measured the results as a function of the number of weeks that had passed. In other 

words, instead of comparing each week to the first week, as we did when answering 

RQ12, we compared each week to each of the other weeks. For example, we performed 

analysis on the data and changes between the weeks of March 2nd and March 9th, the 

weeks of March 2nd and March 16th, the weeks of March 2nd and March 23rd, etc. As a 

result, we obtained a series of measurements as a function of the number of weeks. We 

obtained 11 measures where the week difference was 1 week, 10 measurements where 

the week difference was 2 weeks, 9 measurements where the week difference was 3 

weeks, etc. 

First, we examined the average number of features that changed over time as a 

function of the week difference. Results are shown in Figure 9-11. 
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Fig. 9-11.    The average number of features that changed over time increased with the lengthening  

of the time period 

 

 

As with the findings from RQ12, Figure 9-11 showed the constant upward trend 

we observed in the number of features that changed over time. Box plots of the respective 

feature changes based on the respective tests are shown in Figures 9-12, 9-13, 9-14, and 

9-15. 

 

 
Fig. 9-12.    Box plot for the number of features  

that changed over time, per related sample t-test 
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Fig. 9-13.    Box plot for the number of features  

that changed over time, per two-sample KS 

 

 

 
Fig. 9-14.    Box plot for the number of features  

that changed over time, per k-sample Anderson-Darling 

 

 
Fig. 9-15.     Box plot for the number of features that  

changed over time, per the Kruskal Wallis H test 

 

 

We observed overlap in the box plots for the number of features that changed 

when the time difference was one week and two weeks. Although we made this 

observation, the fact that a similar number of features changed when the time difference 
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was one or two weeks did not appear to have improved detection results since there was 

no overlap in the box plots for the performance as a function of the time difference (with 

the exception of a few outlier measurements). Results are shown in Figures 9-16, 9-17, 

and 9-18 below for the 34, re-selected, and 99 features, respectively.  

 

 
Fig. 9-16.    Capturing several measurements as a function of time  

further demonstrated performance decrease when using 34 features  

for malicious website detection 

 

 

 
Fig. 9-17.    Capturing several measurements as a function of time  

further demonstrated performance decrease when using re-selected  

features for malicious website detection 
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Fig. 9-18.    Capturing several measurements as a function of time  

further demonstrated performance decrease when using 99 prior  

features for malicious website detection 

 

We investigated the number of features that changed by analyzing all possible 

pairs. Findings further supported the conclusion that features changed over time and that 

the change followed an upward trend while performance followed a downward trend. 

With RQ13, we verified our initial observations from RQ12 by performing an 

additional analysis and calculating the results when comparing the features over every 

possible combination of snapshots to gauge how much websites changed over time and if 

the change was consistent. We knew that websites are updated over time, but to our 

knowledge, this is the first study that attempted to evaluate how websites change with 

regard to malicious website detection. We observed that the longer the time period 

between model training and model use, the worse the performance of the original model 

and the more features changed. This finding supported our observation from RQ11 

regarding the need to frequently re-train. As features begin to change, models will 

become stale and experience changing performance metrics. We observed a decrease. 

Thus, we demonstrated that websites do change over time and that the changes become 



 

229 

 

larger as the timeframe increases, a finding that highlights the need to re-train detection 

models. 

 Conclusion 

This chapter included a temporal evaluation of feature-based malicious website 

detection. In this chapter, we detailed our investigation into whether detection models 

remained effective over a period of time and the different strategies we used for re-

training. Additionally, we provided insight into whether and how websites changed over 

time and demonstrated that as websites change (in the form of their features), the 

performance of detection models consistently decreased without re-training. 
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Chapter 10: Limitations 

This dissertation included several studies on feature-based malicious website 

detection. However, it was not without limitations. In this chapter we discuss the 

limitations present throughout this research. 

 Dataset Selection 

The first limitation originated from dataset selection. In related security research, 

authors used different techniques to create datasets of benign and malicious websites. 

Some authors implemented web crawlers or used randomly selected URLs or similar 

methods to identify and collect websites to supplement or define their datasets [35]-[37], 

[40], [42]-[44], [46], [49]-[50], [81], [91], [95]. Others used established or well-known 

datasets as part of their datasets [24], [47]-[48], [86], [89], [116]-[117]. Both approaches 

to defining and curating datasets of benign and malicious websites include inherent 

subjectivity. We based our datasets (Dataset 1 used in Chapters 4-7, Dataset 2 used in 

Chapter 8, and Dataset 3 used in Chapter 9) from external sources – the Alexa top 1M, 

Cisco Talos Intelligence Group, Cymon.io, and Google Safe Browsing in an attempt to be 

objective and lessen our influence in our studies.  

In our studies in Chapters 4-7, we assumed that popularity and high Alexa rank 

were benign traits, though this may not always be true. To investigate our assumption, we 

verified with threat intelligence feeds from Cymon.io [193], a tool that accumulates threat 

intelligence. In 2018, we observed that approximately 5% of the websites in our benign 

list appeared in the Cymon.io database. While the appearance in, or absence from, the 

Cymon.io database does not confirm the benign or malicious nature of the website, given 

that only 5% of our benign websites were present in Cymon.io, we demonstrated that the 
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assumption of popularity as a trait of benign websites was reasonable. This observation 

suggests that at most 5% of our benign data was mislabeled. Also, our dataset in Chapters 

4-7 represented a specific point in time. Internet security and the web are ever-changing 

environments, providing no guarantee that our findings will remain true should this 

experiment be repeated on a different dataset. This limitation is difficult to avoid in 

dynamic environments like the internet. We did however address this limitation with our 

study in Chapters 8 and 9.  

For purposes of our study, a website was considered “malicious” if it was 

associated with any attacks including phishing, drive-by downloads, or C2 infrastructure. 

“Malicious” does not have a precise, standardized definition in a cybersecurity context, 

so definitions may vary. Therefore, we run the risk of disagreeing with other researchers 

who may define “malicious” differently.  

 Feature Challenges 

There are some limitations present in the features themselves. Webpage content 

provides a rich environment for feature collection, a fact that we took full advantage of in 

conducting our research. However, the extent to which HTML and JavaScript can be 

studied is vast, and some methods from previous research present challenges when 

attempting to combine many different analysis techniques. For example, HTML can 

contain many URLs. Although we analyzed properties of these URLs in our collection, 

URL analysis itself is vast, encompassing several detection means that were not 

compatible with our approach. The JavaScript on the webpage posed the same challenge. 

Our approach was static and therefore did not include the several dynamic approaches to 

JavaScript that exist. Thus, feature collection and analysis for webpage content is 
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challenging as a result of the many different features that can be collected and as a result 

of the many different analysis techniques. 

The gathering of JavaScript features posed another limitation. We gathered our 

JavaScript features statically, which has been done in prior research, but because 

malicious JavaScript is often obfuscated, it presents a challenge to analysis. Potential 

mitigations include adding a de-obfuscator or instrumenting the collection environment to 

record the specific JavaScript methods executed. This requires additional overhead and 

potentially runs the risk of executing malicious script while attempting to perform feature 

collection.  

Additionally, our set of URLs consisted of English URLs, a choice that greatly 

influenced the lexical features we extracted in our research. Should our dataset have 

contained URLs with non-English characters, we would have needed to modify our 

feature set and collection mechanism to account for this. URL features are very flexible 

since URLs consist simply of strings of characters. As a result, they can be analyzed in 

many ways. Given this flexibility, there was a risk that our approach – examining n-

grams on the URL – may not have been the optimal approach for analyzing URLs. Given 

the existence of many different analysis techniques, it is challenging to identify the single 

best analysis technique. 

The selection of HTTP header features also limited us. HTTP header analysis 

requires substantial data cleaning and validation due to the prevalence of custom headers, 

misspellings, and so on. For our exploration into HTTP header features and their 

applicability to detect malicious websites, we focused on collecting and cleaning headers 

received in a response to a GET request. While this provided a rich set of features, we 
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did not collect session-based features or those features arising from HTTP requests and 

responses over a period of time. In addition, we used HTTP features in isolation, rather 

than in combination with other website features. 

 Comparison with Other Works 

Benchmarking our work to related research was a challenge. Prior researchers 

used different datasets, features, and performance metrics, collected their data at different 

times, or focused on different aspects, such as the speed of website classification or other 

metrics. This points to a broader problem in the field of cybersecurity – a lack of 

repeatability – that hinders validation and comparison. 

 Additional Limitations 

The last limitations came from our last two chapters where we explored additional 

datasets and performed a temporal evaluation of malicious website detection. The main 

limitation but also key finding in Chapter 8 was that the ability to apply feature-based 

detection to malicious websites was dependent upon the datasets themselves. After we 

demonstrated that we could not apply a model built with one dataset to another, we then 

observed differences with correlations and association between the features studied on 

the respective datasets. If we had used two similar datasets, our results most likely would 

have demonstrated better detection. Although this was a challenge, this observation also 

is key to assessing the real-world application of this method.  

For Chapter 9, we chose a dataset source (the Alexa 1M) that is leveraged in 

various studies, and ensured consistency by only studying websites that appear in the 

Alexa Top 1M in each of the 12 weeks. Although our dataset has objective rationale, 

there was some subjectivity in choosing a dataset. Additionally, we scoped our study to a 
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period of 12 weeks or approximately 90 days. From prior research we observed that 

detection performance decreases after 1-3 months and this is the basis for the 12-week 

period of this study. Studies on website change have also spanned approximately three 

months. Although the 12-week duration was based on prior research, it too was 

somewhat subjective. 

Another limitation with Chapter 9 resulted from the notion of measuring website 

changes over time. Because little work has been completed in the field with respect to 

malicious website detection change over time, we found no agreed-upon method for 

analysis. Furthermore, few statistical tests are designed for measuring website change. 

We chose four tests that appeared to be the most appropriate and their results were 

similar, though the lack of a universally agreed-upon method and test for measuring 

website change posed a challenge. 

Lastly, the dynamic nature of the internet created a limitation for our research in 

Chapter 9. Some websites change quickly, while others change more gradually. We use a 

week-to-week analysis which is based on an observation from prior research that 

websites are likely to change within a week, however acknowledge the subjectivity of 

this frequency. We began each weekly collection on a specific date, but since the 

collection of data for hundreds of thousands of websites cannot happen instantly, actual 

timestamps of collection were not identical. 
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Chapter 11: Conclusions 

 Dissertation Summary 

Researchers have extensively used website features to detect malicious websites. 

With this research, we performed a comprehensive evaluation of feature-based malicious 

website detection. First, we reviewed prior research that established features that are 

relevant for malicious website detection, leveraged detection methods (heuristics, 

machine learning, etc.), presented potential validation methods, provided practical 

implementations, discussed relevant performance metrics, and evaluated website change 

over time. In Chapter 3, we presented our methodology and the 13 research questions that 

drove it. In Chapters 4–6, we presented independent studies on malicious website 

detection using three separate classes of features, validating prior research as well as 

presenting new findings. In Chapter 7 we leveraged the findings and features from 

Chapters 4–6, going on to evaluate the discovery of features through feature selection 

versus using those from gathered prior research. In Chapter 8 we reported our application 

of detection models built on one dataset to another dataset, while in Chapter 9 we detailed 

our temporal study on feature-based malicious website detection. 

We established that feature-based malicious website detection remains relevant 

for detection of several types of threats and that re-evaluation of the assumptions from 

prior research (including the features used for detection) yields benefits. Our research 

showed improvement when using discovered features versus features gathered from prior 

research. This improvement was demonstrated with models built from various machine 

learning algorithms over various scenarios. Furthermore, we demonstrated that feature 

selection (versus selecting features in advance) decreased the number of features needed 
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for malicious website detection. The study in each chapter that demonstrated the benefit 

of building detection models with new features was performed with a dataset consisting 

of several threats. Furthermore, the features that were used for detection are available in a 

web browsing environment. Thus, we recommend the addition and exploration of new 

features in future research. 

In our last two chapters, we evaluated feature-based malicious website detection 

on two additional datasets. By doing so, we showed that detection models were reliant on 

the dataset on which they trained, however, the features that we identified could be 

applied to new datasets with minor adjustments. Our study of the temporal aspects of 

malicious website detection provided evidence that malicious website detection models 

degrade over time. Re-training can improve model performance and can slow 

performance degradation. From the results in Chapter 8 and Chapter 9, we postulate that 

adjusting models with new features (as done in Chapter 8) and retraining as new data 

becomes available (Chapter 9) will improve malicious website detection. Lastly, we 

presented a method of quantifying how websites (as defined by their features) change 

over time and quantified the change we observed. 

 Future Work 

There are two potential areas of future work that could follow this dissertation.  

One possibility is the specification, creation, and maintenance of a central dataset 

for malicious website detection experiments. Several datasets are used in prior research 

that differ in size, types of threat, ratio of malicious to benign websites, and date of 

collection. These differences make comparison of prior research and techniques 

challenging because each researcher typically uses a dataset specific to their study. 
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Specifying, creating, and maintaining a training and evaluation dataset including both 

malicious and benign websites would be beneficial to the research community.  

Another possibility of future work involves the creation and evaluation of the 

research in this dissertation into a potential security tool. That is, follow on work could 

potentially involve building a component inside of a web browser or other tool that 

fetches websites. There are several areas to be addressed in this work. First, we can 

investigate different sources of training data and evaluate their effectiveness in an 

operational environment. The training data could be open source intelligence, data from a 

security operations centers, data from the users of the tool, or potentially a combination 

thereof. Second, we could evaluate the utility of using this tool as a blocking mechanism 

(preventing users or services from accessing a website) or as an aid to a user or a service 

making browsing decisions. By evaluating this solution as a blocking mechanism, we 

would gain insight into the usability of such a solution – particularly, is the false positive 

rate low enough to prevent disruption. By evaluating this capability as a supplement to a 

user, we would gain insight into if and how this mechanism benefits from user input. 

Additionally, we could gauge if this capability enables a user or service to make 

beneficial risk-based decisions on whether or not to visit a website. 

Lastly, the completion of this dissertation involved the creation of various scripts 

and software components. We are currently working on the release and sharing of code 

used in this dissertation. 
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Appendix A: URL Features 

1. Presence of an IP address in the URL 

2. Presence of a port number in the URL 

3. Presence of a well-known ports in the URL 

4. The length of URL 

5. Counts of each character 

6. Total count of digits 

7. Total count of letters 

8. Total count of special characters 

9. Counts of n-grams from files extensions in the URL 

10. Total count of file extension n-grams in the URL 

11. Counts of n-grams of TLDs in the URL 

12. Total count of file extension n-grams in the URL 

13. Count of respective words from [210] 

14. Count of the number of words in the URL with a given length 
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Appendix B: JavaScript Methods 

We extracted the counts of the following methods within the webpage. 

 

DOM Methods: 

 
adoptNode 
captureEvents 

caretPositionFromPoint 

caretRangeFromPoint 
clear 

close 

createAttribute 
createAttributeNS 

createCDATASection 

createComment 

createDocumentFragment 

createElement 

createElementNS 
createEntityReference 

createEvent 

createNodeIterator 

createProcessingInstruction 
createRange 

createTextNode 

createTouch 
createTouchList 

createTreeWalker 

elementFromPoint 
elementsFromPoint 

enableStyleSheetsForSet 

execCommand 

exitPointerLock 

getAnimations 

getElementById 
getElementByName 

getElementsByClassName 

getElementsByTagName 

getElementsByTagNameNS 
getSelection 

hasFocus 

importNode 
normalizeDocument 

open 

queryCommandEnabled 
queryCommandIndeterm 

queryCommandValue 

querySelector 

querySelectorAll 

releaseCapture 

releaseEvent 
routeEvent 

write 

writeln 
 

Java Script: 

 
add 

all 
allTrue 

anchor 

apply 
big 

bind 

blink 
bold 

call 

catch 
charAt 

charCodeAt 

clear 
codePointAt 

compile 

concat 
construct 

copyWithin 

defineProperty 
delete 

deleteProperty 

endWith 
entries 

every 

exec 
fill 

filter 

finally 
find 

findIndex 

fixed 
flat 

flatMap 

fontcolor 
fontsize 

forEach 

formatToParts 
from 

get 

getDate 

getDay 
getFloat32 

getFloat64 

getFullYear 
getHours 

getInt16 

getInt32 
getInt8 

getMilliseconds 

getMinutes 
getMonth 

getOwnPropertyDescriptor 

getPrototypeOf 
getSeconds 

getTime 

getTimezoneOffset 
getUTCDate 

getUTCDay 

getUTCFullYear 
getUTCHours 

getUTCMilliseconds 

getUTCMinutes 
getUTCMonth 

getUTCSeconds 

getUint16 
getUint32 

getUint8 

getYear 
grow 

has 

hasOwnProperty 
includes 

indexOf 

isExtensible 
isNan 

isPrototypeOf 

italics 
join 

keys 

lastIndexOf 

link 
localeCompare 

log 

map 
match 

min 

next 
normalize 

of 

ownKeys 
padEnd 

padStart 

pop 
preventExtensions 

propertyIsEnumerable 

push 
reduce 

reduceRight 

repeat 
replace 

resolvedOptions 

return 
reverse 

search 

select 
set 

setDate 

setFloat32 
setFloat64 

setFullYear 

setHours 
setInt16 

setInt32 

setInt8 
setMilliseconds 

setMinutes 

setMonth 
setPrototypeOf 

setSeconds 



 

241 

 

setTime 

setUTCDate 

setUTCFullYear 

setUTCHours 
setUTCMilliseconds 

setUTCMinutes 

setUTCMonth 
setUTCSeconds 

setUint16 

setUint32 
setUint8 

setYear 

shift 
slice 

small 

some 
sort 

splice 

split 

strike 

subarray 

substr 
substring 

supportedLocalesOf 

test 
throw 

toDateString 
toExponential 

toFixed 

toISOString 
toJSON 

toLocaleString 

toLocaleTimeString 
toLocaleUpperCase 

toLowerCase 

toPrecision 

toSource 

toString 

toUpperCase 
trim 

trimEnd 

trimStart 
unshift 

valueOf 

values 
 

Array.from 

Array.isArray 
Array.of 

ArrayBuffer.isView 

ArrayBuffer.transfer 
Atomics.add 

Atomics.and 

Atomics.compareExchange 

Atomics.exchange 

Atomics.isLockFree 

Atomics.load 
Atomics.or 

Atomics.store 

Atomics.sub 

Atomics.wait 

Atomics.wake 
Atomics.xor 

Date.UTC 

Date.now 
Date.parse 

Intl.getCanonicalLocales 

JSON.parse 
JSON.stringify 

Math.abs 

Math.acos 
Math.acosh 

Math.asin 

Math.asinh 
Math.atan 

Math.atan2 

Math.atanh 

Math.cbrt 

Math.ceil 

Math.clz32 
Math.cos 

Math.cosh 

Math.exp 
Math.expm1 

Math.floor 
Math.fround 

Math.hypot 

Math.imul 
Math.log 

Math.log10 

Math.log1p 
Math.log2 

Math.max 

Math.min 

Math.pow 

Math.random 

Math.round 
Math.sign 

Math.sin 

Math.sinh 
Math.sqrt 

Math.tan 

Math.tanh 
Math.trunc 

Number.isFinite 

Number.isInteger 
Number.isNaN 

Number.isSafeInteger 

Number.parseFloat 
Number.parseInt 

Object.assign 

Object.create 

Object.defineProperties 

Object.defineProperty 

Object.entries 
Object.freeze 

Object.getOwnPropertyDescriptor 

Object.getOwnPropertyDescriptors 

Object.getOwnPropertyNames 

Object.getOwnPropertySymbols 
Object.getPrototypeOf 

Object.is 

Object.isExtensible 
Object.isFrozen 

Object.isSealed 

Object.keys 
Object.preventExtensions 

Object.seal 

Object.setPrototypeOf 
Promise.all 

Promise.race 

Promise.reject 
Promise.resolve 

Proxy.revocable 

Reflect.apply 

Reflect.construct 

Reflect.defineProperty 

Reflect.deleteProperty 
Reflect.get 

Reflect.getOwnPropertyDescriptor 

Reflect.getPrototypeOf 
Reflect.has 

Reflect.isExtensible 
Reflect.ownKeys 

Reflect.preventExtensions 

Reflect.set 
Reflect.setPrototypeOf 

String.fromCharCode 

String.fromCodePoint 
String.raw 

Symbol.for 

Symbol.keyFor 

WebAssembly.compile 

WebAssembly.compileStreaming 

WebAssembly.customerSections 
WebAssembly.exports 

WebAssembly.imports 

WebAssembly.instantiate 
WebAssembly.instantiateStreaming 

WebAssembly.validate 

decodeURI 
decodeURIComponent 

encodeURI 

encodeURIComponent 
escape 

eval 

isFinite 
isNaN 

parseFloat 

parseInt 

undefined 

unescape 

uneval 

 

Methods on the Window Object: 

 
addEventListener 

alert 
atob 

back 

blur 
btoa 

cancelAnimationFrame 

cancelIdleCallback 

captureEvents 
clearImmediate 

clearInterval 

clearTimeout 
close 

confirm 

createImageBitmap 

disableExternalCapture 
dispatchEvent 

dump 

enableExternalCapture 
fetch 

find 
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focus 

forward 

getAttention 

getAttentionWithCycleCount 
getComputedStyle 

getDefaultComputedSyle 

getSelection 
home 

matchMedia 

maximize 
minimize 

moveBy 

moveTo 
open 

openDialog 

postMessage 

print 

prompt 
releaseEvents 

removeEventListener 

requestAnimationFrame 
requestIdleCallback 

resizeBy 

resizeTo 
restore 

routeEvent 

scroll 
scrollBy 

scrollByLines 

scrollByPages 

scrollTo 

setCursor 
setImmediate 

setInterval 

setResizable 
setTimeout 

sizeToContent 

stop 
updateCommands 
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Appendix C: HTML 

Initial Tag Counts Counted 

 
a 
abbr 

acronym 

address 
applet 

area 

article 
aside 

audio 

b 
base 

basefont 

bdi 

bdo 

bgsound 

big 
blink 

blockquote 

body 
br 

button 
canvas 

caption 

center 
cite 

code 

col 
colgroup 

command 
content 

data 

datalist 
dd 

del 

details 
dfn 

dialog 

dir 
div 

dl 

dt 

element 

em 

embed 
fieldset 

figcaption 

figure 
font 

footer 
form 

frame 

frameset 
h1 

head 

header 
hgroup 

hr 
html 

i 

iframe 
image 

img 

input 
ins 

isindex 

kbd 
keygen 

label 

legend 

li 

link 

listing 
main 

map 

mark 
marquee 

menu 
menuitem 

meta 

meter 
multicol 

nav 

nextid 
nobr 

noembed 
noframes 

noscript 

object 
ol 

optgroup 

option 
output 

p 

param 
picture 

plaintext 

pre 

progress 

q 

rp 
rt 

rtc 

ruby 
s 

samp 
script 

section 

select 
shadow 

slot 

small 
source 

spacer 
span 

strike 

strong 
style 

sub 

summary 
sup 

table 

tbody 
td 

template 

textarea 

tfoot 

th 

thead 
time 

title 

tr 
track 

tt 
u 

ul 

var 
video 

wbr 

xmp 
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Element Attribute Features 

 

For the following attributes, we collected deeper information that fell into three 

categories. 

1. Certain attributes specify resources via URLs. For these attributes, we 

extracted whether the reference pointed to an OoD resource, an in-domain 

resource, a relative link within the page, and the protocol specified by the 

resource. We also captured the protocol specifying the location to the 

resource. Additionally, these resources are typically of a certain file type and 

we collected which file type as well. 

2. Certain elements can be of a “small size” or be a “small element.” We defined 

a small element as one that had a length or width of fewer than 2 pixels. 

The matrix below shows which additional attributes we extracted from the 

respective HTML elements. 
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Appendix D: Full Tables and Charts 

Table D-1:  
The Count of “-“ Characters Had High Correlation  

with the Target Variable 
 

Correlation Values between Target Variable and 288 

Features on Dataset 2 

Features Dataset 2 

Count of ‘-’ character 0.3660 
marco contenttext 0.0094 
content-language text/html 0.0081 
URL Length 0.0188 
<link href=”https*”> 0.0252 
<link rel=”canonical”> 0.0240 
<link href> OoD 0.0173 

<script src> relative 0.0150 
<script src> absolute 0.0150 
Count of ‘w’ character 0.0022 
<link rel=https://api.w.org/*> 0.0248 
<script src=”https*”> 0.0182 
<link rel=”stylesheet”> 0.0172 
<link rel=”wlwmanifest”> 0.0243 
<link 

type=”application/wlwmanifest+xml”> 0.0243 
<link type=”application/rsd+xml”> 0.0245 
<link rel=”EditURI”> 0.0245 
<meta http-equiv=”X-UA-Compatible”> 0.0130 
<script type=”text/javascript”> 0.0174 
Total URL Extensions 0.0006 
Count of ‘u’ character 0.0199 
<script src> OoD 0.0153 
URL TLD “co” Count 0.0257 

<link rel=”dns-prefetch”> 0.0219 
<link rel=”shortlink”> 0.0243 
content-encoding gzip 0.0027 
<link type=”text/css”> 0.0148 
URL extension is “.c” 0.0277 
<link href=”*.xml”> 0.0164 
URL extension ”.com” 0.0205 
URL TLD “com” 0.0205 
<script async=true> 0.0100 
meta_charset_UTF-8 0.0154 
<link rel=”icon”> 0.0120 
Count of ‘.’ Character 0.0159 
<script src=”*.js”> 0.0131 
<link rel=”pingback”> 0.0188 
getElementsByTagName() 0.0085 
<link href> absolute 0.0085 
<link href> relative 0.0085 
Count of <link> tag 0.0085 
<link href=*.png> 0.0100 
Count of <script> tag 0.0070 
<meta http-equiv=”content-type”> 0.0234 
Count of ‘x’ character 0.0062 
expect-ctmax-age 0.0137 
expect-ctreport-uri 0.0138 
<link href=”*0”> 0.0150 
Count of ‘z’ character 0.0074 
vary accept-encoding 0.0069 
vary accept 0.0068 
via 1.1 0.0135 
URL endswith “.com” 0.0154 
Count of ‘f’ character 0.0057 
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Correlation Values between Target Variable and 288 

Features on Dataset 2 

Features Dataset 2 

<script type=”application/ld+json”> 0.0177 
<link href=”*.css”> 0.0055 
Count of ‘a’ character 0.0262 
createElement() 0.0040 
x-xss-enabled 0.0142 
x-cintent-type-options nosniff 0.0137 
<link rel=”publisher”> 0.0098 
Count of 4-character words 0.0314 
<link rel=”shortcut icon”> 0.0007 
Count of <div> tag 0.0031 
<link rel=”manifest”> 0.0095 
Count of <iframe> tag 0.0018 
<link rel=”apple-touch-icon-

precomposed”> 0.0118 
<link rel=”apple-touch-icon”> 0.0053 

indexOf() 0.0070 
<link href=”*.php”> 0.0076 
<img srcset=”https*”> 0.0091 
Count of ‘o’ character 0.0192 
Count of ‘e’ character 0.0073 
Count of <a> tag 0.000012 
<a href> relative 0.000036 
<link href=”*.json”> 0.0062 
content-length 0.0040 
<a href> absolute 0.0001 
Count of ‘c’ character 0.0182 
Count of <img> tag 0.0005 
Count of ‘p’ character 0.0055 
Total href attributes 0.0001 
Total HTML Tags 0.0002 
Count of ‘m’ character 0.0110 
<a href=”https*”> 0.0041 

Count of ‘r’ character 0.0146 
<script_src=”*.0”> 0.0107 
<img srcset> absolute 0.0084 
<img srcset> relative 0.0084 
<script defer=true> 0.0110 
setTime() 0.0058 
Count of <nav> tag 0.0049 
Count of <style> tag 0.0056 
<link type=”application/rss+xml”> 0.0115 
isNaN() 0.0008 
<link rel=”alternate”> 0.0047 
<iframe src=”https*”> 0.0024 
<meta charset=utf-8> 0.0154 
<link_type=”image/png”> 0.0046 
getTime() 0.0075 
cache-control max-age 0.0108 
apply() 0.0095 

getElementById() 0.0058 
match() 0.0073 
strict-transport-security max-age 0.0060 
server nginx 0.0219 
Count of ‘v’ character 0.0066 
<a href> OoD 0.0019 
Count of <footer> tag 0.0045 
replace() 0.0058 
<iframe src> absolute 0.0007 
vary age 0.0082 
addEventListener() 0.0093 
<img srcset> OoD 0.0073 
vary user-agent 0.0083 
<iframe src> relative 0.0003 
Count of <header> tag 0.0043 
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Correlation Values between Target Variable and 288 

Features on Dataset 2 

Features Dataset 2 

JSON.parse() 0.0050 
vary cookie 0.0101 
Count of <ul> tag 0.0025 
bind() 0.0006 
Count of ‘y’ character 0.0103 
Count of <li> tag 2.1119 
<a href-=”*.aspx> 0.0064 
JSON.stringify() 0.0048 
trim() 0.0030 
Count of <main> tag 0.0027 
transfer-encoding chunked 0.0102 
log() 0.0055 
<a href=script:javascript> 0.0032 
connection keep-alive 0.0109 
Count of <span> tag 0.0005 

toLowerCase() 0.0050 
<link href=”http*”> 0.0012 
hasOwnProperty() 0.0053 
Count of 5-character words 0.0160 
<script src=”*.com”> 0.0050 
Count of <i> tag 0.0001 
Total TLDs in URL 0.0303 
Count of ‘h’ character 0.0080 
<iframe_src=”*.com”> 0.0018 
encodeURIComponent() 0.0042 
setTimeout() 0.0034 
Count of ‘i’ character 0.0096 
Count of <section> tag 0.0033 
concat() 0.0086 
decodeURIComponent() 0.0006 
Count of <meta> tag 0.0048 
Math.random() 0.0015 
Count of <time> tag 0.0019 
Count of ‘d’ character 0.0015 
<a href=”*.htm”> 0.0006 
<link href=”*.ico”> 0.0037 
Count of <button> tag 0.0006 
<link rel=”next”> 0.0037 
escape() 0.0196 
<img src=”https*”> 0.0042 
Count of ‘t’ character 0.0037 
cache-control no-store 0.0102 
test() 0.0048 
Count of <center> tag 0.0018 
join() 0.0086 
Count of <em> tag 0.0004 
Count of <article> tag 0.0036 
url_extension_.i 0.0069 

cache-control must-revalidate 0.0084 
Count of ‘n’ character 0.0081 
<link_href=”*.com”> 0.0021 
cache-control private 0.0089 
<a href=”mailto*”> 0.0027 
Count of <select> tag 0.0016 
Count of <form> tag 9.0816 
Math.floor() 0.0001 
split() 0.0054 
Count of <hr> tag 2.4394 
url_extension_.net 0.0011 
url_tld_NET 0.0011 
<img src> relative 0.0040 
<img src> absolute 0.0040 
<a href=”http*”> 0.0062 
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Correlation Values between Target Variable and 288 

Features on Dataset 2 

Features Dataset 2 

<img src=”0*”> 0.0036 
Count of ‘s’ character 0.0001 
pop() 0.0079 
Count of 7-character words 0.0019 
Count of <noscript> tag 0.0023 
URL TLD “ne” 0.0009 
<iframe src> OoD 0.0017 
substring() 0.0025 
<link type=”image/x-icon”> 0.0014 
<form enctype=”application/ 

x-www-form-urlencoded”> 0.0013 
Count of <small> tag 0.0013 
Count of <ins> tag 0.0008 
<img_src=”*.jpg”> 0.0057 
Total <img src> 0.0050 

substr() 0.0016 
server apache 0.0043 
exec() 0.0023 
parseInt() 0.0007 
URL extension “.net” 0.0011 
Count of <dl> tag 0.0029 
push() 0.0008 
open() 0.0021 
<a rel=”nofollow”> 0.0036 
<link rel=”mask-icon”> 0.0048 
Count of <figure> tag 0.0003 
<form action> relative 0.0013 
<form action=”https*”> 0.0010 
find() 0.0021 
Count of <option> tag 0.0013 
<form action>_absolute 0.0015 
shift() 0.0078 

<base href> OoD 0.0121 
Count of <h1> tag 0.0025 
Count of <aside> tag 0.0008 
defineProperty() 0.0024 
Object.defineProperty() 0.0024 
<img src=”*.png”> 0.0019 
Math.max() 0.0029 
Count of ‘k’ character 0.0070 
<script src=”http*”> 0.0053 
pragma no-cache 0.0123 
<script language=”javascript”> 0.0045 
Count of <input> tag 0.0011 
connection  close 0.0043 
<form action> OoD 0.0016 
get() 0.0013 
<a href=”*.html”> 0.0077 
forEach() 0.0029 

Count of <strong> tag 4.4068 
Count of <source> tag 0.0004 
<a_href=”0*”> 0.0050 
Count of ‘b’ character 0.0101 
<a href=”*.pdf”> 0.0025 
Count of <textarea> tag 0.0001 
cache-control no-cache 0.0102 
Count of <ol> tag 0.0022 
keys() 0.0032 
<img src> OoD 0.0070 
slice() 0.0017 
<link rel=”preload”> 0.0042 
<meta http-equiv=”Content-Type“> 0.0234 
Object.keys() 0.0032 
<script language=”JavaScript”> 0.0045 
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Correlation Values between Target Variable and 288 

Features on Dataset 2 

Features Dataset 2 

Count of 6-character words 0.0057 
querySelector() 0.0035 
<script crossorigin=”anonymous”> 0.0064 
Count of 8-character words 0.0021 
<a href=”*.com”> 0.0020 
Count of ‘p’ character 0.0029 
Count of <td> tag 0.0012 
charAt() 0.0018 
unescape() 0.0040 
Count of ‘g’ character 0.0100 
<iframe src=”*0”> 0.0025 
Count of <dd> tag 0.0023 
Count of <tbody> tag 0.0005 
<form action=”*.php”> 0.0029 
<form action=”http*”> 0.0044 

script_charset_UTF-8 0.0051 
<img src=”http*”> 0.0095 
<img src=”*.jpeg”> 0.0007 
toString() 0.0021 
<script charset=”utf-8”> 0.0051 
Count of <tr> tag 0.0017 
Count of <base> tag 0.0035 
<base href> absolute 0.0035 
<base href> relative 0.0035 
<a href=”*.php”> 0.0033 
call() 0.0036 
Count of ‘l’ character 0.0101 
Count of <table> tag 0.0011 
Count of <label> tag 0.0027 
Count of ‘j’ character 0.0081 
Count of <dt> tag 0.0033 
Count of <font> tag 0.0002 
Count of <fieldset> tag 0.0011 
add() 0.0001 
Count of <br> tag 0.0007 
<img src=”*.gif”> 0.0043 
Math.round() 0.0032 
<iframe src=”http*”> 0.0044 
cache-control public 0.0024 
Count of <title> tag 0.0058 
<img src=”*.svg”> 0.0009 
<iframe src=”*.html”> 0.0046 
write() 0.0012 
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Table D-2:  

Performance of a Several Models Built with Features from Prior Research Versus Discovered Features 

 
Model Performance over Various Scenarios with 99 Prior Features / 34 Identified Features 

Model 
No-sampling Over-sampling Under-sampling 

FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec 

KNN 

0.0050/ 

0.0113 

0.1844/ 

0.1522 

0.9743/ 

0.9724 

0.9052/ 

0.9181 

0.8686/ 

0.8611 

0.9544/ 

0.9061 

0.8155/ 

0.8477 

0.0608/ 

0.0529 

0.0744/ 

0.0966 

0.9376/ 

0.9420 

0.9323/ 

0.9252 

0.7517/ 

0.7581 

0.6637/ 

0.6889 

0.9255/ 

0.9033 

0.0474/ 

0.0693 

0.0955/ 

0.0844 

0.9470/ 

0.9289 

0.9285/ 

0.9231 

0.7741/ 

0.7242 

0.7121/ 

0.6314 

0.9044/ 

0.9155 

RF 

0.0053/ 

0.0061 

0.1633/ 

0.1300 

0.9765/ 

0.9795 

0.9156/ 

0.9319 

0.8803/ 

0.8968 

0.9531/ 

0.9479 

0.8366/ 

0.8700 

0.0079/ 

0.0099 

0.1466/ 

0.1233 

0.9761/ 

0.9770 

0.9227/ 

0.9333 

0.8792/ 

0.8850 

0.9331/ 

0.9195 

0.8533/ 

0.8766 

0.0364/ 

0.0425 

0.0811/ 

0.0666 

0.9584/ 

0.9547 

0.9412/ 

0.9454 

0.8161/ 

0.8070 

0.7657/ 

0.7400 

0.9188/ 

0.9333 

AB 

0.0129/ 

0.0132 

0.1555/ 

0.1611 

0.9706/ 

0.9697 

0.9157/ 

0.9128 

0.8525/ 

0.8478 

0.8941/ 

0.8913 

0.8444/ 

0.8388 

0.0351/ 

0.0456 

0.1188/ 

0.0733 

0.9552/ 

0.9511 

0.9229/ 

0.9404 

0.7959/ 

0.7935 

0.7647/ 

0.7245 

0.8811/ 

0.9266 

0.0622/ 

0.0606 

0.0633/ 

0.0622 

0.9376/ 

0.9391 

0.9371/ 

0.9385 

0.7553/ 

0.7600 

0.6611/ 

0.6671 

0.9366/ 

0.9377 

GB 

0.0077/ 

0.0080 

0.1522/ 

0.1511 

0.9756/ 

0.9755 

0.9199/ 

0.9204 

0.8764/ 

0.8758 

0.9339/ 

0.9317 

0.8477/ 

0.8488 

0.0181/ 

0.0298 

0.1255/ 

0.0900 

0.9695/ 

0.9632 

0.9281/ 

0.9400 

0.8509/ 

0.8319 

0.8619/ 

0.7982 

0.8744/ 

0.9100 

0.0455/ 

0.0458 

0.0611/ 

0.0588 

0.9526/ 

0.9526 

0.9466/ 

0.9476 

0.8017/ 

0.8023 

0.7278/ 

0.7270 

0.9388/ 

0.9411 

ET 

0.0047/ 

0.0067 

0.1844/ 

0.1500 

0.9746/ 

0.9767 

0.9053/ 

0.9216 

0.8699/ 

0.8821 

0.9569/ 

0.9421 

0.8155/ 

0.8500 

0.0070/ 

0.0106 

0.1488/ 

0.1166 

0.9766/ 

0.9771 

0.9220/ 

0.9363 

0.8815/ 

0.8861 

0.9398/ 

0.9148 

0.8511/ 

0.8833 

0.0371/ 

0.0386 

0.0788/ 

0.0722 

0.9580/ 

0.9575 

0.9419/ 

0.9445 

0.8153/ 

0.8151 

0.7626/ 

0.7570 

0.9211/ 

0.9277 

XGB 

0.0079/ 

0.0077 

0.1522/ 

0.1533 

0.9755/ 

0.9755 

0.9199/ 

0.9194 

0.8757/ 

0.8757 

0.9327/ 

0.9338 

0.8477/ 

0.8466 

0.0181/ 

0.0314 

0.1277/ 

0.0866 

0.9692/ 

0.9622 

0.9270/ 

0.9409 

0.8495/ 

0.8288 

0.8616/ 

0.7903 

0.8722/ 

0.9133 

0.0451/ 

0.0467 

0.0655/ 

0.0633 

0.9525/ 

0.9513 

0.9446/ 

0.9449 

0.8001/ 

0.7970 

0.7287/ 

0.7223 

0.9344/ 

0.9366 

BC 

0.0063/ 
0.0083 

0.1388/ 
0.1433 

0.9784/ 
0.9761 

0.9273/ 
0.9241 

0.8908/ 
0.8793 

0.9462/ 
0.9300 

0.8611/ 
0.8566 

0.0109/ 
0.0132 

0.1366/ 
0.1311 

0.9746/ 
0.9732 

0.9261/ 
0.9278 

0.8725/ 
0.8666 

0.9109/ 
0.8947 

0.8633/ 
0.8688 

0.0389/ 
0.0446 

0.0744/ 
0.0777 

0.9569/ 
0.9515 

0.9433/ 
0.9387 

0.8128/ 
0.7935 

0.7552/ 
0.7280 

0.9255/ 
0.9222 

NN 

0.0136/ 
0.0129 

0.1300/ 
0.1400 

0.9729/ 
0.9724 

0.9273/ 
0.9241 

0.8655/ 
0.8622 

0.8918/ 
0.8958 

0.8700/ 
0.8600 

0.0220/ 
0.0220 

0.1100/ 
0.1200 

0.9678/ 
0.9666 

0.9261/ 
0.9278 

0.8463/ 
0.8399 

0.8396/ 
0.8380 

0.8900/ 
0.8800 

0.0563/ 
0.0624 

0.0755/ 
0.0644 

0.9414/ 
0.9373 

0.9433/ 
0.9387 

0.7626/ 
0.7542 

0.6802/ 
0.6603 

0.9244/ 
0.9355 

V 

0.0028/ 

0.0142 

0.1266/ 

0.0588 

0.9831/ 

0.9809 

0.9352/ 

0.9399 

0.9135/ 

0.9030 

0.9747/ 

0.9411 

0.8733/ 

0.8868 

0.0066/ 

0.0123 

0.1018/ 

0.1087 

0.9826/ 

0.9766 

0.9457/ 

0.9394 

0.9117/ 

0.8836 

0.9452/ 

0.9023 

0.8981/ 

0.8912 

0.0378/ 

0.0405 

0.0463/ 

0.0475 

0.9612/ 

0.9586 

0.9578/ 

0.9559 

0.8321/ 

0.8230 

0.7622/ 

0.7491 

0.9536/ 

0.9524 
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Table D-3:  

Performance of a Several Models Built with Transformed Features from Prior Research Versus Discovered Features 

 
Model Performance in Feature Transformation Scenarios with 99 Prior Features / 34 Identified Features 

Model 
Feature Transformation with Feature Selection Feature Transformation with PCA 

FPR FNR ACC AUC MCC Prec Rec FPR FNR ACC AUC MCC Prec Rec 

KNN 

0.0102/ 

0.0113 

0.1800/ 

0.1655 

0.9702/ 

0.9709 

0.9048/ 

0.9115 

0.8485/ 

0.8527 

0.9122/ 

0.9048 

0.8200/ 

0.8344 

0.0015/ 

0.0102 

0.2866/ 

0.1788 

0.9656/ 

0.9703 

0.8558/ 

0.9054 

0.8210/ 

0.8492 

0.9831/ 

0.9123 

0.7133/ 

0.8211 

RF 

0.0063/ 

0.0077 

0.1566/ 

0.1355 

0.9763/ 

0.9775 

0.9184/ 

0.9283 

0.8799/ 

0.8866 

0.9452/ 

0.9350 

0.8433/ 

0.8644 

0.0057/ 

0.0077 

0.2811/ 

0.1722 

0.9626/ 

0.9733 

0.8565/ 

0.9099 

0.8039/ 

0.8640 

0.9417/ 

0.9324 

0.7188/ 

0.8277 

AB 

0.0125/ 

0.0142 

0.2322/ 

0.1666 

0.9622/ 

0.9682 

0.8776/ 

0.9095 

0.8052/ 

0.8402 

0.8881/ 

0.8833 

0.7677/ 

0.8333 

0.0165/ 

0.0149 

0.1833/ 

0.1711 

0.9642/ 

0.9670 

0.9000/ 

0.9069 

0.8203/ 

0.8344 

0.8647 

/0.8776 

0.8166/ 

0.8288 

GB 

0.0089/ 

0.0070 

0.1722/ 

0.1566 

0.9723/ 

0.9757 

0.9094/ 

0.9181 

0.8589/ 

0.8768 

0.9231/ 

0.9393 

0.8277/ 

0.8433 

0.0109/ 

0.0096 

0.1844/ 

0.1644 

0.9691/ 

0.9725 

0.9023/ 

0.9129 

0.8426/ 

0.8607 

0.9061/ 

0.9181 

0.8155/ 

0.8355 

ET 

0.0080/ 

0.0072 

0.1688/ 

0.1466 

0.9734/ 

0.9767 

0.9115/ 

0.9230 

0.8648/ 

0.8823 

0.9303/ 

0.9388 

0.8311/ 

0.8533 

0.0011/ 

0.0067 

0.5822/ 

0.2088 

0.9321/ 

0.9700 

0.7083/ 

0.8921 

0.6153/ 

0.8455 

0.9791/ 

0.9380 

0.4177/ 

0.7911 

XGB 

0.0089/ 

0.0073 

0.1700/ 

0.1633 

0.9725/ 

0.9747 

0.9105/ 

0.9146 

0.8603/ 

0.8714 

0.9233/ 

0.9365 

0.8300/ 

0.8366 

0.0093/ 

0.0089 

0.1755/ 

0.1622 

0.9715/ 

0.9734 

0.9075/ 

0.9144 

0.8550/ 

0.8652 

0.9194/ 

0.9240 

0.8244/ 

0.8377 

BC 
0.0080/ 
0.0086 

0.1588/ 
0.1333 

0.9746/ 
0.9770 

0.9165/ 
0.9290 

0.8710/ 
0.8843 

0.9311/ 
0.9285 

0.8411/ 
0.8666 

0.0106/ 
0.0082 

0.1955/ 
0.1611 

0.9681/ 
0.9742 

0.8968/ 
0.9153 

0.8368/ 
0.8690 

0.9072/ 
0.9298 

0.8044/ 
0.8388 

NN 
0.0131/ 
0.0157 

0.1511/ 
0.1233 

0.9710/ 
0.9719 

0.9165/ 
0.9290 

0.8547/ 
0.8617 

0.8935/ 
0.8786 

0.8488/ 
0.8766 

0.0129/ 
0.0154 

0.1222/ 
0.1277 

0.9744/ 
0.9716 

0.8968/ 
0.9153 

0.8733/ 
0.8601 

0.8977/ 
0.8800 

0.8777/ 
0.8722 

V 

0.0057/ 

0.0061 

0.1544/ 

0.1454 

0.9774/ 

0.9780 

0.9198/ 

0.9241 

0.8837/ 

0.8872 

0.9493/ 

0.9463 

0.8455/ 

0.8545 

0.7152/ 

0.1764 

0.8489/ 

0.1053 

0.2696/ 

0.8938 

0.2179/ 

0.5383 

-0.375/ 

0.2347 

0.0262/ 

0.8235 

0.1510/ 

0.0789 
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Table D-4:  

Performance of a Random Forest Classifier Trained with 34 Features  

on Dataset 3 Snapshot 1 
Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3, 

Snapshot 02/02/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

2/9/2020 0.9948 6.37E-05 0.1905 0.9046 0.8960 0.9971 0.8094 

2/16/2020 0.9935 7.43E-05 0.2400 0.8799 0.8673 0.9964 0.7600 

2/23/2020 0.9919 6.35E-05 0.2978 0.8510 0.8331 0.9967 0.7021 

3/1/2020 0.9915 6.37E-05 0.3157 0.8420 0.8221 0.9966 0.6842 

3/8/2020 0.9909 4.24E-05 0.3383 0.8307 0.8086 0.9976 0.6616 

3/15/2020 0.9899 6.36E-05 0.3760 0.8119 0.7843 0.9962 0.6239 

3/22/2020 0.9890 5.32E-05 0.4036 0.7981 0.7666 0.9967 0.5963 

3/29/2020 0.9882 5.30E-05 0.4363 0.7817 0.7449 0.9966 0.5636 

4/5/2020 0.9880 4.23E-05 0.4447 0.7776 0.7396 0.9972 0.5553 

4/12/2020 0.9871 4.24E-05 0.4758 0.7620 0.7181 0.9970 0.5241 

4/19/2020 0.9869 3.19E-05 0.4846 0.7576 0.7123 0.9977 0.5153 

 

 
Table D-5:  

Performance of a Random Forest Classifier Trained with 99 Features  

on Dataset 3 Snapshot 1 
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, 

Snapshot 02/02/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

2/9/2020 0.9970 0 0.1123 0.9438 0.9407 1 0.8876 

2/16/2020 0.9960 0 0.1491 0.9254 0.9205 1 0.8508 

2/23/2020 0.9948 0 0.1932 0.9033 0.8958 1 0.8067 

3/1/2020 0.9945 0 0.2036 0.8981 0.8899 1 0.7963 

3/8/2020 0.9940 0 0.2238 0.8880 0.8782 1 0.7761 

3/15/2020 0.9930 0 0.2614 0.8692 0.8563 1 0.7385 

3/22/2020 0.9924 0 0.2820 0.8589 0.8440 1 0.7179 

3/29/2020 0.9915 0 0.3155 0.8422 0.8237 1 0.6844 

4/5/2020 0.9911 0 0.3306 0.8346 0.8144 1 0.6693 

4/12/2020 0.9904 0 0.3546 0.8226 0.7994 1 0.6453 

4/19/2020 0.9900 0 0.3695 0.8152 0.7900 1 0.6304 

 

 
Table D-6:  

Performance of a Random Forest Classifier Trained with Re-selected Features  

on Dataset 3 Snapshot 1 
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset 

3, Snapshot 02/02/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

2/9/2020 0.9954 0.00010 0.1684 0.9157 0.9076 0.9953 0.8315 

2/16/2020 0.9942 0.00011 0.2116 0.8941 0.8828 0.9946 0.7883 

2/23/2020 0.9932 0.00012 0.2465 0.8766 0.8623 0.9938 0.7534 

3/1/2020 0.9928 0.00012 0.2653 0.8672 0.8512 0.9937 0.7346 

3/8/2020 0.9920 0.00013 0.2946 0.8525 0.8334 0.9929 0.7053 

3/15/2020 0.9912 0.00013 0.3233 0.8382 0.8158 0.9926 0.6766 

3/22/2020 0.9905 8.51E-05 0.3470 0.8264 0.8022 0.9953 0.6529 

3/29/2020 0.9897 0.00011 0.3750 0.8124 0.7837 0.9932 0.6250 

4/5/2020 0.9893 9.52E-05 0.3940 0.8029 0.7719 0.9943 0.6059 

4/12/2020 0.9884 0.00014 0.4256 0.7871 0.7498 0.9907 0.5743 

4/19/2020 0.9879 0.00012 0.4422 0.7788 0.7391 0.9917 0.5577 

 

 
Table D-7:  

Performance of a Random Forest Classifier Trained with 34 Features  

on Dataset 3 Snapshot 6 
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Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3, Snapshot 

03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9949 4.24E-05 0.1893 0.9052 0.8971 0.9980 0.8106 

3/22/2020 0.9930 2.13E-05 0.2589 0.8705 0.8573 0.9989 0.7410 

3/29/2020 0.9914 5.30E-05 0.3148 0.8425 0.8229 0.9972 0.6851 

4/5/2020 0.9905 3.17E-05 0.3517 0.8241 0.8005 0.9982 0.6482 

4/12/2020 0.9898 3.18E-05 0.3769 0.8115 0.7845 0.9981 0.6230 

4/19/2020 0.9893 4.25E-05 0.3941 0.8029 0.7731 0.9974 0.6058 

 

 
Table D-8:  

Performance of a Random Forest Classifier Trained with 99 Features  

on Dataset 3 Snapshot 6 
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot 

03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9970 0 0.1119 0.9440 0.9409 1 0.8880 

3/22/2020 0.9954 0 0.1689 0.9155 0.9095 1 0.8310 

3/29/2020 0.9945 0 0.2032 0.8983 0.8901 1 0.7967 

4/5/2020 0.9939 0 0.2269 0.8865 0.8764 1 0.7730 

4/12/2020 0.9930 0 0.2588 0.8705 0.8578 1 0.7411 

4/19/2020 0.9925 0 0.2767 0.8616 0.8472 1 0.7232 

 

 
Table D-9:  

Performance of a Random Forest Classifier Trained with Re-selected Features  

on Dataset 3 Snapshot 6 
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset 3, 

Snapshot 03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9953 7.42E-05 0.1731 0.9134 0.9056 0.9967 0.8268 

3/22/2020 0.9939 6.39E-05 0.2216 0.8891 0.8782 0.9970 0.7783 

3/29/2020 0.9927 7.42E-05 0.2676 0.8661 0.8510 0.9963 0.7323 

4/5/2020 0.9919 6.34E-05 0.2972 0.8513 0.8334 0.9967 0.7027 

4/12/2020 0.9911 0.0001 0.3236 0.8381 0.8161 0.9938 0.6763 

4/19/2020 0.9905 9.57E-05 0.3470 0.8259 0.8014 0.9947 0.6520 

 

 
Table D-10:  

Performance of a Random Forest Classifier Trained with 34 Features  

on Dataset 3 Snapshot 1-6 
Evaluation Over Time with a Random Forest Classifier Trained with 34 Features on Dataset 3, Snapshot 

02/02/2020-03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9982 0.00015 0.0584 0.9706 0.9664 0.9938 0.9415 

3/22/2020 0.9974 0.00012 0.0908 0.9545 0.9498 0.9949 0.9091 

3/29/2020 0.9965 0.00013 0.1230 0.9383 0.9321 0.9943 0.8769 

4/5/2020 0.9960 0.00015 0.1432 0.9283 0.9206 0.9933 0.8567 

4/12/2020 0.9952 0.00013 0.1710 0.9144 0.9055 0.9940 0.8289 

4/19/2020 0.9949 0.00014 0.1839 0.9079 0.8979 0.9934 0.8160 

 

 
Table D-11:  

Performance of a Random Forest Classifier Trained with 99 Features  

on Dataset 3 Snapshot 1-6 
Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot 

02/02/2020-03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9994 0 0.0224 0.9887 0.9884 1 0.9775 

3/22/2020 0.9988 0 0.0430 0.9784 0.9776 1 0.9569 
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Evaluation Over Time with a Random Forest Classifier Trained with 99 Features on Dataset 3, Snapshot 

02/02/2020-03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/29/2020 0.9985 0 0.0552 0.9723 0.9712 1 0.9447 

4/5/2020 0.9981 0 0.0675 0.9662 0.9647 1 0.9324 

4/12/2020 0.9976 0 0.0878 0.9560 0.9539 1 0.9121 

4/19/2020 0.9973 0 0.0981 0.9509 0.9483 1 0.9018 

 

 
Table D-12:  

Performance of a Random Forest Classifier Trained with Re-selected Features  

on Dataset 3 Snapshot 1-6 
Evaluation Over Time with a Random Forest Classifier Trained with Re-selected Features on Dataset 3, Snapshot 

02/02/2020-03/08/2020 

Snapshot ACC FPR FNR AUC MCC Prec Rec 

3/15/2020 0.9978 0.00012 0.0755 0.9621 0.9580 0.9949 0.9244 

3/22/2020 0.9971 0.00014 0.0988 0.9504 0.9450 0.9940 0.9011 

3/29/2020 0.9966 0.00014 0.1207 0.9395 0.9331 0.9939 0.8792 

4/5/2020 0.9962 0.00015 0.1347 0.9325 0.9252 0.9933 0.8652 

4/12/2020 0.9956 0.00018 0.1552 0.9222 0.9134 0.9923 0.8447 

4/19/2020 0.9953 0.00014 0.1685 0.9156 0.9066 0.9935 0.8314 
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Table D-13:  

Details of Which Features Changed Over Time, Beginning with the First Snapshot 
Rejecting the Null Hypothesis (1 = Reject, 0 = Cannot Reject) for Features (Related T Test / KS / k-sample Anderson-Darling / Kruskal Wallis H-

test 

Feature 

2/2/20 

- 

2/9/20 

2/2/20 

- 

2/16/20 

2/2/20 

- 

2/23/20 

2/2/20 

- 

3/1/20 

2/2/20 

- 

3/8/20 

2/2/20 

- 

3/15/20 

2/2/20 

- 

3/22/20 

2/2/20 

- 

3/29/20 

2/2/20 

- 

4/5/20 

2/2/20 

- 

4/12/20 

2/2020 

- 

4/19/20 

<a href=”http*”> 0/0/0/0 0/0/0/0 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 
<a href=”https*”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 

Count of <center> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 
Count of <div> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 
createElement() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 

write() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 
addEventListener() 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 

<form action=”*.php”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/0/0 1/0/0/0 1/0/0/0 1/0/1/1 
<form action=”http*”> 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 
cache-control max-age 0/0/0/0 0/0/1/0 0/0/0/0 0/0/1/0 0/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 
cache-control must-

revalidate 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 
cache-control no-

cache 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 
cache-control no-

store 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0 0/0/0/0 1/0/1/1 1/1/1/1 
cache-control public 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1 
content-encoding gzip 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 

content-language 

text/html 0/0/1/1 0/0/1/1 1/0/1/1 1/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/0/1/1 0/0/0/0 0/0/1/1 0/0/1/1 
content-length 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 0/0/1/0 0/1/1/1 0/1/1/1 

expect-ctreport-uri 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 1/0/1/1 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 
server apache 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 

strict-transport-

security_max-age 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/0 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 
transfer-encoding 

chunked 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/0 1/0/1/0 1/0/1/1 1/1/1/1 
via_1.1 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/1 1/0/1/1 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 

hidden <iframe> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 
<img src=”*.jpg”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 
<img src=”http*”> 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1 

Count of <input> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/1 0/0/0/1 0/1/1/1 0/1/1/1 
charAt() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/0/0 1/0/0/0 1/0/1/0 1/0/1/0 1/0/0/0 

charCodeAt() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/0/0 1/0/0/0 1/0/0/0 1/0/1/0 1/0/0/0 
push() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/0 
search() 0/0/0/0 0/0/1/1 0/0/0/0 0/0/1/1 0/0/0/0 0/0/0/0 0/0/1/1 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 
shift() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/0 
escape() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1 
eval() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 0/0/0/0 

unescape() 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0 
Count of <link> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/0 1/0/1/0 1/0/1/0 1/1/1/1 
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Rejecting the Null Hypothesis (1 = Reject, 0 = Cannot Reject) for Features (Related T Test / KS / k-sample Anderson-Darling / Kruskal Wallis H-

test 

Feature 

2/2/20 

- 

2/9/20 

2/2/20 

- 

2/16/20 

2/2/20 

- 

2/23/20 

2/2/20 

- 

3/1/20 

2/2/20 

- 

3/8/20 

2/2/20 

- 

3/15/20 

2/2/20 

- 

3/22/20 

2/2/20 

- 

3/29/20 

2/2/20 

- 

4/5/20 

2/2/20 

- 

4/12/20 

2/2020 

- 

4/19/20 

<link href=”*.php”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1 
<link href=”https*”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 
<link href> relative 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/1/0/0 0/1/1/1 0/1/0/0 0/1/0/0 1/0/0/0 1/0/0/1 

<link 

type=”text/css”> 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 
Meta content index 

follow 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/0 0/0/1/1 
Count of <meta> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 
getElementsByTagName(

) 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/0/1/1 
<script src=”https*”> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/1/1/1 0/1/1/1 0/1/1/1 0/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 

<script 

type=text/javascript> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 
<source srcset> OoD 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/1/1 0/0/1/1 0/0/1/1 0/0/1/1 
Count of <style> tag 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 1/0/1/1 1/0/1/1 1/0/1/1 1/1/1/1 1/1/1/1 1/1/1/1 

Total HTML Tags 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/1/0/0 0/1/0/0 
Total <img src> 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/1 0/0/1/1 0/0/1/0 
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Table D-14:  

Feature Change Based on the Related T-test 
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Related T-test 

Time Difference 

(Weeks) Measurements 

1 0 0 1 1 1 0 1 0 0 0 0 

2 0 1 2 2 1 1 1 0 0 0  
3 1 2 1 3 3 3 2 0 0   
4 3 1 2 4 7 5 6 3    
5 4 4 4 6 10 8 7     
6 8 10 9 9 12 10      
7 12 13 11 11 15       
8 13 15 13 15        
9 16 17 17         

10 19 22          
11 22           

 

 
Table D-15:  

Feature Change Based on the Two-Sample KS Test 
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) – Kolmogorov Smirnov 

Time Difference (Weeks) Measurements 

1 0 0 0 0 0 1 0 0 0 0 0 

2 0 0 0 0 1 1 0 0 0 0  
3 1 1 0 2 1 2 0 1 0   
4 1 1 3 2 2 3 1 1    
5 2 3 3 4 4 6 3     
6 5 5 7 6 7 6      
7 7 6 12 10 10       
8 10 12 18 11        
9 13 19 15         

10 16 15          
11 20           

 

 
Table D-16:  

Feature Change Based on the K-Sample Anderson-Darling 
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - k-sample Anderson Darling 

Time Difference (Weeks) Measurements 

1 1 0 3 4 2 1 3 4 0 1 5 

2 3 5 3 4 4 5 2 7 1 9  
3 6 5 4 6 6 9 5 11 12   
4 11 6 9 17 12 14 11 9    
5 14 13 13 13 15 21 23     
6 16 20 20 17 21 25      
7 24 24 28 25 28       
8 23 29 31 32        
9 27 34 36         

10 36 40          
11 41           

 

 
Table D-17:  

Feature Change Based on the Kruskal Wallis H Test 
Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Kruskal Wallis H test 

Time Difference (Weeks) Measurements 

1 1 0 2 3 2 1 3 4 0 0 4 

2 2 4 2 4 4 2 1 4 0 8  
3 4 5 4 5 5 5 4 8 7   
4 8 5 10 11 12 11 9 6    
5 13 12 10 8 13 18 15     
6 17 17 17 15 18 21      
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Number of Features That Change Per a Given Time Difference (Measuring All Possible Intervals) - Kruskal Wallis H test 

Time Difference (Weeks) Measurements 

7 22 18 21 22 21       
8 20 21 25 29        
9 22 28 26         

10 28 30          
11 33           
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