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While these topics have been extensively studied in the context of classical com-
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First, we consider general optimization problems with only function evalu-
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compared to their classical counterparts.
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quantum algorithms with polynomial speedup compared to the classical state-of-the-

art. We then move to machine learning and give the optimal quantum algorithms



for linear and kernel-based classifications. To complement with our quantum al-
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Chapter 1: Introduction

Machine learning has been the core of the developments in computer science
in the past decade (2010-2019), with ubiquitous applications including computer
vision, natural language processing, bioinformatics, etc. Although machine learning
techniques have been shown to be extremely powerful in practice, current research
suffers from interpretability and end-to-end understanding of trained machine learn-
ing models. To address such issue, it has become a main interest to explore the theo-
retical foundations of machine learning. Recently, significant progress in theory has
been made, e.g., see the surveys in convex optimization [61], online learning [143],
nonconvex optimization [149], deep learning theory [252], etc. Nevertheless, there
are still various challenges in theoretical machine learning that demand future re-
search.

On the other hand, quantum computing is another rapidly advancing tech-
nology. In particular, the capability of quantum computers has been dramatically
increasing and recently reached “quantum supremacy” [230] by Google in Octo-
ber, 2019 [34]. However, Google’s experiment was only performed for a specific
sampling task, and at the moment the noise of quantum gates prevents current

quantum computers from being useful in practice. Considering this, it is also of



significant interest to understand quantum computing from a theoretical perspec-
tive for paving its way to future applications. There have been Shor’s algorithm
for integer factorization [245] and Grover’s algorithm for unstructured search [128§]
which have provable advantages compared to their classical counterparts, and there
are also quite a few other quantum algorithms for algebraic problems, number the-
ory, boolean functions, graph problems, etc.; see [79, 83| for an overview of existing

quantum algorithms.

1.1 Quantum machine learning

More recently, “quantum machine learning” (see e.g. [51, 243]) has become a
popular research topic. Currently, theoretical research has been conducted in a few
different directions:

First, there has been research about quantum computational learning theory.
A main framework of computational learning theory is probably approximately cor-
rect learning (PAC learning) [264]. To be more specific, we are given a concept
class C C {f : {0,1}" — {0,1}} and a concept ¢ € C, and the goal is to probably
approximate ¢ from samples of the form (z,c(x)), where = is drawn according to
some unknown distribution D over {0,1}". Mathematically, for all concepts ¢ € C
and distribution D, an (¢, d)-learner outputs a guess ¢’ for ¢ such that with prob-
ability at least 1 — 0, we have Pr,.p[c(z) # c(z)] < e. Classically, it is shown
by [52, 135] that the sample complexity of such learners is @(g + M), where d

is the VC-dimension of C [268]. Quantumly, given a sample oracle that gives the



state > cro1yn V/D()|z, c(x)), a series of works [31, 36, 37, 60, 278] studied the
quantum sample complexity of PAC learning, which culminates in [33] showing that
the quantum sample complexity of PAC learning is also ©( % + M), same as the
classical counterpart. Similar result also holds for agnostic learning. See also the
survey [32].

Second, Harrow, Hassidim and Lloyd (HHL) proposed a quantum algorithm
for linear systems [137]. Given quantum oracles for a matrix A € C"*" and a vector
b € C", the goal is to prepare a state |z) (up to normalization) such that Az =~ b.
To be more specific, suppose that A is a d-sparse Hermitian matrix with condition

number k; A is modeled by a quantum oracle O4 that, on input (z,j), gives the

location of the j™ nonzero entry in row z, denoted as y, and the value A, ,. We

are also given a quantum oracle for preparing |b) := H%- ll)j"g”. Let # := A~'b and
|z) == H%% Then |z) can be prepared within additive error e with high success

probability, using only O(dr?/€) queries to O4 and O(dr) copies of |b), and its
running time is O(d?s2/€). These bounds were later improved by [18] with O(k)
condition number dependence and [81] with poly(log(1/¢)) error dependence.
However, there are caveats to turn the techniques of [81, 137] into fast quan-
tum algorithms for machine learning (see [2]). On the one hand, it is nontrivial
to obtain an efficient oracle for preparing |b). It is assumed in [81, 137] that we
can prepare |b) using poly(log N) 2-qubit gates; this may assume additional re-
strictions on b;, and in such circumstances the classical counterparts may also be-
come easier. An example is the cluster assignment problem [194], where we are

given states |u), |v1), |va), ..., |var) in an N-dimensional Hilbert space and we want



to approximate 47 SM (ulv); [194] showed how to achieve this within error e in
O(poly(log M N)/e) steps, exponentially faster than classical inner-product compu-
tations. However, in the first place we need to efficiently prepare all these states,
whose amplitudes have to be restricted; one possible choice is to make the distri-
butions close to uniform, but in this case we can also estimate Z£1<u|vz> using
a classical random sampling algorithm in O(log M N/e?) steps, which is also poly-
logarithmic in both M and N. In all, to justify the quantum speedup by [81, 137],
a fair comparison is needed under the same assumption for preparing |b).

On the other hand, the output of the algorithms in [81, 137] is a state close to
|z), which is different from writing down all the coordinates of # that already takes
n steps; in particular, some goals are nontrivial to be achieved by constant copies
of |z). For instance, learning the value of a specific entry x; within error € requires
Q(‘/Tﬁ) copies of |z), which has at most a polynomial quantum speedup. Therefore,
it is not totally clear how quantum machine learning algorithms using HHL, such as
quantum data fitting [270], quantum support vector machine [232], etc., are going
to provide quantum speedup in practice.

Third, initiated from the quantum algorithm for recommendation systems by
Kerenidis and Prakash [167], there have been quantum machine learning algorithms
using the quantum random access memory (QRAM). To be more specific, given a

matrix A € C™*", they assume the existence of two oracles U and V such that

U|®=ZW|@>, ZHA@, ||] Vie[m]. (1.1.1)

JEN]



Such oracles give the ability to sample from matrices; together with randomized
linear algebra tools (e.g. [12]), they find a rank-k approximation of A with constant
error in time O(poly(k) poly(logmn)), an exponential quantum speedup in both m
and n. Furthermore, follow-up works have extended the quantum speedups using
the QRAM data structure to classification [165], interior-point methods [168], cone
programming [169], etc. However, the preprocessing time of the QRAM data struc-
ture is O(wlog®(mn)) where w is the number of nonzero elements in A; in general
A = Q(m),Q(n), which ruins the claimed exponential quantum speedup. It is also
possible to replace the QRAM data structure by a classical sampling-based data

structure; see Section 1.2 below and also Chapter 6.

1.2 My contributions

In spite of the existence of the quantum machine learning algorithms men-
tioned above, the quantum theories of machine learning and optimization are still
far from well-understood compared to their classical counterparts. This thesis delves
into quantum algorithms for machine learning and optimization with provable guar-

antees, under the considerations from the following three perspectives:

Problems with implicit oracles. In many cases, we do not have the detailed
structure of the input but some general information, e.g., the function value at a
point, whether or not a point is in the definition domain, etc. For instance, the
general convex optimization problem contains a convex body C C R" and a convex

function f: R™ — R, and the goal is to find a & such that f(Z) < mingec f(x) +



€. The only accesses to the problem are the evaluation oracle of f (i.e., input z,
output f(z)) and the membership oracle of C (i.e., input z, output whether x € C
or not). In Chapter 2, we will give a quantum algorithm for this general convex
optimization problem, based on my paper [67] in the conference QIP 2019 and the
journal Quantum in 2020. In Chapter 3, we will study the problem of estimating

the volume of C using its membership oracle, based on my paper [66] in QIP 2020.

Problems with explicit data structures. It is also natural to investigate prob-
lems where the input data are explicitly stored as matrices, and seek for more
fine-grained algorithms and analyses compared to the first part. As mentioned in
Section 1.1, there has been progress along this line, but this thesis explores more
problems and techniques along this line. To be more specific, we research on two
categories of problems: one is semidefinite programming as an instance from op-
timization (Chapter 4, based on my paper [55] in QIP 2019 and ICALP 2019); it
improves upon previous quantum SDP solvers as well as proposing an application
to learning quantum states. The other is linear or kernel-based classification as
an instance from machine learning (Chapter 5, based on my paper [191] in ICML
2019); it has the advantage of outputting purely (sparse) classical classifiers, hence
overcoming the caveats of HHL-type machine learning algorithms as introduced in
Section 1.1. In addition, as QRAM has been a main tool in previous quantum
machine learning algorithms, we study its limitations by giving quantum-inspired
classical algorithms using a classical sampling data structure that resembles (1.1.1).

We achieve comparable classical complexities for solving low-rank linear systems,



SDP, recommendation systems, etc. in Chapter 6, based on my papers [77] in sub-

mission and [76] in QIP 2020 and to appear in STOC 2020.

Problems with samples. From a statistical perspective, an important question
is to infer information from classical distributions or quantum states. Previous works
have been focusing on quantum state tomography [132] and learning the spectrum
of quantum states [219-221]; in this thesis, we focus on testing properties of discrete
probability distributions on quantum computers with speedups compared to their
classical counterparts, giving fast quantum algorithms for entropy estimation, ¢!-
closeness testing, (*-closeness testing, etc. (see Chapter 7, based on my papers [192]

in IEEE Trans. Inf. Theory 2019 and [121] in ITCS 2020).

1.3 Preliminaries

In this section, we define some of the basic notions used in this thesis.

Basic notations in quantum computing. We briefly summarize the defini-
tions and notations of quantum computing. More details can be found at standard
textbooks, e.g., [163, 175, 217].

Quantum mechanics can be formulated in terms of linear algebra. Given any
complex Euclidean space C?, we define its computational basis by {ey,...,€_1},
where & = (0,...,1,...,0)" with the (i + 1) entry being 1 and other entries being
0. These basic vectors are usually written by Dirac notation: we write €; as |i)

(called a “ket”), and write €; as (i| (called a “bra”).



Quantum states with dimension d are represented by unit vectors in C%: i.e.,
a vector |v) = (vg,...,v4-1)" is a quantum state if Z?:_& |v;|* = 1. For each i, v; is
called the amplitude in |i). If there are at least two non-zero amplitudes, quantum
state |v) is in superposition of the computational basis, a fundamental feature in
quantum mechanics.

Tensor product of quantum states is their Kronecker product: if |u) € C% and

lv) € C%, then |u) ® |v) € C @ C® is

[u) ® [v) = (ugvo, ugv1, - . . ,Ud1—1Ud2—1)T. (1.3.1)

The basic element in classical computers is one bit; similarly, the basic element in
quantum computers is one gubit, which is a quantum state in C2. Mathematically,
a qubit state can be written as a|0) +b|1) for some a,b € C such that |al?+ |b]? = 1.
An n-qubit state can be written as |v1) ® - -+ ® |v,,), where each |v;) (i € [n]) is a
qubit state; n-qubit states are in a Hilbert space of dimension 2".

Operations in quantum computation are unitary transformations and can be
stated in the circuit model' where a k-qubit gate is a unitary matrix in C2". Tt is
known that two-qubit gates are universal, i.e., every n-qubit gate can be written as
composition of a sequence of two-qubit gates. Therefore, one usually refers to the

number of two-qubit gates as the gate complexity of quantum algorithms.

!Uniform circuits have equivalent computational power as Turing machines; however, they are
more convenient to use in quantum computation.



Quantum oracles. Classically, any boolean computation can be made reversible
by replacing any irreversible gate (such as AND or OR) = — f(x) by the reversible
gate (z,y) — (z,y ® f(x)); as a result, if the input is (z,0), the output will be
(z, f(z)). Quantumly, unitary transformations are invertible, i.e., U~! = UT. In
other words, every unitary transformation is reversible. It is hence common to
choose the same strategy as the classical counterpart: if we can efficiently compute
the function x — f(x) on a classical computer, on a quantum computer we can

efficiently implement the quantum oracle Oy such that

Oyl2)[0) = [)[f(x)) V. (1.3.2)

The main difference is that quantum computing allows access to different parts of
the input data in superposition, which is the essence of quantum speedups.

In general, access to other objects can be described as instantiations of (1.3.2).
For instance, the function f can not only be boolean but also with domains f: R" —
R; in this case, the registers are formulated by floating numbers. For matrices, we

exploit an oracle Ox such that

Ox(|7) @ [7) ®10)) = [1) © |5) @ | Xs5) (1.3.3)

for any z € R and i, from the rows and columns of X, respectively. Intuitively,
Ox reads the entry X;; and stores it in the third register; it is a natural unitary

generalization of classical random access to X, or in cases when any entry of X can



be efficiently read.

We summarize the quantum notations in Table 1.1.

’ H Classical \ Quantum ‘
Ket and bra ¢; and €, |i) and (i
Basis {€0,...,€a-1} {10),...,|d—=1)}
State 7= (vg,...,0a-1)" ) = S0 wili)
Tensor URU lu) ® |v) or |u)|v)
Function oracle | f(x),f: R" - R O¢lx)|0) = |x)| f(x))
Matrix oracle X = (X)) Ox|i)[7)]0) = [9)]7)|Xs5)

Table 1.1: Summary of quantum notations throughout this thesis.

Quantum complexity measure. Quantum gate complexity is defined as the
total counts of two-qubit gates in a quantum algorithm (a two-qubit gate is a tensor
product of a one- or two-qubit operator with the identity operator on the remaining
qubits). A quantum algorithm is efficient if it can be described by a quantum circuit
with a number of two-qubit gates that is polynomial in the number of qubits needed
to write down the input.

Quantum query complexity is defined as the total counts of oracle queries. The
main advantage of considering quantum query complexity is that if we have an effi-
cient quantum algorithm for an explicit computational problem in query complexity,
then if we are given an explicit circuit realizing the black-box transformation, we
will have an efficient quantum algorithm for the problem. Furthermore, there are
tools for proving lower bounds on the number of quantum queries needed to solve a

given problem.
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Chapter 2: General Convex Optimization®

First, we study general convex optimization on quantum computers.

2.1 Introduction

Convex optimization has been a central topic in the study of mathematical
optimization, theoretical computer science, and operations research over the last
several decades. On the one hand, it has been used to develop numerous algorith-
mic techniques for problems in combinatorial optimization, machine learning, signal
processing, and other areas. On the other hand, it is a major class of optimization
problems that admits efficient classical algorithms [54, 127]. Approaches to convex
optimization include the ellipsoid method [127], interior-point methods [93, 162],
cutting-plane methods [164, 261], and random walks [158, 199].

The fastest known classical algorithm for general convex optimization solves
an instance of dimension n using O(n?) queries to oracles for the convex body and
the objective function, and runs in time O(n?) [183].2 The novel step of [183] is a

construction of a separation oracle by a subgradient calculation with O(n) objective

IThis chapter is based on the paper [67] under the permission of all the authors.

2The notation O suppresses poly-logarithmic factors in n,R,r.e, ie., O(f(n)) =
f(n) log@™ (nR/re).
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function calls and O(n) extra time. It then relies on a reduction from optimization
to separation that makes O(n) separation oracle calls and runs in time O(n?) [184].
Although it is unclear whether the query complexity of O(n2) is optimal for all
possible classical algorithms, it is the best possible result using the above framework.
This is because it takes Q(n) queries to compute the (sub)gradient (see [67, Lemma
A.1]) and it also requires ©(n) queries to produce an optimization oracle from a
separation oracle (see [214] and [213, Section 10.2.2]).

It is natural to ask whether quantum computers can solve convex optimiza-
tion problems faster. Recently, there has been significant progress on quantum algo-
rithms for solving a special class of convex optimization problems called semidefinite
programs (SDPs). SDPs generalize the better-known linear programs (LPs) by al-
lowing positive semidefinite matrices as variables. For an SDP with n-dimensional,
s-sparse input matrices and m constraints, the best known classical algorithm [184]
finds a solution in time O(m(m? 4+ n® + mns) poly log(1/e)), where w is the ex-
ponent of matrix multiplication and € is the accuracy of the solution. Brandao
and Svore gave the first quantum algorithm for SDPs with worst-case running time
O(y/mns?(Rr/e)*), where R and r upper bound the norms of the optimal primal
and dual solutions, respectively [56]. Compared to the aforementioned classical SDP
solver [184], this gives a polynomial speedup in m and n. Van Apeldoorn et al. [24]
further improved the running time of a quantum SDP solver to O(y/mns?(Rr/€)®),
which was subsequently improved to O((\/m + V/n(Rr/e))s(Rr/e)*) (23, 55]. The
latter result is tight in the dependence of m and n since there is a quantum lower
bound of Q(y/m + y/n) for constant R, r, s, e [56].

12



However, semidefinite programming is a structured form of convex optimiza-
tion that does not capture the problem in general. In particular, SDPs are specified
by positive semidefinite matrices, and their solution is related to well-understood
tasks in quantum computation such as solving linear systems (e.g., [81, 137]) and
Gibbs sampling (e.g., [23, 55]). General convex optimization need not include such
structural information, instead only offering the promise that the objective function
and constraints are convex. Currently, little is known about whether quantum com-
puters could provide speedups for general convex optimization. Our goal is to shed

light on this question.

2.1.1 Convex optimization

We consider the general minimization problem min,cx f(z), where K C R™ is
a convex set and f: K — R is a convex function. We assume we are given upper
and lower bounds on the function values, namely m < min,cx f(x) < M, and inner

and outer bounds on the convex set K, namely

By(0,7) C€ K C By(0, R), (2.1.1)

where By(x,1) is the ball of radius [ in Ly norm centered at x € R™. We ask for a

solution © € K with precision ¢, in the sense that

f(z) < gél}l{l f(x) +e (2.1.2)

13



We consider the very general setting where the convex body K and convex

function f are only specified by oracles. In particular, we have:

o A membership oracle Ok for K, which determines whether a given x € R”

belongs to K;

e An evaluation oracle Oy for f, which outputs f(z) for a given z € K.

Convex optimization has been well-studied in the model of membership and
evaluation oracles since this provides a reasonable level of abstraction of K and
f, and it helps illuminate the algorithmic relationship between the optimization
problem and the relatively simpler task of determining membership [127, 183, 184].
The efficiency of convex optimization is then measured by the number of queries to
the oracles (i.e., the query complezity) and the total number of other elementary
gates (i.e., the gate complezity).

It is well known that a general bounded convex optimization problem is equiv-
alent to one with a linear objective function over a different bounded convex set. In
particular, if promised that min,cx f(x) < M, the convex optimization problem is
equivalent to the problem

1 ! <z <M. 1.
Jin such that f(z) <z2' <M (2.1.3)

Observe that a membership query to the new convex set

K ={(2/,z) eRx K| f(z) <2’ < M} (2.1.4)
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can be implemented with one query to the membership oracle for K and one query

to the evaluation oracle for f. Thus the ability to optimize a linear function

min ¢’z (2.1.5)
zeK

for any ¢ € R™ and convex set K C R” is essentially equivalent to solving a gen-
eral convex optimization problem. A procedure to solve such a problem for any
specified ¢ is known as an optimization oracle. Thus convex optimization reduces
to implementing optimization oracles over general convex sets (Lemma 2.2.1). The
related concept of a separation oracle takes as input a point p ¢ K and outputs a
hyperplane separating p from K.

In the quantum setting, we model oracles by unitary operators instead of
classical procedures, following (1.3.2). In particular, in the quantum model of mem-

bership and evaluation oracles, we are promised to have unitaries Ox and Oy s.t.

e For any x € R", Ok|z,0) = |z, [z € K]), where 6[P] is 1 if P is true and 0 if

P is false;
e For any x € R", O¢|z,0) = |z, f(z)).

In other words, we allow coherent superpositions of queries to both oracles. If
the classical oracles can be implemented by explicit circuits, then the corresponding
quantum oracles can be implemented by quantum circuits of about the same size,
so the quantum query model provides a useful framework for understanding the

quantum complexity of convex optimization.
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2.1.2 Contributions

We now describe the main contributions of this paper. Our first main re-
sult is a quantum algorithm for optimizing a convex function over a convex body.

Specifically, we show the following:

Theorem 2.1.1. There is a quantum algorithm for minimizing a convex function
f over a conver set K C R"™ using O(n) queries to an evaluation oracle for f, O(n)

queries to a membership oracle for K, and O(n?’) additional quantum gates.

Recall that the state-of-the-art classical algorithm [183] for general convex
optimization with evaluation and membership oracles uses O(nQ) queries to each.
Therefore, our algorithm provides a quadratic improvement over the best known
classical result. While the query complexity of [183] is not known to be tight, it
is the best possible result that can be achieved using subgradient computation to
implement a separation oracle, as discussed above.

The proof of Theorem 2.1.1 follows the aforementioned classical strategy of
constructing a separating hyperplane for any given point outside the convex body
[183]. We find this hyperplane using a fast quantum algorithm for gradient esti-
mation using O(1) evaluation queries,® as first proposed by Jordan [157] and later
refined by [120] with more rigorous analysis. However, finding a suitable hyperplane
in general requires calculating approximate subgradients of convex functions that

may not be differentiable, whereas the algorithms in [157] and [120] both require

bounded second derivatives or more stringent conditions. To address this issue, we

3Here O(1) has the same definition as Footnote 2, i.e., O(1) = log®" (n.R/re).
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introduce classical randomness into the algorithm to produce a suitable approximate
subgradient with O(l) evaluation queries, and show how to use such an approximate
subgradient in the separation framework to produce a faster quantum algorithm.

Our new quantum algorithm for subgradient computation is the source of the
overall quantum speedup and establishes a separation in query complexity for the
subgradient computation between quantum (O(1)) and classical (Q(n) [67, Lemma
A.1]) algorithms. This subroutine is also of independent interest, for instance in
quantum algorithms based on gradient descent and its variants (e.g., [166, 233]).

Our techniques for finding an approximate subgradient only require an approx-
imate oracle for the function to be differentiated. Theorem 2.1.1 also applies if the
membership and evaluation oracles are given with error that is polynomially related
to the required precision in minimizing the convex function (see Theorem 2.2.6).
Precise definitions for these oracles with error can be found in Section 2.2.1.

On the other hand, we also aim to establish corresponding quantum lower
bounds to understand the potential for quantum speedups for convex optimization.

To this end, we prove:

Theorem 2.1.2. There exists a convex body K C R"™, a convex function f on K,
and a precision € > 0, such that a quantum algorithm needs at least Q(y/n) queries
to a membership oracle for K and Q(y/n/logn) queries to an evaluation oracle for
f to output a point T satisfying

f(Z) <min f(z) + € (2.1.6)

zeK
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with high success probability (say, at least 0.8).

We establish the query lower bound on the membership oracle by reductions
from search with wildcards [20]. The lower bound on evaluation queries uses a
similar reduction, but this only works for an evaluation oracle with low precision.
To prove a lower bound on precise evaluation queries, we propose a discretization
technique that relates the difficulty of the continuous problem to a corresponding
discrete one. This approach might be of independent interest since optimization
problems naturally have continuous inputs and outputs, whereas most previous work
on quantum lower bounds focuses on discrete inputs. Using this technique, we can
simulate one perfectly precise query by one low-precision query at discretized points,
thereby establishing the evaluation lower bound as claimed in Theorem 2.1.2. As
a side point, this evaluation lower bound holds even for an unconstrained convex
optimization problem on R”, which might be of independent interest since this
setting has also been well-studied classically [54, 213-215].

We summarize our main results in Table 2.1.

Classical bounds Quantum bounds (this paper)
Membership queries || O(n?) [183], Q(n) [182] O(n), Qv/n)
Evaluation queries || O(n?) [183], Q(n) [182] O(n), Qyv/n)
Time complexity O(n?) [183] O(n?)

Table 2.1: Summary of classical and quantum complexities of convex optimization.
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2.1.3 Overview of techniques

Upper bound. To prove our upper bound result in Theorem 2.1.1, we use the
well-known reduction from general convex optimization to the case of a linear objec-
tive function, which simplifies the problem to implementing an optimization oracle
using queries to a membership oracle (Lemma 2.2.1). For the reduction from op-
timization to membership, we follow the best-known classical result in [183] which
implements an optimization oracle using O(n?) membership queries and O(n?) arith-
metic operations. In [183], the authors first show a reduction from separation oracles
to membership oracles that uses O(n) queries and then use a result from [184] to
implement an optimization oracle using o(n) queries to a separation oracle, giving
an overall query complexity of O(nQ)

The reduction from separation to membership involves the calculation of a
height function defined by the authors (see Eq. (2.2.27)), whose evaluation oracle
can be implemented in terms of the membership oracle of the original set. A sep-
arating hyperplane is determined by computing a subgradient, which already takes
O(n) queries. In fact, it is not hard to see that any classical algorithm requires
Q(n) classical queries (see [67, Lemma A.2]), so this part of the algorithm cannot
be improved classically. The possibility of using the quantum Fourier transform to
compute the gradient of a function using O(1) evaluation queries ([120, 157]) sug-
gests the possibility of replacing the subgradient procedure with a faster quantum
algorithm. However, the techniques described in [120, 157] require the function in

question to have bounded second (or even higher) derivatives, and the height func-

19



tion is only guaranteed to be Lipschitz continuous (Definition 2.2.9) and in general
is not even differentiable.

To compute subgradients of general (non-differentiable) convex functions, we
introduce classical randomness (taking inspiration from [183]) and construct a quan-
tum subgradient algorithm that uses O(l) queries. Our proof of correctness (Sec-

tion 2.2.2) has three main steps:

1. We analyze the average error incurred when computing the gradient using the
quantum Fourier transform. Specifically, we show that this approach succeeds
if the function has bounded second derivatives in the vicinity of the point
where the gradient is to be calculated (see Algorithm 2.1, Algorithm 2.2, and

Lemma 2.2.3). Some of our calculations are inspired by [120].

2. We use the technique of mollifier functions (a common tool in functional
analysis [146], suggested to us by [182] in the context of [183]) to show that
it is sufficient to treat infinitely differentiable functions (the mollified func-
tions) with bounded first derivatives (but possibly large second derivatives).
In particular, it is sufficient to output an approximate gradient of the molli-
fied function at a point near the original point where the subgradient is to be

calculated (see Lemma 2.2.4).

3. We prove that convex functions with bounded first derivatives have second
derivatives that lie below a certain threshold with high probability for a ran-
dom point in the vicinity of the original point (Lemma 2.2.5). Furthermore,
we show that a bound on the second derivatives can be chosen so that the
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smooth gradient calculation techniques work on a sufficiently large fraction
of the neighborhood of the original point, ensuring that the final subgradient

error is small (see Algorithm 2.3 and Theorem 2.2.2).

The new quantum subgradient algorithm is then used to construct a separa-
tion oracle as in [183] (and a similar calculation is carried out in Theorem 2.2.3).
Finally the reduction from [184] is used to construct the optimization oracle using
O(n) separation queries. From Lemma 2.2.1, this shows that the general convex

optimization problem can be solved using O(n) membership and evaluation queries

and O(n?) gates.

Lower bound. We prove our quantum lower bounds on membership and evalua-
tion queries separately before showing how to combine them into a single optimiza-
tion problem. Both lower bounds work over n-dimensional hypercubes.

In particular, we prove both lower bounds by reductions from search with
wildcards [20]. In this problem, we are given an n-bit binary string s and the task
is to determine all bits of s using wildcard queries that check the correctness of any
subset of the bits of s: more formally, the input in the wildcard model is a pair
(T,y) where T C [n] and y € {0,1}7], and the query returns 1 if sz = y (here the
notation s;r represents the subset of the bits of s restricted to 7'). Ambainis and
Montanaro [20] showed that the quantum query complexity of search with wildcards
is Q(y/n).

For our lower bound on membership queries, we consider a simple objective

function, the sum of all coordinates > | x;. In other words, we take ¢ = 1" in
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(2.1.5). However, the position of the hypercube is unknown, and to solve the opti-
mization problem (formally stated in Definition 2.3.1), one must use the membership
oracle to locate it.

Specifically, the hypercube takes the form X?Zl[si — 2,5; + 1] (X being the

Cartesian product) for some offset binary string s € {0,1}". We prove:

e Any query x € R" to the membership oracle of this problem can be simulated
by one query to the search-with-wildcards oracle for s. To achieve this, we
divide the n coordinates of z into four sets: T} ¢ for those in [-2,—1), T}, for
those in (1,2], T} mia for those in [—1, 1], and T} oy for the rest. Notice that
T, mia corresponds to the coordinates that are always in the hypercube and
T out corresponds to the coordinates that are always out of the hypercube; T}
(resp., T;1) includes the coordinates for which s; = 0 (resp., s; = 1) impacts
the membership in the hypercube. We prove in Section 2.3.1 that a wildcard

query with 1" =T, o U T, ; can simulate a membership query to z.

e The solution of the sum-of-coordinates optimization problem explicitly gives
s, i.e., it solves search with wildcards. This is because this solution must be
close to the point (s1 — 2,...,s, — 2), and applying integer rounding would

recover Ss.

These two points establish the reduction of search with wildcards to the optimization
problem, and hence establishes the Q(y/n) membership quantum lower bound in
Theorem 2.1.2 (see Theorem 2.3.2).

For our lower bound on evaluation queries, we assume that membership is
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trivial by fixing the hypercube at C = [0,1]". We then consider optimizing the

max-norm function

f(z) = max |z; — ¢ (2.1.7)

i€[n]

for some unknown ¢ € {0,1}". Notice that learning ¢ is equivalent to solving the
optimization problem; in particular, outputting an € C satisfying (2.1.2) with
¢ = 1/3 would determine the string ¢. This follows because for all i € [n], we have
|T; — ¢;| < maxep | — ¢;| < 1/3, and ¢; must be the integer rounding of 7, i.e.,
¢ =01if 7, € [0,1/2) and ¢; = 1 if Z; € [1/2,1]. On the other hand, if we know ¢,
then we know the optimum x = c.

We prove an Q(y/n/logn) lower bound on evaluation queries for learning c.

Our proof, which appears in Section 2.3.2, is composed of three steps:

1) We first prove a weaker lower bound with respect to the precision of the
evaluation oracle. Specifically, if f(x) is specified with b bits of precision, then
using binary search, a query to f(z) can be simulated by b queries to an oracle
that inputs (f(z),t) for some ¢ € R and returns 1 if f(z) < ¢ and returns
0 otherwise. We further without loss of generality assume x € [0,1]". If
x ¢ [0,1]™, we assign a penalty of the L, distance between x and its projection
m(x) onto [0,1]"; by doing so, f(n(z)) and z fully characterizes f(z) (see
(2.3.25)). Therefore, f(z) € [0,1], and f(z) having b bits of precision is

equivalent to having precision 27°.

Similar to the interval dividing strategy in the proof of the membership lower
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bound, we prove that one query to such an oracle can be simulated by one
query to the search-with-wildcards oracle for s. Furthermore, the solution of
the max-norm optimization problem explicitly gives s, i.e., it solves the search-
with-wildcards problem. This establishes the reduction to search with wild-
cards, and hence establishes an Q(y/n/b) lower bound on the number of quan-

tum queries to the evaluation oracle f with precision 27 (see Lemma 2.3.2).

Next, we introduce a technique we call discretization, which effectively simu-
lates queries over an (uncountably) infinite set by queries over a discrete set.
This technique might be of independent interest since proving lower bounds

on functions with an infinite domain can be challenging.

We observe that the problem of optimizing (2.1.7) has the following property:

if we are given two strings x, 2’ € [0, 1]" such that zq,...,2,, 1 —21,...,1—x,

and x7,...,2, 1 —2x),...,1—2a] have the same ordering (for instance, strings

? n?

x = (0.1,0.2,0.7) and 2’ = (0.1,0.3,0.6) both have the ordering x; < xs <

l—z3<23<1—29<1-—1x), then

arg max |z; — ¢;| = argmax |z}, — ¢;|. (2.1.8)
i€[n] i€[n]
Furthermore, if o,... 2/, 1 — ),...,1 — 2/ are 2n different numbers, then

knowing the value of f(z’) implies the value of the arg max in (2.1.8) (denoted

i*) and the corresponding ¢;«, and we can subsequently recover f(x) given x

since f(x) = |z — ¢«|. In other words, f(x) can be computed given x and
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f&@).
Therefore, it suffices to consider all possible ways of ordering 2n numbers,

rendering the problem discrete. Without loss of generality, we focus on z’

: : / ! / ! _ 1 2n
satisfying {z},..., 2,1 —a,..., 1 =2} = {5, .. ., 5797}, and we denote

the set of all such 2’ by D, (see also (2.3.42)). In Lemma 2.3.5, we prove that
one classical (resp., quantum) evaluation query from [0, 1] can be simulated
by one classical evaluation query (resp., two quantum evaluation queries) from
D,, using Algorithm 2.5. To illustrate this, we give a concrete example with

n = 3 in Section 2.3.2.

Finally, we use discretization to show that one perfectly precise query to f

can be simulated by one query to f with precision %; in other words, b in

step 1) is at most [log, 5n] = O(logn) (see Lemma 2.3.4). This is because by
discretization, the input domain can be limited to the discrete set D,,. Notice

that for any = € D,,, f(x) is an integer multiple of ﬁ; even if f(z) can only

1

=, we can round it to the closest integer multiple

be computed with precision

2ntl 1

. As a result, we
5n 2 )

of 5= which is exactly f(z), since the distance

can precisely compute f(z) for all z € D,,, and thus by discretization we can

precisely compute f(x) for all z € [0, 1]™.

In all, the three steps above establish an Q(y/n/logn) quantum lower bound on
evaluation queries to solve the problem in Eq. (2.1.7) (see Theorem 2.3.2). In
particular, this lower bound is proved for an unconstrained convex optimization

problem on R"™, which might be of independent interest.
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As a side result, we prove that our quantum lower bound is optimal for the
problem in (2.1.7) (up to poly-logarithmic factors in n), as we can prove a matching
O(y/n) upper bound (Theorem 2.3.5). Therefore, a better quantum lower bound on
the number of evaluation queries for convex optimization would require studying an
essentially different problem.

Having established lower bounds on both membership and evaluation queries,
we combine them to give Theorem 2.1.2. This is achieved by considering an op-
timization problem of dimension 2n; the first n coordinates compose the sum-
of-coordinates function in Section 2.3.1, and the last n coordinates compose the
max-norm function in Section 2.3.2. We then concatenate both parts and prove
Theorem 2.1.2 via reductions to the membership and evaluation lower bounds, re-
spectively (see Section 2.3.4).

In addition, all lower bounds described above can be adapted to a convex
body that is contained in the unit hypercube and that contains the discrete set D,

to facilitate discretization; we present a “smoothed” hypercube (see Section 2.3.5)

as a specific example.

2.2 Upper bound

In this section, we prove:

Theorem 2.2.1. An optimization oracle for a conver set K C R™ can be im-
plemented using O~(n) quantum queries to a membership oracle for K, with gate

complexity O(n?).

26



The following lemma shows the equivalence of optimization oracles to a general

convex optimization problem.

Lemma 2.2.1. Suppose a reduction from an optimization oracle to a membership
oracle for convex sets requires O(g(n)) queries to the membership oracle. Then
the problem of optimizing a convex function over a convex set can be solved using

O(g(n)) queries to both the membership oracle and the evaluation oracle.

Proof. The problem milr(l f(x) reduces to the problem ( m)inK x’ where K’ is defined
z€ z' x)eK’

as in (2.1.3). K’ is the intersection of convex sets and is therefore convex. A

membership oracle of K’ can be implemented using 1 query each to the membership

oracle of K and the evaluation oracle for f. Since O(g(n)) queries to the membership

oracle of K’ are sufficient to optimize any linear function, the result follows. m

Theorem 2.1.1 directly follows from Theorem 2.2.1 and Lemma 2.2.1.

Overview. We follow the outline listed in Section 2.1.3. Precise definitions of or-
acles and other relevant terminology appear in Section 2.2.1. Section 2.2.2 develops
a fast quantum subgradient procedure that can be used in the classical reduction

from optimization to membership. This is done in two parts:

1. First, we present an algorithm based on the quantum Fourier transform that
calculates the gradient of a function with bounded second derivatives (i.e., a

B-smooth function) with bounded expected one-norm error.

2. Second, we use mollification to restrict the analysis to infinitely differentiable
functions without loss of generality, and then uses classical randomness to
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eliminate the need for bounded second derivatives.

In Section 2.2.3 we show that the new quantum subgradient algorithm fits into the
classical reduction from [183]. Finally, we describe the reduction from optimization

to membership in Section 2.2.4.

2.2.1 Oracle definitions

We provide precise definitions for the oracles for convex sets and functions
that we use in our algorithm and its analysis. We also provide precise definitions of

Lipschitz continuity and [-smoothness which are required in the rest of the section.

Definition 2.2.1 (Ball in f,-norm). The ball of radius r > 0 in {,-norm ||-||,
centered at x € R™ is By(z,7) :={y € R, | |z -y, < r}.

Definition 2.2.2 (Interior of a convex set). For any § > 0, the d-interior of a
convez set K is defined as By(K,—0) := {x | Ba(x,d) C K}.

Definition 2.2.3 (Neighborhood of a convex set). For any d > 0, the §-neighborhood
of a convex set K is defined as Bo(K,0) :=={x | Jy € K s.t. ||z —yll, < I}
Definition 2.2.4 (Evaluation oracle). When queried with x € R™ and § > 0, output

a such that |a — f(z)| < . We use EVALs(f) to denote the time complexity. The

classical procedure or quantum unitary representing the oracle is denoted by Oy.

Definition 2.2.5 (Membership oracle). When queried with x € R™ and 6 > 0,
oulput an assertion that x € By(K,0) or x ¢ Bs(K,—0d). The time complexity is
denoted by MEM;(K). The classical procedure or quantum unitary representing the
membership oracle is denoted by O .
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Definition 2.2.6 (Separation oracle). When queried with x € R™ and 6 > 0, with
probability 1 — &, either

o assert v € By(K,0) or

e output a unit vector ¢ such that ¢'x < ¢y + 6 for all y € By(K, —96).

The time complexity is denoted by SEPs(K).

Definition 2.2.7 (Optimization oracle). When queried with a unit vector ¢, find
y € R" such that c'x < Ty + 6 for all v € Bo(K, —5) or asserts that By(K,6) is

empty. The time complezity of the oracle is denoted by OPTs(K).

Definition 2.2.8 (Subgradient). A subgradient of a convex function f: R" — R at

x, 18 a vector g such that

fly) > f(z) + {9,y —z) (2.2.1)

for all y € R™. For a differentiable convex function, the gradient is the only subgra-

dient. The set of subgradients of f at x s called the subdifferential at x and denoted
by Of(x).

Definition 2.2.9 (L-Lipschitz continuity). A function f: R™ — R is said to be L-
Lipschitz continuous (or simply L-Lipschitz) in a set S if for all x € S, ||g]|., < L

for any g € Of(z). An immediate consequence of this is that for any x,y € S,

[f(y) = f(@)] < Llly — |- (2.2.2)

Definition 2.2.10 (S-smoothness). A function f: R™ — R is said to be 3-smooth in
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a set S if for all x € S, the magnitudes of the second derivatives of f in all directions
are bounded by B. This also means that the largest magnitude of an eigenvalue of

the Hessian V2 f(x) is at most 3. Consequently, for any x,y € S, we have
g
Fy) < f@) + (Vf(@)y — o) + Slly — =% (2.2.3)

2.2.2 A quantum algorithm for computing subgradients

In this subsection, we give a quantum algorithm that given an evaluation oracle
for an L-Lipschitz continuous function f: R"™ — R with evaluation error at most
€ > 0, a point z € R", and an “approximation scale” factor r; > 0, computes an

approximate subgradient g of f at x. Specifically, g satisfies

@) = f(x) + (9,4 — ) = Cllg — [l —4nr L (2.2.4)

for all ¢ € R", where E¢ < £(r,€) and £ must monotonically increase with € as €*
for some o > 0. Here ( is the error in the subgradient that is bounded in expectation

by the function &.

Smooth functions. We first describe how to approximate the gradient of a smooth
function. Algorithm 2.1 and Algorithm 2.2 use techniques from [120, 157] to evalu-
ate the gradient of a function with bounded second derivatives in the neighborhood
of the evaluation point. The following lemma shows that Algorithm 2.1 provides a

good estimate of the gradient with bounded failure probability.
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Algorithm 2.1: GradientEstimate(f,¢, L, 3, 7o)

Input: Function f, evaluation error e, Lipschitz constant L, smoothness
parameter 3, and point xg.

Define

[ =24/€¢/np to be the size of the grid used,

bENsuchthatwgflb:

bOENsuchthatQN—LjSQ%O:Nigﬁf

F(x) = 57[f(xo + §(z — N/2)) — f(0)], and
7:{0,.... N=-1} > G:={-5, -5 +1,..., 8 — 1} s.t. 7(x)

Let Op be a unitary s.t. Op |z) = €2™F® |z) where |F(z) — F(z)| < N

with x and F(m) represented by b and by bits, respectively;
1 Start with n b-bit registers set to 0 and Hadamard transform each to obtain

1
— Z |z1, .., xn) s (2.2.5)
N zn€{0,1,...,.N—1}

2 Perform the operation Op and the map |z) — |y(z)) to obtain

1 il
A2 g e2mit(9) lg) ; (2.2.6)
geGn

3 Apply the inverse QFT over G to each of the registers;
4 Measure the final state to get kq,..., k, and return § = %(kl, ooy k).

Lemma 2.2.2 ([67, Lemma B.2]). Let f: R® — R be an L-Lipschitz function that

15 specified by an evaluation oracle with error at most €. Let f be [(-smooth in

Boo(x,2+/€/B), and let g be the output of GradientEstimate(f, ¢, L, 5, xo) (from

Algorithm 2.1). Then

Pr [\gi ~Vf(x)] > 1500\/neﬁ} < % Vi€ [n]. (2.2.7)

Next we give Algorithm 2.2, which uses several calls to Algorithm 2.1 to esti-

mate the gradient with small /;-distance to the true value in expectation.

Lemma 2.2.3 ([67, Lemma 2.3]). Let f be a convex, L-Lipschitz continuous function
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Algorithm 2.2: SmoothQuantumGradient(f,e, L, 5, )

Data: Function f, evaluation error ¢, Lipschitz constant L, smoothness
parameter 3, and point x.
1 Set T such that 2e~7"/24 < 750y/neB/L;
2 fort=1,2,...,T do
3 L e®) GradientEstimate(f, ¢, L, 3, z);

4 fori=1,2,...,ndo

5 If more than T'/2 of el@ lie in an interval of size 3000y/nef, set g; to be
the median of the points in that interval;

6 Otherwise, set g; = 0;

Output g.

~

specified by an evaluation oracle with error at most €. Suppose f is B-smooth in

Boo(a:,Q\/%). Let

g = SmoothQuantumGradient(f,e, L, 3, x) (2.2.8)

(from Algorithm 2.2). Then for any i € [n], we have |g;| < L and E|g; — V f(z);| <

3000+/nef; hence
Ellg— Vf(x)|l, < 3000n*2\/¢p. (2.2.9)

If L, 1/, and 1/€ are poly(n), the SmoothQuantumGradient algorithm uses O(1)

queries to the evaluation oracle and O(n) gates.

Extension to nonsmooth functions. Now consider a general L-Lipschitz con-
tinuous convex function f. We show that any such function is close to a smooth
function, and we consider the relationship between the subgradients of the original

function and the gradient of its smooth approximation.
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For any 6 > 0, let ms: R™ — R be the mollifier function of width ¢, defined as

T ©XP (‘1—\\5/5\@) z € By(0,9)
ms(z) = (2.2.10)

0 otherwise,

where I, is chosen such that fBQ(O 5) ms(z) d"z = 1. The mollification of f, denoted

Fs := f % ms, is obtained by convolving it with the mollifier function, i.e.,

Fs(z) = (f xms)(x) = - flz —y)ms(y) d™z. (2.2.11)

The mollification of f has several key properties, as follows:

Proposition 2.2.1 ([67, Lemma A.2]). Let f: R® — R be an L-Lipschitz convex
function with mollification Fs. Then
(i) F;s is infinitely differentiable,
(ii) Fy is convex,
(i) Fj is L-Lipschitz continuous, and

(iv) [Fs(x) = f(x)] < Ld.

Furthermore, an approximate gradient of the mollified function gives an ap-

proximate subgradient of the original function, as quantified by the following lemma.

Lemma 2.2.4. Let f: R™ — R be an infinitely differentiable L-Lipschitz continuous

convez function with mollification Fs. Then any § satisfying ||g — VEs(y)|, = ¢ for
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some y € By (x,11) satisfies

f(q) = f(x) + (9,9 — 2) = Cllg — =l — 4nr L — 2L, (2.2.12)

Here ( is the error in the subgradient and ¢ is the parameter used in the mollifier

function.

Proof. For all ¢ € R", convexity of Fs implies

Fs(q) =2 Fs(y) + (VF5(y),a — v) (2.2.13)

= F5(z) + (VF5(y), g —2) + (VFs5(y), v —y) + (Fs(y) — F5(x))  (2.2.14)

> Fys(x) + (VFEs(y),q — x) —4nr L (2.2.15)
> Fs(x) + (9,9 — x) — (llg — z||, — 4nri L. (2.2.16)
Therefore, (2.2.12) follows from Proposition 2.2.1(iv). O

Now consider ¢ such that L < e. Then the evaluation oracle with error € for f
is also an evaluation oracle for Fjs with error € + LJ ~ €. Thus the given evaluation
oracle is also the evaluation oracle for an infinitely differentiable convex function
with the same Lipschitz constant and almost the same error, allowing us to analyze
infinitely differentiable functions without loss of generality (as long as we make no
claim about the second derivatives). This idea is made precise in Theorem 2.2.2.
(Note that the mollification of f is never computed or estimated by our algorithm;
it is only a tool for analysis.)

Unfortunately, Lemma 2.2.3 cannot be directly used to calculate subgradients
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for Fs as § — 0. This is because there exist convex functions (such as f(z) = |z|)
where if |f(x) — g(x)| < § and g(x) is S-smooth, then 36 > ¢ for some constant ¢
(see [67, Lemma A.3]). Thus using SmoothQuantumGradient for this case has an
error of 3000n3/%\/eB > 3000n%/2,/c in £;-norm, which is independent of e.

To fix this issue, we take inspiration from [183] and introduce classical ran-
domness into the gradient evaluation. In particular, the following lemma shows that
for a Lipschitz continuous function, if we sample at random from the neighborhood
of any given point, the probability of having large second derivatives is small. Let
y ~ Y indicate that y is sampled uniformly at random from the set Y. Also, let
A(x) be the largest eigenvalue of the Hessian matrix V2 f(z) at x. Since the Hessian
is positive semidefinite, we have A\(z) < Af(z) := Tr(V2f(z)). Thus the second
derivatives of f are upper bounded by Af(x).

Let n(y) denote the area element on the surface By (z,71), defined as

1 lf Yi — X4 Z 1
n(y)i = (2.2.17)

0 otherwise.

We have

Bypearn®0) = g [ A0 (2.215)
Boo(z,m1)
~ | Twaway (2219)
! OBoo (z,r1)
1 n—1 _@
< (2T1)n(2n)(2r1) L= - (2.2.20)



where (2.2.19) comes from the divergence theorem (the integral of the divergence of
a vector field over a set is equal to the integral of the vector field over the surface of
the set). This indicates that while the second derivatives of a Lipschitz continuous
function can be unbounded at individual points, its expected value for a point
uniformly sampled in an extended region is bounded.

Now, consider a grid of side length [ (aligned with the coordinate axes) em-
bedded in By (z,71). We denote this grid by Gp_ (s For any i € [n] and a
y sampled uniformly from Gp_ (s ), the expectation of the integral of the second
directional derivative in the i*" coordinate direction over a segment from y to the

point y + le; is

2
dz; 1

y;+le; d2 > Ll
EyNGBoo(z,rl),l {/ f( )dzz:| < —. (2.2.21)
Yi

To see this, note that there are 2r;/l segments of length [ (corresponding to
different points y) inside By (y,r1). The total integral of the directional derivative
over these segments is upper bounded by the change in the i*" component of the
gradient, which is in turn bounded by 2L due to the Lipschitz property of f.

Let A: R" x R® — R defined by

Ay,z) = |f(z) = fy) = (Vf(y),z — )| (2.2.22)

be a function that quantifies the deviation from linearity of f between y and z. We

now show the following lemma that bounds this deviation in the neighborhood of a
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randomly sampled point (with high probability).

Lemma 2.2.5. Let f: R" — R be an L-Lipschitz continuous, infinitely differen-
tiable, convex function. Then for a point y chosen uniformly from Gp_ (z )., and

any p € R such that p > n,

Ay, z) < , Vz € Bx(y,1) (2.2.23)

with probability at least 1 — %.

Proof. Note that A(y, z) is a convex function of z and must attain its maximum at
one of the extremal points (vertices) of the hypercube B, (y,[), which are the 2"

points of the form

{y+is]se{-1,1}"}. (2.2.24)

This is because every point in the hypercube is a convex combination of the vertices,
so having a higher function value at an internal point than at all the vertices would
violate convexity.

Consider a path from y to a vertex of B (y,l) consisting of n segments of
length [ aligned along the n coordinate axes. For example, the path could move
a distance [ along +eq, tes,...,te, until the vertex is reached. Using Markov’s

inequality with (2.2.21), we have for every coordinate direction i € [n],

(2.2.25)

y+le; 32
A I
y

1
yNGBoo(x,rl),l leQ 1 p
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Thus with probability at least 1 — 217, the increase in the deviation from linearity

along each segment, as quantified by the function A, is at most ’#. Using the
1

union bound, with probability at least 1 — %, the total deviation from linearity

tpnlL

along the path is at mos as claimed. O]

Lemma 2.2.5 shows that with high probability a sampled point in By (z, )
has a deviation from linearity in its neighborhood which is the same as that for a
function with smoothness parameter %. The analysis of the gradient estimation
procedure (Lemma 2.2.3) uses the smoothness of the function only to bound its
deviation from linearity. Thus, Algorithm 2.2 can be applied as if to a function
r p L

with smoothness paramete . This observation is applied to find an approximate

subgradient in Algorithm 2.3 with the following guarantee:

Algorithm 2.3: QuantumSubgradient(f,e, L, xz,7)
Data: Function f, evaluation error €, Lipschitz constant L, point x € R",
length r; > 0.
1 Sample y ~ Gp_(z,m);

2 Output § = SmoothQuantumGradient(f,e, L, 2n1/3L/7’f/3€1/3, ).

Theorem 2.2.2 ([67, Theorem 2.2]). Let f be a convex, L-Lipschitz function that
is specified by an evaluation oracle with error ¢ < min{1,r,/n*}. Let the output of

Algorithm 2.3 be g = QuantumSubgradient(f,e, L,x, 7). Then for all ¢ € R",

fl@) = f(x) + (9.9 — ) = Cllg — x|, — 4nri L, (2.2.26)

5000Ln5/3 1/3
1
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2.2.3 Step 1: from membership to separation

We now give the quantum algorithm for convex optimization as claimed in
Theorem 2.1.1. First, we show how the approximate subgradient procedure (Algo-
rithm 2.3) fits into the reduction from separation to membership presented in [183].

We use the height function h,: R® — R defined in [183] for any vector p € R™, as

hy(x) = —max{t e R |z +tp € K}, (2.2.27)

where p is the unit vector in the direction of p. The height function has the following

properties:

Proposition 2.2.2 (Lemmas 11 and 12 of [183]). Let K C R™ be a convex set with
By(0,r) € K C By(0,R) for some R > r > 0. Then for any p € R", the height
function (2.2.27) satisfies

(i) hy(x) is conver,

(ii) hy(z) <0 for all x € K, and

(ili) for all 6 > 0, hy(z) is L2 -Lipschitz continuous for z € Bs(0,6).

Now, we are ready to give the reduction from separation to membership using

the algorithm SeparatingHalfspace as follows.

Theorem 2.2.3 ([67, Theorem 2.3]). Let K C R™ be a conver set such that
By(0,7) € K C By(0,R) for some R > r > 0. Let p € (0,1),k = R/r and
d € (0,min{r/7r,1/7k}). Then SeparatingHalfspace(K,p,p,0) oulputs a halfs-
pace that contains K and not p with probability at least 1 — p.
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Algorithm 2.4: SeparatingHalfspace(K,p,p,0)
Data: Convex set K such that By(0,r) C K C By(0,R),x = R/,
d-precision membership oracle for K, point p.

if the membership oracle asserts that p € By(K,0) then
L Output: p € By(K,9).

else if p ¢ By(0, R) then
| Output: the halfspace {z € R" | 0> (z — p,p)}.
else
Define h,(x) as in (2.2.27). The evaluation oracle for h,(x) for any
x € B(0,7/2) can be implemented to precision € = 7kd using log(1/€)
queries to the membership oracle for K;
7 Compute § = QuantumSubgradient(h,, €, L, 0, ne'/?);
Output: the halfspace
{x € R™ | (30000R + 25) n3c/%k%/p > (g, — p)}.

[ SR

(=~ L B N U]

Theorem 2.2.4 ([67, Theorem 2.4]). Let K C R™ be a convex set with By(0,7) C
K C By(0,R) and k = R/r for some R > r > 0, and let n > 0 be fized. Further
suppose that R,r, k = poly(n). Then a separating oracle for K with error n can be

implemented using O(1) queries to a membership oracle for K and O(n) gates.

2.2.4 Step 2: from separation to optimization

It is a folklore result to implement an optimization oracle of a convex set by

O(n) queries to a separation oracle. Specifically, [183, Theorem 15| proves:

Theorem 2.2.5 (Separation to Optimization). Let K be a convex set satisfying
By(0,r) € K C By(0,R) and let k = 1/r. For any 0 < € < 1, with probability
1 — €, we can compute © € By(K,€) such that ¢’z < mingex 'z + €||c|l,, using
O(nlog(nk/e)) queries to SEP,(K), where n = poly(e/nk), and O(n®) arithmetic

operations.

By Theorem 2.2.4 and Theorem 2.2.5, we have:
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Theorem 2.2.6 (Membership to Optimization). Let K be a convex set satisfying
Bs(0,7) C K C B3(0,R) and let k = 1/r. For any 0 < € < 1, with probability 1 — ¢,
we can compute v € By(K, €) such that ¢’z < mingex T + €, using O(n) queries

to a membership oracle for K with error §, where § = O(poly(€)), and O(n®) gates.

Proof. Using Theorem 2.2.4 with n = poly(¢/nk), each query to the separation
oracle requires O(1) queries to a membership oracle with error § = O(poly(e)). We
make O(n) separation queries and perform a further O(n?) arithmetic operations,

so the result follows. O]

Theorem 2.2.1 follows directly from Theorem 2.2.6.

2.3 Lower bound

In this section, we prove our quantum lower bound on convex optimization
(Theorem 2.1.2). We prove separate lower bounds on membership queries (Sec-
tion 2.3.1) and evaluation queries (Section 2.3.2). We then combine these lower
bounds into a single optimization problem in Section 2.3.4, establishing Theo-

rem 2.1.2.

2.3.1 Membership queries

In this subsection, we establish a membership query lower bound using a

reduction from the following search-with-wildcards problem:

Theorem 2.3.1 ([20, Theorem 1]). For any s € {0,1}", let O4 be a wildcard oracle
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satisfying

Od[T)[9)|0) = I T)w)|Qs(T' y)) (2.3.1)

for all T C [n] and y € {0, 1}171, where Q4(T,y) = 6[s;r = y]. Then the bounded-

error quantum query complezity of determining s is O(y/nlogn) and Q(y/n).

We use Theorem 2.3.1 to give an Q(y/n) lower bound on membership queries
for convex optimization. Specifically, we consider the following sum-of-coordinates

optimization problem:

Definition 2.3.1. Let
Cs = X]si — 2,8 +1], s; €{0,1} Vie [n], (2.3.2)
i=1

where X is the Cartesian product on different coordinates. In the sum-of-coordinates

optimization problem, the goal is to minimize

f(z) = Z z; st xeCs. (2.3.3)

i€[n]

Intuitively, Definition 2.3.1 concerns an optimization problem on a hypercube where
the function is simply the sum of the coordinates, but the position of the hypercube
is unknown. Note that the function f in (2.3.3) is convex and 1-Lipschitz continuous.

We prove the hardness of solving sum-of-coordinates optimization using its

membership oracle:
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Theorem 2.3.2. Given an instance of the sum-of-coordinates optimization problem
with membership oracle Oc,, it takes Q(y/n) quantum queries to Oc¢, to output an

T € Cy such that

f(Z) < min f(z) + %, (2.3.4)

z€Cs

with success probability at least 0.9.

Proof. Assume that we are given an arbitrary string s € {0, 1}" together with the
membership oracle O¢, for the sum-of-coordinates optimization problem.

We prove that a quantum query to O¢, can be simulated by a quantum query
to the oracle Oy in (2.3.1) for search with wildcards. Consider an arbitrary point

x € R" in the sum-of-coordinates problem. We partition [n] into four sets:

Tyo:={i€n] |z €[-2-1)} (2.3.5)
Typ = {i €n] |z € (1,2]} (2.3.6)
Tymia = {i € [n] | z; € [-1,1]} (2.3.7)
Toout = {i € [n] | |z;| > 2}, (2.3.8)

and denote T}, := T, o U T, and y@ € {0, 1}zl such that

0 ifie Ty
Yyl = (2.3.9)

1 ifieT,,.
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We prove that Oc,(z) = Q4(Ty, y®) if Ty ou = I, and Og, (7) = 0 otherwise. On the
one hand, if O¢, (z) = 1, we have x € Cy. Because for all i € [n], z; € [s;—2,5;+1] C
[—2, 2] for both s; = 0 and s; = 1, we must have T}, ,,x = &. Now consider any ¢ € T},.
If i € T,p, then z; € [-2,—1). Because x; € [0 — 2,0+ 1] and z; ¢ [1 — 2,1+ 1],
we must have s; = 0 since z; € [s; — 2, s; + 1|. Similarly, if ¢ € T}, 1, then we must

(z)

have s; = 1. As a result of (2.3.9), for all i € T, we have s; = y;"’; in other words,

SiT, = y@ and Q,(T,,y™) =1 = O¢, ().

On the other hand, if O¢ () = 0, there exists an iy € [n] such that z;, ¢
[Siy — 2,84, + 1]. We must have iy ¢ T, ma because [—1,1] C [s;, — 2,8;, + 1]
regardless of whether s;;, = 0 or s;, = 1. Next, if iy € T}, oy, then T, oy # @ and
we correctly obtain Og,(z) = 0. The remaining cases are iy € T, and iy € T} 1.
If ig € Ty, because z;, € [-2,—1) C [0 — 2,0 + 1] and z;, ¢ [si, — 2, i, + 1], we
must have s;, = 1, and thus s5, # y™®) because y(x) =0 by (2.3.9). If ip € T}, 1, we

10

(z)

similarly have s;, = 0, y;” = 1, and thus si7, # y® . In both cases, S|, 7 y® | so
Qs(T,y™)) = 0= Oc,(x).

Therefore, we have established that Oc,(z) = Q4(Ty,y™) if Ty out = &, and
Oc,(x) = 0 otherwise. In other words, a quantum query to Og¢, can be simulated by
a quantum query to Os.

We next prove that a solution Z of the sum-of-coordinates problem satisfy-

ing (2.3.4) solves the search-with-wildcards problem in Theorem 2.3.1. Because
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3

+3 (s —2). (2.3.10)

On the one hand, for all j € [n] we have Z; > s; —2 since & € C,; on the other hand,

by (2.3.10) we have
%+Z(si—2) =SS (si —2), (2.3.11)
which implies Z; < s; — 2 + % In all,
Ti€lsi—2,5,—2+1] Vie[n. (2.3.12)
Define a rounding function sgn_s»: R — {0,1} as

0 ifz<—3/2
SgN_55(2) = (2.3.13)

1 otherwise.

We prove that sgn_s »(%) = s (here sgn_s, is applied on all n coordinates, re-

spectively). For all i € [n], if s; = 0, then &; € [-2,-2] C (—o0,—2) by

o

(2.3.12), which implies sgn_3,,(#;) = 0 by (2.3.13). Similarly, if s; = 1, then
T € [-1,—-3] C (=%, 400) by (2.3.12), which implies sgn_,(Z;) = 1 by (2.3.13).
In all, if we can solve the sum-of-coordinates optimization problem with an

7 satisfying (2.3.4), we can solve the search-with-wildcards problem. By Theo-
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rem 2.3.2, the search-with-wildcards problem has quantum query complexity Q(y/n);
since a query to the membership oracle O¢, can be simulated by a query to the wild-
card oracle Oy, we have established an (y/n) quantum lower bound on membership

queries to solve the sum-of-coordinates optimization problem. O

2.3.2 Evaluation queries

In this subsection, we establish an evaluation query lower bound by considering

the following maz-norm optimization problem:

Definition 2.3.2. In the max-norm optimization problem, the goal is to minimize

a function f.: R™ — R satisfying

felx) = WMW$Z—M+<§:hxl—%> (2.3.14)

i€[n]

for some ¢ € {0,1}", where m: R — [0, 1] is defined as

;

0 ifzx<O
m@) =3z ifo<z<1 (2.3.15)
1 ife>1.

\

Observe that for all € [0,1]", we have f.(r) = maxep|z; — ¢;|. Intuitively,
Definition 2.3.2 concerns an optimization problem under the max-norm (i.e., L
norm) distance from ¢ for all x in the unit hypercube [0, 1]™; for all z not in the

unit hypercube, the optimizing function pays a penalty of the L; distance between
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x and its projection 7(x) onto the unit hypercube. The function f. is 2-Lipschitz

continuous with a unique minimum at x = ¢; we also have:

Lemma 2.3.1. The function f. defined in (2.3.14) is convexr on R™.

Proof. For convenience, we define g;: R™ — R for i € [n] as

.

gi(x) = |m(z;) — x| = 0 ifo<mz <1 (2.3.16)

\

where the second equality follows from (2.3.15). It is clear that g;(z) = max{—x;,0, z;,—
1} by (2.3.16). Since the pointwise maximum of convex functions is convex, g;(x) is
convex for all ¢ € [n].

Moreover, for all ¢ € [n] we define h.;: R" — R as h.;(z) := |7(z;) — ¢| +
|7 (z;) — x;]. We claim that h.;(z) = |z; — ¢;|, and thus h.; is convex. If ¢; = 0, then

|m(2i) — ail + [mw(2i) — 2| = m(2;) + |7(2;) — @5]; as a result,

r; <0 = 7w(z)+|n(r;) — x| =040 — | = —ay; (2.3.17)
r,>1 = w(x)+|m(x) —x| =141 — x| = 2. (2.3.19)

Therefore, Vi € [n], hei(x) = |z; — ¢;|. The proof is similar when ¢; = 1.
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Now we have

1€[n]

o) = max (o) = il + Y I(ey) = ) (2.3.20)
— max <(|7T(:1:i) — il + (@) — ml) + Zgj(a;)) (2.3.21)

1€[n] 7

= max ( he;(z) + Zgj(x) : (2.3.22)
€[n]

Z . .
J#u

Because h.; and g; are both convex functions on R" for all 4,5 € [n], the function
hei(w) +22;4 94(x) is convex on R". Thus f is the pointwise maximum of n convex

functions and is therefore itself convex. O
We prove the hardness of solving (2.3.14) using its evaluation oracle:

Theorem 2.3.3. Given an instance of the max-norm optimization problem with an
evaluation oracle Oy, , it takes Q(y/n/logn) quantum queries to Oy, to output an

z € [0,1)" such that
fe(Z) < min fo(z) + ! (2.3.23)

with success probability at least 0.9.

The proof of Theorem 2.3.3 has two steps. First, we prove a weaker lower

bound with respect to the precision of the evaluation oracle:

Lemma 2.3.2. Suppose we are given an instance of the max-norm optimization

problem with an evaluation oracle Oy, that has precision 0 < ¢ < 0.05, w.e., f. is
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provided with [logy(1/6)] bits of precision. Then it takes Q(y/n/log(1/d)) quantum

queries to Oy, to output an T € [0,1]" such that

fe(Z) < min f(x) + ! (2.3.24)

zel0,1]" 3’

with success probability at least 0.9.
The second step simulates a perfectly precise query to f. by a rough query:

Lemma 2.3.3. One classical (resp., quantum) query to Oy, with perfect precision
can be simulated by one classical query (resp., two quantum queries) to Oy, with

precision 1/5n.

Theorem 2.3.3 simply follows from the two propositions above: by Lemma 2.3.3,
we can assume that the evaluation oracle Oy, has precision 1/5n, so Lemma 2.3.2 im-
plies that it takes Q(y/n/logbn) = Q(y/n/logn) quantum queries to Oy, to output
an T € [0, 1]" satisfying (2.3.23) with success probability 0.9.

The proofs of Lemma 2.3.2 and Lemma 2.3.3 are given in the next paragraphs.

Q(y/n) quantum lower bound on a low-precision evaluation oracle. Sim-
ilar to the proof of Theorem 2.3.2; we also use Theorem 2.3.1 (the quantum lower
bound on search with wildcards) to give a quantum lower bound on the number of

evaluation queries required to solve the max-norm optimization problem.

Proof of Lemma 2.3.2. Assume that we are given an arbitrary string ¢ € {0,1}"

together with the evaluation oracle Oy, for the max-norm optimization problem. To
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show the lower bound, we reduce the search-with-wildcards problem to the max-
norm optimization problem.
We first establish that an evaluation query to Oy can be simulated by wildcard

queries on ¢. Note that if we query an arbitrary = € R, by (2.3.14) we have

i€[n]

Fule) = max |7 (z:) — ¢ + (Z () — xi|) (2.3.25)

= fulm(2)) + (Z m(2:) - 2] (2.3.26)

where 7(x) := (7(x1),...,m(xy,)). In particular, the difference of f.(x) and f.(7(z))
is an explicit function of z that is independent of ¢. Thus the query Oy (x) can be
simulated using one query to Oy, (w(x)) where 7(x) € [0,1]". It follows that we can
restrict ourselves without loss of generality to implementing evaluation queries for
x € [0,1]".

Now we consider a decision version of oracle queries to f., denoted Oy, ..,

where the function f, gec: [0, 1] % [0,1] — {0, 1} satisfies
fedec(w, 1) = 0 fe(x) < 2. (2.3.27)

(We restrict to t € [0, 1] because f.(z) € [0,1] always holds for z € [0,1]".) Us-
ing binary search, a query to Oy, with precision § can be simulated by at most
[logy(1/0)] = O(log 1/5) queries to the oracle Oy, ...

Next, we prove that a query to Oy, .. can be simulated by a query to the search-

with-wildcards oracle O, in (2.3.1). Consider an arbitrary query (z,t) € [0, 1]" %[0, 1]
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to Oy, ... For convenience, we denote Jy, := [0,t], Ji; := [1 —¢,1], and

Tog = Jou — (Jou N Jiy) (2.3.28)
L= s — (Joy O Jig) (2.3.29)
Iiar == Jo+ N Jiy (2.3.30)
Toute == [0,1] = (Jos U Ji). (2.3.31)

We partition [n| into four sets:

Tyor:={i€[n] |z €Ilo;} (2.3.32)
Tyns:={i €n] |z € 1} (2.3.33)
Tymiag = {i € [n] | 2; € Lyias} (2.3.34)
Troutt = {z €n] |z € Iout,t}. (2.3.35)

The strategy here is similar to the proof of Theorem 2.3.2: T} 1ias corresponds to
the coordinates such that |z; — ¢;| <t regardless of whether ¢; = 0 or 1 (and hence
¢; does not influence whether or not max;epn) |2; — ¢;| < t); T out corresponds to the
coordinates such that |z; —c;| > ¢ regardless of whether ¢; = 0 or 1 (so maxepn |2; —
¢;| > t provided Ty o+ is nonempty); and T, (resp., T 1) corresponds to the

coordinates such that |z; — ¢;| <t only when ¢; = 0 (resp., ¢; = 1).
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Denote Ty, 4 := T, 04 U T, 1+ and let y“‘*” € {0, 1}|TW| such that

0 ifie Ty,
gt = (2.3.36)

1 ifieTy,,.

We will prove that Oy, . (2) = Qc(Tuy, y™") if Tyouy = @, and Oy, (z) = 0
otherwise.
On the one hand, if Oy, (2) = 1, we have f.(x) <. In other words, for all

i € [n] we have |z; — ¢;| <t, which implies
x; € Jo,r Vie|[n] (2.3.37)

Since J.,+ C Jo U Jit, we have x; € Jo, U Jy, for all i € [n], and thus T, gy = @
by (2.3.31) and (2.3.35). Now consider any ¢ € T,;. If i € T, 4, then z; € Iy, by
(2.3.32). By (2.3.28) we have x; € Jy; and x; ¢ Ji,, and thus ¢; = 0 by (2.3.37).
Similarly, if i € T}, 14, then we must have ¢; = 1. As aresult of (2.3.36), for alli € T}, ;
we have ¢; =y in other words, r,, =y and Qu(Thy, y™) = 1= 0y, .. (2).

On the other hand, if Oy, , () = 0, there exists an 4y € [n] such that
Tig & Jeio - (2.3.38)

Therefore, we must have iy € T} mia since (2.3.30) implies Iiya ¢ = JogNJ1p C Jeio b
Next, if ig € Ty outs, then Ty ou,e # @ and we correctly obtain Oy, ,  (z) = 0. The

remaining cases are ig € 1,0, and ig € T 1 4.
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If ig € Thoy, then g = 0 by (2.3.36). By (2.3.32) we have z;, € Ioy,
and by (2.3.28) we have x;,; € Jo; and z;, ¢ J14; therefore, we must have ¢;, =

1 by (2.3.38). As a result, ¢p,, # y@h at 4y, If iy € Ty14, we similarly have

(z,t)

iy = 0, y; =1, and thus ¢, , # y™@" at ig. In either case, ¢/, # y™", and
Qc(Tr,y ™) = 0= Of, 4 (2).

Therefore, we have established that Oy, .. () = Qc(T%, y @) if Ty outt = 9,
and Oy, ,..(r) = 0 otherwise. In other words, a quantum query to Oy, ... can be
simulated by a quantum query to the search-with-wildcards oracle O.. Together
with the fact that a query to Oy, with precision § can be simulated by O(log1/6)
queries to Oy, , it can also be simulated by O(log1/6§) queries to O..

We next prove that a solution = of the max-norm optimization problem satis-

fying (2.3.24) solves the search-with-wildcards problem in Theorem 2.3.1. Because

mingeo,1)» fe(x) = 0, considering the precision of at most § < 0.05 we have

feo(Z) <3+ <04 (2.3.39)

In other words,

#i € e —0.4,¢,4+04] Vien). (2.3.40)
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Similar to (2.3.13), we define a rounding function sgn, ,: R — {0,1} as

0 ifz<1/2
sgny o(2) = (2.3.41)

1 otherwise.

We prove that sgn, (%) = ¢ (here sgn, ,, is applied coordinate-wise). For all i € [n],
if ¢; = 0, then 7; € [0,0.4] C (—o00,1/2) by (2.3.40), which implies sgn, ;o(%;) = 0
by (2.3.41). Similarly, if ¢; = 1, then Z; € [0.6,1] C (1/2,400) by (2.3.40), which
implies sgn, 5(7;) = 1 by (2.3.41).

We have shown that if we can solve the max-norm optimization problem with
an T satisfying (2.3.24), we can solve the search-with-wildcards problem. By Theo-
rem 2.3.2, the search-with-wildcards problem has quantum query complexity Q(y/n);
since a query to the evaluation oracle Oy, can be simulated by O(log1/d) queries
to the wildcard oracle O,, we have established an Q(y/n/log(1/6)) quantum lower
bound on the number of evaluation queries needed to solve the max-norm optimiza-

tion problem. ]

Discretization: simulating perfectly precise queries by low-precision queries.
In this subsection we prove Lemma 2.3.3, which we rephrase more formally as fol-
lows. Throughout this subsection, the function f,. in (2.3.14) is abbreviated by f

for notational convenience.

Lemma 2.3.4. Assume that f: [0,1]" — [0,1] satisfies |f(z) — f(z)| < = Ve

0,1]*. Then one classical (resp., quantum) query to Oy can be simulated by one
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classical query (resp., two quantum queries) to O f-

To achieve this, we present an approach that we call discretization. Instead of
considering queries on all of [0, 1]", we only consider a discrete subset D,, C [0, 1]"

defined as

D, :={x(a,7) | a€{0,1}" and 7 € S, }, (2.3.42)

where S, is the symmetric group on [n] and y: {0,1}" x S,, — [0, 1]™ satisfies

X(a, )i = (1 — a;) 2% + a;(1 — £2) Vi€ [n]. (2.3.43)

Observe that D, is a subset of [0, 1]".
Since |S,,| = n! and there are 2" choices for a € {0,1}", we have |D,,| = 2"nl.

For example, when n = 2, we have

with [Dy| = 222! = 8.

We denote the restriction of the oracle Oy to D, by Oyp,, i.e.,

Ofip,|2)[0) = [z)|f(x)) V& € Dn. (2.3.45)

In fact, this restricted oracle entirely captures the behavior of the unrestricted func-

tion.
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Lemma 2.3.5 (Discretization). A classical (resp., quantum) query to Of can be

simulated using one classical query (resp., two quantum queries) to Oy p, -

Algorithm 2.5: Simulate one query to Oy using one query to Oy|p,,.

Input: x € [0,1]™;
Output: f(z) € [0, 1];
1 Compute b € {0,1}" and ¢ € S, such that the 2n numbers
T1,%9y ..., Tp, 1 —x1,...,1 —x, are arranged in decreasing order as

bo()Zo(1) + (1 = bo)) (1 — To1)) 2+ 2= bom)Ton) + (1 — b)) (1 — Zom))

> (1 = bo(n))Ton) + bom) (1 = To@m)) = -+ > (1 = by(1))To1) + bo1) (1 = To(1));
(2.3.46)

2 Compute z* € D,, such that x(b,071) = z* (where y is defined in (2.3.43));
3 Query f(z*) and let k* = (2n +1)(1 — f(z*));

4 Return

1 by (1 — if k= n+ 1
f(:c):{( T e (234)

bo(k)Zo(ks) + (1 — bor)) (1 — Zo())  otherwise.

We prove this proposition by giving an algorithm (Algorithm 2.5) that per-
forms the simulation. The main idea is to compute f(z) only using = and f(x*) for

some z* € D,,. We observe that max-norm optimization has the following property:

if two strings « € [0,1]" and z* € D,, are such that xy,...,z,,1—x,...,1 —x, and
xi,...,x5, 1 —ay,...,1 — 2 have the same ordering, then
arg max |x; — ¢;| = arg max |z} — ¢. (2.3.48)
i€[n] i€[n]
Furthermore, x* € D,, ensures that {«f,... % 1—af,... 1—2%} = {ﬁ, . 2221

are 2n distinct numbers, so knowing the value of f(z*) is sufficient to determine the
value of the arg max above (denoted ¢*) and the corresponding c¢;«. We can then
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recover f(x) = |z;+ — ¢;+| using the given value of x. Moreover, f(z*) is an integer

multiple of ﬁ; even if f(z*) can only be computed with precision 5%, we can round

it to the closest integer multiple of ﬁ which is exactly f(z*), since the distance

2n+1

T < % As a result, we can precisely compute f(z*) for all x € D,,, and thus we

can precisely compute f(z).
We illustrate Algorithm 2.5 by a simple example. For convenience, we define
an order function Ord: [0,1]" — {0,1}" x S,, by Ord(z) = (b,0) for all z € [0, 1]",

where b and o satisfy Eq. (2.3.46).

An example with n =3. Consider the case where the ordering in (2.3.46) is

l—x32>2m 22221 —2021—121 > 23. (2.3.49)

Then Algorithm 2.5 proceeds as follows:

e Line 1: With the ordering (2.3.49), we have o(1) = 3, 0(2) = 1, 0(3) = 2;

b3:0,b1:1,b2:1.

e Line 2: The point z* € D3 that we query given Ord(x) satisfies 1 — 25 = 6/7,
xy=5/7,a5=4/7,1—a5=3/7,1—a} =2/7, and =} = 1/7; in other words,

vt = (5/7,4/7,1)7).

e Line 3: Now we query f(z*). Since f(z*) is a multiple of 1/7 and f(z*) €
[1/7,6/7], there are only 6 possibilities: f(z*) = 6/7, f(z*) = 5/7, f(z*) =

4/7, f(z*) =3/7, f(z*) =2/7, or f(z*)=1/T.
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After running Line 1, Line 2, and Line 3, we have a point x* from the discrete
set D3 such that Ord(z) = Ord(z*). Since they have the same ordering and
|z; — ¢;| is either z; or 1 — x; for all ¢ € [3], the function value f(z*) should

essentially reflect the value of f(z); this is made precise in Line 4.

e Line 4: Depending on the value of f(z*), we have six cases:

— f(z*) = 6/7: In this case, we must have c¢3 = 1, so that |z3 — 3| =
|1/7—1| =6/7 (|z1 — ¢1| can only give 5/7 or 2/7, and |5 — 2| can only
give 4/7 or 3/7). Because 1 — x5 is the largest in (2.3.49), we must have
flz) =1—zs.

— f(z*) = 5/7: In this case, we must have ¢; = 0, so that |z, — ¢1| =
|5/7 — 0| = 5/7. Furthermore, we must have ¢3 = 1 (otherwise if ¢3 = 0,
f(z) > |xs —c3] =6/7). As a result of (2.3.49), we must have f(z) = x;
since z1 > x3 and x; > max{xy, 1 — x2}.

— f(z*) = 4/7: In this case, we must have ¢y = 0, so that |xe —co| = [4/7—
0| = 4/7. Furthermore, we must have c3 = 1 (otherwise if c3 =0, f(x) >
|zg — c3] = 6/7) and ¢; = 1 (otherwise if ¢; =0, f(z) > |z1 — 1| = 5/7).
As aresult of (2.3.49), we must have f(x) = xg since z9 > 1—x1 > 1—x3.

— f(z*) = 3/7: In this case, we must have ¢y = 1, so that |zo — 3| =
|4/7 — 1| = 3/7. Furthermore, we must have c3 = 1 (otherwise if c3 = 0,
f(z) > |rg—c3| =6/7) and ¢; = 1 (otherwise if ¢; = 0, f(z) > |z1—c1| =
5/7). As a result of (2.3.49), we must have f(x) = 1 — x5 since since
l—29>21—2,2>21—23.
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— f(z*) = 2/7 or f(z*) = 1/7: This two cases are impossible because

f(z*) > |xg — co| = [4/7 — 2| > 3/7, no matter co =0 or ¢y = 1.

While Algorithm 2.5 is a classical algorithm for querying Oy using a query
to Oy|p,, it is straightforward to perform this computation in superposition using
standard techniques to obtain a quantum query to O;. However, note that this
requires two queries to a quantum oracle for Oy p, since we must uncompute f(z*)
after computing f(z).

Having the discretization technique at hand, Lemma 2.3.4 is straightforward.

Proof of Lemma 2.3.4. Recall that \f(x) — f(z)] < % Vo € [0,1]". We run Al-

gorithm 2.5 to compute f(x) for the queried value of z, except that in Line 3 we

take k* = [(2n + 1)(1 — f(2*))] (here [a] is the closest integer to a). Because

|]?<33'*) — flz)] < %, we have

|20+ 1)(1 = f(2") = 2n+ (1= f@")] = 20+ DI f(27) = f2")] < 2 < 5

as aresult, k* = (2n+1)(1— f(x*)) because the latter is an integer (see Lemma 2.3.7).
Therefore, due to the correctness of Algorithm 2.5 established in Section 2.3.3, and
noticing that the evaluation oracle is only called at Line 3 (with the replacement
described above), we successfully simulate one query to Oy by one query to Of

(actually, to Ofp, ). O
The proof of Lemma 2.3.5 is given in the next subsection. In particular,

e First, we prove that the discretized vector x* obtained in Line 2 is a good
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approximation of z in the sense that Ord(z*) = Ord(z);
e Second, we prove that the k* obtained in Line 3 satisfies k* € {1,...,n+ 1};

e Third, we prove that the output returned in Line 4 is correct.

2.3.3 Complete analysis of Algorithm 2.5

Correctness of Line 1 and Line 2. In this paragraph, we prove:

Lemma 2.3.6. Let b and o be the values computed in Line 1 of Algorithm 2.5, and

let z* = x(b,0™1). Then Ord(z*) = Ord(z).
Proof. First, observe that b € {0,1}" and o € S,, because

e For all i € [n], both z; and 1 — z; can be written as b;z; + (1 — b;)(1 — x;) for

some b; € {0,1};

e Ord(x) is palindrome, i.e., if z;, is the largest in {z1,...,z,, 1 —21,...,1—2,}
then 1 — x;, is the smallest in {z1,...,2,, 1 —21,..., 1 —x,}; if 1 —z;, is the
second largest in {zy,..., 2y, 1 —21,...,1—x,} then x;, is the second smallest
in {zy,...,2,, 1 —xq,...,1 —x,}; etc.

Recall that in (2.3.46), the decreasing order of {z1,...,2,,1 —x1,...,1 —x,} is

bo()Ta(1) + (1 = bo))(1 = o)) =+ 2 bom)Zom) + (1 = bom)) (1 — Zo(n))

> (1 - ba(n))xa(n) + ba(n)(l - ‘Iﬂ(n)) > 2 (1 - bU(l))xU(l) + bU(l)(l - xU(l))'

(2.3.50)
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On the other hand, by the definition of D,,, we have

1 2 m
ot l—a . 1—g :{ , } 2.3.51
o, =) A b e M+ 1 ( )

Combining (2.3.50) and (2.3.51), it suffices to prove that for any i € [n],

7
2n +1

bo(i)Togi) + (1 = b)) (1 — 25;)) =1 — ; (2.3.52)

(1= bo@))250) + by (1 — 25()) = ma 1 (2.3.53)

We only prove (2.3.52); the proof of (2.3.53) follows symmetrically.

By (2.3.43), we have 7 = (1 — b;) % +1 ) 4 b(1— ”2:;(]1)) for all j € [n]; taking

j = o(t), we have z} ;= (1—=bq )2n+1+bg(i)(1 2n+1) Moreover, since by(;) € {0,1}

implies that by(;)(1 — be(;)) = 0 and bg(i) + (1 = by(1y)? = 1, we have

bff(i)x?;(i) + (1= bo))(1 — 55;(1'))

= bo(i) [(1 = bo(i)) 5rg + Yoy (1 — 5757) ]

+ (1= b)) [boty 771 + (1= bo) (1 — 5757 (2:3.54)

= 2o (1 = o) 57 + (V) + (1 = bo@)”) (1 = 3557 (2.3.55)

=1- 5, (2.3.56)

which is exactly (2.3.52). O

Correctness of Line 3. In this paragraph, we prove:
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Lemma 2.3.7. There is some k* € {1,...,n+ 1} such that f(z*)=1— 2:_’;1.

Proof. Because |} — ¢;| is an integer multiple of L= for all 7 € [n], f(z*) must also
be an integer multiple of 7-=. As a result, k* = (2n + 1)(1 — f(z*)) € Z.

It remains to prove that 1 < k* < n + 1. By the definition of D,, in (2.3.42),

we have

R s Ol b1;<1 . ;‘nlfi) Vie [n]; (2.3.57)

@) | _ o)

7 57 1+ Because we also have ¢; € {0, 1},

since b; = 0 or 1, we have z} € {5

o 1(4) < 2n

f el <1— . 2.3,
toal sl o T S (2.3.58)
As a result,
Fla) o=l < 2 o > (2.3.59)
r¥) = max |z} — ¢| < > 1. 3.
i€n] = " n+1
It remains to prove k* < n+ 1. By (2.3.57), we have
n n+1
) : 2.3.60
$U<">€{2n+1’2n+1}’ (2:3.60)
because cy(n) € {0,1}, we have
n
TP , 2.3.61
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Therefore, we have

n

f(z") = max [z} — ¢;| > |~”Cf§(n) = Co(m)| =

2.3.62

which implies £* < n + 1. O

Correctness of Line 4. In this paragraph, we prove:
Lemma 2.3.8. The output of f(x) in Line 4 is correct.

Proof. A key observation we use in the proof, following directly from (2.3.57), is
that

pTEs} if ¢o(i) = bo(i;
|25 — Coty| = (2.3.63)

1-— 2nZ+ if Cg(i) =1- ba(i)-

First, assume that k* € {1,...,n} (i.e., the “otherwise” case in (2.3.47) hap-

pens). By (2.3.63),

fo e - }; . { - } Vi 4k,
To(k) {2n+1 1) 0 E o T i

which implies that for all i # k7, [z} ;) — co)| # 1 — % since co(; € {0,1}. As a
result, we must have

k*

=1- )
2n +1

T3 k) — Co(i) (2.3.64)
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Together with (2.3.63), this implies

Cotery = 1 = byginy. (2.3.65)

For any i < k*, if c;(;) = 1 — by(;), then (2.3.63) implies that

F) 2 by = ol = 1= g > 1= (23.66)
which contradicts with the assumption that f(z*) =1 — %H Therefore, we must
have

Cotiy = by Vie{l,... k" —1}. (2.3.67)
Recall that the decreasing order of {x1,...,z,, 1 —21,...,1 —x,} is

bo)Zo1) + (1 = bo1)) (1 = Zo1)) = -+ 2 bon)Tom) + (1 = bom)) (1 — To(m)) =

(1 — bg(n))l’g(n) + ba(n)(l — Ia(n)) > 2 (1 — bg(l))xg(l) + bg(l)(l — :Eg(l)). (2.3.68)

Based on (2.3.65), (2.3.67), and (2.3.68), we next prove

‘Jfa(k*) — Co(k*) 2 |x0(i) — Cg(i)l ) € [n] (2369)
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If (2.3.69) holds, it implies

f(x) = max|z; — i = [2o(r) = Coprm)- (2.3.70)

1€[n]

If by+y = 0, then (2.3.65) implies ¢,y = 1, (2.3.70) implies f(x) = 1 — x,), and
(k*) (k%) (k*)

the output in Line 4 satisfies

bok)To(ke) + (1 = bo(r)) (1 = To(r) = 1 = Ty = f(); (2.3.71)

If by(r+y = 1, then (2.3.65) implies cox+y = 0, (2.3.70) implies f(x) = Tk, and the

output in Line 4 satisfies

bo(k)To(ke) + (1 = Do) (1 = To(r)) = To@rey = f(). (2.3.72)

The correctness of Line 4 follows.

It remains to prove (2.3.69). We divide its proof into two parts:

e Suppose i < k*. By (2.3.68), we have

— If bypery = 0 and b,y = 0, we have c,4+) = 1 and ¢,y = 0 by (2.3.65)
and (2.3.67), respectively; (2.3.73) reduces to 1 — Zo() > To(s);

— If bygry = 0 and b,y = 1, we have ¢,4+) = 1 and ¢,y = 1 by (2.3.65)
and (2.3.67), respectively; (2.3.73) reduces to 1 — Zop) > 1 — Z53:);
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— If bygry = 1 and b,y = 0, we have c,4+) = 0 and ¢,;) = 0 by (2.3.65)

and (2.3.67), respectively; (2.3.73) reduces to T, (=) > To(i);

— If bygry = 1 and b,y = 1, we have c,4+) = 0 and ¢,y = 1 by (2.3.65)

and (2.3.67), respectively; (2.3.73) reduces to Z,p+) > 1 — Z4(;).

In each case, the resulting expression is exactly (2.3.69). Overall, we see that

(2.3.69) is always true when i < k*.

e Suppose i > k*. By (2.3.68), we have

bo (k) To(kr) T (1 = b)) (1 — To@r)) = bo(i)To@) + (1 = bo@)) (1 — Zo());

bok)To(kr) T (1 = b)) (1 = Zo@ee)) = (1 = bo())Tog) + bog) (1 — o))

— If bye+) = 0, we have c,4+) = 1 by (2.3.65); the two inequalities above

give 1 — xy4) 2> maX{$a(i)7 I xcr(i)}S

— If bypry = 1, we have c,4+) = 0 by (2.3.65); the two inequalities above

give T (ke) > max{To(), 1 — T }-
Both cases imply (2.3.69), so we see this also holds for i > k*.

The same proof works when &* = n + 1. In this case, there is no i € [n] such

that 7 > k*; on the other hand, when i < k*, we replace (2.3.73) by

(1 — bg(n))Ia(n) + bg(n)(l - Ig(n)) Z (1 - ba(i))l‘a(i) + bo(i)<1 - Ig(i)), (2374)

and the argument proceeds unchanged. O]
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2.3.4 Proof of our quantum lower bound on convex optimization

We now prove Theorem 2.1.2 using Theorem 2.3.2 and Theorem 2.3.3. Recall
that our lower bounds on membership and evaluation queries are both proved on the
n-dimensional hypercube. It remains to combine the two lower bounds to establish

them simultaneously.

Theorem 2.3.4. Let C, := X [s; — 2,8 + 1] for some s € {0,1}". Consider

a function f:Cs x [0,1]" — R such that f(z) = fu(x) + fre(z), where for any

€r = ('Ila Loy ... Jx2n) € Cs X [07 ]']ni
fu(z) = ZZI T, fee(z) = ie{nl}rlf.}.(.gn} |z; — ¢in (2.3.75)

for some ¢ € {0,1}". Then outputting an & € Cs x [0, 1]" satisfying

f(#) < min f(z)+1 (2.3.76)

z€Csx[0,1]7

with probability at least 0.8 requires Q(y/n) quantum queries to Oc, xjo1» and Q(y/n/logn)

quantum queries to Oy.

Notice that the dimension of the optimization problem above is 2n instead
of n; however, the constant overhead of 2 does not influence the asymptotic lower

bounds.
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Proof of Theorem 2.3.J. First, we prove that

min  f(z) =295 and arg min  f(x) = (s — 2,,¢), (2.3.77)

z€Csx[0,1]7 z€Csx[0,1]™

where 2, is the n-dimensional all-twos vector and S := > (s; —2). On the one

hand,

fu(z) >S5 Vrxel,x[0,1]", (2.3.78)

with equality if and only if (zq,...,z,) = s — 2,. On the other hand,

foo(r) >0  Yazed, x[0,1]", (2.3.79)

with equality if and only if (z,41,...,22,) = ¢. Thus f(z) = fu(z) + feclz) > S
for all = € Cs x [0, 1]", with equality if and only if z = (x1,...,Zp, Tpy1,. .., Ton) =
(s —2p,0).

If we solve this optimization problem with output Z satisfying (2.3.76), then

(@) + fee(®) = f(Z) <5+ (2.3.80)

Wl
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Egs. (2.3.78), (2.3.79), and (2.3.80) imply

(@) <S+3= xecrsnxi[rol o (@) + 35 (2.3.81)
feo(@) <t = recls'rii[rol’l]n feo(®) + 3. (2.3.82)

On the one hand, Eq. (2.3.81) says that & also minimizes fy with approxima-
tion error € = 3. By Theorem 2.3.2, this requires (y/n) queries to the membership
oracle Oc,. Also notice that one query to Og,xjo1» can be trivially simulated one
query to Og,; therefore, minimizing f with approximation error e = g with success
probability 0.9 requires (y/n) quantum queries to Og, x[o,1]n-

On the other hand, Eq. (2.3.82) says that & minimizes fg . with approximation

error € = 3. By Theorem 2.3.3, it takes Q(y/n/logn) queries to Oy, _ to output Z.

Also notice that

f@) = fu(@) + fecle Z i+ fool (2.3.83)

therefore, one query to Oy can be simulated by one query to Oy, .. Therefore, ap-
proximately minimizing f with success probability 0.9 requires Q(y/n/logn) quan-

tum queries to Oy.

In addition, fy is independent of the coordinates x,1,..., 22, and only de-
pends on the coordinates 1, ..., z,, whereas fg . is independent of the coordinates
x1, ..., %, and only depends on the coordinates x,, .1, ..., Ts,. As a result, the oracle

Oc, x[o,1)» reveals no information about ¢, and Oy reveals no information about s.
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Since solving the optimization problem reveals both s and ¢, the lower bounds on
query complexity must hold simultaneously.

Overall, to output an & € C,x [0, 1] satisfying (2.3.76) with success probability
at least 0.9-0.9 > 0.8, we need Q(y/n) quantum queries to Oc, x[o,1» and Q(y/n/logn)

quantum queries to Oy, as claimed. O

2.3.5 Side points on our quantum lower bound

Smoothed hypercube. We want to point out that our quantum lower bound

in Theorem 2.3.4 also holds for a smooth convex body. Given an n-dimensional

hypercube C,; := X?Zl[x@- — 1, z;], we define a smoothed version as
E 2n 1 1
SC, =B [ L z}, l 2.3.84
! 2<>:<1x 17" gl 2n—|—1> (2.3.84)

using Definition 2.2.3. For instance, a smoothed 3-dimensional cube is shown in

Figure 2.1.

Figure 2.1: Smoothed hypercube of dimension 3.
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The smoothed hypercube satisfies

Coo 1y 21, C SChy C Coy (2.3.85)

= 2n+1l"72n+1

where [,, is [ times the n-dimensional all-ones vector; in other words, it is contained in

the original (non-smoothed) hypercube, and it contains the hypercube with the same

center but edge length g;‘:l For instance, X?:l[ﬁ, 23%] C8Cy,1 C X?ZI[O, 1];
by Eq. (2.3.42), D,, € SCy, 1. It can be verified that the proof of Theorem 2.3.2
still holds if the hypercube X?Zl[si —2,8;4+ 1] = Cs41,, 3 is replaced by SCsy1, 3, and
the proof of Theorem 2.3.3 still holds if the unit hypercube [0,1]™ is replaced by
S8Cy,, 1; consequently Theorem 2.3.4 also holds. More generally, the proofs remain

valid as long as the smoothed hypercube is contained in [0, 1]" and contains D,, (for

discretization).

Optimality of Theorem 2.3.3. In this paragraph, we prove that the lower bound
in Theorem 2.3.3 is optimal (up to poly-logarithmic factors in n) for the max-norm

optimization problem:

Theorem 2.3.5. Let f.: [0,1]" — [0,1] be an objective function for the maz-norm
optimization problem (Definition 2.3.2). Then there exists a quantum algorithm that
outputs an T € [0,1]" satisfying (2.3.23) with € = 1/3 using O(y/nlogn) quantum

queries to Oy, with success probability at least 0.9.

In other words, the quantum query complexity of the max-norm optimization prob-

lem is ©(y/n).
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We prove Theorem 2.3.5 also using search with wildcards (Theorem 2.3.1).

Proof. Tt suffices to prove that one query to the wildcard query model O, in (2.3.1)
can be simulated by one query to Oy,, where the ¢ in (2.3.14) is the string ¢ in the
wildcard query model.

Assume that we query (7, y) using the wildcard query model. Then we query

Oy, (2T where for all i € [n],

N

ifi ¢ T,

Ty =30 ifieT and y; = 0; (2.3.86)

1 ifieT and y; = 1.

If ¢ = y, then

o if [T| =n (i.e., T = [n]), then

felz) = max 27 — ;| =0 (2.3.87)
en
because for any i € [n], mET’y) =y = ¢;
o if || <n—1, then

1
fe(x) = max 2" — i + g = =, (2.3.88)

1€[n] 2

(T'y) Y)

because for all i € T' we have x = y; = ¢; and hence ]xfT —¢| =0, and

)

for all i ¢ T' we have |x£T’y) — ¢l = |% — ¢l = %
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Therefore, if ¢jr = y, then we must have f.(z™¥)) € {0,1}.

On the other hand, if ¢z # y, then there exists an ig € 1" such that ¢;; # y;,.
This implies w( Y =1 —¢,; as a result, f.(z™%) = 1 because on the one hand
fo(x@V) > |1—¢; — ;| = 1, and on the other hand f.(z(T) < 1 as |27 —¢;| < 1
for all ¢ € [n].

Notice that the sets {O, %} and {1} do not intersect. Therefore, after we query
Oy, (zT%)) and obtain the output, we can tell Q (T, y) = 1 in (2.3.1) if Oy (zT¥)) €
{0,1}, and output Q4(T,y) = 0 if Oy, (z(™¥)) = 1. In all, this gives a simulation of
one query to the wildcard query model O, by one query to Oy,.

As a result of Theorem 2.3.1, there is a quantum algorithm that outputs the
¢ in (2.3.14) using O(y/nlogn) quantum queries to Of. If we take Z = ¢, then
fe(Z) = max; |¢; — ¢;] = 0, which is actually the optimal solution with ¢ = 0 in

(2.3.23). This establishes Theorem 2.3.5. O

2.4  Conclusions and discussion

In this chapter, we present a quantum algorithm that can optimize a convex
function over an n-dimensional convex body using O(n) queries to oracles that eval-
uate the objective function and determine membership in the convex body. This
represents a quadratic improvement over the best-known classical algorithm. We
also study limitations on the power of quantum computers for general convex opti-
mization, showing that it requires Q(\/ﬁ) evaluation queries and §2(y/n) membership

queries.
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Related independent work. Inindependent simultaneous work, van Apeldoorn,
Gilyén, Gribling, and de Wolf [25] establish a similar upper bound, showing that
O(n) quantum queries to a membership oracle suffice to optimize a linear function
over a convex body (i.e., to implement an optimization oracle). Their proof follows
a similar strategy to ours, using a quantum algorithm for evaluating gradients in
O(l) queries to implement a separation oracle. As in our approach, they use a
randomly sampled point in the neighborhood of the point where the subgradient is
to be calculated. The only major difference is that they use finite approximations of
the gradient and second derivatives, whereas we use these quantities in their original
form and give an argument based on mollifier functions to ensure that they are well
defined.

Reference [25] also establishes quantum lower bounds on the query complexity
of convex optimization, showing in particular that Q(y/n) quantum queries to a sep-
aration oracle are needed to implement an optimization oracle, implying an Q(y/n)
quantum lower bound on the number of membership queries required to optimize
a convex function. While Ref. [25] does not explicitly focus on evaluation queries,
those authors have pointed out to us that an Q(y/n) lower bound on evaluation

queries can be obtained from their lower bound on membership queries (although

our approach gives a bound with a better Lipschitz parameter).

Open questions. Our work leaves several natural open questions for future in-

vestigation. In particular:

e Can we close the gap for both membership and evaluation queries? Our upper
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bounds on both oracles in Theorem 2.1.1 uses O(n) queries, whereas the lower

bounds of Theorem 2.1.2 are only Q(y/n).

Can we improve the time complexity of our quantum algorithm? The time
complexity O(n?) of our current quantum algorithm matches that of the clas-
sical state-of-the-art algorithm [183] since our second step, the reduction from
optimization to separation, is entirely classical. Is it possible to improve this

reduction quantumly?

What is the quantum complexity of convex optimization with a first-order
oracle (i.e., with direct access to the gradient of the objective function)? This
model has been widely considered in the classical literature (see for example

Ref. [215]).
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Chapter 3: Volume Estimation'

Having studied quantum algorithms for convex optimization in Chapter 2,
another closely related question is to estimate the volume of convex bodies, which

is the main focus of this chapter.

3.1 Introduction

Volume estimation is a central challenge in theoretical computer science and
a basic problem in convex geometry—it can be viewed as a continuous version
of counting. Furthermore, algorithms for a generalization of volume estimation—
namely log-concave sampling—can be directly used to perform convex optimization,
and hence can be widely applied to problems in statistics, machine learning, opera-
tions research, etc. See the survey [269] for a more comprehensive introduction.

Volume estimation is a notoriously difficult problem. References [39, 106]
proved that any deterministic algorithm that approximates the volume of an n-
dimensional convex body within a factor of n°™ necessarily makes exponentially
many queries to a membership oracle for the convex body. Furthermore, Refs. [104,

171, 172] showed that estimating the volume exactly (deterministically) is #P-hard,

IThis chapter is based on the paper [66] under the permission of all the authors.
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even for explicitly described polytopes.

Surprisingly, volumes of convex bodies can be approximated efficiently by ran-
domized algorithms. Reference [103] gave the first polynomial-time randomized al-
gorithm for estimating the volume of a convex body in R". It presents an iterative
algorithm that constructs a sequence of convex bodies. The volume of the con-
vex body of interest can be written as the telescoping product of the ratios of the
volumes of consecutive convex bodies, and these ratios are estimated by Markov
chain Monte Carlo (MCMC) methods via random walks inside these convex bodies.
The algorithm in [103] has complexity O(n?®) with multiplicative error ¢ = ©(1).
Subsequent work [26, 102, 160, 196-198, 200] improved the design of the iterative
framework and the choice of the random walks. The state-of-the-art algorithm for
estimating the volume of a general convex body [201] uses O(n*) queries to the
oracle for the convex body and O(n®) additional arithmetic operations. It has been
an open question for around 15 years to improve this O(n4) query complexity.?

It is natural to ask whether quantum computers can solve volume estimation
even faster than classical randomized algorithms. Although there are frameworks
with potential quantum speedup for simulated annealing algorithms in general, with
volume estimation as a possible application [273], we are not aware of any previous
quantum speedup for volume estimation. There are several reasons to develop such

a result. First, quantum algorithms for volume estimation can be seen as perform-

ing a continuous version of quantum counting [57, 58], a key algorithmic technique

2The volume estimation literature mainly focuses on improving the dependence on n, treating
€ as a constant. To be more explicit, the algorithm in [201] has query complexity O(n*/e?).
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with wide applications in quantum computing. Second, quantum algorithms for
volume estimation can exploit quantum MCMC methods (e.g., [208, 236, 272]),
and a successful quantum volume estimation algorithm may illuminate the applica-
tion of quantum MCMC methods in other scenarios. Third, there has been recent
progress on quantum algorithms for convex optimization [25, 67|, so it is natural to

understand the closely related task of estimating volumes of convex bodies.

Formulation. Given a convex set K C R", we consider the problem of estimating

its volume

Vol(K) := / dz. (3.1.1)

To get a basic sense about the location of K, we assume that it contains the origin.

Furthermore, we assume that we are given inner and outer bounds on K, namely
B2(0,7) € K C By(0, R), (3.1.2)

where By (z, 1) is the ball of radius [ in fo-norm centered at = € R". Denote D := R/r.

We consider the very general setting where the convex body K is only specified
by an oracle. In particular, we have a membership oracle® for K that determines
whether a given x € R™ belongs to K. The efficiency of volume estimation is

then measured by the number of queries to the membership oracle (i.e., the query

3The membership oracle is commonly used in convex optimization research (see for exam-
ple [127]). This model is not only general but also of practical interest. For instance, when K is
a bounded convex polytope, the membership oracle can be efficiently implemented by checking if
all its linear constraints are satisfied; see also [187].
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complexity) and the total number of other arithmetic operations.
In the quantum setting, the membership oracle is a unitary operator Ok as in

(1.3.2). Specifically, we have

Ok|z,0) = |z, 6]z € K]) Ve e R", (3.1.3)

where 6[P] is 1 if P is true and 0 if P is false.* In other words, we allow coherent
superpositions of queries to the membership oracle. If the classical membership
oracle can be implemented by an explicit classical circuit, then the corresponding
quantum membership oracle can be implemented by a quantum circuit of about the
same size. Therefore, the quantum query model provides a useful framework for

understanding the quantum complexity of volume estimation.

3.1.1 Contributions

Our main result is a quantum algorithm for volume estimation:

Theorem 3.1.1 (Main Theorem). Let K C R™ be a convex set with Bo(0,7) C K C

B2(0, R). Assume 0 < € < 1/2. Then there is a quantum algorithm that returns a

—~——

value Vol(K) satisfying

—_~—

Vol(K) < Vol(K) < (1 + €) Vol(K) (3.1.4)

1+e

4Here z can be approximated just as in the classical algorithms, such as with floating point
numbers. Our algorithmic approach is robust under discretization (see [66, Section 5]), and our
quantum lower bound holds even when z is stored with arbitrary precision (Section 3.5). We
mostly assume for convenience that Ok operates on z € R™, since this neither presents a serious
obstacle nor conveys significant power.
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using O(n® + n*°/€) quantum queries to the membership oracle Ox (defined in

(3.1.3)) and O(n® +n*?/€) additional arithmetic operations.’

To the best of our knowledge, this is the first quantum algorithm that achieves
quantum speedup for this fundamental problem, compared to the classical state-of-
the-art algorithm [88, 201] that uses O(n*+n?/€?) classical queries and O(n®+n/€?)

6 Furthermore, our quantum algorithm not only

additional arithmetic operations.
achieves a quantum speedup in query complexity, but also in the number of arith-
metic operations for executing the algorithm. This differs from previous quantum
algorithms for convex optimization [25, 67] where only the query complexity is im-
proved, but the gate complexity is the same as that of the classical state-of-the-art
algorithm [183, 184].

On the other hand, we prove that volume estimation with ¢ = O(1) re-
quires (y/n) quantum queries to the membership oracle, ruling out the possibility
of achieving superpolynomial quantum speedup for volume estimation (see Theo-
rem 3.5.1).

Technically, we refine a framework for achieving quantum speedups of simu-

lated annealing algorithms, which might be of independent interest. Our framework

applies to MCMC algorithms with cooling schedules that ensure each ratio in a tele-

5 Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in prin-
ciple implemented by a universal set of quantum gates using the Solovay-Kitaev Theorem [95] up
to a small overhead. In our quantum algorithm, the number of arithmetic operations is dominated
by n-dimensional matrix-vector products computed in superposition for rounding the convex body
(see Section 3.4.4).

6This is achieved by applying [201] to preprocess the convex body to be well-rounded using
O(n*) queries and then applying [88] using O(n?/€?) queries to estimate the volume of the well-
rounded convex body. The number of additional arithmetic operations has an overhead of O(n?)
due to the affine transformation in rounding.
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scoping product has bounded variance, an approach known as Chebyshev cooling.
Furthermore, we propose several novel techniques when implementing this frame-
work, including a theory of continuous-space quantum walks with rigorous bounds
on discretization error, a quantum algorithm for nondestructive mean estimation,
and a quantum algorithm with interlaced rounding and volume estimation of convex
bodies (as described further in Section 3.1.2 below). In principle, our techniques ap-
ply not only to the integral of the identity function (as in Theorem 3.1.1), but could
also be applied to any log-concave function defined on a convex body, following the
approach in [199].

We summarize our main results in Table 3.1.

‘ H Classical bounds ‘ Quantum bounds (this paper) ‘
Query complexity O(n* + n?/ée?) [88 201], Q(n?) [231] O(n? +n*%/¢), Q(/n)
Total complexity || O((n® 4+ Cumm) - (n* +n?/€?)) [88, 201] | O((n* + Cupwm) - (n® + n*®/e))

Table 3.1: Summary of complexities of volume estimation, where n is the dimension of
the convex body, € is the multiplicative precision of volume estimation, and Cygm is the
cost of applying the membership oracle once. Total complexity refers to the cost of the of
queries plus the number of additional arithmetic operations.

3.1.2 Techniques

We now summarize the key technical aspects of our work.

3.1.2.1 C(Classical volume estimation framework

Volume estimation by simulated annealing. The volume of a convex body K

can be estimated using simulated annealing. Consider the value

Z(a) ::/Ke_‘”m||2 dz, (3.1.5)
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where ||z|]2 := y/2% + - - - + 22 is the fo-norm of . On the one hand, Z(0) = Vol(K);
on the other hand, because e~#l2 decays exponentially fast with ||z||, taking a large
enough a ensures that the vast majority of Z(a) concentrates near 0, so it can be
well approximated by integrating on a small ball centered at 0. Therefore, a natural
strategy is to consider a sequence ag > a; > --- > a,, with aq sufficiently large and
an, close to 0. We consider a simulated annealing algorithm that iteratively changes

a; to a;y1 and estimates Vol(K) by the telescoping product

—_

m—

Vol(K) ~ Z(am) = Z(ao) ||

1=

Z(aiy1)
Z(a;)

. (3.1.6)

In the i'" step, a random walk is used to sample the distribution over K with density
proportional to e~%l7ll2. Denote one such sample by X;, and let V; := e(@=%+1|| X]|.

Then we have

—ai|z||2 —aiy1|zl2 Z(ai1)

o e e (i1
E%:/&Mwwu——mz/ do = =2 3.1.7
vI= Ze) YT k2@ T 2y B
Therefore, each ratio % can be estimated by taking i.i.d. samples X;, computing

the corresponding V;s, and taking their average.
We can analyze this volume estimation algorithm by considering its behavior

at three levels:

1) High level: The algorithm follows the simulated annealing framework described

above, where the volume is estimated by a telescoping product as in (3.1.6).

2) Middle level: The number of i.i.d. samples used to estimate E[V;] (a ratio in the
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telescoping product given by (3.1.7)) is small. Intuitively, the annealing schedule

should be slow enough that V; has small variance.

3) Low level: The random walk converges fast so that we can take each i.i.d. sample

of V; efficiently.

Classical volume estimation algorithm. Our approach follows the classical
volume estimation algorithm in [201] (see also Section 3.4.1). At the high level,
it is a simulated annealing algorithm that estimates the volume of an alternative
convex body K’ produced by the pencil construction, which intersects a cylinder
[0,2R/r] x K and a cone C := {z € R""! : 2y > 0,||z|l2 < zo}. This construction
replaces the integral (3.1.5) by Z(a) = [i, 7 dz, which is easier to calculate.
Without loss of generality, assume that r = 1. Reference [201] proves that
if we take the sequence ag > -+ > a,, where ag = 2n, a;4; = (1 — \/Lﬁ)ai, and

m = O(y/n), then Z(ag) ~ [, e~ dz and

Var[V’] = O(1) -E[V;]* Vi€ [m], (3.1.8)

i.e., the variance of V; is bounded by a constant multiple of the square of its ex-
pectation. Such a simulated annealing schedule is known as Chebyshev cooling (see
also Section 3.4.3.3). This establishes the middle-level requirement of the simulated
annealing framework. Furthermore, [201] proves that the product of the average
of O(y/n/€®) ii.d. samples of V; for all i € [m] gives an estimate of Vol(K') within

multiplicative error € with high success probability.
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At the low level, Ref. [201] uses a hit-and-run walk to sample X;. In this
walk, starting from a point p, we uniformly sample a line ¢ through p and move
to a random point along the chord ¢ N K with density proportional to e~ (see
Section 3.2.4 for details). Ref. [200] analyzes the convergence of the hit-and-run
walk, proving that it converges to the distribution over K with density proportional
to e~ within O(n?) steps, assuming that K is well-rounded (i.c., R/r = O(y/n)).

Finally, Ref. [201] constructs an affine transformation that transforms a general
K to be well-rounded with O(n4) classical queries to its membership oracle, hence
removing the constraint of the previous steps that K be well-rounded. Because the
affine transformation is an n-dimensional matrix-vector product, this introduces an
overhead of O(n?) in the number of arithmetic operations.

Overall, the algorithm has O(y/n) iterations, where each iteration takes O(y/n/€?)
i.i.d. samples, and each sample takes O(n3) steps of the hit-and-run walk. In total,

the query complexity is

O(vn) - O(v/n/e?) - O(n®) = O(n'/€). (3.1.9)

The number of additional arithmetic operations is O(n*/€?) - O(n?) = O(nf/€*) due

to the affine transformation for rounding the convex body.

3.1.2.2 Quantum algorithm for volume estimation

It is natural to consider a quantum algorithm for volume estimation following

the classical framework in Section 3.1.2.1. A naive attempt might be to develop a
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quantum walk that achieves a generic quadratic speedup in mixing time. However,
this is unfortunately difficult to achieve in general. Quantum walks are unitary
processes that do not converge to stationary distributions in the classical sense. As
a result, alternative and indirect quantum analogues of mixing properties of Markov
chains have been proposed and studied (see Section 3.1.3 for more detail). None
of these methods provide a direct replacement for classical mixing, and we cannot
directly apply them in our context.

Instead, we adapt one of the frameworks proposed in [272]. To give a quantum
speedup for volume estimation by this method, we address the following additional

technical challenges:

e Quantum walks in continuous space: Quantum walks are mainly studied in
discrete spaces [205, 254], and we need to understand how to define a quantum

counterpart of the hit-and-run walk.

e Quantum mean estimation: Quantum counting [57] is a general tool for es-
timating a probability p € [0,1] with quadratic speedup compared to classical
sampling. However, estimating the mean of an unbounded random variable with

a quantum version of Chebyshev concentration requires more advanced tools.

¢ Rounding: Classically, rounding a general convex body takes é(n4) queries [201],
more expensive than volume estimation of a well-rounded body using O(n?/e?)
queries [88]. To achieve an overall quantum speedup, we also need to give a fast

quantum algorithm for rounding convex bodies.

e Error analysis of the quantum hit-and-run walk: We must bound the error
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incurred when implementing the quantum walk on a digital quantum computer
with finite precision. Existing classical error analyses (e.g., [111]) do not auto-

matically cover the quantum case.

We develop several novel techniques to resolve all these issues, outlined point-

by-point as follows.

Theory of continuous-space quantum walks (Section 3.3). Our first tech-
nical contribution is to develop a quantum implementation of the low-level frame-
work, i.e., to replace the classical hit-and-run walk by a quantum hit-and-run walk.
However, although quantum walks in discrete spaces have been well studied (see
for example [205, 254]), we are not aware of comparable results that can be used
to analyze spectral properties and mixing times of quantum walks in continuous
space. Here we describe a framework for continuous-space quantum walks that can
be instantiated to give a quantum version of the hit-and-run walk. In particular,
we formally define such walks and analyze their spectral properties, generalizing
Szegedy’s theory [254] to continuous spaces (Section 3.3.1). We also show a direct
correspondence between the stationary distribution of a classical walk and a certain

eigenvector of the corresponding quantum walk (Section 3.3.2).

Quantum volume estimation algorithm via simulated annealing (Sec-
tion 3.4.2). Having described a quantum hit-and-run walk, the next step is to
understand the high-level simulated annealing framework. As mentioned above, it

is nontrivial to directly prepare stationary states of quantum walks. In this paper,
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we follow a quantum MCMC framework proposed by [272] that can prepare sta-
tionary states of quantum walks by simulated annealing (see Section 3.2.2). In this
framework, we have a sequence of slowly-varying Markov chains, and the station-
ary state of the initial Markov chain can be efficiently prepared. In each iteration,
we apply fixed-point amplitude amplification of the quantum walk operator [130]
due to Grover to transform the current stationary state to the next one; compared
to classical slowly-varying Markov chains, the convergence rate of such quantum
procedure is quadratically better in spectral gap.

Our main technical contribution is to show how to adapt the Chebyshev
cooling schedule in [201] to the quantum MCMC framework in [272] using our quan-
tum hit-and-run walk. The conductance lower bound together with the classical
O(n®) mixing time imply that we can perform one step of fixed-point amplitude
amplification using O(n'?) queries to Ok. Furthermore, the inner product between
consecutive stationary states is a constant. These two facts ensure that the station-

ary state in each iteration can be prepared with O(n“’) queries to the membership

oracle Ok. The total number of iterations is still O(\/ﬁ), as in the classical case.

Quantum algorithm for nondestructive mean estimation (Section 3.4.3.3).
In the next step, we consider how to estimate each ratio in the telescoping product
at the middle level. Our main tool is quantum counting [57], which estimates a prob-
ability p € [0,1] with error e and high success probability using O(1/¢) quantum
queries, a quadratic speedup compared to the classical complexity O(1/¢*) due to

Chernoff’s bound. In our case, we need to estimate the expectation of a random
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variable with bounded variance. This is achieved by truncating the random vari-
able with reasonable upper and lower bounds and reducing to quantum counting,
using the “quantum Chebyshev inequality” developed in [134] (see Section 3.2.3).
Compared to the classical counterpart, this achieves quadratic speedup in the de-
pendences on both variance and multiplicative error.

There is an additional technical difficulty in quantum simulated annealing:
classically, it is implicitly assumed that in the (i + 1) iteration we have samples
to the stationary distribution in the i*® iteration. Applying existing quantum mean
estimation techniques to the quantum stationary state in the i*" iteration would ruin
that state and make it hard to use in the subsequent (i + 1)*® iteration. To resolve
this issue, we show how to estimate the mean nondestructively in the quantum
Chebyshev inequality while keeping its quadratic speedup in the error dependence.

We achieve this nondestructive property by the following observation. The
basic quantum counting algorithm with unitary operation U and state |¢) [57] is
composed of a quantum Fourier transform (QFT), controlled Us on |¢), and then
an inverse QFT, giving an estimate of (0|(0|U|0)|¢). If we apply a unitary operation
that computes a function of (0|(0|U|0)|¢) in an ancilla register and then uncompute
the counting circuit, then we get the state |¢) back as well as the function value we
need. Although the amplitude estimation only succeeds with probability 8/72, this
can be boosted to 1 — ¢ for any § > 0 by executing O(log 1/§) copies simultaneously
and taking their median. One technical issue is that amplitude estimation can
either give positive or negative phase angles (see (3.2.10)), but this can be fixed by
applying a sine-square function in superposition on a separate register for each copy
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(see (3.4.22)), computing the median of all the O(log 1/d) copies, and applying the
inverse of all the sine-square functions and amplitude estimations.”

In our quantum volume estimation algorithm, we apply the quantum Cheby-
shev inequality under the same compute-uncompute procedure. This gives a quadratic

speedup in €' when estimating the E[V;] in (3.1.7), so that O(,/n/€) copies of the

stationary state suffice (see Lemma 3.4.3).

Quantum algorithm for volume estimation with interlaced rounding (Sec-
tion 3.4.4). The stationary states of the quantum hit-and-run walk can be pre-
pared with O(n1‘5) queries to Ok only when the corresponding density functions are
well-rounded (i.e., every level set with probability u contains a ball of radius pur,
and the variance of the density is bounded by R?, with R/r = O(y/n)). It remains
to show how to ensure that the convex body is well-rounded.

Classically, Ref. [201] gave a rounding algorithm that transforms a convex
body to ensure that all the densities sampled in the volume estimation algorithm are
well-rounded. This algorithm uses O(n*) queries, via O(n) iterations of simulated
annealing. A quantization of this algorithm along the same lines as detailed above
gives an algorithm with O(n®?) quantum queries.

To improve over that approach, we instead follow a classical framework for
directly rounding logconcave densities [199]. The rounding is interlaced with the

volume estimation algorithm, so that in each iteration of the simulated annealing

"A recent paper of Harrow and Wei [139] independently showed how to perform nondestructive
amplitude estimation using a different approach: they directly apply a state restoration procedure
inspired by [257] that first boosts the fidelity to 1/2 and then repeats the projection onto the
measured state until it is restored.
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framework, we use some of the samples to calculate an affine transformation that
makes the next stationary state well-rounded. This ensures that the quantum hit-
and-run walk continues to take only O(n1‘5) queries for each sample. Our algorithm
maintains O(n) extra quantum states for rounding, and the quantum hit-and-run
walk is used to transform them from one stationary distribution to the next. In
each iteration, we use a nondestructive measurement to sample the required affine
transformation. With O(y/n) iterations this results in an additional O(y/n) - O(n) -
O(n'5) = O(n?) cost for rounding.

We also show that this framework can be used as a preprocessing step that
puts the convex body itself in well-rounded position (i.e., Bo(0,7) € K C By (0, R)
with R/r = O(y/n)) using O(n?) quantum queries. Putting a convex body in well-
rounded position implies that several random walks used in simulated annealing
algorithms (including the hit-and-run walk) mix fast without the need for further
rounding. Therefore, as an alternative, we could preprocess the convex body to be

well-rounded and then apply the simulated annealing algorithm to obtain a volume

estimation algorithm that uses O(n3 +n%*5/€) quantum queries.

Summary. Our quantum volume estimation algorithm is summarized as follows.

1) High level: The quantum algorithm follows a simulated annealing framework using
a quantum MCMC method [272], where the volume is estimated by a telescoping

product (as in (3.1.6)); the number of iterations is O(/n).

2) Middle level: We estimate the E[V;] in (3.1.7), a ratio in the telescoping product,
using the nondestructive version of the quantum Chebyshev inequality [134]. This
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takes O(y/n/€) implementations of the quantum hit-and-run walk operators.

3) Low level: If the convex body K is well-rounded (i.e., R/r = O(y/n)), each quan-
tum hit-and-run walk operator can be implemented using O(n'®) queries to the

membership oracle Ok in (3.1.3).

Finally, we give a quantum algorithm that interlaces rounding and volume
estimation of the convex body, using an additional O(n“’) quantum queries to Ok
in each iteration. Because the affine transformation is an n-dimensional matrix-
vector product, it introduces an overhead of O(n?) in the number of arithmetic
operations (just as in the classical rounding algorithm).

Overall, our quantum volume estimation algorithm has O(y/n) iterations.
Each iteration implements 0(\/5 /€) quantum hit-and-run walks, and each quantum
hit-and-run walk uses O(n'®) queries; there is also a cost of O(n>?) for rounding.

Thus the quantum query complexity is

O(v/n) - (é(\/ﬁ/e) -O(n'®) + O(n25)) = O(n® +n>%/e). (3.1.10)

The number of additional arithmetic operations is O(n? + n2®/e) - O(n?) = O(n® +
nt®/¢) due to the affine transformations for interlaced rounding of the convex body.

Figure 3.1 summarizes the techniques in our quantum algorithm. The vol-
ume estimation and interlaced rounding algorithms are given as Algorithm 3.3 and

Algorithm 3.4, respectively, in Section 3.4.
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Continuous-space
quantum walk (Section 3.3)

X

implement

Quantum volume estimation
algorithm (Section 3.4.2)

Step 1 ) Step 2 (5|mu|ated anneallng
Quantum convex body Chebyshev cooling via nondestructive |- - - - Fixed-point amplitude
rounding algorithm (Section 3.4.4) mean estimation (Section 3.4.3.3) |«q- - - - amplification (Section 3.2.2)

Figure 3.1: The structure of our quantum volume estimation algorithm. The purple frames
represent the novel techniques that we propose, the yellow frame represents the known
technique from [130], and the green frame at the center represents our quantum algorithm.

Quantum lower bound (Section 3.5). While we do not know whether the
query complexity of our algorithm is tight, we prove that volume estimation re-
quires Q(y/n) quantum queries to a membership oracle, ruling out the possibil-
ity of exponential quantum speedup. We establish this lower bound by a reduc-
tion to search: for a hyper-rectangle K = szl[o, 2%] specified by a binary string
s=(81,...,8,) € {0,1}" with |s| = 0 or 1, we prove that a membership query to K
can be simulated by a query to s. Thus, since Vol(K) = 2 if and only if |s| = 1, the

Q(y/n) quantum lower bound on search [46] applies to volume estimation.

3.1.3 Related work

While our paper gives the first quantum algorithm for volume estimation,
classical volume estimation algorithms have been well-studied. Quantumly, our
quantum algorithm builds upon quantum analogs of Markov chain Monte Carlo

methods.
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Classical volume estimation algorithms. There is a rich literature on classical
algorithms for estimating volumes of convex bodies (e.g., see the surveys [188, 269)]).
The general approach is to consider a sequence of random walks inside the convex
body K whose stationary distributions converge quickly to the uniform distribution
on K. Applying simulating annealing to this sequence of walks (as in Section 3.1.2),
the volume of K can be approximated by a telescoping product.

The first polynomial-time algorithm for volume estimation was given by [103].
It uses a grid walk in which the convex body K is approximated by a grid mesh
Kgria of spacing § (i.e., Kgiq contains the points in K whose coordinates are integer

multiples of §). The walk proceeds as follows:

1. Pick a grid point y uniformly at random from the neighbors of the current

point z.
2. If y € Kgrig, go to y; else stay at .

Reference [103] proved that for a properly chosen §, the grid walk converges
to the uniform distribution on Kgiq in O(n?) steps, and that 0"|Kgua| is a good
approximation of Vol(K) (in the sense of (3.1.4)). Subsequently, more refined anal-
ysis of the grid walk improved its cost to O(n®) [26, 102, 197]. However, this is still
inefficient in practice.

Intuitively, the grid walk converges slowly because each step only moves locally
in K. Subsequent work improved the complexity by considering other types of
random walk. These improvements mainly use two types of walk: the hit-and-
run walk and the ball walk. In this paper, we use the hit-and-run walk (see also
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Section 3.2.4), which behaves as follows:
1. Pick a uniformly distributed random line ¢ through the current point p.
2. Move to a uniformly random point along the chord ¢ N K.

Reference [246] proved that the stationary distribution of the hit-and-run walk
is the uniform distribution on K. Regarding the convergence of the hit-and-run
walk, [196] showed that it mixes in O(n?) steps from a warm start after appropri-
ate preprocessing, and [200] subsequently proved that the hit-and-run walk mixes
rapidly from any interior starting point (see also Theorem 3.2.4). Under the simu-
lated annealing framework, the hit-and-run walk gives the state-of-the-art volume
estimation algorithm with query complexity O(n‘*) [199, 201]. Our quantum volume
estimation algorithm can be viewed as a quantization of this classical hit-and-run
algorithm.

Given a radius parameter 9, the ball walk is defined as follows:

1. Pick a uniformly random point y from the ball of radius J centered at the

current point z.
2. If y € K, go to y; else stay at z.

Lovész and Simonovits [198] proved that the ball walk mixes in O(n%) steps. Ref-
erence [160] subsequently improved the mixing time to O(n?) starting from a warm
start, giving a total query complexity of O(n5) for the volume estimation problem.

Technically, the analysis of the ball walk relies on a central conjecture in convex
geometry, the Kannan-Lovédsz-Simonovits (KLS) conjecture (see [188]). The KLS
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conjecture states that the Cheeger constant of any log-concave density is achieved to
within a universal, dimension-independent constant factor by a hyperplane-induced
subset, where the Cheeger constant is the minimum ratio between the measure of
the boundary of a subset to the measure of the subset or its complement, whichever
is smaller. Although this quantity is conjectured to be a constant, the best known
upper bound is only O(n'/*) [186], which can be used to prove that the ball walk

25) steps from a warm start. If the KLS conjecture were true,

converges in O(n
the ball walk would converge in O~(n2) steps from a warm start, implying a volume
estimation algorithm with query complexity O(nS) for arbitrary convex bodies.

If R/r = O(y/n), then we say the body is well-rounded. In that special case,
a recent breakthrough by Cousins and Vempala [87, 88] proved the KLS conjecture
for Gaussian distributions. In other words, they established a volume estimation

algorithm with query complexity O(n?) in the well-rounded case.

Table 3.2 summarizes classical algorithms for volume estimation.

‘ Method ‘ State-of-the-art query complexity ‘ Restriction on the convex body ‘
Grid walk O(n®) [102] General (R/r = poly(n))
Hit-and-run walk O(n*) [199, 201] General (R/r = poly(n))
Ball walk O(n?) [87, 88] Well-rounded (R/r = O(y/n))

Table 3.2: Summary of classical methods for estimating the volume of a convex body
K C R™ when € = ©(1), where R, are the radii of the balls centered at the origin that
contain and are contained by the convex body, respectively.

Quantum Markov chain Monte Carlo methods. The performance of Markov
chain Monte Carlo (MCMC) methods is determined by the rate of convergence to
their stationary distributions (i.e., the mixing time). Suppose we have a reversible,
ergodic Markov chain with unique stationary distribution 7. Let 7, denote the
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distribution obtained by applying the Markov chain for k steps from some arbitrary
initial state. It is well-known (see for example [190]) that O(x log(1/e)) steps suffice
to ensure ||, — 7|| < €, where A is the spectral gap of the Markov chain.

Many authors have studied quantum analogs of Markov chains (in both con-
tinuous [107] and discrete [13, 19, 254] time) and their mixing properties. While
a quantum walk is a unitary process and hence does not converge to a stationary
distribution, one can define notions of quantum mixing time by choosing the number
of steps at random or by adding decoherence [13, 15, 19, 69, 80, 235, 236], and com-
pare them to the classical mixing time. Note that distribution sampled by such a
process may or not be the same as the stationary distribution 7 of the corresponding
classical Markov process, depending on the structure of the process and the notion
of mixing. It is also natural to ask how efficiently we can prepare a quantum state

close to

DIV (3.1.11)

(which can be viewed as a “quantum sample” from 7). However, it is unclear how to
do this efficiently in general, even in cases where a corresponding classical Markov
process mixes quickly; in particular, a generic quantum algorithm for this task could
be used to solve graph isomorphism [14, Section 8.4].

It is also possible to achieve quantum speedup of MCMC methods by not
demanding speedup of the mixing time of each separate Markov chain, but only for

the procedure as a whole. In particular, MCMC methods are often implemented
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by simulated annealing algorithms where the final output is a telescoping product
of values at different temperatures. From this perspective, Somma et al. [53, 248,
249] used quantum walks to accelerate classical simulated annealing processes by
exploiting the quantum Zeno effect, using measurements implemented by phase
estimation of the quantum walk operators of these Markov chains. References [257,
277] also introduced how to implement Metropolis sampling on quantum computers.

Our quantum volume estimation algorithm is most closely related to work of
Wocjan and Abeyesinghe [272], which achieves complexity O(1/v/A) for prepar-
ing the final stationary distribution of a sequence of slowly varying Markov chains,
where A is the minimum of their spectral gaps. Their quantum algorithm transits
between the stationary states of consecutive Markov chains by fixed-point amplitude
amplification [130], which is implemented by amplitude estimation with O(1/v/A)
implementations of the quantum walk operators of these Markov chains (see Sec-
tion 3.2.2 for more details).

Our simulated annealing procedure preserves the slowly-varying property, so
we adopt the framework of [272] in our algorithm for volume estimation (see Sec-
tion 3.4.3.2). We develop several novel techniques (described in Section 3.1.2) that
allow us to implement the steps of this framework efficiently. Note that the slowly-
varying property also facilitates other frameworks that give efficient adiabatic [14]
or circuit-based [224] quantum algorithms for generating quantum samples of the
stationary state.

Previous work has mainly applied these quantum simulated annealing algo-

rithms to estimating partition functions of discrete systems. Given an inverse tem-
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perature 5 > 0 and a classical Hamiltonian H: ) — R where () is a finite space,

the goal is to estimate the partition function

Z(B) =) e M (3.1.12)

e

within multiplicative error € > 0. Reference [273] gave a quantum algorithm that
achieves quadratic quantum speedup with respect to both mixing time and accuracy.

The classical algorithm that Ref. [273] quantizes uses O(log|Q|) annealing
steps to ensure that each ratio Z(8;41)/Z(5;) is bounded. In fact, it is possible to
relax this requirement and use a cooling schedule with only O(\/m ) steps such
that the variance of each ratio is bounded, so its mean can be well-approximated by
Chebyshev’s inequality; this is exactly the Chebyshev cooling technique [251] intro-
duced in Section 3.1.2 (see also Section 3.4.3.3). Reference [208] improves upon [273]
using Chebyshev cooling; more recently, Harrow and Wei [139] further quadratically

improved the spectral gap dependence of the estimation of the partition function.

Organization. We review necessary background in Section 3.2. We describe the
theory of continuous-space quantum walks in Section 3.3. In Section 3.4, we first
review the classical state-of-the-art volume estimation algorithm in Section 3.4.1,
and then give our quantum algorithm for estimating volumes of well-rounded convex
bodies in Section 3.4.2. The proofs are given in Section 3.4.3, and the quantum
algorithm for rounding convex bodies is given in Section 3.4.4. We conclude with

our quantum lower bound on volume estimation in Section 3.5.
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3.2 Preliminary tools

3.2.1 Classical and quantum walks

A Markov chain over a finite state space {2 is a sequence of random variables
Xo, X1, ... such that for each ¢+ € N, the probability of transition to the next state

yeQ,
PI'[X,L'+1 =Yy | Xl = ZL',XZ',1 = Ti—1y.-.- ,Xo = SC()] = Pr[Xi+1 =y ’ X,L = .Z'] = Pz—y

only depends on the present state x € 2. The Markov chain can be represented
by the transition probabilities p,_,, satisfying Zy Pz—y = 1. For each i € N, we
denote by m; the distribution over Q with density m;(z) = Pr|X; = x]. A stationary
distribution 7 satisfies D . Pesym(x) = 7(y). A Markov chain is reversible if
Ti(2)Pysy = T (Y)Dy—s for each i € N and x,y € 2. The conductance of a reversible

Markov chain is defined as

. ers ZyGQ/S m(2)Posy
® := inf — :
SCO mln{zxes 7T(£)7 szQ/S 7T(.’L')}

(3.2.1)

The theory of discrete-time quantum walks has also been well developed.

Given a classical reversible Markov chain on ) with transition probability p, we
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define a unitary operator U, on CI! @ CI®! such that

Upl)|0) = |2)[ps), where [pe) ==Y \/Basyly)- (3.2.2)

yeN

The quantum walk is then defined as [254]

W, == S(2U,(Io ® [0)(0U} — Iq ® ), (3.2.3)

where Iq is the identity map on C¥l and S := > wyea [T Y)Y, x| = St is the swap
gate on C!Yl @ CI¥Y.

To understand the quantum walk, it is essential to analyze the spectrum of WW,,.
First, observing that W, = S(2I1— 1) where IT = U,(Io®10) (0)U] = > ¢ |2) (z|®
|pz) (| projects onto the span of the states |z) ® |p,), we consider the eigenvector
|A) of TLSTI with eigenvalue A\. We have IISTI = > _, Dy |2) (y| ® [ps) (py| where
Day = \/DasyPy—z- Since Wy |A) = S|A) and W,S[\) = 2AS [A) —|A), the subspace
span{|\), S'|A)} is invariant under W,. The eigenvalues of W, within this subspace
are A £iy/1 — 22 = e*arcsA For more details, see [254].

The phase gap arccos A > \/m > /26, where § is the spectral gap
of D. Therefore, applying phase estimation using O(1/4/8) calls to W, suffices to
distinguish the state corresponding to the stationary distribution of the classical

Markov chain from the other eigenvectors.
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3.2.2  Quantum speedup of MCMC sampling via simulated annealing

Consider a Markov chain with spectral gap A and stationary distribution .
Classically, it takes O(x log(1/emmin))) steps to sample from a distribution 7 such
that |7 — 7| < €, where Ty = min; 7;. Quantumly, [272] proved the following

result about a sequence of slowly varying Markov chains:

Theorem 3.2.1 ([272, Theorem 2|). Let py, ..., p, be the transition probabilities of r
Markov chains with stationary distributions my, ..., ., spectral gaps 61, ...,0,, and
quantum walk operators Wy, ... , W, respectively; let A := min{dy,...,0,}. Assume
that |{m;|mis1)|? > p for some 0 < p < 1 and all i € [r — 1], and assume that we
can efficiently prepare the state |m1) (where each |m;) is a quantum sample defined as
in (3.1.11)). Then, for any 0 < € < 1, there is a quantum algorithm that produces
a quantum state |7,) such that |||7.) — |m)|| < €, using O(r/pV/A) steps of the

quantum walk operators Wy, ..., W,.

Their quantum algorithm produces the states |m), ..., |r,.) sequentially, and
can do so rapidly if consecutive states have significant overlap and the walks mix
rapidly. Intuitively, this is achieved by amplitude amplification. However, to avoid
overshooting, the paper uses a variant of standard amplitude amplification, known

as 7/3-amplitude amplification [130], that we now review.

Given two states [¢) and |¢), we let IL,, := [¢) (|, IIj; := I =TI, Iy := [§)(9],
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and Hé := I — II,. Define the unitaries

Ry =wlly + 11}, Ry:=wlly+II;  where w=c¢'s. (3.2.4)

Given [(¥]¢)|* > p, it can be shown that [{¢|RyRs|v)|> > 1 — (1 —p)3. Recursively,

one can establish the following:

Lemma 3.2.1 ([272, Lemma 1]). Let ) and |¢p) be two quantum states with
|(¥]|p)|?> > p for some 0 < p < 1. Define the unitaries Ry, Ry as in (3.2.4) and

the unitaries U, recursively as follows:

Up=1,  Ups1=UnRyUl RyU,. (3.2.5)

Then we have

(A Umlp)? > 1 — (1 —p)*", (3.2.6)

and the unitaries in { Ry, RL, Ry, RL} are used at most 3™ times in U,,.

Taking m = [logs(In(1/€)/p)], the inner product between |¢) and U,,|¢) in
(3.2.6) is at least 1 — ¢, and we use 3" = O(log(1/€)/p) unitaries from the set
{Ry, Rl Ry, R}

To establish Theorem 3.2.1 by Lemma 3.2.1, it remains to construct the uni-
taries R; := w|m;)(m| + (I — |m;)(m;|). In [272], this is achieved by phase estimation

of the quantum walk operator W; with precision v/A /2. Recall that if a classical
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Markov chain has spectral gap ¢, then the corresponding quantum walk operator
has phase gap of at least 2v/8 (see Section 3.2.1). Therefore, phase estimation with
precision v/A/2 suffices to distinguish between |r;) and other eigenvectors of Wi.

As a result, we can take

R; = PhaseEst(W;)" (I ® (w]0)(0] + (I — |0)(0])) ) PhaseEst(W;). (3.2.7)

3.2.3  Quantum Chebyshev inequality

Assume we are given a unitary U such that

U10)[0) = v/pl0)]6) + [07), (3.2.8)

where |¢) is a normalized pure state and ({0|®I)|0+) = 0. If we measure the output
state, we get 0 in the first register with probability p; by the Chernoff bound, it takes
©(1/€*) samples to estimate p within e with high success probability. However,
there is a more efficient quantum algorithm, called amplitude estimation [57], that

estimates the value of p using only O(1/e¢) calls to U:

Theorem 3.2.2 ([57, Theorem 12]). Given U satisfying (7.2.1), the amplitude esti-
mation algorithm in Figure 3.2 outputs an angle ép € [—m, | such that p := sin2(§p)

satisfies

. 2my/p(1 —p 2
p—pl < 2wyl =p) | (3.2.9)
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with success probability at least 8 /72, using M calls to U and UT.

0) — ’ —

: QFT z QFTT | 6,)
0) — —
Ulo) : Q

Figure 3.2: The quantum circuit for amplitude estimation.

Here QFT denotes the quantum Fourier transform over Zj; and Q := —US,U'S;
where Sy and S; are reflections about |0) and the target state, respectively; the
controlled-Q gate denotes the operation Zj]\igl |7)(j] ® Q7. In fact, it was shown in
the proof of [57, Theorem 12] that the state after applying the circuit in Figure 3.2
is

iy —i6,

8,10) - <=

(&

V2

| —6,)[0%) (3.2.10)

where 6, € [0,7] such that p = sin?(6,), and 8, € [0,7] such that § = sin?(4,).

Measuring the first register either gives 6, or —@, with probability 1/2, but since
sin(6,) = sin?(—6,) = p, this does not influence the success of Theorem 3.2.2.

In (7.2.2), if we take M = (27r(¥ + \/%ﬂ = 0(1/e), we get

o\ /p(1 — 2
VPP T s < (3.2.11)

p—p| <
p=rl=< 27 472
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Furthermore, the success probability 8 /7% can be boosted to 1 — v by executing the
algorithm O(log 1/v) times and taking the median of the estimates.

Amplitude estimation can be generalized from estimating a single probability
p € [0,1] to estimating the expectation of a random variable. Assume that U is a

unitary acting on C° @ CI®l such that

U10)10) =Y v/paltha)|x) (3.2.12)

e

where S € N and {|,) : & € Q} are unit vectors in C°. Let

'uU = prx’ 0'[2] = Zp$(q,‘ — ILLU)Q (3213)

e €

denote the expectation and variance of the random variable, respectively. Several
quantum algorithms have given speedups for estimating . Specifically, Ref. [208]
showed how to estimate py within additive error € by O(oy/€) calls to U and U'.
Given an upper bound H and a lower bound L > 0 on the random variable, Ref. [192]
showed how to estimate yp with multiplicative error € using O(oy /epy-H/ L) calls to
U and U'. More recently, Ref. [134] mutually generalized these results and proposed

a significantly better quantum algorithm:

Theorem 3.2.3 ([134, Theorem 3.5]). There is a quantum algorithm that, given

a quantum sampler U as in (3.2.12), an integer Ay, a value H > 0, and two

reals €,0 € (0,1), outputs an estimate fiy. If Ay > ok + ud/wy and H >

wu, then |fiy — pu| < euy with probability at least 1 — &, and the algorithm uses
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O(Ay /e - log®(H /) log(1/6)) calls to U and UT.

The quantum algorithm works as follows. First, assume Q C [L, H]| for given
real numbers L, H > 0, there is a basic estimation algorithm (denoted BasicEst)

that estimates H'uy up to e-multiplicative error:

Algorithm 3.1: BasicEst: the basic estimation algorithm.

Input: A quantum sampler U acting on C* ® CI¥, interval [L, H],
precision parameter € € (0, 1), failure parameter § € (0, 1).
Output: e-multiplicative approximation of H .
1 Use controlled rotation to implement a unitary Ry ; acting on Cl @ C?
such that for all x € €,

x)(y/1—+|0) + /&1 ifL<xr<H
|2)]0) otherwise

2 Let V = ([5 (059 RL’H)(U®IQ) and IT = IS ®IQ & |1><1‘,

3 fori=1,...,0(log(1/0)) do

4 L Compute p; by Theorem 3.2.2 with U <— V| S; < 11, and

M+ ©(1/en/H 'uy);

5 Return }5 = median{ﬁl, ce 713@(10g(1/5))}-

However, usually the bounds L and H are not explicitly given. In this case,
Ref. [134] considered the truncated mean p.;, defined by replacing the outcomes
larger than b with 0. The paper then runs Algorithm 3.1 (BasicEst) to estimate
t<p/b. A crucial observation is that \/m is smaller than Ay for large values of b,
and it becomes larger than Ay when b & puyA?. As a result, by repeatedly running
BasicEst with Ay quantum samples, and applying O(log(H/L)) steps of a binary
search on the values of b, the first non-zero value is obtained when b/A? = .
In [134], more precise truncation means are used to improve the precision of the
result to O(1/¢) and remove the dependence on L.

Note that the quantum algorithm for Theorem 3.2.3 only relies on BasicEst.
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This is crucial when we estimate the mean of our simulated annealing algorithm in

different iterations nondestructively (see Section 3.4.2 for more details).

3.2.4 Hit-and-run walk

As introduced in Section 3.1.3, there are various of random walks that mix
fast in a convex body K, such as the grid walk [103] and the ball walk [88, 198].
In this paper, we mainly use the hit-and-run walk [196, 200, 246]. It is defined as

follows:

1. Pick a uniformly distributed random line ¢ through the current point p.

2. Move to a uniform random point along the chord ¢ N K.

For any two points p, g € K, we let £(p, q) denote the length of the chord in K through
p and ¢. Then the transition probability of the hit-and-run walk is determined by

the following lemma:

Lemma 3.2.2 ([196, Lemma 3)). If the current point of the hit-and-run walk is u,

then the density function of the distribution of the next point x € K is

2 1

W) = . , 3.2.14

pu() nv, l(u,z)|r — ul"1 ( )

where v, = 72 /T(1 + %) is the volume of the n-dimensional unit ball. In other

words, the probability that the next point is in a (measurable) set A C K is

2 1

P.,(A) = . dx. 3.2.15

W= ) o T 321

107



In general, we can also define a hit-and-run walk with a given density. Let f

be a density function in R”. For any point u,v € R", we let

pr(u,v) = /o F(1 = t)u+ tv)dt. (3.2.16)

For any line ¢, let ¢* and ¢~ be the endpoints of the chord ¢ N K (with + and —

assigned arbitrarily). The density f specifies the following hit-and-run walk:
1. Pick a uniformly distributed random line ¢ through the current point p.

2. Move to a random point x along the chord ¢ N K with density pr (J;(f)e -

Let mk denote the uniform distribution over K. Reference [246] proves that
the stationary distribution of the hit-and-run walk with uniform density is 7x. Fur-
thermore, Ref. [200] proves that the hit-and-run walk mixes rapidly from any initial

distribution:

Theorem 3.2.4 ([200, Theorem 1.1]). Let K be a convex body that satisfies (3.1.2):
By(0,7) € K C By(0,R). Let o be a starting distribution and let o™ be the
distribution of the current point after m steps of the hit-and-run walk in K. Let
e > 0, and suppose that the density function do/dwg is upper bounded by M except
on a set S with o(S) < €/2. Then for any

n*R?> M

10

the total variation distance between o™ and 7i is less than e.
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Theorem 3.2.4 can also be generalized to exponential distributions on K:

Theorem 3.2.5 ([200, Theorem 1.3]). Let K C R™ be a convex body and let f be
a density supported on K that is proportional to e ' for some vector a € R™.
Assume that the level set of f of probability 1/8 contains a ball of radius v, and
E/(lz — 24|?) < R?%, where z; is the centroid of f. Let o be a starting distribution
and let o™ be the distribution for the current point after m steps of the hit-and-run

walk applied to f. Let € > 0, and suppose that the density function 5% 1S upper

bounded by M except on a set S with o(S) < 5. Then for
2R? MnR
m > 1030n 5 In® " ,
r re

the total variation distance between o™ and 7y is less than e.

Roughly speaking, the proofs of Theorem 3.2.4 and Theorem 3.2.5 have two
steps. First, for any random walk on a continuous domain €2 with transition prob-
ability p, stationary distribution 7, and initial distribution o, we define its conduc-

tance (which generalizes the discrete case in Eq. (3.2.1)) as

Js fQ/S Ao dy Tapa—y

D= .
scomind [y dem, [o g doms}

(3.2.18)

It is well-known that the mixing time of this random walk is proportional to 1/®2.

This is captured by the following proposition:

Proposition 3.2.1 ([198, Corollary 1.5]). Let M := supgcq ﬁ Then for every

()"
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|c®™(S) — m(S)] < \/M(1 - %@2)k. (3.2.19)

Furthermore, the conductance in Proposition 3.2.1 can be relaxed to that of sets

with a fixed small probability p:

Proposition 3.2.2 ([198, Corollary 1.6]). Let M := supgcq % If the conductance

for all A C Q such that 7(A) = p < 1/2 is at least ®,, then for all S C Q, we have
1 k
0®(S) —7(S)| < 2Mp+2M (1 - 5@3) . (3.2.20)

Second, Ref. [200] proved a lower bound on the conductance of the hit-and-run

walk with exponential density:

Proposition 3.2.3 ([200, Theorem 6.9]). Let f be a density in R™ proportional to

e whose support is a conver body K of diameter d. Assume that Bo(0,7r) C K.

Then for any subset S with m¢(S) = p < 1/2, the conductance of the hit-and-run

walk satisfies

r

o(5) = 108ndIn(nd/rp)

(3.2.21)

Proposition 3.2.1 and Proposition 3.2.3 imply Theorem 3.2.4 and Theorem 3.2.5;
complete proofs are given in [200].

For the conductance of the hit-and-run walk with a uniform distribution,
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Ref. [200] established a stronger lower bound that is independent of p:

Proposition 3.2.4 ([200, Theorem 4.2]). Assume that K has diameter d and con-

tains a unit ball. Then the conductance of the hit-and-run in K with uniform dis-

1

tribution is at least 570

3.3 Theory of continuous-space quantum walks

In this section, we develop the theory of continuous-space, discrete-time quan-
tum walks. Specifically, we generalize the discrete-time quantum walk of Szegedy [254]
to continuous space. Let n € N and suppose € is a continuous® subset of R™". A
probability transition density p on € is a continuous function p: Q x Q — [0, +00)

such that?

/ dyp(z,y) =1 Ve (3.3.1)
Q

We also write p,_,, := p(x,y) for the transition density from = to y. Together, (2
and p specify a continuous-space Markov chain that we denote (2, p) throughout
the paper.

For background on the mathematical foundations of quantum mechanics over

continuous state spaces, see [241, Chapter 1]. In this section, we use |z) (for z € R")

$We say that (2 is continuous if for any z,y € Q there is a continuous function f, ,: [0,1] —
such that f,,(0) =z and f;,(1) =y.

9This setting covers real applications in theoretical computer science, including volume esti-
mation. Because continuous functions on continuous sets are Riemann integrable, the integrals
throughout the paper are simply the Riemann integrals.
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to denote the computational basis; we have
/ dele)(@| =T and (2]2') = 6z — ') (3.3.2)
Q

for all z,2" € R", where ¢ is the Dirac d-function satisfying 6(0) = +oo, d(z) = 0

for all # # 0, and [p, 6(x) de = 1. The pure states in Q correspond to

St(6) = {f; QR ‘ /de|f(x)|2 — 1}. (3.3.3)

In general, a function f: Q — Risin L*(Q) if [, dz |f(2)[* < co. The inner product

(-,-) on L?(Q) is defined by

(f.g) = / de f(x)gx) /g€ Q) (3.3.4)

(note that by the Cauchy-Schwarz inequality, |(f, )| < ([, dz |f(2)]*)( [, dz |g(z)|?) <

o0); the norm of an f € L?(Q) is subsequently defined as || f|| := +/{f, f).

3.3.1 Continuous-space quantum walk

Given a transition density function p, define the following states:

|pz) == |x) ®/Qdy VPa—ylY) Vo € R™. (3.3.5)

0Note that the é-function here is a generalized function, and rigorously it should be regarded
as a (singular) Lebesgue measure (see the textbook [239]). Also note that in the discrete-space
case, J is the Kronecker d-function defined as 6(z) = 0 for all x # 0, and §(0) = 1; this is one main
difference between the theory of continuous-space and discrete-space quantum walks.
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These states characterize the quantum walk. Now, denote

U= [ dslon)(el @ 0D 1= [ delon)(onl,s = [ [ dedyletnal (336

Notice that IT is the projection onto span{|¢,)}.ern because

= [ [ deda’lo)(0ulon)on = | [ dedd e —alon)0n =T, (337

and S is the swap operator for the two registers. A single step of the quantum walk

is defined as the unitary operator
W= S(2I —1). (3.3.8)

The first main result of this subsection is the following theorem:

Theorem 3.3.1. Let

D;:/Q/dedy\/mwm (3.3.9)

denote the discriminant operator of p. Let A be the set of eigenvalues of D, so that
D = [, dAAXN)(A|. Then the eigenvalues of the quantum walk operator W in (3.3.8)

are 1 and X\ i1 — X2 for all X € A.
To prove Theorem 3.3.1, we first prove the following lemma:

Lemma 3.3.1. For any A € A, we have || < 1.
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Proof. Since ) is an eigenvalue of D, we have D|A\) = A|\). As a result, we have!!

[A16(0) = [A[A[A) = [(AIDA)] (3.3.10)

N ‘//dwdy\/mwxﬂy!w (3.3.11)

(by Cauchy-Schwarz) _\/ / / d dy pyose| (Y| N2 / / dz dy pesy| (A7) |2 )
<w4@%ﬂ=nfﬂﬂ4@mmﬂ(@mwmﬂ (33.12)

:/de (A|z)(z|\) (3.3.13)

(by (3.3.2)) = <>\|< /Q dx|:c)(x|>|)\> (3.3.14)

= 0(0). (3.3.15)

Hence the result follows. O

Proof of Theorem 3.3.1. Define an isometry

T /dx|¢x //dxdy\/mm o) (2. (3.3.16)
Then
IWZLLM@mmmmFmemm:m (3.3.17)

UThis proof is not fully rigorous as §(0) is ill-defined. However, § can be regarded as the
limit (in the sense of distributions) of the sequence of zero-centered normal distributions §,(z) =

IUlfe ~(@/9)* as ¢ — 0. Then the LHS of (3.3.10) is replaced by |A|- B \f and the RHS of (3.3.15)

is replaced by ENG f’ so |A] < 1, and this also holds in the limit ¢ — 0. For convenience we use

similar arguments (regarding §(0) as a positive real number) in this section, but keep in mind that
rigorous proofs can be given by limit arguments.
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and

717 = [ [ drdyloions,) ol (3.18)
:/Q/Q/Q/dedydadb<x|y><a\b>,/pmﬁapy%b]x><y| (3.3.19)
:/Q/Qd:vdapx_m]x)(x] (3.3.20)
:/dx|x><x| (3.3.21)

Q
_7 (3.3.22)
Furthermore,

ﬁw:ALw@mmwmw (3.3.23)

[ [ | [ asaydecs oalsiy. ) mmmata 6l 3320
aJaJaJa

:/Q/deda\/pxﬁapa%xm)(d (3.3.25)

=D. (3.3.26)

As a result, for any A € A we have

WTA) = S(2I — DT|\) = (2STTIT — ST)|\) = ST|A). (3.3.27)

Similarly, we have

WSTI\) = S(2I1 — I)ST|\) = (2STTTST — S*T)|\) = (2AS — I)T|\). (3.3.28)
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By Lemma 3.3.1, |A] < 1. As a result, we have

W (I — (A +ivVT—=XN)S)T|A) = WTIA) — (A +ivT — X)W ST|A)
= STIA) — (A + V1 = A\2)(2AS — I)T|\)
= (S — (A +ivV1—=22)(2AS = I))T|\)
= A+ V1= X) (I — (A +iV1 = A2)8)T|\);

in other words, A + iv/1 — A\? is an eigenvalue of W with eigenvector (I - (A4

iv/1—=X2)S)T|A). Similarly, we have
W(I = (A—iVI=X)8)TIN) = (A —ivVI—X2)(I — (A —iv1 = A2)S)T|A),

i.e., A—iv/1 — A2 is an eigenvalue of W with eigenvector (1 —(A—iv/1 — A2)S)T|\).
Finally, for any vector |u) in the orthogonal complement of the space

spany A {T'|\), ST|\)}, W simply acts as —S because
MN=77" = / dAAT|INYA|TT, (3.3.29)
A

which projects onto spanyc,{7'|\)}. In this orthogonal complement subspace, the

eigenvalues are £1 because S? = I. [
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3.3.2 Stationary distribution

Classically, the density m = (7;).eq corresponding to the stationary distribu-

tion of a Markov chain (€2, p) satisfies

/ de 7w, = 1; / dy py—aTy = Ty Ve (3.3.30)
Q Q

In other words, we can naturally define a transition operator as

P:://dxdypy%x]x)@], (3.3.31)
aJo

and the stationary density 7 satisfies Pm = m. The Markov chain (€, p) is reversible

if there exists a classical density 0 = (0, ).ecq such that
Py—s20y = Da—syOz Va,yeQ. (3.3.32)

(This is called the detailed balance condition.) Notice that for all z € €,

/dypy—>x0y - / dypw—wo'm = Ux/ dypx—>y = Og, (3333>
Q Q Q

therefore, we must have Po = o, i.e., ¢ is a stationary density of P. In this
paper, we focus on Markov chains (£2,p) that are reversible and have a unique
stationary distribution (i.e., 0 = 7). Such assumptions are natural for Markov chains

in practice, including the Metropolis-Hastings algorithm, simple random walks on
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graphs, etc.

If 7 is the classical stationary density of a reversible Markov chain (€2, p), then

)= [ do vl (3.3.34)

is the unique eigenvalue-1 eigenstate of the quantum walk operator W restricted to

the subspace span, ,{T'|\), ST|A)}. First, a simple calculation shows that

Wimw) = S2I — I)|mw) (3.3.35)
_ Slmw) (3.3.36)
([ [araslental)( [ [ aedsymmina) @30
://dxdymu,w (3.3.38)

aJo
—/Q/dedy,/mpx_w\xﬂg/) (3.3.39)

= [ dovmlo)( [ dvvrmin) = [ dovmle) = m), (3340

where (3.3.36) follows from |y ) € span,cqf|¢.)}, (3.3.37) follows from the defi-
nition of S in (3.3.6), (3.3.39) follows from (3.3.32), and (3.3.39) follows from the
definition of |¢,) in (3.3.5). Thus |mw) is an eigenvector of W with eigenvalue

1. On the other hand, since (£2,p) is reversible, P is similar to D: if we denote
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Dy := [, dz /T, |x)(z|, then

D.DD;' = (/de\/ﬂ_x\xﬂx\)</Q/dedy\/m\x><yl)</ﬂdy 7Ty‘1!y><y\>
N /Q/de dy \/ Ty PasyPy—|2) (Y] (3.3.41)

- / / 4z dypy al2) ] (3.3.42)

=P, (3.3.43)

where (3.3.41) follows from (3.3.32). As a result, D and P have the same set of
eigenvalues. Furthermore, Lemma 3.3.1 implies that all eigenvalues of P have norm
at most 1, and the proof of Theorem 3.3.1 shows that |my) is the unique eigenvector
with this eigenvalue within span,c,{7T'|\), ST|\)}.

The state

) 1= /Q dz /7)) (3.3.44)

represents a quantum sample from the density 7; in particular, measuring |r) in
the computational basis gives a classical sample from 7. Furthermore, the unitary

operator in (3.3.6) satisfies

Ultmw) = ([ delaio)ioul) ([ dovmlon) = mio), (3.3.45)

so we have U|m)|0) = |mw).
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3.4 Quantum speedup for volume estimation

We now give and analyze our quantum volume estimation algorithm. First,
we review the classical state-of-the-art volume estimation algorithm in Section 3.4.1.
We then describe our quantum algorithm for estimating the volume of well-rounded
convex bodies (i.e., R/r = O(y/n)) with query complexity O(n?%/¢) in Section 3.4.2,
with detailed proofs given in Section 3.4.3. Finally, we remove the well-rounded
condition by giving a quantum algorithm with interlaced rounding and volume es-

timation with additional cost O(n?®) in each iteration in Section 3.4.4.

3.4.1 Review of classical algorithms for volume estimation

The best-known classical volume estimation algorithm uses O(n* 4 n?/e?)
queries, where O(n4) queries are used to construct the affine transformation that
makes convex body well-rounded [201] and O(n?/€?) queries are used to estimate
the volume of the well-rounded convex body (after the affine transformation) [88].

We review the algorithm of [201] for estimating volumes of well-rounded convex
bodies. This algorithm estimates the volume of a convex body obtained by the

following pencil construction. Define the cone

C:= {x e R gy > O,Zx? < w%} (3.4.1)

=1
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Let K’ be the intersection of the cone C and a cylinder [0,2D] x K, i.e.,
K :=([0,2D] x K)Nn C (3.4.2)

(recall D = R/r). Without loss of generality we renormalize to r = 1, so that
Bs(0,1) € K C By(0, D). Since D Vol(K) < Vol(K’) < 2D Vol(K), we can estimate
Vol(K) with multiplicative error € by generating O(1/¢®) sample points from the
uniform distribution on [0, 2D] x K and then counting how many of them fall into K'.
Such an approximation succeeds with high probability by a Chernoff-type argument
(see Section 3.4.3.1 for a formal proof).

Reference [201] considers simulated annealing under the pencil construction.

For any a > 0, define
Z(a) = // e 0 du. (3.4.3)
It can be shown that for any a < ¢/D,
(1 —¢€) Vol(K') < Z(a) < Vol(K'). (3.4.4)
On the other hand, for any a > 2n,
(1—¢) /c e dr < Z(a) < /Ce_‘wo dz. (3.4.5)

This suggests using a simulated annealing procedure for estimating Vol(K’). Specif-
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ically, if we select a sequence ag > a; > -+ > a,, for which ay = 2n and a,, < €/D,

then we can estimate Vol(K') by

Z(am) = Z(ag) 1__[ %. (3.4.6)

(Note that this procedure uses an increasing sequence of temperatures 1/a;, unlike
standard simulated annealing in which temperature is decreased.)

Let m; be the probability distribution over K’ with density proportional to

e~ %0 H.e., dm(x) = %dx Let X; be a random sample from 7;, and let (X;)o be

its first coordinate; define V; := e(@i—@i+1)(Xio  We have

—a;To Z(a.;
E.[Vi] = /K/ elai—aiy1)zo dm;(z) = /K, e(aiaile)l‘OeZ(—a') dr = %. (3.4.7)

Furthermore, if the simulated annealing schedule satisfies a;41 > (1 — \/Lﬁ)ai, then

V; satisfies (see [201, Lemma 4.1])

l < (ai( @i )>"+l <8  Vie[m] (3.4.8)

2041 — a;

m (Vi

3

E
E

i.e., the variance of V; is bounded by a constant multiple of the square of its ex-
pectation. Thus, this simulated annealing procedure constitutes Chebyshev cooling
(see also Section 3.4.3.3), ensuring its correctness (see Proposition 3.4.1). Details

are given in Algorithm 3.2.

12Sampling from 7y in Line 2 can be achieved by selecting a random positive real number X
from the distribution with density e=2"* and choose a uniformly random point (Vi,..., V) from
the unit ball. If X = (Xo, XoV4,...,X0V,) ¢ K/, try again; else return X. Equation (3.4.5)
ensures that we succeed with probability at least 1 — € for each sample.
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Algorithm 3.2: Volume estimation with O(n*/e®) classical queries [201].

Ju

W N

4

ot

(=]

Input: Membership oracle Ok of K; R such that By(0,1) C K C By(0, R);
R = 0O(y/n), i.e., K is well-rounded.
Output: e-multiplicative approximation of Vol(K).
Set m = 2[y/nln(n/e)], k = 22/nin(n/e), 6 = €n~'°, and
a; =2n(1 — \/Lﬁ)’ for i € [m];
Take k samples Xél), . ,X(()k) from m'?;
for i € [m] do
Take k samples from 7; with error parameter ¢ and starting points

1 k
x, . x®

i—1

()
Compute V; = %Z?Zl el@i=air1)(X;" o,

Return nlv,(2n)~™+DV; ...V, as the estimate of the volume of K’, where
v, i= 72 /T(1 + %) is the volume of the n-dimensional unit ball;

giving points Xi(l), o ,X.(k);

7

3.4.2  Quantum algorithm for volume estimation

As introduced in Section 3.1.2, our quantum algorithm has four main improve-

ments that contribute to the quantum speedup of Algorithm 3.2:

1.

We replace the classical hit-and-run walk in Section 3.2.4 by a quantum hit-and-
run walk, defined using the framework of Section 3.3. Classically, the hit-and-run
walk mixes in O(n?) steps in a well-rounded convex body given a warm start (see
Theorem 3.2.4). Quantumly, we can use the quantum hit-and-run walk operator
to prepare its stationary state given a warm start state using only O(n1'5) queries

to the membership oracle fora the well-rounded convex body.

. We replace the simulated annealing framework in Algorithm 3.2 by the quantum

MCMC framework described in Section 3.2.2. Classically, we sample from m;
in the i*® iteration by running the classical hit-and-run walk starting from the

samples taken in the (i — 1)* iteration. Quantumly, we prepare the quantum
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sample |m;) in the i*® iteration by applying m/3-amplitude amplification to a
quantum sample produced in the (i—1)" iteration, where the unitaries in the 7/3-
amplitude amplification are implemented by phase estimation of the quantum

hit-and-run walk operators as in (3.2.7).

. We use the quantum Chebyshev inequality (see Section 3.2.3) to give a quadratic
quantum speedup in ¢! when taking the average e(@~+)(Xo in Line 5 of
Algorithm 3.2. However, we must be cautious because the resulting points
X »(1), e ,Xi(k) in Line 4 follow the distribution 7;, which varies in different it-
erations of simulated annealing. Instead, our quantum algorithm must be nonde-
structive: it must still have a copy of |m;) after estimating the average elai=ai+1)(Xio,
so that we can map this state to |m;1) by 7m/3-amplitude amplification for the

next iteration. This is achieved in Section 3.4.3.3.

. In Section 3.4.4, we show how the densities can be transformed to be well-rounded
by an affine transformation at each stage of the algorithm. This is to ensure that
the hit-and-run walk mixes fast assuming the densities 7; to be sampled from are
well-rounded (see Theorem 3.2.5). The high-level idea is to sample points from
density m; and compute an affine transformation S;,; that rounds m; and the next
density ;41 (see Lemma 3.4.11). To sample these points, we use 7/3-amplitude
amplification to map the states corresponding to the uniform distributions for
one stage to those for the next. The affine transformation can be computed
coherently using nondestructive mean estimation, with O(n%?®) quantum queries

in each iteration.
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Algorithm 3.3 is our quantum volume estimation algorithm that satisfies our

main theorem:

Theorem 3.1.1 (Main Theorem). Let K C R™ be a convex set with B2(0,7) C K C

B2(0, R). Assume 0 < € < 1/2. Then there is a quantum algorithm that returns a

—~——

value Vol(K) satisfying

—_~—

Vol(K) < Vol(K) < (1 + €) Vol(K) (3.1.4)

1+e

using O(n® + n*3/€) quantum queries to the membership oracle O (defined in

(3.1.3)) and O(n® +n*%/€) additional arithmetic operations."

More generally, our framework could be used to provide quantum speedup
for any classical simulated annealing algorithm based on Chebyshev cooling, which
might be of independent interest.

The proof of Theorem 3.1.1 is organized as follows. We first assume that in
each iteration, S;.; puts 71 in isotropic position, i.e., the densities are promised
to be well-rounded. The rest of this subsection presents an overview of the proof
of Theorem 3.1.1 (including a quantum circuit in Figure 3.3), and proofs details
are given in Section 3.4.3. In Section 3.4.4, we show how the well-roundedness be
maintained at an additional cost of O(n*%) quantum queries in each iteration.

Following the discussion in Section 3.1.2, our proof has three levels:

13 Arithmetic operations (e.g., addition, subtraction, multiplication, and division) can be in prin-
ciple implemented by a universal set of quantum gates using the Solovay-Kitaev Theorem [95] up
to a small overhead. In our quantum algorithm, the number of arithmetic operations is dominated
by n-dimensional matrix-vector products computed in superposition for rounding the convex body
(see Section 3.4.4).
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Algorithm 3.3: Volume estimation with O(n? 4+ n?%/¢) quantum queries.

Input: Membership oracle Ok for K; R = O(y/n) s.t. B3(0,1) C K C By(0, R).
Output: e-multiplicative approximation of Vol(K).
1 Set m = ©(y/nlog(n/e)) to be the number of iterations of simulated annealing

and a; = 2n(1 — %)Z for i € [m]. Let m; be the probability distribution over K’

with density proportional to e
Set error parameters 6, ¢ = O(e/m?),e; = €/2m; let k = ©(y/n/e) be the number

of copies of stationary states in the quantum Chebyshev inequality; let [ = (:)(n)
be the number of copies of stationary states needed to obtain the affine

transformation S;;

—a;xo.
)

~ (k+l1
RSy,

)

Prepare k + | (approximate) copies of |mp), denoted \7?(()1)>,

2 for i € [m] do

3 Use the quantum Chebyshev inequality on the k copies of the state |7;_1)
with parameters €1, d to estimate the expectation E., [Vi] (in Eq. (3.4.7)) as
Vi (Lemma 3.4.9 and Figure 3.4). The post-measurement states are denoted
’ﬁz@ﬁv R |7Arz@1>§

4 Use the [ copies of the state |m;—1) to nondestructively obtain the affine
transformation S; that rounds m;—; and m; (Section 3.4.4). The

post-measurement states are denoted \frfﬁrl) Z(k+l)>

Do I
5 Apply 7 /3-amplitude amplification with error € (Section 3.2.2 and

Lemma 3.4.8) and affine transformation S; to map |Si7ArZ-(£)1>, e |Si7?§ﬁrl)> to
|Siﬁ'§1)>, e |Si7~rl(k+l)>, using the quantum hit-and-run walk ;
6 Invert S; to get k + [ (approximate) copies of the stationary distribution |m;)

for use in the next iteration;

7 Compute an estimate Vgl(xIZ’) = nlv, (2n) =DV, ...V, of the volume of K/,
where v, is the volume of the n-dimensional unit ball;

—_——

Use Vol(K’) to estimate the volume of K as Vol(K) (Section 3.4.3.1).

®

High level (the simulated annealing framework). In Section 3.4.3.1, we show

how to estimate Vol(K) given an estimate of the volume of the pencil construction,

Vol(K'):

—~—

Lemma 3.4.1. If we have access to Vol(K') such that

—_—

1+¢€/2
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Figure 3.3: The quantum circuit for Algorithm 3.3 (assuming well-roundedness). Here
Ucg,i is the circuit of the quantum Chebyshev inequality (Theorem 3.2.3) in the i'! iter-
ation and U;; is 7/3-amplitude amplification from |m;) to |mit1).

—~—

with probability at least 0.7, then we can return a value Vol(K) such that

—~—

Vol(K) < Vol(K) < (1 + ¢) Vol(K) (3.4.10)

1+¢

holds with probability at least 2/3, using O(n2‘5/e) quantum queries to the member-

ship oracle Ok.

In Section 3.4.3.2, we prove that the inner product between stationary states

of consecutive simulated annealing steps is at least a constant:

Lemma 3.4.2. Let |m;) be the stationary distribution state of the quantum walk W;
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for i € [m] defined in (3.3.44). Forn > 2, we have (m;|m;iy1) > 1/3 fori € [m —1].

This allows 7/3-amplitude amplification to transform the stationary state of
one Markov chain to that of the next. The total number of iterations of 7/3-

amplitude amplification is thus O(y/n), just as in the classical volume estimation

algorithm of [201].

Middle level (each telescoping ratio). In Section 3.4.3.3, we describe how we
apply the quantum Chebyshev inequality (Theorem 3.2.3) to the Chebyshev cooling

schedule.

Lemma 3.4.3. Given O(log(1/6)/€) copies of the quantum states |m;_,), there exists
a quantum algorithm that outputs an estimate of B [Vi] (in Eq. (3.4.7)) with relative

error less than e with probability at least 1 — O(J).

Furthermore, we show how to make Lemma 3.4.3 nondestructive on the sta-
tionary states. Because the relative error for estimating the volume via Chebyshev
cooling is ©(e/m) = O(e/+/n), Lemma 3.4.3 implies that O(log(1/0)/(e/+/n)) =
O(y/n/€) copies of the stationary state suffice for the simulated annealing frame-

work.

Low level (the quantum hit-and-run walk). In Section 3.4.3.4, we give a care-
ful analysis of the errors coming from the quantum Chebyshev inequality as well as

the 7/3-amplitude amplification:

Lemma 3.4.4. Given O(log(1/6)/e1) copies of a state |7;_1) such that |||7i_1) —
|Ti—1)|| < €1, there exists a quantum procedure (using 7/3-amplitude amplification
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and the quantum Chebyshev inequality) that outputs a V; such that |V; — E, [Vi]| <
a1E, [Vi] (where B, [V;] is defined in Eq. (3.4.7)) with success probability 1 —§* using
O(n®?1og(1/8)/e14+n3/?1log(1/€')) calls to the membership oracle and returns a final

state |7;) such that |||7;) — |m)]| = O(er + 0 + €).

Having the four lemmas above from all the three levels, we establish Theo-

rem 3.1.1 as follows.

Proof of Theorem 3.1.1. We prove the correctness and analyze the cost separately.

Correctness. By Lemma 3.4.1, it suffices to compute the volume of the pencil
construction K’ to relative error €/2 with probability at least 0.7 in order to compute
the volume of the well-rounded convex body K. This is computed as a telescoping
sum of m = O(y/nlogn/e) products of the form Z(a;41)/Z(a;). The random variable
V; is an unbiased estimator for Z(a;11)/Z(a;), i.e., E.,[Vi] = Z(a;+1)/Z(a;). Consider
applying Lemma 3.4.4 m times with d,¢ = O(e/8m?) and ¢, = €¢/2m. At each
iteration i we have a state |7;_1) such that |||7;—1) — |mi—1)|] < O(e/4m). Thus
each telescoping sum can be computed with a relative error of €/2m, resulting in a
relative error of less than €/2 for the final volume. The probability of success for
each iteration is at least 1 — §* = 1 — ©(e*/4m?®). Thus the probability of success
for the whole algorithm is at least 1 —©(e*/4m7) = 1 — O(e'' /n??), which is greater

than 0.7 for a large enough n.

Cost. Ignoring the cost of obtaining the affine transformation to round the log-

concave densities to be sampled (assuming that all the relevant densities are well
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rounded), we have from Lemma 3.4.4, the number of calls to the membership or-
acle in each iteration is O(n*?log(1/8)/e; + n*/?log(1/€')) = O(n?/e). The total
number of oracle calls is thus O(nz5 /€). The argument for correctness above ap-
plies for well-rounded logconcave densities. This is ensured by maintaining ©(n)
states that are used to round the densities in each iteration (Algorithm 3.4). By
Proposition 3.4.5, this procedure uses O(n2'5) calls to the membership oracle in each
iteration, resulting in a final query complexity of O(n® + n%®/e). Since the affine
transformation is an n-dimensional matrix-vector product, the number of additional

arithmetic operations is hence O(n?) - O(n® +n>%/e) = O(n® + n*?/¢). O

3.4.3 Proof details of the quantum volume estimation algorithm

We now prove the lemmas in Section 3.4.2 that establish Theorem 3.1.1.

3.4.3.1 Pencil construction and the original convex body

Here we prove

—_—

Lemma 3.4.1. If we have access to Vol(K') such that

1 —~—

o Vol(K') < Vol(K’) < (1 + €/2) Vol(K') (3.4.9)

—_—

with probability at least 0.7, then we can return a value Vol(K) such that

—_—

Vol(K) < Vol(K) < (1 + €) Vol(K) (3.4.10)

1+ €
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holds with probability at least 2/3, using O(n*°/€) quantum queries to the member-

ship oracle Ok.

Proof. We follow the same notation in Section 3.4.1, i.e., without loss of generality
we assume that » = 1 and denote D = R/r = R. In other words, the pencil

construction is

K= ([0,2D) x K) N {w e R™* g 2 0,3 2f <t} (3.4.11)

=1

By the definition of D, for any (z1,...,z,) € K we have >_!" | 7 < D? so [D,2D] x

)

K C K'. This implies that D Vol(K) < Vol(K’) < 2D Vol(K). In other words, letting

&k = %, we have 0.5 < ¢k < 1.

Classically, we consider a Monte Carlo approach to approximating Vol(K): we
take k (approximately) uniform samples zi, ...,z from [0,2D] x K, and if k" of
them are in K’, we return % ~VT)1\(_I6). For each i € [k], 0[z; € K'| is a boolean
random variable with expectation {g = O(1). Any boolean random variable has
variance O(1). Therefore, by Chebyshev’s inequality, taking k = O(1/¢?) suffices to
ensure that
%’ - gK‘ < i} > 0.99. (3.4.12)

Pr [ 2K

Quantumly, we adopt the same Monte Carlo approach but we implement two

steps using quantum techniques:

e We take an approximately uniform sample from K’ = [0,2D] x K via the quantum
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hit-and-run walk. To obtain a quantum stationary state, we use a similar idea as
in [103] to construct a sequence of m = [nlog,(2D)] convex bodies. Let Ko := B
and K; := 2/"B, N K for i € [m]. As the length of the pencil is 2D, K,,, = K.
The state |mp) corresponding to Ko is easy to prepare. It is straightforward to
verify that (m|m;.1) > ¢ for some constant ¢, as Vol(K,; 1) < 2Vol(K;). To utilize
the quantum speedup for MCMC framework (Theorem 3.2.1), it remains to lower
bound the phase gap of the quantum walk operator for K;. It can be shown that
the mixing property of the hit-and-run walk in Theorem 3.2.5 implies that the
phase gap of the quantum walk operator is Q(n_1'5); see the proof of Lemma 3.4.8.

Thus, by Theorem 3.2.1, |m,) can be prepared using O(n) - O(n'®) = O(n*?)

quantum queries to Ok.

e We estimate £ with multiplicative error ¢/2 using the quantum Chebyshev in-
equality (Theorem 3.2.3) instead of its classical counterpart. This means that

O(1/¢) executions of quantum sampling in the first step suffice.

Overall, O(n*%/€) quantum queries to Ok suffice to ensure that we obtain

an estimate of {x within multiplicative error €¢/2 with success probability at least

—~——

0.99. Since (3.4.9) ensures that Vol(K’) estimates Vol(K’) up to multiplicative error

€/2 with probability at least 0.7, \/20;(2;) estimates Vol(K) up to multiplicative error
€/2 + €/2 = € with success probability 0.99 - 0.7 > 2/3. O
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3.4.3.2 Stationary states of consecutive steps

We now show that the inner product between stationary states of consecutive

steps is at least a constant. More precisely, we have the following:

Lemma 3.4.2. Let |m;) be the stationary distribution state of the quantum walk W;

for i € [m] defined in (3.3.44). Forn > 2, we have (m;|m;iy1) > 1/3 fori € [m —1].

Proof. Recall that the stationary distribution m; of step ¢ has density proportional
to e~ %" as discussed in Section 3.4.1. The corresponding stationary distribution
state is |m;) = [, dz Z I)O |z). Reference [201, Lemma 3.2] proves that a"™'Z(a)

is log-concave (noting that the dimension of K’ is n 4 1). This implies that

JarizaJai e < () 2 () eay

Now, we have

z+a1+1
€
(mi|misr) = / il 7o) (3.4.14)
K/

\/Z<az \/Z CLz+1)
2@@) fK’ dxexP( %xo) (3415)

+ Q1 Z <—al+;l+1)

(
_ (W“_\/a_“> " (3.4.16)

v

Q; + Qit1

n+1
2/a;, Jai(1 — L) 2,/1- L
v vV (3.4.17)

1 1
a; + a;(1 _T 2—\/—5

where the inequality follows from (3.4.13). To lower bound the above quantity, we
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use the fact that /1 —1/y/n>1— ﬁﬁ — % Hence, for n > 2 we have

Q_L_l n+1 1 n+1 1 n+1 1
(il i) > (%) = <1 — 5T > = (1 - 2—1> = 3
-7 - (2=

as claimed. O

3.4.3.3 Nondestructive mean estimation

Now we briefly review the classical framework for Chebyshev cooling and dis-
cuss how to adapt it to quantum algorithms. Suppose we want to compute the

expectation of a product

v=][v (3.4.18)

of independent random variables. The following theorem of Dyer and Frieze [102]
upper bounds the number of samples from the V; that suffices to estimate E[V] with

bounded relative error.

Proposition 3.4.1 ([102, Section 4.1]). Let Vi, ..., V,, be independent random vari-

E[V?]

ables such that VAR

< B for all i € [m]. Let X;l), o ,X](k) be k samples of V; for
j € [m], and define X; = %ZIZZI XJ@. Let V.=T[L, V; and X =[]}, X;. Then,

taking k = 16 Bm/e* ensures that

Pr((1-¢E[V]< X < (1+¢E[V]] >

A~ w

(3.4.19)
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With standard techniques, the probability can be boosted to 1 — § with a
log(1/4) overhead.

In applications such as volume estimation [200] and estimating partition func-
tions [251], the samples are produced by a random walk. Let the mixing time for
each random walk be at most 7. Then the total complexity for estimating E[V| with
success probability 1 — § is O(TBmlog(1/6)/e?). Replacing the random walk with
a quantum walk can potentially improve the mixing time; see Section 3.1.3 for rel-
evant literature. In particular, Montanaro [208] proposed a quantum algorithm for
the simulated annealing framework with complexity O(T'Bmlog(1/6)/€), which has
a quadratic improvement in precision. Note that the dependence on T was not im-
proved, as multiple copies of quantum states were prepared for the mean estimation
(which uses measurements). In this paper, we use the quantum Chebyshev inequal-
ity (see Theorem 3.2.3) to estimate the expectation of V; in a nondestructive manner
which, together with Theorem 3.2.1, achieves complexity O(v/T Bmlog(1/8)/e).

The random variables V; (determined by the cooling schedule) satisfy:

Proposition 3.4.2 (Eq. (3.4.8)). Let X be a random sample from m; and let V; =

el@i=ait1)Xo  Thep

<. (3.4.20)

The following lemma uses this property of the simulated annealing procedure

to show that the quantum Chebyshev inequality can be used to estimate the mean of

Z(aif)l) in the volume

V; on the distribution 7;, which gives an estimate of the ratio 7
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estimation algorithm. We first show that our random variables can be made to
satisfy the conditions of Theorem 3.2.3, and then we outline how the corresponding

circuit can be implemented. A detailed error analysis is deferred to Section 3.4.3.4.

Lemma 3.4.3. Given O(log(1/0)/€) copies of the quantum states |m;_,), there exists
a quantum algorithm that outputs an estimate of B, [Vi] (in Eq. (3.4.7)) with relative

error less than € with probability at least 1 — O(0).

Proof. We achieve nondestructive mean estimation by the quantum Chebyshev in-
equality (Theorem 3.2.3). For the random variables V;, we let u; denote their mean
and o? their variance. From Proposition 3.4.2, \/02 — 12 /u; < v/8 < 3. For a small
constant ¢, we use log(1/8)/c* copies of |m;_1) to create copies of |m;) using m/3-
amplitude amplification. We now use a quantum circuit that given |z)|0) computes
|z)|e® o= ®i=170) " and then apply a circuit Upedian that computes the median of all

the ancilla registers:

Umedian|0)|a1) - - - |as) = |median{ay, ..., as})|a1) - - - |as). (3.4.21)

By the classical Chebyshev inequality, we measure fi; such that |i; — ;| < cu;
with probability at least 1 — 0. Thus the probability that f;/(1 — ¢) < p is less
than 0. Taking H = f1;/(1 — ¢), our variables satisfy the conditions of the quantum
Chebyshev inequality. In order to output an estimate of the mean with relative error
at most ¢, the quantum Chebyshev inequality now requires O(log(1/8)/€) calls to
a sampler for the state |m;), which we construct using 7 /3-amplitude amplification
on copies of |m;_1). By the union bound, the probability of failure of the whole
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procedure is O(9).

To be more specific, we replace U|0) in BasicEst (Algorithm 3.1) by U;_y j|m;—1),
and replace @ by —U;_1,(Il;—y — IT=,)US, ,(I; — II}) (where II; = |m;)(m;| and
II;: = I —1I; for all i € [m]). The quantum circuit for nondestructive BasicEst is
shown in Figure 3.4. Here, we run O(log(1/9)) executions of amplitude estimation
(Figure 3.2) in parallel. Note that by (3.2.10), each amplitude estimation returns a

state e\i/gg 16,) — e:/igp | — 6,). We use an ancilla register and apply the unitary

Ugin2]0)|0) := |0)] sin? 0); (3.4.22)

because sin®(6,) = sin?(—6,) = p, the ancilla register becomes |j), where  estimates
p well as claimed in Theorem 3.2.2. We then take the median of such O(log(1/4))

executions using (3.4.21), and finally run the inverse of U,

«n2 gates and amplitude

estimations. This circuit is nondestructive because the states |r;) are recovered after
implementing the inverse amplitude amplifications, and a measurement that has a
high probability of a single outcome does not disturb the input quantum state by
much. The correctness follows from the proof of Theorem 3.2.3 in [134]. A detailed

error analysis is given in the next subsection (see Lemma 3.4.9). ]

3.4.3.4 Error analysis

In this section, we analyze the error incurred by both the quantum Chebyshev

inequality (Line 3) and 7/3-amplitude amplification (Line 5) in Algorithm 3.3.
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Figure 3.4: The quantum circuit for nondestructive BasicEst.

Lemma 3.4.4. Given O(log(1/6)/e1) copies of a state |7;i_1) such that |||7;_1) —

|mi—1)|| < €1, there exists a quantum procedure (using 7/3-amplitude amplification

and the quantum Chebyshev inequality) that outputs a V; such that |V; — E. [Vi]| <

6B, [Vi] (where B, [V;] is defined in Eq. (3.4.7)) with success probability 1 —§* using

O(n®?1og(1/8)/er+n?log(1/€)) calls to the membership oracle and returns a final

state |7;) such that |||7;) — |m)]| = O(er + 0 + €).

We first show that 7/3-amplitude amplification can be used to rotate |m;) into

|mi_1) with error ¢ using O(log(1/€)) oracle calls. This procedure is used as a sub-

routine in a mean estimation circuit that estimates the mean of the random variable

V; using multiple approximate copies of |m;_1). We ensure that the measurement
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probabilities are highly peaked so that the state is not disturbed very much. Finally
7 /3-amplitude estimation is used again to rotate the approximate copies of the state

|mi_1) to approximate copies of the state |m;).

Large effective spectral gap. Consider an ergodic, reversible Markov chain
(Q, p) with transition matrix P and a unique stationary distribution with density 7.
Let a(x) be a probability measure over €2 such that the Markov chain mixes to its
stationary distribution with a corresponding probability density m(z) within a total
variation distance of € within ¢ steps. From the definition of the transition matrix
Pz, y) = (z|Ply) = py-a-

The discriminant matrix D defined in (3.3.9) is related to the transition matrix
as P = D,DD_!, asshown in (3.3.43). For a hit-and-run walk, the transition matrix
P maps a density concentrated at one point to a uniform density over a compact
subset of R™. Thus a convergent sequence of distributions is still convergent after
one step of the walk, and P is a compact linear operator. Since D is similar to
P, D is a compact Hermitian operator over Lo(2) and thus has a countable set
of real eigenvalues \; and corresponding orthonormal eigenvectors (eigenfunctions)

v; € Ly(Q). Orthonormality implies that [, v;(x)v;(z)dz = &;;. Notice that

thus f; = D,v; is an eigenvector of P’ with eigenvalue );. The eigenvectors f; may

not be orthogonal under the standard inner product on Ly(£2). However, we can
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define an inner product

(1.9) = (0 1.07%9) = [ f@@) (3.4.24)

7(x)

over the space Ly(Q). It is easy to see that (f;, fj)x = (¢i, ;) = d; ;-

It can be verified that \/7(z) is an eigenfunction of D with eigenvalue 1.
Thus the stationary state 7(x) is an eigenfunction of the transition operator P with
eigenvalue 1. Since P is stochastic, this is the leading eigenvalue. The eigenfunctions
of P are thus 1, A\, A9, ... with corresponding eigenfunctions 7 (x), fa(x), f5(z), .. ..

From the orthonormality of the f under (-, )., for any function g in Ly(Q2) we have

[e.e]

9= 9. fi)nfi = +Z g, fi)ef; (3.4.25)
g(z)m(x)

:(/Qg )7r—|—igflﬂl (3.4.27)

Since a is a probability density, a = 7+ Y .-, (a, fi)»f;- After t steps of the Markov
chain M on a we obtain the state Pla = 7+ %", X(a, fi)» fi. Since ||P'a—ml]» <,
we have ||> 2, M{a, f;i)= fi]| < € and from the orthonormality of f, (a, f;)- A\l <e. If
I1>N>1- O(t then Al = Q(1) and (a, fi)» = O(e).

The above analysis indicates that if a probability density a mixes in ¢ steps

under a Markov chain (€2,p), then it has small overlap with each of the “bad”

eigenfunctions (with spectral gap less than ﬁ) Thus P effectively has a large
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spectral gap when it acts on a.

Corresponding to a, consider the quantum states

~ [ Va@lar, o) = [ [ Vamolhded.  @42s)
Q QJQ

For an eigenvector v; of D (with eigenvalue J;), define the state |v;) := [, v;(z) dz =

fQ f’(z dx Then the walk operator W has the corresponding eigenvector |u;) =

([ - (/\z - ’i\/ 1-— A?)S)T|U1> Let Cz = )\z - i\/l - )\2, then <gz§a|uz> = <¢a|T‘Uz> -

Ci{¢a|ST|u;). Furthermore,

(@a|T|vi) = (a]vy) /V f’ z, (3.4.29)

and

wistlo) = ([ vammia) ([ vemmiow) e

= [ Va( [ it ) as (3.4.31)
- [ Va(Du)a) da (3.4.32)
), /Q S (x) (3.4.33)
— M{a]vs). (3.4.34)

We have (¢,|u;) = (1 — X\iCi){alv;) and therefore

[(Palus)| = (1 = Xl Cil)[(alvi) = \/(1 = AP+ (1= ) alvi) < 2(avi).  (3.4.35)
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In addition,

E%

(alvs) = /Q \/“_fl / o fz (3.4.36)

The above discussion establishes the following proposition indicating that if
a distribution with density a(x) mixes fast and the stationary distribution with
density 7(z) has a bounded Lg-norm with respect to a(z), then the quantum walk

operator W acting on the subspace spanned by |7) and |a) has a large spectral gap.

Proposition 3.4.3 ([66, Proposition 4.3]). Let M = (2, p) be an ergodic reversible
Markov chain with a transition operator P and unique stationary state with a corre-
sponding density m € Lo(Q). Let {(\;, fi)} be the set of eigenvalues and eigenfunc-
tions of P, and |u;) be the eigenvectors of the corresponding quantum walk operator
W. Let a € Ly(QQ) be a probability density that mizes up to total variation distance
€ int steps of M. Furthermore, assume that [, %W(:c)dx < ¢ for some constant

c. Define

:/Q\/a(a:)|x) dz; (3.4.37)
60) = / Va(@) / VFryl2)ly) dz dy. (3.4.38)

Then (¢alui) = O(e'/?) for all i such that 1 > X > 1 — 5t

Warmness of 7;,; with respect to m;. We show that density 7; mixes to m; 1,

under the walk W;,; and vice versa. To apply Theorem 3.2.5, we show that the two
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distributions are warm with respect to each other.
The Ly-norm of a distribution with density m; € Lo(£2) with respect to another

with density mo € Lo(2) is defined as

|pn/wﬂy::EXNﬂl[:;@X)]::/£7“($)ng)dx. (3.4.39)

A density m € Ly(Q) is said to be a warm start for my € Lo(2) if the Lo-norm

||71/m2]| is bounded by a constant.

Lemma 3.4.5 ([201, Lemma 4.4]). The Lo-norm of the probability distribution with

e~ %i+1%0
Z(aiy1)

density m; = % with respect to that with density m; 11 =

18 at most 8.

Lemma 3.4.6. The Ly-norm of the probability distribution with density w1 =

e~ %i+170
Z(a;41)

e 2T

T 1s at most 1.

with respect to that with density m; =

Proof. Since a™Z(a) is a log-concave function [201, Lemma 3.2], we have

E T (X)] Jip iR et dy [, em 0 dy (3.4.40)
XN7Ti+1 ﬂ-Z(X> fK/ e_ai+1x0d$ fK/ e—ai+1x0dl. .
720 — a7 (a:
(2054 — a;)Z(a;) (3.4.41)
Z(ait1)
a2 n+1
% 3.4.42
- (ai(2ai+1 — az)) ( )
n+1
1 1)\
< (#) (3.4.43)
]_ &
/n
1 n+1
S(l——) <1 (3.4.44)
n

as claimed, where (3.4.41) follows from the definition of Z, (3.4.42) follows from
logconcavity of a"Z(a), and (3.4.43) follows from the definition of a;. O
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Error analysis of 7/3-amplitude amplification. Consider a simulated anneal-

ing procedure that follows a sequence of Markov chains M, My, ... with steady
states pu1, fl2, . ... Consider an alternate walk operator (used in [272]) of the form
W! = Ul SU;R4UI SU;R 4 (3.4.45)

where R 4 denotes the reflection about the subspace A := span{|z)|0) : x € K} and

S is the swap operator. We have U;|z)|0) = [ P12 y) dy where p(® is the

yeK
transition probability corresponding to the i*" chain.

The W/ operator is related to the walk operator W; = S(2II; — I) via conju-
gation by U, i.e., W; = U;W/ UJ. Thus W/ has the same eigenvalues as W;, and if
|u;) is an eigenvector of W, then |v) = Ul|u) is an eigenvector of W; with the same
eigenvalue \;. For any classical distribution f, we define |f) = [, Vf(z)|z) dz and
|¢§f)> = Jy VI(@)|z) Jo pé&ﬂy) dy dz. Since |¢§fl)) is a stationary state of W; with
eigenvalue 1, it follows that |r;)|0) is an eigenvalue of W; with eigenvalue 1.

In each stage of the volume estimation algorithm, we sample from a state with

-

density m;(z) = T - Each such distribution is the stationary state of a hit-and-

run walk with the corresponding target density. Thus the corresponding states |m;)
are the stationary states of the corresponding walk operators W; and W/. Both W;
and W, can be implemented using a constant number of U; gates.

From Lemma 3.4.2, we know that the inner product (m;|m;;1) between the
states at any stage of the algorithm is at least % This implies that the inner

product between |m;)|0) and |m;41)|0) is also at least . In the following we abuse
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notation by sometimes writing only |m;) to denote |m;)|0), as it is easy to tell from
context whether the ancilla register should be present.
Lemma 3.2.1 in Section 3.2.2 indicates that 7/3-amplitude amplification can

be used to rotate the state |m;) to |m;11) if we can implement the rotation unitaries

R = w|m)(mi| + (I — |m)(m])  and  Riyy = w|mipn)(Tiga| + (L — [Tig1) (Tisa]) -

To implement these rotations we use the fact that m; and m;;; are the leading

!/

eigenvectors of the operators W, and W/, ,, respectively. We show the following

lemmas which are adapted variants of Lemma 2 and Corollary 2 in [272]:

Lemma 3.4.7. Let W be a unitary operator with a unique leading eigenvector |1g)
with eigenvalue 1. Denote the remaining eigenvectors by |¢;) with corresponding
eigenvalues €*™i. For any A € (0,1] and €3 < 1/2, define a := log(1/A) and
¢ := log(1/+/€). There exists a quantum circuit V that uses ac ancilla qubits and

invokes the controlled-W gate 2°c times such that

V[1h0)0) ¢ = [h)|0) = (3.4.46)

and

VI[Y)|0)%% = V1 — ea]5)|x;) + Vel;)|0) % (3.4.47)

where |x;) is orthogonal to |0)® for all |1;) such that & > A.
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Proof. Consider a quantum phase estimation circuit U with a ancilla qubits that
invokes the controlled-W gate 2 times (see Figure 3.5). The phase estimation circuit
first creates an equal superposition over a ancilla qubits using Hadamard gates. For
k=0,...,a—1 we apply a controlled-W* operator to the input register, controlled
by the (a — k)™ register. Finally the inverse quantum Fourier transform is applied

on the ancilla registers. Then

201
1 |
Ult;)|0)%* = J1h;) ® QFT! ( e2mm§ﬂ']m>> (3.4.48)
ﬁ m=0
1 29—1
=)@ g Y T ), (3.4.49)
m,m’=0

The amplitude corresponding to |0) on the ancilla registers is

2¢—-1 ia
. 1 —— 1— 627r22 &
0o = o Za e2mimé; — 1) (3.4.50)

for j # 0, and app = 1. If j # 0 then

1— 627ri2a.£j 1 1

. < .
2a—1(1 _ €2m£]~) - 2a+1|€j|

o Qa(l _ ezm'gj)

(3.4.51)

lajo

Thus |a;o| < % if & > §. Using c¢ copies of the circuit (resulting in ac ancilla
registers and 2%c controlled-W gates), the amplitude for 0 in all the ancilla registers

if &> 0is 5 = /e O

Corollary 3.4.1. Let W be a unitary operator with a unique leading eigenvector |1g)
with eigenvalue 1. Denote the remaining eigenvectors by |¢;) with corresponding
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0) _@ QFT, —

1

() ——— W A o

Figure 3.5: The quantum phase estimation circuit. Here W is a unitary operator with
eigenvector |¢;); in m/3-amplitude estimation it is the quantum walk operator W) in
(3.4.45).

eigenvalues e*™i. For any A € (0,1] and e; < 1/2, define a := log(1/A) and
c:= log(l/\/a). There exists a quantum circuit R that uses ac ancilla qubits and

invokes the controlled-W gate 2°1c times such that

R[th0) 0)%** = (Rlwo))|0)* (3.4.52)

(where R = wlvo) (o] — (I = [t0)(tho])) and

1R[23)]0)2°¢ = (Rlw;))|0)*°|| < 2y/es (3.4.53)

for j # 0 such that § > A.

Proof. Let R := V(I ® Q)V where V is the quantum circuit in Lemma 3.4.7 and

Q := w|0)(0|®* + (I — ]0)(0|***). Then we have

RJipo)|0)2* = V(I ® Q)|1h)]0)=* = wlih)|0)=* = Rlgbe)|0)=*. (3.4.54)
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For j # 0 such that & > 9,

RJ1)j)[0)%¢ = V(I @ Q)(VT = ealvy)|x;) + v/eal11)]0) %)
= VI(VI = eli)lx;) + vewl;)]0)*
= VI(lvy) ® (VT = ely) + vel0)®) + Velw — 1)[1;)[0)%*)

= [9)10;) + VIVe(w — 1)[1;)|0)%*. (3.4.55)
Thus || RJ¢;)[0)%* — (R[¢;))[0)*| < [[VTy/e(w — 1)]y;)]0)2] < 2V/@. U

Finally, we can prove the following lemma for analyzing the error incurred by

7 /3-amplitude amplification in our quantum volume estimation algorithm:

Lemma 3.4.8 (|66, Lemma 4.8]). Starting from |m;), we can obtain a state |7;41)
such that |||mi1) — ||| < € using O(n®/?log(1/€)) calls to the controlled walk
operators W!, W!, . This results in O(n*?log(1/e)) calls to the membership oracle

Ok.

Error analysis for the quantum Chebyshev inequality. We also analyze
the error from the quantum Chebyshev inequality (Theorem 3.2.3), giving a robust

version of Lemma 3.4.3.

Lemma 3.4.9. Suppose we have O(log(1/8)/€) copies of a state |7;_1) such that
||7ic1) — |mic1)|| < €. Then the quantum Chebyshev inequality can be used to out-
put V; such that |V; — E.[Vi]| < O(e)E,,[Vi] with success probability 1 — §* using

O(n3/?1og(1/8)/€) calls to the membership oracle. The output state |7;_) satisfies
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[|Fi-1) — |mi—) || = O(e +6).

Proof. The quantum Chebyshev inequality uses an implementation of USyUTS;
where U is a unitary operator satisfying U|m;_1) = |m;). From Lemma 3.4.8, us-
ing In(1/ez) iterations of m/3-amplitude amplification (Uiog1/e, in (3.2.5)) instead
of U induces an error of e, and uses O(n*?log(1/e;)) oracle calls. Using approxi-
mate phase estimation as in Corollary 3.4.1 and Lemma 3.4.8, II;_; and II; can be
implemented up to error €5 using O(n?log(1/e3)) oracle calls. Thus each block cor-
responding to Theorem 3.2.2 induces an error of O(ez+¢€3), and the final state before
the median is measured has an error of O(e+ey+€3). Therefore, using O(log(1/d1)/€)
copies of |7;_;) returns a sample V; such that |V; — E [Vi]| < O(ez + €3 + €)E,..[V]]
with success probability 1 — 9. Performing a measurement with success probability

1 — ¢y implies that the posterior state has an overlap /1 — d; with the initial state.

This induces an error of magnitude at most 1/2(1 — /1 —d;) = O(6i/4).

The measurement on the log(1/d)/c copies of |7;_1) used to estimate [ has
relative error at most ¢ with probability 1 — ¢. This causes an error 0(6}/ ) in
addition to the error 5 from 7 /3-amplitude amplification.

Finally, note that the basic amplitude estimation circuit (analyzed in Theo-
rem 3.2.2) is a subroutine of the quantum Chebyshev inequality (Theorem 3.2.3),
and uncomputing the block corresponding to Theorem 3.2.2 induces an error of

O(ey + €3), giving an overall error of O(ey + €3 + ¢ + §'/4). The result follows by

taking €; = €3 = € and §; = &% O

Proof of Lemma 3.4.4. We finally prove Lemma 3.4.4:

149



Proof. Lemma 3.4.9 is used to estimate the mean with ¢ = ¢; and leaves a poste-
rior state |7;_1) such that |||7;—1) — |mi—1)|| = O(ex + 6). We can then use 7/3-
amplitude amplification to rotate this state into |7;), adding error O(€’) at the cost

of O(n*?1log(1/¢')). This completes the proof. O

3.4.4 Quantum algorithms for rounding logconcave densities

We first define roundedness of logconcave density functions as follows:
Definition 3.4.1. A logconcave density function f is said to be c-rounded if
1. The level set of f of probability 1/8 contains a ball of radius r;
2. Ef (Jx — z¢]) < R?, where z; is the centroid of 7¢;
and R/r < cy/n.

In the previous section we assumed that the distributions m; sampled during
the hit-and-run walk are O(1)-rounded (i.e., well-rounded). From Theorem 3.2.5,
this implies that the hit-and-run walk for the distribution 7; mixes from a warm
start in time O(n?). In this subsection we show how the distributions 7; can be
transformed to satisfy this condition.

Following the classical discussion in [199], we actually show a stronger condi-
tion: the distributions are transformed to be in “near-isotropic” position. A density

function f is said to be in isotropic position if

Effz] =0 and Ejfxza’]=1. (3.4.56)
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In other words, [, (u"2)?f(x)dz = |u|?* for every vector u € R". We say that K is

near-isotropic up to a factor of ¢ if

- < /n(uT(x —zp))*f(z)dz < ¢ (3.4.57)

for every unit vector u € R"™.
The following lemma shows that logconcave density functions in isotropic po-

sition are also O(1)-rounded:

Lemma 3.4.10 (][202, Lemma 5.13]). Every isotropic logconcave density is (1/e)-

rounded.

The following lemma shows that any logconcave density function can be put
into isotropic position by applying an affine transformation, generalizing the same

result for uniform distributions by Rudelson [238]:

Lemma 3.4.11 ([199, Lemma 2.2]). Let f be a logconcave function in R™ that is not
concentrated on a subspace, and let X', ..., X* be independent random points from

the corresponding distribution. There is a constant Cy such that if k > Cot®Inn,

then the transformation g(x) = T2z where
1 1
X=-) X' T=->» (X'-X)(X'-X)" 4.
. Z , - Z( I ) (34.58)

puts [ in 2-isotropic position with probability at least 1 — 1/2%.

From Lemma 3.4.11, k = [ConIn® n] = ©(n) samples from a logconcave den-
sity f suffice to put it into near-isotropic position. However, efficiently obtaining
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samples from a density m; requires it to be well-rounded to start with. To overcome
this difficulty, we interlace the rounding with the stages of the volume estimation
algorithm where in each stage, we obtain an affine transformation that puts the
density to be sampled in the next stage into isotropic position. The density m is
very close to an exponential distribution (since it is concentrated inside the convex
body) and can hence be sampled without resorting to a random walk.

To show that samples from 7; can be used to transform m;,; into isotropic

position, we use the following lemma:

Lemma 3.4.12 ([158, Lemma 4.3]). Let f and g be logconcave densities over K

with centroids zy and z, respectively. Then for any u € R",
f
Efl(u- (z — 2))?] < 16E, {5 E,[(u- (& - 2))’). (3.4.50)

We now have the following proposition:

Proposition 3.4.4. If affine transformation S; puts 7; in near-isotropic position

then it also puts m;11 in near-isotropic position.

Proof. Let S; put m; in 2-isotropic position. Applying Lemma 3.4.12 with f =

Tivr1, g = m;, we have that for any unit vector u € R,

Eﬂ'i+l[(u ’ (l‘ - Z7Ti+1))2] < 16E7"i+1 {%] Em[(u (I - ZW'))Q] <32 (3460)

3
7
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from Lemma 3.4.6, and

<Eyf(u- (2 — 2,))’) < WUE,,,, [(u- (¢ - 2,,,))] (3.4.61)

N | —

from Lemma 3.4.5. Thus FE

.1 15 also put in near-isotropic position. ]

We finally have the main result of this section:

Proposition 3.4.5. At each stage i of Algorithm 3./, the affine transformation puts
the distribution m; 1 in near-isotropic position using an additional O(n“’) quantum

queries to Og.

Proof. Since m is nearly an exponential distribution, it can be sampled without
using a random walk and thus the proposition is true for ¢ = 0. Assume that the
proposition is true for 1,2, ..., k. Then an affine transformation can be found to put
7, in near-isotropic position. Thus a classical hit-and-run walk starting from m,_4
converges to m in O(n3) steps. By the analysis in Section 3.4.3.4, a quantum sample
|mk—1) can be rotated to |m) using O(n'®) quantum queries. O(n) such samples
suffice to compute the covariance matrix 7" in (3.4.58), which puts 7 in 2-isotropic
position. By Proposition 3.4.4, this also puts 71 in near-isotropic position. This

concludes the proof. O

Rounding the convex body as a preprocessing step. Consider applying
only the rounding part of Algorithm 3.4. By Proposition 3.4.5, the final affine

transformation puts the density 7, oc e~*"*0 in near-isotropic position. Since a,, <
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Algorithm 3.4: Volume estimation of convex K with interlaced rounding.
Input: Membership oracle Ok for K; R = O(y/n) s.t. B2(0,1) C K C By(0, R).
Output: e-multiplicative approximation of Vol(K).

1 Set m = ©(y/nlog(n/e)) to be the number of iterations of simulated annealing

and a; = 2n(1 — %)” for i € [m]. Let m; be the probability distribution over K’
with density proportional to e

Set error parameters 0, ¢ = O(e/m?), e; = €/2m; let k = ©(y/n/e) be the number
of copies of stationary states in the quantum Chebyshev inequality; let | = ©(n)
be the number of copies of stationary states needed to obtain the affine

transformation Sj;

—Q;XQ.
)

Prepare k + [ (approximate) copies of |m), denoted |7~r(()1)>7 e |7~r(()k+l)>;
2 for i € [m] do
3 Use the quantum Chebyshev inequality on the k copies of the state |7;_1)
with parameters €1, d to estimate the expectation E., [Vi] (in Eq. (3.4.7)) as
V; (Lemma 3.4.9 and Figure 3.4). The post-measurement states are denoted
|7A71@1>v R |7AT1(E)1>§
4 Use the [ copies of the state |m;_1) to nondestructively'? obtain the affine

transformation S; = T = 1 Zé:1(Xq — X)(X?— X)T where the X, are

samples from the density m;_; and X = + 22:1 X4, The post-measurement

states are denoted ]fr,fﬁrl)% ce \ﬁgﬁrl)%

5 Apply 7/3-amplitude amplification with error € (Section 3.2.2 and
Lemma 3.4.8) and affine transformation S; to map \Siﬁi(z), ey ]Sﬁrﬁirl)) to
]Sifrl(l)), A ]Sﬁrl(kﬂ)), using the quantum hit-and-run walk ;

6 Invert S; to get k + [ (approximate) copies of the stationary distribution |;)

for use in the next iteration;

Compute an estimate Vol(K’) = nlv,(2n)~ ("D V; ... V,, of the volume of K’,
where v, is the volume of the n-dimensional unit ball;

—~— —~—

Use Vol(K’) to estimate the volume of K as Vol(K) (Section 3.4.3.1).

~

0]

€2 /n, we have

e"am®|y — T2

, Z(ap)

(1—-Er[X - X[* < / dz < 2n; (3.4.62)

thus Ex/[|X — X|[]* < 12%. From [199, Lemma 3.3], all but an e-fraction of the body

—e2-

is contained in a ball of radius O(y/n). Combined with our assumption By(0,1) C K/,
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this shows that S,,,; puts the convex body K’ in well-rounded position.

3.5  Quantum lower bound for volume estimation

In this section, we prove a quantum query lower bound on volume estimation.

Theorem 3.5.1. Suppose 0 < ¢ < /2 — 1. Estimating the volume of K with
multiplicative precision € requires Q(y/n) quantum queries to the membership oracle

Ok defined in (3.1.3).

Proof. We prove Theorem 3.5.1 by reduction from search. In the search problem, we
are given an oracle Og: |i,b) — |i,b @ s;) for an input n-bit string s = (sq,...,s,) €
{0,1}", and the task is to find an index ¢ such that s; = 1. It is well known that
the bounded-error quantum query complexity of this problem is ©(/n) [46].

To establish an (/1) lower bound for volume estimation, for an n-bit string
s € {0,1}" with Hamming weight |s|gam < 1, we consider K = X [0,2%]. The
volume of K is 2/¥lmem € {1,2}, and membership in K is determined by

1 if for each i € [n],0 < z; < 2%
MEM;(x) := (3.5.1)

0 otherwise.

The corresponding membership oracle Ok (defined in (3.1.3)) can be simulated by

querying O, using Algorithm 3.5.

14Gimilar to Lemma 3.4.3, we do not directly measure the states; instead we use a quantum
circuit to (classically) compute the affine transformation S; and apply it to the convex body coher-
ently for the next iteration. Note that the quantum register holding the affine transformation will
be in some superposition, but by using O(logn) copies and taking the mean (as in Lemma 3.4.3),
the amplitude of the correct affine transformation will be arbitrarily close to 1.
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Algorithm 3.5: Simulating MEM, with one query to O.

Input: A vector x = (x1,...,2,) € R™
Output: MEM,(x).
fori=1,...,ndo

if z; > 2 or x; < 0 then Return 0;
L Set y; = 1 if z; > 1 and 0 otherwise;

w N =

if |y|gam > 1 then Return 0;
else

if |y|gam = 1 then Find i such that y; = 1. Return Os(7);
L else Return 1;

N o oo

Return Og(7);

0]

We now prove that for any positive integer k and s € {0,1}" with |$|gam < 1,
if there is a k-query algorithm that computes the volume with access to MEMy, then
there is a k-query algorithm for deciding whether |$|gam > 0 with access to Og. We
first show that Algorithm 3.5 simulates the oracle MEM;. In the for loop of Line 1,
we know that y; = 1 if and only if 1 < z; < 2, which is inside the convex body if
s; = 1. The case |y|gam > 1 implies that there exist two distinct coordinates i, j
such that x;, x; > 1, which implies that x lies outside the convex body. Now we are
left with the cases |y|gam = 1 or 0. In Line 6, y; = 1 implies 1 < z; < 2, which lies
in the convex body if and only if s; = O,(i) = 1. Also, |y| = 0 implies that for every
coordinate 7, 0 < z; < 1, which lies in the body for all s.

—~——

Finally, if there is a k-query algorithm that computes an estimate Vol(K) of the
volume of K up to multiplicative precision 0 < € < v/2 — 1, then s = [log, Vol(K) |
where [-| returns the nearest integer. This immediately gives a k-query algorithm

that decides whether |s|gam > 0. Since there is an Q(y/n) quantum query lower

bound for this task, the Q(y/n) lower bound on volume estimation follows. O
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3.6 Conclusions and discussion

In this chapter, we present a quantum algorithm that estimates the volume
of an n-dimensional convex body within multiplicative error € using O(n® 4+ n? /¢)
queries to a membership oracle and O(n® +n*?/¢) additional arithmetic operations.
For comparison, the best known classical algorithm [88, 201] uses O(n?* + n?/€?)
queries and O(n® + n®/e?) additional arithmetic operations. To the best of our
knowledge, this is the first quantum speedup for volume estimation. Our algorithm
is based on a refined framework for speeding up simulated annealing algorithms
that might be of independent interest. This framework applies in the setting of
“Chebyshev cooling”, where the solution is expressed as a telescoping product of
ratios, each having bounded variance. We develop several novel techniques when

implementing our framework, including a theory of continuous-space quantum walks

with rigorous bounds on discretization error.

Error analysis of discretized hit-and-run walks. To implement the quantum
hit-and-run walk on a digital quantum computer, we also propose a discretized hit-
and-run walk and provide rigorous bounds on the discretization error in Section 5
of [66]. Specifically, we prove a lower bound on the conductance of a discrete hit-and-
run walk that approximates the continuous hit-and-run walk. Our proof addresses
a gap in previous (classical) studies by giving a rigorous analysis of discretization,
which might be of independent interest to the classical algorithm design community.

The basic idea of the discretization is to represent the coordinates with ra-
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tional numbers, discretizing the space R™. We approximate K by the set of dis-
cretized points that lie within it and define the Markov chain on these points. For
the hit-and-run walk, we use a two-level discretization: the hit-and-run process is
performed with a coarser discretization and then a point in a finer discretization
of the coarse grid is chosen uniformly at random as the actual point to jump to.
This ensures that the starting and ending points (in the coarser discretization) of
one jump are far from the boundary so that a small perturbation does not change
the length of the chord induced by the two points significantly. Then the discrete
conductance can be bounded by bounding the distance between the discrete and
continuous transition probabilities as well as the distance between the discrete and
continuous subset measures. We further prove that the quantum gate complexity of
implementing the discretized quantum hit-and-run walk is O(n), the same overhead
as for implementing classical hit-and-run walks.

For the details of the discretized hit-and-run walk, please refer to Section 5

of [66].

Open questions. Our work leaves several natural open questions for future in-

vestigation. In particular:

e Can we improve the complexity of our quantum volume estimation algorithm?
The current gap between the upper bound O(n® +n%?/¢) and the lower bound
Q(y/n) is large; possible improvements might result from designing a shorter
simulated annealing schedule, giving better analysis of the conductance of the

hit-and-run walk, or even using other types of walks.
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e Can we prove better quantum query lower bounds on volume estimation? Note

that classically there is an Q(n?) query lower bound [231].

e Can we give faster quantum algorithms for volume estimation in some spe-
cial circumstances? For instance, volume estimation of well-rounded convex
bodies only takes O(n?) classical queries [88] (see Section 3.1.3), and the vol-
ume of polytopes with m faces can be estimated with only O(an/ 3) classical
queries [187]. Specifically, it is a natural question to ask whether the ball walk

in [88] or the Riemannian Hamiltonian Monte Carlo (RHMC) method in [187]

can be implemented by continuous-space quantum walks.

e Can we apply our simulated annealing framework to solve other problems?
As a concrete example, it may be of interest to check whether our framework
can recover the results of Ref. [139] on estimating the partition functions in

counting problems.

e In general, can we have a better understanding about the convergence of quan-
tum dynamics? It is well-known that the stationary distributions of many
common dynamics are log-concave, including Metropolis sampling, Langevin
dynamics, etc. But only until recently rigorous analysis of their convergence
rate was given, starting from the convergence analysis of Langevin dynamics
by Dalalyan [92]. Quantumly, such analysis might rely on better understand-
ing of open quantum systems, for instance our previous work [82] showed how

to efficiently simulate sparse Markovian open systems.
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Chapter 4: Semidefinite Programs'

Chapter 2 and Chapter 3 have been devoted to quantum algorithms for convex
problems with implicit oracle inputs. In this chapter, we focus on an important
class of convex optimization problems with matrices as explicit inputs: semidefinite

programs.

4.1 Introduction

Motivation. Semidefinite programming has been a central topic in the study of
mathematical optimization, theoretical computer science, and operations research in
the last decades. It has become an important tool for designing efficient optimization
and approximation algorithms. The power of semidefinite programs (SDPs) lies in
their generality (that extends the better-known linear programs (LPs)) and the fact
that they admit polynomial-time solvers.

There is a rich classical literature on solving SDPs. Ellipsoid methods gave
the first polynomial-time SDP solvers [126, 170], and the complexities of the SDP
solvers had been subsequently improved by the interior-point method [216] and the

cutting-plane method [22, 207]; see also the survey paper [267]. The current state-

IThis chapter is based on the paper [55] under the permission of all the authors.
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of-the-art SDP solver [184] runs in time O(m(m? +n® +mn?) poly(log 1/¢)), where
n and s are the dimension and row sparsity of the input matrices respectively, m
is the number of constraints, ¢ is the accuracy of the solution, and w < 2.373 is
the exponent of matrix multiplication. On the other hand, if we tolerate polynomial
dependence in 1/, Arora and Kale [29] gave an SDP solver with better complexities
in m and n: O(mn*(RR/e)* + n*(RR/¢)7), where R and R are upper bounds on
the ¢;-norm of the optimal primal and dual solutions, respectively (see more details
in [24]). This was subsequently improved to O(m/e?+n?/e>®) by Garber and Hazan
(114, 115] when R,R = 1 and b; = 0 in (6.1.2) for all i € [m]; as a complement,
[114] also established a lower bound Q(m/e? 4+ n?/e?) under the same assumption.

It is natural to ask whether quantum computers can have advantage in solving
this important optimization problem. In Ref. [56], Brandao and Svore provided
an affirmative answer, giving a quantum algorithm with worst-case running time
O(v/mns*(RR/<)??). This is a polynomial speed-up in m and n comparing to the
two state-of-the-art classical SDP-solvers [29, 184], and beating the classical lower
bound of Q(m + n) [56]. The follow-up work by van Apeldoorn et al. [24] improved
the running time giving a quantum SDP solver with complexity O(y/mns*(RR/¢)?).
In terms of limitations, Ref. [56] proved a quantum lower bound Q(y/m + +/n) when
R, R, s, e are constants; stronger lower bounds can be proven if R and/or R scale
with m and n [24]. We note all these results are shown in an input model in which
there is an oracle for the entry of each of the input matrices (see Oracle 1 below for
a formal definition).

In this paper, we investigate quantum algorithms for SDPs (i.e., quantum
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SDP solvers) further in the following two perspectives: (1) the best dependence
of parameters, especially the dimension n and the number of constraints m; (2)
whether there is any reasonable alternative input model for quantum SDP solvers
and what is its associated complexity. To that end, let us first formulate the precise

SDP instance in our discussion.

The SDP approximate feasibility problem. We work with the SDP approx-
imate feasibility problem formulated as follows (see Section 4.2 for details): Given
an € > 0, m real numbers a4, ..., a, € R, and Hermitian n x n matrices Ay, ..., A4,,

where —1 < A; X I,V j € [m], define the convex region S, as all X such that

Tr[A;X] <a;+€e Viem]; X =0,Tr[X]|=1. (4.1.1)

For approximate feasibility testing, it is required that either (1) If S = &, output
fail; or (2) If S¢ # @, output an X € S.. Throughout the paper, we denote by n the
the dimension of the matrices, m the number of constraints, and e the (additive)
error of the solution. For Hermitian matrices A and B, we denote A < Bif B— A
is positive semidefinite, and A = B if A — B is positive semidefinite. We denote I,
to be the n X n identity matrix.

There are a few reasons that guarantee our choice of approximate SDP fea-

sibility problem do not lose generality: (1) first, it is a routine® to reduce general

2To see why this is the case, for any general SDP problem, one can guess a candidate value
(e.g., ¢o) for the objective function (e.g., Tr(C'X) and assume one wants to maximize Tr(CX))
and convert it into a constraint (e.g., Tr(CX) > ¢y). Hence one ends up with a feasibility problem
and the candidate value ¢y can then be found via binary search with O(log(1/¢)) overhead when
Tr(CX) € [-1,1].
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optimization SDP problems to the feasibility problem; (2) second, for general feasi-
ble solution X = 0 with width bound Tr(X) < R, there is a procedure® to derive an
equivalent SDP feasibility instance with variable X s.t. Tr(X ) = 1. Note, however,
the change of € to €/ R in this conversion. Also note one can use an approximate fea-
sibility solver to find a strictly feasible solution, by changing € to €/ RR (see Lemma
18 of [56]). The benefit of our choice of (4.1.1) is its simplicity in presentation,
which provides a better intuition behind our techniques and an easy adoption of our
SDP solver in learning quantum states. In contrast to Ref. [24], we do not need to
formulate the dual program of Eq. (4.1.1) since our techniques do not rely on it.

We will elaborate more on these points in Section 4.1.4.

4.1.1 Quantum SDP solvers with optimal dependence on m and n

Existing quantum SDP solvers [24, 56] have close-to-optimal dependence on
some key parameters but poor dependence on others. Seeking optimal parameter de-
pendence has been an important problem in the development of classical SDP solvers
and has inspired many new techniques. It is thus well motivated to investigate the
optimal parameter dependence in the quantum setting. Our first contribution is the
construction of a quantum SDP solver with the optimal dependence on m and n in

the (plain) input model (1.3.3) as used by [24, 56], given as follows:

Oracle 1 (Plain model for A;). A quantum oracle, denoted P4, such that given the

indices j € [m], k € [n] and | € [s], computes a bit string representation of the l-th

3The procedure goes as follows: (a) scale down every constraint by a factor R and let X" = X/R
(thus Tr(X’) < 1) (b) let X = diag{X,w} be a block-diagonal matrix with X in the upper-left

corner and a scaler w in the bottom-right corner. It is easy to see that Tr(X) =1 <= Tr(X) < 1.
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non-zero element of the k-th row of Aj, i.e. the oracle performs the following map:

|j7 kvlu Z> — |J: kvlu z® (Aj)kfjk(l)>7 (412>

with fi, : [r] = [N] a function (parametrized by the matriz index j and the row

index k) which given | € [s] computes the column index of the l-th nonzero entry.

Before we move on to our main result, we will define two primitives which will
appear in our quantum SDP solvers. Our main result will also be written in terms

of the cost for each primitive.

Definition 4.1.1 (trace estimation). Assume that we have an s-sparse nxn Hermi-
tian matriz H with ||H|| < T and a density matriz p. Then we define Stv(s, T, €) and
T1:(s, T, €) as the number of copies of p and the time complezity (in terms of oracle
call and number of gates) of using the plain model (Oracle 1) for H, respectively,
such that one can compute Tr[H p| with additive error e with success probability at

least 2/3.

Definition 4.1.2 (Gibbs sampling). Assume that we have an s-sparse n x n Her-

mitian matric H with ||H|| < T. Then we define Tgips(s, ', €) as the complezity of

preparing the Gibbs state #ﬁ,{] with additive error € using the plain model (Ora-

cle 1) for H.
Our main result is as follows.

Theorem 4.1.1 (informal; see Theorem 4.4.1). In the plain input model (Oracle 1),
for any 0 < € < 1, there is a quantum SDP solver for the feasibility problem (4.1.1)
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using 6%O(Sﬁ(e%, L6)Tains (5,1, €) + vVmTn (5,1, €)) quantum gates and queries

to Oracle 1, where s is the sparsity of A;,j € [m].

When combined with specific instantiation of these primitives (i.e., in our case,
we directly make use of results on Sty(s, ', €) and T.(s, T, €) from [56], and results

on TGibs(s, I, €) from [229]), we end up with the following concrete parameters:

Corollary 4.1.1 (informal; see Corollary 4.4.1). In the plain input model (Oracle 1),
for any 0 < € < 1, there is a quantum SDP solver for the feasibility problem (4.1.1)

using 0(52(*6/1—?—1- EVTE)) quantum gates and queries to Oracle 1, where s is the sparsity

OfAjv.j S [m]

Comparing to prior art, our main contribution is to decouple the dependence
on m and n, which was O(y/mn) and now becomes O(y/m + y/n). Note that the

(v/m + /n) dependence is optimal due to the quantum lower bound proven in [56].

Remark 4.1.1. Even though our result achieves the optimal dependence on m and
n, it is nontrivial to obtain quantum speed-ups by directly applying our quantum
SDP solvers to SDP instances from classical combinatorial problems. The major
obstacle is the poly-dependence on 1/e, whereas, for interesting SDP instances such
as Maz-Cut, 1/e€ is linear in n. In fact, the general framework of the classical Arora-
Kale SDP solver also suffers from the poly-dependence on 1/€ and cannot be applied
directly either. Instead, one needs to specialize the design of SDP solvers for each
instance to achieve better time complexity.

Ezxtending this idea to quantum seems challenging. One difficulty is that known
classical approaches require explicit information of intermediate states, which re-
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quires Q(n) time and space even to store. It is not clear how one can directly adapt
classical approaches on intermediate states when stored as amplitudes in quantum
states, which is the case for our current SDP solvers. It seems to us that a resolution
of the problem might require an independent tool beyond the scope of this paper. We
view this as an important direction for future work.

However, our quantum SDP solvers are sufficient for instances with mild 1/,
which are natural in the context of quantum information, such as learnability of the
quantum state problem (elaborated in Section 4.1.5) as well as ezamples in [23]. For
those cases, we do establish a quantum speed-up as any classical algorithm needs at

least linear time in n and/or m.

4.1.2 Quantum SDP solvers with quantum inputs

Given the optimality of the algorithm presented before (in terms of m and
n), a natural question is to ask about the existence of alternative input models,
which can be justified for specific applications, and at the same time allows more
efficient quantum SDP solvers. This is certainly a challenging question, but we can
get inspiration from the application of SDPs in quantum complexity theory (e.g.,
Refs. [131, 150]) and quantum information (e.g., Refs. [1, 3]). In these settings,
input matrices of SDP instances, with dimension 2¢, are typically quantum states
and/or measurements generated by poly(¢)-size circuits on ¢ qubits. For the sake of
these applications, it might be reasonable to equip quantum SDP solvers with the

ability to leverage these circuit information, rather than merely allowing access to
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the entries of the input matrices.

In this paper, we propose a truly quantum input model in which we can con-
struct quantum SDP solvers with running time only poly-logarithmic in the dimen-
sion. We note that such proposal was mentioned in an earlier version of Ref. [56],
whose precise mathematical form and construction of quantum SDP solvers were
unfortunately incorrect, and later removed. Note that since we consider a non-
standard input model in this section, our results are incomparable to those in the
plain input model. We argue for the relevance of our quantum input model, by
considering an applications of the framework to the problem of learning quantum

states in Section 4.1.5.

Quantum input model. Consider a specific setting in which we are given de-
compositions of each A;: A; = A;F—A;, where A;r, A = 0. (For instance, a natural

choice is to let A (resp. A7) be the positive (resp. negative) part of A.)

Oracle 2 (Oracle for traces of A;). A quantum oracle (unitary), denoted Or, (and

its inverse OL.), such that for any j € [m],

On7)0)10) = [5)| Te[AT])] Tx[A7]), (4.1.3)

where the real values Tr[A[] and Tr[A]] are encoded into their binary representa-

tions.

Oracle 3 (Oracle for preparing A;). A quantum oracle (unitary), denoted O (and
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its inverse O1 ), which acts on C" @ (C"®@C") ® (C"®C") such that for any j € [m],

O[5)[0)[0) = [7)|)¥5), (4.1.4)
+ _ . . At A7 .
where [¢7), [¢b;) € C" @ C™ are any purifications of T‘r[;\ﬂ’ TY[ZF] , respectively.

Oracle 4 (Oracle for a;). A quantum oracle (unitary), denoted O, (and its inverse

O!), such that for any j € [m],

Oul7)10) = 15)lay), (4.1.5)

where the real value a; is encoded into its binary representation.

Throughout the paper, let us assume that A; has rank at most r for all j € [m]
and Tr[AJ] 4+ Tr[A;] < B. The parameter B is therefore an upper bound to the
trace-norm of all input matrices which we assume is given as an input of the problem.
Similar to the plain input model, we will define the same two primitives and their

associated costs in the quantum input model.

Definition 4.1.3 (trace estimation). We define St(B, €) and T(B,€) as the sam-
ple complexity of a state p € C™*™ and the gate complexity of using the quantum
input oracles (Oracle 2, Oracle 3, Oracle 4), respectively, for the fastest quantum
algorithm that distinguishes with success probability at least 1 — O(1/m) whether for
a fized j € [m|, Tr(A;p) > a; +¢€ or Tr(A4;p) < a;.

Definition 4.1.4 (Gibbs sampling). Assume that K = KT — K~, where K* =
> jes ch;E, ¢; > 0,8 C [m] and |S| < @, and that KT, K~ have rank at
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most ri. Moreover, assume that Tr(KT) + Tr(K~) < By for some Bg. Then
we define Tgips(Txc, ®, By, €) as the gate complexity of preparing the Gibbs state
pc = exp(—K)/ Tr(exp(—K)) to € precision in trace distance using Oracle 2, Ora-

cle 3, and Oracle 4.
Our main result in the quantum input model is as follows.

Theorem 4.1.2 (informal; see Theorem 4.5.1). For any € > 0, there is a quantum
algorithm wusing at most E%O(Sﬁ(B’G)TGibbs(e%, 4.8 €) + vVmTn(B,¢€)) quantum
gates and queries to Oracle 2, Oracle 3, and Oracle 4 for the approximate SDP

feasibility problem.

Contrary to the plain model setting, the quantum input model is a com-
pletely new setting so that we have to construct these two primitive by ourselves.
In particular, we give a construction of trace estimation in Lemma 4.5.2 with
St(B,€) = Trx(B,e) = O(B%*logm/e?) and a construction of Gibbs sampling in

Lemma 4.5.4 with Taipps(7x, @, Bx, €) = O(® - poly(logn, ri, Br,e™')). As a result,

Corollary 4.1.2 (informal; see Corollary 4.5.1). For any € > 0, there is a quantum
algorithm using at most (v/m + poly(r)) - poly(logm,logn, B,e!) quantum gates

and queries to Oracle 2, Oracle 3, and Oracle 4 for the SDP feasibility problem.

We also show the square-root dependence on m is also optimal by establishing

the following result:

Theorem 4.1.3 (lower bound on Corollary 4.1.2). There exists an SDP feasibility
testing problem such that B,r,e = O(1), and solving the problem requires Q(y/m)
calls to Oracle 2, Oracle 3, and Oracle 4.
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Comparison between the plain model and the quantum input model. In
the quantum input model (Oracle 2, Oracle 3, and Oracle 4), our quantum SDP
solver has a poly-logarithmic dependence on n (but polynomial in r) and a square-
root dependence on m, while in the plain input model (Oracle 1), the dependence
on n needs to be Q(y/n) [56]. It is also worth mentioning that our quantum SDP
solver in Corollary 4.1.2 does not assume the sparsity of A;’s, which are crucial
for the quantum SDP solvers with the plain model (such as Corollary 4.1.1 and
Refs. [24, 56]). This is because the quantum input models provide an alternative
way to address the technical difficulty that was resolved by the sparsity condition
(namely efficient algorithms for Hamiltonian evolution associated with the input

matrices of the SDP).

Comparison between quantum and classical input models. The poly-log
dependence on n in Corollary 4.1.2 is intriguing and suggests that quantum com-
puters might offer exponential speed-ups for some SDP instances. However, one has
to be cautious as the input model we consider is inherently quantum, so it is in-
comparable to classical SDP solvers. As suggested to us by Aram Harrow (personal
communication), we could consider a classical setting in which we get as input all
inner products between all eigenvectors of the input matrices. Then in that case one
could solve the problem classically in time poly(r,m, 1/¢) (essentially using Jaynes’s
principle which will be discussed in Section 4.1.5 to reduce the problem to a SDP of
dimension poly(r)). We have not formalized this approach, and there seems to be

some technical problems doing so when the input matrices have close-by eigenvalues.
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However, Harrow’s observation shows the importance of justifying the input model
in terms of natural applications to argue for the relevance of the run time obtained.
We present one of its application in Section 4.1.5; more applications are given in
[23].

Furthermore, several quantum-inspired classical algorithms were recently pro-
posed originated from Tang [256]. Such classical algorithms assume the following

sampling access:

Definition 4.1.5 (Sampling access). Let A € C"*™ be a matriz. We say that we

have the sampling access to A if we can

1. sample a row index i € [n| of A such that Pr[i] = ”H’XHQQ, and*
F

_ AP

2. for all i € [n], sample an index j € [n] such that Pr[j] = L
with time and query complexity O(poly(logn)) for each sampling.

In particular, we notice that Ref. [77] recently gave a classical SDP solver for
(4.1.1) with complexity O(m - poly(logn,r,e 1)), given the above sampling access
to Aiq,...,A,,. We point out that this result is incomparable to Corollary 4.1.2
because the sampling access (Definition 4.1.5) and our quantum state model (Ora-
cle 2, Oracle 3, and Oracle 4) are incomparable. Nevertheless, it reminds us that
under various input models, the speedup of quantum SDP solvers (compared to

their classical counterparts) can also vary.

“Here ||A||r is the Frobenius norm of A and ||A;.| is the £ norm of the i*® row of A.
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4.1.3 Related works on quantum SDP solvers

Previous quantum SDP solvers [24, 56] focused on the plain input model. A
major contribution of ours is to improve the dependence O(\/W) to O(\/ﬁ ++/n)
(ignoring dependence on other parameters) which is optimal given the lower bound
Q(y/m++/n) in [56]. To that end, we have also made a few technical contributions,
including bringing in a new SDP solving framework and a fast version of quantum
OR lemma (Lemma 4.3.2), which will be elaborated in Section 4.1.4.

The quantum input model was briefly mentioned in an earlier version of [56].
The construction of quantum SDP solvers under the quantum input model therein
was unfortunately incorrect. We provide the first rigorous mathematical formulation
of the quantum input model and its justification in the context of learning quantum
states (see Section 4.1.5). We also provide a construction of quantum SDP solvers
in this model with a rigorous analysis. Moreover, we construct the first Gibbs state

sampler with quantum inputs (Lemma 4.5.4).

4.1.4 Techniques

At a high level, and in similarity to Refs. [24, 56|, our quantum SDP solver
can be seen as a "quantized” version of classical SDP solvers based on the matrix
multiplicative weight (MMW) method [28]. In particular, we will leverage quantum
Gibbs samplers as the main source of quantum speed-ups. In Refs. [24, 56], quantum
Gibbs samplers with quadratic speed-ups (e.g., [84, 229]) have been exploited to

replace the classical Gibbs state calculation step in [28]. Because the number of
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iterations in MMW is poly-logarithmic in terms of the input size, the use of quantum
Gibbs samplers, together with a few other tricks, leads to the overall quadratic
quantum speed-up.

However, there are a few key differences (our major technical contributions)

which are essential for our improvements.

Zero-sum game approach for MMW. Our quantum SDP solvers do not follow
the primal-dual approach in Arora-Kale’s SDP solver [29] which is the classical
counterpart of previous quantum SDP solvers [24, 56]. Instead, we follow a zero-
sum game framework to solve SDP feasibility problems, which is also based on
the MMW method (details in Section 4.2). This framework has appeared in the
classical literature (e.g., [142]) and has already been used to in semidefinite programs
of relevance in quantum complexity theory (e.g., [131, 181, 274]). Let us briefly
describe how the zero-sum game framework works when solving the SDP feasibility
problem (4.1.1).

Assume there are two players. Player 1 wants to provide a feasible X € S..
Player 2, on the other side, wants to find any violation of any proposed X, which

can be formulated as follows.

Oracle 5 (Search for violation). Inputs a density matriz X, outputs an i € [m] such

that Tr(A; X) > a; + €. If no such i ezists, output “FEASIBLE”.

If the original problem is feasible, there exists a feasible point X, (provided by
Player 1) such that there is no violation of X, that can be found by Player 2 (i.e.,
Oracle 5). This actually refers to an equilibrium point of the zero-sum game, which
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can also be approximated by the matrix multiplicative weight update method [28].

We argue that there are a few advantages of adopting this framework. One
prominent example is its simplicity, which perhaps provides more intuition than
the primal-dual approach. Together with our choice of the approximate feasibility
problem, our presentation is simple both conceptually and technically (indeed, the
simplicity of this framework has led to the development of the fast quantum OR
lemma, another main technical contribution of ours.) Another example is that the
zero-sum game approach does not make use of the dual program of SDPs and thus
there is no dependence on the size of any dual solution. The game approach also
admits an intuitive application of our SDP solvers to learning quantum states Sec-
tion 4.1.5, which coincides with the approach adopted by [181] in a similar context.

One might wonder whether the simplicity of this framework will restrict the
efficiency of SDP solvers. As indicated by the independent work of van Apeldoorn
and Gilyén [23] which has achieved the same complexity of quantum SDP solvers
following both the primal-dual approach and the zero-sum approach, we conclude

that it is not the case at least up to our current knowledge.

Fast quantum OR lemma. We now outlines what is the main idea to find a
solution to Oracle 5 efficiently. Roughly speaking, the idea behind previous quantum
SDP solvers [24, 56] when applied to this context was to generate a new copy of
a quantum state X for each time one would query the expectation value of one of
the input matrices on it. The cost of generating X (i.e., Gibbs sampling) is O(y/n)

(ignoring the dependence on other parameters) and one can use a Grover-search-
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like approach to test for m constraints with O(y/m) iterations. The resultant cost
is then O(y/mn). Our key observation is to leverage the quantum OR lemma [138]
to detect a single violation with only a single copy of X.

At a high level, given a single copy of any state p and m projections Ay, ..., A,,,
the quantum OR lemma describes a procedure to distinguish between the case that
Ji € [m] s.t. Tr[pA;] is very large, or = > Tr[pA;] is very small. It is not hard
to see that with some gap-amplification step and a search-to-decision reduction, the
above procedure will output a violation ¢* if any. By using quantum OR lemma,
one can already decouple the cost of generating X and the number of iterations in
violation-detection.

Unfortunately, Ref. [138] has only been focusing on the use of a single copy
of p, while its gate complexity is O(m) for m projections. To optimize the gate
complexity, we develop the following fast implementation of the quantum OR lemma
with gate complexity O(y/m), using ideas from the fast amplification technique

in [211]. Overall, this leads to a complexity of O(y/m + /n).

Lemma 4.1.1 (informal; see Lemma 4.3.2). Let Ay,..., A, be projections, and fix
parameters 0 < € < 1/2 and p,& > 0. Let p be a state such that either 3j € [m)]
Tr[pA;] > 1 —¢, or = > o Tr[pAj] < @. There is a test using one copy of p and
O(¢~1y/m(p + poly(logm))) operations such that: in the former case, accepts with
probability at least (1 —€)?/4 — &; in the latter case, accepts with probability at most

3pem + £.
The dependence on m is also tight, as one can easily embed Grover search into
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this problem.

Gibbs sampler with quantum inputs. To work with the quantum input model,
as our main technical contribution, we construct the first quantum Gibbs sampler

of low-rank Hamiltonians when given Oracle 2 and Oracle 3:

Theorem 4.1.4 (informal; see Theorem 4.7.1). Assume the nxn matric K = K+ —
K~ and K*, K~ are PSD matrices with rank at most rr and Tr[Kt]+Tr[K~| < B.
Given quantum oracles that prepare copies of pt = Kt/ Te(K™), p~ = K~/ Tr(K™)
and estimates of Tr(K ™), Tr(K ™), there is a quantum Gibbs sampler that prepares
the Gibbs state pg = exp(—K)/ Tr(exp(—K)) to precision € in trace distance, using

poly(logn,rx, B,e™') quantum gates.

Our quantum Gibbs sampler has a poly-logarithmic dependence on n and
polynomial dependence on the maximum rank of the input matrices, while in the
plain input model the dependence of n is ©(y/n) [84, 229]. Our construction deviates
significantly from [84, 229]. Because of the existence of copies of p* and p~, we
rely on efficient Hamiltonian simulation techniques developed in quantum principle
component analysis (PCA) [195] and its follow-up work in [173]. As a result, we
can also get rid of the sparsity assumption which is crucial for evoking results about

efficient Hamiltonian simulation into the Gibbs sampling used in [84, 229].

4.1.5 Application: Efficient learnability of quantum states

Problem description. Given many realizations of an experiment producing a
quantum state with density matrix p, learning an approximate description of p is
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a fundamental task in quantum information and experimental physics. It refers
to quantum state tomography, which has been widely used to identify quantum
systems. However, to tomograph an (-qubit state p (with dimension n = 2°), the

2 number of copies of p, which is impractical

optimal procedure [132, 220] requires n
already for relatively small /.

An interesting alternative is to find a description of the unknown quantum
state p which approximates Tr[pE;] up to error € for a specific collection of POVM
elements Ei, ..., E,, where 0 <= E; < [ and E; € C*"™, Vi € [m]. This is an old
problem, dating back at least to the work of Jaynes on statistical mechanics [152].

Jaynes’s principle (also known as the principle of maximum entropy) shows that

there is always a state of the form

exp (O, AiFi)
Tr (exp (32; AiEi))”

(4.1.6)

which has the same expectation values on the E;’s as the original state p, where
the \;’s are real numbers. In words, there is always a Gibbs state with Hamiltonian
given by a linear combination of the E;’s which gives the same expectation values
as the state described by p. Therefore one can solve the learning problem by finding

the right A;’s (or finding a quantum circuit creating the state in Eq. (4.1.6)).

Applying quantum SDP solvers. By formulating the learning problem in terms
of the SDP feasibility problem (with each A; replaced by E;) where one looks for a

trace unit PSD ¢ matching the measurement statistics, i.e., Tr(c E;) = Tr(pE;) Vi €
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[m], we observe that our quantum SDP solvers actually provides a solution to the
learning problem with associated speed-ups on m and n.

In fact, our algorithm also outputs each of the \;’s (only poly(log(mn))/e? of
them are nonzero, but it suffices for a solution with error €), as well as a circuit
description of the Gibbs state in Eq. (4.1.6) achieving the same expectation val-
ues as p up to error €. (This is mainly because the similarity between the matrix
multiplicative update method and Jaynes’s principle. Compare (4.1.6) and Algo-
rithm 4.1.) In this sense our result can be seen as an algorithmic version of Jaynes’s
principle. We note that a similar idea was adopted by [181] in learning quantum
states, although for a totally different purpose (namely proving lower bounds on the
size of SDP approximations to constraint satisfaction problems).

It is worthwhile noting that our quantum SDP solvers when applied in this
context will output a description of the state p in the form of Eq. (4.1.6) which has
the same expectation values as p on measurements Ey, ..., F,, up to error €. This
is slightly different from directly outputting estimates of Tr(E;p) for each i € [m],

which by itself will take Q(m) time.

Relevance of the quantum input model. More importantly, we argue that our
quantum input model is relevant in this setting for low-rank measurements E;’s.
Since all E; > 0 by definition, we can consider the following (slightly simplified

version of) oracles:
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Oracle 2 for traces of E;: A unitary Or, such that for any i € [m|, O |i)|0) =

i) Tr[E3]).

Oracle 3 for preparing FE;: A unitary O such that for any ¢ € [m], Oi){(i| ®
10)(0|OT = |4) (i] ® |0;) (1|, where [t0;){1;] is any purification of E;/ Tr[E;].

We now show how one can implement this oracle in the case where each E;
is a low rank projector and we have an efficient (with polylog(n) many gates)
implementation of the measurement. Let the rank of E;’s bounded by r and suppose

the measurement operators F;’s are of the form

E; = V;RV] (4.1.7)

for polynomial (in log(n)) time circuits V;, and projectors P; of the form

T

P=> " |i) (il (4.1.8)

=1

with [7) the computational basis and r; < r. Then for Oracle 2 we just need to
output the r;’s. Oracle 3 can be implemented efficiently (in time r polylog(n)) by
first creating a maximally entangled state between the subspace spanned by P; and

a purification and applying V; to one half of it. In more detail, consider the following

purification of E;/ Tr(Ej;):

i) = \/T_Z(VZ@I) i, i) (4.1.9)
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This can be constructed first by preparing the state \/%T i lid) in time r; and

then applying V; ® I to it (which can be done in time poly log(n)).

Efficient learning for low rank measurements. By applying our SDP solver

in the quantum input model, we obtain that

Theorem 4.1.5 (informal; see Corollary 4.6.1). For any € > 0, there is a quantum
procedure that outputs a description of the state p in the form of Eq. (4.1.6) (namely
the \;’s parameters) using at most poly(logm,logn,r,e~!) copies of p and at most

vm - poly(logm,logn,r,e') quantum gates and queries to Oracle 2 and Oracle 5.

Let us briefly sketch how our SDP solver applies to this setting. Note first
that we do not aim to estimate Tr(E;p) for each ¢ € [m|, which helps us circumvent
the Q(m) lower bound. What we really want is to generate a state p such that
Tr(E;p) =~ Tr(E;p) for each i. Our SDP solver will maintain and update a description
of p per iteration. In each iteration, given copies of p and the actual unknown state p,
we want to know whether Tr(E;p) ~ Tr(E;p) Vi € [m] or there is at least a violation
i*. To that end, we design for each i a projection for the following procedure: (1)
perform multiple independent SWAP tests between E;/ Tr[E;] (from Oracle 3) and
p, p respectively; (2) accept when the statistics of both SWAP tests (one with p,
the other with p) are close. Hence, one can apply our fast quantum OR lemma on
these projections to find such ¢* if it exists.

Note that both the sample and complexities of the above procedure have a

poly-log dependence on n (i.e., the dimension of the quantum state to learn).
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Shadow tomography. In a sequence of works [1, 3], Aaronson asked whether
one can predict information about a dimension-n quantum state with poly(logn)
copies. In Ref. [1], he showed that a linear number of copies is sufficient to predict
the outcomes of “most” measurements according to some (arbitrary) distribution
over a class of measurements. Very recently, in Ref. [3], he referred the following
problem as the “shadow tomography” problem: for any n-dimensional state p and
two-outcome measurements Ey, ..., E,,, estimate Tr[pE;] up to error €, Vi € [m].
He has further designed a quantum procedure for the shadow tomography problem
with O(¢ - log* m/e®) copies of p.

Noting that the shadow tomography problem is essentially the same problem
considered by Jaynes [152], and one can apply Jaynes’s principle and its algorithmic
version we discussed before. Although this can be used to give a version of the result
of Ref. [3], Aaronson obtained his result [3] through a different route, based on a
post-selection argument. A drawback of this approach is that its gate complexity is
high, scaling linearly in m and as n®(°81°¢") (for fixed error).

Our Theorem 4.1.5 can be applied here to improve the time complexity. It gives
a quantum procedure with a square-root dependence on m and n®® dependence on
n for arbitrary F;’s.

When we assume 7 is small, say » = O(poly logn), the gate complexity of the
entire procedure becomes O(y/m polylog(n)). This gives a class of measurement
(namely any set of low-rank measurements which can be efficiently implemented)
for which the learning problem is efficient both in the number of samples and the

computational complexity. This solves an open problem proposed in Ref. [1].
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Although we have not worked out an explicit bound of the sample complexity
of our procedure, the authors of [23] followed our approach with more sophisticated
techniques and obtained a sample complexity of O(¢ - log* m/€*), improving on the
bound from [3]. We also note that very recently, Aaronson et al. claimed the same

sample complexity (i.e., O(¢ - log* m/e)) in [5].

Organization. We will formulate the SDP feasibility problem and prove the cor-
rectness of the basic framework in Section 4.2. Our implementation of the fast
quantum OR lemma is given in Section 4.3. We describe our main results the con-
structions of quantum SDP solvers in the plain input model and the quantum input
model in Section 4.4, Section 4.5, respectively. The application to learning quantum
states is illustrated in Section 4.6. In Section 4.7 we describe how to sample from

the Gibbs state of low-rank Hamiltonians.

4.2 Feasibility of SDPs

In this section, we formulate the feasibility problem of SDPs. It is a standard
fact that one can use binary search to reduce any optimization problem to a feasi-
bility one. The high-level idea is to first guess a candidate value for the objective
function, and add that as a constraint to the optimization problem. It converts the
optimization problem into a feasibility problem. One can then use binary search on

the candidate value to find a good approximation to the optimal one.

Definition 4.2.1 (Feasibility). Given an € > 0, m real numbers ay,...,a, € R,
and Hermitian n X n matrices Ay, ..., A, where —1 < A; 2 1,V j € [m], define the
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convex region S, as all X such that

Tr(A;X) <a;+e Vie|ml (4.2.1)
X = 0; (4.2.2)
Tr[X] = 1. (4.2.3)

For approximate feasibility testing, it is required that:

o IfSy =9, output fail;

o IfS. # @, output an X € S,.

Zero-sum game approach for SDPs. We adopt the zero-sum game approach
to solve SDPs. Note that it is different from [24, 56] which follow the primal-dual
approach of [29] to solve SDPs. Instead of leveraging the dual program, we rely on

the following oracle:

Oracle 6 (Search for violation). Input a density matriz X, output an i € [m] such

that Eq. (6.1.0) is violated. If no such i exists, output “FEASIBLE”.

This oracle helps establish a game view to solve any SDP feasibility problem.
Imagine Player 1 who wants to provide a feasible X € S,.. Player 2, on the other
side, wants to find any violation of any proposed X. (This is exactly the function
of Oracle 6.) If the original problem is feasible, there exists a feasible point Xy
(provided by Player 1) such that there is no violation of X, that can be found by

Player 2 (i.e., Oracle 6). This actually refers to an equilibrium point of the zero-
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sum game, which can be approximated by the matrix multiplicative weight update
method [28].

This game view of solving the SDP feasibility problem has appeared in the
classical literature (e.g., [142]) and has already been used in solving semidefinite
programs in the context of quantum complexity theory (e.g., [131, 274]). We observe
that many techniques to quantize Arora-Kale’s primal-dual approach [29] for solving
SDPs in Refs. [24, 56] readily extends to the zero-sum game approach, e.g., using
quantum Gibbs samplers to generate candidate solution states.

The main difference, however, lies in the way one make use of the matrix
multiplicative weight update method [159], which is a meta algorithm behind both
the Arora-Kale’s primal-dual approach [29] and the game view approach (e.g., [142]).
As we have elaborated in Section 4.1.4, there are a few advantages of adopting this

game view approach.

Master algorithm. We present a master algorithm that solves the SDP feasibil-
ity problem with the help of Oracle 6. It should be understood that the master
algorithm is not the final quantum algorithm, where a few steps will be replaced by
their quantum counterparts. However, the master algorithm helps demonstrate the
correctness of the algorithm and the number of oracle queries.

Our algorithm heavily relies on the matrix multiplicative weight method given

in Algorithm 4.1.

Proposition 4.2.1 ([159], Corollary 4). Assume that for allt € [T], either M®) <0

or M® = 0. Then Algorithm 4.1 guarantees that after T rounds, for any density
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Algorithm 4.1: Matrix multiplicative weights algorithm [159, Figure 3.1].

1 Initialization: Fix a § < 1/2. Initialize the weight matrix W) = I;
2 fort=1,2,...,T do

3 Set the density matrix p® = 2.

Te[W O]
4 Observe the gain matrix M®:
5 Define the new weight matrix: W1 = exp [5 Zizl M(T)};

matrix p, we have

(1=0) > Te(MOpO)+(1+48) > (MO Inn

t: M®=<0 t: M®)>=0

IIM%
%i

We use Algorithm 4.1 and Proposition 4.2.1 to test the feasibility of SDPs.

Theorem 4.2.1 (Master Algorithm). Assume we are given Oracle 6. Then for
any € > 0, feasibility of the SDP in (6.1.6), (6.1.7), and (6.1.8) can be tested by

Algorithm 4.2 with at most 1661# queries to the oracle.

Algorithm 4.2: The MMW algorithm for testing the feasibility of SDPs.

Initialize the weight matrix W) = I,,, and T = 1822
2 fort=1,2,...,T do

3 Prepare the Gibbs state p) =

Ju

w®
WO
4 Find a j® € {1,2,...,m} such that Tr(A;0p") > ajw + € by Oracle 6.
Take M) = L(I,, — A](t ) if such j® can be found; 0therw1se, claim
that S. # @, output p as a feasible solution, and terminate the
algorithm;
5 | Define the new weight matrix: W = exp[$ St M(T)};

6 Claim that Sy = @ and terminate the algorithm;

Proof. For all j € [m], denote M; = (I, — A;); note that 0 = M; < I Vj € [m].

In round ¢, after computing the density matrix p*), equivalently speaking, Oracle 6
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checks whether there exists a j € [m] such that Tr(M;p")) < & — “JTJFE If not, then

Tr(M;p®W) > 1 — 22 5 € [m], Tr(A;pW) < a; + € Vj € [m], and hence p® € S..

Otherwise, the oracle outputs an M;» € {M;}7 such that Tr(M;up!")

+
J‘” = 101% jterations, by Proposition 4.2.1 (taking 6 = €/4 therein),

. After

1_
2

this matrix multiplicative weights algorithm promises that for any density matrix

p, we have

lnn (4.2.4)

T
( )Z M<t>p ZTI" M;wp) —

aj(t)
5 — L forallte[T]

If Sy # @, there exists a p* € Sy such that Tr(M;wp*) >
On the other hand, Tr(M;wp") < 4 J(g ™ for all ¢ € [T]. Plugging these two

inequalities into (4.2.4), we have

T T
€ 1 a;pn+e 1 a:wo 41nn
( + 4 Z 2 2 ” Z 2 2 € (425)
t=1 t=1
which is equivalent to
161Inn 3 + 6 Z
) - (4.2.6)

€2

Furthermore, since % — aj;) < Tr(M;wp*) < 1, we have a;) > —1 for all t € [T7].

Plugging this into (4.2.6), we have 18122 > (1 + )T, and hence

161Inn 16Inn
4.2.
€2(1+¢/2) STe (4:2.7)

T <
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a .4 +e
contradiction! Therefore, if Tr(Mj<t>,0(t)) < %— 3(2

happens for at least 1661#

times, it must be the case that Sy = @. O

4.3 Fast quantum OR lemma

A key step in our master algorithm (Algorithm 4.2) is to implement Oracle 6
that finds a violated constraint in the SDP. This is basically to search among m

measurements, which motivates us to use the quantum OR lemma from [138].

Lemma 4.3.1 ([138], Corollary 11). Let Ay, ..., A,, be projectors, and fix parameters
0<e<1/2,0<0<1/4m. Let p be a state such that either 3j € [m] such that
Tr[pAj] > 1 —¢, or & > iy Tr[pA;] < 6. Then there is a test that uses one copy of
p and: in the former case, accepts with probability at least (1 — €)?/7; in the latter

case, accepts with probability at most 46m.

However, the focus of Lemma 4.3.1 was on the single copy of p and its proof in [138§]
leads to a poor gate complexity. As a result, we prove the “fast” quantum OR lemma
below (Lemma 4.3.2). This new version basically follows the analysis of the original
quantum OR lemma; however, the projections are implemented with a quadratic
speed-up in m by the fast amplification technique in [211]. This speed-up enables
us to decouple the cost of \/m - v/n in [24, 56] to (v/m + /n) (see Section 4.4 and
Section 4.5 for more details); in particular, it leads to the optimal bound for solving

SDPs when other parameters are constants.

Lemma 4.3.2. Let Ay,..., A, be projections, and fix parameters 0 < ¢ < 1/2
and . Let p be a state such that either 3i € [m] such that Tr[pA;] > 1 — ¢, or
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< > iy Tr[pAj] < . Then there is a test that uses one copy of p and: in the former
case, accepts with probability at least (1 —&)?/4 — &; in the latter case, accepts with
probability at most 3pm + &; here & satisfies € > 0 and (1 —€)?/4 — & > 3pm + £.
Furthermore, as long as the controlled reflection ctrl —(I — 2371 Ayyy @ |i) (i)
can be performed in at most p operations, this test requires only O(£~ v/m(p +

poly(logm))) operations to complete.

Proof. Similar to [138], we will reduce the task of distinguishing the two cases to

estimating the eigenvalues of

1 m
A= E;Ai, (4.3.1)

the average of these POVM operators. Write Py for the projector onto span{|\’) :

AN) = XN |N), X > A}, Then the following was shown in [138]:

Lemma 4.3.3 ([138, Corollary 11]). For any state p and A\ < max; Tr(A;p)/m,
Tr(Psyp) > [max Tr(A;p) — mAJ>. (4.3.2)

Choose A = (1 —¢)/(2m). Then we want to distinguish between the following

two cases:
L. Tr(Psap) > (1 —e—mA)? = (1 —¢)?/4;
2. Tr(Ap) < ¢. This implies Tr(Psosap) < ¢/(0.8X) < 3mep.

We can explicitly decompose A as follows (see also [138, Section 2]): Let @ be the
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quantum Fourier transform on Z,,, and define the projectors Il = Z?:Ol A1 ®

Qi) (i| Q), A = I ©|0) (0]. Then
AE&Z%55&®WHW=A®WHW- (4.3.3)

where [0 (0] in the above equation is shorthand for |0 (0[° for £ = [logm)].
Let a = arccos (\/X) and b = arccos (\/O.SA). Consider the following algo-

rithm, essentially based on the fast amplification algorithm of [211]:

Algorithm 4.3: The fast amplification algorithm in [211].

1. Create the state p @ |0) (0%,

2. Perform phase estimation of the rotation (I — 2IT)(I — 2A) on the state, with
precision (b — a)/2 and error probability . Let the measured eigenvalue be ¢.

3. Accept iff |¢] < (a + b)/2.

The following lemma follows from a direct application of Jordan’s lemma:

Lemma 4.3.4 ([211, Section 2.1)). If 1) ® |0)*" is an eigenvector of AIIA with

eigenvalue cos® ¢, then

1

[0) ®10)*" = —=(1¢) +|-9)) (4.3.4)

Sl

2

where |@) and |—@) are some eigenvectors of (I — 2I1)(I — 2A) with eigenvalues ¢

and —¢, respectively.
In Case 1, we have Tr(Psyp) > (1—¢)?/4, and therefore Algorithm 4.3 accepts
with probability at least (1 —¢)?/4 —¢. In Case 2, we have Tr(Psgg\p) < 3my, and
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therefore Algorithm 4.3 accepts with probability at most 3my + &.

Algorithm 4.3 requires applying the controlled version of the Grover iterate
(I—2I1)(1—2A) O(((b—a)&)™") = O(y/m&™) times. Furthermore, the controlled re-
flection ctrl-(I—2A) is implementable by O(log m) gates since A = I®|0) (0]*M*#™1,
and the controlled reflection ctrl-(/ —2II) is implementable using O(p+ poly(logm))

gates by assumption. O

Remark 4.3.1. The gate complexity in Lemma 4.53.2 is optimal in \/m, i.e., there
exists projections Ay, ..., A, and a state p such that distinguishing whether 3i €
[m] Tr[pA;] > 2/3 or %Z;’Ll Tr[pA;] < 1/8m requires at least Q(y/m) gates. In
particular, assume that A; = |i)(i| for all i € [m] and p = |k)(k| where k € [m + 1].
Then to distinguish whether 3i € [m] Tr[pA;] > 2/3 or %ZTZI Tr[pA;] < 1/8m,
it is equivalent to searching whether k € [m] or not; deciding this requires at least

Q(y/m) gates due to the hardness of Grover search [46].

4.4  Quantum SDP solver in the plain model

Before we get into the quantum SDP solver in the plain model, we first mod-

ularize the cost of two important blocks as follows.

Definition 4.4.1 (trace estimation). Assume that we have an s-sparse n X n Her-
mitian matriz H with ||H|| <T and a density matriz p. Then we define Stv(s, T, €)
and T1(s, T, €) as the sample complexity of p and the time complexity of using the
plain model (Oracle 1) of H and two-qubit gates, respectively, such that one can

compute Tr[H p| with additive error € with success probability at least 2/3.
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Definition 4.4.2 (Gibbs sampling). Assume that we have an s-sparse n x n Her-
mitian matric H with ||[H|| <T. Then we define Tauns(s, ', €) as the complexity of
preparing the Gibbs state

T[ ,H] with additive error € using the plain model (Ora-

cle 1) of H and two-qubit gates.

As a subsequence of Lemma 4.3.2, Definition 4.4.1, and Definition 4.4.2, we

prove the following theorem under the plain model:

Theorem 4.4.1. Assume we are given Oracle 1. Furthermore, assume that A; is s-
sparse for all j € [m]. Then for any € > 0, feasibility of the SDP in (6.1.6), (6.1.7),
and (6.1.8) can be tested by Algorithm 4.4 with success probability at least 0.96
and G%O(STT(E%J %, G)TG’ibbs(E%; %, e) + \/ETTI(E%, %, e)) quantum gates and queries to

Oracle 1.

Algorithm 4.4: Efficiently testing the feasibility of SDPs: Plain model.
Initialize the weight matrix W) = I,, and T = 166151"'

Y

=

2 fort=1,2,...,T do

3 Prepare logm - Sty (Slog”, en o) samples of Gibbs state p® = % by
Definition 4.4.2;

4 Using these logm - STr(Slog", lof " ¢) copies of p®, search for a j® € [m]

such that Tr[A; npH] > ajw + € by Lemma 4. 3 2 (for each j, we use
Definition 4.4.1 to compute Tr[A;p]). If such j® is found, take

M® = 1(I, — A;)); otherwise, claim that S 7é & (the SDP is feasible);
5 | Define the new weight matrix: W) = exp[—i Zizl M(T)];

6 Claim that Sy = @ and terminate the algorithm.

Proof. The correctness of Algorithm 4.4 is automatically established by Theorem 4.2.1;
it suffices to analyze the gate cost of Algorithm 4.4.

In Line 3 of Algorithm 4.4, we apply Definition 4.4.2 to compute the Gibbs

state p(®). Inround ¢, because t < 188n € 5™ A7) has sparsity at most s < t-s =

=
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O(SISQg"), and Hiztﬁl MO <<t = O(k’%). As a result, TGibbS(Sls#, logn )
quantum gates and queries to Oracle 1 suffice to prepare a copy of the Gibbs state
p® . In addition, since to query an element of n Zizl M) we need to query each of
the A;-), we have an overhead of s- 1661# for constructing Oracle 1 for § Zf—:l M)

(in particular, Appendix D of the full version of [24] showed that this overhead

©(£15%) is necessary and sufficient for constructing the plain oracle for £ St M),

In total, Line 3 of Algorithm 4.4 costs

16s1Inn slogn logn slogn logn
B 'logm'STr( 2 ) 7€> '7E}ibbs<—27—a€>
€ € €

€

(4.4.1)

€

quantum gates and queries to Oracle 1.
Next, using these logm - STY(SIS#, 10%,6) copies of p), we apply Defini-
tion 4.4.1 for O(logm) times to create two-outcome POVMs M; for any j € [m]

such that M; decides whether Tr(A,p) — a; > € with success probability boosted to

1—0O(1/m). The gate complexity of each M; is qur(‘glg#, lof”, €) by Definition 4.4.1.
Furthermore, because Oracle 1 is reversible, we can assume an explicit decompo-
sition M; ® [0) (0|** = PA;P for some integer a, P = I ® |0)(0|**, and some
orthogonal projector A;. Let p = p® @ ]0) (0|* where C' = logm - qu(sf#, logn )

e )

with a large enough constant in O. We therefore need to decide between the cases
1. Tr[A;p] > 1 — 2% for some j € [m]; or
2. Tr[A;p] < %% for all j € [m)].

This corresponds to the two cases of Lemma 4.3.2, where ¢ = ¢ = %. Because each
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s 1ogn logn

M can be implemented with 7, (=25, ,€) two-qubit gates, the total gate com-

plexity of implementing the reflection 7 —23 ™" Y A;®15) (] s also T (21052 182 ).

e

As a result, the total cost of applying Lemma 4.3.2 is O(\/_’T (Slog", logn e))

€ Y
In Lemma 4.3.2, we choose £ = %(“TE 3myp) — this is a positive constant.

We can thus tell the two cases apart with constant probability. Then, we repeat the

call of Lemma 4.3.2 for L = O(log &™) times and accept if and only if Lemma 4.3.2

accepts for at least £ - (# + 3my) times. By Chernoff’s bound, this can enhance

€2

the success probability to at least 1 — ;55—

In all, we have a quantum algorithm that determines whether there exists a

€2

J € [m] such that Tr[A;p] > a; + ¢ with success probability at least 1 — 57—,

using O(\/mﬁr(sf#,b%,e)) quantum gates and queries to Oracle 1. To find
this j, we apply binary search on j € {1,2,...,m}, i.e., apply the algorithm to
je{l,...,m/2]} and j € {[m/2],...,m} respectively, and if the output is yes

then call the algorithm recursively. This gives an extra poly(logm) overhead on the

queries to Oracle 1, which is still O(\/ﬁTTr(SISQg", lof”, €)). In addition, similar to
the analysis of Line 3, there is an overhead of s - 1661% for constructing Oracle 1
of the Gibbs state using Oracle 1 of each of the Ajm. Therefore, the total cost of

executing Line 4 of Algorithm 4.4 is

(\/_TTr<810gn710%76>>. (4.4.2)

Inn

Because Algorithm 4.4 has at most 166—2 iterations, with success probability

2

at least 1 — 16512“” oot = 0.96 Algorithm 4.4 works correctly, and its execution
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takes

et € €2

= 20(8u (5% ) a5 1) + VT (5. 2.6)) (4.4.3)

€

two-qubit gates and queries to Oracle 1. O

To be more explicit, the complexities of Stv, T1v, and Tgipps are given in pre-

vious literatures:

Lemma 4.4.1 ([56], Lemma 12). Given an s-sparse n x n Hermitian matriz H with
|H|| <1 and a density matriz p, with probability larger than 1—p,., one can compute
Tr[Hp] with additive error e in time O(se 2log*(ns/pee)) using O(e=21log(1/p.))

copies of p. In other words, St:(s,1,¢) = O(1/€?) and Tr(s,1,¢€) = O(s/€?).

Lemma 4.4.2 ([229]). Given an s'-sparse n x n Hermitian matriz H with ||[H|| <

B for some 8 > 0, one can prepare the Gibbs state #_HH} with additive error e

~ +/dim(H)Bs’ )

using O(

TGibbs<57 F, E) = O(SF\/E/E)

calls to Oracle 1 of H and two-qubit gates. In other words,

As a consequence of Theorem 4.4.1, Lemma 4.4.1, and Lemma 4.4.2, we have

the following complexity result for solving SDPs under the plain model:

Corollary 4.4.1. Assume we are given Oracle 1. Furthermore, assume that A; is
s-sparse for all j € [m]. Then for any ¢ > 0, feasibility of the SDP in (6.1.6),
(6.1.7), and (6.1.8) can be tested by Algorithm 4.4 with success probability at least
0.96 and O(s (\F + ‘f)) quantum gates and queries to Oracle 1.
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Proof. Note that Sn(s,I',€) = Sn(s, 1, 1) and Tre(s,T',€) = Tn(s,1, ) by renor-
malizing the Hamiltonian H to H/T. As a result, plugging Lemma 4.4.1 and

Lemma 4.4.2 into Theorem 4.4.1, the complexity of solving the SDP becomes

i.@(l.s n.s m):o<s2(@+@)>. (4.4.4)

€l0 el2

Remark 4.4.1. The (v/m + \/n) dependence is optimal compared to [24, 56].

Remark 4.4.2. Using more elaborated techniques and analyses, Ref. [23] improved

the complexity of Corollary 4.4.1 to O(s(‘ﬁ—f + ‘6/—55))

4.5 Quantum SDP solver with quantum inputs

In this section, we illustrate our quantum SDP solver in the quantum input
model. To that end, we first provide a precise formulation of the quantum input
model, and then demonstrate how to implement Oracle 6 in such scenario and how

the actual quantum algorithm works.

4.5.1 The quantum input model

As mentioned in the introduction, we would like to equip the quantum SDP
solver with some extra power beyond only accessing the entries of the input matrices
(i.e., A;, j=1,...,m, each of n x n size). We imagine the setting where these A;’s

are nice so that the following oracles, representing various means to access A;’s, can
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be efficiently implemented.

Oracle 7 (Oracle for traces of A;). A quantum oracle (unitary), denoted Or, (and

its inverse OL.), such that for any j € [m],

O/ )[0)10) = [7)| Te[A7 )] Tr[AT]), (4.5.1)

where AT and A; are two PSD matrices such that A; = AT — AT (the real values

Tr[A]] and Tr[A}] are encoded into their binary representations).

Oracle 8 (Oracle for preparing A;). A quantum oracle (unitary), denoted O (and

its inverse O1 ), which acts on C" @ (C"®@C") ® (C"®C") such that for any j € [m],

O15)(4] @ [0)(0] @ [0){0[OT = 15) (il @ [ ) (¥ | @ [ ) (w5 |, (4.5.2)
+ —
where |¢j), ;) € C* @ C™ are any purifications of T&?iﬂ’ T:[‘i,] , respectively.’

Oracle 9 (Oracle for a;). A quantum oracle (unitary), denoted O, (and its inverse

O!), such that for any j € [m],

Oal) (i1 ® [0)(01OF = 15)(j] ® la;)(ajl, (4.5.3)

where the real value a; is encoded into its binary representation.

Similar to Section 4.4, we also modularize the cost of two important blocks as

follows.

®By tracing out the extra space, one can easily obtain states Aj/ Tr[A;r], Ay Tr[AT].
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Definition 4.5.1 (trace estimation). Assume that Tr(A}) + Tr(A;) < B for some
bound B for all j € [m]. Then we define Stv(B,€) and Tr.(B,€) as the sample
complezity of a state p € C™™ and the gate complexity of using the quantum input
oracles (Oracle 7, Oracle 8, Oracle 9), and two-qubit gates, respectively, such that
there exists a quantum algorithm which distinguishes with success probability at least

1 — O(1/m) whether for a fized j € [m], Tr(A;p) > a; + € or Tr(4;p) < a;.

Definition 4.5.2 (Gibbs sampling). Assume that K = KT — K~, where K* =
> jes ch;E, S C m] and |S| < @, ¢; > 0, and A;E refers to either A7 or A7 for
all j € [m]. Moreover, assume that Tr(K™) + Tr(K~) < Bk for some bound By,
and that K+, K~ have rank at most ri. Then we define Tawps(Tx, ®, Brc, €) as the
complezity of preparing the Gibbs state pe = exp(—K)/ Tr(exp(—K)) to € precision

in trace distance using Oracle 7, Oracle 8, Oracle 9, and two-qubit gates.

4.5.2 Implementation of Oracle 6 — searching a violated constraint

Using Oracle 7, Oracle 8, and Oracle 9, Oracle 6 can be implemented by the

following lemma, using our fast quantum OR lemma (Lemma 4.3.2):

Lemma 4.5.1. Given €,0 € (0,1). Assume we have Oracle 7, Oracle 8, Oracle 9,
and (log1/8) - O(St(B, €)) copies of a state p. Assume either 35 € [m] such that
Tr(Ajp) > aj+e¢, or Tr(Ajp) < a; for all j € [m]. Then there is an algorithm that in
the former case, finds such a j; and in the latter case, returns “FEASIBLE”. This
algorithm has success probability 1 — § and uses in total log1/8 - O(\/mTw (B, €))

quantum gates and queries to Oracle 7, Oracle 8, and Oracle 9.
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Proof. First, we use Definition 4.5.1 to create two-outcome POVMs M;, acting on
p, W) (W], and 45 ) (¥ | with C' = Sp(B,€) copies, such that M; decides with
probability 1 — O(1/ poly(m)) whether Tr(A,p) —a; > e.

Because we are given purifications of all A;r and A; in Oracle 8, for all j €
{1,...,m} we can assume an explicit decomposition M; ® |0) (0|** = PA;P, for

some integer a, P = I ® |0) (0|*"

, and some orthogonal projector A;. Let p =
PP @ (|0 ) (WF)®C @ (|7 ) (05])®C @10) (0]”. We therefore need to decide between

the cases
1. Tr[A;p] > 1 — O(1/ poly(m)) for some j; or
2. Tr[A;p] < O(1/ poly(m)) for all j.

This corresponds to the two cases of Lemma 4.3.2, where both € and ¢ are O(1/ poly(m)).

To implement the the projection I —23 7" A; ®|j) (j] in Lemma 4.3.2, we use Or-

+ —
A A

j
A7) and A and apply

acle 8 to obtain purifications [¢;) (¢ | and [¢/7) (1} | of
the reflection with respect to [¢/)) and [¢;); note that we can obtain the numbers

Tr[A]] and Tr[A]] in superposition by Oracle 7. Including the controlling ancilla

|7)(j|, the p in Lemma 4.3.2 is at most O(logm).

In Lemma 4.3.2, choose & = %(# — 3mep) — this is a positive constant. We

can thus tell the two cases apart with constant probability, using St,(B, €) samples
of p and O(y/m)-Tr:(B, €) other operations. Then, we repeat the call of Lemma 4.3.2

for L = ©(logd~') times and accept if and only if Lemma 4.3.2 accepts for at least

% . (# +3my) times. By Chernoft’s bound, this enhances the success probability

to at least 1 — 0.
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In all, we have a quantum algorithm that determines whether there exists a
J € [m] such that Tr(A4;p) > a; + € (or Tr(A4;p) < a; for all j € [m]) with success
probability at least 1 — ¢, using log1/4 - O(\/ETTF(B ,€)) quantum gates and queries
to Oracle 7, Oracle 8, and Oracle 9. To find this j, we take § < §/logm, and apply
binary search on j € {1,2,...,m}, i.e., apply the algorithm to j € {1,...,|m/2]}
and j € {[m/2],...,m} respectively, and if the output is yes then call the algorithm
recursively. This gives an extra poly(log m) overhead on both sample complexity and
gate complexity, which are still (log1/6)-O(St:(B, €)) and log 1/8-O(/m T (B, €)),

respectively. O]

4.5.3 Quantum SDP solvers with quantum inputs

We now instantiate Algorithm 4.2 to the fully quantum version (Algorithm 4.5).
A key difference is that we use Definition 4.5.2 to generate (many copies) of the
Gibbs state p¥ and rely on Lemma 4.5.1 to implement Oracle 6. At a high-level,
the correctness of Algorithm 4.5 still roughly comes from Theorem 4.2.1, as well as
Lemma 4.5.1. However, its gate complexity will be efficient because of the help of

Oracle 7, Oracle 8, and Oracle 9.

Theorem 4.5.1. Assume we are given Oracle 7, Oracle 8, and Oracle 9. Further-
more, assume Tr[A]] +Tr[A]] < B for some bound B, and A; have rank at most r
for all j € [m]. Then for any € > 0, feasibility of the SDP in (6.1.6), (6.1.7), and
(6.1.8) can be tested by Algorithm 4.5 with success probability at least 0.96 and at

most E%O(Sn(B, ) Taiws (=, =, 2,€) + vVmTr(B,€)) quantum gates and queries to

€
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Oracle 7, Oracle 8, and Oracle 9.

Algorithm 4.5: Efficiently SDP feasibility testing: Quantum input model.

Initialize the weight matrix W = I,,, and T = 161“",

2 fort=1,2,...,T do

3 Prepare O(St:(B, €)) samples of the Gibbs state p®) = %
Definition 4.5.2;

4 | Using these O(St(B,€)) copies of p®, search for a j ) ¢ [m] such that
Tr(Aj@)p(t)) > a;w + € by Lemma 4.5.1 with 0= 1001+ Take

MO = %(In — Ajw) if such 3 is found; otherwise, clalm that S, # @
(the SDP is feasible);

5 | Define the new weight matrix: W) = exp[—g Zizl M(T)];

6 Claim that Sy = @ and terminate the algorithm.

=

by

Proof. The correctness of Algorithm 4.5 is automatically established by Theorem 4.2.1;
it suffices to analyze the gate cost of Algorithm 4.5.

In Line 3 of Algorithm 4.5 we apply Definition 4.5.2 to compute the Gibbs state
p®. In round ¢, because M; = 3[I, — (A] — A7)] = 31, + 3A; — AT Vj € [m],

we take K;” = £3°! 1A+T) and K; = £3°0_ | $A° . Because t < 18n it

=1 2
K; have rank at most ¢ -7 = O(logn - r/e?), and Tr[K,"], Tr[K, | are at most

<. B = O(logn - B/e), Definition 4.5.2 guarantees that

rlogn 16lnn Blogn ~ r 1 B
7dGibbs( €2g ) ) S 7€> - O(%ibbs<_ ) ?7€>> (454)

€2

quantum gates and queries to Oracle 7, Oracle 8, and Oracle 9 suffice to prepare

iterations and in each iteration

the Gibbs state pl). Because there are at most 164"
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p® is prepared for O(S (B, €)) copies, the total cost for Gibbs state preparation is

16Inn r 1 B
5 O<$ﬁ(3 6)7'Glbbs<—2 St

€

e)> (4.5.5)

€

Furthermore, by Lemma 4.5.1, Line 4 finds a j® € [m] such that Tr(A;u p") >

aj + € with success probability at least 1 — ;55— using O(v/mTw(B, €)) quantum

gates and queries to Oracle 7, Oracle 8, and Oracle 9. Because Algorithm 4.5 has

Inn 16lnn | €2

at most 166—2 iterations, with probability at least 1 — =5+ - ;z5— = 0.96 we can

assume that Lemma 4.5.1 works correctly, and the total cost of running Line 4 is

16lnn

O(vmTn(B,e)). (4.5.6)

In all, by (4.5.5) and (4.5.6), the gate complexity of running Algorithm 4.5 is

16lnn ~ r 1 B 16Inn ~
2 : O<STY(Ba 6)7—Gibbs <€_27 6_27 ?a 6>> + 2 : O(\/Elrfr(Ba 6))
1 - 1 B
:—20(8 (B, emlbbs(%,e—z = >+\/_7‘Tr(B e)) (4.5.7)

To be more explicit, in later sections we prove that:
e Lemma 4.5.2: Sy (B,€) = T1x(B,€) = O(B?logm/é?).
e Lemma 4.5.4: Taws(rx, @, By, €) = O(® - poly(logn, rx, Br, € 1)).

As a consequence, we have the following complexity result for solving SDPs
under the quantum input model:
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Corollary 4.5.1. Assume we are given Oracle 7, Oracle 8, and Oracle 9. Further-
more, assume Tr[AT] 4+ Tr[A]] < B for some bound B, and A; have rank at most
r for all j € [m]. Then for any € > 0, feasibility of the SDP in (6.1.6), (6.1.7),
and (6.1.8) can be tested by Algorithm 4.5 with success probability at least 0.96 and
at most (/m + poly(r)) - poly(logm,logn, B,e™') quantum gates and queries to

Oracle 7, Oracle 8, and Oracle 9.

Proof. By Theorem 4.5.1, the complexity of solving the SDP is

1 ~/B?1 1 B 1 B?%1
_O<ﬂ._poly<logn7fj_7_) _’_‘/m.ﬁ>
€2 €2 €2 € €€ €2

= (v/m + poly(r)) - poly(logm,logn, B,e'). (4.5.8)

]

Remark 4.5.1. When we use Definition 4.5.2 to prepare the Gibbs state p*) in
Line 3 of Algorithm 4.5, we have W) = exp[—%]n + K" — K{} by Line 5 which
actually has an extra —%]n term. However, for any constant ¢ € R and Hermitian

matric H we have

cl-H c,—H -H
° S — (4.5.9)
Trec!=H]  Trlece H]  Trle~H]

hence this —%[n term does not change p*).

Remark 4.5.2. In Corollary 4.5.1, the only restriction on the decomposition A; =
Al — A7 for all j € [m] is that Tr[A]] + Tr[A]] < B. If we assume this decomposi-
tion to be the eigen-decomposition, i.e., A; represents the subspace spanned by the
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eigenvectors of Aj with positive eigenvalues, and A; represents the subspace spanned
by the eigenvectors of A; with negative eigenvalues, then by the low-rank assumption
and —I 2 A; = I, Te[A]] + Tr[A]] < 7. In this case, Corollary 4.5.1 takes at most
vm - poly(logm,logn,r, e t) quantum gates and queries to Oracle 7, Oracle 8, and

Oracle 9.

Remark 4.5.3. The \/m dependence is optimal compared to Theorem 4.5.2 proved

later.

Remark 4.5.4. Using more elaborated techniques and analyses, Ref. [23] explicitly

computed the degrees of the parameters in (4.5.8) and improved the complexity of

Corollary 4.5.1 to O(Bf + %) (the rank r is implicitly contained in B and hence

this complezity is independent of r).

4.5.4 'Trace estimation

In this subsection, we prove:

Lemma 4.5.2. Assume we are given Oracle 7, Oracle 8, Oracle 9, and O(B?logm/€?)
copies of a state p € C" ™ where Tr[A;r] + Tr[A;] < B for some bound B for all
J € [m]. Then for any e > 0, Algorithm 4.6 distinguishes whether Tr(A;p) > a; + €
or Tr(A;p) < a; with success probability at least 1 —O(1/ poly(m)). In other words,

St(B,€) = Tn(B,¢) = O(B*logm/e?).

+
Proof. Recall that the SWAP test [62] on p and — : A+ outputs 1 with probability

Tr(Afp
2Tr [A*] )

Tr(A} p)
2T[A}

(=

and the SWAP test on p and outputs 1 with probablhty +

5t o
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Algorithm 4.6: Implementation of the POVM M;.

+
1 Using Oracle 8, apply the SWAP test on p and — A*] for

poly(logm,logn, B,e™!) times. Denote the frequency of getting 1 to be

p] +5
2 Using Oracle 8, apply the SWAP test on p and —— A
1) times. Denote the frequency of getting 1 to be

for

poly(logm,logn, B, e~
Pj-;

3 Apply Oracle 7 to compute Tr[A] and Tr[A}]. Claim that Tr(A;p) > a; +€
if (2p;+ —1) Tr[Af] — (2p;,= — 1) Tr[A;] > a; + €/2, and claim that
Tr(Ajp) < aj if (2pj 4 — 1) Te[AS] — (2p;= — 1) Tr[A;] < a; 4 €/2;

Therefore, by Chernoff’s bound and the fact that Tr[A]], Tr[A]] < B, we have

- (e T ]

__ 1 TY(A+ ) €
— _ > < — _(Z
Pr [1% (2 2Tr[A+])‘ = 8Tr[Aj+]] s Pr [pﬁ 2 " amiaf)| = 5B
O(B210gm/e2)-62
< 2e” 64B2-2 (4.5.10)
< O( ! ) (4.5.11)
poly(m)

for a large constant in the big-O in (4.5.10). Similarly,

. Tr(A; p) €
Pr [pj’_ B (% * T{A;])) = 8Tr—[AJ_]} = O(pol;(m))' (45.12)

In other words, with probability at least 1 — O(pob}(m)),

(4.5.13)

YR

(2p;~ — 1) Tx[A;] — Tr(A; p)| <

(2657 — 1) Tr[AY] = Tr(A] )] < 5,

Therefore, if Tr(A;p) = Tr(Af p) — Tr(A; p) > a; + €, then with probability at least
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L= O(oanam):

poly(m)

(20j4 — 1) Te[AS] — (295~ — 1) Tx[A]] > a; 4 €/2, (4.5.14)

which is exactly the first part of Line 3. Similarly, we can use Chernoft’s bound to

prove that if Tr(A;p) < a;, then with probability at least 1 — O(;)),

poly(m

(20,5 — 1) Te[Af] — (2p;~ — 1) Te[A] < a; +€/2, (4.5.15)

which is the second part of Line 3.
Because Algorithm 4.6 only uses SWAP which only takes O(1) quantum gates,

in total we have Sty(B, €) = T (B, €) = O(B*logm/e?). O

4.5.5 Gibbs state preparation

With the access to Oracle 7 and Oracle 8, the following lemma shows how to prepare

two normalized quantum states K*/Tr[K*] where K* = Y. ;A7

7> ¢ >0 and

AjE refers to either Aj or A7

Lemma 4.5.3. K"/ Tr[K*"] can be prepared by |S| samples to Oracle 7 and one

sample to Oracle 8, for both sgn =+ and sgn = —.

Proof. Consider the following protocol, where we choose all + to be + when prepar-

ing K*/Tr[K™*], and choose all &+ to be — when preparing K~/ Tr[K~]:

1. For all 7 € S, sample Oracle 7 to obtain Tr[Aﬂ;
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c; Tr[AT
2. To prepare K/ Tr[K*], toss a coin i € S such that Prfi = j] = <=2 Cral
> kes Ck Tr[AkI}

take one sample of Oracle 8 to obtain Aj: / Tr[A;—L], and output this state.

By symmetry, we only consider the preparation of K=/ Tr[K*]. With probability

i Tr[AT . . . .
%, the output state is A¥/ Tr[A¥]; therefore, in average the density matrix
Sres ok Tr[A7] j j
prepared is

chr[Af] A;-t B ZjeschjF . K*
S s e MAF] T[AT] T ¥ cgen T[Af] T WK

(4.5.16)

Furthermore, Step 1 takes |S| samples to Oracle 7, and Step 2 takes one sample to

Oracle 8; this exactly matches the sample complexity claimed in Lemma 4.5.3. [

Combining Lemma 4.5.3 and Theorem 4.7.1 leads to a lemma that generates

the Gibbs state in Line 4 of Algorithm 4.2:

Lemma 4.5.4. Suppose K = K* — K, where K* = > jes chji,

c; >0 and Aj[
refers to either AT or A7 . Moreover, assume that Tr(K*)+Tr(K~) < By for some
bound By, and that K*, K~ have rank at most rx. Then it is possible to prepare
the Gibbs state pg = exp(—K)/ Tr(exp(—K)) to € precision in trace distance, with

|S| - poly(logn, rx, Br, e ') quantum gates and queries to Oracle 7 and Oracle 8.

In other words, Tgis(Tx, ®, By, €) = O(® - poly(logn, rx, Br, e 1)).

4.5.6 Lower bound for quantum SDP solvers with quantum inputs

In this section, we prove quantum lower bounds in the quantum input setting.
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Theorem 4.5.2 (Lower bound on Theorem 4.5.1). There exists an SDP feasibility
testing problem such that B,r,e = ©(1), and solving the problem requires Q(y/m)

calls to Oracle 7 and Oracle 8.
Proof. Consider the following two instances of the SDP feasibility testing problem:

1. For all j € [m], set A; = 0. For a random 7* € [n], set (A} )= = 1 for all
j € [m]. All other elements of matrices A} are set to zero. For a random

J* € [m], set aj» = —1/2. Set a; = 1/2 for all j # j*. Set e = 1/4.

; - Fx + —
2. For all j € [m], set A; = 0. For a random 7* € [n], set (A )q;- = 1 for all
j € [m]. All other elements of matrices A} are set to zero. Set a; = 1/2 for

all j € [m]. Set e = 1/4.

Note that the first problem is not feasible because there is no X such that X > 0
and Tr[A;«X]| < —1/24 1/4 < 0; the second problem is always feasible. For both

problems, we have B = r = 1, and the state is always [i*)(i*| for all j € [m].

A
Tr[A]]
Therefore, Oracle 8 provides no information for distinguishing between the two
problems, and we should only rely on Oracle 7. But this is equivalent to searching
for the j* such that a;» = —1/2, and by reduction to the lower bound on Grover

search it takes at least Q(y/m) queries to Oracle 7 for distinguishing between the

two problems. O

Combining Theorem 4.5.1 and Theorem 4.5.2, we obtain the optimal bound on

SDP feasibility testing using Oracle 7 and Oracle 8, up to poly-logarithmic factors.
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4.6 Application: Efficient learnability of quantum states

We consider the following quantum state learning problem, also named “shadow
tomography” in [3]: Let p be an unknown quantum state in an n-dimensional Hilbert
space, E1, ..., F,, be known two-outcome POVMs, and 0 < € < 1. Given indepen-
dent copies of p, one wants to obtain an explicit quantum circuit for a state o such
that with probability at least 2/3, | Tr[oE;] — Tr[pE;]| < € Vi € [m]. What is the
sample complexity (i.e., the number of required copies of p) and gate complexity
(i.e., the total running time) of the best such procedure?

Aaronson provides a solution with the sample complexity (i.e., the number
of copies of p) of O(log4 m -logn/e®) in [3]. In this section we show that, for low
rank matrices and small m, we can also make the learning process computationally
efficient while keeping a comparable sample complexity, by using our previous result

on speeding up solutions to SDPs.

4.6.1 Reduction from shadow tomography to SDP feasibility

We start with a simple explanation of using the solution to SDP feasibility to
address shadow tomography. Given (many copies of) any unknown quantum state

p and two-outcome POVMs Ej, ..., E,,, in order to estimate Tr[pF;|, it suffices to
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find a state o that is the solution to the following SDP feasibility problem:

TrloE;) < Tr[pE] +€e Vie [m]; (4.6.1)
Te[oE)] > Te[pE] — e Vi € [m]; (4.6.2)
Tr[o] = 1; (4.6.3)
o= 0. (4.6.4)

Any feasible solution o satisfies that | Tr[o E;] — Tr[pE;|| < € for all i € [m]. Thus,
our quantum SDP solver will generate a description of such 0. However, we do not
know Tr[pE;], and hence the constraints of the SDP feasibility problem, in advance.
The key observation is that our SDP solver only relies on the implementation of
Oracle 6, which does not need the knowledge of Tr[pE;] for each ¢ explicitly. It
turns out that with the help of the fast quantum OR lemma, one only needs a few

copies of p for the implementation of Oracle 6.

4.6.2 Finding the violated constraint using O(y/m) gates

Similar to Section 4.5, we assume the existence of Oracle 7 and Oracle 8 to
achieve efficient quantum circuits. Specifically, for the feasibility problem (6.1.4)-

(4.6.4), we have:

Oracle 7 for traces of E;: A unitary Or, such that for any i € [m|, Or|i)|0) =

)] Tr[E3]).
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Oracle 8 for preparing E;: A unitary O (and its inverse OT) acting on C™ ®

(C" ® C™) such that for any i € [m],

Oli) (il  [0){0]O" = [a) (il ® [v3)(wl, (4.6.5)

E;

where [¢;) (15| is any purification of AR

Furthermore, we assume that the POVM operator F; has rank at most r, for
all i € [m]. Using Oracle 7 and Oracle 8, Oracle 6 (searching for violation) can be

implemented by the following lemma:

Lemma 4.6.1. Given €,0 € (0,1). Assume we have Oracle 7, Oracle 8, and
poly(logm,logn,r, e logd') copies of two states p,o € C". Assume either 3i €
[m] such that | Tr[o E;] — Tr[pE;]| > €, or | Tr[oE;] — Tr[pE;]| < €/2 for all i € [m).
Then there is an algorithm that in the former case, finds such an i; and in the latter
case, returns “FEASIBLE”. This algorithm has success probability 1 — 6 and uses
in total /m - poly(logm,logn,r, e~ logd~1) quantum gates and queries to Oracle 7

and Oracle 8.

Lemma 4.6.1 also follows from our fast quantum OR lemma (Lemma 4.3.2) by
combining Lemma 4.5.2 and Lemma 4.5.1, where we replace p by p®“ @0%“®|0) (0"
for some C' = poly(logm,logn, e !); also notice that because 0 < E; < I and

rank(E;) <r, we have B <r. As a result, the detailed proof is omitted here.
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4.6.3 Gate complexity of learning quantum states

Similar to Corollary 4.5.1, we solve shadow tomography by using Lemma 4.5.4
to generate (copies) of the Gibbs state p® and relying on Lemma 4.6.1 to implement

Oracle 6.

Corollary 4.6.1. Assume we are given Oracle 7 and Oracle 8. Then for any € >
0, shadow tomography can be solved by Algorithm 4.7 with success probability at
least 0.96, using at most poly(logm,logn,r,e~) copies of p, and at most /m -

poly(logm,logn,r, ') quantum gates and queries to Oracle 7 and Oracle 8.

Algorithm 4.7: Efficiently learn a quantum state via measurements.
Initialize the weight matrix W = I,,, and T = 166151";
fort=1,2,...,T do

3 Prepare poly(logm,logn,r, e~ !) samples of the Gibbs state p® =

=

N

w )
Te[W )]

by Lemma 4.5.4, and take poly(logm,logn,r,e1) copies of p;

4 Using these poly(logm,logn,r,e!) copies of p® and p, apply
Lemma 4.6.1 with § = =5— to search for an i) € [m] such that
| Tr[pE;0)] — Tr[pW Eyw]| > €. if such i) is found then

5 if (Tr[pE;w] — Tr[p® E,w)] > €) then

6 | Take M) = (I, = (=Ej» + Tx[pEiw]I,));
7 else (Tl"[pEi(t)] — Tr[p(t)EZ-(t)] S —6)

8 | Take MW = 3(I,, — (Eiy — Te[pE;o]1n));
9 | else (no such i® exists)

10 L Claim p® to be the solution, and terminate the algorithm;

11 | Define the new weight matrix: W = exp[—£ St MO,

Proof. Similar to Corollary 4.5.1, the correctness of Algorithm 4.7 is automatically
established by Theorem 4.2.1; it suffices to analyze the gate cost of Algorithm 4.7.

In Line 3 of Algorithm 4.7 we apply Lemma 4.5.4 to compute the Gibbs state
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p® . In round ¢, because either

1 1 —Tr|pE;« 1
MO = §(In — (=Ejw + Tr[pEw]l,)) = %In + §Ei(t) (4.6.6)
when Line 6 executes, or
1 14+ Tr[pE;« 1
M(t) = §(In — (Ei(t) — Tr[,oEm)][n)) = %In - §Ei(t) (467)

. ¢
when Line 8 executes, we can take K = §>° | JE

cand Ky = <50 1B

r=12(r)
where E;('T) = By, E,, = 0 when (4.6.6) holds for round 7, and E;(LT) =0, E ) =
Ey» when (4.6.7) holds for round 7. Because ¢t < 1092 K K; have rank at
most ¢ - 7 = O(logn - r/€*) and Tr[K; ], Tr[K; | are at most § -7 = O(logn - r/e),
Lemma 4.5.4 guarantees that

16Inn rlogn rlogn
2 : p01y (10g n, T o
€ €

,e_1> = poly(logn,r, e ") (4.6.8)
€

quantum gates and queries to Oracle 7 and Oracle 8 suffice to prepare the Gibbs
state p). Because there are at most 1661% = poly(logn, e71) iterations and in each
iteration p® is prepared for poly(logm,logn,r,¢~!) copies, in total the gate cost
for Gibbs state preparation is poly(logm,logn,r,e1).

Furthermore, by Lemma 4.6.1, Algorithm 4.7 finds an i®) € [m] such that
| Tr[pE;w] — Tr[p® E;w]| > € with success probability at least 1 — 4006%, using
poly(logm,logn,r,e!) copies of p, and y/m-poly(logm,logn, r,e~!) quantum gates

and queries to Oracle 7 and Oracle 8. Because Algorithm 4.7 has at most 1661#
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. . . o 2
iterations, with success probability at least 1 — 16lnn . ¢
’ € 400Inn

= 0.96 we can assume
that the quantum search in Lemma 4.6.1 works correctly, and the total gate cost of
calling Algorithm 4.7 is y/m - poly(logm,logn,r, e t).

In conclusion, poly(logm,logn,r,e™1) is an upper bound on the number of
copies of p, and y/m-poly(log m,logn,r,e!) is an upper bound on the total number

of quantum gates and queries to Oracle 7 and Oracle 8. O

Remark 4.6.1. Using the same idea as Theorem 4.5.2, we can prove that there
exists a shadow tomography problem such that r,e = O(1), and solving the problem
requires Q(v/m) calls to Oracle 7 and Oracle 8. Therefore Corollary 4.6.1 is also

optimal up to poly-logarithmic factors.

4.7 Gibbs sampling of low-rank Hamiltonians

In this section, we demonstrate how to sample from the Gibbs state of low-
rank Hamiltonians given a quantum oracle generating desired states. We repeatedly

use the following result of [195] (with a straightforward generalization in [173]):

Lemma 4.7.1 ([173, 195]). Suppose we are given a quantum oracle that prepares
copies of two unknown (normalized) l-qubit quantum states p™ and p~, and we wish
to evolve under the Hamiltonian H = a,p™ — a_p~ for some nonnegative numbers
ar,a_ > 0. Then we can approzimately implement the unitary exp(iHt) up to
diamond-norm error &, using O(a*t?/5) copies of p™ and p~ and O(la*t*/§) other

1- or 2-qubit gates, where a = ay +a_.

By using phase estimation on the operator exp(iHt) with t = O(1/a), we have
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Lemma 4.7.2. Under the same assumptions as Lemma 4.7.1, we can perform eigen-
value estimation of H: given an eigenstate of H, we can estimate its eigenvalue up
to precision €, with probability 1 — &, using O(a*e2£72) copies of p™ and p~ and
O(la2e2£72) other 1- or 2-qubit gates, where a = ay + a_. This procedure disturbs

the input state by at most a trace distance error of O(\/€).

4.7.1 Computing the partition function

As a warm-up, we start with the following lemma:

Lemma 4.7.3. Suppose K = K — K~, where K™ and K~ are n x n PSD
matrices, and there is a quantum oracle that prepares copies of the states pt =
K*/Te(K1), po = K~/ Te(K™), and an oracle for the numbers Tr(K ™), Tr(K ™).
Moreover, assume that Tr(K') + Tr(K~) < B for some bound B,° and that KT,
K~ have rank at most ri. Then it is possible to estimate the partition function
7 = Tr(exp(—K)) to multiplicative error e with success probability at least 1 — &,

with poly(logn, rg, B,e™ 1, &71) quantum gates.

Proof Sketch. We assume that we can implement the unitary evolution exp(iKt) as
well as the phase estimation protocol, perfectly to infinite precision. This assumption
is not true, but it helps to simplify the exposition; the assumption can be removed
by Appendix G of [55] where a careful error analysis of this scheme is presented.
This idealization is made here for the sake of flashing out the core ideas behind the

proposed protocol.

5The B here is denoted as By in Definition 4.5.2 and Lemma 4.5.4; for simplicity we make
this abbreviation throughout Section 4.7.
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Under these assumptions, let us first consider the estimation of
Zsupp = e N, (4.7.1)

where 0 < § < 1 is a small threshold and \;’s are eigenvalues of K. Since § > 0 is a
small parameter, Zg,;,, is the partition function when considering the approximated
support of K.

The main idea in the estimation of Z,pp, is to perform phase estimation of the

2mi K

unitary operator e on p™ and p~, after which we obtain

K* 1
+ + n
P T T MO NG (@72

where I, is the projection onto the A-eigenspace of K, and A is any eigenvalue of
K. Let us define

K;_ = H)\K+H)\, K)\_ = HAK_H)\. (473)

Then,

K — Ky = ILKII, = All, (4.7.4)

and therefore K5 and K differ by a multiple of the identity in their support space
(the A-eigenspace of K). Hence K and K are simultaneously diagonalizable, and
their corresponding eigenvalues differ by exactly A. In other words, there exists an

eigenbasis of K, which we call {|v;)}; with corresponding eigenvalues )\;, such that
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K and K are diagonal in this eigenbasis for all \. We can therefore write

K=" Ao (ul,  Ky= ) A |v) (i, (4.7.5)

A=A P =\

for some nonnegative numbers A, A, satisfying A — A\ = \;. Combining Egs.

(4.7.2) and (4.7.5), we obtain that p* (p~) — the state after performing phase esti-

mation of the unitary operator 2™ on p* (p~) is given by
1
- +
= ——0 A i) (v Ai) (Al - 4.7.6
7 = iy 2 A o @ 1) (0 (47.6)

Algorithm 4.8: Estimation of Zg,pp,

1. Let sgn = + with probability Tr(KT)/[Tr(KT) + Tr(K )], and sgn = —
otherwise.

2. Perform phase estimation of the operator e on p*®"; Let the output state

be p¥" = m Do, A ui) (vil @ [Ai) (Ai]. Measure the second register and
let the obtained eigenvalue of K be \.

3. If |A| < & output 0; else if sgn = + output A~te™?; else output —A~te .

Now consider the procedure in Algorithm 4.8, and let its output be the random

variable X. Then under the assumption of perfect phase estimation, we have

E[X] = Tr(K™) ANoeh Tr( Z A —Xi
C Tr(Kt) + Tr(K- )M_MT r(KT) N Tr(K+) —I—Tr - r(K-) A
ZSUPP
M= 4.7.
T Tr(K) +Tr M ‘>6€ K+)+Tr(K-)’ (4.7.7)

where A\ are the eigenvalues of Ki_, satisfying A — A\, = \;. Therefore E[X] is
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proportional to Zg.pp, and obtaining a multiplicative estimate of E[X] gives us a
multiplicative estimate of Zgpp.

The second moment of X is bounded by

1 e~
— )\—i— )\‘— < )\2 —2 _—2X; < 5—222
T+ ) 2 N AT S e <

[Ai]=6

E[X?]

We see that E[X?] < B25~2E[X]?, and therefore by Chebyshev’s inequality we can
obtain, with constant probability, an e-error multiplicative estimate of E[X], hence
of Zgupp, by running the above procedure O(B*0~2¢~?) times and taking the mean.

We still need to calculate Z, the full partition function including small eigen-
values of K. Let R denote the number of eigenvalues of K (including degeneracy)
with absolute value at least ¢, and note that R < 2rg, where recall that rx upper

bounds the rank of K™ and K~ . Define the following approximation of Z:

Z'= Zypp+ (n—R) = > e+ > e (4.7.8)

[Xi|>6 [Ni <o

Using €® <1+26 and e7® > 1 — 4, we get that

1Z — Z'| < 26(n — R). (4.7.9)

Therefore if we make 0 small enough, say § = O(e), Z’ gives a good multiplicative
estimate for Z.
To compute 7', we need a good multiplicative estimate of n — R. This can

essentially be done by estimating the probability of a random state having eigenvalue
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smaller than §. Let the output of the following procedure be Y

Algorithm 4.9: Estimation of n — R

2mi K

1. Perform phase estimation of the operator e on the uniformly random

state I/n; let the output eigenvalue be A.

2. If |A\] < d output 1; otherwise output 0.

Y is a Bernoulli random variable with mean E[Y]| = (n — R)/n and variance
Var[Y] = R(n — R)/n? < RE[Y]?. By Chebyshev’s inequality, O(rxe ?) repetitions
of the above procedure gives us an e-error multiplicative estimate of E[Y], and thus
of n— R. Putting everything together, we see that O(B?e~*+rxe~?) uses of (perfect)

2miK

phase estimation of e suffices to get a O(e)-error multiplicative estimate of Z,

completing the proof. O

4.7.2 Sampling from the Gibbs state

Theorem 4.7.1 (Complete proof given in Appendix G of [55]). Suppose K = K+ —
K~, where K™ and K~ are n x n PSD matrices, and there is a quantum oracle that
prepares copies of the states pt = KT/ Tr(K™), p~ = K~/ Tr(K ™), and an oracle
for the numbers Tr(K™), Tr(K ™). Moreover, assume that Tr(K+)+Tr(K~) < B for
some bound B, and that K+, K~ have rank at most ri. Then it is possible to prepare
the Gibbs state pe = exp(—K)/ Tr(exp(—K)) to € precision in trace distance, with

poly(logn,rx, B,e ') quantum gates.

Proof sketch. Similar to the proof sketch of the partition function, here as well

we assume an infinite precision implementation of the unitary evolution operator
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exp(iKt) as well as of the phase estimation protocol. In addition we assume that
quantum principal component analysis can be implemented perfectly. The complete
proof is given in Appendix G.3 of [55].

The procedure is similar to that of calculating the partition function above.

We pick § = O(e), a small threshold, and first consider a procedure to sample from

Psupp = Z e_Ai |UZ> <UZ| /Zsuppa (4710)
[As] >0

where \;’s and |v;)’s are eigenvalues and eigenstates of K. (In the case that pupp
is undefined, i.e. that all eigenvalues of K have magnitude less than J, it is easy
to see that the uniformly mixed state I/n is already an O(e)-trace distance error
approximation to pg. This is the case when Zg,,p, = 0.) psupp is the Gibbs state
when considering only the (approximated) support of K. Consider the procedure in

Algorithm 4.10.

Note that ﬁ (1;)6% < 1since A* > 0 and by assumption || = AT —\7| >
supp

6, and Zj,,, < (14€) Zoupp < (1+€) D1y 155 e~ by (4.7.1). Moreover assuming that

supp —

K has at least one eigenvalue with magnitude at least 9, the success probability in

Line 5 of Algorithm 4.10 is at least

’ > $ ;)6_ > g(<11_+?), (4.7.11)

Nelnifzs TP

and therefore we can output pg,pp efficiently by repeating Algorithm 4.10 until suc-

cess, which takes O(B/0) trials in expectation.
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Algorithm 4.10: Estimation of pgpp

1. Let sgn = + with probability Tr(K™)/[Tr(K*) + Tr(K )], and sgn = —
otherwise.

2. Perform phase estimation of the unitary operator e*™% on p®"; let the
output state be p*" = m Do, A i) (vl @ [N (Al

3. Project p*" onto g%8" = ﬁ Z/\i:\/\ilzé AE 0 (v @ | A:) (Nl

4. The average state at this stage is

1

0= T (K + To(k) D T+ ) (wil @ [N (Al
Ai|26

Perform phase estimation of the operator e on p; let the measured

eigenvalue be pr = AT + A7, and the resulting state be g,,.

5. Accept the state g, with probablhty 2 Z/ , for Z,,, a e-multiplicative

error approximation of Zg,,, by Algorlthm 18,

Accounting for the randomness in Step 1, at the end of Step 3, we obtain the
mixed state 0. However, for Gibbs sampling, we should have factors of the form

e |v;) (v instead of (A + A;) |v;) (v;] that appear in g. Therefore, at this stage

of the protocol, to accept |v;) (v;] with probability proportional to e~ /(Af + A7),

but for that we need to measure A\ + \;. This is done in steps 4 and 5 of the above

procedure, which is equivalent to applying >_, .55 # v;) (Vi) @ |Ai) (A

Zbu

to 0. Upon keeping only the first register we obtain

Tr(K+) + Tr(K-) Z 7 ) (V3] o 7 Z e v;) (vi] = pupps  (4.7.12)

[Ai|>6 supp supp [As|>6

where pgsupp is the Gibbs state when considering only the (approximated) support of

K.
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We still need to calculate pg, the full Gibbs state including small eigenvalues
of K. Recall that R denotes the number of eigenvalues (including degeneracy) of K
with absolute value at least ¢, and note that R < 2rg, where rx upper bounds the

rank of Kt and K~ . Define the following approximation of pg:

Zsu n—R 1 .
po = TWPsupp t o Prer = 7( D e ) (wil + Y fvi) (il ), (4.7.13)

where prer = —% > n<s [vi) (vi| is the uniformly random state on the orthogonal

complement of the (approximate) support of K. Then

11 N e 1
loa = el = | = | D e+ > |- (4.7.14)
INi|>6 I\i|<6
11 N 11 2,
<|z-+ M%e + M%(E—? + e (4.7.15)
o1y,
<|z-lz+wsw (4.7.16)

Therefore if we make ¢ small enough, pj; gives a good estimate (in trace distance)
for pg.

To estimate pyer, we consider the output of Algorithm 4.11 below.

Algorithm 4.11: Estimation of pye,

1. Perform phase estimation of the operator ¥ on the uniformly random

state I/n; let the output eigenvalue be A and the resulting state be II,.

2. If |A\] > 0 abort; otherwise, accept the state.

Finally, pg is generated by running the Algorithm 4.10 with probability % =
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Q(2) (by (4.7.11)) until we accept papp, and running the Algorithm 4.11 with

probability

= Q(1), (4.7.17)

until we accept prer- The detailed analysis is given in Appendix G.3 of Ref. [55].
In the previous subsection we proved that, upon setting 6 = O(€) we can obtain
Zsupps Z and n — R up to an O(e) multiplicative error with poly(logn,rk, B,e™!)
quantum gates. Therefore, Using Lemma 7 of [24] we obtain % and 2 to O(e)
multiplicative error. This, in turns, implies the with the above procedure we prepare
the Gibbs state pg up to error O(e) in trace distance, with poly(logn, g, B,e™1)

quantum gates. ]

4.8 Conclusions and discussion

In this chapter, we present two new quantum algorithms for solving semidef-
inite programs (SDPs) providing quantum speed-ups. We consider SDP instances
with m constraint matrices, each of dimension n, rank at most r, and sparsity s.
The first algorithm assumes an input model where one is given access to an or-
acle to the entries of the matrices at unit cost. We show that it has run time
O(s2(v/me ™ + \/ne'?)), with € the error of the solution. This gives an optimal
dependence in terms of m,n and quadratic improvement over previous quantum

algorithms (when m ~ n). The second algorithm assumes a fully quantum input

model in which the input matrices are given as quantum states. We show that its
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run time is O(y/m + poly(r)) - poly(logm,logn, B, '), with B an upper bound
on the trace-norm of all input matrices. In particular the complexity depends only
poly-logarithmically in n and polynomially in r.

We apply the second SDP solver to learn a good description of a quantum
state with respect to a set of measurements: Given m measurements and a supply
of copies of an unknown state p with rank at most r, we show we can find in
time /m - poly(log m,logn,r,e™') a description of the state as a quantum circuit
preparing a density matrix which has the same expectation values as p on the m
measurements, up to error €. The density matrix obtained is an approximation to
the maximum entropy state consistent with the measurement data considered in

Jaynes’s principle from statistical mechanics.

Subsequent work. Van Apeldoorn and Gilyén [23] have improved the complex-
ity of trace-estimation and Gibbs sampling. After a personal communication with
Ronald de Wolf introducing our fast version of the quantum OR lemma, the authors
of Ref. [23] observed independently that the application of the quantum OR lemma
[138] can be applied to decouple the dependence of m and n. As a result, Ref.
[23] improved the complexity of Corollary 4.1.1 to 0(3({—? + %)) in the quantum

operator model, a stronger input model than the plain one proposed by Ref. [23].

Using novel techniques, it also has improved the complexity of Corollary 4.1.2 to

O(Bﬁ + %) in the quantum input model. Note there is no explicit dependence
on the rank r, which is an important advance (though it can be argued that rank r

is implicitly included in the parameter B).
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Open questions. This work leaves several natural open questions for future work.

For example:

e Are there more examples of interesting SDPs where our form of input is mean-
ingful? We have shown the example of learning quantum states. Intuitively,
we are looking for SDP instances where the constraints are much ”simpler”
than the solution space. Is there any such example in the context of big data

and/or machine learning?

e Our work has identified one setting where Gibbs sampling has a poly-log de-

pendence on the dimension? Is there any other setting for the same purpose?

e For any reasonable quantum input setting, what is the effect of potential noises

on quantum inputs in practice?

e Can we improve further on other parameters (e.g., the dependence on m
and 1/€)? In particular, is it possible to improve the error dependence to
polylog(1/€)? This probably implies that we have to consider a quantum

version of the interior point method.

e Are there other classes of measurements for which the quantum learning prob-
lem can solved in a computationally efficient way beyond the low-rank mea-
surements we consider in this work? We note that most measurements of
interest are not low rank (e.g. local measurements) and therefore the practical

applicability of the present result is limited.
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Chapter 5: Linear and Kernel-based Classification’

The main focus of previous chapters has been quantum speedups of optimiza-
tion problems. In this chapter, we study classification problems to demonstrate

quantum advantages for solving machine learning tasks.

5.1 Introduction

Motivations. Classification is a fundamental problem of supervised learning, which
takes a set of data points with known classes as inputs and aims to training a model
for predicting the classes of future data points. It is also ubiquitous due to its broad
connections to computer vision, natural language processing, statistics, etc.

A fundamental case of classification is linear classification, where we are given
n data points X1, ..., X, in R? and a label vector y € {1, —1}". The goal is to find

a separating hyperplane, i.e., a unit vector w in R?, such that

yi-XZTwEO Vi € [n]. (5.1.1)

By taking X; < (—1)¥% X, it reduces to a mazimin problem max,, min; XZ-Tw > 0.

IThis chapter is based on the paper [191] under the permission of all the authors.
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The approximation version of linear classification is to find a unit vector w € R s.t.

X, w > maxmin X, w—e€ Vi€ [n], (5.1.2)
wERy i’ €[n]

i.e., w approximately solves the maximin problem. More generally, we can regard a
(nonlinear) classifier as a kernel-based classifier by replacing X; by W(X;) (¥ being
a kernel function). We will focus on algorithms finding approximate classifiers (in
the sense of (5.1.2)) with provable guarantees.

The Perceptron Algorithm for linear classification is one of the oldest algo-
rithms studied in machine learning [206, 218], which runs in time O(nd/e?) for
finding an w € R? satisfying (5.1.2). The state-of-the-art classical result along this
line [85] solves linear classification in time O((n + d)/€?). A careful reader might
notice that the input to linear classification is n d-dimensional vectors with total size
O(nd). Hence, the result of [85] is sublinear in its input size. To make it possible,
[85] assumes the following entry-wise input model:

Input model: given any i € [n| and j € [d], the j-th entry of X; can be recovered
in O(1) time.

The output of [85] is an efficient classical representation of w in the sense that
every entry of @ can be recovered with O(1) cost. It is no surprise that @ per se
gives such a representation. However, there could be more succinct and efficient
representations of w, which could be reasonable alternatives of w for sublinear al-
gorithms that run in time less the dimension of w (as we will see in the quantum

case). The complexity of [85] is also optimal (up to poly-logarithmic factors) in the
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above input/output model as shown by the same paper.

Recent developments in quantum computation, especially in the emerging
topic of “quantum machine learning” (see the surveys [32, 51, 243]), suggest that
quantum algorithms might offer significant speed-ups for optimization and machine
learning problems. In particular, a quantum counterpart of the Perceptron algo-
rithm has been proposed in [161] with improved time complexity from O(nd/€*) to
O(y/nd/€?) (details in related works). Motivated both by the significance of classifi-
cation and the promise of quantum algorithms, we investigate the optimal quantum
algorithm for classification. Specifically, we aim to design a quantum counterpart
of [85].

It is natural to require that quantum algorithms make use of the classical
input/output model as much as possible to make the comparison fair. In particular,
it is favorable to avoid the use of too powerful input data structure which might
render any finding of quantum speedup inconclusive, especially in light of a recent
development of quantum-inspired classical machine learning algorithms (e.g., [256]).
Our choice of input/output models for quantum algorithms is hence almost the
same as the classical one, except we allow coherent queries to the entries of X; as
in (1.3.3):

Quantum input model: given any i € [n] and j € [d], the j-th entry of X can
be recovered in O(1) time coherently.

Coherent queries allow the quantum algorithm to query many locations in
superposition, which is a standard assumption that accounts for many quantum

speed-ups (e.g., Grover’s algorithm [128]). See Section 1.3 for details.
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On the other side, our output is exactly the same as classical algorithms, which
guarantees no overhead when using our quantum algorithms as subroutines for any

applications.

Contributions. Inspired by [85], our main contribution is a tight characterization
(up to poly-log factors) of quantum algorithms for various classification problems in

the aforementioned input/output model.

Theorem 5.1.1 (Main theorem). Given e = ©(1), we have quantum algorithms that
return an efficient representation of w € By for the following problems?, respectively,

with complezity O(v/n + v/d) and high success probability:

e Linear classification (Theorem 5.2.3):

min X, @ > maxmin X;"w — €. (5.1.3)
i€[n] weBg i€[n]

e Kernel-based classification:

min(¥(X;),w) > max min(V(X;), w) — e, (5.1.4)

i€[n] weBg i€[n]

where k(a,b) = (¥(a), V(b)) can be the polynomial kernel k,(a,b) = (a'b)?
(Corollary 5.5.1) or the Gaussian kernel kgass(a,b) = exp(—|la — b||?) (Corol-

lary 5.3.2).

2Here By is the fo-norm unit ball in R?.
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o Minimum enclosing ball (Theorem 5.5.2):

max || — X;||* < min max ||w — X;||* + €. (5.1.5)
i€[n] weR? i€[n]

e (y-margin SVM (Corollary 5.5.3):

min (X, @) > maxmin 2X,'w — ||w|]* — €. (5.1.6)
i€[n] weR4 i€[n]
On the other hand, we show that it requires Q(\/n + V/d) queries to the quantum
input model to prepare such w for these classification problems (Theorem 5.4.1,

Theorem 5.4.2).

Our matching upper and lower bounds /n+ Vd give a quadratic improvement
in both n and d comparing to the classical state-of-the-art results in [85].

Technically, our result is also inspired by the recent development of quantum
semidefinite program (SDP) solvers (e.g., see Chapter 4) which provide quantum
speed-ups for approximating zero-sum games for the purpose of solving SDPs. Note
that such a connection was leveraged classically in another direction in a follow-up
work of [85] for solving SDPs [114]. However, our algorithm is even simpler because
we only use simple quantum state preparation instead of complicated quantum op-
erations in quantum SDP solvers; this is because quantum state preparation is a
direct counterpart of the ¢, sampling used in [85] (see Section 5.2.1 for details). In
a nutshell, our result is a demonstration of quantum speed-ups for sampling-based

classical algorithms. Moreover, our algorithms are hybrid classical-quantum algo-
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rithms where the quantum part is isolated pieces of state preparation connected by
classical processing. All of the above suggest the possibility of implementing these
algorithms on near-term quantum machines [230].

In general, we deem our result as a proposal of one end-to-end quantum ap-
plication in machine learning, with both provable guarantees and the perspective of

implementation (at least in prototype) on near-term quantum machines.

Related works. We make the following comparisons with existing literatures in

quantum machine learning.

e The most relevant result is the quantum perceptron models in [161]. The classical
perceptron method [206, 218] is a pivotal linear classification algorithm. In each
iteration, it checks whether (5.1.1) holds; if not, then it searches for a violated
constraint 4 (i.e., y;, X, w < 0) and update w < w + X;, (up to normalization).
This classical perceptron method has complexity O(nd/e?); the quantum counter-
part in [161] improved the complexity to O(y/nd/e?) by applying Grover search
[128] to find a violated constraint. In contrast, we quantize the sublinear algo-
rithm for linear classification in [85] with techniques inspired by quantum SDP

solvers [55]. As a result, we establish a better quantum complexity O(y/n 4+ V/d).

In addition, [161] relies on an unusual input model where a data point in R?
is represented by concatenating the the binary representations of the d floating
point numbers; if we were only given standard inputs with entry-wise queries to
the coordinates of data points, we need a cost of {2(d) to transform the data into
their input form, giving the total complexity O(y/nd).
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The same group of authors also gave a quantum algorithm for nearest-neighbor
classification with complexity O(y/n) [271]. This complexity also depends on the
sparsity of the input data; in the worst case where every data point has O(d)

nonzero entries, the complexity becomes O(y/nd?).

e There have been rich developments on quantum algorithms for linear algebraic
problems. One prominent example is the quantum algorithm for solving linear
systems [81, 137]; in particular, they run in time poly(logd) for any sparse d-
dimensional linear systems. These linear system solvers are subsequently applied
to machine learning applications such as cluster assignment [194], support vector

machine (SVM) [232], etc.

However, these quantum algorithms have two drawbacks. First, they require the
input matrix to be sparse with efficient access to nonzero elements, i.e., every
row/column of the matrix has at most poly(logd) nonzero elements and their
indexes can be queried in poly(log d) time. Second, the outputs of these algorithms
are quantum states instead of classical vectors, and it takes €(d) copies of the
quantum state to reveal one entry of the output in the worst case. More caveats

are listed in [2].

In contrast, our quantum algorithms do not have the sparsity constraint and work
for arbitrary input data, and the outputs of our quantum algorithms are succinct
but efficient classical representations of vectors in R¢, which can be directly used

for classical applications.

e There are two lines of quantum machine learning algorithms with different input
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requirements. One of them is based on quantum principal component analysis

[195] and requires purely quantum inputs.

Another line is the recent development of quantum-inspired classical poly-logarithmic
time algorithms for various machine learning tasks such as recommendation sys-
tems [256], principal component analysis [255], solving linear systems [78, 122],
SDPs [77], and so on. These algorithms follow a Monte-Carlo approach for low-
rank matrix approximation [113] and assume the ability to take samples according
to the spectral norms of all rows. In other words, these results enforce additional
requirements on their input: the input matrix should not only be low-rank but

also be preprocessed as the sampling data structure.

e There are also a few heuristic quantum machine learning approaches for classifi-
cation [108, 141, 165] without theoretical guarantees. We, however, look forward

to further experiments based on their proposals.

Notations. Throughout this chapter, we denote X € R™*? to be the matrix whose
ith row is X, for all i € [n]. Without loss of generality, we assume X1,..., X, € By,
i.e., all the n data points are normalized to have /5-norm at most 1. As introduced

in Section 1.3, we assume a quantum oracle Ox (a unitary on C" ® C? ® Cd<) s t.

Ox(|i) ©15) ®12)) = 1) © |j) © |2 ® Xij) (5.1.7)

for any i € [n], j € [d] and 2z € C%< such that X,; can be represented in Cce,
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5.2 Linear classification

5.2.1 Techniques

At a high level, our quantum algorithm leverages ideas from both classical and
quantum algorithm design. We use a primal-dual approach under the multiplicative
weight framework [110], in particular its improved version in [85] by sampling the
update of weight vectors. An important observation of ours is that such classical
algorithms can be accelerated significantly in quantum computation, which relies
on a seminal technique in quantum algorithm design: amplitude amplification and

estimation [57, 128].

Multiplicative weight under a primal-dual approach. Note that linear clas-
sification is essentially a minimax problem (zero-sum game); by strong duality,

o = max min p' Xw = min maxp' Xw. (5.2.1)
wE]Rd pEA'n PGAn ’LUE]Rd

To find its equilibrium point, we adopt an online primal-dual approach with T
rounds; at round ¢ € [T, the primal computes p; € A,, and the dual computes w; €
R4, both based on p, and w, for all 7 € [t —1]. After T rounds, the average solution
w = ,_lp Zthl wy approximately solves the zero-sum game with high probability, i.e.,
;giAripTXw >0 — €.

For the primal problem, we pick p; by the multiplicative weight (MW) method.

Given a sequence of vectors ry,...,rr € R", MW sets w; := 1,, and for all ¢ € [T,
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pr = wi/||wel]r and wyyq(2) == wi(i) fo(—nre(2)) for all i@ € [n], where f, is a weight
function and 7 is the parameter representing the step size. MW promises an upper
bound on XT:l p; 7+, whose precise form depends on the choice of the weight function
=

fw. The most common update is the exponential weight update: fi(x) = e * [110],
but in this chapter we use a quadratic weight update suggested by [85], where
wir1(2) := we(i)(1 — nre(i) + n*re(i)?). In our primal problem, we set r; = Xwy; for
all t € [T] to find p;.

For the dual problem, we pick w; by the online gradient descent method [279].

Given a set of vectors qi,...,qr € R? such that |gll < 1. Let wy := 04, and

. 1 — Ytt1
Yert = Wit JRl Wert = oy Lhen

T T
maxz g w — Z g wy < 2VT. (5.2.2)
-1 t=1

weB
a

This can be regarded as a regret bound, i.e., Z;‘le q; w; has at most a regret of
2v/T compared to the best possible choice of w. In our dual problem, we set ¢; as
a sample of rows of X following the distribution p;.

This primal-dual approach gives a correct algorithm with only 7' = O(1/€?)
iterations. However, the primal step runs in ©(nd) time to compute Xw,. To obtain
an algorithm that is sublinear in the size of X, a key observation by [85] is to replace
the precise computation of Xw,; by an unbiased random variable. This is achieved
via (5 sampling of w: we pick j; € [d] by j, = j with probability w,(5)%/|jw,||*, and

for all i € [n] we take 9,(i) = X;(ji)||we]|*/we(j;). The expectation of the random
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variable 7,(i) satisfies

2
w.
antn? iy = (523)

In a nutshell, the update of weight vectors in each iteration need not to be precisely
computed because an ¢, sample from w suffices to promise the provable guarantee
of the framework. This trick improves the running time of MW to O(n) and online

gradient descent to O(d); since there are O(1/€®) iterations, the total complexity is

O(™£%) as claimed in [85].

Amplitude amplification and estimation. Consider a search problem where
we are given a function f,: [n] — {—1,1} such that f,(i) = 1 iff i # w. To search
for w, classically we need Q(n) queries to f, as checking all n positions is the only
method.

Quantumly, given a unitary U, such that U,|i) = |i) for all i # w and
U,lw) = —|w), Grover’s algorithm [128] finds w with complexity O(y/n). De-
note |s) = \/Lﬁ > icjn |7) (the uniform superposition), |s) = \/% > icn)/wy 1), and
Us = 2|s)(s|—1I, the unitary U, reflects a state with respect to |s’) and the unitary Uy
reflects a state with respect to |s). If we start with |s) and denote § = 2 arcsin(1//n)
(the angle between U,|s) and |s)), then the angle between U, |s) and UU,|s) is am-
plified to 20, and in general the angle between U,|s) and (U,U,)*|s) is 2k. To find
w, it suffices to take k = ©(y/n) in this quantum algorithm.

This trick of alternatively applying two unitaries is called amplitude amplifica-
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tion; in general, this provides a quadratic speedup for search. For the quantitative
version of estimating 6 (not only finding w), quadratic quantum speedup also holds
via an improved version of amplitude amplification called amplitude estimation [57].

Our main technical contribution is the implementations of amplitude am-
plification and estimation in the primal-dual approach for solving minimax problems.
On the one hand, we achieve quadratic quantum speedup for multiplicative weight
update, i.e., we improve the complexity from O(n) to O(y/n). This is because the £,
sampling of w is identical to measuring the quantum state |w) in the computational
basis, which is prepared by amplitude amplification.

On the other hand, we also achieve quadratic quantum speedup for online
gradient descent (improving O(d) to O(v/d)). This is because the main cost of online
gradient descent comes from estimating the norms ||y;||, which can be regarded as

an amplitude estimation problem.

Comparison between classical and quantum results. Although our quantum
algorithms enjoy quadratic speedups in n and d, their executions incur a larger
dependence in e: we have worst case O({fﬂ{—g) compared to the classical O(E%—I—e%)
in [85]. The main reason of having a larger e-dependence in quantum is because we
cannot prepare the weight states in MW via those in previous iterations (i.e., the
quantum state |w;) cannot be prepared by |w;_1)), and we have to start over every
time; this is an intrinsic difficulty due to quantum state preparation.

Therefore, there is a trade-off between [85] and our results for arbitrary e:

we provide faster training of the classifiers if we allow a constant error, while the
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classical algorithms in [85] might work better if we require high-accuracy classifiers.

5.2.2 Quantum speedup for multiplicative weights

First, we give a quantum algorithm for linear classification with complexity O(\/ﬁ)

Theorem 5.2.1. With success probability at least 2/3, Algorithm 5.1 returns a

succinct classical representation of a vector w € R? such that

X;w > max min Xyw —e Vi € [n], (5.2.4)
weEBg i/ €[n]

using (N)(‘G/TE + 6%) quantum gates.

Algorithm 5.1: Quantum linear classification algorithm.

Input: € > 0, a quantum oracle Oy for X € R"*¢,
Output: w that satisfies (5.2.4).

1 Let T'=23%2logn, y1 = 0g, = 1/ B2, uy = 1,,, |p1) = = D icin 103
2 fort=1to 7T do

3 Define? w; := —2——:
max{L, ||y ([}
4 Measure |p;) in the computational basis and denote the output as
ir € [nl;

5 Define y;41 := vy + \/%*TXM

I

6 Choose j; € [d] by j; = j with probability wely ‘)22

[[we|

7 | Denote 0;(i) = Xl(jt)ﬂiu&llj, vy(i) = min{1/n, max{—1/n, v:(i)}}, and
wey1(7) = ug (1) (1 — nue(7) + n?ve(i)?) for all i € [n]. Implement a
quantum oracle Oy such that for all i € [n], O;]i)|0) = |i)|us1(2)) by
Algorithm 5.3 in Section 5.2.2.2;

8 Pgepare |Des1) = m > icin We+1(2)]7) by applying Algorithm 5.2 to
L t

- _ 1NT .
Return @ = % >, wy;

©

3By defining w; here, we do not write down the whole vector but we construct any query to

its entries in O(1) time. For example, the i*" coordinate of w; is w; (i) = constructed

Y+ (4)
max{1,[ly.[[}’
by one query to y;(i). The y¢11 in Line 5 is defined in the same sense.
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Note that Algorithm 5.1 is inspired by the classical sublinear algorithm [85]
by using online gradient descent in Line 5 and ¢?> sampling in Line 6 and Line 7.
However, to achieve the O(\/ﬁ) quantum complexity we use two quantum building
blocks: a state preparation procedure in Line 7, and an oracle implementation
procedure in Line 8; their details are covered in Section 5.2.2.2 and Section 5.2.2.1,

respectively. The full proof of Theorem 5.2.1 is given in Section 5.2.2.3.

5.2.2.1 Quantum state preparation with oracles
We use the following result for quantum state preparation (see, e.g., [129]):

Proposition 5.2.1. Assume that a € C*, and we are given a unitary oracle O, such
that O|i)|0) = |i)|a;) for all i € [n]. Then Algorithm 5.2 takes O(y/n) calls to O,

for preparing the quantum state m Zie[n] a;|i) with success probability 1 — O(1/n).

Note that the coefficient in (5.2.7) satisfies % > \/iﬁ; therefore, applying
amplitude amplification for O(y/n) times indeed promises that we obtain |1) on the
second system with success probability 1 — O(1/n), i.e., the state m D icqn @ild) i

prepared in the first system.

Remark 5.2.1. Algorithm 5.2 is incomparable to state preparation via quantum
random access memory (QRAM). QRAM relies on the weak assumption that we
start from zero, and every added datum is processed in poly-logarithmic time. In
total, this takes at least linear time in the size of the data (see, for instance, [167]).
For the task of Proposition 5.2.1, QRAM takes at least 2(n) cost.

In this paper, we use the standard model where the input is formulated as an
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Algorithm 5.2: Prepare a pure state given an oracle to its coefficients.

1 Apply Diirr-Hgyer’s algorithm [100] to find amax 1= max;epy, |a;| in O(y/n)
time;
2 Prepare the uniform superposition \/Lﬁ > icn 19

3 Perform the following unitary transformations:

% S i) % Z [i)]a) (5.2.5)

1€[n] 1€[n]
aiQ
o= Yl (10 + yJ1- B )
ze[n] Umax max
|a;|?
f2| 0) (=10 + /1= 5-): (5:26)

4 Delete the second system in Eq. (5.2.6), and rewrite the state as

fale (1o~ .
: a;lt) )|1) + [a=)[0), (5.2.7)
Vit <||a||zgm )

where |at) 1= f > icin] | is a garbage state;
5 Apply amplitude amphﬁcatlon 57 for the state in (5.2.7) conditioned on

the second system being 1. Return the output;

oracle, also widely assumed and used in ezisting quantum algorithm literatures (e.g.,

[55, 81, 128, 137]). Under the standard model, Algorithm 5.2 prepares states with

only O(y/n) cost.

Nevertheless, it is an interesting question to ask whether there is a poly (log(nd))-

time quantum algorithm for linear classification given the existence of a pre-loaded

QRAM of X. This would require the ability to take summations of the wvectors

\/;Xit in Line 5 of Algorithm 5.1 in poly(log(nd))-time as well as the ability to

2T

update the weight state uzyq in Line 8 in poly(log(nd))-time, both using QRAM.

These two tasks are plausible as suggested by classical poly-log time sample-based al-
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gorithms for matriz arithmetics under multiplicative weight frameworks [77], which
can potentially be combined with the analysis of QRAM data structures in [167]; we

leave this possibility as an open question.

5.2.2.2 Implementing the quantum oracle for weight vectors

The quantum oracle O, in Line 7 of Algorithm 5.1 is implemented by Algo-
rithm 5.3. For convenience, we denote clip(v, 1/n) := min{1/n, max{—1/n,v}} for

all v € R.

Algorithm 5.3: Quantum oracle for updating the weight state.

Input: wy,...,w; € R4, jy,... 5 € [d].
Output: An oracle O, such that O]i)|0) = |i)|us1(2)) for all i € [n].

1 Define three classical oracles: O ;(0) = js, Os(js) = —lw(]”), and
OClip(aa b7 C) =cC- (1 - 77C11P<ab7 1/77) + 772 Chp(a’b7 1/77>2)7
2 for s=1totdo
3 Perform the following maps:
.  Osiioa . .
|)10)[0}]0) [us (2)) —= [0)]50)10) |us (2)) (5.2.8)
Ox. Al . .
= [0)176) 1 X (55))10) s (4)) (5.2.9)

SN yi>\js>|Xi<Js>>‘%
e, 1z>|js>\Xi(js)>‘%

>|u5(i)> (5.2.10)
Musea (i) (5:211)

)
O i) ) 1, (G0 0) e () (5.2.12)
5 [i)]2) 0)]0) et (1)) (5.2.13)
2y 1) 10)]0310) s 1), (5.2.14)

Because we have stored w; and j, we could construct classical oracles O ;(0) =

Jsr Osw(is) = o G Wwith O(1) complexity. In the algorithm, we first call Oy, to
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compute js and store it into the second register in (5.2.8). In (5.2.9), we call the

quantum oracle Ox for the value X;(js), which is stored into the third register. In

[lws |2

weGo) and store it into the fourth register. In

(5.2.10), we call O, to compute
(5.2.11), because we have X;(j,) and L‘)wT]”Q) at hand, we could use O(1) arithmetic

computations to compute 7,(7) = X;(js)||lws | /w:(js) and

Us-&-l(i) = us(l) (1 -0 Chp(ﬂs(i)v 1/77) + 772 Chp('&s(i)a 1/77)2)' (5'2'15)

We then store us.1(7) into the fifth register. In (5.2.12), (5.2.13), and (5.2.14), we
uncompute the steps in (5.2.10), (5.2.9), and (5.2.8), respectively (we need these
steps in Algorithm 5.3 to keep its unitarity).

In total, between (5.2.8)-(5.2.14) we use 2 queries to Oy and O(1) additional
arithmetic computations. Because s goes from 1 to t, in total we use 2t queries to

Ox and O(t) additional arithmetic computations.

5.2.2.3 Proof of Theorem 5.2.1

To prove Theorem 5.2.1, we use the following five lemmas proved in [85] for

analyzing the online gradient gradient descent and ¢? sampling outcomes:

Lemma 5.2.1 (Lemma A.2 of [85]). The updates of w in Line 3 and y in Line 5

satisfy

max Y Xjw < Y Xjw, +2v2T. (5.2.16)

weB,,
te[T] te[T)
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Lemma 5.2.2 (Lemma 2.3 of [85]). For any t € [T], denote p; to be the unit vector
in R™ such that (p;); = |(i|ps)|* for all i € [n]. Then the update for p,iq in Line 8

satisfies

Zptvt<m1n2w +772ptvt logn (5.2.17)

te(T]
where v? is defined as (v?); := (v)? for all i € [n].

Lemma 5.2.3 (Lemma 2.4 of [85]). With probability at least 1 — O(1/n),

max Y [v(i) — Xaw,] < 4nT. (5.2.18)
1€[n] reT]

Lemma 5.2.4 (Lemma 2.5 of [85]). With probability at least 1 — O(1/n),

< 10nT. (5.2.19)

‘ > Xiwi— Y plu
te[T]

te[T)

Lemma 5.2.5 (Lemma 2.6 of [85]). With probability at least 3/4,

Z p; v <8T. (5.2.20)

te(T]

Proof. We first prove the correctness of Algorithm 5.1. By Lemma 5.2.1, we have

> Xiw, > max Z —2V2T > To — 2V/2T. (5.2.21)

te[T] " te[T]
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On the other hand, Lemma 5.2.3 implies that for any i € [n],

Z Xw; > Z v, (i) — 4nT. (5.2.22)

Together with Lemma 5.2.2, we have

Zpt vt<m1nZth+ant v7 +—+47)T (5.2.23)

te[T) e te[T)

Plugging Lemma 5.2.4, Lemma 5.2.5, and (5.2.21) into (5.2.23), with probability at

least 2 —2-O(%) > 2,

logn

mm Z X, > — — 8T — 4T + To — 22T — 10nT (5.2.24)
i€[n] reT]
1
> To — 29T — 221 (5.2.25)
Since 7' = 23%2logn and n = |/ %", we have

T

1 [logn
min X;w = — min Xwy >0 —23 >0—¢ 5.2.26
ic[n] T ien ; ! T ( )

with probability at least 2/3, which is exactly (5.2.4).
Now we analyze the gate complexity of Algorithm 5.1. To run Line 3 and Line 5, we
need d time and space to compute and store w; and y;q; for all ¢t € [T], this takes

total complexity O(dT) = O(e%) It takes another O(dT") = O(e%) cost to compute
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gt for all £ € [T'] in Line 6.

The quantum part of Algorithm 5.1 mainly happens at Line 7 and Line 8§,
where we prepare the quantum state |p;,1) instead of computing the coefficients
u+1(7) one by one for all i € [n]. To be more specific, we construct an oracle
O; such that O;]i)|0) = |i)|uss1(2)) for all i € [n]. This is achieved iteratively,
i.e., at iteration s we map |i)|us(z)) to |i)|usy1(7)). The full details are given in
Algorithm 5.3 in Section 5.2.2.2; in total, one query to O, is implemented by 2t
queries to Ox and O(t) additional arithmetic computations.

Finally, we prepare the state |p;.1) = m * 2 icn) We+1(2)[é) in Line 8 using
O(y/n) calls to Oy, which are equivalent to O(y/nt) calls to Ox by Line 7 and O(y/nt)
additional arithmetic computations. Therefore, the total complexity of Line 8 for

all t € [T] is

Y O(/nt) = O(/aT?) = é(g). (5.2.27)

t=1

In all, the total complexity of Algorithm 5.1 is O~(‘€/Tﬁ + 6%), giving our statement.
Finally, the output w has a succinct classical representation with space com-

plexity O(logn/e?). To achieve this, we save 2T = O(logn/e?) values in Algo-

rithm 5.1: 41,...,97r and [Jy1], ..., ||yr|; it then only takes O(logn/e*) cost to re-

cover any coordinate of w by Line 3 and Line 5. O]

Remark 5.2.2. Theorem 5.2.1 could also be applied to the PAC model. For the
case where there exists a hyperplane classifying all data points correctly with margin
o, and assume that the margin is not small in the sense that C% < d, PAC learning
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theory implies that the number of examples needed for training a classifier of error
§ 1s O(1/c%5). As a result, we have a quantum algorithm that computes a o /2-

approximation to the best classifier with cost

O<V1/025+i>:0( ! +d>. (5.2.28)

O'2 05\/5 ;

ot

This is better than the classical complexity O(ﬁ + U%) in [85] as long as 6 < o2,

which 1s plausible under the assumption that the margin o is large.

5.2.3 Quantum speedup for online gradient descent

Norm estimation by amplitude estimation. We further improve the depen-
dence in d to O(v/d). To achieve this, we cannot update w;, and y, in Line 3 and
Line 5 by each coordinate because storing w; or y; would already take cost at least d.
We solve this issue by not updating w, and ¥, explicitly and instead only computing

|ly¢]| for all @ € [T']. This norm estimation is achieved by the following lemma:

Lemma 5.2.6. Assume that F: [d] — [0,1] with a quantum oracle Op|i)|0) =
|i)|F(i)) for alli € [d]. Denote m = éZ?:l F(i). Then for any § > 0, there is a
quantum algorithm that uses O(v/d/8) queries to Op and returns an 1 such that

| — m| < dm with probability at least 2/3.
Our proof of Lemma 5.2.6 is based on amplitude estimation:

Theorem 5.2.2 (Theorem 15 of [57]). For any 0 < ¢ < 1 and Boolean function

f:[d] — {0,1} with quantum oracle O¢|i)|0) = |i)|f (7)) for all i € [d], there is a
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quantum algorithm that outputs an estimate t to t = |f~'(1)| such that

[t —t| <et (5.2.29)

with probability at least 8/, using O(X4/4) evaluations of Oy. If t =0, the algo-

rithm outputs t = 0 with certainty and Oy is evaluated O(Vd) times.

Proof. Assume that F'(i) has [ bits for precision for all ¢ € [d] (in our paper, we take
I = 0(1), say | = 64 for double float precision), and for all k£ € [I] denote Fy(i) as
the & bit of F(i); denote ng = 3,1y Fi(0).

We apply Theorem 7.4.5 to all the [ bits of ny, using O(v/d/d) queries (taking
€ = 6/2), which gives an approximation ny of nj such that with probability at least
8/m? we have |ny — fg| < dng/2 if ny > 1, and Ay = 0 if np = 0. Running this
procedure for O(log!) times and take the median of all returned 7, and do this for

all k& € [l], Chernoff’s bound promises that with probability 2/3 we have

As a result, if we take m = éZke[l] g—,’j, and observe that m = ﬁzkem 5k, with

probability at least 2/3 we have

~ 1 ka N 1 5nk
kell] kel]
The total quantum query complexity is O(llogl - v/d/§) = O(\/d/6). O
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Quantum algorithm with O(v/d) cost. Instead of updating 3, explicitly in
Line 5 of Algorithm 5.1, we save the ¢, for all ¢ € [T] in Line 4, which only takes
O(l /€?) cost in total but we can directly generate y; given iy, ...,%;. Furthermore,
notice that the probabilities in the ¢? sampling in Line 6 do not change because
w2/ ol = 5/l it suffices to replace 5,(5) = X:(o)well2/wele) by
o)) = X;G)llwell®/ (ve(Ge) max{1, ||y;]|}) in Line 7. These observations result in

Algorithm 5.4 with the following result:

Theorem 5.2.3. With success probability at least 2/3, there is a quantum algorithm

that returns a succinct classical representation of a vector w € R% such that

X;w > max min Xyw —e Vi € [n], (5.2.32)
weBg i/ €[n]

d

S

USINg O({—f + ) quantum gates.

00

€

Proof. For clarification, for all i € [n] we denote

9
Xi(Ji) lyell _

X0 w2
) TR Ut,true(i) = <jt)||yt||
ye(7¢) max{1, ||| }

Ye () max{1, lye||}

(5.2.33)

6t,appr0x (2) =

In other words, the 9; in Line 7 of Algorithm 5.4 is ¥y approx, an approximation of

Ut true- We prove:

‘ﬁt,approx(i) - ﬁt,true(i” <n Vie [n] (5234)

4The meaning of the definition here is the same as Footnote 3 in Algorithm 5.1.
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Algorithm 5.4: Quantum linear classification algorithm with O(v/d) cost.
Input: € > 0, a quantum oracle Oy for X € R™*%,
Output: w that satisfies (5.2.4).

1 Let T = 27%¢ ?logn, y1 = 04, 1 = \/ 10;%”7 ur =1y, [p) = f Zze[n] |23

2 fort=1to T do

3 Measure |p;) in the computational basis and denote the output as
i € [nl;
4 Define y; 4.1 == y; + \/%*TX“;

5 | Apply Lemma 5.2.6 for 2[log T'| times to estimate ||y||? with precision

9
§ = n?, and take the median of all the 2[logT'] outputs, denoted ||y ;

6 Choose j; € [d] by j; = j with probability y;(5)?/ l|y¢||?, which is achieved
by applying Algorithm 5.2 to prepare the quantum state |y;) and
measure in the computational basis;

—9 —

7 For all i € [n], denote ©;(7) = X; (i) vl /(yt(jt) max{1, HytH}),

ve(i) = clip(i(d), 1/n), and w41 (1) = ug(i)(1 = noy(i) + n°v,(i)*). Apply
Algorithm 5.3 to prepare an oracle O; such that O;|i)|0) = |i)|ue41(2))
for all i € [n], using 2t queries to Ox and O(t) additional arithmetic

computations;
8 Prepare |p;11) = m > icn) Wt+1(7)|7) using Algorithm 5.2 and Oy;
9 Return w = T Zt:l m7

Without loss generality, we can assume that 0t rue(2), Orapprox(2) < 1/m; otherwise,
they are both truncated to 1/n by the clip function in Line 7 and no error occurs.

— 2
and m = ||y|| . Then

For convenience, we denote m = [Jy;||*

. Ut approx(l)

Ut approx(Z . 1‘
Ut ,true (Z)

ﬁt,approx(i) - 6t,true<i)’ = 6t,true(i) : b ( )
t,true

1
- - 1’. (5.2.35)
0

vt true( ) f}t,true ('L)

When ||y;]] > 1 we have Dtapprox(D) 2. when [ly]] < 1 we have Dtapprox(D) \/%
—9

Because in Line 5 ||y;|| is the median of 2[log T'| executions of Lemma 5.2.6, with

failure probability at most 1 — (2/3)?°8T = O(1/T?) we have |2 — 1| < §; given

there are 7" iterations in total, the probability that Line 5 always succeeds is at least
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1—-T-0(1/T%) =1-0(1), and we have

M 1’ <5 (5.2.36)
m

Plugging this into (5.2.35), we have

I I >

=1, (5.2.37)

6t,appr0x(i) - i}t,true(i)| S

which proves (5.2.34).
Now we prove the correctness of Algorithm 5.4. By (5.2.34) and Lemma 5.2.3,

with probability at least 1 — O(1/n) we have

max [04(i) — Xywy] < 4nT + 0T = 50T, (5.2.38)
i€[n] e
where w;, = ﬁ for all ¢ € [T]. By (5.2.34) and Lemma 5.2.4, with probability
max{1,||yt

at least 1 — O(1/n) we have

< 10nT +nT = 11nT; (5.2.39)

’ ZXitwt - Zp:vt

te(T) te(T]

by (5.2.34) and Lemma 5.2.5, with probability at least 3/4 we have

> plv; < 8T +2T = 10T. (5.2.40)

te(T)
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As a result, similar to the proof of Theorem 5.2.1, we have

1
min Y Xow, > ——2% —109T — 59T + To — 2v/2T — 11T (5.2.41)
n

1
> To — 26nT — —2. (5.2.42)
77

Since T' = 27%¢ 2logn and 1 = 1/ %", we have

T

1 [logn
min X;w = — min Xowy > 0 —27 >0 —¢€ 5.2.43
i€[n] T ieln] ; ! T ( )

with probability at least 2/3, which is exactly (5.2.32).

It remains to analyze the time complexity. Same as the proof of Theorem 5.2.1,
the complexity in n is O(‘E/—f) It remains to show that the complexity in d is O({—?)
The cost in d in Algorithm 5.1 and Algorithm 5.4 differs at Line 5 and Line 6. We

first look at Line 5; because

T
1
- —_Y'x,, 5.2.44
Yt ﬁ ; T ( )

one query to a coefficient of g takes t = O(1/€?) queries to Ox. Next, since
X, € B, for all i € [n|, we know that X;; € [-1,1] for all i € [n], j € [d]; to
apply Lemma 5.2.6 (F' should have image domain in [0, 1]) we need to renormalize
y: by a factor of t = O(1/€?). In addition, notice that § = 1> = ©(€?); as a result,

the query complexity of executing Lemma 5.2.6 is O(\/E/ €?). Finally, there are in

250



total T = O(1/€?) iterations. Therefore, the total complexity in Line 5 is
0(3)-0(3)-0(¥) . 6(L) - o(X). (5.2.85

Regarding the complexity in d in Line 6, the cost is to prepare the pure state
|ye) whose coefficient is proportional to 3. To achieve this, we need t = O(1/€)
queries to Ox (for summing up the rows X;,,..., X;,) such that we have an oracle
O,, satistfying O,,[7)|0) = |j)|y:(j)) for all j € [d]. By Algorithm 5.2, the query
complexity of preparing |y;) using O,, is O(v/d). Because there are in total T =

O(1/€?) iterations, the total complexity in Line 6 is
-1 -1 -\
0(%)-oWay- (L) = o). (5.2.45

In all, the total complexity in d is O(v/d/€®) as dominated by (5.2.45). Finally,

w has a succinct classical representation: using iy, ..., obtained from Line 3 and
T 2 /_\_/2 . . . . .

lyill 5., |lyr]| obtained from Line 5, we could restore a coordinate of w in time
T = O0(1/€). O

Remark 5.2.3. For practical applications of linear classification, typically the num-
ber of data points n s larger than the dimension d, so in practice Theorem 5.2.1
might perform better than Theorem 5.2.53. Nevertheless, the O(\/E) complexity in

Theorem 5.2.3 matches our quantum lower bound (see Theorem 5.4.1).
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5.3 Applications

As introduced in Section 5.2.1, the ¢5 sampling of w picks j; € [d] by j; = j with
probability w(j)?/||w||, and the expectation of the random variable X;(j,)||lw||” /w(j¢)
is X;w. Here, if we consider some alternate random variables, we could give unbiased
estimators of nonlinear functions of X. We first look at the general case of applying
kernel functions [242] in Section 5.3.1. We then look at the special case of quadratic
problems in Section 5.3.2 as they enjoy simple forms that can be applied to finding

minimum enclosing balls [240] and fs-margin support vector machines [253].

5.3.1 Kernel methods

Having quantum algorithms for solving linear classification at hand, it is natu-
ral to consider linear classification under kernels. Let ¥: R? — # be a mapping into
a reproducing kernel Hilbert space (RKHS), and the problem is to find the classifier
h € H that solves the maximin problem

— in(h, U(X,)), 5.3.1
o r&aﬁ(%ﬁ(, (Xi)) (5.3.1)

where the kernel is defined as k(a,b) := (¥(a), (b)) for all a,b € RY.
Classically, [85] gave the following result for classification under efficiently-

computable kernels, following the linear classification algorithm therein:

Theorem 5.3.1 (Lemma 5.3 of [85]). Denote Ty as the time cost for computing

k(X;, X;) for some i,j € [n], and denote Ly as the time cost for computing a ran-
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dom wvariable k(X;, X;) for some i,7 € [n] such that E[k(X;, X;)] = k(X;, X;) and

Var[k(X;, X;)] < 1. Then there is a classical algorithm that runs in time

O(Lkn+d+min{Tk ﬂ}) (5.3.2)

€2 et €6

and returns a vector h € H such that with high success probability (h, ¥(X;)) > o —e

for all i € [n].

Algorithm 5.5: Quantum kernel-based classification.

Input: € > 0, a quantum oracle Ox for X € R,
Output: w that satisfies (5.2.4).

Let T =272 2logn, y1 = 0g, 7 = /%%, us = 1,,, |p1) = &= D iep 13

[y

2 fort=1to T do
3 Measure |p;) in the computational basis and denote the output as
i € [nl;

4 Define y;41 :== vy + \/%7 (Xi);

5 | Apply Lemma 5.2.6 for 2[log T'| times to estimate ||y

with precision

§ = n?, and take the median of all the 2[logT"| outputs, denoted HytHQ;
6 Choose j; € [d] by j; = j with probability y;(5)?/ HytHQ, which is achieved
by applying Algorithm 5.2 to prepare the quantum state |y;) and
measure in the computational basis;

L —2
7 | For all i € [n], denote ,(i) = %, v (i) = elip(vy(2), 1/n), and

wpr1 (1) = wg(i)- (1 —nue(i) + n?v(:)?). Apply Algorithm 5.3 to prepare
an oracle O such that O;]1)|0) = |i)|usy1(2)) for all i € [n], using 2¢
queries to Ox and O(t) additional arithmetic computations;

8 | Prepare |pi41) = m > icn) We+1(2)|4) using Algorithm 5.2 and Oy;

— T
Returnw =45, , — % _ .
T =1 max{L,|ye||}’

©

Quantumly, we give Algorithm 5.5 for classification under kernels based on

Algorithm 5.1. Theorem 5.2.3 and Theorem 5.3.1 imply that our quantum kernel-
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based classifier has time complexity

(5.3.3)

For polynomial kernels of degree g, i.e., ky(z,y) = (z7y)?, we have L;, = ¢
by taking the product of ¢ independent ¢5 samples (this is an unbiased estimator of

(z7y)? and the variance of each sample is at most 1). As a result of (5.3.3),

Corollary 5.3.1. For the polynomial kernel of degree q, there is a quantum al-

gorithm that solves the classification task within precision € with gate complexity

0242 + 1),

Compared to the classical complexity O(@ -+ min {%, % ) in Corollary 5.4
of [85], our quantum algorithm gives quadratic speedups in n and d.
For Gaussian kernels, i.e., kgaus(7,9) = exp(—||z — y||?), Corollary 5.5 of [85]

proved that Ly, = 1/s* if the Gaussian has standard deviation s. As a result,

Corollary 5.3.2. For the polynomial kernel of degree q, there is a quantum al-

gorithm that solves the classification task within precision € with gate complexity

).

(N)(s‘lzfl + \4/6678

S

This still gives quadratic speedups in n and d compared to the classical complexity

O(ZZ;? + min {£, -1 }) in Corollary 5.5 of [85].
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5.3.2 Quadratic machine learning problems

We consider the maximin problem of a quadratic function:

max min p' (b + 2Xw — 1,,||w||*) = max min b; + 2X;w — ||wl|?, (5.3.4)
wER? pEA, weR? i€(n]

where b € R™ and X € R"*?. Note that the function b; +2X;w — ||wl|? in Eq. (5.3.4)
is 2-strongly convex; as a result, the regret of the online gradient descent after T’
rounds can be improved to O(log T) by [250] instead of O(v/T) as in Eq. (5.2.2).

In addition, ¢ sampling of the w in Algorithm 5.1 still works: consider the random

variable w = b; + % — |Jwl||* where j = k with probability 1|’|J1(U—k”)22 Then the
expectation of w is
d . 4
2Xi(j)[Jwl?
Z w||2 ( ' w(]) - ||w||2> =b; +2X;w — ||U}||27 (5.3.5)

]:

i.e., w is an unbiased estimator of the quadratic form in (5.3.4). As a result, given
the quantum oracle Oy in (5.1.7), we could give sublinear quantum algorithms for
such problems; these include two important problems: minimum enclosing balls

(MEB) and /¢5-margin supper vector machines (SVM).

5.3.2.1 Minimum enclosing ball

In the minimum enclosing ball (MEB) problem we have b; = —|X;||? for

all i € [n]; Eq. (5.3.4) then becomes max,,cga min;ep,) — || X;]|* + 2X;w — [Jw|* =
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— Min,,cgs MaX;epy, [|[w — X;]|?, which is the smallest radius of the balls that contain
all the data points Xq,...,X,,.
Denote oypp = min,cgs Max;ep, ||w — X;||?, the following theorem is a direct

consequence of Theorem 5.2.1 (see also Theorem 3.1 in [85]) and Theorem 5.2.3:

Theorem 5.3.2. There is a quantum algorithm that returns a vector w € R% such

that with probability at least 2/3,

m?o]( |w — X;||* < omes + €, (5.3.6)
1en

using 0(5_4 + g) quantum gates; the quantum gate complexity can also be improved

5.3.2.2 {y-margin SVM

To estimate the margin of a support vector machine (SVM) in ¢y-norm, we take
b; = 0foralli € [n]; Eq. (5.3.4) then becomes solving ogym := max,egs Min;ep,) 2X,w—
lw]?.

Notice that ogyy > 0 because 2X;w — ||w||? = 0 for all i € [n] when w = 0.

For the case ogyy > 0 and taking 0 < € < osym, similar to Theorem 5.3.2 we have:

Corollary 5.3.3. There is a quantum algorithm that returns a vector w € R? such

that with probability at least 2/3,
Hl[ll} 2X;1w — ||w|* > ogym — € > 0, (5.3.7)
€N
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using O({Tﬁ + ‘;l) quantum gates; the quantum gate complexity can also be improved

Note that (5.3.7) implies that X;w > 0 for all ¢ € [n]; furthermore, by the

AM-GM inequality we have (fwﬁf + ||w||* > 2X;w, and hence

Xiw\? :
min (Tw> > min 2X;w — ||w|]* > osvm — €. (5.3.8)
iefn] \ ||w|| i€[n]

If we denote w = w/||w||, then X;w > \/osym — € > 0 for all i € [n]. Consequently,
if the data X is from an SVM, we obtain a normalized direction w (in ¢3-norm) such
that all data points have a margin of at least \/ogym — €. Classically, this task takes

time O(n+d) for constant gy by [85], but our quantum algorithm only takes time

O(v/n +Vd).

5.4 Quantum lower bounds

All quantum algorithms (upper bounds) above have matching lower bounds in
n and d. Assuming € = ©(1) and given the oracle Ox in (5.1.7), we prove quantum
lower bounds on linear classification and minimum enclosing ball in Section 5.4.1 and
Section 5.4.2, respectively. Both theorems are proven by constructing reductions to

the quantum search lower bound [46].
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5.4.1 Linear classification

Recall that the input of the linear classification problem is a matrix X € R"*¢
such that X; € By for all i € [n] (X; being the i*" row of X), and the goal is to

approximately solve

o :=max min p' Xw = max min X;w. (5.4.1)
wEBy pEAL weEBy i€[n)

Given the quantum oracle Ox such that Ox|i)|7)|0) = |9)|j)|Xi;) Vi € [n],j € [d],

IS

Theorem 5.2.3 solves this task with high success probability with cost O( T+ ‘E/—Sa)

€

iN

We prove a quantum lower bound that matches this upper bound in n and d for

constant e:

Theorem 5.4.1. Assume 0 < € < 0.04. Then to return an w € By satisfying

X;w > maxmin X,w —e Vj € [n] (5.4.2)

weBg 1€[n]

with probability at least 2/3, we need Q(v/n + Vd) quantum queries to Ox.
Proof. Assume we are given the promise that X is from one of the two cases below:

1. There exists an [ € {2,...,d} such that X, = _\/Li’ Xy = \/Li; Xo1 =Xy =

\/L? there exists a unique k € {3,...,n} such that Xj;; =1, X}y =0; X;; = \/Li

for all: € {3,...,n}/{k}, j € {1,1}, and X;; =0 for all ¢ € [n], j ¢ {1,1}.

2. There exists an [ € {2,...,d} such that X;; = —%, X}, =

V2! X21 = XQZ =

1,
ok
\/ii; Xij = \/Lﬁ for all i € {3,...,n}, j € {1,1}, and X;; = 0 for all i € [n],
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J {11}
Notice that the only difference between these two cases is a row where the first entry

is 1 and the I*" entry is 0; they have the following pictures, respectively.

1 1

-5 0 -0 45 0 -0

1 1

5 0 -0 &5 0 -0

L 0 -0 5% 0 -0

Case 1: X = v2 V2 ; (5.4.3)

1 0 0 0 0 0

1 1

5 0 -0 550 -0

1 1

5 0 -0 350 - 0
1 1

25 0 -0 35 0 - 0

1 1

5 0 0 &5 0 -0

Case2: X=| | (5.4.4)

1 1

5 0 -0 550 -0

1 1

5 020 50 -0

We denote the maximin value in (5.4.1) of these cases as o1 and oy, respectively.

We have:

® J9 — \/Li
On the one hand, consider w = &; € B, (the vector in R with the (™ coordinate
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being 1 and all other coordinates being 0). Then X;w = \% for all ¢ € [n], and hence

09 2 MiNe[y X;W = \/Li On the other hand, for any w = (wy, ..., wy) € By,

1 1 1
min X;w = min{ — —u —w; <

1 1 1
+ —wy, —=w; + —=w } < —, 5.4.5
i€fn] V2 V2 VR e 2 2 (5.4:5)

where the first inequality comes from the fact that min{a, b} < ‘ITH’ for all X,be R

and the second inequality comes from the fact that w € By and |w| < 1. As a

result, 0y = max,ep, Min;ep,) Xw < \/Li In conclusion, we have oy =

5

1

00'1:\/TT\/§.

h h ider v = ——L—¢&, + —2tL & € B,. Th
On the one hand, consider w \/4+2\/§€1+ \/4+2\/§el € By en
o 1 1 L V2+1 1
2 Va+2v2 V2 Vata2 Vit22
1 1 1 2+1 241 1
Xp= — . V2+ — V2+ > Vi e [n]/{1,k};
V2 Vi+2v2 V2 V4422 Vi+2v2  Vi+2V2
1 241 1
4422 VA+2v2  V4a+r2v2
In all, oy > minep, X;w = \/‘;Tﬁ'
On the other hand, for any w = (wy, ..., wy) € By, we have
in X i { Lo+ L, L + 2 } (5.4.6)
min X;w = min § — —w; + —=w;, —=w; + —=w;, Wy ¢. 4.
icin] N Y RN R R

If wy < ———, then (5.4.6) implies that min;cp, X;w < ———; if wy >

1
VAa+2v2 ~ V4a+2v2 — Var2v2'
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then

I 1 V2+1
wl§ 1—w%: 1-— = s
442v2  J1+22

and hence by (5.4.6) we have

< 1 N Lo 1 1 N 1 V2+1 1
mnX,w< ——w +—=u < ——F4% ——+ — = .
i€[n] V2 V2 V2 Vi+2v2 V2 V44202 VA+22

1
442

In all, we always have min;e(,) X;w < . Asaresult, 0y = max,ep, min;ep, Xw <

S

1 1

———— In conclusion, we have oy = )
Vat2v2 ’ Vat+2v2

Now, we prove that an w € B, satisfying (5.4.2) would simultaneously re-
veal whether X is from Case 1 or Case 2 as well as the value of [ € {2,...,d}, by

the following algorithm:

1. Check if one of wy, ..., 1wy is larger than 0.94; if there exists an I’ € {2,...,d}

such that wy > 0.94, return ‘Case 2" and [ = I;

2. Otherwise, return ‘Case 1’ and [ = arg max;efs,... ay W;.

We first prove that the classification of X (between Case 1 and Case 2) is
correct. On the one hand, assume that X comes from Case 1. If we wrongly classified
X as from Case 2, we would have w; > 0.94 and w; < V1 —0.942 < 0.342; this

would imply



which is smaller than o7 — e by 0.342 < \/JT\& — 0.04, contradicts with (5.4.2).

Therefore, we must make correct classification that X comes from Case 1.

On the other hand, assume that X comes from Case 2. If we wrongly classified

-----

T { 1 +1 1 +1_}<1_<1 0.04 <

min X;w = min{ — —o Wy, —= — W < —w < —=—0.04<0y—¢
' 1 P TR SR 2

by % < \/Li — 0.04, contradicts with (5.4.2). Therefore, we must make correct

classification that X comes from Case 2. In all, our classification is always correct.

It remains to prove that the value of [ is correct. If X is from Case 1, we have

1 1 1 1
o —egminXiu_):min{——_ —Wy, —=W u_),w} 5.4.7
' ieln] N RN RV RV R (547)

as a result, wy, > 07 —e > 0.38 — 0.04 = 0.34, and

\/_w1+\/_wl>034 — @ > 0.34V2 4wy > 0.34(V2+1) > 0.82. (5.4.8)

Because 2 - 0.82%2 > 1, @w; must be the largest among 1w, ...,w; (otherwise I’ =

arg max;eqs, . gy W; and [ # I’ would imply [|@||* = D icld] |w;|* > w?+wh > 2w? > 1,
contradiction). Therefore, Line 2 of our algorithm correctly returns the value of .
If X is from Case 2, we have

1 1 1 1 1
09 —€< m[n}l X, = min{ — —W1 + —=wW;, —=W1 + —wl} —2U_J (5.4.9)
i€n

I~
N
I~
3
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and hence w; > \/5(0'2 —€) > \/5(\%5 —0.04) > 0.94. Because 2-0.942 > 1, only one
coordinate of w could be at least 0.94 and we must have [ = [’. Therefore, Line 1 of
our algorithm correctly returns the value of [.

In all, we have proved that an e-approximate solution w € B, for (5.4.2) would
simultaneously reveal whether X is from Case 1 or Case 2 as well as the value of
1 €{2,...,d}. On the one hand, notice that distinguishing these two cases requires
Q(vn —2) = Q(y/n) quantum queries to Ox for searching the position of k because
of the quantum lower bound for search [46]; therefore, it gives an Q(y/n) quantum
lower bound on queries to Ox for returning an w that satisfies (5.4.2). On the other
hand, finding the value of [ is also a search problem on the entries of X, which
requires Q(vd — 1) = Q(v/d) quantum queries to Ox also due to the quantum lower

bound for search [46]. These observations complete the proof of Theorem 5.4.1. [

Because the kernel-based classifier in Section 5.3.1 contains the linear clas-
sification in Section 5.2 as a special case, Theorem 5.4.1 implies an Q(y/n + V/d)

quantum lower bound on the kernel method.

5.4.2  Minimum enclosing ball (MEB)

Similarly, the input of the MEB problem is a matrix X € R™ ¢ such that X; €
B, for all ¢ € [n], and we are given the quantum oracle Oy such that Ox|i)|7)|0) =

[1)|7)|Xs;) Vi € [n],j € [d]. The goal of MEB is to approximately solve

oMEB = Min max |lw — X;||. (5.4.10)
weRd i€[n]
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Theorem 5.3.2 solves this task with high success probability with cost O(\E/Tﬁ + \E/—E)

In this subsection, we prove a quantum lower bound that matches this upper bound

in n and d for constant e:

Theorem 5.4.2. Assume 0 < € < 0.01. Then to return an w € Ry satisfying

max ||@ — X;[|* < min max ||w — X,||* + ¢ (5.4.11)
ic[n] weR? i€[n]

with probability at least 2/3, we need Q(/n + Vd) quantum queries to Ox.

Proof. We also assume that X is from one of the two cases in Theorem 5.4.1; see
also (5.4.3) and (5.4.4). We denote the maximin value in (5.4.10) of these cases as

omeB,1 and omgg 2, respectively. We have:

_ 1
® OMEB2 = 5-

On the one hand, consider w = \/Lié}. Then

o= ) e ) - G -
lo - X = (wl—%)ﬁ (wl—%)ﬂzwg _ (%)2:% Vie (2. ).
i£1,1

1

Therefore, ||w—X;||* = 3 for all i € [n], and hence ompp 2 < maxep, [|[w—X;||> = 3.
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On the other hand, for any w = (wy, ..., wy) € Ry, we have

max ||w — X;|?
i€[n]

= max{(uu—%y-i—(w —%)24—2107;27 <w1+%>2+<wz—%>2+' wf}

i#1,l i#1,1
(o= )+ ()] 3o ) - ]
2 V2 V2 2 V2 V2 oyl
:w1+<wl—%>2+ w? + = (5.4.12)
i£1,l
> 1 (5.4.13)
2

where the first inequality comes from the fact that max{a,b} > 3(a + b) and

2#1 ,w? > 0. Therefore, onpp 2 > % In all, we must have oygp2 = %

_ 2+
® OMEB,1 =

=

N[

On the one hand, consider w = (

o= (o ) s o s St (s (-2

Hw—XkH?:(w1—1)2+w?+;Uw§:(%+g>2+<%§>2:2+4\/§,

Hw—XiHQ:(wl—%) +<wl—%)2+ w3=6_43‘/§ 2*4\/5 Vi e /{1, k).
i1
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On the other hand, for any w = (wy, ..., wy) € Ry, we have

1 \2
max w— X; 2>max{(w +—> —|—<w——> + w w —1 +w? 4 w}
o = | ) IATENEREDS

i1l i£1,l

z%[(wl+%>2+<wz—ﬁ)2}+%[<wl—1>2+wﬂ+2wf

v

2+
4

=

Therefore, oypp2 > #. In all, we must have oygp 2 =

Now, we prove that an w € Ry satisfying (5.4.11) would simultaneously reveal
whether X is from Case 1 or Case 2 as well as the value of [ € {2,...,d}, by the

following algorithm:

1. Check if one of ws, ..., wy is larger than ‘[, if there exists an I’ € {2,...,d}

3f

such that wy > , return ‘Case 1"’ and [ = I;

2. Otherwise, return ‘Case 2" and [ = arg maxefs,... 4y W;.

We first prove that the classification of X (between Case 1 and Case 2) is
correct. On the one hand, assume that X comes from Case 1. If we wrongly
classified X as from Case 2, we would have w; < max;e(s . ay W; < %5. By (5.4.12),

this would imply

1\2 1 1 1
X2 (@- ) 45245 > 5.4.16
rrelz[;wa 1= > (w 7 + 52 32 + 5 5 = OMEB.1 +¢ ( )
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contradicts with (5.4.11). Therefore, for this case we must make correct classification
that X comes from Case 2.
On the other hand, assume that X comes from Case 2. If we wrongly classified

X as from Case 1, we would have w; > %5. If { =1, then (5.4.14) implies that

2
max ||@ — X;||2 > (wl - —) + > onmpa -6, (5.4.17)

i€[n]

contradicts with (5.4.11). If I # I, then (5.4.14) implies that

\&}
_|_
&

9 2442
7 — X;|I? > @ >
Igelfﬁﬂw |* > wp + 7 23t

> OMEB,2 1 €, (5.4.18)

also contradicts with (5.4.11). Therefore, for this case we must make correct classi-
fication that X comes from Case 1.
In all, our classification is always correct. It remains to prove that the value

of [ is correct. If X is from Case 1, by (5.4.12) we have
(5.4.19)

1 2
5 +0.01> m?}]cHw—XiHQ > wi + (wl - —) + ) W+
1€n

As a result, w; < 0.1 < %ﬁ for all i € [n]/{l} and w, > \/Lg —-0.1> %5. Therefore,

we must have [ = I’, i.e., Line 1 of our algorithm correctly returns the value of .
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If X is from Case 2, by (5.4.14) we have

2+ /2
+4f +0.01 > max [0 - X, (5.4.20)
S
1 V2\12 V2\2 , 2442
> o — (2 = X2 U — — Tip . (0.4.21
—[wl (2 4>]+<w’ 4>+;:le+ o 042

As a result, w; < 0.1 < 0.25 for all i € [n]/{1,1}, w; < 1 — \/Ti + 0.1 < 0.25, and
w; > ‘/Ti — 0.1 > 0.25. Therefore, we must have @, = max;eya,.. 4y W;, i.e., Line 1 of
our algorithm correctly returns the value of [.

In all, we have proved that an e-approximate solution w € Ry for (5.4.11)
would simultaneously reveal whether X is from Case 1 or Case 2 as well as the
value of [ € {2,...,d}. On the one hand, notice that distinguishing these two cases
requires Q(v/n — 2) = Q(y/n) quantum queries to Oy for searching the position of
k because of the quantum lower bound for search [46]; therefore, it gives an Q(y/n)
quantum lower bound on queries to Ox for returning an w that satisfies (5.4.11).
On the other hand, finding the value of [ is also a search problem on the entries
of X, which requires Q(v/d — 1) = Q(+/d) quantum queries to Ox also due to the

quantum lower bound for search [46]. These observations complete the proof of

Theorem 5.4.2. ]

Because MEB and /y-margin SVM are both maximin problems of a quadratic
function (see Section 5.3.2), an Q(y/n++v/d) quantum lower bound on the fo-margin

SVM can be proved similarly.
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5.5 Conclusions and discussion

We give quantum algorithms for training linear and kernel-based classifiers
with complexity O(\/ﬁ + \/E), where n and d are the number and dimension of
data points, respectively; furthermore, our quantum algorithms are optimal as we
prove matching Q(y/n + \/E) quantum lower bounds. Our quantum algorithms take
standard entry-wise inputs and give classical outputs with succinct representations.
Technically, our result is a demonstration of quantum speed-ups for sampling-based
classical algorithms using the technique of amplitude amplification and estimation.

Our paper raises a couple of natural open questions for future work. For

instance:

e Can we improve the dependence in €7 Recall our quantum algorithms have worst-
case complexity O~(\6/—f + ‘E/—sa) whereas the classical complexities in [85] are O~(6% +
6%); as a result, the quantum algorithms perform better only when we tolerate a

significant error. It would be interesting to check if some clever tricks could be

applied to circumventing some dependence in €.

e Can we solve equilibrium point problems other than classification? Recall that
our results in Theorem 6.5.1 are all formulated as maximin problems where the
minimum is taken over [n] and the maximum is taken over B; or R;. It would
be interesting to study other type of equilibrium point problems in game theory,

learning theory, etc.

e What happens if we work with more sophisticated data structures such as QRAM
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or its augmented variants? Their preprocessing time will likely be at least linear.
However, it might be still advantageous to do so, e.g., to reduce the amortized
complexity when one needs to perform multiple classification tasks on the same

data set.
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Chapter 6: Quantum-inspired Classical Machine Learning Algorithms!

In previous chapters, we have proposed some quantum algorithms for machine
learning and optimization tasks. In fact, there are also quite a few other quantum
algorithms for various machine learning problems, in particular those motivated
by the Harrow-Hassidim-Lloyd (HHL) algorithm for solving sparse linear systems
in poly-logarithmic time [137]. These include principal component analysis [195],
cluster assignment and finding [194], support vector machines [232], recommendation
systems [167], etc. However, their quantum speedups are not as “robust” as, say,
Shor’s algorithm for factoring [245], mainly because it is unclear how to load the
input into a quantum computer efficiently or conclude useful information from the
quantum outputs of these quantum algorithms [2].

In 2018, Tang gave a classical analog to the quantum recommendation sys-
tems algorithm [256], previously believed to be one of the most seminal candidates
for obtaining quantum speedup for machine learning. One of the biggest impli-
cations of Tang’s breakthrough result is that its techniques can be generalized to
“dequantize” a wide range of quantum machine learning algorithms for low-rank

cases, including principal component analysis and supervised clustering [255], linear

IThis chapter is based on the papers [76, 77] under the permission of all the authors.
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system solving [78, 122], semidefinite program solving [77], support vector machines
(SVM) [97], nonnegative matrix factorization [75], minimal conical hull [99], etc.
The framework that Tang used is a sampling-based model of the input matrices
and vectors that replicates known quantum machine learning algorithms while run-
ning on a classical computer in the regime where the inputs are low-rank matrices.
In short, “dequantized” algorithms either provide strong barriers for or completely
disprove the existence of exponential speedups from their corresponding quantum
machine learning algorithms in low-rank settings, which is a practical assumption
in many of the applications.

In this chapter, we further extend the study of quantum-inspired classical
algorithms. In particular, we will introduce a quantum-inspired classical algorithm
for solving low-rank SDPs from Section 6.1 to Section 6.5. In Section 6.6, we will
briefly sketch a general framework of quantum-inspired classical algorithms proposed

by my recent work [76].

6.1 Revisiting semidefinite programming

6.1.1 Motivations and contributions

As introduced in Chapter 4, semidefinite programming (SDP) is a central topic
in the studies of mathematical optimization and theoretical computer science, with a
wide range of applications including algorithm design, machine learning, operations

research, etc. Specifically, we consider the following mathematical form of SDPs in
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this chapter:

max Tr[CX] (6.1.1)

st. Tr[A,X]<b; Vie[m]; (6.1.2)

X =0, (6.1.3)

where m is the number of constraints, Aq,...,A,,, C are n x n Hermitian matrices,

and by, ..., b, € R; (6.1.3) restricts the variable matrix X to be positive semidefinite
(PSD), i.e., X is an n x n Hermitian matrix with non-negative eigenvalues (more
generally, X > Y means that X — Y is a PSD matrix). An e-approximate solution
of this SDP is an X* that satisfies (6.1.2)-(6.1.3) while Tr[CX*] > OPT — ¢ (OPT
being the optimum of the SDP).

All of the classical SDP solvers mentioned in Chapter 4 use the standard entry-
wise access to matrices Aq,..., A,,, and C. In contrast, a common methodology in
algorithm design is to assume a certain natural preprocessed data structure such that
the problem can be solved in sublinear time, perhaps even in poly-logarithmic time,
given queries to the preprocessed data structure (e.g., see the examples discussed
in Section 6.1.3). Considering this, a very natural question is to ask whether we
can solve an SDP with sublinear time and queries to a reasonable classical data

structure.

Contributions. We show that when the constraint and cost matrices are low-

rank, with a low-overhead data structure that supports the following sampling ac-
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cess, there exists a classical algorithm whose runtime is logarithmic in the matrices

dimension n.

Definition 6.1.1 (Sampling access). Let M € C™*" be a matriz. We say that we

have the sampling access to M if we can

1. sample a row index i € [n] of M where the probability of choosing i is

1M,
2
1]

2. for all i € [n], sample an index j € [n] where the probability of choosing j is

M (i, j)I”

———— and
1M (i, -)|)*

3. evaluate norms of |M||r and ||M(i,-)|| fori € [n],
with time complezity O(poly(logn)) for each sampling and norm access.

A low-overhead data structure that allows for this sampling access is shown in

Section 6.2.1. Our main result is as follows.

Theorem 6.1.1 (informal; see Theorem 6.5.1, Algorithm 6.5, Theorem 6.2.2).
Let C, Ay, ..., Ay € CY" be an SDP instance as in (6.1.1)-(6.1.3). Suppose
rank(C'), max;ep, rank(A;) < 7. Given sampling access to Ay, ..., Ay, C in Defi-
nition 0.1.1, there is an algorithm that gives sampling access as well as the (i, 7)-th
entry (for any index (i,7) € [n] X [n]) of an e-approzimate solution of the SDP with
probability at least 2/3; the algorithm runs in time O(m - poly(logn,r, R,R4/<)),
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where R, Ry are upper bounds on the {1-norm of the optimal primal and dual solu-

tions.

Comparing our results to existing classical SDP solvers (e.g., [29, 114, 115]),
our algorithm outperforms existing classical SDP solvers given sampling access to
the constraint matrices (which can be realized with a low-overhead data structure).
Specifically, the running time of our algorithm is O(m - poly(logn,r, R,Ra/¢)) ac-
cording to Theorem 6.1.1, which achieves exponential speedup in terms of n with
the data structure given in Theorem 6.2.1. It is worth noting that there are other
ways to implement the sampling access. For example, Drineas et al. [98] showed
that the sampling access in Definition 6.1.1 can be achieved with poly-logarithmic
space if the matrix elements are streamed. Therefore, Theorem 6.1.1 also implies
that there exists a one-pass poly-logarithmic space algorithm for low-rank SDP in
the data-streaming model.

Comparing to quantum algorithms, our algorithm has comparable running
time. It is because existing quantum SDP solvers that achieve exponential speedup
in terms of n, for instance Corollary 4.5.1, have polynomial dependence on the rank
7, so they also have poly(logn,r) complexity. It is worth noting that quantum SDP
solvers have the requirement that the input matrices are stored as quantum oracles.
Furthermore, we give query access to the solution matrix which was not achieved by
existing quantum SDP solvers in Chapter 4, as only sampling access to the solution
matrix is given there. In this regard, it is easy to obtain the sampling access of the

solution matrix from our algorithm by extending the rejection sampling techniques
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of [256] as pointed out by Tang.

Our result aligns with the studies of sampling-based algorithms for solving
linear algebraic problems. In particular, [113] gave low-rank approximations of a
matrix in poly-logarithmic time with sampling access to the matrix as in Defini-
tion 6.1.1. Recently, Tang extended the idea of [113] to give a poly-logarithmic
time algorithm for solving recommendation systems [256]. Subsequently, still un-
der the same sampling assumption, Tang [255] sketched poly-logarithmic algorithms
for principal component analysis and clustering assignments, and two followup pa-
pers [78, 122] gave poly-logarithmic algorithms for solving low-rank linear systems.
All these sampling-based sublinear algorithms directly exploit the sampling ap-
proach in [113] (see Section 6.1.2 for details); to solve SDPs, we derive an aug-
mented sampling toolbox which includes two novel techniques: weighted sampling
and symmetric approximation.

As a corollary, our SDP solver can be applied to learning quantum states?
efficiently. A particular task of learning quantum states is shadow tomography [3],
where we are asked to find a description of an unknown quantum state p such
that we can approximate Tr[pF;] up to error € for a specific collection of Hermitian
matrices Ey, ..., E,, where 0 < E; < I and E; € C"*" for all i € [m] (such E; is also

known as a POVM measurement in quantum computing). Mathematically, shadow

2A quantum state p is a PSD matrix with trace one.
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tomography can be formulated as the following SDP feasibility problem:

Find o such that | Tr[o E;] — Tr[pE;]| < e Vi€ [m]; (6.1.4)
o0, Trlo] =1. (6.1.5)
Under a quantum model proposed by [55] where p, E, ..., E,, are stored as quantum

states, the state-of-the-art quantum algorithm [23] solves shadow tomography with
time O((v/m + min{y/n/e,r*?/e3})r/e*) where r = maxe|y, rank(E;); in other
words, quantum algorithms achieve poly-logarithmic complexity in n for low-rank
shadow tomography. We observe the same phenomenon under our sampling-based

model:

Corollary 6.1.1 (informal; see Corollary 6.5.1). Given sampling access of matrices
Ey,...,E, € C"" as in Definition 6.1.1 and real numbers Tr[pE1], ..., Tr[pE,],
there is an algorithm that gives a succinct description as in Remark 6.5.1 and any
entry of an e-approzimate solution o of the shadow tomography problem defined

as (6.1.4), (6.1.5) with probability at least 2/3; the algorithm runs in time O(m -

poly(logn,r,1/¢)).

6.1.2 Techniques

Matrix multiplicative weight method (MMW). We study a normalized SDP

feasibility testing problem defined as follows:

Definition 6.1.2 (Feasibility of SDP). Given an e > 0, m real numbers ay, ..., a, €

277



R, and Hermitian n X n matrices Ay, ..., A,, where —1 < A; X I,¥j € [m], define

S. as the set of all X such that

Tr[A;X] <a;+e Vie][m] (6.1.6)
X = 0; (6.1.7)
Te[X] = 1. (6.1.8)

For e-approzimate feasibility testing of the SDP, we require that:
o IfS. = @, output “infeasible”;
o IfSy # @&, output an X € S..3

It is a well-known fact that one can use binary search to reduce e-approximation
of the SDP in (6.1.1)-(6.1.3) to O(log(R,Ra/¢)) calls of the feasibility problem in
Definition 6.1.2 with € = £/(R,Rq).* Therefore, throughout the paper we focus on
solving feasibility testing of SDPs.

To solve the feasibility testing problem in Definition 6.1.2, we follow the matriz
multiplicative weight (MMW) framework [28]. To be more specific, we follow the
approach of regarding MMW as a zero-sum game with two players (see, e.g., [55,

131, 142, 181, 274]), where the first player wants to provide a feasible X € S,

3If S. # @ and Sy = @, either output is acceptable.

4For the normalized case R,R4q = 1, we first guess a candidate value ¢; = 0 for the objective
function, and add that as a constraint Tr[CX] > ¢; to the optimization problem. If this problem
is feasible, the optimum is larger than ¢; and we accordingly take co = ¢1 + %; if this problem
is infeasible, the optimum is smaller than ¢; and we accordingly take co = ¢; — %; we proceed
similarly for all ¢;. As a result, we could solve the optimization problem with precision € using
[log, H calls to the feasibility problem in Definition 6.1.2. For renormalization, it suffices to take

¢ = ¢/(RyRa).
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and the second player wants to find any violation j € [m] of any proposed X, i.e.,
Tr[4;X] > a; + €. At the ™ round of the game, if the second player points out
a violation j; for the current proposed solution X;, the first player proposes a new

solution

Xt+1 — exp[—(Ajl + -+ Ajt)] (619)

(up to normalization); such solution by matrix exponentiation is formally named as
a Gibbs state. A feasible solution is actually an equilibrium point of the zero-sum
game, which can also be approximated by the MMW method [28]; formal discussions

are given in Section 6.2.2.

Improved sampling tools. Before describing our improved sampling tools, let
us give a brief review of the techniques introduced by [113]. The basic idea of [113]
comes from the fact that a low-rank matrix A can be well-approximated by sampling
a small number of rows. More precisely, suppose that A is an n X n matrix with
rank r, where n > r. Because n is large, it is preferable to obtain a “description”
of A without using poly(n) resources. If we have the sampling access to A in
the form of Definition 6.1.1, we can sample rows from A according to statement
1 of Definition 6.1.1. Suppose S is the p x n submatrix of A formed by sampling
p = poly(r) rows from A with some normalization. It can be shown that STS ~ AT A.
Further, we apply the similar sampling techniques to sampling p columns of S with

some normalization to form a p x p matrix W such that WWT ~ SSt. Then the
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singular values and singular vectors of W, which are easy to compute because p
is small, together with the row indices that form S, can be viewed as a succinct
description of some matrix V € C™*" satisfying A ~ AVV', which gives a low-rank
projection of A. In [78], this method was extended to approximating the spectral
decomposition of AAT, i.e., calculating a small diagonal matrix D and finding a
succinct description of V such that VD?*VT ~ AAT.

To implement the MMW framework, we need an approximate description of
the matrix exponentiation X, 1= exp|[— S Aj] in (6.1.9). We achieve this in
two steps. First, we get an approximate description of the spectral decomposition of
A: A~ VDV, where V is an n x r matrix and D is an r x r real diagonal matrix.
Then, we approximate the matrix exponentiation e=* by Ve PV

There are two main technical difficulties that we overcome with new tools
while following the above strategy. First, since A changes dynamically throughout
the MMW method, we cannot assume the sampling access to A; a more reasonable
assumption is to have sampling access to each individual constraint matrix Aj;,,
but it is hard to directly sample from A by sampling from each individual A;,.°% In
Section 6.3.1, we sidestep this difficulty by devising the weighted sampling procedure
which gives a succinct description of a low-rank approximation of A = >, A;, by

sampling each individual A;,. In other words, we cannot sample according to A, but

5For example, assume we have A = A; + A, such that Ay = —A; + €, where € is a matrix with
small entries. In this case, A; and A mostly cancel out each other and leave A = €. Since € can
be arbitrarily small compared to A; and As, it is hard to sample from € by sampling from A; and
As.

6Gilyén and Tang pointed out to us that one might be able to sample from A by lower-bounding
the cancellation and doing a rejection sampling. We did not explore this approach in detail, but
this is a possible alternative to weighted sampling.
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we can still find a succinct description of a low-rank approximation of A.

Second, the original sampling procedure of [113] and the extension by [78] give
VD?VT &~ ATA instead of a spectral decomposition VDV A, even if A is Her-
mitian. For our purpose of matrix exponentiation, singular value decomposition is
problematic because the singular values ignore the signs of the eigenvalues; specifi-
cally, we get a large error if we approximate e~ by naively exponentiate the singular
value decomposition: e % Ve PVT. Note that this issue of missing negative signs
is intrinsic to the tools in [113] because they are built upon the approximation
STS ~ At A; Suppose that A has the decomposition A = UDVT, where D is a diago-
nal matrix, and U and V are isometries. Then AT'A = VDDV, cancelling out any
phase on D. We resolve this issue by a novel approximation procedure, symmetric
approzimation. Symmetric approximation is based on the result A ~ AVV shown
by [113]. Tt then holds that A ~ V(VTAV)VT because the symmetry of A implies
that VVT acts roughly as the identity on the image of A. Since (VTAV) is a small
matrix of size r X r, we can calculate it explicitly and diagonalize it, getting ap-
proximate eigenvalues of A. Together with the description of V', we get the desired

description of the spectral decomposition of A. See Section 6.3.2 for more details.”

It might be illustrative to describe some of our failed attempts before achieving symmetric ap-
proximation. We tried to separate the exponential function into even and odd parts; unfortunately
that decomposes e™* into e~* = cosh x — sinh «x, resulting in large cancellation and unbounded er-
ror. We also tried to obtain the eigenvectors of A from V'; this approach faces multiple difficulties,
the most serious one being the “fake degeneracy” as shown by the following example. Suppose
A= (§2). Ahas two distinct eigenvectors. However, ATA = VDDV can be satisfied by taking
D = T together with any unitary V. In this case, V' does not give any information about the
eigenvectors.
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6.1.3 Related work

Our work follows the general methodology of leveraging preprocessed data
structures; more specifically, we use sampling-based data structures to fulfill the
MMW framework in our SDP solver. In this subsections, we delve into related

works about preprocessed data structures and MMW-based SDP solvers.

Preprocessed data structures. Preprocessed data structures are ubiquitous in
algorithm design, which enable further computation tasks to be completed within
sublinear or even poly-logarithmic time. For the task of nearest neighbor search, we
are given a set P of n points in R? and the goal is to preprocess a data structure
such that given any point ¢, it returns a point in P that is closest to ¢. In the case
d = 2, there exists a data structure using O(n) space with O(logn) time for each
query [193]; more general cases are discussed in the survey paper [21]. A related
problem is orthogonal range search, where the goal is to preprocess a data structure
such that one can efficiently report the points contained in an axis-aligned query
box. When d = 2, Ref. [74] preprocessed a data structure with O(nloglogn) space
and only O(loglogn) query time; for larger d, the query time O(loglogn) can be
kept with a slight overhead on its space complexity. If preprocessed data structures
are not exploited for these problems, we have to check all n points in brute-force,
inefficient for applications in data analytics, machine learning, computer vision, etc.

This methodology is also widespread in graph problems. It concerns fully dy-

namic graphs, where we start from an empty graph on n fixed vertices and maintain
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a data structure such that edge insertions and deletions only take sublinear update
time for specific graph properties. For instance, the data structure in [35] maintains
the maximal independent set of the graph deterministically in O(m3/ 1) amortized
update time (m being the dynamic number of edges). There also exist data struc-
tures with sublinear update time for minimum vertex cover size [222] and all-pairs
shortest paths [7, 259]; furthermore, data structures with poly-logarithmic update
time can be constructed for connectivity, minimum spanning tree, and bipartiteness

[144, 145]; maximum matching [49, 247], graph coloring [48], etc.

Solving SDPs by the MMW framework. As introduced previously, many
SDP solvers use cutting-plane methods or interior-point methods with complexity
poly(log(1/€)) but larger complexities in m and n. In contrast, our SDP solver
follows the MMW framework, and we briefly summarize such SDP solvers in existing
literature. They mainly fall into two categories as follows.

First, MMW is adopted in solvers for positive SDPs, i.e., Aq,..., A, C = 0.
In this case, the power of MMW lies in its efficiency of having only O(poly(1/e))
iterations and the fact that it admits width-independent solvers whose complexities
are independent of R, and R4q. Ref. [204] first gave a width-independent positive
LP solver that runs in O(log?(mn)/e*) iterations; [151] subsequently generalized this
result to give the first width-independent positive SDP solver, but the number of
iterations can be as large as O(log'(mn)/e'®). The state-of-the-art positive SDP

solver was proposed by [16] with only O(log?(mn)/€®) iterations.
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Second, as far as we know, the vast majority of quantum SDP solvers use the
MMW framework. The first quantum SDP solver was proposed by [56] with worst-
case running time O(y/mns®(R,Rq/€)*?), where s is the sparsity of input matrices,
i.e., every row or column of Aq,..., A,,,C has at most s nonzero elements. Subse-
quently, the quantum complexity of solving SDPs was improved by [24, 55], and the
state-of-the-art quantum SDP solver runs in time O ((v/m-++v/nRyRa/€)s(RyRa/e)?)
[23]. This is optimal in the dependence of m and n because [56] proved a quantum

lower bound of Q(y/m + y/n) for constant R,, Rq, s, and e.

Notations. We let [n] denote the set {1,...,n}. For a vector v € C", we use D,
to denote the probability distribution on [n] where the probability of i being chosen
is Dy(i) = |v(i)]?/||v|| for all i € [n]. When it is clear from the context, a sample
from D, is often referred to as a sample from v. For a matrix A € C"*", we use
|Al| and || A||r to denote its spectral norm and Frobenius norm, respectively; we use
A(i,-) and A(-, ) to denote the i*" row and j*® column of A, respectively. We use

rows(A) to denote the n-dimensional vector formed by the norms of its row vectors,

i.e., (rows(A))(i) = ||A(i,-)]], for all i € [n].

6.2 Preliminary tools

6.2.1 Sampling-based data structure

As we develop sublinear-time algorithms for solving SDP in this paper, the

whole constraint matrices cannot be loaded into memory since storing them re-
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quires at least linear space and time. Instead, we assume the sampling access of
each constraint matrix as defined in Definition 6.1.1. This sampling access relies
on a natural probability distribution that arises in many machine learning applica-
tions [78, 122, 165, 167, 255, 256].

Technically, Ref. [113] used this sampling access to develop sublinear algo-
rithms for low-rank matrix approximation. It is well-known (as pointed out by [167]
and also used in [78, 122, 165, 255, 256]) that there exist low-overhead preprocessed
data structures that allow for the sampling access. More precisely, the existence of
the data structures for the sampling access defined in Definition 6.1.1 is stated as

follows.

Theorem 6.2.1 ([167]). Given a matriz M € C"*™ with s non-zero entries, there
exists a data structure storing M in space O(slog n), which supports the following

operators:
1. Reading and writing M (i, §) in O(log*n) time.
2. BEvaluating | M (i,-)| in O(log®n) time.
3. BEvaluating ||M||fp in O(1) time.

4. Sampling a row index of M according to statement 1 of Definition 6.1.1 in

O(log®n) time.

5. For each row, sampling an index according to statement 2 of Definition 6.1.1

in O(log®n) time.
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Readers may refer to [167, Theorem A.1] for the proof of Theorem 6.2.1. In
the following, we give the intuition of the data structure, which is demonstrated in
Figure 6.1. We show how to sample from a row vector: we use a binary tree to
store the date of each row. The square of the absolute values of all entries, along
with their original values are stored in the leaf nodes. Each internode contains the
sum of the values of its two immediate children. It is easy to see that the root
node contains the square of the norm of this row vector. To sample an index and
to query an entry from this row, logarithmic steps suffice. To fulfill statement 1 of
Definition 6.1.1, we treat the norms of rows as a vector (|M(1,-)|,...,[|M(n,-)||)

and organize the data of this vector in a binary tree.

MG, )|
| M (i, 1)|* + [ M(i,2) [ |M(i,3)[* + | M (i, 4)
(M@, 12, M(i,1))  (|M(4,2), M(,2)) (1M (i,3)[*, M(i,3))  (|M(,4)|%, M(i,4))

Figure 6.1: Illustration of a data structure that allows for sampling access to a row of
M e C*4,

6.2.2 Feasibility testing of SDPs

We adopt the MMW framework to solve SDPs under the zero-sum approach

[55, 131, 142, 181, 274]. This is formulated as the following theorem:

Theorem 6.2.2 (Master algorithm). Feasibility of the SDP in (6.1.6)-(6.1.8) can

be tested by Algorithm 6.1.

This theorem is proved in [55, Theorem 2.3]; note that the weight matrix
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Algorithm 6.1: MMW for testing feasibility of SDPs (also Algorithm 4.2).

Set the initial Gibbs state p; = %, and number of iterations T' = 16:#;

fort=1,...,T do
Find a j; € [m] such that Tr[Aj,p] > a;, + €. If we cannot find such j,,
claim that p; € S, and terminate the algorithm;

4 Define the new weight matrix Wy, := exp[—g 2221 AJJ and Gibbs
Wi .
Tr[Wia]?

w N =

state pgq1 1=

5 Claim that the SDP is infeasible and terminate the algorithm;

therein is Wy, = exp[—g Zizl MT} where M, = %([n — A, ), but this gives the
same Gibbs state as in Line 4 since for any Hermitian matrix W € C"*" and real

number ¢ € R,

Wtel w cr w
° S - (6.2.1)
TrjeW+el]  Tr[eWecl]  Trle"]

It should also be understood that this master algorithm is not the final algorithm;
the step of trace estimation with respect to the Gibbs state (Line 3) will be fulfilled

by our sampling-based approach.

6.3 Two new tools

6.3.1 Weighted sampling

The objective of this subsection is to provide a method for sampling a small
submatrix of A of the form A = A; +---+ A, where the sampling access of each A,
is given. Note that the standard FKV sampling method [113] is not capable of this
task, as the sampling access of each A, does not trivially imply the sampling access

of A. In the following, we propose the weighted sampling method. The intuition is to
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assign each A, a different weight when computing the probability distribution, and

then sampling a row/column index of A according to this probability distribution.
We first give the method for sampling row indices of A as in Procedure Weighted

sampling of rows. The objective of this procedure is to sample a submatrix S such

that STS ~ ATA.

Procedure Weighted sampling of rows

Input: A=), | A, where each A, has the sampling access as in
Definition 6.1.1; integer p.
1 Sample p indices iy, ..., i, from [n] according to the probability distribution

{P1,. .., Po} where Py =377 Diows(a, (i) || 4; H /(Ze 1HA€H )

After applying Procedure Weighted sampling of rows, we obtain the row indices
i1,...,4p. Let Sy, ..., S; be matrices such that S(t,-) = Ay(it,-)//pP;, forallt € |

and ¢ € [7]. Define the matrix S as

S=8+ - +5, (6.3.1)

Next, we give the method for sampling column indices of S as in Procedure Weighted

sampling of columns: we need to sample a submatrix W from S such that W1 ~

SST.
Now, we obtained column indices ji, ..., j,. Let Wi, ..., W, be matrices such
that Wy(-,t) = Su(+, j:)//pF}, for all t € [p] and £ € [r], where P} = _, Qjjs, for

J € [n]. Define the matrix W as

W =W+ + W, (6.3.2)
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Procedure Weighted sampling of columns

Input: A=), A, where each A, has the sampling access as in
Definition 6.1.1; 41,...,4, obtained in Procedure Weighted sampling
of rows; integer p.
1 Do the following p times independently to obtain samples ji, ..., j,. begin
2 Sample a row index ¢ € [p] uniformly at random;
3 Sample a column index j € [n] from the probability distribution

{Qujirs - - - s Qnji, } where
Qﬂlt Zk IDAk (it ( )HAIC(ZH )H /(ZZ 1 HAe(Zt, )H )

Before showing STS ~ ATA and SST ~ WWT, we first prove the following

general result.

Lemma 6.3.1. Let My, ..., M, € C"*" be a matrices. Independently sample p rows
indices i1, ...,1, from M = M + --- + M, according to the probability distribution

{P,...,P,} where

Drows M
(r+1) Ze:lHanF
Let Ny,..., N, € C™™™ be matrices with
Ny(in, ) = Melie), (6.3.4)
ph,

fort € [p] and £ € [7]. Define N = Ny +---+ N,. Then for all > 0, it holds that

(14 1)2
(”MTM NTNHF>QZ||MEHF>_ Ty (6.3.5)

(=1

Proof. We first show that the expected value of each entry of NTN is the corre-
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sponding entry of MTM as follows.

Furthermore, we have

E (|N'(i, )N (- j) — M1 (i, )M(-, 5)I?)

<Y E((N*(t,i)N(t,4)))
PSS (MK, i) (M (K, §))?
33 O

t=1 k=1

(1 + 1)24 1HM€HF N2 (M(k,j))?
<
< 1T

_ (1) zg 1l - (0 02 5)

_ . (6.3.7)
p = oo [Me(k,

Now, we bound the expected distance between NN and MTM:

E (|| M08~ NN|R) = STE(IN'G NG5 — M1 )MC)P)

3,j=1

(T+1) 26 M & S (M (e, )2 (M (e, 5))?
: Z zg M (k)P
(41 ZE JlMeHFZ 1M (k)|

- p =3 [IMe (k)|
_ (T + 1)2;1“]\@”;”]\4”2
P F
- (r+1) (Z; 1HM4H ) (63.8)



Consequently, the result of this lemma follows from Markov’s inequality. m

The following technical claim will be used multiple times in this paper. It

S8 and S w2

relates the three quantities: ;|| 4] =

Claim 6.3.1. Let A= Ay +---+ A, be a matriz with the sampling access for each
Ay as in Definition 6.1.1. Let S and W be defined by (6.3.1) and (6.5.2). Then,

with probability at least 1 — 272 /p it holds that

RN - 27 + 1 o
—g 2 Al < SlISelly < T DollAdl (6.3.9)
=1 =1 =1
and
1 ¢ 2 - 2 27+1
— D lISell < D oIwel < ZHSZHF, (6.3.10)
(=1 =1

Proof. We first evaluate E(]|.S¢||%) as follows. For all £ € [7],

E (HSZHfm) =Y E (IS, ZZP HA’Z ‘7’ (6.3.11)

i=1 i=1 j=1
= Z 14¢(, ) II* = HAeHi,. (6.3.12)
Then we have
JAi, )P o= 2040, )1 a4l
IeCi, I = = T ; (6.3.13)
le Pk jzl P> 145G

2 AP S Ad _ 24l

< (6.3.14)
p Y5 A5G p
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Note that the quantity ||SeHi;

variables [|Sy(1, )%, ..., [|Se(p, )|I”. As a result,

Var (|| Sel|2) = pVar (S (i, )|*)
< pE (|ISe(i,-)I")

T 2 T 2 2
< pZH <%> _ 2 <z£:1HA4HF> .
i=1

p

According to Chebyshev’s inequality, we have

b (wseui—\

Therefore, with probability at least 1 — <=~ it holds that

p op

2
"~ zzzlufuui) CERIAME) o

Sl gl < s

T+2
< Il A

F

which implies that

J - 27 + 1 —
ol < sl < T A

(6.3.10) can be proven in a similar way.

can be viewed as a sum of p independent random

(6.3.15)

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.20)

(6.3.21)

]

Now, the main result of the weighted sampling method, namely ATA ~ STS

and WW' =~ SSt, is a consequence of Lemma 6.3.1:
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Corollary 6.3.1. Let A = Ay + --- + A, be a matriz with the sampling access
for each Ay as in Definition 6.1.1. Let S and W be defined by (6.5.1) and (6.3.2).

Letting 0 = (1 + 1) %, then, with probability at least 9/10, the following holds:

|ATA — 515, < HZHAEHF, nd (6.3.22)
/=1
|55t =wwill, <03 |Isilly <203 _[|Ad]}- (6.3.23)

Proof. First note that (6.3.22) follows from Lemma 6.3.1. For the second statement,

we need the probability P} to satisfy (6.3.3) in Lemma 6.3.1. In fact,

/ Q]"lt Zk IDAk(ity')(j>||Ak(it7'>||2
P = = 6.3.24
: Z Z i A, )| (6:3.24
D= |Ai(in, ) 6.3.25
Zze Al (63.25)
_ = p it Zk:1|5k(lt7j)|2 6.3.26
pZ 7 [Aelin )P (6:3.26)
s 5 A I S 1Sk )P 6397
; SR S 1Adin )P (6:3.27)
2= |9 (in, )I° 6.3.28
-y I (0329
_ L ISl 6529

Z;:IHAZHF

ST 1S C)IP
G H I

(6.3.30)

where the last inequality follows from Claim 6.3.1. Note that the probability satisfies

(6.3.3); as a result of Lemma 6.3.1, (6.3.23) holds. O
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With the weighted sampling method, we obtained a small submatrix W from
A. Now, we use the singular values and singular vectors of W to approximate the

ones of A. This is shown in Algorithm 6.2.

Algorithm 6.2: Approximation of singular vectors.

Input: A= A; +---+ A, with the sampling access as in Definition 6.1.1

for each A, and rank(A,) < r; error parameter e.
12,19 2

1 Set p=2- 10201 eg y V= 3><1567-2r6;
2 Use Procedure Weighted sampling of rows to obtain row indices 1, ..., p;

3 Let S1,...,5, be matrices such that Sy(t,-) = A(is, -)//pP;, for all t € [p]
and ¢ € [7], where P; is defined in Line 1 in Procedure Weighted sampling
of rows. Let S =S+ -+ 5;;

4 Use Procedure Weighted sampling of columns to obtain column indices
j17 s 7jp;

5 Let Wi, ..., W, be matrices such that W(-,t) = Su(-, j:)/+/pP;, for all
t € [p] and £ € [7], where P} = 117 t_1 Qi for j € [n] and Qj; is defined in
Line 3 in Procedure Weighted sampling of columns. Let
W=W,+---+ W,

6 Compute the top 7 singular values oy, ..., 0; and their corresponding left
singular vectors uy, ..., uz;

7 Discard the singular values and their corresponding singular vectors

satisfying 0'j2- <Y ||WgHi, Let the remaining number of singular
values be 7;
8 Output oq,...,07 and uq, ..., us;

An important result of Algorithm 6.2 is that the vectors uq, ..., u; are approx-

imately orthonormal, as stated in the following lemma:

Lemma 6.3.2. Let A= Ay +---+ A, be a matrix with the sampling access to each
Ay as in Definition 6.1.1. Assume || A|| <1 and rank(A;) < for all € € [7]. Take
A and error parameter € as the input of Algorithm 6.2 and obtain the oq,...,07 and
Uy, ..., uz. Let V€ C™7 be the matriz such that V(-,j) = f—;uj forje{1,...,7}.
Then, with probability at least 9/10, the following statements hold:

1. There exists an isometry U € C™" whose column vectors span the column
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space of V' satisfying HU - VHF < 02T

2NV =11 < s

3. Let Iy be the projector on the column space of V', then it holds that vaT —

vy < sy

4- VTV =1l < s

300r2(7+1)

The complete proof of this lemma is given in [77, Appendix C]. Note that

following the proof, one can get a tight bound which is T[ﬁ; + O(€?). However, for
the convenience of the analysis in the rest of the paper, we choose a looser bound
W(TH) as in Lemma 6.3.2.

Algorithm 6.2 is similar to the main algorithm in [113] except for the different

sampling method used here. In terms of the low-rank approximation, a similar result

holds as follows.

Lemma 6.3.3. Let A=A+ ---+ A, € C"™" be a Hermitian matrix where A, €
C™ ™ 4s Hermitian, ||A¢|| < 1, and rank(Ay) < r for all ¢ € [t]. The sampling access
each Ay is given as in Definition 6.1.1. Take A and error parameter € as the input
of Algorithm 6.2 to obtain the oy, ...,07 and uy,...,uz. Let V € C™" be the matriz
such that V (-, 7) = i—;uj for g € {1,...,7}. Then, with probability at least 9/10, it

holds that ||AVVT — A, <

—_€ _
300r2 *

The proof of this lemma mostly follows the proof of the FKV algorithm but

with the weighted sampling method; see [77, Appendix B|.
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To our purpose, the main consequence of Algorithm 6.2 is summarized in the

following theorem.

Theorem 6.3.1. Let A = A; + ---+ A, € C"™™ be a Hermitian matriz where
A, € C" is Hermitian, ||Ael| <1, and rank(Ay) < r for all ¢ € [t]. The sampling
access each Ay is given as in Definition 6.1.1. Take A and error parameter € as the
input of Algorithm 6.2 to obtain the o, ...,07 and uy,...,uz. Let V € C™" be the

matriz such that V(-,j) = i—;uj for g € {1,...,7}. Then with probability at lease

9/10, it holds that |[VVTAVVT — Al | < 55 (1 +

€ €
30072 (7+1) )+ 30072

Proof. By Lemma 6.3.3, we have

|AV VT (6.3.31)

€
~Allr = 552

By taking adjoint, we have

€

TA_ -
va A AHF S 3007&’

(6.3.32)

Then,
|[VVTAVVT — A||, < |[VVIAVVT — AVVT|, + [|AVVT = 4], (6.3.33)
€ € €
<——1 6.3.34
~ 30012 ( * 30072(T + 1)) * 30072’ ( )
where the last inequality follows from Lemma 6.3.2. Then the result follows. O
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6.3.2 Symmetric approximation of low-rank Hermitian matrices

In this section, we show that the spectral decomposition of the sum of low-rank
Hermitian matrices can be approximated in time logarithmic in the dimension with
the given data structure. We call this technique symmetric approximation.

Briefly speaking, suppose we are given the approximated left singular vectors V
of A from Algorithm 6.2 such that [|[VVTAVVT— A]| is bounded as in Theorem 6.3.1,
then we can approximately do spectral decomposition of A as follows. First, we
approximate the matrix VIAV by sampling. Then, since VIAV is a matrix with
low dimension, we can do spectral decomposition of the matrix efficiently as UDUT.
Finally, we show that (VU) is close to an isometry. Therefore, (VU)D(VU)' is an

approximation to the spectral decomposition of A.

Algorithm 6.3: Approximation of the spectral decomposition of A.
Input: A= A; +---+ A, with the query and sampling access as in
Definition 6.1.1 for each Ay; error parameter e.
1 Compute the matrix B according to Lemma 6.3.4.;

2 Compute the spectral decomposition UDUT of matrix B 3
3 Output an isometry U and a diagonal matrix D such that UDUT is the
spectral decomposition of B. U and B satisfy Lemma 6.3.5.

The algorithm for approximating the spectral decomposition of A is Algo-

rithm 6.3. We first introduce a useful Claim from [122, Lemma 11].

Claim 6.3.2 (Trace inner product estimation). Let A € C"*" and B € C™" be
two Hermitian matrices. Given sampling and query access to A and query access to

B. Then one can estimate Tr[AB| with the additive error e with probability at least
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1 — 6 by using

o(—”A”F“B“F (Q(A) + Q(B) + S(A) + N(A)) log %)

2
€5

time and queries, where Q(B) is the cost of query access to B, and Q(A), S(A), N(A)

are the cost of query access, sampling access and norm access to A.
By using Claim 6.3.2, we approximate VAV as follows.

Lemma 6.3.4. Let V € C™" and A = > ; Ay € C™" be o Hermitian matriz.
Given query access and sampling access to Ay for € € [1], and query access to V.

Then, one can output a Hermitian matriz B € C™" such that |[VTAV — B||r < €,

216,’,97_3

with probability 1 — 0 by using O((p + logn) log %) samples and time.

Proof. Let B, = VIA,V for t € [r] and B = Y., Bi. Bi(i,j) = VI(i, ) AV (-, 7).
Then, by Claim 6.3.2, one can estimate V1(i,-)A;V (-, j) with error at most €,/r\/7

with probability 1— 73 by using O(| Al p[|V (4, )1V (7, )H > log (r +T)T) queries.

2+

We denote the estimation to By(i, ) as B(i, 5).
Since A; is a Hermitian matrix, we only need to compute (r? + r)/2 elements.

Hence,
Pr[|Bt(z’,j) ~ By(i,§)| < esfrv/rlor all i,j €[] >1—0o/7. (6.3.35)
Then, let us consider By, ..., By,

Pr[[Bt(z',j) — By(i,j)| < es/rv/7 forall i,j €[], telr]| >1-6.  (6.3.36)
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Now, we are guaranteed that for all ¢ € [7], —elTt < B, — B, < eIt with

probability at least 1 — §. Let B = Do B,. With probability 1 — 4,

|B — Bl|lr < \/127(€2/r21) = ¢, (6.3.37)

]

Then, we prove that the matrix multiplication of an isometry and a matrix

satisfying Lemma 6.3.2 is still close to an isometry.

Lemma 6.3.5. Let U € C™" be a unitary matriz and V € C**" be a matrix which

satisfies Lemma 6.3.2 with error parameter Then the following properties

€
300r2(7+1) -

hold for the matriz VU.

1. There exists an isometry W &€ C™*" such that W spans the column space of

VU and VU = W||p < =——5——

30072 (7+1)
2. VU - 1] < gty
3 ANVONVU) = Lllr < g50777-

4. Let Iy be the projector of the column space of UV. Then ||(VU)(VU)T —

3
vullr < so2671

Proof. By Lemma 6.3.2, there exists an isometry W’ € C"*" such that W’ spans

the column space of V and ||V — W/||p < ;- Let W = WU,

€
30072 (7+1

VU =Wlp=[VU-WTU|r < |V —-W]F| (6.3.38)

€
V|l < ——.
Ul = 30072(T + 1)
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Note that W is also an isometry.

For the second property, by (6.3.38), we can get the following inequality

€
VOl =11 = VOl = W< VO~ W] < 5oy

CE (6.3.39)

For the third inequality,

VO (VU) = I = [UVIVU = UU|lr < |UTIVIV = [T (6.3.40)

€
<— 6.3.41
~ 300r2(T + 1) ( )

The last inequality holds because of Lemma 6.3.2. Finally,
\VUUV —yyl||p = |VUUTV = WWT|| 5 (6.3.42)

— |VUUVI = VUW' + VUW' — WUUTW | (6.3.43)

< VUV = W!p + VU = W p W1 (6.3.44)

€ € €
< (1
- ( * 30072(7 + 1)> 30072(7 + 1) * 30072(T + 1)

< 3€
~ 300r2 (Tt + 1)

(6.3.45)

(6.3.46)

We conclude by the following main theorem of this section:

Theorem 6.3.2. Let Ay,..., A, € C"*™ be Hermitian matrices with rank at most
r, and A = 377 Ay Suppose giwen V which satisfies |AVVT — A|| < 555 and
statements 1 to 4 in Lemma 6.3.2. Then, there exists an algorithm which outputs
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a Hermitian matriz B € C™" with probability at least 1 — § with time and query

complezity O((p + log n)TBZ# log %) such that the following properties holds.

1. HVBVT — Al <1+ 3007“26(T+1))240(EJ7‘2 +(2+ 300r2€(7+1))30(€)r2'

2. Let UDU?' be the spectral decomposition of B and, then statements 1 to 4 in

Lemma 6.3.5 hold for UV .

Proof. By Lemma 6.3.4, we can compute B in time O((p + log n)Qli”# log %)
For the first statement, we have
VBV — VVIAVVI+ VVTAVVT — A
< |\VBVI —VvVIAVVT| + [VVTAVVT — 4] (6.3.47)
2
€ € € €
< (1 2 . 6.3.48
- ( * 30072 (T + 1)) 40072 - ( * 30072(7 + 1)) 30072 ( )
The first term of the last inequality comes from Lemma 6.3.4 with €; = ;5. The
second statement directly follows from Lemma 6.3.5. n

6.4 Gibbs states

In this section, we combine our techniques from Section 6.3.1 and Section 6.3.2
to give a sampling-based estimator of the traces of a Gibbs state times a constraint
Ayp. This is formulated as Algorithm 6.4.

We show that the output of Algorithm 6.4 e-approximates Tr[A.p] for p =

e~24/ Tr[e~24] in the following two subsections.
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Algorithm 6.4: Approximation of the trace.

Input: Given query and sampling access to a constraint Ay, query access to

U, and the matrix D where UDU' is an spectral decomposition of
B such that (VU)D(VU)! is an approximated spectral
decompistion of A =) A; as in Theorem 6.3.2.

1 Compute Tr[e~2P];

2 Approximate Tr[A,(VU)(e” 2P/ Tr[e~2P])(VU)!] by ¢ according to

Claim 6.3.2;
3 Output (.

6.4.1 Estimating matrices inner product

Lemma 6.4.1. Let A € C"*", B € C"*", and B’ € C"*™ be Hermitian matrices.

Suppose |B — B'|| < 02T Lhen

TY[AB] — TY[AB)| < — &
| Tr[AB] - Ti| ”_3007’2(7'4-1)

Proof. Let A=Y, o;vw]. We have

| Te[AB] — TY[AB']| = Y " ow!(B - B')v; (6.4.2)

€

< i|l|B - B|| < —————"Tr|A]. 6.4.3

Lemma 6.4.2. Let A and B be Hermitian matrices, and ||A— B|| < €. Let ps($)

€ _€

—£A B €
repy and pp(5) = Fipoe- Then F(pa(5),pp(5)) > e 3%, where F(pa, pp) =

Tr [ ‘/pApB\/pA} 15 the fidelity between py and pp.

Tr|Al. (6.4.1)

This lemma has been proven in [229, Appendix CJ; its complete proof is also
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given in [77, Appendix A].

Lemma 6.4.2 implies that the trace distance between p4 and pp is
1 .
5 Tr|pa — pp| < V1 —e 22 (6.4.4)

and the spectral distance is

la(e/2) — pale/2)]l < 23/1 — %5, (6.4.5)

6.4.2 Approximating the Gibbs state

Let A = VVTAVVT and U, D, and B be outputs of Algorithm 6.3. In this

section, we suppose ||A — Al < (1 + 3007’2E(T+1)>240(€)r2 + (2 + g2 300 85 In

Theorem 6.3.1.

Theorem 6.4.1. Let p = Te_—f; and p = ij_%_g?. Suppose |A — Allp < (1+

3007“26(T+1))240(6Jr2 +(2+W(7+1))W' Let Ay be a Hermitian matriz with the promise

that || Ae|| <1 and rank(A,) < r. Then Algorithm 6.4 outputs ¢ such that

| Tr[Au] — ¢ < e (6.4.6)

with probability 1 — & in time O(;%(log2 n + 7pr) log %)

Proof. As we have proven in Lemma 6.3.5, there exists an isometry U such that

U -V| < s and U spans the column space of V. We define two additional
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067%Dﬁ1. ~ 67%1&

Gibbs states p' =
Tr

| Tr [A¢p] — Tr [Agp]]
= | Tr [A¢p] — Tr[Aep] + Tr [Aep] — Tr [Aep'] + Tr [Agp'] = Tr [Agp] + Tr [Agp] — ¢
< [Tr[Aep] = Tr [Aep]| + | Tr [Aep] — Tr [Ag)]]

| T [Aep') = T [Aud]] + | T [Aa] — | (6.4.7)

We give bounds on each term as follows. First,

| Tr [Aep] — Tr[Addl] < T [Alllp— 5] (6.4.8)

< 2Tr |A| \/1 _ 6_25((1+300r2€(7+1))2 4081"2 +(2+300r2€(7+1))30(€)r2)_ (6.4.9)
For | Tr [Agp] —Tr [A,p']|, we first compute an upper bound on |V DV —UDU||.

VDV —UDUT| < ||U = VIIDI(IV] + T]]) < 3 ID]l. (6.4.10)

€
300r2(7 + 1)

Then, by applying Lemma 6.4.2 and Lemma 6.4.1 again, we get

o] — T A < Te Al — ) < T4l (241 - 5 ) (6
For the second last term | Tr [Azp'] — Tr[Agp]|, it is not hard to show that

|Ue 2P0t — Ve 5PV < 2|U — V|| T [e™27)]. (6.4.12)
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Then,

| Tr [Aep'] = Tr [Agp]] < Tr|Alllp" = pll < (21U = V) Tr | A (6.4.13)

€
P L N 6.4.14
= “300/2(r + 1) rlAl ( )

The last term follows from Claim 6.3.2 by setting the precision to be €/5. Hence
| Tr [Aep] — C| < €/5. (6.4.15)
By adding (6.4.9), (6.4.11), and (6.4.14) together,
| Tr [Agp] — (] < e. (6.4.16)
Tr [Ayp] can be approximated with precision €/5 with probability 1 — § in time
@) (%(Q(Ag) +Q(VU) + S(As) + N(Ay)) log %) =0 (612(10g2 n + 7pr)log %) :

where p is the number of rows sampled in Algorithm 6.2 and the maximum rank of
the Gibbs state is 7r. The last equality is true since one can compute (VU)(i, 7) by
computing V (4, j) as (ST(4, -)u;/o; and then compute the inner product V (i, -)U (-, j),

which takes O(prr) time. O

6.5 Main results: sampling-based SDP and shadow tomography solvers

We finally prove our main results on solving SDPs via sampling.
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Theorem 6.5.1. Given Hermitian matrices {Aq,..., A, } with the promise that
each of Ay, ..., A, has rank at most r, spectral norm at most 1, and the sampling
access of each A; is given as in Definition 6.1.1. Also given aq,...,a,, € R. Then
for any € > 0, Algorithm 6.5 gives a succinct description and any entry (see Re-

mark 6.5.1) of the solution of the SDP feasibility problem

Tr[A; X] < a;+e Vie[m] (6.5.1)
X = 0; (6.5.2)
Te[X] = 1 (6.5.3)

57 1n3" n

with probability at least 2/3 in O(™—3—") time.

Algorithm 6.5: Feasibility testing of SDPs by our sampling approach.

1 Set the initial Gibbs state p; = %, and number of iterations T = 1651#;

2 fort=1,...,7T do

3 Find a j; € [m] such that Tr[Aj,p] > a;, + € using Algorithm 6.2,
Algorithm 6.3, and Algorithm 6.4. If we cannot find such j;, claim that
pr € Sc and terminate the algorithm;

4 Define the new weight matrix Wy 1 := exp|[—$ S A;,] and Gibbs

o Wi
state piy1 = TWia]’

5 Claim that the SDP is infeasible and terminate the algorithm;

The algorithm follows the master algorithm in Theorem 6.2.2. The main
challenge is to estimate Tr[A;, p;| where p; is the Gibbs state at iteration ¢; this is

achieved by Theorem 6.4.1 in Section 6.4.

Proof. We prove Theorem 6.5.1 by showing the correctness and the time complexity

of Algorithm 6.5.
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Correctness: The correctness of Algorithm 6.5 directly follows from Theorem 6.4.1.
Specifically, we have shown that one can estimate the quantity Tr[A; p:] with pre-
cision € with high probability by applying Algorithm 6.2, Algorithm 6.3, and Algo-

rithm 6.4.

Time complexity: First, we show that given the data structure in Theorem 6.2.1,
Algorithm 6.2 can be computed in time O(p?® + p7logn). The Procedure Weighted
sampling of rows and Procedure Weighted sampling of columns both can be done in
time O(p7logn). For Procedure Weighted sampling of rows, let A = A; +---+ A,
the probability that the i*® row is sampled in Procedure Weighted sampling of rows
is

S VNOBIE
p = = . 6.5.4
S A (6.5.4)

With the data structure, the accumulated probability P, +- - -+ P, can be computed
in time O(7log(n — t)) for any ¢ < n since Y.._, || A(i,-)||> and ||A¢||% can be ac-
cessed in time O(log(n — t)) and O(logn) given the data structure. Then we can use
binary search to implement Procedure Weighted sampling of rows in time O(7 logn).
Specifically, we generate a random number p € [0, 1], and then do the binary search
in the data structure to find the index i such that p € [Z;;ll P;, 23:1 P;]. Similarly,
we can implement Procedure Weighted sampling of columns in time O(7logn).
Hence, the time complexity to construct the matrix W and compute its SVD is

O(prlogn + p*). Algorithm 6.2 succeeds with probability 9/10.
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216,93

Then, Algorithm 6.3 and Algorithm 6.4 take O((p + logn)*=3"log ;) and

O(;%(log2 n + 7pr) log %) and succeed with probability at least 1 — 2. By setting ¢
as a small enough constant (say § = 1/6), Algorithm 6.5 succeeds with probability
at least 2/3 in time O(rmp?) = O(%ﬁlyn) O
Remark 6.5.1. Theorem 6.5.1 solves the SDP feasibility problem, i.e., to decide
So =@ or S. # &. For the SDP optimization problem in (6.1.1)-(6.1.3), the opti-
mal value can be approximated by binary search (see Footnote 4); however, writing

down the approximate solution would take n® space, ruining the poly-logarithmic

complexity in n. Nevertheless,

e we have its succinct representation

exp [% Z::l AJJ
Tr [exp[5 3iny As]]

, and

e we can query any entry of the solution matriz.

The succinct representation is given by Algorithm 6.5, where t < T and j, € [m]
for all T € [t]. Storing all j, takes tlogym = O(logmlogn/e?) bits. A query to
the solution is accessed by computing the element of (VU)(e 3P/ Trle=2P])(VU)T,
which is an e-approximation to the solution by Theorem 6.4.1 (this suffices because

the SDP feasibility problem of deciding S = @ or S. # @ is e-approzimate).

Shadow tomography. As a corollary of Theorem 6.5.1, we have:

Corollary 6.5.1. Given Hermitian matrices {E\,. .., Ey,} with the promise that
each of £y, ..., E,, has rank at most v, 0 <X E; < I and the sampling access to E;
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is given as in Definition 6.1.1 for all i € [m]. Also given py,...,pm € R. Then for

any € > 0, the shadow tomography problem

Find o such that | Tr[oE] —pi| <e Vi€ [m]; (6.5.5)

=0, Trlo] =1 (6.5.6)

can be solved with probability 1 — 0 with cost O(m - poly(logn,1/e,log(1/0),r)).

Here, p; = Tr[pE;] in (6.1.4) for all i € [m]. Notice that the assumption of
knowing p1, ..., p, makes our problem slightly different from the shadow tomogra-
phy problem in [3, 23, 55] where we are only given copies of the quantum state p
without the knowledge of Tr[pE1],. .., Tr[pE,,]. However, quantum state is a con-
cept without a counterpart in classical computing, hence we follow the conventional

assumption in SDPs that these real numbers are given.

Proof. We denote A; = E; for alli € [m]and A; = —E;_,, foralli € {m+1,...,2m};
also denote a; = p; for all ¢ € [m] and a; = —p;_,,, for all i € {m +1,...,2m}. As
a result, Tr[oE;] — p; < € is equivalent to Tr[cA;] < a; + € for all i € [m], and
TrloE;] — p; > —e is equivalent to Tr[cA; ] < aiym + € for all i € [m]; therefore,
the shadow tomography problem in (6.5.5) and (6.5.6) is equivalent to the following

SDP feasibility problem:

Find o such that Tr[Ajo] <a;+€ Vie[2m]; (6.5.7)

o>=0, Trlo] =1. (6.5.8)
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Consequently, Corollary 6.5.1 reduces to the SDP in (6.5.1) to (6.5.3) with 2m

constraints; the result hence follows from Theorem 6.5.1. O

Remark 6.5.2. Similar to Remark 6.5.1, o can be stored as a succinct representa-

tion. This is because

el 4]
Tr [exp[§ D27, (1) 4, ]

(6.5.9)

by the proof of Corollary 6.5.1, where t < T and i, € {0,1}, j. € [m] for all T € [t].

Storing all i,, j, takes t(logym + 1) = O(logmlogn/e?) bits.

6.6 Generalization: a framework for quantum-inspired classical algo-

rithms

A central goal of the research into “quantum-inspired” classical machine learn-
ing is to guide quantum machine learning research in the future. However, previous
research in this topic focuses on particular problems and only describes the partic-
ular tools that are necessary in each case. In this section, we will sketch an easy-to-
understand framework of quantum-inspired classical algorithms recently proposed
by [76], exploring the capabilities and limitations of these techniques.

Similar to the quantum-inspired classical SDP solver from Section 6.1 to Sec-
tion 6.5, our framework assumes the sampling access in Definition 6.1.1 as well as
query access to the entry of the input vectors and matrices. Our core primitive is

singular value transformation [123]. Roughly speaking, given a Hermitian matrix A
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with sampling and query access, along with a Lipschitz function f, we can achieve
the sampling access of f(A) where f is applied to the singular values up to additive
Frobenius norm error. Moreover, we can gain sampling and query access to the de-
composition of f(A) into rank-1 matrices. This primitive has previously been noted
to generalize a large portion of quantum machine learning research [123]; we bring

this observation into the quantum-inspired landscape.

Theorem 6.6.1. Let A = UDVT be the singular value decomposition of A = AWM +
-+ AT and let f be L-Lipschitz continuous. We can implement the sampling and

~ T ® 18
query access of U f(D)VT up to ly-norm error € in time O ((LQ(ZZE—;”%)) )

With Theorem 6.6.1, we can recover existing quantum-inspired machine learn-

ing algorithms in [76]:

e Recommendation systems: Given a matrix A € R™*" with the sampling access
in Definition 6.1.1, a row index i € [m], and a singular value threshold o, the goal
is to sample from the i row of a low-rank approximation of A which singular
values > o with additive error €||A||r. We apply the main theorem to a constant-
Lipschitz continuous function f such that f(z) = x on singular values in [%a, 1]
and f(z) = 0 in [0, 20], which gives us the sampling and query access to an
approximated singular-value transformation of f(A). Finally, we obtain a sample

from the i® row by the sampling techniques we have developed in [76, Section 3].

A
The running time is O (6”121'54).

e Principal component analysis: Given a matrix X € R™*" with the sampling
access in Definition 6.1.1 such that rank(X) = r and X7 X has nonzero eigenval-
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ues {\;}i_; and eigenvectors {v;}/_; (without loss of generality Ay > --- > \,),
the goal is to output \; up to additive error e Tr(X? X) and |v;) with probability
A;/ Tr(XTX). This is in general impossible because distinguishing between ); and
Ai+1 such that \; — A\;11 = O(1/ poly(n)) necessarily takes poly(n) samples. How-
ever, if we know K := Tr(XTX) /A, > k and 7 := minep [N — Aiza]/ Tr(XTX),
then we can apply our main theorem to the function f(z) = z? to get an ap-
proximated singular-value decomposition of X7 X and apply sampling access as
a coupon collector problem; by doing that, we get all {\;}/_; and the sampling

access of {v;}7_; in time 9] (—(€£§18>.

Supervised clustering: Given a dataset of points ¢y, ..., ¢, € R™ in R", the goal
is to estimate the distance between their centroid and a new point p € R”, i.e.,
lp — #(Ch + -+ + ¢m)|[*. We show how to use the sampling and query access to

estimate inner products: given the sampling access of (M7, w) where

T
M= |2 T8 ‘-’m] and  w = [\|p||,”q”|,...,”q’"” ., (6.6.1)
2l Nl [ gm| m m

we approximate |[p— L (g1 +- - -+¢p)||? to additive € error in time O (|| M ||%[|w]| ).

Matrix inversion: Given a matrix A € R™" with the sampling access in Defi-
nition 6.1.1 and condition number k, the goal is to obtain the sampling access
of AT where A" is the pseudo-inverse of A. We apply our main theorem to an
O (k)-Lipschitz function that is 1/x for x € [1/k, 1] and 0 when z € [0, (1 — &) /K]

for a 0 < £ < 1, and we get the sampling access of AT with e-error in spectral
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R A
norm in time O s .

Support vector machines: Given input data points xy,...,z,, € R™ and their
corresponding labels y1 ..., y,, = £1, let w € R™ and b € R be the specification
of hyperplanes separating these points. The goal is to minimize the squared norm

of the residuals:

min T2 L7 (6.6.2)
w,b 2 2
st yi(wlz; +b) =1—e(i), Vie][m], (6.6.3)

where e € R™ is a slack vector such that e(j) > 0 for j € [m]. The dual of this
problem is to maximize over the Karush-Kuhn-Tucker multipliers of a Lagrange

function, taking partial derivatives of which yields a linear system:

—

0 17 b 0
= |, (6.6.4)

I XTX +47| | Y

Therefore, solving this SVM can be regarded as solving a matrix inversion prob-

lem. Assuming the sampling access of X and the minimum nonzero singular value

~ 88
of XTX is at least me,, SVM can be solved with error € in time O (!i!g )

Hamiltonian simulation: Given a Hermitian matrix H € R™*™ with the sampling
access of H such that ||H|| <1, a unit vector b € R™ with the sampling access in
Definition 6.1.1, and a time ¢ > 0, the goal is to obtain the sampling access of v

where ||v — e®b||z < e. We apply our main theorem to the function f(z) = e'®
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(which is 27-Lipschitz) and obtain the sampling access of e®; we furthermore

apply the matrix-vector product e?*b by a generalization of our main theorem.

~ 36 36
The final time complexity is O (tLITZHF>

Discriminant analysis: Given M input data points {z; € RY : 1 < i < M}, each
belonging to one of k classes. Let p. denote the centroid (mean) of class ¢ € [k],

and T denote the centroid of all data points. Let

Sp = Z(NC - j)(:uc - E)Ta SW = Z Z(Mc - x)(:uc - x)T (665)

be the between-class scatter matrix and the weight matrix of the dataset, re-
spectively. The goal is to find the largest p eigenvalues and eigenvectors of
SI;}S . Given the sampling access of X, we apply our main theorem to an
e-approximation of the function \/LE that is O (1/e€)-Lipschitz, with threshold 6;

the overall complexity is O (poly (|| X ||z, e %, 671)).

For all these applications, please refer to [76] for their complete proofs.

6.7 Conclusions and discussion

We present a poly-logarithmic time classical algorithm for solving SDPs with
low-rank constraints; specifically, given an SDP with m constraint matrices, each
of dimension n and rank r, our algorithm can compute any entry and efficient
descriptions of the spectral decomposition of the solution matrix. The algorithm

runs in time O(m-poly(logn,r,1/¢)) given access to a sampling-based low-overhead
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data structure for the constraint matrices, where ¢ is the precision of the solu-
tion. Furthermore, our techniques can be improved to give a general framework of
quantum-inspired classical algorithms, including applications such as recommenda-
tion systems, principal component analysis, supervised clustering, matrix inversion,
support vector machines, Hamiltonian simulation, and discriminant analysis.

This chapter raises a few natural open questions for future work. For example:

e Can we give faster sampling-based algorithms for solving LPs? Note that a
recent breakthrough by [86] solves LPs with complexity® O(n®), significantly
faster than the state-of-the-art SDP solver [184] with complexity O(m(m? +

n¥ 4+ mn?)).

e Can we prove lower bounds on sampling-based methods? In particular, a
lower bound in terms of the rank r can help us understand the limit of our
current approach. It is also of interest to prove a lower bound in 1/€ to better

understand the trade-off between 1/e and n,r.

e What is the empirical performance of our sampling-based method? It is
worthing mentioning that [30] conducted various numerical experiments on
quantum-inspired classical algorithms and suggested that their performance
in practice might work better than their theoretical guarantee. We look for-

ward to more numerical evidence for sampling-based methods.

8VVithogt loss of generality, we can assume m < n for LPs by deleting overcomplete constraints.
The result O(n®) only holds for the current matrix multiplication exponent w ~ 2.373; when w = 2,
the complexity becomes O(n'3/6).
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Chapter 7: Distribution Property Testing'

Having studied quantum algorithms for various machine learning and opti-
mization problems, in the last chapter of this thesis we consider quantum algorithms
for statistics. Specifically, we focus on testing properties of probability distributions:
on the one hand, we study potential speedup of sample complexities if using quan-
tum computers, and on the other hand we generalize to the problems of testing

quantum states.

7.1 Introduction

Property testing is a rapidly developing field in theoretical computer science
(e.g. see the survey [237]). It aims to determine properties of an object with the
least number of independent samples of the object. Property testing is a theoret-
ically appealing topic with intimate connections to statistics, learning theory, and
algorithm design. One important topic in property testing is to estimate statisti-
cal properties of unknown distributions (e.g., [125, 265]), which are fundamental
questions in statistics and information theory, given that much of science relies on

samples furnished by nature.

!This chapter is based on the papers [121, 192] under the permission of all the authors.
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The merit of distributional property testing mainly comes from the fact that
the testing of many properties admits sublinear algorithms. For instance, given
the ability to take samples from a discrete distribution p on [n] := {1,...,n}, it
requires ©(n/e?) samples to “learn” p, i.e., to construct a distribution ¢ on [n] such

that |[p — ¢||1 < € with success probability at least 2/3 (|| - ||; being ¢'-distance).

However, testing whether p = ¢ or ||[p — ¢||; > € requires only @(max{?j—g, ”:2/2 )

samples from p and ¢ [73], which is sublinear in n and significantly smaller than the
complexity of learning the entire distributions. See Section 7.1.4 for more examples
and discussions.

In this chapter, we study the impact of quantum computation on distributional
property testing problems. We are motivated by the emerging topic of “quantum
property testing” (see the survey of [210]) which focuses on investigating the quan-
tum advantage in testing classical statistical properties. Quantum speed-ups have
already been established for a few specific problems such as testing closeness be-
tween distributions [59, 208], testing identity to known distributions [70], estimat-
ing entropies [192], etc. In this chapter we propose a generic approach for quantum
distributional property testing, and illustrate its power on a few examples. This is

our attempt to make progress on the question:

Can quantum computers test properties of distributions systematically

and more efficiently?
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7.1.1 Problem statements

Throughout the chapter, we denote probability distributions on [n] by p and
¢; their £*-distance is defined as ||p — ql|,, == O 1, [pi— ¢|®)=. Similarly, we denote
n x n density operators? (i.e., quantum distributions) by p and o; their £*-distance

is defined via the corresponding Schatten norm.

Input models. To formulate the problems we address, we define classical and
quantum access models for distributions on [n]. We begin with the very natural

model of sampling.

Definition 7.1.1 (Sampling). A classical distribution (p;)?_, is accessible via clas-
sical sampling if we can request independent samples from the distribution, i.e., get
a random i € [n] with probability p;. A quantum distribution p € C"*™ is accessible

vta quantum sampling if we can request independent copies of the state p.

Now we define a coherent analogue of the above sampling model. To our
knowledge this type of query-access was only studied by a few earlier works [134, 208|
and only in the special case of classical distributions. The motivation for this input
model is the following: we can think about a density operator as the outcome of
some physical process modeled by some black-box. Suppose that the black-box can
generate samples on demand. Unlike in the classical (randomized) setting, in a

quantum scenario in principle it is always possible to reverse every computational /

2For readers less familiar with quantum computing, a density operator (=quantum distribu-
tion) p € C"*™ is a positive semidefinite matrix with Tr[p] = 1. Please refer to the textbook [217]
for more information.
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physical process — including this black-box. If reversion is not feasible, then we get
the plain sampling model; however if it is possible to reverse the (quantum) black-
box then we get the purified query access model that we describe. For example, if a
quantum computer produces the samples via, say, a Monte Carlo method, then the
process is easily reversible. However, if the samples come from some source ”outside
the lab”, then reversing the process might not be possible. Therefore, both input
models (purified quantum query access and sampling access) are well-motivated.
The surprising fact is that this subtle difference in the input models gives rise to

significantly different complexities, as we show later for several problems.

Definition 7.1.2 (Purified quantum query-access). A density operator p € C"*",
has purified quantum query-access if we have access to a unitary oracle U, (and its

inverse) acting as®

n

Up0)4 1005 = [00) ap = Y V/Bildi) a i) g where (dild;) = (ildhy) = 6

=1

such that Tr 4 (|0,)0,]) = p. If [1i) = |i), then p = >"7 p; |i)Xi| is a diagonal density
operator which can be identified with the classical distribution p, so we can simply
write Uy, instead of U,. With a slight abuse of notation sometimes we will concisely

write |p) instead of |1,).

We also define an even stronger input model that is considered in a series of

earlier works, see, e.g., [59, 63, 70, 192].

3|¢) € C™ denotes a “ket” vector and (1| = (]2))T stands for its conjugate transpose, called
“bra” in Dirac notation; |i) =¢; is the i*! basis vector. An ¢2-normalized |+)) is called a pure state,
and corresponds to density operator [1)|. For A = C* B = C" and |¢) € A ® B we denote by
tr{|¢)Xo|} 4 € B® B* = C"*" the partial trace over A.
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Definition 7.1.3 (Classical distribution with discrete query-access). A classical
distribution (p;)_,, has discrete query-access if we have classical / quantum query-
access to a function f: S — [n] such that for all i € [n], p; = |{s € [S] : f(s) =
i}|/|S|. (Typically the interesting regime is when |S| > n.) In the quantum case a

query oracle is a unitary operator O acting on C'%l @ C™ as

O: [5,0) < |s, f(s)) forall s e S.

Note that if one first creates a uniform superposition over S and then makes
a query, then the above oracle turns into a purified query oracle to a classical dis-
tribution as in Definition 7.1.2. Therefore all lower bounds that are proven in this
model also apply to the purified query-access oracles. In fact all algorithms that
the authors are aware of do this conversion, so they effectively work in the purified
query-access model. Moreover, we conjecture that the two input models are equiv-
alent when |S| > n. For this reason we only work with the purified query-access
model in this work.

Another strengthening of the purified query-access model for classical distri-
butions is when we assume access to a unitary (and its inverse) acting as |0)

> i1 +/Dilt). A very similar input model was thoroughly studied by [14].

Definition 7.1.4 (Classical distribution with pure-state preparation access). A clas-

sical distribution (p;), is accessible via pure state preparation oracle if we have
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access to a unitary oracle Upye (and its inverse) acting as

n

Upure: 10) = > /i li) - (7.1.1)

i=1

This is strictly stronger* than the purified query-access model. In order to
simulate purified queries we can first do a pure state query and then copy [i) to a
second fresh ancillary register using, e.g., some CNOT gates. Finally, for complete-
ness we mention that one could also consider a model similar to the above where
one can only request samples of pure states of the form )" | \/p;|i), as studied for
example in [31, 33].

We will focus on the first two input models and will only use the latter strength-

enings of the purified query-access model for invoking and proving lower bounds.

Property testing problems. We study three distributional properties: ¢*-closeness
testing, independence testing, and entropy estimation. In the classical literature
these are well-studied properties, and the corresponding testers motivate general
algorithms for testing properties of discrete distributions [8, 96].

For brevity we only give the definitions for classical distributions; similar def-
initions apply to quantum density matrices if we replace vector norms by the corre-

sponding Schatten norms.

4This can be seen in various ways. We give an argument in the spirit of distributional prop-

erty testing. Closeness of two unknown distributions p, g can be tolerantly tested in the squared
Hellinger distance H(p,q)? = 3 ||/p — \/qu to precision € in query complexity O (1/+/€) in the
model of Definition 7.1.4 using amplitude estimation. On the other hand the classical sample com-
plexity of testing equality to e precision in this metric is ©(min(n?/3/e*/3,n3/4/¢)), as shown in
[96]. The results of Chailloux [65] imply that this query complexity improves at most cubically in
the model of Definition 7.1.2, showing that the input model of Definition 7.1.4 is strictly stronger.
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Definition 7.1.5 ({“-closeness testing). Given € > 0 and two probability distribu-
tions p, q on [n], £*-closeness testing is to decide whether p=q or ||p—q||, > € with
success probability at least % Tolerant testing: decide whether ||p—ql|, < 0.99¢ or

Ip—qll,, > € with success probability at least .

Definition 7.1.6 (Independence testing). Given € > 0 and a probability distribution
p on [n] X [m] with n > m, independence testing is to decide, with success probability
at least %, whether p is a product distribution or p is e-far in (*-norm from any
product distribution on [n] X [m] .

Definition 7.1.7 (Entropy estimation). Given € > 0 and a density operator p €

C™ ™ entropy estimation is to estimate the Shannon /von Neumann entropy H(p) =

—tr{plog(p)} within additive e-precision with success probability at least 3.

7.1.2 New results

We give a systematic study of distributional property testing for classical /
quantum distributions, and obtain the following results for the purified quantum

query model of Definition 7.1.2:

e Shannon entropy estimation of classical / quantum distributions costs O (%)
and O (6%) queries respectively, as we prove in Theorem 7.3.1 and Theo-

rem 7.3.2.

e Tolerant ¢*-closeness testing of classical / quantum distributions costs 6 (%)

and O (min(‘/jﬁ, 6%)) queries respectively, as we prove in Theorem 7.3.3 and
Theorem 7.3.4.
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1S

) and

e ('_closeness testing of classical / quantum distributions costs (5(

@ (%) queries respectively, as we prove in Corollary 7.3.1.

mn

e Independence testing of classical / quantum distributions costs 0] (*/T”> and

€

O (%) queries respectively, as we prove in Corollary 7.3.2.

e For all a > 0, there is quantum speedup on a-Rényi entropy estimation, as

we prove in Theorem 7.4.1.

For context, we compare our results with previous classical and quantum results in
Table 7.1 and Table 7.2. (Note that all of our results are gate efficient, because they
are based on singular value transformation and amplitude estimation, both of which

have gate-efficient implementations.)

model problem 0'-closeness testing (tolerant) ¢>-closeness testing | Shannon / von Neumann entropy
Classical distribution sampling | © (max { L”Z,/j, '”27/2 }) [73] O (%) [73] o (d;;n N 10§jn) (153, 275]
| o) o0 o () oivm
e ey s o) © (min (2. 2)) O (a)
Quantum state sampling o (%) 38 o (%) 38 o (f—j) Q("TZ) (10]

Table 7.1: Summary of sample and query complexity results of distributional property
testing. Our new bounds are printed in bold. For classical distributions with quantum
query-access we prove (almost) matching upper and lower bounds for EQ-tes;ting, and
improve the previous best complexity O (y/n/e*?) for {!-testing by [208] and O (y/n/€?)
for Shannon entropy estimation by [192]. Note that Ref. [65] imply that in this model
quantum speed-ups are at most cubic. The results for Rényi entropy estimation are
summarized in Table 7.3 separately.

As we show our quantum algorithms for classical distributional property test-
ing problems with purified access can be naturally lifted to the case of quantum
distributions, incurring an overhead of ~ y/n, which is manifested in the complexi-

ties of Table 7.1.
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Sample complexity [ (Purified) Query complexity
Classical | © (bgn) [262] 6 (v/n) [63, 192]
Quantum © (nz) [10] O (n)

Table 7.2: Complexities of Shannon / von Neumann entropy estimation with constant
precision. It seems that the n-dependence is roughly quadratically higher for quantum
distributions, while coherent quantum access gives a quadratic advantage for both classical
and quantum distributions. This suggests that our entropy estimation algorithm has
essentially optimal n-dependence for density operators with purified access, however we
do not have a matching lower bound yet.

7.1.3 New techniques

The motivating idea behind our approach is that if we can prepare a purifica-
tion of a quantum distribution / density operator p, then we can construct a unitary
U, which has this density operator in the top-left corner, using only two queries to

U,. This observation is due to [203]. We call such a unitary a block-encoding of p:
U= | o= = (00U (0 eI). (7.1.2)

One can think of a block-encoding as a post-selective implementation of the linear
map p: given an input state [t)), applying the unitary U to the state |0)%"|¢)),
measuring the first a-qubit register and post-selecting on the \0)®a outcome, we get
a state o< pl¢) in the second register. Block-encodings are easy to work with, for
example given a block-encoding of p and ¢ we can easily construct a block-encoding

of (p — 0)/2, see for example in the work of [68].

Example application to /3-testing. The problem is to decide whether p = o

or ||p— o3> €, with query complexity O (e_%>. The first idea is that if we can
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prepare a purification of p and o, then we can also prepare a purification of (p+c)/2
by setting a qubit to the state (|0) + |1))/v/2, and then controlled on the |0) or |1)
value of the qubit run the process that samples from p or o, respectively. The
second idea is to combine the block-encodings of p and o to apply the map %57 to

the purification of (p + 0)/2, to get

)= (e o

Finally, apply amplitude estimation with setting M = @(e_%). This works since

if |[p— o||; > €, then the |0) ancilla state has probability tr{(p — 0)*(p+0)}/8 >

tr{lp — o’}/8 > €/8.

Working with singular values. The above is a promising approach because it
directly makes the density operator in question operationally accessible. However, it
turns out that using this simple block-encodings is often suboptimal for distribution
testing, because a query in some sense gives access to the square-root of p, whereas
this unitary has p itself in the top-left corner. Since the problems often heavily
depend on smaller eigenvalues of p, the square root of p is more desirable since it
has quadratically larger singular/eigenvalues.

One of our main technical contributions is to use a new type of block-encoding,
which is a unitary matrix having a certain block proportional to a matrix A such
that ATA = p, ie., we use a "square-root” of the (quantum) distribution p (in

the case of classical distributions rho is a diagonal matrix with the probabilities as
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diagonal entries). This new technique allows us to develop a unified approach for
distributional property testing, which we consider one of our major contributions.
It is this new perspective that enables us to derive several results in a relatively
short paper. Once we establish this methodology the results are relatively easy to
derive in a systematic way, both for classical and quantum distributions.
Therefore, we show how to efficiently construct a unitary matrix whose top-left
corner contains a matrix with singular values /p1, ..., /pPn, given purified access to
a classical distribution p. To be more precise, we define a slight generalization of
block-encodings called projected unitary encodings, which represent a matrix A in
the form of 11U ﬁ, where II, I are orthogonal projectors and U is a unitary matrix.
One can think about U in a projected unitary encoding as a post-selective imple-
mentation of the map A: img (ﬁ) — img (II). Take for example U := (U, ® I),
= (X0, I |i)i| ®]iXi]), and TI := (J0)0| ® |0X0| © I). As we show in Sec-

tion 7.2.4 these operators form a projected unitary encoding of

A== Y Vp[6:)0] @ 1i)0] @ liil (7.1.4)

We can use a similar trick for a general density operator p too. However,
there is a major difficulty which arises from the fact that we do not a prioiri know
the diagonalizing basis of p. Therefore we use slightly different operators. Let W
be a unitary,’ mapping [0) [0) = Y7, % Let U :=(I@U))(WIeI), I :=
(I ® |0X0| ®]0)0]) and II as above. As we show in Section 7.2.4 these operators

5This unitary is easy to implement, e.g., by using a few Hadamard and CNOT gates.
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form a projected unitary encoding of

n

A =TUT =Y 5 [a)0] @ [0)0] © (0w (7.1.5)

=1

where Y77 “b}}';ﬂ = > % is the Schmidt decomposition of the maximally
entangled state under the basis (|¢1),...,|on)).

As we can see, the case of general density operators is less efficient, it only
gives operational access to the “square root” of p/n. We note that for (approx-
imately) transforming a block-encoding of A/y/n to a block-encoding of A/O (1)
it is necessary and sufficient to use the block-encoding of A/y/n about /n times
[123, Theorems 3 and 17]. This is essentially the reason for the ~ y/n overhead in
our quantum algorithms for quantum distributions in Table 7.1. If the 1/y/n factor
could be directly improved, that would speed up our von Neumann entropy esti-

mation algorithm Theorem 7.3.2, which seems unlikely, cf. Table 7.2. This suggests

that it is impossible to obtain a more efficient block-encoding in the general case.

General recipe. We summarize our algorithms as follows.
1. Construct the quantum circuit / unitary matrix representing the distribution.
2. Transform the singular values of the matrix according to a desired function.
3. Apply the resulting map to the purification of the distribution.
4. Estimate the amplitude of the flagged output state and conclude.

The above general scheme describes our approach to the problems we discuss in this
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paper. Sometimes it is useful to divide the probabilities / singular values into bins,
and fine-tune the algorithm by using the approximate knowledge of the size of the
singular values. This divide-and-conquer strategy is at the core of our improved

tolerant £2-closeness tester of Theorem 7.3.3.

7.1.4 Related works on distributional property testing

Classical algorithms. Many distributional property testing problems fall into
the category of closeness testing, where we are given the ability to take independent
samples from two unknown distributions p and ¢ with cardinality n, and the goal
is to determine whether they are the same versus significantly different. For ¢!-
closeness testing, which is about testing whether p = q or ||p — ¢|[1 > €, [42] first
gave a sublinear algorithm using O(n?/3/e%/3) samples to p and ¢q. The follow-up
work by [73] determined the optimal sample complexity as @(max{ﬁ—//:, %2/2 ); the
same paper also gave a tight bound @(}2) for ¢2-closeness testing.

Besides closeness testing, a similar problem is identity testing where one of the
distributions, say ¢, is known and we are given independent samples from the other
distribution p. For ¢! identity testing, it is known that the sample complexity can be
smaller than that of ¢'-closeness testing, which was proved by [41] to be O(y/n/e*)
and then [227] gave the tight bound ©(y/n/e?). More recently, Ref. [96] proposed
a modular reduction-based approach for distributional property testing problems,
which recovered all closeness and identity testing results above. Furthermore, they

also studied independence testing (see also the previous studies by [9, 41, 189]), i.e.,
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whether a distribution on [n] x [m]| (n > m) is a product distribution or at least e-

far in ¢'-distance from any product distribution, and determined the optimal bound

/ / 1/2
O (max{ 2 ;n 2, Eml .

Apart from the relationship between distributions, properties of a single distri-
bution also have been extensively studied. One of the most important properties is
Shannon entropy [244] because it measures for example compressibility. The sample
complexity of estimating H(p) within additive error ¢ has been intensively studied

[40, 225, 226]; in particular, [262, 263] gave an explicit algorithm for entropy esti-

_n_

elogn) samples when € = Q(n7%9) and ¢ = O(1); for the general

mation using ©(

case [153] and [275] gave the optimal estimator with © (L + (105—2")2> samples.

elogn

Quantum algorithms. The first paper on distributional property testing by
quantum algorithms was by [59], which considered classical distributions with dis-
crete quantum query-access (see Definition 7.1.3); it gives a quantum query com-
plexity upper bound O(y/n/€%) for £'-closeness testing and O(n'/3/€%/3) for identity
testing to the uniform distribution on [n]. Subsequently, [70] gave an algorithm
for identity testing (to an arbitrary known distribution) with O (nl/ 3/ 65) queries,
and [208] improved the e-dependence of ¢!-closeness testing to O (v/n/e*%). More
recently, [192] studied entropy estimation under this model, and gave a quantum al-
gorithm for Shannon entropy estimation with O (y/n/€2) queries and also sublinear
quantum algorithms for estimating Rényi entropies ([234]).

Another type of quantum property testing results ([10, 38, 132, 219-221])

concern density matrices, where the ¢!-distance becomes the trace distance and the
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Shannon entropy becomes the von Neumann entropy. To be more specific, for n-
dimensional density matrices, the number of samples needed for ¢! and ¢?-closeness
testing are ©(n/e?) and ©(1/€?) ([38]), respectively. In addition [10] gave upper
and lower bounds O (n?/e?),€ (n?/e¢) for estimating the von Neumann entropy of

an n-dimensional density matrix with accuracy e.

7.2 Technical tools

7.2.1 Amplitude estimation

Classically, given i.i.d. samples of a Bernoulli random variable X with E[X] =
p, it takes ©(1/e?) samples to estimate p within ¢ with high success probability.

Quantumly, if we are given a unitary U such that

U0)0) = v/pl0)|¢) +10%),  where [[|¢)] =1 and ((0| ® 1)|0*) =0,  (7.2.1)

then if measure the output state, we get 0 in the first register with probability p.
Given access to U we can estimate the value of p quadratically more efficiently than

what is possible by sampling:

Theorem 7.2.1 ([57, Theorem 12|). Given U satisfying (7.2.1), the amplitude es-

timation algorithm outputs p such that p € [0,1] and

~ 2ny/p(1 —p)  =?
p—pl < —F—+1p (7.2.2)
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with success probability at least 8 /72, using M calls to U and UT.

In particular, if we take M = {271 <¥ + \%ﬂ =0 (%ﬁ + \/lg) in (7.2.2),

277\/@6 T < . (7.2.3)

2 42

IN
™

Ip—p| <

NN e
N e

Therefore, using only ©(1/¢) implementations of U and UT, we could get an e-
additive approximation of p with success probability at least 8/m% which is a
quadratic speed-up compared to the classical sample complexity ©(1/e?). The suc-
cess probability can be boosted to 1 — v by executing the algorithm for ©(log 1/v)

times and taking the median of the estimates.

7.2.2 Quantum singular value transformation

Singular value decomposition (SVD) is one of the most important tools in
linear algebra, generalizing eigen-decomposition of Hermitian matrices. Recently,
[123] proposed quantum singular value transformation which turns out to be very

useful for property testing. Mathematically, it is defined as follows:

Definition 7.2.1 (Singular value transformation). Let f : R — C be an even or

odd function. Let A € C¥d have the following singular value decomposition

where dy;, = min(d, d). For the function f we define the singular value transform
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of A as

> f(s)

G (¥

Z?:l F(i) [0i)Xbi| if [ is even, where for i € [d] \ [dmin] we define g; := 0.

of fis odd, and
FEVIA) =

Quantum singular value transformation by real polynomials can be efficiently

implemented on a quantum computer as follows:

Theorem 7.2.2 ([123, Corollary 18]). Let Hy be a finite-dimensional Hilbert space
and let U, 11, e End(Hy) be linear operators on Hy such that U is a unitary, and
ILII are orthogonal projectors. Suppose that P = Sor_gaxxr® € Rlz] is a degree-n

polynomial such that
e a, # 0 only if k=n mod 2, and
o forallze[-1,1]: |P(x)| <1.

Then there exist ® € R", such that

PsV) (ﬁUH) B (<+\ ®ﬁ) <|0>(0|0®Uq> + |1)(1] 1®U,q>) (\+> @H) if n is odd, and

(<+| ®H> (|0>(0|0®U¢ + 1 1®U_¢> (|+> ®H) if n is even,

where Ug = i1 (=17 Hg,n:?)/? <6i¢2j(2ﬂ—1)UTei¢2j+1(2ﬁ—I)U> 7

Thus for an even or odd polynomial P of degree n, we can apply singular value
transformation of the matrix [IUTI with n uses of U , UT and the same number of

controlled reflections I —2II, I —2II.

"This is the mathematical form for odd n; even n is defined similarly.
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7.2.3 Polynomial approximations for singular value transformation

To apply singular value transformation corresponding to our problems, we

need low-degree polynomial approximations to the following functions:

Lemma 7.2.1. (Polynomial approximations) Let § € (0,1], n € (0,5] and

t > 1. There exists polynomials P,Q, S such that

o Vz e [1,1]: |P(z) — 5| <m, and Vo e [-1,1]: —1< P(z) = P(-z) < 1,

o Vz € [—%,%]: 1Q(z) — tz| < ntx, and Vo € [-1,1]: Q(z) =—Q(—x) < 1,

o Vo € [B,1]:|S(x) — 5| <m, and Vo € [-1,1]: =1 < S(x) = S(—2) <1,

o) =0 (s () ) 45010 (s (1), 5~ (115 ().
To prove this lemma, we use the following result based on local Taylor series:

Lemma 7.2.2 ([123, Corollary 66]). Let zy € [—1,1], r € (0,2], v € (0,r] and let
fil=z0o—1r —v,mo + 1 +v] = C and be such that f(xo+ x) = Y0y aex’ for all
x €[—r—v,r+v|. Suppose B > 0 is such that ;2 (r+v)*|as| < B. Lete € (0, 55],

2B

then there is an efficiently computable polynomial P € Clx] of degree O (% log (%))

such that®
||f(.flf) - P(‘T)H[:po—r,mo—l—r} Se
”P(@H[q,u Se+ ”f(x)”[1077“71//2,w0+r+1//2} <e+B
HP('CE)H[71,1]\[zofrfu/2,x0+r+u/2} <e

8For a function g: R — C, and an interval [a,b] C R, we define ||g||4,0) := max,e(q [9(2)].
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Proof. For the construction of the P and @ polynomials see Corollary 67 and The-
orem 30 of [123], respectively. It remains to construct the polynomial S above.

Denote f(z) = 21? (12%), by taking e = /2, xo = 1, r =1—- 5, v = g, and

B =1 in Corollary 7.2.2, we have a polynomial S € C[z] of degree O (L1log(£)) =

@) (% log(%)) such that

1£(@) = S@)lsa_y < 1/2 (7.2.4)
ISy < B+n/2 < (1+n)/2 (7.2.5)
1@l y.g < /2. (7.2.6)

Note that B = 1 is valid because the Taylor series of f(z) at x = 1is m > (ﬂli,

and as a result we could take

>~ (1 —ﬁ/2 1 (=)
~ 2In( 2/5 ; ~ 2In(2/B) ; ! (C1+672)
1 g1

However, S is not an even polynomial in general; we instead take S(z) = S(z) +

S(—z) for all z € [—1,1]. Then by (7.2.4) and (7.2.6) we have

f) =5, 7|

S(-a)|| =

|£@) -3 -

]y = [l1@

Furthermore, S is an even polynomial such that deg(S) = O (Hog(%)); hence
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(7.2.5) and (7.2.6) imply

1+7n7 n
< 8@y + 15@)rg < —5—+35

<1 7.2.
; (729)

5@l = 5]

[0,1]

given n < 1/2. (Finally we can take the real part of S(z) if it has some complex

coefficients.) O

7.2.4 Projected unitary encodings for singular value transformation

First we handle the case of classical distributions. Let U, be a purified quantum
oracle of a classical distribution p as in Definition 7.1.2, and let U := (U, ® I), also
let IT:= (37, 1 @ [i)i| @ |i)i]), I1:= (|0)X0] @ |0)(0] @ I), then

MU =11 (U, ® [)II (ZI@\ il ® i) |)(Up®1)(\o><0\®|0><0\®I)
=3 ({9 U030l @ [0Y0D) @ il
i=1
= (e lixa) Y vprleid 1) 01 0] ) @ ik
i=1 j=1
=D Vpiloi)0] @ [iX0] @ JiXdl . (7.2.10)
i=1

Now we turn to quantum distributions where we do not know the diagonalizing

basis of the density operator p. Let U, be a purified quantum oracle of a quantum

distribution p as in Definition 7.1.2, and W a unitary, mapping |0) |0) — Z?:l |J%>.
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Let U :=(I@U)(WIeI), II':= (I ® |0X0] ®|0)0]) and Il as above, then

U= (I U))(WHe 1)1l

3

— (I ® (J0)0] @ |0)0| U)) ((Z J) ) (0| 0\@1)
J=1
(I@Z@\o 0)(¢i w) ( )0\<O\®1)
Di
:Z 193 10) 10 {01 COI (], (7.2.11)
i=1
where 7 |¢/>L¢J = > % is the Schmidt decomposition of the maximally
entangled state under the basis (|¢1), ..., |¢n)).
7.3 Results

7.3.1 Shannon entropy estimation

Classical distributions with purified quantum query-access. Recall that
we introduced purified quantum query-access in Definition 7.1.2. In particular, for

a classical distribution p on [n], we are given a unitary U, acting on C™*" such that

Upl0)4]0) 5 = [tp) = Z Vil ali) 5. (7.3.1)

We use U, and U; to estimate the Shannon entropy H (p):

Theorem 7.3.1. For any 0 < ¢ < 1, we can estimate H(p) with accuracy € with

success probability at least 2/3 using O ( ( ) log (1"%”)> calls to U, and U;.
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Proof. The general idea is to first construct a unitary matrix that has a specific ma-
trix block with singular values \/p, ..., /Pn. We use the construction of Eq. (7.1.4)
and apply singular value transformation (Theorem 7.2.2) by a polynomial S con-
structed in Lemma 7.2.1, setting n = m and 8 = VA for A = m

Notice that this A satisfies

a(m(3) +am(3) = g 16<4§“%>3 (73.2)

< —.1 _— = — ..
~ 12nlIn(n/e) e T o (7.3.3)

provided that 2 > 152. Note that the polynomial S satisfies both conditions in
Theorem 7.2.2. Applying the singular value transformed version of the operator

(7.1.4) to the state |¢,) gives
[B,) = Y VS (VBN ali)5l0) + . 1), (7.3.4)

Preparing \\/vap) costs deg S = O (% log (%)) =0 ( 2 log (%) log (k’%)) uses of U,
and U; and the same number of controlled reflections through II, IL. Furthermore,

Lemma 7.2.1 implies that for all ¢ such that p; > A,

piIn(1/pi) 5 B In(1/\/pi)
2/~ POWRI| =P[5 a7 — S| < (7.3.5)
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For all 7 such that p; < A, we have

piIn(1/p;) 5 piIn(1/pi)
ame/p) PVPIE /) P 750
A(ln(x) +4In(2/8)) €
= 110(2/5) S samerp 030

where the first inequality comes from the fact that |S(x)| < 1 for all 2 € [—1,1], the
second inequality comes from the monotonicity of x(In(1/x) + 41n(2/3)) on (0, +],
and the third inequality comes from (7.3.2). As a result of (7.3.1), (7.3.5), and

(7.3.6), we have

(10l OD )~ s = () - 3 P/ 738
< X mem T 2™ 739

< = . 7.3.10
< smp) T oame/p) " omep
Therefore, [41n(2/8)((¢,| ® (O])@;} — H(p)| < 2¢/3. By Theorem 7.2.1, we can
use O(In(1/0)/¢€) applications of the unitaries (and their inverses) that implement

|4,) and |\/If\;) to estimate ((¢,| ® (0|)|\I/;;) within additive error In total,

B/H)

€

this estimates H(p) within additive error 5y TRE/h) -41n(2/B) + % = ¢ with success

probability at least 8/72. The total complexity of the algorithm is

o (M) e (B (12)) - (L2 ().

]
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Density matrices with purified quantum query-access. For a density matrix

p, we also assume the purified quantum query-access in Definition 7.1.2, i.e., a

unitary oracle U, acting as U, |0), [0)5 = |p) = D21, /Di |9i) 4 [¥0i) 5. We use U,

and U ;f to estimate the von-Neumann entropy H(p) = — Tr[plog p):

Theorem 7.3.2. For any 0 < ¢ < 1, we can estimate H(p) with accuracy € with

success probability at least 2/3 using O (6%) calls to U, and U;.

Proof. We use the construction of Eq. (7.1.5). The proof is essentially the same
as that of Theorem 7.3.1 proceeding by constructing singular value transformation
via Theorem 7.2.2, with the only difference that all probabilities are rescaled by a

factor of 1/y/n in (7.1.5); as a result, the number of calls to U, and U} is blown up

to O (vin- ¥3) =0 (). 0

7.3.2 Tolerant testers for /2-closeness with purified query-access

First we give an ¢?-closeness tester for unknown classical distributions p, q.

Theorem 7.3.3. Given purified quantum query-access for classical distributions
p,q as in Definition 7.1.2, for any v,e € (0,1) the quantum query complexity of

distinguishing the cases ||p — ql|, > € and ||p — ql|, < (1—v)e with success probability

@ (i log® (i> log log (i>> )
ve ve ve

Proof. The main idea is to first bin the x elements based on the approximate value

at least 2/3 is

of p(z) + q(z), then apply fine-tuned algorithms exploiting the knowledge of the
approximate value of p(z) + ¢(x).
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Using amplitude estimation for any £ € N we can construct an algorithm Ay
that for any input z with p(z) + ¢(z) > 27% outputs “greater” with probability
at least 2/3, and for any x with p(z) + ¢(z) < 27%7! outputs “smaller” and uses

@) (25) queries to U, and U,. Using O (log(i))) repetitions we can boost the

success probability to 1 — O (poly (ve)). Since our algorithm only needs to succeed

1

with constant probability, and will use these subroutines at most —
poly(ve)

times, we
can ignore the small failure probability. Therefore in the rest of the proof we assume
without loss of generality, that A solves perfectly the above question with (query)

complexity O (25 log(L) )> :

Algorithm 7.1: Estimating log,(p(z) + ¢(z)).
Input: = € [n], 0 € (0,1).
1 for ke K :={-1,0,1,2,..., [log, (3)]} do
2 L Run algorithm Ay on |z). If output is “greater” then return k;

3 return “less than 6”;

For any = with p(x) + ¢(z) >0, Algorithm 7.1 outputs a k such that p(z) + ¢(z) €
(27F=1 27*+1) " However, note that this labeling is probabilistic; let us denote by
sk(z) the probability that x is labeled by k. Observe that si(z) = 0 unless k €

{ {log2 (W)J , [log2 (Wﬂ } (otherwise the return is either “greater” or

“less than”). Now let us express ||p — g||5 in terms of this “soft-selection” function
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s(x).

lp—qlly =>_ Ip(x) - (=)

=3 sil@) Ip(x) — (@)’ + 7 (n € [0,26))
9—k x x 2 k=2 7) — q(z)\
:;2 ;Sk(x)p( );ch( )p(x)+q(;1:) (p( 2)_kg( )) o (7311)

where the bound on 7 follows from the observation that

n< Y @ —g@lP< D> () +q@)’ (7.3.12)
2 pl(o) +a(z)<6 2+ p(@)+a(x)<0
<6 Z p(z) + q(z) < 26. (7.3.13)

z: p(z)+q(x)<6

If for all £ € K we have a QR’Q%—precise estimate of

Z Sk(ﬂf)p(x) ;— Q(LE) 27k 2 (p(l') — Q(x) )2 : (7314)

p(x) + q(x) 27k

then we get a 30-precise estimate of ||p — qH% In particular setting 6 := ve?/6, this
solves the tolerant testing problem, since if ||[p — ¢|| > € then ||p — ¢||> > €2, on the
other hand if ||p — ¢|| < (1 —v)e then |[p—¢||* < (1 — )22 < (1 —v)2 = & — ve.

Now we describe how to construct a quantum algorithm that sets the first
output qubit to |0) with probability (7.3.14). Start with preparing a purification
of the distribution of IM, then set the label of x to k& with probability s ()

using Algorithm 7.1 terminating it after using A;. Then separately apply the maps
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2—k—2

oo and p(;t?gx) to the state.

Note that we do not need to apply the above transformations exactly, it is

2k711

enough if apply them with precision say Tl We analyze the complexity of

K]

(approximately) implementing the above sketched algorithm. To implement the
map 4/ %, we use the unitary of Eq. (7.1.4), and transform the singular values
by the polynomial P from Lemma 7.2.1 using Theorem 7.2.2. In order to implement
the map %, we again use the unitary of Eq. (7.1.4), but now separately for p
and ¢. We amplify both the singular values \/m and \/m by a factor V2E—2
using the polynomial Q from Lemma 7.2.1 in Theorem 7.2.2. Then we create a
block-encoding” of both and 2¥~2p(x) and 2*~2¢(x) and then combine them to get a

block-encoding of p@)—a4®) Ty hoth cases the query complexity of O (0/|K|)-precisely

2
implementing the transformations is O (2/?log (|K|/60)) = O (2¥/?1og (1/6)). Since
computing the label k also costs O (2¥/?1og (1/(ve))), this is the overall complexity
so far. Finally we estimate the probability of the first qubit being set to |0) with
setting M = O (|K|27%/2/(ve)) in Theorem 7.2.1, and boost the success probability
to 1 — O(1/]|K]) with O (log(|K|)) repetitions. Thus for any k& € K the overall
complexity of estimating Eq. (7.3.14) with sufficient precision has (query) complex-

ity O (% log (1) log(|K])) = O (L log? () loglog (L)). Therefore estimating

lp — q||§ to precision ve?/6 with high probability has (query) complexity

1 1 1
@ (— log® (—) log log (—)) . O
ve ve ve

9If we have a projected unitary encoding of IIUIL = A = > 6i [0, 4| with I = |0)(0| ® I, we
can immediately turn it into a block-encoding of ATA =", ¢? |i)(i| by e.g. applying Theorem 7.2.2
with the polynomial 2.
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It is easy to see an {2 (%) lower bound on the above problem even in the
strongest quantum pure state input model Definition 7.1.4. Indeed, consider the case
n=2,q=(3,1) (the uniform distribution on {1,2}) and we want to test whether
p=qor |[p—ql|a > e This is equivalent to test whether p; = % or |p — %| > \/L?
due to the optimality of amplitude estimation in Theorem 7.2.1, this task requires
Q(%) quantum queries to the unitary U preparing the state \/py [1) + /P2 2).

Now we prove the result below on (tolerant) ¢2-closeness testing for quantum

distributions:

Theorem 7.3.4. Given e,v € (0,1) and two density operators p,c € C™™ with pu-
rified quantum query-access to U, and U, as in Definition 7.1.2, it takes O (min (*/Tﬁ, E%) %)
queries to Uy, Ul U,, Ul to decide whether ||p—ol|, > € or |p—oll, < (1 —v)e, with

success probability at least 2/3.

Proof. We can combine the block-encodings of p and o to apply the map 5% to the

maximally entangled state ) %, which gives

;\ﬁ%) - (p;UW);m\/’ﬁj) 0) +... 1) (7.3.15)

The probability of measuring the |0) ancilla state is

> (@_40) ®f) 0D LSS it o= 0 fiy = = Te{(p - 0)2). (7:3.16)

,j=1

Thus it suffices to apply amplitude estimation with M = © <i—?> calls to U,,, Ug, Uy, Ul
On the other hand, we can estimate ||p — o3 by observing that ||p — o3 =
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tr{(p — 0)?} = tr{p?’} — 2tr{po} + tr{o?}. Since the success probability of the
SWAP test ([62]) on input states p,o is 1 (1 + tr{po}), we can individually esti-
mate the latter quantities with precision O (ve?) using amplitude estimation (The-
orem 7.2.1) with O (%) queries to UP,U;,UU,U;. As a result, we could decide
whether ||p—o||, > € or |p—o]l, < (1 — v)e using O (1) queries.

The result of Theorem 7.3.4 hence follows by taking the minimum of the two

complexities. O

7.3.3 ('-closeness testing with purified query-access

Corollary 7.3.1. Given € > 0 and two distributions p,q on the domain |[n| with
purified quantum query-access via U, and U, as in Definition 7.1.2, it takes O (‘@)
queries to U, Ug, Uy, UJ to decide whether p=q or ||[p—q||; > € with success proba-
bility at least 2/3. Similarly for density operators p,o € C™*™ with purified quantum
query-access via U, and Uy, it takes O (%) queries to U, U;f, Uy, Ul to decide whether

p=o or||p—oll; > € with success probability at least 2/3.

Proof. By the Cauchy-Schwartz inequality we have |[p—ql|2 > \/LEH p—ql|1, therefore
Theorem 7.3.3 implies our claim by taking € + ¢/4/n therein. Similarly, Theo-

rem 7.3.4 implies our claim for quantum distributions p and o. O

7.3.4 Independence testing with purified query-access

Corollary 7.3.2. Given € > 0 and a classical distribution p on [n] x [m]| with

the purified quantum query-access via U, as in Definition 7.1.2, it takes O (@)
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queries to U, U;[ to decide whether p is a product distribution on [n] x [m| or p is
e-far in (*-norm from any product distribution on [n] X [m] with success probability

at least 2/3.

Proof. We define p4 to be the margin of p on the first marginal space, i.e., pa(i) =
>y p(i, j) for alli € [n]. We similarly define pp to be the margin of p on the second
marginal space, i.e., pg(j) = >, p(i,j) for all j € [m]. Assume the quantum oracle

U, from Definition 7.1.2 acts as

U,[0)4]0)5|0)¢ = ZZ\/ L DN alg) Bls)e (7.3.17)

=1 j5=1

—

| )i ;) for all i € [n] and |p;) = > p(i,yl

i=1 pB(j

if we denote |¢;) = Z

[)]4)i.;) for

=

all j € [m], then we have

Up|0)4l0)B|0)c = Z Vpa(@)li)al¢i) p.o = Z VoD slejac.  (7.3.18)

As a result,

n m

(U, @ Up)([10)%9) = " \/pa(i)v/ps(i)i)5)|éi) 1 05); (7.3.19)

=1 j=1

in other words, one purified quantum query to the distribution p4 X pp can be
implemented by two queries to U,,.
If p is a product distribution on [n] X [m|, then p = ps X pp; if p is efar

in (*-norm from any product distribution on [n] x [m], then ||p — pa X pall1 > e
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Therefore, the problem of independence testing reduces to ¢!-closeness testing for

distributions on [n] x [m], and hence Corollary 7.3.2 follows from Corollary 7.3.1. [

Similarly, Corollary 7.3.1 implies that the quantum query complexity of testing

independence of quantum distributions is O (%)

7.4 Rényi entropy estimation

In this section, we focus on the specific question of Rényi entropy estimation.
The methodology will be significantly different from that of the previous sections; we
give a sketch of the techniques, and full details and proofs can be found in [192]. For
our convenience, we focus on classical distributions with discrete query-access (Def-
inition 7.1.3), since the results for purified quantum query-access (Definition 7.1.2)

naturally follows with an overhead of \/n as in Section 7.1.3.

7.4.1 Overview

One important generalization of Shannon entropy is the Rény: entropy of order

a > 0, denoted H,(p), which is defined by

=log > o p%, when a # 1.
Ha(p) := (7.4.1)

lim, 1 Ha(p), when o = 1.

The Rényi entropy of order 1 is simply the Shannon entropy, i.e., Hi(p) = H(p).

General Rényi entropy can be used as a bound on Shannon entropy, making it
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useful in many applications (e.g., [27, 89]). Rényi entropy is also of interest in its
own right. One prominent example is the Rényi entropy of order 2, Hy(p) (also
known as the collision entropy), which measures the quality of random number
generators (e.g., [266]) and key derivation in cryptographic applications (e.g., [47,
148]). Motivated by these and other applications, the estimation of Rényi entropy
has also been actively studied [11, 153, 154]. In particular, Acharya et al. [11] have
shown almost tight bounds on the classical query complexity of computing Rényi
entropy. Specifically, for any non-integer o > 1, the classical query complexity of
a-Rényi entropy is Q(n'=°")) and O(n). Surprisingly, for any integer a > 1, the
classical query complexity is ©(n'~/®), i.e., sublinear in n. When 0 < o < 1, the
classical query complexity is Q(n'/*=°M)) and O(n'/*), which is always superlinear.

The extreme case (¢« — 00) is known as the min-entropy, denoted H.(p),

which is defined by

Hy(p) := lim H,(p) = —log max p;. (7.4.2)

a—r00 i€[n]

Min-entropy plays an important role in the randomness extraction (e.g., [260]) and
characterizes the maximum number of uniform bits that can be extracted from a
given distribution. Classically, the query complexity of min-entropy estimation is
©(n/logn), which follows directly from [262].

Another extreme case (o = 0), also known as the Hartley entropy [140], is the

logarithm of the support size of distributions, where the support of any distribution
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p is defined by
Supp(p) := {z : z € X, p, > 0}]. (7.4.3)

It is a natural and fundamental quantity of distributions with various applications
(e.g., [105, 109, 133, 147, 177, 228, 258]). However, estimating the support size
is impossible in general because elements with negligible but nonzero probability,
which are very unlikely to be sampled, could still contribute to Supp(p). Two
related quantities (support coverage and support size) have hence been considered
as alternatives of 0-Rényi entropy with roughly ©(n/logn) complexity.

Besides the entropic measures of a discrete distribution, we also briefly discuss
an entropic measure between two distributions, namely the Kullback-Leibler (KL)
divergence. Given two discrete distributions p and ¢ with cardinality n, the KL

divergence is defined as

Di
Dxw(pllg) =) pilog o (7.4.4)

1€[n]

KL divergence is a key measure with many applications in information theory
[90, 178], data compression [64], and learning theory [174]. Classically, under the
assumption that & < f(n) Vi € [n] for some f(n), Dxw(p[lq) can be approximated

within constant additive error with high success probability if @(%) samples are

nf(n)

logn

taken from p and ©( ) samples are taken from g.
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Main question. In this section, we study the impact of quantum computation
on estimation of general Rényi entropies. Specifically, we aim to characterize quan-
tum speed-ups for estimating Rényi entropies of classical distributions with discrete
query-access (Definition 7.1.3), i.e., for a distribution p = (p;)I, on [n] with a

function O,: [S] — [n] for some S € N such that

pi = |{s € [S]: Opls) = i}1/5, (7.4.5)

we assume a unitary operator Op acting on C¥ ® C"*! such that

O,1)[0) = [5)[0,(s)) Vs € [S). (7.4.6)

This oracle model can also be readily obtained in some algorithmic settings, e.g.,
when distributions are generated by some classical or quantum sampling procedure.
Thus, statistical property testing results in this oracle model can be potentially

leveraged in algorithm design.

Our results. Our main contribution is a systematic study of both upper and lower
bounds for the quantum query complezity of estimation of Rényi entropies (including
Shannon entropy as a special case). Specifically, we obtain the following quantum

speedups for different ranges of a.

Theorem 7.4.1. There are quantum algorithms that approximate H,(p) of distri-

bution p on [n] within an additive error 0 < ¢ < O(1) with success probability at
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least 2/3 using"®

° 0(61_5) quantum queries when o = 0, i.e., Hartley entropy.*!

B

° O("l/(z;w) quantum queries? when 0 < ar < 1.
. O({—f) quantum queries when o = 1 (Shannon entropy).

~ v(l—1/a) .
. O(”E—Q) quantum queries when o > 1, € N for some v < %.

nl—1/2a

) O( = ) quantum queries when o > 1, ¢ N.

° O(Q((—wi‘;g"w—distinctness)) quantum queries when o = oo, where we denote
Q( (—16163”] -distinctness) as the quantum query complexity of the (1616#} -distinctness

problem.

Our quantum testers demonstrate advantages over classical ones for all 0 <
a < oo; in particular, our quantum tester has a quadratic speedup in the case
of Shannon entropy. When a = oo, our quantum upper bound depends on the
quantum query complexity of the [logn|-distinctness problem, which is open to the
best of our knowledge!® and might demonstrate a quantum advantage.

As a corollary, we also obtain quadratic quantum speedup for estimating KL

divergence:

10Tt should be understood that the success probability 2/3 can be boosted to close to 1 without
much overhead.

110-Rényi entropy estimation is intractable without any assumption, both classically and quan-
tumly. Here, the results are based on the assumption that nonzero probabilities are at least 1/n.

120) hides factors that are polynomial in logn and log 1/e.

13Existing quantum algorithms for the k-distinctness problem (e.g., [17] has query complexity
O(k2n*/*+1) and [44] has query complexity O(2F n”) for some v < 3/4) do not behave well for
super-constant ks.

350



Corollary 7.4.1. Assuming p and q satisfies & < f(n) Vi€ [n] for some function

[N = R*, Dgi(pllq), there is a quantum algorithm that approzimates Dk (p||q)

within an additive error € > 0 with success probability at least % using O({—Qﬁ) quan-

(\/ﬁf(n))
62

tum queries to p and o quantum queries to q.

On the other hand, we obtain corresponding quantum lower bounds on entropy
estimation using the polynomial method [6, 43], which are then combined with a
couple of lower bounds shown in [63]. It is worth mentioning that lower bounds
in [63] are established when assuming € = O(1), whereas our lower bounds have
precise error dependence.

We summarize both bounds in Table 7.3 and visualize them in Figure 7.1.

Theorem 7.4.2. Any quantum algorithm that approximates H,(p) of distribution

p on [n] within additive error € with success probability at least 2/3 must use

Q(y/n + n3 /es) quantum queries when o = 0, assuming 1/n < e < 1/12.

Q(n7a—W /e7) quantum queries when 0 < o < g,

o Q(n3/es) quantum queries when $<a<3,a#1, assuming 1/n < e<1/2.

Q(v/n+ n%/eé) quantum queries when o = 1, assuming 1/n < e <1/2.

o Q(nz-2 /€) quantum queries when 3 < a < oc.

Q(y/n/e€) quantum queries when o = 0.
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o classical bounds ‘ quantum bounds (our result) ‘
a=0 @(logn) [223, 276] O(y/n) (this paper), Q(y/n) [63]
O<a<l |O(E), Qna— ") [11] | O(na—%), Ymax{n7= V) ni})
a=1 O (5e7) [153, 262, 275] O(y/n) (this paper), Q(y/n) [63]
a>1a¢N| OGE), Qn' W) [11] | O(n'~=), Q(max{ns,n 2 })
a=2 O(vn) [11] O(n3)
a>2aeN O(n'~1/) [11] O(n*1=12)) Q(n2—2), v < 3/4
a =00 O (foa7) [262] O(Q([logn]-distinctness)), (/)

Table 7.3: Classical and quantum query complexities of estimating a-Rényi entropy H(p),

assuming ¢ = O(1). © 2019 IEEE.

exponent of n

2.0 Classical tight bounds
— Quantum upper bounds
15 — Quantum lower bounds
* Quantum tight bounds
1.08
[ ]
0.5 ° °
L L L L L L L L L a
0 1 2 3 4 5

Figure 7.1: Visualization of classical and quantum query complexity of H,(p). The x-axis
represents « and the y-axis represents the exponent of n. Red curves and points represent
quantum upper bounds. curves and points represent classical tight bounds. Blue
curve represents quantum lower bounds. Purple points represent quantum tight bounds.
(© 2019 IEEE.
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Techniques. At a high level, our upper bound is inspired by BHH [59], where we
formulate a framework (in Section 7.4.2) that generalizes the technique in BHH and
makes it applicable in our case. Let F\(p) = > p.f(p.) for some function f(-) and
distribution p. Similar to BHH, we design a master algorithm that samples = from
p and then use the quantum counting primitive [57] to obtain an estimate p, of p,
and outputs f(p.). It is easy to see that the expectation of the output of the master
algorithm is roughly'* F(p). By choosing appropriate f(-)s, one can recover H(p)
or H,(p) as well as the ones used in BHH. It suffices then to obtain a good estimate
of the output expectation of the master algorithm, which was achieved by multiple
independent runs of the master algorithm in BHH.

The performance of the above framework (and its analysis) critically depends
on how close the expectation of the algorithm is to F(p) and how concentrated
the output distribution is around its expectation, which in turn heavily depends
on the specific f(-) in use. Our first contribution is a fine-tuned error analysis for
specific f(+)s, such as in the case of Shannon entropy (i.e., f(p,) = —log(p.)) whose
values could be significant for boundary cases of p,. Instead of only considering the
case when p, is a good estimate of p, as in BHH, we need to analyze the entire
distribution of p, using quantum counting. We also leverage a generic quantum
speedup for estimating the expectation of the output of any quantum procedure
with additive errors [208], which significantly improves our error dependence as
compared to BHH. These improvements already give a quadratic quantum speedup

for Shannon (Section 3 of [192]) and 0-Rényi (Section 8 of [192]) entropy estimation.

The precise expectation is > p,E[f(p,)]. Intuitively, p, should be a good estimate of p,.

x
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As an application, it also gives a quadratic speedup for estimating the KL-divergence
between two distributions (Section 4 of [192]).

For general a-Rényi entropy H,(p), we choose f(p,) = p®~! and let P,(p) =
F(p) so that H,(p) x log P,(p). Instead of estimating F(p) with additive errors in
the case of Shannon entropy, we switch to working with multiplicative errors which
is harder since the aforementioned quantum algorithm [208] is much weaker in this
setting. Indeed, by following the same technique, we can only obtain quantum
speedups for a-Rényi entropy when 1/2 < o < 2.

For general a > 0, our first observation is that if one knew the output expec-
tation E[X] is within [a, b] such that b/a = ©(1), then one can slightly modify the
technique in [208] (as shown in Theorem 7.4.4) and obtain a quadratic quantum
speedup similar to the additive error setting. This approach, however, seems circu-
lar since it is unclear how to obtain such a,b in advance. Our second observation
is that for any close enough ay, e, P,, (p) can be used to bound P,,(p). Precisely,
when a;/ay = 14 1/log(n), we have P, (p) = O(P,,(p)*/%2). As a result, when
estimating P,(p), we can first estimate P, to provide a bound on P,, where o/, «
differ by a 1 £ 1/log(n) factor and o/ moves toward 1. We apply this strategy re-
cursively on estimating P, until o/ is very close to 1 from above when initial a > 1
or from below when initial & < 1, where a quantum speedup is already known.
At a high level, we recursively estimate a sequence (of size O(logn)) of such as
that eventually converges to 1, where in each iteration we establish some quantum
speedup which leads to an overall quantum speedup. We remark that our approach

is in spirit similar to the cooling schedules in simulated annealing (e.g. [251]). (See
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Section 5 of [192].)

For integer a > 2, we observe a connection between P, (p) and the a-distinctness
problem which leads to a more significant quantum speedup. Precisely, let O, :
[S] — [n] be the oracle in (7.4.6), we observe that P,(p) is proportional to the a-
frequency moment of Op(1),...,0,(S) which can be solved quantumly [209] based
on any quantum algorithm for the a-distinctness problem (e.g., [44]). However,
there is a catch that a direct application of [209] will lead to a dependence on S
rather than n. We remedy this situation by tweaking the algorithm and its analy-
sis in [209] to remove the dependence on S for our specific setting. (See Section 6
of [192].)

The integer « algorithm fails to extend to the min-entropy case (i.e., & = +00)
because the hidden constant in O(+) has a poor dependence on «. Instead, we develop
another reduction to the [logn]-distinctness problem by exploiting the so-called
“Poissonized sampling” technique [153, 180, 262]. At a high level, we construct
Poisson distributions that are parameterized by p;s and leverage the “threshold”
behavior of Poisson distributions. Roughly, if max; p; passes some threshold, with
high probability, these parameterized Poisson distributions will lead to a collision of
size [logn]| that will be caught by the [logn]-distinctness algorithm. Otherwise, we
run again with a lower threshold until the threshold becomes trivial. (See Section 7
of [192].)

Some of our lower bounds come from reductions to existing ones in quantum
query complexity, such as the quantum-classical separation of symmetric boolean
functions [4], the collision problem [6, 179], and the Hamming weight problem [212],
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for different ranges of a. We also obtain lower bounds with a better error dependence
by the polynomial method, which is inspired by the celebrated quantum lower bound

for the collision problem [6, 179]. (See Section 9 of [192].)

Notations. Throughout this section, we consider a discrete distribution {p;},
on [n], and P,(p) := >, pf* represents the a-power sum of p. In the analyses of

our algorithms, ‘log’ is natural logarithm; ‘~’ omits lower order terms.

7.4.2 Master algorithm

Let p = (p;)I~; be a discrete distribution on [n] encoded by the quantum oracle
O, defined in (7.4.6). Inspired by [59] (BHH) and [208], we develop the following
master algorithm to estimate a property I’ with the form F(p) := Zie[n] pif(pi) for

a function f: (0,1] — R.

Algorithm 7.2: Estimate F'(p) = ). p; f(p:) of a distribution p on [n].

1 Set [, M € N;

2 Regard the following subroutine as A:

Draw a sample i € [n] according to p;

Use Est Amp or EstAmp’ with M queries to get an estimate p; of p;;

Output X = f(p;);

6 Use A for [ executions in Theorem 7.4.3 or Theorem 7.4.4 and output F(p)
to estimate F(p);

[SL B N

Comparing to BHH, we introduce a few new technical ingredients, which signif-
icantly improve the performance of Algorithm 7.2 especially for specific f()s in our
case, e.g., f(p.) = —log(p,) (Shannon entropy) and f(p,) = p>~! (Rényi entropy).

The first one is a generic quantum speedup of Monte Carlo methods [208],
in particular, a quantum algorithm that approximates the output expectation of a
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subroutine with additive errors that has a quadratic better sample complexity than

the one implied by Chebyshev’s inequality.

Theorem 7.4.3 (Additive error; Theorem 5 of [208]). Let A be a quantum al-
gorithm with output X such that Var[X| < o%. Then for ¢ where 0 < € < 4o,
by using O((0/€) log®*(c/€)loglog(a/€)) executions of A and A~', Algorithm 3 in

[208] outputs an estimate E[X] of E[X] such that

Pr[|E[X] — E[X]| > ¢] < 1/5. (7.4.7)

It is worthwhile mentioning that classically one needs to use Q(c?/€?) execu-
tions of A [91] to estimate E[X]. Theorem 7.4.3 demonstrates a quadratic improve-
ment on the error dependence. In the case of approximating H,(p), we need to work
with multiplicative errors while existing results (e.g. [208]) have a worse error depen-
dence which is insufficient for our purposes. Instead, inspired by [208], we prove the
following theorem (our second ingredient) that takes auxiliary information about

the range of E[X] into consideration, which might be of independent interest.

Theorem 7.4.4 (Multiplicative error). Let A be a quantum algorithm with output
X such that Var[X| < o?E[X]? for a known o. Assume that E[X] € [a,b]. Then for
€ where 0 < € < 240, by using A and A~ for O((ob/ea)log®?(ab/ea) loglog(ab/ea))

executions, Algorithm 7.3 outputs an estimate E[X] of E[X] such that

Pr [|E[X] — E[X]| > E[X]] < 1/10. (7.4.8)
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To prove Theorem 7.4.4, the main technique that we use is Lemma 4 in [208],
which approximates a random variable with an additive error as long as its second-

moment is bounded:

Lemma 7.4.1 (Lemma 4 in [208]). Assume A is a quantum algorithm that outputs
a random variable X. Then for € where 0 < ¢ < 1/2 (multiplicative error), by
using O((1/€) log*?*(1/€) loglog(1/€)) executions of A and A=, Algorithm 2 in [208]

outputs an estimate E[X] of E[X] such that'®

Pr [|E[X] — E[X]| > e(\/E[X?] + 1)*] < 1/50. (7.4.9)

Based on Lemma 7.4.1 and inspired by Algorithm 3 and Theorem 5 in [208], we

propose Algorithm 7.3.

Algorithm 7.3: Estimate E[X] within multiplicative error e.

Run the algorithm that gives a, b such that E[X] € [a, b];

Set A" = A/ob;

Run A’ once and denote m to be the output. Set B = A" — m;

Let B_ be the algorithm that calls B once; if B outputs x > 0 then B_
outputs 0, and if B outputs x < 0 then B_ outputs x. Similarly, let B, be
the algorithm such that if B outputs x < 0 then B, outputs 0, and if B
outputs x > 0 then B, outputs z;

Apply Lemma 7.4.1 to —B_/6 and B, /6 with error £% and failure

480b
probability 1/50, and obtain estimates ;i and ji,, respectively;

Output E[X] = ob(m — 67i_ + 6]i);

BwW N =

9]

=]

We now give the proof of Theorem 7.4.4.

15The original error probability in (7.4.9) is 1/5, but it can be improved to 1/50 by rescaling
the parameters in Lemma 4 in [208] up to a constant.
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Proof. Because Var[X] < ¢?E[X]? < 02b?, by Chebyshev’s inequality we have

Pr [|m — E[X/ob]| > 4] < 1/16. (7.4.10)

Therefore, with probability at least 15/16 we have |m — E[X/ob]| < 4. Denote
Xp = % — m, which is the random variable output by B; Xp, := max{Xp,0}

is then the output of B, and Xp _ := min{Xp,0} is the output of B_. Assuming

[m — E[X/ob]| < 4, we have

B3 = E[((5 ~ B[S ) + B[] ) ] (7.411)
< QE[(% —E[%})Q] +2E[(E[%} —mﬂ (7.4.12)
< 2(1% 4 4%) = 34. (7.4.13)

Therefore, E[(X/6)?] < 34/36 < 1, hence E[(Xp 4/6)?] <1landE[(—Xp_/6)?] <

1. By Lemma 7.4.1, we have

p- —E[— [y — < 4.
o-E-Xp /6] < and [E—EXp. /0] < o (TA14)
both with failure probability at most 1/50. Because
E[X] = ob(m + E[X3]) = ob(m + E[Xp ] — E[-Xp_]), (7.4.15)
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with probability at least 15/16 - (1 — 1/50)? > 9/10, we have

|E[X] - E[X]| < ob- (6|i- — E[-Xp_/6]| + 6|p. — E[Xp/6]|) (7.4.16)

= ca < E(X). (7.4.17)

<ob-2-
ob-2-6- 5 =

]

The third ingredient is a fine-tuned error analysis due to the specific f(-)s.
Similar to BHH, we rely on quantum counting (named EstAmp) [57] to estimate
the pre-image size of a Boolean function, which provides another source of quantum
speedup. In particular, we approximate any probability p, in the query model
((7.4.6)) by p,. by estimating the size of the pre-image of a Boolean function y: [S] —
{0,1} with x(s) = 1if O(s) =i and x(s) = 0 otherwise. However, for cases in BHH,
it suffices to only consider the probability when p, and p, are close, while in our case,
we need to analyze the whole output distribution of quantum counting. Specifically,

1

letting ¢ = |[x~*(1)| and a = /S = sin*(wm) for some w, we have

Theorem 7.4.5 ([57]). For any k, M € N, there is a quantum algorithm (named

EstAmp) with M quantum queries to x that outputs a = sin® (M”) for some | €

{0,..., M — 1} such that

Pr [a — sin? (Z—W)] = ]\S;;S(iga% < (ZMlA)Q, (7.4.18)

where A = |w — L|. This promises |a — a| < 2rkY—— a(l 94 g2 ”2 with probability at

least 5 for k =1 and with probability greater than 1 — fork>2. Ifa=0

k:l)
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then a = 0 with certainty.

Moreover, we also need to slightly modify Est Amp to avoid outputting p, = 0
in estimating Shannon entropy. This is because f(p,) = log(p,) is not well-defined

at p, = 0. Let EstAmp’ be the modified algorithm. It is required that Est Amp’

T

s17) when Est Amp outputs 0 and outputs Est Amp’s output other-

outputs sin?(
wise.
By leveraging Theorem 7.4.3, Theorem 7.4.4, Theorem 7.4.5, and carefully

setting parameters in Algorithm 7.2, we have the following corollaries that describe

the complexity of estimating any F'(p).

Corollary 7.4.2 (additive error). Given e > 0. Ifl = @((%) log3/? (%) log log (%))
where Var[X] < o% and M is large enough such that |E[X] — F(p)| < €, then
Algorithm 7.2 approximates F(p) with an additive error € and success probability

2/3 using O(M -1) quantum queries to p.

Corollary 7.4.3 (multiplicative error). Assume a procedure using C,p quantum
queries that returns an estimated range [a,b], and that E[X] € [a, b] with probability
at least 0.9. Let | = O((22)1og**(2) loglog(22)) where Var[X]/(E[X])? < 02 and
e > 0. For large enough M such that |E[X] — F(p)| < e, Algorithm 7.2 estimates
F(p) with a multiplicative error € and success probability 2/3 with O(M - 1+ Cy)

queries.

We can use Corollary 7.4.2 and Corollary 7.4.3 to prove our entropy estimation

results in Theorem 7.4.1. Complete details and proofs are given in [192].
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7.5 Conclusions and discussion

In this chapter, we show that quantum computers can test properties of dis-
tributions with significant speed-ups. We also introduce a novel access model for
quantum distributions, enabling the coherent preparation of quantum samples, and
propose a general framework that can naturally handle both classical and quantum
distributions in a unified manner. Our framework generalizes and improves previous
quantum algorithms for testing closeness between unknown distributions, testing in-
dependence between two distributions, and estimating the Shannon / von Neumann
/ Rényi entropy of distributions. For classical distributions our algorithms signifi-
cantly improve the precision dependence of some earlier results. We also show that
in our framework procedures for classical distributions can be directly lifted to the
more general case of quantum distributions, and thus obtain the first speed-ups for
testing properties of density operators that can be accessed coherently rather than
only via sampling.

There are a couple of natural open questions for future work, including;:

e For which other distributional property testing problems can we get faster and

simpler quantum algorithms using the presented methodology?

e Can we prove quantum lower bounds that match our upper bounds? For
instance, can we prove an () (%) lower bound on estimating the von Neumann

entropy in the purified quantum query-access model for density operators?

e [s there a lower bound technique which naturally fits our purified quantum
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query input model?

e Can we prove the conjecture that the purified and discrete query input models
are equivalent for classical distributions, with respect to the query complexity
of (distributional) property testing problems? For some recent progress in this

direction see [45].
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Chapter 8: Conclusions and Future Work

This thesis presented quantum algorithms for three different fields:

e Optimization: With implicit oracle access, we studied quantum speedup of
general convex optimization (Chapter 2) and volume estimation of convex
bodies (Chapter 3). With explicit matrix inputs, we studied quantum SDP

solvers (Chapter 4).

e Machine learning: We proposed the optimal quantum algorithm for classifica-
tion (Chapter 5). We also studied quantum-inspired classical machine learning

algorithms (Chapter 6).

e Statistics: We focused on quantum speedup of testing properties of distribu-

tions (Chapter 7).

I believe that our quantum algorithms can motivate further interdisciplinary
research between quantum computing and optimization, machine learning, and
statistics. For instance, it might be worthwhile to explore the following future

directions:

Nonconvex optimization. Recently, research on nonconvex optimization has
been dramatically developed because the loss functions in many machine learning
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models (including neural networks) are typically not convex. However, finding the
global optima of a nonconvex function is NP-hard in general. Instead, many theoret-
ical works focus on finding local optima of nonconvex functions, since there are land-
scape results suggesting that local optima are nearly as good as the global optima
for many learning problems (see e.g. [50, 116-119, 136]). Specifically, Refs. [155, 156]
presented a breakthrough result along this line, which finds an e-approximate local
minimum in O(1/€?) iterations using only the gradient oracle V f(z).

Quantumly, it would be natural to explore quantum algorithms for noncon-
vex optimization. On the one hand, escaping saddle points is essentially tunneling
through poor landscapes, and quantum tunneling can potentially be a mechanism
for solving nonconvex optimization with quantum speedup. On the other hand,
it would be of interest to investigate real scenarios where gradients are difficult to
compute and only evaluations of the function are available, and see how quantum

computers provide speedups in such cases.

Sampling from convex bodies. Sampling from convex bodies is closely related
to convex optimization with wide applications in machine learning. As seen in
(Chapter 3), sampling from n-dimensional log-concave distributions can be achieved
in poly(n) time given query access to the function [103, 112] using the hit-and-run
walk. However, in many cases other dynamics can converge significantly faster; com-
mon proposals are Metropolis sampling [101], Langevin dynamics [92], Hamiltonian
Monte Carlo [185], etc.

It is a natural question to understand the convergence of quantum dynamics in
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general. Such analysis might rely on better understanding of open quantum systems,
for instance our paper [82] showed how to efficiently simulate sparse Markovian open

systems.

Learning distributions. Following Chapter 7, it is natural to explore quantum
algorithms for learning distributions. On the one hand, it is worthwhile to inves-
tigate quantum algorithms for learning distributions from given types, a common
question asked in learning theory and statistics. This problem has been studied
classically for log-concave [71], unimodal [71], Poisson binomial [72], and Gaussian
distributions [72], and it is a natural question to ask whether quantum algorithms
have advantages for them. On the other hand, it may also be of interest to under-
stand the quantum complexity of learning the structure of an Ising model. Classical
algorithms for this topic have been well-understood (see e.g. [94, 124, 176]), but given
that quantum Ising models are extensively used and studied in quantum mechanics,

it would be interesting to understand the cost of learning their structures.
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