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Stochastic optimization (SO) is extensively studied in various fields, such as control

engineering, operations research, and computer science. It has found wide applications

ranging from path planning (civil engineering) and tool-life testing (industrial engineer-

ing) to Go-playing artificial intelligence (computer science). However, SO is usually a

hard problem primarily because of the added complexity from random variables. The

objective of this research is to investigate three types of SO problems: single-stage SO,

multi-stage SO and fast real-time parameter estimation under stochastic environment.

We first study the single-stage optimization problem. We propose Direct Gradient

Augmented Response Surface Methodology (DiGARSM), a new sequential first-order

method for optimizing a stochastic function. In this approach, gradients of the objec-

tive function with respect to the desired parameters are utilized in addition to response

measurements. We intend to establish convergence of the proposed method, as well as

traditional approaches which do not use gradients. We expect an improvement in conver-

gence speed with the added derivative information.

Second, we analyze a tree search problem with an underlying Markov decision



process. Unlike traditional tree search algorithms where the goal is to maximize the

cumulative reward in the learning process, the proposed method aims at identifying the

best action at the root that achieves the highest reward. A new tree algorithm based on

ranking and selection is proposed. The selection policy at each node aims at maximizing

the probability of correctly selecting the best action.

The third topic is motivated by problems arising in neuroscience, specifically, a

Maximum Likelihood (ML) parameter estimation of linear models with noise-corrupted

observations. We developed an optimization algorithm designed for non-convex, lin-

ear state-space model parameter estimation. The ML estimation is carried out by the

Expectation-Maximization algorithm, which iteratively updates parameter estimates based

on the previous estimates. Since the likelihood surface is in general non-convex, a model-

based global optimization method called Model Reference Adaptive Search (MRAS) is

applied.
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Chapter 1: Introduction

The problem of optimization in a stochastic environment arises from various com-

munities and applications, such as computer science, engineering and finance. Random-

ness comes into play in a number of ways. It affects the cost function to be optimized,

for instance the response of the objective function to be optimized. On the other hand,

randomness influences dynamics of the target systems, as in Markov decision problems.

Historically, decision making under uncertainty is a hard problem because of the added

complexity from randomness.

To formulate the problem, suppose X ⊂ Rd is the domain of variable x. The prob-

lem of interest is to minimize a scalar-valued function of x, f (x), which represents the

expected loss incurred by exercising action x (or maximize f (x), which would represent

the gain/profit by x). However, there are several challenges. First, the analytical form

of f (x) may be unknown, so the search for an optimum can only be done by examin-

ing sample measurements of f (x). Second, the measurements may be expensive, which

prevents exhausting all possibilities and finding the optimum by brute force. Third, in

stochastic settings, the measurement of the objective function is corrupted by noise. Take

the following inventory control problem as an illustration.

Example 1.1. Suppose that a company keeps a warehouse. On each day, it will decide
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an order quantity of a product (x). Many factors contribute to the operational cost of the

company, for example, holding cost for remaining product, and a penalty for unsatisfied

demand. The objective is to minimize the total cost. However, the demand each day is

unknown and random. Even if the same order amount is exercised everyday, the outcomes

are different. In addition, each sample takes one day to collect.

Therefore, the goal is to find a cost-efficient algorithm to solve

min
x∈X
{ f (x) = E[ f̃ (x)]}. (1.1)

In this example, f̃ (x) represents the (noisy) sum of holding cost and penalty cost.

Remark 1.1. Due to the large variations in the field of stochastic optimization, different

notation systems will be employed depending on the problem setting. For example, I

use “x” for the decision variable in single-stage optimization problem, and “a” as the

decision in another problem, i.e., the notation that is most familiar to each community is

applied.

Perhaps the most evident distinction in stochastic optimization is between the so-

lution strategies for single-stage (state-independent) problems and those for multi-stage

(state-dependent) problems. The single-stage problems aim at finding a single optimal

value of the objective function or identifying the best parameters that achieve this opti-

mum. Examples include optimizing a deterministic function with noisy samples. On the

other hand, multi-stage problems involve a sequence of decisions, and after each deci-

sion is made, the underlying state changes. The dynamics of the state transition may be

unknown and stochastic, and will have impact on the objective function. The inventory
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control problem in Example 1.1 is an illustration of such problems.

In my research, I address both types of stochastic optimization problems: single

stage and multi-stage stochastic optimization. In addition, parameter identification with

noisy observations is addressed in this work.

The rest of this dissertation is organized as follows: In Chapter 2, we proposes a

stochastic approximation algorithm, DiGARSM, which aims at optimizing an objective

function with noisy observations [1, 2]. Chapter 3 investigates a tree policy for a Monte

Carlo tree search algorithm, where the objective is locating the best action for a tree search

problem [3, 4]. Finally, we investigate a parameter estimation problem in Chapter 4. An

expectation-maximization algorithm is proposed, and a model-based global optimization

algorithm is applied to solve this nonconvex problem [5].
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Chapter 2: Single-Stage Stochastic Optimization

2.1 Background

Single-stage stochastic optimization tries to optimize a (random) objective function

subject to (random) constraints. Formally, consider the unconstrained problem

min
x∈Rd

f (x) = min
x∈Rd

E[ f̃ (x)], (2.1)

where f̃ (x) is a stochastic function with mean f (x). Besides the response samples, a

number of techniques to estimate the gradient of performance measure through samples

have been proposed. Examples of such methods include perturbation analysis [6, 7] and

the likelihood ratio method [8]. These gradient estimates have been applied extensively to

stochastic approximation [9]. If the stochastic gradient estimate of the objective function

is available, derivative-based stochastic approximation can thus be applied to solve these

kind of problems iteratively, i.e., at iteration k the point to be explored is xk, the next

iterate is found by

xk+1 = xk−akgk, (2.2)
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where ak is the step size, and gk represents the search direction.

The first such algorithm was introduced by Robbins and Monro [10] with some

mild constraints on the learning rate. Following that, numerous developments of stochas-

tic approximation emerge. For instance, [11] extends to multidimesional problems and

further proves almost sure convergence of the algorithm. More recently, many variations

of stochastic gradient descent have been investigated. For example, AdaGrad [12] adapts

the learning rate to parameters to be optimized, and Adam [13], in addition, uses the

exponentially decaying average of squared past gradients.

However, many stochastic approximation algorithms assume an unpolluted mea-

surement of stochastic gradient is available, which is not always true. For example, the

analytical form of f (x) may not be available in many engineering practice, and only noisy

samples can be obtained. In these cases, perhaps the most intuitive solution is to calculate

the numerical gradient based on the noisy samples f̃ (x) [14]. Other methods include us-

ing the samples to fit a local metamodel, and deriving the next search direction according

to the fitted model. For example, Response Surface Methodology (RSM) uses the sam-

ples to fit a linear model, and the gradient of the fitted linear model works as the search

direction.

In some settings, both (noisy) function and its gradient samples are available. There-

fore, one way to improve the existing derivative-based algorithms is to utilize the two

types of samples. Several methods were proposed addressing this problem to varying de-

grees. To illustrate, [15–17] utilize both gradient and response measurements with proven

record of improvement. Nonetheless, to the best of our knowledge, there is little litera-

ture that investigates the combining gradient and response samples with local metamodel
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methods. Therefore, it is worthy to focus on this line of research.

One of the most popular metamodel methods in simulation optimization is the

aforementioned RSM, which was first described in [18] and was applied to a real phys-

ical system. Since that time, the use of RSM has been extended successfully to many

other scientific fields such as biometrics [19], industrial engineering [20] and materials

science [21]. RSM is often applied in optimizing stochastic simulation models. One of

the earliest case studies is given in [22]. Other examples of RSM in simulation include [9]

and [23]. More recent developments of RSM in simulation are discussed in [24–26]. [27]

gives a review of developments in RSM in the period 1966-1988. More recent overviews

of RSM can be found in [28].

Traditionally, RSM views the system to be optimized as a black box and is able to

obtain the input-output pairs (variable-response pairs) from the model. It uses a sequence

of local experiments that leads to the optimum. In each local experiment, a number of

input-output pairs are observed in a small region. A metamodel, which is usually a first

or second-order polynomial model, is then used to fit the response surface. Steepest

descent (or ascent) is performed to determine the next region to be explored, where the

search direction is given by the fitted model. The fit and search process is repeated until

a satisfactory result has been obtained; see [28] for details. To determine input points to

measure in each local experiment, several design methods are presented, e.g., factorial

design, Plackett–Burman design [29] and simplex design. More complex design methods

include robust parameter design; see [30] for details. A successful design should be

examined based on several criteria, such as prediction variance [31]. Experiment design

and optimization method for multiple-response problems have also been studied. For
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example, [32] considers designs for systems with two correlated responses, and more

general multiple-response systems are studied in [33].

Though RSM is only a heuristic [28], it works well in applications when relatively

accurate response measurements are available. However, the measurement on the out-

put of the system is often noisy, which could lead to unstable behavior of RSM. In such

situation, additional stochastic gradient information can be applied to improve the per-

formance of RSM. One big question here is how to combine the gradient samples into

RSM.

With additional gradient information, a modified regression model-Direct Gradient

Augmented Regression (DiGAR)-is investigated in [34]. DiGAR fits a regression model

using both response and gradient information with a least squares approach. This regres-

sion model shows great potential in the presence of significant response measurement

noise. Under some mild assumptions, it is also shown that the estimator of the gradient

is unbiased. Therefore, we expect the modified RSM with DiGAR model will perform

better than traditional RSM with regular least-squares regression model. Moreover, since

gradient augmented RSM uses both response and gradient measurements, we also believe

that in cases where gradient information is unreliable but response measurement is accu-

rate, i.e., high variance in gradient measurement but low in response measurement, the

modified RSM should still perform well.

With both gradient and response samples available, we propose an iterative local

metamodel method called Direct Gradient Augmented Response Surface Methodology

(DiGARSM) to solve Problem Equation (2.1). DiGARSM was first proposed in [1].

However, from the practical viewpoint, there are three challenges remain to be addressed.
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Heuristically, to find a better search direction, the more reliable information should

be utilized. For instance, if the gradient measurements are noisier (e.g., have higher

variances) than the response measurements, the DiGAR process should rely more on the

responses. Generally, the uncertainty of response and gradient measurements is unknown

a priori and can only be inferred from the samples. Therefore, the first challenge is to

design a procedure that balances the uncertainties in the measurements.

Second, the original DiGARSM in [1] applies a full factorial design. Though this

provides a more accurate regression model and thus a better search direction, its compu-

tational and measurement cost is exponential in the number of dimensions, i.e., 2d where

d denotes the number of dimensions, which becomes prohibitively expensive when d is

large. Thus, our second challenge is to make the approach scaleable to high dimensions.

Another drawback in applying RSM is the lack of theoretical convergence guar-

antee. Some prior work related to the convergence property of RSM includes stopping

rules [35] and confidence regions [36]. Theoretical performance of RSM incorporated

with a trust region method is presented by [37]. However, to the best of our knowledge,

there is little research on the convergence analysis of RSM. Thus, our third challenge is

to rigorously establish that RSM, including the version augmented with direct gradient

information, converges to the optimum and investigate the convergence rate.

To address the first challenge, we propose to add weighting parameters on the loss of

the regression process. As a result, the final search direction will be composed of weighted

response and gradient measurements. Sample variance estimates will be used for weight

tuning. To address the second and third challenges, we propose to analyze DiGARSM

by framing it as a stochastic approximation algorithm and incorporating the simultaneous
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perturbation (SP) method [38] in the experiment design stage to lower the computational

and measurement cost. Under some mild assumptions, convergence analysis methods

(e.g., [14, 39]) can be applied to DIGARSM.

2.2 Problem Formulation

2.2.1 Stochastic Approximation with RSM

SA generates a sequence of iterates {xk} using the recursion Equation (2.2). Cen-

tral to such algorithms is the estimation of gradient direction gk, and RSM provides one

method to estimate gk with appropriate designs: input-output samples around iterate xk

are taken, and used to fit a linear model. Then the search direction gk is provided by the

fitted linear model. Suppose that at iteration k we sample symmetrically in each dimen-

sion of xk with a full-factorial design, i.e., sample xk, j := xk + ckθ j, where ck is a positive

sequence and θ j ∈ {[±t1,±t2, . . . ,±td]T} is the perturbation vector and the l-th compo-

nent takes value either +tl or −tl . For simplicity, let S d be the set of indices for θ j, i.e.,

θ j takes all values in {[±t1,±t2, . . . ,±td]T} for j ∈S d . Further assume that each point

is sampled n times (in total, n2d samples). The i-th response and gradient sample at x are

denoted by f̃ (x,ωi) and ∇̃ f (x,ωi), respectively. Denote the optimal point by

x∗ = argmin
x

f (x).

Traditional RSM would use the n sets of noisy response samples to fit a linear model

9



of the form

f̂ (x) = βk0 +β
T
k x,

where βk = [βk1, . . . ,βkd]
T . The loss function is given by the sum of squared errors

L = ∑
j∈S d

n

∑
i=1

( f̃ (xk, j,ωi)− f̂ (xk, j))
2

= ∑
j∈S d

n

∑
i=1

( f̃ (xk, j,ωi)−βk0−β
T
k xk, j)

2,

where f̃ (xk, j,ωi) denotes the i-th response sample taken at xk, j for i = 1,2, . . . ,n. The

optimal parameters β̂k0 and β̂k are found by minimizing the loss function. Taking the

derivative and setting to 0 yields the optimal β̂k:

β̂k =[ ∑
j∈S d

n

∑
i=1

(xk, j− x̄k)(xk, j− x̄k)
T ]−1[ ∑

j∈S d

n

∑
i=1

(xk, j− x̄k)( f̃ (xk, j,ωi)− ¯̃fk)], (2.3)

where x̄k and ¯̃fk are the means over all sampled points and sample responses at iteration

k, respectively. The gradient estimate is then given by β̂k, i.e., gk = β̂k.

Remark 2.1. When candidate points are sampled symmetrically (e.g., full factorial de-

sign in this work), x̄k = xk, the sample response mean is defined by

¯̃fk =
1

n2d ∑
j∈S d

n

∑
i=1

f̃ (xk, j,ωi). (2.4)
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2.2.2 Stochastic Approximation with Direct Gradient Augmented RSM

Now we present DiGARSM, in which we assume both response measurements and

direct gradient estimates are available at the time of sampling, i.e., we can acquire both

f̃ (xk, j,ωi) and ∇̃ f (xk, j,ωi) when we sample point xk, j. With the additional gradient infor-

mation, we slightly modify the linear model to be fit in order to incorporate the gradient.

Following [34], we fit the response and gradient samples to

f̂ (x) =βk0 +β
T
k x, (2.5)

∇̂ f (x) =βk = [βk1,βk2, . . . ,βkd]
T . (2.6)

Since there is an additional fitting term, the loss function is therefore revised accordingly:

L =α0 ∑
j∈S d

n

∑
i=1

( f̃ (xk, j,ωi)− f̂ (xk, j))
2+

∑
j∈S d

n

∑
i=1

(∇̃ f (xk, j,ωi)− ∇̂ f (xk, j))
TW (∇̃ f (xk, j,ωi)− ∇̂ f (xk, j))

=α0 ∑
j∈S d

n

∑
i=1

( f̃ (xk, j,ωi)−βk0−β
T
k xk, j)

2+

∑
j∈S d

n

∑
i=1

(∇̃ f (xk, j,ωi)−βk)
TW (∇̃ f (xk, j,ωi)−βk), (2.7)

where α0 is a weight parameter and W is a diagonal weight matrix W = diag([α1,α2, . . . ,αd]),

with ∑
d
i=0 αi = 1 and αi ≥ 0 ∀i = 0,1, . . . ,d. The weights are intended to balance between

each dimension of gradient estimates and responses.

The additional term ∑ j∈S d ∑
n
i=1(∇̃ f (xk, j,ωi)−βk)

TW (∇̃ f (xk, j,ωi)−βk) represents
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the weighted squared error between the gradient samples and the fitted model, which re-

stricts the derivative of the fitted linear model to be close to the noisy observations.

The minimizing βk (hence gk) is given by

β̂k =[α0 ∑
j∈S d

n

∑
i=1

(xk, j− x̄k)(xk, j− x̄k)
T +2dnW ]−1

[α0 ∑
j∈S d

n

∑
i=1

(xk, j− x̄k)( f̃ (xk, j,ωi)− ¯̃fk)+2dnW ∇̃ fk], (2.8)

where ∇̃ fk is the sample mean of gradient measurements defined analogously to Equa-

tion (2.4).

Note that if α0 is set to 0, only gradient information is used, and DiGARSM be-

comes a Robbins-Monro (RM) stochastic approximation [10]. When α0 is set to 1 (W is

a matrix of 0’s), only response samples are utilized, and DiGARSM reduces to regular

RSM as in Equation (2.3), which will be referred to as the “Standard” form and will be

evaluated in Section 2.6.

The algorithmic description of RSM and DiGARSM stochastic approximation is

given in Algorithm 1.

2.3 Weight Tuning in DiGARSM

One question that follows naturally after introducing weight parameters is how to

set them in practice. In this section, we present the optimal choices of weights for Di-

GARSM, where the optimality is evaluated by the variance of the gradient estimator.

Proposition 2.1 (DiGARSM variance minimization). For the gradient estimator provided
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Algorithm 1: (DiGA)RSM Stochastic Approximation.
Input: Initial point x0, weights α0, . . . ,αd (for DiGARSM), positive sequences

{ak} and {ck}, perturbations {tl}d
l=1, number of samples/replications for

each point n
Output: Optimal point x∗ = argminx f (x)

1 k← 0
2 while stopping rule not met do
3 for i = 1,2, . . . ,n and j = 1,2, . . . ,2d do
4 Calculate the set of points to be sampled:
5 xk, j = xk + ckθ j, θ j ∈ {[±t1,±t2, . . . ,±td]T}
6 Obtain samples of response and gradient:
7 f̃ (xk, j,ωi) and ∇̃ f (xk, j,ωi)
8 end
9 Calculate gradient estimate gk with Equation (2.3) (RSM) or Equation (2.8)

(DiGARSM)
10 xk+1← xk−akgk
11 k← k+1
12 end
13 return xk

by DiGARSM in Equation (2.8), assume homogeneous variance and independence be-

tween different sample points, i.e.,

1. Var( f̃ (xk, j,ωi)) = σ2
f for all j = 1,2, . . . ,2n and i = 1,2, . . . ,n,

2. Var(∇̃l f (xk, j,ωi))=σ2
g,l for all j = 1,2, . . . ,2n and i= 1,2, . . . ,n, where ∇̃l f (xk, j,ωi)

is the l-th gradient component,

3.

Cov( f̃ (xk, j,ωi), ∇̃l f (xk,m,ωn)) =


σ2

f/g,l, i f i = n and j = m

0, otherwise

,

and

4. f̃ (xk, j,ωi)⊥ f̃ (xk,m,ωn) and ∇̃l f (xk, j,ωi)⊥ ∇̃l f (xk,m,ωn) for all i 6= n or j 6= m,

13



then the variance of the l-th element of the gradient estimator is minimized if the weights

are inversely proportional to the variances:

α∗0
α∗l

=
σ2

g,l

σ2
f
, l = 1,2, . . . ,d, (2.9)

i.e.,

α
∗
0 =

1
1+∑

d
m=1 σ2

f /σ2
g,m

, (2.10)

α
∗
l =

σ2
f

σ2
g,l
· 1

1+∑
d
m=1 σ2

f /σ2
g,m

, = 1,2, . . . ,d. (2.11)

Proof. Under DiGARSM settings, the gradient estimator is given by Equation (2.8). Note

that

2d

∑
j=1

n

∑
i=1

(ckθ j)(ckθ j)
T =α0n2dc2

kΘ,

where Θ = diag([t2
1 , t

2
2 , . . . , t

2
d ]). Therefore,

β̂k =[α0

2d

∑
j=0

n

∑
i=1

(ckθ j)(ckθ j)
T +2dnW ]−1[α0

2d

∑
j=1

n

∑
i=1

(ckθ j)( f̃ (xk + ckθ j,ωi)− ¯̃fk)+2dnW ∇̃ fk]

=
1

n2d Nk[α0

2d

∑
j=1

n

∑
i=1

(ckθ j)( f̃ (xk + ckθ j,ωi)− ¯̃fk)+2dnW ∇̃ fk],

14



where

Nk =[α0c2
kΘ+W ]−1

=diag((α0c2
kt2

1 +α1)
−1,(α0c2

kt2
2 +α2)

−1, . . . ,(α0c2
kt2

d +αd)
−1).

The l-th component of β̂k can be expressed by

β̂k,l =eT
l β̂k

=
1

n2d eT
l Nk[α0

2d

∑
j=1

n

∑
i=1

(ckθ j)( f̃ (xk + ckθ j,ωi)− ¯̃fk)+2dnW ∇̃ fk]

=
1

n2d(α0c2
kt2

l +αl)
eT

l [α0

2d

∑
j=1

n

∑
i=1

(ckθ j f̃ (xk + ckθ j,ωi))+2dnW ∇̃ fk]

the term associated with ¯̃fk vanishes due to the symmetric property of θ j, i.e., ∑
2d

j=1 θ j = 0,

so

β̂k,l =
1

n2d(α0c2
kt2

l +αl)
[α0

2d

∑
j=1

n

∑
i=1

(cktl f̃ (xk + ckθ j,ωi))+2dn(αl)eT
l ∇̃ fk]

=
α0

n2d(α0c2
kt2

l +αl)

2d

∑
j=1

n

∑
i=1

[cktl f̃ (xk + ckθ j,ωi)+
αl

α0
∇l f̃ (xk + ckθ j,ωi)].

15



By homogeneity, the variance of the l-th element of the gradient estimator is given by

Var(β̂k,l) =[
α0

n2d(α0c2
kt2

l +αl)
]2

2d

∑
j=1

n

∑
i=1

Var(cktl f̃ (xk + ckθ j,ωi)+
αl

α0
∇l f̃ (xk + ckθ j,ωi))

=[
α0

n2d(α0c2
kt2

l +αl)
]2

2d

∑
j=1

n

∑
i=1

[c2
kt2

l Var( f̃ (xk + ckθ j,ωi))+(
αl

α0
)2Var(∇l f̃ (xk + ckθ j,ωi))+

2ckθ j,l
αl

α0
Cov( f̃ (xk + ckθ j,ωi),∇l f̃ (xk + ckθ j,ωi))]

=[
α0

n2d(α0c2
kt2

l +αl)
]2

2d

∑
j=1

n

∑
i=1

[c2
kt2

l σ
2
f +(

αl

α0
)2

σ
2
g,l +2ckθ j,l

αl

α0
σ

2
f/g,l]

=[
α0

n2d(α0c2
kt2

l +αl)
]2

2d

∑
j=1

n

∑
i=1

[c2
kt2

l σ
2
f +(

αl

α0
)2

σ
2
g,l],

where the last equation follows from the symmetric property of θ j,l and θ j,l ∈ {−tl, tl}.

Therefore,

Var(β̂k,l) =
1

[n2d(α0c2
kt2

l +αl)]2

2d

∑
j=1

n

∑
i=1

[α2
0 c2

kt2
l σ

2
f +α

2
l σ

2
g,l]

=
1

n2d(α0c2
kt2

l +αl)2 (α
2
0 c2

kt2
l σ

2
f +α

2
l σ

2
g,l)

=
1

n2d(c2
kt2

l + rl)2 (c
2
kt2

l σ
2
f + r2

l σ
2
g,l),

where rl = αl/α0. Taking derivative w.r.t. rl ,

dVar(β̂k,l)

drl
=

1
n2d(c2

kt2
l + rl)3 (2c2

kt2
l σ

2
g,lrl−2c2

kt2
l σ

2
f ). (2.12)

Setting the derivative in Equation (2.12) to 0 yields the optimal weight ratio Equation (2.9).

Combining the normalizing condition (i.e., ∑
d
i=0 αi = 1) yields Equations (2.10) and (2.11).
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Since d2Var(β̂k,l)

dr2
l

> 0 when evaluated at r∗l , the proof is complete.

Remark 2.2. We do not make any assumption on how the randomness comes into the

measurement (e.g., additive, multiplicative, etc.) for the weight tuning. We only assume

that the measurement noises of responses and gradients are sample-wise independent.

Remark 2.3. When the actual variances of measurement noises are unknown, they can be

approximated by sample variances, which can be applied to estimate the optimal weights.

We evaluate weights estimated using sample variances in Section 2.6.

2.4 DiGARSM with Simultaneous Perturbation (SP-DiGARSM)

One limitation of DiGARSM with full factorial design is that the sampling and

computation effort required is exponential in the number of dimensions, thus making

DiGARSM impractical for solving problems in high dimensions. Therefore, we con-

sider employing the simultaneous perturbation technique in DiGARSM (SP-DiGARSM),

which only requires two gradient and response measurements per iteration. Specifically,

let ∆k ∈ Rd be a vector of d i.i.d. zero-mean random variables. At iteration k, SP-

DiGARSM obtains response samples f̃ (xk + ck∆k,ωi), f̃ (xk− ck∆k,ωi) and direct gra-

dient samples ∇̃ f (xk + ck∆k,ωi), ∇̃ f (xk− ck∆k,ωi) for i = 1,2, . . . ,n.

Similar to DiGARSM, fit the samples to the augmented linear model in Equa-

tions (2.5) and (2.6) by minimizing the loss function
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L =α0

n

∑
i=1

[( f̃ (xk + ck∆k,ωi)− f̂ (xk + ck∆k))
2 +( f̃ (xk− ck∆k,ωi)− f̂ (xk− ck∆k))

2]+

n

∑
i=1

(∇̃ f (xk + ck∆k,ωi)− ∇̂ f (xk + ck∆k))
TW (∇̃ f (xk + ck∆k,ωi)− ∇̂ f (xk + ck∆k))+

n

∑
i=1

(∇̃ f (xk− ck∆k,ωi)− ∇̂ f (xk− ck∆k))
TW (∇̃ f (xk− ck∆k,ωi)− ∇̂ f (xk− ck∆k)).

The minimizing βk (therefore gk) for SP-DiGARSM is given by

β̂k =[α0

n

∑
i=1

((xk + ck∆k− x̄k)(xk + ck∆k− x̄k)
T +(xk− ck∆k− x̄k)(xk− ck∆k− x̄k)

T )+2nW ]−1

[α0

n

∑
i=1

((xk + ck∆k− x̄k)( f̃ (xk + ck∆k,ωi)− ¯̃fk)+(xk− ck∆k− x̄k)( f̃ (xk− ck∆k,ωi)− ¯̃fk))+

2nW ∇̃ fk]. (2.13)

Similar to DiGARSM, when α0 = 0, only gradient information is utilized. On the

other hand, setting α0 = 1 (i.e., W is a matrix of 0’s and gradient information is unused)

leads to an infinite number of solutions to β̂k.

An algorithmic description of SP-DiGARSM is presented in Algorithm 2.

2.5 Convergence Analysis

In this section, we present convergence theorems for both DiGARSM and SP-

DiGARSM. Two types of convergence are established, i.e., almost sure convergence and

mean-squared convergence, where a convergence rate analysis is provided for the latter
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Algorithm 2: SP-DiGARSM Stochastic Approximation.
Input: Initial point x0, weights α0, . . . ,αd , positive sequences {ak} and {ck},

uniformly bounded zero mean input distribution of ∆k, number of
samples/replications for each point n

Output: Optimal point x∗ = argminx f (x)
1 k← 0
2 while stopping rule not met do
3 Generate i.i.d. samples {∆k,i}d

i=1, i = 1,2, . . . ,d
4 for i = 1,2, . . . ,n do
5 Obtain samples of response and gradient:
6 f̃ (xk + ck∆k,ωi) and ∇̃ f (xk + ck∆k,ωi)

7 f̃ (xk− ck∆k,ωi) and ∇̃ f (xk− ck∆k,ωi)
8 end
9 Calculate gradient estimate gk by Equation (2.13)

10 xk+1← xk−akgk
11 k← k+1
12 end
13 return xk

under different choices of ak and ck. The proof for DiGARSM is similar to that of SP-

DiGARSM and can be carried out analogously, which is therefore omitted for clarity.

Define the bias and error of gradient estimate β̂k, respectively, by

b(xk) =E[β̂k−∇ f (xk)|xk], (2.14)

ek =β̂k−E[β̂k|xk]. (2.15)

For the sake of presentation, for SP-DiGARSM, define

Dk =∆k∆
T
k ,

Mk =(α0c2
kDk +W )−1.

We first prove that the estimators provided by DiGARSM and SP-DiGARSM are

asymptotically unbiased. Then we apply results from [39] and [40] to establish conver-
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gence with appropriate regularity assumptions.

2.5.1 Convergence of Stochastic Approximation with SP-DiGARSM

Lemma 2.1 (SP-DiGARSM asymptotic unbiasedness). Suppose {xk} is generated via

recursion Equation (2.2) using the SP-DiGARSM gradient estimator given by Equa-

tion (2.13). If

1. {∆k, j}d
j=1 are symmetrically i.i.d. with mean zero, uniformly bounded with finite

inverse moments, i.e., there exists K0 > 0 such that 0 < |∆k, j| ≤ K0 ∀k, j, and are

independent from the response and gradient measurement noise,

2. f is three-times differentiable, and | f (3)i, j (·)| is uniformly bounded by K1 > 0,

3. the positive sequence {ck} converges to 0 in the limit, i.e., limk→∞ ck = 0, and

4. the measurement noise is additive for both gradient and response with mean 0, i.e.,

f̃ (x) = f (x)+ ε , ∇̃ f (x) = ∇ f (x)+δ ,

then the stochastic gradient estimator provided by Equation (2.13) is asymptotically un-

biased, i.e.,

b(xk)→ 0 at the rate of O(c2
k) as k→ ∞.
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Proof.

β̂k =[2α0

n

∑
i=1

(ck∆k)(ck∆k)
T +2nW ]−1

[α0

n

∑
i=1

(ck∆k)( f̃ (xk + ck∆k,ωi)−α0

n

∑
i=1

(ck∆k)( f̃ (xk− ck∆k,ωi)− ¯̃fk)+2nW ∇̃ fk].

Note that

2α0

n

∑
i=1

(ck∆k)(ck∆k)
T =2nα0c2

kDk,

where Dk = ∆k∆T
k , and ¯̃fk is a constant with respect to i. Then, the estimator can be

rewritten as

β̂k =(2nα0c2
kDk +2nW )−1[α0ck∆k

n

∑
i=1

( f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi))+2nW ∇̃ fk]

=
1

2n
Mk[α0ck∆k

n

∑
i=1

( f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi))+2nW ∇̃ fk],

where Mk = (α0c2
kDk +W )−1 .

For ease of presentation, let

β̂
1
k =

1
2n

Mkα0ck∆k

n

∑
i=1

( f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi)),

β̂
2
k =

1
2n

Mk2nW ∇̃ fk = MkW ∇̃ fk.
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We first consider β̂ 1
k .

E[β̂ 1
k |xk] =E[

1
2n

Mkα0ck∆k

n

∑
i=1

( f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi))|xk]

=E[
1

2n
Mkα0ck∆k

n

∑
i=1

( f (xk + ck∆k)− f (xk− ck∆k))|xk],

where the second equation follows from the additive noise assumption.

Using a Taylor’s series expansion, we have

f (xk± ck∆k) = f (xk)± ck〈∇ f (xk),∆k〉+
c2

k
2
〈∇2 f (xk)∆k,∆k〉±

c3
k

6
∇

3 f (t±k )(∆k⊗∆k⊗∆k),

where t±k are on the line segment between xk and xk± ck∆k. Therefore,

E[β̂ 1
k |xk] =E[

1
2n

Mkα0ck∆k

n

∑
i=1

( f (xk + ck∆k)− f (xk− ck∆k))|xk]

=E[Mkα0c2
k∆k〈∇ f (xk),∆k〉+

1
12

Mkα0c4
k∆k(∇

3 f (t+k )−∇
3 f (t−k ))(∆k⊗∆k⊗∆k)|xk]

=E[Mkα0c2
k∆k∆

T
k ∇ f (xk)+

1
12

Mkα0c4
k∆k(∇

3 f (t+k )−∇
3 f (t−k ))(∆k⊗∆k⊗∆k)|xk].

Now we consider E[β̂ 2
k |xk].

E[β̂ 2
k |xk] =MkW ∇̃ fkMkW

1
2
(∇ f (xk + ck∆k)+∇ f (xk− ck∆k)).

Similarly, the ∇ f (xk + ck∆k) can be expressed by

∇ f (xk± ck∆k) =∇ f (xk)± ck∇
2 f (xk)∆k +

c2
k

2
∇

3 f (s±k )(∆k⊗∆k),
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where s±k are on the line segment between xk and xk± ck∆k. Therefore,

E[β̂ 2
k |xk] =E[MkW∇ f (xk)+

c2
k

2
MkW (∇3 f (s+k )+∇

3 f (s−k ))(∆k⊗∆k)|xk].

Combining the two terms yields

b(xk) =E[β̂k−∇ f (xk)|xk]

=E[Mkα0c2
k∆k∆

T
k ∇ f (xk)+MkW∇ f (xk)−∇ f (xk)

+
1

12
Mkα0c4

k∆k(∇
3 f (t+k )−∇

3 f (t−k ))(∆k⊗∆k⊗∆k)

+
c2

k
2

MkW (∇3 f (s+k )+∇
3 f (s−k ))(∆k⊗∆k)|xk]

=c2
kE[

1
12

Mkα0c2
k∆k(∇

3 f (t+k )−∇
3 f (t−k ))(∆k⊗∆k⊗∆k)

+
1
2

MkW (∇3 f (s+k )+∇
3 f (s−k ))(∆k⊗∆k)|xk]

=c2
kE[Mkα0c2

kDk
∆k

12∆T
k ∆k

(∇3 f (t+k )−∇
3 f (t−k ))(∆k⊗∆k⊗∆k)

+MkW
∇3 f (s+k )+∇3 f (s−k )

2
(∆k⊗∆k)|xk].

Denote the bias of the l-th element by bl(xk). Under Assumptions 1 and 2 and using sim-

ilar analysis as that in Lemma 1 of [38], there exist positive number K that upper bounds

each element of ∆k
12∆T

k ∆k
(∇3 f (t+k )−∇3 f (t−k ))(∆k⊗∆k⊗∆k) and ∇3 f (s+k )+∇3 f (s−k )

2 (∆k⊗∆k).
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Therefore,

bl(xk) =c2
kE[{α0c2

kMkDk
∆k

12∆T
k ∆k

(∇3 f (t+k )−∇
3 f (t−k ))(∆k⊗∆k⊗∆k) (2.16)

+MkW
∇3 f (s+k )+∇3 f (s−k )

2
(∆k⊗∆k)}l|xk]

≤c2
kE[{α0c2

kMkDkK1T +MkWK1T}l|xk]

≤c2
kK, (2.17)

where 1T = [1,1, . . . ,1]. By Assumption 3, bl(xk)→ 0 as k→ ∞ as desired.

With Lemma 2.1, we are ready to state our main convergence theorems. We show

that, under different conditions, the proposed (SP-)DiGARSM converges to the optimum

with probability 1 (Theorem 2.1) and in mean square (Theorem 2.2).

Theorem 2.1. Let {xk} be a sequence generated via recursion Equation (2.2) using

SP-DiGARSM with gradient estimator given by Equation (2.13). If the conditions from

Lemma 2.1 in addition to the following are satisfied:

(A1) there exist positive constants K2 and K3 such that E[( f̃ (xk ± ck∆k))
4] ≤ K2 and

E[(∇l f (xk + ck∆k)
4)]≤ K3 for all k > 0 and l = 1,2, . . . ,d,

(A2) There exist positive sequences {ak} and {ck} such that ck→ 0 as n→∞, ∑
∞
k=1 ak =

∞ and ∑
∞
k=1 a2

k < ∞ ;

(A3) for all n, ‖xn‖< ∞ a.s.;

(A4) x∗ is an asymptotically stable solution of the differential equation dx(t)
dt =−∇ f (x);

and
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(A5) for D(x∗) = {x0 : limt→∞ x(t|x0) = x∗} where x(t|x0) denotes the solution to the

differential equation of (A4) with initial condition x0 (i.e., D(x∗) is the domain of

attraction), there exists a compact S ⊆ D(x∗) such that xk ∈ S infinitely often for

almost all sample points;

then, as k→ ∞,

xk→ x∗ a.s. (2.18)

Proof. First note that the largest eigenvalue of matrix Mk (denoted by λm) bounded by

min(K4c−2
k ,1/λW

m ), where K4 > 0 and λW
m is the largest eigenvalue of W . Since matrices

Dk and W are symmetric and positive semi-definite, by Courant–Fischer–Weyl min-max

principle (https://en.wikipedia.org/wiki/Weyl%27s_inequality), we have

eig(α0c2
kDk +W )≥max(eig(α0c2

kDk),eig(W ))≥max(α0‖∆k‖2c2
k ,λ

W
m ).

Therefore,

λm ≤min(1/(α0‖∆k‖2c2
k),1/λ

W
m ) = min(K4c−2

k ,1/λ
W
m ).

Since ck → 0 as k → ∞, λm will be bounded by 1/λW
m for k sufficiently large. From

Lemma 2.2.1 and Theorem 2.3.1 in [39], if (A2) to (A5) are satisfied, Equation (2.18)

holds if

(a) ‖b(xk)‖< ∞ for all k and b(xk)→ 0 as k→ ∞ a.s., and
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(b) limk→∞ P(supm≥k ‖∑
m
q=k aqeq‖ ≥ η) = 0 for all η > 0.

(a) follows directly from Lemma 2.1.

For (b), we start from proving that

∞

∑
q=k

a2
qE[‖eq‖2]< ∞. (2.19)

The l-th component of the variance of gradient estimate is bounded by

E[(β̂k,l)
2] =E[(β 1

k,l +β
2
k,l)

2],

where

β̂
1
k,l =

α0ck

2n
eT

l Mk∆k

n

∑
i=1

( f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi)),

β̂
2
k,l =eT

l MkW ∇̃ fk,

where el denotes the unit vector in the l-th direction. Apply inequality

[1
n

n

∑
i=1

ai

]2
≤ 1

n

n

∑
i=1

a2
i

then

E[(β̂k,l)
2]≤2E[(β 1

k,l)
2 +(β 2

k,l)
2].
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Apply Cauchy-Schwartz inequality,

E[(β 1
k,l)

2] =α
2
0 c2

kE[(e
T
l Mk∆k)

2(
1

2n

n

∑
i=1

f̃ (xk + ck∆k,ωi)− f̃ (xk− ck∆k,ωi))
2]

≤α
2
0 c2

kE[(e
T
l Mk∆k)

2(
1

2n

n

∑
i=1

f̃ (xk + ck∆k,ωi)
2 + f̃ (xk− ck∆k,ωi)

2)]

≤α
2
0 c2

kE[(e
T
l MK∆k)

4]
1
2E[(

1
2n

n

∑
i=1

f̃ (xk + ck∆k,ωi)
2 + f̃ (xk− ck∆k,ωi)

2)2]
1
2

≤α
2
0 c2

kE[(e
T
l Mk∆k)

4]
1
2E[(

1
2n

n

∑
i=1

f̃ (xk + ck∆k,ωi)
4 + f̃ (xk− ck∆k,ωi)

4)]
1
2

≤K2
2 α

2
0 c2

kE[(e
T
l MK∆k)

4]
1
2 .

Since

E[(eT
l MK∆k)

4]≤E[(eT
l MKel)

2(∆T
k MK∆k)

2]≤ λ
4
mE[‖∆k‖4

2]≤ d2
λ

4
mK4

0

E[(β 1
k,l)

2] is bounded by

E[(β 1
k,l)

2]≤dλ
2
mK2

0 K2
2 α

2
0 c2

k . (2.20)
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Similarly,

E[(β 2
k,l)

2] =E[(eT
l MKW ∇̃ fk)

2]

≤E[(eT
l MK∇̃ fk)

2]

≤E[(eT
l MKel)(∇̃ fk

T
MK∇̃ fk)]

=λ
2
mE[‖∇̃ fk‖2

2]

=λ
2
mE[

d

∑
l=1

(
1

2n

n

∑
i=1

(∇̃ f (xk + ck∆k,ωi)+ ∇̃ f (xk− ck∆k,ωi)))
2]

≤ 1
2n

λ
2
mE[

d

∑
l=1

n

∑
i=1

(∇̃ f (xk + ck∆k,ωi)
2 + ∇̃ f (xk− ck∆k,ωi)

2)]

≤dλ
2
mK2

3 .

Thus, the variance is bounded by

E[(β̂k,l)
2]≤2(dλ

2
mK2

0 K2
2 α

2
0 c2

k +dλ
2
mK2

3 K2
4 )≤ dK5/(λ

W
m )2 (2.21)

for some constant K5 > 0, as ck→ 0. Since

E[‖ek‖2] = E[eT
k ek] = E[(β̂k−E[β̂k|xk])

T (β̂k−E[β̂k|xk])]

= E[β̂ T
k β̂k]−E[E[β̂k|xk]

TE[β̂k|xk]]≤ E[β̂ T
k β̂k],

the squared norm of error at iteration k is bounded by

E[‖ek‖2]≤ E[‖β̂k‖2]≤ 2d2(λ 2
mK2

0 K2
2 α

2
0 c2

k +K2
3 K2

4 c−4
k ). (2.22)
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By Inequality (2.22) and (A2), Inequality (2.19) holds. Apply Doob’s inequality to the

martingale sequence {∑m
q=n aqeq(xq)}m≥n and Fubini’s theorem to obtain,

P(sup
m≥k
‖

m

∑
q=k

aqeq‖ ≥ η)≤η
−2E[‖

∞

∑
q=k

aqeq‖2] = η
−2

∞

∑
q=k

a2
qE[‖eq‖2],

where the equality follows from

E[eT
p eq] = E[E[eT

p eq|xq]] = E[eT
pE[eq|xq]] = 0, ∀p < q.

Since ∑
∞
q=k a2

qE[‖eq‖2] converges, (b) holds, which completes the proof.

Under different conditions, it can be shown that SP-DiGARSM converges in mean

square at the rate of O(k−1):

Theorem 2.2. Let {xk} be a sequence generated via recursion Equation (2.2) using SP-

DiGARSM with gradient estimator given by Equation (2.13). If conditions from Lemma 2.1

in addition to the following are satisfied:

1. The objective function f (x) is strongly convex, i.e., there exists a positive number µ

such that

f (y)≥ f (x)+(y− x)T
∇ f (x)+

1
2

µ‖y− x‖2;

and

2. the stepsize ak and finite difference ck have form ak = a0/(1+ k+A)α and ck =

c0/(1+ k)γ , respectively, where a0,c0,α,γ > 0, A ≥ 0, 2aµ > 1− 2γ and A,a0,α
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are chosen such that 1−2µa1 > 0.

Then, xk converges to x∗ in mean square at the rate of

E[‖xk− x∗‖2] =


O(k−α) if γ ≥ α/4,

O(k−4γ) if γ < α/4.

We provide a sketch of proof in this dissertation. The derivations can be carried

out using similar arguments as that in [40], therefore we refer readers to their paper for

details.

Proof. Denote the expected squared error at iteration k by

Ek = E[‖xk− x∗‖2],

then, we can write

Ek+1 =E[‖xk−akβ̂k− x∗‖2]

=Ek +a2
kE[‖β̂k‖2]−2akE[(xk− x∗)T

β̂k],
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and

E[(xk− x∗)T
β̂k] =E[(xk− x∗)T (β̂k−∇ f (xk))]+E[(xk− x∗)T

∇ f (xk)]

≥E[E[(xk− x∗)T (β̂k−∇ f (xk))|xk]]+µEk (strong convexity)

=E[(xk− x∗)T b(xk)]+µEk

≥−E[‖(xk− x∗)‖ · ‖b(xk)‖]+µEk (Cauchy-Schwartz inequality) .

Therefore,

Ek+1 ≤(1−2akµ)Ek +a2
kE[‖β̂k‖2]+2akE[(xk− x∗)T b(xk)].

Since 1−2µak < 1 ∀k ≥ 1, it can be shown that

Ek+1 ≤ TkE1 +Tk

k

∑
i=1

a2
i

Ti
E[‖β̂i‖2]+Tk

k

∑
i=1

2ai

Ti
E[(xi− x∗)T b(xi)], (2.23)

where Tk = ∏
k
i=1(1−2µai).

Since E[‖β̂k‖2] = O(1) (from inequality (2.21)) and ‖b(xk)‖ = O(c2
k) (from in-

equality (2.17)), by similar arguments of Theorem B.1 in [40], Ek converges in mean

square, and if we assume Ek converges at the rate of O(k−2t) with unknown t > 0, the

convergence rate of each term in Inequality (2.23) is summarized in Table 2.1, where the

convergence rate of Ek will be the slowest rate of the three terms.

The next step is to solve t. Since we assume 1− 2akµ > 0, ∀k, the first term will

converge faster than the first and second term. For 1
2 < α < 1, suppose the third term
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α = 1 1
2 < α < 1

first term O(k−2a0µ) O(exp(−2a0µ(1+ k+A)1−α/(1−α)))

second term O(k−1) O(k−α)

third term O(k−(t+2γ)) O(k−(t+2γ))

Ek O(k−2t) O(k−2t)

Table 2.1: Convergence rate of each term in Inequality (2.23)

converges faster than the second term, i.e., t +2γ ≥ α , then 2t = α and γ ≥ α/4. In this

case, t = α/2 and Ek converges at the rate of O(k−α). Similarly, suppose the second term

converges faster than the third term, i.e., t+2γ < α , then 2t = t+2γ and γ < α/4. In this

case, t = 2γ and Ek converges at the rate of O(k−4γ). Similar analysis can be done for the

α = 1 case. In summary, we have

E[‖xk− x∗‖2] =


O(k−α) if γ ≥ α/4,

O(k−4γ) if γ < α/4,

with optimal rate achieved at O(k−1) at α = 1 and γ ≥ 1/4.

From Theorem 2.2, the optimal convergence rate of SP-DiGARSM can be achieved

at O(k−1) when α = 1 and γ ≥ 1/4.

Remark 2.4. When only response information is used, algorithms such as SPSA can

only achieve O(k−2/3) mean square convergence. This theorem shows in theory how the

additional gradient would improve the convergence rate.
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2.5.2 Convergence of Stochastic Approximation with DiGARSM

The proof of the convergence of DiGARSM can be carried out analogously with

weaker assumptions, as there is less randomness in the estimator.

Lemma 2.2 (DiGARSM asymptotic unbiasedness). Suppose {xk} is generated via recur-

sion Equation (2.2) using DiGARSM gradient estimator given by Equation (2.8). Under

Assumptions 1 to 3 in Lemma 2.1, the stochastic gradient estimator provided by Equa-

tion (2.8) is asymptotically unbiased, i.e.,

b(xk)→ 0 at the rate of O(c2
k) as k→ ∞.

Remark 2.5. For DiGARSM, we can drop the additive noise assumption. Because un-

like ∆k, which is a random variable, θ j is a fixed vector for given j. Therefore the ma-

trix [α0 ∑
2d

j=0 ∑
n
i=1(ckθ j)(ckθ j)

T + 2dnW ] in Equation (2.8) is a constant w.r.t. f̃ (x) and

∇̃ f (x), and thus can be decoupled when taking expectation.

Theorem 2.3. Let {xk} be a sequence generated via recursion Equation (2.2) using Di-

GARSM with gradient estimator given by Equation (2.8). If the conditions from Lemma 2.2

and Assumptions from Theorem 2.1 are satisfied, then, as k→ ∞

xk→ x∗ a.s. (2.24)

Theorem 2.4. Let {xk} be a sequence generated via recursion Equation (2.2) using Di-

GARSM with gradient estimator given by Equation (2.8). If conditions from Lemma 2.2
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and Theorem 2.2 are satisfied, then, xk converges to x∗ in mean square at the rate of

E[‖xk− x∗‖2] =


O(k−α) if γ ≥ α/4,

O(k−4γ) if γ < α/4,

with optimal rate achieved at O(k−1) at α = 1 and γ ≥ 1/4.

The proofs of Lemma 2.2 and Theorem 2.3 are similar to that of SP-DiGARSM,

and thus omitted here.

2.6 Numerical Experiments

Three experiments are used to evaluate the efficiency of DiGARSM, SP-DiGARSM

and optimal weights for DiGARSM. All experiments are run on a test function (also

known as the Trid function) defined by

f (x) =
d

∑
i=1

(xi−1)2−
d

∑
i=2

xixi−1, (2.25)

where xi is the i-th element of x, with the gradient of the i-th dimension given by

∇i f (x) =2(xi−1)− xi−11{i > 1}− xi+11{i < d}, (2.26)
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where 1{·} is the indicator function. The minimum is reached at xi,∗ = i(d + 1− i) for

i = 1,2, . . . ,d. We assume additive homogeneous Gaussian noise with zero mean, i.e.,

f̃ (x) = f (x)+ ε,

∇̃ f (x) =∇ f (x)+δ ,

where

ε ∼N(0,σ2
f ),

δ ∼N(0,Σ), Σl,m =


σ2

g,l, l = m.

0, otherwise.

Unless otherwise noted, the following applies for all experiments:

1. σ2
f = 40, σ2

g,l = 40 and σ2
f/g,l = 0, ∀l = 1, . . . ,d;

2. step size ak =
1

10+k and perturbation ck = (1+ k)−1/3;

3. equal weights on response and gradient measurements, i.e., α0 = 1/(d + 1) and

W = I/(d +1);

4. perturbation vector for DiGARSM is taken from {[±1,±1, . . . ,±1]} , i.e., tl = 1

for l = 1,2, . . . ,d, and for SP-DiGARSM is sampled from a symmetric Bernoulli

distribution that takes value ±1 with probability 0.5, i.e., ∆k,l ∼ Ber(0.5) for l =

1,2, . . . ,d;

5. dimension is 4 (d = 4, so x∗ = [4,6,6,4]T ), and each candidate point is sampled 3
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times (n = 3);

6. starting point x0 is generated randomly and fixed for each experiment, and each

dimension of x0 is sampled independently with x0,l ∼U [0,30] l = 1,2,3,4; and

7. each experiment is replicated independently 5 times, after which we plot the av-

erage relative squared 2-norm error (i.e., Mean Squared Error, MSE) between the

optimum and each iterate to show the convergence speed.

We first evaluate the power of the additional gradient measurements in DiGARSM. Then

we compare DiGARSM with SP-DiGARSM to explore the efficiency of SP method

in high-dimensional problems. Finally, we evaluate the optimal weights against equal

weights.

2.6.1 Efficiency with Additional Direct Gradient Estimate

In this part, we compare DiGARSM, defined in Equation (2.8), with its standard

form, Equation (2.3), under the default settings. The results shown in Figure 2.1 demon-

strate that with additional gradient information, SA with DiGARSM achieves a faster and

smoother convergence. The error for SA with RSM increases for some iterations, which

shows that the gradient estimate provided by RSM is not reliable, and it may provide an

incorrect search direction.

2.6.2 Efficiency of SP-DiGARSM

In this part, we compare SP-DiGARSM and DiGARSM gradient estimators un-

der default conditions. Two experiments were designed to show the efficiency of SP-
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Figure 2.1: Average error of DiGARSM and RSM

DiGARSM. First, we fix the number of iterations for both algorithms. The results are

shown in Figure 2.2.
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Figure 2.2: Average error of DiGARSM and SP-DiGARSM as a function of iterations

Since in each iteration, DiGARSM samples exponentially more than SP-DiGARSM,

DiGARSM provides a better gradient estimate and results in a slightly faster convergences

as shown in Figure 2.2. However, this invokes more computational and sampling cost, so
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we fix the number of samples for DiGARSM and SP-DiGARSM in the second experi-

ment (therefore, more iterations for SP-DiGARSM with the same number of samples).

The results are shown in Figure 2.3, which shows that under the same computational and

measurement budget, SP-DiGARSM exhibits a faster convergence than DiGARSM.
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Figure 2.3: Average error of DiGARSM and SP-DiGARSM as a function of samples

2.6.3 Optimal Weighting

In this part, we evaluate the effect of weights on the convergence of DiGARSM

SA algorithm. We assume the variance for the response and each dimension of gradient

measurements are different, i.e., we set σ2
f = 150 and σ2

g,l = l, l = 1,2,3,4. We compare

two DiGARSM algorithms with equal and optimal weights defined in Proposition 2.1.

We consider two different settings: measurement variances known and unknown. In the

first scenario, the optimal weights are calculated directly, whereas in the second case, the

variances are estimated by the sample variances, then the weights are calculated. The

results are shown in Figures 2.4 and 2.5, which both show the advantage of DiGARSM
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with optimal weights.
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Figure 2.4: Average error of DiGARSM with equal and optimal weights: known variances

2.7 Conclusions and Future Research

In this chapter, we introduced a new stochastic approximation algorithm, DiGARSM,

that utilizes both response and gradient measurements, combined through response sur-

face methodology. The optimal weighting that minimizes the gradient estimate variance

is proposed as a guideline for weight tuning. To address the high computational and sam-

pling costs in high-dimensional problems, a revised algorithm with simultaneous pertur-

bation, SP-DiGARSM, is presented. Under mild assumptions, convergence of DiGARSM

and SP-DiGARSM is established. Finally, we demonstrated the efficiency of the proposed

algorithms in simulation experiments.

In this work, we considered fixed sampling rate for each iteration. One possible way

to further improve the performance is to consider dynamic sampling rate (i.e., denote the
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Figure 2.5: Average error of DiGARSM with equal and optimal weights: unknown vari-
ances

number of replications at iteration k by nk, which grows as k→∞), with which a different

convergence rate based on the sampling rate could be established [41]. In addition, if some

prior information about the structure of the objective function is known, asymmetrical

perturbation for the SP design could be investigated to improve the efficiency.
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Chapter 3: Multi-Stage Stochastic Optimization

3.1 Introduction

In this chapter, we consider a reinforcement learning problem where an agent in-

teracts with an underlying environment. A Markov Decision Process (MDP) with finite

horizon is used to model the environment. In each move, the agent will take an action, re-

ceive a reward and land in a new state. The reward is usually random, and its distribution

depends on both the state of the agent and the action taken. The distribution of the next

state is also determined by the agent’s current state and action. Our goal is to determine

the optimal sequence of actions that leads to the highest expected reward. The optimality

of the decision policy will be evaluated by the probability of correctly selecting the best

action in the first stage of the underlying MDP.

If the distributions and the dynamics of the environment are known, the optimal set

of actions can be computed through dynamic programming [42]. Under more general set-

tings where the agent does not have perfect information regarding the environment, [43]

proposed an adaptive algorithm based on a Multi-Armed Bandit (MAB) model and Up-

per Confidence Bound (UCB) [44]. [45] and [46] applied UCB to tree search, and [46]

invented the term Monte Carlo Tree Search (MCTS) and used it in a Go-playing pro-

gram for the first time. Since then, MCTS has been developed extensively and applied
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to various games such as Othello [47] and Go [48]. To deal with different types of prob-

lems, several variations of MCTS have been introduced, e.g., Flat UCB (and its extension

Bandit Algorithm for Smooth Trees) [49] and Single-Player MCTS (for single-player

games) [50].

However, most bandit-based MCTS algorithms are designed to minimize regret (or

maximize the cumulative reward of the agent), whereas in many situations, the goal of the

agent may be to efficiently determine the optimal set of actions within a limited sampling

budget. To the best of our knowledge, there is limited effort in the literature that aims

at addressing the latter problem. [51] first incorporated Best Arm Identification (BAI)

into MCTS for a MIN-MAX game tree, and provided upper bounds of play-outs under

different settings. [52] had an objective similar to [51], but with a tighter bound. Their

tree selection policy selects the node with largest confidence interval, which can be seen

as choosing the node with the highest variance. In some sense, this is a pure exploration

policy and would not efficiently use the limited sampling budget. In our work, we are

motivated to establish a tree policy that intelligently balances exploration and exploitation

(analogous to the objective of UCB). The algorithms developed in [51] and [52] are only

for MIN-MAX game trees, whereas our new tree policy can be applied to more general

types of tree search problems. The MCTS algorithm in [53] is more general than [51]

and [52], but its goal is to estimate the maximum expected cumulative reward at the root

node, whereas we focus on identifying the optimal action.

Algorithms that focus on minimizing regret tend to discourage exploration. This

tendency can be seen in two ways. Suppose at some point an action was performed and

received a small reward. To minimize regret, the algorithm would be discouraged from
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taking this action again. However, the small reward could be due to the randomness

in the reward distribution. Mathematically, [54] showed that for MAB algorithms, the

number of times the optimal action is taken is exponentially more than sub-optimal ones,

which makes sense when the objective is to maximize the cumulative reward, since the

exploration of other actions is highly discouraged. This leads to our second motivation:

is there a tree policy that explores sub-optimal actions more to ensure the optimal action

is found?

Apart from the lack of exploration as a result of the underlying MAB model’s objec-

tive to minimize regret or maximize cumulative reward, most MCTS algorithms assume

that the support of the reward distribution is bounded and known (typically assumed to be

[0,1]). With the support of reward distribution being known, the parameter in the upper

confidence term in UCB is tuned or the reward is normalized. However, a general tree

search problem may likely have an unknown and practically unbounded range of rewards.

In such case, assuming a range can lead to very poor performance. Therefore, the third

motivation of our research is to relax the known reward support assumption.

To tackle the challenge in balancing exploration and exploitation with a limited

sampling budget for a tree policy, we model the tree selection problem at each stage

as a statistical Ranking & Selection (R&S) problem and propose a new tree policy for

MCTS based on an adaptive algorithm from the R&S community. Similar to the MAB

problem, R&S assumes that we are given a set of bandit machines (often referred to as

alternatives in the R&S literature) with unknown reward distributions, and the goal is to

select the machine with the highest mean reward. Specifically, we will develop an MCTS

tree policy based on the Optimal Computing Budget Allocation (OCBA) framework [55].
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OCBA was first proposed in [56], and aims at maximizing the probability of correctly

selecting the action with highest mean reward using limited sampling budget. More recent

developments of OCBA include addressing multiple objectives [57] and subset selection

[58, 59].

The objective of the proposed OCBA tree policy is to maximize the Approximate

Probability of Correct Selection (APCS), which is a lower bound on the probability of cor-

rectly selecting the optimal action at each node. Intuitively, the objective function of the

new OCBA tree selection policy would lead to an optimal balance between exploration

and exploitation with a limited sampling budget, and thus help address the drawbacks of

existing work that either pursues pure exploration [51, 52] or exponentially discourages

exploration [54]. Our new OCBA tree policy also removes the known and bounded sup-

port assumption for the reward distribution, because the new OCBA policy determines the

sampling allocation based on the posterior distribution of each action, which is updated

adaptively according to samples.

To summarize, contributions of this research include the following:

1. We propose a new tree policy for MCTS with an objective to maximize APCS with

a limited sampling budget. The new tree policy optimally balances exploration and

exploitation to efficiently select the optimal action. The new OCBA tree selection

policy also relaxes the assumption of known bounded support on the reward distri-

bution.

2. We present a sequential algorithm to implement the new OCBA tree policy that

maximizes the APCS at each sampling stage and prove that our algorithm converges
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to the optimal action.

3. We provide analyses on the convergence and the exploration-exploitation trade-off

of the proposed algorithm, which works differently than bandit-based algorithms,

and is more suitable for identifying the best action.

4. We demonstrate the efficiency of our algorithm through numerical experiments.

Remark 3.1. In much of the computer science/artificial intelligence literature, an algo-

rithm that focuses on determining the optimal set of actions under a limited budget is

defined as a pure exploration algorithm (see, e.g., [60–62]), whereas we view such al-

gorithms as retaining a balance between exploration and exploitation, as the analysis

in Section 3.3 shows. In statistical R&S, pure exploration algorithms generally implies

sampling based primarily on the variance of each action, which often leads to sampling

suboptimal actions more. It will be clearer in the Section 3.5 where we show that OCBA-

MCTS actually samples less those highly suboptimal actions and “exploits” those poten-

tial actions more.

The rest of the research is organized as follows. We present the problem formu-

lation in Section 3.2, and review the proposed OCBA-MCTS algorithm in Section 3.3.

Theoretical analyses, including convergence theorems and exploration-exploitation anal-

ysis, are carried out in Section 3.4. Numerical examples are presented in Section 3.5 to

evaluate the performance of our algorithm. Section 3.6 concludes the research and points

to future research directions.

45



3.2 Problem Formulation

Consider a finite horizon MDP M = (X ,A,P,R) with horizon length H, finite state

space X , finite action space A with |A|> 1, bounded reward function R= {Rt , t = 0,1, . . .H}

such that Rt maps a state-action pair to a random variable (r.v.), and transition function

P = {Pt , t = 0,1, . . .H} such that Pt maps a state-action pair to a probability distribution

over X . We assume that Pt is unknown and/or |X | and |A| are very large, and hence it

is not feasible to solve the problem by dynamic programming. Further define Xa and Ax

as the available child states when taking action a and available actions at state x, respec-

tively. Denote by Pt(x,a)(y) the probability of transitioning to state y ∈ Xa from state

x ∈ X when taking action a ∈ Ax in stage t, and Rt(x,a) the random reward in stage t

by taking action a in state x. Let Π be the set of all possible nonstationary Markovian

policies π = {πi|πi : X → A, i≥ 0}.

Bandit-based algorithms for MDPs seek to minimize the expected cumulative re-

gret, whereas our objective is to identify the best action that leads to maximum total

expected reward given by E
[

∑
H−1
t=0 Rt(xt ,πt(xt))

]
for given x0 ∈ X . We first define the

optimal reward-to-go value function for state x in stage i by

V ∗i (x) = max
π∈Π

E
[H−1

∑
t=i

Rt(xt ,πt(xt))
∣∣xi = x

]
, i = 0,1, . . . ,H−1 (3.1)

with V ∗H(x) = 0 for all x ∈ X . Also define

Qi(x,a) = E[R(x,a)]+ ∑
y∈Xa

Pt(x,a)(y)V ∗i+1(y),
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with QH(x,a) = 0. It is well known [42] that eq. (3.1) can be written via the standard

Bellman optimality equation:

V ∗i (x) = max
a∈Ax

(E[Ri(x,a)]+EPt(x,a)V
∗
i+1(Y )),

= max
a∈Ax

(E[Ri(x,a)]+ ∑
y∈Xa

Pt(x,a)(y)V ∗i+1(y))

= max
a∈Ax

(Qi(x,a)), i = 0,1, . . . ,H−1,

where Y ∼ Pi(x,a)(·) represents the random next state.

Since we are considering a tree search problem, some additional notation and defi-

nitions beyond MDP settings are needed. Define a state node by a tuple that contains the

state and the stage number:

x = (x, i) ∈ X, ∀x ∈ X , 0≤ i≤ H,

where X is the set of state nodes. Similarly, we define a state-action node by a tuple of

state, stage number and action (i.e., a state node followed by an action):

a = (x,a) = (x, i,a), ∀x ∈ X , 0≤ i≤ H, a ∈ Ax,

Now, we can rewrite, immediate reward function, value function for state, state-

action pair with state node and state-action node and state transition distribution, respec-
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tively, by

R(a) = R(x,a) := Ri(x,a)

V ∗(x) :=V ∗i (x),

Q(a) = Q(x,a) := Qi(x,a)

P(a) = P(x,a) := Pi(x,a).

Similarly, V ∗(x) and Q(x,a) are assumed to be zero for all terminal state nodes x. To

make our presentation clearer, we adopt the following definitions based on nodes: define

N(x) and N(x,a) the number of visits to node x and (x,a), respectively, Xa the set of

child state nodes given parent nodes, and Ax the set of available child actions at node x,

respectively.

Traditionally, MCTS algorithms aim at estimating V ∗(x) and model the selection

process in each stage as an MAB problem, i.e., view Q(x,a) as a set of bandit machines

where (x,a) are child state-action nodes of x ( [43,45]), and minimize the regret, namely,

min
a1,...,aN∈Ax

{N max
a∈Ax

(Q(x,a))−
N

∑
k=1

Q(x,ak)}

= {NV ∗(x)−
N

∑
k=1

Q(x,ak)}

for x in stage 1,2, . . .H, where N and ak are the number of rollouts/simulations (also

known as total sampling budget in much of Ranking & Selection literature) and the k-th

action sampled at state node x by the tree policy, respectively. The meaning of rollout

will be clearer in Section 3.3. In this research, our goal is to identify the optimal action
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that achieves the highest cumulative reward at the root with initial state x, that is, find

a∗x0
= arg max

a∈Ax0

Q(x0,a),

where the root state node x0 = (x,0). Let Q̂(x,a) = R(x,a)+V ∗(y) be the random cumu-

lative reward by taking action a at state node x, where y is the random state node reached.

Clearly, Q̂(x,a) is a random variable. We assume Q̂(x,a) is normally distributed with

known variance, and its mean µ(x,a) has a conjugate normal prior with a mean equals

Q(x,a). Hence we have

Q(x,a) = E[E[Q̂(x,a)|µ(x,a)]].

Remark 3.2. For our derivations, we assume the variance of the sampling distribution

of Q̂(x,a) is known; however, in practice, this prior variance may be unknown, in which

case estimates such as the sample variance are used [63].

Consider the non-informative case, i.e., the prior mean Q(x,a) is unknown, it can be

shown that [64] the posterior of µ(x,a) given observations (i.e., samples) is also normal.

For convenience, define the t-th sample by Q̂t(x,a). Then the conditional distribution of

µ(x,a) given the set of samples (Q̂1(x,a), Q̂2(x,a), . . . , Q̂N(x,a)(x,a)) is

Q̃(x,a)∼N (Q̄(x,a),
σ2(x,a)
N(x,a)

), (3.2)
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where

Q̄(x,a) =
1

N(x,a)

N(x,a)

∑
t=1

Q̂t(x,a),

Q̃(x,a) = µ(x,a)|(Q̂1(x,a), Q̂2(x,a), . . . , Q̂N(x,a)(x,a)),

and σ2(x,a) is the variance of Q̂(x,a) and can be approximated by the sample variance:

σ̂
2(x,a) =

1
N(x,a)

N(x,a)

∑
t=1

(
Q̂t(x,a)− Q̄(x,a)

)2
.

Remark 3.3. If the samples of Q(x,a) are not normally distributed, the normal assump-

tion can be justified by batch sampling and the central limit theorem.

Under these settings, our objective is to maximize the Probability of Correct Selec-

tion (PCS) defined by

PCS = P
[ ⋂

a∈A,a6=â∗x

(Q̃(x, â∗x)≥ Q̃(x,a))
]

(3.3)

for a state node x, where â∗x is the action that achieves the highest mean sample Q-value

at such node, i.e., â∗x = argmaxa∈Ax Q̄(x,a).

PCS is hard to compute because of the intersections in the (joint) probability. We

seek to simplify the joint probability by changing the intersections to sums using the

Bonferroni inequality to make the problem tractable. By the Bonferroni inequality, PCS
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is lower bounded by the Approximate Probability of Correct Selection (APCS), that is,

PCS≥1− ∑
a∈Ax,a6=â∗x

P
[

Q̃(x, â∗x)≤ Q̃(x,a)
]

(3.4)

=:APCS.

The objective of our new tree policy is to maximize APCS as given in Equa-

tion (3.4). Compared to MAB’s objective of minimizing the expected cumulative regret,

this objective function will result in an allocation of sampling budget to alternative actions

in a way that optimally balances exploration and exploitation. This objective function is

motivated by the OCBA algorithm [55] in the R&S literature. We will present and analyze

our OCBA tree policy in the following sections.

3.3 Algorithm Description

In this section, we first briefly describe the main four phases, i.e., selection, expan-

sion, simulation and backpropagation, in an MCTS algorithm. Then, we propose a novel

tree policy in the selection stage that aims at finding the optimal action at each state node.

3.3.1 Canonical MCTS Algorithm

Here we briefly summarize the four phases in a typical MCTS algorithm. We re-

fer readers to [65] for a complete illustration of these phases. Algorithm 3 represents a

canonical MCTS, with detailed descriptions of the main phases below.
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3.3.1.1 Selection

In this phase, the algorithm will navigate down the tree from the root state node to

an expandable node, i.e., a node with unvisited child nodes. We assume that expansion is

automatically followed when a state-action is encountered. Therefore, when determining

the path down, there are three possible situations:

i If a state-action node is encountered (denoted by (x,a)), we will land into a new

state node y which is obtained by calling the expansion function. Then, we continue

with the selection algorithm.

ii If an expandable state node (which could be a leaf node) is encountered, we call the

expansion function to add a new child state-action node and a state node (by auto-

matically expanding the state-action node) to the path. Then, we stop the selection

phase and return the path from the root to this state node. Finally, we proceed with

the simulation and backpropagation phase

iii If an unexpandable state node is encountered (denoted by x), we employ a tree

policy to determine which child action to sample. Then we enter the new state-

action node (x,a) and continue the selection algorithm with this state-action node.

The tree policies can be briefly categorized into two types: deterministic, such as

UCB1 and several of its variants (e.g., UCB-tuned, UCB-E), and stochastic, such

as ε-greedy and EXP3; see [65] for a review.
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3.3.1.2 Expansion

In this phase, a random child state or state-action node of the given node is added. If

the incoming node is a state node x, the next node is selected randomly (usually uniform)

from those unvisited child state-action nodes. If the incoming node is a state-action node

(x,a), the subsequent state node is found by simply sampling from distribution P(x,a)(·).

3.3.1.3 Simulation

In some literature, this phase is also known as “rollout”. The simulation phase

starts with a state node. The purpose of this step is to simulate a path from this node to a

terminal node and produce a sample of cumulative reward by taking this path (which is a

sample of the value for this node). The simulated path is taken by a default policy, which

is usually sample the feasible child sate-action nodes uniformly. With this node’s value

sample, we may proceed to the backpropagation phase.

3.3.1.4 Backpropagation

This phase simply takes the simulated node value and update the values of the nodes

in the path (obtained in selection step) backward.

In the next section, we will propose our tree policy based on OCBA and illustrate

the detailed implementations of the four phases.
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3.3.2 OCBA Selection Algorithm

We now present an efficient tree policy to estimate the optimal actions in every state

node by estimating V ∗(x) and Q(x,a) for all possible a ∈ Ax at the state node. Denote the

estimates of V ∗(x) at node x by V̂ ∗(x), which is initialized to 0 for all state nodes. Our

algorithm estimates Q(x,a) for each action a by its sample mean, and selects the action

that maximizes the sample mean as â∗x. During the process, the estimate of Q(x,a) is

given by Equation (3.2) and the proposed new OCBA tree policy is applied. Our algo-

rithm follows the algorithmic framework described in Section 3.3.1, with the tree policy

changed to OCBA and other mild modifications.

The structure of the proposed OCBA-MCTS algorithm is shown in Algorithms 3 to

8. There are two major characteristics: the first is to use the proposed OCBA algorithm

for the tree policy. The second is to require each state-action node to be expanded n0 > 1

times, because we need a sample variance for each state-action node, which will become

clearer after the tree policy illustration. The process is run for a prespecified N times

(which will be later referred to as number of rollouts or sampling budget) from the root

state node x0, after which a partially expanded tree is obtained and the optimal action â∗x0

can be derived.

When steering down the tree and a state node x is visited, the selection phase, which

is illustrated in Algorithm 4, will first determine if there is a child state-action node that

was visited for less than n0 times at the given state node. If there is, then the state-action

node will be sampled and added to the path. In other words, we try to expand each state

node when it is visited, and require each node to be expanded n0 times. If all the state-
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action nodes are well-expanded, Algorithm 4 will call Algorithm 5 (OCBASelection),

which calculates the allocation of samples to child state-action nodes of the current state

node for a total sampling budget ∑a∈A N(x,a) + 1. To determine the number of sam-

ples allocated to each state-action node, denoted by (Ñ(x,a1), Ñ(x,a2), . . . , Ñ(x,a|Ax|))

(where ai ∈ Ax, i = 1, . . . , |Ax|), the OCBA tree policy first identifies the child state-action

node with the largest sample mean (sample optimal) and finds the difference between the

sample means of the sample optimum and all other nodes:

â∗x := argmax
a

Q̄(x,a)

δx(â∗x,a) := Q̄(x, â∗x)− Q̄(x,a), ∀a 6= â∗x.

The set of allocations (Ñ(x,a1), Ñ(x,a2), . . . , Ñ(x,a|A|)) that maximizes APCS can be

obtained by solving the following set of equations:

Ñ(x,an+1)

Ñ(x,an)
=

(
σ(x,an+1)/δx(â∗x,an+1)

σ(x,an)/δx(â∗x,an)

)2

,

∀an,an+1 6= â∗x, an,an+1 ∈ Ax, (3.5)

Ñ(x, â∗x) =σ(x, â∗x)

√√√√ ∑
a∈A,a6=â∗x

(Ñ(x,a))2

σ2(x,a)
, (3.6)

∑
a∈A

Ñ(x,a) = ∑
a∈A

N(x,a)+1. (3.7)

The derivations of Equations (3.5) to (3.7) are illustrated in the appendix.

After the new budget allocation is computed, the algorithm will select the “most
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starving” action to sample [63], i.e., sample

â = argmax
a∈Ax

(Ñ(x,a)−N(x,a)). (3.8)

We highlight some major modifications to the canonical MCTS in the proposed

algorithm. First, in the selection phase, we will try to expand all “expandable” nodes

visited when obtaining a path to leaf. Since the variances of the values of a state node’s

child nodes are required in the proposed tree policy, we define a state node as expandable

if it has child nodes that are visited less than n0 > 1 times. State-action nodes are always

expandable.

At the expansion phase as shown in Algorithm 6, a state-action node is expanded

by simply sampling the transition distribution P(x,a)(·), and the resulting state node is

subsequently added to the path. The reward by taking the action in the state node is also

recorded and will be used in the backpropagation stage.

In the simulation and backpropagation phases illustrated in Algorithm 7 and 8, a

leaf-to-terminal path is simulated, and its reward is used to update the value for the leaf

node. If we denote the leaf node and the reward from the simulated path by xl and r,

respectively, the leaf node value estimate is updated by

V̂ ∗(xl)←
N(xl)−1

N(xl)
V̂ ∗(xl)+

1
N(xl)

r. (3.9)

After updating the leaf state node, we update the nodes in the path collected in selection
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stage in reversed order. Suppose we have a path

(x0,(x0,a0), . . . ,xi,(xi,ai),xi+1, . . . ,xl)

and the node values of xi+1, . . . ,xl have been updated, the preceding nodes xi and (xi,ai)

are updated through

Q̂N(x,a)(xi,ai) = R(xi,a)+V̂ ∗(xi+1), (3.10)

Q̄(xi,ai)←
N(xi,ai)−1

N(xi,ai)
Q̄(xi,ai)+

1
N(xi,ai)

QN(x,a)(xi,ai), (3.11)

V̄ (xi)←
N(xi)−1

N(xi)
V̄ ∗(xi)+

1
N(xi)

Q̄(xi,ai), (3.12)

V̂ (xi)← (1−αN(xi))V̄ (xi)+αN(xi) max
a∈Axi

Q̄(xi,a), (3.13)

where V̄ (·) is an intermediate variable that records the average value of the node through

the root-to-leaf path, and αN(xi) ∈ [0,1] is a smoothing parameter. The updates are per-

formed backwards to the root node.

Details of the OCBA tree policy are shown in Algorithm 3 to 8.

Algorithm 3: MCTS
Input: Simulation budget (roll-out number) N, root state node x0
Output: â∗x0

, V̂ ∗(x0)

1 Set simulation counter n← 0
2 while n < N do
3 path← selection(x0)
4 lea f ← path[end]
5 r← simulate(lea f )
6 backpropagate(path,r)
7 n← n+1

8 return action â∗x0
= argmaxa∈A Q̄(x0,a)
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Algorithm 4: selection(x0)

Input: root state node x0
1 Sample a root-to-leaf path.
2 path← ( )
3 x← x0
4 while True do
5 Append state node x to path
6 N(x)← N(x)+1
7 if x is a terminal node then
8 return path

9 if x is expandable then
10 â← expand(x)
11 y← expand((x, â))
12 Append state-action node (x, â) and leaf state node y to path
13 N(x,a)← N(x,a)+1
14 N(x)← N(x)+1
15 return path
16 else
17 â← OCBAselection(x)
18 Append state-action node (x, â) to path
19 N(x, â)← N(x,a)+1
20 x← expand((x, â))

Algorithm 5: OCBASelection(x)
Input: state node x

1 Identify â∗x = argmaxa Q̄(x,a)
2 δx(â∗x,a)← Q̄(x, â∗x)− Q̄(x,a)
3 Compute new sampling allocation (Ñ(x,a1), Ñ(x,a2), . . . , Ñ(x,a|A|))
4 by solving Equations (3.5) to (3.7)
5 â← argmaxa∈A(Ñ(x,a)−N(x,a))
6 return â

58



Algorithm 6: expand(x or (x,a))
Input: a state node x or a state-action node (x,a)
Output: child node to be added to the tree

1 if the input node is a state node x then
2 S← {feasible actions of state x that has been sampled less than n0 times}
3 â← random choice of S
4 Add (x, â) to the tree if it is unvisited
5 return â
6 else
7 Sample node (x,a) at state node x and obtain the child state node

y∼ P(x,a)(·)
8 Add y to the tree if it is unvisited
9 return y.

Algorithm 7: simulate(x)
Input: state node x

1 r← 0
2 while True do
3 if x is not terminal then
4 find a random child state-action node (x,a) of x
5 r← r+R(x,a)
6 sample a and obtain the child state node y∼ P(x,a)(·)
7 x← y
8 else
9 return r

Algorithm 8: backpropagate(path,reward)
Input: path to a leaf node path, simulated reward reward

1 for node in reversed(path) do
2 Update node values through Equations (3.9) to (3.13).
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There are a few points worth emphasizing in Algorithm 5. First, Ñ(x,ai) is the

total number of samples for each action i after the allocation. Given present infor-

mation, i.e., all samples state node x, OCBA-MCTS assumes now a total number of

∑a∈A N(x,a)+ 1 samples available. By solving Equations (3.5) to (3.7), the new budget

allocation (Ñ(x,a1), Ñ(x,a2), . . . , Ñ(x,a|A|)) that maximizes APCS is calculated. After-

wards, one action based on Equation (3.8) is selected to sample and move to the next

stage. This “most-starving” implementation of the OCBA policy as given in Algorithm

5 is fully sequential, as each iteration allocates only one sample to an action before the

allocation decision is recomputed. It is also possible to allocate the sampling budget in a

batch of size ∆ > 1. We use the “most-starving” scheme, because it has been shown to

be more efficient than the batch sampling scheme [66]. However, the benefit of sampling

in batches for MCTS is that in one iteration, multiple root-to-leaf paths can be examined,

enabling parallelization of the algorithm. We will consider this in future research.

Second, updating V̂ (xi) involves two stages: updating the value estimate along the

path (Equation (3.12)) and taking the maximum over the values of the child state-action

nodes (canonical way to update). Then the two values are mixed through αN(xi) to update

V̂ (xi), as prior research (e.g., [46, 67]) suggests mixing with αN(xi)→ 1 (i.e., asymptoti-

cally achieves Bellman update) ensures more stable updates.

Finally, although we present our algorithm in the context of solving an MDP, it can

be applied to other tree structures such as MIN-MAX game trees or more general game

trees, by setting the reward function and the max and min operators accordingly.
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3.4 Analysis of OCBA-MCTS

In this section, we first analyze how the OCBA tree policy in OCBA-MCTS bal-

ances exploration and exploitation mathematically. Then, we present several theoretical

results regarding OCBA-MCTS. The proofs are given in the appendix.

3.4.1 Exploration-Exploitation Balance

Equations (3.5) to (3.7) determine the new sampling budget allocation. First, eq. (3.5)

shows that the sub-optimal state-action nodes should be sampled proportional to their

variances and inversely proportional to the squared differences between their sample

means and that of the optimal state-action node. This represents a different type of trade

off between exploration (sampling actions with high variances) and exploitation (sam-

pling actions with higher sample means) compared to bandit-based algorithms.

3.4.2 Convergence Analysis

In this part, we present three theorems regarding OCBA-MCTS. The first theorem

ensures the estimate of the value-to-go function converges to the true value. The second

theorem proves that OCBA-MCTS will select the correct action, i.e., the PCS converges

to 1. The last theorem guarantees that the APCS, which is a lower bound of PCS, is

maximized by solving Equations (3.5) and (3.6) in each step. It is shown that at each point

of the tree policy when a decision needs to be made, the action that maximizes the APCS

will be selected and sampled. Therefore, the OCBA tree policy gradually maximizes the

overall APCS at the root, which is a lower bound for PCS.
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To prove that our algorithm correctly selects the optimal action as the sampling

budget goes to infinity, we first prove that at each stage, the PCS converges to 1. The

process of our algorithm at each single stage is OCBA adapted from [55]. OCBA tries

to identify the alternative with highest mean from a set of normal random variables (al-

ternatives) with means Ji and known variances σ2
i , i = 1,2, . . . ,k by efficiently allocating

samples that maximizes APCS. OCBA assumes that Ji is also normally distributed. Here

we present OCBA again in Algorithm 9 for convenience. The budget allocation process

is similar to Equations (3.5) to (3.7). First define

J̄i :=
1
li

li

∑
m=1

Ĵm
i ,

b :=argmax
i

J̄i,

δ (b, i) :=J̄b− J̄i, ∀i 6= b,

where li is the number of samples for alternative i, Ĵm
i is the m-th sample of Ji for 1≤ i≤ k,

1 ≤ m ≤ li. The new allocations (l̃1, l̃2, . . . , l̃k) with budget T > ∑i li can be obtained by

solving the set of equations:

l̃i
l̃ j
=
( σi/δ (b, i)

σ j/δ (b, j)

)2
, ∀i 6= j 6= b, (3.14)

l̃b = σb

√√√√ k

∑
i=1,i6=b

l̃2
i

(σi)2 , (3.15)

∑
i=1

l̃i = T, (3.16)

where σi is the standard deviation of the i−th reward distribution. As in Remark 2, σi
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is assumed to be known, but in practice can be unknown and approximated by sample

standard deviation σ̂i =
√

1
li ∑

li
m=1(Ĵ

m
i − J̄i)2.

Algorithm 9: One-stage OCBA
Input: Total sampling budget T , initial sample size n0
Output: Index of optimal action b̂

1 Sample each of the k alternatives n0 times;
2 Set counter li← n0 ∀i = 1,2, . . . ,k;
3 l← kn0;
4 Calculate J̄i and σ̂2

i , ∀i = 1,2, . . . ,k;
5 while l ≤ T do
6 Compute new budget allocation (l̃1, l̃2, . . . , l̃k) by solving eq. (3.14)-(3.16)

with budget l +1;
7 Sample î = argmax1≤i≤k(l̃i− li);
8 Update J̄î (and σ̂2

î
if sample variance is used);

9 lî← lî +1;
10 l← l +1;

11 return b̂ = argmax1≤i≤k J̄i ;

Lemma 3.1. Given a set of k normal random variables (actions) with mean Ji and vari-

ance σ2
i , i = 1,2, . . . ,k, where Ji. are also normally distributed. Suppose OCBA is run

with sampling budget T . Define the PCS

PCS = P
[ k⋂

i=1,i6=b

(J̃b− J̃i)≥ 0
]
,

where J̃i is the posterior distribution of Ji given li samples ∀i = 1,2, . . . ,k. Then, PCS→ 1

as T → ∞.
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Proof. The PCS can be lower bounded by APCS, i.e., by the Bonferroni inequality

PCS =P
[ k⋂

i=1,i6=b

(J̃b− J̃i)≥ 0
]

≥1−
k

∑
i=1,i 6=b

P
[

J̃b− J̃i ≤ 0
]

=APCS.

Thus, to prove that PCS→ 1, it suffices to prove APCS→ 1, i.e.,

k

∑
i=1,i 6=b

P
[
(J̃b− J̃i)≤ 0

]
→ 0 as T → ∞.

Based on the normality assumption, the posterior distribution is also normal, i.e., J̃i ∼

N(J̄i,σ
2
i /li). Thus, J̃b− J̃i ∼ N(J̄b− J̄i,σ

2
b/lb +σ2

i /li). Therefore,

k

∑
i=1,i 6=b

P
[
(J̃b− J̃i)≤ 0

]
=

k

∑
i=1,i 6=b

Φ(− J̄b− J̄i√
σ2

b/lb +σ2
i /li

), (3.17)

where Φ is the cdf of the standard normal distribution. Since

k

∑
i=1

li =T,

then when T → ∞, at least one of the actions will be sampled infinitely many times, i.e.,

there exists an index i such that li→∞. Then there are two possible cases: i 6= b and i = b.

Case 1: i 6= b
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According to eq. (3.14),

l j =

(
σ j/δ (b, j)
σi/δ (b, i)

li

)2

, ∀ j 6= i, j 6= b.

Since σi and δ (b, i) are bounded for all i, l j→ ∞, ∀ j 6= b.

Therefore, by eq. (3.15), lb→ ∞. Thus, li→ ∞ for all i = 1,2, . . . ,k.

Case 2: i = b According to (3.15),

lb = σb

√√√√ k

∑
i=1,i 6=b

l2
i

(σi)2 → ∞.

Thus there exists an index i 6= b such that li→ ∞. By a similar argument in Case 1, we

can conclude that li→ ∞ for all i = 1,2, . . . ,k.

In either case, we have li→∞ for all i = 1,2, . . . ,k. Additionally, since J̄b is defined to be

the maximum of all J̄i, i.e., J̄b− J̄i ≥ 0 for all i 6= b, eq. (3.17) becomes

k

∑
i=1,i 6=b

P
[
(J̃b− J̃i)≤ 0

]
=

k

∑
i=1,i 6=b

Φ(− J̄b− J̄i√
σ2

b/lb +σ2
i /li

)→ 0

as desired.

A corollary follows directly from the lemma.

Corollary 3.1. Suppose one-stage OCBA is run with budget T . Then

J̄i→ E[Ji] w.p. 1 as T → ∞, ∀i = 1,2, . . . ,k.
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The proof is a simple application of the strong law of large numbers, since lb→ ∞.

With these results, we are ready to show the three main theorems.

Theorem 3.1 (Asymptotic consistency). Assume the expected cumulative reward at state-

action node (x,a) is a normal random variable with mean µ(x,a) and variance σ2(x,a)<

∞, i.e., Q̂(x,a) ∼ N (µ(x,a),σ2(x,a)) for 0 ≤ i < H. Further assume µ(x,a) is also

normally distributed with unknown mean and known variance. Suppose the proposed

OCBA-MCTS algorithm is run with a sampling budget N at root state node x0. Then at

any subsequent nodes x,

lim
N→∞

Q̄(x,a) = E[Q̂(x,a)] = Q(x,a),

lim
N→∞

V̂ (x) =V ∗(x), ∀ x ∈ X, (x,a) ∈ X×Ax.

Proof of Theorem 3.1. The result can be proved by induction.

First observe that since N → ∞, each path is explored infinitely many times. Thus

the number of samples in each stage also goes to infinity as N→ ∞.

Suppose at some point of the algorithm, all nodes are expanded. If the current state

node x is at stage H − 1 (i.e., it will transit into a terminal node in the next transition),

running Algorithm 5 reduces to a single-stage problem, which is the same as OCBA in

Algorithm 9. Q̂(x,a) can be viewed as a set of alternatives for a ∈ A. From Corollary 3.1,

it is straightforward that

lim
N→∞

Q̄(x,a) = Q(x,a).
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Therefore, since the reward function is bounded

lim
N→∞

V̂ (x) = lim
N→∞

max
a∈Ax

Q̄(x,a)

= max
a∈Ax

lim
N→∞

Q̄(x,a)

=V ∗(x).

Now suppose that the statement is true for all child state nodes y of a state x, i.e., V̂ (y)→

V ∗(y) and y could be achieved from x. Then for x, the algorithm also reduces to single-

stage OCBA. Thus from Corollary 3.1 again

lim
N→∞

Q̄(x,a) = lim
N(x,a)→∞

Q̄(x,a)

= E[R(x,a)]+EP(x,a)[V
∗(y)]

= Q(x,a)

for all child state-action pair (x,a). It follows that

lim
N→∞

V̂ (x)→V ∗(x).

Theorem 3.2 (Asymptotic correctness). Under the same assumptions of Theorem 3.1, the
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PCS converges to 1 for any state node x ∈ X, i.e.,

P
[ ⋂

a∈Ax,a6=â∗x

( lim
N→∞

Q̃(x, â∗x)− lim
N→∞

Q̃(x,a))≥ 0
]
= 1,

∀ x ∈ X,

where â∗x = argmaxa∈Ax Q̄(x,a).

Theorem 3.2 is a direct result of Lemma 3.1.

Proof of Theorem 3.2. Since we assume Q̂(x,a) is normally distributed with known vari-

ance, the posterior distribution of Q̂(x,a), i.e., Q̃(x,a), is also a normal random variable.

Then, it follows directly from Lemma 3.1 that

P
[ k⋂

a∈Ax,a6=â∗x

( lim
N→∞

Q̃(x, â∗x)− lim
N→∞

Q̃(x,a))≥ 0
]
= 1,

∀i = 1, . . . ,H, x ∈ X, a ∈ A.

Theorem 3.3. Under the same assumptions of Theorem 3.1, the APCS defined in Equa-

tion (3.4) is maximized asymptotically with simulation budget allocation (Ñ(x,a1), Ñ(x,a2),

. . . , Ñ(x,a|Ax|)) by solving Equations (3.5) and (3.6) with total budget N, i.e., ∑a∈Ax Ñ(x,a)=

N.

Proof of Theorem 3.3. The problem of maximizing APCS with budget constraint can be

68



formulated as

max
Ñ(x,a),a∈Ax

1− ∑
a∈A,a6=â∗x

P
[

Q̃(x, â∗x)≤ Q̃(x,a)
]

s.t. ∑
a∈Ax

Ñ(x,a) = N.

With Lagrange multiplier λ , the Lagrangian can be written as

L = 1− ∑
a∈Ax,a 6=â∗x

P
[

Q̃(x, â∗x)≤ Q̃(x,a)
]
+λ ( ∑

a∈Ax

Ñ(x,a)−N)

= 1− ∑
a∈Ax,a6=â∗x

Φ(
Q̄(x,a)− Q̄(x, â∗x)

σx(a, â∗x)
)+λ ( ∑

a∈Ax

Ñ(x,a)−N)

= 1− ∑
a∈Ax,a 6=â∗x

Φ(− δx(â∗x,a)
σx(a, â∗x)

)+λ ( ∑
a∈Ax

Ñ(x,a)−N),

where

σ
2
x (a, â

∗
x) =

σ2(x, â∗x)
N(x, â∗x)

+
σ2(x,a)
N(x,a)

Apply Karush-Kuhn-Tucker (KKT) conditions [68]:

• primal feasible

N(x,a)≥ 0,∀a ∈ A (3.18)

∑
a∈Ax

Ñ(x,a)−N = 0, (3.19)
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• stationarity

∂L
∂N(x,a)

=
∂L

∂ (− δx(â∗x,a)
σx(a,â∗x)

)

∂ (− δx(â∗x,a)
σx(a,â∗x)

)

∂σx(a, â∗x)
∂σx(a, â∗x)
∂N(x,a)

= 0 (3.20)

Case 1: a 6= â∗x

∂L
∂N(x,a)

=
σ2(x,a)δx(â∗x,a)

N2(x,a)σ3
x (a, â∗x)

√
2π

exp−δx(â∗x,a)
2

σ2
x (a, â∗x)

+λ

= 0 (3.21)

.

Case 2: a = â∗x

∂L
∂N(x, â∗x)

= ∑
a∈Ax,a6=â∗x

σ2(x, â∗x)δx(â∗x,a)
N2(x, â∗x)σ3

x (a, â∗x)
√

2π
exp−δx(â∗x,a)

2

σ2
x (a, â∗x)

+λ

= 0 (3.22)

.

From Equation (3.21),

δx(â∗x,a)
σ3

x (a, â∗x)
√

2π
exp−δx(â∗x,a)

2

σ2
x (a, â∗x)

=−λ
N2(x,a)
σ2(x,a)

. (3.23)
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Plug Equation (3.23) into Equation (3.22) yields

σ2(x, â∗x)
N2(x, â∗x)

∑
a∈Ax,a6=â∗x

λ
N2(x,a)
σ2(x,a)

= λ ,

i.e.,

N(x, â∗x) =
√

σ2(x, â∗x) ∑
a∈Ax,a6=â∗x

N2(x,a)
σ2(x,a)

. (3.24)

After sufficiently large number of samples, we may conclude from Equation (3.24) that

our algorithm would focus more on sampling the sample optimal. Thus, we may assume

that N(x, â∗x)� N(x,a) for all suboptimal actions a ∈ Ax.

Now, for two suboptimal actions a 6= ã 6= â∗x, we have

σ2(x,a)δx(â∗x,a)

N2(x,a)(σ2(x,â∗x)
N(x,â∗x)

+ σ2(x,a)
N(x,a) )

3/2
exp− δx(â∗x,a)

2

2(σ2(x,â∗x)
N(x,â∗x)

+ σ2(x,a)
N(x,a) )

=
σ2(x, ã)δx(â∗x, ã)

Nx2(x, ã)(σ2(x,â∗x)
Nx(x,â∗x)

+ σ2(x,ã)
N(x,ã) )

3/2
exp− δx(â∗x, ã)

2

2(σ2(x,â∗x)
N(x,â∗x)

+ σ2(x,ã)
N(x,ã) )

.

Apply the N(x, â∗x)� N(x,a) assumption:

σ2(x,a)δx(â∗x,a)

N2(x,a)(σ2(x,a)
N(x,a) )

3/2
exp−δx(â∗x,a)

2

2(σ2(x,a)
N(x,a) )

=
σ2(x, ã)δx(â∗x, ã)

N2(x, ã)(σ2(x,ã)
N(x,ã) )

3/2
exp−δx(â∗x, ã)

2

2(σ2(x,ã)
N(x,ã) )

.
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i.e.,

(N(x, ã)
N(x,a)

)1/2
=

σ2(x,a)
σ2(x, ã)

δx(â∗x, ã)
δx(â∗x,a)

exp(
δx(â∗x,a)

2

2(σ2(x,a)
N(x,a) )

− δx(â∗x, ã)
2

2(σ2(x,ã)
N(x,ã) )

).

Taking logarithm on both sides yields

logN(x, ã)− log(N(x,a)) = 2log
σ2(x,a)
σ2(x, ã)

δx(â∗x, ã)
δx(â∗x,a)

+
δx(â∗x,a)

2

σ2(x,a)
N(x,a)

− δx(â∗x,a)
2

σ2(x,ã)
N(x,ã)

.

When the number of samples is sufficiently large (N→∞), the log terms can be neglected

compared to the terms linear in N(x,a) or N(x, ã). Therefore, removing the log terms

yields,

δx(â∗x,a)
2

σ2(x,a)
N(x,a)

=
δx(â∗x,a)

2

σ2(x,ã)
N(x,ã)

,

namely,

Ñ(x,a)
Ñ(x, ã)

=

(
σ(x,a)/δx(â∗x,a)
σ(x, ã)/δx(â∗x, ã)

)2

,

∀a , ã 6= â∗x.

Theorem 3.3, which follows from the result originally derived in [55], shows that at

each point of the algorithm when a decision needs to be made, the action that maximizes
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the APCS will be selected and sampled. Therefore, the OCBA tree policy gradually

maximizes the overall APCS at the root, which is a lower bound for PCS.

3.4.3 Performance Lower Bound

We take advantage of the normal distribution assumptions on the Q functions and

provide a lower bound on PCS.

Theorem 3.4 (Lower bound on the probability of correct selection). Under the same

assumptions of Theorem 3.1, the PCS at each stage and state is lower bounded by

PCS≥ 1−

∑
a∈Ax,a6=â∗x

Φ

(
−

δx(â∗x,a)
√

N(x, â∗x)√
σ2(x, â∗x)+σ(x, â∗x)σ2(x,a)∑ã∈Ax,ã6=â∗x

r(ã,a)
σ(x,ã)

)
,

where Φ(·) is the cdf of standard normal distribution and

rx(ã,a) =
σ(x, ã)δx(â∗x,a)

2

σ(x,a)δx(â∗x, ã)
.

Proof of Theorem 3.4. When the number of samples at node x is large, we assume that

N(x,a) satisfies Equations (3.5) to (3.6).

From Equation (3.5), we have

N(x, ã) =
(

σ(x, ã)δx(â∗x,a)
σ(x,a)δx(â∗x, ã)

)2
N(x,a), (3.25)

∀ã,a 6= â∗x.

In this way, we can express the budget allocation to any suboptimal action ã as the product
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of the budget allocation to a particular suboptimal action a and the factor

rx(ã,a) =
(

σ(x, ã)δx(â∗x,a)
σ(x,a)δx(â∗x, ã)

)2
.

From Equation (3.6):

N(x, â∗x) = σ(x, â∗x)
√

∑
ã∈Ax,ã6=â∗x

(N(x, ã)2)

σ2(x, ã)
.

Substitute N(x, ã) from Equation (3.25) yields

N(x, â∗x) = N(x,a)σ(x, â∗x)
√

∑
ã∈Ax,ã6=â∗x

(rx(ã,a))2

σ2(x, ã)
,

i.e.,

N(x,a) =
N(x, â∗x)

σ(x, â∗x)
√

∑ã∈Ax,ã6=â∗x
(rx(ã,a))2

σ2(x,ã)

.

Since PCS is lower bounded by APCS, and the posterior Q̃(x,a) is normally distributed

with

Q̃(x,a)∼ N(Q̄(x,a),
σ2(x,a)
N(x,a)

),
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then

PCS≥ APCS

= 1− ∑
a∈Ax,a6=â∗x

P
[

Q̃(x, â∗x)≤ Q̃(x,a)
]

= 1− ∑
a∈Ax,a6=â∗x

Φ(
Q̄(x,a)− Q̄(x, â∗x)

σx(a, â∗x)
)

= 1− ∑
a∈Ax,a6=â∗x

Φ(− δx(â∗x,a)
σx(a, â∗x)

),

where the second equality is because Q̃(x, â∗x)−Q̃(x,a) is normally distributed with mean

Q̄(x,a)− Q̄(x, â∗x) and variance

σ
2
x (a, â

∗
x) =

σ2(x, â∗x)
N(x, â∗x)

+
σ2(x,a)
N(x,a)

=
1

N(x, â∗x)

(
σ

2(x, â∗x)+σ(x, â∗x)σ
2(x,a)

√
∑

ã∈Ax,ã 6=â∗x

(rx(ã,a))2

σ2(x, ã)

)
.

Apply inequality
√

∑
n
i=1 c2

i ≤ ∑
n
i=1

√
c2

i = ∑
n
i=1 ci for positive numbers ci’s yields

σ
2
x (a, â

∗
x)≤

1
N(x, â∗x)

(
σ

2(x, â∗x)+σ(x, â∗x)σ
2(x,a) ∑

ã∈Ax,ã6=â∗x

rx(ã,a)
σ(x, ã)

)
.

Since APCS is decreasing in σ2
x (a, â

∗
x), we have

PCS≥ 1− ∑
a∈Ax,a6=â∗x

Φ

(
−

δx(â∗x,a)
√

N(x, â∗x)√
σ2(x, â∗x)+σ(x, â∗x)σ2(x,a)∑ã∈Ax,ã6=â∗x

rx(ã,a)
σ(x,ã)

)

as desired.
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3.5 Numerical Examples

In this section, we evaluate our proposed OCBA-MCTS on two tree search prob-

lems against the well-known UCT [45]. The effectiveness is measured by PCS, which is

estimated by the fraction of times the algorithm chooses the true optimal action. We first

evaluate our algorithm on an inventory control problem with random non-normal reward.

Then we apply our algorithm to the game of tic-tac-toe.

For convenience, we restate the UCT tree policy here. At a state node x, the UCT

policy will select the child state-action node with the highest upper confidence bound,

i.e.,

â =argmax
a∈Ax

{
Q̄(x,a)+we

√
2log∑a′∈Ax N(x,a′)

N(x,a)
}
, (3.26)

where we is the “exploration weight”. The original UCT algorithm assumes the value

function in each stage is bounded in [0,1] because it sets we = 1, whereas the support

is unknown in many practical problems. Therefore, in general, we needs to be tuned to

encourage exploration.

For all experiments, we set the smoothing parameter in Equation (3.13) in the back-

propagation phase to αN(x) = 1− 1
5N(x) . Since initial estimates of sample variance can

be less accurate with small n0, we add an initial variance σ2
0 > 0, which decays as the

number of visits grows, to the sample variance to encourage exploration. Specifically, we
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set

σ̂
2(x,a) =

1
N(x,a)

N(x,a)

∑
t=1

(
Q̂t(x,a)− Q̄(x,a)

)2
+σ

2
0/N(x,a),

where the first term is the sample variance, and second term vanishes as N(x,a) grows.

3.5.1 Inventory Control Problem

We now evaluate the performance of OCBA-MCTS using the inventory control

problem in [43]. The objective is to find the initial order quantity that minimizes the total

cost over a finite horizon. At decision period i, we denote by Di the random demand in

period i, xi = (xi, i) the state node, where xi is the inventory level at the end of period i

(which is also the inventory at the beginning of period i+ 1), (xi,ai) the corresponding

child state-action node with ai being the order amount in period i, p the per period per unit

demand lost penalty cost, h the per period per unit inventory holding cost, K the fixed (set-

up) cost per order, M the maximum inventory level (storage capacity) and H the number

of simulation stages. We set M = 20, initial state x0 = 5, h = 1, H = 3, Di ∼ DU(0,9)

(discrete uniform, inclusive), and consider two different settings for p and K:

1. Experiment 1: p = 10 and K = 0;

2. Experiment 2: p = 1 and K = 5.
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The reward function, which in this case is the negative of the inventory cost in stage i, is

defined by

R(xi,ai) =− (hmax{0,xi +ai−Di}+ pmax{0,Di− xi−ai}+K1{ai>0}),

where 1 is the indicator function, and the state transition follows

xi+1 = max(0,xi +ai−Di),

where

ai ∈ Axi = {a|xi +a≤M}.

For UCT, to accommodate the reward support not being [0,1], we adjust the exploration

weight when updating a state-action node, i.e., set we initially to 1, then in the backprop-

agation step, update we by

we = max(we, |Q̂N(x,a)(x,a)|),

where Q̂N(x,a)(x,a) is obtained in Equation (3.10). The initial variance σ2
0 is set to 100.

For both OCBA-MCTS and UCT, we set the number of expansions (n0) to 4 for depth

1 state-action nodes (i.e., the child nodes of the root) and to 2 for all other state action

nodes in Experiment 1, and set n0 to 2 for all nodes in Experiment 2. The different values

of n0 are due to the variance decreasing with the depth of a node, and Experiment 2 is a
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relatively easier problem.

For both experiment settings, each algorithm is repeated 1,000 times at each sim-

ulation budget level N to estimate PCS. Since Experiment 1 is a much harder problem

compared to Experiment 2, more rollouts (budget) are required. Therefore, N ranges

from 10,000 to 20,000 and from 50 to 170 for Experiments 1 and 2, respectively.
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(a) Experiment 1: p = 10, K = 0
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(b) Experiment 2: p = 1, K = 5

Figure 3.1: The estimated PCS as a function of sampling budget achieved by UCT-MCTS
and OCBA-MCTS for inventory control problem, averaged over 1,000 runs.

The estimated PCS curves for both experiments are illustrated in Figure 3.1, where

the standard error (=
√

PCS(1−PCS)/N) is small and thus omitted for clarity. OCBA-

MCTS achieves better PCS for both experiment setups. For Experiment 1 (optimal action

a∗0 = 4), as shown in Figure 3.1a, OCBA-MCTS achieves a 10% higher PCS (absolute)

compared to UCT. For Experiment 2 (optimal action a∗0 = 0), we see a 20% performance

gap between UCT and OCBA-MCTS when the number of samples is less than 100, after

which UCT gradually closes the gap as expected.

It is also beneficial to compare the distribution of budget allocation of OCBA-

MCTS and UCT to show the exploration-exploitation balance of OCBA-MCTS. For con-

venience, we label the child actions of the root node from 0 to 15, where action i denotes
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ordering i units. Figures 3.2 and 3.3 illustrate the average number of visits, average es-

timated value function, and average estimated standard deviation of all child state-action

nodes of the root node over 1,000 repeated runs with 20,000 and 170 rollouts for Ex-

periment 1 and Experiment 2, respectively. Note that although the estimated standard

deviation does not play a role in determining the allocation for UCT, we still plot it for

reference. Both figures show that the number of visits to children nodes is, to some extent,

proportional to the estimated value of the node for UCT. On the other hand, OCBA-MCTS

puts more effort on the estimated optimal and second optimal actions (actions 4 and 3 for

Experiment 1 and actions 0 and 1 for Experiment 2, respectively), as illustrated in Figures

3.2b and 3.3b.

In Experiment 1 where there are two competing actions with similar estimated val-

ues (actions 3 and 4, with action 4 being the optimal), OCBA-MCTS will spend most of

its sampling budget on those two potential actions and put much lesser effort on clearly in-

ferior actions, such as actions 6 to 14, compared to UCT. This strategy makes more sense

when the objective is to identify the best action, and thus is more suitable for MCTS

problems, as the ultimate goal is to make a decision. It is also interesting to note that

OCBA-MCTS actually allocates slightly more visits to the competing suboptimal action

than the optimal one (mean 8486 and 8468 for actions 3 and 4, respectively), which will

not happen in bandit-based policies, as their goal is to minimize regret, and thus will

put more effort on exploiting the estimated optimal action. In Experiment 2 where the

optimum is slightly easier to find, although OCBA-MCTS allocates a larger fraction of

samples to suboptimal actions compared to that in Experiment 1, most of the samples are

still allocated to the top 2 actions as shown in Figure 3.3b, whereas UCT performs similar
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to that in Experiment 1.
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Figure 3.2: Sampling distribution for Experiment 1 with N = 20,000, averaged over 1,000
runs.

3.5.2 Tic-Tac-Toe

In this section, we apply OCBA-MCTS and UCT to the game of tic-tac-toe to iden-

tify the optimal move. Tic-tac-toe is a game for two players who take turns marking ‘X’

(Player 1) and ‘O’ (Player 2) on a 3×3 board. The objective for Player 1 (Player 2) is to

mark 3 consecutive ‘X’ (‘O’) in a row, column or diagonal. If both players act optimally,

the game will always end in a draw.
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Figure 3.3: Sampling distribution for Experiment 2 with N = 170, averaged over 1,000
runs.

For ease of presentation, we number the spaces sequentially as shown in Fig-

ure 3.4a. We use OCBA-MCTS and UCT to represent Player 2, with Player 1 marked

‘X’ on space 0 as shown in Figure 3.4b. In this situation, the optimal move for Player

2 will be marking space 4 (shown in Figure 3.4c), as taking any other space will end up

in losing the game if Player 1 plays optimally. In this game, Player 2 (MCTS algorithm)

makes decisions at even stages (0,2,4, . . . ) and Player 1 makes decisions at odd stages

(1,3, . . . ). The state transitioning is deterministic and Player 1’s move is modeled using a

randomized policy. We consider two different policies for Player 1:
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(a) Action layout (b) Root node (c) Optimal

Figure 3.4: Tic-tac-toe board setup.

1. Experiment 3: Player 1 plays randomly, i.e., with equal probability to mark any

feasible space;

2. Experiment 4: Player 1 plays UCT.

We compare the performance of OCBA-MCTS and UCT on Player 2 in both experiments.

At state node x, the reward function for taking action a is defined according to the follow-

ing rules: immediately after taking the action, if Player 2 wins the game, R(x,a) = 1, if it

leads to a draw, R(x,a) = 0.5; otherwise (Player 2 loses or in any non-terminating state),

R(x,a) = 0. n0 is set to 2 across all nodes for both UCT and OCBA-MCTS. Since the

value function for all state-action nodes is now bounded in [0,1], we set we = 1 throughout

the entire experiment for UCT policies. The initial variance σ2
0 is set to 10. For Experi-

ment 4 where Player 1 plays UCT, its goal is to minimize the reward, therefore, Player 1

will select the action that minimizes the lower confidence bound, i.e.,

â =arg min
a∈Ax

{
Q̄(x,a)−we

√
2log∑a′∈Ax N(x,a′)

N(x,a)
}
.

Similar to the previous section, we plot the PCS of the two algorithms as a function

of the number of rollouts, which ranges from 300 to 700 for both experiments and the

PCS is estimated over 2000 independent experiments at each rollout level. The results are
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shown in Figure 3.5, which indicates that the proposed OCBA-MCTS produces a more

accurate estimate of the optimal action compared to UCT. Both experiments show that
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(a) Experiment 3: Player 1 plays randomly.
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(b) Experiment 4: Player 1 plays UCT.

Figure 3.5: The estimated PCS as a function of sampling budget achieved by UCT-MCTS
and OCBA-MCTS for tic-tac-toe, averaged over 2000 runs.

OCBA-MCTS is better at finding the optimal move when the sampling budget is rela-

tively low. The performance of UCT and OCBA-MCTS become comparable when more

samples become available. We also note that there is a greater performance gap between

UCT and OCBA-MCTS in Experiment 3 than in Experiment 4: in Experiment 3, OCBA-

MCTS achieves 10% better PCS, whereas in Experiment 4, the difference is around 5%

when N < 500 and soon catches up as N increases. This is expected, as it becomes easier

to determine the optimal action when the opponent applies an AI algorithm (i.e., Player

1 has a better chance to take its optimal action). In this case, space 4 becomes a clear

optimum and therefore Player 2’s UCT algorithm tends to exploit it more, which leads to

better performance.

The sampling distributions for OCBA-MCTS and UCT with N = 700 for both ex-

periments are shown in Figures 3.6 and 3.7. In this game, since a relatively clear optimum

is available, OCBA-MCTS and UCT behaved differently compared to that in the inventory
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control problem. As shown in Figures 3.6a and 3.7a, UCT spends most of the sampling

budget exploiting this action, whereas OCBA will still try to explore other suboptimal

actions due to its tendency to better balance exploration and exploitation.
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Figure 3.6: Sampling distributions for Experiment 3, averaged over 2000 runs.

In summary, the proposed OCBA-MCTS outperforms UCT in both experiments in

finding the optimal action at the root. Since the objective of the proposed OCBA tree

policy is to maximize PCS, it leads to different budget allocation and better PCS.
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Figure 3.7: Sampling distributions for Experiment 4, averaged over 2000 runs.

3.6 Conclusion and Future Research

In this research, we present a new OCBA tree policy for MCTS. Unlike bandit-

based tree policies (e.g., UCT), the new policy maximizes PCS at the root node, and in

doing so, balances the exploration and exploitation trade-off differently. Furthermore, the

new OCBA tree policy relaxes the assumption of known bounded support on the reward

distribution, and thus makes MCTS more generally applicable.

For future research, we intend to explore the use of a batch sampling scheme in

Algorithm 4, which allocates a batch of ∆ > 1 samples at each node. With batch sampling
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and updating, we may exploit the power of parallel computing to more quickly identify the

optimal action. Furthermore, the proposed OCBA-MCTS algorithm aims at selecting only

the optimal action at the root. It may be of interest to show that our algorithm is ε − δ -

correct and establish an upper bound on the sample complexity. It is also interesting to

consider cases where the optimal and the suboptimal actions have similar Q-values (such

as that in Experiment 1) and the decision maker is insensitive to selecting the slightly

suboptimal actions. Under such settings, the “indifference zone” approaches could be

applied.
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Chapter 4: Parameter Estimation

4.1 Introduction

The human brain continuously processes complex information it receives, therefore,

decoding the dynamics of brain activities underlying conscious behavior is one of the

key questions in systems neuroscience. To quantify the brain activities, neurolimaging

modalities, such as electroencephalography (EEG) and magnetoencephalography (MEG),

are widely used. The general framework to model the neural dynamics with auditory

stimuli is shown in Figure 4.1. Since the M/EEG measurements usually have millisecond

temporal resolution, the modeling of brain activities must be of comparable temporal

resolution to that of M/EEG acquisition.

Modeling neural 
activities

Speech signal

Speech envelope

M/EEG measurement

Figure 4.1: General framework to model neural dynamics.
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In the neuroscience literature, many static estimation methods are proposed to char-

acterize the neural response functions. For example, “reverse correlation” [69–71] and

boosting [72–74] are two widely used techniques to construct neural models, where the

neural responses are averaged over a long time (typically at the scale of a minute [75])

and trials of experiment to form reliable response functions. However, it is shown that

sensory neurons, such as those in the auditory system, can undergo rapid changes in their

response characteristics, and thereby result in functional changes over time [76–80]. In

addition, [81] reveals that task-based behavioral and neural plasticity in the auditory cor-

tex can occur in less than a second. Therefore, static methods are not suitable to systemat-

ically track such neural plasticity at the order of a second, and thus, a dynamic framework

becomes crucial to better understand the underlying neural cognitive functions.

To address this issue, linear system theory is utilized to model the neural activities

using the measured M/EEG data with proven record [82–84]. Under this setting, a linear

dynamics of the neural activities is assumed and is used to predict the M/EEG response by

convolving with the features of the stimuli (such as speech). The neural activities, which

in this case is modeled as impulse response functions with linear state space model, are

crucial in characterizing the temporal structure of auditory information processing in the

brain, and are often referred to as Temporal Response Functions (TRF) [85–87].

The models (both latent state process and the M/EEG prediction process) are of-

ten corrupted with noise, whose parameters are estimated from the M/EEG observa-

tions. In many applications, the noise terms are assumed to be independent and iden-

tically distributed (i.i.d.) Gaussian, which would result in convenient closed-form solu-

tions [83, 88, 89]. However, neural response models such as TRF are observed to contain
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two major peaks near 50 ms (M50) and 100 ms (M100) that are modulated by different fea-

tures of the speech stimuli [75]. As a result, simple i.i.d. Gaussian state input noise would

seem insufficient to model such characteristics. In addition, the independent assumption

of the noise term would largely lose track of the temporal correlations in the component.

To address these issues, one solution is to assume underlying low dimensional noise

processes, which are then linearly mapped into TRF space with a set of base vectors. The

TRF characteristics, such as the aforementioned M50 and M100, are represented by the

base vectors. The underlying noise process can be used to model the temporal corre-

lation, hence autoregressive (AR) processes driven by i.i.d. Gaussian become a natural

choice. The model parameters can then be estimated by maximum likelihood. On the

other hand, although such a modeling approach would better characterize the neural activ-

ities, it comes at the expense of a more complicated likelihood function to be optimized,

which is usually non-convex without a closed form. The complexity in the likelihood

function can be addressed by Expectation-Maximization (EM) algorithm [88, 90]; how-

ever, a global optimization method is needed to resolve this issue, as the cost function in

the Maximization step can still be nonconvex without a closed-form update.

One of the most commonly employed global optimization approaches, especially

when there is a general lack of model information, is random search, which is further cat-

egorized as instance-based or model-based [91]. Instance-based methods generate new

sample points based on current points, such as simulated annealing and genetic algo-

rithms. In this work, we will focus on applying model-based algorithms, where candidate

points rely on an underlying distribution whose parameter is updated every iteration. Ex-

amples of model-based search algorithm include the cross-entropy (CE) method [92, 93]
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and ant colony optimization (ACO) [91, 94].

Model-based random search algorithms facilitate solving the problem of interest

in various ways. First, since probability models are used to guide the construction of

candidate solutions in model-based methods, they are easy to implement. Second, model-

based methods can be customized to solve a particular type of problem with convergence

assurance. In addition, current methods for model parameter estimations only provide

point parameter estimates, where the features of the parameters are lost, whereas model-

based methods maintain the distribution of the parameter estimates.

In summary, we propose a state space model to represent the dynamics of the neu-

ral activities, where the state noise terms are modeled by AR processes and subsequently

mapped to high dimensions by base matrix to characterize neural activities. The EM al-

gorithm is employed to estimated the unknown parameters, where the Maximization step

is carried out with a model-based global optimization method to deal with nonconvexity

of the objective function. Finally, experiments with both synthesized data and acquired

MEG data are carried to demonstrate the efficiency of the proposed algorithm.

4.2 Problem Formulation and Proposed Solution

4.2.1 Problem Formulation

Consider the following state space model

xt = Fxt−1 +wt , (4.1)

yt =Ctxt + vt , (4.2)
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where xt ∈ Rm represents the neural activities, wt ∈ Rm is a non-Gaussian state input

noise with temporal correlation, yt ∈ Rn is the observation, and vt ∈ Rn is i.i.d. Gaussian

observation noise with vt ∼ N(0,V ), all at time step t. For convenience, we define x1:T =

{x1,x2, . . . ,xT}, and y1:T is defined analogously. The time-invariant transfer matrix F ∈

Rm×m, which can be set with domain specific knowledge, the measurement matrix Ct ∈

Rn×m, which represents the neural stimuli and thus can be estimated, and the observation

noise covariance V are assumed to be known.

Remark 4.1. We assume matrices F and V to be known, as they can either be set with

prior information or estimated otherwise by measurements for convenience; however,

these assumptions are not necessary, as they can also be estimated with the proposed EM

algorithm along with other unknown parameters.

We model state noise wt by a set of AR(p) processes (p≥ 1):

zt,i =
p

∑
l=1

φi,lzt− j,i + εt,i, (4.3)

wt =
h

∑
i=1

αizt,i, i = 1,2, . . . ,h (4.4)

where zt,i ∈ R is the i-th AR(p) process with unknown parameters φi,l , εt,i∼N(0,σ2
i ) with

unknown variances σ2
i , and αi ∈ Rm is a set of unknown bases.

In practical settings, the dimension of the state (i.e., m) may be large, hence it can

be challenging to estimate all components of the bases. A more practical solution would

be instead assuming an underlying dictionary (e.g., Gaussian dictionary) that constitutes
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the bases, i.e., let

D = [d1,d2, . . . ,dk], di ∈ Rm, ∀i,

be the set of known dictionaries with k� m. The bases are constructed by

αi =
k

∑
j=1

d jn ji,

where the weights n ji for the i-th base and j-th dictionary are unknown.

Under these settings, the AR processes model parameters φi,l , AR process white

noise variances σ2
i , and weights n ji are unknown (totaling h(p+ k+1) parameters). For

convenience, let θ be the vector of unknown parameters. Our objective is to estimate

θ from observations y1:T by maximizing its log-likelihood L(y1:T ;θ), which, however,

is hard to compute. Therefore, one possible solution is to use EM. Formally, define the

log-likelihood of y1:T and joint state-observation log-likelihood of x1:T and y1:T with es-

timated underlying parameters θ by L(y1:T ;θ) and L(x1:T ,y1:T ;θ), respectively. In the

(m+1)-th EM iteration, the expected joint state-observation log-likelihood, given an es-

timate of parameters θ m and the observations y1:T is calculated (E-step):

Q(θ |θ m) = E[L(x1:T ,y1:T ;θ)|y1:T ,θ
m], (4.5)

where the expectation is taken with respect to (w.r.t.) x1:T , given observations y1:T and

current parameter estimate θ m. Then, Equation (4.5) is maximized (M-step) to obtain the
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new parameter estimate for the next iterations:

θ
m+1 = argmax

θ

Q(θ |θ m), (4.6)

it can be shown [90] that the log-likelihood is non-decreasing, i.e.,

L(y1:T ;θ
m+1)≥ L(y1:T ;θ

m).

When the noise terms are i.i.d. Gaussian, the joint likelihood L(x1:T ,y1:T ;θ) can be

calculated by the Markovian property of the state space model, which is no longer true

when the noise is driven by AR processes:

L(y1:T ,x1:T ;θ) = L(y1:T |x1:T ;θ)L(x1:T ;θ), (4.7)

where the first term is straightforward from Equation (4.2); however,

L(x1:T ) = L(x0;θ)
T

∏
t=1

L(xt |x1:t−1;θ) (4.8)

6= L(x0;θ)
T

∏
t=1

L(xt |xt−1;θ), (4.9)

as wt in Equation (4.1) is not i.i.d. Since ∏
T
t=1 f (xt |x1:t−1;θ) is hard to compute directly,

one possibility is to simplify it to ∏
T
t=1 L(xt |xt−1;θ) to make the problem tractable.
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4.2.2 Proposed Solution

We propose to augment the state space model to make the noise term i.i.d. Gaussian.

If we denote zt = [zt,1, . . . ,zt,h]
T ∈ Rh and εt = [εt,1, . . . ,εt,h]

T ∈ Rh, then Equation (4.3)

can be written compactly as

zt =
p

∑
j=1

Φ jzt− j + εt

εt ∼ N(0,Σ),

where

Φ j =diag(φ1, j, . . . ,φh, j) ∈ Rh×h,∀ j = 1, . . . , p

Σ =diag(σ2
1 , . . . ,σ

2
h ) ∈ Rh×h.

Also denote A= [α1, . . . ,αh]∈Rm×h (henceforth referred to as base matrix), Equation (4.4)

can be rewritten as

wt = Azt

=
p

∑
j=1

AΦ jzt− j +Aεt .
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And if we define N = [n ji]m×k = [n1, . . . ,nk], where ni is the i-th column of N, (i.e., the

weights for the i-th base), then A can also be expressed compactly as

A = DN = D[n1, . . . ,nk].

The state space model in Equation (4.1) can be reformulated as

x̃t =



xt

zt

zt−1

...

zt−p+1


=



F DNΦ1 . . . DNΦp−1 DNΦp

0 Φ1 . . . Φp−1 Φp

0 I . . . 0 0

0 0 . . . 0 0

0 0 . . . I 0





xt−1

zt−1

zt−2

...

zt−p


+



DN

I

0

...

0


εt (4.10)

= F̃ x̃t−1 +Γεt

= F̃ x̃t−1 + w̃t ,

where 0 and I, respectively, denote the zero matrix and identity matrix of appropriate size.

The noise term

w̃t ∼ N(0, Σ̃)

Σ̃ = Γ
T

ΣΓ

is i.i.d. It is worth noting that, in general, the new covariance matrix Σ̃ is not of full rank,

as there are fewer number of AR processes (which determines the rank) than the state di-
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mension (which is the dimension of Σ̃). Therefore, the state space model in Equation (4.1)

and 4.2 can be written as

x̃t = F̃ x̃t−1 + w̃t (4.11)

yt = Ht x̃t + vt , (4.12)

with

Ht = [Ct ,0, . . . ,0].

4.3 Maximum Likelihood Estimation of the Unknown Parameters

In this section, we compute the maximum likelihood estimator (MLE) of θ from

observations y1:T using EM.

4.3.1 E-Step

Similar to that in Equation (4.7) and 4.8,

L(y1:T , x̃1:T ;θ) = L(y1:T |x̃1:T ;θ)L(x̃1:T ;θ).
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The first term can be can be computed by:

L(y1:T |x̃1:T ;θ) =
T

∏
t=1

L(yt |x̃1:T ,y1:t−1;θ)

=
T

∏
t=1

L(yt |x̃t ;θ),

which is given by the probability desity function (p.d.f.) of N (Ht x̃t ,V ).

Similarly, if we denote the initial state at time 0 by x0 ∼ N (µ0,Σ0), the second

term can now be simplified since the state noise is i.i.d.:

L(x̃1:T ;θ) = L(x̃0;θ)
T

∏
t=1

L(x̃t |x̃1:t−1)

= L(x̃0;θ)
T

∏
t=1

L(x̃t |x̃t−1),

which is given by the product of the p.d.f. of N (F̃ x̃t−1, Σ̃) for t = 1,2 . . . ,T .

Combining the two terms yields

L(y1:T , x̃1:T ;θ) = L(x̃0;θ)
T

∏
t=1

f (yt |x̃t ;θ)L(x̃t |x̃t−1).

Taking logarithm on both sides yields

L(x̃1:T ,y1:T ;θ) = logL(x̃0;θ)+
T

∑
t=1

[logL(yt |x̃t ;θ)+ logL(x̃t |x̃t−1)]

=− 1
2

T

∑
t=1

[(yt−Ht x̃t)
TV−1(yt−Ht x̃t)+(x̃t− F̃ x̃t−1)

T
Σ̃

†(x̃t− F̃ x̃t−1)]

− T
2

h

∑
i=1

logλi + constant,
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where Σ̃† is the Moore–Penrose inverse of Σ̃ and λi is the i-th non-zero eigenvalue of Σ̃.

If Σ̃ is invertible, Σ̃† equals Σ̃−1, and ∑
h
i=1 logλi = det(Σ̃). Drop the constant term and

rewrite the joint log-likelihood:

−2L(x̃1:T ,y1:T ;θ) =
T

∑
t=1

[(yt−Ht x̃t)
TV−1(yt−Ht x̃t)+(x̃t− F̃ x̃t−1)

T
Σ̃

†(x̃t− F̃ x̃t−1)]

+T
h

∑
i=1

logλi.

Let

Lt,1 =(yt−Ht x̃t)
TV−1(yt−Ht x̃t)

=yT
t V−1yt−2yT

t V−1Ht x̃t + x̃T
t HT

t Ht x̃t ,

Lt,2 =(x̃t− F̃ x̃t−1)
T

Σ̃
†(x̃t− F̃ x̃t−1)

=x̃T
t Σ̃

†x̃t−2x̃T
t−1F̃T

Σ̃
†x̃t + x̃T

t−1F̃T
Σ̃

†F̃ x̃t−1,

and

x̃t|τ =E[x̃t |y1:τ ;θ
m],

Pt|τ =E[(x̃t− x̃t|τ)(x̃t− x̃t|T )
T |y1:τ ;θ

m],

Pt,u|τ =E[(x̃t− x̃t|τ)(x̃u− x̃u|τ)
T |y1:τ ;θ

m].
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Then, Equation (4.5) (with constant term dropped) can be written as

Q(θ |θ m) =−1
2

T

∑
t=1
{E[Lt,1|y1:T ,θ

m]+E[Lt,2|y1:T ,θ
m]}, (4.13)

where

E[Lt,1|y1:T ;θ
m] =E[yT

t V−1yt−2yT
t V−1Ht x̃t + x̃T

t HT
t Ht x̃t |y1:T ;θ

m]

=yT
t V−1yt−2yT

t V−1Ht x̃t|T +E[tr(x̃T
t HT

t Ht x̃t)|y1:T ;θ
m]

=yT
t V−1yt−2yT

t V−1Ht x̃t|T +E[tr(x̃t x̃T
t HT

t Ht)|y1:T ;θ
m]

=yT
t V−1yt−2yT

t V−1Ht x̃t|T + tr((Pt|T + x̃t|T x̃T
t|T )H

T
t Ht), (4.14)

and

E[Lt,2|y1:T ;θ
m] =E[tr(x̃T

t Σ̃
†x̃t)−2tr(x̃T

t−1F̃T
Σ̃

†x̃t)+ tr(x̃T
t−1F̃T

Σ̃
†F̃ x̃t−1)|y1:T ;θ

m]

=E[tr(x̃t x̃T
t Σ̃

†)−2tr(x̃t x̃T
t−1F̃T

Σ̃
†)+ tr(x̃t−1x̃T

t−1F̃T
Σ̃

†F̃)|y1:T ;θ
m]

=tr((Pt|T + x̃t|T x̃T
t|T )Σ̃

†)−2tr((Pt,t−1|T + x̃t|T x̃T
t−1|T )F̃

T
Σ̃

†)

+ tr((Pt−1|T + x̃t−1|T x̃T
t−1|T )F̃

T
Σ̃

†F̃). (4.15)

Finally, x̃t|τ , Pt|τ and Pt,u|τ can be calculated by Kalman filtering and smoothing [88]:
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• Kalman filtering (forward)

x̃t+1|t =F̃mx̃t|t ,

x̃t|t =x̃t|t−1 +Pt|tH
T
t V−1(yt−Htxt|t−1),

Pt|t =(I−KtHt)Pt|t−1(I−KtHt)
T +KtV KT

t ,

Pt|t−1 =F̃mPt−1|t−1(F̃
m)T + Σ̃

m,

Kt =Pt|t−1HT
t (HtPt|t−1HT

t +V )−1

=Pt|tH
T
t V−1,

• Kalman smoothing (backward)

x̃t|T =x̃t|t + Jt(x̃t+1|T − x̃t+1|t),

Jt =Pt|t(F̃
m)T P−1

t+1|t ,

Pt|T =Pt|t + Jt(Pt+1|T −Pt+1|t)J
T
t ,

• lag-1 covariance smoother

PT,T−1|T =(I−KT HT )F̃mPT−1|T−1,

Pt,t−1|T =Pt|tJ
T
t−1 + Jt(Pt+1,t|T − F̃mPt|t)J

T
t−1,

where F̃m and Σ̃m denote the transition matrix and the covariance matrix under parameter

θ m, respectively.
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4.3.2 M-Step

Although the E-step can be carried out easily with Equations (4.13) to (4.15), how

to maximize it still remains a problem. If the matrices with unknown parameters (e.g., F̃

and Σ̃) are decoupled and needed to be estimated in whole (i.e., unconstrained), closed-

form update equations are possible [88]; however, the state matrix F̃ and the state input

noise covariance Σ̃ both depend on the unknown weighting matrix N, and have some

special structure as shown in Equation (4.10). As a result, the maximum becomes hard to

determine and even nonconvex in general, and a global optimization method is needed to

tackle this potentially nonconvex problem.

Model reference adaptive search (MRAS) [95] is an algorithm for solving global

optimization problems that works with a parameterized probabilistic model on the solu-

tion space and generates at each iteration a group of candidate solutions. In this problem,

we apply an underlying Gaussian distribution to model the solution of Equation (4.6).

For each MRAS iteration, a set of candidate solutions are generated from the underlying

Gaussian distribution. The Q-function value of those candidates are evaluated. Then, a

subset of the candidates that have high Q-function values are selected (called the elite set)

and are used to update the parameters associated with the Gaussian probabilistic model
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by

µk+1 =
∑x∈Xk

elite
x[S(Q(x|θ m))]k exp(0.5(x−µk)

T Σk(x−µk))

∑x∈Xk
elite

[S(Q(x|θ m))]k exp(0.5(x−µk)T Σk(x−µk))
, (4.16)

Σk+1 =
∑x∈Xk

elite
(x−µk+1)(x−µk+1)

T [S(Q(x|θ m))]k exp(0.5(x−µk)
T Σk(x−µk))

∑x∈Xk
elite

[S(Q(x|θ m))]k exp(0.5(x−µk)T Σk(x−µk))
.

(4.17)

Equations (4.16) to (4.17) will lead the future search biased toward the region containing

high-quality solutions, and µk converges to the true maximum asymptotically.

After a fixed number of MRAS iterations, a solution to Equation (4.6) is proposed,

and the EM algorithm is repeated iteratively until the stopping rule is satisfied. An algo-

rithmic description of the proposed algorithms is given in Algorithms 10 and 11.

Algorithm 10: Expectation-Maximization for parameter estimation.
Input: observations y1:T , initial estimate of parameters θ 0, MRAS reference

distribution mean µ0 and variance Σ0.
Output: estimate of underlying parameters θ̂ .

1 Set counter m← 0.
2 while stopping rule not satisfied do
3 θ m+1 = MRAS(y1:T ,µ0,Σ0,θ

m).
4 m← m+1.

5 Return θ̂ = θ m
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Algorithm 11: MRAS.
Input: observations y1:T , MRAS reference distribution with initial mean vector µ0 and

covariance matrix Σ0, current estimate of parameters θ m, hyperparameter ρ0 ∈ (0,1],

initial sample size N0, ε ≥ 0 α > 0, mixing coefficient λ ∈ (0,1] and a positive, strictly

increasing function S(·).
Output: maximum of Q(θ |θ m).

1 Set counter k← 0.

2 while stopping rule not satisfied do
3 Generate Nk samples Xk

1 , . . . ,X
k
Nk

from N(µk,Σk) w.p. (1−λ ) and from N(µ0,Σ0) w.p. λ .

4 Evaluate the Qk
i = Q(Xk

i |θ m) for i = 1, . . . ,Nk with Equations (4.13) to (4.15).

5 Compute the sample (1−ρk)-quantile:

γ̃k+1 := Qk
(d(1−ρk)Nke),

where d·e is the ceiling function and Qk
(i) is the i-th ordered statistic of {Qk

i }.

6 if k = 0 or γ̃k+1(ρk,Nk)≥ γ̄k + ε/2 then
7 Set γ̄k+1← γ̃k+1(ρk,Nk), ρk+1← ρk, and Nk+1← Nk.

8 else
9 Find the largest ρ̄ ∈ (0,ρk) such that γ̃k+1(ρ̄,Nk)≥ ρ̄k + ε/2.

10 if such a ρ̄ exists then
11 Set γ̄k+1← γ̃k+1(ρ̄,Nk), ρk+1← ρ̄ , and Nk+1← Nk.

12 else
13 Set γ̄k+1← γ̄k, ρk+1← ρk, and Nk+1← dαNke.

14 Find elite set

X k
elite = {Xk

i : Q(Xk
i |θ m)≥ γk+1}.

Update µk and Σk with Equations (4.16) to (4.17).

15 k← k+1.

16 Return µk.

4.4 Numerical Experiments

In this section, we demonstrate the efficiency of our algorithm by estimating the au-

ditory TRF introduced in Section 4.1. The first experiment is carried out with synthesized

data to illustrate the accuracy of estimating the model parameters, and the second is on
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real MEG data.

4.4.1 Experiment 1: Synthesized Data

In this experiment, the “observed” data y1:T are generated with the underlying state

space model and the AR processes (Equations (4.1) to (4.4)). The observation matrix Ct

is given by a measured speech envelope, which is the same speech envelope as that in

Experiment 2 to acquire MEG data. We apply the following setup to the experiment with

synthesized data.

1. The dimension of TRF is fixed at 24 (m = 24).

2. The dictionary size is set to 12 (k = 12), with the j-th element of the i-th dictionary

given by

di j = f (
j− m

k i
m/(2k)

) i = 1, . . . ,k, j = 1, . . . ,m, (4.18)

where f (·) is the density function of the standard normal distribution. A component

of the dictionary is shown in Figure 4.2a, and the i-th column of matrix D is a shift

centered at m
k i.

3. The order of AR process and the number of AR processes that controls the sys-

tem noise are both set to 2 (p,h = 2). The two AR processes are determined by

poles at p1 = 0.98exp(±0.2π) and p2 = 0.95exp(±0.6π), i.e., φ1,1 = 1.58,φ1,2 =

−0.587,φ2,1 = 0.960,φ2,2 = −0.902, and the variances are given by σ2
1 = 1.2×

10−8 and σ2
2 = 10−8 (ground truth).
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4. The weights on the dictionary that constitutes the bases are given by (ground truth)

N =
[−0.0623 0.0827 −0.3450 −0.7328 −0.4517 −0.3594 0 0 0 0 0 0

0 0 0 0 0 0 0.3696 −0.7734 0.0519 −0.5100 −0.0485 0.0098

]
(4.19)

The two columns of base matrix A = DN (i.e., α1 and α2) are shown in Figure 4.3a.

5. The state matrix F in Equation (4.1) is given by 0.998I, where I is the identity

matrix.

6. The number of observed data is 2000 (T = 2000).

7. The hyperparameters in MRAS are chosen as: α = 1.2, ρ0 = 0.1, N0 = 4000, λ =

0.005, ε = 0. The MRAS reference distribution is set to be Gaussian with mean θ m

and variance 10−4I, where I is the identity matrix of same dimension as θ m. The

increasing function S(·) is based on the logistic function:

S(x) =
1

1+ exp(− x−x̄
max(x)−min(x))

,

where x̄ is the mean of x.

8. The number of MRAS and EM iterations are set to 6 and 8000, respectively.

9. The initial estimate of the parameters (θ 0) is set randomly.

Remark 4.2. The choices of the model parameters depend on the real MEG data. The

MEG data was sampled at 50Hz. Therefore, a 24-dimensional TRF would be sufficient to

cover the dynamics of the peaks around 50 ms and 100 ms. The dictionary, as shown in
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Figure 4.2b, is intentionally set to be sparse to avoid overfitting. The dictionary weights ,

as shown in Equation (4.19), are set to be non-overlapping to simulate the different parts

of TRF being controlled by two AR processes.

Under such settings, there are 30 parameters to be estimated in total.
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Figure 4.2: Dictionary setup.
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Figure 4.3: Base matrix.

Since our experiments show that the original estimates of the variances of the

white noise in AR processes have high variance, we suggest to smooth it with a slid-
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Figure 4.4: Error in parameters estimation.

ing window average of size W , i.e., if we denote the k-th estimate of variance from

the EM algorithm by σ
2,k
i , i = 1,2, the final smoothed variance estimate is given by

σ̄
2,k
i = 1

W ∑
k
j=k−W+1 σ

2, j
i . In this experiment, the window size is set to W = 100.

The relative 2-norm errors (i.e., ‖θ̂−θ∗‖2
‖θ∗‖2

, where θ̂ and θ ∗ denote the estimated

parameters and ground truth, respectively) of each group of parameters are shown in

Figure 4.4. After 5000 EM iterations, each group of parameters converges to the true

value within 5% error. For the pole parameters of the AR processes, it takes only 3000

EM iterations to converge.

Figure 4.3b shows the two columns of base matrix from parameter estimates. The

proposed algorithm successfully captured the the shape of the bases for their respective

AR process despite some overlaps around the 12-th to 15-th dimensions. Note that al-
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though the signs of the estimates are flipped compared to the ground truth, we still con-

sider it a correct estimate, as it would be multiplied with the underlying noise process. As

a result, it suffices to estimate the relative value and shape within each base.

Figure 4.5 shows the convergence of the weight matrix N = [n1,n2], where each

curve denotes the error of each weight parameter, i.e., nk
i j− n∗i j, where nk and n∗ denote

the k-th estimate and the ground truth, respectively. Similar to that in Figure 4.4, the

curves converge after around 5000 EM iterations.

4.4.2 Experiment 2: Real MEG data

In this experiment, we use the acquired MEG data where a subject listens to a

speech. All experiment settings, except the ground truth parameters (which are unknown

and to be estimated) and the number of EM iterations (which is set to 50000), are set the

same as that in Experiment 1.

Figure 4.6a shows the heatmap of the smoothed states with the estimated parame-

ters, where the y-axis and x-axis denote the each dimension of the states and time steps,

respectively. An example of the smoothed states taken at t = 1500 is shown in Fig-

ure 4.6b. As expected, the smoothed states contain two steady peaks at 50 ms and 100

ms, respectively. The reconstructed base matrix with estimated parameters is displayed in

Figure 4.7, which shows that the two AR processes control the dynamics of two regions

in a TRF.
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4.5 Conclusion and Future Research

In this work, we propose a linear state space model with non-i.i.d., non-Gaussian,

noise process to model the rapid-changing neural dynamics with temporal correlation. To

estimate the unknown parameters in the model, ML estimation is carried out with the EM

algorithm, where the E-step computed by augmenting the state space model, and a global

optimization algorithm is applied to address the general non-convex problem in the M-

step. Finally, numerical experiments are carried out to demonstrate the efficiency of the

proposed algorithm.

In this work, the non-Gaussian noise model was reformulated as a standard Gaus-

sian model. For future research, we intend to investigate more general noise process, and

more adaptive methods such as Gaussian particle filter/smoother can be applied for state

estimation. Second, in a real-world scenario, it is more common that a listener attends to

a particular speaker and dynamically switches attention in a multi-speaker environment.

Thus, it would be meaningful to extend our results to address such “cocktail party” prob-

lems. In addition, we model the unknown parameters in this problem as fixed unknown

constants, and an ML estimation algorithm is proposed. Another possibility is to treat

them as r.v.’s and develop maximum a postori estimators.
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