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Intensified climate variability, depleting groundwater, and escalating water 

demand create severe stress on high-quality freshwater sources used for agricultural 

irrigation. These challenges necessitate the exploration of alternative water sources 

such as reclaimed water to reduce the pressure on freshwater sources. To do so, it is 

key to investigate the spatial pattern of areas that are more suitable for water reuse to 

determine the potential of reclaimed wastewater use for irrigation. This study 

provides a systematic decision-analysis framework for the decision-makers using an 

integrated process-based hydrologic model for sustainable agricultural water 

management. The outcomes of this study provide evidence of the feasibility of 

reclaimed wastewater use in the agricultural sector. 

The two objectives of this study were to: 1) identify the locations that are most 

suitable for the reclaimed wastewater use in agriculture (hotspots); and 2) develop the 

watershed-scale models to assess the agricultural water budget and crop production 

using different water conservation scenarios including reclaimed wastewater use.  



 

To achieve the first objective, a decision-making framework was developed by 

using the Geographic Information System and Multi-Criteria Decision Analysis (GIS-

MCDA). This framework was then tested in the Southwest (California), and the Mid-

Atlantic (Maryland) regions. Based on WWTPs’ proximity, sufficient water 

availability, and appropriate treatment process of the treated wastewater, the “Most 

Suitable” and “Moderately Suitable” agricultural areas were found to be 

approximately 145.5 km2, and 276 km2 for California and, 26.4 km2 and 798.8 km2 

for Maryland, respectively. 

These results were then used to develop the hydrologic models to examine water 

conservation and water reuse scenarios under real-world conditions, using the Soil 

and Water Assessment Tool (SWAT). In California, the combination of auto 

irrigation (AI) and regulated deficit irrigation (RDI) resulted in higher WP for both 

almond and grape (> 0.50 kg/m3). Results also suggested that the wastewater reuse in 

almond and grape irrigation could reduce groundwater consumption more than 74% 

and 90% under RDI and AI scenarios, respectively. For Maryland, model simulations 

suggested that the green water productivity (only rainfall) can be improved up to 

0.713 kg/m3 for corn and 0.37 kg/m3 for soybean under the reclaimed wastewater use 

scenario. 
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Chapter 1: Introduction 

1. Background 

Water is constantly recycled through the hydrologic cycle. Climate change, such 

as changes in seasonal precipitation or temporal distribution, and magnitude of 

hydroclimatology, results in increases in either extreme drought or flooding 

(USGCRP 2018). In addition to climate variabilities, continuing growth in water 

demand among the agriculture, industry, and energy production sectors have put 

severe pressure on high‐quality freshwater sources (Fant et al. 2016, Gohar and 

Cashman 2016, Taylor et al. 2013). 

The agricultural sector is the largest consumer of freshwater globally, which 

consumes more than 70% of total freshwater withdrawals for food production 

(Jaramillo and Restrepo 2017, Pimentel and Pimentel 2007, Water 2009). The 

ongoing climate change, coupled with increasing water demand for human uses, have 

significant effects on water availability and water stresses in the agriculture sector 

(Ashraf Vaghefi et al. 2014, Nobre et al. 2016, Paul 2016, Paul et al. 2017), which 

adversely impacts the food security, at both regional and global scales (Anane et al. 

2012, Montgomery et al. 2016). Within the current century, climate change is likely 

to further improve productivity in some areas and diminish it in others. For example, 

in Northern Europe, Denmark and Morocco, temperature increases have been shown 

to reduce grain yields of cereals due to shortening of the grain-filling period. At the 

same time, the combined effect of climate change is predicted to be beneficial in, e.g., 

Canada (Ali et al. 2017, Smith et al. 2013). For moderate changes in climate, the 
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adverse effects of increased temperature on grain yield are expected to be offset by 

the increased carbon dioxide (CO2) concentration (Deligios et al. 2019). As a result, 

the deviations in crop production severely affect the regional economy, farm value, 

and socioeconomic development (Montgomery et al. 2016, Schmidhuber and 

Tubiello 2007). For example, observed historical data showed that extreme weather 

events caused significant corn yield reductions in U.S. (Karl et al. 2009). 

Water scarcity is one of the most significant consequences of climate change, 

which suggests a necessity to explore alternative water sources to sustain food 

production in various countries across the world. To overcome this challenge, 

coupling reclaimed water to blue (water that flows through or below the land surface 

and stored in lakes, reservoirs, and aquifers) and green water (part of precipitation 

that infiltrates and is stored as soil moisture and then returns to the atmosphere via 

transpiration and evaporation) framework has the potential to significantly improve 

the water management for the agricultural areas (Falkenmark et al. 2004, Rees 2018). 

Reclaimed water resources may include reclaimed wastewater from wastewater 

treatment plants (WWTPs), return flows, desalination of seawater and highly brackish 

groundwater, and stormwater harvesting (Chen et al. 2016, Hurlimann and Dolnicar 

2011, Rygaard et al. 2011). Previous studies show that agricultural irrigation with 

reclaimed wastewater has multiple advantages such as reducing pressure on 

freshwater sources (Jaramillo and Restrepo 2017, Rahman et al. 2016), improving 

nutrient management and recovery (Hanjra et al. 2015, Miller-Robbie et al. 2017), 

and producing higher reliability due to constant yields (Chen et al. 2012, Rahman et 

al. 2016). In both developed and developing countries, the most established water 
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reuse practice is the application of treated municipal wastewater for irrigation and 

other purposes (Angelakis et al. 2018, Jaramillo and Restrepo 2017). For example, 

many countries like China, India, Australia, Israel and the U.S. (e.g., California and 

Florida) have been using treated or partially treated wastewater for crop production 

(Hussain et al. 2002, Jimenez and Asano 2008, Keraita et al. 2008, Kivaisi 2001).  

However, before the implementation of a water reuse project at the watershed 

scale, the potential (quantity and quality) and economic viability (cost-benefit 

analysis) of the recycled water sources should be assessed for the various irrigated 

crops (food/non-food crops). It is also necessary to analyze other key factors such as 

the technical feasibility (e.g., closeness to WWTPs), economic feasibility (e.g., water 

productivity), social acceptability (e.g., public acceptance and consumer response), 

and regulatory considerations (e.g., compliance with treatment requirements) 

(Ackerman 2012, Bixio et al. 2008, Jaramillo and Restrepo 2017, Saliba et al. 2018, 

Urkiaga et al. 2008). Thus, multiple quantitative and qualitative criteria need to be 

considered to plan for the reclaimed wastewater use for irrigation. It is necessary to 

identify the influential criteria and sub-criteria of the complex multi-criteria decision-

making process and to analyze how these factors interact with each other. Identifying 

the most suitable locations considering all of the decision factors will be helpful to 

outline appropriate management strategies within a watershed. 

Due to growing demands from industrial, hydropower generation, and urban 

sectors, the global water demand is projected to increase by 55% by 2050. These 

competing demands impose difficult water allocation decisions and limit sustainable 

development among users, particularly for food production and energy sectors. 
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According to the 2015 United Nations World Water Development report, agriculture 

will need to produce 60% more food globally by 2050 (Connor 2015). Therefore, 

appropriate evaluation of water allocation and water use management is required for 

developing strategies to cope with water scarcity. This complex network among 

various water users has led to extensive exploration of appropriate methodologies to 

describe and evaluate the rate of water consumption and available water flow within 

the watershed. Moreover, the effectiveness of managing reclaimed wastewater 

depends strongly on the hydrological system of the river basin, where the water reuse 

project is implemented. For decision-making process, an integrated approach of 

hydrological, economic, and environmental systems is required. Overall, 

understanding the consequences of wastewater reuse in irrigated agricultural 

watersheds is essential to seek the attention of policymakers and water resource 

managers so that the decision is selected in a manner to minimize risks to water 

quality and quantity, public health, and farmers’ livelihoods. 

2. Statement of the Problem 

In the 2015 USGS water use report, reclaimed wastewater was reported as a 

source of irrigation water for 10 States (California, Florida, Arizona, Texas, Utah, 

Nevada, New Mexico, Colorado, Kansas, and Illinois), which accounted for less than 

1% (669 MGD) of the total irrigation water used. Although a very small amount of 

reclaimed wastewater is used for irrigation purposes, its amount has increased from 

472 MGD in 2010 to 669 MGD 2015 (Dieter et al. 2018). California, Florida, and 

Arizona are the leading users of reclaimed wastewater for irrigation with 289, 195, 

and 106 MGD, respectively. These numbers show that there is still great potential for 
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reclaimed wastewater use in agriculture that has not been fully exploited. However, 

long term data should be analyzed to project the future water demand and identify 

areas for additional reclaimed wastewater use (Urkiaga et al. 2008). Specifically, 

spatial mappings are needed to investigate the water demand (e.g., irrigation 

consumption) and freshwater shortage (e.g., groundwater). 

To promote wastewater reuse in agriculture, the main challenge is to identify the 

available reclaimed wastewater sources in terms of quantity, quality, and 

accessibility, considering the different types of crops in certain locations. In addition, 

regulations, public health risks, and environmental impact must be evaluated for safe 

and rational implementation of wastewater reuse in agricultural use. Many 

researchers have acknowledged the advantage of knowledge-driven Decision Support 

Systems (DSSs) to derive the decision rules from existing knowledge to solve the 

area selection issues (Rajabi et al. 2014, Rikalovic et al. 2014, Saarikoski et al. 2016). 

However, most of the studies have been devoted only to farmers’ and stakeholder’s 

perceptions of treated wastewater use and its environmental and public health risk 

assessment (Ackerman 2012, Jaramillo and Restrepo 2017, Saliba et al. 2018). Also, 

past studies have assessed the feasibility of reclaimed wastewater use at small scales 

(e.g., only including few farms and treatment plants) (Anane et al. 2012, Neji and 

Turki 2015). As such, minimal attention has been paid to evaluate the potential of 

reclaimed wastewater use in agriculture and its economic viability for a variety of 

crops at larger scales (e.g., at a regional scale or for an entire state).  

Although treated wastewater is used globally, the characterization of hydrological 

processes of these systems is not evaluated enough. It is important to address where 
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additional water is required and how crop production is affected by direct treated 

effluent use from a WWTP. It is also necessary to analyze the environmental and 

ecological effects of recycled water use and evaluate multiple scenarios to choose the 

best option. As a result, model-based DSS is required for the policy-makers and water 

resource managers to have adequate information about the benefits and challenges of 

water reuse options. Therefore, systematic interdisciplinary research is needed to 

understand the interaction between the driving factors for the reclaimed wastewater 

use in agriculture, the influential factors for irrigation in different crops, and the 

effects of direct water reuse on the water balance of the watershed.  

Therefore, for the successful implementation of water reuse projects, three 

knowledge gaps should be addressed:  

(i) lack of integral data and knowledge (such as water reuse guidelines and 

regulations, quality and quantity of treated wastewater, supply and 

demand ratio of reclaimed wastewater) of the multiple decision criteria for 

water reuse in spatially heterogeneous agriculture land;  

(ii) absence of hydrologic model application to evaluate irrigation scenarios 

with treated wastewater; and  

(iii) missing connection between model-based information and governing 

policy at the regional scale (impact of regulations on use of reclaimed 

water for various types of crops).  

Therefore, key question was- 



 

 

7 

 

How to address all the challenges through interdisciplinary research that can enable 

the safe and successful use of recycled water for irrigation and provide 

recommendations for the policymakers?  

More specifically, this research aims at addressing the following questions:  

1) What are the main decision criteria and sub-criteria to assess the potential of 

reclaimed wastewater use for irrigation? 

2) How to identify and classify suitable agricultural land for reclaimed wastewater 

use? 

3) How to integrate all the decision criteria with hydrologic models as the driving 

engine? 

4) And, to what extent can a hydrologic model be used to evaluate the irrigation 

water management considering different wastewater reuse and irrigation scenarios? 

3. Objectives and Approach  

The main objectives of this research were: 

Objective 1: To develop a framework for the identification of the most suitable 

areas (hotspots) for water reuse in agriculture. 

To obtain the first objective, a knowledge-driven DSS was developed using the 

Geographical Information Systems (GIS) combined with Multi-criteria Decision 

Analysis (MCDA) approach to assess the suitable agricultural land for reclaimed 

wastewater use. For this objective, the goals were:  

 to evaluate the feasibility and suitability of reclaimed wastewater for irrigation 

considering multiple criteria. 
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 to apply the GIS-MCDA approach to identify the agricultural hotspots that are 

best suited for the use of reclaimed wastewater for agricultural irrigation.  

Objective 2: To develop a watershed-scale model to assess the agricultural water 

budget and crop production using different water conservation scenarios 

including reclaimed wastewater use. 

For the second objective, two agriculture-based watersheds were selected within 

the agricultural hotspots identified in the previous objective. Afterward, model-driven 

DSS was developed for two hydrologic models for further exploration of the 

appropriateness of sustainable reclaimed wastewater use in agricultural irrigation. The 

goals were: 

 to develop sustainable irrigation scenarios to save freshwater, including direct 

reclaimed wastewater use. 

 to estimate the crop water productivity for the irrigation scenarios and provide 

the best solution for the dry years. 

A holistic conceptual framework was developed for this study, ensuring the transition 

from data to information and knowledge, to develop the decision support system 

(Figure 1). This framework was applied for two case studies representing two regions 

of the USA- California (Southwest) and Maryland (Mid-Atlantic) (Figure 2). Where, 

California has five major climates and mainly dominated by Mediterranean (Csa, 

Csb) and Semi-arid (BSk) climate. While, Maryland is dominated by Humid 

Subtropical (Cfa) and Continental (Dfa, Dfb) climate. 
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4. Dissertation Outline  

This dissertation covers the transition between the steps of developing the 

decision framework for two study areas, the states of California and Maryland. These 

steps are described in the subsequent chapters, for California (Chapter 3-6) and 

Maryland (Chapter 7-8), respectively. Of note is, two of these chapters have already 

been published as peer-reviewed journal articles (chapters 3 and 4), and are included 

here in slightly modified forms. The rest of the chapters are included as separate 

manuscripts to be submitted to journals. 

Chapter 2 presents the literature review on the climate change impact of 

freshwater and how this influenced to use reclaimed wastewater needs for agricultural 

irrigation. This chapter also provides a detailed description of two key components of 

the decision framework, GIS-MCDA, and hydrologic model. 

Chapter 3 is titled “Assessment of Agricultural Land Suitability for Irrigation with 

Reclaimed wastewater Using Geospatial Multi-Criteria Decision Analysis.” It 

presents the detailed assessment of merging GIS and AHP to enhance the predictive 

ability of the MCDA approach for the identification of hotspots that are more suitable 

for water reuse in the Southwest region (California).  

Chapters 4-6 present different phases of the hydrologic model application to 

evaluate the model predictability in California agricultural water management, 

including reclaimed wastewater irrigation. Due to the complexity of California’s 

hydrology, this task expanded into 3 chapters.  

Chapter 4 is titled “Sensitivity and uncertainty analysis for streamflow prediction 

using multiple optimization algorithms and objective functions: San Joaquin 
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Watershed, California.” This chapter portrays the evaluation of the model calibration 

performance and sensitivity and uncertainty analysis for streamflow prediction of a 

California watershed. 

Chapter 5 is titled “Agricultural water management decisions in ungauged semi-

arid watersheds: the value of remote sensing integrated hydrologic modeling.” This 

chapter illustrates the remote sensing application to improve model performance for 

evapotranspiration and crop yield prediction. 

Chapter 6 is titled “Assessing the water productivity of the efficient irrigation 

strategies in a water-stressed agricultural watershed: San Joaquin Watershed, 

California.” This chapter presents the assessment of different irrigation management 

scenarios, including reclaimed wastewater use for almond and grape production.  

Chapter 7 is titled “Multi-criteria Decision Analysis to Evaluate Reclaimed 

Wastewater Use for Agricultural Irrigation: The case study of Maryland.” This 

chapter presents the GIS-MCDA application to evaluate the potentiality of irrigation 

with reclaimed wastewater use from Maryland’s WWTPs. 

Chapter 8 is titled “Assessment of Sustainable Irrigation Water Resource 

Management Practices using the Hydrologic Model in Maryland.” This chapter 

describes the hydrologic model application to assess the potentiality reclaimed 

wastewater use for corn and soybean as the two most dominant crop production.  

Finally, Chapter 9 summarizes the findings of this research study and presents the 

conclusion and directions for future research. 
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5. Figures 

 

 

Figure  1: Schematic representation of the conceptual framework applied in this 

research. 

 

Figure 2: Locations of the case study areas (outlined in black) representing the 

Southwest and Mid-Atlantic region. 
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Chapter 2: Literature Review 

1. Climate Change and Overuse Impact on Freshwater and Agriculture 

Each year produced crops, livestock, and seafood contribute more than $300 

billion to the U.S. economy (USGCRP 2014). According to the 2017 United States 

Department of Agriculture Economic Research Service (USDS-ERS), 21.6 million 

full and part-time jobs (11% of US employment) were related to agriculture and food 

industries which contributed almost $1.053 trillion (5.4% share) to U.S. gross 

domestic product (GDP) (USDA-ERS, 2018).   

Extreme Events: Since 1980, the U.S. has endured 219 weather and climate 

disasters where the cumulative damage costs exceed $1.5 trillion (Smith 2018). Each 

disaster has a distinct footprint of impact such as- wildfire impacts on the west of the 

Plains and Southeast states, high-frequency inland flooding events in the adjacent 

states to large rivers or the Gulf of Mexico, drought impacts in the Southern and 

Plains states where billions of dollars’ worth of agriculture and livestock assets are 

established. California’s recent near-record high temperatures and low precipitation 

caused severe drought conditions, including low reservoir levels in the state (NOAA 

2016). As a result of the intense drought conditions in 2015, California’s irrigated 

acres decreased by 10% from 2010, and irrigation withdrawals declined 4,070 MGD 

(18% of total irrigation use). 

Overuse: Nationwide, 70% of fresh groundwater (82,300 MGD) withdrawal is 

used for irrigation (Dieter et al. 2018). Only 5 states -California, Arkansas, Nebraska, 

Idaho, and Texas are accounted for 46% of the total groundwater (freshwater) 

withdrawals for all categories nationwide. According to USGS 2015, only California 
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accounted for almost 9% of the total withdrawals and 9% of freshwater withdrawals 

in the United States, which are predominantly used for irrigation. This freshwater was 

mainly provided from six major water distribution systems, where the Colorado River 

is a critical source for this state. To meet the high demand for irrigation and urban 

water demand in Southern California, Colorado River provides 55 to 65% of the total 

supply (CRWUA, n.d.). Due to the combined effect of climate change and overuse, a 

significant storage drawdown has resulted in the Colorado River Basin, which 

resulted in water delivery shortage and decreased hydropower production (Sheikh 

2019). Currently, 15% of the Colorado River’s supply is used by cities with a 

population of 40 million, and 70% is used to irrigate 5.5 million acres of land (Sheikh 

2019). It is estimated that by 2060 the number of people supported by the Colorado 

River could double, which will increase water withdrawals from the river (“Three 

Reasons”, 2017). If farms are not expanding, and water demands are not expecting to 

increase, still, farmers have to compete with the growing cities to buy water rights to 

maintain their growth. 

Unlike the Southwest region of the U.S., the Mid-Atlantic region is experiencing 

higher temperatures during winter and summer and heavy precipitation in spring and 

fall (Boesch, 2008; Mallakpour and Villarini 2017). Despite heavy precipitation, the 

Mid-Atlantic region experiencing intermittent rainfall with higher temperatures, 

especially during the growing season. As a result, recurrent short-term droughts are 

becoming more frequent, and the evaporation rate increased during the summer. This 

higher temperature during the growing season leads to more evaporation loss and a 

decrease in soil moisture (Boesch, 2008). Based on 100 years (1901-2001) historical 



 

 

14 

 

data, only in Maryland the average annual precipitation was 1092.2 mm (43 in) or 

25,000 MGD (million gallons per day) while water lost by evapotranspiration was 

about 711 mm (28 in) or 17,000 MGD (NOAA, 2002).  

In addition, rapid urbanization and population growth resulted in a complex set of 

changes in water consumption among different sectors. For example, industrial and 

commercial use declined over the years, while domestic use, public supply, and 

irrigation use significantly increased. This water demand is expected to rise in the 

future with increasing suburban land development that affecting the groundwater 

recharge area and increasing irrigation needs on agricultural land during summer 

droughts (Boesch, 2008). As a result of higher freshwater demand and climate 

change, Maryland’s aquifers are experiencing several challenges such as declining 

water table, salt-water intrusion, poor water quality, lack of productive aquifer, etc. 

(Figure 1 and Table 1). The long-term observation records from many of the 

monitoring wells located in the coastal plain are also showing the declining trend of 

groundwater table (Figure 2). 

2. Influential Criteria of Reclaimed Wastewater Use for Irrigation 

One of the main important aspects of reclaimed wastewater use is the economic 

feasibility of the project, which is mainly driven by the treatment plant’s capacity and 

the water distribution cost from the source to the point of use (Bixio et al., 2008; 

Hernandez et al., 2006; Urkiaga et al., 2008). Therefore, the proximity of the 

wastewater treatment plants to its point of use (agricultural land) and the volume of 

treated water are the two important criteria to consider.  
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However, it is also crucial to maintain the treatment level to reduce the risk of 

pathogens presence on the soil and crop (Bixio et al., 2008; Jaramillo and Restrepo, 

2017; Urkiaga et al. 2008). The Food and Agriculture Organization of the United 

Nations (FAO) has developed the guidelines for the agricultural reuse of treated 

water. However, to allow irrigation with reclaimed wastewater for edible crops, the 

US Food and Drug Administration (FDA) Food Safety Modernization Act (FSMA)’s 

Produce Rule provides stricter guidelines. The FSMA’s Produce Rule applies to most 

agricultural producers of food crop, especially a strict microbial quality standards for 

irrigation water for fresh produce crops, especially which consumed as raw (Allende 

et al. 2018, Astill 2018, Dougherty 2016). According to California’s Water Recycling 

Criteria-Title 22, the Category 3 reclaimed wastewater meets the FSMA rule 

requirement for coliform assay (Figure 3) (Sheikh, 2015). This requirement is 

emerging the necessity to categorize the existence of crop patterns and create a map 

of their spatial distribution. 

3. Developing Decision Analysis Framework  

To obtain the objectives of this study, both Knowledge-driven and Model-driven 

DSSs are required (Jha 2010, Power 2000). Knowledge-driven DSS provides 

management advice or to choose the best option based on expert knowledge and 

historical record. Model-driven DSS employs the complex systems that help in 

formulating alternatives, analyzing impacts of alternatives, and interpreting and 

selecting appropriate options. A reliable assessment needs to include comprehensive 

multiple decision criteria interactions and address the challenge of capturing the 

complex hydrologic and irrigation system. Based on relevant literature review, 
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existing research gaps are identified regarding the development of integrated 

framework (coupled knowledge-based and model-based DSSs), which can be a useful 

tool for understanding the interaction of multiple criteria for water reuse and 

quantifying the hydrologic and economic effects of changing irrigation policies and 

management decisions. Therefore, the literature review of this study was focused on 

finding the best solution of knowledge-driven DSS for mapping the suitable 

agricultural land for irrigation with reclaimed wastewater use and model-driven DSS 

to evaluate the complete water budget for water reuse management. 

3.1. Multi-Criteria Decision Analysis 

To effectively assess the feasibility and suitability of agricultural land for 

reclaimed wastewater irrigation, spatial analytical and optimization methods are 

needed to evaluate multiple spatial criteria and objectives. To solve this 

multidisciplinary problem, MCDA is required, which can consider multiple 

objectives, criteria, and constraints. In the MCDA process, the required inputs are 

scores across several dimensions associated with different alternatives and outcomes; 

and weights relating to tradeoffs across these dimensions (Huang et al., 2011). The 

total value score (V) for an alternative is calculated as a linear weighted sum of its 

scores across several criteria (Eq.1).  

𝑉𝑖 = ∑ 𝑊𝑗𝑋𝑖𝑗

𝑛

𝑗=1

 (i) 

where Xi represents the score on a single value scale. The weights Wi sum to 1. 

The assessment of irrigated agricultural land suitability for reclaimed wastewater 

use is a spatial decision problem, which involves spatially variable decision criteria. 
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This complex geospatial problem leads to the necessity of using Geographical 

Information Systems combined with Multi-criteria Decision Analysis (GIS-MCDA). 

Many researchers have acknowledged the advantage of knowledge-driven approaches 

like GIS-MCDA method in data-sparse situations, where decision rules derived from 

existing knowledge are used to solve the area selection issues and potential mapping 

problems (Harris et al., 2001; Machiwal et al., 2015; Rajabi et al., 2014; Stevens and 

Pfeiffer, 2011). The GIS-MCDA method has been widely used in several 

environments and water-related research to improve the transparency, adaptability, 

and analytical accuracy of decision making in water resource management (Akıncı et 

al., 2013; Assefa et al., 2018; Montgomery et al., 2016). Worldwide, many water 

resource managers and decision-makers have applied the GIS-MCDA method in 

agriculture, water resources management, and environmental science (Anane et al., 

2012; Assefa et al., 2018; Assefa et al., 2015; Nketiaa et al. 2013; Rikalovic et al., 

2014).  

There are several methods of combining multiple criteria for optimal decisions: 

multi-criteria value function methods such as pairwise comparison method (Saaty, 

1977). This is also known as the Analytical Hierarchy Process (AHP) (Saaty, 1978). 

It is developed as a general theory of measurement based on obtaining preferences or 

weights of importance to the criteria and alternatives (Saaty 1987). This approach 

allows to represent the full range of human decision-making logic and to evaluate 

decision-making objectives and to handle multiple criteria and compensating both 

qualitative and quantitative data (Assefa et al., 2018; Opricovic 2011; Woltersdorf et 

al., 2018). 
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In the AHP method, a hierarchy structure is formulated to organize the complex 

multi-criteria problem in a number of levels. In this decision hierarchy, the first level 

corresponds to the general purpose of the problem, the second level to the criteria, 

and the third level to the sub-criteria (Kabir, 2012; Kabir et al., 2014; Saaty, 1980). 

The criteria are weighted on a scale from 1 to 9, where the 9 indicates “Extremely 

Importance” and 1 indicates “Equal Importance” (Saaty, 1977). Once the judgments 

or the weights of the criteria have been entered into the comparison matrix, the 

consistency of the pairwise matrix is checked using the consistency ratio (CR). The 

CR of the pairwise matrix is used as an indicator of the degree of consistency or 

inconsistency (Feizizadeh and Blaschke, 2014; Feizizadeh et al., 2014; Saaty, 1977). 

CR compares a consistency index (CI) of the matrix with the consistency of a 

random-like matrix (RI). 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

(ii) 

Where random index (RI) is the average of the consistency index of the randomly 

generated pairwise comparison matrix (Assefa et al., 2018). The CI is the consistency 

index calculated from the pairwise matrix and can be expressed as:  

𝐶𝐼 =
λ𝑚𝑎𝑥  −  𝑛

n − 1
 

(iii) 

Where λmax is the largest eigenvalue of the pairwise comparison matrix, n is the 

order of the matrix. For CR value ≤ 0.10 indicates that judgments are consistent and 

are suitable for the implementation of the AHP analysis (Saaty, 1977). For CR values 

greater than 0.10, the pairwise comparisons matrix needs to be adjusted, and the 

weighting values should be modified.  
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AHP has been applied for solving a wide variety of water resources problems, 

where complex criteria across different levels are involved (Assefa et al., 2018; 

Hamouda et al., 2012; Machiwal et al., 2011; Srdjevic et al., 2012; Woltersdorf et al., 

2018). Few studies have been found which used integrated GIS-MCDA technique 

with the AHP method to assess the land suitability and allocation regarding non-

traditional water use for irrigation (Aldababseh et al., 2018; Anane et al., 2012; 

Assefa et al. 2018). However, these studies explored the feasibility of reclaimed 

wastewater use in agricultural land either at a small scale or for an existing crop 

pattern. No study was found that considers the spatial distribution of existing diverse 

crop patterns for a large number of water sources with the combination of their 

proximity, capacity, and different treatment processes. 

3.2. Hydrologic Models 

The hydro-ecosystem structures (i.e., land use and land cover, vegetation, soils, 

hillslopes, water bodies, infrastructure, etc.) spatially controls the effects of the 

climate on functions (i.e., crop production, evapotranspiration, water use decision and 

management, irrigation, etc.) (Childers et al., 2014; Eshtawi et al., 2016; O'Keefe et 

al., 2012). Therefore, water resources assessment within a watershed scale should 

focus on the flow of water between different hydrologic components in a climate-

water nexus. A model-based DSS approach could evaluate this climate-nexus with the 

long term historic records. A Model-driven DSS has analytical capabilities to answer 

“what if” scenarios and to choose the best option among a set of alternatives. 

Figure 4 conceptualizes the relationship between water resources (water inputs), 

water consumptions (withdrawal), and the role of treated wastewater application 
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(reuse) in the water system in a watershed. It reflects the synergies and symbiosis 

between water resources, human decisions, and biophysical processes at a watershed 

scale, showing the water budget components (vertical and horizontal), climate 

functions, and hydro-ecosystem structure. This figure also indicates that as an 

additional source to the natural flow, the non-traditional water sources (e.g., 

desalinated water, treated wastewater, and harvested stormwater) have impacts on the 

watershed hydrology. Both horizontal and vertical water components are dominated 

by water supply and drainage, which influence the quantities of treated wastewater as 

a non-traditional water resource. In addition, since the successful implementation of 

sustainable water resources policies depends on the long-term hydrological 

assessments, a hydrologic model is required, which allows historical time series in the 

system. In this case, the hydrologic modeling approach has proven as an effective tool 

in such a physical interpretation. 

Hydrologic models are effective tools to understand and simulate the hydrologic 

processes (including streamflow and water budget components), and to evaluate the 

effects of agricultural management practices, conservation scenarios, and help make 

watershed management decisions (Paul 2016, Paul et al. 2017, Shao et al. 2017, 

Wang et al. 2016). The watershed hydrologic model uses a set of mathematical 

descriptions to simulate the hydrologic cycle. Numerous physically-based hydrologic 

models have been developed and applied across the world to assess the different 

hydrologic processes (Borah and Bera 2003, Devia et al. 2015, Li et al. 2015). The 

critical question for hydrological model studies is to select the most appropriate 

model. One of the most important issues that need to be considered is the spatial scale 
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that incorporated in the study and how much physical detail can be included. Figure 5 

illustrates the relation between the spatial scale and physical detail of the available 

hydrologic models. 

Computational efficiency of the models is another important key for choosing the 

right model for a particular study. Worldwide researchers applied various hydrologic 

models to study the hydrologic phenomena and cycle like empirical/metric models, 

conceptual/parametric models, physically-based models, etc. Conceptual models like 

Variable Infiltration Capacity (VIC) and Hydrologiska Byrans Vattenavdelning 

(HBV) are a semi-distributed model that performs efficiently for flood regimes while 

TOPMODEL in shallow soil and moderate topography (Dettinger et al. 2011, Devia 

et al. 2015). Compared to other models physically-based models, like Mike-SHE and 

SWAT, are performs better where these required significant amounts of data and 

empirical parameters (Devia et al. 2015, Golmohammadi et al. 2014). 

A suitable model also can be chosen based on its range of applications in a 

complex hydrologic system. Borah and Bera (2003) reviewed 11 hydrologic models 

based on their various application and performance on different watersheds and found 

that Hydrological Simulation Program –Fortran (HSPF) performed well for long-term 

continuous simulations in mixed agricultural and urban watersheds and Soil and 

Water Assessment Tool (SWAT) in predominantly agricultural watersheds. While 

Dynamic Watershed Simulation Model (DWSM) is capable of simulating storm 

events (rainfall) for agricultural and suburban watersheds. 

Among these models, SWAT is extensively used as an effective tool for 

agricultural water resource management (Panagopoulos et al. 2014, Sorando et al. 
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2019, Uniyal et al. 2019, Van Liew et al. 2003). This model also used by many water 

resource managers and policymakers for decision-making process in watershed 

management (Baker et al. 2013, Giri and Nejadhashemi 2014, Senent-Aparicio et al. 

2017, Sulis et al. 2009). SWAT is a watershed model (Arnold et al. 1998), which is 

developed to evaluate the impact of land management practices and climate on the 

water in large and complex watersheds over long periods. In SWAT, different water 

balance components, and water resources (e.g., blue and green waters) are calculated 

through an explicit calculation at the subbasin level. In this model, a watershed is 

divided into a number of subbasins and based on homogeneous soil types, land-use 

types, and slope classes categorized into hydrological response units (HRUs) that 

allow a high level of spatial detail simulation.  

SWAT simulates the hydrologic cycle based on water balance equation: 

𝑆𝑊𝑡 =  𝑆𝑊𝑜 +  ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤) 

𝑡

𝑖=1

 (iv) 

Where 𝑆𝑊𝑡 and 𝑆𝑊0 are the soil water storage at time t and 0 respectively, 𝑅𝑑𝑎𝑦  is 

the precipitation, 𝐸𝑎  is the actual evapotranspiration, 𝑄𝑠𝑢𝑟𝑓 is the surface runoff flow, 

𝑄𝑔𝑤 is the groundwater flow, and 𝑤𝑠𝑒𝑒𝑝 is the deep aquifer recharge.  

For the water budget, SWAT differentiates the solid (snow/freezing rain) and liquid 

(rain) precipitation based on the mean daily air temperature. If the air temperature is 

lower than snowfall temperature, then precipitation is considered solid (i.e. snow), 

which will accumulate until melt. In SWAT, snowmelt in the model was estimated 

through a mass balance approach: 
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𝑆𝑁𝑂 = 𝑆𝑁𝑂 + 𝑅𝑑𝑎𝑦 −  𝐸𝑠𝑢𝑏 −  𝑆𝑁𝑂𝑚𝑙𝑡 (v) 

Where, SNO is the total amount of water in the snowpack on a given day (mm 

H2O), Esub is the amount of sublimation (mm H2O), and SNOmlt is the amount of 

snowmelt (mm H2O). Changes in snowpack volume depend on additional snowfall or 

release of meltwater in the basin. A more comprehensive description of the equation 

used by SWAT can be found in Neitsch et al. (2011). 

Precipitation may be infiltrated into the soil surface or intercepted and held in the 

vegetation, and excess water moved as runoff towards the stream channel. SWAT 

provides two methods for the surface runoff estimation- through an empirical model 

like SCS curve number procedure and the Green & Ampt infiltration method which is 

a physical-based equation. While water intercepted by vegetation, it can be held as 

canopy storage and made available for evapotranspiration. According to Penman 

(1956), the potential evapotranspiration is defined as “the amount of water transpired 

by a short green crop, completely shading ground, of uniform height and never short 

of water”. For the potential evapotranspiration (PET) estimation, three methods have 

been incorporated into SWAT: the Penman-Monteith method, the Priestley-Taylor 

method, and the Hargreaves method. After the PET estimation, the actual 

evapotranspiration is determined. SWAT calculates the actual amount of transpiration 

and soil evaporation or snow sublimation. Actual soil evaporation is calculated using 

exponential functions water content and soil depth (Neitsch et.al., 2011). 

The SWAT model has gained international acceptance as a robust interdisciplinary 

watershed modeling tool, as evidenced by hundreds of SWAT-related papers (Dietrich 

and Funke 2009). A distributed watershed model like SWAT aims to support policy 
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and decision-makers to take the spatial distribution of relevant natural and socio-

economic characteristics of the watershed and water uses into account. SWAT is not 

only a hydrologic model to simulate the hydrologic processes; it also uses a plant 

growth sub-model to simulate all types of land cover (Wang et al. 2016). This plant 

growth sub-model is used to assess the removal of water and nutrients from the root 

zone, transpiration, and biomass/crop yield. Therefore, worldwide SWAT is being 

extensively used to simulate crop growth, hydrologic balance, soil erosion, and other 

environmental responses by numerous researchers. Its applicability for the predictions 

of flows, water budget including hydrologic components, and crop water use has been 

verified by the various studies (Ahmadzadeh et al. 2016, Ashraf Vaghefi et al. 2017, 

Paul 2016, Rajib et al. 2016, Shao et al. 2017). Researchers also applied the SWAT 

model to investigate the potential of non-traditional water resources for different crop 

irrigations. For instance, treated wastewater for paddy irrigation (Jeong et al. 2016), 

desalination and stormwater harvesting (Eshtawi et al. 2016), and wastewater reuse for 

cotton (Panagopoulos et al. 2014), etc. 
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4. Figures 

 
Figure 1: Locations of different aquifers within Maryland State. Map is collected 

from Maryland Geological Survey (MGS) (http://www.mgs.md.gov/groundwater/gw-

status.html) 

  

 

Figure 2: Declined groundwater trend of represented wells a) Western shore 

(Magothy aquifer) and b) Central Eastern shore (upper Patapsco aquifer). 

 

http://www.mgs.md.gov/groundwater/gw-status.html
http://www.mgs.md.gov/groundwater/gw-status.html
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Figure 3: Illustration of different risk levels vs. different wastewater treatment levels 

for five uses of recycled water (adapted from (Sheikh 2015)). 

 

 

 

 

 

Figure 4: Illustration of the hydrologic cycle, including the wastewater reuse 

component. 
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Figure 5: Spatial and physical detail of hydrologic models, adapted from Droogers 

and Immerzeel (2008). 

 

5. Tables 

Table 1: The cumulative impact of the wells pumping from Maryland's aquifers. This 

table was created based on information from the Maryland Geological Survey (MGS) 

website (http://www.mgs.md.gov/groundwater/gw-status.html). 

Region 

Reduction 

in baseflow 

to streams 

threatening 

aquatic 

habitat 

Lack of 

productive 

aquifers 

Well 

interferences 

causing 

conflict 

between 

users 

Water levels 

exceeding 

management 

levels 

Salt-water 

intrusion 
Arsenic Nitrates Pesticides Radioactivity 

Deep 

pumping 

levels 

resulting 

in high 

energy 

costs 

Fractured 

Rock 
X X       X X X X   

Upper 

Chesapeake 

Bay 
  X X X  X         

Western 

Shore 
  X   X X X     X X 

Central 

Eastern 

Shore 
    X X X X X X     

Lower 

Eastern 

Shore 
  X X   X   X X     

http://www.mgs.md.gov/groundwater/gw-status.html
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Chapter 3: Assessment of Agricultural Land Suitability for 

Irrigation with Reclaimed Water Using Geospatial Multi-

Criteria Decision Analysis 
 

Abstract 

 

Water scarcity, climate variability and continuing growth in water demand have put 

severe pressure on high‐quality freshwater sources. This challenge exacts the 

necessity to explore alternative water sources for agricultural irrigation. The objective 

of this study was to implement the integrated geospatial Multi-Criteria Decision 

Analysis (MCDA) with the Analytical Hierarchy Process (AHP) to evaluate the 

potentiality of reclaimed water use for agricultural irrigation in California. Five 

evaluation criteria included in this study were agricultural land (crop type), climate 

conditions, water policies, irrigation status, and proximity to wastewater treatment 

plants (WWTPs) respectively. The suitability maps for reclaimed water use were 

generated for three cases in terms of accessibility to WWTPs, their discharge volume 

and appropriate treatment processes respectively. In addition, a composite suitability 

map was produced using the hybrid model considering all three cases together. 

Results from this study led to a better understanding of sustainable reclaimed water 

use for crop irrigation at a regional level. It provided supporting evidence of the 

applicability of the GIS-MCDA method integrated with AHP technique for a larger 

geographical scale with a diverse crop pattern. This study established the importance 

of using both knowledge-based and data-driven criteria and sub-criteria in the 

decision framework. The results also highlighted how the spatial distribution of 

suitable areas for reclaimed water reuse is closely linked to the agricultural areas. 

https://doi.org/10.1016/j.agwat.2019.105987
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1. Introduction  

The agricultural sector is the largest global consumer of freshwater, which 

accounts for about 70 percent of total freshwater consumption (FAO, 2017). 

Uncertain water availability, climate variability, and continuing growth in water 

demand have put severe pressure on high‐quality freshwater sources for irrigation 

(Fant et al., 2016; Gohar and Cashman, 2016; Taylor et al., 2013). The growing 

global water shortage has contributed to agricultural production reduction, which 

adversely impacts the food security, and severely affect the regional economy, farm 

value, and socioeconomic development (Anane et al., 2012; Montgomery et al., 

2016). The water scarcity exacts a necessity to explore additional or alternative water 

sources to sustain food production in various countries across the world, especially in 

water-scarce environments. Alternative water resources may include reclaimed water 

from wastewater treatment plants (WWTPs), return flows of irrigation water, 

desalination of seawater and highly brackish groundwater, and stormwater harvesting 

(Chen et al., 2016; Hurlimann and Dolnicar, 2011; Rygaard et al., 2011). Many 

countries like Australia, Chile, China, Cyprus, India, Israel, Italy, and Mexico have 

been using some of their treated or partially treated wastewater for crop production 

(Angelakis et al., 2018; Jaramillo and Restrepo, 2017; Jimenez and Asano, 2008; 

Keraita et al., 2008). In the U.S., growing agricultural water reuse projects (e.g., in 

Florida and California) also provides evidence that reclaimed water can be effectively 

used for agricultural irrigation (Bischel et al., 2011; Exall et al., 2008). 

Worldwide, most of the water reuse projects were driven by the immediate needs 

to increase the water supply in agriculture to overcome the crisis of recurrent and 
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long-term drought conditions (Bixio et al., 2008; Jaramillo and Restrepo, 2017). 

Agricultural irrigation with reclaimed water provides multiple benefits including 

reducing pressure on freshwater (Jaramillo and Restrepo, 2017; Rahman et al., 2016), 

nutrients management and recovery (Hanjra et al., 2015; Miller-Robbie et al., 2017), 

and higher reliability due to constant yields (Chen et al., 2012; Rahman et al., 2016). 

However, wastewater needs to be adequately treated to be reused in agricultural 

irrigation, especially for food crops due to potential health and environmental risks. 

Other limiting factors that need to be considered in reclaimed water use in 

agricultural irrigation include technical feasibility (e.g. closeness to WWTPs), 

economic factors (e.g. ability to meet the water demand), social and environmental 

factors (e.g. public acceptance and consumer response), and regulatory considerations 

(e.g., compliance with treatment requirements) (Ackerman, 2012; Bixio et al., 2008; 

Jaramillo and Restrepo, 2017; Saliba et al., 2018; Urkiaga et al., 2008). As a result, 

before the implementation of water reuse projects, it is very important for the policy-

makers and water resource managers to have the adequate information regarding the 

availability (quantity and quality) and economic viability (cost-benefit analysis) of the 

reclaimed water sources for irrigation of different type of crops (food/non-food 

crops). Thus, multiple quantitative and qualitative decision criteria should be 

considered to plan for the use of reclaimed water for irrigation. Of note is some of 

these criteria cannot be easily quantified in numbers or expressed into monetary 

values (Kiker et al., 2005).  

In addition, the assessment of irrigated agricultural land suitability for irrigation 

with reclaimed water is a spatial decision problem which involves spatially variable 
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decision criteria. This complex geospatial problem leads to the necessity of using 

Geographical Information Systems (GIS) combined with Multi-criteria Decision 

Analysis (MCDA). Although this approach is more subjective, it has the advantage of 

incorporating the expertise and knowledge of the decision-makers in the modeling 

process (Harris et al., 2001; Rikalovic et al., 2014; Saarikoski et al., 2016). The GIS-

MCDA solves the complex decision-making problem based on evidence of varying 

quantity, quality, guidelines, and experts’ opinions, and considering a wide range of 

decision criteria and constraints (Akıncı et al., 2013; Assefa et al., 2018; Montgomery 

et al., 2016). Of note is, any implemented project dynamically changes the 

environmental conditions (Saparauskas et al., 2011; Zavadskas et al., 2009), which 

highly influence the feasible solutions (Kalibatas and Turskis, 2008) and determine 

the set of critical criteria (Streimikiene et al., 2016). For example, efficient waste 

utilization alternative selection could influence waste reuse efficiency in terms of 

social, economic, and environmental aspects (Turskis et al., 2012). Thus, proper site 

selection depends on its sustainability characteristics (Peldschus et al., 2010) and 

available technologies to use (Sivilevicius et al., 2008; Zavadskas et al., 2013c). 

Stakeholders in the modern world should find a reliable solution considering the 

effective investments and both global and local perspectives of the outcomes (Zolfani 

et al., 2013). 

Worldwide, some researchers have applied the MCDA framework for the 

evaluation of feasible wastewater reuse for irrigation (Ganoulis, 2003; Kalavrouziotis 

et al., 2011; Lee et al., 2018; Woltersdorf et al., 2018). However, very few scientific 

papers demonstrated the use of integrated GIS- MCDA approach for the agricultural 
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land suitability assessment for irrigation with reclaimed water (Aldababseh et al., 

2018; Anane et al., 2012; Neji and Turki, 2015). Most of these studies assess the 

feasibility of reclaimed water use in agricultural land at a small scale (e.g. only 

including few farms and a limited number of treatment plants). For instance, Anane et 

al. (2012) considered only two WWTPs to rank the suitable sites for irrigation with 

reclaimed water, while Neji and Turki (2015) evaluated the alternatives for three 

WWTPs in Tunisia. In another study, Aldababseh et al. (2018) assessed an ex-ante 

land suitability analysis for the irrigation of seven critical crops with desalinated and 

treated wastewater in the Emirate of Abu Dhabi. To the best of our knowledge, there 

is no study that considers the spatial distribution of diverse crop patterns with a 

combination of a large number of WWTPs and their proximity, capacity, and 

different treatment processes.  

The aim of this study was to develop a decision support system for agricultural 

irrigation with reclaimed water from WWTPs using an integrated framework of GIS-

MCDA. The main objectives of this study were to: (1) develop a GIS-MCDA 

framework to identify the agricultural hotspots that are best suited for irrigation with 

reclaimed water; (2) evaluate the feasibility of reclaimed water use for irrigation 

considering proximity to WWTPs, discharge volume, and treatment processes 

respectively; and (3) produce a composite map using a hybrid model identifying the 

hotspots combining all of the decision criteria. In addition, a sensitivity analysis has 

been carried out with variable criteria weights to better explain the consistency of the 

best solution given by the MCDA.   
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2. Methodology 

2.1. Study Area  

The study area for this research was the entire state of California (Fig. 1). 

California is the leading state in agricultural production in the United States. It has the 

highest irrigated farm acreage and uses about one-fourth of the total irrigation water 

in the United States (Johnson and Cody, 2015). The Central Valley of California is 

known as its productive agricultural heartland due to its well-suited condition for 

vegetables and fruit cultivation. Four counties of Tulare, Kern, Fresno, and Merced in 

Central Valley, and Monterey in Central Coastal region of California are ranked as 

the leading agricultural counties in the nation. About 77,100 irrigated farms generated 

an overall agricultural production value of $42.6 billion in 2017 (USDA-ERS, 2018). 

The state produces over 400 different commodities including over one-third of the 

country’s vegetables and two-thirds of its fruits and nuts. According to USDA 

National Agricultural Statistics Services (NASS), 26% of agricultural lands were 

orchards, 52% were cultivated alfalfa, hay, pastureland, rice, corn, and cotton, and 

11% were vegetables in 2017. 

The demand for alternative water supply sources is increasing among the farmers in 

California as a way to continually meet their irrigation demands in the face of 

growing water scarcity (Schulte, 2016). The ongoing growth provides evidence that 

the demand for alternative water sources such as reclaimed water to irrigate the 

agricultural lands is increasing (Bischel et al., 2011; Schulte, 2016). According to 

USGS estimation, in 2015, California used 289.4 million gallons of reclaimed water 

per day (MGD) for irrigation including 217.7 MGD for crop-irrigation (Dieter et al., 
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2018). However, only in California, approximately 2,210 MGD of wastewater is 

being treated including all publicly, non-publicly, and federally owned WWTPs 

(EPA, 2019). Thus, there is still great potential for reclaimed water use in agriculture 

that has not been fully exploited.   

2.2. Multi-Criteria Decision Analysis (MCDA) 

In the MCDA framework, the weights or scores are defined to check the 

performance of alternative decision options against multiple criteria that are measured 

in different, and sometimes in incommensurable units (i.e., a combination of 

quantitative and qualitative criteria). In general, the required inputs in the MCDA 

process include scores across several dimensions associated with different 

alternatives and outcomes, and weights relating to tradeoffs across these dimensions 

(Huang et al., 2011). The total value score for an alternative is calculated as a linear 

weighted sum of its scores across several criteria (Eq.1).   

𝑉𝑖 = ∑ 𝑊𝑗𝑋𝑖𝑗

𝑛

𝑗=1

 
(1) 

Where 𝑉𝑖  is the overall score for alternative i; 𝑊𝑗 denotes the relative weight for 

criteria j; and 𝑋𝑖𝑗 is the priority of alternative i with respect to criteria j.  

Numerous techniques have been developed to define the weights for criteria and 

combine them to solve the complex decision-making process. Different MCDA 

methods have different robustness when assessing choices in specific problems 

(Zavadskas et al., 2013a; b). Major MCDA approaches include multi-criteria value 

functions methods such as weighted summation (Hajkowicz and Higgins, 2008); 
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outranking approaches such as PROMETHEE (Brans and Vincke, 1985; Vetschera 

and De Almeida, 2012) and ELECTRE (Kumar et al., 2016; Roy, 1978); distance to 

ideal point methods such as TOPSIS (Dong et al., 2016; Yoon, 1980) and 

compromising programming (CP) (Ballestero and Romero, 1996; Martin et al., 2017); 

soft computing concept such as logic scoring of preference (LSP) (Dujmovi'c, 1996; 

Montgomery et al., 2016); pairwise comparison methods such as Analytical Hiearchy 

Process (AHP) (Hou et al., 2016; Saaty, 1978); prioritization technique such as 

DEMATEL(Azarnivand and Chitsaz, 2015; Fontela and Gabus, 1976); fuzzy set 

analysis (Kosko, 1992; Mirajkar and Patel, 2016); mathematical approach like linear 

programming (LP) (Srinivasan and Shocker, 1973); and compromising ranking 

method such as VIKOR (Opricovic, 1998), etc. In the modern era, stakeholders may 

need newer MCDA methods (Keshavarz Ghorabaee et al., 2016), or integrated 

MCDA approaches (Bagocius et al., 2014) to solve complicated problems (Ruzgys et 

al., 2014; Xu, 2001). For instance, improved AHP method like Analytical Network 

Process (ANP) (Aminu et al., 2017; Saaty, 1996), an integrated ranking method such 

as superiority and inferiority ranking (SIR) (Xu, 2001), Fuzzy AHP 

(Anagnostopoulos and Petalas, 2011; Buckley, 1985; Elshaikh et al., 2018), Fuzzy 

ANP (Mikhailov and Singh, 2003; RazaviToosi and Samani, 2016) and Fuzzy 

TOPSIS (Chen, 2000; Kim et al., 2013) are used to solve the complex problem.  

AHP method, which was first introduced by Saaty in 1978, is still a widely used 

MCDA method (Saaty, 1978; 1979; 1980). AHP gets its popularity due to its good 

understandability, ease of implementation, and interpretability of the results by both 

modelers and decision-makers. It allows the researchers to represent a full range of 
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human decision-making logic considering both qualitative and quantitative data and 

combines them by decomposing complex problems into systematic hierarchies to 

rank alternatives based on different criteria (Assefa et al., 2018; Opricovic, 2011; 

Woltersdorf et al., 2018). For this reason, several studies have applied the AHP for 

solving a wide variety of water and environmental problems, including water resource 

allocation (Zhang et al., 2019), selection (Grum et al., 2016), feasibility evaluation 

(Cozzi et al., 2015), resolving conflicts (Mainuddin et al., 1997), and priority and 

ranking (Hassani et al., 2019). Of note is, well-backgrounded goals are essential to 

define the problem and should be included in any decision-making model (Turskis et 

al., 2019d). Therefore, when stakeholders use MCDA methods, one of the critical 

tasks is to determine the importance of criteria. The AHP method is the most widely 

used method for this purpose (Zavadskas et al., 2016). In addition, researchers have 

developed other techniques to assign criteria weights based on their importance 

(Eckenrode, 196; Delbecq and Vandeven, 1971; Kersuliene et al., 2010; Linstone and 

Turoff, 2002; Turskis et al. 2019b).  

In the MCDA process, the criteria and weighting can be modelled as crisp as well 

as fuzzy or grey (Turskis et al., 2019a; Turskis et al., 2019c). This may vary based on 

the nature of the criteria or the modelling preference. In case of land allocation 

problems, cropland and forest land could be assigned with crisp boundaries (either 

one or the other) or fuzzy boundaries (with one or more classification levels where 

the land is partially forest and partially cropland). Thus, in the decision-making 

process, it is sometimes difficult to choose between alternatives with multiple 

attributes. AHP has the ability to simplify the complicated decision-making process 



 

 

37 

 

by using pairwise comparison technique and reducing the number of comparisons and 

confirming consistency by comparing objects with multiple attributes. The pairwise 

comparison technique provides a powerful, simplified, and relatively unbiased 

ranking criterion (Assefa et al., 2018; Saaty, 1980; Worqlul et al., 2015). 

Few of the MCDA techniques were integrated with GIS to assess the land 

suitability and allocation for water resource management (Table 1), where AHP is the 

most applied to solve the complex decision-making processes regarding water reuse 

for irrigation. In the presented study, the process of a suitability assessment and 

identifying hotspots for reclaimed water use involves two main steps (Fig. 3). In the 

first step, the influential geospatial decision criteria and sub-criteria were evaluated. 

Then, a GIS-MCDA model was developed using the AHP technique to solve the 

spatial decision-making process. The MCDA method was implemented using 

geospatial data and ArcGIS 10.1 software (ESRI, 2012). In GIS-MCDA, a spatial 

decision alternative is defined as a single raster of a specified size or a combination of 

multiple rasters. The following subsections describe the procedure for the 

development of GIS-MCDA in this research in more detail. 

2.2.1. Defining Criteria and Sub-criteria 

Decision criteria and sub-criteria are labeled as either factors or constraints. A 

factor is a criterion that amplifies or reduces the suitability of a specific alternative for 

the activity under consideration, while a constraint serves to limit the alternatives 

under consideration. Based on the existing literature, data availability, and expert 

opinions five main influential criteria as factors and one as a constraint were selected 

for the assessment of the suitable agricultural land for the reclaimed water irrigation. 
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The five selected criteria are: 1) land cover (crop type); 2) reclaimed water sources; 3) 

irrigation status; 4) groundwater priority; and 5) climate. Each of these criteria is 

individually evaluated using different sub-criteria. Sub-criteria were processed 

separately depending on their discrete and continuous form. The detailed rationale 

behind the selection of these criteria and sub-criteria are explained hereafter.  

I. Land Cover (Crop Type) 

According to NASS-CDL (2017), the total harvested area in California was 

46,741 km2 with a planted area of 16,591.7 km2 in 2017. To assess the suitable 

agricultural land for reclaimed water irrigation, all of the agricultural lands were 

included in the land cover criteria. The main concern regarding reclaimed wastewater 

use is the effect on the human and health environment. Thus, California’s Water 

Recycling Criteria-Title 22 was followed strictly during the classification (NWRI, 

2012; Schulte, 2016; Sheikh, 2015). The detailed information can be found from Title 

22 of the California Code of Regulations, Division 4, Chapter 3: Water Recycling 

Criteria. But briefly, according to the regulations, both nonfood crops/processed food 

crops and food crops can be irrigated with reclaimed water depending on the 

treatment process (Table 1). Therefore, all the existing crops within California were 

categorized into six classes as alternatives based on the reclaimed water sensitivity 

and tolerance: non-food crops fiber, non-food crops fodder, non-food crops oil crops, 

food crops grains and legumes, food-crops orchards, and food-crops vegetables. 

II. Reclaimed wastewater Sources  

In this study, treated wastewater from the wastewater treatment plants (WWTPs) 

has been considered as the alternative water source for agricultural irrigation. Only 
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the publicly owned treatment works (POTWs) were considered since these are mainly 

designed to treat the domestic sewage from residential and commercial communities 

and are owned and operated by the local government agencies. POTWs’ data was 

collected and combined from the 2012 Clean Watersheds Needs Survey (CWNS) and 

Enforcement and Compliance History Online (ECHO) datasets (EPA, 2012). After 

collecting the data, the POTWs were screened and categorized using a three steps 

process (Fig. 2). The step by step rationale behind selecting and categorizing the 

WWTPs are described hereafter.  

First: Each treatment facility discharges its treated wastewater (effluent) into the 

environment through many different methods (i.e., Outfall to Surface Waters, 

Discharge to Ground Water, or Reuse: Potable, etc.). In this research, five discharging 

ways were considered as high reuse potential for agriculture including 

Evapotranspiration, Ocean Discharge, Spray Irrigation, Reuse Irrigation, and Outfall 

to Surface Waters (Fig. 2). Discharging method “Evapotranspiration” is a system to 

dispose the treated wastewater into the atmosphere through evaporation from the soil 

surface and/or transpiration by plants, without discharging wastewater to the 

groundwater reservoirs or surface water. Thus, all the WWTPs which discharge their 

treated wastewater through evapotranspiration were considered as a source for 

agricultural irrigation. It is reported that more than 80% of treated wastewater (3,440 

Mm3/year) is being discharged to the ocean in California (Angelakis et al., 2018). 

This large volume of treated wastewater can also be used for irrigation purposes, 

therefore, WWTPs discharging to the ocean were included here as a high potential 

source of water for irrigation. The successful application of treated water for 
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irrigation mainly depends on the farmers’ acceptability. Therefore, the existing 

reusing practice nearby like “Spray Irrigation” and “Reuse: Irrigation” can represent a 

positive economic and social impact and were included in this study. In addition, 

“Outfall to Surface Waters” discharging method was considered only for those 

WWTPs located in the coastal regions and counties, which have low surface water 

consumption according to USGS estimation, and there is no downstream user.  

Second: Reclaimed water is a reliable source to meet part of the demand for 

irrigation water, and to minimize the dependency on freshwater sources. It is apparent 

that since larger treatment plants discharge higher volumes of reclaimed water, they 

can be considered as more reliable sources. In this study, the projected design flow of 

individual WWTPs was used to classify them depending on their treated effluent 

discharge capacity.  

Third: The quality of the treated wastewater plays a very important role in 

reclaimed water applications. Title 22 of the California Code of Regulations states 

that the level of treatment impacts the reclaimed water use in agriculture. For 

example, if treated water contacts the edible portion of the crop, (i.e., vegetables or 

root crops), tertiary treatment and disinfection are required (Table 1). In this step, we 

classified the WWTPs based on their treatment methods and included it as a decision 

criterion. 

III.  Irrigation Status 

According to the 2015 USGS data, California is the largest freshwater consumer 

in the U.S. (18,983 MGD), mainly due to irrigation (Dieter et al., 2018). California 

consumes 80% of the total water to produce food (Mount and Hanak, 2014). Under 
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this decision criteria, county-wise data of the total agricultural freshwater withdrawals 

(surface and groundwater) was considered to classify the study (e.g. counties with 

highest irrigation water use were assigned higher priority for reclaimed water use).    

IV. Groundwater Priority 

While surface water is the primary source of irrigation in California, groundwater 

is also being used to meet the irrigation demand in many areas. Based on the 

California Statewide Groundwater Elevation Monitoring (CASGEM) data, the 

Department of Water Resources (DWR) has identified 518 groundwater basins in 

California and categorized them into four prioritization groups of high, medium, low, 

and very low priority. The groundwater basins prioritization was made using the 

following eight criteria: population, population growth rate, the total number of wells 

and irrigated acreage, the degree of dependency on the groundwater, documented 

impacts on groundwater like overdraft and saline intrusion, and any other relevant 

documented adverse impacts. In this study, we considered the statewide groundwater 

prioritization as a decision criterion and assigned higher priority to watersheds that 

are considered high priority groundwater watersheds. 

V. Climate 

Agricultural production in California is very sensitive to climate change (Pathak 

et al., 2018). Change in amounts, distribution, and frequency of precipitation and 

temperature intensify the water availability for agricultural and reduce crop areas and 

yields (Pathak et al., 2018; Tanaka et al., 2006). Therefore, in this study climate was 

selected as a criterion for suitable agricultural land evaluation. Climate criteria 

decomposed with the climate region and historical drought information for different 
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watersheds within the state. Each watershed was ranked and weighted based on their 

severity of climate and drought conditions together through a two-step process:  

a) Climate Region: According to the California Emergency Management Agency 

(CEMA), California is divided into 11 major climate impact regions (Fig. 1). Coastal 

and southern regions of California state have a Mediterranean climate, with slightly 

rainy winters and dry summers. The coastal region has a moderate temperature, 

warmer winters, and cooler summer due to the ocean in the west. Northern California 

has a moderate oceanic climate, which receives higher annual precipitation compared 

to the southern part of the state. California’s deserts have little water, few plants, and 

very hot summers situated on the east side. The central valley has a semi-arid climate 

with a distinct dry summer season and a cool, foggy, rainy season, which is suitable 

for crop production. The Sierra Nevada and the Coastal region form a ring around the 

Central Valley where half of the country’s fruits, vegetables, and grains grow due to 

the rich soil and long growing season. Rest of California covered by the Mountain 

ranges, which include the Klamath Mountains and the Cascade Range in the north. 

b) Drought Index:  Since a drought can adversely affect agricultural crop 

productions, use of reclaimed wastewater for irrigation can conserve food security by 

providing a drought-proof source of additional water. To incorporate the drought 

information into the Climate criteria, the Palmer Drought Index, or the Palmer 

Drought Severity Index (PDSI) was considered as an indicator of drought. In this 

study, PDSI was collected from the West Wide Drought Tracker 

(https://wrcc.dri.edu/wwdt/) for 35 years (1981-2015), where PDSI was calculated 

based on the precipitation and temperature, and a supply-and-demand model of soil 

https://wrcc.dri.edu/wwdt/
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moisture (Abatzoglou et al., 2017). It assigns 0 as normal, and negative number as 

drought condition (e.x., negative 2 is moderate drought, negative 3 is severe drought, 

and negative 4 is extreme drought). 

2.2.2. Developing the AHP Model 

The AHP technique (Saaty, 1978) was applied in the GIS-MCDA structure, where 

a hierarchical mechanism is used to rank criteria and alternatives according to their 

importance (Cozzi et al., 2015; Feizizadeh and Blaschke, 2014). The AHP uses 

pairwise comparisons between the criteria to help decision-makers to evaluate the 

relative importance of criteria. Through this process, the weights and ranking of the 

criteria were determined for the GIS-MCDA model (Fig. 3). The development of the 

AHP model for this study is described in the following steps:  

i. Formulating Hierarchy 

After defining all the selected criteria and evaluation of sub-criteria, they were 

used to formulate the hierarchy structure (Fig. 4). The hierarchy structure was 

articulated based on the AHP method to organize the complex multi-criteria problem 

in a number of levels. The decision hierarchy is containing a goal, the main criteria, 

the sub-criteria, and the options. The first level of the hierarchy corresponds to the 

general purpose of the problem, the second level to the criteria and the third level to 

the sub-criteria (Saaty, 1980). Fig. 4 shows that the main criteria and sub-criteria were 

outlined in the first and second levels of the hierarchy, based on their priority 

(described above) to reclaimed water use in the agriculture land. In this study, the 

hierarchy is structured into four levels (Fig. 4).  

ii. Weighting the Criteria and Sub-criteria 
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The AHP theory was applied to assign the criterion weight is a fundamental step 

in the MCDA process. The pairwise comparison technique derives the weights by 

comparing their relative importance between two criteria. As a result, the comparison 

matrix was established considering the relative importance of each criterion and 

comparing one-to-one based on pairwise scale. The sub-criteria were weighted 

according to Saaty’s 1 to 9 scale, where the highest value (9) indicates “Extremely 

Important” while the reciprocal (1/9) indicates “Extremely Insignificant” (Table 3). 

The weights of each sub-criterion were assigned based on the rationale described in 

Table 4. 

iii. Evaluating Consistency 

Once the judgments or the weights of the criteria have been entered into the 

comparison matrix, the consistency of the pairwise matrix is checked using a 

consistency ratio (CR) to check the degree of consistency or inconsistency (Saaty, 

1980). CR compares the consistency index (CI) of the matrix with the consistency of 

a random-like matrix (RI). 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

(2) 

Where random index (RI) is the average of the consistency index of the randomly 

generated pairwise comparison matrix. RI is varied with the numbers of criteria (n) 

(Saaty, 1980).  

The CI is the consistency index calculated from the pairwise matrix and can be 

expressed as:  
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𝐶𝐼 =
λ𝑚𝑎𝑥  −  n

n − 1
 

(3) 

Where λmax is the largest eigenvalue of the pairwise comparison matrix, n is the 

order of the matrix. CR value of less than 0.10 indicates that judgments are consistent 

and are suitable for the implementation of the AHP analysis (Saaty, 1978). For CR 

values greater than 0.10, the pairwise comparisons matrix needs to be adjusted, and 

the weighting values should be modified.  

iv. Ranking and Prioritizing the Criteria 

From the pairwise comparison matrix, the values of each cell were divided by the 

total of its column. The resulting matrix is called a ‘‘normalized matrix’’ (Saaty, 

1978). From this normalized matrix, the final priorities were obtained, which are 

indicated as “Weights” and “Ranks” columns of Table 2-4. Thus, the final AHP 

outputs are: (i) a relative priority of each criterion presented in percentages, and (ii) a 

relative rank of each criterion.  

In this study, three separate robust maps were produced considering the 

proximity, discharge flow rate, and acceptable treatment process, to minimize the 

dependence between different crop types and treated water quality. For all other 

alternatives and criteria, we assumed that there is no dependency between them. 

Therefore, three pairwise matrices computed separately for: (1) all WWTPs with 

acceptable discharge methods (Case 1-Table 5); (2) WWTPs categorized with flow 

volume (Case 2-Table 6); and (3) WWTPs considering the treatment processes (Case 

3-Table 7). 
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2.2.3. Creating Thematic Layers and Model Setup 

In the GIS-MCDA method, the data is needed in spatial nature for i) the 

geographical data models, ii) spatial extent for the criteria evaluation, and iii) the 

spatial dimension of the decision problem. Six major datasets were collected and 

generated in spatial nature including Crop Data Layer (CDL) for land use and land 

cover (LULC); the location of WWTPs for reclaimed wastewater sources; 

groundwater basin prioritization maps; county wise freshwater consumption map for 

irrigation status; and drought index map and climate zone map for climate criteria. A 

complete list of datasets that were used in this study is provided in Table 8.  

After collecting the required data, the spatial analysis was done to obtain the 

MCDA criteria maps. Spatial analysis was made with the quantifiable data regarding 

single-objective decision making with an optimized number of criteria. Spatial 

analysis to identify a suitable area for reclaimed wastewater irrigation starts with 

representing each selected sub-criterion by a thematic layer in which each point takes 

a value according to that sub-criterion (Figure 4). Each main criteria or thematic layer 

was obtained in a raster format and evaluated using GIS and geo-statistical tools. 

Crop Data Layer (CDL 2017) was used to perform the agricultural land classification 

in the ArcGIS environment. WWTP information including locations, discharge 

method, flow and treatment units were collected from CWNS 2012 and NPDES data 

source and processed into a raster format. The sub-criteria of each main criterion was 

assigned with the scale (according to Table 4) using the Spatial Analysis tool named 

“Reclassify” in the ArcGIS platform and reclassified maps were produced for each 

criterion (Figure 5a-5e). All the thematic layers were converted into raster layers with 
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a uniform 30*30 m resolution. One constraint map (Figure 5f) was created which 

indicates the unsuitable land use for irrigation, (e.g., urban areas, barren land, forests, 

wetlands, water bodies, and shrublands).  

The weights based on the final matrix (Table 5-7) were distributed to individual 

criteria and then combined using the Weighted Sum Overlay tool in ArcGIS. Total of 

five criteria layers for Case 1, seven criteria layers for Case 2, and six criteria for 

Case 3 were combined to produce the single suitability map. The interval 

classification was used to obtain the suitability for all generated maps and represented 

in four classifications of Most Suitable, Moderately Suitable, Low Suitable, and Least 

Suitable respectively. 

2.3. Sensitivity Analysis 

In the AHP technique, criteria weights represent the influence of each criterion in 

the model distribution (Feizizadeh and Blaschke, 2014; Robinson et al., 2010). The 

final ranking of options is dependent on the choice of performance scoring scales. 

Therefore, criteria weights can be sources of uncertainty and may considerably 

impact the decision outcomes (Belton and Hodgkin, 1999; Feizizadeh and Blaschke, 

2014). To address this issue, the sensitivity analysis was performed as the final check 

for the whole process, and to assess the robustness of the model. In this study, the 

One-at-a-Time (OAT) approach was applied for the sensitivity analysis, which 

provides a good balance between efficiency and efficacy (Bertolini et al., 2004; 

Bertolini et al., 2006).  

Through the analysis, three aspects of criteria weight sensitivity were examined 

by (1) investigating the stability of the evaluation by implying a known amount of 



 

 

48 

 

change to one weight and observing changes in the rankings of criteria; (2) 

identifying most sensitive criteria to weight changes; and (3) visualizing the changes 

in the spatial dynamics. In this study, a 10% change of weights for each main 

criterion was applied to analyze the model’s response. 

3. Results and Discussion 

3.1. Evaluation of Main Criteria 

3.1.1. Agricultural Land Classification Mapping  

The agricultural land use was delineated using the Boolean map, where all the 

croplands were considered for the analysis and other types of land use/cover were 

discarded (Fig. 5a and 5f). According to CDL (2017), more than sixty different types 

of food and non-food crops were recorded in 30*30m resolution. Based on Table 4, 

the agricultural lands were reclassified and mapped into six classes. These classes are 

Fodder Crops (49,424 km2), Non-food Crops- Fiber (1,089 km2), Non-food Crops- 

Oil (490 km2), Food Crops- Grains and Legumes (7,135 km2), Food Crops- Orchard 

(22,294 km2), and Food Crops- Vegetables (1,610 km2) (Fig. 5a). 

3.1.2. Proximity Mapping of Reclaimed Wastewater Sources 

The location of WWTPs and their proximity to the point of use are very important 

factors in the decision process. Agricultural land close to WWTPs or downstream of 

treatment plants can get easier access to reclaimed water compared to areas that are 

further from the treatment plants or are located upstream. However, the upstream or 

downstream direction from WWTP to agricultural land was not analyzed during the 

proximity mapping. From each of the WWTP, Euclidean Distances (i.e., distance 

raster) were calculated and then reclassified into three classes: 0-5 km, 5-15 km and 
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>15 km (Fig. 4 and Fig. 4b). In this study, three proximity maps were produced for 

the three cases (Case 1, 2, and 3). The CWNS 2012 database contains 905 records of 

WWTPs within California. It includes the projected flow for only 488 of the WWTPs. 

The database also includes information about the treatment process for only 53 

WWTPs. Of note is those 53 WWTPs are large facilities and their combined treated 

effluent comprises about 73% of total recorded effluent. After the reclassification, 

three different proximity maps were created. Fig. 5b shows the proximity map of the 

reclaimed water sources considering acceptable discharge methods.  

3.1.3. Mapping of Agriculture’s Freshwater Consumption  

The groundwater and surface water extraction per county were mapped using the 

USGS 2015 dataset. All the 58 counties in CA were assessed in terms of their annual 

freshwater consumption in the agricultural sector, and the weighted county maps were 

generated. These maps present the priority zones for using reclaimed water for 

irrigation. Results showed that, Imperial County extracted the highest amount of 

freshwater for irrigation (1,850 MGD), followed by Kern (1,617 MGD), Fresno 

(1,616 MGD), Tulare (1,396 MGD), San Joaquin (1,190 MGD), and Stanislaus 

(1,034 MGD) respectively. These six counties have the largest freshwater 

consumption in agriculture, therefore, were given the highest score in the evaluation 

(Fig. 5c). Other counties were also classified according to their total freshwater use in 

agriculture respectively (Table 4 and Fig. 5c). 

3.1.4. Groundwater Basin Prioritization Mapping  

According to the CASGEM data, a total of 43 basins were categorized as a high 

priority, and 84 basins as medium priority regarding groundwater basin prioritization. 
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The rest of the groundwater basins were categorized as low or very-low priority (total 

of 391). After reclassification, different scores were assigned to groundwater basins, 

where high priority basins received the highest and low priority basins received the 

lowest scores (Fig. 5d). The groundwater basin prioritization mapping shows that the 

highest priority zones consisted of 51814.5 km2 and were mainly outlined in the 

Central Valley. The low (17247 km2) and very low priority (55976 km2) were 

mapped to the eastern part of the California desert due to the insignificant agricultural 

activity.

3.1.5. Watershed Prioritization Mapping  

All the watersheds in California were classified based on their drought severity 

and local climate conditions using the method described before. These drought 

severity classifications include Very High, High, Medium, Low, Very low, and 

Normal conditions. For instance, the coastal region of Southern California receives 

the lowest PDSI (-6.9) with maximum years (11 years) followed by the California 

Desert Region (PDSI -6) with maximum years (8 years). Watersheds were assigned 

different scores according to their PDSI, in which watersheds with the lowest PDSIs 

received the highest priority for reclaimed water use in agriculture (Fig. 5e).

3.2. Factors Weight and AHP Assessment 

Three pairwise matrices were formulated and the weight of the criteria was 

computed separately for Case 1 (Table 5), Case 2 (Table 6), and Case 3 (Table 7), 

respectively. During the pairwise comparison, the consistency was evaluated 

simultaneously to check if the judgments were rational. If the CR (Eq. 2) exceeds 
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10%, the inconsistencies of the judgments were rechecked, and the criteria 

evaluations were readjusted. 

The final consistency of pairwise matrices was checked and found to be 0.051, 

0.056 and 0.051, for three Cases of 1, 2, and 3, respectively. In Case 1, proximity to 

WWTPs had the highest priority with a score of 0.529 followed by the land cover 

(crop type) (0.265) and Watershed Prioritization (0.114) as the second and the third 

influential criteria (Table 5). In Case 2, the WWTPs which treated more than 100 

MGD wastewater scored the largest (0.359) considered as the highest priority to 

irrigate the agricultural land followed by the WWTPs with the capacity of 25 < Flow 

≤ 100 MGD (0.249) and Flow ≤ 25 MGD (0.171) (Table 6). Similarly, in Case 3 

regarding the acceptable treatment process, the WWTPs having advanced or 

secondary treatment with the disinfection method scored the highest (0.540) 

compared to the other WWTPs which treated the wastewater with Secondary 

treatment process (Table 7). 

3.3. Agricultural Land Suitability Mapping for Irrigation with Reclaimed 

Wastewater 

Three suitability maps were produced for three Cases, based on selected 

discharging methods, discharge volumes, and different treatment processes. Case 1 

was constituted to assess the accessibility of each WWTP to the nearest agricultural 

land. Therefore, the generated suitability map shows the most suitable agricultural 

areas that are in close proximity to the WWTPs (Fig. 6a). Case 2 was established to 

evaluate the suitability in terms of flow (Fig. 6b). Fig. 6b shows the most suitable 
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agricultural areas that are close to the WWTPs with a large volume of discharge. The 

last suitability maps were generated based on Case 3, which includes the treatment 

process of WWTPs (Fig. 6c). For instance, reclaimed water from WWTPs with 

advanced treatment processes can be used for all types of crops, but undisinfected 

secondary recycled water can only be used for non-food crops and process food 

crops. 

3.3.1. Case 1: Considering Selected Discharging Methods 

Based on the selected discharging methods, a total of 352 WWTPs were included 

in the generation of the suitability maps. The final suitability map based on the five 

main criteria and their sub-criteria is presented in Fig. 6a. Results show that “Most 

Suitable” agricultural areas comprise 36.7% (6515 km2), and “Moderately Suitable” 

areas comprise 23.3% (4138.7 km2) of the total agricultural areas (Fig. 6a). Of note is 

in this study, the CWNS database was used as the primary source to obtain treated 

discharge characteristics, discharge volumes, and treatment processes for all POTW-

WWTPs. The Non-POTW facilities that often treat wastewater from industries (e.g., 

manufacturing or processing foods and beverages) could be additional sources of 

reclaimed water for irrigation. However, due to the lack of effluent information and 

treatment processes, Non-POTW facilities were not included in this study. 

3.3.2. Case 2: Considering Treated Discharge Volume 

Since most of the high capacity WWTPs are located near the coastal regions 

where agricultural land is minimal, agricultural areas within close proximity to 

WWTPs are limited. The suitable areas for irrigation with reclaimed water within 

close proximity of large WWTPs (>100 MGD) occupy a total of 735.3 km2, which 
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corresponds to 6% of the total agriculture land (Figure 6b). On the other hand, 

WWTPs with low capacity (100> Flow> 25 MGD) were found to be accessible to 

about 1021.2 km2 of lands in the state. Of note is the CWNS 2012 database contains 

projected discharge volume data for 488 (out of 905) WWTPs. The complete dataset 

of recorded flow data for all of 905 WWTPs could produce more comprehensive 

suitability maps for the GIS-MCDA model. 

3.3.3. Case 3: Considering the Appropriate Treatment Processes 

Treatment processes were only reported for 53 WWTPs in the CWNS database. 

But because they are all larger facilities, they discharged 73% of the total treated 

effluent. Among those WWTPs with treatment process data, only 5 WWTPs are 

located in the Central Valley. Therefore, minimal agricultural lands (3830 km2) were 

found as suitable areas for irrigation with the reclaimed water close to those WWTPs. 

The majority of WWTPs with treatment process information is located in the 

Southern California Coastal Region and San Francisco Bay Area (34 and 13 

respectively). They treat more than 3018.75 MGD of wastewater. However, these 

regions have minimal agricultural activities (1.2% of total agricultural land) 

compared to other regions. As a result, only 14 km2 of agricultural area is marked as 

“Most Suitable” and 484.1 km2 as “Moderately Suitable” in Southern California 

Coastal Region and San Francisco Bay Area respectively (Fig. 6c). 

3.3.4. Composite Maps Considering All Three Cases 

In the end, a hybrid model was built to evaluate the feasibility and suitability of 

treated water for agricultural irrigation considering proximity, availability, and 

appropriateness of the treated flow from municipal WWTPs. According to this, “Most 
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Suitable” agricultural areas occupy a total of 145.5 km2, and “Moderately Suitable” 

areas occupy a total of 276 km2 respectively. The final suitability map from the 

hybrid model was then superimposed with the CDL layer for the verification of the 

suitability map (Fig. 7). The discharge flow volume and agricultural land classes of 

the surrounding area were checked by the visual interpretation and using attribute 

data from the CDL layer. To assess the accuracy of the classified suitability map, a 

random WWTP was selected for verification. For instance, a treatment plant (Fresno-

Clovis Regional WRF) situated in Fresno county was selected with a projected treated 

flow of 118 MGD with advanced treatment. Fresno county uses approximately 

2492.77 MGD freshwater for irrigation. There are approximately 43 km2 of Orchard 

(Almond, Grapes, Pistachio, and Walnuts), 6 km2 of  Alfafa, 5 km2 of Pasture and 2 

km2 of Cotton are located within 5 km distance from this facility, that may use 

reclaimed water as an additional irrigation water source. Of note is verification with 

the filed data is recommended in future studies when suitability classifications from 

different sources are compared. 

3.3.5. Further Discussion 

The focus of this study was to develop and apply a systematic geospatial decision 

framework using the GIS-MCDA method for the assessment of suitable agriculture 

land for reclaimed water use. Of note is many researchers have acknowledged the 

advantage of knowledge-driven approaches like GIS-MCDA method in data-sparse 

situations where decision rules derived from existing knowledge to solve the area 

selection and potential mapping problem (Harris et al., 2001; Machiwal et al., 2015; 

Rajabi et al., 2014). It has been observed that for the cases with limited data, Saaty’s 
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systematic decision approach, AHP, will give similar results to much more complex 

MCDA methods like PROMETHEE, TOPSIS, or ELECTRE (Kabir et al., 2014; 

Tscheikner-Gratl et al., 2017). It should be noted that AHP is often used in crisp 

decision applications, where the alternatives are compared with respect to the criteria, 

and for each criterion, a crisp value is assigned as the weight of alternatives. This 

crisp value provides a sharp and rigid boundary. However, in the real world, it is 

difficult to assign scores with crisp values for the assessment of complex water 

resource systems. Another limitation of the AHP approach is, it becomes a lengthy 

task for analysis when there is a large number of criteria and sub-criteria involves 

(Macharis et al., 2004). Considering the number of criteria and sub-criteria in this 

study, the AHP method was still relatively easy to implement.  

Additionally, in some cases, the final decision or ranking of options are dependent 

on the choice of performance scoring scales. To address this issue, a sensitivity 

analysis was performed using the OAT approach, and the relationship between 

criteria weights and performance scoring scales were examined. It should be noted 

that the weights were changed only for the main criteria to evaluate the main effects 

one-at-a-time, and the interaction effects between two or more criteria had been 

ignored to keep the procedure simple (Bertolini et al., 2006; Chen et al., 2013; Sun et 

al., 2012). 

3.4. Sensitivity Analysis 

Six scenarios were performed for the sensitivity analysis to determine the 

robustness of the GIS-MCDA method developed in this study. To perform the 

sensitivity analysis, the assigned weights to each criterion were altered with 10% 
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increments from the initial input values. The weight change was applied to one 

criterion at a time (keeping the other criteria constant), using the OAT analysis 

method (Aldababseh et al., 2018; Paul and Negahban-Azar, 2018). The pixel numbers 

of each main criterion were evaluated in each scenario for per land suitability class 

(Fig. 8). The relative sensitivity also calculated to interpret the output for the different 

scenarios to show how the weight change in one criterion affects the suitability 

classes in the output (Table 9). Results show that 10% weight increase to five main 

criteria (one at a time) had an obvious change (increasing or decreasing) in the pixel 

numbers per land suitability class (Fig. 8). Sensitivity analysis showed that land 

suitability patterns change respective to the weight change under each scenario. Pixel 

numbers in “Most Suitable” areas were relatively stable with the weight increase in 

all main criteria except agricultural land classification. The pixel numbers were 

decreased in “Low Suitable” class for all scenarios whereas a noticeable increase in 

the number of pixels found in the “Moderately Suitable” class (Table 9). 

The deviation in the decision weights (e.g., proximity to WWTPs) has a 

substantial impact on the pixel number of the “Low Suitable” (0.02 to -0.86) and 

“Least Suitable” (-0.24 to -0.66) class. The largest variation of the pixel number 

found for the “Moderately Suitable” when the weight was changed for the 

groundwater basin prioritization (relative change 1.24). There is a dramatic change in 

the number of cells in “Moderately Suitable” and “Low Suitable” classes. The 

noteworthy shifts between “Moderately Suitable” and “Low Suitable” take place in 

all scenarios. For scenario 1, when weight was changed for the distance of the 

WWTPs, the change of the pixel number was minimal compared to other scenarios. 
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Thus, the proximity of the WWTPs to the agricultural point of use plays an important 

role in the suitability mapping.  

4. Conclusion 

This study successfully implemented an integrated and comprehensive GIS-

MCDA approach to evaluate the agricultural land suitability for irrigation with 

reclaimed water. To demonstrate how this GIS-MCDA model performs under 

realistic conditions, a case study was presented for the State of California. This study 

appears to be the only study to model the agricultural hotspot identification for 

reclaimed water use in agriculture at the state-wide scale considering several 

quantitative and qualitative decision criteria using the AHP method. The ultimate goal 

was to produce prescriptive suitability maps showing the agricultural areas that are 

most suitable for irrigation with reclaimed water.  

Three separate robust maps were created at three stages considering the proximity 

to WWTPs, discharge flow rates, and acceptable treatment processes respectively. In 

addition, a composite suitability map was produced using the hybrid model 

considering all three cases together. Accordingly, the agricultural areas in the study 

area were classified spatially ranging from “most suitable” to “least suitable” areas 

for reclaimed water irrigation. Among the decision criteria, proximity to WWTPs and 

crop types were the most influential. Results also highlighted how the spatial 

distribution of suitable areas is closely linked to the agricultural areas. Of note is the 

assumption was that all criteria were independent, and there was no possible 

dependency influence in the decision-making process. As discussed before, there 

might be a dependency on some of the decision criteria. For instance, the irrigation of 
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different types of crops might be influenced by the appropriateness of the treatment 

process. For future research, it is suggested that other decision analysis methods such 

as ANP can be applied to consider the potential dependency in decision criteria and 

sub-criteria. 

In conclusion, results from this study lead to a better understanding of sustainable 

reclaimed water use for crop irrigation at regional levels by developing a decision 

framework to prioritize agricultural areas for reclaimed water use. The main 

contribution of this study was to develop a GIS-MCDA framework and to test the 

framework at a large geographical scale (state of California) with diverse crop 

patterns. While the GIS-MCDA framework was specifically developed for the study 

area, the proposed approach can be easily applied to other areas with some 

modifications (e.g. revising the decision criteria and sub-criteria). Thus, results from 

this study provide a useful tool for decision-makers and stakeholders (e.g farmers) 

and help them with the development and expansion of reclaimed water for 

agricultural irrigation. 
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5. Figures 

 

Figure 1: Agricultural lands and major watersheds in State of California as the study 

area. 
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Figure 2: Three-stage classification process for wastewater treatment plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The Integrated Geographical Information System and Multi-criteria 

Decision Analysis (GIS- MCDA) framework developed in this study using the 

Analytical Hierarchy Process (AHP) technique.
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Figure 4: Developed decision framework for the assessment of suitable agricultural land for irrigation with reclaimed 

wastewater.
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Figure 5: Thematic layers for main decision criteria and land use constraints: a) 

agricultural land classification; b) proximity to wastewater treatment plants 

(WWTPs); c) freshwater consumption; d) groundwater basin prioritization; e) 

watershed prioritization; and f) Boolean map for agricultural land use constraint.
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Figure 6: Suitability maps of the agricultural land for recycled water irrigation: a) stage 1 considering all WWTPs with 

acceptable discharge methods; b) stage 2 considering WWTPs with categorized flow volume, and c) stage 3 considering 

WWTPs with appropriate treatment processes.

(a) (b) (c)
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Figure 7: Final suitability map showing the location of the suitable agricultural lands 

ranging from “most suitable” to “least suitable” for recycled water irrigation.  a) an 

example suitability map for a wastewater treatment plant in Fresno County; b) 

different types of crops within 5 and 15 km of the wastewater treatment plant. 
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Figure 8: One-at-a-Time (OAT) sensitivity results showing the changes in pixel 

numbers per land suitability classes under five scenarios compared to the baseline 

condition.
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6. Tables  

Table 1: Use of different scoring techniques in the development of the GIS-MCDA framework. 

 

Objectives Study Area MCDA Technique Reference 

To map and rank suitable sites for irrigation 

with treated wastewater 

Nabeul-Hammamet 

catchment, Tunisia 
Fuzzy-AHP (Anane et al., 2012) 

To identify the variety of interactions, 

dependencies and feedback between higher 

and lower level factors, and the impact of these 

interacting factors on sustainable citrus 

production 

Ramsar District, 

Iran 
ANP (Zabihi et al., 2015) 

To assess land suitability for tobacco 

production in tobacco zone 

Shandong Province, 

China 
Fuzzy-AHP (Zhang et al., 2015b) 

To evaluate agricultural water reuse practices 

for the improvement of irrigation 
Cebala, Tunisia CP (Neji and Turki, 2015) 

To incorporate a larger number of criteria into 

a flexible and adaptive structure for evaluating 

agricultural land capability and suitability 

Boulder County, 

Colorado, USA. 
LSP (Montgomery et al., 2016) 

To assess agricultural land suitability to 

achieve food security in an arid environment 

Emirate of Abu Dhabi, 

UAE 
AHP (Aldababseh et al., 2018) 

To identify benefits and challenges of different 

nutrient and water reuse systems 

Town of Outapi, 

Namibia 
AHP (Woltersdorf et al., 2018) 

To assess potentially irrigable areas for home 

gardens, water availability, and feasibility of 

water-lifting technologies 

Lake Tana Basin, 

Ethiopia 
AHP (Assefa et al., 2018) 

To present a methodology using MCDA 

procedure for the selection of constructed 

wetlands in tile-drained agricultural 

catchments 

Lithuania, 

Europe 
ELECTRE (Punys et al., 2019) 
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Table 2: The current regulation for agricultural water reuse in California. 

 

Category Treatment Reclaimed wastewater Quality  

Food Crops 

(edible portion get contacts with 

recycled water) 

Disinfected tertiary recycled water  

 Oxidization 

 Coagulation 

 Filtration 

 Disinfection 

 Total Coliform bacteria (last 7 days) <2.2 

MPN/100ml1 

 Total Coliform bacteria (max. in 30 days) <23 

MPN/100ml 

 Total Coliform bacteria (at any time) <240 

MPN/100ml 

 Turbidity < 2 NTU2 (average, within 24-hour 

period) 

 Turbidity < 5 NTU (maximum, within 24-hour 

period) 

 Turbidity < 10 NTU (maximum, at any time) 

 BOD3 & TSS4 < 5NS 

Surface-irrigated Food Crops 

(above-ground edible portion, not 

contacted with recycled water) 

Disinfected secondary 2.2 recycled 

water  

 Oxidization 

 Disinfection 

 Total Coliform bacteria (last 7 days) <2.2/100ml 

 Total Coliform bacteria (in any 30 days) <23/100ml 

 Turbidity <NS 

 BODs & TSS < NS 

Pasture  

(used for dairy productions and 

consumed by human) 

Disinfected secondary 23 recycled 

water  

 Oxidization 

 Disinfection 

 Total Coliform bacteria (last 7 days) <23/100ml 

 Total Coliform bacteria (in any 30 days period) 

<240 MPN/100ml 

 Turbidity <NS 

 BODs & TSS < NS 

Orchards and Vineyards  

Fodder, Seed and Fiber Crops 

Processes Food Crops 

Un-disinfected secondary recycled 

water  

 Oxidization 
 

1MPN/100ml- bacterial count in most probable number per 100 milliliters 
2NTU- Nephelometric turbidity units 
3BOD- Biological Oxygen Demand 
4TSS- Total Suspended Solid  
5NS- Not specified by state regulations 
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Table 3: Pairwise scale that is used in the Analytical Hierarchy Process (AHP) based on (Saaty, 1978). 

 

Intensity of Importance Definition Explanation 

1 Equal Importance Two activities contribute equally to the objective 

3 Weak Importance 
Experience and judgment slightly favor one activity over 

another activity over another 

5 Strong Importance Experience and judgment strongly favor one 

7 Very Strong Importance 

An activity is favoured very strongly over another; its 

dominance 

demonstrated in practice 

9 Extremely Importance 

The evidence favoring one activity over another is of the 

highest 

possible order of affirmation 

2, 4, 6, and 8 

Intermediate Values 

Between Adjacent Scale 

Values  

Compromise is needed between two judgement 
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Table 4: Weights assigned for each criterion and sub-criterion. 

 

Criteria- 

Thematic Layer 
 

Sub criteria- 

Feature Class 
 Rank  Justifications 

Agricultural land 

Cover 
 

Non-food Crops- 

Fiber 

 

9 

 

The non-food crops like fiber crops (i.e. cotton) and fodder crops (i.e. alfalfa) are 

allowed to be irrigated with undisinfected secondary treated wastewater (Title 22). 

Cotton is also tolerant to exchangeable Sodium, and salt and very tolerant to Boron 

with low sensitivity to the water supply. Therefore, cotton was considered as a high 

priority crop to irrigate with reclaimed wastewater. Fodder crops like alfalfa or pasture 

need 800-1600 mm of water during the growing period, which has low to medium 

sensitivity to water supply quality (Pescod, 1992). These Non-food crops were also 

given high priority to be irrigated with reclaimed wastewater. Grains and legumes/oil 

like safflower are not consumed directly by humans or animals. Thus, all the Food 

crops (grains & legumes) and Non-food crops (Oil) were given as medium priority for 

irrigation with reclaimed wastewater. Food crop like orchard has limited contact to 

irrigation water compared to vegetables, thus, orchards were given lower priority than 

grains but higher than vegetables. Finally, vegetables that are eaten raw considered as 

“high risk” since the edible portion may have direct contact with reclaimed 

wastewater. Therefore, vegetables were given the lowest priority for irrigation with 

reclaimed wastewater.  

Non-food Crops- 

Fodder 
8 

Food Crops- 

Grains & Legumes 
7 

Non-food Crops- 

Oil crops 
7 

Food Crops- 

Orchard 
5 

Food Crops- 

Vegetables 
3 

Distance from 

WWTP 

(km) 

 

0 – 5 

 

9 

 

In the case of WWTP capacity, the assumption was larger treatment plants that 

discharge higher volumes of reclaimed wastewater are more reliable sources. In case 

of appropriateness, WWTPs were categorized based on Title 22 of the California Code 

of Regulations. The highest priority was assigned to the WWTPs, which have 

advanced treatment with disinfection unit processes. In case of accessibility, the 

WWTPs within 5 km proximity to agricultural activities were given the highest 

priority.  

5 – 15 5 

>15 1 

Watershed 

Prioritizations 
 

Very High 
 

9 
 

Drought Index: The PDSI of each watershed was evaluated and categorized based on 

the annual and seasonal trend, frequency, maximum and minimum drought condition 

for the last 30 years (1987-2017). Results show that the most frequent and chronic High 8 
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Medium 7 
drought condition was sustained in Southern California; thus this region was given the 

high priority for the reclaimed wastewater irrigation. Climate Region: Since most of 

the agricultural lands are located in the Central Valley, it is selected as a high priority 

zone for the reclaimed wastewater irrigation. The northern mountains get lots of rain 

and snow that feed streams and rivers which flow through Central Valley and 

represent a primary source of freshwater (Pathak et al., 2018). Therefore, despite of 

less agricultural activities, a medium-high priority was given for the reclaimed 

wastewater use for irrigation in these regions.   

Low 6 

Very Low 5 

Normal 3 

Groundwater 

Basin priority 
 

High 

 

9 

 

The groundwater basin prioritization information was incorporated as a decision 

criterion. The assumption was high priority groundwater basins are most preferred for 

the reclaimed wastewater use in agriculture to reduce the pressure on groundwater 

extraction.  

Medium 7 

Low 5 

Very Low 3 

No priority 1 

Fresh Water 

Consumption in 

Agriculture 

(MGD) 

 

>1000 

 

9 

 

The assumption was the reclaimed wastewater use as an additional water source is 

more favorable in the heavily irrigated counties. Therefore, counties were categorized 

into five groups and ranked based on their total freshwater consumption in agriculture. 

For instance, the counties that extract more than 1000 MGD water for irrigation were 

considered as the highest priority for the reclaimed wastewater use.  

500 – 1000 8 

250 – 500 7 

100 – 250 5 

0 – 100 2 
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Table 5: Pairwise comparison and ranking of decision criteria for all the WWTPs with the acceptable discharging method. 

 

Recycled Water Irrigation for Agricultural Land Pairwise Matrix 

 
Proximity to 

WWTPs  
 
Agricultural 

Land Cover 
 
Watershed 

Prioritization 
 
GW Basin 

Prioritization  
 

Counties 

Prioritization  
 Weights  Rank 

Proximity to 

WWTPs  
1.0  3.0  6.0  8.0  9.0  0.529  1 

Agricultural  

Land Cover 
0.33  1.0  4.0  5.0  6.0  0.265  2 

Watershed  

Prioritization 
0.17  0.25  1.0  4.0  3.0  0.114  3 

GW Basin  

Prioritization  
0.12  0.20  0.25  1.0  2.0  0.053  4 

Counties 

Prioritization  
0.11  0.17  0.33  0.50  1.0  0.039  5 
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Table 6: Pairwise comparison and ranking of decision criteria for the WWTPs considering their flow volumes (in MGD). 

 

 

 
 

 

 

 

 

 

 

 

Recycled Water Irrigation for Agricultural Land Pairwise Matrix 

 Proximity to WWTPs  Agricultural 

Land Cover 

 

Watershed 

Prioritization 

 

GW Basin 

Prioritization 

 

Counties 

Prioritization 

 

Weights 

 

Rank 
     

 Flow > 100  25< Flow ≤100  Flow ≤ 25  

Flow > 100 1.0  2.0  3.0  5.0  6.0  7.0  8.0  0.359  1 

100 < Flow ≤ 25 0.5  1.0  2.0  4.0  5.0  6.0  7.0  0.249  2 

Flow ≤ 25 0.33  0.5  1.0  3.0  4.0  5.0  6.0  0.171  3 

Agricultural 

Land Cover 
0.2  0.25  0.33  1.0  4.0  5.0  6.0  0.111  4 

Watershed 

Prioritization 
0.17  0.2  0.25  0.25  1.0  2.0  3.0  0.050  5 

GW Basin 

Prioritization 
0.14  0.17  0.2  0.2  0.5  1.0  2.0  0.035  6 

Counties 

Prioritization 
0.12  0.14  0.17  0.17  0.33  0.5  1.0  0.025  7 



 

 

73 

 

Table 7: Recycled Water Irrigation Suitability Criteria Weight Calculation for the WWTPs with Acceptable Treatment 

Units. 

 

Recycled Water Irrigation for Agricultural Land Pairwise Matrix 

 Proximity to WWTPs  

Agricultural 

Land Cover 

 

Watershed 

Prioritization 

 

GW Basin 

Prioritization 

 

Counties 

Prioritization 

 

Weights 

 

Rank 
 

Advanced and 

Disinfection 

Treatment 

 
Secondary 

Treatment 
      

Advanced and 

Disinfection 

Treatment 

1.00  6.0  5.0  7.0  8.0  9.0  0.540  1 

Secondary 

Treatment 
0.17  1.00  2.0  3.0  4.0  5.0  0.173  2 

Agricultural 

Land Cover 
0.20  0.50  1.00  3.0  5.0  5.0  0.140  3 

Watershed 

Prioritization 
0.14  0.33  0.33  1.0  2.0  3.0  0.069  4 

GW Basin 

Prioritization 
0.12  0.25  0.25  0.50  1.0  2.0  0.046  5 

Counties 

Prioritization 
0.11  0.20  0.20  0.33  0.50  1.0  0.032  6 
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Table 8: Summary of the datasets used in this study. 

 

 

Table 9: Relative sensitivity of the model criteria under five scenarios compared to the baseline condition. 

 

 

 

 

 

 

  

Data Type Sources References 

Land Cover 
USDA National Agricultural Statistics Service-

Cropland Data Layer (NASS-CDL) 2016 
https://nassgeodata.gmu.edu/CropScape/  

Climate 

U.S. Geological Science Watershed Boundary Dataset 

(USGS-WBD) 
https://viewer.nationalmap.gov/basic/  

Climate Zones Areas in California 
https://hub.arcgis.com/datasets/CAEnergy::california-

building-climate-zones  

The West Wide Drought Tracker https://wrcc.dri.edu/wwdt/about.php 

Water Sources 
Groundwater Consumption in Irrigation (MGD) 

http://ca.water.usgs.gov/water_use/index.html  

Surfacewater Consumption in Irrigation (MGD) 

Water Policy 
CASGEM Groundwater Basin Prioritization https://gis.water.ca.gov/app/gicima/  

Areas Adjudicated for Groundwater Use https://gis.water.ca.gov/app/boundaries/  

Location of Wastewater 

Treatment Plants (WWTPs) 

Clean Watersheds Needs Survey (CWNS) 2012 https://www.epa.gov/cwns  

National Pollutant Discharge Elimination System 

(NPDES) 
https://www.epa.gov/npdes 

 Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Most Suitable 0.06 -0.35 -0.19 -0.14 -0.13 

Highly Suitable -0.23 0.93 0.35 1.24 0.98 

Moderate Suitable 0.02 -0.83 -0.87 -0.84 -0.86 

Least Suitable -0.66 -0.40 -0.42 -0.24 -0.54 

https://nassgeodata.gmu.edu/CropScape/
https://viewer.nationalmap.gov/basic/
https://hub.arcgis.com/datasets/CAEnergy::california-building-climate-zones
https://hub.arcgis.com/datasets/CAEnergy::california-building-climate-zones
https://wrcc.dri.edu/wwdt/about.php
http://ca.water.usgs.gov/water_use/index.html
https://gis.water.ca.gov/app/gicima/
https://gis.water.ca.gov/app/boundaries/
https://www.epa.gov/cwns
https://www.epa.gov/npdes


This chapter has been published in Modeling Earth Systems and Environment. 

Paul, M., & Negahban-Azar, M. (2018). Sensitivity and uncertainty analysis for streamflow prediction using 

multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Modeling Earth 
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https://doi.org/10.1007/s40808-018-0483-4  
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Chapter 4: Sensitivity and Uncertainty Analysis for Streamflow 

Prediction Using Multiple Optimization Algorithms and 

Objective Functions: San Joaquin Watershed, California 
 

Abstract:  

Uncertainty analysis prior to the model calibration is key to the effective 

implementation of the hydrologic models. The major application of sensitivity 

analysis is to indicate the uncertainties in the input parameters of the model, which 

affects the model performance. There are different optimization algorithms developed 

and applied in the hydrologic model, which can be performed with different objective 

functions to calibrate and quantify the uncertainties in the system. The purpose of this 

study was to evaluate the model calibration performance and sensitivity of parameters 

using three optimization algorithms and five objective functions for predicting 

monthly streamflow. First, Sequential Uncertainty Fitting (SUFI-2), Generalized 

Likelihood Uncertainty Estimation (GLUE), and Parameter Solution (ParaSol) were 

used to calibrate the monthly streamflow for the semi-arid San Joaquin Watershed in 

California by using Soil and Water Assessment Tool (SWAT) model. The best 

performance metrics (R2, NSE, PBIAS, P-factor, and R-factor) were obtained by 

SUFI-2 while using NSE as the objective function. Afterward, the coefficient of 

determination (R2), Nash-Sutcliffe Efficiency (NSE), the percentage of bias (PBIAS), 

Kling-Gupta efficiency (KGE) and Ratio of the standard deviation of observations to 

root mean square error (RSR) were used as an objective function to assess the 

monthly calibration performance. KGE is found to be a suitable objective function to 

https://doi.org/10.1007/s40808-018-0483-4
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calibrate this complex and snowmelt-dominated watershed. The findings from this 

study will serve as a guideline for hydro-ecological researchers to achieve further 

watershed management goals. 

1. Introduction 

Hydrologic cycle has close interactions with the surface and subsurface processes 

by the integration of climate, land use and land cover (LULC) and ocean systems 

(Kumar et al., 2017; Paul et al., 2017; Zhang et al., 2017a). To identify the potential 

impacts of LULC changes, soil degradation, and climate changes on the ecosystem, it 

is necessary to study the hydrological parameters, such as surface runoff, soil 

moisture, evapotranspiration (ET), groundwater, streamflow etc. (Kumar et al., 2017; 

Paul, 2016; Talib and Randhir, 2017). Assessment of hydrology has been a long-

standing research topic in studying agricultural management, flood forecasting and 

inundation mapping, soil degradation, nutrient losses, and biodiversity conservation 

practices (Morton and Olson, 2014; Paul, 2016; Paul et al., 2017; Rajib et al., 2016a; 

Schilling et al., 2014).  

Hydrologic models are effective tools to understand and simulate the hydrologic 

processes to evaluate the impact of climate and LULC changes, to investigate water 

quality, and to plan the water resources management (Paul, 2016; Paul et al., 2017; 

Shao et al., 2017; Wang et al., 2016). However, the successful application of 

distributed hydrologic models depends on proper calibration-validation and 

uncertainty analysis to capture the existing complex environmental condition 

(Abbaspour et al., 2015a; Kouchi et al., 2017). Calibration is performed by the 

appropriate selection of the model input parameters regarding suitable ranges to 
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simulate the hydrological process accurately which is assessed by comparing model 

outputs for a given set of observed data (streamflow, sediment, etc.) (Arnold et al., 

2012; Kouchi et al., 2017). The accurate calibration of the hydrological models is a 

challenging task due to the uncertainties in hydrological modeling. According to 

several studies, the main sources of uncertainties are the input errors due to inaccurate 

and interpolated measurements; inaccuracy due to over-simplification of the model; 

errors in model structure or hypothesis and algorithms; inaccuracies of observation 

used to calibrate the model; and errors in parameterization and output ambiguity 

(Abbaspour, 2008; Khoi and Thom, 2015; Kouchi et al., 2017; Singh et al., 2013; Xue 

et al., 2013). Therefore, sensitivity analysis is crucial to quantify the uncertainty of 

the system, determine the effect of input parameters on the outputs, the integral 

knowledge of data, and optimize the design of a system.  

Although model uncertainty is difficult to quantify, using a suitable calibration 

method can manage to control these large uncertainties (Khoi and Thom, 2015; 

Kouchi et al., 2017; Rostamian et al., 2008; Wu and Chen, 2015a). A number of 

optimization algorithms have been developed in the literature and applied in 

hydrologic models to calibrate the model, quantify the uncertainty of the system, and 

rank the influence of various parameters on the system. For instance, the Sequential 

Uncertainty Fitting procedure (SUFI-2) (Abbaspour et al., 2004), Generalized 

Likelihood Uncertainty Estimation method (GLUE) (Beven and Binley, 1992), 

Bayesian Inference (Box and Tiao, 2011),  Parameter Solution (ParaSol) (van 

Griensven and Meixner, 2006), Particle Swarm Optimization (PSO) (Eberhart and 

Kennedy, 1995; Kennedy and Eberhart, 1995), etc. have been developed and applied 
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to many hydrological studies. Several studies, evaluate the uncertainty of the model 

systems and input parameters using different optimization techniques. For example, 

(Khoi and Thom, 2015) applied four uncertainty techniques (SUFI-2, GLUE, ParaSol 

and PSO) to evaluate the parameter uncertainty analysis of streamflow simulation at 

the Srepok River watershed in Vietnam, they reported that the SUFI-2 method has the 

advantages to provide more reasonable simulated results compared to other three 

techniques. (Yesuf et al., 2016)(2016) have investigated SUFI-2 and GLUE 

techniques for the Maybar Watershed in Ethiopia, and found that both techniques 

were able to produce reasonable simulated results for uncertainty analysis, 

calibration, and validation of the hydrologic model (Yesuf et al., 2016). 

The optimization algorithms differ based on the assessment strategies, 

determination of the set of parameter ranges, and examination of the desired threshold 

for a particular objective function (Kouchi et al., 2017). Model simulation 

performance is evaluated graphically (to compare how well the simulated values fit 

with the observed data), and statistically (referred as goodness-of-fit criteria, and 

performance or efficiency criteria). The efficiency criteria can also be used as 

objective function during the calibration process to help identify an optimal parameter 

that means parameter sets are adjusted according to a specific search scheme to 

optimize certain calibration criteria (objective functions) (Madsen, 2003; Muleta, 

2011). Different objective functions rely on different features of the variable that is 

targeted for calibration, especially when several sites and/or different variables are 

being calibrated. For Example, Nash-Sutcliffe efficiency tends to rely on the peaks 

(Nash and Sutcliffe, 1970), while mean absolute error relies more on average 
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deviations, or least-square errors aim to fit the hydrograph for high flows. Therefore, 

the relevance and choice of an objective function is an important decision to calibrate 

a watershed model because an inappropriate objective function can give a good 

output in statistical terms while it is conflicting from the reality (Abbaspour, 2013; 

Molina-Navarro et al., 2016; Muleta, 2011). For instance, (Garcia et al., 2017) 

identified the best objective functions to calibrate the parameter set and estimate the 

robustness and sensitivity of the rainfall-runoff model in 691 French watersheds. 

(Molina-Navarro et al., 2017) assessed the impact of the objective function for multi-

site and multi-variable calibration using a hydrologic model in the Odense catchment 

in Denmark. (Muleta, 2011) examined the sensitivity of hydrologic model 

performances to the objective function during automated calibrations in the Little 

River Experimental Watershed (LREW) in Georgia. 

Looking at these recent studies, it is evident that the capability of using different 

optimization algorithms in relation to different objective functions needs to be 

verified in different regions. Despite this importance, there is no study that 

exclusively focuses on the semi-arid region like the Central Valley of California. In 

this study, the San Joaquin watershed located in the central valley of California was 

selected where water management activities are intense. It is an agricultural 

watershed where the watershed hydrology affected by several reservoirs and dams 

which are operated for extensive agricultural irrigation. A hydrologic model will be 

the basis of developing the strategies for sustainable water resources management for 

such complex hydrology to watershed managers, agricultural producers, and 

policymakers. However, before the development of the water resource management, 
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it is necessary to identify and quantify the large uncertainties subjected to the 

distributed hydrological modelling using different optimization algorithms and 

objective functions within the same hydrologic modeling framework. The aim of this 

study is to (1) evaluate hydrologic model performances and calibration results using 

three different optimization algorithms (SUFI-2, GLUE, and ParaSol), and (2) 

evaluate the impact of five objective functions (R2, NSE, PBIAS, KGE and RSR) on 

the monthly streamflow simulations. To achieve these objectives, SWAT-CUP 

(SWAT Calibration and Uncertainty Programs) (Abbaspour, 2008) was used for 

model calibration-validation and sensitivity analysis coupled with the distributed 

hydrological model the Soil and Water Assessment Tool (SWAT) (Arnold et al., 

2012) in the San Joaquin Watershed. SWAT is one of the most widely used 

distributed models, and it has been applied worldwide for hydrologic and water 

quality simulations. In recent years, many studies compared the performance of 

SWAT models under different optimization algorithms coupled with SWAT-CUP to 

calibrate the streamflow and uncertainty analysis (Kumar et al., 2017; Molina-

Navarro et al., 2017; Uniyal et al., 2015; Yesuf et al., 2016; Zhang et al., 2015a), that 

establish its applicability and scientific acceptance under many different 

circumstances. 

2. Methodology 

2.1. Study Area 

The San Joaquin watershed is located in central California and located on the 

highly agricultural region of the Sacramento-San Joaquin Delta (Figure 1). The 

watershed has a drainage area of 15357.7 km2 approximately (USGS Hydrologic Unit 
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Code 18040001). The land use is primarily dominated by agricultural land (37.4%) 

and the remaining area consists of grass/pasture (29.7%), shrubland (7.9%), 

fallow/idle cropland (7.8%), urban (7.3%), forest (6.8%), and water (3.1%) (Table 1). 

Based on the USDA National Agricultural Statistics Service-Cropland Data Layer 

(NASS-CDL) 2016, agricultural land mainly dominated by almond (10.35%), 

followed by vineyard (8.2%), alfalfa (4.2%), winter wheat (2.6%), tomatoes (2.4%) 

and cotton (2.3%). The San Joaquin River originates from the high Sierra Nevada 

Mountains and flows through the northwest of the central valley before reaching the 

Sacramento-San Joaquin Delta. The Sacramento-San Joaquin Delta has an arid-to-

semiarid climate, where average annual precipitation is 323 mm (12.5 inches), and 

the average annual temperature is 17.1°C with minimum and maximum of 9.7 and 

24.5°C respectively (Service, 2017). Soils in the San Joaquin Delta are composed of 

mainly ultisols in the high Sierra Nevada ecoregion and recent alluvial soil in the 

Central Valley ecoregion (Gronberg and Domagalski, 1998). A United States 

Geological Survey (USGS) gauging station 11261500 was used as an outlet at 

Fremont in California. In addition, another USGS station 11254000 at Mendota was 

used in the upstream during calibration. One watershed inlet was defined at the USGS 

station 11251000 below the dam on the San Joaquin River at Friant, California 

(Figure 1). 

2.2. Hydrologic Model 

In this study, the SWAT model (version 2012 with its ArcSWAT interface) was 

used to delineate the San Joaquin Watershed. SWAT is a physically-based semi-

distributed and time-continuous hydrologic model (Arnold et al., 1998). SWAT is a 
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watershed scale model, was developed to evaluate the impact of land management 

practices and climate on the water in large and complex watersheds over long periods 

of time. In SWAT, different water balance components, and water resources (e.g., 

blue and green waters) are calculated through an explicit calculation at the subbasin 

level. In this model, a watershed is divided into a number of subbasins and based on 

homogeneous soil types, land-use types, and slope classes categorized into 

hydrological response units (HRUs) that allow a high level of spatial detail 

simulation. 

2.3. Model Setup 

The SWAT model requires input data include Digital Elevation Map (DEM), land 

use map, soil map, and weather/climate data as the main input data (Neitsch et al., 

2011). A 30 m resolution DEM data derived from the USGS National Elevation 

Dataset (USGS-NED, 2013) was used to delineate the watershed boundary. A 30 m 

resolution of land use data from the NASS-CDL 2016 and soil data from the State 

Soil Geographic (STATSGO) database were used. Daily precipitation and daily 

maximum and minimum temperature data for 15 years (2002-2016) were obtained 

from the National Climatic Data Center (NCDC) website for 18 weather stations 

(Figure 1). The multiple HRU options were used to represent the soil and land use 

types where a single HRU represents a unique combination of soil type and land use. 

This watershed was discretized into 3902 HRUs in 73 subbasins. Surface runoff is 

determined using the modified Soil Conservation Service (SCS) Curve Number (CN) 

method (Arnold et al., 1998; Neitsch et al., 2011; Service, 1972; Wu et al., 2012). The 

Penman-Monteith method (Monteith, 1965) was used to estimate the potential 
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evapotranspiration (PET). Channel routing is calculated using the Muskingum routing 

method or variable storage routing method (Arnold et al., 1998). 

2.4. Calibration / Uncertainty Analysis Programs 

2.4.1. SUFI-2 

Based on the Bayesian framework, the sequential and fitting process is used in 

SUFI-2 for calibration, validation, and sensitivity and uncertainty analysis (Khoi and 

Thom, 2015; Kouchi et al., 2017). In SUFI-2, all sources of parameter uncertainties 

(e.g., model input, model structure, and measured data) are accounted and described 

as uniform distributions (Abbaspour, 2013). The model’s goodness-of-fit and 

uncertainty are determined by two indices: P-factor and R-factor. Latin hypercube 

sampling is used to obtain the propagation of the uncertainty and known as P-factor. 

The P-factor is the percentage of observed data bracketed by the 95% prediction 

uncertainty (95PPU) (determined at the 2.5% and 97.5% levels of the cumulative 

distribution of output variables). The R-factor is quantifying the strength of a 

calibration/uncertainty analysis by the average thickness of the 95PPU band divided 

by the standard deviation of the observed data (Abbaspour, 2013). The value of the P-

factor ranges between 0 and 100% and R-factor ranges between 0 and infinity. 

Theoretically, where the simulation exactly corresponds to the observed data, the P-

factor, and R-factor incline to be 1 and 0, respectively. The aim of the SUFI-2 is 

bracketing most of the observed data with the smallest possible uncertainty band that 

means good results with a relatively large P-factor and small R-factor. An objective 

function is defined before uncertainty analysis and assigned with a required stopping 

rule.  
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2.4.2. GLUE 

The GLUE is relatively simple and widely used in hydrology. GLUE was first 

introduced by (Beven and Freer, 2001) to allow the equifinality of parameter sets 

during the estimation of model parameters in over parameterized models. The GLUE 

depends on the Monte Carlo method where a large number of simulations are 

performed with randomly chosen parameter values selected from prior parameter 

distributions. In this method, a likelihood value is assigned to each set of parameter 

values to compare the predicted simulation and observed data and evaluate the 

simulated parameter combination into the real system. However, GLUE rejects the 

concept of a unique global optimum parameter set within some particular model 

structure used in the most calibration procedures in the hydrological modeling. GLUE 

is different from other optimization algorithms because of its acceptability of 

different parameter sets which can produce fit model predictions with similarly good 

performance. The objective of GLUE is to identify a set of behavioral models within 

the universe of the possible model or parameter combinations (Abbaspour, 2013; 

Blasone et al., 2008; Kouchi et al., 2017). Similar to SUFI-2, all sources of 

uncertainty are also accounted in GLUE for parameter uncertainty (Beven and Freer 

2001). 

2.4.3. ParaSol 

The ParaSol method combines the objective functions into the global optimization 

criterion and the modified Shuffle Complex (SCE-UA) algorithm is used for 

uncertainty analysis to find the optimum solutions (Abbaspour, 2013; Duan et al., 

1992; van Griensven and Meixner, 2006). Similar to GLUE methodology, a threshold 
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or criterion value is used to divide the performed simulations into ‘good’ and ‘not 

good’ simulations after the optimization of the modified SCE-UA. However, unlike 

GLUE, the threshold value can be defined by the χ2-statistics where the selected 

simulations correspond to the confidence region (CR) or Bayesian statistics which 

could point out the high probability density (HPD) region for parameters or the model 

outputs (Abbaspour, 2013; Wu and Chen, 2015b). Through the global SCE algorithm, 

the minimization of a single function can be done up to 16 parameters (Abbaspour, 

2013; Duan et al., 1992).  

2.5. Objective Functions 

The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), the 

percentage of bias (PBIAS), Kling-Gupta efficiency (KGE), and Ratio of the standard 

deviation of observations to root mean square error (RSR) were used as objective 

functions to assess the agreement between simulated and observed streamflow 

hydrographs.  

2.5.1. Coefficient of Determination 

Standard regression R2 (Krause et al., 2005) is an indicator in which the model 

explains the total variance in the observed data (the squared ratio between the 

covariance and the multiplied standard deviations of the observed and predicted 

values.). R2 describes the degree of collinearity between the observed and simulated 

values. Therefore, large R2 value can be obtained with a poor model that consistently 

overestimates or underestimates the observations. However, this SWAT-defined 

statistic, albeit non-standard, is used in this work to allow comparison with previous 

literature on this model (Montas et al., 2019). 
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2.5.2. Nash-Sutcliffe Efficiency 

Dimensionless NSE (Nash and Sutcliffe, 1970) is addressing the temporal 

dynamics and the most widely used statistics for hydrologic calibration. The values 

range from negative infinity to 1, where 1 shows a perfect model; zero implies that 

observed mean is as good as predicted model; and less than zero means observed 

mean is a better predictor than the model. NSE is sensitive to extreme values due to 

the squared differences between observed and simulated values (Krause et al., 2005). 

2.5.3. Percentage of Bias 

PBIAS (Yapo et al., 1996) is robust and commonly used to determine how well the 

model simulates the average magnitudes for the output response of interest. 

According to Moriasi et al. (2007), error-index PBIAS is one of the measures that 

should be included in the model performance reports. PBIAS measures the tendency 

of the simulated values to be larger or smaller than their observed counterparts. 

Positive PBIAS values indicate a tendency of the model simulations to overestimate 

and negative values indicate to underestimate the observations respectively. 

2.5.4. Kling-Gupta Efficiency 

NSE uses the observed mean as baseline, which can lead to the overestimation of 

model skill for highly seasonal variables( e.g., runoff in snowmelt-dominated basins). 

To overcome this problem associated with NSE, (Gupta et al., 2009) proposed an 

alternative performance indicator KGE, based on the equal weighting of three sub-

components: linear correlation (r), bias ratio (β) and variability (α), between 

simulated and observed discharge (Eq. 4).  
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2.5.5. Ratio of Standard Deviation of Observations to RMSE 

RSR standardizes the root mean square error (RMSE) using standard deviation of the 

observations. (Moriasi et al., 2007) developed RSR based on the recommendation by 

(Singh et al., 2005). Moriasi et.al. (2007) mentioned that RSR providing a normalized 

value to compare model performances across watersheds or various constituents. 

The corresponding performance efficiency criteria for these five objective functions 

were established according to a recent review of (Moriasi et al., 2015) and (Thiemig 

et al., 2013)  (Table 2). The formulations of these five objective functions are as 

follows:  

 R2  =
[ ∑ (Yobs,i −  Ymean

obs )(Ysim,i −  Ymean
sim )]i

2

∑ √(Yobs,i −  Ymean
obs )2

i  ∑ √(Ysim,i −  Ymean
sim )2

i

 (1) 

 NSE =  1 −  
∑ (Yobs −  Ysim)2

i

∑ (Yobs −  Ymean
obs )2

i

 (2) 

 PBIAS =
∑ (Yobs − Ysim)n

i=1

∑ Yobsn
i=1

x 100 (3) 

 KGE = 1 −  √(r − 1)2 + (α − 1)2 + (β − 1)2 ; α =
σsim

σobs
 ; β =

Ymean
obs

Ymean
obs  (4) 

 
RSR =

RMSE

STDEV
=  

√∑ (Yobs −  Ysim)2n
i=1

√∑ (Yobs,i −  Ymean
obs )2n

i=1

 
(5) 

Where Yobs is the observed data, Ysim is the simulated output, and Y𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the 

mean of observed data, Y𝑚𝑒𝑎𝑛
𝑠𝑖𝑚  is the mean of simulated output, r is the linear 

regression coefficient between simulated output and observed data;, where 𝜎𝑠𝑖𝑚 and 

𝜎𝑜𝑏𝑠  are the standard deviation of simulated output and observed data. 
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2.6. Calibration, Validation and Sensitivity Analysis 

The calibration protocol presented by (Abbaspour et al., 2015b) was followed to 

calibrate the SWAT model. The SWAT model was calibrated for monthly streamflow 

from 2009 to 2016 with one-year warm-up period (2008) and validated from 2002 to 

2007. The following paragraphs describe the calibration procedure used in this study 

in a step-by-step process. 

SWAT Model Parameters: SWAT model contains over 200 hydrological 

parameters, and clearly all of them may not contribute significantly to the output. 

Therefore, it is necessary to identify the most sensitive input parameters and their 

ranges for streamflow simulation. In this study, initially, 32 parameters and their 

initial value ranges were selected based on the literature review on and nearby Central 

Valley watersheds (Burke and Ficklin, 2017; Chen et al., 2017a; Luo et al., 2008).  

Local Sensitivity: Local sensitivity process was taken, where a single parameter 

was allowed to change in the input parameters and other parameters kept constant. It 

is also called as one-at-a-time analysis since it is an indicator only for the addressed 

point estimates instead of the entire distribution.  

Global Sensitivity: the second approach to sensitivity analysis is the global 

sensitivity analysis, where a global set of samples are used to explore the design 

space. SWAT-CUP uses t-stat (high absolute values suggest more sensitivity) and p-

value (values close to zero suggest a high level of significance) to identify the relative 

significance of individual parameters. For the global sensitivity process, 1000 

numbers of iterations were selected to identify the most sensitive input parameters. 

Total of 18 sensitive parameters were identified by Hypercube One-at-a-time (LH-
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OAT) and global sensitivity analysis using the SUFI-2 (Table 3). These parameters 

were used for the streamflow simulations at two stream gauge stations (Figure 1). 

Table 4 shows that the sensitive parameters yielded by the three optimization 

techniques (SUFI-2, GLUE, and ParaSol) are the same. However, there are variations 

in the ranking of the sensitive parameters. This variation in the sensitivity ranking of 

the parameters is attributed due to the difference in the sampling techniques used for 

selecting the random samples. Similar results were found by (Uniyal et al., 2015) and 

revealed that any of the techniques (GLUE, SUFI-2, ParaSol, etc.) could be used for 

the sensitivity analysis.  

Rainfall and Snowmelt: Rainfall and snowmelt both are driving variables in the 

watershed hydrology. Therefore, it is better to abstain to calibrate simultaneously 

with other model parameters (Kouchi et al., 2017). To avoid this identifiability 

problems with other parameters, the snow parameters and their values were fixed 

initially in the model. Then, rest of the parameters were used to calibrate the model. 

Optimization Algorithms: To compare the three optimization algorithms, similar 

conditions were used regarding calibration parameters and their initial ranges, and 

statistical criteria. In SUFI-2, the sample size for one iteration could be set in the 

range of 500–1000 simulations (Abbaspour, 2013; Wu and Chen, 2015a; Xue et al., 

2013), however, 500 is recommended by (Abbaspour, 2013). In this study, three 

iterations with 500 simulations in each iteration (total 1500 simulations) were 

conducted for uncertainty analysis with a preset threshold value NSE=0.5. Initially, 

like SUFI-2, same 1500 simulation runs were used for GLUE and ParaSol to compare 

the sensitivity of calibration performance of the model. However, fewer runs could 
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not produce satisfactory results regarding P-factor and R-factor (results not shown 

here) while using GLUE and ParaSol as optimization algorithms. Moreover, different 

studies and literature reviews recommended that GLUE and ParaSol need higher 

simulations (Abbaspour 2013; Khoi and Thom 2015; Wu and Chen 2015). In the 

GLUE, generally a wide physically meaningful ranges are used for each parameter to 

cover more possible behavioral solution. This requires one iteration with a large 

number of simulation runs (maximum 10,000). (Yang et al., 2008) performed the 

GLUE with 1000, 5000, 10,000 and 20,000 runs and best performance found for a 

sample size of 10,000 runs. In this study, the parameters range has been selected 

based on the literature review (mentioned above), therefore, a small simulation runs 

of 5000 was used with same initial parameter ranges used in SUFI-2. To keep 

consistency with SUFI-2, the NSE=0.5 was selected as the objective function to 

screen the behavioral and non-behavioral simulations for GLUE. ParaSol 

optimization technique also requires a larger number of simulations (>5000). 

However, similar to GLUE a smaller sample size of 3000 runs and same initial 

parameter ranges used to conduct uncertainty analysis.  

Evaluating Objective Functions: To evaluate the effect of different objective 

functions on the streamflow simulation, same initial parameter ranges were used 

(Table 3). Total of five objective functions were used separately (one objective 

function per calibration run) to optimize the parameter ranges to calibrate the monthly 

streamflow. In each iteration, the behavior threshold of each objective function was 

set based on Table 2 (as example, for NSE it was 0.5) to get satisfactory results. 
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Finally, the performance of each calibration results was compared using the five 

efficiency criteria (Table 2). 

3. Results and Discussion 

3.1. Performance Sensitivity to Optimization Algorithms 

3.1.1. SUFI-2  

The results from the third iteration were used for uncertainty analysis. SUFI-2 

found 384 behavioral simulations in last 500 simulations. The 95PPU for the 

simulated monthly discharge after the third iteration shown in Figure 2. It is found 

that 70% measurements at the Fremont station and 60% measurements at the 

Mendota station were bracketed by the 95PPU during the calibration period and 78% 

and 62% during the validation period. The relative width of 95% probability band (R-

factor) was near 1 during both calibration and validation period (Table 5). These 

results indicated that SUFI-2 was capable of capturing the observations during the 

calibration and validation periods. In the Fremont station, the values of the 

performance measures of the best simulation were within the criteria suggested by 

(Moriasi et al., 2015), except PBIAS during the calibration period (Table 5). 

However, Mendota station did not have satisfactory results during both calibration 

and validation periods, except R2 (Table 5). At the outlet (Fremont station), for the 

best simulation the values of R2, NSE, and PBIAS were 0.91, 0.84, and -40.45% 

respectively during the calibration period; and 0.88, 0.84, and -7.33% respectively 

during the validation period. 
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3.1.2. GLUE  

Like SUFI-2, the same threshold value (NSE = 0.5) was used in the GLUE. 

However, GLUE achieved only 285 behavioral simulations out of 5000 simulation 

runs. Figure 3 shows the 95PPU plot with 2.5% and 97.5% of the accumulated 

distribution of prediction uncertainty from the behavioral simulations. The small P-

factor (21%- 30%) indicated that the GLUE optimization algorithm was not able to 

predict the reasonable observations at both Fremont and Mendota Stations (Table 5). 

In Figure 3 it is also shown that the 95PPU region from GLUE was narrower (R-

factor = 0.74 and 0.45 at Fremont and Mendota Station respectively) than the SUFI-2 

(R-factor = 1.02 and 0.85) during the calibration period. However, similar to SUFI-2, 

calibration and validation results were “very good” in terms of R2 and NSE at the 

outlet (Table 2 and 5). At the Fremont Station, for the best simulation R2, NSE, and 

PBIAS were found to be 0.89, 0.83, and -40.41% respectively during the calibration 

period; and 0.88, 0.84, and -4.17% respectively during the validation period. 

However, at the Mendota station performance criteria did not meet except R2 (Table 

5).  

3.1.3.  ParaSol  

ParaSol algorithm was applied last to compare the sensitivity performance with 

the other two optimization algorithms. Unlike GLUE, the ParaSol achieved 2002 

behavioral simulations in 3000 simulation runs. The statistical summary of behavioral 

simulation results is presented in Table 5 and the hydrograph of the observed and 

best-simulated streamflow with 95PPU in Figure 4. Figure 4 showed that ParaSol 

algorithms obtained a very narrow uncertainty region and only 61-63% observed 
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streamflows at the Fremont station, and 17-16% observed streamflows at the Mendota 

station were covered by the 95PPU (Table 5 and Figure 4).  At the outlet (Fremont 

station) for the best simulation the values of R2, NSE, and PBIAS were found to be 

0.90, 0.83, and -47.44% respectively during the calibration period; and 0.88, 0.87, 

and -14.87% respectively during the validation period (Table 5). 

3.1.4. Comparison Among Three Optimization Algorithms 

The comparison among the SUFI-2, GLUE, and ParaSol was conducted in three 

aspects: model performance, uncertainty prediction, and computational efficiency.  

Model Performance: Amongst three optimization algorithms, there are quite small 

differences in model performances in the streamflow simulation during both 

calibration and validation periods (Table 5). Using all the three algorithms, the R2 and 

NSE values were ranked as “very good” at the watershed outlet during both 

calibration and validation periods (Table 2 and 5). However, using all the algorithms, 

the calibrated model always overestimated the streamflows (-ve PBIAS) to capture 

the peak flow in 2011. Model performance at Mendota station was not satisfactory 

based on performance criteria (Table 2), except R2. In the previous study, (Chen et 

al., 2017a) also found similar results for the Mendota station using the SUFI-2 

algorithm. This may be attributed to insufficient and uneven spatial distribution of the 

weather stations and due to the influence of the reservoir in the upstream (Figure 1). 

Another possible reason for the mismatch could be the caused by the intense human 

activities in the upper reaches of the watershed including irrigation channels or small 

hydropower dams (Figure 1). In this study, the model performance during the 

validation period revealed the model capability to encompass the variation of 
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observed streamflow in magnitudes (Figure 2-4) and according to the statistical 

performances sometimes showed better than calibration periods (Table 5). This 

demonstrates the ability of the model to reproduce the discharge in the San Joaquin 

Watershed, which can serve as a base model for management and future scenarios 

analysis.  

Model Prediction Uncertainty: The SUFI-2 achieved satisfactory simulations of 

the streamflow, and indicating a reasonable uncertainty in the calibration and 

validation results. The SUFI-2 algorithm yielded the similar R2 (0.91) and NSE (0.84) 

from the best simulation compared to other two algorithms (GLUE and ParaSol), and 

generated more balanced prediction uncertainty ranges (R-factor 0.85 to 1.02) with 

the best coverage of measurement (P-factor 0.60 to 0.78) at the same time (Table 5). 

However, GLUE and ParaSol barely showed the improvement on P-factor (ranges 

from 0.16 to 0.63) and R-factor (ranges from 0.22 to 0.74) comparing the SUFI-2. 

The R-factors for the streamflow of SUFI-2 showed a better performance than GLUE 

and followed by ParaSol (Table 5). This revealed that the prediction uncertainty range 

from the SUFI-2 algorithm was wider than that from the GLUE and ParaSol. The 

ParaSol algorithms generated very narrow prediction uncertainty bands (R-factor 0.22 

to 0.33) which were not distinct from the best prediction. This may have resulted 

from a violation of the statistical assumption of independent and normally distributed 

residuals. Overall, in this study, the R-factor values found quite small for GLUE and 

ParaSol that generated the small bands of the 95PPU, and thus small number of 

observed streamflows were bracketed by the 95PPU (small P-factors) (Figure 3-4). 

Small values of P and R factor in Fremont and Mendota station, indicated that GLUE 
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and ParaSol were not successful in capturing the uncertainty (95PPU, R-factor, P-

factor) based on the defined conditions (i.e., initial parameter ranges, number of 

simulation runs, and behavioral threshold value).  

Model Computational Efficiency: The last aspect of the comparative analysis was 

the model computational efficiency. In this study, an intensive computation was 

applied for GLUE (5000 simulation runs) and ParaSol (3000 simulation runs) 

compared to SUFI-2 (total 1500 simulation runs in three iterations). The SUFI-2 

algorithm succeeded to get 384 behavioral solutions in last 500 simulations, while 

GLUE and ParaSol found 285 and 2002 behavioral simulations in 5000 and 3000 

simulations, respectively. Although GLUE and ParaSol used a larger number of 

simulations, the P-factor and R-factor of SUFI-2 showed a better performance than 

GLUE and ParaSol. Therefore, SUFI-2 was easy to implement compared to other 

algorithms because the high efficient Latin Hypercube (LH) sampling method can 

reduce the sampling sizes within a certain space (Khoi and Thom, 2015; Wu and 

Chen, 2015a). In the ParaSol, another high efficient sampling method SCE-UA was 

applied to localize the global optimum of the parameter ranges (Wu and Chen, 2015a; 

Yang et al., 2008; Zhang et al., 2015a). The GLUE required large intensive 

computations (5000 runs) due to use of relatively simple Monte Carlo sampling 

algorithm, although the application of the GLUE was easier than the other two 

methods on the sensitivity analysis and global optimization calculation. Therefore, 

GLUE has the low computational efficiency for high dimensional and complex 

models which required more computational resources and time for estimating the 

uncertainty. The correlation matrix among the best simulation of the streamflows 



 

 

96 

 

from three optimization algorithms also concluded that the GLUE was less efficient 

for uncertainty analysis than the SUFI-2, and ParaSol (Table 6).  

This study has been done for the semi-arid to the arid climate in the Central 

Valley of California. These findings were similar to the study conducted by (Kouchi 

et al., 2017), where the SUFI-2, GLUE, and PSO were used to assess the uncertainty 

estimates for the Karkheh River Basin and Salman Dam Basin (Iran) located in the 

semi-arid and arid regions respectively and indicated the advantages of using the 

SUFI-2. Chen et al. (2017) also applied the SUFI-2 algorithm for the uncertainty 

analysis and the monthly streamflows calibration in the San Joaquin watershed. In 

general, it can conclude that the SUFI-2 technique is the promising technique in the 

calibration and uncertainty analysis in the semi-arid to arid regions. 

3.1.5. Sensitivity of Model Parameters to three Optimization Algorithms 

Table 7 and Figure 5 show the best estimates and 95% uncertainty ranges of all 

parameters resulting from the GLUE and ParaSol, and posterior parameter ranges 

resulting from SUFI-2. Each calibrated parameter range has large overlaps by all 

three algorithms, although SUFI-2 showed the narrower ranges compared to other 

two optimization algorithms. The reason behind this is, SUFI-2 creates a combination 

of all calibrated parameters values for each simulation, and after each iteration, the 

parameter ranges expressed to narrower distribution from the initial wider 

distribution. 

3.2. Performance Sensitivity to Objective Functions using SUFI-2 

SUFI-2 allows to use different objective functions and to modify the threshold 

individually to optimize the calibration parameters. To identify the best objective 
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function, five objective functions (R2, NSE, PBIAS, KGE, and RSR) were evaluated 

to calibrate the model using SUFI-2. Table 8 and Figure 6 shows the model 

performance by five objective functions using SUFI-2 in the San Joaquin Watershed. 

3.2.1. Robustness of  Model Performance 

Figure 6 and Table 8 show that all five objective functions performed well at the 

outlet (Fremont station). Table 8 shows that R2, NSE and PBIAS values remain 

almost consistent, while KGE and RSR values showed more variability by all 

objective functions. The calibration results yielded from different objective functions 

showed “very good” R2 and NSE values, while PBIAS values were “unsatisfactory” 

(Table 8). Only “satisfactory” PBIAS (-14.93%) found at the Fremont station while 

PBIAS was used as an objective function in the iteration (Table 8). However, a small 

number of behavioral simulations (56) found compared to the other objective 

functions (474, 329, 251, and 323 for R2, NSE, KGE, and PBIAS respectively). In 

addition, from the hydrograph, it is revealed that the best-simulated streamflow from 

each objective function (R2, NSE, KGE, and RSR) captured the observed streamflow 

satisfactorily, while it seemed to have slightly underestimated for PBIAS (Figure 6). 

Based on the comparative analysis between Figure 6 and Table 8, the final calibration 

results suggest that using KGE as objective function might be the best option to 

obtain a good calibration in a complex watershed.  

3.2.2. Sensitivity of Model Parameters 

Unlike the different optimization algorithms, the parameters obtained by each 

objective function showed different ranges (Figure 7) for the San Joaquin Watershed 

since different objective functions solve different problems (Kouchi et al. 2017). 
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Figure 7 also presents that the identified optimal values for the calibrated parameters 

were different to each other. However, any clear dominance was not detected among 

the objective functions with regard to producing optimum parameters values. These 

results explained the concept of parameter “non-uniqueness” and the concept of 

“conditionality” of the calibrated parameters where an unconditional parameter range 

is defined as parameter range to calibrate the model (Kouchi et al., 2017). Therefore, 

the unconditional parameter range of CN2 for San Joaquin Watershed would be the 

range indicated by the dashed line in Figure 7. This also indicated a large parameter 

uncertainty associated with the choice of objective functions regarding parameter 

ranges.  

However, the optimal parameter values were very different from each other while 

simulated streamflow was not different from each other (Table 9) and considered as 

“very good” when judged by 4 different performance criteria (R2, NSE, KGE, and 

RSR) (Table 2 and 8). These results were consistent with the equifinality concept 

(Beven and Freer, 2001; Muleta, 2011), which illustrates that multiple sets of 

parameters can simulate different and acceptable representations of the watershed 

characteristics. Relative robustness of the performance criteria was also examined 

using the correlation matrix (Table 9). Table 9 shows the inter-correlation among the 

best-simulated streamflows determined from five different objective functions for the 

calibration period. Table 9 indicates that except PBIAS, the best-simulated 

streamflows from other four objective functions were well correlated (r = 0.95~0.99). 
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4. Importance of Study 

Successful calibration of the distributed hydrologic models is important for future 

analysis for watershed or crop managements, and evaluation of impacts of climate and 

land use changes on the hydrology. Prior to calibration, it is critical to assess the model 

uncertainties. According to (Abbaspour, 2013), reporting the model uncertainty is 

necessary otherwise the calibration will be “meaningless” and “misleading”. The key 

application of sensitivity analysis is to indicate the uncertainties in the input parameters 

of the model. Another application of sensitivity analysis is in the utilization of models 

by managers and decision-makers, which helps to understand the uncertainties, and 

pros and cons with the limitations and scope of a hydrologic model.  

It is also necessary to test the sensitivity of the hydrologic models to different 

optimization algorithms. However, most applications are only reporting a single 

optimization algorithm. One of the main reasons is some of the uncertainty analyses 

techniques are difficult to apply (e.g., the need for testing statistical assumptions). In 

addition, for a complex hydrologic model, another restriction is the number of 

simulation runs required for the uncertainty analysis, which needs high CPU speed and 

parallel computation technology.  

This study provides an insight into a hydrologic model response to three different 

optimization techniques (SUFI-2, GLUE, and ParaSol) for streamflow simulation. The 

findings show that SUFI-2 is more suitable for the semi-arid San Joaquin watershed to 

estimate the parameter uncertainty of the streamflow. This study also revealed that all 

three techniques produced acceptable calibration results, however, with different 

parameter ranges. This is an important step toward the development of strategies for 
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sustainable water resources management in such semi-arid region with heavy 

agricultural activities like Central Valley, California.  

The second objective of this study was to find a suitable objective function for the 

streamflow simulation. In most of the studies, NSE used as the objective function, 

however, in this study it was clear that KGE was more efficient than NSE. One of the 

reasons could be since KGE was developed (Section 2.5.4 and Eq. 4) to overcome the 

problem associated with NSE where observed mean used as a baseline, which can 

lead to overestimation of model skill for highly seasonal variables (e.g., runoff in 

snowmelt-dominated watersheds). Therefore, in a snowmelt-dominated watershed 

like San Joaquin watershed (Lettenmaier and Gan, 1990) KGE could be the more 

suitable to use as the objective function.  

The results presented in this manuscript were developed for both low flow (Year 

2015) and high flow (Year 2011) simulations, and proved to be suited for both low 

and high flow simulations. Hydrological models are generally used to simulate the 

streamflow at ungauged sites by transferring model parameters from gauged to 

ungauged subbasins. In this study, available streamflow was found for only 2 gauge 

stations- at the outlet (Fremont station) and at the upstream (Mendota station), despite 

of having a very large drainage area (15,357.7 km2). The choice of the objective 

function used for gauged watersheds might influence the simulation of the 

regionalized models on ungauged sites. There is a high probability that the model 

parameter, transfered from gauged to ungauged watersheds, will carry much more 

uncertainty than the choice of the objective functions used in gauged watersheds. 
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Therefore, there is a need to test the sensitivity of the objective functions in a smaller 

gauged watersheds. 

5. Summary and Conclusion 

The objectives of this study were to evaluate the different optimization algorithms 

and multiple objective functions to simulate the monthly streamflow with the 

calibration of the parameter set of a distributed hydrologic model. The SWAT 

hydrologic model was developed for a large semi-arid watershed in Central Valley, 

California (San Joaquin). Three different optimization algorithms (SUFI-2, GLUE, 

and ParaSol) were evaluated for monthly streamflow simulations. The optimization 

algorithms were implemented in the SWAT-CUP 2012. The calibration performance 

and sensitivity of parameters of these algorithms were compared through evaluating 

the P-factor, R-factor, R2, NSE, and PBIAS of the best simulation. Afterward, model 

calibration performance and sensitivity of parameters were evaluated by five 

objective functions (R2, NSE, PBIAS, KGE, and RSR) using SUFI-2. The following 

conclusion can be drawn: 

1) By comparing the results from three optimization algorithms, the SUFI-2 

performed better than the other two algorithms due to the good R2 and NSE 

values of the best simulation results and the best prediction uncertainty ranges 

(P-factor), and the relative coverage of measurements (R-factor).  

2) Different objective functions presented different range of the parameters with 

distinct optimal values while simulating similar streamflow with satisfactory 

performance criteria. 
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3) In case of conducting hydrological simulation for streamflow, the SUFI-2 

algorithm with  KGE as objective function coupled with SWAT model is 

preferred for the semi-arid and snowmelt-dominated watersheds like San 

Joaquin watershed. 

The calibration and validation performance are not sensitive to the choice of 

optimization algorithm and objective function, but the obtained parameters are 

different. Therefore, using the calibrated optimal parameter sets achieved in this study, 

the local water resource managers and decision makers can obtain more confident 

prediction intervals for the streamflow simulation.   
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6. Figures 

 

Figure 1: Location of San Joaquin watershed in California, with selected weather 

stations and the United States Geological Survey's streamflow gauge stations at 

respective watershed outlets and inlets. 

USGS 11254000

USGS 11251000

USGS  11261500
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Figure 2: The best simulated and observed monthly streamflow with 95PPU for 

calibration (2009-2016) and validation (2002-2007) periods at a) Fremont station and 

b) Mendota station by using the SUFI-2. 

 

Figure 3: The best simulated and observed monthly streamflow with 95PPU for 

calibration (2009-2016) and validation (2002-2007) periods at a) Fremont station and 

b) Mendota station by using the GLUE. 
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Figure 4: The best simulated and observed monthly streamflow with 95PPU for 

calibration (2009-2016) and validation (2002-2007) periods at a) Fremont station and 

b) Mendota station by using the ParaSol. 

 

Figure 5: Final parameter uncertainty ranges with best estimates (points in each line) 

of the calibrated parameters by three optimization algorithms in San Joaquin 

watershed. 
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Figure 6: Comparison of the monthly observed and best simulated streamflow 

obtained at Fremont station when R2, NSE, PABIAS, KGE, and RSR used as 

objective function.  

 

 

 

 

 

 

 

Figure 7: Final parameter uncertainty ranges with best estimates (points in each line) 

of the calibrated parameters by five objective functions using SUFI-2 in San Joaquin 

watershed. 
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7. Tables 

Table 1: Characteristics of land use and land covers in San Joaquin watershed. 

 Area (km2) Area (Acre) % Watershed Area 

Agricultural Land 5744.7 1419548 37.4 

Grass/Pasture 4560.9 1127017 29.7 

Shrubland 1214 300014.4 7.9 

Fallow & Barren 1192.3 294629.3 7.8 

Urban 1128 278742 7.3 

Forest 1041.7 257412 6.8 

Water &Wetland 475.9 117600.7 3.1 

 

 

Table 2: Performance evaluation criteria for flow measures for watershed scale 

models (adapted from Kouchi et al. (2017), Moriasi et al. (2015), and Thiemig et al. 

(2013). 

 

Measure 
Temporal 

Scale 
Very Good Good Satisfactory 

Not 

Satisfactory 

R2 D-M-A1 R2  >0.85 0.0.75 < R2 ≤ 0.85 0.60 < R2 ≤ 0.75 R2 ≤ 0.6 

NSE D-M-A NSE >0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50 

PBIAS (%) D-M-A PBIAS < ±5 ±5 ≤ PBIAS < ±10 ±10 ≤ PBIAS < ±15 PBIAS ≥ ±15 

KGE M 0.9 ≤ KGE ≤ 1 0.75 ≤ KGE < 0.9 0.5 ≤ KGE < 0.75 KGE < 0.5 

RSR M 0 ≤ RSR ≤ 0.5 0.5 <RSR ≤ 0.6 0.6 <RSR ≤ 0.7 RSR > 0.7 

1D, M and A denoted daily, monthly, and annual temporal scales, respectively 
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Table 3: Descriptions and initial ranges of the most sensitive parameters used for 

model calibration for San Joaquin watershed. 

 

Parameter Definitiona 
Scale of 

input 
Adjustmentb 

Initial 

Range 

Groundwater 

ALPHA_BF Baseflow recession constant (days) Watershed 1 0.01-1 

GW_DELAY Groundwater delay (days) Watershed 2 1-500 

GW_REVAP Groundwater "revap" coefficient Watershed 1 0.01-0.20 

REVAPMN Re-evaporation threshold (mm H2O) Watershed 1 0.01-500 

GWQMN Threshold groundwater depth for return flow (mm H2O) Watershed 1 0.01-5000 

Soil water 

SOL_K Soil saturated hydraulic conductivity (mm/hr) HRU 3 -15-15 

SOL_AWC Available soil water capacity (mm  H2O/mm soil) HRU 3 -15-15 

Channel Flow 

CH_N(2) Main channel Manning's n Reach 1 0.01-0.15 

CH_K(2) Main channel hydraulic conductivity (mm/hr) Reach 1 5-100 

Surface Runoff 

CN2 Curve number for moisture condition II HRU 3 -0.3-0.1 

EPCO Plant uptake compensation factor HRU 1 0.75-1 

ESCO Soil evaporation compensation factor HRU 1 0.75-1 

Lateral Flow 

HRU_SLP Average slope steepness (m/m) HRU 1 0-1 

Snow 

SFTMP Snowfall temperature (oC) Watershed 1 0-5 

SMFMN 
Melt factor for snow on December 21 (mm H2O/ oC-

day) 
Watershed 1 0-10 

SMFMX Melt factor for snow on June 21 (mm H2O/ oC-day) Watershed 1 0-10 

SMTMP Snow melt base temperature (oC) Watershed 1 -2-5 

TIMP Snow pack temperature lag factor Watershed 1 0-1 
a Source: Neitsch et al., 2001 
bType of change to be applied to the existing parameter value: ‘1’ means the original value is to be replaced by a value from 

the range, ‘2’ means a value from the range is added to the original value, ‘3’ means the original value is multiplied by the 

adjustment factor (1+ given value within the range)  
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Table 4: Sensitivity of the model parameters for monthly streamflow simulation 

generated by the three optimization algorithms. 

 

 SUFI-2 GLUE ParaSol 

Parameters Ranking t-stat P-value Ranking t-stat P-value Ranking t-stat P-value 

r__CN2.mgt 1 -26.82 0 1 -39.90 0 1 22.71 0 

r__SOL_K().sol 2 -14.08 0 2 -34.00 0 2 21.63 0 

r__SOL_awc().sol 3 13.10 0 3 25.11 0 3 -16.88 0 

v__ESCO.hru 4 -5.23 0 6 -4.35 0 13 0.13 0.90 

v__ALPHA_BF.gw 5 -3.56 0 5 -5.61 0 9 2.15 0.03 

v__HRU_SLP.hru 6 -2.68 0.01 4 -16.06 0 4 8.90 0 

v__REVAPMN.gw 7 2.26 0.02 10 0.84 0.40 6 -3.45 0 

v__GWQMN.gw 8 2.03 0.04 7 3.84 0 8 -3.35 0 

v__GW_REVAP.gw 9 0.99 0.32 9 1.90 0.06 5 -4.46 0 

v__CH_K2.rte 10 -0.52 0.60 11 -0.36 0.72 7 3.39 0 

v__EPCO.hru 11 0.43 0.67 13 0.11 0.91 11 0.58 0.56 

a__GW_DELAY.gw 12 0.29 0.77 8 2.77 0.01 10 0.82 0.41 

v__CH_N2.rte 13 -0.26 0.79 12 -0.29 0.77 12 -0.26 0.80 

 

Table 5: Performance of the three optimization algorithms for the calibration and 

validation periods in San Joaquin watershed. Cal-Calibration and Val-Validation 

 

Optimization Techniques   Stations  R2 NSE PBIAS P-factor R-factor 

SUFI-2 

500+500+500 runs 

384 behavioral simulations 

 

Fremont 
Cal. 0.91 0.84 -40.45 0.70 1.02 

Val. 0.88 0.84 -7.33 0.78 0.98 

Mendota 
Cal. 0.76 -1.97 -55.54 0.60 0.85 

Val. 0.81 -0.96 -32.13 0.62 0.87 

GLUE 

5000 runs 

285 behavioral simulations 

Fremont 
Cal. 0.89 0.83 -40.01 0.29 0.74 

Val. 0.88 0.84 -4.17 0.30 0.71 

Mendota 
Cal. 0.75 -2.00 -43.02 0.23 0.45 

Val. 0.81 -0.95 -66.31 0.21 0.43 

ParaSol 

3000 runs 

2002 behavioral 

simulations 

Fremont 
Cal. 0.90 0.83 -47.44 0.61 0.33 

Val. 0.88 0.87 -14.87 0.58 0.32 

Mendota 
Cal. 0.75 -2.04 -61.62 0.17 0.24 

Val. 0.80 -1.22 -45.26 0.16 0.22 
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Table 6: The correlation matrix among the best simulated streamflow obtained by 

three optimization algorithms. 

 

Sensitivity Techniques SUFI-2 GLUE ParaSol 

SUFI-2 1 0.97 0.99 

GLUE  1 0.96 

ParaSol   1 

 

 

Table 7: List of best estimates and the final parameter uncertainty ranges of the 

parameters based on all three optimization algorithms applied in San Joaquin 

watershed. 

 

Parameter Initial Rang Uncertainty Range and Best Parameter Estimate1 

  SUFI-2 GLUE ParaSol 

ALPHA_BF 0.01-1 0.359 (0.1, 0.6) 0.511 (0.07, 1) 0.046 (0.01, 1) 

GW_DELAY 1-500 207.25 (1, 250) 269.145 (15, 490) 263.00 (0, 500) 

GW_REVAP 0.01-0.20 0.006 (0.01, 0.1) 0.108 (0.01, 0.2) 0.188 (0.01, 0.2) 

REVAPMN 0.01-500 101.1 (0.01, 250) 81.342 (13.5, 487) 279.23 (0.01, 500) 

GWQMN 0.01-5000 4886 (3000, 5000) 2502.745 (100, 4780) 2941.6 (0.01, 5000) 

SOL_K -25-25 -7.42 (-10, 5) -0.212 (-22.7, 22.29) -15.416 (-25, 4.8) 

SOL_AWC -25-25 5.975 (-5, 10) 4.574 ( -19.454, 25) 2.562 (-12.96, 25) 

CH_N(2) 0.01-0.25 0.112 (0.07, 0.14) 0.135 (0, 0.25) 0.065 (0, 0.25) 

CH_K(2) 5-100 5.3 (5, 50) 99.21 (4, 100) 2.506 (0, 89.12) 

CN2 -0.3-0.3 -0.176 (-0.35, -0.01) 0.018 (-0.28, 0.12) -0.142 (-0.3, 0.1) 

EPCO 0.01-1 0.534 (0.25, 0.75) 0.526 (0.08, 0.98) 0.154 (0, 1) 

ESCO 0.01-1 0.453 (0.25, 0.75) 0.525 (0.08, 0.98) 0.522 (0, 1) 

HRU_SLP 0-1 0.169 (0, 0.5) 0.334 (0.01, 0.75) 0.190 (0, 1) 

1c (a, b) for each parameter means: c is the best parameter estimate, (a, b) is the 95% parameter uncertainty range except SUFI-2 (in 

SUFI-2, this interval denotes the final parameters distribution) 
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Table 8: Calibration results for best simulated and observed monthly streamflow by 

five different objective functions using the SUFI-2 in San Joaquin watershed. 

 

Objective 

Function 

in Iterations 

No. of 

Behavioral 

Simulations 

Stations R2 NSE PBIAS KGE RSR 

R2  (0.60) 474 
Fremont 0.91 0.82 -53.36 0.56 0.37 

Mendota 0.78 -1.52 -54.60 -0.45 1.59 

NSE  (0.50) 384 
Fremont 0.91 0.84 -40.45 0.62 0.40 

Mendota 0.76 -1.97 -55.54 -0.36 1.51 

PBIAS (±15) 56 
Fremont 0.80 0.77 -14.93 0.70 0.48 

Mendota 0.78 -1.48 -42.80 -0.44 1.58 

KGE  (0.50) 251 
Fremont 0.89 0.85 -32.93 0.74 0.38 

Mendota 0.78 -1.50 -53.50 -0.45 1.58 

RSR (0.70) 323 
Fremont 0.91 0.84 -51.41 0.60 0.40 

Mendota 0.79 -1.28 -52.30 -0.37 1.51 

 

Table 9: The correlation matrix among the best simulated streamflow obtained by five 

different objective functions using the SUFI-2. 

 

Objective Function R2 NSE PBIAS KGE RSR 

R2 1 0.98 0.91 0.95 0.98 

NSE  1 0.94 0.94 0.99 

PBIAS   1 0.98 0.94 

KGE    1 0.98 

RSR     1 



This chapter will be submitted for publication in Remote Sensing. 
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Chapter 5: Agricultural Water Management Decisions in 

Ungauged Semi-arid watersheds: Value of Remote Sensing in 

Integrated Hydrologic modeling 
 

Abstract 

Central Valley of California is a region with diverse and heterogeneous landscape, 

with limited water resources, variable climate and intensified human activities. It has 

a semi-arid environment with uneven distributions of water and temperature, where 

evapotranspiration (ET) plays a major role in controlling surface water balance 

components and hydrologic regimes. ET and biomass/crop yield are influenced by the 

leaf area index (LAI). It is also challenging to predict its complex hydrological 

processes and biophysical dynamics with limited observation. Remotely sensed data 

could provide a great source of data to study vegetation indices and hydrologic 

dynamics for this complex hydrologic system. The objective of this study was to 

develop a methodology to improve plant growth through direct assimilation of 

remotely sensed leaf area index (LAI) data for a large complex watershed. Remotely 

sensed LAI data was integrated into the SWAT (Soil and Water Assessment Tool) 

model for San Joaquin Watershed, California. The impact of direct LAI assimilation 

was evaluated for hydrology (streamflow and ET) and crop yield. Results showed that 

direct LAI assimilation into the SWAT model was able to capture actual vegetation 

dynamics and estimate more accurate ET and biomass/crop yield at each Hydrologic 

Response Unit (HRU). The outcomes of this study serve as a decision support tool in 

this regard by providing quantitative information for crop water use and estimating 

crop production. 
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1. Introduction 

Efficient water resource management through accurate prediction of hydrologic 

components is the most decisive issue for the arid and semi-arid regions as limiting 

freshwater impacts the crop productivity and food security for a watershed (Ashraf 

Vaghefi et al., 2014; Ficklin et al., 2009; Teixeira et al., 2013). Hydrological 

modeling has become an essential part for the decision making process, such as 

improving irrigation water use (Udias et al., 2018), predicting water demand (Zou et 

al., 2018), water productivity (Ahmadzadeh et al., 2016), and crop yields (Wang et 

al., 2016) at the local and regional scales. However, water resource managers often 

face enormous difficulties related to shortage and uncertainty of climate data, 

vegetation growth and management information at the regional scale. Continuous and 

long-term data are required to calibrate the hydrologic model to obtain feasible results 

for accurate decision making. The difficulties often arise during upscaling the field 

scale data to regional scales in illustrating complex water supply network and 

landscape heterogeneity. 

Remote sensing provides a great source of data to study vegetation indices and 

hydrologic dynamics from multi-spectral bands. Studies showed that model estimates 

could be improved using the remotely sensed data and data assimilation method for 

its continuous long-term temporal and high spatial resolution (Alemayehu et al., 

2017; Chen et al., 2017b; Ma et al., 2019). However, most of these studies used 

remotely sensed soil moisture (Liu et al., 2017; Patil and Ramsankaran, 2017; Rajib et 

al., 2016b) or ET (Ha et al., 2018; Jhorar et al., 2011; Zhang et al., 2017b) data for 

hydrological model improvement; little attention has been focused on assimilating 
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remotely sensed vegetation indices. Remotely sensed vegetation data are mainly used 

for calibrating/validating a hydrological model to understand the hydrological process 

at the plot scale (Trombetta et al., 2016) or at large scale considering particular 

land/crop pattern such as forest, grassland, shrubland (Alemayehu et al., 2017; Ma et 

al., 2019; Sun et al., 2017a). Very few studies showed an enhanced representation of 

the vegetation and biophysical dynamics to improve the predictive capability of a 

hydrologic model at large landscapes (e.g., regional scale) with diverse crop patterns.  

Land-surface characteristics such as vegetation growth, plant types, and water 

consumption by plants influence both biophysical and hydrological processes (Siad et 

al., 2019). Vegetation growth and plant phenology affect the water balance by 

controlling ET and interception and alters the spatial and temporal dynamics of 

streamflow and crop yield (Siad et al., 2019). Canopy properties such as the leaf area 

index (LAI) indicates the vegetation growth cycle and plant activity in terms of water 

consumption and transpiration (Bhattacharya, 2018). Therefore, LAI influences the 

ET rate and its partitioning into transpiration (T) and interception (I). At the same 

time, LAI has a significant impact on photosynthesis and radiation interception, 

which contributes to biomass production (Yildirim et al., 2017).  

Scientific methods and approaches are needed to capture these complex and real-

time hydrological processes at a local to regional scale (Gao, 2002; Rostamian et al., 

2008; Thakur et al., 2017). Worldwide researchers are applying the integrated 

hydrologic and crop growth models to simulate watershed dynamics, including 

hydrologic process and biomass production (Chen et al., 2017c; Dokoohaki et al., 

2016; Ramos et al., 2018).  
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In the most physically-based hydrological models, LAI is computed based on 

quantitative tools (Sun et al., 2017b) or obtained externally, such as measured from 

the field (Ramos et al., 2018) or through remote sensing products (Alemayehu et al., 

2017). Accurate data can be found at the field scale, where influential factors for crop 

development (i.e., soil properties, radiation use efficiency, and water use) can be 

monitored properly (Chen et al., 2017c; Han et al., 2018). Researchers showed that 

the accurate LAI reflects the field variability of soils and crops in different phases of 

the plant cycle which are essential in precision agriculture (Bellvert et al., 2018; Chen 

et al., 2017c; Gebbers et al., 2011) and to calculate the optimum yield (Almeida 

Carina, 2011; Ramos et al., 2018). 

The main goal of this study was to predict hydrologic and biophysical dynamics 

for a complex and data-limited watershed in Central Valley, California, by improving 

its vegetation growth module. This region has a semi-arid environment with uneven 

distributions of water and temperature (Lund, 2016), where ET plays a major role in 

controlling surface water balance components and hydrologic regimes (Tanaka et al., 

2006). To predict its complex hydrologic dynamics with limited observation data, the 

objectives of this study were: (i) to develop a methodology to improve the plant 

growth sub-model of a hydrologic model through direct assimilation of remotely 

sensed LAI data ii) to calibrate and quantify the hydrologic processes for a large 

ungauged watershed, and iii) to evaluate the crop yield estimation using the modified 

plant growth sub-model.  
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2. Methodology 

2.1. Soil and Water Assessment Tool (SWAT) Overview  

The Soil and Water Assessment Tool (SWAT) is a physically-based, semi-

distributed model, running on a daily, monthly or annual time step (G. Arnold et al., 

2012; Neitsch et al., 2011). The SWAT model is such a model that utilizes a 

plant/crop growth module to simulate many types of land cover. SWAT is widely 

used to assess the impact to of climate variability on hydrology (Ahiablame et al., 

2017; Ficklin et al., 2009; Mango et al., 2011) and crop production (Bauwe and 

Kahle, 2019; Srinivasan et al., 2010; Wang et al., 2016). As a process-based model, 

SWAT can be extrapolated to a broad range of conditions that may have limited 

observations (Sun et al., 2017c). Therefore, it is widely used to study the impacts of 

environmental change for a wide range of scales and environmental conditions across 

the globe.  

During model development, a watershed is partitioned into a number of sub-

basins according to the topography and they are connected by a stream network. Each 

sub-basin is further divided into several homogeneous Hydrological Response Units 

(HRUs), which represent a unique land cover, soil, slope, and management 

combinations. SWAT predicts water budget dynamics, as well as crop yields in 

different HRUs, identified within the watershed.  

In SWAT, evapotranspiration occurs from each HRU area, which varies from day 

to day as a function of LAI (Ha et al., 2017; Neitsch et al., 2011). SWAT model has 

three options to estimate potential ET: Penman-Monteith, Hargreaves, and Priestley-

Taylor methods. According to the Penman-Monteith method, the SWAT model 
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estimates both potential soil evaporation and plant transpiration as a function of 

potential ET and LAI (Neitsch et al., 2011; Ritchie, 1972). Thus, the potential ET 

computed as: 

𝐸𝑇𝑐 =
∆ (𝐻𝑛𝑒𝑡 − 𝐺) + 𝜌𝑎𝑖𝑟 ∗ 𝑐𝑝 − [𝑒𝑧

𝑜 − 𝑒𝑧]/𝑟𝑎

∆ + 𝛾(1 +
𝑟𝑐

𝑟𝑎
)

 (1) 

𝑟𝑐 =
1

0.5 ∗ 𝑔𝑙 ∗ 𝐿𝐴𝐼
 (2) 

Where, ET is the maximum transpiration rate (mm/d), ∆ is the slope of the 

saturation vapor pressure-temperature curve (kPa/ºC), 𝐻𝑛𝑒𝑡 is the net radiation 

(MJ/m2d), G is the heat flux density to the ground (MJ/m2d), 𝜌𝑎𝑖𝑟 is the air density 

(kg/m3), 𝐶𝑝 is the specific heat at constant pressure (MJ/kgºC), 𝑒𝑧
𝑜 is the saturation 

vapor pressure of air at height z (kPa), 𝑒𝑧 is the water vapor pressure of air at height z 

(kPa), 𝛾 is the psychrometric constant (kPa/ºC),  𝑟𝑎 is the diffusion resistance of the 

air layer (aerodynamic resistance) (s/m), 𝑟𝑐 is the plant canopy resistance (s/m), and 

𝑔𝑙 is the maximum conductance of a single leaf (m/s). 

SWAT model uses the simplified version of the Erosion Productivity Impact 

Calculator (EPIC) plant growth model to simulate the annual vegetation growth and 

assess the biomass/yield production (Neitsch et al., 2011; Williams et al., 1989). The 

plant growth module simulates the LAI as a function of canopy heights, which are 

required to calculate the canopy resistance and the aerodynamic resistance (Neitsch et 

al., 2011). In the initial period of plant growth, canopy height and leaf area 

development are controlled by the optimal leaf area development curve. The function 

of optimal leaf area development is listed as: 
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𝑓𝑟𝑃𝐻𝑈 =
∑ 𝐻𝑈𝑖

𝑑
𝑖=1

𝑃𝐻𝑈
 (4) 

Where 𝑓𝑟𝐿𝐴𝐼𝑚𝑥 is the fraction of the plant’s maximum leaf area index for the 

plant; 𝑙1 and 𝑙2 are the shape coefficients, 𝑓𝑟𝑃𝐻𝑈 is the fraction of potential heat units 

for a certain period during the growing season, HU is heat units accumulated on a 

given day (d) and PHU is the potential heat units that required for plant maturity. 

PHU is given in model database and known before model running. 

For perennial and annual plants, the increase of LAI on a day i is calculated as: 

∆𝐿𝐴𝐼𝑖 = (𝑓𝑟𝐿𝐴𝐼,𝑖 − 𝑓𝑟𝐿𝐴𝐼𝑚𝑥,𝑖−1) ∗ 𝐿𝐴𝐼𝑚𝑥 ∗ (1

− exp(5 ∗ (𝐿𝐴𝐼𝑖−1 − 𝐿𝐴𝐼𝑚𝑥))) 

(5) 

In the end, LAI for the day is calculated as: 

𝐿𝐴𝐼𝑖 = 𝐿𝐴𝐼𝑖−1 + ∆𝐿𝐴𝐼𝑖 (6) 

LAI influences transpiration and light interception, and at the same time, 

determines the amount of intercepted solar radiation (Figure 1). Here, LAI acts as an 

indicator of the degree of water and temperature stress and modifies crop growth in 

the crop model. Monteith (1977) established the empirical relationship between the 

accumulation of dry matter and the accumulation of solar radiation intercepted by a 

crop (Figure1) (G. Arnold et al., 2012; Neitsch et al., 2011). The potential biomass for 

a day is converted from intercepted radiation as a function of LAI and plant species-

specific Radiation Use Efficiency (RUE) (Monteith, 1977; Neitsch et al., 2011). Thus, 

total plant biomass is estimated as: 

𝑓𝑟𝐿𝐴𝐼𝑚𝑥 =
𝑓𝑟𝑃𝐻𝑈

𝑓𝑟𝑃𝐻𝑈 + exp(𝑙1 − 𝑙2 ∗ 𝑓𝑟𝑃𝐻𝑈)
 (3) 
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 ∆𝑏𝑖𝑜 = 𝑅𝑈𝐸 ∗ 𝐻𝑝ℎ𝑜𝑠𝑦𝑛 (7) 

Where,  𝐻𝑝ℎ𝑜𝑠𝑦𝑛 is the amount of intercepted photosynthetically active radiation 

(PAR) on a given day (MJm-2) and calculated as: 

   𝐻𝑝ℎ𝑜𝑠𝑦𝑛 = 0.5 ∗ 𝐻𝑑𝑎𝑦 ∗ (1 − exp(−𝑘𝑙 ∗

𝐿𝐴𝐼))  

(8) 

Where,  𝐻𝑑𝑎𝑦 is the incident total solar (MJm-2), and 𝑘𝑙 is the light extinction 

coefficient. 

The crop yield is computed as a harvestable fraction (harvest index) of the 

accumulated biomass production from each HRU (Figure 1). Thus, crop yield is 

calculated as: 

𝑦𝑙𝑑 = 𝑏𝑖𝑜𝑎𝑔 ∗ 𝐻𝐼 (9) 

Where, 𝑦𝑙𝑑 is the crop yield (kg/ha), 𝑏𝑖𝑜𝑎𝑔 is the aboveground biomass on the 

day (kg/ha), and HI is the harvest index on the day of harvest. 

2.2. Study Area 

San Joaquin watershed, a representative watershed dominated by agriculture is 

located in Sacramento-San Joaquin Delta of California (Figure 2). The San Joaquin 

River is the second-longest within California, which has a drainage area of 15357.7 

km2 (USGS Hydrologic Unit Code 18040001). The Sacramento-San Joaquin Delta 

has an arid-to-semiarid climate with an average annual precipitation of 323 mm (12.5 

inches), and an average annual temperature of 17.1°C with minimum and maximum 

of 9.7 and 24.5°C respectively (Service, 2017). Approximately 65% of the 

precipitation is lost to evaporation or vegetation (Siebert, 2003). The soil of Central 



 

 

120 

 

Valley is mainly dominated by Alluvial depositions, including Fluvents, Alfisols, 

Inceptisols, Mollisols, and Vertisols (Davis, n.d.). 

The San Joaquin watershed is a complex agricultural watershed with a diverse 

crop pattern in the valley surrounded by pastureland and upland forest where 

extensive irrigation and water regulations are practiced. The land use is primarily 

dominated by agricultural (37.4%) followed by grass/pasture (29.7%), shrubland 

(7.9%), fallow/idle cropland (7.8%), urban (7.3%), forest (6.8%), and water (3.1%) 

(Table 1). According to Crop Data Layer (CDL-2017), almost 70 types of crops are 

growing within this 37.4% agricultural land, including orchards, vineyard, grain, 

pasture, and vegetables. The most prominent crop types are pasture (32.1%), almond 

(11.4%), vineyard (8.5%), corn (7.4%), and alfalfa (4.2%) (Table 1). 

2.3. SWAT Model Implication and Modification 

Since LAI controls a series of critical parameters related to the hydrological (e.g., 

ET, Eq. 1-2) and biophysical (e.g., biomass and crop yield, Eq. 7-9) process, the 

amount of ET and biomass would be changed when LAI values are adjusted. 

Therefore, plant growth models can be improved by proper modeling of LAI 

distribution for a better estimation of ET rates or biomass/crop yield. 

Two distinct approaches were considered for better understating the impact of 

direct LAI assimilation in the SWAT model simulations. 

Approach A: conventional SWAT simulation (SWAT)- In this case, the 

conventional calibration technique was applied using the selected parameters (Table 

2) to calibrate the daily discharge at the outlet. The stepwise model calibration and 

validation processes were adapted from Paul and Azar (2018). The outputs were used 
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as a baseline model to compare the outputs from the calibration technique using 

remotely sensed data. 

Approach B: SWAT simulation with direct LAI insertion (SWAT-LAI)- 

Remotely sensed LAI time series was processed and replaced (Eq. 5-6) into the 

SWAT plant growth module. The objective was to capture the actual vegetation 

dynamics and the occurrence of canopy management during plant growth. 

Consequently, a specific approach to the MODIS LAI process and SWAT revision 

was developed in this study. The SWAT model was calibrated using daily LAI values 

extracted satellite data as inputs (LAI assimilation). Similar flow parameters were 

used to simulate the daily streamflow and ET.  

Calibrating the hydrologic model for streamflow simulations was relatively 

straightforward since it used observed streamflow with well-established 

instrumentation with fewer measurement errors. Another approach for calibrating the 

model is to compare the observed and modeled ET and crop yield since LAI has a 

direct influence on the ET through transpiration (Eq. 2) and dry biomass (Eq. 7) 

(section 2.1). However, calibrating the model for simulating green water flow (ET) is 

not usually possible in large‐scale watersheds due to the scarcity of monitoring 

locations for ET. Therefore, the model prediction of ET was compared with remotely 

sensed data, assuming that remotely sensed prediction of WT is more representative 

of the real-world scenario. 

2.4. Data Processing and Model Setup 

In SWAT, the hydrologic model was developed using the high-resolution spatial 

dataset (i.e., DEM, land use, soil maps) as input to ensure the detailed HRU 
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distribution (Table 3). A total number of 73 sub-basins were identified for SJW, and 

3902 HRUs were defined. HRUs were delineated applying thresholds 2-2-2% for land 

use-soil-slope. The watershed was delineated for USGS 11261500 gauging station as 

an outlet at Fremont and defined USGS 11251000 as watershed inlet below the dam 

on the San Joaquin River at Friant, California (Figure 2). MODIS-LAI data with a 

500 m spatial and 4-day temporal resolution and MODIS-ET data with a 500 m 

spatial and 8-day temporal resolution have been downloaded from which a daily 

average LAI value has been reconstructed for the period of 2009-2014. ET process is 

dependent on the local climate and land cover properties, and LAI is driven by the 

plant type. Therefore, both ET and LAI data were derived at the HRU scale and used 

as input into the model. A specific approach was developed in this study to revise the 

SWAT crop growth module and evaluate the model performance; details are 

described in the following subsections. 

2.4.1. Irrigation and Crop Management 

According to 2017 CDL, orchards, such as almond and grape, are the two most 

prominent cultivated crops in the SJW (Table 1). Therefore, this study simulated the 

crop yields for only almond and grape to evaluate the remotely sensed LAI use in the 

model.  

SWAT simulates the potential plant phenological (leaf area) development based 

on the daily accumulated heat units or from the planting date to the harvest date. 

Plants uptake water from the soil through their roots as they grow. Thus, irrigation 

can be scheduled manually or applied automatically by the model in response to 

water deficit in the soil at the root zone level. Another approach is to calculate actual 
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crop evapotranspiration (ETc) generated from reference crop evapotranspiration (ETo) 

and crop characteristics coefficient (Kc) that is adjusted by environmental stressors 

including water availability for plant growth. In this study, irrigation was scheduled 

based on ETc, (i.e., ETo*Kc) according to the California Irrigation Management 

Information System CIMIS (https://cimis.water.ca.gov/) where the difference 

between precipitation and ETc was considered as irrigation water to be applied. 

Irrigation length and frequency were adjusted throughout the irrigation cycle, taking 

into account the crop growth and precipitation events based on the CIMIS 

information.  

2.4.2. Crop Yield Simulations 

After flow calibration, the crop parameters (Table 4) from the SWAT database 

were used to simulate the crop yields. For crop yield simulations, parameters related 

to LAI, harvest index (HI), and radiation use efficiency (RUE) are commonly used in 

the model to simulate plant growth (Marek et al., 2017).  

Observed crop yields were collected for 2009–2014 from the USDA National 

Agricultural Statistics Service (USDA-NASS) (http://www.nass.usda.gov). USDA-

NASS reports crop yields at the county/state level in ton/acre (grape) or lbs/acre 

(almond) unit; however, the SWAT estimates in kg/ha (dry yield) at the harvest time 

(Srinivasan et al., 2010). Therefore, the unit conversion was done for both crop yields 

and presented here in kg/ha unit. 

2.5. Evaluation of Model Performance  

Model calibration and validation were performed by comparing model-simulated 

streamflow with measured daily streamflow. The SWAT model was calibrated for 8 

https://cimis.water.ca.gov/
http://www.nass.usda.gov/
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years (2009-2016) with one-year warm-up period (2008) and validated for another 5 

years (2002-2007). Both observed and simulated results were evaluated using four 

quantitative statistical parameters - the coefficient of determination (R2), Nash-

Sutcliffe Efficiency (NSE), the percentage of bias (PBIAS), and Kling-Gupta 

efficiency (KGE). The detailed descriptions of the model calibration and validation 

process for streamflow and the evaluation matrix were discussed in Paul and Azar 

(2018). 

Since remotely sensed data had a different temporal coverage (2008 to 2014) for 

ET and LAI, the SWAT model was calibrated from 2009 to 2014 using LAI insertion 

and validated with remotely sensed ET with the same time period. The model 

performance for ET simulation with remotely sensed MODIS ET was evaluated by 

the R2 and standard deviation (SD) parameters. And at the end, the model prediction 

for average annual crop yield was compared with the observed NASS data by relative 

yield reduction (RYR) and Root Mean Square Error (RMSE). The statistical equation 

for all the performance evaluation criteria is described in Table 5.  

3. Results and Discussion 

3.1. Model Calibration and Validation 

Comparison of observed and simulated daily streamflow by both conventional 

SWAT and SWAT-LAI approach indicated that daily flows for (2009-2014) were 

well estimated with high R2, NSE, KGE values of 0.82, 0.78, and 0.53 respectively. 

The higher values of R2 ( 0.80) indicate a “good” correlation between daily observed 

and simulated flows and higher NSE values ( 0.75) demonstrated a “good” 

agreement between these (Moriasi et al., 2015; Paul and Negahban-Azar, 2018). 



 

 

125 

 

However, the PBIAS of simulated daily discharge from the observed discharge was 

high, where the model underestimated by −39.8% in daily streamflow. The peak flow 

was considerably underestimated during the wet years (2011) and overestimated 

during drought years (2013-2014). Although the model was simulated using one 

regulated reservoir flow data (as inlet), multiple unregulated reservoirs and extensive 

irrigation canals within the watershed might have made the higher bias at the outlet.  

Simulated flow from SWAT-LAI matched the observed flow better during the 

calibration period (2009-2014) compared to conventional SWAT calibration 

outcome. This observation is supported by an apparent improvement in peak flows 

predictions (Figure 3). Differences between simulated daily streamflow from SWAT 

and SWAT-LAI was generated using a bar plot to understand the improvement in the 

temporal variability (Figure 3).  

3.2. Model Performance for ET Prediction 

The model performance was also checked between simulated ET with MODIS ET 

at the sub-basin scale and evaluated by R2 and SD values between them (Figure 4). 

The R2 values ranged from 0.02 to 0.43, and the SD values ranged from 0.39 to 0.78 

during conventional SWAT simulation (Figure 4). A noticeable improvement was 

found while ET was simulated with MODIS LAI. Higher R2 values with an increment 

of 0.002 to 0.19 and lower SD values with a reduction of -0.003 and -0.20 were found 

when SWAT integrated with the MODIS LAI, which indicates an improved 

agreement between simulated ET by SWAT-LAI and MODIES ET. A small 

improvement of the R2 and SD found for the upland forested area (i.e., subbasins 24, 

28), which are highly dominated by snowmelt and regulated reservoirs (Chen et al., 
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2017a), while the dominant area of irrigated croplands (i.e., subbasins 32-45) showed 

a better performance for SWAT-LAI modeling approach. 

3.3. Model Performance for Crop Yield Simulation 

As explained earlier (section 2.1), the SWAT simulates crop growth using the 

incoming PAR absorbed by the crop canopy and uses the daily LAI to simulate the 

ET and crop yield. Therefore, parameters related to LAI were used to simulate the 

crop yield. In this study, three parameters are found most sensitive - potential 

maximum leaf area index for the plant (BLAI), the fraction of growing season at 

which senescence becomes the dominant growth process (DLAI), and radiation use 

efficiency (BIO_E). In addition to that, BIO_INIT (initial biomass), BIOMIX 

(biological mixing efficiency), PHU_PLT (number of heat units to bring the plant to 

maturity), and LAI_INT (initial leaf area index) was chosen to adjust management 

files (.mgt). In the case of SWAT-LAI, only radiation use efficiency (RUE) was used 

for crop yield simulation due to its direct effect on biomass simulations (Eq. 7). The 

default and calibrated parameters are shown in Table 4 for both SWAT and SWAT-

LAI simulations. Table 4 is showing that considerable adjustment of the parameters 

was taken under the conventional SWAT simulation, while slight variations were 

found during SWAT-LAI simulation. Low LAI and RUE values during the SWAT 

simulations indicate high temperatures or water stresses on plants (Bat-Oyun et al., 

2012) despite a high amount of irrigation application. However, considerable RUE 

(BIO_E) was found under the same irrigation application when MODIS LAI was 

used in the SWAT plant growth model. This outcome showed that MODIS LAI 
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insertion in the model could capture both real-world crop and irrigation management 

well. 

Comparison of observed and simulated crop yields by SWAT and SWAT-LAI are 

presented in Figure 5. The average annual crop yields collected from the USDA-

NASS report were compared to the simulated average annual yield for both almond 

and grapes for 2009–2014. From Figure 5, it is noticeable that direct insertion of LAI 

gives reasonable results for almond and grape yields compared to conventional 

SWAT simulation. The simulated average annual almond yields by SWAT 

(3180.2 kg/ha) and SWAT-LAI (2613.3 kg/ha) were higher than the observed yield 

(2104.7 kg/ha). However, the average annual almond yield for SWAT-LAI was closer 

to observed data than the results from the conventional SWAT model. As a result, the 

RMSE values decreased from 714.5 to 254.1 kg/ha, the relative yield values reduced 

from -21.51% to -4.23% when direct LAI insertion was applied. 

Unlike almond, the conventional SWAT plant growth model underestimated the 

grape yields, especially in dry years (2013-2014). Grape yield predictions in SWAT-

LAI showed similar underestimation tendencies compared to observed values, except 

for 2009. On the other hand, yield estimated from both modeling approaches were 

similar during dry years 2013-2014, with SWAT-LAI producing the best estimates. 

During 2009-2014, the average annual grape yields by SWAT and SWAT-LAI were 

3715.5 kg/ha and 3631.7 kg/ha, respectively, which shows a small difference than the 

observed average annual yield (3648.4 kg/ha). Comparatively, the SWAT- LAI model 

estimated more accurate grape yield compared to the SWAT model, with the RMSE 
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values decreases from 429.3 kg/ha to 208.9 kg/ha, and the relative yield decline from 

-1.8% to 0.46%. 

3.4. Deviation of Model Estimates 

Almond and grape yields at the HRU scale were compared between two 

modelling approaches over the simulation years (2009-2014) (Figure 6). Compared to 

SWAT estimates, SWAT-LAI showed a great improvement in spatial details and 

captured the observed crop yield more reasonable, especially during droughts (2013-

2014). 

Almond crop yields ranged from 2941 kg/ha to 4314.6 kg/ha under SWAT 

simulation, while it varied between 2182.7 kg/ha and 3510.8 kg/ha under SWAT-LAI 

simulation. SWAT simulates higher almond yields compared to observed yield with 

less yield variations at the HRU scale (Figure 6). Although, errors of estimate were 

higher for SWAT simulation, which resulted in RMSE 458.8 kg/ha to 1072.8 kg/ha 

for 2009-2014. SWAT-LAI estimated more accurate almond yield at the HRU scale, 

with the reducing RMSE values of 208.8 kg/ha to 572 kg/ha during 2009-2014. 

The dry grape yield showed a higher variation compared to almond yield, 

especially during dry years 2013-2014. SWAT simulated average annual grape yields 

around 3503.7 kg/ha and 3217.7 kg/ha during the 2013 and 2014 dry years, however, 

a larger variation was generated at the HRU scale (Figure 6). However, the range of 

variation of model estimates found relatively small when LAI assimilation was 

carried throughout the growing season. SWAT-LAI computed the average annual 

grape yields with 3626.2 kg/ha and 3451.5 kg/ha with a smaller variation in HRU 

scale which is closer to observed values during the 2013 (3946.4 kg/ha) and 2014 
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(3592.5 kg/ha) dry years, respectively (Figure 6). As a result, the RMSE for grape 

yields ranged from 592.8 kg/ha to 1554.3 kg/ha under SWAT simulation, minimizes 

for SWAT-LAI simulation with estimates ranges from 717.9 kg to 1136.1 kg/ha. 

That gives the impression that plant growth in SWAT is more “weather-sensitive” 

than in the field. SWAT uses Fourier Series to convert stationary temperature data 

into a continuous function that is used to compute heat unit accumulation and LAI at 

a daily scale. Therefore, the impact of soil drought on plant growth and subsequent 

crop yield might be overestimated by SWAT. Other studies also have provided 

similar evidence from their research (Bauwe and Kahle, 2019; Sinnathamby et al., 

2017).  

4. Implications 

Worldwide, researchers used various remote sensing data, such as soil moisture, 

ET, snow, and LAI in the SWAT model to predict the streamflow, sedimentation, 

crop yield for row crops, the biomass of forest etc. However, few studies have 

evaluated the model simulation for a better understanding of crop response to 

remotely sensed data used at a large scale diverse landscape. 

Previous studies on this watershed showed that, although SWAT was able to 

simulate streamflow at the outlet, upstream streamgauge stations were rated as 

unsatisfactory due to lack of irrigation and water management data (Chen et al., 

2017a). Through the enhanced method described in this study, it is clear that SWAT 

application in semi-arid regions with limited observations can be greatly benefitted 

from high-resolution MODIS LAI use. This study showed the positive consequence 

of daily MODIS LAI use in SWAT simulation for streamflow and ET prediction. The 
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results showed that both streamflow and ET are sensitive to modified LAI use, 

especially model improvement was noticeable for a spatial variation on ET 

computation. It also showed the evidence of the model’s performance improvement 

by comparing SWAT-simulated crop yields with observed values, especially for 

critically dry years. 

The relationship between LAI and crop yield varies with types of crops and at 

different growing-stages of a plant. Daily LAI simulates under ideal growing 

conditions, such as under sufficient water and nutrient supply, and suitable climate 

conditions (Figure 1) (Arnold et.al., 2012; Neitsch et.al., 2011). For perennial crops 

like orchard or vineyard, LAI comparisons between different years are a good way to 

monitor the water status and crop quality (Johnson et al., 2003). When the tree is 

younger, increasing LAI boosts the fruit yield. If the canopy gets too dense it prevents 

light penetration to lower levels and to developing fruits and affects the crop quality 

and quantity. This process is modified through crop vegetation management such as 

pruning to increase the yield. Since every tree or vine in the orchard or vineyard has a 

unique combination of plant phenology, it demands a systematic model to estimate 

water use. For orchard or vineyard, crop water uses, and productivity is driven 

primarily by radiation and varies by canopy development and training (Rosati et al., 

2004; Teixeira et al., 2013). Therefore, accurate LAI measurement is crucial and 

important for computing/projecting crop yield.  

The outcomes of this study provided evidence that remotely sensed LAI could be 

an alternative and advanced solution to predict the accurate crop water use for 

California’s large, complex, and dynamic agricultural landscape to that of the 
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conventional SWAT. This improved model was used to predict accurate crop water 

use and crop yield and quantify crop water productivity for different irrigation 

scenarios.  

5. Conclusion 

The main objective of this study was to improve the vegetation growth module 

within the SWAT model to quantify the hydrological process and crop yield for JRW. 

Since ET and biomass/crop yield are depending on the LAI, a series of critical 

parameters related to hydrology and crop yield were determined. Remote sensing 

application could provide reasonably quick and accurate LAI information due to its 

higher sampling density, especially for a complex watershed where multiple crop 

types have existed. This study developed a methodology to estimate ET rates and 

crop yields using remotely sensed LAI data for complex and ungauged watersheds 

like JRW. Results also showed that proper modeling of the LAI distribution plant 

growth module was able to capture actual vegetation dynamics and estimate more 

accurate biomass/crop yield at the HRU scale than the SWAT model’s internal 

algorithms using heat units. The outcomes of this study serve as a decision support 

tool in this regard by providing quantitative information for crop water use and 

estimating crop yield. 
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6. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Main components of soil-water balance interaction with vegetation and 

climate. Continuous and dashed lines are indicating the direct and indirect links 

between the variables. For explanation, see section 2.1. 
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Figure 2: Map of the study area, showing the crop data layer 2017 for San Joaquin 

Watershed in California. 

 

 

Figure 3: Temporal variability of observed daily streamflow with estimated values 

from conventional SWAT calibration (SWAT) and the SWAT calibration with 

remotely sensed LAI insertion (SWAT-LAI).  
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Figure 4: Spatial agreement between the remotely sensed daily ET with (a) SWAT 

and b) SWAT-LAI simulated daily ET at subbasin scale. At the top, the map is 

showing the location of delineated subbasins with major land cover (derived from 

2017 CDL).  

a) SWAT b) SWAT-LAI



 

 

135 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of observed (NASS) and simulated a) almond and b) grape 

yields under the SWAT and SWAT-LAI approaches. Average annual precipitation is 

showing on the secondary y-axis derived from model climate input. 
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Figure 6: Uncertainty of model estimates on almond (top), and grape (bottom) yield 

for 2009-2014. Box-plots indicate maximum, minimum, and average values with first 

and third quartiles of the simulated crop yields at the HRU scale. 
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7. Tables 

Table 1: Major land cover and land use data within study watershed. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Selected parameters for daily streamflow simulation. 

 

Land Use/Land Cover Area (Acres) Area (km
2

) % Watershed Area  

Agricultural Land 1649708.8 6676.13 43.5 

Grass/Pasture 1127017.3 4560.9 29.7 

Urban & Barren 320405.5 1196.6 8.4 

Shrubland 300014.4 1214.1 7.9 

Forest 280216.8 1134 7.4 

Water &Wetland 117600.7 475.9 3.1 

Major Crop Land 

Almonds 409015.2 1655.2 10.8 

Vineyard 310374.2 1256.0 8.2 

Corn 267791.7 1083.7 7.1 

Alfalfa 159149.1 644.1 4.2 

Winter Wheat 131367.7 531.6 3.5 

Tomato 90269.5 365.3 2.4 

Cotton 85585.2 346.4 2.3 

Orchard 83757.5 339.0 2.2 

Parameter Definition
a
 Scale of input Initial Range 

ALPHA_BF Baseflow recession constant (days) Watershed 0.01-1 

GW_DELAY Groundwater delay (days) Watershed 1-500 

GW_REVAP Groundwater "revap" coefficient Watershed 0.01-0.20 

REVAPMN Re-evaporation threshold (mm H
2
O) Watershed 0.01-500 

GWQMN Threshold groundwater depth for return flow (mm H
2
O) Watershed 0.01-5000 

SOL_K Soil saturated hydraulic conductivity (mm/hr) HRU -15-15 

SOL_AWC Available soil water capacity (mm  H
2
O/mm soil) HRU -15-15 

CH_N(2) Main channel Manning's n Reach 0.01-0.15 

CH_K(2) Main channel hydraulic conductivity (mm/hr) Reach 5-100 

CN2 Curve number for moisture condition II HRU -0.3-0.1 

EPCO Plant uptake compensation factor HRU 0.75-1 

ESCO Soil evaporation compensation factor HRU 0.75-1 

HRU_SLP Average slope steepness (m/m) HRU 0-1 

SFTMP Snowfall temperature (
o
C) Watershed 0-5 

SMFMN Melt factor for snow on December 21 (mm H
2
O/

 o
C-day) Watershed 0-10 

SMFMX Melt factor for snow on June 21 (mm H
2
O/

 o
C-day) Watershed 0-10 

SMTMP Snow melt base temperature (
o
C) Watershed -2-5 

TIMP Snow pack temperature lag factor Watershed 0-1 
a 
Source: Neitsch et al., 2001   
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Table 3: Summary of inputs of the SWAT model and evaluation datasets. 

 

Data Type 
Spatial/Temporal 

Resolution 
Source 

Digital Elevation Model 

(DEM) 
30m 

USGS National Elevation Dataset (USGS-

NED 2013) 

Land Use and Land Cover 30m 
USDA National Agricultural Statistics 

(USDA-NASS)- Crop Data Layer  

Soil Data 250m 
State Soil Geographic (STATSGO) 

database  

Precipitation Daily (2002-2016) 
National Climatic Data Center (NCDC) 

Temperature Daily (2002-2016) 

Streamflow Daily (2002-2016) 
USGS 11261500 San Joaquin River at 

Fremont Ford Bridge 

Leaf Area Index (LAI) 500m/4 days 
MODIS Landsat 

Evapotranspiration (ET) 500m/8 days 

 

Table 4: Default and calibrated values of selected crop parameters for almond and 

grape yield simulation. 

 

Crop 

parameters 
Parameters Description 

Almond Grape 

Default 

Value 

Calibrated Value 
Default 

Value 

Calibrated Value 

SWAT 
SWAT-

LAI 
SWAT 

SWAT-

LAI 

BIO_E 
Radiation use efficiency or biomass 

energy ratio (kg/ha)/(MJ/m2) 
16.1 10 25 30 18 35 

BLAI 
Maximum potential leaf area index 

(m2/m2) 
1.2 1 1.2 2 1 2 

DLAI 
Fraction of growing season when 

growth declines 
0.99 0.80 0.99 0.9 0.8 0.9 

PHU_PLT 
Number of heat units to bring plant 

to maturity  
0 250 250 0 100 100 

LAI_INIT Initial leaf are index 0 3 3 0 3 3 

BIO_INIT Initial biomass (kg/ha) 0 1000 1000 0 250 250 

BIOMIX Biological mixing efficiency 0.2 0.25 0.25 0.2 0.25 0.25 

HVSTI  
Harvest index for optimal growing 

season (kg/ha)/(kg/ha) 
0.02 0.02 0.02 0.05 0.05 0.05 

WSYF Lower limit of harvest index 0.01 0.01 0.01 0.01 0.01 0.01 
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Table 5: Description and formula of the performance evaluation criteria for 

streamflow, ET, and crop yield simulation. 

 

 Evaluation Criteria Equation 

Streamflow 

Evaluation 

Nash-Sutcliffe 

Efficiency (NSE) 
𝑁𝑆𝐸 =  1 −  

∑ (𝑋𝑜𝑏𝑠 −  𝑋𝑠𝑖𝑚)2
𝑖

∑ (𝑋𝑜𝑏𝑠 −  𝑋𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 )2

𝑖

 

Percentage of Bias 

(PBIAS) 
𝑃𝐵𝐼𝐴𝑆 (%) =

∑ (𝑋𝑜𝑏𝑠 − 𝑋𝑠𝑖𝑚)𝑛
𝑖=1

∑ 𝑋𝑜𝑏𝑠𝑛
𝑖=1

𝑥 100 

Kling-Gupta 

efficiency (KGE) 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 ;  

𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
 ; 𝛽 =

𝑋𝑚𝑒𝑎𝑛
𝑜𝑏𝑠

𝑋𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  

Coefficient of 

Determination (R
2
) 

𝑅2 =
[ ∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋)(𝑋𝑠𝑖𝑚,𝑖 −  𝑋𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )]𝑖
2

∑ √(𝑋𝑜𝑏𝑠, 𝑖 −  𝑋𝑚𝑒𝑎𝑛
𝑜𝑏𝑠 )2

𝑖  ∑ √(𝑋𝑠𝑖𝑚, 𝑖 −  𝑋𝑚𝑒𝑎𝑛
𝑠𝑖𝑚 )2

𝑖

 

ET 

Evaluation Standard Deviation 

(SD) 
𝑆𝑇𝐷𝐸𝑉 = √∑(𝑋𝑜𝑏𝑠,𝑖 −  𝑋𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )2

𝑛

𝑖=1

 

Crop Yield 

Evaluation 

Relative Yield 

Reduction  RYR (%) =
𝑌𝑜𝑏𝑠 −  𝑌𝑠𝑖𝑚

𝑌𝑜𝑏𝑠
𝑥 100 

Root Mean Square 

Error (RMSE) 
𝑅𝑀𝑆𝐸 = √∑(𝑌𝑜𝑏𝑠 −  𝑌𝑠𝑖𝑚)2

𝑛

𝑖=1
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Chapter 6:  Assessing the Water Productivity of the Efficient 

Irrigation Strategies in Water Stressed Agricultural Watershed: 

San Joaquin Watershed, California 
 

Abstract 

Intensified climate variability, depleting groundwater, and escalating water 

demand creates severe stress on high-quality water sources used for agricultural 

irrigation. The water scarcity exacts a necessity to explore the non-traditional water 

sources to sustain food production across the U.S. The objective of this study was to 

develop different water conservation scenarios, including sustainable wastewater 

reuse scenarios for an agriculture-based watershed. Regulated deficit irrigation (RDI), 

auto or precise irrigation (AI), wastewater reuse (WR), and their combinations were 

evaluated as different scenarios. The potential wastewater reuse scenario was 

developed through the treated wastewater capacity of the existing wastewater 

treatment plant as a valuable alternative for emergency agricultural water (e.g., 

drought years) and to reduce groundwater extraction. For each scenario, crop yield, 

irrigation consumption, and groundwater savings were estimated for almond and 

grape using the Soil and Water Assessment Tool (SWAT) model. The water 

productivity (WP) was calculated and compared at the Hydrologic Response Unit 

(HRU) for each crop under multiple efficient irrigation strategies. The results of 

groundwater improvement and deterioration under each scenario and WP ratios were 

presented. This study will enable modelers to combine process-based hydrological 

models into the decision-making process for agricultural water management. 
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1. Introduction 

California receives approximately 200 million acre-feet (MAF) of precipitation in 

a non-drought year (Bureau of Reclamation, 2007). However, almost 65% of the total 

precipitation is lost to evaporation or vegetation. Remaining 71 MAF surface runoff 

and imported water are supplies for environmental, agricultural, and urban uses 

through California’s complex water distribution system. In addition, groundwater 

used as an important source to meet the high water demand (Siebert, 2003).  

California’s central valley is the most productive and diverse agricultural land in 

the U.S. surrounded by pastureland and upland forest where extensive irrigation and 

water regulations are practiced. In spite of extreme climate-related trends over the 

past decades, including droughts and extreme weather, California has the largest 

number of irrigated farmed acres compared to other states and consumed the highest 

irrigated water per acre compared to other states. According to USGS, an estimated 

61% (25.8 MAF) of total surface and groundwater is withdrawn for agricultural 

irrigation (Johnson and Cody, 2015). The availability of irrigation water has been a 

major factor in the development of California’s agricultural production (Johnson and 

Cody, 2015).  

Due to extreme water scarcity, cropping patterns in the central valley have shifted 

from forage and feed crops to permanent orchard and vine crops due to their higher 

crop value. Most vegetables and row crops (including grain and pasture crops) are 

planted and harvested during the same production year, sometimes more than once, 

and maybe fallowed in dry years. In contrast, California is prioritizing to grow more 

permanent orchard crops, and vineyard crops are planted once that require continuous 
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watering to reach maturation and cannot be fallowed during dry years without loss of 

investment. As a result, cash crops like almond and grape acreage increased at 5% 

annual growth in California within the 2004-2013 period (Johnson and Cody, 2015). 

Therefore, the water distribution system, including both infrastructure and 

operating policies, evolved primarily to satisfy the needs of orchard crops. However, 

direct information is limited across the agricultural regions on how much 

groundwater is being used to supplement local irrigation demand (Matios and Burney, 

2017). Data regarding groundwater use for irrigation are critical for ensuring long-

term water and food security. Policymakers and stakeholders need enough 

information regarding water supply and water demand for each crop and the potential 

benefits of more-efficient irrigation management. 

Improved water delivery strategies are needed to assess before implementation to 

satisfy the increasing irrigation needs of orchards and other specialty crops, 

particularly as they transition from surface irrigation to pressurized irrigation (micro-

irrigation and sprinklers). In addition, benefits of direct wastewater reuse from 

wastewater treatment plant (WWTP) is also needed to evaluate as an addition or 

alternative water source for irrigation. Despite the wealth of studies on the subject of 

wastewater irrigation, few studies on the influence of effluent from a WWTP on 

irrigation water have been performed on the situation where direct wastewater reuse 

accounts for most of the wastewater reuse. Therefore, it is important to address how 

irrigation water is affected by effluent from a WWTP on irrigation water prior to any 

analysis of the impacts of direct wastewater reuse. 
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California has a long history of using recycled water mostly for agricultural 

irrigation as well as for groundwater recharge, environmental uses, industrial uses, 

landscape irrigation, etc. (Schulte, 2016). Most of the WWTPs discharged their 

treated water to the surface water bodies like rivers, irrigation canals, etc. Very few 

studies found that evaluated the model simulation for a better understanding of crop 

responses to different irrigation, including water reuse from WWTP at large scale 

watershed. 

The purpose of this paper is to assess the effects of groundwater and direct 

wastewater reuse from a WWTP on orchard/vineyard irrigation. The objective of this 

study was to use a semi-distributed model to predict water productivity and 

groundwater consumption under different irrigation scenarios, including wastewater 

reuse for two major crops (almond and grape) of California. This study aimed to 

provide two benefits- (i) to choose a suitable irrigation strategy during droughts and 

(ii) to emphasize future research efforts that can allocate to key economic crops based 

on water productivity.  

2. Methodology  

2.1. SWAT Model Modification 

The calibrated SWAT model from the previous study, described in chapter 4, was 

used here to evaluate the different irrigation scenarios on almond and grape water 

productivity. In the SWAT model, actual crop evapotranspiration (ETc) generated 

from reference crop evapotranspiration (ETo) and crop characteristics (Kc) are 

adjusted by environmental stressors including water availability for plant growth. 

Thus, the effects of applied water at various fractions of ETc was evaluated on 
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almond and grape yield and water productivity. Net irrigation (P-ETc) requirement 

was calculated and scheduled at the HRU level and assigned from the aquifer. The 

management files within the SWAT model were updated including SWAT-LAI 

results from the previous study and the crop yields for different irrigation scenarios 

was obtained by re-running the modified SWAT application.  

In the SWAT model, irrigation water applied at the HRU level which can be 

obtained by five types of water sources: a reach, a reservoir, a shallow aquifer, a deep 

aquifer, or a source outside the watershed. Groundwater can be used as a source of 

irrigation by assigning either from the shallow or deep aquifer for each HRU. The 

detailed descriptions of the developed irrigation scenarios are described in the next 

section. 

2.2. Best Management Scenarios (BMPs) 

For each type of crop, two management practices were specified- irrigation 

operation after dormancy and harvest. Irrigation length and frequency were adjusted 

throughout the irrigation cycle, taking into account the crop growth and precipitation 

events based on the CIMIS information (https://cimis.water.ca.gov/). In addition to 

baseline, three regulated BMPs with different irrigation amounts and efficiency were 

defined for almond and grape and introduced into the SWAT model by changing the 

management (.mgt) files for each HRU.  

Baseline: San Joaquin valley mainly relied on groundwater due to surface water 

shortages and water-conserving irrigation measures, such as micro-sprinkler and drip 

systems, are commonly used to irrigate. Thus, groundwater irrigation with micro-

sprinkler was defined as a baseline scenario for this study. For almond, a sprinkler 
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irrigation system was used with 0.85 efficiency and a drip system for the grape with 

0.90 efficiency (Table 1). 

Regulated Deficit Irrigation (RDI):  Deficit irrigation is applied to limit the 

excessive vegetative growth and improve fruit quality or limit water use during 

droughts. Regulated deficit irrigation (RDI) is a sustainable irrigation practice of 

regulating or restricting the application of irrigation water, limiting the vine water use 

to below that of a fully watered vine. RDI is a "standard" irrigation strategy that 

utilized commonly in drought-prone areas (Phogat et al., 2017; Pritchard, 2010). 

According to CIMIS, successful RDI is typically considered 50 to 60% of full ETc for 

the orchard and vineyard. In this study, 75% of full ETc was used for both crops 

under the RDI scenario (Table 1). 

Precise or Auto Irrigation (AI): If water availability is limited, growers can adjust 

by applying irrigation water when trees are most sensitive to stress. In SWAT, auto 

irrigation is triggered by using defined plant water stress and soil water deficit 

irrigation scheduling. Plant stress is defined as the ratio of actual to potential plant 

transpiration and varied from 0.40-0.95 (Allen et al., 1998). In this study, an average 

of 0.75 was used as plant stress assuming when the plant is experiencing 25% water 

stress, a fixed amount of water will be applied from the groundwater. 

RDI-AI: This BMP is developed as a combination of RDI and AI, where auto 

irrigation was applied with regulated deficit irrigation amount during the growing 

season.  

Wastewater Reuse (WR): In SWAT, WR from the existing WWTP was simulated 

by changing the source of irrigation from ‘aquifer’ to an outside the watershed. Based 
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on the WWTP capacity, the WR potentiality was accurately calculated for selected 

HRUs (Table 2). A total of four WWTPs are located within the San Joaquin 

Watershed (SJW) with different treated capacities that consumed by multiple users 

(Table 2). WR was applied for subbasin 11 and 59 only based on the treated water 

potentiality, including appropriated treatment and excluding conflicted users (Figure 

1). Three WR scenarios were developed coupled with RDI, AI, and RDI-AI to 

evaluate the WR potentiality to reserve groundwater (Table 2, rightmost column). 

2.3. Water Productivity and Water Saving Estimation 

Water productivity (WP) (kg/m3) is defined as the ratio of production (kg/ha) to 

water used (m3) (Molden and Sakthivadivel, 1999). To analyze crop water 

productivity under different scenarios, two indices WPIP (including irrigation and 

effective rainfall volume) and WPET (actual ET volume) were calculated. The WP 

was calculated for each HRU using calibrated SWAT model outcomes. For this study 

purpose, the average WP for almond and grape were presented for the particular 

subbasins which have WWTP within the subbasin and have the potentiality for water 

reuse. In this study, the HRU scale WP was calculated using simulated values of 

evapotranspiration (ET) and crop yield for almond and grape.  

Water productivity of almond and grape were estimated by dividing simulated 

yield by the applied irrigation water, and actual evapotranspiration (ET) obtained 

from calibrated SWAT simulations for each BMPs. 

𝑊𝑃 =
𝑌𝑖 𝑥 𝐴𝑖

𝑉𝑖 𝑥 𝐴𝑖
 (1) 
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Where Y is the crop yield per unit area (kg/ha), A is the area of the HRU (ha), V 

is the volume of consumed water by crops (m3/ha). V can be expressed as applied 

irrigation water volume or as ETc volume to calculate WPIP or WPET, respectively. 

3. Results and Discussion 

3.1. Irrigation Scenarios  

Figure 2 is showing the difference in the WP indices, which is the result of 

different water allocation for crop irrigation. Irrigation water productivity (WPIP) 

under stressed scenarios (RDI, AI, and RDI-AI) increased substantially as compared 

to full irrigation (Figure 2). The main point is the difference between WPIP within the 

BMPs; higher WP for BMPs indicates the optimum ratio of water allocation for crop 

production.  

The average annual almond and grape water productivity vary considerably across 

the subbasins. According to baseline scenarios, the average WPIP is about 0.29-0.50 

kg/m3 for almond and 0.12–0.58 kg/m3 for grape. From the model estimation, it is 

found that grape yields were quite sensitive to irrigation volumes used under different 

BMPs within the subbasins. Almond yield variability is also clearly affected by water 

irrigation scenarios within subbasins. Almond and grape yield sensitivity to irrigation 

amount was generated sufficient benefits for crop production to offset the irrigation 

costs in the irrigation scenarios. For example, under the RDI strategy, the crop yield 

of almond and grape is decreased while the overall WPIP and WPET are increased 

(Figure 2). However, the combination of auto irrigation (AI) and regulated deficit 

irrigation (RDI) resulted in WP more than 0.50 kg/m3 for both crops and subbasins 

except for almond in subbasin 59. However, a clear trend was found for both almond 
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and grape, a reduced water application increased water productivity (WPIP and 

WPET). The RDI-AI scenario returning the highest WPIP values for both almond and 

grape compared to the full irrigation scenario (baseline).  

The WPIP and WPET differences are significant under AI and RDI-AI, as the 

representative of auto or precise irrigation. For efficient irrigation scheduling, auto 

irrigation (AI) provides higher crop yields than conventional scheduled irrigation. 

Under auto irrigation management, the SWAT model triggered an accurate amount of 

water for irrigation under the assigned stress level, which resulted in high WPIP. This 

indicates that auto irrigation would be the best option to utilize limited water and 

maintain high grape production during the drought years. 

For almond, productivity related to ET losses (WPET) showed no clear pattern 

relative to BMPs and varied within a narrow range from 0.35 to 0.78 kg/m3 across 

different irrigation applications. Higher WPET found for grape compared to almond, 

with a range of 0.31 to 1.1 kg/m3. However, the magnitude of the WP increase was 

lower for upstream subbasin compared to downstream. After exhausting 

experimentation, it was found that subbasin in the upstream (ex., subbasin 59) are 

having less groundwater availability in the aquifer, which resulted in less water 

productivity for almond under the same irrigation amount and frequency.  

These results were consistent with many filed scale experiments in a similar semi-

arid region that showed minor crop water deficit has little effect on the crop yield. 

According to Williams and Phene (2010), over-irrigation reduced the buds’ number in 

the vines and resulted in fewer grape yields. Sustained deficit irrigation application 

with moderate vine water stress is enough to maintain high water use efficiency and 
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yields of high quality (Pritchard, 2010; Williams et al., 2010). In contrast, other 

studies showed that a 35% reduction in irrigation caused up to 30% reduction in grape 

yield (Stevens et al., 2008; Stevens et al., 2010). Similar to grape, almond also 

showed better water use efficiency with deficit irrigation. For example, (Goldhamer 

et al., 2006) revealed that during the growing season, a uniform deficit irrigation 

treatment with 70% and 85% of full ET experienced little almond yield loss 

compared to the full ET treatment. Another note is calculated WP in this study was 

much lower than field measured values. Researchers mentioned that, low water 

productivity of almond and grape indicating large undesirable water loss under large 

basin irrigation systems (Atroosh et al., 2013; Phogat et al., 2017) 

3.2. Benefits of Water Reuse  

Wastewater reuse applications were combined with advanced, water-saving, and 

drip irrigation technologies, including RDI, AI, and RDI-AI irrigation strategies, to 

maintain the overall crop production and evaluate the impacts on groundwater 

conservation. Three optimal water-saving strategies were developed for the WR 

scenario (Table 2). Table 3 is highlighted the selected HRUs and their model 

delineated areas for almond and grape within subbasin 11 and 59. RDI, AI and RDI-

AI irrigation scenarios were applied with assigned “outside” source for those specific 

HRUs. Based on the WWTP capacity treated wastewater applied for almond (case 1), 

grape (case 2), and almond-grape together (case 3) (Table 2).  

The model simulation showed that wastewater reuse in separate almond and grape 

irrigation could reduce groundwater consumption more than 74% and 90% under RDI 

and AI scenarios, respectively. In subbasin 59, the total 1.7 MGD wastewater reuse in 



 

 

150 

 

almond and grape irrigation could save 45.53%, 83.12%, and 84.05% groundwater 

consumption under RDI, AI, and RDI-AI, respectively. This analysis suggests that 

more efficient irrigation management (RDI-AI) can save more groundwater 

consumption without losing current agricultural production and benefits. 

However, it should be noted that the projected impact of the generated BMPs on 

crop yields should be verified in the field. Despite its water stress resistance, 

almond’s quantitative and qualitative production depends on proper irrigation 

management. Also, the feasibility of direct wastewater transfers across the farms 

should be assessed properly. Despite these limitations, the large potential water 

savings highlighted in the analysis indicate that cost-effective optimal irrigation 

strategies could be implemented in water-scarce regions like California. 

4. Conclusion 

This study outlined a simple approach to evaluate the best water-saving strategies 

by targeting specific cash crops. Results showed that reducing irrigation in almond 

and grape could provide higher water use efficiency and increase water productivity. 

Precise or auto irrigation (AI) provides more efficient agriculture management in the 

high water-scarce watershed. Coupled regulated deficit irrigation with auto irrigation 

(RDI-AI) provides considerable increases in water use efficiency in the same areas. 

Treated wastewater reuse to the adjacent areas to WWTP with regulated deficit 

irrigation is recommended for almond in the downstream of the watershed as well as 

for grape. It can be concluded that treated wastewater reuse for the cash crop 

irrigation, such as almond and grape, could be benefitted for groundwater saving 

without major adverse impacts on these crops’ quality. The obtained information 
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from this study can be utilized for developing better irrigation management practices 

for orchard and vineyard in California. 

5. Figures 

 

Figure 1: Map is showing the location of WWTP with almond and grape HRU within 

the San Joaquin Watershed- a) subbasin 11 and b) subbasin 59.  
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Figure 2: Model simulated average values of WPIP and WPET for almond and grape 

in the i) downstream (subbasin 11) and ii) upstream (subbasin 59). 

 

Figure 3: Percentage of groundwater saving due to direct wastewater reuse for 

irrigation. Values were calculated for selected HRUs where WR was applied. 
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6. Tables 

Table 1: List of Best Management Practices developed for the analysis of water 

productivity. 

 

BMPs Description 
Irrigation Efficiency Runoff 

Loss Almond Grape 

Baseline 
Water extract from aquifer and amount 

calculated by ETc (ETo*K
c) for each crop 

85% 90% 10% 

BMP 1 RDI 
Regulated deficit irrigation applied during 

crop growth. A uniform reduction of full ET 

(e.g. 75%) was applied for each period  

BMP 2 AI 
Auto or precise irrigation applied with 0.75 

plant stress 

BMP 3 AI-RDI 
Auto irrigation applied with 0.75 plant 

stress and regulated deficit irrigation during 

growing season 

BMP 4 WR 
Set the irrigation source as “Outside” in the 

.mgt files 
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Table 2: List of the existing WWTPs within SRW and description of the treated 

wastewater use potentiality for almond and grape irrigation. 

 

Subbasin  
WWTP Name &  

Description 

Effluent 

Description 
Receiver 

Wastewater 

Reuse Capacity 
Assigned BMPs 

11 

Atwater WWTF 

Average 3.3 MGD 

discharges to 

surface water 

Disinfected Tertiary 

Treated Municipal 

Wastewater 

Receiving Water 

Peck/Atwater Drain 

850.5 acres 

3.44 km2 

Case 1 - Applied 

only to Almond 

Case 2 - Applied 

only to Grape 

    

12 

Merced WWTF 

Average 6.8 MGD 

discharges to 

surface water, 

including 5.7 MGD 

directly to 

agricultural fields 

Secondary effluent Hartley Slough, MUN, AGR, 

PRO, REC-1, WARM, 

MIGR, SPWN, WILD 

1752.6 acres 

7.1 km2 

Since treated water 

is consumed by 

agriculture and 

other consumers, 

wasn’t considered 

for this study  

Tertiary effluent 

Disinfected 

Secondary effluent 

Merced Wildlife 

Management Area 

REC-2, WARM, WILD 

Secondary effluent 
Land Application Area 

MUN, AGR, IND, and PRO 

    

59 

Colvis WWTF 

Average 1.7 MGD 

discharges surface 

water 

Disinfected Tertiary, 

Municipal 

Wastewater 

Fancher Creek 

411.9 acres 

1.7 km2 

Case 3- Applied to 

Almond and Grape 

together 

Disinfected Tertiary, 

Municipal 

Wastewater 

Diversion Channel from Big 

Dry Creek Reservoir to Little 

Dry Creek 

Disinfected Tertiary, 

Municipal 

Wastewater 

Groundwater underlying 

recycled water use sites 

    

69 

Malaga WWTF 

No longer 

discharges to 

surface water. All 

 treated wastewater 

is sent to land 

disposal ponds 

Disinfected Tertiary-

treated Municipal 

Wastewater 

Fresno Irrigation District 

Central Canal 

242.3 acres 

0.98 km2 

Since appropriate 

treated water 

discharge to an 

irrigation canal and 

consumed for 

irrigation, was not 

considered for this 

study 

Un-disinfected 

Secondary-treated 

Municipal 

Wastewater 

Groundwater 

Note: PRO- Industrial process supply; REC1- Water contact recreation; REC2- Non-contact water recreation; WILD- Wildlife habitat; 

MUN- Municipal supply; IND- Industrial service supply; AGR- Agriculture supply; SPWN- Spawning reproduction and/or early 

development; WARM- Warm freshwater habitat; MIGR- Migration of aquatic organisms 
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Table 3: Selected HRUs no and area within subbasin 11 and 59. Wastewater was 

applied to the selected HRUs, marked with grey color.  

 

Subbasin HRU No 
Area (km2) 

Almond Grape 

11 

357  0.307 

358  0.044 

359  2.836 

360  0.117 

361  4.500 

362  0.214 

363  1.820 

364  0.318 

365  0.048 

366 1.700  

367 0.057  

368 0.300  

369 4.673  

370 33.132  

371 1.866  

372 5.468  

373 1.533  

374 0.366  

59 

3240  8.546 

3241  0.544 

3242  0.020 

3243 0.353  

3244 6.709  

3245 0.403  

3246 2.492  

 



This chapter will be submitted for publication in Sustainability. 

156 

 

Chapter 7:  Multi-criteria Decision Analysis to Evaluate 

Reclaimed Wastewater Use for Agricultural Irrigation: The case 

study of Maryland 
 

Abstract 

Groundwater is the largest source of irrigation for Maryland, which also plays a 

vital role in the sustainable and healthy aquatic system by supplying water to streams 

and rivers. However, Maryland’s aquifers are experiencing several challenges such as 

overuse, salt-water intrusion, lack of productive aquifer, etc. The Chesapeake Bay is 

also facing the problem of water pollution due to pollutant runoff, including fertilizers 

and pesticides from the agricultural fields. To alleviate the pressure on groundwater 

and reduce the pollutants loading from the agricultural land it is necessary to explore 

the potentiality of recycled water for irrigation use. To effectively address this issue, 

spatial analysis based on optimization methods is needed to evaluate the multiple 

spatial criteria. The objective of this study is to implement the integration of 

Geographical Information Systems (GIS) and Multi-Criteria Decision Analysis 

(MCDA) to evaluate the potentiality of recycled water from wastewater treatment 

plants (WWTPs) for Maryland state. Evaluation criteria included agricultural lands, 

water consumption by counties, groundwater wells density, groundwater level, and 

locations of the WWTPs as a source of recycled water sources. The WWTPs are 

categorized based on their distances, flows, and treatment process information. The 

Analytical Hierarchy Process (AHP) approach is used for the prioritization of both 

qualitative and quantitative data to evaluate decision-making objectives. The study 

produces realistic agricultural land capability and suitability maps to make it a useful 
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tool for integrated regional land-use planning. The results also highlight how the 

spatial distribution of suitable areas is closely linked to the agricultural land. 

1. Introduction 

Increasing population and continuous development resulted in increased demands 

for freshwater in the Mid-Atlantic region. Despite abundant precipitation, water 

supplies in this region are limited by the intermittent droughts and contamination by 

agricultural and industrial sources (Masterson et al., 2016). Like other Mid-Atlantic 

states, groundwater is a vital source of fresh drinking water in Maryland, as well as 

the main source for irrigation, commercial and industrial uses, and some of the power 

plants. Groundwater from the confined aquifer is mainly used for domestic purposes 

including drinking water and public water-supply (Masterson et al., 2016). 

Groundwater also provides baseflow to streams, rivers, and wetlands and maintain a 

healthy and sustainable aquatic habitat and ecosystem.  

Recently, the Mid-Atlantic region experiencing uncertain rainfall events with a 

warmer climate during the growing season. Due to more intermittent rainfall and 

increased evaporation with warmer temperatures, recurrent short-term droughts are 

becoming more likely to occur during the summer (Boesch, 2008). The climate 

models projected an increase in the growing season coupled with reductions in soil 

moisture for this region, which might increase the water demand for crop and 

landscape irrigation (Boesch, 2008). Therefore, groundwater demand for agricultural 

irrigation will be increased to maintain high crop production. These changes will 

require adaptation by Maryland’s agricultural industry, including changes in crop 

varieties and increased irrigation.  
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Current pumping records indicate that in response to extensive development, 

intermittent drought conditions and to maintain high crop productivity, irrigation 

withdrawals are increasing in the region especially in coastal areas. These increased 

irrigation pumping and higher withdrawals contribute to the decline in water levels in 

confined aquifers. The long-term observation records from many monitoring wells in 

the region are showing the declining trend of groundwater table, especially in the 

coastal plain (Masterson et al., 2016). In addition, Maryland’s groundwater system is 

vulnerable to sea-level rise, especially in the coastal plain where the unconfined 

surficial aquifers are thin and are not hydraulically connected with the underlying 

aquifer. Considering all of these issues, regional water resource managers face 

various challenges to meet local water demands due to increasing rates of 

groundwater withdrawals, lack of productive aquifers and saltwater intrusion. 

Each day billions of gallons of wastewater are generated across the Chesapeake 

Bay region (CBP, 2020). To safely and effectively treat this large amount of 

wastewater and to reduce the excess amount of nutrients discharged into the bay, 

hundreds of treatment facilities in this region are being upgraded with advanced 

wastewater treatment technologies. As a major state in the Chesapeake Bay region, 

Maryland is also seeking a sustainable solution to reduce nutrient loading to the Bay. 

As a result, Maryland’s Restoration Fund has provided more than $1.25 billion to 

upgrade its 67 WWTPs which are expected to reduce 10 million pounds of Nitrogen 

and 1 million pounds of Phosphorus per year (EPA, 2016). 

To overcome these water quantity and quality issues, coupling reclaimed and/or 

greywater to blue (surface and groundwater) and green water (soil moisture and 
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evapotranspiration) framework has the potential to significantly improve the water 

management for the agricultural area (Falkenmark et al., 2004; Rees, 2018). 

1.1. Scope and Objectives 

Studies have shown that agricultural irrigation with reclaimed wastewater has 

multiple advantages such as providing high reliability due to constant yields (Chen et 

al., 2012; Rahman et al., 2016), reducing pressure on freshwater (Jaramillo and 

Restrepo, 2017; Rahman et al., 2016), improving nutrient management and recovery 

(Hanjra et al., 2015; Miller-Robbie et al., 2017), etc. In both developed and 

developing countries, the most established water reuse practice is the application of 

treated municipal wastewater for irrigation and other purposes (Angelakis et al., 

2018a; Jaramillo and Restrepo, 2017). Currently, the water reuse capacity in 

Maryland is very limited. In Maryland, there are 32 spray irrigation sites of treated 

wastewater onto land surfaces as one of the alternatives for wastewater disposal. 

However, the full potential use of Maryland’s reclaimed wastewater has not been 

explored yet considering the water demand-supply zones, spatial distribution of 

existing crop patterns and treatment facilities, and water reuse regulations. At the 

same time, understanding how limited freshwater sources have been affected by 

natural (drought condition) and human stresses (increasing water demand) is key to 

sustainable management of groundwater sources in Maryland. This situation is also 

leading to the need for a comprehensive assessment of non-traditional water sources 

availability for irrigation in Maryland.  

The main focus of this study was to outline the critical groundwater zones in and 

then to identify suitable agricultural areas (hotspots) for reclaimed wastewater use for 
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irrigation. To generate the agricultural hotspot maps, the main objectives of this study 

were to: 1) generate a groundwater vulnerability map that crucial for irrigation use, 2) 

identify the influential criteria for irrigation with reclaimed wastewater; and 3) 

develop an integrated geospatial Multi-Criteria Decision Analysis (MCDA) 

framework to identify the agricultural areas that are best suited for recycled water use. 

The results from this study provide useful information to decision-makers and 

stakeholders and help them with the development and expansion of reclaimed 

wastewater use in agriculture. 

2. Methodology and Data 

2.1.Study Area 

Maryland is located in the Mid-Atlantic region of the United States. Maryland’s 

climate is classified as humid subtropical with an average annual precipitation of 

about 45 in/yr (EPA, 2012a). In this region, spring and fall seasons are warm and the 

winter season is cold with an average annual snowfall of 14.6 in and an average 

temperature of 38 oF (3.3 oC). Summer season is generally hot and humid with an 

average temperature of 79.2 degrees F (26.2 degrees C). Recently, Maryland is 

experiencing higher temperatures during winter and heavy precipitation in spring, 

summer, and fall (Mallakpour and Villarini, 2017). 

Maryland can be divided into three regions of western mountainous, Piedmont, 

and coastal plain (Western and Eastern Shore) (Figure 1). Groundwater in Maryland’s 

coastal plain is derived from rain and snow that falls within the outcrop area of the 

aquifers (the area where the aquifers reach the surface). These outcrop areas are 

normally under unconfined conditions and are the principal recharge zones for the 
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aquifers. Water from rain and snowmelt infiltrates through the soil until it reaches the 

water table. The saturated zone forms the water-table (or surficial) aquifer and flows 

slowly towards areas of discharge (streams, rivers, and ponds) and the rest of water to 

the deep confined aquifer systems. On the other side, most aquifers in Piedmont are 

unconfined aquifers (also called water-table aquifers) with no overlying impermeable 

layer to protect groundwater from surface-based sources of contamination.  

In the Eastern Shore, where aquifers are unconfined (Columbia or Surficial 

aquifers) the majority of water withdrawn is used for seasonal irrigation (agriculture) 

(Andreasen et. al., 2013; MDP, 2019). Most of the shallow unconfined groundwater 

is discharged to streams or the Bay or through evapotranspiration. Only a very small 

fraction of the water reaches the deeper aquifers, and as a result, the extreme 

irrigation practices would have a negative effect on the recharge (Masterson et al., 

2016). In addition, if the saturated thickness of a surficial coastal plain aquifer is less 

than 25-30 feet or so and is underlain by a confining unit, it becomes challenging for 

a farmer to develop water from shallow on-site wells. 

2.2. MCDA Framework 

MCDA is a valuable decision analysis tool, being used to explicitly evaluate a 

large set of alternatives and conflicting criteria in the decision-making process. It 

provides a systematic approach to structure the decision problems, evaluating the 

benefit/cost information and decision-maker or stakeholder views to rank the 

alternatives (Kabir, 2012; Kabir et al., 2014; Paul et al., 2020; Sadiq and 

Tesfamariam, 2009). In the MCDA process, the required inputs are scored across 
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several dimensions associated with different alternatives and outcomes; and weights 

relating to tradeoffs across these dimensions (Huang et al., 2011).  

Identification of the agricultural hotspots for water reuse is a spatial decision 

problem, which needs geospatially based decision analysis involving multiple criteria 

and sub-criteria. To consider the spatial decision alternatives and evaluation criteria, 

an integrated framework of the MCDA process with Geographic Information System 

(GIS-MCDA) has been used in this study. GIS-MCDA method is an emerging 

approach for the assessment of suitable agricultural land, which considers multiple 

spatially variable criteria. Worldwide, many studies have applied GIS-MCDA method 

to achieve the optimal decision-making from multiple spatially variable criteria 

(Aldababseh et al., 2018; Assefa et al., 2018; Ayalew, 2014; Paul et al., 2020; 

Rikalovic et al., 2014; Yalew et al., 2016). To develop the GIS-MCDA framework, 

previously developed method by the research team has been followed with some 

modifications (Paul et al., 2020). The following subsections describe the decision 

criteria and sub-criteria in more detail. 

2.3. Criteria and Subcriteria Selection 

Based on the existing literature, data availability, and expert opinions five main 

influential criteria as factors and one as a constraint were selected for the assessment 

of the suitable agricultural land for reclaimed wastewater irrigation. The four selected 

factor criteria are: 1) agricultural land cover (crop type); 2) reclaimed wastewater 

sources; 3) water policy: groundwater vulnerability zone; and 4) climate impact: 

watershed prioritization.  
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2.3.1. Reclaimed Wastewater Sources  

The proximity of the wastewater treatment plants to the agricultural land is the 

most important criteria to maintain the cost-effectiveness of water reuse in 

agriculture. In this research, only publicly owned treatment works (POTWs) were 

considered which are designed to treat the domestic sewage and owned and operated 

by the local government agencies. Among these POTW facilities, seven discharging 

methods were selected considering their reuse potential for irrigation, including spray 

irrigation, reuse: irrigation, land application, overland flow, outfall to surface waters, 

discharge to groundwater and another facility (Figure 2). While most of the existing 

spray irrigation sites are close to the WWTPs, there are some spray sites that are 2 to 

4 miles away from the facilities. Based on this existing practice, four distance classes 

were considered. In the next step, selected WWTPs were classified into four 

categories based on their discharge capacity (Figure 2). Of note is the design capacity 

of the WWTPs was considered in this study.  

To promote the reuse of reclaimed wastewater, the Maryland Department of 

Environment (MDE) amended a water reuse guideline in 2009 to include the 

irrigation with highly treated Classes I and II effluent quality. In 2010, a new 

amendment allowed Class IV water reuse in irrigation for food crops (with no contact 

with the edible portion of the crop). Based on this, all selected WWTPs were 

classified into two groups based on their treatment process including advanced and 

secondary treatment processes (Figure 2). 
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2.3.2. Agricultural Land  

According to MDE guidelines, reclaimed wastewater is prohibited for fruit and 

vegetable irrigations that are eaten raw and are not commercially processed. Based on 

the 2010 revised amendments, Class IV water is allowed to reuse for food crop 

irrigation, especially when there is no contact with the edible portion of the crop 

(EPA, 2012a). Therefore, two types of crops are selected for recycled water use: Food 

Crops including grains, legumes, oils and orchard; and Non-food Crops including 

pasture for foraging livestock, sod farms, commercial crops (Christmas tree).  

2.3.3. Water Policy: Groundwater Vulnerability Zone 

Groundwater vulnerability zones were generated and assessed to identify the 

potential of using recycled water for irrigation. The assumption was that the areas that 

are facing groundwater decline have higher priority for water reuse. To generate the 

groundwater vulnerability maps, controlling factors like groundwater withdrawals 

information, geomorphology, aquifer depth, and recharge potential were considered. 

According to Maryland Code 2005, under Environment Section 5-502 (b)(2)- users 

need to obtain permit approval for withdrawing an annual daily average of 10,000 

gallons per day (GPD) or more. Spatial distribution of the permitted groundwater 

withdrawal indicated that most of the groundwater well situated on the agricultural 

land and higher withdrawal amount is allocated in the Coastal Plain Shore. 

Maryland’s Shore also facing saltwater intrusion problems due to lower aquifer depth 

and climate change. To integrate these issues, the spatial distribution of groundwater 

well density, water extraction and aquifer information was considered here to 

generate a groundwater vulnerability map. Groundwater vulnerability zones have 
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been identified by integrating these factors and classifying them into six categories of 

very high, high, medium, low, very low and normal in terms of their vulnerability 

level. 

2.3.4. Climate Impact: Watershed Prioritization 

To plan for decadal-scale planning and adaptation, decision-makers need to 

incorporate the information regarding changes in future water supply and demand 

induced by climate change and economic development in the decision-making 

system. According to climate projection models, under the higher emissions scenario, 

summer droughts and heat stresses are expected to increase in the Mid-Atlantic 

region, which might increase the water demand for crop and landscape irrigation 

(Boesch 2008).  In addition, a higher population and economic development are 

expected in this region which will increase the water demand in the future. Luck et.al. 

(2015) developed the worldwide Aqueduct Water Stress projections data including 

the potential changes of water supply and demand, water stress, and seasonal 

variability at the HUC4 watershed level. Here, indicators of water supply, water 

demand (withdrawal and consumptive use), water stress (ratio of water withdrawal to 

supply), and intra-annual (seasonal) variability were considered for 2040 and under 

RCP8.5 climate scenarios (Luck et al., 2015). Based on these long-term projections of 

future water availability, Maryland’s watersheds were categorized into five 

vulnerability classes: extremely high, high, medium-high, low-medium, and low. 

2.4. Weighting of Criteria and Sub-criteria 
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Analytical Hierarchy Process (AHP) (Saaty, 1978) was used to weigh and rank 

the criteria and sub-criteria. The ranking process developed in Paul et al. (2020) was 

used in this research. But briefly, the whole process is done in four phases: 

i) Formulating Hierarchy: A hierarchical mechanism is used in the AHP technique 

to organize the complex multi-criteria problem in a number of levels. Within the 

hierarchy structure, all the criteria and sub-criteria organize according to their 

importance. In this study, a decision hierarchy structure is articulated into four levels 

(Figure 3). 

ii) Assigning Priorities: The AHP uses pairwise comparisons between the criteria 

to help decision-makers to evaluate the relative importance with each other. A 

comparison matrix is established (n x n matrix, where m is the number of criteria) 

considering the relative importance of each criterion and comparing one-to-one based 

on pairwise scale. All the criteria were weighed on a scale from 1 to 9 (Table 1).  

iii) Weighting Criteria: In the next step, the pairwise comparison matrix is 

normalized and formed a “normalized matrix”. In the normalized matrix, the values 

of each cell were divided by the total column values from the pairwise comparison 

matrix. Therefore, each entry of the normalized matrix can be computed as: 

𝐴𝑗 𝑘 =
𝑎𝑗𝑘

∑ 𝑎𝑗 𝑘
𝑛
𝑖=1

 
(1) 

iv) Consistency Check: Saaty (1977) also introduced a consistency ratio (CR), 

which is a comparison between the consistency index and the random consistency 

index. The consistency ratio (CR) is computed to check the consistency of the 

conducted comparisons. The CR can be computed as: 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

(2) 

Where CI is the consistency index and RI is the random consistency Index. The 

consistency index is calculated from the pairwise matrix and estimated as: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(3) 

Where, 𝜆𝑚𝑎𝑥  is the largest eigenvalue of the pairwise comparison matrix and n is 

the order of the matrix.  

For CR ≤ 0.1 or 10%, the judgments are considered as consistent and acceptable, 

and for CR > 0.1, the subjective judgment needs to be revised or modified. 

2.5. Data Collection and Processing 

For the GIS-MCDA method spatial data is needed which have spatial extent for 

the criteria evaluation, the spatial dimension of the decision problem and which can 

set in the geographical data models. Therefore, all the required data were collected or 

processed in spatial nature. Six major data types including here: Crop Data Layer 

(CDL) for land use and land cover (LULC); the location of WWTPs for reclaimed 

wastewater sources; aquifer and groundwater well permit information for 

groundwater prioritization map; and watersheds prioritization map for climate 

criteria.  

The groundwater vulnerability map was created based on four components 

including groundwater wells density, permitted water withdrawal limit, aquifer 

thickness and aquifer’s geological characteristics. The conceptual framework for 

groundwater vulnerability map assessment is shown in Appendix A. In this study, all 

the permit information regarding groundwater withdrawal for irrigation use were 
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collected from the MDE. Well number and average and maximum withdrawal 

information per tax map were integrated to generate the groundwater withdrawal heat 

map. A digital map produced by the USGS was used here that is showing the 

thickness of the surficial aquifer of Maryland (Denver and Nardi, 2016). Based on the 

aquifer maps collected from the Maryland Geological Survey (MGS), critical zones 

for groundwater extraction were identified. This aquifer map was used to identify the 

critical zone for reclaimed wastewater use. This layer displays the location of the 

outcrop and subcrop regions beneath the Surficial and Surficial Upland aquifers. 

Here, outcrop areas were generated by intersecting the aquifer and confining unit 

surfaces with land surface and bathymetry that means the top of the aquifer is the 

water table. Subcrop areas were generated by intersecting the aquifer and confining 

unit surfaces with the bottoms the Surficial and Surficial Upland aquifers that means 

this aquifer is situated under a blanket of surficial sediments. A complete list of 

datasets that were used in this study is provided in Table 2. 

2.6. GIS Model Setup 

The process of a suitability assessment and identifying hotspots for reclaimed 

wastewater use involves two main steps. In the first step, the MCDA method was 

applied using the AHP technique to evaluate the influential geospatial decision 

criteria and sub-criteria. In the second step, a GIS-MCDA model was developed using 

the weights and ranking of the criteria resulted from the previous step. In the GIS-

MCDA method, a spatial decision is defined as a single raster of a specified size or a 

combination of multiple rasters. The normalized weights attributed to each criterion 
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were used to derive new raster datasets. In order to derive AHP values, the new raster 

files were incorporated into the following equation implemented in map algebra: 

𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀𝑎𝑝 = 𝑊𝑅𝑊𝑆 ∗ 𝑅𝑊𝑆 + 𝑊𝐴𝐿 ∗ 𝐴𝐿 + 𝑊𝐺𝑉𝑍 ∗ 𝐺𝑉𝑍 + 𝑊𝑊𝑃 ∗ 𝑊𝑃 (4) 

Where, WRWS, WAL, WGVZ, and WWP are the weight of Recycled Water Source 

(RWS), Agricultural Land (AL), Groundwater Vulnerability Zone (GVZ) and 

Watershed Prioritization (WP) respectively. 

After the data collection, data were analyzed and evaluated using GIS and geo-

statistical tools to obtain the MCDA criteria maps. Each selected sub-criterion was 

represented by a thematic layer that was assigned with the values according to Table 

3. After that, each main criterion or thematic layer was converted into a raster format. 

All of the raster data then processed using a weighted overlay tool to identify the 

most suitable areas for irrigation with reclaimed wastewater (hotspots). In the end, all 

of the generated suitability maps was represented in six suitability levels including 

“very high” to “not suitable” respectively.  

3. Results and Discussion 

3.1. Criteria Evaluation 

3.1.1. Reclaimed wastewater Sources 

In this study, three proximity maps were produced for the three cases: Case 1- all 

WWTPs with acceptable discharge methods; Case 2- WWTPs categorized with flow 

volume; and Case 3- WWTPs considering the treatment processes. Based on CWNS 

2012 and MDE databases total of 279 WWTPs were selected in the study area (Figure 

4). According to the Clean Water Act, the projected flow was recorded for 195 out of 

279 WWTPs. The database also completed with projected treated effluent 
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information. Projected treatment discharge information was documented for 140 

facilities where 101 facilities have the advanced treatment and 39 have secondary 

treatment processes. Of note is all of large facilities (>10 MGD) are situated near the 

fall line where the urban areas are clustered and agricultural lands are minimal 

(Figure 4). Fig 5a shows the reclassified Euclidean distance map of the reclaimed 

wastewater sources considering all acceptable discharge methods. 

3.1.2. Agricultural Land  

The agricultural lands were reclassified into two classes of agriculture with food 

crops and non-food crops respectively. The highest priority was assigned to non-food 

crops such as fodder, oil, and commercial crops (sod farms, nursery, christmas trees,  

etc.). Based on the Maryland water reuse guideline, another class was selected for all 

suitable food crops such as grains, legumes & orchards which irrigation water doesn’t 

have direct contact with the edible portion of the crop. From the reclassified maps 

(Fig 5b), it is found that most of the agricultural land is clustered in two regions of 

piedmont and Eastern Shore. Most food-crop farms (corn and soybean) are clustered 

in the Eastern Shore, and non-food crops like forage crops (alfalfa and hay/non-

alfalfa) are clustered in the Piedmont region. In addition, orchards (apple and 

peaches) and commercial farms (Christmas tree) are scattered in the Piedmont region, 

which has high potentiality for reclaimed wastewater use. 

3.1.3. Groundwater Vulnerability Zone 

For effective water-resources planning, the cumulative impact of thousands of 

wells pumping on Maryland’s aquifer is crucial. The State of Maryland controls its 

surface and groundwater uses to conserve, manage, and protect the State’s water 
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resources. As a result, MDE processes a water appropriation permit application for 

surface or groundwater withdrawal. Total of 1354 (out of 1471) permitted wells, 

extracting water from groundwater aquifers to use for different types of irrigation 

practices, such as crop irrigation, nursery/sod farming irrigation, golf course or park 

irrigation etc. Most of the wells are used for crop irrigation, from which the average 

permitted discharge is <0.5 MGD (500,000 GPD) (Appendix B). They are mainly 

clustered in the Eastern Shore due to higher agricultural activities (Appendix C).  

Most of the shallow unconfined groundwater is discharged to streams or the Bay 

or lost through evapotranspiration and a very small fraction is recharged to the deeper 

aquifers. Shallow groundwater zones in the outcrop or subcrop areas have quick 

recharge properties which also concern as potential conduits for contamination 

(Appendix C). Therefore, these zones are considered unsuitable for drinking water 

use and more preferable for agricultural irrigation. There was limited GIS data for the 

aquifers in the western side of the fall line, however, geologically deeper confined 

aquifers are situated in this region. Since deeper confined aquifers should be reserved 

for drinking water supply. In addition, deep pumping results in high energy costs. 

Therefore, this region was given higher priority for recycled water use for irrigation.  

The produced groundwater basin prioritization map shows that low lying flat 

plain of the Eastern Shore is found more favorable for recycled water use, whereas 

upland plain of the western part is given as less priority for recycled water use. The 

highest priority zones consist of 814.5 km2 and were mainly outlined to the Eastern 

Shore. The low (17,247 km2) and very low priority (55,976 km2) were mapped to the 
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western part of Maryland due to the insignificant well use and position for outcrop 

and subcrop area (Figure 5c).  

3.1.4. Watershed Prioritization 

Maryland’s watersheds were classified based on their water stress severity and 

local climate conditions using the method described before (section 2.3.4). Based on 

this, watersheds were categorized into Very High, High, Medium, Low, Very low, 

and Normal watersheds according to water stress severity. For instance, the Patapsco 

River basin is expected to experience “very high” water stress by 2040 and “high” 

water stress in Gunpowder-Patapsco near the Chesapeake Bay and Chincoteague Bay 

near the Atlantic Ocean (Figure 5d). Watersheds were assigned different scores 

according to their water stress ranks, in which watersheds with the higher potentiality 

for water stress received the highest priority for reclaimed wastewater use in 

agriculture. 

3.2. Criteria Ranking and AHP Assessment 

The weights of each criterion and sub-criterion were assigned based on the 

rationale described in the previous section 3.1. In this study, three matrices were 

designed for three cases: 1) all WWTPs with acceptable discharge methods (Case 1-

Table 4), 2) WWTPs categorized with flow volume (Case 2-Table 5), and 3) WWTPs 

considering the treatment processes (Case 3-Table 6). 

From the normalized matrix, the final priorities were obtained, which are 

indicated as “Weights” and “Ranks”. Thus, the final AHP outputs are: (i) a relative 

priority of each criterion presented in percentages, and (ii) a relative rank of each 
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criterion (Table 4-6). Table 4-6 shows all three pair-wise comparison matrices 

between all evaluating criteria as well as between their classes/categories.  

From the pairwise matrix, it is evident that the location of WWTPs and their 

proximity to the point of use are very important factors in the decision process. Thus, 

the proximity to WWTPs, with a weight of 55.6%, has the most important influence 

on agricultural land suitability for reclaimed wastewater use. Agricultural land close 

to WWTPs or downstream of treatment plants can get easier access to reclaimed 

wastewater compared to areas that are further from the treatment plants or are located 

upstream. In terms of normalized weights, land use (25.9%) ranked the second, being 

followed by GW basin prioritization (17.2%), and watershed prioritization (4.9%). 

Similarly, the highest weights (33.4%) found for the larger facilities (>10 MGD) in 

Case-2 and 51.3% for the advanced treatment facilities in Case-3. The final CR 

values for all three matrices were checked and found to be 8.8%, 9.2% and 5.3%, for 

Case 1, 2, and 3 respectively. 

3.3. Suitability Maps 

3.3.1. Case 1: Considering selected discharging methods 

Case 1 was constituted to assess the accessibility of each WWTP from the nearest 

agricultural land. Therefore, the generated suitability maps show the most suitable 

agricultural areas that are in close proximity to the WWTPs. The suitability maps 

indicate that the suitability of the agriculture irrigation with reclaimed wastewater 

influenced mainly by the proximity to the WWTP facilities (Figure 6a). The resulted 

suitability area categorized into five classes including very high suitable to low 

suitable classes (Figure 6). Based on the final weights (Table 4), the very high 
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suitable class constitutes only 1.2% (66.17 km2) of the total agricultural area and the 

high, moderate and low suitable class constitutes 48.8% (2711.14 km2), 42.6% 

(2354.73 km2), and 6.6% (364.05 km2) respectively. The “very high” suitable areas 

are clustered at the Eastern Shore and northwest of the Piedmont region where most 

of the agricultural lands are located (Figure 4 and 6a). Although most of the WWTPs 

are in the northeast Piedmont region, most of the grain crops (such as corn, soybean 

etc.) are clustered at the Eastern Shore. Thus, “very high” and “high” suitability found 

mostly on the Eastern Shore and near the Atlantic Ocean, where more agricultural 

lands are located within close proximity to wastewater treatment facilities. 

Since there is no significant agricultural activity near large urban areas with large 

WWTP facilities (Figure 4), urban agriculture could be another potential use for 

reclaimed wastewater. Urban agriculture was out of the scope of this research but 

could be an option to put the reclaimed wastewater from large facilities into 

beneficial use. In addition, only POTW-WWTPs that treats the domestic sewages 

were considered as the primary source to obtain treated recycled water for irrigation. 

The other non-POTW facilities could be additional sources of reclaimed wastewater 

for irrigation that often treat wastewater from industries, such as manufacturing, food 

processing and beverage production activities. Due to the difficulty of finding effluent 

information and permit requirements, non-POTW facilities were not included in this 

study.  

3.3.2. Case 2: Considering potential discharge capacity 

Case 2 was established to evaluate the suitability in terms of flow where 

agricultural areas close to the large WWTPs were given the higher priority. Most of 
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the larger WWTPs are located near the fall line (Figure 4) where most of the urban 

areas are located and agricultural lands are minimal. Thus, agricultural areas within 

close proximity to WWTPs are limited, and “very high” suitable agricultural land was 

not found (Figure 6b). As a result, only 0.15 km2 of the agricultural land comprises as 

“high” suitable, and 30.72 km2 as a “moderate” category. Most of the WWTPs with 

low capacity (<1 MGD) is located on the Eastern Shore which resulted in the highest 

2,268.38 km2 (41%) agricultural lands as “very low” suitable category. Approximate 

50.9% of the total agricultural land found as non-suitable for recycled water use. In 

Maryland, most of the permitted well are using less than 0.5 MGD water to irrigate 

(Appendix B). In that case, adjusted flow classes with a lower range could produce a 

more comprehensive suitability map in this GIS-MCDA framework. For example, the 

reclaimed wastewater from medium and small facilities might not be sufficient for 

large agricultural lands but could be used as supplemental irrigation water for smaller 

farms. 

3.3.3. Case 3: Considering appropriate treatment process 

In the next phase, the last suitability map was generated based on Case 3, which 

includes the treatment process of WWTPs (Figure 6c). According to Maryland’s 

water reuse guideline, recycled water from WWTPs with advanced treatment process 

is given the priority for all non-food crops and selected food-crops which edible 

portion doesn’t have direct contact with irrigated water. As a result, projected effluent 

information (treatment process) was collected from the CWNS factsheet and included 

for suitability analysis. Result shows that, “very high” agricultural areas compromise 
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34.97 km2 (0.63%), “high” areas comprise 749.23 km2 (13.5%) and moderate 

1,818.16 km2 (32.9%) of the total agricultural areas. 

Since Maryland has a guideline for water reuse that only recommends the 

irrigation of food crops where there is no contact with the edible portion of the crop, 

vegetables and fruits were not included here for the suitability analysis. However, if 

the regulation is updated in the future then under this decision framework the “very 

high” suitable area can be increased to 35 km2, “high” to 751.5 km2 and “moderate” 

to 1828.17 km2 of the total agricultural land. 

3.3.4. Composite final map 

In the final phase, the composite model was generated to evaluate the suitability 

of treated water for agricultural irrigation considering availability, capacity, and 

appropriateness of the treated flow from municipal WWTPs. Thus, the composite 

suitability map was generated by the two models: Case2 and Case 3. Several hotspots 

generated within the states with “high” to “very low” suitability index, mostly in 

western Maryland, western Piedmont, and Eastern Shore (Figure 7). The AHP model 

mapped 0.5% (26.4 km2) and 14.44% (798.8 km2) of the study area as high and 

moderate suitable areas, respectively. The area of low and very low suitability classes 

is 45.99%, and 34.1% of the total agricultural area, respectively. Overall, high and 

moderate suitability classes were clustered in the western region, central Piedmont 

and the Eastern Shore of Maryland. There are some patches of high and moderate 

classes in the central part of the western shore where large facilities are located. 

Another cluster of moderate to low suitability areas is formed along the Atlantic 

Ocean of the Eastern Shore. 
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It should be noted that the selection of alternative criteria (different flow category 

or proximity limit) and suitability indicators (different users) and/or assigning 

different weights to them could result in different outcomes from the model. For 

instance, by modifying the regulations (i.e., permitting vegetable irrigation) the 

“high” suitable area can be increased by 0.01 km2 (3.21 acres), “moderate” by 2.05 

km2 (506.57) and “low” by 14.23 km2 (3516.31 acres). 

4. Conclusion 

In this study, a decision-making framework was defined to evaluate the suitable 

agricultural land for recycled water use considering wastewater treatment facilities 

appropriateness (treated effluent volume and quality). The main objective of this 

study was to demonstrate the application of GIS-MCDA based land suitability 

evaluation method to solve this spatial problem. The main advantage of the applied 

GIS-MCDA method is a combination of multiple agricultural, environmental, 

geographical, and climate criteria within the same land selection framework. It has 

the ability to define spatial models with specified priorities, classifications, and 

scenarios to support decision-makers and stakeholders. 

The developed decision framework and workflow used in this study will offer a 

statewide guideline for the decision-makers to adopt and promote the recycled water 

use for agricultural irrigation. This study is the first of its kind in Maryland to define a 

set of findings that will determine where large-scale recycled water use for 

agricultural irrigation is recommended. 
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5. Figures 

Figure 1: Location of the study area. 

 
 

Figure 2: Three-stage classification process for wastewater treatment plants (adapted 

from Paul et. al., 2020). 
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Figure 3: Developed decision hierarchy for the evaluation of suitable agricultural land 

for irrigation with recycled water. 
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Figure 4: Location of all selected WWTPs within Maryland
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Figure 5: Reclassified maps of the influential criteria: a) distance of WWTPs, b) agricultural land, c) groundwater 

vulnerability, and d) climate. 
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Figure 6: Suitability Map for three cases: a) Case 1: considering selected discharging 

methods; b) Case 2: considering potential discharge capacity; and c) Case 3: 

considering appropriate treatment process. 
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Figure 7: The composite suitability map showing the hotspot of the suitable 

agricultural lands ranging from “high” to “very low” index for recycled water 

irrigation. Four clustered suitability zones are showing with existing crops pattern in 

the boxes. 
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6. Tables 

Table 1: Saaty’s (1978) nine-point pairwise scale and definition to assign a weight to 

the criteria. 

 

Intensity of Importance Definition 

1 Equal Importance 

3 Weak Importance 

5 Strong Importance 

7 Very Strong Importance 

9 Extremely Importance 

2, 4, 6, and 8 Intermediate Values Between Adjacent Scale Values 

 

 Table 2: List of datasets used in this study.  

 

 

 

 

 

 

 

 

 

 

 

Criteria Data Type Data Source 

Wastewater 

Treatment 

Plants 

(WWTPs) 

Location and discharge 

information of the facilities 
https://www.epa.gov/cwns  

Projected flow and treatment 

information of the facilities 

https://www.epa.gov/npdes  

https://mde.maryland.gov/Pages/index.aspx  

Land Cover Location and types of crops https://nassgeodata.gmu.edu/CropScape/  

Groundwater 

Permitted well information https://mde.maryland.gov/Pages/index.aspx  

Geological information of aquifer http://www.mgs.md.gov/groundwater/index.html  

Surficial aquifer thickness map 
https://www.usgs.gov/media/images/thickness-

surficial-aquifer-sediments-delmarva-peninsula-md 

Climate 
Aqueduct water stress projections 

data 

https://www.wri.org/resources/data-sets/aqueduct-

water-stress-projections-data  

https://www.epa.gov/cwns
https://www.epa.gov/npdes
https://mde.maryland.gov/Pages/index.aspx
https://nassgeodata.gmu.edu/CropScape/
https://mde.maryland.gov/Pages/index.aspx
http://www.mgs.md.gov/groundwater/index.html
https://www.usgs.gov/media/images/thickness-surficial-aquifer-sediments-delmarva-peninsula-md
https://www.usgs.gov/media/images/thickness-surficial-aquifer-sediments-delmarva-peninsula-md
https://www.wri.org/resources/data-sets/aqueduct-water-stress-projections-data
https://www.wri.org/resources/data-sets/aqueduct-water-stress-projections-data
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Table 3: The list of main criteria and sub-criteria threshold used in the GIS-MCDA 

model. 

 

Criteria- Thematic Layer Sub criteria- Feature Class Rank 

Agricultural Land  

Non-food Crops- Commercial, Fiber, 

Fodder & Oil Crops 
9 

Food Crops- Grains, Legumes & 

Orchard 
7 

Distance from WWTP (km) 

0 - 5 9 

5 - 10 7 

10 - 15 5 

>15 3 

Groundwater Basin 

Prioritization 

Very High 9 

High 8 

Medium 7 

Low 6 

Very Low 5 

Normal 3 

Watershed Prioritizations 

Very High 9 

High 8 

Medium 7 

Low 6 

Very Low 5 

 

Table 4: Pairwise matrix for the decision criteria for Case 1: considering selected 

discharging methods. 

 

 
Proximity to 

WWTPs 
 
Agricultural 

Land Cover 
 

GW Basin 

Prioritization 
 

Watershed 

Prioritization 
 Weights  Rank CR 

Proximity to 

WWTPs  
1.00  3.00  5.00  7.00  55.6%  1 

8.8% 

Agricultural  

Land Cover 
0.33  1.00  3.00  5.00  25.9%  2 

GW Basin  

Prioritization  
0.20  0.25  1.00  5.00  13.6%  3 

Watershed  

Prioritization 
0.14  0.20  0.20  1.00  4.9%  4 
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Table 5: Pairwise matrix for the decision criteria for Case 2: considering potential discharge capacity. 

 

 Proximity to WWTPs 
 
Agricultural 

Land Cover 
 

Watershed 

Prioritization 
 

GW Basin 

Prioritization 
 Weights  Rank  CR 

 Flow>15  5≤Flow≤15  1≤Flow≤5  Flow<1 

Flow>15 1.00  2.00  3.00  4.00  5.00  7.00  8.00  33.4%  1  

9.2% 

5≤Flow<15 0.50  1.00  2.00  3.00  5.00  7.00  8.00  24.3%  2  

1≤Flow<5 0.33  0.50  1.00  2.00  5.00  7.00  8.00  18.1%  3  

Flow<1 0.25  0.33  0.50  1.00  3.00  5.00  7.00  11.6%  4  

Agricultural 

Land Cover 
0.20  0.20  0.20  0.33  1.00  5.00  5.00  7.0%  5  

GW Basin 

Prioritization  
0.14  0.14  0.14  0.20  0.20  1.00  5.00  3.6%  6  

Watershed 

Prioritization 
0.12  0.12  0.12  0.14  0.20  0.20  1.00  2.0%  7  

 

Table 6: Pairwise matrix for the decision criteria for Case 2: considering the appropriate treatment process. 

 

 

 

 

 

 

 Proximity to WWTPs 

 
Agricultural 

Land Cover 
 

GW Basin 

Prioritization 
 

Watershed 

Prioritization 
 Weights  Rank  CR 

 
Advanced 

Treatment 
 
Secondary 

Treatment 

Advanced Treatment 1.00  3.00  5.00  7.00  9.00  51.3%  1 

 5.3% 

Secondary Treatment 0.33  1.00  3.00  5.00  7.00  26.2%  2 

Agricultural Land Cover 0.20  0.33  1.00  3.00  5.00  12.9%  3 

GW Basin Prioritization  0.14  0.20  0.33  1.00  3.00  6.3%  4 

Watershed Prioritization 0.11  0.14  0.20  0.33  1.00  3.3%  5 
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Appendix A 

 
 

 

Appendix B:  
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1 5
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30-50 8

50-75 7

75-100 6

>100 5

<0.05 5
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Appendix C:  
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Chapter 8: Evaluating Crop Water Productivity Using a 

Hydrological Model for Monocacy River Watershed, Maryland 

Abstract 

Providing efficient water use will ensure sustained crop yields and water saving. 

However, water productivity is often excluded from policy discussions. The water 

productivity is a useful index that assesses agricultural water use efficiency. The main 

objective of this study was to assess crop water productivity from different irrigation 

sources using the hydrological process in Monocacy River Watershed (MRW), in 

Maryland. For this purpose, the Soil and Water Assessment Tool (SWAT) was used 

to simulate the watershed hydrology. The model was calibrated using a sequential 

uncertainty fitting (SUFI-2) algorithm for 10 years (2005-2014) with a 5 years’ 

warm-up period and validated for another 5 years (2015-2019). For the monthly 

streamflow simulations, the correlation coefficient (R2), Nash-Sutcliffe coefficients 

(NSE), and percent bias (PBIAS) were found with values of 0.0.61, 0.56, and 10.3% 

during calibration and 0.85, 0.83, and 3.9% during validation respectively. After 

streamflow calibration, the model was calibrated and validated for crop yield (corn 

and soybean). The calibrated model was used to estimate the corn and soybean water 

productivity using different irrigation sources, including treated wastewater from 

adjacent WWTP. Simulated crop water productivities for corn and soybean were 

estimated as 0.617 kg/m3 and 0.173 kg/m3, respectively. Analysis suggests that 

maximization of the area by provision of supplemental irrigation from treated 

wastewater can provide opportunities for improving water productivity. The
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outcomes of this study will provide information regarding enhancing water 

management in the MRW, especially in those areas where crop productivity is low. 

1. Introduction 

Maryland state uses 97% of its freshwater withdrawals to meet the growing 

intersectoral demands for hydropower, industry, agriculture, and drinking water 

supplies (Wheeler, 2003). Despite the rapid urbanization and population growth, over 

the years, the total water consumption in Maryland has not increased (Boesch, 2008; 

Wheeler, 2003). However, a complex set of changes in water consumption among 

different sectors, such as industrial and commercial use, declined over the years while 

domestic use, public supply, and irrigation use significantly increased. This water 

demand is expected to rise in the future with increasing suburban land development 

that affecting the groundwater recharge area and increasing irrigation needs on 

agricultural land during summer droughts (Boesch, 2008).  

In recent years the Mid-Atlantic region experiencing intermittent rainfall with 

higher temperatures, especially during the growing season. As a result, recurrent 

short-term droughts are becoming more frequent, and the evaporation rate increased 

during the summer. Researchers projected more increase in temperature and less 

summer precipitation in this region. According to the Intergovernmental Panel on 

Climate Change (IPCC) estimation, average temperatures might increase from 1.34 to 

5.78 ºC before 2100 with moderate precipitation increase compared to baseline 

conditions ((CBF), 2007). Despite moderate increases in precipitation, a higher 

temperature may lead to more evaporation loss and a decrease in soil moisture 

(Boesch, 2008). As a result of reductions in soil moisture, this region is expected to 
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experience more water demand for crop irrigation (CBF, 2007; Boesch, 2008). It is 

predicted that within the 2040 decade, the Mid-Atlantic USA might experience 

medium to high water stress driven by high water demand (Luck et al., 2015). The 

water permit database in the state of Maryland, located in the Mid-Atlantic, indicated 

that. 

Currently, the agricultural sector consumed a high amount of groundwater to meet 

increased crop water demand due to intermittent precipitation and warmer climate. 

Historical data indicated that the amount of groundwater withdrawal increased in 

those years when annual average precipitation was below the normal (838.2-1397 

mm) during the growing season (Wheeler, 2003).  

The alternatives for freshwater demand reduction during summer exist; however, 

they have not been fully explored yet in this region. For Maryland, water resource 

management should focus on a reduction of freshwater water consumption to 

minimize groundwater withdrawals. This can be achieved by using treated 

wastewater from the adjacent wastewater treatment plant (WWTP) for irrigation to 

increase water productivity due to its constant reliability. 

Improving the water management should focus on (a) increasing the production 

per unit of freshwater consumed (water productivity), or (b) maintaining the 

production with reduced water use or increasing efficiency (Immerzeel et al., 2008). 

Therefore, the water resource managers and policymakers need to have a better 

knowledge of freshwater consumption and crop production patterns throughout the 

watershed.  
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Generally, water management practices focus on water saving at field scale by 

reducing irrigation water allocation to the plots. However, a plot level water saving is 

not enough to get the significant improvement of water use efficiency at the 

watershed scale (Immerzeel et al., 2008; Keller and Keller, 1995). Few studies found 

where researchers analyzed the water stress and crop water productivity under 

different water managements using both field experiments and watershed modelling 

(Garg et al., 2012; Han et al., 2018; Luan et al., 2018). These studies provided 

evidence of using water productivity as a useful tool to evaluate the performance of 

agricultural production systems and recommend best management practices (BMPs) 

at any scale, ranging from field to watershed. 

With this background, this study aimed to apply a systematic approach to assess 

the agricultural water use and crop yield at fine temporal and spatial resolution to 

estimate water productivity for a Maryland watershed. To obtain this goal, a 

distributed hydrological model was used to evaluate the water use efficiency of 

irrigated areas and provide information for the improvement of freshwater-saving in 

these areas. The main objectives were: i) to calibrate and validate the model for 

watershed streamflow and crop yield considering both rainfed and irrigated systems, 

ii) to assess the spatial and temporal variability of crop consumptive water use 

(irrigation) at a subbasin level, and iii) to calculate crop water productivity from the 

model simulation, and iv) to provide the information of treated wastewater use 

potentiality for future policy implications. 
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2. Data and Methodology  

2.1. Study Area  

The Monocacy River Watershed (MRW) was selected as a representation of 

Maryland, USA. MRW is a tributary of the Potomac River Basin and located in 

western Maryland and south-central Pennsylvania (Figure 1). This watershed is 

situated within three counties: Frederick and Carroll Counties in Maryland and 

Adams County in Pennsylvania. According to the long-term average (1901-2001), in 

Maryland, annual average precipitation was about 1092.2 mm (43 in/yr), or 25,000 

MGD (million gallons per day), where water lost by evapotranspiration was about 

711 mm (28 in/yr) or 17,000 MGD (NOAA, 2002). The average temperature of this 

region is approximately 24ºC during the summer and 3ºC during the winter 

(CCBRM), 2016). Based on the current climate data (2005-2014), the average annual 

precipitation is approximately 1135 mm, with monthly averages ranging from 72.2 to 

122.1 mm. In this region, most of the rainfall event occurs in May-July and 

September-October, and snow accumulation occurs in December to January. 

The MRW is in the Western Piedmont physiographic province where the sub-

surface of the watershed consists of a layer of unconsolidated material or composed 

of soil, clay, sand, and pieces of weathered bedrock. The west side of the watershed is 

characterized by steep slopes consisted of highly erodible soil and the rest of the 

valley is mainly constituting prime agricultural soils. The watershed is dominated by 

C soil group (46.48%) which have low infiltration rates followed by A (23.21%) and 

B (23.51%) soil groups with high and moderate infiltration rates, respectively.  
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The land use and land cover of MRW is dominated by agricultural land (51.1%), 

followed by forested (36.2%), and urban areas (12.1%) (USDA-NASS, 2007). In 

agricultural land, the most prominent crops are hay (14.5%), corn (13.1%), and 

soybean (10.8%) (Table 1). Among these crops, irrigation mainly used for corn to 

maintain high yield goals (Lewis, 2014). Over the years, land acreage for corn and 

soybean are varied due to suburban expansion. Figure 2 gives an overview of the 

MRW’s historical corn and soybean yield and planted acreage for the last 30 years. It 

is clear that despite a slight decrease in planted acreage, the corn yields increase 

considerably. On the other hand, soybean acreage and yield both increases in 30 

years; however, increasing trend for soybean production is very mild compared to 

corn. 

2.2. SWAT Model  

The process-based models are often used for accurate simulation for the 

hydrological process and crop yield of the watershed. In this study, the Soil and 

Water Assessment Tool (SWAT) was used to assess the MRW hydrology and crop 

yield and calculate the water productivity from the model simulations.  

During model development, the watershed is divided into a number of sub-basins 

and categorized into hydrological response units (HRUs) based on homogeneous soil 

types, land-use types, and slope classes. SWAT model computes the hydrological 

process and crop yield at HRU that allow for a high level of spatially detailed 

simulations. The SWAT model uses a water balance equation to estimate the different 

water balance components of water resources (e.g., blue and green waters) at both the 

subbasin and the HRU level (Neitsch et al., 2011). Blue water includes water flows 
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through or below the land surface and stored in lakes, reservoirs, and aquifers, and 

green water includes the portion of precipitation that infiltrates and is stored as soil 

moisture and then returns to the atmosphere via transpiration and evaporation. 

2.3. Model Setup 

2.3.1. Model Input and Data Collection 

SWAT requires elevation, land use, soil, and climate data (i.e., precipitation and 

temperature) to simulate the hydrological processes of the watershed. The required 

input data were collected as follows: Digital Elevation Model (DEM) from USGS 

National Elevation Dataset (USGS, 2006), land use data from the 2018 Crop data 

Layer (CDL) (USDA-NASS, 2007), and soil data from State Soil Geographic Data 

(STATSGO). Daily climate data, precipitation, and maximum and minimum 

temperature data for 19 years (2001-2019) were collected from the National Climatic 

Data Center (NCDC). For streamflow simulation, the observed monthly streamflow 

data were collected for19 years (2001-2019). 

Total of 29 subbasins was delineated for MRW, and 1294 HRUs were defined 

with 2-5-5% thresholds for land use-soil-slope. The watershed was delineated, 

defining the watershed outlet for USGS 01643000, located at the Jug bridge near 

Fredrick, Maryland (Figure 1). The hydrological process including 

evapotranspiration, surface runoff, and the channel routing were computed based on 

the Penman-Monteith (Monteith, 1965), the modified Soil Conservation Service 

(SCS) Curve Number (CN) method (Neitsch et al., 2011), and the Muskingum 

routing methods (Arnold et al., 1998), respectively. 
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2.3.2. Crop management 

For the study purpose, for two major crops, corn and soybean were selected for 

the evaluation of water reuse potentiality. In western Maryland, planting and 

harvesting date for corn depends on the number of variables and change from year to 

year. For example, corn is generally planted end of April through mid-May, and 

soybean is planted in May. Fertilizer amount is also dependent on the soil condition 

and varies from field to field. However, nitrogen is applied to corn-based on the 

targeted yield goal. For example, for 200 bushels/acre of corn, around 200 lbs/acre of 

nitrogen is applied. After observing the 35 years crop yield trend, it was noticeable 

that crop yield varied from 65-175 bushels/acre, and more than 150 bushels/acre was 

observed in the last 8 years. Thus, on average, 150 lbs/acre nitrogen was applied in 

the study. Harvesting date was fixed after 120 days of growing days suggested by 

Maryland Cooperative Extension (Lewis, 2014). 

2.3.3. Parameter Selection and Streamflow Calibration 

Based on a literature review of the existing studies on adjacent regions (Chu et al., 

2005; Sadeghi et al., 2007; Sexton et al., 2011; Sexton et al., 2010), total 17 

parameters were selected for model calibration (Table 2). The initial ranges of the 

parameters were defined based on the suggestions from the SWAT 2012 manual 

(Arnold et al., 2012). Sequential Uncertainty Fitting (SUFI-2) algorithm on SWAT-

CUP (SWAT Calibration and Uncertainty Programs) was used for model calibration 

and validation process (Abbaspour, 2008). The model was calibrated for 10 years 

(2005-2014), with a 4-year warm-up period and was validated for another 5 years 
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(2015-2019). Model performance was evaluated based on the evaluation matrix 

described on the (Moriasi et al., 2015). 

2.3.4. Crop yield Calibration 

After streamflow calibration and validation, the SWAT model was calibrated and 

validated for annual corn and soybean yield. Observed crop yields were collected for 

2005–2019 from the USDA National Agricultural Statistics Service (USDA-NASS). 

NASS reported the grain crop yields at the county level and in bushels/ac unit. 

However, SWAT estimates the crop yield at the HRU scale and presents in kg/ha 

with 20% moisture content at harvest time (Srinivasan et al., 2010). Thus, crop yields 

were estimated in kg/ha following the method used in Srinivasan et al., (2010). For 

crop yield simulation evaluation, Percent Bias (PBIAS) and Root Mean Square Error 

(RMSE) were used as the evaluation criteria. For crop yield calibration, five sensitive 

crop yield parameters related to harvest and leaf area were selected based on the 

literature review (Lee et al., 2018; Palazzoli et al., 2015; Uniyal et al., 2019).  

2.4. Scenarios Analysis 

On the western side of the Chesapeake Bay, there is very little irrigation so all 

crops are defined as rainfed. So, at the beginning model was run with rainfed 

irrigation condition and crop yield was assessed for this scenario. Although frequent 

irrigation practices are evident in Eastern Shore, according to the MDE water permit 

database, several groundwater wells assigned for crop irrigation are identified within 

this watershed. Irrigation amount, timing and frequency are determined by the 

farmers based on the weather conditions, soil moisture and growth stage.  
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Therefore, three scenarios were developed in this study to understand the impact 

on water productivity (WP):  

Scenario 1: Model run with the rainfed condition.  

Scenario 2: Model run with “auto irrigation” from the shallow aquifer was 

assigned as a source of irrigation, which is required for each HRU. Here, an 

automatic irrigation event is triggered based on a plant-stress threshold. 

Scenario 3: Model run with updated management files considering irrigation 

source “outside” of the watershed. This scenario developed considering treated 

wastewater reuse for irrigation purposes to match the expected high crop yield. 

Modified scenarios were applied for selected HRUs computing maximized irrigated 

areas based on WWTP capacity. 

The WP was calculated for each HRU using SWAT simulated crop yield, and the 

irrigation amount was used to calculate WP (kg/m3). To understand the impact of 

freshwater consumption (irrigation with groundwater) and treated wastewater use on 

crop water productivity (WP) (kg/m3) two indices were calculated:  

𝑊𝑃𝐼𝑃 =
𝐶𝑟𝑜𝑝 𝑦𝑖𝑙𝑒𝑑 (𝑘𝑔)

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 (𝑚3) + 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑚3)
 (1) 

𝑊𝑃𝑃 =
𝐶𝑟𝑜𝑝 𝑦𝑖𝑙𝑒𝑑 (𝑘𝑔)

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙(𝑚3)
 (2) 

Here, WPIP can be defined as total crop water productivity, consists of both 

rainfall and irrigation during the crop growth period. On the other hand, WPP can be 

defined as green water (rainfall) productivity, where the volume of precipitation 

consumed during the crop growth period (Luan et al., 2018). The assumption of WPP 
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was that for additional irrigation water demand, freshwater withdrawal would be 

replaced by the unlimited treated wastewater from nearby WWTP.  

3. Results and Discussion 

3.1. Streamflow 

SWAT model was calibrated and validated for both irrigation and rainfed 

management conditions, and the very minimal difference was found between these 

two simulations. SWAT model was able to capture the observed monthly streamflow 

during both calibration and validation periods (Figure 3). During calibration periods 

(2005-2014), the scores of the goodness of fit R2, NSE, KGE, and PBIAS were 0.61, 

0.56, 0.60, and 10.32%, respectively, and categorized as “satisfactory” (Moriasi et al., 

2015; Paul and Negahban-Azar, 2018). Average monthly streamflow was well 

estimated during validation periods (2015-2019) with high R2, NSE, KGE, and 

PBIAS values of 0.85, 0.83, 0.79, and 3.92%, respectively. Thus, the high values of 

NSE (≥0.80) and PBIAS (<±5%) values indicate a “very good” correlation between 

daily observed and simulated flows and R2 ( 0.75) and KGE (≥0.75) demonstrated a 

“good” agreement between these. Continuous daily climate data were available after 

2008 for all climate stations (Figure 1). This data quality resulted in better model 

performances with higher scores of the goodness of fit indices during the validation 

period. 

3.2. Crop Yield  

Table 3 is showing the adjustment of the parameters for crop yield calibration. 

Very few parameter modifications were needed to match the observed corn and 

soybean yield. As mentioned in section 2.4, the model was simulated for both rainfed 
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and irrigation management. Table 4 showed that the model with irrigation application 

was able to capture both corn and soybean yield well. Thus, outcomes from this 

model were considered as a baseline for the analysis. 

Figure 4 is showing the comparison between observed and simulated crop yields 

for calibration (2005-2014) and validation (2015-2019) periods. During calibration, 

the simulated average crop yields for corn (7817.3 kg/ha) and soybean (2282.3 kg/ha) 

were higher than the observed yield, 6553.9 kg/ha, and 2123.5 kg/ha for corn and 

soybean, respectively. As a result, during calibration, the RMSE for corn and soybean 

was 1596.8 kg/ha and 373.2 kg/ha, respectively. However, the simulated corn and 

soybean yield during validation was closer to observed data with a smaller relative 

yield reduction of 8.78% and 6.23%, respectively. Thus, RMSE was much lower 

during validation than the calibration period, 610.4 kg/ha, and 191.3 kg/ha for corn 

and soybean, respectively. The relative yield reduction for corn and soybean indicates 

that the SWAT model overestimated the crop yield during calibration and 

underestimated during the validation period (Table 3). This result also indicates that 

applied auto irrigation with a defined fertilizer amount was able to capture recent crop 

management well. 

3.3. Irrigation Requirement  

In Maryland, irrigation needs are varied from year to year that depends on 

rainfall. Based on the SWAT model, the average irrigation for a growing season was 

simulated as 5.24 mm/ha (0.51 acre-ft) for corn and 6.88 mm/ha (0.65 acre-ft) for 

soybean production. Within the simulation periods, four dry years (2005, 2007, 2010, 

and 2013) were selected to estimate the required irrigation demands for corn and 
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soybean production. Figure 5 shows the applied irrigation amount for corn and 

soybean production at the HRU scale. Irrigation amount was varied with the HRUs 

and also differed year to year (Figure 5). However, it was noticeable that the south-

eastern part of the watershed required a higher amount of irrigation compared to the 

other region.  

It is estimated that for high yield goal (200 bushels/acre), 15 inches of seasonal 

water might need, which resulted in an annual average of 128,666 GPD water 

withdrawal. It is noted that, for more than 10,000 GPD, farmers required Maryland 

water permit from MDE. Even with zero rain and dry summer may have required up 

to 25 acre-inches (27,154 gallons) of water to maintain the expected corn production. 

Based on this, the simulated irrigation amount was much lower than the field 

application. It is also noted that for more than 10,000 GPD water use Maryland 

farmers required water permits from MDE. 

Within MRW, 18 publicly owned WWTPs are selected, which have high water 

reuse potentiality with a discharge capacity from 0.04 to 6.5 MGD (Figure 6 and 

Table 5). All the WWTPs are almost uniformly distributed within the watershed. In 

this study, only publicly owned WWTPs were considered to wastewater reuse for 

irrigation. Required irrigation water for 120 growing days was calculated for each 

crop, and the detailed estimation is presented in Table 5. Since it was difficult to 

identify the exact amount of irrigation for specific lands, 10 km buffer zones were 

created from each WWTP to locate the potential corn and soybean acreage.  
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3.4. Water Productivity 

Water productivity for both indices, WPIP, and WPP, was estimated based on 

model simulated crop yield and irrigation amount. All the analysis was done at HRU 

scale and for the 2005-2014 period. Total water productivity (rainfall and irrigation) 

varied across crops. The estimated WPIP for the corn was relatively high compared to 

soybean. During 2005-2014, the average irrigation water productivity for corn and 

soybean found as 0.617 kg/m3 and 0.173 kg/m3, respectively. Under the recycled 

water use scenario, the green water productivity (only rainfall) improved up to 0.713 

kg/m3 for corn and 0.37 kg/m3 for soybean. 

For a better understanding of irrigation use during dry years, four dry years were 

selected from the (2005-2014) time period. Subbasin scale spatial variability of the 

corn and soybean water productivity are shown in Figure 7.  From Figure 7, it is clear 

that the distribution of WPIP and WPP was different for each year. The water 

productivity of total water consumption (rainfall and irrigation) varied across crops. 

In MRW, WPIP for both corn and soybean were higher on the western side of the 

watershed. 

The green water productivity (only rainfall) also varied across crops. From Figure 

7, it is clear that the overall distribution of the WPP of corn and soybean was higher 

on those subbasins where precipitation amount was lower. Again, higher productivity 

estimated for 2007 when average annual precipitation was much lower (906.6 mm) 

than in other years. For this year, the largest green water productivity for corn (>0.95 

kg/m3) and soybean (>0.3 kg/m3) found in southern subbasins where precipitation 

was lower than 800 mm. Thus, it was clear that instead of groundwater, the treated 
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wastewater uses for irrigation resulted in higher WPP, especially where the rainfall 

amount was low. 

4. Conclusion 

In this study, a quantitative method for computing the crop productivity for corn and 

soybean was established based on a distributed hydrological model (SWAT). The 

results demonstrated that the SWAT could be a useful tool in calculating water 

productivity at the watershed scale. The water productivities for corn and soybean 

have spatial variability within subbasins, which mainly influenced by precipitation 

variability. The overall distribution of the total and green water productivity showed 

that treated wastewater use for crop irrigation has a higher potentiality to increase 

water use efficiency compared to the baseline condition (groundwater use). The 

results from this study can be used to assess the water consumption volumes by water 

source and type. Another important outcome is the SWAT model is able to calculate 

water productivity both at subbasin and HRU scale rather than the administrative or 

political boundary (e.g., county). This could be useful for agricultural water managers 

to manage and allocate freshwater resources within the region properly. 
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5. Figures 

Figure 1: Location of Monocacy River Watershed. 
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Figure 2: Historical crop yield and planted acreage for (a) corn, and (b) soybean. Data 

collected from USDA-NASS for 29 years (1991-2019). 

Figure 3: The hydrograph of average monthly observed and simulated discharge 

during a) calibration (2005-2014) and b) validation (2015-2019). 
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Figure 4: Comparison of observed (NASS) and simulated (SWAT) crop yield for corn 

(i) and soybean (ii) for the (a) calibration (2005-2014) and (b) validation (2015-2019) 

period. 
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Figure 5: Simulated irrigation amount for corn and soybean production. Maps are 

presented for four dry years -2005, 2007, 2010, 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Location of WWTPs, corn and soybean acreage within watershed. Size of 

the point is showing the capacity of the WWTP. 
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Figure 4: Spatial variability of the total (WPIP) and green water productivity (WPP) 

for (a) corn and (b) soybean for four dry years: 2005, 2007, 2010, and 2013. 
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6. Tables 

Table 1: Dominant land use and land cover in Monocacy River Watershed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: List of parameters used for model calibration and validation. 

 

Parameter Definition Initial Range Calibrated Value 

SOL_K Soil saturated hydraulic conductivity (mm/hr) -25 to 25 10.95 

SOL_AWC Available soil water capacity (mm H2O/mm soil) -25 to 25 3.95 

ALPHA_BF Baseflow recession constant (days) 0.01 to 1 0.680 

GW_DELAY Groundwater delay (days) 1 to 500 113.5 

GW_REVAP Groundwater "revap" coefficient 0.01 to 0.2 0.011 

REVAPMN Re-evaporation threshold (mm H2O) 0.01 to 500 273.5 

GWQMN 
Threshold groundwater depth for return flow (mm 

H2O) 
0.01 to 5000 115.0 

CN2 Curve number for moisture condition II -0.3 to 0.3 0.011 

EPCO Plant uptake compensation factor 0.01 to 1 0.855 

ESCO Soil evaporation compensation factor 0.01 to 1 0.717 

CH_N(2) Main channel Manning's n  0.01 to 0.15 0.059 

CH_K(2) Main channel hydraulic conductivity (mm/hr) 5 to 500 165.2 

SFTMP Snowfall temperature (oC) 0 to 5 2.1 

SMFMN 
Melt factor for snow on December 21 (mm H2O/ oC-

day) 
0 to 10 7.1 

SMFMX Melt factor for snow on June 21 (mm H2O/ oC-day) 0 to 10 7.3 

SMTMP Snow melt base temperature (oC) -2 to 5 3.1 

TIMP Snow pack temperature lag factor 0 to 1 0.35 

 

 

 

Land Use & Land Cover Area (acres) Area (km2) % of Watershed Area 

Forest 189307.88 766.10 36.24 

Urban Area 68957.65 255.12 12.07 

Grassland 1243.05 5.03 0.24 

Water 662.31 2.68 0.13 

Agricultural Land 76200.67 1085.06 51.33 

Hay 75540.25 305.70 14.46 

Corn 68321.40 276.49 13.08 

Pasture 58279.52 235.85 11.16 

Soybean 56368.50 228.12 10.79 

Winter Wheat 8315.58 33.65 1.59 

Alfalfa 935.82 3.79 0.18 

Apple 362.05 1.47 0.07 
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Table 3: Default and adjusted crop yield parameters for corn and soybean applied at 

HRU scale. 

 

 

 

Table 4: Comparison of model performance for crop yield simulations between 

rainfed and irrigated conditions. 

 

 
With Irrigation Without Irrigation 

RYR (%) RMSE (kg/ha) RYR (%) RMSE (kg/ha) 

Corn 
Calibration -18.97 1596.8 -24.08 1863.5 

Validation 8.78 610.4 -11.64 873 

Soybean 
Calibration -7.48 373.2 23.81 501.8 

Validation 6.23 191.3 32.74 512.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Unit Parameter definition 
Corn Soybean 

Default Calibrated Default Calibrated 

BIO_E (kg/ha)/(MJ/m2) Radiation use efficiency or biomass energy ratio 39 40 25 25 

HVSTI (kg/ha)/( kg/ha) Harvest index for optimal growing season 0.5 0.5 0.31 0.3 

WSYF (kg/ha)/(kg/ha) Lower limit of harvest index 0.3 0.3 0.01 0.01 

BLAI (m2/m2) Maximum potential leaf area index 6 6 3 3 

DLAI  Fraction of growing season when growth declines 0.7 0.7 0.6 0.5 
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Table 5: Estimated area of corn and soybean (in km2) where reclaimed wastewater 

can be applied from neighboring WWTPs. A list of existing publicly owned WWTPs 

is included with capacity and discharge method information. 

 

Subbasin 

No 

 Area (km2)  Wastewater Treatment Plant 

 Corn Soybean  Flow (MGD) Discharge method 

3 
 

3.70 3.06 
 2.00 

Outfall to Surface 

waters 

  0.16 

4  1.22 0.93  0.31 

6  1.79 0.77  0.67 

7 
 

0.19 0.17 
 0.06 

  0.02 

8  0.43 0.62  0.18 

10  1.45 0.52  0.63 

11  1.65 1.17  0.56 Spray Irrigation 

18  0.66 0.36  0.11 

Outfall to Surface 

waters 

20  1.03 0.83  0.91 

22 
 

5.8 4.01 
 3.28 

  0.09 

23 
 

1.91 1.48 
 0.04 

  0.56 Spray Irrigation 

24  0.24 0.17  0.08 

Outfall to Surface 

waters 

26  0.85 0.63  0.63 

27, 29  4.52 4.71  6.50 

28  4.41 3.56  3.97 
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Chapter 9: Conclusion 

1. Summary of Findings 

This research provides a decision-making framework that includes both 

knowledge-based and model-based Decision Support System (DSS) for reclaimed 

wastewater use in agricultural irrigation. To do so, it has employed a systematic 

multidisciplinary approach including different disciplines such as hydrology, 

agricultural science, geography, crop science, and remote sensing. 

1.1. MCDA framework 

First, suitability areas for recycled water use in irrigation were identified for 

California (Chapter 3) and Maryland (Chapter 7) using the GIS-MCDA technique. 

Suitable agricultural lands for reclaimed wastewater irrigation were classified with 

five classes of Least to Most Suitable. Multiple criteria and sub-criteria were selected 

based on existing information about water reuse policy, suggested uses, water 

demand, and environmental-climate conditions for agricultural irrigation. Selected 

main criteria were: i) agricultural land information including crop types and location, 

ii) WWTP information including location, flow capacity, and treatment 

appropriateness, iii) climate condition, iv) groundwater vulnerability, and v) 

freshwater consumption by the agriculture sector. Based on WWTPs’ proximity, 

sufficient water availability, the “Most Suitable” and “Moderately Suitable” 

agricultural areas were found to be approximately 145.5 km2, and 276 km2 for 

California and, 26.4 km2 and 798.8 km2 for Maryland, respectively. 

A similar GIS-MCDA framework was applied for Maryland. However, the 

selection of alternative criteria (different flow category or proximity limit) and 
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suitability indicators (different users) and assigning weights were different from the 

California case study. Another difference was that instead of “freshwater 

consumption” criteria, a groundwater vulnerability map was generated for Maryland. 

To generate the groundwater vulnerability map, well density, withdrawal rate, and 

aquifer characteristics were considered. The generated geospatial vulnerability map 

was used to classify the suitable agricultural lands for reclaimed wastewater use for 

irrigation (Figure 3 and 7 in Chapter 7). For Maryland, 0.5% (26.4 km2) and 14.44% 

(798.8 km2) of total agricultural lands were selected as high and moderate suitable 

areas for reclaimed wastewater use. However, future modifications on water reuse 

regulations (i.e., permitting vegetable irrigation) can increase the suitable areas. This 

study also showed the evidence that modifications in irrigation practices and water 

reuse policies could change the amount of suitable areas. 

1.2.  Hydrologic Model 

In the next phase of this study, hydrologic modelling was used in the decision-

making framework to evaluate the different irrigation management scenarios to assess 

the optimal management solution. Two hydrologic models were developed using the 

Soil and Water Assessment Tool (SWAT) for two watersheds representing both study 

areas. The objective was to explore the reclaimed wastewater use potentiality for 

agriculture irrigation and compare its cost-effectiveness with baseline condition.  

1.2.1. Calibration and Validation Process: 

San Joaquin Watershed (SJW) was selected within California state, which has a 

diverse crop pattern with an extensive irrigation operation that features very complex 

hydrology phenomena. Therefore, an extensive calibration technique with the 
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quantification of parameter uncertainty was performed for this watershed to predict 

the streamflow (Chapter 4). Chapter 4 described the model calibration, uncertainty, 

and sensitivity analysis in detail. This chapter focuses on the California watershed, 

which has the most complex hydrological process because it is influenced by 

unregulated water management through intricate irrigation and reservoirs systems. 

Even with extended calibration techniques, it was challenging to predict its complex 

hydrologic and biophysical dynamics with limited observation. As a result, a robust 

remotely sensed Leaf Area Index (LAI) assimilation technique was applied to 

improve the models’ streamflow and crop yield computation (Chapter 5). This 

improved model was then used to evaluate the water productivity for different 

irrigation scenarios, including reclaimed water use as an irrigation source. 

The Monocacy River Watershed (MRW) was selected for water productivity 

analysis in Maryland. Unlike the SJW case study, the calibration technique for MRW 

was less tedious, and the number of calibrated parameters and their ranges were 

different than SJW. In addition, the agricultural system of MRW is defined as rainfed 

with minimal irrigation application. A holistic approach was taken for this watershed, 

where watershed streamflow and crop yield were simulated, considering both rainfed 

and irrigated systems (Chapter 8). Calibrated SWAT models were used to analyze the 

multiple irrigation management scenarios that are best suited for watershed 

characteristics (i.e., climate, irrigation policy, etc.). These scenarios were developed 

to explore the best adaptive strategies, including recycled wastewater use.  
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1.2.2. Reclaimed Wastewater Use 

Implemented irrigation scenarios were evaluated by using the “what if” scenarios. 

The rationale of these “what-if” conditions described in detail in Chapter 6 (SJW, 

California) and Chapter 8 (MRW, Maryland). Both spatial and temporal variability of 

irrigation consumptive water use and its water productivity (WP) were analyzed at the 

Hydrologic Response Unit (HRU) and subbasin level. Based on this, the potential of 

treated wastewater use was assessed to provide information for future policy 

implications. The reclaimed wastewater use scenario was developed through treated 

wastewater from existing WWTPs as a valuable alternative for emergency 

agricultural water (e.g., drought season) and to reduce freshwater (i.e., groundwater) 

withdrawal. Due to the limitation of enough economic data, crop water productivity 

(volume of freshwater consumption for a unit crop production) was estimated for 

each scenario. By comparing the WP between different irrigation scenarios, this study 

provides quantitative information indicating where improvements are needed. 

In California, using reclaimed wastewater is not only a common practice among 

farmers in some regions but also competitively sought after by many different users. 

Therefore, several irrigation saving scenarios were applied for the California 

watershed based on recommendations from various field studies (Chapter 6, Section 

2.2, Table 1). Then, the water reuse scenario was applied coupled with these 

scenarios. Since large amounts of water are applied as irrigation, a very small number 

of almond and grape areas were selected for treated wastewater use from the existing 

WWTP (Chapter 6, Figure 1, Table 2 & 3). The combination of auto irrigation (AI) 

and regulated deficit irrigation (RDI) resulted in WP more than 0.50 kg/m3 for both 
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almond and grape. Across different irrigation applications, productivity related to ET 

losses (WPET) varied from 0.35 to 0.78 kg/m3 for almond and from 0.31 to 1.1 kg/m3 

for grape, respectively. The model simulation also showed that wastewater reuse in 

separate almond and grape irrigation could reduce groundwater consumption more 

than 74% and 90% under RDI and AI scenarios, respectively.  

However, in Maryland watersheds, the probable irrigation amount was simulated 

from the model due to sufficient data scarcity. Based on the model outcomes, water 

reuse potential was calculated for selected corn and soybean areas, especially for dry 

years (Chapter 8, Figure 6, Table 5). In addition, the priority zones for irrigation 

application was mapped from the model outcomes. Due to a small amount of 

irrigation application, a large number of potential corn and soybean farms were 

selected for reclaimed wastewater use. Unlike California, in Maryland, farmer’s 

perceptions and willingness to use reclaimed wastewater have not been evaluated yet. 

Therefore, a 10 km buffer was used based on the GIS-MCDA framework to calculate 

the irrigated area. During the model simulation period (2005-2014), the average WP 

for corn and soybean found as 0.617 kg/m3 and 0.173 kg/m3, respectively. Model 

simulations suggested that under the reclaimed wastewater use scenario, the green 

water productivity (only rainfall) can be improved up to 0.713 kg/m3 for corn and 

0.37 kg/m3 for soybean. 

These results provide evidence that how an integrated knowledge-based system 

(MCDA) with a model-based (hydrologic model) approach can be used as a powerful 

tool to support decision making by providing quantitative information for reclaimed 

wastewater use in agricultural irrigation and freshwater conservation. 
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2. Research Contribution  

An integrated systematic approach, considering the interaction among land use 

and climate conditions, hydrological cycle, and agriculture management, is needed to 

evaluate the future adaptive strategies from local to regional scale. Similarly, more 

detailed exploratory research is needed to implement the water reuse project to 

provide information to the water resource managers and policymakers. However, very 

few studies have been found on the decision-making that covers all of the important 

decision criteria, especially considering multiple climate conditions. This research 

contributes to reducing the knowledge gaps for the successful implementation of 

water reuse projects by providing fundamental data and knowledge for the decision 

making process. 

This study is innovative in the sense that it investigates the convergence approach, 

coupling knowledge-based, and model-driven methods, to evaluate the relationship 

among multiple decision criteria such as hydrology, climate change (i.e. long-term 

drought index and climate condition of each region) and agricultural management for 

different watersheds. This study utilizes the standardized indicators (e.g., water 

productivity) to interpret the complex hydrological information to water resource 

managers and policymakers. It also provides a set of realistic irrigation scenarios and 

their interactions with the socio-economic and environmental aspects within the 

agricultural system.  

This study highlights the conceptual framework for the complex decision support 

system using both spatially explicit and temporally continuous geospatial and remote 

sensing data. Such decision support systems can provide valuable information to the 
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policymakers to evaluate the potentiality of reclaimed wastewater use. The results of 

this research are not only beneficial for decision-makers in agricultural water resource 

management, but also, other users such as model developers, researchers, and other 

entities can benefit from the results. 

3. Direction of future research 

To complement the presented research, it is suggested that more research should 

be conducted in the following areas: 

 In this study, for the MCDA, it was assumed that all criteria were 

independent, and no possible dependency was considered in the decision-

making process. A data-driven approach should be taken to explore the 

interaction within the criteria and sub-criteria. Of note is this approach needs 

an extensive dataset to analyze. For future research, it is suggested that other 

ranking methods (such as ANP and fuzzy analysis) should be applied to 

consider the potential dependency between decision criteria and sub-criteria. 

 Implementing the results of this research requires effective communication 

between scientists and policymakers, ensuring the application of scientific 

information to political actions. Therefore, economic and social components 

should be included in future research.  

 Maryland is facing the challenge of excess nutrient loading into the surface 

water. Reclaimed wastewater use for irrigation could be a solution for nutrient 

management and recovery. Therefore, it is suggested that the impacts of 

wastewater reuse on nutrients discharge should be explored in future studies.  
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