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Age of Incorrect Information (AoII) is a newly introduced metric that captures

not only the freshness of information but also the information content of the trans-

mitted packets and the knowledge at the monitor. It overcomes the shortcomings of

Age of Information (AoI) in many applications that involve the problem of remotely

estimating an event in real-time. However, the fundamental nature of AoII has been

elusive so far. This thesis considers a system in which a transmitter sends updates

about a Markovian source to a remote monitor through an unreliable channel. By

leveraging the notion of Markov Decision Process (MDP), it is shown that a simple

”always update” policy minimizes the AoII. The performances of ”always update”

policy as well as a more general transmission policy - ”threshold update” policy are

analyzed in this thesis. Lastly, numerical results that highlight the effects of the

parameters on the performances of these two transmission policies are provided.
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Chapter 1: Introduction

Applications, such as autonomous vehicles, control systems, and unmanned

aerial vehicles (UAVs), rely heavily on the exchanging of time-sensitive information.

In these applications, the freshness of information is critical. Conventional metrics

such as throughput and delay are not always optimal when considering the freshness

of information. The Age of Information (AoI) introduced in [1] offers a new way to

quantify the freshness of information. Let U(t) be the generation time of the last

received packet. AoI is a function defined by ∆(t) = t− U(t).

Recently, research on AoI has been growing fast. AoI in queueing networks

is of great interest. In [1] and [2], first-come-first-served (FCFS) queues and last-

come-first-served (LCFS) queues are examined. AoI is analyzed in [3] when the

source randomly generates status update messages. In [4], AoI in a system where

the source node can manage the arriving samples is studies. At the same time,

minimizing AoI in wireless broadcast networks is another fundamental problem and

attracts the attention of researchers. [5] studied an age minimization problem over

a wireless broadcast network with many users. [6] considered a wireless broadcast

network with a base station sending information to several clients. The authors in [7]

analyzed the performance of the whittle’s index policy in a system where a central
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entity allows only part of the users to transmit simultaneously. Although AoI has

been successful in many applications, it shows weakness in many other scenarios.

In the case where an event needs to be monitored, AoI will increase whether the

information at the monitor is correct or not. Since we want to keep the information

at the monitor as fresh as possible, we have no reason to think the information

is obsolete if it is correct. At the same time, AoI will increase at the same pace

regardless of the knowledge at the monitor. This will make AoI performs poorly

in some applications such as UAVs. If the controller keeps receiving inaccurate

information or the gap between the information at the controller and the correct

information keeps widening, the UAV will get further and further from the correct

track. In both cases, a higher penalty should be paid.

To overcome the shortcomings of AoI, a new metric Age of Incorrect In-

formation (AoII) is introduced in [8]. Let Xt be the true state of the event we

want to monitor and X̂t be the estimated state at the monitor, AoII is defined as

∆(t) = f(t) × g(Xt, X̂t). f(t) can be any increasing time function and g(Xt, X̂t)

can be any function that reflects the difference between true state Xt and the esti-

mated state X̂t. It captures well not only the freshness of information but also the

information content of the transmitted packets and the knowledge at the monitor.

The system model and the details on AoII are provided in Chapter 2. Chap-

ter 3 shows the policy that minimizes AoII using Markov Decision Process. The

numerical results are provided in Chapter 4.
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Chapter 2: System Model

2.1 System Overview

We consider a slotted-time system in which a transmitter sends updates about

a process of interest to a remote receiver through an unreliable channel. An illus-

tration of this system is shown in Figure 2.1.

Figure 2.1: Illustration of the system

2.2 Communication Model

The channel is error-free but unreliable. More precisely, the transmission will

not necessarily succeed, but if it succeeds, the receiver will receive the exact update

the transmitter sent. If the transmission fails, the receiver will receive nothing. We

define the channel realization as r(t). r(t) = 1 if and only if the transmission is

successful and r(t) = 0 otherwise. We further define the probability of success-
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ful transmission as Pr(r(t) = 1) = ps and probability of failure transmission as

Pr(r(t) = 0) = 1 − ps = pf . We also assume that r(t) is independent and iden-

tically distributed over the time slots. The transmission time for a transmission

attempt is deterministic and is equal to the slot duration. For example, if the trans-

mitter schedules a transmission at time t and it succeeds, the receiver will receive

the update at time t+ 1. The failure transmission will also take one slot duration.

As for the transmitter, we assume that the transmitter is capable of generating

update Xt by sampling the process at any time on its own will and proceeding to the

transmission stage immediately. But the sampling opportunities only occur at the

beginning of each time slot. The transmission result will not affect the transmitter’s

sampling decision. For example, if a transmission happened at time t, regardless of

whether the transmission was successful, the transmitter will generate a new update

at time t+ 1 if it decides to schedule another transmission.

The receiver will generate a new estimate X̂t every time an update is received.

The new estimate will be sent back to the transmitter immediately and received

by the transmitter instantaneously. In our model, the receiver uses the received

updates as its estimates.

2.3 Age of Incorrect Information

The metric AoII is a penalty function that is defined by true state of the

process Xt and the estimated state X̂t. To this end, we assume that Xt and X̂t are

all numerical. The AoII is shown in 2.1.
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∆(t) =


0 if d = 0

∆(V (t)) + [t− V (t)] · d if d 6= 0

(2.1)

where d = |Xt− X̂t| and V (t) is the last change time of d . When d = 0, no penalty

is paid since, in this case, the receiver has perfect knowledge of the process. When

d 6= 0, the penalty will increase depending on the time t and the difference d. Thus,

it captures not only the amount of time the estimate has been erroneous but also

the distance between the estimate and the true state. A sample path is shown in

Figure 2.2.

Figure 2.2: A sample path of the penalty

This metric will be the basis of our analysis in the upcoming chapters.

2.4 Source Process

The process of interest is an N-state Markov source where transmissions only

happen between adjacent states and with themselves. The corresponding Markov

chain is shown in Figure 2.3.
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Figure 2.3: N-state Markov source

To simplify our analysis, we ignore the difference caused by the process being

at ”end-states” (1 and N) and ”middle-states” (2, ..., N − 1). More precisely, we

assume for any Xt ∈ {1, 2, ..., N}, P (Xt+1 = Xt|Xt) = 1−2p, P (Xt+1 = Xt−1|Xt) =

P (Xt+1 = Xt + 1|Xt) = p. Now, the process dynamics can be fully characterized by

the dynamics of the difference d. Thus, we only need to focus on how the difference

changes, not on the process’s value.

In this case, when no update is received by the receiver (i.e. the estimate does

not change), the difference d will not change if the value of the process remains

unchanged which happens with probability 1 − 2p. When 1 ≤ d ≤ N − 2, the

difference d will either increase or decrease by 1 if the value of the process increases

or decreases by 1 which happens with equal probability p. When d = 0, the difference

d will become 1 if the value of the process changes which happens with probability

2p. When d = N − 1, the difference d will become N − 2 if the value of the process

changes which happens with probability 2p. The corresponding Markov chain is

shown in Figure 2.4.

Figure 2.4: Markov chain of the difference d
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When an update is received by the receiver (i.e. the estimate changes to the

newly received update). The difference d will become 0 if the value of the process

remains unchanged which happens with probability 1 − 2p and d will become 1 if

the value of the process changes which happens with probability 2p.

In this thesis, we aim to find how the transmitter should act to achieve the

minimal expected penalty. To this end, we provide details on the system dynamics

in the next section.

2.5 System Dynamics

We define s(t) ∈ N0 and d(t) ∈ {0, 1, 2, ..., N − 1} as the penalty and the

difference at time t respectively. Then, the system can be characterized by the pair

(d(t), s(t)). We also define ψ(t) ∈ {0, 1} as the transmitter’s decision at time t.

ψ(t) = 1 means the transmitter decides to schedule a transmission and ψ(t) = 0

otherwise. To reduce unnecessary complications, we suppose the system always

starts from the state (0, 0). Before characterizing the system dynamics, we first

provide the constraints on the pair (d(t), s(t)).

• From the penalty function shown in 2.1, s(t) = 0 if and only if d(t) = 0.

• Since the system always starts from (0, 0) and the penalty either increases or

becomes zero at the next time slot, s(t) ≥
∑d(t)

i=1 i. For example, when d = 2,

the path with minimal penalty is going from d = 0 to d = 2 via d = 1. In this

case, s =
∑2

i=1 i. We define
∑d(t)

i=1 i = τd(t).
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To summarize, the pair (d(t), s(t)) should satisfy the following four constraints:

d(t) ∈ {0, 1, 2, ..., N − 1}

s(t) ∈ N0

s(t) = 0 if and only if d(t) = 0

s(t) ≥ τd(t) where τd(t) =

d(t)∑
i=1

i (2.2)

Since the system can be fully characterized by the pair (d(t), s(t)), we will

characterize the values of (d(t+1), s(t+1)) using (d(t), s(t)) and ψ(t). The dynamics

of d(t) can be obtained easily from Section 2.4 and s(t) will change according to 2.1.

We distinguish between following cases:

• (d(t), s(t)) = (0, 0): In this case, no matter which action the transmitter takes,

the estimate will not change. Thus, d(t + 1) = 0 with probability 1− 2p and

d(t+ 1) = 1 with probability 2p as discussed in Section 2.4. Thus, we have:

P [(0, 0) | (0, 0)] = (ps + pf )(1− 2p) = 1− 2p (2.3)

P [(1, 1) | (0, 0)] = (ps + pf )2p = 2p (2.4)

• (d(t), s(t)) = (1, s(t)) where s(t) ≥ 1: When ψ(t) = 0, from Figure 2.4, we

have d(t+ 1) = 1 with probability 1− 2p and d(t+ 1) = 0 or d(t+ 1) = 2 with
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equal probability p. Thus, we have:

P [(0, 0) | (1, s(t)), ψ = 0] = p (2.5)

P [(1, s(t) + 1) | (1, s(t)), ψ = 0] = 1− 2p (2.6)

P [(2, s(t) + 2) | (1, s(t)), ψ = 0] = p (2.7)

When ψ(t) = 1 and the transmission fails which happens with probability pf ,

the dynamics will be the same as those when ψ(t) = 0. When the transmission

succeeds which happens with probability ps, d(t+1) = 0 with probability 1−2p

and d(t + 1) = 1 with probability 2p as discussed in Section 2.4. Thus, we

have:

P [(0, 0) | (1, s(t)), ψ = 1] = ps(1− 2p) + pfp (2.8)

P [(1, s(t) + 1) | (1, s(t)), ψ = 1] = 2psp+ pf (1− 2p) (2.9)

P [(2, s(t) + 2) | (1, s(t)), ψ = 1] = pfp (2.10)

• (d(t), s(t)) where 2 ≤ d(t) ≤ N − 2 and s(t) ≥ τd(t): When ψ(t) = 0, from

Figure 2.4, we have d(t+1) = d(t) with probability 1−2p and d(t+1) = d(t)−1

or d(t+ 1) = d(t) + 1 with equal probability p. Thus, we have:

P [(d(t)− 1, s(t) + d(t)− 1) | (d(t), s(t)), ψ = 0] = p (2.11)

P [(d(t), s(t) + d(t)) | (d(t), s(t)), ψ = 0] = 1− 2p (2.12)
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P [(d(t) + 1, s(t) + d(t) + 1) | (d(t), s(t)), ψ = 0] = p (2.13)

When ψ(t) = 1 and the transmission fails which happens with probability pf ,

the dynamics will be the same as those when ψ(t) = 0. When the transmission

succeeds which happens with probability ps, d(t+1) = 0 with probability 1−2p

and d(t + 1) = 1 with probability 2p as discussed in Section 2.4. Thus, we

have:

P [(0, 0) | (d(t), s(t)), ψ = 1] = ps(1− 2p) (2.14)

P [(1, s(t) + 1) | (d(t), s(t)), ψ = 1] = 2psp (2.15)

P [(d(t)− 1, s(t) + d(t)− 1) | (d(t), s(t)), ψ = 1] = pfp (2.16)

P [(d(t), s(t) + d(t)) | (d(t), s(t)), ψ = 1] = pf (1− 2p) (2.17)

P [(d(t) + 1, s(t) + d(t) + 1) | (d(t), s(t)), ψ = 1] = pfp (2.18)

• (d(t), s(t)) = (N − 1, s(t)) where s(t) ≥ τN−1: When ψ(t) = 0, from Figure

2.4, we have d(t + 1) = N − 1 with probability 1 − 2p and d(t + 1) = N − 2

with probability 2p. Thus, we have:

P [(N − 1, s(t) +N − 1) | (N − 1, s(t)), ψ = 0] = 1− 2p (2.19)

P [(N − 2, s(t) +N − 2) | (N − 1, s(t)), ψ = 0] = 2p (2.20)

When ψ(t) = 1 and the transmission fails which happens with probability pf ,

the dynamics will be the same as those when ψ(t) = 0. When the transmission
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succeeds which happens with probability ps, d(t+1) = 0 with probability 1−2p

and d(t + 1) = 1 with probability 2p as discussed in Section 2.4. Thus, we

have:

P [(0, 0) | (N − 1, s(t)), ψ = 1] = ps(1− 2p) (2.21)

P [(1, s(t) + 1) | (N − 1, s(t)), ψ = 1] = 2psp (2.22)

P [(N − 1, s(t) +N − 1) | (N − 1, s(t)), ψ = 1] = pf (1− 2p) (2.23)

P [(N − 2, s(t) +N − 2) | (N − 1, s(t)), ψ = 1] = 2pfp (2.24)

As the system dynamics are fully characterized, we proceed to find how the

transmitter should act to achieve the minimal expected penalty.
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Chapter 3: Optimal Policy

3.1 Problem Formulation

We aim to find how the transmitter should act to achieve the minimal expected

penalty. To this end, we define a series of actions the transmitter takes as φ =

(ψ(0), ψ(1), ...) where ψ(t) is the transmitter’s decision at time t. We denote all the

feasible series of actions as Φ. Then, the problem of achieving the minimal expected

penalty can be formulated as follows:

argmin
φ∈Φ

lim
T→∞

1

T
E

[
T−1∑
t=0

sφ(t) | φ, (d(0), s(0))

]
(3.1)

where sφ(t) is the penalty paid at time t when the transmitter acted following the

series of actions φ. (d(0), s(0)) are the initial values of the difference and the penalty

respectively. The transmitter should make sequential decisions in a stochastic envi-

ronment and the penalty depends on decision history.

3.2 MDP Characterization

This minimization problem can be cast into a Markov Decision Process (MDP).

Combining the fact that the process never terminates and the object is to achieve the
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minimal expected penalty, this problem can be further cast into an infinite horizon

with average cost MDP that consists of the following components:

• State: The state is K = (d, s) where d ∈ {0, 1, ..., N −1} is the difference and

s is the penalty.

• Action: The feasible action at time t is ψ(t) ∈ {0, 1}.

• Transition Probability: The transition probabilities between different states

of the system are specified in Section 2.5.

• Cost: The cost occurred at state (d, s) is simply the penalty s.

Generally, a fixed action sequence won’t solve the problem since the system is

stochastic. A solution to this problem must specify what the transmitter should do

for any state the system might reach. The solution of this kind is called a Policy.

The policy is measured by the expected penalty it achieves and the optimal policy

is the one that yields the minimal expected penalty. To find the optimal policy, we

first define the loss of state (V (K)) which is a single number associated with each

state representing the preference of the transmitter. In this case, the transmitter

will choose the action that yields the minimal expected loss which is defined as the

sum of the loss of all the possible outcomes weighted by the probability of each

outcome.

It is well-known that the loss of state can be obtained by solving the Bellman

equation [9]. The Bellman equation in infinite horizon with average cost MDP

problem is defined as:
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θ + V (K) = SK + min
ψ∈{0,1}

 ∑
K

′∈CK

Pr(K ′ | K,ψ)V (K ′)

 (3.2)

where θ is the minimal value of 3.1. Pr(K ′ | K,ψ) is the transition probability from

state K to state K
′
when action ψ is done. CK is the set of states that are accessible

from state K with one transition when ψ is done. SK is the cost associated with

state K.

The Bellman equation can be solved using Value Iteration Algorithm (VIA) [9].

Letting Vt(·) be the loss at iteration t, the Bellman update looks like this:

Vt+1(K) = SK + min
ψ∈{0,1}

{ ∑
K′∈CK

Pr(K ′ | K,ψ)Vt(K
′)

}
(3.3)

VIA is guaranteed to converge to V (·) when t→ +∞ regardless of the initialization

(i.e. limt→∞Vt(·) = V (·)). Thus, we will use 3.3 to deduce the optimal policy in the

following section.

3.3 Structural Results

Without loss of generality, we assume V0(·) = 0 for all states. We only discuss

the pairs that satisfy the constraints in 2.2 in this section. We first provide the

following lemma.

Lemma 3.1. When p ∈ [0, 1
3
], the loss of state (V (d, s)) is increasing in both d and

s (i.e. V (d, s1) ≥ V (d, s2) ∀s1 ≥ s2 ≥ 0 and V (d1, s) ≥ V (d2, s) ∀d1 ≥ d2 ≥ 0)

Proof. See Appendix A.
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The optimal policy will always choose the action that yields the minimal ex-

pected loss. To this end, we define ∆V (d, s) as the difference between the ex-

pected loss at state (d, s) when ψ = 1 and ψ = 0. More precisely, ∆V (d, s) =

V 1(d, s)− V 0(d, s) where V 1(d, s) and V 0(d, s) are the expected loss at state (d, s)

when ψ = 1 and ψ = 0 respectively.

Theorem 3.2. When p ∈ [0, 1
3
], the optimal policy of the problem in 3.1 is always

update policy where the transmitter should schedule transmissions at every time slot

or only when d 6= 0.

Proof. See Appendix B.

Definition 3.3. Threshold update policy is a policy where the transmitter schedules

transmissions only when the current penalty s is greater than or equal to the current

threshold. More precisely, when the system is at state (d, s), the transmitter will

schedule a transmission only when s is greater than or equal to nd which is the

threshold corresponding to d. In this case, the policy can be fully characterized by

the vector n = [n0, n1, ..., nN−1].

With the above definition provided, we can see that always update policy is

a special case of threshold update policy where n = 0. In the next chapter, we

will analyze the performance of always update policy by calculating the expected

penalty it achieves. As threshold update policy shows potential in more realistic

scenario, such as when the transmitter has limited power [8], we will also analyze

the performance of threshold update policy in the next chapter.
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Chapter 4: Performance

4.1 Always Update Policy

We here evaluate the performance of always update policy by finding the

expected penalty it achieves. When this policy is adopted, the transmitter will

schedule transmissions at every time slot. In this case, the MDP can be modeled

through a Discrete-Time Markov Chain (DTMC). The states refer to the pairs (d, s)

where for each d ∈ {1, , , , .N − 1}, s ≥ τd and s = 0 if and only if d = 0. The

transition probabilities can be obtained easily from Section 2.5 and shown in Figure

4.11.

In order to find the expected penalty, we start with finding the stationary dis-

tribution of the DTMC. Since this DTMC is irreducible, the stationary distribution

is well defined. We denote the limiting probability for state (d, s) as πd(s). To make

the equations clean and easy to read, we define πd(s) = 0 when 0 ≤ s < τd for d 6= 0

and π0(s) = 0 when s > 0. Then the expected penalty can be calculated as

C̄ =
N−1∑
d=0

(
+∞∑
s=0

sπd(s)

)
=

N−1∑
d=1

(
+∞∑
s=0

sπd(s)

)
(4.1)

1The top arrow of the sub-figure on the upper left corner means that when the system is at
state (N − 3, s−N + 2), it will transfer to (N − 2, s) at next time slot with probability pfp. All
other arrows can be interpreted in the same way.
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Figure 4.1: Transition probabilities when always update policy is adopted

We define two quantities: Pd =
∑+∞

s=0 πd(s) and Cd =
∑+∞

s=0 sπd(s). Then the

expected penalty can be written as

C̄ =
N−1∑
d=1

Cd (4.2)

Theorem 4.1. The expected penalty of always update policy can be obtained by

solving the following two systems of linear equations.

1. system of N+1 linear equations for Pd

N−1∑
d=0

Pd = 1 (4.3)

−2pP0 + pfpP1 + [ps(1− 2p)]
N−1∑
d=1

Pd = 0 (4.4)

−2pP0 + (1 + 2pfp− pf )P1 − pfpP2 − 2psp
N−1∑
d=1

Pd = 0 (4.5)

17



−pfpPN−3 + (1− pf + 2pfp)PN−2 − 2pfpPN−1 = 0 (4.6)

−pfpPN−2 + (1− pf + 2pfp)PN−1 = 0 (4.7)

For each d ∈ {2, 3, 4, ..., N − 3}:

−pfpPd−1 + (1− pf + 2pfp)Pd − pfpPd+1 = 0 (4.8)

2. system of N-1 linear equations for Cd

(1 + 2pfp− pf )C1 − pfpC2 − 2psp
N−1∑
d=1

Cd = P1 (4.9)

−pfpCN−3 + (1− pf + 2pfp)CN−2 − 2pfpCN−1 = (N − 2)PN−2 (4.10)

−pfpCN−2 + (1− pf + 2pfp)CN−1 = (N − 1)PN−1 (4.11)

For each d ∈ {2, 3, 4, ..., N − 3}:

−pfpCd−1 + (1− pf + 2pfp)Cd − pfpCd+1 = dPd (4.12)

Then, the expected penalty C̄ =
∑N−1

d=1 Cd.

Proof. See Appendix C.
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4.2 Threshold Update Policy

When threshold update policy is adopted, the transmitter will schedule trans-

missions only when the penalty s is greater than or equal to the current threshold.

We here consider a case where n0 = +∞ and nd1 ≥ nd2 ∀ 1 ≤ d1 ≤ d2 ≤ N − 1.

In this case, the MDP can also be modeled through a Discrete-Time Markov Chain

(DTMC). The states refer to the pairs (d, s) where for each d ∈ {1, , , , .N − 1},

s ≥ τd and s = 0 if and only if d = 0. The transition probabilities can be obtained

easily from Section 2.5 and shown in Figure. 4.22.

Figure 4.2: Transition probabilities when threshold update policy is adopted

2The middle arrow of the sub-figure on the upper right corner means that when the system is
at state (1, s), if s < n1, it will transfer to (0, 0) at next time slot with probability p. If s ≥ n1, it
will transfer to (0, 0) at next time slot with probability pfp + ps(1− 2p). All other arrows can be
interpreted in the same way.
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Following the same trajectory as in Section 4.1, the expected penalty in this

case can be calculated as

C̄ =
N−1∑
d=0

(
+∞∑
s=0

sπd(s)

)
=

N−1∑
d=1

(
+∞∑
s=1

sπd(s)

)
(4.13)

We will first give the definitions of some useful quantities. We define P s
d =

πd(s) and Cs
d = sπd(s). We also define τ = max{n1 + 2, ..., nN−2 +N − 1} which is

the smallest value such that all the states (d, s) with d 6= 0 and s ≥ τ are transferred

from the states (d′, s′) with s′ ≥ nd′ . Thus, we can sum all the P s
d and Cs

d with s ≥ τ

separately. More precisely, we define P+∞
d =

∑+∞
s=τ P

s
d and C+∞

d =
∑+∞

s=τ C
s
d. Then

the expected penalty can be written as

C̄ =
N−1∑
d=1

(
τ−1∑
s=1

Cs
d + C+∞

d

)
(4.14)

Theorem 4.2. The expected penalty of threshold update policy can be obtained by

solving the following two systems of linear equations.

1. system of linear equations for P s
d . There are total of (N − 1)τ + 2 linear

equations.

First of all, all the probabilities should add up to one.

N−1∑
d=0

(
τ−1∑
s=0

P s
d + P+∞

d

)
= 1 (4.15)

The other equations are shown in Table 4.1.
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2. system of linear equations for Cs
d. There are total of (N − 1)τ linear

equations. The equations are specified in Table 4.2
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Then the expected penalty C̄ =
∑N−1

d=1 (
∑τ−1

s=1 C
s
d + C+∞

d )

Proof. The proof is similar to the one in Appendix C . Apart from the increased

complexity of calculations, there is no theoretical difference. Thus, the detail is

omitted here for the sake of space.

4.3 Numerical Results

In this section, we provide numerical results concerning the performances of

the policies discussed in the previous sections. To this end, we set the initial values

of the difference and the penalty to 0. We consider a system where the number of

states N = 7. All the results are averaged over 100000 time slots.

We first provide numerical results when the transmitter adopts always update

policy. We evaluate the effect of process dynamics on the performance of always

update policy. We also evaluate the effect of ps. To this end, for different values

of ps, we vary the probability of changing value (p) and plot the corresponding

simulation and theoretical results. The results are shown in Figure 4.3.

We then provide numerical results when the transmitter adopts threshold up-

date policy. The threshold vector n is chosen randomly as [+∞, 15, 13, 10, 7, 5, 3].

We evaluate the effect of process dynamics as well as the effect of ps. To this end,

for different values of ps, we vary the probability of changing value (p) and plot the

corresponding simulation and theoretical results. The results are shown in Figure

4.4.

We also evaluate the effect of the threshold on the performance of threshold

24



Figure 4.3: Expected penalty as a function of p (always update policy)

Figure 4.4: Expected penalty as a function of p (threshold update policy)

25



update policy. To better observe the effect, we consider a simple case where the

thresholds are constant which means that nd = n for 0 ≤ d ≤ N − 1. We set

the probability of changing value p = 0.2. We vary the threshold (n) and plot the

corresponding simulation and theoretical results. The results are shown in Figure

4.5.

Figure 4.5: Expected penalty as a function of n (threshold update policy)

We can see that, for both policies, the expected penalty increases as p in-

creases. When p increases, the process will more likely change value than remain

the same. Then, when the transmission succeeds, the penalty will more likely be one

instead of zero. Thus, the penalty will increase as p increases. At the same time,

the expected penalty decreases as ps increases. In our model, failed transmission

is equivalent to no transmission which means that the transmission attempts are

beneficial only when they are successful. Combining with the fact that the larger ps

26



is, the more transmission attempts will succeed, we can conclude that the expected

penalty decreases as ps increases.

For the threshold update policy, the expected penalty will increase as threshold

increases. When the threshold is large, the system will allow a large penalty before

scheduling a transmission. Thus, the expected penalty will increase.
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Chapter 5: Summary and Future Work

5.1 Summary

In this thesis, a new metric - AoII is studied in a system where a transmitter

sends updates about an N-state Markov source to a remote receiver through an

unreliable channel. Leveraging the MDP tools, it is shown that a simple always

update policy minimizes the AoII. A more general transmission policy - threshold

update policy is also studied in this thesis. Finally, numerical results are laid out to

highlight the effects of system parameters on the performances of both policies.

5.2 Future Work

In the thesis, a simple scenario where there exist no constraints on the ca-

pabilities of the transmitter is studied. However, there often exist constraints on

the transmitter in real life, such as limited power. Studying AoII under such con-

straints is of great practical importance. Moreover, the time function in the AoII

used is linear. However, in many real-life applications, non-linear increasing time

functions, such as quadratic or exponential, will be more reasonable. Thus, AoII

with non-linear increasing time function is also worth studying.
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Appendix A: Proof of Lemma 3.1

As stated in the lemma, we consider the case where p ∈ [0, 1
3
]. We know

that Value Iteration Algorithm is guaranteed to converge to the solution of Bellman

equation when t→ +∞ regardless of the initialization. Thus it is sufficient to prove

that ∀s1 ≥ s2 ≥ 0

Vt(d, s1) ≥ Vt(d, s2) (A.1)

and ∀d1 ≥ d2 ≥ 0

Vt(d1, s) ≥ Vt(d2, s) (A.2)

A.1 and A.2 hold when t = 0 by initialization. We suppose A.1 and A.2 hold

up till iteration t. We want to examine whether A.1 and A.2 still hold at iteration

t+ 1. First of all, when d1 = d2 or s1 = s2, A.1 and A.2 hold obviously.

We next consider when s1 > s2 > 0. ∀s1 > s2 > 0, Vt+1(d, s1) ≥ Vt+1(d, s2)

holds since the transition probabilities depend only on d and Vt(d, s) is increasing

in s.

Now we consider when d1 > d2 > 0. ∀d1 > d2 > 0, we examine if Vt+1(d1, s) ≥

Vt+1(d2, s). We distinguish between following cases:
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• When d1 = 2, d2 = 1:

Vt+1(2, s) = min{x, y} (A.3)

where

x = s+ pVt(1, s+ 1) + (1− 2p)Vt(2, s+ 2) + pVt(3, s+ 3) (A.4)

y = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1)

+pfpVt(1, s+ 1) + pf (1− 2p)Vt(2, s+ 2) + pfpVt(3, s+ 3) (A.5)

Vt+1(1, s) = min{z, w} (A.6)

where

z = s+ pVt(0, 0) + (1− 2p)Vt(1, s+ 1) + pVt(2, s+ 2) (A.7)

w = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1)

+pfpVt(0, 0) + pf (1− 2p)Vt(1, s+ 1) + pfpVt(2, s+ 2) (A.8)

We have

x− z = p[Vt(1, s+ 1)− Vt(0, 0)] + p[Vt(3, s+ 3)− Vt(2, s+ 2)]

+(1− 2p)[Vt(2, s+ 2)− Vt(1, s+ 1)] (A.9)
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Baring in mind that Vt(d, s) is increasing in both d and s, we can easily see

that x− z ≥ 0.

y − w = pf · (x− z) (A.10)

Since pf ≥ 0, we can easily see that y − w ≥ 0. Since Vt+1(2, s) = min{x, y}

and Vt+1(1, s) = min{z, w}, we can conclude that Vt+1(2, s) ≥ Vt+1(1, s).

• When 2 ≤ d2 < d1 ≤ N − 2. In this case, the structures of Bellman update

for d1 and d2 are the same. Combining the fact that Vt(d, s) is increasing in

both d and s, Vt+1(d1, s) ≥ Vt+1(d2, s) holds.

• When d1 = N − 1 and d2 = N − 2:

Vt+1(N − 1, s) = min{x, y} (A.11)

where

x = s+ (1− 2p)Vt(N − 1, s+N − 1) + 2pVt(N − 2, s+N − 2) (A.12)

y = s+ pf (1− 2p)Vt(N − 1, s+N − 1) + 2pfpVt(N − 2, s+N − 2)

+ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1) (A.13)

Vt+1(N − 2, s) = min{z, w} (A.14)
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where

z = s+ pVt(N − 3, s+N − 3) + pVt(N − 1, s+N − 1)

+(1− 2p)Vt(N − 2, s+N − 2) (A.15)

w = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1)

+pfpVt(N − 3, s+N − 3) + pfpVt(N − 1, s+N − 1)

+pf (1− 2p)Vt(N − 2, s+N − 2) (A.16)

We have

x− z = (1− 3p)Vt(N − 1, s+N − 1) + (4p− 1)Vt(N − 2, s+N − 2)

−pVt(N − 3, s+N − 3)

= (1− 3p)[Vt(N − 1, s+N − 1)− Vt(N − 2, s+N − 2)]

+p[Vt(N − 2, s+N − 2)− Vt(N − 3, s+N − 3)] (A.17)

Baring in mind that p ∈ [0, 1
3
] and Vt(d, s) is increasing in both d and s, we

can easily see that x− z ≥ 0.

y − w = pf · (x− z) (A.18)

Since pf ≥ 0, we can easily see that y−w ≥ 0. Since Vt+1(N−1, s) = min{x, y}
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and Vt+1(N−2, s) = min{z, w}, we can see that Vt+1(N−1, s) ≥ Vt+1(N−2, s).

Till this moment, we have proved that Vt+1(d, s1) ≥ Vt+1(d, s2), ∀s1 ≥ s2 > 0

and Vt+1(d1, s) ≥ Vt+1(d2, s), ∀d1 ≥ d2 > 0. Next we consider the case where d2 = 0

and s2 = 0. It is sufficient to compare Vt+1(0, 0) and Vt+1(1, 1). Thus, we have

Vt+1(1, 1) = min{x, y} (A.19)

where

x = 1 + pVt(0, 0) + (1− 2p)Vt(1, 2) + pVt(2, 3) (A.20)

y = 1 + ps(1− 2p)Vt(0, 0) + 2pspVt(1, 2)

+pfpVt(0, 0) + pf (1− 2p)Vt(1, 2) + pfpVt(2, 3) (A.21)

Vt+1(0, 0) = min{z, w} (A.22)

where

z = w = (1− 2p)Vt(0, 0) + 2pVt(1, 1) (A.23)

We have

x− z = 1 + (3p− 1)Vt(0, 0) + (1− 2p)Vt(1, 2) + pVt(2, 3)− 2pVt(1, 1)

= 1 + (1− 3p)[Vt(1, 2)− Vt(0, 0)] + p[Vt(2, 3)− Vt(1, 1)]

+p[Vt(1, 2)− Vt(1, 1)] (A.24)
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y − w = 1 + pf (1− 3p)[Vt(1, 2)− Vt(0, 0)]

+pfp[Vt(2, 3)− Vt(1, 2)] + 2p[Vt(1, 2)− Vt(1, 1)] (A.25)

Baring in mind that p ∈ [0, 1
3
] and Vt(d, s) is increasing in both d and s, we can easily

see that x − z ≥ 0 and y − w ≥ 0. Since Vt+1(1, 1) = min{x, y} and Vt+1(0, 0) =

min{z, w}, we can conclude Vt+1(1, 1) ≥ Vt+1(0, 0). Now, we have proved that

V (d, s) is increasing in both d and s.
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Appendix B: Proof of Theorem 3.2

As stated in the theorem, we consider the case where p ∈ [0, 1
3
]. We define

∆Vt(d, s) = V 1
t (d, s) − V 0

t (d, s) as the difference between the expected loss when

ψ = 1 and ψ = 0 at iteration t. We will discuss the sign of ∆Vt(d, s) for each state.

To this end, we distinguish between following cases:

• When d = 0 and s = 0, we have ∆Vt(0, 0) = 0. In this case, both decisions

are optimal.

• When d = 1 and s ≥ 1, we have ∆Vt(1, s) = x− y where

x = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1)

+pfpVt(0, 0) + pf (1− 2p)Vt(1, s+ 1) + pfpVt(2, s+ 2) (B.1)

y = s+ pVt(0, 0) + (1− 2p)Vt(1, s+ 1) + pVt(2, s+ 2) (B.2)

After some rearrangements, we have

∆Vt(1, s) = ps[(1− 3p)Vt(0, 0) + (4p− 1)Vt(1, s+ 1)− pVt(2, s+ 2)]

= ps{(1− 3p)[Vt(0, 0)− Vt(1, s+ 1)]
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+p[Vt(1, s+ 1)− Vt(2, s+ 2)]} (B.3)

Since ps ≥ 0 and p ∈ [0, 1
3
], combining the results in Lemma 3.1, we can

conclude that ∆Vt(1, s) ≤ 0. Thus, in this case, it is optimal to schedule a

transmission.

• When 2 ≤ d ≤ N − 2 and s ≥ τd, we have ∆Vt(d, s) = x− y where

x = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1) + pfpVt(d− 1, s+ d− 1)

+pf (1− 2p)Vt(d, s+ d) + pfpVt(d+ 1, s+ d+ 1) (B.4)

y = s+ pVt(d− 1, s+ d− 1) + (1− 2p)Vt(d, s+ d) + pVt(d+ 1, s+ d+ 1)

(B.5)

After some rearrangements, we have

∆Vt(d, s) = ps{(1− 2p)Vt(0, 0) + 2pVt(1, s+ 1)

−pVt(d− 1, s+ d− 1)− pVt(d+ 1, s+ d+ 1)

−(1− 2p)Vt(d, s+ d)}

= ps{(1− 2p)[Vt(0, 0)− Vt(d, s+ d)]

+p[Vt(1, s+ 1)− Vt(d− 1, s+ d− 1)]

+p[Vt(1, s+ 1)− Vt(d+ 1, s+ d+ 1)]} (B.6)
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Since ps ≥ 0, combining the results in Lemma 3.1, we can conclude that

∆Vt(d, s) ≤ 0. Thus, in this case, it is optimal to schedule a transmission.

• When d = N − 1 and s ≥ τN−1, we have ∆Vt(N − 1, s) = x− y where

x = s+ ps(1− 2p)Vt(0, 0) + 2pspVt(1, s+ 1)

+pf (1− 2p)Vt(N − 1, s+N − 1)

+2pfpVt(N − 2, s+N − 2) (B.7)

y = s+ (1− 2p)Vt(N − 1, s+N − 1) + 2pVt(N − 2, s+N − 2) (B.8)

After some rearrangements, we have

∆Vt(N − 1, s) = ps{(1− 2p)[Vt(0, 0)− Vt(N − 1, s+N − 1)]

+2p[Vt(1, s+ 1)− Vt(N − 2, s+N − 2)]} (B.9)

Since ps ≥ 0, combining the results in Lemma 3.1, we can conclude that

∆Vt(N −1, s) ≤ 0. Thus, in this case, it is optimal to schedule a transmission.

Thus,at any iteration t, it is always optimal to schedule a transmission when

d 6= 0. Combining the fact that, when d = 0, either action is optimal, it is optimal

for the transmitter to schedule a transmission at every time slot or only when d 6= 0.

We call such policy as always update policy. Since Value Iteration Algorithm is

guaranteed to converge to the solution of Bellman equation, we can conclude that

the optimal policy when p ∈ [0, 1
3
] is always update policy.
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Appendix C: Proof of Theorem 4.1

First of all, all the probabilities should add up to one.

N−1∑
d=0

(
+∞∑
s=0

πd(s)

)
= 1 (C.1)

From Figure 4.1, we have C.2 to C.6

π0(0) = (1− 2p)π0(0) + pfp
+∞∑
s=0

π1(s) + [ps(1− 2p)]
N−1∑
d=1

+∞∑
s=0

πd(s) (C.2)

For s ≥ 1

π1(s) = 2pπ0(s− 1) + pf (1− 2p)π1(s− 1) + pfpπ2(s− 1) + 2psp
N−1∑
d=1

πd(s− 1) (C.3)

For s ≥ N − 2

πN−2(s) = pfpπN−3(s−N + 2) + pf (1− 2p)πN−2(s−N + 2) + 2pfpπN−1(s−N + 2)

(C.4)

For s ≥ N − 1

πN−1(s) = pf (1− 2p)πN−1(s−N + 1) + pfpπN−2(s−N + 1) (C.5)
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For each d ∈ {2, 3, 4, ..., N − 3} and s ≥ d, we have

πd(s) = pfpπd−1(s− d) + pf (1− 2p)πd(s− d) + pfpπd+1(s− d) (C.6)

Since Pd =
∑+∞

s=0 πd(s) and π0(s) = 0 when s > 0, the following equations always

hold

π0(0) =
+∞∑
s=0

π0(s) = P0 (C.7)

Since πd(s) = 0 when 0 ≤ s < τd for d 6= 0, when d ∈ {1, 2, ..., N − 1}, the following

equations always hold

+∞∑
s=τd

πd(s) =
+∞∑
s=d

πd(s) =
+∞∑
s=0

πd(s) = Pd (C.8)

According to the definition of Pd, C.1 can be written as

N−1∑
d=0

Pd = 1 (C.9)

Using C.7 and C.8, C.2 can be written as

P0 = (1− 2p)P0 + pfpP1 + [ps(1− 2p)]
N−1∑
d=1

Pd (C.10)

After some rearrangements, we have 4.4
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From C.3, we have

+∞∑
s=1

π1(s) =
+∞∑
s=1

{2pπ0(s− 1) + pf (1− 2p)π1(s− 1)

+pfpπ2(s− 1) + 2psp
N−1∑
d=1

πd(s− 1)}

=
+∞∑
s=0

{2pπ0(s) + pf (1− 2p)π1(s) + pfpπ2(s) + 2psp
N−1∑
d=1

πd(s)}

(C.11)

Using C.7 and C.8, we have

P1 = 2pP0 + pf (1− 2p)P1 + pfpP2 + 2psp
N−1∑
d=1

Pd (C.12)

After some rearrangements, we have 4.5

From C.4, we have

+∞∑
s=N−2

πN−2(s) =
+∞∑

s=N−2

{pfpπN−3(s−N + 2)

+pf (1− 2p)πN−2(s−N + 2) + 2pfpπN−1(s−N + 2)}

=
+∞∑
s=0

{pfpπN−3(s) + pf (1− 2p)πN−2(s) + 2pfpπN−1(s)}

(C.13)

Using C.8, we have

PN−2 = pfpPN−3 + pf (1− 2p)PN−2 + 2pfpPN−1 (C.14)
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After some rearrangements, we have 4.6

From C.5, we have

+∞∑
s=N−1

πN−1(s) =
+∞∑

s=N−1

{pf (1− 2p)πN−1(s−N + 1) + pfpπN−2(s−N + 1)}

=
+∞∑
s=0

{pf (1− 2p)πN−1(s) + pfpπN−2(s)} (C.15)

Using C.8, we have

PN−1 = pf (1− 2p)PN−1 + pfpPN−2 (C.16)

After some rearrangements, we have 4.7.

When d ∈ {2, 3, 4, ..., N − 3}, from C.6, we have

+∞∑
s=d

πd(s) =
+∞∑
s=d

{pfpπd−1(s− d) + pf (1− 2p)πd(s− d) + pfpπd+1(s− d)}

=
+∞∑
s=0

{pfpπd−1(s) + pf (1− 2p)πd(s) + pfpπd+1(s)} (C.17)

Using C.8, we have

Pd = pfpPd−1 + pf (1− 2p)Pd + pfpPd+1 (C.18)

After some arrangements, we have 4.8

Thus, to solve Pd, we have the system of linear equations shown in Theorem

4.1. This is a system of N + 1 linear equations.

Cd can be solved in a very similar way. For d ∈ {1, 2, ..., N − 1}, the following
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equations always hold

+∞∑
s=τd

sπd(s) =
+∞∑
s=d

sπd(s) =
+∞∑
s=0

sπd(s) = Cd (C.19)

Multiplying s − 1 to the both sides of C.3 and summing over s from 1 to +∞, we

have

+∞∑
s=1

(s− 1)π1(s) =
+∞∑
s=1

(s− 1){2pπ0(s− 1) + pf (1− 2p)π1(s− 1) + pfpπ2(s− 1)

+2psp
N−1∑
d=1

πd(s− 1)} (C.20)

After some rearrangements, we have

+∞∑
s=1

sπ1(s)−
+∞∑
s=1

π1(s) =
+∞∑
s=0

s{2pπ0(s)+pf (1−2p)π1(s)+pfpπ2(s)+2psp
N−1∑
d=1

πd(s)}

(C.21)

Using C.8 and C.19, we have

C1 − P1 = pf (1− 2p)C1 + pfpC2 + 2psp
N−1∑
d=1

Cd (C.22)

Then, we have 4.9

Multiplying s−N +2 to the both sides of C.4 and summing over s from N −2

to +∞, we have

+∞∑
s=N−2

(s−N + 2)πN−2(s) =
+∞∑

s=N−2

(s−N + 2){pfpπN−3(s−N + 2)
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+pf (1− 2p)πN−2(s−N + 2)

+2pfpπN−1(s−N + 2)} (C.23)

After some rearrangements, we have

+∞∑
s=N−2

sπN−2(s)−
+∞∑

s=N−2

(N − 2)πN−2(s) =
+∞∑
s=0

s{pfpπN−3(s) + pf (1− 2p)πN−2(s)

+2pfpπN−1(s)} (C.24)

Using C.8 and C.19, we have

CN−2 − (N − 2)PN−2 = pfpCN−3 + pf (1− 2p)CN−2 + 2pfpCN−1 (C.25)

Then, we have 4.10

Multiplying s−N +1 to the both sides of C.5 and summing over s from N −1

to +∞, we have

+∞∑
s=N−1

(s−N + 1)πN−1(s) =
+∞∑

s=N−1

(s−N + 1){pf (1− 2p)πN−1(s−N + 1)

+pfpπN−2(s−N + 1)} (C.26)

After some rearrangements, we have

+∞∑
s=N−1

sπN−1(s)−
+∞∑

s=N−1

(N − 1)πN−1(s) =
+∞∑
s=0

s{pf (1− 2p)πN−1(s) + pfpπN−2(s)}

(C.27)
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Using C.8 and C.19, we have

CN−1 − (N − 1)PN−1 = pf (1− 2p)CN−1 + pfpCN−2 (C.28)

Then, we have 4.11

For 2 ≤ d ≤ N − 3, multiplying s − d to the both sides of C.6 and summing

over s from d to +∞, we have

+∞∑
s=d

(s− d)πd(s) =
+∞∑
s=d

(s− d){pfpπd−1(s− d) + pf (1− 2p)πd(s− d) + pfpπd+1(s− d)}

(C.29)

After some rearrangements, we have

+∞∑
s=d

sπd(s)−
+∞∑
s=d

dπd(s) =
+∞∑
s=0

s{pfpπd−1(s) + pf (1− 2p)πd(s) + pfpπd+1(s)} (C.30)

Using C.8 and C.19, we have

Cd − dPd = pfpCd−1 + pf (1− 2p)Cd + pfpCd+1 (C.31)

Then, we have 4.12

Thus, to solve Cd, we have the system of linear equations shown in Theorem

4.1. This is a system of N − 1 linear equations.
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