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With algorithms, artificial intelligence, and machine learning becoming ubiqui-

tous in our society, we need to start thinking about the implications and ethical

concerns of new machine learning models. In fact, two types of biases that im-

pact machine learning models are social injustice bias (bias created by society) and

measurement bias (bias created by unbalanced sampling). Biases against groups

of individuals found in machine learning models can be mitigated through the use

of diversity and fairness constraints. This dissertation introduces models to help

humans make decisions by enforcing diversity and fairness constraints.

This work starts with a call to action. Bias is rife in hiring, and since algorithms

are being used in multiple companies to filter applicants, we need to pay special

attention to this application. Inspired by this hiring application, I introduce new

multi-armed bandit frameworks to help assign human resources in the hiring process



while enforcing diversity through a submodular utility function. These frameworks

increase diversity while using less resources compared to original admission decisions

of the Computer Science graduate program at the University of Maryland. Moving

outside of hiring I present a contextual multi-armed bandit algorithm that enforces

group fairness by learning a societal bias term and correcting for it. This algorithm

is tested on two real world datasets and shows marked improvement over other in-

use algorithms. Additionally I take a look at fairness in traditional machine learning

domain adaptation. I provide the first theoretical analysis of this setting and test

the resulting model on two deal world datasets. Finally I explore extensions to

my core work, delving into suicidality, comprehension of fairness definitions, and

student evaluations.
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Chapter 1: Introduction

Algorithms and machine learning models, including decisions made by these models,

are becoming ubiquitous in our daily lives. These algorithms and models are not

cold, hard, rational, decision-making machines. Instead, as pointed out by Cathy

O’Neil in Weapons of Math Destruction, "the math-powered applications powering

the data economy were based on choices made by fallible human beings" [175].

Indeed, as stated by psychiatrist M. Scott Peck, "human beings are poor examiners,

subject to superstition, bias, prejudice, and a PROFOUND tendency to see what

they want to see rather than what is really there." [179].

From the perspective of a computer scientist working on these "math-powered

applications" we can view the world in three layers (Figure 1.1). The top layer is the

world as it could be - where everyone is treated equally with no dependence on race,

age, gender, or orientation. The second layer is the world as it is currently. In be-

tween these two layers we find social injustice bias. This social injustice bias is born

from inequality, societal biases, superstitions, prejudices, unconscious biases, and

just the general unfairness of our world. Social injustice bias can be found through-

out history, starting as early as 6500 BCE in Mesopotamian Ubaid [52], continuing

with the slave trade in Africa [157], the treatment of Jews in the Holocaust [96],

through modern times with stop-and-frisk in New York [215] and discrimination in

hiring [191]. Finally, the last layer is the world as it is measured. Machine learning

algorithms learn to make decisions from data. In between the world as it is (middle

1



Figure 1.1: Three layered view of the world.

layer) and the world as it is measured, we have measurement bias. The term mea-

surement bias here is used in the traditional sense of unbalanced data where one

sensitive group is underrepresented. Every decision made when creating a dataset

can further imbalance which datapoints are collected. Unbalanced datasets can be

found in image datasets [212], natural language datasets [223], and even bug-fix

datasets [34]. Of course, this layered view of the world is simplified. In reality

measurement bias is influenced by societal bias, societal bias can be magnified given

the world as it is measured, and the world as it could be is highly subjective. That

being said, the three layered view of the world allows us to find solutions or at least

mitigations to the problem of bias found in machine learning models.

2



Indeed, my thesis is as follows:

Biases found in machine learning models, whether they are from social

injustice or measurement bias, can be combated through the use of di-

versity objectives and fairness constraints.

Here, a diversity objective would favor a more diverse outcome while a fairness con-

straint would remove untenable solutions such that groups of individuals are not

discriminated against. We do, however, need to keep human stakeholders in mind

when making diversity objective and/or fairness constraint decisions. Technology

should be built around human actors to help support them and push them in (hope-

fully) better directions. My dissertation work focuses on creating models to help

humans make decisions that lead to more diversity in outcomes, arrived at in less

biased ways. From helping to hire a diverse set of candidates, to actively learning

societal bias and correcting for it, to transferring learned debiasing to new domains.

This dissertation does not necessarily follow my work linearly through time.

Instead after setting up basic vocabulary and terminology in Chapter 2, Chapter 3

starts with a call to action for introducing fairness and diversity into automated

hiring systems. The majority of my dissertation was inspired by the task of removing

bias from hiring and admissions. This chapter lays out the groundwork for where

we are in terms of hiring systems and supportive decision making technologies, and

where we need to go. Chapter 4 sets up the foundation of a combinatorial multi-

armed bandit algorithm that assigns interviewing and reviewing resources to help

select a diverse cohort of applicants. I introduce different types of arm pulls that

relate to reviewing and interviewing resources. A maximization oracle is then used

to enforce diversity in the final cohort selection. Chapter 5 extends this idea of
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multi-armed bandits in hiring and admissions to a more realistic tiered interviewing

setting where applicants move through a series of interview stages. When running

simulations on a real world dataset of graduate admissions I find that algorithms

provided in both Chapter 4 and Chapter 5 choose more diverse cohorts while using

fewer resources than the original admissions decision. Chapter 6 steps away from

hiring and combinatorial bandits to a contextual bandit approach. In this chapter

I introduce a societal bias term that learns disparities between sensitive groups

and corrects for the disparities when pulling arms. By including a societal bias

term the algorithm outperforms general contextual mutli-armed bandit algorithms.

Chapter 7 takes a theoretical look at fairness in machine learning in the application of

domain adaptation. I take the first theoretical look at transferring fairness in domain

adaptation and provide a modeling approach to transferring learned debiasing to

a new domain. Finally Chapter 8 details extensions of my main research with

applications in suicidality, comprehension of fairness, and student evaluations. This

dissertation sets the groundwork for many more research directions, as discussed

in Chapter 9. Each chapter deals with mitigating either social injustice bias or

measurement bias.
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Chapter 2: Preliminaries

2.1 Multi-Armed Bandits

The multi-armed bandit problem allows for modeling resource allocation during se-

quential decision making. Examples of practical applications of MAB algorithms

include algorithms for selecting what advertisements to display to users on a web-

page [165], systems for dynamic pricing [169], and content recommendation ser-

vices [144]. Indeed, such ML-based decision-making systems continue to expand

in scope, making ever more important decisions in our lives such as setting bail

[68], making hiring decisions [39, 197], and policing [194]. Thus, the study of the

properties of these algorithms is of tantamount importance [60].

2.1.1 Classical multi-armed bandits

The multi-armed bandit problem allows for modeling resource allocation during

sequential decision making. Bubeck et al. [45] provide a general overview of historic

research in this field. In a MAB setting there is a set of n arms A. Each arm has a

true utility of u(a) ∈ [0, 1], which is unknown [12, 137]. When an arm a is pulled, a

reward is pulled from a distribution with mean u(a) and a σ-sub-Gaussian tail and

a cost of 1 is paid. These pulls give an empirical estimate û(a) of the underlying

utility, and an uncertainty bound rad(a) around the empirical estimate. With some

probability δ we know that the true utility lies somewhere inside of the uncertainty
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bounds i.e., û(a)− rad(a) < u(a) < û(a) + rad(a). Once arm a is pulled, û(a) and

rad(a) are updated. The goal of the agent is to maximize the collected reward over

all timesteps, or to find the top arm. Therefore, the optimal strategy would be to

pull the arm with the highest true utility u(a) forever. In practice, since we do not

know the true utilities we have to trade off exploring arms where we are uncertain

of the true utility and exploiting arms that we know have high utilities.

2.1.2 Top-K multi-armed bandits

Classical multi-armed bandits are limited in that they only return the top arm.

Recently, MAB formulations have been proposed that select an optimal subset of K

arms.

M∗ = arg max
{M⊂A

∣∣|M |=K}

∑

a∈M

u(a) (2.1)

Bubeck et al. [46] propose a budgeted algorithm (SAR) that successively accepts and

rejects arms. Chen et al. [58] build on that work by generalizing SAR to a setting

with a combinatorial objective. In the Chen et al. [58] formulation the overall goal is

to choose an optimal cohort M∗, or subset of arms, from a decision classM. They

provide both a fixed confidence and a fixed budget algorithm. Cao et al. [51] tighten

the bounds of Chen et al. [58] where the objective function is Top-K, defined as

wtop(u,M) =
∑

a∈M
u(a). (2.2)

Locatelli et al. [153] address the thresholding bandit problem, finding the arms

above and below threshold τ with precision ε. Jun et al. [124] look at the Top-

K MAB problem with batch arm pulls and Singla et al. [204] look at the Top-K
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problem from a crowdsourcing point of view.

To select the best subset while satisfying a submodular function, Singla et al.

[205] propose an algorithm maximizing an unknown function accessed through noisy

evaluations. Radlinski et al. [186] learn a diverse ranking from the behavior patterns

of different users and then greedily select the next document to rank. They treat

each rank as a separate MAB instance, rather than our approach using a single MAB

to model the whole system. Yue and Guestrin [231] introduce the linear submodular

bandits problem to select diverse sets of content in an online learning setting for

optimizing a class of feature-rich submodular utility models.

2.1.3 Sensitive groups

When dealing with fairness and/or diversity in a MAB setting we have a set of arms

a ∈ A, such that each applicant is an arm a, and where A is partitioned into L

groups A = P1 ∪ P2 ∪ · · · ∪ PL corresponding to specific sensitive attribute groups.

These attributes could represent self-reported gender, race, and country of origin.

2.1.4 Variable cost multi-armed bandits

In many real-world settings, there are different ways to gather information, each

of which vary in cost and effectiveness. Previous work uses stochastic costs in the

MAB setting. However, our costs are fixed for specific types of arm pulls. Ding

et al. [79] looked at a regret minimization MAB problem that has variable rewards

and costs. When an arm is pulled a random reward is received and a random cost is

taken from the budget. Xia et al. [228] extend this work to a batch arm pull setting.

7



Jain et al. [120] use MABs with variable rewards and costs to solve a crowdsourcing

problem.

2.1.5 Contextual multi-armed bandits

A generalization of MAB is the contextual multi-armed bandit (CMAB) where the

agent observes a d-dimensional context xi,t ∈ Xi = Rd for each arm i ∈ A, at each

timestep t, to use along with the observed rewards of the arms played to choose a

new arm [144]. In the CMAB problem the agent learns the relationship between

contexts and rewards f(xi, t) and selects the best arm [3]. At a timestep t, let i∗

denote the optimal arm that could be selected and i be the selected arm. Then, the

regret for choosing arm i is

R(t) = f(xi∗,t)− f(xa,t). (2.3)

2.2 Domain Adaptation

Both Pan et al. [177], and Weiss et al. [221] provide a survey on current work in

transfer learning. One case of transfer learning is domain adaptation, where the task

remains the same, but the distribution of features that the model is trained on (the

source domain) does not match the distribution that the model is tested against

(the target domain). Ben-David et al. [23] provide theoretical analysis of domain

adaptation. Ben-David et al. [24] extend this analysis to provide a theoretical under-

standing of how much source and target data should be used to successfully transfer

knowledge. Mansour et al. [164] provide theoretical bounds on domain adaptation
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using Rademacher Complexity analysis. In later research, Ganin et al. [92] build on

this theory to use an adversarial training procedure over latent representations to

improve domain adaptation.

2.3 Diversity

Quantifying the diversity of a set of elements is of interest to a variety of fields,

including recommender systems, information retrieval, computer vision, and oth-

ers [5, 11, 25, 151, 185, 186, 201]. A recent formalization from Lin and Bilmes [148]

assumes that individuals can be split into L partitions where a partition is denoted

as Pi and a cohort is defined asM = P1∪P2∪ . . .∪PL. At a high level, the diversity

function wdiv is defined as

wdiv(M) =
L∑

i=1

√∑

a∈Pi

u(a). (2.4)

Lin and Bilmes [148] showed that wdiv is submodular and monotone. Under wdiv(M)

there is typically more benefit to selecting an arm from a class that is not already

represented in the cohort, if the empirical utility of an arm is not substantially low.

As soon as an arm is selected from a class, other arms from that class experience

diminishing gain due to the square root function. Example 2.1 illustrates when

wdiv results in a different cohort selection than the top-K function wtop(M) =
∑

a∈M u(a).

Example 2.1. Assume we have three individuals{a1, a2, a3} with true utilities u(a1) =
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0.6, u(a2) = 0.5, and u(a3) = 0.3. Assume there exist L = 2 classes, and let in-

dividuals a1 and a2 belong to class 1, and individual a3 belong to class 2. Then,

for a cohort of size K = 2, wtop will select cohort M∗
top = {a1, a2}, while wdiv will

select cohort M∗
div = {a1, a3}. Indeed, wtop(M∗

top) = 1.1 > 0.9 = wtop(M∗
div), while

wdiv(M∗
top) =

√
1.1 ≈ 1.05 < 1.3 ≈

√
0.6 +

√
0.3 = wdiv(M∗

div).

Ashkan et al. [11] define two other diversity functions which look for coverage

of a group. The first is the token membership function where only one member

of a sensitive group needs to be selected. The second function is a quota diversity

function where each group i has a quota requirement of Ni.

Each of these diversity functions look at different definitions of human concepts

of diversity. wdiv may work well in the hiring setting where you want a diverse set

of individuals, while wtoken may work well in document summarization where you

only really need one example for each type of document. wquota has the potential to

work in both settings.

2.4 Fairness

Fairness in machine learning has become one of the most active topics in computer

science [60]. The idea of using formal notions of fairness, i.e. axioms or properties,

to design decision schemes has a long history in economics and political economy

[188, 230]. Their work underscores that in many cases statistical parity is not

sufficient to ensure individual fairness, as we may treat groups fairly but in doing so

may be very unfair to some specific individual. Determining when, how, and if to

define fairness is an ongoing discussion with roots well before the time of computer
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science [206]; indeed, it is known that many natural conditions for fairness cannot

be achieved in tandem [91, 133]. Still, group fairness is found in many fielded

systems [22, 222], and we focus on it in this dissertation.

When looking at group fairness we typically look at some sensitive attribute A

such as gender, race, region of origin, sexual orientation, and others. A model is

unfair in terms of group fairness when outcomes differ depending on the member-

ship to the sensitive group. For example, a sentiment classifier may be considered

unfair towards LGBTQ words if the model consistently assigns a negative sentiment

label on a sentence that contains an LGBTQ word. In current research there are

three major fairness metrics: demographic parity, equal opportunity, and equalized

odds [103].

Demographic Parity A classifier is said to be fair under demographic parity

if the probability of assigning a positive does not change across sensitive group

membership. For instance if we have a binary sensitive attribute then,

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = 1). (2.5)

Equal opportunity A classifier is said to be fair under equal opportunity if the

false positive rates do not change across sensitive group membership. If we have a

binary sensitive attribute then,

Pr(Ŷ = 1|A = 0, Y = 0) = Pr(Ŷ = 1|A = 1, Y = 0). (2.6)
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Equalized odds Equality of odds is similar to equal opportunity with the addi-

tional constraint of the false negative rates being the same across sensitive group

membership. If we have a binary sensitive attribute then,

Pr(Ŷ = −Y |A = 0, Y = y) = Pr(Ŷ = −Y |A = 1, Y = y) ∀y ∈ {−1, 1}. (2.7)

2.4.1 Fairness in Machine Learning

A large thread of recent research has studied how to optimize for fairness metrics

during model training. Li et al. [146] empirically show that adversarial learning helps

preserve privacy over sensitive attributes. Beutel et al. [30] focus on using adversarial

learning to optimize different fairness metrics, and Madras et al. [162] provides a

theoretical framework for understanding how adversarial learning optimizes these

fairness goals. Zhang et al. [234] use adversarial training over logits rather than

hidden representations. Other work has focused on constraint-based optimization

of fairness objectives [2, 97]. Tsipras et al. [214] however, provide a theoretical bound

on the accuracy of adversarial robust models. They show that even with infinite

data there will still be a trade-off of accuracy for robustness. Kallus and Zhou [126]

look at fairness in personalization when sensitive attributes are missing. Similarly,

Chen et al. [57] look at measuring disparity when sensitive attributes are unknown.

2.4.2 Domain Adaptation & Fairness

Despite the prevalence of using one model across multiple domains, in practice

little work has studied domain adaptation and transfer learning of fairness metrics.

Coston et al. [72] look at domain adaptation for fairness where sensitive attribute
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labels are not available in both the source and target domains. Kallus and Zhou

[125] use covariate shift correction when computing fairness metrics to address bias

in label collection. More related, Madras et al. [162] show empirically that their

method allows for fair transfer. The transfer learning here corresponds to preserving

fairness for a single sensitive attribute but over different tasks. However, Lan and

Huan [138] found empirically that fairness does not transfer well to a new domain.

They found that as accuracy increased in the transfer process, fairness decreases in

the new domain. It is concerning that these papers show opposing effects. Both of

these papers offer empirical results on the UCI adult dataset, but neither provide

a theoretical understanding of how and when fairness in one domain transfers to

another.

2.4.3 Fairness in MAB

The study of fairness in bandits was initiated by Joseph et al. [123], who showed for

both classical and contextual bandits that one can implement a fairness definition

where within a given pool of applicants (say, for college admission or mortgages),

a worse applicant is not favored over a better one, despite a learning algorithm’s

uncertainty over the true payoffs. However, Joseph et al. [123] only focus on in-

dividual fairness, and do not formally treat the idea of group fairness. Individual

fairness is, in some sense, group fairness taken to an extreme, where every arm

is its own singleton group; it offers strong guarantees, but under equally strong

assumptions [33, 129].

Celis et al. [53] propose a bandit-based approach to personalization where arm

pulls are constrained to fit some probability distribution defined by a fairness metric
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such as demographic parity. For example, when recommending news articles their

algorithm provides personalized articles from both left and right sources. Their

formulation is perhaps closest in the literature to our formulation in Chapter 6 as

it deals with group fairness, however it does not explicitly assume biased feedback.

Instead it enforces a fair probability distribution without learning about the bias

present in the data.

There are a number of other recent studies of fairness in the MAB literature.

Liu et al. [152] look at fairness between arms under the assumption that arm reward

distributions are similar (another interpretation of equal treatment of equals). Patil

et al. [178] define fairness such that each arm must be pulled for a predetermined

required fraction over the total available rounds. Claure et al. [62] use the MAB

framework to distribute resources amongst teammates in human-robot interaction

settings; again, fairness is defined as a pre-configured minimum rate that each arm

must be pulled.

There is also significant recent work in constrained reasoning in the MAB setting.

Balakrishnan et al. [17] study the idea of learning constraints over pulling arms by

observation in a pre-training phase. Wu et al. [226] study constraints in both number

of pulls per arm, as well as number of rounds where arms are available to be pulled.

Wu et al. [227] study a different flavor of constrained bandits where the learned

policy cannot fall below a certain threshold; modeling the case where one wants to

explore, but not suffer too much of a penalty over a status-quo policy. A related

and perhaps interesting direction for future work is the work on bandits that are

budget-constrained (without fairness considerations). Ding et al. [79] study budget-

constrained bandits where each arm also has an unknown cost distribution and one
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must learn a policy that maximizes reward and minimizes cost.

Fairness in bandits is a particularly important area as the online, dynamic nature

makes the task challenging and the use of bandits in a number of areas makes the

problem particularly relevant. The motivating factor for group fairness is that one

does not want to cause disparate impact, or the idea that groups should be treated

differently based only on non-relevant aspects [87]. Indeed, discrimination in cer-

tain areas including housing, credit, and jobs is forbidden in the US by the Civil

Rights Act of 1965. It is specifically in these areas where bandit algorithms are de-

ployed: advertising (where discrimination has been found), [210] college admissions

(Chapter 4), and interviewing (Chapter 5).

2.5 Machine Learning in Hiring and Admissions

Lux et al. [158] and Waters and Miikkulainen [220] use supervised learning to model

admissions decisions. They develop accurate classifiers; none decide how to allocate

interviewing resources or maximize a certain objective, unlike our aim to select a

more diverse cohort via a principled semi-automated system.

The behavioral science literature shows that scoring candidates via the same

rubric, asking the same questions, and spending the same amount of time are inter-

viewing best practices [10, 105, 196, 224]. Such structured interviews reduce bias

and provide better job success predictors [143, 184]. We incorporate these results

into our model through our assumption that we can spend the same budget and get

the same information gain across different arms.
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Chapter 3: We Need Fairness and Explainability

in Algorithmic Hiring

Algorithms and machine learning models, including the decisions made by these

models, are becoming ubiquitous in our daily life, including hiring. We make no

value judgment regarding this development; rather, we simply acknowledge that it

is quickly becoming reality that automation plays a role in hiring. Increasingly,

these technologies are used in all of the small decisions that make up the modern

hiring pipeline: from which resumes get selected for a first screen to who gets an

on site interview. Thus, these algorithms and models may potentially amplify bias

and (un)fairness issues for many historically marginalized groups. While there is

a rapidly expanding literature on algorithmic decision making and fairness, there

has been limited work on fairness specifically for online, multi-stakeholder decision

making processes such as those found in hiring. We outline broad challenges in-

cluding formulating definitions for fair treatment and fair outcomes in hiring, and

incorporating these definitions into the algorithms and processes that constitute the

modern hiring pipeline.
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3.1 Introduction

“Hiring is rarely a single decision point, but rather a cumulative series of small

decisions.” So begins a recent report on automated hiring processes released by

the non-profit group UpTurn [38], before recommending that digital sourcing firms

begin explicitly addressing concerns of fairness and bias at every step of the hiring

process. Indeed, at various decision points in the hiring process, algorithms already

determine who sees which job advertisements; estimate the expected performance

of an applicant; select which applicants to screen more heavily and with whom to

match them; and forecast salary and other benefits necessary to ensure a successful

offer. Thus, issues of bias or fairness at one stage of this procedure may lead to

unexpected or amplified issues at a later stage of the process.

In addition to the difficulty of these decisions on their own, there are a number

of regulatory and legal requirements that must be met at each stage of the hiring

process. As a recent Facebook settlement1 showed, the tools, platforms, and tech-

niques developed to streamline hiring can be subtly—or blatantly—illegal. These re-

quirements are complicated by the presence of multiple stakeholders: governmental

regulators, hiring managers, employees, line managers, and myriad others involved

in modern hiring and employment.

While one can argue that we may not need algorithmic hiring, the fact is that

platforms and websites such as LinkedIn, ZipRecruiter, and Indeed are making these

tools available to businesses of any size, and that large businesses are experimenting
1https://www.propublica.org/article/facebook-ads-discrimination-settlement\

-housing-employment-credit
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or have experimented with automated hiring techniques.2Thus, algorithmic pro-

cesses are being deployed in the real-world, and it is incumbent on computer science

researchers to ensure that the algorithms we create are aware of both fairness and

legal compliance for these processes. There is already ample evidence from the ar-

eas of lending and pre-trial detention (bail) and policing that the algorithms that

are deployed can have significant, and sometimes harmful, impacts on individuals

lives [68]. There is a need for novel techniques from data science, artificial intelli-

gence, and machine learning to ensure our algorithms act within the constraints set

forth by business process, laws, social norms, and ethical guidelines [192].

One shortcoming of current research into algorithmic fairness is its focus on a

single decision point [68]. As depicted in Figure 3.1, modern hiring is rarely a

single step process [38]. It is the culmination of a series of steps, much like pre-trial

detention and other decisions of consequence, and we currently lack the algorithmic

tools and techniques to adequately address this challenge. Techniques developed

to address these challenges can also be applied to many settings where we have a

“prioritization funnel” setting, such as customer acquisition or government sourcing.

We argue for concentrated research around the thesis that:

Data-driven approaches to measuring and promoting fairness and ex-

plainability to each of the concerned stakeholders at a single stage of the

hiring process can be extended—in a principled way—to the full, multi-

stage hiring process.
2https://www.aclu.org/blog/womens-rights/womens-rights-workplace/

why-amazons-automated-hiring-tool-discriminated-against
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It is important to note that the application of research in this area will not just

be in the hiring scenario. The techniques developed here, along with a number of

results in peer evaluation [13] and other areas of social choice including matching

[42], will enable the creation of algorithmic tools that are both fair and efficient.

These tools can and should be deployed in any situation where we are attempting

to select a set of candidates (or items, or interventions) from a large pool or allocate

other scarce resources, subject to various constraints over the selection and review-

ing process [192]. These technologies could be applied to internal product ideation

and review [219], academic proposal reviewing [107], advertisement/campaign selec-

tion [145], or indeed any setting where we need to collect recommendations over a

large set from experts.

We detail the limits of current research into fairness and its shortcomings with

respect to the challenge of algorithmic hiring. We detail both past and current work

that demonstrates the research communities potential impact in the area. Finally,

we close with additional ideas we see as research directions for the community.

3.2 Fairness in Online, Multi-Stage Decision-Making

Algorithms

Within computer science, economics, and operations research circles many of the

problems that are encountered in hiring are typically modeled in the multi-armed

bandit (MAB) setting [209]. Indeed, bandit-based algorithms have received sig-

nificant attention in the literature for their use in content recommendation [144],

advertising, and hiring [39](See Chapter 4).
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Figure 3.1: A sample current tiered hiring process (in black) and
interventions proposed by this blue sky submission (in red).

There are many practical applications of MAB algorithms that are making ever

more important decisions in our lives (See Section 2.1). Thus, the study of the

properties of these algorithms is of tantamount importance [60].

Yet, the use of MAB-based systems often results in behavior that is societally

repugnant. Sweeney [210] noted that queries for public records on Google resulted

in different associated contextual advertisements based on whether the query target

had a traditionally African American or Caucasian name; in the former case, ad-

vertisements were more likely to contain text relating to criminal incidents. In the

years following, similar instances continue to be observed, both in the bandit setting

and in the more general machine learning world [175]. In lockstep, the academic

community has begun developing approaches to tackling issues of (un)fairness in a

variety of learning settings.

Recently, a Computing Community Consortium (CCC) whitepaper on fairness

research specifically identified that most studies of fairness are focused on classifi-

cation problems [60]. Two fundamental issues identified by Chouldechova and Roth

[60] that we believe are unaddressed by the current literature are extensions to no-

tions of group fairness and looking at fairness in online, dynamic systems, e.g., the
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contextual bandit setting. We envision the research community addressing these

gaps by formalizing and providing algorithms for myriad definitions of fairness and

bias. We see the following research communities specifically as both sources of ideas

and nexuses for collaboration around fairness in sequential decision making.

Markets and Game Theory. Mechanism and market design are both interested

in fairness towards the agents that participate. We see the game theory com-

munity as being particularly helpful when it comes to analyzing the incentives

at play among classes of stakeholders in the hiring process, e.g., competing

firms, or a single firm and a single candidate, or hiring managers within a

firm.

Learning and Adaptation. There have been numerous MAB papers recently that

also deal with humans/crowdsourcing [187], fairness and diversity (See Chap-

ter 4), and/or incorporating biased human feedback [211], to name just a few.

Hence, we feel that the Learning and Adaptation community is able to help

with this core topic.

Coordination, Organizations, and Norms. Many of the algorithmic hiring sys-

tems are both learning from and interacting with with mutliple stakeholders

including hiring managers, line managers, and employees, in real time. The

systems are are making decisions in environments with multiple competing

interests. Much like Markets and Game Theory, researchers in this area will

be key in advancing this overall agenda. Furthermore, we believe research into

multi-stage fairness could more closely tie together all three of these research

communities.
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3.3 Fairness in the Hiring Process

The pipeline of a typical algorithmic hiring process is depicted in Figure 3.1. In

this process, a set of applications is screened by either humans, algorithms, or a

combination of both. After this initial screening and selection, applications are

scored/ranked and many are discarded. After this an iterative process of allocating

resources, e.g., requests for additional documentation; online or in-person interviews;

and group discussion are committed to refine the initial ranking. After this, offers

and/or rejections are sent to one or more candidates from the pool and the candidate

provides a response.

We are proposing a focused research plan into a data-driven decision support

process that draws inferences in part based on observed and estimated features of

humans—and such tools are increasingly known to result in unexpected or adverse

impact on dimensions such as fairness and bias [175]. We acknowledge that both our

and others’ initial work in this space, as well as our proposed extension to the more

realistic multi-stage selection setting, may exacerbate issues of fairness. Thus, we

also propose to incorporate recent definitions of fairness from the machine learning

community into our tiered model. Such definitions do not fully capture the needs or

wants of practitioners [110]; yet, we believe developing systems that are amenable to

general definitions of fairness will be useful, because those definitions are evolving,

and will continue to evolve, over time. In our exploratory work, we adopt a subset

of the standard notions of fairness, and we perform analysis on real admissions data

(As discussed in Chapters 4 and 5); still, much work remains to align systems to be

fielded with the aggregate preferences of stakeholders.

It is important to ensure that the entire pipeline is capable of recognizing fair
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treatment and/or fair outcome (and possibly others) in the multi-armed bandit

setting [118]. We have begun work in this direction, described in more detail in

Chapter 6. We re-emphasize that, throughout, our models will be built to accept a

host of fairness and parity measures; still, it is important to provide concrete plans

for specific definitions of each.

We note that notions of “fairness,” “bias,” and “explainability” are (i) definable

in many ways [68] and (ii) necessarily different based on application areas, societal

norms, and policy-maker preferences. However, in hiring, credit, and housing there

are a number of federally protected features that one must not use in the decision

making process and also must not use for explanation. Simply removing these

features from consideration by our algorithms is not enough, and we must actively

ensure the fairness criteria is enforced across these features [49]. Thus, we endeavor

to remain somewhat definition-agnostic in our modeling work, and then explicitly

instantiate a definition when needed (e.g., we plan to use the well-known equality

of opportunity [103] definition of fairness in our earliest experiments). However, our

proposed approaches should generalize to a whole host of fairness or parity measures,

so long as the measure of bias/fairness can be written as a linear constraint on

conditional moments of predicted distributions over predictions, ground truth, and

protected attributes [2].

A closely related area to our work is the research into fairness in rankings [203],

multi-stakeholder recommender systems [1], and item allocation [25, 26]. When

algorithms return rankings for an individual to select from one must pay attention

to the ordering and the positioning of various groups [203]. One can see this as an

application of the group fairness concept to the slates that are chosen for display. A
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particular aspect of recommendation systems that one needs to keep in mind is that

often there are different stakeholders: the person receiving the recommendation, the

company giving the recommendation, and the businesses that are the subjects of

recommendation [1]. Finally, when goods are allocated, such as housing or subsidies

one may need to observe both individual and group fairness [25]. Indeed, group

fairness is specifically important in, e.g., Singapore, which has specifically enforced

notions of group fairness when allocating public housing [26].

3.4 A First Step: An Initial Framework to Model

“Fair” Tiered Hiring

In Chapter 5, we use a multidimensional approach to tackling issues in the efficient

and fair gathering and aggregation of information by hiring managers, which jointly

compose part of a decision support system for potential job offer decisions. We use

the concept of structured interviews [43, 217], used widely in industry as well as in

some academic programs (e.g., Fisk-Vanderbilt [208]); and develope a tiered-hiring

MAB approach. Figure 3.1 gives an example tiered hiring process, and shows (in

red text) where our proposed interventions fit into the present hiring system.

The presently-developed methods allow for the promotion of diversity in the final

cohort of applicants (e.g., graduate students). Dovetailing with this, the fairness

of the review process is also important. In the MAB setting, we propose that

the research community build on work in incorporating constraints into the MAB

framework [17] and extend this work with methods from the fairness in machine

learning literature [19, 60] such as those developed within the silos of fairness of
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treatment and fairness of outcome. Of particular value would be merging these

criteria into the single-level and multi-tiered settings, exploring theoretical metrics

such as the impact on overall economic efficiency due to the use of a “fair” objective,

and experimental validation on sensitive attributes such as self-reported gender,

race, and country of origin that are available in our real data sets.

3.5 Blue Sky Research Challenges

As noted earlier, we are not making a value judgment regarding the use of automated

systems in hiring; rather, we note that this is, increasingly, reality. We are also not

making value judgments regarding particular definitions of fairness and/or bias in

machine learning. Our goal here is to develop general and principled systems for

tiered hiring that can incorprate many definitions of fairness.

We are working on extending our current research to incorporate different no-

tions of fairness that could be deployed on a number of already-fielded MAB-based

systems (See Chapter 6). We plan to extend these definitions to a tiered model (See

Chapter 5) and investigate theoretically the “price of fairness” [28] in these systems.

This initial work may close the gap on a single point (the hiring), but there is

still much work to be done. Some of our initial research has addressed questions of

transparency, constraints, and fairness when working with multi-armed bandit algo-

rithms (See Chapters 4 AND 6) [16, 17, 118]. Yet, these are small steps taken toward

a larger research goal. We see the following issues as still omnipresent concerns, ripe

for work by researchers from the research community.

1. How should we allocate effort—e.g., budget, interview slots—along the hiring
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pipeline? While we have begun to address this gap there are still challenges

that remain. Included in these challenges is maintaining notions of diversity

at every stage of the pipeline, and not just at discrete points.

2. How can we explain the decisions made by the complete algorithmic process

in a transparent and compliant way? With (inter-)national regulation like the

newly-established GDPR [218] and the right to object and right to rectifica-

tion, we need to build pipelines for decisions that are not only fair but capable

of being audited.

3. How can we incorporate fairness into other automated screening tools that

we are beginning to see? For instance, chatbots are starting to be used to

gather pre-interview data with clients and the need to address concerns around

usability and access are almost completely untouched.

4. How do we chose which features to select when building models for hiring?

Which features are predictive, which are not, and which are protected? While

the UpTurn study [39] states that employers should disclose all relevant fea-

tures, the selection of these features is a ethically-laden decsion. While there

has been recent work in this area [172] further exploration is necessary.

5. There has been extensive recent work in budget-limited and other constrained

bandit models including limiting rounds [226], policy thresholds [227], and

unknown, budget constrained cost distributions [79]. Exploring models with

resource and budget constraints necessary for the hiring process is an impor-

tant direction.
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6. So far, we have assumed individuals have fixed group membership and that

these group memberships do not overlap. Generalizing fairness definitions to

work for intersectional fairness and settings where memberships in protected

groups may change at every timestep t would fit more real world applica-

tions. One step forward might leverage results from work on bandits with

non-stationary rewards [29]. Additionally, other group fairness definitions such

as Equalized Opportunity should be converted to the MAB setting [103].

7. Algorithmic transparency to the end user is important, as discussed, but

equally important is maintaining human involvement in the training, vali-

dation, and deployment process. We conjecture (and sincerely hope!) that

no hiring process will become entirely automated—so we must ensure that

the algorithms and systems we build are capable of working with, potentially

biased, human input at every stage.

8. In our previous work (see Chapters 4 and 5) we explored an objective that

balances both individual utility and the diversity of the set of arms returned.

Research has shown that a more diverse workforce produces better products

and increases productivity [78, 113]. Thus, such an objective is of interest to

our application of hiring workers. Note that diversity, while related, is distinct

from fairness. Trying to balance both diversity and fairness should be looked

at more deeply since both diversity and fairness are important in the hiring

process.

9. We need a new definition of fair outcomes for the MAB setting. Typically,
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equality of opportunity fairness is used in classification tasks. We can formu-

late a strict definition of equal opportunity for bandits, but a hard constraint

may be too strict a definition, or may not align with the expressed preferences

of stakeholders. Instead, it may be necessary to define notions of fairness that

straddle the line between individual and (sub-)community [130]. And, indeed,

it may be necessary to balance notions of fairness and economic efficiency

across both sides of the market, so as to promote truthful participation of

both firms and workers in this ubiquitous and increasingly automated process.

3.6 Authors and Publication

This chapter was written by Candice Schumann, Jeffrey S. Foster, Nicholas Mat-

tei, and John P. Dickerson. It was published at the International Conference on

Autonomous Agents and Multi-Agent Systems 2020 in the Blue Sky track.

28



Chapter 4: The Diverse Cohort Selection Problem

How should a firm allocate its limited interviewing resources to select the optimal

cohort of new employees from a large set of job applicants? How should that firm

allocate cheap but noisy resume screenings and expensive but in-depth in-person in-

terviews? We view this problem through the lens of combinatorial pure exploration

(CPE) in the multi-armed bandit setting, where a central learning agent performs

costly exploration of a set of arms before selecting a final subset with some combi-

natorial structure. We generalize a recent CPE algorithm to the setting where arm

pulls can have different costs and return different levels of information. We then

prove theoretical upper bounds for a general class of arm-pulling strategies in this

new setting. We apply our general algorithm to a real-world problem with com-

binatorial structure: incorporating diversity into university admissions. We take

real data from admissions at one of the largest US-based computer science graduate

programs and show that a simulation of our algorithm produces a cohort with hiring

overall utility while spending comparable budget to the current admissions process

at that university.

“It should come as no surprise that more diverse companies and institutions

are achieving better performance.” – McKinsey & Company, Diversity Matters

(2015)
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4.1 Introduction

How should a firm, school, or fellowship committee allocate its limited interview-

ing resources to select the optimal cohort of new employees, students, or awardees

from a large set of applicants? Here, the central decision maker must first form a

belief about the true quality of an applicant via costly information gathering, and

then select a subset of applicants that maximizes some objective function. Further-

more, various types of information gathering can be performed—reviewing a resume,

scheduling a Skype interview, flying a candidate out for an all-day interview, and

so on—to gather greater amounts of information, but also at greater cost.

In this work, we model the allocation of structured interviewing resources and

subsequent selection of a cohort as a combinatorial pure exploration problem in the

multi-armed bandit (MAB) setting. Here, each applicant is an arm, and a decision

maker can pull the arm, at some cost, to receive a noisy signal about the underlying

quality of that applicant. We further model two different levels of interviews as

strong and weak pulls—the former costing more to perform than the latter, but also

resulting in a less noisy signal. We introduce the strong-weak arm-pulls (SWAP)

algorithm, generalizing an algorithm by Chen et al. [58], and provide theoretical

upper bounds for a general class of our various arm-pull strategies. To complement

these bounds, we provide simulation results comparing pulling strategies on a toy

problem that mimics our theoretical assumptions.

We then validate our proposed method on a real-world scenario: admitting an

optimal cohort of graduate students. We take recent data from one of the largest

US-based Computer Science graduate programs—applications including recommen-

dation letters, statements of purpose, transcripts, as well as the department’s reviews

30



of applications and final admissions decisions—and run experiments comparing our

algorithm’s performance under a variety of assumptions to reviews and decisions

made in reality. We find that our simulation of SWAP produced a cohort with

higher top-K utility using equivalent resources as in practice.

We also explore the empirical performance of our algorithm optimizing a nonlin-

ear objective function, motivated by the real-world scenario of admitting a diverse

cohort of graduate students. In experiments, our simulations of SWAP increased a

diversity score (over gender and region of origin) with little loss in fit using roughly

the same amount of resources as in practice. This gain suggests that SWAP can

serve as a useful decision support tool to promote diversity in practice.

4.2 Problem Formulation

We now formally describe the stochastic multi-armed bandit setting in which we

operate. For exposition’s sake, we do so in the context of a decision-maker reviewing

a set of job applicants. However, the formulation itself is fully general. Following the

classical MAB formulation defined in Section 2.1, we represent a set of n applications

A as arms ai ∈ A for i ∈ [n]. Each arm has a true utility, u(ai) ∈ [0, 1], which is

unknown; an empirical estimate û(ai) ∈ [0, 1] of that underlying true utility; and

an uncertainty bound rad(ai). Once arm ai is pulled (e.g., application reviewed or

applicant interviewed), û(ai) and rad(ai) are updated.

The set of potential cohorts, or subsets of arms, is defined by a decision class

M ⊆ 2[n]. Note that M need not be the power set of arms, but can include

cardinality and other constraints. The total utility for a cohort is given by some
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linear function w : Rn ×M → R that takes as input the (unknown) true utilities

u(·) of the arms and the selected cohort. Throughout the chapter, we assume a

maximization oracle, defined as Oracle(M) = arg maxM∈Mw(M), where v ∈ Rn

is a vector of weights—in this case, estimated or true utilities for each arm. Our

overall goal is to accurately estimate the true utilities of arms and then select the

optimal subset of arms using the maximization oracle.

Problem hardness. Following the notation of Chen et al. [58], we define a gap

score for each arm. For each arm a that is in the optimal cohort M∗, the gap is the

difference in optimality between M∗ and the best set without a. For each arm a

that is not in the optimal set M∗, the gap is the sub-optimality of the best set that

includes a. Formally, the gap is defined as

∆a =





w(M∗)−maxM∈M:a∈M w(M), if a /∈M∗

w(M∗)−maxM∈M:a/∈M w(M), if a ∈M∗.

(4.1)

This gap score serves as a useful signal for problem hardness, which we use in

our theoretical analysis. Formally, the hardness of the problem can be defined as

the sum of inverse squared gaps

H =
∑

a∈A

∆−2
a . (4.2)

Chen et al. [58] defined the concept of width(M). When comparing all combina-

tions of two sets A,A′ ∈M, where A 6= A′, define dist(A,A′) = |A−A′|+ |A′−A|.

Therefore, define width(M) = min{A,A′|A,A′∈M∧A 6=A′} dist(A,A′). In other words,
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the width is the smallest distance between any two sets inM. See Chen et al. for

an in-depth explanation of width(M).

Strong and weak pulls. In reality, there is more than one way to gather infor-

mation or receive rewards. Therefore, we introduce two kinds of arm pulls which

vary in cost j and information gain s. Information gain s is defined as how sure one

is the reward is close to the true utility. We model the information gain as s parallel

arm pulls with the resulting rewards being averaged together. A weak arm pull has

cost j = 1 but results in a small amount of information s = 1. In our domain of

graduate admissions, weak arm pulls are standard application reviews, which in-

volve reading submitted materials and then making a recommendation. A strong

arm pull, in contrast, has cost j > 1, but results in s > 1 times the information as a

weak arm pull. In our domain, strong arm pulls extend reading submitted materials

with a structured Skype interview, followed by note-taking and a recommendation.

In our experience, the latter can reduce uncertainty considerably, which we quan-

tify and discuss in Section 4.4. However, due to their high cost, such interviews are

allocated relatively sparingly. We formally explore this problem in Section 4.3 and

provide an algorithm for selecting which arms to pull, along with nonasymptotic

upper bounds on total cost.
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4.3 SWAP: An Algorithm for Allocating Interview

Resources

In this section, we propose a new multi-armed bandit algorithm, strong-weak arm-

pulls (SWAP), that is parameterized by s and j. SWAP uses a combination of

strong and weak arm pulls to gain information about the true utility of arms and

then selects the optimal cohort. Our setting and the algorithm we present generalize

the CLUCB algorithm proposed by Chen et al. [58], which can be viewed as a special

case with s = j = 1.

Algorithm 1 gives pseudocode for SWAP. It starts by weak pulling all arms once

to initialize an empirical estimate of the true underlying utility of each arm. It then

iteratively pulls arms, chooses to weak or strong pull based on a general strategy,

updates empirical estimates of arms, and terminates with the optimal (i.e., objective-

maximizing) subset of arms with probability 1−δ, for some user-supplied parameter

δ.

During each iteration t, SWAP starts by finding the set of armsMt that, accord-

ing to current empirical estimates of their means, maximizes the objective function

via an oracle. It then computes a confidence radius, rad t(a), for each arm a and

estimates the worst-case utility of that arm with the corresponding bound. If an

arm a is in the set Mt then the worst case is when the true utility of a is less than

our estimate (a might not be in the true optimal setM∗). Alternatively, if an arm is

not in the setMt then the worst case is when the true utility of a is greater than our

estimate (a might be in the true optimal set M∗). Using the worst-case estimates,

SWAP computes an alternate subset of arms M̃t. If the utility of the initial set Mt
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and the worst-case set M̃t are equal, then SWAP terminates with output Mt, which

is correct with probability 1− δ as we show in Theorems 4.1 and 4.2. If w(Mt) and

w(M̃t) differ, SWAP looks at a set of candidate arms in the symmetric difference of

Mt and M̃t and chooses the arm pt with the largest uncertainty bound rad t(pt).

SWAP then chooses to either strong or weak pull the selected arm pt using a

strong pull policy, depending on parameters s and j. A strong pull policy is defined

as spp : R ≥ 1 × (R ≥ 1) → [0, 1]. For example, in the experiments in Section 4.4,

we use the following pull policy:

spp(s, j) =
s− j
s− 1

. (4.3)

This policy tries to balance information gain and cost. When the strong pull

gain is high relative to cost then many more strong pulls will be performed. When

the weak pull gain is low relative to cost then fewer strong pulls will be performed,

as discussed in Example 4.1.

Once an arm is pulled, the empirical mean ût+1(pt) and the information gain

Tt+1(pt) is updated. A reward from a strong arm is counted s times more than a

weak pull.

Example 4.1. Suppose we wish to find a cohort of size K = 2 from three arms A =

{a1, a2, a3}. Run SWAP for t iterations. Figure 4.1 shows that SWAP maintains

empirical utilities ût(·) and uncertainty bounds rad t(·). In this case M = {a1, a2}

and M̃ = {a1, a3}. Arm a3, therefore, is the arm in the symmetric difference {a2, a3}

with the highest uncertainty, which therefore needs to be pulled. Further, assume that

a3 needs x information gain for SWAP to end. When j = 1 and s = 1, the best
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Figure 4.1: Example with n = 3 after running SWAP for t steps.
Dots are the empirical utility ut(a) while flags represent the radius of
confidence rad t(a). Here, rad t(a2) and rad t(a3) overlap; SWAP may

pull a3.

pulling strategy would be to weak pull a3 for x times. When j = 1 and s = y

where y > 1, the best pulling strategy would be to strong pull a3 for ceil(x
y
) times.

Finally when j = z and s = y where y > z > 1, the best pulling strategy would

be to strong pull a3 for floor(x
y
) + 1[z − (x mod y)] times and weak pull a3 for

1[z − (x mod y)] ∗ (x mod y) times, where 1[a] = 1 when a ≥ 0 and 0 otherwise.

In reality, we do not know how many times an arm needs to be pulled, which is why

we introduce a probabilistic strong pull policy, like that in Equation 4.3.

Analysis. We now formally analyze SWAP. We define X̄Cost = E[Cost ] as the

expected cost (or expected j value) and X̄Gain = E[Gain] as the expected gain (or

the expected s value). Assume that each arm a ∈ [n] has mean u(a) with an σ-sub-

Gaussian tail. Following Chen et al. [58] set rad t(a) = σ

√
2 log

(
4nCost3t

δ

)
/Tt(a) for

all t > 0.

Notice that if we use strong pull policy spp(s, j) = 0, then we only perform weak

arm pulls, and SWAP reduces to Chen et al. [58]’s CLUCB. We call this reduction

the weak only pull problem. Chen et al. proved that CLUCB returns the optimal

set M∗ and uses at most Õ(width(M)2H) samples. Similarly, if we set spp(s, j) = 1
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then we only perform strong arm pulls—dubbed the strong only pull problem. We

show that this version of SWAP returns the optimal set M∗ and costs at most

Õ(width(M)2H/s).1

Theorem 4.1. Given any δ ∈ (0, 1), any decision classM⊆ 2[n], and any expected

rewards u ∈ Rn, assume that the reward distribution ϕa for each arm a ∈ [n] has

mean u(a) with an σ-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M) denote the

optimal set. Set rad t(a) = σ

√
2 log

(
4nt3j3

δ

)
/Tt(a) for all t > 0 and a ∈ [n]. Then,

with probability at least 1 − δ, the SWAP algorithm with only strong pulls where

j ≥ 1 and s > j returns the optimal set Out = M∗ and

T ≤ O

(
σ2width(M)2H log(nj3σ2H/δ)

s

)
(4.4)

where T denotes the total cost used by the SWAP algorithm and H is defined in

Eq.4.2.

Although s and j are problem-specific, it is important to know when to use the

strong only pull problem over the weak only pull problem. Corollary 4.1.1 provides

weak bounds for s and j for the strong only pull problem. We also explore its

ramifications experimentally in Figure 4.3a as discussed in Section 4.4.1.

Corollary 4.1.1. SWAP with only strong pulls is equally or more efficient than

SWAP with only weak pulls when s > 0 and 0 < j ≤ C
s
3
− 1

3 where C = 4nH̃/δ.

We now address the general case of SWAP, for any probabilistic strong pull

policy parameterized by s and j. In Theorem 4.2 we show that SWAP returns M∗

in Õ
(
width(M)2H/X̄Gain

)
samples.

1Note all proofs for this chapter can be found in Appendix A.3
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Theorem 4.2. Given any δ1, δ2, δ3 ∈ (0, 1), any decision class M ⊆ 2[n], and any

expected rewards u ∈ Rn, assume that the reward distribution ϕa for each arm a ∈ [n]

has mean u(a) with an σ-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M) denote

the optimal set. Set rad t(a) = σ

√
2 log

(
4nCost3t

δ

)
/Tt(a) for all t > 0 and a ∈ [n], set

ε1 = σ
√

2 log
(

1
2
δ2/T

)
, and set ε2 = σ

√
2 log

(
1
2
δ3/n

)
. Then, with probability at least

(1− δ1)(1− δ2)(1− δ3), the SWAP algorithm (Algorithm 1) returns the optimal set

Out = M∗ and

T ≤ O



σ2width(M)2H log

(
nσ2

(
X̄Cost − ε1

)3
H/δ1

)

X̄Gain − ε2


 , (4.5)

where T denotes the total cost used by Algorithm 1, and H is defined in Eq. 4.2.

It is nontrivial to determine where the general version of SWAP is better than

both the SWAP algorithm with only strong pulls and the SWAP algorithm with

only weak pulls, given the non-asymptotic nature of all three bounds (Chen et al.

results and Theorems 4.1 and 4.2). Based on our experiments (§4.4), we conjecture

that there is a of s and j pairs where SWAP is the optimal algorithm, even for

relatively low numbers of arm pulls, though it is problem-specific. This is discussed

more in Section 4.6.3.

4.4 Top-K Experiments

In this section, we experimentally validate the SWAP algorithm under a variety of

arm pull strategies. We first explore (§4.4.1) the efficacy of our bounds in The-

orem 4.2 and Corollary 4.1.1 in simulation. Then we deploy SWAP on real data
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(§4.4.2) drawn from one of the largest computer science graduate programs in the

United States. We show that SWAP provides a higher overall utility with equivalent

cost to the actual admissions process.

4.4.1 Gaussian Arm Experiment

We begin by validating the tightness of our theoretical results in a simulation set-

ting that mimics the assumptions made in Section 4.3. We pull from a Gaussian

distribution around each arm. When arm a is weak pulled, a reward is pulled from a

Gaussian distribution with mean ua, the arm’s true utility, and standard deviation

σ. Similarly, when arm a is strong pulled, the algorithm is charged j cost, and a

reward is pulled from a distribution with mean ua and standard deviation σ/
√
s.

This strong pull distribution is equivalent to pulling the arm s times and averaging

the reward, thus ensuring an information gain of s.

We ran all three algorithms—SWAP with the strong pull policy defined in Equa-

tion 4.3, SWAP with only strong pulls, and SWAP with only weak pulls—while

varying s and j. For each s and j pair we ran the algorithms at least 4, 000 times

with a randomly generated set of arm values. Random seeds were maintained across

policies. We then compared the cost of running each of the algorithms.2

To test Corollary 4.1.1, Figure 4.3a compares SWAP with only weak pulls to

SWAP with only strong pulls. We found that Corollary 4.1.1 is a weak bound on

the boundary value of j. The general version of SWAP should be used when it

performs better—costs less—than both the strong only and weak only versions of

SWAP. The zone where SWAP is effective varies with the problem (See §4.6.3 for
2All code to replicate this experiment can be found here: https://github.com/

principledhiring/SWAP.
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Figure 4.2: Exploration of bounds in practice vs. the theoretical
bounds of Theorem 4.2 with respect to hardness (note that both axes

are a log scale).

a deeper discussion). Figure 4.3b shows the optimal zone for the Gaussian Arm

Experiment.

4.4.2 Graduate Admissions Experiment

Finally, we describe a preliminary exploration of SWAP on real graduate admissions

data from one of the largest CS graduate programs in the United States. The ex-

periment was approved by the university’s Institutional Review Board. Our dataset

consists of three years of graduate admissions applications, graduate committee ap-

plication review text and ratings, and final admissions decisions. Information was

gathered from the first two academic years (treated as a training set), while the data

from last academic year was used to evaluate the performance of SWAP (treated as

a test set).
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Figure 4.3: Cost comparisons. Figure 4.3a compares only strong to
only weak pulls. Green indicates better performance by strong pulls,
and intensity indicates magnitude. The blue line is the Corollary 4.1.1
bound on j. Figure 4.3b shows where the general version of SWAP
outperformed (green) both SWAP with only strong pulls as well as
SWAP with only weak pulls, and (maroon) where it outperformed at

least one of the latter.
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Dataset. During the admissions process, potential students from all over the world

send in their applications. A single application consists of quantitative information

such as GPA, GRE scores, TOEFL scores, nationality, gender, previous degrees

and so on, as well as qualitative information in the form of recommendation letters

and statements of purpose. In the 2016-17 academic year, the department received

approximately 1,600 applications, with roughly 4,500 applications over all three

years. The most recent 1,600 applications are roughly split into 1,000 Master’s

applications and 600 Ph.D. applications. The acceptance rate is 3% for Masters

students and 20% for Ph.D. students.

Once all applications are submitted, they are sent to a review committee. Gen-

erally, applicants at the top (who far exceed expectations) and applicants at the

bottom (who do not fulfill the program’s strict requirements) only need one review.

Applicants on the boundary, however, may go through multiple reviews with dif-

ferent committee members. Once all reviews have been made, the graduate chair

chooses the final applicants to admit.

By administering an anonymous survey of past admissions committee members,

we estimated that interviews are approximately six times longer than reviewing a

written application. Therefore, we set our j value (the cost of a strong pull) to be 6.

The gain of an interview is uncertain, so we ran tests over a wide range of s values

(the information gain of a strong pull). The number of reviews and interviews (×6)

were summed to get a cost T of the actual review process.

Experimental Setup. We simulate an arm pull by returning a real score that a

reviewer gave during the admissions process (in the order of the original reviews)

or a score from a probabilistic classifier (if all committee members’ reviews have
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w T

SWAP 80.1 (0.5) 1978 (53)
Actual 73.96 ~2000

Table 4.1: Graduate Admissions Simulation of SWAP. Comparison
of top-K utility w and cost T of SWAP with results of the actual
admissions process. The values in parentheses are the standard devi-

ations.

been used). An arm pull returns a score drawn from a distribution around the

probabilistic result from the classifier to simulate some human error or bias.

We ran SWAP using the strong pull policy defined in Eq. 4.3, where we define

the utility of each arm by the probabilistic result from the classifier. For our results,

we compare SWAP’s selections with the real decisions made during the admissions

process.

Results. Running SWAP consistently resulted in a higher overall utility than the

actual admissions process while using roughly equivalent cost (Table 4.1). We see

that the overall top-K utility w is higher in SWAP than in practice. We also see

that SWAP uses roughly equivalent resources T than what is used in practice. This

suggests that SWAP is a viable option for admissions. There are, however, some

limitations of only using a top-K policy, such as potentially overlooking the value

diverse candidates bring to a cohort. For instance, when hiring a software engineer-

ing team, if the top candidates are all back-end developers, it may be worthwhile to

hire a front-end developer with slightly lower utility.
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4.5 Promoting diversity through a submodular func-

tion

Motivated by recent evidence that diversity in the workforce can increase produc-

tivity [78, 113], we explore the effect of formally promoting diversity in the cohort

selection problem. In this section we use the diversity function discussed in Sec-

tion 2.3. Empirically, we show that SWAP performs well with a submodular ob-

jective function (Section 4.5.1). In experiments on real data, we show a significant

increase in diversity with little loss in fit while using roughly the same resources as

in practice (Section 4.5.2).

4.5.1 Diverse Gaussian Arm Experiments

To determine if SWAP works in this submodular setting, we ran simulations over

a variety of hardness levels. We instantiated the problem similarly to that of Sec-

tion 4.4.1 with the added complexity of dividing the arms into three partitions.

Figure 4.4a shows the cost of running SWAP compared to the theoretical bounds

of the linear model over increasing hardness levels. The results show that SWAP per-

forms well for the majority of cases. However, for some cases, the cost becomes very

large. To deal with those situations, we can use a probably approximately correct

(PAC) relaxation of Algorithm 1 where Line 13 becomes If
∣∣∣w(M̃t)− w(Mt)

∣∣∣ ≤ ε.

The results from this PAC relaxation where ε = 0.01 can be found in Figure 4.4b.

Note that the definition of hardness found in Equation 4.2 does not quite fit this

situation since the graphs in Figure 4.4 have higher costs for some lower hardness

problems while having lower cost for some higher hardness problems. Given that the
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Figure 4.4: Exploration of bounds in practice for SWAP with wdiv
(4.4a) and the PAC relaxation of SWAP with wdiv (4.4b) vs. the
theoretical bounds of Theorem 4.2 with respect to hardness (Note

that both axes are a log scale).

PAC relaxation performs well with low costs over all of the tested hardness prob-

lems, we propose that SWAP can be used with wdiv and perhaps other submodular

and monotone functions.

4.5.2 Diverse Graduate Admissions Experiment

Using the same setting as described in Section 4.4.2, we simulate a SWAP admissions

process with the submodular function wdiv. We partition groups by gender (which

is binary in our dataset) and multi-class region of origin. We found that we did not

have to resort to the PAC version of SWAP to tractably run the simulation over

various partitions of the graduate admissions data.

Results. We compare two objective functions, wtop and wdiv. wtop treats all

applicants as members of one global class. This mimics a top-K objective, where

applicants are valued based on individual merit alone. wdiv promotes diversity using
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Figure 4.5: Comparison of true and SWAP-simulated admissions:
gender (4.5a, 4.5b) & region (4.5c), 4.5d).

Gender Region of Origin
√
wtop wdiv

√
wtop wdiv

SWAP 8.5 (0.03) 12.1 (0.06) 8.0 (0.03) 22.1 (0.03)
Actual 8.6 11.8 8.6 20.47

Table 4.2: SWAP’s average gain in diversity over different classes.

reported gender and region of origin for class memberships. We use those classes as

our objective during separate runs of SWAP.

Table 4.2 and Figure 4.5 show experimental results on the test set (most recent

year) of real admissions data. We report
√
wtop instead of wtop to align units across

objective functions. Because the square root function is monotonic, this conversion

does not impact the maximum utility cohort. Since SWAP uses a diversity oracle,

we notice a slight drop in top-K utility. However, there is a large gain in diversity.

SWAP, on average, used 1.17 pulls per arm, of which 5% were strong. During

the last admissions decision process each applicant was reviewed on average 1.21

times. Interviews were not consistently documented. SWAP performed more strong

pulls (interviews) of applicants than our estimation of interviews by the graduate

admissions committee, but did fewer weak pulls. SWAP spent roughly the same

amount of total resources as the committee did with strong pull cost j = 6 and
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Figure 4.6: Cost vs utility function comparisons of Actual, SWAP,
Random, and Uniform.

weak pull cost of 1. Given the gains in diversity, this supports SWAP’s potential

use in practice.

We also compare SWAP to both uniform and random pulling strategies, shown

in Figure 4.6. The uniform strategy weak pulls each arm once and strong pulls each

arm once. This had a cost approximately 9 times that of SWAP and resulted in

a general utility of 8.3 and a diversity value of 11.8. The random strategy weak

or strong pulls arms randomly. Even when spending 10 times the cost of running

SWAP, the random strategy has only a general utility of 7.9 and a diversity value

of 11.16. SWAP significantly outperforms both of these strategies.

4.6 Discussion

Admissions and hiring are extremely important processes that affect individuals in

very real ways. Lack of structure and systematic bias in these processes, present in

application materials or in resource allocation, can negatively affect applicants from
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traditionally underrepresented minority groups. We suggest a formally structured

process to help prevent disadvantaged people from falling through the cracks. We

discuss benefits (Section 4.6.1) and limitations (Section 4.6.2) to this approach, as

well as mechanism design suggestions for deploying SWAP in practice (Section 4.6.3).

4.6.1 Benefits

We established SWAP, a clear-cut way to model a sequential decision-making process

where the aim is to select a subset using two kinds of information-gathering strategies

as a multi-armed bandit algorithm. This process could have a number of benefits

when used in practical hiring/admissions settings.

Over the course of designing and running our experiments, we noticed what

seemed like bias in the application materials of candidates belonging to underrep-

resented minority groups. Our initial observations were similar to those of scholars

such as Schmader et al. [195], who found that recommendation letters for female

applicants to faculty jobs contained fewer work-specific terms than male applicants.

After revisiting and coding application materials in our experiments, we found sim-

ilar results for female and other minority candidates.

Our process hopes to mitigate this bias by providing a completely structured

process, informed by the many studies showing that structured interviewing reduces

bias (see Section 2.5). As we showed in our experiments, one can take additional

steps to encourage diversity (by using wdiv) to select a more diverse team, which

can result in a less biased, more productive work environment [113].

Furthermore, by including a diversity measure in the objective function, candi-

dates from disadvantaged groups are given a higher chance of being pulled through
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the cracks since we prioritize recommending diverse candidates for additional re-

source allocation.

A practical benefit to SWAP is that it avoids spending unnecessary resources

on outlier candidates and quickly finds uncertain candidates. This give us more

information about the applicant pool as whole, allowing us to make better decisions

when choosing a cohort while using roughly equivalent resources.

Finally, in our simulations of running SWAP during the graduate admissions

process, we also select a more diverse student cohort at low cost to cohort utility.

4.6.2 Limitations

One significant limitation of a large-scale system like SWAP is that it relies on

having a utility score for each applicant. In our graduate admissions experiment, we

assume the true utility of an applicant can be modeled by our classifier, which is not

entirely accurate. In reality, the true utility of an applicant is nontrivial to estimate

as it is subjective and depends on a wide range of factors. Finding an applicant’s

true utility would require following and evaluating the applicant through the end

of the program, perhaps even after they have left the university. Even if that were

possible, being able to quantify true utility is nontrivial due to the subjectivity of

success and its qualitative properties. This problem is not limited to SWAP–it is

present in any admissions, hiring, peer review, and other processes that attempt to

quantify the value of qualitative properties. Therefore in these settings there is no

choice but to rely on proxy values for the true utility, such as reviewer scores.

Similarly, even though the cost of a resource, j, may be inherently quantifiable,

the information gain s, is harder to define in such a process. For example, how much

49



more information one gains from an interview over a resume review is subjective

and, by nature, more qualitative than quantitative. Also, the information gain

from expending the same resource may vary over applicants, though this is slightly

mitigated by using structured interviews.

Another limiting factor is that not every admitted applicant will matriculate into

the program. We assume that all applicants will accept our offer, but in reality, that

is not the case. Therefore, we potentially reject applicants that would matriculate,

as opposed to accepting higher quality applicants that will ultimately not.

Finally, our graduate admissions experiment simulated strong arm pulls: review-

ers did not give additional interviews of applicants during the experiment. Although

our results are promising, SWAP should be run in conjunction with an actual ad-

missions process to assess its true performance.

4.6.3 Design Choices

Our motivation in designing SWAP and exploring related extensions is to aid hir-

ing and admissions processes that use structured interviewing practices and aim

to hire a diverse cohort of workers. As with any algorithm deployed in practice,

actually running SWAP alongside a hiring process requires adaptation to the spe-

cific environment in which it will be used (e.g., batch versus sequential review), as

well as estimation of parameters involving correctness guarantees (e.g., δ and ε) or

population estimates (e.g., σ).

In general, we recommend that the policymaker or mechanism designer tasked

with setting parameters for SWAP, or a SWAP-style algorithm, should conduct
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a study on past admissions/hiring decisions. This study should include quantita-

tive information (e.g., how many people applied, how many were accepted, how

many were interviewed, how long did interviews take) and qualitative information

(e.g., how confident was reviewer A after reviewing an applicant B). From this a

mechanism designer could determine estimates of population parameters like σ, in-

formation gain parameters s, and interview cost parameter j.

To estimate σ, a policymaker could perform a study on past reviews and inter-

views to determine the range of scores for arms. However, this method could incorpo-

rate various biases that may already exist in prior review and scoring processes. That

consideration should be taken into account, but exactly how is situation-specific.

The introduction of and strict adherence to the structured interview paradigm is a

general method to alleviate some of these concerns.

To estimate the value of s, the information gain of a strong pull, one could quan-

tify the difference in confidence level for a particular applicant after performing weak

and strong pulls; e.g., how confident was reviewer A after reviewing an applicant

B, how much more confident was A after interviewing B, and so on. For j, policy

makers could use the average relative difference in time (and possibly monetary)

resources spent on different information gathering strategies.

The choice of δ and ε could be determined via a sensitivity-analysis-style study,

where simulations are run using various settings of δ and ε. Policymakers can then

judge the simulated risks and rewards to define the parameters.

Once the hyper-parameters have been found, simulations can be performed to

find the optimal zone (as discussed in Section 4.4.1). This will allow the designer to

determine the best strong pull policy.
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Ideally, both studies should include a run focused on past decisions and one run

every time the selection process occurs, to ensure SWAP’s parameters align with

the experiences and values of human decision-makers.

4.7 Conclusion

In this work, we modeled the allocation of interviewing resources and subsequent

selection of a cohort of applicants as a combinatorial pure exploration (CPE) prob-

lem in the multi-armed bandit setting. We generalized a recent CPE algorithm to

the setting where arm pulls can have different costs–where a decision maker can per-

form strong and weak pulls, with the former costing more than the latter, but also

resulting in a less noisy signal. We presented the strong-weak arm-pulls (SWAP)

algorithm and proved theoretical upper bounds for a general class of arm pulling

strategies in that setting. We also provided simulation results to test the tightness of

these bounds. We then applied SWAP to a real-world problem with combinatorial

structure: incorporating diversity into university admissions. On real admissions

data from one of the largest US-based computer science graduate programs, we

showed that SWAP produces more diverse student cohorts at low cost to student

quality while spending a budget comparable to that of the current admissions pro-

cess.

This work lies in the social injustice bias level in the three tiered view of the

world found in Chapter 1. By using the diversity function we address the disparities

found between sensitive groups and ensure that those with artificially low scores are

pushed higher.
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It would be of both practical and theoretical interest to tighten the upper bounds

on convergence for SWAP, either for a reduced or general set of arm pulling strate-

gies. We would also like to extend SWAP to include more than two types of pulls or

information gathering strategies. We aim to incorporate a more realistic version of

diversity and achieve a provably fair multi-armed bandit algorithm, as formulated

by Joseph et al. [123] and Liu et al. [152]. Additionally, we aim to create a version of

SWAP that incorporates applicant matriculation into the candidate-recommending

and selection process.

An interesting direction that may be worth pursuing is drawing connections

between our work—the selection of a diverse subset of arms—to recent work in

multi-winner voting [86], a setting in social choice where a subset of alternatives

are selected instead of a single winner. Recent work in that space looks at selecting

a “diverse but good” committee of alternatives via social choice methods [14, 44].

Similarly, drawing connections to diversity in allocation and matching problems [4,

25, 147] is also potentially of interest.
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Algorithm 1 Strong Weak Arm Pulls (SWAP)
Require: Confidence δ ∈ (0, 1); Maximization oracle: Oracle(·) : Rn →M
1: Weak pull each arm a ∈ [n] once to initialize empirical means ûn
2: ∀i ∈ [n] set Tn(ai)← 1,
3: Costn ← n, total resources spent
4: for t = n, n+ 1, . . . do
5: Mt ← Oracle(ût)
6: for ai = 1, . . . , n do

7: rad t(ai) = σ

√
2 log

(
4nCost3t

δ
/Tt(ai)

)

8: if ai ∈Mt then
9: ũt(ai)← ût(ai)− rad t(ai)

10: else
11: ũt(ai)← ût(ai) + rad t(ai)

12: M̃t ← Oracle(ũt)
13: if w(M̃t) = w(Mt) then
14: Out←Mt

15: return Out
16: pt ← arg maxa∈(M̃t\Mt)∪(Mt\M̃t)

rad t(a)
17: α← spp(s, j)
18: with probability α do
19: Strong pull pt
20: Tt+1(pt)← Tt(pt) + s
21: Cost t+1 ← Cost t + j
22: else
23: Weak pull pt
24: Tt+1(pt)← Tt(pt) + 1
25: Cost t+1 ← Cost t + 1
26: Update empirical mean ût+1 using observed reward
27: Tt+1(a)← Tt(a) ∀a 6= pt
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Chapter 5: Making the Cut: A Bandit-based

Approach to Tiered Interviewing

Given a huge set of applicants, how should a firm allocate sequential resume screen-

ings, phone interviews, and in-person site visits? In a tiered interview process, later

stages (e.g., in-person visits) are more informative, but also more expensive than

earlier stages (e.g., resume screenings). Using accepted hiring models and the con-

cept of structured interviews, a best practice in human resources, we cast tiered

hiring as a combinatorial pure exploration (CPE) problem in the stochastic multi-

armed bandit setting. The goal is to select a subset of arms (in our case, applicants)

with some combinatorial structure. We present new algorithms in both the probably

approximately correct (PAC) and fixed-budget settings that select a near-optimal

cohort with provable guarantees. We show via simulations on real data from one of

the largest US-based computer science graduate programs that our algorithms make

better hiring decisions or use less budget than the status quo.

‘... nothing we do is more important than hiring and developing people. At

the end of the day, you bet on people, not on strategies.” – Lawrence Bossidy,

The CEO as Coach (1995)
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5.1 Introduction

Hiring workers is expensive and lengthy. The average cost-per-hire in the United

States is $4,129 [207], and with over five million hires per month on average, total

annual hiring cost in the United States tops hundreds of billions of dollars [216]. In

the past decade, the average length of the hiring process has doubled to nearly one

month [54]. At every stage, firms expend resources to learn more about each appli-

cant’s true quality, and choose to either cut that applicant or continue interviewing

with the intention of offering employment.

In this Chapter, we address the problem of a firm hiring a cohort of multiple

workers, each with unknown true utility, over multiple stages of structured inter-

views. We operate under an assumption that a firm is willing to spend an increasing

amount of resources—e.g., money or time—on applicants as they advance to later

stages of interviews. Thus, the firm is motivated to aggressively “pare down” the

applicant pool at every stage, culling low-quality workers so that resources are bet-

ter spent in more costly later stages. This concept of tiered hiring can be extended

to crowdsourcing or finding a cohort of trusted workers. At each successive stage,

crowdsourced workers are given harder tasks.

Using techniques from the multi-armed bandit (MAB) and submodular optimiza-

tion literature, we present two new algorithms—in the probably approximately cor-

rect (PAC) (§5.3) and fixed-budget settings (§5.4)—and prove upper bounds that se-

lect a near-optimal cohort in this restricted setting. We explore those bounds in sim-

ulation and show that the restricted setting is not necessary in practice (§5.5). Then,

using real data from admissions to a large US-based computer science Ph.D. pro-

gram, we show that our algorithms yield better hiring decisions at equivalent cost
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to the status quo—or comparable hiring decisions at lower cost (§5.5).

5.2 A Formal Model of Tiered Interviewing

In this section, we formally define our general multi-stage combinatorial MAB prob-

lem. For an overview of related work and background information see Chapter 2.

Each of our n applicants is an arm a in the full set of arms A. Our goal is to select

K < n arms that maximize some objective w using a maximization oracle. We split

up the review/interview process into m stages, such that each stage i ∈ [m] has per-

interview information gain si, cost ji, and number of required arms Ki (representing

the size of the “short list” of applicants who proceed to the next round). We want to

solve this problem using either a confidence constraint (δ, ε), or a budget constraint

over each stage (Ti). We rigorously define each of these inputs below.

Multi-armed bandits. In this chapter we follow the classical MAB approach

described in Section 2.1.1 where each arm a ∈ A has a true utility u(a) ∈ [0, 1],

which is unknown. When an arm a ∈ A is pulled, a reward is pulled from a

distribution with mean u(a) and a σ-sub-Gaussian tail.

Top-K and subsets. In the previous chapter we relied on an oracle to chose the

optimal cohort. In this Chapter we do the same with the modification of choosing

an optimal cohort for the shortlist at each stage. As such, we use decision class

MK(A) = {M ⊆ A
∣∣ |M | = K}. A cohort is optimal if it maximizes a linear

objective function w : Rn ×MK(A) → R. Therefore, the maximization oracle can
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be defined as

OracleK(û, A) = arg max
M∈MK(A)

w(û,M). (5.1)

Additionally, for any arm a ∈ A, the gap score ∆a is now defined as

∆a =





w(M∗)−max{M | M∈MK∧a∈M}w(M), if a /∈M∗

w(M∗)−max{M | M∈MK∧a/∈M}w(M), if a ∈M∗.
(5.2)

Using this gap score we estimate the hardness of a problem as the sum of inverse

squared gaps:

H =
∑

a∈A
∆−2
a (5.3)

This helps determine how easy it is to differentiate between arms at the border of

accept/reject.

Objectives. As in the previous setting we apply both a Top-K maximization

oracle as well as a diversity oracle. For more information on the Diversity oracle see

Section 2.3.

Variable costs. Interviews allow firms to compare applicants. Structured inter-

views treat each applicant the same by following the same questions and scoring

strategy, allowing for meaningful cross-applicant comparison. A substantial body of

research shows that structured interviews serve as better predictors of job success

and reduce bias across applicants when compared to traditional methods [105, 184].

As decision-making becomes more data-driven, firms look to demonstrate a link

between hiring criteria and applicant success—and increasingly adopt structured

interview processes [132, 143].
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In the previous Chapter we introduced a concept of “weak” and “strong” pulls

in the Strong Weak Arm Pull (SWAP) algorithm. In this Chapter, however, we

transform the concept of “weak” and “strong” pulls to multiple stages. As stages get

more expensive, the estimates of utility become more precise - the estimate comes

with a distribution with a lower variance. In practice, a resume review may make

a candidate seem much stronger than they are, or a badly written resume could

severely underestimate their abilities. However, in-person interviews give better

estimates. In Section 5.5, we extend (as best we can) the SWAP model to our

setting and compare as part of our experimental testbed.

Generalizing to multiple stages. This Chapter, to our knowledge, gives the

first computational formalization of tiered structured interviewing. We build on

hiring models from the behavioral science literature [43, 217] in which the hiring

process starts at recruitment and follows several stages, concluding with successful

hiring. We model these m successive stages as having an increased cost—in-person

interviews cost more than phone interviews, which in turn cost more than simple

résumé screenings—but return additional information via the score given to an ap-

plicant. For each stage i ∈ [m] the user defines a cost ji and an information gain

si for the type of pull (type of interview) being used in that stage. During each

stage, Ki arms move on to the next stage (we cut off Ki−1 − Ki arms), where

n = K0 > K1 > · · · > Km−1 > Km = K). The user must therefore define Ki for

each i ∈ [m − 1]. The arms chosen to move on to the next stage are denoted as

Am ⊂ Am−1 ⊂ · · · ⊂ A1 ⊂ A0 = A.
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Tiered MAB and interviewing stages. Our formulation was initially moti-

vated by the graduate admissions system run at our university. Here, at every stage,

it is possible for multiple independent reviewers to look at an applicant. Indeed, our

admissions committee strives to hit at least two written reviews per application

package, before potentially considering one or more Skype/Hangouts calls with a

potential applicant. (In our data, for instance, some applicants received up to 6

independent reviews per stage.)

While motivated by academic admissions, we believe our model is of broad inter-

est to industry as well. For example, in the tech industry, it is common to allocate

more (or fewer) 30-minute one-on-one interviews on a visit day, and/or multiple

pre-visit programming screening teleconference calls. Similarly, in management con-

sulting [113], it is common to repeatedly give independent “case study” interviews

to borderline candidates.

5.3 Probably Approximately Correct Hiring

In this section, we present Cutting Arms using a Combinatorial Oracle (CACO),

the first of two multi-stage algorithms for selecting a cohort of arms with provable

guarantees. CACO is a probably approximately correct (PAC) [106] algorithm that

performs interviews overm stages, for a user-supplied parameterm, before returning

a final subset of K arms.

Algorithm 2 provides pseudocode for CACO. The algorithm requires several

user-supplied parameters in addition to the standard PAC-style confidence param-

eters (δ - confidence probability, ε - error), including the total number of stages m;
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pairs (si, ji) for each stage i ∈ [m] representing the information gain si and cost ji

associated with each arm pull; the number Ki of arms to remain at the end of each

stage i ∈ [m]; and a maximization oracle. After each stage i is complete, CACO

removes all but Ki arms. The algorithm tracks these “active” arms, denoted by Ai−1

for each stage i, the total cost Cost that accumulates over time when pulling arms,

and per-arm a information such as empirical utility û(a) and total information gain

T (a). For example, if arm a has been pulled once in stage 1 and twice in stage 2,

then T (a) = s1 + 2s2.
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Algorithm 2 Cutting Arms using a Combinatorial Oracle (CACO)

Require: Confidence δ ∈ (0, 1); Error ε ∈ (0, 1); Oracle; number of stages m;

(si, ji, Ki) for each stage i

1: A0 ← A

2: for stage i = 1, . . . ,m do

3: Pull each a ∈ Ai−1 once using the given si, ji pair

4: Update empirical means û

5: Cost ← Cost +Ki−1 · ji
6: for t = 1, 2, . . . do

7: Ai ← OracleKi(û)

8: for a ∈ Ai−1 do

9: rad(a)← σ
√

2 log(4|A|Cost3)/δ
T (a)

10: if a ∈ Ai then ũ(a)← û(a)− rad t(a)

11: else ũ(a)← û(a) + rad(a)

12: Ãi ← OracleKi(ũ)

13: if |w(Ãi)− w(Ai)| < ε then break

14: p← arg maxa∈(Ãi\Ai)∪(Ai\Ãi) rad(a)

15: Pull arm p using the given si, ji pair

16: Update û(p) with the observed reward

17: T (p)← T (p) + si

18: Cost ← Cost + ji

19: Out← Am; return Out

CACO begins with all arms active (line 1). Each stage i starts by pulling each
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active arm once using the given (si, ji) pair to initialize or update empirical utilities

(line 3). It then pulls arms until a confidence level is triggered, removes all but Ki

arms, and continues to the next stage (line 13).

In a stage i, CACO proceeds in rounds indexed by t. In each round, the algo-

rithm first finds a set Ai of size Ki using the maximization oracle and the current

empirical means û (line 7). Then, given a confidence radius (line 9), it computes

pessimistic estimates ũ(a) of the true utilities of each arm a and uses the oracle to

find a set of arms Ãi under these pessimistic assumptions (lines 10-12). If those

two sets are “close enough” (ε away), CACO proceeds to the next stage (line 13).

Otherwise, across all arms a in the symmetric difference between Ai and Ãi, the arm

p with the most uncertainty over its true utility—determined via rad(a)—is pulled

(line 14). At the end of the last stage m, CACO returns a final set of K active arms

that approximately maximizes an objective function (line 19).

We prove a bound on CACO in Theorem 5.1. As a special case of this theorem,

when only a single stage of interviewing is desired, and as ε→ 0, then Algorithm 2

reduces to Chen et al. [58]’s CLUCB, and our bound then reduces to their upper

bound for CLUCB. This bound provides insights into the trade-offs of Cost , infor-

mation gain s, problem hardness H (Equation 5.3), and shortlist size Ki. Given the

Cost and information gain s parameters Theorem 5.1 provides a tighter bound than

those for CLUCB.1

Theorem 5.1. Given any δ ∈ (0, 1), any ε ∈ (0, 1), any decision classesMi ⊆ 2[n]

for each stage i ∈ [m], any linear function w, and any expected rewards u ∈ Rn,
1All proofs for this Chapter can be found in Appendix B.2.
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parameters to the CACO algorithm change.

assume that the reward distribution ϕa for each arm a ∈ [n] has mean u(a) with a σ-

sub-Gaussian tail. Let M∗
i = arg maxM∈Mi

denote the optimal set in stage i ∈ [m].

Set radt(a) = σ

√
2 log(

4Ki−1Cost3i,t
δ

)/Ti,t(a) for all t > 0 and a ∈ [n]. Then, with

probability at least 1 − δ, the CACO algorithm (Algorithm 2) returns the set Out

where w(Out)− w(M∗
m) < ε and
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Theorem 5.1 gives a bound relative to problem-specific parameters such as the

gap scores ∆a (Equation 5.2), inter-stage cohort sizes Ki, and so on. Figure 5.12

lends intuition as to how CACO changes with respect to these inputs, in terms of

problem hardness (defined in Eq. 5.3). When a problem is easy (gap scores ∆a are

large and hardness H becomes small), the min parts of the bound are dominated

by gap scores ∆a, and there is a smooth increase in total cost. When the problem

gets harder (gap scores ∆a are small and hardness H becomes large), the mins are

dominated byK2
i /ε

2 and the cost is noisy but bounded below. When ε or δ increases,

the lower bounds of the noisy section decrease—with the impact of ε dominating

that of δ. A policymaker can use these high-level trade-offs to determine hiring
2For detailed figures see Appendix B.5.
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mechanism parameters. For example, assume there are two interview stages. As the

number K1 of applicants who pass the first interview stage increases, so too does

total cost T . However, if K1 is too small (here, very close to the final cohort size

K), then the cost also increases.

5.4 Hiring on a Fixed Budget with BRUTaS

In many hiring situations, a firm or committee has a fixed budget for hiring (number

of phone interviews, total dollars to spend on hosting, and so on). With that in

mind, in this section, we present Budgeted Rounds Updated Targets Successively

(BRUTaS), a tiered-interviewing algorithm in the fixed-budget setting.

Algorithm 3 provides pseudocode for BRUTaS, which takes as input fixed bud-

gets T̄i for each stage i ∈ [m], where
∑

i∈[m] T̄i = T̄ , the total budget. In this version

of the tiered-interview problem, we also know how many decisions—whether to ac-

cept or reject an arm—we need to make in each stage. This is slightly different

than in the CACO setting (§5.3), where we need to remove all but Ki arms at the

conclusion of each stage i. We make this change to align with the CSAR setting

of Chen et al. [58], which BRUTaS generalizes. In this setting, let K̃i represent

how many decisions we need to make at stage i ∈ [m]; thus,
∑

i∈[m] K̃i = n. The

K̃is are independent of K, the final number of arms we want to accept, except that

the total number of accept decisions across all K̃ must sum to K.

The budgeted setting uses a constrained oracle COracle : Rn × 2[n] × 2[n] →
M∪ {⊥} defined as

COracle(û, A,B) = arg max
{M∈MK | A⊆M ∧ B∩M=∅}

w(û,M),
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where A is the set of arms that have been accepted and B is the set of arms that

have been rejected.

In each stage i ∈ [m], BRUTaS starts by collecting the accept and reject sets

from the previous stage. It then proceeds through K̃i rounds, indexed by t, and

selects a single arm to place in the accept set A or the reject set B. In a round

t, it first pulls each active arm—arms not in A or B—a total of T̃i,t − T̃i,t−1 times

using the appropriate si and ji values. T̃i,t is set according to Line 6; note that

T̃i,0 = 0. Once all the empirical means for each active arm have been updated, the

constrained oracle is run to find the empirical best set Mi,t (Line 9). For each active

arm a, a new pessimistic set M̃i,t,a is found (Lines 11-15). a is placed in the accept

set A if a is not inMi,t, or in the reject set B if a is inMi,t. This is done to calculate

the gap that arm a creates (Equation 5.2). The arm pi,t with the largest gap is

selected and placed in the accept set A if pi,t was included in Mi,t, or placed in the

reject set B otherwise (Lines 16-20). Once all rounds are complete, the final accept

set A is returned.

Theorem 5.2, provides an lower bound on the confidence that BRUTaS returns

the optimal set. Note that if there is only a single stage, then Algorithm 3 reduces

to Chen et al. [58]’s CSAR algorithm, and our Theorem 5.2 reduces to their upper

bound for CSAR. Again Theorem 5.2 provides tighter bounds than those for CSAR

given the parameters for information gain sb and arm pull cost jb.

Theorem 5.2. Given any T̄is such that
∑

i∈[m] T̄i = T̄ > n, any decision class

MK ⊆ 2[n], any linear function w, and any true expected rewards u ∈ Rn, assume

that reward distribution ϕa for each arm a ∈ [n] has mean u(a) with a σ-sub-

Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n (defined in Eq.
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5.2) such that ∆(1) ≤ . . . ≤ ∆(n). Define H̃ , maxi∈[n] i∆
−2
(i) . Then, Algorithm 3

uses at most T̄i samples per stage i ∈ [m] and outputs a solution Out ∈ MK ∪ {⊥}
such that

Pr[Out 6= M∗] ≤ n2 exp

(
−
∑m

b=1 sb(T̄b − K̃b)/(jb l̃og(K̃b))

72σ2H̃

)
(5.4)

where l̃og(n) ,
∑n

i=1 i
−1, and M∗ = arg maxM∈MK

w(M).
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Algorithm 3 Budgeted Rounds Updated Targets Successively (BRUTaS)

Require: Budgets T̄i ∀i ∈ [m]; (si, ji, K̃i) for each stage i; constrained oracle

COracle

1: Define l̃og(n) ,
∑n

i=1
1
i

2: A0,1 ← ∅; B0,1 ← ∅

3: for stage i = 1, . . . ,m do

4: Ai,1←Ai−1,K̃i−1+1; Bi,1←Bi−1,K̃i−1+1; T̃i,0←0

5: for t = 1, . . . , K̃i do

6: T̃i,t ←
⌈

T̄i−(n−
∑i−1
a=0 K̃i)

l̃og(n−
∑i−1
a=0 K̃i)ji(K̃i−t+1)

⌉

7: for all a ∈ [n] \ (Ai,t ∪Bi,t) do

8: Pull a (T̃i,t − T̃i,t−1) times; update ûi,t(a)

9: Mi,t ← COracle(ûi,t, Ai,t, Bi,t)

10: if Mi,t =⊥ then return ⊥

11: for all a ∈ [n] \ (Ai,t ∪Bi,t) do

12: if a ∈Mi,t then

13: M̃i,t,a←COracle(ŵi,t, Ai,t, Bi,t∪{a})

14: else

15: M̃i,t,a←COracle(ŵi,t, Ai,t∪{a}, Bi,t)

16: pi,t ← arg max
a∈[n]\(Ai,t∪Bi,t)

w(Mi,t)− w(M̃i,t,a)

17: if pi,t ∈Mt then

18: Ai,t+1 ← Ai,t ∪ {pi,t}; Bi,t+1 ← Bi,t

19: else

20: Ai,t+1 ← Ai,t; Bi,t+1 ← Bi,t ∪ {pi,t}

21: Out← Am,K̃m+1; return Out
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When setting the budget for each stage, a policymaker should ensure there is

sufficient budget for the number of arms in each stage i, and for the given exogenous

cost values ji associated with interviewing at that stage. There is also a balance

between the number of decisions that must be made in a given stage i and the

ratio si
ji

of interview information gain and cost. Intuitively, giving higher budget to

stages with a higher si
ji

ratio makes sense—but one also would not want to make

all accept/reject decisions in those stages, since more decisions corresponds to lower

confidence. Generally, arms with high gap scores ∆a are accepted/rejected in the

earlier stages, while arms with low gap scores ∆a are accepted/rejected in the later

stages. The policy maker should look at past decisions to estimate gap scores ∆a

(Equation 5.2) and hardness H (Equation 5.3). There is a clear trade-off between

information gain and cost. If the policy maker assumes (based on past data) that

the gap scores will be high (it is easy to differentiate between applicants) then the

lower stages should have a high Ki, and a budget to match the relevant cost ji. If

the gap scores are all low (it is hard to differentiate between applicants) then more

decisions should be made in the higher, more expensive stages. By looking at the

ratio of small gap scores to high gap scores, or by bucketing gap scores, a policy

maker will be able to set each Ki.

5.5 Experiments

In this section, we experimentally evaluate BRUTaS and CACO in two different

settings. The first setting uses data from a toy problem of Gaussian distributed
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Figure 5.2: Comparison of Cost vs information gain (s) as ε in-
creases for CACO. Here, δ = 0.05 and σ = 0.2. As ε increases, the
cost of the algorithm also decreases. If the overall cost of the algo-
rithm is low, then increasing s (while keeping j constant) provides

diminishing returns.
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Figure 5.3: Hardness (H) vs Cost, comparing against Theorem 5.1.

arms. The second setting uses real admissions data from one of the largest US-

based graduate computer science programs.

5.5.1 Gaussian Arm Experiments

We begin by using simulated data to test the tightness of our theoretical bounds. To

do so, we instantiate a cohort of n = 50 arms whose true utilities, ua, are sampled

from a normal distribution. We aim to select a final cohort of size K = 7. When

an arm is pulled during a stage with cost j and information gain s, the algorithm

is charged a cost of j and a reward is pulled from a distribution with mean ua and

standard deviation of σ/
√
s. For simplicity, we present results in the setting of

m = 2 stages.
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Figure 5.4: Effect of an increasing budget on the overall utility of a
cohort. As hardness (H) increases, more budget is needed to produce

a high quality cohort.

CACO. To evaluate CACO, we vary δ, ε, σ, K1, and s2. We find that as δ

increases, both cost and utility decrease, as expected. Similarly, Figure 5.2 shows

that as ε increases, both cost and utility decrease. Higher values of σ increase the

total cost, but do not affect utility. We also find diminishing returns from high

information gain s values (x-axis of Figure 5.2). This makes sense—as s tends to

infinity, the true utility is returned from a single arm pull. We also notice that if

many “easy” arms (arms with very large gap scores) are allowed in higher stages,

total cost rises substantially.

Although the bound defined in Theorem 5.1 assumes a linear function w, we

empirically tested CACO using a submodular function wdiv. We find that the cost

of running CACO using this submodular function is significantly lower than the

theoretical bound. This suggests that (i) the bound for CACO can be tightened

and (ii) CACO could be run with submodular functions w.

BRUTaS. To evaluate BRUTaS, we varied σ and (K̃i, Ti) pairs for two stages.

Utility varies as expected from Theorem 5.2: when σ increases, utility decreases.

There is also a trade-off between K̃i and Ti values. If the problem is easy, a low

budget and a high K̃1 value is sufficient to get high utility. If the problem is hard
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(high H value), a higher overall budget is needed, with more budget spent in the

second stage. Figure 5.4 shows this escalating relationship between budget and

utility based on problem hardness. Again we found that BRUTaS performed well

when using a submodular function wdiv.

Finally, we compare CACO and BRUTaS to two baseline algorithms: Uniform

and Random, which uniformly and randomly respectively, pulls arms in each stage.

In both algorithms, the maximization oracle is run after each stage to determine

which arms should move on to the next stage. When given a budget of 2,750,

BRUTaS achieves a utility of 244.0, which outperforms both the Uniform and

Random baseline utilities of 178.4 and 138.9, respectively. When CACO is run on

the same problem, it finds a solution (utility of 231.0) that beats both Uniform

and Random at a roughly equivalent cost of 2,609. This qualitative behavior exists

for other budgets.

5.5.2 Graduate Admissions Experiment

We evaluate how CACO and BRUTaS might perform in the real world by applying

them to a graduate admissions dataset from one of the largest US-based graduate

computer science programs. These experiments were approved by the university’s

Institutional Review Board and did not affect any admissions decisions for the uni-

versity. Our dataset consists of three years (2014–16) worth of graduate applications.

For each application we also have graduate committee review scores (normalized to

between 0 and 1) and admission decisions.
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Experimental setup. Using information from 2014 and 2015, we used a ran-

dom forest classifier [180], trained in the standard way on features extracted from

the applications, to predict probability of acceptance. Features included numerical

information such as GPA and GRE scores, topics from running Latent Dirichlet

Allocation (LDA) on faculty recommendation letters [195], and categorical informa-

tion such as region of origin and undergraduate school. In the testing phase, the

classifier was run on the set of applicants A from 2016 to produce a probability of

acceptance P (a) for every applicant a ∈ A.

We mimic the university’s application process of two stages: a first review stage

where admissions committee members review the application packet, and a second

interview stage where committee members perform a Skype interview for a select

subset of applicants. The committee members follow a structured interview ap-

proach. We determined that the time taken for a Skype interview is roughly 6 times

as long as a packet review, and therefore we set the cost multiplier for the second

stage j2 = 6. We ran over a variety of s2 values, and we determined σ by looking at

the distribution of review scores from past years. When an arm a ∈ A is pulled with

information gain s and cost j, a reward is randomly pulled from the arm’s review

scores (when s1 = 1 and j1 = 1, as in the first stage), or a reward is pulled from a

Gaussian distribution with mean P (a) and a standard deviation of σ√
s
.

We ran simulations for BRUTaS, CACO, Uniform, and Random. In addition

we compare to an adjusted version of SWAP(defined in Chapter 4). SWAP uses

a strong pull policy to probabilistically weak or strong pull arms. In this adjusted

version we use a strong pull policy of always weak pulling arms until some thresh-

old time t and strong pulling for the remainder of the algorithm. Note that this
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Figure 5.5: Utility vs Cost over four different algorithms (Random,
Uniform, SWAP, CACO, BRUTaS) and the actual admissions de-
cisions made at the university. Both CACO and BRUTaS produce
equivalent cohorts to the actual admissions process with lower cost,
or produce high quality cohorts than the actual admissions process

with equivalent cost.

adjustment moves SWAP away from fixed confidence but not all the way to a bud-

geted algorithm like BRUTaS but fits into the tiered structure. For the budgeted

algorithms BRUTaS, Uniform, and Random, (as well as the pseudo-budgeted

SWAP) if there are Ki arms in round i, the budget is Ki ·xi where xi ∈ N. We vary

δ and ε to control CACO’s cost.

We compare the utility of the cohort selected by each of the algorithms to the

utility from the cohort that was actually selected by the university. We maximize

either objective wtop or wdiv for each of the algorithms. We instantiate wdiv, defined

in Equation 2.4, in two ways: first, with self-reported gender, and second, with

region of origin. Note that since the graduate admissions process is run entirely by

humans, the committee does not explicitly maximize a particular function. Instead,

the committee tries to find a good overall cohort while balancing areas of interest

and general diversity.

Results. Figure 5.5 compares each algorithm to the actual admissions decision

process performed by the real-world committee. In terms of utility, for both wtop and
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wdiv, BRUTaS and CACO achieve similar gains to the actual admissions process

(higher for wdiv over region of origin) when using less cost/budget. When roughly

the same amount of budget is used, BRUTaS and CACO are able to provide

higher predicted utility than the true accepted cohort, for both wtop and wdiv.

As expected, BRUTaS and CACO outperform the baseline algorithms Random,

Uniform. The adjusted SWAP algorithm performs poorly in this restricted setting

of tiered hiring. By limiting the strong pull policy of SWAP, only small incremental

improvements can be made as Cost is increased.

5.6 Conclusions & Discussion of Future Research

We provided a formalization of tiered structured interviewing and presented two

algorithms, CACO in the PAC setting and BRUTaS in the fixed-budget setting,

which select a near-optimal cohort of applicants with provable bounds. We used sim-

ulations to quantitatively explore the impact of various parameters on CACO and

BRUTaS and found that behavior aligns with theory. We showed empirically that

both CACO and BRUTaS work well with a submodular function that promotes

diversity. Finally, on a real-world dataset from a large US-based Ph.D. program, we

showed that CACO and BRUTaS identify higher quality cohorts using equivalent

budgets, or comparable cohorts using lower budgets, than the status quo admissions

process. Moving forward, we plan to incorporate multi-dimensional feedback (e.g.,

with respect to an applicant’s technical, presentation, and analytical qualities) into

our model; recent work due to Katz-Samuels and Scott [127, 128] introduces that
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feedback (in a single-tiered setting) as a marriage of MAB and constrained opti-

mization, and we see this as a fruitful model to explore combining with our novel

tiered system.

Discussion. The results support the use of BRUTaS and CACO in a practical

hiring scenario. Once policymakers have determined an objective, BRUTaS and

CACO could help reduce costs and produce better cohorts of employees. Yet,

we note that although this experiment uses real data, it is still a simulation. The

classifier is not a true predictor of utility of an applicant. Indeed, finding an estimate

of utility for an applicant is a nontrivial task. Additionally, the data that we are

using incorporates human bias in admission decisions, and reviewer scores [9, 195].

Finally, defining an objective function on which to run CACO and BRUTaS is a

difficult task. Recent advances in human value judgment aggregation [89, 172] could

find use in this decision-making framework.

Indeed, this work again lies in the social injustice bias level found in the three

level world view from Chapter 1. Similar to the previous chapter, our tiered MAB

formulation makes use of a diversity function to deal with artificially low scores from

reviewers.

5.7 Authors and Publication

This chapter was written by Candice Schumann, Zhi Lang, Jeffrey S. Foster, and

John P. Dickerson. It was published at the Conference on Neural Information Pro-

cessing Systems (NeurIPS) 2019 [198].
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Chapter 6: Group Fairness in Bandit Arm

Selection

Moving away from hiring, we propose a novel formulation of group fairness with

biased feedback in the contextual multi-armed bandit (CMAB) setting. In the

CMAB setting a sequential decision maker must at each time step choose an arm to

pull from a finite set of arms after observing some context for each of the potential

arm pulls. In our model arms are partitioned into two or more sensitive groups

based on some protected feature (e.g., age, race, or socio-economic status). Initial

rewards received from pulling an arm may be biased due to some unknown societal

or measurement bias. We assume that in reality these groups are equal dispite this

biased feedback. To alleviate this we learn a societal bias term which can be used to

find the source of the bias to potentially fix the problem outside of the algorithm.

Note that this societal bias term attempts to measure the societal bias mentioned

in Chapter 1, however some form of measurement bias will be found in this term.

We provide a novel algorithm that can accommodate this notion of fairness for

an arbitrary number of groups, and provide a theoretical bound on the regret for

our algorithm. We validate our algorithm using synthetic data and two real-world

datasets for intervention settings wherein we want to allocate resources fairly across

groups.
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6.1 Introduction

In many online settings a computational or human agent must sequentially select

an item from a slate, receive feedback on that selection, and then use that feedback

to learn how to select the best items in the following rounds. Within computer

science, economics, and operations research circles this is typically modeled as a

multi-armed bandit (MAB) problem [209]. Examples include algorithms for selecting

what advertisements to display to users on a webpage [165], systems for dynamic

pricing [169], and content recommendation services [144]. Indeed, such decision-

making systems continue to expand in scope, making ever more important decisions

in our lives such as setting bail [68], making hiring decisions [39] (See Chapter 4), and

policing [194]. Thus the study of the properties of these algorithms is of tantamount

importance as highlighted by the recent work of Chouldechova and Roth [60] on

priorities for fairness research in machine learning.

In the previous two chapters we focused on the classical MAB setting where at

each time step t ∈ T , an agent pulls an arm and receives a reward that is independent

of any previous action and follows the selected arm’s probability distribution. In

this chapter we instead focus on the generalization of MAB to the contextual multi-

armed bandit (CMAB) where the agent observes a d-dimensional context of features

to use along with the observed rewards of the arms played to choose a new arm. For

more details on the CMAB formulation see Section 2.1.5.

However, the use of MAB- and CMAB-based systems often results in behavior

that is societally repugnant. Sweeney [210] noted that queries for public records on

Google resulted in different associated contextual advertisements based on whether

the query target had a traditionally African American or Caucasian name; in the
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former case advertisements were more likely to contain text relating to criminal

incidents. Following that initial report similar instances continue to be observed,

both in the bandit setting and in the general machine learning world [175]. In

lockstep, the academic community has begun developing approaches to tackling

issues of (un)fairness in learning settings. We have an opportunity here to identify

and understand why the data we have may be causing the bias. See Chapter 3 for

a more in depth discussion on this behavior.

Recently, a Computing Community Consortium (CCC) whitepaper on fairness

in machine learning specifically identified that most studies of fairness are focused

on classification problems [60]. Two fundamental issues identified by Chouldechova

and Roth [60] that we address in this Chapter are extensions to notions of group

fairness and looking at fairness in online dynamic systems, e.g., the contextual

bandit setting. We address these gaps by formalizing and providing an algorithm

for fairness with biased feedback when the arms of the bandit can be partitioned

into groups.

Running Example.

As a running example throughout the chapter, imagine the position of an agent

at a bank or a lender on a micro-lending site. Here, the agent must sequentially

pick loans to fund where the agent regrets picking a loan that fails repayment. In

many cases, such as the micro-lending site Kiva,1 a user is presented with a slate

of potential loans to fund when they log in. Each of these loans, i.e. arms, has a

context which includes attributes of the applicant including a personal statement,
1https://www.kiva.org/
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repayment history, business plan, and other data related to the loans. The loans can

also be partitioned into sets of m sensitive attributes, e.g. location, race, or gender.

In the simplest case, assume we have two female applicants and two male applicants

on the slate at a given time. We also assume that when pulling an arm from, for

example, a female applicant, there is some societal bias introduced into the reward.

We want to balance the number of times the agent selects women versus men given

this societal bias built into the feedback.

Observe that while we use loans as our running example, our notion of regret

could be extended to a number of other areas including recent work in MAB prob-

lems on hiring situations (See Chapter 5. One could imagine a situation where hiring

decisions are made with respect to a short-term reward signal that is biased,2 versus

a longer-term reward of performance which is less biased, e.g., via an end-of-year

review that is based on a more quantitative metric such as on-the-job performance.

A similar argument can be made about school admissions or matching workers to

online tasks in a crowdwork setting.

For a detailed discussion on related work refer back to Chapter 2.

6.2 Preliminaries

We follow the standard CMAB setting and assume that we are attempting to max-

imize a measure over a series of time steps t ∈ T . We assume that there is a

d-dimensional domain for the context space, X = Rd. The agent is presented with

a set A of arms from which to select, and we have |A| = n total arms. Each of these
2Recent research shows that class-based bias presents itself within seconds of an in-

person interview; see https://news.yale.edu/2019/10/21/yale-study-shows-class-bias-hiring-based-
few-seconds-speech.
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arms is associated with a possibly disjoint context space Xi ⊆ X . Additionally, we

assume that we have m sensitive groups and that the arms are partitioned into these

sensitive groups such that P1∩ · · ·∩Pm = ∅ and P1∪ · · ·∪Pm = A. For exposition’s

sake, we assume a binary sensitive attribute with m = 2 for the remaining of the

chapter. However, we show the generality of our results to any number of groups in

Section 6.3.

Each arm i has a true linear reward function fi : X → R such that fi(x) = βi · x

where βi is a vector of coefficients that is unknown to the agent. During each round

t ∈ T , a context xt,i ∈ Xi is given for each arm i. One arm is pulled per round.

When arm i is pulled during round t, a reward is returned: rt,i = fi(xt,i)+et,i where

et,i ∼ N (0, 1). The goal of the agent is to minimize the regret over all timesteps in

T . Formally, the regret of the agent at timestep t is the difference between the arm

selected and the best arm that could have been selected. Let i∗ denote the optimal

arm that could be selected and a be the selected arm. Then, the regret at t is

R(t) = f(xi∗,t)− f(xa,t). (6.1)

In this chapter we compare our proposed algorithm against three other algo-

rithms: TopInterval, a variation of LinUCB from Li et al. [144], NaiveFair

which randomly picks a sensitive group and then applies TopInterval to that

group3, and IntervalChaining, an individually fair algorithm from Joseph et al.

[122]. All algorithms use OLS estimators of the arm coefficients β̂i with a confidence

variable wi,t such that the true utility lies within [β̂i · xi,t − wi,t, β̂i · xi,t + wi,t] with

probability 1 − δ. NaiveFair implements a naive version of demographic parity
3See Appendix C.2 for more information
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without explicitly looking at societal bias. TopInterval either explores by pulling

an arm uniformly at random or exploits by pulling the arm with the highest upper

confidence β̂i · xi,t + wi,t. To ensure individual fairness, IntervalChaining either

explores by choosing an arm uniformly at random or exploits by pulling arms that

have overlapping confidence intervals with the arm with the highest upper confi-

dence. For example if the top arm has a confidence interval of (1,4) and another

arm has an interval of (0.5,2), these intervals overlapped and one arm is picked

uniformly at random.

6.2.1 Regret with Societal Bias

As mentioned before, ground truth rewards for sensitive groups can be noisy due to

societal or measurement bias. We now formalize this bias in terms of multi-armed

bandits. Again, we assume that n arms can be partitioned into two sets P1 and P2

such that P1 ∩ P2 = ∅ and P1 ∪ P2 = [n]. We consider P1 as the sensitive set or the

set with some societal bias. Each arm i has a true utility function f(xi,t) = βi · xi,t
where βi is a vector of coefficients, however, if arm i is pulled at timestep t the

following reward is returned:

ri,t = βi · xi,t + 1[i ∈ P1]ψP1 · xi,t +N (0, 1), (6.2)

where 1[i ∈ P1] = 1 when i ∈ P1 and 0 otherwise, and ψP1 is a societal or systematic

bias against group P1. Note that ψP2 is a zero vector for the non-sensitive group.

Using our running example, let’s assume that the down payment reward received

has some bias against the male applicants compared to the female applicants, while

the final repayment does not. Note that the final repayment is not measured after
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accepting a loan and is only measured much later. The loan agency should then

take the bias into account while learning what good applications look like. Or, in a

hiring setting, an applicant may have a biased interview (initial reward) while their

true performance is measured only after working for a year (later true reward).

We therefore define regret for pulling an arm a at time t as

R(t) = f(xi∗,t)− f(xa,t) (6.3)

where i∗ is the optimal arm to pull at timestep t and f(xi,t) is the true reward with

no bias terms ψP1 · xi,t. We also assume that the average true reward (with no bias)

for group P1 should be the same as the average reward for group P2. In the loan

agency example, this real regret would measure the regret of the final repayments

instead of the biased down payment regret.

One can view the societal bias term ψi that we learn for some group i as our

algorithm learning how to automatically identify and adjust for anti-discrimination

for group i compared to all other groups. Anti-discrimination is the practice of

identifying a relevant feature in data and adjusting it to provide fairness under that

measure [68]. One example of this, discussed by Dwork et al. [81], Joseph et al. [123],

and in the official White House algorithmic decision making statement [174], comes

up in college admissions. Given other factors, specifically income level, some colleges

weight SAT scores less in wealthy populations due to the presence of tutors while

increasing the weight of working-class populations [21]. While in these admissions

settings the adjustments may be ad-hoc, we learn our bias term from data. Past

work has compared the vector β learned for each arm as akin to adjusting for these

biases [81]. While this is true at an individual level, our explicit modeling of bias
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allows us to discover these adjustments at a group level.

6.3 Group Fair Contextual Bandits

In this section, given our new definition of reward (Equation 6.2) and correspond-

ing new definition of regret (Equation 6.3), we present the algorithm GroupFair-

TopInterval (Algorithm 4) which takes societal bias into account. We also give a

bound on its regret in this new reward and regret setting. Subsequently, we briefly

describe the algorithm.

In GroupFairTopInterval, each round t is randomly chosen with probability

1
t1/3

to be an exploration round. The exploration round randomly chooses an arm

to learn more about.

The remaining rounds become exploitation rounds, where linear estimates are

used to pull arms. GroupFairTopInterval learns two different types of standard

OLS linear estimators [135]. The first is a coefficient vector B̂i,t for each arm i

(line 7). Additionally, GroupFairTopInterval learns a group coefficient vector

ψ̂Pj ,t for each group Pj (lines 4 and 5). As mentioned previously, we treat P1 as

the sensitive group of arms. An arm i in the non-sensitive group P2 has a reward

estimation of β̂i,t · xi,t, while an arm i in the sensitive group P1 has a bias corrected

reward estimation of β̂i,t · xi,t − ψ̂P1,t + ψ̂P2,t.

For each arm i, the algorithm calculates confidence intervals wi,t around the linear

estimates B̂i,t · xi,t using a Quantile function Q (line 9). This means that the true

utility (including some bias) falls within [B̂i,t ·xi,t−wi, B̂i,t ·xi,t+wi] with probability

1− δ at every arm i and every timestep t. Similarly, for each group Pj and context
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wi,t for a given arm i at timestep t, the algorithm calculates a confidence interval

bPj ,i,t using a Quantile function Q (lines 4 and 5). This means that the true group

utility (or true average group utility) falls within [ψ̂Pj ,i,t ·xi,t−bPj ,i,t, ψ̂Pj ,i,t ·xi,t+bPj ,i,t]

with probability [1− δ]. Using the confidence intervals wi,t and bPj ,i,t, and the linear

estimates B̂i,t ·xi,t and ψ̂Pj ,i,t ·xi,t we can calculate the upper bound of the estimated

reward for each arm i (lines 15 and 17). The algorithm then pulls the arm with the

highest upper bound (line 18).

Algorithm 4 GroupFairTopInterval
Require: δ, P1, P2

1: for t = 1 . . . T do
2: With probability 1

t1/3
, play it ∈R {1, . . . , n}

3: otherwise:
4: ψ̂P1,t ←

(
X T
P1,t
XP1,t

)−1X T
P1,t
YP1,t

5: ψ̂P2,t ←
(
X T
P2,t
XP2,t

)−1X T
P2,t
YP2,t

6: for i = 1 . . . n do
7: β̂i,t ←

(
XT
i,tXi,t

)−1
XT
i,tY

T
i,t

8: Fi,t ← N
(

0, σ2xi,t
(
XT
i,tXi,t

)−1
xTi,t

)

9: wi,t ← QFi,t

(
δ

2nt

)

10: if i ∈ P1 then
11: FP1,i,t ← N

(
0, σ2xi,t

(
X T
P1,t
XP1,t

)
xTi,t
)

12: FP2,i,t ← N
(
0, σ2xi,t

(
X T
P2,t
XP2,t

)
xTi,t
)

13: bP1,i,t ← QFP1,i,t

(
δ

2 n
|P1|

T

)

14: bP2,i,t ← QFP2,i,t

(
δ

2 n
|P2|

T

)

15: ûi,t ← β̂i,t · xi,t + wi,t − ψ̂P1,t · xi,t + bP1,i,t + ψ̂P2,t · xi,t + bP2,i,t

16: else
17: ûi,t ← β̂i,t · xi,t
18: Play arg maxi ûi,t and observe reward yi,t

Returning to our running example, using GroupFairTopInterval, the loan

agency would learn a down payment reward function for each of the arms, i.e., a
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coefficient vector βi where i ∈ [young female arm, young male arm, older female arm,

older male arm], as well as the group average coefficients for the gender-grouped

arms, ψPj , for male and female. Using the gender-grouped coefficients, expected

rewards for male arms are reweighted to account for the bias in down payment.

Standard algorithms like TopInterval4 would choose an arm i = arg max(β̂ ·

xi,t + wi,t), ignoring societal bias (Equation 6.2, leading to a larger true regret

(Equation 6.3)). Note that GroupFairTopInterval can be extended to multiple

groups by defining an overall average reward.

GroupFairTopInterval is fair—in the context of the group fairness defini-

tions used throughout this chapter—and satisfies the following theorem. A proof

sketch follows the theorem and a full proof can be found in Appendix C.3.

Theorem 6.1. For two groups P1 and P2, where P1 has a bias offset in rewards,

GroupFairTopInterval has regret

R(T ) = O



√
dn ln 2nT

δ

l
T 2/3 +

(
dnL

l

(
ln2 2nT

δ
+ ln d

))2/3

 . (6.4)

Proof Sketch. We start by proving two lemmas. The first of which states that with

probability at least 1− δ:

∣∣∣β̂i,t · xi,t − (βi · xi,t + 1[i ∈ P1]ψP1 · xi,t)
∣∣∣ ≤ wi,t (6.5)

4A variant of the contextual bandit LinUCB by Li et al. [144]
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holds for any i at time t. Similarly, the second states that with probability at last

1− δ:
∣∣∣β̂i,t · xi,t − βi · xi,t

∣∣∣ ≤ wi,t (6.6)

holds for any group Pj, any arm i, and at any timestep t.

The regret for GroupFairTopInterval can be broken down into three terms:

R(T ) =
∑

t: t is an explore round

regret(t)

+
∑

t: t is an exploit round and t<T1

regret(t)

+
∑

t: t is an exploit round and t≥T1

regret(t). (6.7)

First, for any t we have:
∑

t′<t

1

t1/3
= Θ(t2/3). (6.8)

We then show that the number of rounds T1 after which we have sufficient samples

such that the estimators are well concentrated is:

T1 = Θ

(
min
a

(
dnL

λmina,d

(
ln2 2

δ
+ ln d

))3/2
)
. (6.9)

Finally, we bound the third term in Equation 6.7 as follows:

∑

t: t is an exploit round and t≥T1

regret(t) ≤ O

(√
dn

ln 2nT
δ

mini λmini,d

T 2/3 + δ′T

)
. (6.10)

Combining Equations 6.7, 6.8, 6.9, and 6.10, we have Theorem 6.1.

Note that we can extend Algorithm 4 to m groups. In this setting we make the
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strong assumption that true rewards are centered about ρ defined by the user.5 In

this adaption of the algorithm, we set the upper bound radius for arm i as:

ûi,t = β̂i,t · xi,t + wi,t + ρ− ψ̂Pj ,t · xi,t + bPj ,i,t

where i ∈ Pj. We then have the following theorem for multiple groups:

Theorem 6.2. For m groups P1, . . . , Pm, where ρ is the expected average reward,

GroupFairTopInterval (Multiple Groups) has regret

R(T ) = O



√
dn ln 2nT

δ

l
T 2/3 +

(
dnmL

l

(
ln2 2nT

δ
+ ln d

))2/3

 . (6.11)

where l = mini λmini,d and L > maxt λmax(xTi,txi,t).

6.4 Experiments

In this section, we empirically evaluate GroupFairTopInterval. We perform

experiments on synthetic data to demonstrate the effects of various parameters, and

on real datasets to demonstrate how GroupFairTopInterval performs in the

wild. In each of these sections we compare to TopInterval, due to Li et al. [144],

NaiveFair discussed in Appendix C.2, and IntervalChaining, due to Joseph

et al. [123].
5See Appendix C.3.2 for further details
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(a) Increasing
the total budget
T , for n = 10,
µ = 10, and num-
ber of sensitive

arms = 5

(b) Increasing
the number
of arms n, for
T = 1000,
µ = 10, and num-
ber of sensitive

arms = 5

(c) Increasing µ,
for n = 10, T =
1000, and number
of sensitive arms

= 5

(d) Increasing
the fraction of
overall sensitive
arms, for n = 10,
T = 1000, µ = 10

(e) Legend

Figure 6.1: Percentage of total arm pulls that were pulled using
sensitive arms.

(a) n = 10,
µ = 10, num-
ber of sensitive

arms = 5

(b) T = 1000,
µ = 10, num-
ber of sensitive

arms = 5

(c) n = 10,
T = 1000, num-
ber of sensitive

arms = 5

(d) n = 10, T =
1000, µ = 10

(e) Legend

Figure 6.2: Regret for synthetic experiments. The solid lines are
regret given the rewards received from pulling the arms (including the
group bias). The dashed lines is the true regret (without the group

bias).
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6.4.1 Synthetic Experiments

In each synthetic experiment, we generate true coefficient vectors βi by choosing

coefficients uniformly at random for each arm i. Contexts at each timestep t are

chosen randomly for each arm i. Seeds are set at the beginning of each experiment

to keep arms consistent between algorithms for a fair comparison. Additionally, bias

coefficients ψ1 are set uniformly at random with a given mean µ = 10.

We run four different types of experiments:6

(a) Varying the total budget for pulling arms (T ) while setting the number of

arms n = 10, the error mean µ = 10, the number of sensitive arms equal to 5,

and the context dimension d = 2 (Figures 6.2a and 6.1a).

(b) Varying the total number of arms n while setting the total budget T = 1000,

the error mean µ = 10, the number of sensitive arms to 5, and the context

dimension d = 2 (Figures 6.2b and 6.1b).

(c) Varying error mean µ while setting the total budget T = 1000, the number

of arms n = 10, the number of sensitive arms equal to 5, and the context

dimension d = 5 (Figures 6.2c and 6.1c).

(d) Varying the number of sensitive arms while setting the total budget T = 1000,

the number of arms n = 10, the error mean µ = 10, and the context dimension

d = 2 (Figures 6.2d and 6.1d).

The plots in Figure 6.1 show the percentage of times an algorithm pulled a

sensitive arm over the full budget T . In order to be fair, the percentage of sensitive
6Additional experiments can be found in Appendix C.4.
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arms pulled should be proportional to the number of sensitive arms, i.e., when there

are 2 sensitive arms out of the 10 total arms, the percentage of sensitive arms pulled

is roughly 20%. The plots in Figure 6.2 show the perceived regret that includes bias

ψ as solid lines, and real regret that corrects bias (See Equations 6.2 and 6.3) as

dashed lines. Algorithms with low real regret are considered ‘good’.

Figure 6.1a shows that once exploration is over, GroupFairTopInterval pulls

sensitive arms roughly 50% of the time, matching the 50% of sensitive arms. Fig-

ure 6.2a shows that GroupFairTopInterval performs comparably on real regret

as TopInterval performs on biased regret. This means GroupFairTopInterval

should be used over TopInterval in contexts where bias is anticipated. Addition-

ally NaiveFair performs poorly in the context of societal bias.

Figure 6.1b illustrates that IntervalChaining becomes more group fair as

the number of arms increase. This is because many arms are chained together

and therefore, arms are chosen uniformly at random. Figure 6.2b illustrates this

random picking of arms as real regret and biased regret increases dramatically for

IntervalChaining.

As expected, Figure 6.1c illustrates that when the error mean µ is large, both

IntervalChaining and TopInterval choose fewer sensitive arms. This leads to a

high real regret as shown in Figure 6.2c. Following Kleinberg et al. [133], Figure 6.2c

also suggests that one cannot have both individual and group fairness in a scenario

with high mean error. The randomness in NaiveFair leads to a very high regret

for both perceived regret and real regret.

Figure 6.1d demonstrates the fairness property of proportionality. The percent-

age of sensitive arms pulled by GroupFairTopInterval matches the number of
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(a) Sensitive arm pulls (%) (b) Regret

Figure 6.3: Results of running contextual bandit algorithms on
the family income and expenditure dataset. Figure 6.3a shows the
percentage of pulls that were of sensitive arms. Figure 6.3b shows the
biased regret for each of the algorithms. Note that the “real” regret
like that shown in the synthetic experiments cannot be calculated.

sensitive arms. As shown in Figure 6.2d, the number of sensitive arms does not

affect the real regret of GroupFairTopInterval.

6.4.2 Experiments on Real-World Data

After exploring GroupFairTopInterval on synthetic data, we move on to using

both the Philippines family income and expenditure dataset on Kaggle7 and the

ProPublica COMPAS dataset.8 The family income dataset is from the Philippines

and when one looks at the gender and age breakdown in the family income dataset,

one can see that quite often female heads of households make more money than

males in the Philippines." or some variation. This is most likely due to the large

number of Filipino women who work out of the country. It is estimated that up to
7https://www.kaggle.com/grosvenpaul/family-income-and-expenditure
8https://www.kaggle.com/danofer/compass
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(a) Sensitive arm pulls (%) (b) Regret

Figure 6.4: Results on the COMPAS dataset. Figure 6.4a shows the
percentage of pulls that were of sensitive arms. Figure 6.4b shows the
biased regret for each of the algorithms. Note that the “real” regret
like that shown in the synthetic experiments cannot be calculated.

20% of the GDP of the Philippines is actually remittances from these overseas—

primarily female—workers.9 In fact, almost 60% of overseas workers are women

and 75% of these women are between the ages of 25 and 44.10 ProPublica found

that recidivism risk scores for African-Americans were generally higher than other

races.11

Experimental setup.

Given the skew of high income coming from female head of households in the family

income dataset, we treat the binary ‘Household Head Sex’ feature as the sensitive

attribute. To create arms, we then split up households based on ‘Household Head

Age’ bucketed into the following five groups: (8, 27], (27, 45], (45, 63], (63, 81],
9https://www.nationalgeographic.com/magazine/2018/12/filipino-workers-return-from-

overseas-philippines-celebrates/
10https://psa.gov.ph/content/2017-survey-overseas-filipinos-results-2017-survey-overseas-

filipinos
11https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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and (81, 99]. We therefore have 10 different arms (for example, two arms would be

Female head of household between 8 and 27, and Male head of household between

8 and 27).

Similarly, we treat African-American individuals from the COMPAS dataset as

the sensitive attribute. We create arms by splitting up households based on the

three age categories found in the data. We therefore have 6 different arms.

At each timestep t, we randomly select an individual from each arm. The context

vector is the remaining features where any nominal features are transformed into

integers. After an arm is pulled, a reward of the household income (for the family

income dataset) or violent decile score (for the COMPAS dataset) is returned. Note

that we use these datasets for illustrative purposes only.

Results.

We see the same behavior of arm pulls in the real world data. Figures 6.3a and 6.4a

show that after a period of exploration, the percentage of sensitive arms (male-

grouped arms) pulled gets very close to 50%, matching the proportion of sensitive-

grouped arms.

Figures 6.3b and 6.4b are perhaps more interesting. Since we cannot measure

the “real” regret without the bias we assumed from the sensitive-grouped arms,

we consider the gap between GroupFairTopInterval and TopInterval as the

price of fairness. The gap in regret is small compared to the increase in percentage

of sensitive arms pulled. However, the gap in regret for NaiveFair is large in

comparison. This suggests that explicitly learning a societal bias term will help in

biased settings with low price to perceived regret.
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6.5 Discussion and Conclusions

Our new definitions of reward (Equation 6.2) and regret (Equation 6.3) for the

MAB setting provide an opportunity to look at biased data in a new light. In many

cases, ground truths provided during learning are noisy with respect to sensitive

groups. Additionally, debiased ground truths may be very expensive to receive or

may take a long time to acquire. For instance, if looking at loans, true rewards of

repayment may take years to receive. Or, for example, in hiring—the true reward of

hiring an individual may take over a year to estimate, while the initial estimate may

be influenced by a hiring team’s unconscious bias over features such as ethnicity,

gender, or orientation. Our proposed algorithm, GroupFairTopInterval, learns

societal bias in the data while still being able to differentiate between individual

arms. Previous solutions relied on setting ad-hoc thresholds, requiring some form of

quota, or choosing groups uniformly at random. These solutions either lead to high

regret, or require a large amount of domain knowledge for the chosen application.

Indeed, our solution gets even closer to mitigating the social injustice bias found in

the three tiered view of the world from Chapter 1 than the previous two chapters.

It explicitly assumes disparate treatment of sensitive groups where there should be

equal treatment.

Our main contributions are:

• We provide a new definition of reward and regret which captures societal bias.

• We provide an algorithm that learns and corrects for that definition of societal

bias.
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• We empirically explore the effects different CMAB algorithms have in the

setting of societal bias.

This chapter provides an initial look at group fairness in the contextual multi-

armed bandit (MAB) setting. Future work could expand GroupFairTopInter-

val to enforce individual fairness within groups. Intersectional group fairness is

also important to look at in the MAB setting where more than one type of sensi-

tive attribute needs to be protected. Additionally, other group fairness definitions

such as Equalized Opportunity should be converted to the MAB setting [103]. An-

other interesting direction for future work is to mix ideas from the study of budget

constrained bandits [79, 226] with our fairness definitions. We have also assumed

individual arms have fixed group membership; generalizing to a setting where mem-

berships in protected groups may change at every timestep t would fit more real

world applications.
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Chapter 7: Transfer of Machine Learning Fairness

Across Domains

If our models are used in new or unexpected cases, do we know if they will make

fair predictions? Previously, researchers developed ways to debias a model for a

single problem domain. However, this is often not how models are trained and used

in practice. For example, labels and demographics (sensitive attributes) are often

hard to observe, resulting in auxiliary or synthetic data to be used for training,

and proxies of the sensitive attribute to be used for evaluation of fairness. A model

trained for one setting may be picked up and used in many others, particularly as

is common with pre-training and cloud APIs. Despite the pervasiveness of these

complexities, remarkably little work in the fairness literature has theoretically ex-

amined these issues. We frame all of these settings as domain adaptation problems:

how can we use what we have learned in a source domain to debias in a new target

domain, without directly debiasing on the target domain as if it is a completely new

problem? We offer new theoretical guarantees of improving fairness across domains,

and offer a modeling approach to transfer to data-sparse target domains. We give

empirical results validating the theory and showing that these modeling approaches

can improve fairness metrics with less data.
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7.1 Introduction

Much of machine learning research, and especially machine learning fairness, focuses

on optimizing a model for a single use case [2, 30]. However, the reality of machine

learning applications is far more chaotic. It is common for models to be used on

multiple tasks, frequently different in a myriad of ways from the dataset that they

were trained on, often coming at significant cost [200]. This is especially concerning

for machine learning fairness – we want our models to obey strict fairness properties,

but we may have far less data on how the models will actually be used. How do we

understand our fairness metrics in these more complex environments?

In traditional machine learning, domain adaptation techniques are used when the

distribution of training and validation data does not match the target distribution

that the model will ultimately be tested against. Therefore, in this work we ask:

if the model is trained to be “fair” on one dataset, will it be “fair” over a different

distribution of data? Instead of starting again with this new dataset, can we use

the knowledge gained during the original debiasing to more effectively debias in the

new space?

It turns out that this framing covers many important cases for machine learning

fairness. We will use, as a running example, the task of income prediction, where

some decisions will be made based on the person’s predicted income and we want

the model to perform “fairly” over a sensitive attribute such as gender. We primarily

follow the equality of opportunity [103] perspective where we are concerned with one

group (broken down by gender or race) having worse accuracy than another. In

this setting, there are a myriad of fairness issues that arise that we find domain

adaptation can shed light on:
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Lacking sensitive features for training: There may be few examples where

we know the sensitive attribute. In these cases, a proxy of the sensitive attribute

have been used [102], or researchers need very sample-efficient techniques [2, 30]. For

distant proxies, researchers have asked how well fairness transfers across attributes

[138]. Here the sensitive attribute differs in the source and target domains.

Data is not representative of application: Dataset augmentation, models

offered as an API, or models used in multiple unanticipated settings, are all in-

creasingly common design patterns. Even for machine learning fairness, researchers

often believe limited training data is a primary source of fairness issues [56] and will

employ dataset augmentation techniques to try to improve fairness [80]. How can

we best make use of auxiliary data during training and evaluation when it differs in

distribution from the real application?

Multiple tasks: In some cases having accurate labels for model training is

difficult and instead proxy tasks with more labeled data are used to train the model,

e.g., using pre-trained image or text models or using income brackets as a proxy for

defaulting on a loan. Again we ask: when does satisfying a fairness property on the

original task help satisfy that same property on the new task?

Each of these cases are common throughout machine learning but present chal-

lenges for fairness. In this work, we explore mapping domain adaptation principles

to machine learning fairness. In particular, we offer the following contributions:

1. Theoretical Bounds: We provide theoretical bounds on transferring equality

of opportunity and equality of odds metrics across domains. Perhaps more

importantly, we discuss insights gained from these bounds.
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2. Modeling for Fairness Transfer: We offer a general, theoretically-backed

modeling objective that enables transferring fairness across domains.

3. Empirical validation: We demonstrate when transferring machine learning

fairness works successfully, and when it does not, through both synthetic and

realistic experiments.

See Chapter 2 for related works related to this Chapter.

7.2 Problem Formulation

We begin with some notation to make precise the problem formulation. Build-

ing on our running example we have two domains: a source domain Z ∼ DS,

which is a feature distribution influenced by sensitive attribute AS ∈ AS (e.g.,

PrZ∼DS [Z|AS = male] 6= PrZ∼DS [Z|AS = female]), as well as a target domain

DT influenced by sensitive attribute AT ∈ AT (e.g., PrZ∼DT [Z|AT = black] 6=

PrZ∼DT [Z|AT = white]). In order for this to be a domain adaptation problem,

we assume PrZ∼DS [Z|AS] 6= PrZ∼DT [Z|AT ]. Note, this can be true even if DS = DT
but the distributions conditioned on AS and AT differ. We focus on binary clas-

sification tasks with label Y ∈ Y , e.g. income classification is shared over both

domains. For this task we can create a classifier by finding a hypothesis g : D → Y

from a hypothesis space H.

Let us assume that we can learn a “fair” classifier g for the source domain and

task. If we use a small amount of data from the target domain, will the fairness

from the source sensitive attribute AS transfer to the target domain and sensitive

attribute AT ? We can define the notion of a “fairness” distance – how far away
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the classifier is from perfectly fair – in a given domain S as ∆FairS . Within this

formulation we consider two definitions of fairness.

The first distance is equality of opportunity [103]. A classifier is said to be

fair under equality of opportunity if the false positive rates (FPR) over sensitive

attributes are equal. In other words if we have a binary sensitive attribute A, then

equality of opportunity requires that Pr(Ŷ = 1|A = 0, Y = 0) = Pr(Ŷ = 1|A =

1, Y = 0), where Ŷ gives the outcome of classifier g. Thus, how far away a classifier

g is from equal opportunity (or the fairness distance of equal opportunity) can be

defined as

∆EOpS(g) ,
∣∣∣EZ0

0∼DS00
[g(Z0

0)]− EZ0
1∼DS01

[g(Z0
1)]
∣∣∣ ,

where DSlα = PZ∼DS [Z|A = α, Y = l]. In our running example ∆EOpS(g), where AS

is gender, is the difference between the likelihood that a low-income man is predicted

to be high-income and the likelihood that a low-income woman is predicted to be

high-income. A symmetric definition and set of analysis can be made for false

negative rate (FNR).

The second definition of fairness which we consider is equalized odds [103]. A

classifier is said to be fair under equalized odds if both the FPR and FNR over the

sensitive attribute are equal: Similar to equal opportunity, we define the fairness

distance of equalized odds as:

∆EOS
(g) ,

∣∣∣EZ0
0∼DS00

[g(Z0
0)]− EZ0

1∼DS01
[g(Z0

1)]
∣∣∣

+
∣∣∣EZ1

0∼DS10
[1− g(Z1

0)]− EZ1
1∼DS11

[1− g(Z1
1)]
∣∣∣ .

Again using our running example, the distance of equalized odds in the source
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domain is given by the difference of expected FPRs between females and males (as

above), plus the difference of expected FNRs (high-income predicted to be low-

income) between females and males.

Given a classifier g that has a fairness guarantee in the source domain, the

fairness distance in the target domain should be bounded by the fairness distance

in the source domain:

∆FairT (g) ≤ ∆FairS(g) + ε (7.1)

The key question we hope to answer is: what is ε?

7.3 Bounds on Fairness in the Target Domain

To expand inequality (7.1) we need to start with some definitions. Given a hy-

pothesis space H and a true labeling function f(Z) : D → Y , we can define the

error of a hypothesis g ∈ H as εS(g, f) = EZ∼DS [|f(Z)− g(Z)|], the expectation of

disagreement between the hypothesis g and the true label f . We can then define

the ideal joint hypothesis that minimizes the combined error over both the source

and target domains as g∗ = arg ming∈H εS(g, f) + εT (g, f).

Following Ben-David et al. [24] we define the H-divergence between probability

distributions as

dH(D,D′) = 2 sup
g∈H
|PrD[I(g)]− PrD′ [I(g)]| , (7.2)

where I(g) is the set for which g ∈ H is the characteristic function (Z ∈ I(g) ⇔

g(Z) = 1). We can compute an approximation d̂H(D,D′) by finding a hypothesis

h that finds the largest difference between the samples from D and D′ [23]. This
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divergence can be used to look at the differences in distributions, which is important

when moving from a source domain to a target domain.

Additionally, following Ben-David et al. [24], we define the symmetric difference

hypothesis space H∆H as the set of hypotheses

g ∈ H∆H ⇐⇒ g(Z) = h(Z)⊕ h′(Z) for some h, h′ ∈ H, (7.3)

where ⊕ is the XOR function. The symmetric difference hypothesis space is used to

find disagreements between a potential classifier g and a true labeling function f .

Theorem 7.1. LetH be a hypothesis space of VC dimension d. If US0
0
, US0

1
, UT 1

0
, UT 0

1

are samples of size m′, each drawn from DS0
0
, DS0

1
, DT 0

0
, and DT 0

1
respectively, then

for any δ ∈ (0, 1), with probability at least 1 − δ (over the choice of samples), for

every g ∈ H (where H is a symmetric hypothesis space) the distance from equal

opportunity in the target space is bounded by

∆EOpT (g) ≤ ∆EOpS(g) +
1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+ 8

√
2d log(2m′) + log(2

δ
)

m′
+ λ0

0 + λ0
1,

where λlα = εSlα(g∗, f) + εT lα(g∗, f).

Using both the definition of H-divergence and symmetric difference hypothe-

sis space, Theorem 7.1 provides a VC-dimension bound on the equal opportunity

distance in the target domain given the equal opportunity distance in the source

domain. Due to space limitations, full proofs for all theorems can be found in

Appendix D.2.
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difference between the samples from D and D0 [2]. This divergence can be used to look at the128

differences in distributions, which is important when moving from a source domain to a target129

domain.130

Additionally, we defined the symmetric difference hypothesis space H�H as the set of hypotheses131

g 2 H�H () g(Z) = h(Z)� h0(Z) for some h, h0 2 H, (3)

where� is the XOR function. The symmetric difference hypothesis space is used to find disagreements132

between classifiers, or disagreements between a potential classifier g and a true labeling function f .133

Theorem 1. Let H be a hypothesis space of VC dimension d. If US0
0
, US0

1
, UT 1

0
, UT 0

1
are samples134

of size m0, each drawn from DS0
0
, DS0

1
, DT 0

0
, and DT 0

1
respectively, then for any � 2 (0, 1), with135

probability at least 1 � � (over the choice of samples), for every g 2 H (where H is a symmetric136

hypothesis space) the distance from equal opportunity in the target space is bounded by137

�EOpT
(g)  �EOpS

(g) +
1

2
d̂H�H(UT 0

0
, US0

0
) +

1

2
d̂H�H(UT 0

1
, US0

1
)

+ 8

s
2d log(2m0) + log( 2

� )

m0 + �0
0 + �0

1,

where �l
↵ = ✏Sl

↵
(g⇤, f) + ✏T l

↵
(g⇤, f).138

Using both the definition of H-divergence and symmetric difference hypothesis space, Theorem 1139

provides a VC-dimension bound on the equal opportunity distance in the target domain given the140

equal opportunity distance in the source domain. Due to space limitations, full proofs for all theorems141

can be found in Appendix B.142
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Figure 1: Both the source and target distributions can be split
into four quadrants: 1) negative minority 2) negative majority
3) positive minority and 4) positive majority.

This theorem provides insights on143

when domain adaptation for fairness144

can be used. Firstly the d̂ terms in the145

bound suggest that 1) the source and146

target distributions of negatively la-147

beled items that have a sensitive at-148

tribute label of 0 should be close, and149

2) the source and target distributions150

of the negatively labeled items that151

have a sensitive attribute label of 1152

should be close. In Figure 1 the red153

quadrants should be close to the red quadrants while the orange quadrants should be close to the154

orange quadrants across domains. In traditional domain adaptation, ignoring fairness, the entire155

domains should be close (the entire circle), which means that if there are few minority data-points156

then the distance of the minority spaces will be ignored. The fairness bound instead puts equal157

emphasis on both the majority and minority.158

Secondly, the � terms become small when the hypothesis space contains a function g⇤ that has low159

error on both the source and target space on the two negative segments in each domain (the red and160

orange spaces in Figure 1). Since we are looking at equal opportunity, the function g⇤ only needs to161

have low error on the negative space for both the majority and minority. Therefore, we can use the162

trivial function g⇤(Z) = 0 and the � terms go to 0.163

Last, there is a term that depends on the VC-dimension d. Since bounds with VC-dimensions explode164

when looking at models like neural networks, we also provide bounds using Rademacher Complexity165

in Appendix A.166

Equalized odds, while similar to equal opportunity, is a stricter fairness constraint. Theorem 2 provides167

a VC-dimension bound on the difference of equal odds in the target domain given the source domain.168

The proof of this theorem follows a similar logic to the proof sketch given for Theorem 1.169

Theorem 2. Let H be a hypothesis space of VC dimension d. If USl
↵

are samples of size m0, each170

drawn from DSl
↵

for all ↵ 2 A = {0, 1} and l 2 Y = {0, 1}, then for any � 2 (0, 1), with probability171

at least 1 � � (over the choice of samples), for every g 2 H (where H is a symmetric hypothesis172

space) the distance from equalized odds in the target space is bounded by173

4

Figure 7.1: Both the source and target distributions can be split
into four quadrants: 1) negative minority 2) negative majority 3)

positive minority and 4) positive majority.

This theorem provides insights on when domain adaptation for fairness can be

used. Firstly the d̂ terms in the bound suggest that 1) the source and target distribu-

tions of negatively labeled items that have a sensitive attribute label of 0 should be

close, and 2) the source and target distributions of the negatively labeled items that

have a sensitive attribute label of 1 should be close. In Figure 7.1 the red quadrants

should be close to the red quadrants while the orange quadrants should be close to

the orange quadrants across domains. In traditional domain adaptation, ignoring

fairness, the entire domains should be close (the entire circle), which means that if

there are few minority data-points then the distance of the minority spaces will be

ignored. The fairness bound instead puts equal emphasis on both the majority and

minority.

Secondly, the λ terms become small when the hypothesis space contains a func-

tion g∗ that has low error on both the source and target space on the two negative

segments in each domain (the red and orange spaces in Figure 7.1). Since we are

looking at equal opportunity, the function g∗ only needs to have low error on the

negative space for both the majority and minority. Therefore, we can use the trivial

function g∗(Z) = 0 and the λ terms go to 0.
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Lastly, Theorem 7.1 depends on the VC-dimension d. Since bounds with VC-

dimensions explode with models like neural networks, we also provide bounds using

Rademacher Complexity in Appendix D.1.

Equalized odds, while similar to equal opportunity, is a stricter fairness con-

straint. Theorem 7.2 provides a VC-dimension bound on the difference of equal

odds in the target domain given the source domain.

Theorem 7.2. Let H be a hypothesis space of VC dimension d. If USlα are samples

of size m′, each drawn from DSlα for all α ∈ A = {0, 1} and l ∈ Y = {0, 1}, then for

any δ ∈ (0, 1), with probability at least 1− δ (over the choice of samples), for every

g ∈ H (where H is a symmetric hypothesis space) the distance from equalized odds

in the target space is bounded by

∆EOT
(g) ≤ ∆EOS

(g) +
1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+
1

2
d̂H∆H(UT 1

0
,US1

0
) +

1

2
d̂H∆H(UT 1

1
,US1

1
) + 16

√
2d log(2m′) + log(2

δ )

m′
+ λEO ,

where λEO = λ0
0 + λ0

1 + λ1
0 + λ1

1, and λlα = εSlα(g∗, f) + εT lα(g∗, f).

The d̂H∆H terms suggest, that in order for equalized odds to transfer successfully

then, 1) the source and target distributions of negatively labeled items on both sen-

sitive attribute labels 0 and 1 should be close, 2) the source and target distributions

of the positively labeled items on both sensitive attribute labels 0 and 1 should be

close. In other words, all four quadrants of the source should individually be close

to the respective four quadrants of the target in Figure 7.1.

Additionally, the λ term shows that there should be a hypothesis that performs

well over all of these subspaces. This implication is intuitive given that equalized

105



Input Shared bottom

R
ep

re
se

nt
at

io
n

Task head

Fairness head

Transfer head

Figure 5: At a high level, our general framework combines a
primary training objective, a fairness objective, and a transfer
objective to improve fairness goals in a target domain. Table
1 provides mathematical details for different configurations.

10

Figure 7.2: At a high level, our general framework combines a pri-
mary training objective, a fairness objective, and a transfer objective
to improve fairness goals in a target domain. Table 7.1 provides

mathematical details for different configurations.

odds, by definition, wants a classifier to perform well in both the negative and

positive space across both groups.

7.4 Modeling to Transfer Fairness

With this theoretical understanding, how should we change our training? As mo-

tivated previously, we consider the case where we have a small amount of labelled

data (both labels Y and sensitive attributes A) in the target domain and a large

amount of labelled data in the source domain.

As shown in the previous section, equality of opportunity will transfer if the

distance between the respective distributions of source and target are close together

as visually portrayed in Figure 7.1. Ganin et al. [92] proved that traditional domain

adaptation can be framed as minimizing the distance between source and target with

adversarial training. [30, 82, 146, 156] similarly have applied adversarial training to

achieve fairness goals, and Madras et al. [162] proved that equality of odds can be

optimized with adversarial training similar to domain adaptation.
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Loss Term Theorem 1 Adversarial (Eq. 7.4) Regularization (Eq. 7.5)
Fairness head ∆EOpS (g) λFairLA

(
a(h(Z0)), A

)
λFairLMMD

(
a(h(Z0)), A

)

Transfer head d̂H∆H(UT 0
0
,US0

0
) λDALd

(
d(h(Z0

0 )), d
)

λDALMMD

(
d(h(Z0)), d

)
d̂H∆H(UT 0

1
,US0

1
) λDALd

(
d(h(Z0

1 )), d
)

Table 7.1: Relationship between terms in Theorem 7.1 and Loss
functions

We build on this intuition to design a learning objective for transferring equality

of opportunity to a target domain. Adversarial training conceptually enables min-

imizing a d̂ term from Theorem 7.1; and ∆FairS can be optimized using [30, 162]

or one of the other myriad of traditional fairness learning objectives. As such, we

begin with the following loss:

min


 ∑

Z∼(DS∪DT )

LY (g(h(Z)), f(Z)) +
∑

(A,Z0)∼DS0

λFairLA
(
a(h(Z0)), A

)

+
∑

(d,Z0
0 )∼

(
D
S00
∪D

T0
0

)λDALd
(
d(h(Z0

0 )), d
)

+
∑

(d,Z0
1 )∼

(
D
S01
∪D

T0
1

)λDALd
(
d(h(Z0

1 )), d
)


 ,

(7.4)

where LY (g(h(Z)), f(Z)) is the loss function training g(h(Z)) over hidden repre-

sentation h(Z) to predict the task label f(Z). To optimize ∆FairS , a(h(Z0)) tries to

predict the sensitive attribute A from the source and LA (a(h(Z0)), A) provides an

adversarial loss that includes a negated gradient on h following [30]. For transfer,

we minimize d̂ terms by including another adversarial loss Ld (d(h(Zα
l )), d), where

d(h(Zα
l )) tries to predict whether a sample comes from the source or target domain.

Each of these loss components maps to terms in Theorem 7.1 as laid out in Table 7.1.

Recently, Zhang et al. [234] used adversarial training on a one dimensional rep-

resentation of the data (effectively the model’s prediction). From this perspective,
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we can use a wide variety of losses over predictions to replace adversarial losses,

such as [31, 232] minimizing the correlation between group and the one dimensional

representation of the data. Like previous work, we find that these approaches to

be more stable and still effective in comparison to adversarial training, despite not

being provably optimal. In our experiments we use a MMD loss [40, 99, 154] over

predictions:

min


 ∑

Z∈DS∪DT

LY (f(Z), g(Z)) +
∑

(A,Z0)∼DS0

λFairLMMD

(
a(h(Z0)), A

)

+
∑

(d,Z0)∼(DS0∪DT0)

λDALMMD

(
d(h(Z0)), d

)

 , (7.5)

where λFairLMMD (a(h(Z0)), A) is the MMD regularization over the sensitive at-

tributes in the source domain, λDALMMD (d(h(Z0)), d) is the MMD regularization

over source/target membership. Again Table 7.1 maps the terms in Eq. 7.5 to those

in Theorem 7.1.

Care must be taken when performing domain adaptation with regards to fair-

ness. Either multiple transfer heads should be included in the loss for all necessary

quadrants (See Figure 7.1 and Eq. 7.4), or balanced data – equally representing all

necessary quadrants – should be used as in [162] and Eq. 7.5. Experiments in this

chapter use the MMD regularization as in Eq. 7.5 and balanced data is used for

both the fairness head as well as the transfer heads.
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7.5 Experiments

To better understand the theoretical results presented above, we now present both

synthetic and realistic experiments exploring tightness of our theoretical bound as

well as the ability to improve the transfer of fairness across domains during model

training.

7.5.1 Synthetic Examples

(a) Source (b) Target -1 (c) Target 0 (d) Target 1

(e) Fairness

Figure 7.3: Synthetic examples showing how distribution difference
of P (Z|Y,A = 0) in the target domain affects theoretical and empiri-
cal equality of opportunity (best viewed in color). In the title of each
plot we give the equal opportunity distance ∆EOpT (g) in the target

domain.

We show how well the theoretical bounds align with actual transfer of fairness.

A synthetic dataset is used to examine how the distribution distance terms

d̂H∆H(UTY=0
A=0

,USY=0
A=0

) and d̂H∆H(UTY=0
A=1

,USY=0
A=1

) in Eq. (7.1) affect the fairness distance

of equal opportunity ∆EOpT (g).

In this synthetic example, we generate data Z ∈ R2 using Gaussian distributions.

As we can see in Figure 7.3a, the source domain consists of four Gaussians, with
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Y = 1 largely lying above Y = 0 and A = 1 lying to the left of A = 0; A = 1

is the majority of the data (σ = 0.5 with 900 samples). For A = 0, the data is

generated using σ = 0.3 with 100 samples. The target domain, like the source

domain, consists of majority data with A = 1 and the data from A = 1 is generated

from the same distribution in both domains: UTY=0
A=1
∼ N ([−1,−1], σ) and UTY=1

A=1
∼

N ([−1, 1], σ). However, in order to understand the transfer of fairness, we shift

the distributions of UTY=0
A=0
∼ N ([1, c], σ) and UTY=1

A=0
∼ N ([1,−c], σ) in the target

domain (c = −1, 0, 1 for 7.3b, 7.3c and 7.3d, respectively). By varying the overlap

between these distributions, and their alignment with the source data, we are able to

understand the relationship between the d̂H∆H terms above and the fairness distance

of equal opportunity ∆EOpT (g). For each setting, we train linear classifiers on the

source domain and examine the performance in the target domain.

Qualitative Analysis We see in Fig. 7.3b that when the distribution P (Z|Y =

0, A = 0) across domains is close, thus a smaller d̂H∆H(UT 0
0
,US0

0
), there is better

transfer of fairness the source to the target domain, seen in the smaller ∆EOpT (g).

As the distribution distance gets larger, the ∆EOpT (g) also increases. Consider the

worst case of a sign flip for the minority A = 0, as shown in Fig. 7.3d: the FPR for

the majority A = 1 is close to 0%, while the FPR for the minority A = 0 is close to

100%.

Quantitative Analysis In Figure 7.3e, we compare the derived bound of ∆EOpT (g)

(Eq. 7.1) with its empirical estimate as we vary c1. As shown in Figure 7.3e, the

theoretical bound on the equal opportunity distance is close to the observed equal

1As in [23], d̂H∆H(UT 0
0
,US0

0
) is estimated by a linear classifier trained on samples UT 0

0
,US0

0
. The

plot omits the VC term for simplicity, which is relatively small when sample size m′ is large and
VC-dimension d is low.
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(a) Effect of fair-
ness head: Improving
∆EOpgender

with vary-
ing number of gender-
balanced samples.

(b) Some natural
transfer occurring
without explicit
transfer: ∆EOprace

is
improved with gender

data.

(c) Effect of trans-
fer head: better trans-
fer from gender (1000
samples) to race (50

samples).

(d) Accuracy graph
for transferring from
gender (1000 samples)
to race (50 samples).

Figure 7.4: Effect of fairness/transfer head on the UCI data. The
shaded areas show the standard error of the mean across trials. Note

the head weight (x-axis) starts from 0.1.

opportunity distance when the distance between the negative minority space across

domains, d̂(UT 0
0
,US0

0
), is small. This suggests, minimizing the domain distance terms

in Eq. 7.1 could lead to a better equal opportunity transfer.

7.5.2 Real Data

We now explore how and when our proposed modeling approach in Section 7.4

facilitates the transfer of fairness from the source to the target domain on two

real-world datasets. Note, we use these datasets exclusively for understanding our

theory and model, and not as a comment on when or if the proposed tasks and their

application are appropriate, as in [2].

Dataset 1: The UCI Adult2 dataset contains census information of over 40,000

adults from the 1994 Census, with the task of determining income brackets of >

$50, 000 or ≤$50, 000. We focus on two sensitive attributes: binary valued gender,
2https://archive.ics.uci.edu/ml/datasets/adult

111



and race, converted to binary values [‘white’, ‘non-white’] as done by Madras et al.

[162].

Dataset 2: As in [2] we use ProPublica’s COMPAS recidivism data3 to try to

predict recidivism for over 10,000 defendants based on age, gender, demographics,

prior crime count, etc. We again focus on two sensitive attributes: gender and race

(binarized to [‘white’, ‘non-white’]).

Experiment Setup For both datasets, cross-validation is used to choose the

hyper-parameters. Comparable baseline accuracy (around 84% for Dataset 1 and

80% for Dataset 2, see appendix D.4 for more details) is achieved with 64 embed-

ding dimension for categorical features, single hidden layer with 256 shared hidden

units, 512 batch size, 0.1 learning rate with Adagrad optimizer, and 10, 000 epochs

for training. We perform 30 runs for each set of experiments and average over the

results.

Sparsity Issues and Natural Transfer We examine the effectiveness of just the

fairness heads in the proposed model. The amount of gender-balanced data created

for the fairness head is varied to observe how applying the fairness head affects the

FPR difference.

We examine how this procedure effects the FPR difference across genders (i.e.,

the FPR difference between “Female” and “Male” examples). Figure 7.4a shows that

the fairness head works as expected: with sufficient data and a large enough weight,

the fairness head is able to improve the FPR gap across genders. Further, we find
3https://github.com/propublica/compas-analysis
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that with very few examples on which to apply the fairness head, the gender FPR

gap does not close. This aligns with previous results found in [30, 31, 162].

Second, we examine how running the fairness head on gender affects the FPR gap

across race. As shown in Figure 7.4b, there is a natural transfer of equal opportunity

from gender to race – applying a fairness loss with respect to gender also improves

the fairness of the model with respect to race. This highlights that sometimes there

is a natural transfer of equal opportunity, presenting general value in improving the

FPR gap with respect to gender, and no explicit transfer optimization is needed.

(Similar to the transfer questions posed previously by Madras et al. [162] and Gupta

et al. [102]).

Effectiveness of Transfer Head We now explore how adding the transfer head

can further improve equality of opportunity in the target domain. We compare four

different model arrangements: (1) Source Only: We only add a fairness head for

the source domain; (2) Target Only: We only add a fairness head for the target

domain; (3) Source+Target: We add two fairness heads, one for source and for

target; (4) Transfer: We include three heads – both source and target fairness

heads as well as the transfer head for equality of opportunity.

Experiment setting: As in typical transfer learning setting, we will focus on the

case where we observe a large number of samples in the source domain (e.g., 1000 for

each race “white” and “non-white”), but a smaller sample size in the target domain

(e.g., 100 for each gender “male” and “female”), and the same for gender to race. We

explore equality of opportunity with respect to FPR in the target domain, as we

vary the weight on the fairness and transfer heads.
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Results: Figure 7.4c shows that including the transfer head results in a better

equal opportunity transfer, compared to the same setting without transfer (Fig-

ure 7.4b). Table 7.2 summarizes the full results on both datasets. We can see that

including both the fairness heads and the transfer head consistently gives the best

improvement in equal opportunity (FPR difference) in almost all cases.

Effect of Target Sample Size Last, we consider how the amount of data from

the target domain affects our ability to improve equal opportunity there, as sample

efficiency is a core challenge.

Experiment setting: We follow a similar experimental procedure as before with

two modifications. First, we vary the number of samples we observe for each sensitive

group in the target domain to be in {50, 100, 500, 1000}. We examine the efficacy of

the four approaches depending on the amount of data available for debiasing in the

target domain. Second, this analysis is performed for both transferring from race

(source) to gender (target), as well as from gender (source) to race (target).

Results: Table 7.2 summarizes the results. Applying the fairness and transfer

heads to the large amount of source data closes the FPR gap in the target do-

main. Increasing the amount of data in the target domain significantly helps the

performance of the “Target Only” and the “Source+Target” models. This is intuitive

since directly debiasing in the target domain is feasible with sufficient data. With

sufficient data, the results converge to be approximately equivalent to the transfer

model.

These experiments show that the transfer model is effective in decreasing the

FPR gap in the target domain and is more sample efficient than previous methods.
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Smallest FPR difference achieved on Target (FPR-diff ± std. dev)
Source to
Target

#Target
Samples Source only Target only Source + Target

With Transfer
Head

Dataset 1

Gender
to

Race

50 0.038± 0.013 0.033± 0.019 0.032± 0.020 0.020± 0.016
100 0.038± 0.013 0.038± 0.021 0.044± 0.024 0.040± 0.024
500 0.038± 0.013 0.053± 0.010 0.043± 0.017 0.025± 0.018
1000 0.038± 0.013 0.027± 0.018 0.027± 0.019 0.031± 0.021

Race
to

Gender

50 0.061± 0.054 0.035± 0.015 0.020± 0.026 0.008± 0.009
100 0.061± 0.054 0.028± 0.014 0.021± 0.015 0.009± 0.011
500 0.061± 0.054 0.028± 0.013 0.019± 0.013 0.014± 0.011
1000 0.061± 0.054 0.021± 0.012 0.015± 0.014 0.020± 0.014

Dataset 2

Gender
to

Race

50 0.027± 0.008 0.041± 0.006 0.009± 0.004 0.001± 0.001
100 0.027± 0.008 0.036± 0.007 0.005± 0.005 0.003± 0.001
500 0.027± 0.008 0.038± 0.008 0.003± 0.002 0.001± 0.001
1000 0.027± 0.008 0.021± 0.005 0.006± 0.005 0.002± 0.001

Race
to

Gender

50 0.040± 0.004 0.070± 0.005 0.035± 0.004 0.019± 0.002
100 0.040± 0.004 0.055± 0.007 0.034± 0.003 0.017± 0.002
500 0.040± 0.004 0.042± 0.008 0.027± 0.004 0.019± 0.002
1000 0.040± 0.004 0.034± 0.011 0.028± 0.004 0.018± 0.002

Table 7.2: Comparison between the proposed model and the base-
lines. The numbers in bold indicate the smallest FPR difference
achieved in the target domain w.r.t. varying number of target sam-

ples.
7.6 Conclusion

In this work we provide the first theoretical examination of transfer of machine learn-

ing fairness across domains. We adopt a general formulation of domain adaptation

for fairness that covers a wide variety of fairness challenges, from proxies of sensitive

attributes, to applying models in unanticipated settings. Within this general for-

mulation, we have provided theoretical bounds on the transfer of fairness for equal

opportunity and equalized odds using both VC-dimension and Rademacher Com-

plexity. Based on this theory, we developed a new modeling approach to transfer

fairness to a given target domain. In experiments we validate our theoretical results

and demonstrate that our modeling approach is more sample efficient in improving

fairness metrics in a target domain.

This Chapter takes a look at mitigating measurement bias found in the three

level view of the world from Chapter 1. A combination of social injustice bias
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and measurement bias can lead to bias augmentation in models. The balanced

learning method developed here helps deal with unbalanced data by focusing on

equal opportunity.

7.7 Authors and Publication

This chapter was written by Candice Schumann (while working at Google), Xuezhi

Wang, Alex Beutel, Jilin Chen, Hai Qian, Ed H. Chi. It is under submission to

the International Joint Conference on Artificial Intelligence 2020. It was presented

at the AI for Social Good Workshop at NeurIPS 2019, and the Ph.D. in Research

Conference at Google 2019.
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Chapter 8: Research Extensions

8.1 A Multi-Stage Human-Machine Framework for

Mental Health Risk Assessment

Machine learning is beginning to have a large impact on the ways that people think

about addressing problems in healthcare [159, 235] and mental health [7, 149, inter

alia], just as it is having large impacts everywhere else. The ability to obtain data

about people’s day to day thoughts and experiences via social media—unobtrusive

windows into what Coppersmith et al. [67] call the “clinical whitespace” between clin-

ician encounters, in the form of social media posts, wearables data, etc.—is looking

to be thoroughly disruptive, and the ability to engage with people via natural spo-

ken interactions on all manner of electronic devices creates potential for even more

Figure 8.1: We apply a multi-armed bandit framework in men-
tal health to identify at-risk individuals, progressing from automated
analysis of social media posts, to risk evaluation by non-experts, to
expert evaluation. The goal is to optimize the number of people at
high risk who go on to receive detailed clinical attention, given limited

resources.
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windows into people’s everyday thoughts and experiences, enhancing the ability to

detect new problems earlier and monitor patients under treatment more effectively

and at lower cost.

It is becoming clear that traditional approaches to these problems do not suffice.

Franklin et al. [88], for example, conclude from a large meta-analysis that there

has been no improvement in predictive ability for suicidal thoughts and behaviors

over the last 50 years, and argue their findings “suggest the need for a shift in focus

from risk factors to machine learning-based risk algorithms” (their emphasis). The

technological community is increasingly aware of this problem space and enthusiastic

about contributing [e.g. 155, 167, 236], with significant progress in ethical data

collection [67, 176] and effective use of those data in predictive models [67, 71, 117,

121, 168].

In this work we introduce a concrete technological proposal for addressing this

problem, involving a basic shift in the way we think about machine learning in

mental health: the dominant paradigm of individual-level classification is not an end

in itself; rather it provides components in a population-based framework involving

both machines and humans, where limited resources give rise to a critical need for

effective and appropriate ways to set priorities.

At the core of our technical approach is the recognition that the multi-armed

bandit problem in machine learning is a good fit for the real-world scenario created

by scaling up the application of technology for detection and monitoring in mental

health: what is the best way to allocate limited resources among competing choices,

given only limited information? We adopt a tiered multi-armed bandit formulation

originally introduced with application to hiring or admissions decisions [198], where
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a succession of stages is applied to a population of applicants, each stage successively

more expensive but also more informative, in order to optimize the value of the set

of applicants who are chosen (See Figure 8.1).

To briefly summarize the model, we cast tiered decision making as a combina-

torial pure exploration (CPE) problem in the stochastic multi-armed bandit set-

ting [58]. Here, arms represents individuals with latent true risk profiles. The end

goal is to select a subset for clinical interaction, after narrowing the pool over suc-

cessive stages or tiers. In our current model we have three stages of assessment: (1)

automated risk classification using an NLP model, (2) non-expert risk assessment,

and (3) expert risk assessment.1

Our key insight is that, by replacing a population of potential hires with a

population of people with potential mental health problems, and by replacing “value”

with “risk”, this tiered framework maps directly to a population-level formulation

of the assessment problem. Using real data and human annotation, our simulations

demonstrate the value of using this framework to combine (cheap, less accurate)

automation with (more expensive, more accurate) human evaluation of social media

in order to identify individuals within a population who are at high risk for a suicide

attempt.

Our MAB approach outperforms all comparable baselines. On average, our

MAB approach more than doubles the population sensitivity of the expert baseline

for the same resource amount. These results are only a first step on the way to
1Although we approximate an intermediate stage of non-experts using crowdsourced judgments,

the idea of true crowdsourcing, in the sense of Mechanical Turk and similar platforms, need not,
and should not, be considered a part of the proposal. Rather, we use crowdsourcing to approximate
an intermediate level of cost and expertise. Such intermediate levels exist in the real world, e.g. a
social work trainee would have less expertise in suicidality assessment than than a trained crisis-line
staffer or a specialist clinical psychologist.
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practical deployment. To get the rest of the way there, further theoretical research

and experimentation are required in order to expand the evidence base for this

approach. Equally important, for this and any other proposal, careful consideration

of the balance between privacy and prevention must continue and, crucially, that

conversation needs to integrate the voices of (at least) technologists, in-the-trenches

clinicians, policy makers, and those with lived experience of the conditions we are

trying to help address.

8.1.1 Authors and Publication

This section was joint work by Samuel Dooley, Candice Schumann, Han-Chin Shing,

John P. Dickerson, and Philip Resnik. The full version of the paper can be found

in Appendix E. A full version of the paper is in submission to the 2020 Knowledge

Discovery in Databases conference in the Applied Data Science Track.

8.2 Measuring Non-Expert Comprehension of Ma-

chine Learning Fairness Metrics

As mentioned in previous chapters there are multiple metrics and approaches to al-

gorithmic fairness [32, 59, 87]. Indeed there are many camps in the machine learning

fairness community and many definitions of machine learning fairness do not fit well

within pre-existing legal and moral frameworks. The rapid expansion of this field

makes it difficult for professions to keep up, let alone the general public. It is there-

fore extremely important that non-experts can understand various mathematical

definitions of fairness sufficiently to provide opinions.
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In this joint work we take a step toward addressing this issue by studying peoples’

comprehension and perceptions of three definitions of ML fairness: demographic

parity, equal opportunity, and equalized odds [103]. Specifically, we address the

following research questions:

RQ1 When provided with an explanation intended for a non-technical audience, do

non-experts comprehend each definition and its implications?

RQ2 Do demographics play a role in comprehension?

RQ3 How are comprehension and sentiment related?

RQ4 How do the different definitions compare in terms of comprehension?

We developed two online surveys to address these research questions. We pre-

sented participants with a simplified decision-making scenario and a accompanied

fairness rule expressed in the scenario’s context. We asked questions related to the

participants’ comprehension of and sentiment toward this rule. Tallying the num-

ber of correct responses to the comprehension questions gives us a comprehension

score for each participant. In Study-1, we found that this comprehension score is a

consistent and reliable indicator of understanding demographic parity.

Then, in Study-2, we used a similar approach to compare comprehension among

all three definitions of interest. We find that 1) education is a significant predictor

of rule understanding, 2) the counterintuitive definition of Equal Opportunity with

False Negative Rate was significantly harder to understand than other definitions,

and 3) participants with low comprehension scores tended to express less negative

sentiment toward the fairness rule.
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8.2.1 Authors and Publication

This section was joint work by Debjani Saha, Candice Schumann, Duncan C. McEl-

fresh, John P. Dickerson, Michelle L. Mazurek, and Michael Carl Tschantz. The full

version of the paper can be found in Appendix F. An inital abstract of this work

was published in the 2020 Artificial Intelligence, Ethics, and Society conference. A

full version of the paper is in submission to the 2020 International Conference on

Machine Learning.

8.3 Student Evaluation

Projects such as the Diverse Cohort Selection Problem (Chapter 4), and Tiered Hir-

ing (Chapter 5) require an underlying true utility for an applicant. This is extremely

difficult to estimate since the concept of success is inherently subjective and could

encompass a variety of factors. Additionally, what looks like success for one person

is not necessarily the same for another. In past projects we have relied on just using

admit vs. reject decisions as a proxy for student success. This seems insufficient

and unsatisfactory since admittance to a graduate program does not necessarily im-

ply future success in the program. Additionally, past admission decisions may have

incorporated implicit biases of the graduate admissions committee. After working

with the Department of Computer Science and the Graduate School we therefore

decided to add an additional question to the graduate review process. Every year

the department requires students and advisors to fill out a review of the past years

work. A new feature allows advisors to score their student as “Outstanding”, “Ex-

ceeds Expectations”, “Meets Expectations”, “Below Expectations”, “Unsatisfactory”,
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and “Inadequate opportunity to observe”. These new scores allow for a more detailed

view of “success” and allows us to build better models of student utility. Note that

this is still a proxy measurement of success which can still include implicit biases

of advisors. This multi-year data collection project will provide more insight into

the admissions processes and will allow for better evaluations of current and future

algorithms.
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Chapter 9: Future Work (or things I wish I had

time to do)

9.1 Group Fair Bandit with switching sensitive at-

tributes

In Chapter 6 I introduce at a contextual multi-armed bandit algorithm which learns

a societal bias term for sensitive groups. This algorithm assumes that the arms are

partitioned into groups (in the binary case n arms are partitioned into groups P1

and P2 where P1 ∪ P2 = [n] and P1 ∩ P2 = ∅ and P2 having some societal bias

included in the reward when an arm is pulled). This is not necessarily realistic as

in many real world uses of multi-armed bandits do not maintain sensitive attributes

over time. Instead at time t the arms could be partitioned into P1,t and P2,t and at

tie t+ 1 the arms could be partitioned into P1,t+1 and P2,t+1 where P1,t 6= P1,t+1 and

P2,t 6= P2,t+1. An adaptable algorithm is needed for this situation.

9.2 Group Fair outcomes in Cohort Selections

In both Chapter 4 and Chapter 5 I look at a selecting a cohort of arms from a large

pool of arms using pure exploration multi-armed bandit algorithms. In Chapter 6 I

look at a contextual multi-armed bandit that takes societal bias into account when
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pulling arms. The clear next step in this work is to introduce fairness into cohort

selections. This could either done by either introducing another societal bias term

into the arm pulling process or by using an adjusted form of equal opportunity. Since

we are now dealing with a cohort or yes/no decisions a false positive (or negative)

rate can be equalized across groups.

9.3 Robust and Adverse Cohort Selection

The following two problems share the additional problem that arms selected for

the final cohort may not actually appear in the final cohort. The Multi-Armed

Bandit settings proposed in the diverse cohort selection problem (Chapter 4) and a

multi-armed bandit approach to tiered interviewing (Chapter 5) both assume that

all applicants selected will accept the offers and matriculate into the university or

join the firm.

9.3.1 Matriculation

The matriculation problem follows a problem found currently in graduate and un-

dergraduate admissions processes. Universities in the United States follow a similar

timeline of accepting applications, reviewing applications, and sending admission

decisions. When admissions decisions are sent out there is no guarantee of an appli-

cant matriculating into the university. This is because an applicant will generally

apply to more than one university and could get more than one acceptance. Let us

assume that each university can only send out K acceptances for a given admissions
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process. Can we produce a Multi-Armed Bandit algorithm that selects K appli-

cants while maximizing utility gained from matriculated students? In other words,

we want an algorithm that returns

M∗ = arg max
M⊂A||M |=K

∑

a∈M

m(a)u(a) (9.1)

where m(a) returns 1 if an applicant matriculates into the program and 0 otherwise,

and u(a) ∈ [0, 1] is the true utility of an applicant.

A matriculation robust algorithm is needed to deal with this real world problem.

Extending Chapter 5 to this setting is the step. This could be done by introducing

probability of acceptance into the utility calculation.

9.3.2 Dueling Bandits

Moving away from university admissions and toward hiring, we move toward a more

dynamic system where decisions are made over time. In this setting a company

sees applicants arrive and leave over time. Good candidates may have a higher

probability of leaving quickly due to other companies sending out offers. I would like

to model this problem as a duling bandit problem with more than one agent making

decisions over time. Each agent (company) has a different true utility function for

applicants. There may, however, be some correlation between utility functions for

each agent. My work so far in the diverse cohort selection problem (Chapter 4) and

tiered interviewing (Chapter 5) use pure exploration mutli-armed bandit algorithms.

In those situations we do not look at regret, instead we only care about the end

cohort. In this problem, we move away from pure exploration and towards an
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exploration vs exploitation problem. We still want to maximize the overall utility

of a cohort however, that cohort is selected over time.

9.4 Learning Diversity

A practical and efficient procedure for learning agents’ submodular preferences on

subsets of a ground set is needed. A direct application involves learning preferences

of diverse group composition to facilitate assignment algorithms in matching markets

(or those listed in Chapter 4 and Section 5). We can initially try to learn weights

on a known diversity function such as

w(M) =
∑

a∈A

u(a) + λ
L∑

i=1

√∑

a∈Pi

u(a) (9.2)

where the goal is to find the λ that best suits an individuals preferences. Eventually

we should attempt to learn which kind of diversity function is preferred by a human

agent (for instance one person could think token diversity is enough, while other

person could think that pure parity is needed).

The focus of these is to look at what people think is a good and diverse set of

people. We could potentially use two different datasets.

9.4.1 Fantasy University

Participants will be asked to create a new university and select professors based on

some rank as well as scraped demographic information. See https://planetterp.com/
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for a potential dataset, or https://www.ratemyprofessors.com/. All personal infor-

mation (like names and universities) should be abstracted away.

9.4.2 Graduate Admissions

We can potentially interview the graduate admissions chair to learn their λ. This

could be compared to past graduate admissions chairs, or to chairs from other

departments or schools.

9.5 A Bias Checker for Recommendation Letters

We know that individuals entering higher levels of education often go through some

form of an application highlighting the reasons for their suitability for the job as

part of the hiring process. If the contents of the application are taken at their face

value, it is expected that they reflect the abilities and work ethic of the applicant

in question. For the most part, this assumption holds because the applicant is in

control of their application contents - the resume, cover letter, and interview. At

the same time, the recommendation letter, another crucial element to the holistic

review of individuals, is a different case, being out of the control of the applicant.

Research has shown that recommendation letters not only reflect the work and skills

of the subject, but also unconscious gender bias of the recommender. A study from

Wayne State University found that letters written for female applicants for a medi-

cal faculty had a significantly higher percentage of doubt raisers – statements that

question an applicant’s aptness for a position – than those written for males [213].

The researchers also found that the most common possessives referring to female
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and male applicants (“her teaching”, “his research”) reinforce gender stereotyping.

Another study from the University of Arizona revealed that recommenders used

more standout adjectives, such as “outstanding” and “exceptional,” to describe male

applicants than female applicants for a chemistry/biochemistry faculty position at

a large American research university [195]. In relation to how these evident mani-

festations of implicit gender bias affect hiring decision outcomes, a study conducted

by Madera et al. [161] found that females applying for academic positions are at a

disadvantage because their letters contain more doubt raisers than male applicant

letters. This study also suggested future studies to look into developing methods

for recommenders to eliminate doubt raisers.

Natural language processing (NLP) algorithms should be used to identify syntac-

tic and topical differences between letters written for female versus male applicants

to the University of Maryland graduate Computer Science programs. A classification

model to categorize unseen letters as “writen for a female applicant” or “written for

a male applicant” should be built. If the classifier shows the letter leaning strongly

toward a certain gender, then the letter will be deemed “biased”. The final goal of

this study is to create a website where recommenders can copy and paste their own

letter into a website and see whether and in what ways their letter is biased.

9.6 Building a more realistic graduate admissions

classifier

In Chapter 4 and Chapter 5 I use a probabilistic classifier as the ground truth of

acceptance. This classifier was built on potentially biased accept/reject decisions.
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Additionally an accept decision does not necessarily mean that an individual will

succeed in a graduate program. Instead, using the collected data from student

evaluations (see Section 8.3) a new, hopefully more accurate classifier should be

built. This will help in evaluation of past and future algorithms. Note that this will

not eliminate all bias since emulators do have internal biases. This should get closer

to building a classifier closer to the ground truth of success.
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Chapter 10: Conclusion

At the beginning of this dissertation I stated that biases against groups of indi-

viduals found in machine learning models, whether it be from social injustice or

measurement bias (See Figure 1.1), can be combated through the use of diversity

and fairness constraints. I believe my work introduces new ways to do this. This

thesis however, is just the beginning.

Indeed, a major field where we see bias impacts is found in hiring (see Chapter 3).

Technologies being used in hiring are at risk at augmenting the already present soci-

etal bias. I suggest that instead of solely relying on algorithms to make decisions we

should use technology to help increase diversity by helping assign human resources.

The first steps at this idea where taken with Chapter 4 and Chapter 5. Moving these

algorithms to a more realistic setting that takes matriculation and outside actors

into account needs to be done. And with expansions into health and suicidality (see

Section 8.1) the tiered multi-armed bandit framework shows promise outside of the

hiring setting.

Taking it a step further, including fairness into these systems is vitally important.

Chapter 6 incorporates group fairness into a contextual multi-armed bandit setting.

Learning to deal with a societal bias term not only helps to treat sensitive groups

fairly, but also gives us insight into where the societal bias is coming from. This

could help reduce bias outside of the algorithm. Moreover, learning to debias during

learning is important. But it is also important to know how to transfer that debiasing
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knowledge over to a new, potentially more difficult domain. Chapter 7 provides the

first theoretical analysis of this setting.

Figuring out how to incorporate fairness into algorithms is important, but under-

standing fairness definitions is needed to understand how debiasing is happening. It’s

important not only for the computer scientists creating and running the algorithms,

but also important for the stakeholders and non-experts whom the algorithms are

affecting. Section 8.2 delves into non-expert understanding of statistical fairness

definitions. On the other hand, fairness is just one side of the story. Diversity is

another aspect that needs to be understood. What does a person mean when they

day they want to select a diverse set of applicants?

And finally we come back to my original question. How do we mitigate bias

found the world as it is measured from our algorithms and models? Or at least, how

do we mitigate bias found in graduate admissions (the original inspiration for this

research)? A small part of the answer can be found here.
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Appendix A: The Diverse Cohort Selection

Problem

A.1 Table of Symbols

For ease of exposition and quick reference, Table A.1 lists each symbol used in

Chapter 4, along with a brief description of that symbol.

A.2 CLUCB Algorithm

The Combinatorial Lower-Upper Confidence Bound (CLUCB) algorithm by Chen

et al. [58] is shown in Algorithm 5. At the beginning of the algorithm, pull each arm

once and initialize the empirical means with the rewards from that first arm pull.

During iteration t of the algorithm, first find the set Mt using the Oracle. Then,

compute the confidence radius for each arm. Find the worst case for each arm and

compute a new set M̃t using the worst case estimates of the arms. If the utility of

the initial set Mt and the worst case set M̃t are equal then output set Mt. Pull the

most uncertain arm (the arm with the widest radius) from the symmetric difference

of the two sets Mt and M̃t. Update the empirical means.
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Algorithm 5 Combinatorial Lower-Upper Confidence Bound (CLUCB)
Require: Confidence δ ∈ (0, 1); Maximization oracle: Oracle(·) : Rn →M
1: Weak pull each arm a ∈ [n] once.
2: Initialize empirical means ūn
3: ∀a ∈ [n] set Tn(a)← 1
4: for t = n, n+ 1, . . . do
5: Mt ← Oracle(ūt)
6: ∀a ∈ [n] compute confidence radius rad t(a)
7: for a = 1, . . . , n do
8: if a ∈Mt then ũt(a)← ūt(a)− rad t(a)
9: else ũt(a)← ūt(a) + rad t(a)

10: M̃t ← Oracle(ũt)
11: if w̃(M̃t) = w̃(Mt) then
12: Out←Mt

13: return Out
14: pt ← arg maxa∈(M̃t\Mt)∪(Mt\M̃t)

rad t(a)
15: Pull arm pt
16: Update empirical means ūt+1 using the observed reward
17: Tt+1(pt)← Tt(pt) + 1
18: Tt+1 ← Tt(a) ∀a 6= pt
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A.3 Proofs

Theorem A.2 (Chen et al. 2014). Given any δ ∈ (0, 1), any decision class

M ⊆ 2[n], and any expected rewards u ∈ Rn, assume that the reward distribu-

tion ϕa for each arm a ∈ [n] has mean u(a) with an σ-sub-Gaussian tail. Let

M∗ = arg maxM∈Mw(M) denote the optimal set. Set rad t(a) = σ
√

2 log
(

4nt3

δ
/Tt(a)

)

for all t > 0 and a ∈ [n]. Then, with probability at least 1− δ, the SWAP algorithm

with only weak pulls returns the optimal set Out = M∗ and

T ≤ O
(
σ2width(M)2H log(nR2H/δ)

)
(A.1)

where T denotes the number of samples used by the SWAP algorithm, H is defined

in Eq.4.2.

In this section, we formally prove the theorems discussed in Chapter 4. Some

lemmas we show directly feed from Chen et al. [58]’s paper.

A.3.1 Strong Arm Pull Problem

The following maps to Lemma 8 in Chen et al. [58].

Lemma A.3. Suppose that the reward distribution ϕa is a σ-sub-Gaussian distri-

bution for all a ∈ [n]. And if, for all t > 0 and all a ∈ [n], the confidence radius

rad t(a) is given by

rad t(a) = σ

√√√√2 log
(

4nt3j3

δ

)

Tt(a)
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where Tt(a) is the number of samples of arm a up to round t. Since s > 1 the

number of samples in a single strong pull will be s each with cost j. Then, we have

Pr

[
∞⋂

t=1

ξt

]
≥ 1− δ.

Proof. Fix any t > 0 and a ∈ [n]. Note that ϕa is a σ-sub-Gaussian tail distribution

with mean w(a) and w̄t(a) is the empirical mean of ϕa from Tt(a) samples.

Pr


|w̄t(a)− wt(a)| ≥ σ

√√√√2 log
(

4nt3j3

δ

)

Tt(a)




=
t−1∑

b=1

Pr


|w̄t(a)− wt(a)| ≥ σ

√√√√2 log
(

4nt3j3

δ

)

bs
, Tt(a) = bs


 (A.2a)

≤
t−1∑

b=1

2 exp




−bs
(
σ

√
2 log

(
4nt3j3

δ

)
bs

)2

2σ2




(A.2b)

=
t−1∑

b=1

δ

2nt3j3

≤ δ

2nt2j3
(A.2c)

where Eq.A.2a follows from the fact that 1 ≤ Tt(a)/s ≤ t − 1 and Eq.A.2b follows

from Hoeffding’s inequality. By a union bound over all a ∈ [n], we see that Pr[ξt] ≥
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1− δ
2t2j3

. Using a union bound again over all t > 0, we have

Pr

[
∞⋂

t=1

ξt

]
≥ 1−

∞∑

t=1

Pr[¬ξt]

≥ 1−
∞∑

t=1

δ

2t2j3

= 1− π2

12j3
δ

≥ 1− δ

The rest of the lemmas in Chen et al. [58]’s paper hold. We can now prove

Theorem A.4

Theorem A.4. Given any δ ∈ (0, 1), any decision classM⊆ 2[n], and any expected

rewards w ∈ Rn, assume that the reward distribution ϕa for each arm a ∈ [n] has

mean w(a) with an σ-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M) denote the

optimal set. Set rad t(a) = σ

√
2 log

(
4nt3j3

δ
/Tt(a)

)
for all t > 0 and a ∈ [n]. Then,

with probability at least 1 − δ, the CLUCB algorithm with only strong pulls where

j ≥ 1 and s > j returns the optimal set Out = M∗ and

T ≤ O

(
σ2width(M)2H log(nj3R2H/δ)

s

)
(A.3)

where T denotes the number of samples used by the CLUCB algorithm, H is defined

in Eq.4.2.

Proof. Lemma A.3 indicates that the event ξ ,
⋂∞
t=1 ξt occurs with probability at

least 1− δ. In the rest of the proof, we shall assume that this event holds.
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By using Lemma 9 from Chen et al. [58] and the assumption on ξ, we see that

Out = M∗. Next, we focus on bounding the total number of T samples.

Fix any arm a ∈ [n]. Let T (a) denote the total information gained from pulling

arm a ∈ [n]. Let ta be the last round which arm a is pulled, which means that

pta = e. It is easy to see that Tta(a) = T (a) − s. By Lemma 10 from chen et. al.,

we see that rad ta ≥ ∆a

3width(M)
. Using the definition of rad ta , we have

∆a

3width(M)
≤ σ

√
2 log(4nt3aj

3/δ)

T (a)− s ≤ σ

√
2 log(4nT 3j3/δ)

T (a)− s . (A.4)

By solving Eq.A.4 for T (a), we obtain

T (a) ≤ 18width(M)2σ2

∆2
a

log(4nT 3j3/δ) + s (A.5)

Define H̃ = max{width(M)2σ2H, 1}. Using similar logic to Chen et al. [58] and the

fact that the information gained per pull is s, we show that

T ≤ 499 H̃ log(4nj3 H̃ /δ)

s
+ 2n (A.6)

Theorem 4.1 follows immediately from Eq. A.6.

If n ≥ 1
2
T , then T ≤ 2n and Eq. A.6 holds. For the second case we assume

n < 1
2
T . Since T > n, we write

T =
C H̃ log

(
4nj3 H̃ /δ

)

s
+ n, for some C > 0. (A.7)

If C < 499, then Eq. A.6 holds. Suppose, on the contrary, that C > 499. We know
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that T = 1
s

∑
a∈[n] T (a). Using this fact and summing Eq. A.5 for all a ∈ [n], we

have

T ≤ 1

s


ns+

∑

a∈[n]

18width(M)2σ2

∆2
a

log(4nj3T 3/δ)




≤ n+
18 H̃ log(4nj3T 3/δ)

s

= n+
18 H̃ log(4nj3/δ)

s
+

54 H̃ log(T )

s

≤ n+
18 H̃ log(4nj3/δ)

s
+

54 H̃ log(2C H̃ log(4nj3 H̃ /δ))

s
(A.8)

= n+
18 H̃ log(4nj3/δ)

s
+

54 H̃ log(2C)

s
+

54 H̃ log(H̃)

s

+
54 H̃ log log(4nj3 H̃ /δ)

s

≤ n+
18 H̃ log(4nj3 H̃ /δ)

s
+

54 H̃ log(2C) log(4nj3 H̃ /δ)

s

+
54 H̃ log(4nj3 H̃ /δ)

s
+

54 H̃ log(4nj3 H̃ /δ)

s
(A.9)

= (126 + 54 log(2C))
H̃ log(4nj3 H̃ /δ)

s

< n+
C H̃ log(4nj3 H̃ /δ)

s
(A.10)

= T, (A.11)

where Eq. A.8 follows from Eq. A.7 and the assumption that n < 1
2
T ; Eq. A.9

follows from H̃ ≥ 1, j ≥ 1, and δ < 1; Eq. A.10 follows since 126 + 54 log(2C) < C

for all C > 499; and Eq. A.11 is due to Eq. A.7. So Eq. A.11 is a contradiction.

Therefore C ≤ 499 and we have proved Eq. A.6.

Corollary A.4.1. SWAP with only strong pulls is equally or more efficient than

SWAP with only weak pulls when s > 0 and 0 < j ≤ C
s
3
− 1

3 where C = 4nH̃/δ.
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Proof.

Tstrong ≤ Tweak

499H̃ log(4nj3H̃/δ)

s
+ 2n ≤ 499H̃ log(4nj3H̃/δ) + 2n

log(Cj3)

s
≤ log(C) (A.12)

Solving for Eq.A.12 we get s > 0 and 0 < j ≤ C
s
3
− 1

3 .

A.3.2 Strong Weak Arm Pull (SWAP)

The following corresponds to Lemma 8 in work by the Chen et al. [58].

Lemma A.5. Suppose that the reward distribution ϕa is a σ1-sub-Gaussian distri-

bution for all a ∈ [n]. For all t > 0 and all a ∈ [n], the confidence radius rad t(a) is

given by

rad t(a) = σ1

√√√√2 log
(

4nCost3t
δ

)

Tt(a)

where Tt(a) is the number of samples of arm a up to round t. Since s > 1, the

number of samples in a single strong pull are s each with cost j. Then, we have

Pr

[
∞⋂

t=1

ξt

]
≥ 1− δ.

Proof. Fix any t > 0 and a ∈ [n]. Note that ϕa is σ1-sub-Gaussian tail distribution

with mean w(a) and w̄(a) is the empirical mean of ϕa from Tt(a) samples. Then we
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have

Pr


|w̄t(a)− wt(a)| ≥ σ1

√√√√2 log
(

4nCost3t
δ

)

Tt(a)


 (A.13)

=
t−1∑

b=1

Pr


|w̄t(a)− wt(a)| ≥ σ1

√√√√2 log
(

4nCost3t
δ

)

Gainb


 (A.14)

≤
t−1∑

b=1

2 exp




−Gainb


σ1

√
2 log

(
4nCost3t

δ

)
Gainb




2

2R2




(A.15)

=
t−1∑

b=1

δ

2nAvCost3t3

≤ δ

2nt2AvCost3
(A.16)

where AvCost equal to the average cost until time t. Eq.A.14 follows from 1 ≤

Tt(a)/Gaint ≤ t − 1 and Eq.A.15 follows from Hoeffding’s inequality. By a union

bound over all a ∈ [n], we see that Pr[ξt] ≥ 1 − δ
2t2AvCost3t

. Using a union bound

again over all t > 0, we have

Pr

[
∞⋂

t=1

ξt

]
≥ 1−

∞∑

t=1

Pr[¬ξt]

≥ 1−
∞∑

t=1

δ

2t2AvCost3

= 1− π2

12AvCost3
δ
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≥ 1− δ

Given that the rest of the lemmas in the Chen et al. [58] paper hold, we now

prove the main theorem of Chapter 4.

Theorem A.6. Given any δ1, δ2, δ3 ∈ (0, 1), any decision class M ⊆ 2[n] and any

expected rewards w ∈ Rn, assume that the reward distribution ϕa for each arm

a ∈ [n] has mean w(a) with an σ1-sub-Gaussian tail. Let M∗ = arg maxM∈Mw(M)

denote the optimal set. Set rad t(a) = σ1

√
2 log

(
4nCost3t

δ
/Tt(a)

)
for all t > 0 and

a ∈ [n], set ε1 = σ2

√
2 log

(
1
2
δ2/T

)
, and set ε2 = σ3

√
2 log

(
1
2
δ3/n

)
. Then, with

probability at least (1 − δ1)(1 − δ2)(1 − δ3), the SWAP algorithm (Algorithm 1)

returns the optimal set Out = M∗ and

T ≤ O



R2width(M)2H log

(
nR2

(
X̄Cost − ε1

)3
H/δ

)

X̄Gain − ε2


 , (A.17)

where T denotes the number of samples used by Algorithm 1, H is defined in Eq.

4.2 and width(M) is defined by Chen et al. [58].

Proof. Lemma A.5 indicates that the event ξ ,
⋂∞
t=1 ξt occurs with probability at

least 1− δ. In the rest of the proof, we assume that this event holds.

Using Lemma 9 from Chen et al. [58] and the assumption on ξ, we see that

Out = M∗. Next, we bound the total number of T samples.

Fix any arm a ∈ [n]. Let T (a) denote the total information gained from pulling

arm a ∈ [n]. Let ta be the last round which arm a is pulled, which means that
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pta = a. Trivially, Tta(a) = T (a) − s. By Lemma 10 from Chen et al. [58], we see

that rad ta ≥ ∆a

3width(M)
. Using the definition of rad ta , we have

∆a

3width(M)
≤ R

√
2 log(4nCost3ta/δ)

T (e)−Gainta

≤ R

√
2 log(4nCost3T/δ)

T (a)−Gainta
. (A.18)

Solving for T (a) in Eq. A.18 we get

T (a) ≤ 18width(M)2R2

∆2
e

log(4nCost3T/δ) +Gainta (A.19)

Define X̄Cost = E[Cost] as the expected cost of pulling an arm. Since we strong

pull an arm with probability α = s−j
s−1

, we know

X̄Cost = E[CostT ] = αj + (1− α). (A.20)

Define XCostt as the cost of pulling an arm at time t. Assuming that each random

variable XCostt is R1-sub-Gaussian we can write the following using the Hoeffding

inequality,

Pr

(∣∣∣∣∣
1

T

T∑

t=1

CCostt − X̄Cost

∣∣∣∣∣ ≥ ε1

)
≤ 2 exp

(
−Tε

2
1

2R1

)
(A.21)

If we set ε1 = R1

√
2log(1

2
δ2)/T then with probability (1− δ2)

CostT
T

∈
(
X̄Cost − ε1, X̄Cost + ε

)
. (A.22)
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Combining Eq. A.19 and Eq. A.22 we get

T (e) ≤ 18width(M)2R2

∆2
e

log(4n(X̄Cost − ε1)3T 3/δ) +Gainte (A.23)

Define X̄Gain = E[Gain] as the expected information gain from pulling an arm.

Since we pull an arm with probability α, we know that

X̄Gain = E[Gain] = αs+ (1− α) (A.24)

Define XGaint as the information gain of pulling an arm at time t. Assuming that

each random variable XGaint is R2-sub-Gaussian we can write the following using

the Hoeffding inequality.

Pr



∣∣∣∣∣∣
1

n

∑

e∈[n]

Gainte − X̄Gain

∣∣∣∣∣∣
≥ ε2


 ≤ 2 exp

(−nε22
2R2

2

)
(A.25)

If we set ε2 = R2

√
2log(1

2
δ3)/n then with probability (1− δ2)

∑
e∈[n]Gainte

n
∈
(
X̄Gain − ε2, X̄Gain + ε2

)
. (A.26)

Similarly to the proof for Theorem 4.1, define H̃ = max{width(M)2R2H, 1}. In the

rest of the proof we will show that

T ≤
499 H̃ log

(
4n
(
X̄Cost + ε1

)3
H̃ /δ

)

X̄Gain− ε2
+ 2n (A.27)

Notice that theorem follows immediately from Eq. A.27.
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If n ≥ 1
2
T , then Eq. A.27 holds. Let’s then assume that n < 1

2
T . Since T > n,

we can write

T =
C H̃ log(4n(XCost + ε1)3 H̃ /δ

X̄Gain − ε2
+ n (A.28)

If C ≤ 499 then Eq. A.27 holds. Suppose then that C > 499. Notice that T =
∑

a∈[n] T (a)/Gainta . By summing up Eq. A.23 for all a ∈ [n] we have

T ≤ n+
∑

a∈[n]

18width(M)2R2 log(4n(X̄Cost + ε1)T 3/δ

∆2
aGainta

≤ n+
18 H̃ log(4n(X̄Cost + ε1)3T 3/δ)

X̄Gain − ε2
(A.29)

= n+
18 H̃ log(4n(X̄Cost + ε1)3/δ)

X̄Gain − ε2
+

54 H̃ log(T )

X̄Gain − ε2
≤ n+

18 H̃ log(4n(X̄Cost + ε1)3/δ)

X̄Gain − ε2
+

54 H̃ log(2c H̃ log(4n(X̄Cost − ε1)3 H̃ /δ))

X̄Gain − ε2
(A.30)

= n+
18 H̃ log(4n(X̄Cost + ε1)3/δ)

X̄Gain − ε2
+

54 H̃ log(2C)

X̄Gain − ε2
+

54 H̃ log(H̃)

X̄Gain − ε2
+

54 H̃ log log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
≤ n+

18 H̃ log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
+

54 H̃ log(2C) log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
+

54 H̃ log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
+

54 H̃ log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
(A.31)

= n+ (126 + 54 log(2C))
H̃ log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
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< n+
C H̃ log(4n(X̄Cost + ε1)3 H̃ /δ)

X̄Gain − ε2
(A.32)

= T, (A.33)

where Eq. A.29 follows from Eq. A.26; Eq. A.30 follows from Eq. A.28 and the

assumption n < 1
2
T ; Eq. A.31 follows from H̃ ≥ 1, δ < 1, and X̄Cost + ε ≥ 1; Eq.

A.32 follows since 126 + 54 log(2C) < C for all C > 499; and Eq. A.33 is due to Eq.

A.28. So Eq. A.33 is a contradiction. Therefore C ≤ 499 and we have proved Eq.

A.27.

A.4 Additional Details about the Admissions Deci-

sions

Classifier

To effectively model the graduate admissions process, we needed a way to accurately

represent whether a particular applicant will be admitted to the program. Using

3 years of previous admissions data, including letters of recommendation, we built

a classifier modeling the graduate chair’s decision for a particular applicant. The

classifier’s accuracy can be found in Table A.2.

Some general features from the application are GPA, GRE scores, TOEFL scores,

area of interest (Machine Learning, Theory, Vision, and so on), previous degrees, and

universities attended. We included country of origin since the nature of applications

may vary in different regions due to cultural norms. Another basic feature included
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was sex. We included this to check if the classifier picked up on any biased decision

making (with sex and region).

Other features were generated from automatically processing the recommenda-

tion letters. Text from the letters was pulled from pdfs and OCR for scanned letters.

We then cleaned the raw text with NLTK, removing stop words and stemming text

[35]. One feature we chose was the length of recommendation letter, chosen af-

ter polling the admissions committee on what they thought would be important.

Schmader et al. [195] used Latent Dirichlet Allocation (LDA) to find word groups

in recommendation letters for Chemistry and Biochemistry students [36]. Their five

word groups included standout words (excellen*, superb, outstanding etc.), ability

words ( talent*, intell*, smart*, skill*, etc.), grindstone words (hardworking, consci-

entious, depend*, etc.), teaching words (teach, instruct, educat*, etc.), and research

words (research*, data, study, etc.). We found that these word groups translated

well to Computer Science students. Important words for acceptance were research

words, standout words, and ability words. Letters that only included words from

the teaching word group indicated a less useful recommendation letter. We used

counts of the various word groups as a feature in the classifier.

A.5 Additional Experimental Results

A.5.1 Gaussian Experiments

While running SWAP, we first compare where the general, varied-cost version of

SWAP is better than SWAP with strong pulls only (Figure A.1a) and where it is

better than SWAP with only weak pulls (Figure A.1b). We then noticed that there
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(a) Heat map showing where SWAP is better
than Strong Pull Only.

(b) Heat map showing where SWAP is better
than Weak Pull Only.

Figure A.1: Differences between SWAP, Strong only, and Weak
only.

should be an optimal zone where the general version of SWAP would perform better

than both of the trivial cases.

Both graphs examine the symmetric difference between the average cost values

of SWAP and either Strong or Weak Pull only with different parameter values of s

and j.

A.5.2 Graduate Admissions Experiment

We ran SWAP over both Masters and Ph.D. students over various values of s (Figure

A.2). The total cost of running these experiments aligns with the resources spent

during the actual admissions decision process.

When running SWAP experiments to formally promote diversity, one experiment

not listed in Chapter 4 was testing our diverse SWAP algorithm over an applicant’s

main choice of research area (Table A.3). In practice, the applicants accepted already
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Total cost of running SWAP over different s values

Total Cost
M.S. Cost
Ph.D. Cost

Figure A.2: Total cost of running SWAP over different s values

had a high diversity utility in regards to research area. SWAP slightly increased this

diversity utility.
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Variable Summary
n Number of applications
K Size of cohort wanted
A Set of applications
ai a single application with i ∈ [n]
u(ai) True utility of arm ai where u(ai) ∈ [0, 1]
u The set of true utilities.
û(ai) Empirical estimate of utility of arm ai
rad(ai) Uncertainty bound around arm ai. The true utility u(ai)

should lie with û(ai)− rad(ai) and û(ai) + rad(ai)
M Decision class. Set of potential cohorts (subsets of arms).
w Submodular and monotone function for total utility of a co-

hort. w :M× Rn → R
Oracle(·) Maximization oracle
M∗ The optimal cohort given the true utilities u and total utility

function w
∆a Gap score for an arm a defined in Equation 4.1
H Hardness of a problem defined in Equation 4.2
width(M) The smallest distance between any two sets inM
j Cost of a strong arm pull
s Information gain of a strong arm pull (ie. the reward is

counted s times and is pulled from a tighter distribution
around the true utility of an arm)

Cost t Total cost of pulling arms up until time t
Tt(a) Total information gain for arm a up until time t
Mt Best cohort of arms at time t, given the empirical utilities
ũt(a) Worst case empirical utility of arm a (See lines 9-10 of Algo-

rithm 1)
M̃t Best cohort of arms at time t, given worst case empirical util-

ities
spp(s, j) Strong pull policy probability function. See Equation 4.3 for

an example
σ We assume that each arm has a σ-sub-Gaussian tail
X̄Cost Expected cost (expected j value)
X̄Gain Expected information gain (expected s value)
δ Probability that the algorithms output the best sets (See The-

orem 4.1 and Theorem 4.2)
wdiv Diversity function
wtop Top-K function.

√
wtop is the square-root of the top-K func-

tion.

Table A.1: All symbols used in Chapter 4 150



Type % Correct Precision Recall

Ph.D. 77.8% 61.1% 39.7%
Masters 89.2% 13.1% 55.3%
Total 85.5% 33.5% 42.0%

Table A.2: Current predictor results on the testing data

General Diversity

SWAP 8.3 (0.03) 32.5 (0.03)
Actual 8.6 27.4

Table A.3: SWAP’s average gain in reported area of study diversity
over our actual acceptances. The first column shows general fit util-
ity and the second diversity utility The standard deviation over the

experiments of SWAP can be found in parentheses.
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Appendix B: Making the Cut: A Bandit-based

Approach to Tiered Interviewing

B.1 Table of Symbols

In this section, for expository ease and reference, we aggregate all symbols used

in Chapter 5 and give a brief description of their meaning and use. We note that

each symbol is also defined explicitly in this dissertation; Table B.1 is provided as a

reference.

B.2 Proofs

In this section, we provide proofs for the theoretical results presented in Chapter 5.

Appendix B.2.1 gives proofs for CACO, defined as Algorithm 2 in Section 5.3.

Appendix B.2.2 gives proofs for BRUTaS, defined as Algorithm 3 in Section 5.4.

B.2.1 CACO

Theorem 5.1 requires lemmas from Chen et al. [58]. We restate the theorem here

for clarity and then proceed with the proof.

Theorem B.1. Given any δ ∈ (0, 1), any ε ∈ (0, 1), any decision classesMi ⊆ 2[n]

for each stage i ∈ [m], any linear function w, and any expected rewards u ∈ Rn,
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assume that the reward distribution ϕa for each arm a ∈ [n] has mean u(a) with a σ-

sub-Gaussian tail. Let M∗
i = arg maxM∈Mi

denote the optimal set in stage i ∈ [m].

Set radt(a) = σ

√
2 log(

4Ki−1Cost3i,t
δ

)/Ti,t(a) for all t > 0 and a ∈ [n]. Then, with

probability at least 1 − δ, the CACO algorithm (Algorithm 2) returns the set Out

where w(Out)− w(M∗
m) < ε and

T ≤O


σ2

∑

i∈[m]


 ji
si


 ∑

a∈Ai−1

min

{
1

∆2
a

,
K2
i

ε2

}
 log


σ

2j4
i

siδ

∑

a∈Ai−1

min

{
1

∆2
a

,
K2
i

ε2

}




 .

Proof. Assume we are in some round i, and that we are at time ta where some arm a

is going to be pulled for the last time in round i. Set rad i,t(a) = σ

√
2 log(4Ki−1Cost3i,t/δ)

Ti,t(a)

Using Lemma 13 from Chen et al. [58] we know that rad i,t ≥ max
{

∆a

6
, ε

2Ki

}
. Before

arm a is pulled the following must be true:

rad i,ta ≥ max

{
∆a

6
,
ε

2Ki

}
(B.1)

rad i,ta = σ

√
2 log(4Ki−1Cost3

i,ta/δ)

Ti(a)− si

≤ σ

√
2 log(4Ki−1j3

i t
3
a/δ)

Ti(a)− si
. (B.2)

Equation B.2 holds since ji > ji−1 > · · · > j0. Given equations B.1 and equation

B.2 we have,

max

{
∆a

6
,
ε

2Ki

}
≤ σ

√
2 log(2Ki−1j3

i t
3
a/δ)

Ti(a)− si

153



≤ σ

√
2 log(2Ki−1j3

i T
3
i /δ)

Ti(a)− si

Solving for Ti(a) we have,

Ti(a) ≤σ2 min

{
72

∆2
a

,
16K2

i

ε2

}
log(4Ki−1j

3T 3
i /δ)

+ si (B.3)

Note that

Ti(a) ≤ T (a)

ji
si

∑

a∈Ai−1

Ti(a) = Ti. (B.4)

We will show later on in the proof

Ti ≤499
σ2ji
si


 ∑

a∈Ai−1

min

{
4

∆2
a

,
K2
i

ε2

}
 log


4σ2j4

i

siδ

∑

a∈Ai−1

min

{
4
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Summing up over equation B.5 we have
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(B.6)

which proves theorem 5.1.
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Now we will go back to prove equation B.5. If Ki−1 ≥ 1
2
Ti, then we see that

Ti ≤ 2Ki−1 and therefore equation B.5 holds. Assume, then, that Ki−1 <
1
2
Ti. Since

Ti > Ki−1, we can write

T = C
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If C < 499 then equation B.5 holds. Suppose then that C > 499. Using equation

B.4 and summing equation B.6 for all active arms a ∈ Ai−1, we have
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= Ki−1ji + (126 + 54 log(2C))
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= Ti (B.10)

where equation B.8 follows from equation B.7 and the assumption that Ki−1 <
1
2
Ti;

equation B.9 follows since 136 + 54 log(2C) < C for all C > 499; and B.10 is due

to B.7. Equation B.10 is a contradiction. Therefore C ≤ 499 and we have proved

equation B.5.

B.2.2 BRUTaS

In order to prove Theorem 5.2, we first need a few lemmas.

Lemma B.2. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . .∆n (defined in Eq.

(5.2)) such that ∆(1) ≤ . . . ≤ ∆(n). Given a stage i ∈ [m], and a phase t ∈ [K̃i], we

define random event τi,t as follows

τi,t =

{
∀i ∈ [n] \ (At ∪Bt) |ûi,t(a)− u(a)| <

∆(n−
∑i−1
b=0 K̃b−t+1)

6

}
. (B.11)
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Then, we have

τ = Pr



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)
. (B.12)

Proof. In round i at phase t, arm a has been pulled T̄ (a) times. Therefore, by

Hoeffding’s inequality, we have

Pr
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]
≤ 2 exp

(
−
T̄i,t(a)∆2

(n−
∑i−1
b=0 K̃b−t+1)

72σ2
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(B.13)

By using the definition of T̃i,t, the quantity T̃i,t∆2

(n−
∑K̃i−1
b=1 K̃b−t+1)

on the right-hand

side of Eq. B.13 can be further bounded by
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(n−

∑K̃i−1
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= (siT̃i,t +
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≥
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sb(T̄b − K̃b)

jb l̃og(K̃b)H̃
,

where the last inequality follows from the definition of H̃ = maxi∈[n] i∆
−2
(i) . By

plugging the last inequality into Eq. B.13, we have

Pr

[
|ûi,t(a)− u(a)| ≥

∆(n−
∑i−1
b=0 K̃b−t+1)

6

]
(B.14)
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≤ 2 exp
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72σ2H̃
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Now, using Eq. B.14 and a union bound for all i ∈ [m], all t ∈ [K̃i], and all

a ∈ [n] \ (At,i ∪Bt,i), we have
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Lemma B.3. Fix a stage i ∈ [m], and a phase t ∈ [K̃i], suppose that random event

τi,t occurs. For any vector a ∈ Rn, suppose that supp(a) ∩ (Ai,t ∪ Bi,t = ∅, where

supp(a) , {i|a(i) 6= 0} is the support of vector a. Then, we have

|〈ũi,t, a〉 − 〈ui,t, a〉| <
∆(n−

∑i−1
b=0 K̃i−t+1)

6
‖a‖1

Proof. Suppose that τi,t occurs. Then, we have

|〈ũi,t, a〉 − 〈ui,t, a〉| (B.16)

= |〈ũi,t −w, a|

=

∣∣∣∣∣
n∑

b=1

(ũt,i(b)− u(b)) a(b)

∣∣∣∣∣
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≤

∣∣∣∣∣∣
∑

b∈[n]\(Ai,t∪Bi,t)

(ũi,t(b)− u(b)) a(b)

∣∣∣∣∣∣
(B.17)

≤
∑

b∈[n]\(Ai,t∪Bi,t)

|(ũi,t(b)− u(b)) a(b)|

≤
∑

b∈[n]\(Ai,t∪Bi,t)

|ũi,t(b)− u(i)||a(i)|

<
∆(n−

∑i−1
b=0 K̃i−t+1)

6

∑

b∈[n]\(Ai,t∪Bi,t)

|a(b)| (B.18)

=
∆(n−

∑i−1
b=0 K̃i−t+1)

6
‖a‖1 (B.19)

where Eq. B.17 follows from the assumption that a is supported on [n]\ (Ai,t∪Bi,t);

Eq. B.18 follows from the definition of τi,t (Eq. B.11).

Lemma B.4. Fix a stage i ∈ [m], and a phase t ∈ [K̃i]. Suppose that Ai,t ⊆ M∗

and Bi,t∩M∗ = ∅. Let M be a set such that Ai,t ⊆M and Bi,t∩M = ∅. Let a and

b be two sets satisfying a ⊆M \M∗, b ⊆M∗ \M , and a ∩ b = ∅. Then, we have

Ai,t ⊆ (M \ a ∪ b)

and

Bi,t ∩ (M \ a ∪ b) = ∅

and

(a ∪ b) ∩ (Ai,t ∪Bi,t) = ∅.

Lemma B.4 is due to Chen et al. [58].
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Lemma B.5. Fix any stage i ∈ [m], and any phase t ∈ [K̃i] such that
∑i−1

b=0 K̃i+t >

0. Suppose that event τi,t occurs. Also assume that Ai,t ⊆ M∗ and Bi,t ∩M∗ = ∅.

Let a ∈ [n] \ (Ai,t ∪ Bi,t) be an active arm such that ∆(n−
∑i−1
b=0Ki−t+1) ≤ ∆a. Them,

we have

ũi,t(Mi,t)− ũi,t(M̃i,t,a) >
2

3
∆(n−

∑i−1
b=0 K̃i−t+1)

Lemma B.5 is due to Chen et al. [58].

Lemma B.6. Fix any stage i ∈ [m], and any phade t ∈ [Ki] such that
∑i−1

b=0Ki + t

> 0. Suppose that event τi,t occurs. Also assume that Ai,t ⊆M∗ and Bi,t ∩M∗ = ∅.

Suppose an active arm a ∈ [n] \ (Ai,t ∩ Bi,t) satisfies that a ∈ (M∗ ∩ ¬Mi,t) ∪ (6=

M∗ ∩Mi,t). Then, we have

ũi,t(Mi,t)− ũi,t(M̃i,t,a) ≤
1

3
∆(n−

∑i−1
b=0Ki−t+1)

Lemma B.6 is due to Chen et al. [58].

Now we can prove Theorem 5.2, restated below for clarity.

Theorem B.7. Given any T̄is such that
∑

i∈[m] T̄i = T̄ > n, any decision class

MK ⊆ 2[n], any linear function w, and any true expected rewards u ∈ Rn, assume

that reward distribution ϕa for each arm a ∈ [n] has mean u(a) with a σ-sub-

Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n (defined in Eq.

5.2) such that ∆(1) ≤ . . . ≤ ∆(n). Define H̃ , maxi∈[n] i∆
−2
(i) . Then, Algorithm 3

uses at most T̄i samples per stage i ∈ [m] and outputs a solution Out ∈ MK ∪ {⊥}
such that

Pr[Out 6= M∗] ≤ n2 exp

(
−
∑m

b=1 sb(T̄b − K̃b)/(jb l̃og(K̃b))

72σ2H̃

)
(B.20)

where l̃og(n) ,
∑n

i=1 i
−1, and M∗ = arg maxM∈MK

w(M).
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Proof. First we show that the algorithm takes at most T̄i samples in every stage

i ∈ [m]. It is easy to see that exactly one arm is pulled for T̃i, 1 times in stage i,

one arm is pulled for T̃i, 2 times in stage i, . . ., and one arm is pulled for T̃i, K̃i − 1

times in stage i. Therefore, the total number of samples used by the algorithm in

stage i ∈ [m] is bounded by

ji

K̃i∑

t=1

T̃i, t ≤ ji

K̃i∑

t=1

(
T̄i − K̃i

l̃og(K̃i)ji(K̃i − t+ 1)
+ 1

)

=
(T̄i − K̃i)ji

l̃og(K̃i)ji
l̃og(K̃i) + K̃i

= T̄i.

By Lemma B.2, we know that the event τ occurs with probability at least 1 −

n2 exp
(
−
∑m
b=1 sb(T̄b−K̃b)/(ji l̃og(K̃i))

72σ2H̃

)
. Therefore, we only need to prove that, under

event τ , the algorithm outputs M∗. Assume that the event τ occurs in the rest of

the proof.

We will use induction. Fix a stage i ∈ [m] and phase t ∈ [K̃i]. Suppose that the

algorithm does not make any error before stage i and phase t, i.e. Ai,t ⊆ M∗ and

Bi,t ∩M∗ = ∅. We will show that the algorithm does not err at stage i, phase t.

At the beginning of phase t in stage i there are exactly
∑i−1

b=0 K̃i + t− 1 inactive

arms |Ai,t ∪ Bi,t| =
∑i−1

b=0 K̃i + t − 1. Therefore there must exist an active arm

ei,t ∈ [n] \ (Ai,t ∪Bi,t) such that ∆ei,t ≥ ∆(n−
∑i−1
b=0 K̃i−t+1). Hence, by Lemma B.5, we

have

w̃i,t(Mi,t)− w̃i,t(Mi,t,ei,t) ≥
2

3
∆(n−

∑i−1
b=0 K̃i−t+1). (B.21)

Notice that the algorithm makes an error in phase t in stage i if and only if it accepts
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an arm pi,t /∈M∗ or rejects an arm pi,t ∈M∗. On the other hand, arm pi,t is accepted

when pi,t ∈Mi,t and is rejected when pi,t /∈Mi,t. Therefore, the algorithm makes an

error in phase t in stage i if and only if pt ∈ (M∗ ∩ ¬Mi,t) ∪ (¬M∗ ∩Mi,t).

Suppose that pt ∈ (M∗ ∩ ¬Mi,t) ∪ (¬M∗ ∩Mi,t). Using Lemma B.6, we see that

w̃i,t(Mi,t)− w̃i,t(M̃i,t,pi,t) ≤
1

3
∆(n−

∑i−1
b=0 K̃i−t+1). (B.22)

By combining Eq. B.21 and Eq. B.22, we see that

w̃i,t(Mi,t)− w̃i,t(M̃i,t,pi,t) (B.23)

≤ 1

3
∆(n−

∑i−1
b=0 K̃i−t+1) (B.24)

<
2

3
∆(n−

∑i−1
b=0 K̃i−t+1) (B.25)

≤ w̃i,t(Mi,t)− w̃i,t(M̃i,t,ei,t) (B.26)

However, Eq. B.23 is contradictory to the definition of

pi,t , arg maxe∈[n]\(Ai,t∪Bi,t) w̃i,t(Mi,t) − w̃i,t(Mi,t,e). This proves that pt /∈ (M∗ ∩

¬Mi,t) ∪ (¬M∗ ∩Mi,t). This means that the algorithm does not err at phase t in

stage i, or equivalently Ai,t+1 ⊆M∗ and Bi,t+1 ∩M∗ = ∅.

Hence we have Am,K̃m+1
⊆M∗ and Bm,K̃m+1

⊆ ¬M∗ in the final phase of the final

stage. Notice that |Am,K̃m+1
| + |Bm,K̃m+1

| = n and Am,K̃m+1
∩ Bm,K̃m+1

= ∅. This

means that Am,K̃m+1
= M∗ and Bm,K̃m+1

= ¬M∗. Therefore the algorithm outputs

Out = Am,K̃m+1
= M∗ after phase K̃m in stage m.
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Figure B.1: Hardness (H) vs theoretical cost (T ) as user-specified
parameters to the CACO algorithm.

B.3 Visualization of CACO bound

Figure B.1 shows how the theoretical bound defined in Theorem 5.1 changes as

parameters change vs. Hardness H defined in Equation 5.3.

B.4 Experimental Setup

The machines used for the experiments had 32GB RAM, 8 Intel SandyBridge CPU

cores, and were initialized with Red Hat Enterprise Linux 7.3. A single run of

SWAP over the graduate admissions data takes about 1 minute depending on the

parameters. See Table B.2 for parameters used.

B.5 Additional Experimental Results

In this section, we present additional experimental results for CACO and BRUTaS.

Table B.3 supports the Gaussian simulation experiments of Section 5.5.1, specifically,

the comparison of CACO and BRUTaS to two baseline pulling strategies.
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Figure B.2: Comparison of Cost over information gain (s) as σ
increases for CACO. Here, δ = 0.05 and ε = 0.05.

Table B.4 also supports the Gaussian simulation experiments from Section 5.5.1.

Here, we vary δ instead of ε, as was done in Figure 5.2 in Chapter 5. As expected,

when δ increases, the cost decreases. However, the magnitude of the effect is smaller

than the effect from decreasing ε or varying K1. This is also expected, as discussed

in the final paragraphs of Section 5.3, and shown in Figure 5.1.

Figure B.2 shows that, as the standard deviation σ of the Gaussian distribu-

tion from which rewards are drawn increases, so too does the total cost of running

CACO. The qualitative behavior shown in, e.g., Figure 5.2 of Chapter 5 remains:

as information gain s increases, overall cost decreases; as s increases substantially,

we see a saturation effect; and, as final cohort size K increases, overall cost increses.
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Figure B.3 shows the behavior of CACO for different arm initializations, repre-

senting different utilities and groupings. We chose 4 representative initializations.

For most initializations, when K1 = 10, higher values of s2 do not result in gains.

This is because with K1 = 10 and K = 7, there are only 3 decisions to make on

which arms to cut and the information gain from the initial pull of all arms in

stage 2 grants enough information, thus no additional pulls need to be made and

cost is uniform across s2. However, if the problem of selecting from the short list

is hard enough, additional resources must be spent to narrow the decisions down,

as in the top left graph, where total costs decrease as s2 increases for K1 = 10

because additional pulls need to be made after the initial pulls of remaining arms

in stage 2. This reflects real life well: usually, the short list can be cut down with

one additional round of (more informative) interviews. However, in rare situations,

some candidates are so close to each other that additional assessments need to be

made about them. Another interesting result is that K1 = 10 is not always the

most cost effective option. If many of the initial candidates are close together in

utility, it will be hard to narrow it down to a final 10 based on resume review alone:

more candidates should be allowed to move onto the next round which has higher

information gain. This can be seen in the bottom right graph.

B.6 Limitations

This experiment uses real data but is still a simulation. The classifier is not a true

predictor of utility of an applicant. Indeed, finding an estimate of utility for an
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Figure B.3: Comparison of Cost over information gain (s) for dif-
ferent sets of arms for CACO. Here, δ = 0.075, ε = 0.05, σ = 0.2.
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applicant is a nontrivial task. Additionally, the data that we are using incorpo-

rates human bias in admission decisions, and reviewer scores. This means that the

classifier—and therefore the algorithms—may produce a biased cohort. Training a

human committee or using quantitative methods to (attempt to) mitigate the im-

pact of human bias in review scoring is important future work. Similarly, CACO

and BRUTaS require an objective function to run; recent advances in human value

judgment aggregation [89, 172] could find use in this decision-making framework.

Additionally, although we were able to empirically show that both CACO and

BRUTaS perform well using a submodular function wdiv, there are no theoretical

guarantees for submodular functions.

B.7 Structured Interviews for Graduate Admissions

The goal of the interview is to help judge whether the applicant should be granted

admission. The interviewer asks questions to provide insight into the applicant’s

academic capabilities, research experience, perseverance, communication skills, and

leadership abilities, among others.

Some example questions include:

• Describe a time when you have faced a difficult academic challenge or hurdle

that you successfully navigated. What was the challenge and how did you

handle it?

• What research experience have you had? What problem did you work on?

What was most challenging? What did you learn most from the experience?
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• Have you had any experiences where you were playing a leadership or mentor-

ing role for others?

• What are your goals for graduate school? What do you want to do when you

graduate?

• What concerns do you have about the program? What will your biggest

challenge be? Is there anything else we should discuss?

The interviewer fills out an answer and score sheet during the interview. Each

interviewer follows the same questions and is provided with the same answer and

score sheet. This allows for consistency across interviews.
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Symbol Summary
n Number of applicants/arms
A Set of all arms (e.g., the set of all applicants)
a An arm in A (e.g., an individual applicant)
K Size of the required cohort
MK(A) Decisions class or set of possible cohorts of size K
u(a) True utility of arm a where u(a) ∈ [0, 1]
û(a) Empirical estimate of the utility of arm a
rad(a) Uncertainty bound around the empirical estimate of the util-

ity û(a) of arm a
w Submodular and monotone objective function for a cohort

where w : Rn ×MK(A)→ R
Oracle Maximization oracle defined in Equation 5.1 and used by

CACO
COracle Constrained maximization oracle used by BRUTaS
M∗ Optimal cohort given the true utilities
∆a The gap score of arm a defined in Equation 5.2
H The hardness of a problem defined in Equation 5.3
ji Cost of an arm pull at stage i
si Information gain of an arm pull at stage i
m Number of pulling stages (or interview stages)
Ki Number of arms moving onto the next stage (stage i+ 1)
Ai The active arms that move onto the next stage (stage i+ 1)
T (a) Total information gain for arm a
ũ(a) Worst case estimate of utility of arm a

Ãi Best cohort chosen by using the worst case estimates of utility
ε We want to return a cohort with total utility bounded by

w(M∗)− ε for Algorithm 2
δ The probability that we are within ε of the best cohort for

Algorithm 2
T̄i Budget constraint for round i
T̄ Total budget
T Total Cost for CACO
σ Property of the σ-sub-Gaussian tailed normal distribution
p The arm with the greatest uncertainty in CACO
K̃i Number of decisions to make in round i
T̃i,t Budget for BRUTaS in stage i, round t
Mi,t Best cohort chosen in BRUTaS stage i, round t, using em-

pirical utilities
M̃i,t,a Pessimistic estimate in BRUTaS stage i, round t, for arm a
pi,t Arm which results in largest gap in BRUTaS stage i, round

t

H̃ Hardness for BRUTaS
P (a) Probability of acceptance for an arm (candidate), estimated

by Random Forest Classifier
q Number of groups for submodular diversity function
P1, P2, . . . , Pq The groups for submodular diversity function

Table B.1: List of symbols used in Chapter 5.
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Parameter Range

δ 0.3,0.2,0.1,0.075,0.05
ε 0.3,0.2,0.1,0.075,0.05
σ 0.1,0.2
j 6
s 7, . . . , 20

Table B.2: Parameters for graduate admissions experiments

Algorithm Cost Utility

Random 2750 138.9 (5.1)
Uniform 2750 178.4 (0.2)
CACO 2609 231.0 (0.1)
BRUTaS 2750 244.0 (0.1)

Table B.3: Comparing CACO and BRUTaS to the baseline of
Uniform and Random

δ Cost
K1 = 10 K1 = 13 K1 = 18 K1 = 29

0.050 552.475 605.250 839.525 1062.725
0.075 542.425 582.675 827.025 1040.700
0.100 537.175 587.900 820.575 1078.975
0.200 503.650 568.300 801.525 1012.550

Table B.4: Cost for CACO over various δ, for ε = 0.05, σ =
0.20, s2 = 7
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Experiment Cost wtop wdiv wdiv

over Gender over Region

Actual – ~2,000 60.9 10.1 17.9

Random
lower 1,359 40.2 (0.3) 9.7 (0.2) 16.9 (0.3)
~equivalent 2,277 43.6 (0.5) 9.9 (0.1) 17.2 (0.2)
higher 11,556 72.9 (4.9) 11.5 (0.1) 18.1 (3.5)

Uniform
lower 1,359 49.7 (0.3) 9.8 (0.1) 17.7 (0.1)
~equivalent 2,277 54.7 (0.3) 9.9 (0.2) 18.3 (0.4)
higher 11,556 79.5 (3.2) 11.9 (0.3) 19.6 (0.6)

SWAP
lower 1,400 1,500 58.7 (0.5) 10.1 (0.1) 19.0 (0.1)
~equivalent 1,900–2,000 60.2 (0.4) 10.5 (0.1) 19.1 (0.1)
higher 2,500–2,700 61.5 (0.5) 10.8 (0.2) 19.3 (0.1)

CACO
lower 1,400–1,460 61.1 (0.1) 10.1 (0.2) 18.9 (0.1)
~equivalent 1,950–1,990 78.7 (0.2) 10.7 (0.1) 19.4 (0.2)
higher 2,500–2,700 80.1 (0.4) 12.0 (0.3) 19.8 (0.3)

BRUTaS
lower 1,649 61.2 (0.2) 10.6 (0.1) 19.1 (0.2)
~equivalent 2,038 79.3 (0.3) 10.7 (0.1) 19.8 (0.3)
higher 2,510 80.2 (0.3) 12.0 (0.2) 19.9 (0.2)

Table B.5: Utility vs Cost over five different algorithms (Random,
Uniform, SWAP, CACO, BRUTaS) and the actual admissions
decisions made at our university. (Since CACO is a probabilistic
method, the cost is given over a range of values.) For each of the
algorithms, we give results assuming a cost/budget lower, roughly
equivalent, and higher than that used by the real admissions commit-
tee. Both CACO and BRUTaS produce equivalent cohorts to the
actual admissions process with lower cost, or produce high quality
cohorts than the actual admissions process with equivalent cost. Our
extension of SWAP to this multi-tiered setting also performs well
relative to Random and Uniform, but performs worse than both

CACO and BRUTaS across the board.
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Appendix C: Group Fairness in Bandit Arm

Selection

C.1 Additional Related Work

A closely related area to our work is the research into fairness in rankings [203],

multi-stakeholder recommender systems [1], and item allocation [25, 26]. When

algorithms return rankings for an individual to select from, one must pay attention

to the ordering and the positioning of various groups [203]. One can see this as an

application of the group fairness concept to the slates that are chosen for display. A

particular aspect of recommendation systems that one needs to keep in mind is that

often there are different stakeholders: the person receiving the recommendation, the

company giving the recommendation, and the businesses that are the subjects of

recommendation [1]. Finally, when goods are allocated, such as housing or subsidies

one may need to observe both individual and group fairness [25]. Indeed, group

fairness is specifically important in, e.g., Singapore, which has specifically enforced

notions of group fairness when allocating public housing [26].
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C.2 Naive Group Fairness

Much of the research on fairness in machine learning focuses on fairness in classifi-

cation [81]. One popular definition of group fairness in classification is the Rawlsian

notion of demographic parity [188]. Formally, given a protected demographic group

A, we want:

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = 1), (C.1)

where the probability of assigning a classification label Ŷ = 1 does not change

based on the sensitive attribute class A. Demographic parity is important when

ground truth classes Y are extremely noisy for sensitive groups due to some societal

or measurement bias. Assume that we have a classifier that predicts whether an

individual should receive a loan where our sensitive attribute A is binary gender.

Demographic parity states that the probability of getting a loan should be the same

for males (A = 0) and females (A = 1).

In converting this definition of demographic parity to the the multi-armed bandit

setting, we alter the definition to be that the probability of pulling an arm a does

not change based on group membership Pj:

Pr(pull a|a ∈ P0) = Pr(pull a|a ∈ P1). (C.2)

Continuing our running example, assume we are a loan agency. The loan agency

receives 4 applications at every timestep t: an applicant from a young female, an

applicant from a young male, an applicant from a older female, an applicant from

an older male; we must choose one application to grant at each timestep. After
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granting a loan the loan agency receives a down payment on that loan as reward.

This reward is then used to update the estimates of whether or not a “good” loan

application was received for the pulled arm. Assume that the loan agency wants to

act fairly using the binary sensitive attribute of gender. Then, the probability that

the loan agency chooses a female applicant at timestep t should be the same as the

probability of choosing a male applicant.

C.2.1 A Motivating Example: Linear Regret

Algorithm 6 NaiveGroupFair
Require: δ, P1, P2

1: for t = 1 . . . T do
2: P ← Randomly choose group P1 or P2.
3: Pull arm in P based on TopInterval

A naive algorithm to enforce this definition of fairness is defined in Algorithm 6.

We first pick from the groups uniformly at random, and then apply a regular CMAB

algorithm like TopInterval1 or ContextualThompsonSampling [3] to choose

which arm to pull within the group. Using our running example, NaiveGroupFair

would randomly pick between male or female, and then choose the best applicant

between the younger and older pair.

Assume that NaiveGroupFair randomly chooses the male group during the

first timestep and at this timestep the two best applicants are in the female group.

Assume that by chance, this worst-case scenario happens at every timestep t. We

can extend this argument to any constant number of groups, hence this shows that

we have a linear regret for Algorithm 6.
1TopInterval is a variant of the contextual bandit LinUCB by Auer et al. [12].
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We could, then, just focus on inner group regret,

R(t) = f(xi∗,t)− f(xa,t) where i, a ∈ Pj ,

instead of overall regret. In other words, we could focus on the regret of choosing

between the younger and older applicant for both genders. This separates the arms

into two CMAB problems. This is unsatisfying as it ignores and removes the inter-

action and differences between groups. We therefore suggest that a new definition

of regret that includes a concept of societal bias is needed in this case.

C.3 Proofs

C.3.1 Two Groups

In order to prove Theorem 6.1, we first prove two lemmas.

Lemma C.1. The following holds for any i at any time t, with probability at least

1− δ:
∣∣∣β̂i,t · xi,t − (βi · xi,t + 1[i ∈ P1]ψP1 · xi,t)

∣∣∣ ≤ wi,t. (C.3)

Proof. There are two cases: i ∈ P1 or i 6∈ P1.

Focusing on the first case, inequality C.3 becomes:

∣∣∣β̂i,t · xi,t − βi · xi,t
∣∣∣ ≤ wi,t.
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By the standard properties of OLS estimators [135], β̂i, t ∼ N
(
βi, σ

2(XT
i,t, Xi,t)

−1
)
.

Then, for any fixed xi,t:

β̂i,t · xi,t ∼ N
(
βi · xi,t, xTi,tσ2(XT

i,t, Xi,t)
−1xi,t

)
.

Using the definition of the Quantile function and the symmetric property of the

normal distribution, with probability at least 1− δ
nT

,

β̂i,t ∼ N
(
βi, σ

2(XT
i,t, Xi,t)

−1
)
.

Exploring the second case where i ∈ P1, inequality C.3 can be replaced with

∣∣∣β̂i,t · xi,t − Ci · xi,t
∣∣∣ ≤ wi,t

where Ci = βi + ψP1 . Again, by the standard properties of OLS estimators β̂i, t ∼

N
(
Ci, σ

2(XT
i,t, Xi,t)

−1
)
, we have for any fixed xi,t:

β̂i,t · xi,t ∼ N
(
Ci · xi,t, xTi,tσ2(XT

i,t, Xi,t)
−1xi,t

)
.

This uses the definition of the Quantile function and the symmetric property of the

normal distribution, with probability at least 1− δ
nT

.

Therefore, the probability that inequality C.3 fails to hold for any i at any

timestep t is at most nT · δ
nT

= δ.
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Lemma C.2. The following holds for any group Pj, any arm i, at any time t, with

probability at least 1− δ:

∣∣∣ψ̂Pj ,t · xi,t − ψ̄Pj · xi,t
∣∣∣ ≤ bPj ,i,t. (C.4)

Proof. By the standard properties of OLS estimators ψ̂Pj ,t ∼ N
(
ψ̄Pj , σ

2(X T
Pj ,t
,XPj ,t)−1

)
.

For any fixed xi,t,

ψ̂i,t · xi,t ∼ N
(
ψ̄Pj · xi,t, xTi,tσ2(X T

Pj ,t
,XPj ,t)−1xi,t

)
.

Using the definition of the quantile function and the symmetric property of the

normal distribution, with probability at least 1− δ
n
|Pj |

T
, inequality C.4 holds. There-

fore, the probability that this fails to hold for any i at any timestep t is at most

n
|Pj |T ·

δ
n
|Pj |

T
= δ.

With Lemma C.1 and Lemma C.2, we can now prove Theorem 6.1.

Proof. Regret for GroupFairTopInterval can be grouped into three terms for

any T1 ≤ T :

R(T ) =
∑

t: t is an explore round

regret(t)

+
∑

t: t is an exploit round and t<T1

regret(t)

+
∑

t: t is an exploit round and t≥T1

regret(t) (C.5)
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Starting with the first term, define pt = 1
t2/3

to be the probability that timestep

t is an exploration round. Then, for any t,

∑

t′<t

pt′ = Θ(t2/3). (C.6)

We now focus on the third term of Equation C.5, where t is an exploit round and

t > T1. Throughout the rest of the proof we assume Lemma C.1 and Lemma C.2.

Fix a exploit timestep t where arm it is played. Then,

regret(t) ≤ 2wit,t + 2bP1,it,t + 2bP2,it,t

≤ 2 max
i

(wi,t + bP1,i,t + bP2,i,t)

≤ 2
(

max
i
wi,t + max

i
bP1,i,t + max

i
bP2,i,t

)
. (C.7)

Note that:

wi,t = QN
(

0,xi,t(XT
i,tXi,t)

−1
xTi,t

)( δ

2nT

)
.

Similarly,

bPj ,i,t = Q
N
(

0,xi,t

(
XTPj,tXPj,t

)−1
xTi,t

)
(

δ

2 n
|Pj |T

)
.

We first bound

xi,t
(
XT
i,tXi,t

)−1
xi,t ≤ ||xi,t||λmax

((
XT
i,tXi,t

)−1
)

= ||xi,t||
1

λmin

(
XT
i,tXi,t

)

≤ 1

λmin

(
XT
i,tXi,t

) (C.8)
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where the last inequality holds since ||xi,t|| ≤ 1 for all i and t. Using similar logic,

xi,t

(
X T
Pj ,t
XPj ,t

)−1

xi,t ≤
1

λmin

(
X T
Pj ,t
XPj ,t

) . (C.9)

Let Gi,t be the number of observations of arm i with contexts drawn uniformly

from the distribution for arm i prior to timestep t. Similarly, let GPj ,t be the number

of observations of group Pj with contexts drawn uniformly from the distribution for

group Pj prior to timestep t. Let L > maxt λmax(xTi,t, xi,t). For any α ∈ [0, 1], using

the superaddivity of minimum eigenvectors for positive semidefinite matrices, we

get

E
[
λmin(XT

i,tXi,t)
]
≥ Gi,t

d
λmini,d ≥

⌊
Gi,t

d

⌋
λmini,d . (C.10)

Similarly,

E
[
λmin(X T

Pj ,t
XPj ,t)

]
≥ GPj ,t

d
λminPj,d

≥
⌊GPj ,t

d

⌋
λminPj,d

. (C.11)

Equation C.10 implies that

Pr
Xi,t

[
λmin(XT

i,t, Xi,t) ≤ α

⌊
Gi,t

d

⌋
λmini,d

]

≤ Pr
Xi,t

[
λmin(XT

i,t, Xi,t) ≤ αE[λmin(XT
i,tXi,t)]

]
(C.12)

≤ Pr
Xi,t

[
λmin(XT

i,t, Xi,t) ≤ αλmin(E[XT
i,tXi,t])

]
(C.13)

≤ d exp

(
−(1− α)2λmin(E[XT

i,tXi,t])

2L

)
(C.14)

≤ d exp

(
−(1− α)2E[λmin(XT

i,tXi,t)]

2L

)
(C.15)
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≤ d exp



−(1− α)2

⌊
Gi,t
d

⌋
λmini,d

2L


 (C.16)

where Inequalities C.12 and C.16 are from equation C.10, Inequalities C.13 and

C.15 are from Jensen’s inequality [170], and Inequality C.14 uses a Matrix Chernoff

Bound [170].

Using Inequality C.16 after rearranging with probability 1− δ:

λmin(XT
i,tXi,t) ≥ α

⌊
Gi,t

d

⌋
λmini,d (C.17)

when

Gi,t ≥ d

(
L

(1− α)2λmini,d

)(
ln

1

δ
+ ln d

)
. (C.18)

Using similar logic with probability 1− δ, we have

λmin(X T
Pj ,t
XPj ,t) ≥ α

⌊GPj ,t
d

⌋
λminPj,d

(C.19)

when

GPj ,t ≥ d

(
L

(1− α)2λminPj,d

)(
ln

1

δ
+ ln d

)
. (C.20)

Using a multiplicative Chernoff bound [170] for a fixed timestep t with probability

1− δ′, the number of exploitation rounds prior to rounds t will satisfy

∣∣∣∣∣Gt −
∑

t′<t

pt′

∣∣∣∣∣ ≤
√

ln
2

δ′

∑

t<t′

pt′ (C.21)
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For a fixed i and timestep t using a multiplicative Chernoff bound, with probability

1− δ′, the number of exploitation rounds for arm i prior to round t will satisfy

∣∣∣∣Gi,t −
Gt

n

∣∣∣∣ ≤
√

ln
2

δ′
Gt

n
. (C.22)

Similarly, for a fixed group Pj and timestep t with probaility 1− δ′, the number of

exploration rounds for group Pj prior to round t will satisfy

∣∣∣∣Gi,t −
Gt

|Pj|/n

∣∣∣∣ ≤
√

ln
2

δ′
Gt

n/|Pj|
(C.23)

where |Pj| is the size of group Pj.

Combining equations C.21 and C.22 with probability at least 1− 2δ′ for a fixed

arm i and timestep t, if
∑

t′<t Pt′ ≥ 36n ln2 2
δ′

we have

∣∣∣∣Gi,t −
∑

t′<t pt′

n

∣∣∣∣ ≤
∑

t′<t pt′

2n
. (C.24)

Similarly, combining equations C.21 and C.23 with probability at least 1− 2δ′ for a

fixed group Pj and timestep t:

∣∣∣∣Gi,t −
∑

t′<t Pt′

n/|Pj|

∣∣∣∣ ≤
∑

t′<t pt′

2n
. (C.25)

Therefore, equation C.17 holds with probability 1− δ′ when

∑
t′<t pt

2n
≥ d

(
L

(1− α)2λmini,d

)(
ln

1

δ
+ ln d

)
. (C.26)
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Similarly, equation C.19 holds with probability 1− δ′ when

∑
t′<t pt

2n/|Pj|
≥ d

(
L

(1− α)2λminPj,d

)(
ln

1

δ
+ ln d

)
. (C.27)

Therefore, since n/|Pj| < n, the number of rounds after which we have sufficient

samples such that the estimators are well-concentrated is

T1 = Θ

(
min
a

(
dnL

λmina,d

(
ln2 2

δ
+ ln d

))3/2
)

(C.28)

where a ∈ [n] ∪ P1 ∪ P2.

Also note that for any t ≥ T1 we have

∑

t′<t

pt′ = Ω

(
min
a

(
dnL

λmina,d

(
ln2 2

δ′
+ ln d

)))
. (C.29)

We can now bound the third term in Equation C.5.

∑

t: t is an exploit round and t≥T1

regret(t)

≤ 2
∑

t≥T1

(
max
i
wi,t + max

i
bP1,i,t + max

i
bP2,i,t

)
(C.30)

≤ 2
∑

t≥T1

(
max
i
QN(0,λmax((XT

i,tXi,t))
−1)

(
δ

2nT

)

+ max
i
QN(0,λmax((XTP1,tXP1,t))

−1)

(
δ

2 n
|P1|T

)

+ max
i
QN(0,λmax((XTP2,tXP2,t))

−1)

(
δ

2 n
|P2|T

))
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≤ 2
∑

t≥T1


Q

N
(

0, 1

mini λmin((XT
i,t
Xi,t))

−1

)( δ

2nT

)

+Q
N
(

0, 1

mini λmin((XT
P1,t
XP1,t))

−1

)
(

δ

2 n
|P1|T

)

+ Q
N
(

0, 1

mini λmin((XT
P2,t
XP2,t))

−1

)
(

δ

2 n
|P2|T

)


≤ 2
∑

t≥T1


Q

N

0, 1

mini α

⌊
Gi,t
d

⌋
λmini,d


(

δ

2nT

)

+Q
N

0, 1

α

⌊
GP1,t
d

⌋
λminP1,d


(

δ

2 n
|P1|T

)

+ Q
N

0, 1

α

⌊
GP2,t
d

⌋
λminP2,d


(

δ

2 n
|P2|T

)

+ 3δ′T (C.31)

≤ 2
∑

t≥T1



√√√√ ln 2nT

δ

mini α
⌊
Gi,t
d

⌋
λmini,d

+

√√√√√
ln

2 n
|P1|

T

δ

mini α
⌊
GP1,t
d

⌋
λminP1,d

+

√√√√√
ln

2 n
|P2|

T

δ

mini α
⌊
GP2,t
d

⌋
λminP2,d


+ 6δ′T (C.32)

≤ 2
∑

t≥T1


3

√√√√ ln 2nT
δ

mini α
⌊
Gi,t
d

⌋
λmini,d


 (C.33)
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= O

(∑

t≥T1

√
d

ln 2nT
δ

miniGi,tλmini,d

+ δ′T

)

= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t≥T1

√
1

miniGi,t

+ δ′T

)

= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t≥T1

√
n∑
t′<t pt′

+ δ′T

)

= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t≥T1

√
n

t2/3
+ δ′T

)
(C.34)

= O



√
dn

ln 2nT
δ

mini λmini,d

∑

t∈[T1,T ]

1

t1/3
+ δ′T




= O

(√
dn

ln 2nT
δ

mini λmini,d

T 2/3 + δ′T

)
(C.35)

where (C.30) is due to Equation C.7, (C.31) is due to Equations C.10 and C.11,

(C.32) is due to Chernoff bounds, (C.33) is due to the fact that n
|Pj | < n and

GPj ,t > miniGi,t, and (C.34) is due to Equation C.6. Theorem 6.1 follows by

combining Equations C.5, C.6, C.28, and C.35 and setting δ′ = min
(

1
3nT

, 1
T 1/3

)
.

C.3.2 Multiple Groups

In in order to prove Theorem C.5, we first prove two lemmas.

Lemma C.3. The following holds for any i at any time t, with probability at least

1− δ
∣∣∣∣∣β̂i,t · xi,t −

(
βi · xi,t +

m∑

j=1

1 [i ∈ Pj]ψPj · xi,t
)∣∣∣∣∣
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Algorithm 7 GroupFairTopInterval (Multiple Groups)

Require: δ, (P1, . . . , Pm), ρ
1: for t = 1 . . . T do
2: with probability 1

t1/3
, play it ∈R {1, . . . , n}

3: Else
4: for j = 1 . . . ,m do

5: Let ψ̂Pj ,t =
(
X T
Pj ,t
XPj ,t

)−1

X T
Pj ,t
YPj ,t

6: for i = 1 . . . n do
7: Let β̂i,t =

(
XT
i,tXi,t

)−1
XT
i,tY

T
i,t

8: Let Fi,t = N
(

0, σ2xi,t
(
XT
i,tXi,t

)−1
xTi,t

)

9: Let wi,t = QFi,t

(
δ

2nt

)

10: for j where i ∈ Pj do
11: Let FPj ,i,t = N

(
0, σ2xi,t

(
X T
Pj ,t
XPj ,t

)
xTi,t

)

12: Let bPj ,i,t = QFPj,i,t

(
δ

2 n
|Pj |

T

)

13: Let ûi,t = β̂i,t · xi,t + wi,t + ρ− ψ̂Pj ,t · xi,t + bPj ,i,t

14: Play arg maxi ûi,t and observe reward yi,t
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≤ wi,t (C.36)

Proof. Inequality C.36 can be replaced with

∣∣∣β̂i,t · xi,t − Ci · xi,t
∣∣∣ ≤ wi,t

where Ci = βi + ψPj and i ∈ Pj. By the standard properties of OLS estimators

β̂i,t ∼ N
(
Ci, σ

2(XT
i,tXi,t)

−1
)
. For any fixed xi,t:

β̂i,t · xi,t ∼ N
(
Ci · xi,t, xTi,tσ2(XT

i,tXi,t)
−1xi,t

)

Using the definition of the quantile function and the symmetric property of the nor-

mal distribution, with probability at least 1− δ
nT

, Inequality C.36 holds. Therefore,

the probability that inequality C.36 fails to hold for any i at any timestep t is at

most nT δ
nT

= δ.

Lemma C.4. The following holds for any group Pj, any arm i, at any timestep t,

with probability at least 1− δ:

∣∣∣ψ̂Pj ,t · xi,t − ψPj ,t · xi,t
∣∣∣ ≤ bPj ,i,t. (C.37)

Proof. By the standard properties of OLS estimators,

ψ̂Pj ,t ∼ N
(
ψPj , σ

2(X T
Pj ,t
XPj ,t)−1

)
.
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For any fixed xi,t:

ψ̂Pj ,t · xi,t ∼ N
(
ψPj · xi,t, xTi,tσ2(X T

Pj ,t
XPj ,t)−1xi,t

)
.

Using the definition of the quantile function and the symmetric property of the

normal distribution, with probability of at least 1 − δ
n
|Pj |

T
inequality C.37 holds.

Therefore the probability this fails to hold for any i at timestep t is at most

n
|Pj |T

δ
n
|Pj |

T
= δ.

Theorem C.5. For m groups P1, . . . , Pm, where ρ is the expected average reward,

GroupFairTopInterval (Multiple Groups) has regret

R(T ) = O



√
dn ln 2nT

δ

l
T 2/3

+

(
dnmL

l

(
ln2 2nT

δ
+ ln d

))2/3
)

(C.38)

where l = mini λmini,d and L > maxt λmax(xTi,txi,t).

We can now prove Theorem C.5.

Proof. Assume that both Lemma C.3 and Lemma C.4 hold for all arms i and all

timesteps t.

Regret for GroupFairTopInterval (Multiple Groups) can be grouped

into three terms for any T1 ≤ T :

R(T ) =
∑

t: t is an explore round

regret(t)
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+
∑

t: t is an exploit round and t<T1

regret(t)

+
∑

t: t is an exploit round and t≥T1

regret(t) (C.39)

Starting with the first term in Equation C.39, define pt = 1
t1/3

to be the proba-

bility that timestep t is an exploration round. Then, for any t,

∑

t′<t

pt′ = Θ(t2/3) (C.40)

Focusing on the third term of Equation C.39, fix an exploit timestep t where

arm it is played. Then,

regret(t) ≤ 2wit,t + max
j

(2bPj ,it,t)

≤ 2 max
i,j

(wi,t + bPj ,i,t)

≤ 2

(
max
i
wi,t + max

i,j
bPj ,i,t

)
(C.41)

From Algorithm 7, note that

wi,t = Q
N
(

0,xi,t(XT
i,tXi,t)

−1
xTi,t

)( δ

2nT

)
.

Similarly,

bPj ,i,t = Q
N

(
0,xi,t

(
XTPj,tXPj,t

)−1
xTi,t

)
(

δ

2 n
|Pj |T

)
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We will first bound xi,t
(
XT
i,tXi,t

)−1
xTi,t.

xi,t
(
XT
i,tXi,t

)−1
xTi,t ≤ ||xi,t||λmax

((
XT
i,tXi,t

)−1
)

= ||xi,t||
1

λmin(XT
i,tXi,t)

≤ 1

λmin(XT
i,tXi,t)

(C.42)

where inequality C.42 is due to ||xi,t|| ≤ 1 for all arms i and all timesteps t.

Using similar logic:

xi,t

(
X T
Pj ,t
XPj ,t

)−1

xTi,t ≤
1

λmin

(
X T
Pj ,t
XPj ,t

) . (C.43)

Let Gi,t be the number of observations of arm i with context i drawn uniformly

from the distribution for arm i prior to timestep t. Similarly, let GPj ,t be the number

of observations of group Pj with context drawn uniformly from the distribution for

group Pj prior to timestep t. Let L > maxt λmax

(
xTi,txi,t

)
.

For any α ∈ [0, 1], using the superadditivity of minimum eugenvectors for positive

semi-definite matrices, we get:

E
[
λmin(XT

i,tXi,t)
]
≥ Gi,t

d
λmini,d

≥
⌊
Gi,t

d

⌋
. (C.44)

Similarly,

E
[
λmin(X T

Pj ,t
XPj ,t)

]
≥
⌊
GPj ,t

d

⌋
λminPj.d

. (C.45)
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Equation C.44 implies that:

Pr
xi,t

[
λmin(Xi,tXi,t) ≤ α

⌊
Gi,t

d

⌋
λmini,d

]

≤ Pr
xi,t

[
λmin(XT

i,tXi,t) ≤ αE
[
λmin(XT

i,tXi,t)
]]

(C.46)

≤ Pr
xi,t

[
λmin(XT

i,tXi,t) ≤ αλmin

(
E
[
XT
i,tXi,t

])]
(C.47)

≤ d exp

(
−(1− α)2λmin

(
E
[
XT
i,tXi,t

])

2L

)
(C.48)

≤ d exp

(
−(1− α)2E

[
λmin

(
XT
i,tXi,t

)]

2L

)
(C.49)

≤ d exp



−(1− α)2

⌊
Gi,t
d

⌋
λmini,d

2L


 (C.50)

where inequality C.46 comes from inequality C.44, inequality C.47 is due to Jensen’s

inequality, inequality C.48 is due to a matrix Chernoff Bound, inequality C.49 is

due to Jensen’s inequality, and inequality C.50 is due to inequality C.44. After

rearranging inequality C.50, with probability 1− δ,

λmin(XT
i,tXi,t) ≥ α

⌊
Gi,t

d

⌋
λmini,d (C.51)

when

Gi,t ≥ d

(
L

(1− α)2λmini,d

)(
ln

1

δ
+ ln d

)
. (C.52)

Using similar logic with probability 1− δ, we have

λmin

(
X T
Pj ,t
XPj ,t

)
≥ α

⌊
GPj ,t

d

⌋
λminPj,d

(C.53)
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when

GPj ,t ≥ d

(
L

(1− α)2λminPj,d

)(
ln

1

δ
+ ln d

)
. (C.54)

Using a multiplicative Chernoff bound for a fixed timestep t with probability

1− δ′, the number of exploitation rounds prior to rount t will satisfy

∣∣∣∣∣Gt −
∑

t′<t

pt′

∣∣∣∣∣ ≤
√

ln
2

δ′

∑

t′<t

pt′ . (C.55)

For a fixed i and timestep t, using a multiplicative Chernoff bound for a fixed

timestep t with probability 1− δ′, the number of exploitation rounds for arm i prior

to round t will satisfy ∣∣∣∣Gi,t −
Gt

n

∣∣∣∣ ≤
√

ln
2

δ′
Gt

n
(C.56)

Similarly, for a fixed group Pj and timestep t with probability 1−δ′, the number

of exploration rounds for group Pj prior to round t will satisfy

∣∣∣∣GPj ,t −
Gt

n/|Pj|

∣∣∣∣ ≤
√

ln
2

δ′
Gt

n/|Pj|
(C.57)

where |Pj| is the size of group Pj.

Combining inequality C.55 and inequality C.56, with probability 1 − 2δ′ for a

fixed arm i and timestep t, if
∑

t′<t pt′ ≥ 36n ln2 2
δ′

we have

∣∣∣∣Gi,t −
∑

t′<t pt′

n

∣∣∣∣ ≤
∑

t′<t pt′

2n
. (C.58)
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Similarly, combining inequality C.55 and inequality C.57 with probability at least

1− 2δ′ for a fixed group Pj and fixed timestep t:

∣∣∣∣Gi,t −
∑

t′<t pt′

n/|Pj|

∣∣∣∣ ≤
∑

t′<t pt′

2n/|Pj|
. (C.59)

Therefore inequality C.51 holds with probability 1− δ′ when

∑
t′<t pt′

2n
≥ d

(
L

(1− α)2λmini,d

)(
ln

1

δ
+ ln d

)
. (C.60)

Similarly, inequality C.53 holds with probability 1− δ′ when

∑
t′<t pt′

2n/|Pj|
≥ d

(
L

(1− α)2λmini,d

)(
ln

1

δ
+ ln d

)
. (C.61)

Therefore, since n
|Pj | < n, the number of rounds after which we have sufficient

samples such that the estimators are well-concentrated is

T1 = Θ

(
min
a

(
dnmL

λmina,d

(
ln2 2

δ
+ ln d

))3/2
)

(C.62)

where a ∈ [n] ∪ P1 ∪ · · · ∪ Pm.

Also note that for any t > T1 we have:

∑

t′<t

pt′ = Ω

(
min
a

(
dnmL

2 mina,d

(
ln2 2

δ′
+ ln d

)))
. (C.63)

Now we can bound the third term in equation C.39.

∑

t: t is an exploit round and t>T1

regret(t)
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≤ 2
∑

t>T1

(
max
i
wi,t + max

i,j
bPj ,i,t

)
(C.64)

≤ 2
∑

t>T1

(
max
i
QN(0,λmax(XT

i,tXi,t)
−1)

(
δ

2nT

)

+ max
j
Q
N
(

0,λmax(XTPj,tXPj,t)
−1
)
(

δ

2 n
|Pj |T

))

≤ 2
∑

t>T1


Q

N

(
0, 1

mini λmin(XT
i,t
Xi,t)

)( δ

2nT

)

+ Q
N

(
0, 1

minj λmin(XT
Pj,t
XPj,t)

)
(

δ

2 n
|Pj |T

)


≤ 2
∑

t>T1


Q

N

0, 1

mini α

⌊
Gi,t
d

⌋
λmini,d


(

δ

2nT

)

+ Q

N

0, 1

minj α

⌊GPj,t
d

⌋
λminPj,d



(
δ

2 n
|Pj |T

)



+ 3δ′T (C.65)

≤ 2
∑

t>T1



√√√√ ln 2nT

δ

mini α
⌊
Gi,t
d

⌋
λmini,d

+

√√√√√ ln
2 n
minj |Pj |

T

δ

mini α
⌊GPj,t

d

⌋
λmini,d


+ 6δ′T (C.66)

≤ 2
∑

t>T1


2

√√√√ ln 2nT
δ

mini α
⌊
Gi,t
d

⌋
λmini,d


+ 6δ′T (C.67)

= O

(∑

t>T1

√
d

ln 2nT
δ

miniGi,tλmini,d

+ δ′T

)
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= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t>T1

√
1

miniGi,t

+ δ′T

)

= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t>T1

√
n∑
t′<t pt′

+ δ′T

)

= O

(√
d

ln 2nT
δ

mini λmini,d

∑

t>T1

√
n

t2/3
+ δ′T

)
(C.68)

= O



√
dn

ln 2nT
δ

mini λmini,d

∑

t∈[T1,T ]

1

t1/3
+ δ′T




= O

(√
dn

ln 2nT
δ

mini λmini,d

T 2/3 + δ′T

)
(C.69)

where inequality C.64 is due to equation C.41, inequality C.65 is due to equa-

tion C.44 and equation C.45, inequality C.66 is due to a Chernoff bound, inequal-

ity C.67 is due to the fact that n
minj |Pj | < n and minj GPj ,t ≥ miniGi,t, and equa-

tion C.68 is due to equation C.40.

Combining equation C.39, equation C.40, equation C.63, and equation C.69 and

setting δ′ = min( 1
3nT

, 1
T 1/3 ) we get Theorem C.5.

C.4 Additional Experiments

Additionally to the experiments found in Section 6.4.1, we ran the following exper-

iments:

(a) Varying the range in which coefficients are chosen (between [0,c]) while setting

the total budget T = 1000, the number of arms n = 10, the error mean µ = 10,

the number of sensitive arms equal to 5, and the context dimension d = 2

(Figures C.1a and C.2a).
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(a) n = 10, µ = 10,
number of sensitive

arms = 5

(b) T = 1000, µ =
10, number of sen-
sitive arms = 5

(c) n = 10, T =
1000, number of
sensitive arms = 5

(d) legend

Figure C.1: Percentage of total arm pulls that were pulled using
sensitive arms.

(a) n = 10, µ = 10,
number of sensitive

arms = 5

(b) T = 1000, µ =
10, number of sen-
sitive arms = 5

(c) n = 10, T =
1000, number of
sensitive arms = 5

(d) legend

Figure C.2: Regret for synthetic experiments. The solid lines are
regret given the rewards received from pulling the arms (including the
group bias). The dashed lines is the true regret (without the group

bias).

(b) Varying the context dimension while setting the total budget T = 1000, the

number of arms n = 10, the error mean µ = 10, and the number of sensitive

arms equal to 5 (Figures C.1b and C.2b).

(c) Varying probability δ while setting the total budget T = 1000, the number of

arms n = 10, the error mean µ = 10, the number of sensitive arms equal to 5,

and the context dimension d = 2 (Figures C.1c and C.2c).
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Appendix D: Transfer of Machine Learning

Fairness across Domains

D.1 Rademacher Complexity

We provide additional bounds dependent on Radmacher Complexity based on the

following definition of data-driven empirical Rademacher Complexity

Definition 1. Given a hypothesis space H, a sample S ∈ Xm, the empirical

Rademacher Complexity of H is defined as

R̂S(H) =
2

m
Eσ

[
sup
h∈H
|
m∑

i=1

σih(xi)|
∣∣∣∣∣S = (x1, . . . , xm)

]
.

The expectation is taken over σ = (σ1, . . . , σm) where σi ∈ {−1,+1} are uniform

independent random variables. The Rademacher Complexity of a hypothesis space

is defined as the expectation of R̂ over all sample sets of size m

Rm(H) = ES
[
R̂S(H)

∣∣∣ |S| = m
]
. (D.1)

Rademacher Complexity measures the ability of a hypothesis space to fit random

noise. The empirical Rademacher Complexity function allows us to estimate the

Rademacher Complexity using a finite sample of data. Rademacher Complexity

197



bounds can lead to tighter bounds than those of VC-dimension, especially when

analyzing neural network models.

When transitioning to Rademacher Complexity we need to change the binary

labels from {0, 1} to {−1, 1}. This means that the error of a hypothesis g is defined

as

εSlα(g, f) = Ezlα∼DSlα

[ |g(zlα)− f(zlα)|
2

]
.

Additionally, we need new definitions of the equal opportunity and equalized

odds distances over the new binary group membership. The equal opportunity

distance is defined as

∆EOpS(g) , EZ−1
0 ∼DS−1

0

[
1 + g(z−1

0 )

2

]
− EZ−1

1 ∼DS−1
1

[
1 + g(z−1

1 )

2

]
,

while the equlized odds distance is defined as

∆EOT
(g) ,

∣∣∣∣EZ−1
0 ∼DT−1

0

[
1 + g(z−1

0 )

2

]
− EZ−1

1 ∼DT−1
1

[
1 + g(z−1

1 )

2

]∣∣∣∣

+

∣∣∣∣EZ1
0∼DT1

0

[
1 + g(z1

0)

2

]
− EZ1

1∼DT1
1

[
1 + g(z1

1)

2

]∣∣∣∣ .

Using these new definitions Theorem D.1 provides a Rademacher Complexity

bound of the equal opportunity distance in the target space. This closely resembles

the VC-dimension bound in Theorem 7.1.

Theorem D.1. Let H be a hypothesis space. If US−1
0
, US−1

1
, UT−1

0
, UT−1

1
are samples

of size m′, each drawn from DS−1
0
, DS−1

1
, DT−1

0
, and DT−1

1
respectively, then for any

δ ∈ (0, 1), with probability at least 1−δ (over the choice of samples), for every g ∈ H

(where H is a symmetric hypothesis space) the distance from equal opportunity in
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the target space is bounded by

∆EOpT (g) ≤ ∆EOpS(g) +
1

2
d̂H∆H(UT−1

0
,US−1

0
) +

1

2
d̂H∆H(UT−1

1
,US−1

1
)

+ 2
(
RU

T−1
0

(H) + RU
S−1
0

(H) + RU
T−1
1

(H) + RU
S−1
1

(H)
)

+ 6

√
log 2

δ

2m
+ λ−1

0 + λ−1
1 ,

where λlα = εSlα(g∗, f) + εT lα(g∗, f).

The proof also follows a similar logic to the sketch given for Theorem 7.1 with

the additional step of using a modification of Corollary 7 given by Mansour et al.

[164].

Similarly, Theorem D.2 provides a Rademacher Complexity bound of the equal-

ized odds distance in the target space.

Theorem D.2. LetH be a hypothesis space. If US−1
0
, US−1

1
, UT−1

0
, UT−1

1
US1

0
, US1

1
, UT 1

0
, UT 1

1

are samples of size m′, each drawn from DS−1
0
, DS−1

1
, DT−1

0
, DT−1

1
,DS1

0
, DS1

1
, DT 1

0
,

and DT 1
1
respectively, then for any δ ∈ (0, 1), with probability at least 1− δ (over the

choice of samples), for every g ∈ H (where H is a symmetric hypothesis space) the

distance from equalized odds in the target space is bounded by

∆EOT
(g) ≤ ∆EOS

(g) +
1

2

(
d̂H∆H(US−1

0
,UT−1

0
) + d̂H∆H(US−1

1
,UT−1

1
)

+d̂H∆H(US1
0
,UT 1

0
) + d̂H∆H(US1

1
,UT 1

1
)
)

+ 2
(
R̂U

S−1
0

(H) + R̂U
T−1
0

(H) + R̂U
S−1
1

(H) + R̂U
T−1
1

(H)

+ R̂U
S10

(H) + R̂U
T1
0

(H) +R̂U
S11

(H) + R̂U
T1
1

(H)
)
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+ 12

√
log 2

δ

2m
+ λEO ,

where λEO = λ−1
0 + λ−1

1 + λ1
0 + λ1

1, and λlα = εSlα(g∗, f) + εT lα(g∗, f).

Given either the Rademacher Complexity bounds or the VC-dimension bounds,

the implications stay the same. In order for a successful transfer of fairness the two

(or four) subspace domains should be close across the source and target domains.

Additionally, there should be a hypothesis in the hypothesis space that performs

well over all of the relevant subspaces.

D.2 Proofs

Lemma D.1. (From Ben-David et al. [24]) For any hypotheses h, h′ ∈ H,

|εS(h, h′)− εT (h, h′)| ≤ 1

2
dH∆H(DS, DT ).

Lemma D.2. (From [23, 73]) For any labeling functions f1, f2, and f3, we have

ε(f1, f2) ≤ ε(f1, f3) + ε(f2, f3).

D.2.1 VC-dimension bounds

Lemma D.3. (From Ben-David et al. [24]) Let H be a hypothesis space on Z with

VC-dimension d. If U and U ′ are samples of size m from D and D′ respectively and

d̂H(U ,U ′) is the empirical H-divergence between samples, then for any δ ∈ (0, 1),
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with probability at least 1− δ,

dH(D,D′) ≤ d̂H(U ,U ′) + 4

√
d log(2m) + log(2

δ
)

m
.

Theorem D.4. LetH be a hypothesis space of VC dimension d. If US0
0
, US0

1
, UT 1

0
, UT 0

1

are samples of size m′ each, drawn from DS0
0
, DS0

1
, DT 0

0
, and DT 0

1
respectively, then

for any δ ∈ (0, 1), with probability at least 1 − δ (over the choice of samples), for

every g ∈ H (where H is a symmetric hypothesis space) the distance from equal

opportunity in the target space is bounded by

∆EOpT (g) ≤ ∆EOpS(g) +
1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+ 8

√
2d log(2m′) + log(2

δ
)

m′
+ λ0

0 + λ0
1,

where λlα = εSlα(g∗, f) + εT lα(g∗, f).

Proof. Without loss of generality assume EZ0
0∼DS00

≥ EZ0
1∼DS01

. Then we can rewrite

∆EOpS(g) as follows:

∆EOpS(g) = EZ0
0∼DS00

[
g(Z0

0)
]
− EZ0

1∼DS01

[
g(z0

1)
]

= EZ0
0∼DS00

[
g(Z0

0)
]

+ EZ0
1∼DS01

[
1− g(z0

1)
]
− 1

= εS0
0
(g, f) + εS0

1
(1− g, f)− 1,

where the last line follows from the fact that equal opportunity only cares about the

error on the false data-points.
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We now have the tools to find an upper-bound on ∆EOpT (g).

∆EOpT (g) =εT 0
0
(g, f) + εT 0

1
(1− g, f)− 1

≤ εT 0
0
(g, g∗) + εT 0

0
(f, g∗) + εT 0

1
(1− g, g∗) + εT 0

1
(f, g∗)− 1 (D.2)

= εT 0
0
(g∗, f) + εT 0

0
(g, g∗) + εT 0

1
(g∗, f) + εT 0

1
(1− g, g∗)− 1

= εT 0
0
(g∗, f) + εT 0

0
(g, g∗) + εS0

0
(g, g∗)− εS0

0
(g, g∗)

+ εT 0
1
(g∗, f) + εT 0

1
(1− g, g∗) + εS0

1
(1− g, g∗)− εS0

1
(1− g, g∗)− 1

≤ εT 0
0
(g∗, f) + εS0

0
(g, g∗) +

∣∣∣εT 0
0
(g, g∗)− εS0

0
(g, g∗)

∣∣∣

+ εT 0
1
(g∗, f) + εS0

1
(1− g, g∗) +

∣∣∣εT 0
1
(1− g, g∗)− εS0

1
(1− g, g∗)

∣∣∣− 1

≤ εT 0
0
(g∗, f) + εS0

0
(g, g∗) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ εT 0
1
(g∗, f) + εS0

1
(1− g, g∗) +

1

2
dH∆H(DT 0

1
, DS0

1
)− 1 (D.3)

≤ εT 0
0
(g∗, f) + εS0

0
(g, f) + εS0

0
(g∗, f) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ εT 0
1
(g∗, f) + εS0

1
(1− g, f) + εS0

1
(g∗, f) +

1

2
dH∆H(DT 0

1
, DS0

1
)− 1

(D.4)

= εS0
0
(g, f) + εT 0

0
(g∗, f) + εS0

0
(g∗, f) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ εS0
1
(1− g, f) + εT 0

1
(g∗, f) + εS0

1
(g∗, f) +

1

2
dH∆H(DT 0

1
, DS0

1
)− 1

= εS0
0
(g, f) + εS0

1
(1− g, f)− 1 +

1

2
dH∆H(DT 0

0
, DS0

0
)

+
1

2
dH∆H(DT 0

1
, DS0

1
) + λ0

0 + λ0
1 (D.5)

= ∆EOpS(g) +
1

2
dH∆H(DT 0

0
, DS0

0
) +

1

2
dH∆H(DT 0

1
, DS0

1
) + λ0

0 + λ0
1

≤ ∆EOpS(g) +
1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+ 8

√
2d log(2m′) + log(2

δ
)

m′
+ λ0

0 + λ0
1, (D.6)
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Where inequality D.2 is due to lemma D.2, inequality D.3 is due to lemma D.1

and the fact that H is a symmetric hypothesis space, inequality D.4 is due to lemma

D.2, equality D.5 is due to the definition of λlα, and inequality D.6 is due to lemma

D.3.

Theorem D.5. Let H be a hypothesis space of VC dimension d. If USlα are samples

of size m′ each, drawn from DSlα for all α ∈ ΩA = {0, 1} and l ∈ ΩY = 0, 1, then for

any δ ∈ (0, 1), with probability at least 1− δ (over the choice of samples), for every

g ∈ H (where H is a symmetric hypothesis space) the distance from equalized odds

in the target space is bounded by

∆EOT
(g) ≤ ∆EOS

(g) +
1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+
1

2
d̂H∆H(UT 1

0
,US1

0
) +

1

2
d̂H∆H(UT 1

1
,US1

1
)

+ 16

√
2d log(2m′) + log(2

δ
)

m′
+ λEO ,

where λEO = λ0
0 + λ0

1 + λ1
0 + λ1

1, and λlα = εSlα(g∗, f) + εT lα(g∗, f).

Proof. WLOG assume EZ0
0∼DS00

[g] ≥ EZ0
1∼DS01

[g] and EZ1
0∼DS10

[g] ≥ EZ1
1∼DS11

[g].

Then,

∆EOS
= EZ0

0∼DS00
[g]− EZ0

1∼DS01
[g] + EZ1

0∼DS10
[g]− EZ1

1∼DS11
[g]

= EZ0
0∼DS00

[g] + EZ0
1∼DS01

[1− g] + EZ1
0∼DS10

[g] + EZ1
1∼DS11

[1− g]− 2

= εS0
0
(g, f) + εS0

1
(1− g, f) + εS1

0
(g, f) + εS1

1
(1− g, f)− 2.
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Using this and the previous lemmas we have:

∆EOT
(g) = εT 0

0
(g, f) + εT 0

1
(1− g, f) + εT 1

0
(g, f) + εT 1

1
(1− g, f)− 2

≤ εT 0
0
(g, g∗) + εT 0

0
(f, g∗) + εT 0

1
(1− g, g∗) + εT 0

1
(f, g∗)

+ εT 1
0
(g, g∗) + εT 1

0
(f, g∗) + εT 1

1
(1− g, g∗) + εT 1

1
(f, g∗)− 2 (D.7)

= εT 0
0
(g∗, f) + εT 0

0
(g, g∗) + εS0

0
(g, g∗)− εS0

0
(g, g∗)

+ εT 0
1
(g∗, f) + εT 0

1
(1− g, g∗) + εS0

1
(1− g, g∗)− εS0

1
(1− g, g∗)

+ εT 1
0
(g∗, f) + εT 1

0
(g, g∗) + εS1

0
(g, g∗)− εS1

0
(g, g∗)

+ εT 1
1
(f, g∗) + εT 1

1
(1− g, g∗) + εS1

1
(1− g, g∗)− εS1

1
(1− g, g∗)− 2

≤ εT 0
0
(g∗, f) + εS0

0
(g, g∗) +

∣∣∣εT 0
0
(g, g∗)− εS0

0
(g, g∗)

∣∣∣

+ εT 0
1
(g∗, f) + εS0

1
(1− g, g∗) +

∣∣∣εT 0
1
(1− g, g∗)− εS0

1
(1− g, g∗)

∣∣∣

+ εT 1
0
(g∗, f) + εS1

0
(g, g∗) +

∣∣∣εT 1
0
(g, g∗)− εS1

0
(g, g∗)

∣∣∣

+ εT 1
1
(f, g∗) + εS1

1
(1− g, g∗) +

∣∣∣εT 1
1
(1− g, g∗)− εS1

1
(1− g, g∗)

∣∣∣− 2

≤ εT 0
0
(g∗, f) + εS0

0
(g, g∗) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ εT 0
1
(g∗, f) + εS0

1
(1− g, g∗) +

1

2
dH∆H(DT 0

1
, DS0

1
)

+ εT 1
0
(g∗, f) + εS1

0
(g, g∗) +

1

2
dH∆H(DT 1

0
, DS1

0
)

+ εT 1
1
(f, g∗) + εS1

1
(1− g, g∗) +

1

2
dH∆H(DT 1

1
, DS1

1
)− 2 (D.8)

≤ εT 0
0
(g∗, f) + εS0

0
(g, f) + εS0

0
(g∗, f) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ εT 0
1
(g∗, f) + εS0

1
(1− g, f) + εS0

1
(g∗, f) +

1

2
dH∆H(DT 0

1
, DS0

1
)

+ εT 1
0
(g∗, f) + εS1

0
(g, f) + εS1

0
(g∗, f) +

1

2
dH∆H(DT 1

0
, DS1

0
)
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+ εT 1
1
(f, g∗) + εS1

1
(1− g, f) + εS1

1
(g∗, f) +

1

2
dH∆H(DT 1

1
, DS1

1
)− 2

(D.9)

= λ0
0 + εS0

0
(g, f) +

1

2
dH∆H(DT 0

0
, DS0

0
)

+ λ0
1 + εS0

1
(1− g, f) +

1

2
dH∆H(DT 0

1
, DS0

1
)

+ λ1
0 + εS1

0
(g, f) +

1

2
dH∆H(DT 1

0
, DS1

0
)

+ λ1
1 + εS1

1
(1− g, f) +

1

2
dH∆H(DT 1

1
, DS1

1
)− 2

= ∆EOS
(g) +

1

2
dH∆H(DT 0

0
, DS0

0
) +

1

2
dH∆H(DT 0

1
, DS0

1
)

+
1

2
dH∆H(DT 1

0
, DS1

0
) +

1

2
dH∆H(DT 1

1
, DS1

1
) + λEO

≤ ∆EOS
(g) +

1

2
d̂H∆H(UT 0

0
,US0

0
) +

1

2
d̂H∆H(UT 0

1
,US0

1
)

+
1

2
d̂H∆H(UT 1

0
,US1

0
) +

1

2
d̂H∆H(UT 1

1
,US1

1
)

+ 16

√
2d log(2m′) + log(2

δ
)

m′
+ λEO , (D.10)

where inequality D.7 is due to lemma D.2, inequality D.8 is due to lemma D.1 and

the fact that H is a symmetric hypothesis space, inequality D.9 is due to lemma

D.2, and inequality D.10 is due to lemma D.3.

D.2.2 Rademacher Complexity Bounds

Lemma D.6. (A modification of Corollary 7 from Mansour et al. [164]) Let H by

a hypothesis set of classifiers mapping the feature space X to the labels {−1, 1}. Let

U and U ′ be the set of samples each of size m sampled from D and D′ respectively.
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Then, for any δ > 0, with probability at least 1− δ over samples U and U ′:

dH(D,D′) ≤ d̂H(U ,U ′) + 4 (RU(H) + RU(H)) + 3

√
log 2

δ

2m

Theorem D.7. Let H be a hypothesis space. If US−1
0
, US−1

1
, UT−1

0
, UT−1

1
are samples

of size m′ each, drawn from DS−1
0
, DS−1

1
, DT−1

0
, and DT−1

1
respectively, then for any

δ ∈ (0, 1), with probability at least 1−δ (over the choice of samples), for every g ∈ H

(where H is a symmetric hypothesis space) the distance from equal opportunity in

the target space is bounded by

∆EOpT (g) ≤ ∆EOpS(g) +
1

2
d̂H∆H(UT−1

0
,US−1

0
) +

1

2
d̂H∆H(UT−1

1
,US−1

1
)

+ 2
(
RU

T−1
0

(H) + RU
S−1
0

(H) + RU
T−1
1

(H) + RU
S−1
1

(H)
)

+ 6

√
log 2

δ

2m
+ λ−1

0 + λ−1
1 ,

where λlα = εSlα(g∗, f) + εT lα(g∗, f).

Proof. Without loss of generality assume EZ−1
0 ∼DS−1

0

≥ EZ−1
1 ∼DS−1

1

. Then we can

rewrite ∆EOpS as follows.

∆EOpS(g) = EZ−1
0 ∼DS−1

0

[
1 + g(z−1

0 )

2

]
− EZ−1

1 ∼DS−1
1

[
1 + g(z−1

1 )

2

]

= EZ−1
0 ∼DS−1

0

[
1 + g(z−1

0 )

2

]
+ EZ−1

1 ∼DS−1
1

[
1− 1 + g(z−1

1 )

2

]
− 1

= EZ−1
0 ∼DS−1

0

[
1 + g(z−1

0 )

2

]
+ EZ−1

1 ∼DS−1
1

[
1− g(z−1

1 )

2

]
− 1
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= EZ−1
0 ∼DS−1

0

[
g(z−1

0 )− f(z−1
0 )

2

]
+ EZ−1

1 ∼DS−1
1

[
g(z−1

1 ) + f(z−1
1 )

2

]
− 1

(D.11)

= εS−1
0

(g, f) + εS−1
1

(−g, f)− 1,

where D.11 is due to the fact that f(z−1
0 ) = −1 by definition.

We now have the tools to find an upper bound on ∆EOpT (g).

∆EOpT (g) = εT−1
0

(g, f) + εT−1
1

(−g, f)− 1

≤ εT−1
0

(g, g∗) + εT−1
0

(f, g∗) + εT−1
1

(−g, g∗) + εT−1
1

(f, g∗)− 1 (D.12)

= εT−1
0

(f, g∗) + εT−1
0

(g, g∗) + εS−1
0

(g, g∗)− εS−1
0

(g, g∗)

+ εT−1
1

(f, g∗) + εT−1
1

(−g, g∗) + εS−1
1

(−g, g∗)− εS−1
1

(−g, g∗)− 1

≤ εT−1
0

(g∗, f) + εS−1
0

(g, g∗) + |εT−1
0

(g, g∗)− εS−1
0

(g, g∗)|

+ εT−1
1

(g∗, f) + εS−1
1

(−g, g∗) + |εT−1
1

(−g, g∗)− εS−1
1

(−g, g∗)| − 1

≤ εT−1
0

(g∗, f) + εS−1
0

(g, g∗) +
1

2
dH∆H(DT−1

0
, DS−1

0
)

+ εT−1
1

(g∗, f) + εS−1
1

(−g, g∗) +
1

2
dH∆H(DT−1

1
, DS−1

1
)− 1 (D.13)

≤ εT−1
0

(g∗, f) + εS−1
0

(g, f) + εS−1
0

(g∗, f) +
1

2
dH∆H(DT−1

0
, DS−1

0
)

+ εT−1
1

(g∗, f) + εS−1
1

(−g, f) + εS−1
1

(g∗, f) +
1

2
dH∆H(DT−1

1
, DS−1

1
)− 1

(D.14)

= εS−1
0

(g, f) + εS−1
1

(−g, f)− 1 +
1

2
dH∆H(DT−1

0
, DS−1

0
)

+
1

2
dH∆H(DT−1

1
, DS−1

1
) + λ−1

0 + λ−1
1

= ∆EOpS(g) +
1

2
dH∆H(DT−1

0
, DS−1

0
) +

1

2
dH∆H(DT−1

1
, DS−1

1
) + λ−1

0 + λ−1
1

(D.15)
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≤ ∆EOpS(g) + λ−1
0 + λ−1

1

+
1

2


d̂H∆H(DT−1

0
, DS−1

0
) + 4

(
R̂U

T−1
0

(H) + R̂U
S−1
0

(H)
)

+ 6

√
log 2

δ

2m




+
1

2


d̂H∆H(DT−1

1
, DS−1

1
) + 4

(
R̂U

T−1
0

(H) + R̂U
S−1
0

(H)
)

+ 6

√
log 2

δ

2m




(D.16)

= ∆EOpS(g) +
1

2
d̂H∆H(DT−1

0
, DS−1

0
) +

1

2
d̂H∆H(DT−1

1
, DS−1

1
)

+ 2
(
R̂U

T−1
0

(H) + R̂U
S−1
0

(H) + R̂U
T−1
0

(H) + R̂U
S−1
0

(H)
)

+ 6

√
log 2

δ

2m
+ λ−1

0 + λ−1
1 ,

where Eq. D.12 is due to Lemma D.2, Eq. D.13 is due to Lemma D.1, Eq. D.14 is

due to Lemma D.2, Eq. D.15 is due to the definition of ∆EOpS(g), and Eq. D.16 is

due to Lemma D.6.

Theorem D.8. LetH be a hypothesis space. If US−1
0
, US−1

1
, UT−1

0
, UT−1

1
US1

0
, US1

1
, UT 1

0
, UT 1

1

are samples of size m′ each, drawn from DS−1
0
, DS−1

1
, DT−1

0
, DT−1

1
,DS1

0
, DS1

1
, DT 1

0
,

and DT 1
1
respectively, then for any δ ∈ (0, 1), with probability at least 1− δ (over the

choice of samples), for every g ∈ H (where H is a symmetric hypothesis space) the

distance from equalized odds in the target space is bounded by

∆EOT
(g) ≤ ∆EOS

(g) +
1

2

(
d̂H∆H(US−1

0
,UT−1

0
) + d̂H∆H(US−1

1
,UT−1

1
)

+d̂H∆H(US1
0
,UT 1

0
) + d̂H∆H(US1

1
,UT 1

1
)
)

+ 2
(
R̂U

S−1
0

(H) + R̂U
T−1
0

(H) + R̂U
S−1
1

(H) + R̂U
T−1
1

(H)
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+ R̂U
S10

(H) + R̂U
T1
0

(H) +R̂U
S11

(H) + R̂U
T1
1

(H)
)

+ 12

√
log 2

δ

2m
+ λEO ,

where λEO = λ−1
0 + λ−1

1 + λ1
0 + λ1

1, and λlα = εSlα(g∗, f) + εT lα(g∗, f).

Proof. Without loss of generality assume EZ−1
0 ∼DS−1

0

≥ EZ−1
1 ∼DS−1

1

and EZ1
0∼DS10

≥

EZ1
1∼DS11

. Then we can rewrite ∆EOpS as follows.

∆EOT
(g) = EZ−1

0 ∼DT−1
0

[
1 + g(z−1

0 )

2

]
− EZ−1

1 ∼DT−1
1

[
1 + g(z−1

1 )

2

]

+ EZ1
0∼DT1

0

[
1 + g(z1

0)

2

]
− EZ1

1∼DT1
1

[
1 + g(z1

1)

2

]

= EZ−1
0 ∼DT−1

0

[
1 + g(z−1

0 )

2

]
+ EZ−1

1 ∼DT−1
1

[
1− 1 + g(z−1

1 )

2

]
− 1

+ EZ1
0∼DT1

0

[
1 + g(z1

0)

2

]
+ EZ1

1∼DT1
1

[
1− 1 + g(z1

1)

2

]
− 1

= EZ−1
0 ∼DT−1

0

[
1 + g(z−1

0 )

2

]
+ EZ−1

1 ∼DT−1
1

[
1− g(z−1
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Using this and previous lemmas we have

∆EOT
(g) = εT−1

0
(g, f) + εT−1

1
(−g, f) + εT 1

0
(g, f) + εT 1

1
(−g, f)− 2

≤ εT−1
0

(g, g∗) + εT−1
0

(f, g∗) + εT−1
1

(−g, g∗) + εT−1
1

(f, g∗)
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where Eq. D.17 is due to Lemma D.2, Eq. D.18 is due to Lemma D.1, Eq. D.19 is

due to Lemma D.2, and D.20 is due to Lemma D.6.
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D.3 Experimental setup

For the UCI adult dataset we used all 14 features as provided in https://archive.

ics.uci.edu/ml/machine-learning-databases/adult/adult.names. The origi-

nal train/test split is used. For the COMPAS dataset we used the features provided

in https://github.com/propublica/compas-analysis/blob/master/compas-scores.

csv, and predict the risk of recidivism (decile_score) for each row.

We did 10-fold cross-validation and choose the hyperparameters with the best

performance on the validation data. 64 dimension embedding is used for categorical

features and 256 hidden units are used in the model. We did parameter search and

found 10K steps yields a good balance of runtime and accuracy. Each run takes

about 1hr for UCI data and 0.5hrs for COMPAS on a single CPU with 2GB RAM.

Increasing learning rate speeds up experiments but also hurts accuracy slightly (e.g.,

~2pp decrease on UCI).

For range of parameters, we have considered the following: (1) batch size:

[64, 128, 256, 512]; (2) learning rate: [0.01, 0.1, 1.0]; (3) number of hidden units:

[64, 128, 256, 512]; (4) embedding dimension: [32, 64, 128]. (5) number of steps:

[5000, 10000, 20000, 50000].

D.4 Experiments

D.4.1 Experiment Results for fairness on UCI and COMPAS

Figure D.1 depicts the results of the analysis for transferring from gender to race,

while Figure D.2 shows the results for transferring from race to gender, on the UCI
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(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

Figure D.1: Gender → Race on the UCI dataset. Comparison of
FPR difference on sensitive attribute race, by transferring from the
source domain (1000 samples for each gender) to the target domain

(varying samples for each race as indicated in the caption).

(a) 50 gender samples. (b) 100 gender sam-
ples.

(c) 500 gender sam-
ples.

(d) 1000 gender sam-
ples.

Figure D.2: Race → Gender on the UCI dataset. Comparison of
FPR difference on sensitive attribute gender, by transferring from the
source domain (1000 samples for each gender) to the target domain

(varying samples for each race as indicated in the caption).

dataset. Figure D.3 and Figure D.4 show the results on the COMPAS dataset.

The line and the shaded areas show the mean and the standard error of the mean

across 30 trials. These experiments show that the Transfer model is effective in

decreasing the FPR gap in the target domain and is more sample efficient than

previous methods.

D.4.2 Accuracy vs. Fairness/Transfer Head Weight

In this section we further add the comparison on accuracy with respect to the weight

of the fairness/transfer head. Fig. D.5 and Fig. D.6 show the results comparing the
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(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

Figure D.3: Gender→ Race on the COMPAS dataset. Comparison
of FPR difference on sensitive attribute race, by transferring from the
source domain (1000 samples for each gender) to the target domain

(varying samples for each race as indicated in the caption).

(a) 50 gender samples. (b) 100 gender sam-
ples.

(c) 500 gender sam-
ples.

(d) 1000 gender sam-
ples.

Figure D.4: Race → Gender on the COMPAS dataset. Compari-
son of FPR difference on sensitive attribute gender, by transferring
from the source domain (1000 samples for each gender) to the target
domain (varying samples for each race as indicated in the caption).
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Transfer model with the baselines, by transferring race to gender, and race to gender,

respectively. Fig. D.7 and Fig. D.8 show the results on COMPAS.

(a) 50 gender samples. (b) 100 gender sam-
ples.

(c) 500 gender sam-
ples.

(d) 1000 gender sam-
ples.

Figure D.5: Comparison of accuracy on the UCI data for Race →
Gender, by transferring from the source domain (1000 samples for
each race) to the target domain (varying samples for each gender as

indicated in the caption).

(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

Figure D.6: Comparison of accuracy on the UCI data for Gender
→ Race, by transferring from the source domain (1000 samples for
each gender) to the target domain (varying samples for each race as

indicated in the caption).
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(a) 50 gender samples. (b) 100 gender sam-
ples.

(c) 500 gender sam-
ples.

(d) 1000 gender sam-
ples.

Figure D.7: Comparison of accuracy on COMPAS for Race→ Gen-
der, by transferring from the source domain (1000 samples for each
race) to the target domain (varying samples for each gender as indi-

cated in the caption).

(a) 50 race samples. (b) 100 race samples. (c) 500 race samples. (d) 1000 race samples.

Figure D.8: Comparison of accuracy on COMPAS for Gender →
Race, by transferring from the source domain (1000 samples for each
gender) to the target domain (varying samples for each race as indi-

cated in the caption).
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Appendix E: A Multi-Stage Human-Machine

Framework for Mental Health Risk Assessment

There is a growing body of research on using automated classification to identify

individuals with mental health issues through social media data. However, little

work has been done looking at what it would mean to integrate such systems into a

mental health ecosystem where traditionally assessment is a costly process involv-

ing clinical interviews, tests, or assessments of behavior. How can one best take

advantage of available resources to ensure the largest number of people in need get

attention? We introduce a multi-armed bandit method to identify individuals that

are most at risk, within a given budget, by combining machine and human effort

in a multi-stage framework. We examine our proposed framework in the context

of suicide risk in a dataset of Reddit users, demonstrating via simulations that our

Figure E.1: We apply a multi-armed bandit framework in men-
tal health to identify at-risk individuals, progressing from automated
analysis of social media posts, to risk evaluation by non-experts, to
expert evaluation. The goal is to optimize the number of people at
high risk who go on to receive detailed clinical attention, given limited

resources.
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model doubles the performance of realistic baselines operating at similar budgets.

Our discussion includes key insights, improvements, and ethical implications for

real-world deployment.

E.1 Introduction

Machine learning is beginning to have a large impact on the ways that people think

about addressing problems in healthcare [159, 235] and mental health [7, 149, inter

alia], just as it is having large impacts everywhere else. The ability to obtain data

about people’s day to day thoughts and experiences via social media—unobtrusive

windows into what Coppersmith et al. [67] call the “clinical whitespace” between clin-

ician encounters, in the form of social media posts, wearables data, etc.—is looking

to be thoroughly disruptive, and the ability to engage with people via natural spo-

ken interactions on all manner of electronic devices creates potential for even more

windows into people’s everyday thoughts and experiences, enhancing the ability to

detect new problems earlier and monitor patients under treatment more effectively

and at lower cost.

This is no small matter, because mental illness is one of the most significant

problems in healthcare. Considering both direct and indirect costs, mental illness

exceeds cardiovascular diseases in the projected 2011-2030 economic toll of non-

communicable diseases ($16.3T worldwide) and that total is more than the cost

of cancer, chronic respiratory diseases, and diabetes combined [37]. Schizophrenia

ranks higher in costs than congestive heart failure and stroke [115]. The personal

and societal toll is also enormous. In 2016 suicide became the second leading cause
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of death in the U.S. among those aged 10-34 [108] and is a major contributor to

mortality among those with schizophrenia and depression.

It is becoming clear that traditional approaches to these problems do not suffice.

Franklin et al. [88], for example, conclude from a large meta-analysis that there

has been no improvement in predictive ability for suicidal thoughts and behaviors

over the last 50 years, and argue their findings “suggest the need for a shift in focus

from risk factors to machine learning-based risk algorithms” (their emphasis). The

technological community is increasingly aware of this problem space and enthusiastic

about contributing [e.g. 155, 167, 236], with significant progress in ethical data

collection [67, 176] and effective use of those data in predictive models [67, 71, 117,

121, 168].

Moving machine learning out of the lab will raise new challenges, however, be-

cause the mental health ecosystem is highly resource-limited. As detection of poten-

tial problems gets easier and more widespread, effective and scalable methods will

be needed so that cases can be prioritized in terms of the attention needed, and so

appropriate interventions can be offered across the entire range of severity.

In this paper we introduce a concrete technological proposal for addressing this

problem, involving a basic shift in the way we think about machine learning in

mental health: the dominant paradigm of individual-level classification is not an end

in itself; rather it provides components in a population-based framework involving

both machines and humans, where limited resources give rise to a critical need for

effective and appropriate ways to set priorities.

At the core of our technical approach is the recognition that the multi-armed

bandit problem in machine learning is a good fit for the real-world scenario created
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by scaling up the application of technology for detection and monitoring in mental

health: what is the best way to allocate limited resources among competing choices,

given only limited information? We adopt a tiered multi-armed bandit formulation

originally introduced with application to hiring or admissions decisions [198], where

a succession of stages is applied to a population of applicants, each stage succes-

sively more expensive but also more informative, in order to optimize the value of

the set of applicants who are chosen. Our key insight is that, by replacing a pop-

ulation of potential hires with a population of people with potential mental health

problems, and by replacing “value” with “risk”, this tiered framework maps directly

to a population-level formulation of the assessment problem. Using real data and

human annotation, our simulations demonstrate the value of using this framework

to combine (cheap, less accurate) automation with (more expensive, more accurate)

human evaluation of social media in order to identify individuals within a population

who are at high risk for a suicide attempt.

E.2 Problem Formulation

Let there be a population of individuals where each individual has some potential

risk in a given mental health scenario, e.g. veterans at risk for suicide, or college

students at risk for onset of schizophrenia. We assume a characterization of risk on

a four-point scale (low, no, moderate, or severe). These labels are inherently context

based and will depend upon the particular condition, but we will assume that they

are derived by clinical experts and agreed upon for the given population (e.g. see

[69, 168, 202]).
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Given such a population, we take as our goal the identification of as many severe-

risk individuals as possible, so they can receive more thorough assessment and ap-

propriate intervention or treatment. In a world of infinite resources, this could be

achieved by going straight to regular clinical interaction with every individual in a

population. However, that world does not exist, and the mental health ecosystem is

dramatically under-resourced; for example, fully a third of the U.S. population live

in federally designated mental healthcare provider shortage areas.1 This makes it

essential to to improve our ability to prioritize clinicians’ time and caseload, but in

a way that minimizes the chance of missing at-risk individuals.

One promising direction is in the increasing ability to tap into what may be

happening with individuals in an ongoing way via their social media, using machine

learning methods for classification. Research into the efficacy of these inferences is

ongoing, e.g. [41, 83, 101, 236], and see Section E.7 for discussion of ethical consid-

erations, but such approaches show significant promise. For example, Coppersmith

et al. [67] demonstrate an ability to predict suicide attempts based on social media

that is much better than typical performance of clinicans based on traditional in-

person evaluation, and Milne et al. [168] show that machine risk classification can

greatly improve response latency by moderators on a peer-support forum.

At the same time, human review of individuals’ social media content is also in-

creasingly taking place, including, for example, by non-clinicians within Facebook’s

operations [98] and moderators in peer support forums [168], and we have also done

initial work looking at the evaluation of social media content by trained person-

nel [131, 202]. This raises the possibility of exploring intermediate points between
1https://www.kff.org/other/state-indicator/mental-health-care-health-professional-shortage-

areas-hpsas
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inexpensive fully automated methods and expensive clinical interactions—and, in

particular the idea that by combining different forms of evaluation, it may be possi-

ble to optimize the combination of machine and human effort in a way that produces

the best outcome possible given the resources available.

E.3 Approach

We propose that mental health risk assessment should be viewed as a population-

oriented, multi-stage problem, where subsets of individuals (who have opted in ap-

propriately with informed consent) progress from less costly stages (that are also less

informative, e.g. automated predictive models), to intermediate stages that require

more resources but also provide potentially better information (for example, non-

expert human judgments), to more costly forms of assessment, such as evaluation by

a trained expert or a qualified clinician. Ultimately the goal is, within given resource

limitations, to have as many people as possible who are actually at high risk progress

through the entire pipeline to the highly limited and resource-intensive process of

traditional, interactive clinical assessment; see Figure E.1 for the full pipeline.

We extended the recent budgeted multi-armed bandit (MAB) framework [198]

named BRUTaS to our mental health framework. To briefly summarize the model,

we cast tiered decision making as a combinatorial pure exploration (CPE) problem

in the stochastic multi-armed bandit setting [58]. Here, arms represents individuals

with latent true risk profiles, where S is the population of arms with |S| = n (e.g.,

the cohort of all n individuals or the first group of people in Figure E.1). The

end goal is to select a subset of k ≤ n (the final, and smallest, group of people in
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Figure E.1) for clinical interaction, after narrowing the pool over successive stages

or tiers. Each arm (or individual) a ∈ S has an associated unknown true risk u(a),

and an empirical risk û(a) that the algorithm estimates and uses to make decisions.

Each analysis stage i has an associated strength of arm pull defined as information

gain si—a further generalization of earlier work [197]. The strength correlates with

the confidence of the signal generated as well as the cost of performing an arm pull.

For example, if we compare the signal generated from an expert reviewer (Stage 3

in Figure E.1) and a non-expert (Stage 2 in Figure E.1), one would be much more

confident in the signal from the expert compared to the non-expert. Additionally,

each analysis stage i has a cost ji associated with it. Successive stages increase in

both cost ji and information gain si.

In our current model we have three stages of assessment: (1) automated risk

classification using an NLP model, (2) non-expert risk assessment, and (3) expert

risk assessment.2 In that 3-stage setting, the goal is to select a final subset of size

k out of the full cohort S. After each stage, the pool is narrowed (that is, for

some subset of the remaining cohort, intervention decisions are fixed permanently).

During stage i, ki individuals move on to the next stage (i.e., we decide not to pursue

a deeper intervention with ki−1−ki individuals), where n = k0 > k1 > k2 > k3 = k).3

2Although we approximate an intermediate stage of non-experts using crowdsourced judgments,
the idea of true crowdsourcing, in the sense of Mechanical Turk and similar platforms, need not,
and should not, be considered a part of the proposal. Rather, we use crowdsourcing to approximate
an intermediate level of cost and expertise. Such intermediate levels exist in the real world, e.g. a
social work trainee would have less expertise in suicidality assessment than than a trained crisis-line
staffer or a specialist clinical psychologist.

3Note that although in this paper we focus on the importance of getting as many of the right
people as possible through to the end of the pipeline, this multi-stage architecture introduces
new possibilities for intermediate outcomes, rather than a choice between a clinical interaction or
nothing at all. For example, a low-cost intervention for people who reach Stage 2 or Stage 3 might
be to send a caring contact [63] or information about help lines or peer support, and encouragement
to reach out. Such interventions and their evaluation are a topic for future work.
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Variable Description

S The population of individuals to evaluate.
n The number of individuals in a population (|S| = n).
a A single individual or arm (a ∈ S).

u(a) The true risk of an individual.
û(a) The empirical risk of an individual.
k The number of individuals chosen for clinical interven-

tion.
ki The number of individuals to move on to stage i+ 1.
si The information gain of evaluation in stage i.
ji The cost of evaluation in stage i.
T The total budget.
Ti The budget for stage i.

Table E.1: List of variables used in our approach.

Therefore, each stage i could be considered a selection problem where ki individuals

need to be selected in order to maximize the total empirical risk of the chosen

individuals. More concretely, at each stage i a cohort Mi is chosen where |Mi| = ki

where Mi is chosen as follows: Mi = arg maxM
∑

a∈M û(a). Finally, at each stage

i, there is a budget Ti associated with how much information gathering can be

performed at that stage, leading to a total budget of T =
∑3

i=1 Ti. Thus, there are

a few hyperparameters to tune before running the algorithm: the number individuals

to move on to each next stage ki, budgets for each stage Ti, information gain for

each stage si, and the cost for each stage j. Table E.1 presents a full list of variables

and other symbols used throughout.

We propose that mental health assessment should be viewed as a population-

oriented, multi-stage problem, where subsets of individuals progress from less costly

stages (that are also less informative, e.g. automated predictive models of the kind

emphasized in current mental health machine learning literature), to intermediate
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stages that require more resources but also provide better information (including

traditional methods like requesting self-report scales, as well as new concepts such as

automated interviews or clinician review of automated predictions), and ultimately

to the most costly forms of assessment, such as in-person evaluation by a qualified

clinician. Crucially, this does not obviate the need for individual-level predictive

modeling, where significant advances have been achieved over the past several years

by us and others [7, 50, 67, 70, 149, 236].4 Rather, the individual level predictive

models are re-cast as crucial components within the multi-stage framework.

We used the recent multi-armed bandit (MAB) framework [198]. To briefly sum-

marize the model, we cast tiered decision making as a combinatorial pure exploration

(CPE) problem in the stochastic multi-armed bandit setting [58]. Here, arms repre-

sents individuals with latent true risk profiles. The goal is to select a subset of k ≤ n

arms S, with |S| = n (e.g., the cohort of all n individuals), after narrowing the pool

over successive stages or tiers. Each analysis stage has an associated strength of arm

pull—a further generalization of Schumann et al. [197]. The strength determines the

confidence of the signal generated (e.g., by the expert reviewer or clinician) as well

as the cost of performing an arm pull.

Assume m stages of assessment. Then, in that m-stage setting, the goal is to

select a final subset of size km of the full cohort S, with |S| = n. After each stage,

the pool is narrowed (that is, for some subset of the remaining cohort, intervention

decisions are fixed permanently). In other words, during each stage ki individuals

move on to the next stage (i.e., we decide not to pursue a deeper intervention with
4See Alonso et al. [7], Calvo et al. [50] for broader discussion of computational language analysis

for mental health more generally, and Linthicum et al. [149] for a broader review of machine learning
in suicide science).
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ki−1 − ki individuals), where n = k0 > k1 > · · · > km−1 > km = k). Therefore,

each stage i could be considered a selection problem where ki individuals need to be

selected in order to maximize some objective function. Finally, at each stage, there

is a budget associated with how much information gathering can be performed at

that stage In our pilot setting, we follow the intuition that individuals can and often

are evaluated by an NLP-based system, by a crowd, or by an expert. These different

evaluations provide signals about the potential, e.g., suicide risk of an individual, or

more generally risk of a negative mental health event.

E.4 Experiments

E.4.1 Data

The intent of the framework is extremely general, and its potential will ultimately

need to be evaluated across a wide range of mental health conditions and scenarios.

Here we work with the UMD Reddit Suicidality Dataset [202], derived from Reddit,

a collection of online communities discussing an enormous range of topics in which

participants post anonymously. The dataset includes more than 1.5M posts across

Reddit subcommunities, from 11,129 users who posted to the SuicideWatch commu-

nity and a corresponding set of control users who never posted to SuicideWatch. The

dataset includes human assessments of suicide risk on a four-point scale (no, low,

moderate, and severe risk) based on SuicideWatch posts for a randomly selected

subset of 242 of the users who posted to SuicideWatch. Four experts provided

ratings, with good inter-rater reliability (Krippendorff’s α = 0.81). Crowdsource

worker judgments based on SuicideWatch posts for the same 242 individuals, plus
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an additional 621 individuals, were also obtained, achieving moderate inter-rater re-

liability (Krippendorff’s α = 0.55). The end result is a unique dataset that contains

data involving people’s outreach for help (posts on SuicideWatch), along with high

quality expert assessments of risk, moderate quality crowdsourcer assessments, and

large-volume weak positive evidence for more than 10K people (by virtue of their

having posted to SuicideWatch.

In order to facilitate the comparison of our multi-armed bandit approach to

existing baselines, we compute average cost for expert and the crowdsourced reviews.

From the UMD Reddit Suicidality Dataset metadata, we computed that the average

crowdworker cost $0.09 per evaluation of an individual. For Stage 3, discussion with

experts suggest that an estimated cost of $5.35 per individual is a reasonable first

approximation. (All figures are in USD.) In the absence of a well-founded way

to measure information gain at this point, we have assumed that the information

gain of each stage is ten times that of the previous, which is within the range of

parameters explored in Schumann et al. [198]; further exploration of this parameter

is an important subject for future work.

E.4.2 Baselines

Recall, our goal is to identify the at-risk individuals from a population. In our setup,

we have a population of 242 individuals where 42 of them are at risk (as defined by

having an expert consensus risk label of severe). An individual is determined to be

at risk by a consensus of four experts. We now outline several baseline approaches,

reporting the cost of each approach, the number of individuals it evaluates, and the

performance statistics.
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Each of these baselines was evaluated on the UMD Reddit Suicidality Dataset

with results reported in Table E.3. For those baselines with an element of random-

ness, for instance, selecting only 100 individuals to evaluate, the simulation of the

baseline was performed 10,000 times. The mean and two standard deviations are

reported.

E.4.2.1 Expert Baselines

The first set of baselines involve only experts. The most naïve approach to evaluate

the population would be to have every expert evaluate every individual (4Experts).

This would be the most expensive with 242 · 4 = 968 evaluations at a total cost of

968·$5.35 = $5,178.8. However, this will yield the best results. It would have perfect

predictive power, by the definition of how we have defined the at-risk individuals.

Another, less expensive option would be to have each individual only be evalu-

ated by one Expert (1Expert). For instance, for each individual, randomly sample

an expert to perform an evaluation, and use that evaluation as the prediction. This

would only take 242 evaluations at a total cost of $1,294.7 and has slightly lower per-

formance than 4Experts; the population sensitivity of the former is 0.91 compared

to 1.0 of the latter. The performance loss captures the noise in the evaluations of the

experts. This baseline emulates likely real-world scenarios in which evaluations are

distributed across a team of reviewers; it is similar, for example, to what happens

to calls when they come in to a crisis line.

Yet a different approach would be to sample a cohort of the population and have

experts perform evaluations only on that subset. Say we sample a cohort of 100

individuals and then have either all four experts evaluate each person in the cohort
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(4Experts-Sub), or, for each individual in the cohort, randomly assign an expert

to evaluate them (1Expert-Sub). The former baseline does 400 evaluations at a

cost of $2,140, and the latter does 100 evaluations at a cost of $535.

E.4.2.2 NLP Baselines

Another set of baseline approaches involve using a classifier based on natural lan-

guage processing (NLP). With these systems, each evaluation is very inexpensive.

We assume that the cost of an evaluation by an algorithm is negligible, even though

this is not strictly true. In reality, for a mental health provider, there is likely a cost

to integrate and run the technology, which we do not estimate or factor into our

analysis. Nevertheless, each individual machine evaluation is certainly very cheap,

with sunk costs amortized over time, and so performing an evaluation on the en-

tire population is very feasible. To do this, we have the NLP system evaluate each

individual in the population and consider the predicted class (the argmax of the

output probability vector) for each individual (NLP-Full). For comparison to the

last two expert baselines, we also establish NLP-Sub which also first randomly

selects a cohort and then runs the algorithm only on that cohort. The final pure

NLP baseline would be to run the algorithm across all individuals in the population,

and then only take the top k most confident severe individuals (NLP-Top-k). This

particular baseline will always perform worse than NLP-Full, but we include it for

comparisons.

We employ a state of the art NLP approach: a three layer Hierarchical Attention

Network [229, 3HAN]. A hierarchical attention layer is composed of a GRU [15]

followed by attention mechanism that learns to pay attention to different parts of
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the input sequence to derive the output. In 3HAN, it is used to aggregate a sequence

of word vectors to a sentence vector, a sequence of sentence vectors to a document

vector, and finally a sequence of document vectors to a individual vector for making

the prediction. See Figure E.2. We provide additional details for reproducibility in

Section E.9.2.

Figure E.2: Three-level Hierarchical Attention Network (3HAN)

The NLP system is first pre-trained on the weak supervision signal of individuals

posting on the SuicideWatch forum, versus the control group of individuals who

never posted on any mental health related forums. The NLP system is then further

fine-tuned with the 621 individuals with moderate quality crowdsourcer assessments.

No further tuning is done on the high quality expert assessments, and the set of

individuals used for training are disjoint from the 242 individuals used for the MAB

experiment.
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E.4.2.3 Combination Baseline

Finally, we could combine two baselines together, like an NLP with an expert. This

combination will have the algorithm evaluate every individual in a population, then

take the top k individuals with highest confidence of being most severe, and then

give that cohort to experts to evaluate. This aligns with a naive two-tiered system,

though not using the multi-armed bandit approach that we propose. The most

meaningful combination of these baselines is NLP-Top-100 + 1Expert-Sub.

E.4.3 MAB Experiments

For our main experiments, we use the MAB framework discussed in Section E.3

with the UMD Reddit Suicidality Dataset. We translate this data (with subsets

of individuals rated by crowdsourcers and clinical experts), and the state of the

art NLP classifier, into a three-stage evaluation process, where Stage 1 is an NLP

evaluation, Stage 2 is a non-expert evaluation (simulated using the crowdsource

labels), and Stage 3 is an expert evaluation.

E.4.3.1 Overall Experiment

The overarching experiment aims to investigate if a three-tiered MAB approach

outperforms the most realistic baselines above for given fixed budgets. The most

realistic scenarios for clinician screenings are those with a limited budget, such

as 1Expert-Sub and 1Expert. Therefore, through these experiments, we report

overall performance for the best models for budgets of $553, $1,300, or $2,200. The

first offers a comparison to 1Expert-Sub baseline, the middle to 1Expert, and

the last to 4Experts-Sub. Results are reported in Table E.3.
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E.4.3.2 Hyperparameter Experiments

We conduct other experiments that support our overall experiment, like hyperpa-

rameter tuning. Recall from Section E.3 that there are many hyperparameters to

this model, such as: budget (T ) and budget allocation at each stage (Ti), cohort

size transferred to each stage (k1, k2, k3), output cohort size (k), and information

gain and cost at each stage (si, ji). We set the information gain and costs associated

with each successive stage in our model using the calculations described in Section

E.4.1. For Stage 1, we assume that review by an NLP system has negligible cost.

To start, we fixed total budget, T , at $553, $1,300, or $2,200. We then can

divide that total budget among the different stages, T1, T2, and T3. We can do this

division in two main ways: (1) adjusting the cohort sizes {k1, k2, k3}, or (2) directly

changing the number of evaluations at each stage. For (1), we performed a simple

grid search over combinations of k1 and k2, and k3 (results visualized in Figure E.3).

For (2), we studied how budget division across the different stages impacts per-

formance. With a fixed T , we could vary the division of that budget to each stage.

Recall that we are assuming that the cost for the first stage (NLP) is negligible.

Therefore, we can allocate T to the crowdsourcer and expert stages, T2 and T3 re-

spectively. Intuitively, we could (1) allocate most of the money to the expert reviews

in Stage 3 (More 3), (2) allocate most of the money to the crowd reviews in Stage

2 (More 2), or (3) equally split it between Stages 2 and 3 (Equal Split); we detail

overall budget values used in Table E.2, in real USD. Note that at T = $553, there

is only enough budget for one pull for every 100 individuals in the final cohort and

a few pulls for each crowdsourcer. Therefore, there we have no degrees of freedom

to allocate the budget to the stages in these settings.
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$1,300 $2,200
Stage 2 Stage 3 Stage 2 Stage 3

More 3 $200 $1,100 $300 $1,900
More 2 $765 $535 $1,500 $700
Equal $620 $680 $1,100 $1,100

Table E.2: Budgets for allocation schemes distributing between
Stages 2 and 3 for two budgets: $1,300 and $2,200. Stage 1 has

no cost.

We report the results for T = $2,200 in Table E.2. We carry out an experiment

with k1 = 200, k2 = 100 and k3 ∈ {1, 2, . . . , 100} with results reported in Figure

E.3. Note that other values for the T produced similar results. This experiment will

provide answers to the important questions: Given a fixed budget, how do we best

allocate that budget across the stages? and how does that change depending on how

many individuals we can serve in our final cohort?

E.4.3.3 Risk Encoding Experiment

This dataset has four ordinal rating levels: no, low, moderate, and severe risk.

Our framework maximizes a numeric objective. Thus, we tried several different

encoding schemes for these discrete classes, including: Binary method (Bin) where

[No, Low, Moderate, Severe] maps to [0,0,0,1]; Linear method (Lin) where [No,

Low, Moderate, Severe] maps to [0, 1
3
, 2

3
, 1]; and Exponential method (Exp) where

[No, Low, Moderate, Severe] maps to [0, 1
7
, 3

7
, 1].

E.4.4 Evaluation

Our ultimate metric is population sensitivity of a system. Any mental health evalu-

ation tool will invariably recommend some number of individuals for further clinical
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attention, which we assume will be some form of clinical interaction. Depending on

the form that interaction takes, we should be more tolerant of providing it (if is not

prohibitively dangerous, intrusive, or expensive, e.g. an in-office clinical evaluation)

with someone who is not at risk (false positives) than for not providing an interven-

tion with someone who is at risk (false negatives). We consider a positive example

to be an individual rated as at severe risk, i.e., the highest risk classification in the

UMD Suicidality Dataset.

We report average statistics for each model in Table E.3. We report the sensi-

tivity on the population and the cohort level. Since some of these baselines only

evaluate a cohort of individuals, all those individuals in the population that were

not in the cohort, are treated as negatives. Therefore, we report numbers at both

the cohort and population level. To illustrate, in Table E.3, 1Expert-Sub only

evaluates 100 individuals. While the sensitivity on those 100 individuals is high, it

also misses many at-risk individuals in the population, which increases the number

of false negatives at the population level and decreases the population sensitivity.

E.5 Results

E.5.1 Overall Experiment

Simulating a real-world scenario in which resources are very limited, our MAB ap-

proach outperforms all comparable baselines. The most resource constrained ap-

proach (1Expert-Sub) for the Experts, evaluates only 100 individuals and achieves

a population sensitivity of 0.34. For the NLP baselines, the approach that also only

evaluates 100 individuals (NLP-Sub) achieves 0.27, while the NLP baseline which
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evaluates every individual (NLP-Full) achieves 0.64. (Note, NLP-Full outper-

forms 1Expert-Sub because the former sees the entire population whereas the

latter only sees the cohort subpopulation. The former’s cohort sensitivity is lower

than the latter’s.) Finally, the combination baseline (NLP-Top-100 + 1Expert-

Sub performs at 0.49. The MAB approach with the same resources of $553 achieves

an average population sensitivity of 0.77.

On average, our MAB approach more than doubles the population sensitivity of

the expert baseline for the same resource amount. At $553, our approach averaged 9

false negatives in the population and 33 true positives. In comparison to the expert

baseline with $535, it achieved an average of 26 false negatives in the population

and 14 true positives.

E.5.2 Hyperparameter Experiments

We now present results from our hyperparameter experiments. Recall our first line

of inquiry focuses on the hyperparameters k1, k2, and k3. These values indicate the

size of the cohort that moves to each successive stage in the MAB framework. We

present these results in Figure E.3 for a budget of $2,200. We use the higher budget

in these experiments to draw out the nuances in the grid search over the ki. In the

figure, we report several slices of cube for eight values of k3, where we plot k1 on

the x-axis and k2 on the y-axis.

We observe two main points from these data: (1) as k3 increases, the population

sensitivity increases, and (2) higher values of k1 correlate to poorer population sen-

sitivity. This first result is intuitive since there are only 42 severe risk individuals

in the population, the sensitivity will be low with low k3. More interestingly, this
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Figure E.3: Grid test over {k1, k2, k3} for constant budget of
$1,300. Y-axis: first-stage cohort k1 ∈ [100, 200]; x-axis: second-
stage cohort k2 ∈ [50, 100]; left-to-right: final cohort size k3 ∈
{5, 10, 25, 30, 40, 44, 50, 100}. Population sensitivity is reported.

positive correlation between k3 and population sensitivity holds for all combinations

of k1 and k2. This reveals that for any fixed combination of cohort sizes k1 and k2,

any increase in k3 will lead to an increase in population sensitivity. Put in another,

more policy prescriptive way, we suggest that it is always advantageous to include

more individuals in the final output cohort, if budget permits.

Our second claim from this hyperparameter result in Figure E.3 is that higher

values of k1 correlate to poorer population sensitivity. This is qualitatively evident

by the figure, and also supported as statistically significant with a simple linear

regression between k1 and population sensitivity with t-value 135.75 and p-value

p� 0.001. What this indicates is that moving a smaller cohort to the crowdsourcers

leads to worse population sensitivity. Put another way, the model performs worse

when the NLP makes more discriminative decisions about individuals. Therefore,

we conclude that while the MAB system benefits from the inclusion of the NLP

system, the NLP provides a useful signal of risk, but over-reliance on the NLP

system to remove individuals from the pipeline is not advisable. When adjusting

hyperparameters, we must balance the power each stage has to remove individuals

from the pipeline with the overall predictive power of that stage.
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Figure E.4: Budget allocation plots for a MAB model with k1 =
200, k2 = 100, and k3 ∈ [1, 100]. The More 3, More 2, and Equal

allocation strategies are described in Section E.4.3.2.

We also conducted a similar analysis for k2; a simple linear regression between

k2 and population sensitivity with t-value 136.02 and p-value p � 0.001. We find

similar results from this regression analysis which indicate that there is a negative

correlation between k2 and population sensitivity. Again, this implies that with

k1 and k3 fixed, the performance of the system improves with lower k2. We can

deduce from this analysis that the crowdsourcers provide useful signal to the MAB

framework, but are not helpful in removing individuals from the pipeline. We will

add that this conclusion is consistent with what clinical practitioners have conveyed

to the researchers about crowdsourced evaluations.

Additionally, we analyzed the allocation strategy for a fixed budget among the

different stages. For this experiment, we vary k3 from 1 to 100 and keep k1 and k2

fixed at 200 and 100 respectively, as suggested by the results from the grid search.

Our initial baseline against which to compare is the “omniscient” method that always

returns a size-capped cohort with as many at-risk individuals as possible. Given our

evaluation metric, the optimal baseline (Opt) is one which achieves the highest

possible sensitivity for the dataset. Since there are 42 ground truth severe risk
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individuals in the dataset, if k ≤ 42, then the best a model could do would be to

choose k severe risk individuals and achieve a sensitivity of k/42. For k > 44, the

best possible would choose 42 severe risk individuals and k−42 others, which would

result in a sensitivity of 1. This optimal baseline can also be thought of as only

having experts evaluate the entire population, without any cap on budget.

In Figure E.4, we see that there are no significant differences between More 2

and Equal which indicates that allocating more budget to the crowdsourcers does

not improve the population sensitivity for various final cohort sizes k. This, again

aligns with intuition provided by the clinical practitioners about the crowdsourced

evaluations. However, we note that the analysis of strategyMore 3 is more nuanced.

For low final cohort values, More 3 outperforms the other two allocation strategies.

This flips for higher k. We also note that when comparing the magnitude of this

difference between budgets of $1,300 and $2,200, the magnitude is slightly more

pronounced in the former. This suggests that in resource constrained settings, the

allocation strategy matters more. Further, the allocation strategy that one would

choose for a given scenario would depend upon the final cohort size. For example,

if the final cohort is constrained to be 30 individuals, then More 3 outperforms the

other two methods. However, this does not hold for larger k3.

E.5.3 Risk Encoding Experiments

Using the same settings of k1, k2, and k3 as in the budget allocation experiment:

we varied the three encoding schemes of the ordinal variables into numeric values:

Linear, Binary, and Exponential. Results from this experiment are reported

in Figure E.5. We found no significant difference between the encoding schemes.

239



Figure E.5: Risk encoding plots of population sensitivity for a MAB
model with k1 = 200, k2 = 100, and k3 ∈ [1, 100]. The Linear,
Binary, Exponential encoding methods are described in Section

E.4.3.3

There is a rough ordering over the different encodings: Linear performs better than

Exponential, which performs better than Binary.

E.6 Related Work

Multi-Armed Bandits. The main model on which our approach relies is derived from

Schumann et al. [198]. They introduce the concept of tiers to the extant literature

on multi-armed bandits. Bubeck et al. [45] provide an excellent overview on the

history of the field. Historically, MAB work has been focused on selecting the best

arm from a population, but works recently have moved to selecting the best cohort

[46, 58]. There has been extensive research into the objective functions that get

used in these models. Lin and Bilmes [148] introduced a monotone submodular

function as a method for balancing individual utility and diversity of a set of items;

this has been adapted to MAB models [197]. Additional work has been done on

optimization algorithms for these types of functions [11, 134]. Ding et al. [79] and

240



Xia et al. [228] looked at a regret minimization MAB problem in which, when an

arm is pulled, a random reward is received and a random cost is taken from the

budget. [197] introduced a concept of “weak” and “strong” pulls in the Strong Weak

Arm Pull (SWAP) algorithm. Taken together, this body of literature provides the

theoretical backbone for the appropriateness and functionality of our approach.

Mental Health Datasets. The data we used lacks ground truth on whether or not

the individual attempted suicide. Such information is extremely difficult to obtain,

and it is even rarer to see datasets linking clinical and social media data. As a

result, most work analyzing social media for mental health relies on non-ground-

truth evidence such as online self-report [e.g. 65, 66, 160] or group membership

participation and changes [e.g. 76, 77], though see [83] for important limitations

of such proxy diagnostic signals. As one notable exception, Coppersmith et al. [67]

report strong predictive results using a dataset that contains outcome data on suicide

attempts, collected using ourdatahelps.org, an innovative platform for consented

data donation. As another, Padrez et al. [176] pursued an innovative strategy for

obtaining linked social media and clinical data, approaching more than 5,000 people

in an urban emergency department to obtain consent. The promising news is that,

of the subset who had Facebook or Twitter accounts (about half), nearly 40% were

willing to share their social media and EMR data for research purposes.

Prediction of Risk using Machine Learning. Recently there has been a signifi-

cant uptick in research activity in NLP and machine learning for mental health. A

2019 suicide risk prediction exercise using (an earlier version of) the UMD Reddit

Suicidality Dataset took place in which an international set of 15 teams partici-

pated [236]; a number of other related shared tasks have also taken place [155, 167].

241

ourdatahelps.org


In real-world settings, automated prediction of mental health crisis has improved

speed of response [168] and has been used to trigger interventions that substantially

increase the likelihood that a person in acute distress will seek crisis services [121].

E.7 Ethical Considerations

This research underwent appropriate IRB review and its conduct has been informed

by the ethical guidelines in Benton et al. [27].

The idea of actually deploying a system of the kind envisioned here raises ques-

tions, and potentially obstacles, requiring careful consideration. Even in trying to

help a population, one can actually hurt individuals in that population [84]. One

set of ethical questions involves the broader socio-technical problem of social media

data use in mental healthcare [e.g. 27, 64, 75, 149, 166]. Privacy is of course a central

consideration, and taking the wrong approach can undermine the larger goals; for

example, well intentioned but insufficiently thought out applications of technology

have in some cases already caused backlash [112, 142].

Other questions are more specific to our multi-stage framework. Bias, a general

issue in machine learning, may manifest in our scenario when some populations

present differently than the majority and could be filtered out too early [171, 199].

Our work also surfaces questions about resource allocation, introducing new degrees

of freedom in budget allocation (e.g. Table E.2). Simulations can help evaluate

alternatives, but ultimately decisions about technological deployment, staffing, and

then then ensuing adjustments in clinical assessment and intervention, will involve

considerations well outside the scope of any optimization strategy.
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There is also the question of impact on the human beings engaged in the pro-

cess, for example clinicians assessing social media of people they are not themselves

treating, and how that relates to professional codes of ethics [e.g. 8], particularly the

duties to warn and to inform [193]. How far do those codes extend in the context

of this framework, and where would these responsibilities lie?

Finally, if approaches like ours were to be integrated into the mental health

ecosystem, there could be large impacts on the labor and economy of both mental

health professionals and non-experts. Even if the ultimate goal is to improve the

efficacy and efficiency of the system, the most well-implemented changes can have

net negative impacts, and along with the health and well-being of the potentially

at-risk population, the well-being of the humans in the loop needs to be considered,

as well [55, 116, 163].

E.8 Discussion, Obstacles, & Insights

Current technological research in mental health tends to treat machine-derived and

human evaluations very differently. Our simulations support the claim that integrat-

ing these separate kinds of evaluation in a process of population based prioritization

can dramatically increase the likelihood of an at-risk individual successfully being

identified as requiring attention, while keeping resource levels the same. Concretely,

we showed that—to the extent our assumptions and abstraction of the problem are

reasonable—we can more than double the number of at-risk individuals identified,

for the population in our dataset.
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Section E.7 noted ethical challenges that need to be considered; let us also con-

sider here the technical challenge of interpretability for the algorithmic elements of

our approach.

The MAB framework is interpretable insofar as a decision to omit an individual

from a successive stage can be interrogated by examining the individual’s human or

computer ratings. In that sense, it does not inject any more obfuscation of decision

making than is already present at each of the tiers. Say, for example, we want to

understand what happened for those, on average, 9 individuals in the $553 setting

of the MAB framework who were not identified as being at risk. We observe that

those individuals that were excluded after the NLP round were more likely to have

been rated by the NLP as being of ‘No’ risk; the average probability of ‘No’ Risk for

those excluded after the first round was 71% versus 8% for those that progressed.

This included some individuals that were truly at high risk. This tells us that the

MAB framework is (1) behaving like we would expect, and (2) it is only as good

as the individual evaluations. In this case, we see that false negatives in the MAB

model are a direct result of the NLP false negatives.

This ability to track from the MAB system’s decisions to the component evalu-

ations is one of the reasons we selected the hierarchical attention network approach

[229], for our classifier: its hierarchical attention mechanism has greater potential

for interpretation than many other models.5 In general, we find it imperative that

any evaluator (both human and machine) used in our proposed ecosystem is well

trained and able to explain why evaluations were made. We are hopeful that, as we
5Although there is controversy over the relationship between attention and interpretability [119],

that has generally been in the context of non-hierarchical networks. Our experience, though at this
point only anecdotal, is that network attention in the hierarchical setting does tend to highlight
evidence that is subjectively relevant. We plan to explore this further in future work.
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progress in developing and validating the model, the properties of the MAB setting

with regard to interpretability will increase the likelihood that policy makers will

want to engage with our proposed solution [233].

These results are only a first step on the way to practical deployment. To get the

rest of the way there, further theoretical research and experimentation are required

in order to expand the evidence base for this approach. Equally important, for

this and any other proposal, careful consideration of the balance between privacy

and prevention must continue and, crucially, that conversation needs to integrate

the voices of (at least) technologists, in-the-trenches clinicians, policy makers, and

those with lived experience of the conditions we are trying to help address.

E.9 Reproducibility

E.9.1 Data

The UMD Reddit Suicidality dataset is available to researchers. Owing to the

sensitive nature of the data, even though it is anonymous, access to the dataset is

governed by a process developed and run in collaboration with suicide prevention

experts at the American Association of Suicidology. See umiacs.umd.edu/~resnik/

umd_reddit_suicidality_dataset.html for more information. Once a dataset

access request has been approved, the data are delivered with two important files:

(1) the expert and crowdsourced ratings per user, and (2) the text data per user.
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E.9.2 NLP System Training Details

The 3HAN NLP model is built using AllenNLP [93]. Tokenization and sentence

splitting are done using spaCy [111].

Training Details. The word embedding layer of 3HAN is initialized and fixed

with the 200-dimensional Glove embedding trained on Twitter [181]. 3HAN is then

pretrained on the binary Weak Supervision dataset from the weak supervision

signal of whether the individuals posted on SuicideWatch. The model is then further

fine-tuned on the moderate quality four-class Crowdsource dataset by transfer-

ring the weights (except the last fully-connected prediction layer) over. The Crowd-

source dataset is split into a training set (80%) and a validation set (20%) during

model development. Cross validation on the training set is used for hyperparameter

tuning. We did not test on the Expert dataset until all parameters of the models

were fixed. For 3HAN, we used ADAM with learning rate 0.003, trained for 100

epochs with early stopping on the validation dataset, with early stopping patience

set to 30.

Figure E.6: Seq2Vec with Attention
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Seq2Vec layers implementation. 3HAN’s Seq2Vec layers use bi-directional

GRU with attention [229]. For the purpose of reproducibility, we detail our imple-

mentation of the hierarchical attention layer in the context of aggregating a sequence

of document vectors to an individual’s vector, though the three layers are the same.

See Figure E.6 for an illustration. For an individual a, the |Q| Document vectors

{da,q}Qq=1 representing the |Q| documents of the individual are first passed through a

bi-directional GRU layer. The outputs, after passing through a fully-connected layer

and a non-linear layer, are then compared to a learnable attention vector, vattention.

Specifically,

ga,q = Bi-GRU(da,q) (E.1)

ra,q = tanh (Wga,q + b) (E.2)

αa,q =
er
>
a,qvattention

∑Q
q′=1 e

r>
a,q′vattention

(E.3)

υa =
∑Q

q=1
αa,qga,q (E.4)

The word-to-sentence layer has input dimension of 200, hidden dimension of

50, and output dimension of 100, since the bi-direction. The sentence-to-document

and document-to-individual layer, similarly, has input dimension of 100, hidden

dimension of 50, and output dimension of 100. Hyperparameters were selected

using cross validation on the training set split of Crowdsource dataset.
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E.9.3 Running the MAB simulation

The code to run the BRUTaS algorithm is written in python and can be found here:

https://github.com/principledhiring/TieredHiring.

At the end of the above steps, there should be one file with all the human

evaluations in them (‘human.csv’) and one with the machine predictions for each

user (‘machine.prediction’). To load these files and create a list of arms, one can

run this code:

from RSD import load_RSD

arms = load_RSD( human_labels=‘human . csv ’ ,

NLP_labels=‘machine . p r ed i c t i on ’ )

To run the BRUTaS algorithm, first set up your hyperparameters:

import o r a c l e s

S = [ 1 , 1 0 , 1 00 ]

J = [ 1 , 9 0 , 5 350 ]

K = [200 , 100 , 50 ]

T = [ 2 , 2 , 2 ]

o r a c l e = o r a c l e s . c_top_k_oracle

u t i l i t y = o r a c l e s . top_k_uti l i ty

Then we can instantiate a BRUTaS object and run the algorithm:

from brutas import BRUTaS

b = BRUTaS( arms , T, K, S , J , o rac l e ,

u t i l i t y , o rac l e_args = [ ] )

b . run_alg ( )
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To evaluate, find those arms that made it to the final stage; to do this, one can

execute b.arm_stage == 3. This will facilitate the user to compute any statistics

required using their favorite packages.
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Appendix F: Measuring Non-Expert

Comprehension of Machine Learning Fairness

Metrics

Bias in machine learning has manifested injustice in several areas, such as medicine,

hiring, and criminal justice. In response, computer scientists have developed myriad

definitions of fairness to correct this bias in fielded algorithms. While some defini-

tions are based on established legal and ethical norms, others are largely mathemat-

ical. It is unclear whether the general public agrees with these fairness definitions,

and perhaps more importantly, whether they understand these definitions. We take

initial steps toward bridging this gap between ML researchers and the public, by

addressing the question: does a lay audience understand a basic definition of ML

fairness? We develop a metric to measure comprehension of three such definitions–

demographic parity, equal opportunity, and equalized odds. We evaluate this metric

using an online survey, and investigate the relationship between comprehension and

sentiment, demographics, and the definition itself.
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F.1 Introduction

Research into algorithmic fairness has grown in both importance and volume over

the past few years, driven in part by the emergence of a grassroots Fairness, Account-

ability, Transparency, and Ethics (FATE) in Machine Learning (ML) community.

Different metrics and approaches to algorithmic fairness have been proposed, many

of which are based on prior legal and philosophical concepts, such as disparate im-

pact and disparate treatment [32, 59, 87]. However, definitions of ML fairness do not

always fit well within pre-existing legal and moral frameworks. The rapid expan-

sion of this field makes it difficult for professionals to keep up, let alone the general

public. Furthermore, misinformation about notions of fairness can have significant

legal implications.1

Computer scientists have largely focused on developing mathematical notions

of fairness, and incorporating them into ML systems. A much smaller collection

of studies have measured public perception of bias and (un)fairness in algorithmic

decision-making. However, as both the academic community and society in general

continue to discuss issues of ML fairness, it remains unclear how to ensure that

non-experts can understand various mathematical definitions of fairness sufficiently

to provide opinions and critiques.

Our Contributions. We take a step toward addressing this issue by studying

peoples’ comprehension and perceptions of three definitions of ML fairness: demo-

graphic parity, equal opportunity, and equalized odds [103]. Specifically, we address

the following research questions:
1https://www.cato.org/blog/misleading-veritas-accusation-google-bias-could-result-bad-law
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RQ1 When provided with an explanation intended for a non-technical audience, do

non-experts comprehend each definition and its implications?

RQ2 Do demographics play a role in comprehension?

RQ3 How are comprehension and sentiment related?

RQ4 How do the different definitions compare in terms of comprehension?

We developed two online surveys to address these research questions. We pre-

sented participants with a simplified decision-making scenario and a accompanied

fairness rule expressed in the scenario’s context. We asked questions related to the

participants’ comprehension of and sentiment toward this rule. Tallying the num-

ber of correct responses to the comprehension questions gives us a comprehension

score for each participant. In Study-1, we found that this comprehension score is a

consistent and reliable indicator of understanding demographic parity.

Then, in Study-2, we used a similar approach to compare comprehension among

all three definitions of interest. We find that 1) education is a significant predictor

of rule understanding, 2) the counterintuitive definition of Equal Opportunity with

False Negative Rate was significantly harder to understand than other definitions,

and 3) participants with low comprehension scores tended to express less negative

sentiment toward the fairness rule.

F.2 Related Work

In response to many instances of bias in fielded artificial intelligence (AI) and ma-

chine learning (ML) systems, ML fairness has received significant attention from the

computer-science community. Notable examples include gender bias in job-related
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ads [74], racial bias in evaluating names on resumes [48], and racial bias in predicting

criminal recidivism [9].

To correct biased behavior, researchers have proposed several mathematical and

algorithmic notions of fairness.

Most algorithmic fairness definitions found in literature are motivated by the

philosophical notion of individual fairness (e.g., see [188]), and legal definitions of dis-

parate impact/treatment (e.g., see [19]). Several ML-specific definitions of fairness

have been proposed which claim to uphold these philosophical and legal concepts.

These definitions of “ML fairness” fall loosely into three categories (for a review,

see [60]). Statistical Parity posits that in a fair outcome, individuals from different

protected groups have the same chance of receiving a positive (or negative) out-

come. Similarly, Predictive Parity [103] asserts that the predictive accuracy should

be similar across different protected groups–often measured by the false positive

rate (FPR) or false negative rate (FNR) in binary classification settings. Myriad

other definitions have been proposed, based on concepts such as calibration [183]

and causality [136]. Of course, all of these definitions make limiting assumptions;

no concept of fairness is perfect [103]. The question remains, which of these fairness

definitions are appropriate, and in what context? There are two important com-

ponents to answering this question: communicating these fairness definitions to a

general audience, and measuring their perception of these definitions in context.

Communicating ML-related concepts is an active and growing research area. In

particular, interpretable ML focuses on communicating the decision-making process

and results of ML-based decisions to a general audience [150]. Many tools have been

developed to make ML models more interpretable, and many demonstrably improve
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understanding of ML-based decisions [114, 190]. These models often rely on concepts

from probability and statistics–teaching these concepts has long been an active area

of research. Batanero et al. [20] provide an overview of teaching probability and

how students learn probability; our surveys use their method of communicating

probability, which relies on proportions. We draw on several other concepts from

this literature for our study design; for example avoiding numerical and statistical

representations [94, 95], which can be confusing to a general audience. Instead we

provide relatable examples, accompanied by examples and graphics [109].

Effectively communicating ML concepts is necessary to achieve our second goal

of understanding peoples’ perceptions of these concepts. One particularly active re-

search area focuses on how people perceive bias in algorithmic systems. For example,

Woodruff et al. [225] investigated perceptions of algorithmic bias among marginal-

ized populations, using a focus group-style workshop;Grgic-Hlaca et al. [100] studies

the underlying factors causing perceptions of bias, highlighting the importance of

selecting appropriate features in algorithmic decision-making; Plane et al. [182] look

at perceptions of discrimination of online advertising. A related body of work stud-

ied how people perceive algorithmic decision-makers. Lee [139] studies perceptions

of fairness, trust, and emotional response of algorithmic decision-makers — as com-

pared to human decision-makers. Similar work studies perception of fairness in

the context of splitting goods or tasks [140, 141]. Binns [32] studies how different

explanation styles impact perceptions of algorithmic decision-makers.

This substantial body of prior research provided inspiration and guidance for our

work. Prior work has studied both the effective communication of, and perceptions

of, ML-related concepts. We hypothesize that these concepts are in fact related; to
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that end, we design experiments to simultaneously study peoples’ comprehension of

and percpetions of common ML fairness definitions.

F.3 Methods

To study perceptions of ML fairness, we conducted two online surveys where partici-

pants were presented with a hypothetical decision-making scenario. The participants

were then presented with a “rule” for enforcing fairness. We then asked each partic-

ipant several questions on their comprehension and perceptions of this fairness rule.

We first conducted Study-1 to validate our methodology; we then conducted the

larger and broader Study-2 to address our main research questions. Both studies

were approved by our organization’s standard ethical review process.

F.3.1 Study-1

In Study-1 we tested three different decision-making scenarios based on real-world

decision problems: hiring, giving employee awards, and judging a student art project.

However, we observed no difference in participant responses between these scenarios;

for this reason we discuss only the the hiring decision scenario, which was also the

subject of Study-2. Please see Section F.7 for a description of these scenarios and

survey results. In Study-1, we chose (what we believe is) the simplest definition of

ML fairness–demographic parity. In short, this rule requires that the fraction of one

group who receives a positive outcome (i.e., an award or job offer) is equal for both

groups.
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F.3.1.1 Survey Design

Here we provide a high-level discussion of the survey design; the full text of each

survey can be found in Section F.7. The participant is first presented with a consent

form (see Section F.8). If consent is obtained, the participant sees a short paragraph

explaining the decision-making scenario. To make demographic parity accessible to

a non-technical audience, and to avoid bias related to algorithmic decision-making,

we frame this notion of fairness as a rule that the decision-maker must follow to be

fair. In the hiring scenario, we framed this decision rule as follows: The fraction

of applicants who receive job offers that are female should equal the fraction of ap-

plicants that are female. Similarly, the fraction of applicants who receive job offers

that are male should equal the fraction of applicants that are male.

We then ask two questions concerning participant evaluation of the scenario,

nine comprehension questions about the fairness rule, two self-report questions on

participant understanding and use of the rule, and four free response questions on

comprehension and sentiment. For example, one comprehension question is: Is the

following statement TRUE OR FALSE: This hiring rule always allows the hiring

manager to send offers exclusively to the most qualified applicants. Finally, we

collect demographic information (age, gender, race/ethnicity, education level, and

expertise in a number of relevant fields).

We conducted in-person cognitive interviews [104] to pilot our survey, leading to

several improvements in the question design. Most notably, because some cognitive

interview participants appeared to use their own personal notions of fairness rather

than our provided rule, we added questions to assess this compliance issue.
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F.3.1.2 Recruitment and Participants

We recruited participants using the online service Cint [61], which allowed us to

loosely approximate the 2017 U.S. Census distributions [47] for ethnicity and edu-

cation level, allowing for broad representation. We required that participants be 18

years of age or older, and fluent in English. Participants were compensated using

Cint’s rewards system; according to a Cint representative: “[Participants] can choose

to receive their rewards in cash sent to their bank accounts (e.g. via PayPal), online

shopping opportunities with one of multiple online merchants, or donations to a

charity."

In total 147 participants were included in the Study-1 analysis, including 75 men

(51.0%), 71 women (48.3%), and 1 (0.7%) preferring not to answer. The average

age was 46 years (SD = 16). Ethnicity and educational attainment are summarized

in Table F.1. On average, participants completed the survey in 14 minutes.

Table F.1 summarizes the ethnicity and education level of participants in both

Study-1 and Study-2.

F.3.1.3 Recruitment and Participants

We again used the Cint service to recruit participants. Because our initial sample

(intended to target education, ethnicity, gender and age distributions approximating

the U.S. census) skewed more highly educated than we had hoped, we added a second

round one week later primarily targeting participants without bachelor’s degrees.

Hereafter, we report on both samples together.

In total 349 participants were included in the Study-2 analysis, including 142 men

(40.7%), 203 women (58.2%), 1 other (0.3%), and 3 (0.9%) preferring not to answer.
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Percent of Sample
Census Study-1 Study-2

Ethnicity
AI or AN 0.7 0.7 0.9
Asian or NH or PI 5.7 1.4 2.3
Black or AA 12.3 10.2 15.8
Hispanic or Latinx 18.1 12.2 7.7
Other 2.6 2.7 1.4
White 60.6 72.8 71.9

Education Level
Less than HS 12.1 6.1 6.9
HS or equivalent 27.7 29.9 24.9
Some post-secondary 30.8 30.6 24.9
Bachelor’s and above 29.4 33.3 42.7

Table F.1: Participant demographics across ethnicity and educa-
tion level, compared to the 2017 U.S. Census. AI = American Indian,
AN = Alaska Native, NH = Native Hawaiian, PI = Pacific Islander,
AA = African American. Note that in Study-2, two participants did

not report their education level.

The average age was 45 years (SD = 15). Ethnicity and educational attainment

are summarized in Table F.1. On average, participants completed the survey in 16

minutes.

F.3.2 Data Analysis

Free response questions were qualitatively coded for statistical testing. In Study-

1, one question was coded by a single researcher for simple correctness (see Sec-

tion F.6.2.1), and the other was independently coded by three researchers (resolved

to 100%) to capture sentiment information (see Section F.6.2.3). In Study-2, both
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questions were independently coded by 2-3 researchers (resolved to 100%). Par-

ticipants who provided nonsensical answers, answers not in English, or other non-

responsive answers to free response questions were excluded from all analysis.

The following methods were used for all statistical analyses unless otherwise spec-

ified. Correlations with nonparamentric ordinal data were assessed using Spearman’s

rho. Omnibus comparisons on nonparametric ordinal data were performed with a

Kruskal–Wallis (K-W) test, and relevant post-hoc comparisons with Mann–Whitney

U (M-WU) tests. Post-hoc p-values were adjusted for multiple comparisons using

Bonferroni correction. χ2 tests were used for comparisons of nominal data. Boxplots

show median and first and third quartiles; whiskers extend to 1.5∗IQR (interquartile

range), with outliers indicated by points.

F.3.3 Limitations

As with all surveys, our study has certain limitations. We recruited a demograph-

ically broad population, but web panels are generally more tech-savvy than the

broader population [189]. We consider this acceptable for a first effort. Some par-

ticipants may be satisficing rather than answering carefully. We mitigate this by

disqualifying participants with off-topic or non-responsive free-text responses. Fur-

ther, this limitation can be expected to be consistent across conditions, enabling

reasonable comparison. Finally, better or clearer explanations of the fairness defini-

tions we explored are certainly possible; we believe our explanations were sufficient

to allow us to investigate our research questions, especially because they were de-

signed to be consistent across conditions.
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F.4 Results

In this section we first discuss the preliminary findings from Study-1 (see §F.4.1).

These findings were used as hypotheses for further exploration and testing in Study-

2; we discuss those results second (see §F.4.2).

F.4.1 Study-1

We analyze survey responses for Study-1 and make several observations. We first

validate our comprehension score as a measure of participant understanding; we

then generate hypotheses for further exploration in Study-2.

F.4.1.1 Our Survey Effectively Captures Rule Comprehension

We find that we can measure comprehension of the fairness rule. The comprehen-

sion score was calculated as the total correct responses out of a possible 9. All

questions were weighted equally. The relevant questions included 2 multiple choice,

4 true/false, and 3 yes/no questions. The average score was 6.2 (SD=2.3).

We validate our comprehension score using two methods: internal validity test-

ing, and correlation against two self-report and one free response question included

in our survey (see Section F.6.2.1 for further details).

Internal Validity Cronbach’s α and item-total correlation were used to assess

internal validity of the comprehension score. Both measures met established thresh-

olds [85, 173]: Cronbach’s α = 0.71, and item-total correlation for 8 of the 9 items

(all but Q5) > 0.3.
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Question Correlation We find that self-reported rule understanding and use

are reflected in comprehension score. First, we compared comprehension score to

self-reported rule understanding (Q13): “I am confident I know how to apply the

award rule described above,” rated on a five-point Likert scale from strongly agree

(1) to strongly disagree (5). The median response was “agree” (Q1 = 1, Q3 =

3). Higher comprehension scores tended to be associated with greater confidence

in understanding (Spearman’s ρ = 0.39, p < 0.001), supporting the notion that

comprehension score is a valid measure of rule comprehension.

Next, we compared comprehension score to a self-report question about the

participant’s use of the rule (Q14), with the following options: (a) “I applied the

provided award rule only,” (b) “ “I used my own ideas of what the correct award

decision should be rather than the provided award rule,” or (c) “I used a combination

of the provided award rule and my own ideas of what the correct award decision

should be.” We find that participants who claimed to use only the rule scored

significantly higher (mean 7.09) than those who used their own notions (4.68) or

a combination (4.90) (post-hoc M-WU, p < 0.001 for both tests; corrected α =

0.05/3 = 0.017). This further corroborates our comprehension score.

Finally, we asked participants to explain the rule in their own words (Q12).

Each response was then qualitatively coded as one of five categories – Correct:

describes rule correctly; Partially correct: description has some errors or is some-

what vague; Neither: vague description of purpose of the rule rather than how it

works, or pure opinion; Incorrect: incorrect or irrelevant; andNone: no answer, or

expresses confusion. Participants whose responses were either correct (mean com-

prehension score = 7.71) or partially correct (7.03) performed significantly better on
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our survey than those responding with neither (5.13) or incorrect (4.24) (post-hoc

M-WU, p < 0.001 for these four comparisons, corrected α = 0.005). These findings

further validate our comprehension score. Additional details of these results and the

associated statistical tests can be found in Section F.6.2.1.

F.4.1.2 Hypotheses Generated

We analyzed the data from Study-1 in an exploratory fashion intended to generate

hypotheses that could be tested in Study-2. We highlight here three key hypotheses

that emerged from the data.

Education Influences Comprehension We used poisson regression models to

explore whether various demographic factors were associated with differences in

comprehension. We found that a model including education as a regressor had

greater explanatory power than a model without (see Section F.6.2.2 for further

details).

Disagreement with the Rule is Associated with Higher Comprehension

Scores We asked participants for their opinion on the presented rule in a free re-

sponse question (Q15). These responses were qualitatively coded to capture partici-

pant sentiment toward the rule in one of five categories – Agree: generally positive

sentiment towards rule; Depends: describes both pros and cons of the given rule;

Disagree: generally negative sentiment towards rule; Not understood: expresses

confusion about rule; None: no answer, or lacks opinion on appropriateness of the

rule. Participants who expressed disagreement with the rule performed better (mean

comprehension score = 7.02) than those who expressed agreement (5.50), did not
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understand the rule (4.44), or provided no response (5.09) to the question (post-hoc

M-WU, p < 0.005 for these three comparisons; corrected α = 0.05/10 = 0.005).

Section F.6.2.3 provides further details.

(a) Grouped by response to
Q13

(b) Grouped by response to
Q14.

(c) Grouped by coded re-
sponse to Q12.

Figure F.1: Comprehension scores grouped by questions. In (a),
self-reported understanding of the rule was not related to compre-
hension score. X-axis is reversed for figure and correlation test. In
(b), rule compliance (leftmost on the x-axis) was associated with
higher comprehension scores. One participant who did not provide
a response was excluded from this figure and the relevant analysis.
Finally, in (c), participants who provided either correct or partially

correct responses tended to perform better.

Non-Compliance is Associated with Lack of Understanding We were in-

terested in understanding why some participants failed to adhere to the rule, as

measured by their self-report of rule usage in Q14. We labeled those who responded

with either having used their own personal notions of fairness (n = 29) or some com-

bination of their personal notions and the rule (n = 28) as “non-compliant" (NC),

with the remaining n = 89 labeled as “compliant" (C). One participant who did not

provide a response was excluded from this analysis, conducted using χ2 tests.

Non-compliant participants were less likely to self-report high understanding

of the rule in Q13 (see Fig. F.12). Moreover, non-compliance also appears to be

associated with a reduced ability to correctly explain the rule in Q12 (see Fig. F.13).
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This fits with the overall strong relationship we observed among comprehension

scores, self-reported understanding, ability to explain the rule, and compliance.

Further, negative participant sentiment towards the rule (Q15) also appears

to be associated with greater compliance (see Fig. F.14). Thus, non-compliant

participants appear to behave this way because they do not understand the rule,

rather than because they do not like it. Refer to Section F.6.2.3 for further details.

F.4.2 Study-2

We first confirm the validity of our comprehension score, then compare comprehen-

sion across definitions and examine the hypotheses generated in Study-1.

F.4.2.1 Score Validation

We validated our metric using the same approach used in Study-1, i.e., assessing

both internal validity and correlation with self-report and free-response questions.

We report the results of this assessment here.

Internal Validity We again used Cronbach’s α and item-total correlation to as-

sess internal validity of the comprehension score. An initial assessment using all 349

responses yielded Cronbach’s α = 0.38, and item-total correlation > 0.3 for only

four of the nine comprehension questions. Since both measures performed below

established thresholds [85, 173], we investigated further and repeated these mea-

surements individually for each fairness-definition condition (DP, FNR, FPR, EO).

This procedure showed stark differences in Cronbach’s α based on definition: DP

= 0.64, FNR = 0.39, FPR = 0.49, EO = 0.62. Item-total correlations followed a
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similar pattern: best in DP, worst in FNR. Based on these differences, we itera-

tively removed problematic questions from the score on a per-definition basis until

all remaining questions achieved an item-total correlation of > 0.3 [85]. By re-

moving poorly performing questions, we increase our confidence that the measured

comprehension scores are meaningful for further analysis. Table F.2 specifies which

questions were retained for analysis in each definition.

Questions

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

DP X X X X X X X
FNR X X X X
FPR X X X X X X X
EO X X X X X X X

Table F.2: Questions that were used for downstream analysis after
iterative removal of questions with poor item-total correlation.

Because questions were dropped on a per-definition basis, the range of the result-

ing scores varied from 4-7 depending on the definition, rather than being a uniform

9. We normalized this treating comprehension score as a percentage of the maxi-

mum for each condition rather than a raw score. We report this adjusted score in

the remainder of §F.4.2.

Question Correlation As in Study-1, we compare comprehension scores with

responses to self-report and free response questions included in our survey.

First, we compared comprehension score to self-reported rule understanding

(Q13), as described in §F.4.1.1. The median response was “agree” (Q1 = 2, Q3 = 3).

We assess the correlation between these responses and comprehension score using
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Spearman’s rho (appropriate for ordinal data). Unlike in Study-1, there was no rela-

tionship between self-reported understanding and comprehension score (Fig. F.1a).

Next, we compared comprehension score to a self-report question about the

participant’s use of the rule (Q14), as described in §F.4.1.1. A K-W test revealed a

relationship between self-reported rule usage and comprehension score (p < 0.001).

We find that participants who claimed to use only the rule tended to score higher

(mean comprehension score = 0.60) than those who used their own notions (0.47) or

a combination (0.45) thereof (post-hoc M-WU, p < 0.01 for both tests; corrected α =

0.05/3 = 0.017). This suggests that participants are answering at least somewhat

honestly: when they try to apply the rule, comprehension scores improve (see Fig.

F.1b).

Finally, we asked participants to explain the rule in their own words (Q12).

Each response was then qualitatively coded as one of five categories, as described

in SF.4.1.1. These results can be seen in Fig. F.1c. A K-W test revealed a re-

lationship between comprehension score and coded responses to Q12 (p < 0.001).

Correct (mean comprehension score = 0.86) responses were associated with higher

comprehension scores than partially correct (0.60), neither (0.44), incorrect (0.52),

and none (0.46) responses (p < 0.001 for all); partially correct responses were

also associated with higher comprehension scores than neither and none responses

(p < 0.001 for both). No other differences were found (post-hoc M-WU; corrected

α = 0.05/10 = 0.005). These findings support our claim that our comprehension

score is a valid measure of fairness-rule comprehension.
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Covariate Est. 95% CI p

Education
HS 0.02 [-0.08, 0.12] 0.720
Post-secondary, no BS 0.09 [-0.01, 0.19] 0.091
Bachelor’s and above 0.17 [0.08, 0.27] < 0.001

Definition
EO -0.04 [-0.11, 0.02] 0.218
FPR -0.05 [-0.11, 0.02] 0.138
FNR -0.14 [-0.20, -0.07] < 0.001

Table F.3: Regression table for the best fit model, with two covari-
ates: education (baseline: no HS) and definition (baseline: DP). Est.

= estimate, CI = confidence interval.
F.4.2.2 Education and Definition are Related to Comprehension Score

One hypothesis generated by Study-1 was that comprehension score is positively cor-

related with education level. We investigated this hypothesis using linear regression

models.

Eleven models were tested, regressing different combinations of demographics

(ethnicity, gender, education, and age) and condition (fairness definition). Models

were compared using Akaike information criterion (AIC), a standard method of

evaluating model quality and performing model selection [6]. Comparison by AIC

revealed that the model using just education (edu) and fairness definition (def) as

regressors was the model of best fit. In this model, having a Bachelor’s degree or

above resulted in a score increase of 0.17, and the FNR condition caused a score

decrease of -0.14 (p < 0.001 for both; corrected α = 0.05/11 = 0.0045). A regression

table of the best fit model is below, in Table F.3.

AIC results of each of the eleven models, along with the relevant regressors,

can be seen in Table F.4 in Section F.6.3.1. Comprehension score as a function of

education and fairness definition can be seen in Figs. F.2 and F.3.
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Figure F.2: Comprehension score grouped by education level.
Higher education was associated with higher comprehension scores.
Note that two participants who did not report their education level

were removed from this figure and the relevant analysis.

Figure F.3: Comprehension score grouped by fairness definition.
The FNR condition was associated with lower comprehension sore.

F.4.2.3 Greater Negative Sentiment Toward the Rule is Associated with

Higher Comprehension Scores

In Study-1, we found a relationship between participant sentiment towards the rule

and comprehension score. To better interrogate this phenomenon, in Study-2 we

added two more questions to the survey to directly address the issue of sentiment,

rather than relying on a free response question. One (Q15) asks, “To what extent

do you agree with the following statement: I like the hiring rule?", and is evaluated

on a five-point Likert scale from “strongly agree" (1) to “strongly disagree" (5). The

other (Q16) asks, “To what extent do you agree with the following statement: I
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Figure F.4: Comprehension score grouped by response to Q15. Dis-
liked of the rule was associated with higher comprehension scores.

X-axis is reversed for figure and correlation test.

Figure F.5: Comprehension score grouped by response to Q16. Rule
agreement was not correlated with comprehension score. X-axis is

reversed for figure and correlation test.

agree with the hiring rule?", and is also evaluated on a five-point Likert scale from

“strongly agree" (1) to “strongly disagree" (5).

Using Spearman’s rho, we assessed the correlation between responses to these

two questions and comprehension score. A minor correlation was found between

liking the rule and comprehension score, in that those who disliked the rule were

more likely to have higher comprehension scores (ρ = −0.15, p < 0.01; see Fig. F.4).

No correlation was found between agreeing with the rule and comprehension score

(see Fig. F.5).
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F.4.2.4 Non-Compliance is Associated with Lack of Understanding

A final hypothesis generated in Study-1 involves non-compliance: i.e., why do partic-

ipants who report not using the rule to answer the comprehension questions behave

this way? In Study-1, we found that this was due to the fact that non-compliant

participants were less able to understand the rule, rather than because they did not

like it. We also observed this in our results form Study-2: compliant participants

exhibited higher self-reported understanding of the rule (p < 0.001, Fig. F.16),

were more likely to correctly explain the rule (p < 0.001,Fig. F.17), and were signif-

icantly more likely to dislike the rule (p < 0.05, Fig. F.18). Refer to Section F.6.4

for more details. As with comprehension score, we observed no relationship between

compliance and agreement with the rule (Fig. F.19).

F.5 Discussion

Bias in machine learning is a growing threat to justice; to date, ML bias has been

documented in both commercial and government applications, in sectors such as

medicine, criminal justice, and employment. In response, ML researchers have pro-

posed various notions of fairness to correct these biases. Most ML fairness defi-

nitions are purely mathematical, and require some knowledge of machine learning.

While they are intended to benefit the general public, it is unclear whether the

general public agrees with — or even understands — these notions of ML fairness.

We take an initial step to bridge this gap by asking do people understand the

notions of fairness put forth by ML researchers? To answer this question we develop

a short questionnaire to assess understanding of three particular notions of ML
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fairness (demographic parity, equal opportunity, and equalized odds). We find that

our comprehension score (with some adjustments for each definition) appears to

be a consistent and reliable indicator of understanding the fairness metrics. The

comprehension score demonstrated in this work lays a foundation for many future

studies exploring other fairness definitions.

We do find, however, that comprehension is lower for equal opportunity, false

negative rate than other definitions. In general, comprehension scores for equal

opportunity (both FNR and FPR) were less internally consistent than other fairness

rules, suggesting participant responses were also more “noisy” for equal opportunity.

This is somewhat intuitive: equal opportunity is difficult to understand, as it only

involves one type of error (FNR or FPR) rather than both. Furthermore, FNR

participants had the lowest comprehension scores and the lowest consistency of all

conditions. We believe this finding also matches intuition: FNR is a strange notion

in the context of hiring, as it concerns only those who were not hired or offered jobs.

Indeed, in free-response questions several participants mentioned that they do not

understand why qualified candidates are not hired. We believe many participants

fixated on this strange setting, impacting their comprehension scores. This finding

is potentially problematic, as equal opportunity definitions are increasingly used in

practice. Indeed, major fairness tools such as Google What-If tool [222] and the IBM

AI Fairness 360 [22] specifically focus on equal opportunity. Further work should be

put into making descriptions of nuanced fairness metrics more accessible.

Our analysis also identified other issues that should be considered when thinking

about mathematical notions of fairness. First, we find that education is a strong

predictor of comprehension. This is especially troubling, as the negative impacts
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of biased ML are expected to disproportionately impact the most marginalized [18]

and displace employment opportunities for those with the least education [90]. Lack

of understanding may hamper these groups’ ability to effectively advocate for them-

selves. Designing more accessible explanations of fairness should be a top research

priority.

Second, we find that those with the weakest comprehension of fairness metrics

also express the least negative sentiment toward them. When fairness is a concern,

there are always trade-offs — between accuracy and equity, or between different

stakeholders, and so on. Balancing these trade-offs is an uncomfortable dilemma of-

ten lacking an objectively correct solution. It is possible that those who comprehend

this dilemma also recognize the precarious trade-off struck by any mathematical def-

inition of fairness, and are therefore dissatisfied with it. From another perspective,

this finding is more insidious. If those with the weakest understanding of AI bias are

also least likely to protest, then major problems in algorithmic fairness may remain

uncorrected.

F.6 Extra Information

F.6.1 Methods

F.6.1.1 Cognitive Interviews

We recruited 9 participants from a large metropolitan area using Craigslist. We

required participants to be over 18 years of age and fluent in English. Participants
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ranged between the ages of 20 and 66. These interviews took place on our organi-

zation’s campus and lasted about 1 hour. All participants signed a written consent

form prior to the interview, and were paid $30 for their time.

During these interviews, participants completed a preliminary version of the

survey used in Study-1. After each survey question, we asked the participants

several interview questions related to their comprehension of and feelings toward

the survey. We found that some participants tended to use their own personal

notions of fairness when answering comprehension questions rather than using the

definition we provided. We were concerned that this would limit our ability to

effectively measure comprehension. To address this problem, we rewrote several

parts of our survey and added two new questions (Q14 and Q15).

F.6.1.2 Non-Expert Verification

We designed this study to assess non-expert understanding and opinions of ML fair-

ness metrics. To this end, we asked respondents to self-rate their level of expertise

in a variety of fields, including ML, at the end of the survey (see Section F.7.3). A

number of participants did report having “expert" level experience in ML (n = 2 out

of 147 in Study-1, and n = 15 out of 349 in Study-2). We considered removing these

participants from the analyses, but ultimately did not because there was no rela-

tionship between self-reported ML expertise and comprehension score (Spearman’s

rho, for both studies).
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F.6.2 Study-1: Detailed Results

F.6.2.1 Our Survey Effectively Captures Rule Comprehension

We find that our survey is internally consistent, and effectively measures participant

comprehension of demographic parity. The former we evaluated using Cronbach’s α

and item-total correlation (discussed in §F.4.1.1), and the latter using two self-report

measures and one free response question.

See Fig. F.6 for participant performance per question.

Figure F.6: Number of participants answering each question cor-
rectly. Each panel contains all 147 participants.

Self-reported rule understanding and use are reflected in comprehension

score First, we compared comprehension score to self-reported rule understand-

ing (Q13). Higher comprehension scores were associated with greater confidence

in understanding (Spearman’s rho), suggesting that participants were accurately

assessing their ability to apply the rule (see Fig. F.7).
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Figure F.7: Comprehension score grouped by response to Q13. Self-
reported understanding of the rule was associated with higher com-
prehension scores. X-axis is reversed for figure and correlation test.

Next, we compared comprehension score to a self-report question about the par-

ticipant’s use of the rule (Q14) Participants who claimed to use only the rule tended

to score higher than those who used their own notions of fairness or a combination

thereof (K-W test, and post-hoc M-WU), suggesting that participants are answering

somewhat honestly: when they try to apply the rule, comprehension scores improve

(see Fig. F.8).

Figure F.8: Comprehension score grouped by response to Q14. Rule
compliance (leftmost on the x-axis) was associated with higher com-
prehension scores. One participant who did not provide a response

was excluded from the figure and relevant analysis.
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Participants with higher comprehension scores are better able to explain

the rule To further validate our comprehension score, we asked participants to

explain the rule in their own words (Q12). Responses were qualitatively coded as

one of five categories: correct, partially correct, neither, incorrect, or none

(as discussed in §F.4.1.1). The results of this coding can be seen can be seen in

Fig. F.9. Participants providing correct explanations of the rule attained higher

comprehension scores (k-W test, and post-hoc M-WU), further corroborating our

claim that our comprehension score is a valid measure of fairness rule comprehension.

Figure F.9: Comprehension score grouped by code assigned to Q12
response. Participants who provided either correct or partially correct

responses tended to perform better.

F.6.2.2 Education Influences Comprehension

During the cognitive interview phase, we observed a possible trend of comprehension

scores being lower for older participants and those with less educational attainment.

If true, this would suggest that fairness explanations should be carefully validated to

ensure they can be used with diverse populations. We investigated this hypothesis,

in an exploratory fashion, using poisson regression models.
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Three models were tested. The first regressed score against all four demographic

categories as predictors (gender, age, ethnicity, and education), the second omitted

education, and the third tested only education. Models were compared using Akaike

information criterion (AIC), a standard method of evaluating model quality and

performing model selection [6]. Comparison by AIC revealed that model 1 (all four

categories) was a better predictor for comprehension score than models 2 or 3 (AIC

= 643.3, 651.2, and 660.5, respectively; difference = 0.0, 7.9, and 17.1). In model

1, only education showed correlation with comprehension score (effect size = 1.40,

p < 0.05). Further work is needed to confirm this exploratory result.

Figure F.10: Comprehension score grouped by education level.
Higher education level was associated with higher comprehension

scores.

F.6.2.3 Disagreement with the Rule is Associated with Higher Compre-

hension Scores

Participants were asked for their opinion on the presented rule in another free re-

sponse question (Q15). These responses were then qualitatively coded to capture

participant sentiment towards the rule as one of five categories: agree, depends,

disagree, not understood, or none (as discussed in §F.4.1.2).
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Figure F.11: Comprehension score grouped by code assigned to
Q15 response. Participants who exhibited negative sentiment toward

the rule responses tended to perform better.

This question was added based on the cognitive interviews (see Section F.6.1.1),

where perception seemed to influence compliance. The results of coding Q15 can be

seen in Fig. F.11. Participants who expressed disagreement with the rule performed

better than those who expressed agreement, did not understand the rule, or provided

no response to the question (K-W test, post-hoc M-WU). Note that this result should

not be interpreted as an overall finding on the appropriateness of demographic parity.

Instead we anticipate the perceptions of appropriateness of any fairness definition

will be highly context-dependent.

Non-Compliance is Associated with Lack of Understanding We were in-

terested in understanding why some participants failed to adhere to the rule, as

measured by their self-report of rule usage in Q14. After labeling participants as

either “non-compliant" (NC, n = 57) or “compliant" (C, n = 89), we conducted a

series of χ2 tests to investigate this phenomenon.

Non-compliant participants were less likely to self-report high understanding of

the rule in Q13 (see Fig. F.12). Moreover, non-compliance also appears to be
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associated with a reduced ability to correctly explain the rule in Q12 (see Fig.

F.13). Further, negative participant sentiment towards the rule (Q15) also appears

to be associated with greater compliance (see Fig. F.14). Thus, non-compliant

participants appear to behave this way because they do not understand the rule,

rather than because they do not like it.

Figure F.12: Self-report of understanding (Q13) split by compliance
(Q14). NC participants tend to report less confidence in their ability
to apply the rule. SA = strongly agree, A = agree, N = neither agree

nor disagree, D = disagree, SD = strongly disagree.

Figure F.13: Correctness of rule explanation (Q12) split by com-
pliance (Q14). NC participants tend to be less able to explain the
presented rule in their own words. C = correct, PC = partially cor-

rect, N = neither, I = incorrect, NA = none.

F.6.2.4 Decision Scenarios

For Study-1 we designed three decision-making scenarios to test whether the per-

ceived importance or realism of a particular scenario influenced comprehension score.

They are as follows:
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Figure F.14: Participant agreement with rule (Q15) split by com-
pliance (Q14). NC participants tend to harbor less negative sentiment
towards the rule. A = agree, De = depends, D = disagree, NU = not

understood, NA = none.

• Art Project (AP): distributing awards for art projects to primary school

students,

• Employee Awards (EA): distributing employee awards at a sales company,

and

• Hiring (HR): distributing job offers to applicants.

In each scenario the students/employees/applicants are partitioned into two groups

(parents’ occupation for the first scenario, and binary gender for the other two sce-

narios). We use a between-subjects design: participants are randomly partitioned

into three conditions, one for each scenario (AP, EA, or HR). For each condition

we define the fairness rule in the context of the decision-making scenario (see Sec-

tion F.7 for the full surveys).

Next we describe our main conclusion related to the different decision-making

scenarios in Study-1: the scenario does not influence comprehension score.

Scenario does not Influence Comprehension Scores (RQ4) We were con-

cerned that less important and/or realistic scenarios would cause participants to take
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the survey less seriously, and therefore perform more poorly. To test this, partici-

pants were randomly assigned to a scenario, resulting in the following distribution:

AP = 41, EA = 49, HR = 57.

A K-W test revealed no differences between scenarios in terms of comprehension

score (mean comprehension scores: AP = 6.0, EA = 6.74, HR = 5.86 ). However,

differences did exist between scenarios in terms of importance (assessed in Q2),

measured in hours of effort deemed necessary to make the relevant decision (K-W,

p < 0.001). Post-hoc M-WU revealed that participants believed making a decision

in the AP scenario merited fewer hours of effort (mean = 3.15hrs) than in the EA

(13.52hrs, p < 0.001) or HR (15.23hrs, p < 0.001) scenarios (corrected α = 0.05/3 =

0.017). See Fig. F.15 for distributions of responses.

Figure F.15: Importance of a scenario by proxy of hours of effort
necessary to make a decision in each scenario. AP merited less hours

of effort than both EA and HR.

Of note, it is possible that perceived realism, assessed in Q1 on a five-point

Likert scale, was also influenced by scenario (K-W, p = 0.051), but we may need

larger sample sizes to confirm this. Regardless, while the nature of a scenario does

influence participant perception in terms of importance and (possibly) realism, it

does not appear to influence comprehension (at least for the scenarios we chose).

For this reason, we chose to test a single scenario (HR) in Study-2.
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F.6.3 Study-2: Detailed Results

F.6.3.1 Model Selection

In §F.4.2.2 we assessed eleven linear regression models for predicting comprehension

scores. The best fit model, determined by model selection via AIC, included only

education (edu) and fairness definition (def) as regressors. The results of model

selection are below in Table F.4.

Model regressors AIC dAIC

edu + def -51.0 0.0
edu -39.1 12.0
gender + edu -36.2 14.9
gender + age + eth + edu + def -33.8 17.2
age + edu -30.5 20.5
gender + age + edu -27.6 23.4
def -25.7 25.4
gender + age + eth + edu -23.8 27.3
gender + age + def -11.1 39.9
gender + age + eth + def -8.4 42.6
gender + age + eth 1.1 52.1

Table F.4: Models tested in §F.4.2.2, sorted by best to least fit.
The first model in the table (edu + def) is the model of best fit. dAIC

= difference from model with lowest AIC value.

F.6.4 Non-Compliance

In §F.4.2.4 we sought to further investigate the findings of Study-1 with regards to

compliance (Q14). To do so, we labeled those who responded (in Study-2) with

either having used their own personal notions of fairness (n = 26) or some combi-

nation of their personal notions and the rule (n = 148) as “non-compliant" (NC),

with the remaining n = 174 labeled as “compliant" (C). One participant who did
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not provide a response was excluded from this analysis, conducted using KW and

χ2 tests.

Non-compliant participants were less likely to self-report high understanding of

the rule in Q13 (KW test, p < 0.001, see Fig. F.16). Moreover, non-compliance also

appears to be associated with a reduced ability to correctly explain the rule in Q12

(χ2 test, p < 0.001, see Fig. F.17). This fits with the overall strong relationship we

observed among comprehension scores, ability to explain the rule, and compliance.

Further, greater dislike towards the rule (Q15) also appears to be associated

with greater compliance (KW test, p < 0.05, see Fig. F.18). However, there was no

relationship between disagreement towards the rule (Q16) and compliance (see Fig.

F.19).

These results largely corroborate the notion that non-compliant participants

appear to behave this way because they do not understand the rule, rather than

because they do not like it.

Figure F.16: Self-report of understanding (Q13) split by compliance
(Q14). NC participants tend to report less confidence in their ability
to apply the rule. SA = strongly agree, A = agree, N = neither agree

nor disagree, D = disagree, SD = strongly disagree.
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Figure F.17: Correctness of rule explanation (Q12) split by com-
pliance (Q14). NC participants tend to be less able to explain the
presented rule in their own words. C = correct, PC = partially cor-

rect, N = neither, I = incorrect, NA = none.

Figure F.18: Participant liking for rule (Q15) split by compliance
(Q14). NC participants tend to dislike the rule less than C par-
ticipants. SA = strongly agree, A = agree, N = neither agree nor

disagree, D = disagree, SD = strongly disagree.

F.7 Surveys

F.7.1 Study-1 Survey

Each of the surveys are split into four main sections. The first section is the consent

form which can be found in Appendix F.8. The second section describes the scenario

and asks questions about the given scenario (§F.7.1.1). The third section describes

the fairness metric, defined as the rule, used (in this case it is demographic parity)

and asks specific questions about the metric (§F.7.1.2). Finally the last section asks

for demographic information (§F.7.3).
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Figure F.19: Participant agreement with rule (Q16) split by com-
pliance (Q14). No differences were found between NC and C par-
ticipants. SA = strongly agree, A = agree, N = neither agree nor

disagree, D = disagree, SD = strongly disagree.

F.7.1.1 Scenario descriptions and questions

The following is shown to each participant:

It is very important that you read each question carefully and think about your

answers. The success of our research relies on our respondents being thoughtful and

taking this task seriously.

I have read the above instructions carefully.

We then introduce one of three different decision making scenarios, described

below, followed by two questions. Words that vary across scenario in the questions

are shown as <art project, employee awards, hiring>.

Art project A fourth grade teacher is reviewing 20 student art projects. They will

award lollipops to the top 4 students who put the most effort into their projects.

The teacher knows that some of the students have artists as parents, who might

have helped their children with their art project. The teacher’s goal is to give out

lollipops only based on the amount of effort that the student themselves put into

their projects.

The teacher uses the following criteria to decide who should get a lollipop:
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• Elaborateness of each project.

• Creativity of each project.

About 50% of the students have artists as parents, and 50% do not.

In the past, students with artists as parents typically put more effort into their

projects.

In this group of students there is a wide range of project quality (as measured

by elaborateness and creativity). However, this range of quality is about the same

between students with artists as parents and those without.

The teacher wants to make sure that they award lollipops in a fair way, no matter

whether the students’ parents are artists or not.

Employee awards A manager at a sales company is deciding which of their 100

employees should receive each of 10 mid-year awards. The manager’s goal is to give

awards to employees who will have high net sales at the end of the year.

The manager uses the following criteria to decide who should get an award:

• Recent performance reviews

• Mid-year net sales

• Number of years on the job

About 50% of the employees are men, and 50% are women.

In the past, men have achieved higher end-of-year net sales than women.

In this group of employees, there is a wide range of qualifications (as measured by

performance reviews, mid-year net sales, and number of years on the job). However,

this range of qualifications is about the same between male and female employees.
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The manager wants to make sure that this awards process is fair to the employees,

no matter their gender.

Hiring A hiring manager at a new sales company is reviewing 100 new job appli-

cations. Each applicant has submitted a resume, and has had an interview. The

manager will send job offers to 10 out of the 100 applicants. Their goal is to make

offers to applicants who will have high net sales after a year on the job.

The manager will use the following to decide which applicants should receive job

offers:

• Interview scores

• Quality of recommendation letters

• Number of years of prior experience in the field

About 50% of the applicants are men, and 50% are women.

In the past, men have achieved higher net sales than women, after one year on

the job.

In this applicant pool there is a wide range of applicant quality (as measured

by interview scores, recommendation letters, and years of prior experience in the

field). However, the range of quality is about the same for both male and female

applicants.

The hiring manager wants to make sure that this hiring process is fair to appli-

cants, no matter their gender.

Questions
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1. To what extent do you agree with the following statement: a scenario similar

to the one described above might occur in real life.

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

2. How much effort should the <teacher, manager, hiring manager> put in to

make sure this decision is fair? [short answer - number of hours]

F.7.1.2 Rule descriptions and questions

Unless otherwise noted the rule description is shown above each of the questions for

reference. Correct answers are noted in red.

Art project The teacher uses the following award rule to distribute lollipops:

The fraction of students who receive lollipops that have artist parents should equal

the fraction of students in the class that have artist parents. Similarly, the fraction

of students who receive lollipops that do not have artist parents should equal the

fraction of students in the class that do not have artist parents.

Example 1: If 10 out of the 20 students in the class have artist parents, then

2 out of the 4 lollipops would be awarded to students with artist parents (and the

remaining 2 would be awarded to students without artist parents).
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Example 2: If 5 out of the 20 students in the class have artist parents, then 1

out of the 4 lollipops would be awarded to students with artist parents (and the

remaining 3 would be awarded to students without artist parents).

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above award

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different teacher is considering awarding lollipops to the whole 4th

grade. There are 100 students with artist parents, and 200 students without

artist parents. The teacher decides to award 10 lollipops to students with

artist parents. Assuming the teacher is required to use the award rule

above, how many students without artist parents need to receive lollipops?

(a) 10

(b) 20

(c) 40

(d) 50

4. Assuming the teacher is required to use the award rule above, in

which of these cases can a teacher award more lollipops to students without

artist parents than to students with artist parents?
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(a) When the students without artist parents have higher-quality projects

(i.e., more elaborate and more creative) than those with artist parents.

(b) When there are more students without artist parents than those with

artist parents.

(c) When students without artist parents have more creative projects than

those with artist parents.

(d) This cannot happen under the award rule.

5. Assuming the teacher is required to use the award rule above, is the

following statement TRUE OR FALSE: Even if a student with artist parents

has a project that is of the same quality (i.e., equally elaborate and equally

creative) as another project by a student without artist parents, they can be

treated differently (ie., only one of the students might get a lollipop).

6. Assuming the teacher is required to use the award rule above, is

the following statement TRUE OR FALSE: If all students without artist par-

ents have low-quality projects (i.e., low elaborateness and low creativity), but

the teacher awards lollipops to some of them, then any lollipops awarded to

students with artist parents must be awarded to those who have low-quality

projects.

7. Assuming the teacher is required to use the award rule above, is the

following statement TRUE OR FALSE: Suppose the teacher is distributing 10

lollipops amongst a pool of students that includes students with and without

artist parents. Even if all students with artist parents have low-quality (i.e.,
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low elaborateness and low creativity) projects, some of them must still receive

lollipops.

8. Assuming the teacher is required to use the award rule above, is

the following statement TRUE OR FALSE: This award rule always allows the

teacher to award lollipops exclusively to the students who have the highest

quality (i.e., most elaborate and most creative) projects.

In the two examples above there are 20 students. Consider a different scenario,

with 6 students – 4 with artist parents and 2 without, as illustrated below.

The next three questions each give a potential outcome for all six students (i.e.,

which of the 6 students receive awards). Please indicate which of the outcomes

follow the award rule above.

9. Alternative scenario 1:

Does this distribution of awards obey the award rule? Yes

10. Alternative scenario 2:
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Does this distribution of awards obey the award rule? No

11. Alternative scenario 3:

Does this distribution of awards obey the award rule? No

12. In your own words, explain the award rule. [short answer] (The rule is not

shown above this question)

13. To what extent do you agree with the following statement: I am confident I

know how to apply the award rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...
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(a) I applied the provided award rule only.

(b) I used my own ideas of what the correct award decision should be rather

than the provided award rule.

(c) I used a combination of the provided award rule and my own ideas of

what the correct award decision should be.

15. What is your opinion on the award rule? Please explain why. [short answer]

16. Suppose that you are the teacher whose job it is to distribute lollipops to

students based on the criteria listed above (i.e., elaborateness of each project,

creativity of each project). How would you ensure that this process is fair?

[short answer]

17. Was there anything about this survey that was hard to understand or answer?

[short answer]

Employee awards The manager uses the following award rule to distribute awards:

The fraction of employees who receive awards that are female should equal the frac-

tion of employees that are female. Similarly, fraction of employees who receive

awards that are male should equal the fraction of employees that are male.

Example 1: If there are 50 female employees out of 100, then 5 out of the 10

awards should be awarded to female employees (and the remaining 5 would be made

to male employees).

Example 2: If there are 30 female employees out of 100, then 3 out of the 10

awards should be awarded to female employees (and the remaining 7 would be made

to male employees).
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In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above award

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different manager is considering employees for a different award.

There are 100 male employees and 200 female employees, and they decide to

give awards to 10 male employees. Assuming the manager is required

to use the award rule above, how many female employees do they need to

give awards to?

(a) 10

(b) 20

(c) 40

(d) 50

4. Assuming the manager is required to use the award rule above, in

which of these cases can a manager give more awards to female employees than

to male employees?

(a) When there are more well-qualified female employees than well-qualified

male employees (i.e., more women have better performance reviews, higher

mid-year net sales, and more years on the job).
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(b) When there are more female employees than male employees.

(c) When female employees receive higher performance reviews than male

employees.

(d) This cannot happen under the award rule.

5. Assuming the manager is required to use the award rule above, is

the following statement TRUE OR FALSE: Even if a male employee’s qualifi-

cations look similar to a female employee’s (in terms of performance reviews,

mid-year net sales, and years on the job), he can be treated differently (i.e.,

only one of the employees gets an award).

6. Assuming the manager is required to use the award rule above, is the

following statement TRUE OR FALSE: If all female employees are unqualified

(i.e., have low performance reviews, low mid-year net sales, and few years on

the job), but you give awards to some of them, then awards given to male

employees must be made to unqualified male employees.

7. Assuming the manager is required to use the award rule above, is the

following statement TRUE OR FALSE: Suppose the manager is distributing

10 awards amongst a pool that includes both male and female employees. Even

if all male employees are unqualified for an award (i.e., have low performance

reviews, low mid-year net sales, and few years on the job), some of them must

still receive awards.

8. Assuming the manager is required to use the award rule above, is

the following statement TRUE OR FALSE: This award rule always allows the
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manager to distribute awards exclusively to the most qualified employees (i.e.,

employees with better performance reviews, high mid-year net sales, and high

number of years on the job).

In the two examples above there are 100 employees. Consider a different scenario,

with 6 employees– 4 female and 2 male, as illustrated below. The next three

questions each give a potential outcome for all six employees (i.e., which of the 6

employees receive awards). Please indicate which of the outcomes follow the award

rule above.

9. Alternative scenario 1:

Does this distribution of awards obey the award rule? Yes

10. Alternative scenario 2:

Does this distribution of awards obey the award rule? No
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11. Alternative scenario 3:

Does this distribution of awards obey the award rule? No

12. In your own words, explain the award rule. [short answer] (The rule is not

shown above this question)

13. To what extent do you agree with the following statement: I am confident I

know how to apply the award rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided award rule only.

(b) I used my own ideas of what the correct award decision should be rather

than the provided award rule.

(c) I used a combination of the provided award rule and my own ideas of

what the correct award decision should be.
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15. What is your opinion on the award rule? Please explain why. [short answer]

16. Suppose that you are the manager whose job it is to distribute mid-year awards

to employees based on the criteria listed above (i.e., recent performance re-

views, mid-year net sales, number of years on the job). How would you ensure

that this process is fair? [short answer]

17. Was there anything about this survey that was hard to understand or answer?

[short answer]

Hiring The hiring manager uses the following hiring rule to send out offers: The

fraction of applicants who receive job offers that are female should equal the fraction

of applicants that are female. Similarly, fraction of applicants who receive job offers

that are male should equal the fraction of applicants that are male.

Example 1: If there are 50 female applicants out of the 100 applicants, then 5

out of the 10 offers would be made to female applicants (and the remaining 5 would

be made to male applicants).

Example 2: If there are 30 female applicants out of the 100 applicants, then 3

out of the 10 offers would be made to female applicants (and the remaining 7 would

be made to male applicants).

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.
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Please note that we ask you to apply and use ONLY the above hiring

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different hiring manager is considering applicants for a different job.

There are 100 male applicants and 200 female applicants, and they decide

to send offers to 10 male applicants. Assuming the hiring manager is

required to use the hiring rule above, how many female applicants do

they need to send offers to?

(a) 10

(b) 20

(c) 40

(d) 50

4. Assuming the hiring manager is required to use the hiring rule

above, in which of these cases can a hiring manager make more job offers

to female applicants than to male applicants?

(a) When there are more well-qualified female applicants than well-qualified

male applicants (i.e., more women have higher interview scores, higher

quality recommendation letters, and more years of prior experience in the

field).

(b) When there are more female applicants than male applicants.

(c) When female applicants receive better interview scores than male appli-

cants.
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(d) This cannot happen under the hiring rule.

5. Assuming the hiring manager is required to use the hiring rule

above, is the following statement TRUE OR FALSE: Even if a male appli-

cant’s qualifications look similar to a female applicant’s (in terms of interview

scores, recommendation letters, and years of prior experience in the field), he

can be treated differently (i.e., only one of the applicants will receive a job

offer).

6. Assuming the hiring manager is required to use the hiring rule

above, is the following statement TRUE OR FALSE: If all female applicants

are unqualified (i.e., have low interview scores, low-quality recommendation

letters, and few years of prior experience in the field), but you send job offers

to some of them, then any job offers made to male applicants must be made

to unqualified male applicants.

7. Assuming the hiring manager is required to use the hiring rule

above, is the following statement TRUE OR FALSE: Suppose the hiring

manager is sending out 10 job offers to a pool that includes male and fe-

male applicants. Even if all male applicants are unqualified (i.e., have low

interview scores, low-quality recommendation letters, and few years of prior

experience in the field), some of them must still receive job offers.

8. Assuming the hiring manager is required to use the hiring rule

above, is the following statement TRUE OR FALSE: This hiring rule always
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allows the hiring manager to send offers exclusively to the most qualified appli-

cants (i.e., applicants with high interview scores, high quality recommendation

letters, and high number years of prior experience in the field).

In the two examples above there are 100 applicants. Consider a different scenario,

with 6 applicants – 4 female and 2 male, as illustrated below. The next

three questions each give a potential outcome for all 6 applicants (i.e., which of the

6 applicants receive job offers). Please indicate which of the outcomes follow the

hiring rule above.

9. Alternative scenario 1:

Does this distribution of job offers obey the hiring rule? Yes

10. Alternative scenario 2:

Does this distribution of job offers obey the hiring rule? No
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11. Alternative scenario 3:

Does this distribution of job offers obey the hiring rule? No

12. In your own words, explain the hiring rule. [short answer] (The rule is not

shown above this question)

13. To what extent do you agree with the following statement: I am confident I

know how to apply the hiring rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided hiring rule only.

(b) I used my own ideas of what the correct hiring decision should be rather

than the provided hiring rule.

(c) I used a combination of the provided hiring rule and my own ideas of

what the correct hiring decision should be.
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15. What is your opinion on the hiring rule? Please explain why. [short answer]

16. Suppose that you are the hiring manager whose job it is to send job offers

to applicants based on the criteria listed above (i.e., interview scores, quality

of recommendation letters, number of years of prior experience in the field).

How would you ensure that this process is fair? [short answer]

17. Was there anything about this survey that was hard to understand or answer?

[short answer]

F.7.2 Study-2: Survey

Each of the surveys are split into four main sections. The first section is the consent

form which can be found in Appendix F.8. The second section describes the hiring

scenario and asks questions about it (§F.7.2.1). The third section describes the

fairness metric, defined as the rule, used (in this case it is demographic parity) and

asks specific questions about the metric (§F.7.2.2). Finally the last section asks for

demographic information (§F.7.3).

F.7.2.1 Scenario description and questions

The following is shown to each participant (note that Step 3 is not shown to partic-

ipants with the DP definition):

It is very important that you read each question carefully and think about your

answers. The success of our research relies on our respondents being thoughtful and

taking this task seriously.

I have read the above instructions carefully.
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A company, Sales-a-lot, is reviewing their hiring process. They want to hire

applicants who are high performing, and they also want to make sure that their

hiring process is fair to their applicants, no matter their gender. To do this, Sales-

a-lot employs an external firm, Recruit-a-matic, which keeps track of all applicants.

This review will take place over one year.

For clarity at each stage of the hiring process we use images to represent the

hiring pool.

Step 1: Applicant Pool. At the beginning of the year, Sales-a-lot reviews all job

applicants, and sends job offers to some of them. The initial applicant pool is shown

with a gray background. For example, the following image shows an applicant pool

with 15 female applicants and 25 male applicants:

Step 2: Sending Job Offers. Next, Sales-a-lot sends job offers to some of these

applicants, using the following criteria:

• Interview scores

• Quality of recommendation letters

• Number of years of prior experience in the field

Suppose that Sales-a-lot sends offers to 5 female applicants and 8 male applicants

(so 10 female and 17 male applicants didn’t receive offers). In the following image,

applicants who received a job offer are shown on the left (with a green background)
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and applicants who didn’t receive a job offer are shown on the right, with a red

background):

Step 3: Applicant Evaluation. For the rest of the year, Recruit-a-matic (the

external firm) keeps track of all applicants in the initial pool, whether they received

job offers or not. At the end of the year, Rectruit-a-matic finds out which applicants

were high performers, i.e. qualified (shown in dark), and which applicants were low

performers, i.e. unqualified (shown in light). For example, the following image

shows that most of the high performers received job offers, but some did not.

female male

qualified

unqualified

Questions

1. To what extent do you agree with the following statement: a scenario similar

to the one described above might occur in real life.

• Strongly agree

• Agree
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• Neither agree nor disagree

• Disagree

• Strongly disagree

2. How much effort, in hours, should Sales-a-lot put in to make sure these deci-

sions were fair? [short answer - number of hours]

F.7.2.2 Rule descriptions and questions

The following sections provide fairness definitions (presented to participants as rules)

for Demographic Parity, Equal Opportunity (FNR and FPR), and Equalized Odds.

Unless otherwise noted the rule description is shown above each of the questions for

reference. Correct answers are noted in red.

Demographic Parity. Recruit-a-matic uses the following rule to determine whether

Sales-a-lot’s hiring decisions were fair:

The fraction of male candidates who receive job offers should equal the fraction

of female candidates who receive job offers.

Example 1: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot received the following applicants (10 female and 12 male).

If Sales-a-lot sent job offers to the following number of applicants (5 female and

6 male), then this would be fair according to the hiring rule (note that there are

other possible outcomes that are fair according to the hiring rule).
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Example 2: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot reviewed a total of 100 applicants as follows (40 female and 60 male).

If Sales-a-lot sent job offers to the following number of applicants (10 female and

15 male), then this would be fair according to the hiring rule (note that there are

other possible outcomes that are fair according to the hiring rule).

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above hiring
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rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different company considered applicants for a different job. There

were 200 female applicants and 100 male applicants,

and they did send job offers to 90 male applicants.

Assuming that Recruit-a-matic reviews their decisions using the hiring rule

above, how many female applicants should have received job offers?

(a) 190

(b) 180
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(c) 160

(d) 150

4. Assuming Recruit-a-matic reviews decisions using the hiring rule above, in

which of these cases could Sales-a-lot have accepted more qualified female

applicants than qualified male applicants?

(a) When there are more qualified female applicants than qualified male ap-

plicants (i.e., more women had low net sales at the end of the year).

(b) When there are more female applicants than male applicants.

(c) When female applicants receive worse interview scores than male appli-

cants.

(d) This cannot happen under the hiring rule.

5. Consider one male applicant and one female applicant, both of whom are

similarly qualified for the job (they achieve about the same net sales at the end

of their first year). Is the following statement TRUE OR FALSE: The hiring

rule above allows Sales-a-lot to make a job offer to one of these applicants and

not the other.
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6. Consider a situation where all female applicants were unqualified (they all

achieve low net sales at the end of their first year), but some of them received

job offers. Is the following statement TRUE OR FALSE: The hiring rule above

requires that some job offers made to male applicants must have been made

to unqualified male applicants.

7. Suppose Sales-a-lot received 100 male and 100 female applicants, and eventu-

ally made 10 job offers. Is the following statement TRUE OR FALSE: The

hiring rule above requires that even if all male applicants were unqualified

(they all achieve low net sales at the end of their first year), some of the

unqualified males must have received job offers.

8. Is the following statement TRUE OR FALSE: The hiring rule above always

allows Sales-a-lot to send job offers only to the most qualified applicants (those

who achieve high net sales at the end of their first year).

Consider a different scenario than the two examples above, with 6 applicants

– 4 female and 2 male, as illustrated below. The next three questions each give

a different potential outcome for all 6 applicants (i.e., which of the 6 applicants

do receive job offers). Please indicate which of the outcomes follow the hiring rule

above.

9. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? Yes
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10. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

11. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

12. In your own words, explain the hiring rule. [short answer] [The rule is not

shown above this question]

13. To what extent do you agree with the following statement: I am confident I

know how to apply the hiring rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided hiring rule only.

(b) I used a combination of the provided hiring rule and my own ideas of

what the correct hiring rule should be.
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(c) I used only my own ideas of what the correct hiring decision should be

rather than the provided hiring rule.

15. To what extent do you agree with the following statement: I like the hiring

rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

16. To what extent do you agree with the following statement: I agree with the

hiring rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

17. Please explain your opinion on the hiring rule. [short answer]

18. Was there anything about this survey that was hard to understand or answer?

[short answer]
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Equal Opportunity - FNR. Recruit-a-matic uses the following rule to determine

whether Sales-a-lot’s hiring decisions were fair:

The fraction of qualified male candidates who do not receive job offers should

equal the fraction of qualified female candidates who do not receive job offers.

Example 1: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot received the following qualified applicants (10 female and 12 male).

If Sales-a-lot did not send job offers to the following number of qualified appli-

cants (5 female and 6 male), then this would be fair according to the hiring rule

(note that there are other possible outcomes that are fair according to the hiring

rule).

Example 2: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot reviewed a total of 100 qualified applicants as follows (40 female and 60 male).
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If Sales-a-lot did not send job offers to the following number of qualified appli-

cants (10 female and 15 male), then this would be fair according to the hiring rule

(note that there are other possible outcomes that are fair according to the hiring

rule).

Note that in the above examples the remaining qualified applicants received job

offers, but are not displayed here.

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above hiring

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different company considered applicants for a different job. There

were 200 qualified female applicants and 100 qualified male applicants,

and they did not send job offers to 90 qualified male applicants.
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Assuming that Recruit-a-matic reviews their decisions using the hiring rule

above, how many qualified female applicants should not have received job

offers?

(a) 190

(b) 180

(c) 160

(d) 150
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4. Assuming Recruit-a-matic reviews decisions using the hiring rule above, in

which of these cases could Sales-a-lot have rejected more qualified female ap-

plicants than qualified male applicants?

(a) When there are more qualified female applicants than qualified male ap-

plicants (i.e., more women had low net sales at the end of the year).

(b) When there are more female applicants than male applicants.

(c) When female applicants receive worse interview scores than male appli-

cants.

(d) This cannot happen under the hiring rule.

5. Consider one male applicant and one female applicant, both of whom are

similarly qualified for the job (they achieve about the same net sales at the end

of their first year). Is the following statement TRUE OR FALSE: The hiring

rule above allows Sales-a-lot to make a job offer to one of these applicants and

not the other.

6. Consider a situation where all female applicants were unqualified (they all

achieve low net sales at the end of their first year), but some of them received

job offers. Is the following statement TRUE OR FALSE: The hiring rule above

requires that some job offers made to male applicants must have been made

to unqualified male applicants.

7. Suppose Sales-a-lot received 100 male and 100 female applicants, and eventu-

ally made 10 job offers. Is the following statement TRUE OR FALSE: The

hiring rule above requires that even if all male applicants were unqualified
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(they all achieve low net sales at the end of their first year), some of the

unqualified males must have received job offers.

8. Is the following statement TRUE OR FALSE: The hiring rule above always

allows Sales-a-lot to send job offers only to the most qualified applicants (those

who achieve high net sales at the end of their first year).

Consider a different scenario than the two examples above, with 6 qualified

applicants – 4 female and 2 male, as illustrated below. The next three questions

each give a different potential outcome for all 6 qualified applicants (i.e., which of

the 6 applicants do not receive job offers). Please indicate which of the outcomes

follow the hiring rule above.

9. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? Yes

10. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

11. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No
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12. In your own words, explain the hiring rule. [short answer] [The rule is not

shown above this question]

13. To what extent do you agree with the following statement: I am confident I

know how to apply the hiring rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided hiring rule only.

(b) I used a combination of the provided hiring rule and my own ideas of

what the correct hiring rule should be.

(c) I used only my own ideas of what the correct hiring decision should be

rather than the provided hiring rule.

15. To what extent do you agree with the following statement: I like the hiring

rule?

• Strongly agree

• Agree
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• Neither agree nor disagree

• Disagree

• Strongly Disagree

16. To what extent do you agree with the following statement: I agree with the

hiring rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

17. Please explain your opinion on the hiring rule. [short answer]

18. Was there anything about this survey that was hard to understand or answer?

[short answer]

Equal Opportunity - FPR. Recruit-a-matic uses the following rule to determine

whether Sales-a-lot’s hiring decisions were fair:

The fraction of unqualified male candidates who receive job offers should equal

the fraction of unqualified female candidates who receive job offers.

Example 1: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot received the following unqualified applicants (10 female and 12 male).
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If Sales-a-lot sent job offers to the following number of unqualified applicants (5

female and 6 male), then this would be fair according to the hiring rule (note that

there are other possible outcomes that are fair according to the hiring rule).

Example 2: Suppose that over the past year, Recruit-a-matic finds that Sales-

a-lot reviewed a total of 100 unqualified applicants as follows (40 female and 60

male).

If Sales-a-lot sent job offers to the following number of unqualified applicants (10

female and 15 male), then this would be fair according to the hiring rule (note that

there are other possible outcomes that are fair according to the hiring rule).
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Note that in the above examples the remaining unqualified applicants did not

receive job offers, but are not displayed here.

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above hiring

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different company considered applicants for a different job. There

were 200 unqualified female applicants and 100 unqualified male applicants,

and they did send job offers to 10 unqualified male applicants.
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Assuming that Recruit-a-matic reviews their decisions using the hiring rule

above, how many unqualified female applicants should have received job offers?

(a) 10

(b) 20

(c) 40

(d) 50

4. Assuming Recruit-a-matic reviews decisions using the hiring rule above, in

which of these cases could Sales-a-lot have accepted more unqualified female

applicants than unqualified male applicants?
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(a) When there are more unqualified female applicants than unqualified male

applicants (i.e., more women had low net sales at the end of the year).

(b) When there are more female applicants than male applicants.

(c) When female applicants receive worse interview scores than male appli-

cants.

(d) This cannot happen under the hiring rule.

5. Consider one male applicant and one female applicant, both of whom are

similarly qualified for the job (they achieve about the same net sales at the end

of their first year). Is the following statement TRUE OR FALSE: The hiring

rule above allows Sales-a-lot to make a job offer to one of these applicants and

not the other.

6. Consider a situation where all female applicants were unqualified (they all

achieve low net sales at the end of their first year), but some of them received

job offers. Is the following statement TRUE OR FALSE: The hiring rule above

requires that some job offers made to male applicants must have been made

to unqualified male applicants.

7. Suppose Sales-a-lot received 100 male and 100 female applicants, and eventu-

ally made 10 job offers. Is the following statement TRUE OR FALSE: The

hiring rule above requires that even if all male applicants were unqualified

(they all achieve low net sales at the end of their first year), some of the

unqualified males must have received job offers.
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8. Is the following statement TRUE OR FALSE: The hiring rule above always

allows Sales-a-lot to send job offers only to the most qualified applicants (those

who achieve high net sales at the end of their first year).

Consider a different scenario than the two examples above, with 6 unqualified

applicants – 4 female and 2 male, as illustrated below. The next three questions each

give a different potential outcome for all 6 applicants (i.e., which of the 6 applicants

receive job offers). Please indicate which of the outcomes follow the hiring rule

above.

9. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? Yes

10. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

11. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

12. In your own words, explain the hiring rule. [short answer] [The rule is not

shown above this question]
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13. To what extent do you agree with the following statement: I am confident I

know how to apply the hiring rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided hiring rule only.

(b) I used a combination of the provided hiring rule and my own ideas of

what the correct hiring rule should be.

(c) I used only my own ideas of what the correct hiring decision should be

rather than the provided hiring rule.

15. To what extent do you agree with the following statement: I like the hiring

rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree
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16. To what extent do you agree with the following statement: I agree with the

hiring rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

17. Please explain your opinion on the hiring rule. [short answer]

18. Was there anything about this survey that was hard to understand or answer?

[short answer]

Equalized Odds. Recruit-a-matic uses the following rule to determine whether

Sales-a-lot’s hiring decisions were fair:

The fraction of qualified male candidates who do not receive job offers should

equal the fraction of qualified female candidates who do not receive job offers. Simi-

larly, the fraction of unqualified male candidates who receive job offers should equal

the fraction of unqualified female candidates who receive job offers.

Example 1: Suppose that over the past year, Recruit-a-matic finds that Sales-a-

lot received the following qualified applicants (10 female and 12 male) and unquali-

fied applicants (10 female and 12 male).
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If Sales-a-lot did send offers to the following number of unqualified applicants

(left, 5 female and 6 male), and did not send job offers to the following number of

qualified applicants (right, 5 female and 6 male), then this would be fair according

to the hiring rule (note that there are other possible outcomes that are fair according

to the hiring rule).

Example 2: Suppose that over the past year, Recruit-a-lot finds that Sales-a-

lot reviewed a total of 100 qualified applicants (40 female and 60 male) and 100

unqualified applicants (40 female and 60 male).

If Sales-a-lot did send offers to the following number of unqualified applicants

(left, 10 female and 15 male), and did not send job offers to the following number of

qualified applicants (right, 10 female and 15 male), then this would be fair according

to the hiring rule (note that there are other possible outcomes that are fair according

to the hiring rule).
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Note that in the above examples the remaining unqualified applicants did not

receive job offers, but are not displayed here. Similarly, the remaining qualified

applicants received job offers, but are not displayed here.

In the next section, we will ask you some questions about the information you

have just read. Please note that this is not a test of your abilities. We want to

measure the quality of the description you read, not your ability to take tests or

answer questions.

Please note that we ask you to apply and use ONLY the above hiring

rule when answering the following questions. You will have an opportu-

nity to state your opinions and feelings on the rule later in the survey.

3. Suppose a different company considered applicants for a different job. There

were 200 qualified female applicants and 100 qualified male applicants,

and they did not send job offers to 90 qualified male applicants.
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Assuming that Recruit-a-matic reviews their decisions using the hiring rule

above, how many qualified female applicants should not have received job

offers?

(a) 190

(b) 180

(c) 160

(d) 150

329



4. Assuming Recruit-a-matic reviews decisions using the hiring rule above, in

which of these cases could Sales-a-lot have accepted more unqualified female

applicants than unqualified male applicants?

(a) When there are more unqualified female applicants than unqualified male

applicants (i.e., more women had low net sales at the end of the year).

(b) When there are more female applicants than male applicants.

(c) When female applicants receive worse interview scores than male appli-

cants.

(d) This cannot happen under the hiring rule.

5. Consider one male applicant and one female applicant, both of whom are

similarly qualified for the job (they achieve about the same net sales at the end

of their first year). Is the following statement TRUE OR FALSE: The hiring

rule above allows Sales-a-lot to make a job offer to one of these applicants and

not the other.

6. Consider a situation where all female applicants were unqualified (they all

achieve low net sales at the end of their first year), but some of them received

job offers. Is the following statement TRUE OR FALSE: The hiring rule above

requires that some job offers made to male applicants must have been made

to unqualified male applicants.

7. Suppose Sales-a-lot received 100 male and 100 female applicants, and eventu-

ally made 10 job offers. Is the following statement TRUE OR FALSE: The

hiring rule above requires that even if all male applicants were unqualified
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(they all achieve low net sales at the end of their first year), some of the

unqualified males must have received job offers.

8. Is the following statement TRUE OR FALSE: The hiring rule above always

allows Sales-a-lot to send job offers only to the most qualified applicants (those

who achieve high net sales at the end of their first year).

Consider a different scenario than the two examples above, with 6 qualified

applicants – 4 female and 2 male; and 6 unqualified applicants – 4 female and 2

male. The next three questions each give a different potential outcome for the

applicants (i.e., which of the applicants did or did not receive job offers). Please

indicate which of the outcomes follow the hiring rule above.

9. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? Yes

10. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No

11. Sales-a-lot makes the following hiring decisions.

Do these decisions obey the hiring rule? No
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12. In your own words, explain the hiring rule. [short answer] [The rule is not

shown above this question]

13. To what extent do you agree with the following statement: I am confident I

know how to apply the hiring rule described above?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

14. Please select the choice that best describes your experience: When I answered

the previous questions...

(a) I applied the provided hiring rule only.

(b) I used a combination of the provided hiring rule and my own ideas of

what the correct hiring rule should be.

(c) I used only my own ideas of what the correct hiring decision should be

rather than the provided hiring rule.

15. To what extent do you agree with the following statement: I like the hiring

rule?

• Strongly agree

• Agree
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• Neither agree nor disagree

• Disagree

• Strongly Disagree

16. To what extent do you agree with the following statement: I agree with the

hiring rule?

• Strongly agree

• Agree

• Neither agree nor disagree

• Disagree

• Strongly Disagree

17. Please explain your opinion on the hiring rule. [short answer]

18. Was there anything about this survey that was hard to understand or answer?

[short answer]

F.7.3 Demographic Information

1. Please specify the gender with which you most closely identify:

• Male

• Female

• Other

• Prefer not to answer
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2. Please specify your year of birth

3. Please specify your ethnicity (you may select more than one):

• White

• Hispanic or Latinx

• Black or African American

• American Indian or Alaska Native

• Asian, Native Hawaiian, or Pacific Islander

• Other

4. Please specify the highest degree or level of school you have completed:

• Some high school credit, no diploma or equivalent

• High school graduate, diploma or the equivalent (for example: GED)

• Some college credit, no degree

• Trade/technical/vocational training

• Associate’s degree

• Bachelor’s degree

• Master’s degree

• Professional or doctoral degree (JD, MD, PhD)

5. How much experience do you have in each of the following areas? (1 - no

experience, 2 - limited experience, 3 - significant experience, 4 - expert)

(a) Human resources (making hiring decisions)
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(b) Management (of employees)

(c) Education (teaching)

(d) IT infrastructure/systems administration

(e) Computer science/programming

(f) Machine learning/data science

We will maintain privacy of the information you have provided here.

Your information will only be used for data analysis purposes.

F.8 Consent

F.8.1 Online Survey Consent Form

F.8.1.1 Project Title

Fairness Evaluation and Comprehension

F.8.1.2 Purpose of the Study

This research is being conducted by [Blinded] at [Blinded]. We are inviting you to

participate in this research project because you are above 18. The purpose of this

research project is to understand lay comprehension of different fairness metrics.

F.8.1.3 Procedures

The procedures will start with reading a brief description of a decision-making sce-

nario. You will then be asked to answer some comprehension questions about the
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scenario. The questions will look like the following: What are the pros and cons of

the notion of fairness described above?

Finally, you will be asked some demographics questions. The entire survey will

take approximately 20 minutes or less.

F.8.1.4 Potential Risks and Discomforts

There are several questions to answer over the course of this study, so you may find

yourself growing tired towards the end. Outside of this, there are minimal risks to

participating in this research study. All data collected in this study will be main-

tained securely (see Confidentiality section) and will be deleted at the conclusion of

the study.

However, if at any time you feel that you wish to terminate your participation

for any reason, you are permitted to do so.

F.8.1.5 Potential Benefits

There are no direct benefits from participating in this research. We hope that, in the

future, other people might benefit from this study through improved understanding

of fairness metrics and their applications.

F.8.1.6 Confidentiality

Any potential loss of confidentiality will be minimized by storing all data (including

information such as MTurk IDs and demographics) will be stored securely (a) in a

password-protected computer located at [Blinded] or (b) using a trusted third party

(Qualtrics). Personally identifiable information that is collected (MTurk IDs, IP
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addresses, cookies) will be deleted upon study completion. All other data gathered

will be stored for three years post study completion, after which it will be erased.

The only persons that will have access to the data are the Principle Investigator

and the Co-Investigators.

If we write a report or article about this research project, your identity will be

protected to the maximum extent possible. Your information may be shared with

representatives of the [Blinded] or governmental authorities if you or someone else

is in danger or if we are required to do so by law.

F.8.1.7 Compensation

You will receive $3. You will be responsible for any taxes assessed on the compen-

sation.

If you will earn $100 or more as a research participant in this study, you must

provide your name, address and SSN to receive compensation.

If you do not earn over $100 only your name and address will be collected to

receive compensation.

F.8.1.8 Right to Withdraw and Questions

Your participation in this research is completely voluntary. You may choose not

to take part at all. If you decide to participate in this research, you may stop

participating at any time. If you decide not to participate in this study or if you

stop participating at any time, you will not be penalized or lose any benefits to

which you otherwise qualify.
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If you decide to stop taking part in the study, if you have questions, concerns, or

complaints, or if you need to report an injury related to the research, please contact

the investigator: [Blinded]

F.8.1.9 Participant Rights

If you have questions about your rights as a research participant or wish to report

a research-related injury, please contact:

[Blinded]

For more information regarding participant rights, please visit: [Blinded]

This research has been reviewed according to the [Blinded] IRB procedures for

research involving human subjects.

F.8.1.10 Statement of Consent

By agreeing below you indicate that you are at least 18 years of age; you have read

this consent form or have had it read to you; your questions have been answered

to your satisfaction and you voluntarily agree to participate in this research study.

Please ensure you have made a copy of the above consent form for your records.

Pease ensure you have made a copy of the above consent form for your records.

A copy of this consent form can be found here [link to digital copy].

I am age 18 or older

I have read this consent form

I voluntarily agree to participate in this research study
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F.8.2 Cognitive Interview Consent Form

F.8.2.1 Project Title

Fairness Cognitive Interview

F.8.2.2 Purpose of the Study

This research is being conducted by [Blinded] at [Blinded]. We are inviting you to

participate in this research project because you are above the age of 18, and fluent

in English. The purpose of this research project is to understand lay comprehension

of different fairness metrics.

F.8.2.3 Procedures

The procedure involves completing an interview. The full procedure will be approx-

imately 1 hour in duration.

During the interview you will be audio recorded, if you agree to be recorded.

You will be asked to first read a brief description of a decision-making scenario. You

will then be asked to fill out a survey about the scenario. While answering questions

you will be asked verbal questions related to how you reached your answer in the

survey.

Sample survey question: Is the following statement true or false? This hiring rule

allows the hiring manager to send offers exclusively to the most qualified applicants.

Sample interview question: How did you reach your answer to that survey ques-

tion?
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F.8.2.4 Potential Risks and Discomforts

There are several questions to answer over the course of this study, so you may find

yourself growing tired towards the end. Outside of this, there are minimal risks to

participating in this research study. All data collected in this study will be main-

tained securely (see Confidentiality section) and will be deleted at the conclusion of

the study.

However, if at any time you feel that you wish to terminate your participation

for any reason, you are permitted to do so.

F.8.2.5 Potential Benefits

There are no direct benefits from participating in this research. We hope that, in the

future, other people might benefit from this study through improved understanding

of fairness metrics and their applications.

F.8.2.6 Confidentiality

Any potential loss of confidentiality will be minimized by storing all data (including

information such as demographics) securely (a) in a password protected computer

located at [Blinded] or (b) using a trusted third party (Qualtrics). Personally identi-

fiable information that is collected will be deleted upon study completion. All other

data gathered will be stored for three years post study completion, after which it

will be erased. The only persons that will have access to the data are the principle

Investigator and the Co-Investigators.

If we write a report or article about this research project, your identity will be

protected to the maximum extent possible. Your information may be shared with
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representatives of [Blinded] or governmental authorities if you or someone else is in

danger or if we are required to do so by law.

F.8.2.7 Compensation

You will receive $30. You will be responsible for any taxes assessed on the compen-

sation.

If you will earn $100 or more as a research participant in this study, you must

provide your name, address and SSN to receive compensation.

If you do not earn over $100 only your name and address will be collected to

receive compensation.

F.8.2.8 Right to Withdraw and Questions

Your participation in this research is completely voluntary. You may choose not

to take part at all. If you decide to participate in this research, you may stop

participating at any time. If you decide not to participate in this study or if you

stop participating at any time, you will not be penalized or lose any benefits to

which you otherwise qualify.

If you decide to stop taking part in the study, if you have questions, concerns, or

complaints, or if you need to report an injury related to the research, please contact

the investigator: [Blinded]

F.8.2.9 Participant Rights

If you have questions about your rights as a research participant or wish to report

a research-related injury, please contact: [Blinded]
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For more information regarding participant rights, please visit: [Blinded]

This research has been reviewed according to [Blinded] IRB procedures for re-

search involving human subjects.

F.8.2.10 Statement of Consent

Your signature indicates that you are at least 18 years of age; you have read this

consent form or have had it read to you; your questions have been answered to your

satisfaction and you voluntarily agree to participate in this research study. You will

receive a copy of this signed consent form.

Please initial all that apply (you may choose any number of these statements):

I agree to be audio recorded

I agree to allow researchers to use my audio recording in research publications

and presentations.

I do not agree to be audio recorded

If you agree to participate, please sign your name below.
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