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The AA5083-H116 aluminum alloys (Al-4.7Mg-0.62Mn-0.29Fe-0.15Si-

0.099Cr-0.094Zn-0.036Cu-0.018Ti-0.086Other) are lightweight structural materials 

for marine applications. Due to the high magnesium content ( > 3wt.%), the 

sensitization of Al3Mg2 𝛽-phase and susceptibility for intergranular stress corrosion 

cracking (IGSCC) in AA5083-H116 significantly increases under thermal exposure. 

The effects of laser-shock peening (LSP) on the kinetics of 𝛽-phase were studied via 

accelerated sensitization heat treatments between 70-175℃ for times between 5-3,600 

hours. Optical microscopy, transmission electron microscopy (TEM), and finite 

element method (FEM) modeling were utilized to study the effect of LSP on AA5083-

H116 microstructural evolution, dislocation morphology, and stress-strain distribution. 

FEM results showed LSP induces plastic compressive deformation near the surface. 

TEM observations confirmed the models, showing dislocation density increased by a 



factor of ~4.7, with residual tensile stresses throughout the thickness. The kinetics of 

𝛽 -phase precipitation and coarsening were not impacted by LSP; however, it is 

recommended that its influence on IGSCC should be investigated further.  
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Chapter 1: Introduction 

Aluminum alloys are highly attractive to many different industries due to their 

high strength-to-weight ratio and adjustable chemical compositions. This thesis will 

mainly focus on the 5xxx series of aluminum alloys, specifically the 5083-H116 

aluminum alloy. The 5xxx series aluminum alloys are great structural materials that 

have been widely used in many lightweight applications, especially marine 

applications. The 5xxx series has great corrosion resistance, mechanical properties, 

weldability, and formability due to a high magnesium content (4.0 wt. % to 4.9 wt. %). 

The drawback of high percentage of magnesium content (> 3 wt. %) in the aluminum 

alloys is sensitization of Al3Mg2 beta (𝛽) phase. Sensitization can easily occur under 

thermal exposure and increase the susceptibility to intergranular corrosion (IGC) and 

intergranular stress corrosion cracking (IGSCC) in a corrosive sea water [1-3]. These 

intergranular attacks in sea water are strongly associated with the Al3Mg2 𝛽  phase 

formation along the grain boundaries [2]. Al3Mg2 𝛽  phase has a high selective-

dissolution rate in chloride solutions, such as sea water, due to the 𝛽 phase’s anodic 

behavior with the aluminum matrix [2, 3]. The effective sensitization temperature can 

be as low as 50℃ (122℉) to initiate the precipitation of 𝛽 phase both along the grain 

boundaries and inside the grains [2, 3]. Sensitization, IGC, and IGSCC cause 

detrimental impacts on the performance of 5xxx series aluminum alloys in marine 

environments. Laser shock peening has been proposed as a method of combating 

sensitization, IGC, and IGSCC as a response to these issues. 
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 The application of laser shock peening on aluminum alloys surfaces is not a 

new concept. There is a lot of research that shows laser shock peened aluminum alloys 

have better fatigue properties than unpeened alloys. However, the belief that laser 

shock peening will help reduce sensitization and IGSCC for aluminum alloys is a novel 

claim and requires further investigation and understanding to verify. 

 As previously mentioned about the major concerns of Al3Mg2 𝛽  phase 

precipitates along grain boundaries and the proposed idea about the benefit and solution 

of using the laser shock peening process to help resolving the sensitization and 

intergranular attack problems in the 5xxx series aluminum alloys, this research focuses 

on the effect of laser shock peening on sensitized and un-sensitized AA5083-H116 

samples. To understand the effects of laser shock peening on the alloy, materials 

characterization and computational analysis were performed on both laser shock 

peened and unpeened specimen, both before and after various heat treatments. 

 

  



 

 

3 

 

The specific objectives of this research: 

1. In order to understand the past and current studies of the sensitization effect 

on 5xxx series aluminum alloys, a literature review of magnesium atomic 

segregation and enrichment, Al3Mg2 𝛽 phase formation, and laser shock 

peening technology is performed. 

2. Based on the findings from the literature reviews, a detailed plan on the heat 

treatment conditions and schedule is created. 

3. Carry out the experiment according to the plan, which included heat treating 

both peened and unpeened samples at four different temperatures and 

several different thermal-aging time intervals. 

4. For microstructural analysis, optical microscope is used to observe the 

Al3Mg2 𝛽 phase formation and microstructural changes between different 

heat treatments, aging times, and laser shock peening conditions. 

5. Transmission electron microscopy (TEM) is used to characterize the 

difference in dislocation morphology between unaged peened and unpeened 

samples. 

6. Perform finite element method (FEM) modeling by simulating the laser 

shock peening effect on AA5083-H116 and predict the stress distribution 

and behavior induced by the laser shock peening process.  

7. Interpret and analyze the results and data generated from the experiment 

and the FEM models. 
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The outline of this thesis: 

• Chapter 1 Introduction: This chapter provides a general overview of the 

research topic and goals for this research. 

• Chapter 2 Literature Review: This chapter contains specific literature 

review for the following topics, 

▪ 2.1. Brief overview of aluminum: provides the basic information on 

and properties of aluminum. 

▪ 2.2. Aluminum alloys: discusses the different aluminum alloy series 

and gives a general overview on each series. 

▪ 2.3. Al 5083-H116 background information: provides the materials 

properties and compositions of AA5083-H116. 

▪ 2.4. Sensitization of 5xxx series aluminum alloys: provides the 

concepts of sensitization in aluminum alloys. 

▪ 2.5. Magnesium segregation and enrichment: discusses type of 

segregation and provides findings from literature that shows 

magnesium enrichment along grain boundaries and on free surfaces 

of aluminum. 

▪ 2.6. Al3Mg2 𝛽  phase: discusses the aluminum and magnesium 

binary phase diagram and detailed descriptions of Al3Mg2 𝛽 phase 

formation. 

▪ 2.7. Laser shock peening technology: details the theory and process 

of laser shock peening technology. 
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• Chapter 3 Experimental Methods and Results: This chapter provides a 

detailed plan for the experiment, which includes experiment set-up, sample 

preparation, testing procedures, measuring methods, and results. 

▪ 3.1. Testing Materials: provides testing specimens information. 

▪ 3.2. Laser Shock Peening process: summarizes the application of 

laser shock peening on the specimen. 

▪ 3.3. Heat Treatments: provides a detailed plan for thermal treatment 

and aging times based on the literature review findings, and explains 

the experimental set-up and procedures for the artificial sensitization 

process. 

▪ 3.4. Material Characterization: provides sample preparation steps, 

testing procedures and results to the following material 

characterization methods. 

o 3.4.1. Optical Microscopy 

o 3.4.2. Optical Microscopy Results  

o 3.4.3. Average Grain Size Measurement 

o 3.4.4. Average Grain Size Measurement Results 

o 3.4.5. Transmission Electron Microscopy (TEM) 

o 3.4.6. Transmission Electron Microscopy Results 

o 3.4.7. Dislocation Density Measurement  

o 3.4.8. Dislocation Density Measurement Results 

• Chapter 4 Finite Element Method (FEM) Modeling: This chapter 

discusses the concept of finite element analysis, the instructions for 
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developing the models, the validation of the models, and the results from 

the model. 

• Chapter 5 Results and Discussion: This chapter discusses the effect of 

laser shock peening process observed with optical microscopy, TEM, and 

FEM modeling. The discussion is mainly focus on the changes in 

microstructure, dislocation morphology, and Al3Mg2 𝛽 phase formation in 

AA5083-H116.  

▪ 5.1. Light Optical Microscopy 

▪ 5.2. Transmission Electron Microscopy 

o 5.2.1. Thermal Effect from Laser Shock Peening Process 

o 5.2.2. Al3Mg2 𝛽 Phase Precipitates 

o 5.2.3. Dislocation Morphology 

▪ 5.3. Finite Element Method Modeling 

• Chapter 6 Conclusions: This chapter summarizes the research, results, and 

discussions from the investigation into the effects of laser shock peening 

on AA5083-H116 and provides suggestions for future work on the topic. 
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Chapter 2: Literature Review  

• 2.1. Brief Overview of Aluminum  

Aluminum is a soft, ductile, and paramagnetic metal with an appearance of 

silvery – white color. The chemical element symbol for aluminum is Al with an atomic 

number 13. It is located on the right side of the periodic table and is the second element 

in the boron group. Aluminum is the most abundant metal in the Earth’s crust, and it 

can be mostly found in bauxite, an aluminum-rich ore for commercial aluminum 

extraction [4]. Aluminum has several attractive properties to many industries, and it is 

used in many applications. These properties include low density, high ductility, 

corrosion resistance, high electrical and thermal conductivity, and adjustable chemical 

compositions that can provide different mechanical properties. Aluminum’s corrosion 

resistance comes from a naturally forming oxide layer that passivates the surface and 

blocks further oxidation. However, pure aluminum is too soft, too ductile, and has 

limited mechanical properties, making it suitable for only a few applications. To 

improve the properties and performance of aluminum, different kinds of alloying 

elements are added to improve mechanical properties, especially strength. This makes 

aluminum usable in many applications. 
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• 2.2. Aluminum Alloys 

With aluminum’s light-weight properties and the growth of aluminum 

fabrication processes, many industries seek to increase its mechanical properties and 

use aluminum as an alternative material for steel in many applications. To increase 

aluminum’s mechanical properties, alloying elements such as copper, manganese, 

silicon, magnesium, and zinc are added. Aluminum can be cast or wrought, and the 

addition of different principal alloying elements are categorized in different series, 

which shows in Table 1 and Table 2 [5]. 

Table 1. Aluminum wrought alloy series and its principal alloying element. 

Aluminum Alloy Series Principal Alloying Element 

1xxx 

Minimum 99.00% of Aluminum 

content (Commercially Pure 

Aluminum) 

2xxx Copper 

3xxx Manganese 

4xxx Silicon 

5xxx Magnesium 

6xxx Magnesium + Silicon 

7xxx Zinc 

8xxx Other Elements (ex. Iron) 

 

Table 2.  Aluminum casting alloy series and its principal alloying element. 

Aluminum Alloy Series Principal Alloying Element 

1xx.0 

Minimum 99.00% of Aluminum 

content (Commercially Pure 

Aluminum) 

2xx.0 Copper 

3xx.0 Silicon with copper and/or magnesium 
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4xx.0 Silicon 

5xx.0 Magnesium 

6xx.0 Unused 

7xx.0 Zinc 

8xx.0 Tin 

9xx.0 Other 

 

Eight different wrought aluminum series can be further separated into heat treatable 

and non-heat treatable aluminum alloys. The following lists provide general 

characteristics of each principle alloying element in its wrought aluminum series. This 

information was gathered from ASM International handbooks [4, 5]. 

 

o 1xxx Series Aluminum Alloys (Non-heat Treatable) 

This series of aluminum alloys are non-heat treatable and can only be strain 

hardened to acquire optimal mechanical properties. 1xxx series aluminum alloys have 

a minimum of 99.00% aluminum, and it is considered to be commercially pure 

aluminum. With at least 99.00% of aluminum, 1xxx series aluminum alloys have great 

corrosion resistance, electrical and thermal conductivity, and formability. 

 

o 2xxx Series Aluminum Alloys (Heat Treatable) 

Copper is the major alloying element in this series of aluminum alloys. They 

are heat treatable are strengthened by precipitation hardening. They have high strength 
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at both room temperature and elevated temperature with yield strengths that can reach 

455 MPa, or 66ksi. 

 

o 3xxx Series Aluminum Alloys (Non-heat Treatable) 

Manganese is the major alloying element in this series of aluminum alloys. 

They are hardened by strain hardening. They have medium strength with great 

formability and corrosion resistance. Typical applications include architectural 

applications, beverage and food containers, and various products. 

 

o 4xxx Series Aluminum Alloys (Non-heat Treatable) 

Silicon is the principal alloying element in this series of aluminum alloys. They 

have great flow characteristics and medium strength. With great flow property, 4xxx 

series aluminum alloys are mostly used at soldering and brazing. 

 

o 5xxx Series Aluminum Alloys (Non-heat Treatable) 

Magnesium is the major alloying element in this series of aluminum alloys. 

5xxx series aluminum alloys are largely used in marine applications as they are strain 

hardenable and have exceptional corrosion resistance, strength, toughness, and 

weldability. However, they are susceptible to intergranular attack when exposed to 

elevated temperatures for prolonged periods of time.  
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o 6xxx Series Aluminum Alloys (Heat Treatable) 

Magnesium and silicon are both major alloying elements for this series of 

aluminum alloys. They have great corrosion resistance, strength, and excellent 

extrudability. This series of aluminum alloys are commonly used in architectural and 

automotive extrusion components. 

 

o 7xxx Series Aluminum Alloys (Heat Treatable) 

Zinc is the principal alloying element for this series of aluminum. They have 

outstanding strength and toughness, and they are mechanically joined together. 

 

o 8xxx Series Aluminum Alloys (Heat Treatable) 

The principal alloying elements are other elements that are not covered in other 

series. They are heat treatable and have great strength, hardness, and conductivity. 
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• 2.3. AA5083-H116 Background Information 

This research focuses on AA5083-H116, and it is important to know the 

background information about AA5083-H116 alloys. 

The 5xxx series aluminum alloys are wrought and non-heat treatable aluminum 

alloys that contain a majority of magnesium alloying element. AA5083 contains about 

4.0 wt. % to 4.9 wt. % of magnesium, and less than 1 wt.% of other alloying elements 

[6 – 8]. Table 3 contains full details on the chemical compositions of AA5083. This 

series of aluminum alloys has the highest strength within the non-heat treatable 

aluminum alloys series, and the strength can be further enhanced by using cold work 

strain hardening and solute hardening due to its high magnesium content [9, 10]. Table 

4 further shows the general mechanical properties of AA5083 [8, 11]. Aluminum alloys 

that are in the H temper category means the aluminum alloys are subjected to strain 

hardening. Hence, the letter and number “H1” after AA5083 indicates that the AA5083 

aluminum has been strain hardened only without any other process to enhance its 

mechanical properties. AA5083 has been highly attractive for marine applications and 

ship building [9, 10, 12, 13]. However, there is a major drawback for having a large 

alloying content of magnesium (> 3 wt. %), as this will significantly increase the 

susceptibility of intergranular corrosion under thermal exposure [14 – 18]. 

Intergranular attack has been strongly associated with the Al3Mg2 𝛽 phase formation 

along the grain boundaries and the 𝛽 phase’s high selective-dissolution rate in chloride 

solution [9, 10, 19 – 21]. More information and literature review on sensitization, 

magnesium segregation, and Al3Mg2 𝛽 phase formation, are presented in Section 2.4., 

Section 2.5., Section 2.6., and Section 2.7. 
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Table 3. Chemical composition of AA5083. 

AA 5083 

Alloys Weight Percent (wt. %) 

Magnesium (Mg) 4.0-4.9 

Silicon (Si) 0.40 

Iron (Fe) 0.40 

Copper (Cu) 0.10 

Manganese (Mn) 0.40-1.0 

Chromium (Cr) 0.05-0.25 

Zinc (Zn) 0.25 

Titanium (Ti) 0.15 

Others 0.15 

Aluminum (Al) Balance 

 

Table 4. Mechanical properties of AA5083 

Density 2770 
𝑘𝑔

𝑚3
 

Hardness, Rockwell A 36.5 

Yield Strength 228 MPa 

Ultimate Tensile Strength 317 MPa 

Elongation at Break 16 % 

Modulus of Elasticity 71 GPa 

Fatigue Strength 159 MPa 

Shear Modulus 26.4 GPa 
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• 2.4. Sensitization of 5xxx Series Aluminum Alloys 

Sensitization is a process where chemical elements diffuse out of the matrix and 

precipitates at the grain boundaries. The precipitates along grain boundaries heavily 

promote the material’s susceptibility to intergranular corrosion and stress corrosion 

cracking. The sensitization of 5xxx series aluminum alloys refers to the precipitation 

of magnesium-rich beta phase along the grain boundaries under thermal exposure. 

Precipitation of Al3Mg2 𝛽 phase has been suspected with magnesium segregation and 

enrichment at the grain boundary [22, 23]. Sensitization for 5xxx series aluminum alloy 

can occur from 50℃ to 200℃ in three different Al3Mg2 𝛽  phase configurations: 

discontinuous, semi-continuous, and continuous [24 – 29]. Al3Mg2 𝛽  phase 

configurations are further discussed in Section 2.6. 

 

• 2.5. Magnesium Segregation and Enrichment 

Grain boundaries and grain interiors have different structural properties that can 

lead to an energy difference. Energy imbalance will cause chemical partitioning and 

segregation. Element segregation can be separated into two categories: equilibrium 

segregation and non-equilibrium segregation. Both equilibrium and non-equilibrium 

segregation can significantly influence a material’s mechanical and chemical 

properties. 

Equilibrium segregation occurs when there are energy differences due to lattice 

disorder at the interfaces, and solute atoms will partition and deposit themselves to 

minimize the free energy of the system. Therefore, the main driving force for 
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equilibrium segregation is the reduction of surface free energy as the solute atoms 

diffuse to grain boundaries, interfaces, and free surfaces [30, 31]. 

Non-equilibrium segregation is mostly observed during cooling processes, 

where complex diffusion occurs between vacancies and impurities. Atomic segregation 

happens at vacancy sinks (i.e. grain boundaries) and free surfaces. There will be a 

concentration difference between the segregated sites and the bulk grain before and 

after the cooling process. Thus, the processing history causes non-equilibrium 

segregation [30 – 32]. Unlike equilibrium segregation, atomic segregation increases 

with temperature [30]. 

 For 5xxx series aluminum alloys, magnesium segregation and enrichment has 

both equilibrium and non-equilibrium segregation processes that allows magnesium 

atoms to diffuse to both the grain boundaries and free surfaces of aluminum during 

natural and/or artificial aging processes [33 – 39]. According to Vetrano et al., the 

enrichment ratio of magnesium at grain boundary triple point junction to magnesium 

in matrix is 3:1, and the enrichment ratio of magnesium along grain boundary to 

magnesium in matrix is 2.5:1 [33]. Lea et al. and Esposto et al. both observed a great 

increase of magnesium enrichment on the free surface of aluminum (110) plane under 

high temperature [34, 35]. Magnesium enrichment on aluminum (110) plane ratio is 

12:1 at 200℃ [34], and 31:1 at 227℃ [35]. Magnesium segregation and enrichment has 

been suspected to be associated with the formation of Al3Mg2 𝛽 phase and promoted 

intergranular corrosion. 
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• 2.6. Al3Mg2 Beta (𝜷) Phase  

During the process of manufacturing the 5xxx series aluminum alloys, the metal 

is heated above the solvus temperature for the alloying additions to solutionize it, 

creating single phase homogeneous solid solution. The aluminum is then quickly 

cooled below the solvus temperature to form a supersaturated solid solution of 

magnesium in the aluminum matrix. Below the solvus temperature, both the 𝛼 solid 

solution phase and the 𝛽 (𝐴𝑙3𝑀𝑔2) intermetallic–compound phase are present in the 

equilibrium state. Figure 1 shows the binary phase diagram of aluminum and 

magnesium [40]. The vertical red line represents the range of magnesium content in 

AA5083 (4.0 wt. % to 4.9 wt. %), and the blue line indicates the solvus line. The solvus 

line on a binary phase diagram determines the solid solubility limit for the two solid 

phases, and the line is highly temperature dependent.  

 

Figure 1. Binary phase diagram of aluminum and magnesium. 
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As the alloy is naturally and/or artificially aged below the solvus temperature, 

magnesium segregation occurs, and magnesium diffuses to the grain boundaries and 

the free surfaces of aluminum. Fine dispersed 𝛽′ nucleates at the grain boundaries and 

later transform into  𝛽 phase. In general, when the alloy is sensitized at lower 

sensitization temperature and for a long period of time, the formation of Al3Mg2 𝛽 

phase follows the following stages [41 – 48]: 

𝑆𝑢𝑝𝑒𝑟𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑆𝑜𝑙𝑖𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝛼) → 𝐺𝑃 𝑍𝑜𝑛𝑒𝑠 → 𝛽′′ 𝑝ℎ𝑎𝑠𝑒𝑠 → 𝛽′ 𝑝ℎ𝑎𝑠𝑒𝑠

→ 𝛽 𝑝ℎ𝑎𝑠𝑒𝑠 

Some studies have reported that when sensitization temperature exceeds 90℃, 

Guinier-Preston (GP) zones and 𝛽′′ phases do not appear during the Al3Mg2 𝛽 phase 

formation [42, 45, 46]. This is due to the fact that GP zones and 𝛽′′ phase have low 

dissolution temperatures, and higher temperatures provide greater diffusion rates for 

magnesium atoms [42, 45, 46]. So, when the sensitization temperature is above the GP 

zone and 𝛽′′  dissolution temperatures, 𝛽′  phases will form as the beginning of the 

Al3Mg2 𝛽  phase formation sequence. The following stage sequence is for high 

temperature Al3Mg2 𝛽 phase formation: 

𝑆𝑢𝑝𝑒𝑟𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑆𝑜𝑙𝑖𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝛼) → 𝛽′ 𝑝ℎ𝑎𝑠𝑒𝑠 → 𝛽 𝑝ℎ𝑎𝑠𝑒𝑠 

The first stage of Al3Mg2 𝛽  phase formation is developed during the 

manufacturing process of the 5xxx series aluminum alloys. With heat treatments above 

the solvus temperature and rapid quenching, a supersaturated solid solution (𝛼) of 

magnesium forms in the aluminum matrix. After the first stage, as the temperature starts 
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to rise, nanometer size magnesium rich clusters begin to form. These create the Guinier-

Preston (GP) zones [42, 43, 45 – 48]. The third 𝛽′′ stage is similar to the GP zones that 

contain clusters of magnesium rich regions but with a more order and coherent 

arrangement with the matrix. The main composition for 𝛽′′ phase is Al3Mg with an 

L12 structure, and it has a spherical morphology [42, 45].  

As the duration of thermal exposure continues to increase, the GP zones and 𝛽′′ 

phases stages dissolve and semi-coherent 𝛽′ phases precipitate at the grain boundaries 

to lower the free energy in material [42, 43, 45, 49]. The initial preferred precipitation 

location is grain boundary triple point junction, along the grain boundaries, and at the 

interface between aluminum matrix and Al6Mn dispersoids [33, 37]. 𝛽′  is an 

intermediate phase with the approximate composition of Al3Mg2. 𝛽′  phase has a 

hexagonal structure with lattice parameters of a = 1.002nm and c = 1.636nm [42, 43, 

45]. 

Equilibrium 𝛽 phase forms through the transformation of 𝛽′ phase. 𝛽 phase has 

a composition of Al3Mg2 with a complex face center cubic (f.c.c.) structure and lattice 

parameter a = 2.824nm [37, 42 – 46, 49]. The 𝛽  phase precipitates have a 

distinguishable orientation relationship with the aluminum matrix (𝛼), but the actual 

orientation is still unclear. Bernole et al. has reported that at 200℃ the orientation 

relationship is (111)𝛽 ∥ (001)𝛼 and at 300℃ the orientation relationship is [110]𝛽 ∥

[010]𝛼  [50]. However, Kubota has observed a different orientation relationship 

between 𝛽 phase and aluminum matrix (𝛼) at 240℃ [43]. For coarse globular 𝛽 phase 

precipitates, the orientation relationships with (𝛼) matrix are (11̅1)𝛽 ∥ (11̅1)𝛼  and 
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[011]𝛽 ∥ [01̅1̅]𝛼 . For smaller spheroidal 𝛽  phase precipitates, the orientation 

relationships with (𝛼) matrix are (100)𝛽 ∥ (100)𝛼 and [001]𝛽 ∥ [001]𝛼.  

During the sensitization process, 𝛽  phase can undergo three different 

morphologies as aging time increases [24 – 29]. The images presented in Figure 2 (a), 

(b), (c), and (d) are from R.L. Holtz et al. shows the morphological evolution of 𝛽 phase 

at 175℃  with increasing aging time [28]. Initially, 𝛽 phase will be discontinuous, and 

as time goes on, 𝛽 phase will change to semi-continuous and continuous. Some studies 

have observed that after an extremely long thermal exposure, 𝛽 phase will break up 

and become discontinuous phase [26 – 28].  

 

Figure 2. AA5083-H131 𝛽 phase morphology evolution at 175℃. (a) Unaged 𝛽 

phase, (b) Discontinuous 𝛽 phase at 1 hour of ageing time, (c) Semi-continuous 𝛽 

phase at 50 hours of ageing time, (d) Continuous 𝛽 phase at 240 hours of aging time. 

 

Even though the precipitation of Al3Mg2 𝛽 phase has been the subject of much 

research, the nucleation, kinetics, transformations, lattice structure, phase orientations 

and interactions between magnesium atoms, vacancies, and other defects during each 

stage of Al3Mg2 𝛽 phase formation are still subjects of debate.  
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• 2.7. Laser Shock Peening Technology 

The earliest studies of laser shock peening process were back in the 1960s and 

lasted until the beginning of the 1980s at Battelle Institute in Columbus, Ohio, USA. 

Some data of laser shock peening showed promising effects on fatigue properties and 

demonstrated the potential to be an alternative process for the conventional shot- and 

hammer-peening treatments. Laser shock peening research and development stopped 

around 1981, but relevant research was continued in the 2000s [51]. 

Laser shock peening is a cold work, mechanical surface enhancement process 

that uses a high energy, short pulse laser beam with 4 
𝐺𝑊

𝑐𝑚2 to 10 
𝐺𝑊

𝑐𝑚2 to strike the sample 

surface [52 – 54]. This creates shock waves that can plastically deform the sample 

surface and propagate into the sample introducing residual compressive stresses that 

can modify material properties [52 – 55]. During the laser shock peening process, to 

effectively form a high temperature plasma on the sample, an opaque black overlay is 

added on top of the sample surface. The black overlay has low vaporization temperature 

that can easily absorb the high energy pulses and heat up to form a plasma gas. 

Additionally, water overlay is added on top of the opaque overlay to limit the thermal 

expansion of plasma gas and avoid thermally changing the sample properties and 

microstructure. The black opaque and water overlays help to trap the plasma gas in 

between the water layer and the sample surface, which will build up a very high gas 

pressure. The high gas pressure produced from each pulse of the laser beam will 

generate a shock wave that can travel into the sample and create compressive stresses 

[51 – 55]. Figure 3 shows the general process for laser shock peening [56].  
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Figure 3. Laser shock peening process. 

 

 

 

 

 



 

 

22 

 

Chapter 3: Experimental Methods and Results 

• 3.1. Testing Materials 

All the testing samples used in this research are provided by the Naval Surface 

Warfare Center, Carderock Division (NSWCCD). The testing samples are AA5083-

H116. There is a total of 28 square AA5083-H116 samples, where 10 of the samples 

were not laser shock peened and 18 of the samples were laser shock peened. Figure 4 

(a), (b), and (c) show the as-received laser shock peened samples and as-received no 

laser shock peened samples. The rolling direction is marked on the sides of each sample 

with an arrow pointing in the rolling direction. Samples were rolled on the square 

surface. The surface texture of laser shock peened samples is different than the surface 

texture of no laser shock peened samples. For the laser shock peened sample, its surface 

texture is rough, and a small array of circular deformations caused by the laser shock 

peening can be easily observed on the sample surface, shown in Figure 4 (a). The 

samples without laser shock peening have a smooth surface, shown in Figure 4 (b). 

Both top and bottom square surfaces of the laser shock peened samples were laser 

shock peened, but not the sides (rectangular surfaces). 
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Figure 4. (a) As-received laser shock peened AA5083-H116 samples, (b) As-

received no laser shock peened AA5083-H116 samples, and (c) Total 28 AA5083-

H116 samples with 18 laser shock peened samples (left) and 10 no laser shock peened 

samples (right). 

a) 

b) 

c) 
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All 28 square AA5083-H116 samples have roughly the same dimensions with some 

small variation in length and width due to cutting (about ±3.175mm (± 0.125in)). The 

sample thickness is the same without significant variation because they were cut from 

the same aluminum plate. The dimensions are listed in Table 5. The average chemical 

composition of testing samples can be found in Table 6. The nomenclatures for the 

samples are: 

• P1 to P18 stands for laser shock peened sample 1 to 18 

• U1 to U10 are for no laser shock peened (unpeended) sample 1 to 10. 

Table 5. Dimensions of testing samples. 

Length 
76.2mm ± 3.175mm 

3in ± 0.125in 

Width 
76.2mm ± 3.175mm 

3in ± 0.125in 

Thickness 
9.53mm 

0.375in 

 

Table 6. Average chemical composition of AA5083-H116. 

Elements Cu Mg Mn Si Zn 

wt. % 0.03670 4.771 0.6196 0.1553 0.09438 

Elements Cr Fe Ti Others Al 

wt. % 0.09917 0.2925 0.01865 0.08652 93.83 
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• 3.2. Laser Shock Peening Process 

The laser shock peening process was carried out by LSP Technologies, Inc., 

and the general sample preparation procedures were provided by the company. The 

following information is summarized from the laser shock peening report given by LSP 

Technologies, Inc. 

In order to minimize material waste and maximize the process efficiency during 

laser shock peening process, all the samples were carefully measured and cut into 

desired holding shape for easier clamping during process. During the process, the 

sample surface is coated with an opaque black overlay and covered with water, and 

then bombarded with high energy laser pulses. The laser intensity was 4
𝐺𝑊

𝑐𝑚2 and the 

pulse duration was 20𝑛𝑠. Both the top and bottom surfaces were laser shock peened 

twice with the two-layer of application. The laser shock peening moving direction was 

perpendicular to the rolling direction, and it is constant throughout all the samples. 

Schematic views of the two-layer laser shock peening application and laser shock 

peening moving direction are shown in Figure 5. The two-layer application allows each 

surface to get laser peened twice. The sample is first laser shock peened on one side 

(side 1), starting from the bottom and going from left to right. After the row is 

completed, the next row starts above the previous, with this movement perpendicular 

to the rolling direction. Once the laser shock peening reaches the top, the sample is 

flipped to the other side (side 2). This time the laser shock peening starts at the top 

while still moving from left to right and shifting down perpendicular to the rolling 

direction. Then, the same side (side 2) is laser shock peened again from the bottom to 
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the top with the same moving method. Last, the sample is flipped back to the starting 

side (side 1), and laser shock peened from top to bottom with the same moving method. 

 

Figure 5. Two layers application for laser shock peening process. 

 

After the laser shock peening process, samples are cut by using a wire electrical 

discharge machine (EDM) into 76.2mm × 76.2mm × 9.53mm (3in × 3in × 0.375in) ± 

3.175mm (± 0.125in).  

• 3.3. Heat Treatments 

Many studies have shown different morphologies of Al3Mg2 𝛽  phase at 

different sensitization temperatures and aging times. It has been observed that as the 

aging time increases, Al3Mg2 𝛽 will go through four stages of transformation. The four 

stages are discontinuous, semi-continuous, continuous, and discontinuous beta phase. 

Table 7 shows the reported time and temperature from several studies for each beta 

phase morphology to appear [57 – 62]. 
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Table 7.  Reported initial time for each 𝛽 phase morphology to appear at each 

temperature. 

 
Discontinuous 

𝜷 

Semi-

Continuous 𝜷 

(Ribbon-like) 

Continuous 𝜷 
Discontinuous 

𝜷 

70 ℃ 

480 hrs  

(20 days)  

[57] 

 

3000 hrs  

(125 days)  

[58, 59] 

 

100 ℃ 

72 hrs to 336 hrs  

(3 days to 14 days)  

[59, 60] 

1080 hrs  

(45 days)  

[58 – 60] 

2000 hrs  

(83.3 days)  

[59] 

150 ℃ 

82.5 hrs  

(3.44 days)  

[61] 

 

189 hrs  

(7.87 days)  

[60, 61] 

262 hrs  

(11 days)  

[60, 61] 

175 ℃ 

1 hrs  

(0.0417 days) 

[59, 60, 62] 

50 hrs  

(2.083 days) 

[59, 62] 

200 – 240 hrs  

(8.33 days to 10 

days)  

[58 – 60, 62] 

 

 

Based on the reported sensitization times and temperatures for each 𝛽 phase 

morphology, the following heat treatment schedule was created, shown in Table 8. 

There are more samples heat treated at 100℃ with several aging time as a way to see 

the trend of 𝛽 phase morphology changes. Since there are fewer unpeened samples, 

only the sensitization time and temperature for discontinuous and continuous 𝛽 phase 

are tested. For each unpeened samples, there will be a laser shock peened sample that 

undergoes the same heat-treating condition. This allows the examination of the effect 

of laser shock peening on the material. The sample heat treatment was carried out at 

University of Maryland, College Park (UMD), and the furnaces used for this heat 

treatment are Thermo Scientific Thermolyne Furnace FB1400, shown in Figure 6 (a) 

and (b). 
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Figure 6. Thermo Scientific Thermolyne furnace FB1400 at UMD. (a) Furnace 1 

(F1) and Furnace 2 (F2) from left to right and (b) Furnace 3 to Furnace 6 (F3 to F6) 

from right to left. 

  

a) b) 
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Table 8. Sample sensitizing temperature and time and sample ID 

Tem

p 
Heating Conditions 

Specimen 

(peened) 

Specimen 

(unpeened) 

Furnace 

Number 

70℃ 

1. Discontinuous phase: 23 

days (550 hours) 
P1 U1 F5 

2. Continuous phase: 150 days 

(3600 hours) 
P2 U2 F2 

100℃ 

3. Discontinuous phase: 3 days 

(72 hours) 
P3  F6 

4. Discontinuous phase: 7 days 

(168 hours) 
P4 U3 F6 

5. Discontinuous phase: 15 

days (360 hours) 
P5  F6 

6. Semi-continuous phase: 23 

days (550 hours) 
P6 U4 F6 

7. Semi-continuous phase: 35 

days (840 hours) 
P7  F6 

8. Continuous phase: 46 days 

(1100 hours) 
P8 U5 F5 

9. Continuous phase: 67 days 

(1608 hours) 
P9  F4 

10. Discontinuous phase: 88 

days (2112 hours) 
P10  F3 

11. Discontinuous phase: 150 

days (3600 hours) 
P11  F1 

150℃ 

12. Discontinuous phase: 3 days 

(72 hours) 
P12 U6 F6 

13. Continuous phase: 7 days 

(168 hours) 
P13 U7 F6 

14. Discontinuous phase: 12 

days (288 hours) 
P14  F6 

175℃ 

15. Discontinuous phase: 5 hours P15 U8 F6 

16. Semi-continuous phase: 3 

days (72 hours) 
P16  F6 

17. Continuous phase: 12 days 

(288 hours) 
P17 U9 F6 

Total: 17 9  

None No Heat Treatment Sample P18 U10  

Overall Total: 18 10  
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• 3.4. Material Characterization 

o 3.4.1. Optical Microscopy 

Before the sample was observed under the optical microscope, sample was cut 

into smaller sizes and mounted in an acrylic mixture. First, the sample was cut into 

approximately 25.4mm × 25.4mm × 9.53mm (1in × 1in × 0.375in) in the L-T and T-

L directions. Then, the sample was further cut down into approximately 10mm × 

10mm × 9.53mm (0.394in × 0.394in × 0.375in) in the L-T and T-L directions with the 

Allied HTP TechCut4 Precision Low Speed Diamond Saw at UMD. Sample cutting 

directions can be visualized in Figure 7 [63].  

 

Figure 7. Sample cutting directions: Longitudinal (L) – rolling direction, Transverse 

(T) direction, and Short transverse (S) direction. 

Next, the samples were cold-mounted with the Allied QuickSet acrylic mixture for 24 

hours to ensure the acrylic mount had completely hardened. Afterwards, the mounted 
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samples were mechanically ground and polished with the Struers Teframin-30 sample 

polisher at NSWCCD. To obtain a smooth and mirror-like surface, the samples were 

ground and polished with the following steps. 

Sample Grinding and Polishing Steps 

1. Removed sample surface scratches with the Struers 320 (P-400), 600 

(P-1200), 800 (P-2400), and 1200 (P-4000) grit silicon carbide abrasive 

papers. Finer scratches and smoother surface were achieved as the 

silicon carbide abrasive paper grit size increased. 

2. Polished sample surface first with the Struers 9𝜇𝑚 diamond suspension 

on the Struers MD-Plan polyester polishing cloth, and then with the 

Struers 3 𝜇𝑚  diamond suspension on the Struers MD-Mol wool 

polishing cloth. 

3. Final polished sample surface with the Struers OP-U 0.04𝜇𝑚 colloidal 

silica suspension on the Struers MD-Chem porous neoprene plate. 

To observe the Al3Mg2 𝛽 phase precipitates in the sample microstructure, phosphoric 

acid (𝐻3𝑃𝑂4) was used as the etchant to highlight just the Al3Mg2 𝛽 phase precipitates. 

The sample was etched in the following steps. 

Sample Etching Steps 

1. Phosphoric acid was prepared with deionized (DI) water into 40 vol. % 

of 𝐻3𝑃𝑂4 and 60 vol. % of DI water. 

2. 𝐻3𝑃𝑂4 solution was heated up to 35℃ before etching the sample. 

3. Sample was soaked in 35℃ 𝐻3𝑃𝑂4 solution for 3 minutes 
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After the sample was etched, the images of Al3Mg2 𝛽 phase precipitates with 

different magnifications were captured by using the ZEISS Axio Observer MAT light 

optical microscope with the ZEISS AxioCam HRc camera attached at NSWCCD. All 

the micrograph images were taken and viewed in the short transverse direction to the 

sample rolling direction. Schematic view of the sample viewing surface with respect to 

the sample rolling direction is shown in Figure 8. 

 

 

Figure 8. Schematic view of sample under the optical microscope. 

 

  

Rolling Direction 

Viewing Surface 

Microscope  
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o 3.4.2. Optical Microscopy Results 

The optical micrographs of AA5083-H116 present a clear association between 

Al3Mg2 𝛽 phase formation and aging temperature and time. With the phosphoric acid 

etchant, only the Al3Mg2 𝛽 phase is highlighted (dark lines and small spots), allowing 

for the direct comparison of Al3Mg2 𝛽 phase formation with the influence of aging 

temperature and time. In Figure 9 (a) and (b), Al3Mg2 𝛽 phase precipitates increase as 

the aging temperature increases from 100℃ to 150℃ with a constant aging time (168 

hours) in the unpeened (no laser shock peened) samples. Figure 9 (b) shows not only 

the Al3Mg2 𝛽 phase precipitated at the grain boundaries but also heavily precipitated 

in the aluminum free surfaces. In Figure 10 (a), (b), and (c), under the same aging 

temperature (100℃), Al3Mg2 𝛽 phase increases in the unpeened samples as the aging 

time changes from 168 hours to 1100 hours. In both cases, a similar trend is observed, 

where the amount of Al3Mg2 𝛽 phase precipitates increase as the aging temperature 

and time increase.  

The same phenomenon of Al3Mg2 𝛽 phase increasing with aging temperatures 

and times have also been observed in the laser shock peened samples, shown in Figure 

11 (a), (b) and Figure 12 (a), (b), (c). Moreover, the micrographs of unaged samples 

have shown the appearance of Al3Mg2 𝛽 phase in the AA5083-H116 alloys before any 

heat treatment had begun. Figure 13 (a) and (b) show the Al3Mg2 𝛽 phase precipitates 

in laser shock peened and unpeened samples prior to the heat treatment process. The 

prior precipitation of Al3Mg2 𝛽  phase could possibly be introduced during the 

aluminum alloys preprocessing and manufacturing processes. 
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Figure 9. Al3Mg2 𝛽 phase increases as the aging temperature increases and under 

a constant aging time. (a) Sample U3 aged at 100℃ for 168 hours. (b) Sample U7 

aged at 150℃ for 168 hours 

Figure 10. Al3Mg2 𝛽  phase increases 

as the aging time increases and under 

the same aging temperature. (a) Sample 

U3 aged at 100℃  for 168 hours. (b) 

Sample U4 aged at 100 ℃  for 550 

hours. c) Sample U5 aged at 100℃ for 

1100 hours. 
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Figure 11. Al3Mg2 𝛽 phase increases as the aging temperature increases and under 

a constant aging time. (a) Sample P4 aged at 100℃ for 168 hours. (b) Sample P13 

aged at 150℃ for 168 hours 

Figure 12. Al3Mg2 𝛽 phase increases as 

the aging time increases and under the 

same aging temperature. (a) Sample P4 

aged at 100℃ for 168 hours. (b) Sample 

P6 aged at 100 ℃  for 550 hours. (c) 

Sample P8 aged at 100 ℃  for 1100 

hours. 
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The grain size and morphology variations between both sample surface regions 

and sample middle region can be noticed from micrographs. From Figure 14 (a) and 

(b), it appears that the grains near the sample surface region is smaller compares to the 

grains in the sample middle region. The grains near the surface region have a more 

circular and equiaxial shape, whereas the grains in the middle region have a more 

elongated and oblong shape. The differences in grain size and morphology between the 

sample surface and middle region is consistent throughout all samples despite different 

aging times and temperatures. Additionally, the variations of grain size and 

morphology at different sample regions appear in both laser shock peened and 

unpeened samples. Figure 15 (a), (b), (c), and (d) show the grain size and morphology 

variations near the sample surface and middle region are the same for both laser shock 

peened and unpeened samples.  

In order to quantitatively proof the grain size between sample surface and 

middle region and the grain size between laser shock peened and un-peened samples 

are the same, ASTM E112, Standard Test Methods for Determining Average Grain 

Figure 13. Pre-existing Al3Mg2 𝛽 phase. (a) Sample P18 unaged and laser shock 

peened. (b) Sample U10 unaged and not laser shock peened. 
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Size, was used, and the detailed grain size calculation procedures and results are 

discussed in the following section. 

 

 

 

 

 

Figure 14. Grain size and morphology variations in the sample. (a) Grains appear 

to have a more circular and equiaxial shape near the sample surface region. (b) 

Grains appear to have a more elongated and oblong shape in the sample middle 

region. 



 

 

38 

 

           

 

 

 

 

 

 

  

Figure 15. Grain size and morphology variations in both laser shock peened and 

un-peened samples. (a) Sample P7 near the sample surface region. (b) Sample P7 

in the sample middle region. (c) Sample U2 near the sample surface region. (d) 

Sample U2 in the sample middle region. 
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o 3.4.3. Average Grain Size Measurement 

To determine the average grain size of the sample, ASTM E112, Standard Test 

Methods for Determining Average Grain Size, was performed. Both the Planimetric 

Method and Circular Intercept Method were used to give a more accurate grain size 

calculation. The differences between the Planimetric Method and Circular Intercept 

Method are for the Planimetric Method, all the grains completely inside the drawn 

circle (𝑁𝐼𝑛𝑠𝑖𝑑𝑒) and all the grains intercepted the drawn circle (𝑁𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑) are being 

counted. The amount of grains per millimeter squared at 1X (𝑁𝐴), 𝑁𝐴 can be calculated 

by using Equation (1). 

                                               𝑁𝐴 = 𝑓 (𝑁𝐼𝑛𝑠𝑖𝑑𝑒 +
𝑁𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑒𝑑

2
)                                    (1) 

𝑓 is the Jeffries’ multiplier, which can be calculated based on the magnification used 

(𝑀), shown in Equation (2). 

                                                        𝑓 = 0.0002 𝑀2                                                   (2) 

After knowing the value of 𝑁𝐴, the ASTM grain size number (𝐺) can be determined by 

using Equation (3). 

                                             𝐺 = (3.321928 log10 𝑁𝐴) − 2.954                               (3) 

For the Circular Intercept Method, only the grains (𝑁)  or grain boundaries (𝑃) 

intercepted by the three drawn circles are being counted. When counting grain 

boundary intersections, a triple point junction is counted as 1.5 grain boundaries 

intersection and grain boundaries that are tangent to the circle line are counted as 0.5 

grain boundary intersections. To obtain the ASTM grain size number for this method, 

the mean linear intercept value (ℓ) needs to be determined first. ℓ can be calculated by 

using Equation (4). 



 

 

40 

 

                                                          ℓ =
𝐿

𝑁𝑖𝑀
=

𝐿

𝑃𝑖𝑀
                                                   (4) 

𝑁𝑖 and 𝑃𝑖 are the total number of grains and grain boundaries intercepted the drawn 

circles. 𝐿 is the total length (circumference) of the test lines and 𝑀 is the magnification 

used. Equation (5) calculates the ASTM grain size number (𝐺)  for the Circular 

Intercept Method. 

                                             𝐺 = (−6.643856 log10 ℓ) − 3.288                               (5) 

Visual representatives of both grain size measuring methods are shown in Figure 16 (a) 

and b). The conversion chart of ASTM grain size number (𝐺) to average grain diameter 

is included in the ASTM E112 document. Besides using both grain size measuring 

methods to increase the accuracy of determining the sample average grain size, five 

different locations within the measured region were chosen to calculate the average 

grain size. In addition, statistical analysis was performed, including the calculation of 

the standard deviation, 95% confidence interval, and percent relative accuracy. 

Equation (6), Equation (7), and Equation (8) are equations for calculating the standard 

deviation (𝑆𝐷) , 95% confidence interval  (95% 𝐶𝐼) , and percent relative accuracy 

(%𝑅𝐴) 

                                                       𝑆𝐷 =  [
∑(𝑋𝑖−𝑋̅)2

𝑛−1
]

1

2
                                                 (6) 

                                                       95% 𝐶𝐼 =
(𝑡)(𝑆𝐷)

√𝑛
                                                  (7) 

                                                       %𝑅𝐴 =
95% 𝐶𝐼

𝑋̅
× 100                                           (8) 

𝑋𝑖 is each individual value of the data, 𝑋̅ is the mean of 𝑋𝑖, and 𝑛 is the total number 

of data measurements. 𝑡 in Equation (7) is the 95% CI multipliers, which the values of 
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𝑡 is based on the number of fields used in the measurement. The table of value 𝑡 can be 

looked up in ASTM E112 document. 

   

Figure 16. (a) Planimetric Method. Measures the grain size by counting the number 

of grains inside (blue) and on (green) the drawn circle (red). (b) Circular Intercept 

Method. Measures the grain size by counting the number of grain boundaries 

intercept (blue) the three drawn circles (red). 

  

a) b) 
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o 3.4.4. Average Grain Size Measurement Results 

To further confirm the grain size variations at the sample surface and middle 

region, average grain size measurement was performed according to the ASTM E112 

guidelines. From the calculation of average grain size, the average grain diameter is 

smaller near the surface region as compared to the average grain diameter in the middle 

region. Larger the ASTM grain size number, the smaller the average grain diameter. 

There are some differences between the grain size calculated from the Planimetric 

Method and the Circular Intercept Method. However, the differences between the two 

methods are small enough that won’t significantly affect the results interpretation. 

The grain size variations at the sample surface and middle region are appeared 

in both laser shock peened and unpeened samples. The grain diameter at the sample 

surface region is very similar for both laser shock peened and unpeened samples. Same 

thing for the grain diameter at sample middle region in laser shock peened and 

unpeened samples. The average grain size measurements of laser shock peened and 

unpeened samples are provided in Table 9. The four chosen samples are laser shock 

peened and unpeeded pair samples that have the same aging conditions for each pair. 

Sample U2 and Sample P2 are laser shock peened (P) and unpeeded (U) pair samples 

with aging temperature at 70℃ and 3600 hours of aging time. Sample U9 and Sample 

P17 are laser shock peened (P) and unpeeded (U) pair samples with aging temperature 

at 175℃ and 288 hours of aging time. For the statistical analysis, all the %RAs are less 

than 10%, which the grain size measurement performed is considered within the 

acceptable precision. 10% RA is the maximum tolerance for most intended 
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applications. Briefly, the ASTM average grain size calculation agrees with the grain 

size variations trend observed in optical micrographs. 

Table 9. Grain size measurements for laser shock peened and unpeened samples. 

Planimetric Method (Surface Region) 

 U2 P2 U9 P17 

ASTM Grain 

Size Number 
9.5 10 10.5 10 

Average 

Grain 

Diameter 

(mm) 

0.0133 0.0112 0.0094 0.0112 

Standard 

Deviation 
0.1716 0.1624 0.1054 0.0623 

95% CI 0.2130 0.2016 0.1309 0.077 

% RA 2.2055 2.0353 1.2291 0.758 

 

Planimetric Method (Middle Region) 

 U2 P2 U9 P17 

ASTM Grain 

Size Number 
8.5 8.5 9 9 

Average 

Grain 

Diameter 

(mm) 

0.0189 0.0189 0.0159 0.0159 

Standard 

Deviation 
0.6243 0.3079 0.2306 0.1960 

95% CI 0.7750 0.3823 0.2863 0.2433 

% RA 9.1331 4.4145 3.1362 2.7739 
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Circular Intercept Method (Surface Region) 

 U2 P2 U9 P17 

ASTM Grain 

Size Number 
10 10.5 10 10.5 

Average 

Grain 

Diameter 

(mm) 

0.0112 0.0094 0.0112 0.0094 

Standard 

Deviation 
0.3993 0.4271 0.1218 0.1228 

95% CI 0.4957 0.5303 0.1512 0.1525 

% RA 4.9117 5.0993 1.4843 1.4589 

 

Circular Intercept Method (Middle Region) 

 U2 P2 U9 P17 

ASTM Grain 

Size Number 
9 9.5 9 9.5 

Average 

Grain 

Diameter 

(mm) 

0.0159 0.0133 0.0159 0.0133 

Standard 

Deviation 
0.4673 0.4569 0.1823 0.4498 

95% CI 0.5802 0.5672 0.2263 0.5585 

% RA 6.3098 6.0220 2.5574 5.8394 
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o 3.4.5. Transmission Electron Microscopy (TEM) 

The sample preparation for Transmission Electron Microscopy (TEM) had been 

performed at UMD, NSWCCD, and the U.S. Naval Research Laboratory (NRL) 

facilities. The first part of the TEM sample preparation was done at both UMD and 

NSWCCD, which the preparation involved manually ground and polished sample and 

mechanically punched out a 3mm disk for the standard TEM sample holder. The main 

goal for doing the TEM analysis is to observe the effect caused by the laser shock 

peening process. Thus, in order to directly compare the laser shock peening effect, only 

the as-received unaged sample (U10) and laser shock peened unaged sample (P18) 

were prepared and used in the TEM analysis. The following list provides the general 

procedures for the first part of TEM sample preparation. 

Part 1: TEM Sample Preparation at UMD and NSWCCD 

1. Used the sample that was left from preparing optical microscope 

sample and sliced the sample as thin as possible with the Allied HTP 

TechCut4 Precision Low Speed Diamond Saw at UMD. 

2. The thin sample slice was cutting in the S-L direction near the laser 

shock peened surface for the laser shock peened sample, and the 

unpeened sample was also cut in the S-L direction near the unpeened 

surface. 

3. The thin sample slice was cold-mounted with the Allied QuickSet 

acrylic mixture for 24 hours with the cut surface facing down (the cut 

surface was not covered by the acrylic solution, and the laser shock 

peened surface was embedded in the acrylic solution). 
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4. Manually ground the sample with the Struers 320 (P-400) and 600 (P-

1200) grit silicon carbide abrasive papers to thin the sample further 

down to about 100 – 200𝜇𝑚, and polished the surface with the Struers 

1200 (P-2400) silicon carbide abrasive papers. The grinding and 

polishing machine for this step is Struers PlanoPol-2 at NSWCCD. 

5. Mounted sample was left in the acetone solution for 24 hours to 

dissolve the acrylic mount and remove the sample. 

6. Cleaned the residual acrylic from thinned sample with acetone, then 

rinsed off with water and ethanol. 

7. Mechanically punched five thinned specimens from each sample out 

from a 3mm disk puncher. 

After all the samples were prepared into 3mm disks, they were placed into a sample 

holder with a clear label on the sample holder. Next, all the samples were shipped to 

NRL for the second part of sample preparation and TEM analysis. The second part of 

the TEM sample preparation was performed by Dr. Ramasis Goswami at NRL, who 

generously agreed to help finalized the TEM sample preparation and performed the 

TEM analysis. Dr. Goswami is an expert on TEM analysis, especially with aluminum 

alloys. He has published numerous scientific papers on aluminum sensitization that 

included the use of TEM analysis. His works have been greatly cited by other 

researchers. Part 2 of the TEM sample preparation involved using a polisher to further 

mechanically thin the sample. The final thinning was performed by ion milling. The 

following steps describe Part 2 of the TEM sample preparation in more detail. 
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Part 2: TEM Sample Preparation at NRL 

1. Mechanically polished the 3mm disc thickness down to around 30𝜇𝑚. 

For the laser shock peened sample, it was polished from the no laser 

shock peened side to preserve the laser shock peened area. 

2. Final thinning of the 3mm disc using the Gatan Precision Model 691 Ion 

Mill with a gun voltage of 4kV and a sputtering angle of 10° at low 

temperature.  

To characterize the effect of laser shock peening on the Al3Mg2 𝛽  precipitation, 

dislocation density, dislocation configuration, and grain boundary precipitation, the 

Tecnai Analytical Transmission Electron Microscope was used.  
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o 3.4.6. Transmission Electron Microscopy Results 

The TEM analysis and imaging was performed by Dr. Goswami. He observed 

several differences, such as dislocation density, dislocation configuration, preferred 

precipitation site, and thermal effect between the as-received unpeened (U10) and laser 

shock peened (P18) unaged samples. First, based on observing the dislocation images 

taken at multiple sites within both samples, he pointed out that there is an increase in 

dislocation density between U10 and P18 samples, shown in Figure 17 (a) and (b). To 

confirm the increase of dislocation density, a quantitative study measuring the 

dislocation density of each sample was conducted and is discussed in Section 3.4.7 and 

Section 3.4.8.  

 

Figure 17. (a) TEM brightfield dislocation image for U10 sample with a [112] zone 

axis. (b) TEM brightfield dislocation image for P18 sample with a [011] zone axis. 
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The dislocation configuration, shown in Figure 18 (a) and (b), has a preferential 

dislocation direction (red arrow) for the P18 sample. The U10 sample has apparently 

randomly oriented dislocations. The TEM dislocation configurations can also be seen 

in Figure 17 (a) and (b). 

    

Figure 18. (a) Randomly orientated dislocations for sample U10. (b) Preferential 

dislocations direction (marked with red arrow) for sample P18. 

 

Fine precipitations on dislocations are only observed in the P18 samples and not on 

dislocations in the U10 sample. Those fine precipitations could possibly be the Al3Mg2 

𝛽 phase precipitates. Further analysis is required to confirm the chemical composition 

of the fine precipitations. Furthermore, in both U10 and P18 samples, Al-Mn-Fe type 

of dispersoids are found located near dislocations and appear to pin the dislocation. 

Figure 19 (a) shows the Al-Mn-Fe type dispersoids pinning the dislocations in the U10 

sample, and in Figure 19 (b), the fine precipitates on dislocations. 
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Figure 19. (a) Al-Mn-Fe type of dispersoids pinned dislocation in the U10 sample. 

(b) Fine precipitates on dislocation. 

 

The melt pool caused by the penetration of laser beam from laser shock peening process 

has been observed on the P18 sample surface, shown in Figure 20. The affected melting 

spot has a horizontal diameter of 934.11nm and a vertical diameter of 900.36nm. The 

melt pools have been consistently found on the P18 sample surface. 

 

  

Figure 20. Melt pool from the 

penetration of laser beam appears 

in the P18 sample surface. 
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o 3.4.7. Dislocation Density Measurement 

The line-intercept method is the most commonly used method to measure the 

dislocation density in a TEM image [64, 65]. Line-intercept method involves placing 

five randomly drawn lines on a TEM image and counts the total number of intersections 

the drawn lines make with dislocations. An example of line-intercept method is shown 

in Figure 21. 

 

Figure 21. Dislocation density measurement by using the line-intercept method. 

 

The dislocation density (𝜌𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) can be calculated by using Equation (9). 

                                                       𝜌𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑁

𝐿𝑡
                                                    (9)   

𝑁 is the total number of intersections between dislocations and the five drawn lines, 𝐿 

is the total length of all the drawn lines, and 𝑡 is the thickness of the specimen. The 
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TEM sample thickness used for calculating the dislocation density is approximately 

100nm. Moreover, to minimize possible bias during measurement, five different TEM 

dislocation images for both unaged laser shock peened and unpeened samples were 

measured.  

 

o 3.4.8. Dislocation Density Measurement Results 

The line-intercept method was used to measure the dislocation density in the 

unaged laser shock peened and unpeened samples. Dislocation density measurements 

were performed at five different locations within each sample. The values of average 

dislocation density for each sample are listed in Table 10. 

Table 10. Average dislocation density of U10 and P18. 

Sample Average Dislocation Density TEM Sample Thickness 

U10 

(Unaged and no laser 

shock peened) 

7.9534 × 10−5 𝑝𝑒𝑟 𝑛𝑚2 

7.9534 × 1013 𝑝𝑒𝑟 𝑚2 
About 100nm 

P18 

(Unaged and laser 

shock peened) 

3.7773 × 10−4 𝑝𝑒𝑟 𝑛𝑚2 

3.7773 × 1014 𝑝𝑒𝑟 𝑚2 
About 100nm 

 

Based on the measurements, the unaged laser shock peened sample has a higher 

dislocation density than the unaged unpeened sample. The difference between unaged 

laser shock peened and unpeened samples is by a factor of 4.7. 
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Chapter 4: Finite Element Method (FEM) Modeling 

Finite element method (FEM) modeling is used in this study to simulate the 

effect of impact force from the laser shock peening process on AA5083-H116 

aluminum alloy surface. FEM modeling is widely used in different kinds of engineering 

applications as it can provide rapid results and predictions. Utilizing FEM modeling 

can significantly reduce the amount of time, energy, cost, and material usage during 

actual experimental testing and provide valuable simulation of material behavior in 

both macroscopic and microscopic scales. In order to understand the behavior of 

surface deformation during laser shock peening process, stress and strain distributions 

and deformation depth changes of the sample were modeled. 

• 4.1. Assumptions and Modeling Procedures 

Prior to the creation of a FEM model, sample dimensions and the laser shock 

pulse effective area are carefully measured to provide accurate simulations and results. 

Moreover, a few assumptions have to be made in order for this project to be feasible 

within the given time frame, resources and computing power. The first assumption is 

that during the application of the laser shock peening process, each laser shock pulse 

did not overlap with the previous laser shock peened areas. The second assumption is 

that each laser shock peened affected area has a perfect circular shape with the same 

diameter. The last assumption is that the material properties have an isotropic linear 

elastic and bilinear plasticity behavior. 

During the FEM modeling process several modeling software were used. Table 

11 lists the software names and usage in this FEM modeling. 
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Table 11. List of software used and the purpose for the FEM modeling. 

Software Name Usage Description 

SolidWorks 2019 Creating 3D geometry model 

ANSYS 19.4 Workbench Mechanical properties simulation 

 

SolidWorks 2019 was the preprocessor that was used to create the 3-

Dimensional (3D) geometry structure for the FEM modeling. Due to the actual sample 

being highly symmetrical, the FEM modeling geometry only have to simulate 1/8 of 

the actual sample. The laser shock pulse affected area was measured from the actual 

sample surface, where there are small arrays of aligned circles with an approximate 

diameter of 6.35mm (0.25in). The array of aligned circles on the actual sample surface 

is shown in Figure 22.  

 

Figure 22. The array of circles appears on the laser shock peened sample surface. The 

diameter of each circle is about 6.35mm (0.25in). 
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To simulate the effect of the laser shock peening process with the two-layer 

application, a total of seven solid circular tube bodies are generated at the center of the 

modeling sample to represent the laser shock pulses. The seven solid circular tube 

bodies form into a shape where there is a central solid circular tube body surrounded 

by six other solid circular tube bodies (packed like a (111) plane in the f.c.c. structure). 

This shape will allow the FEM model to simulate not only the effect of laser shock 

pulse but also the interaction between the surrounding laser shock peened areas. Figure 

23 shows the relation between the actual sample geometry, the modeling sample 

geometry, and the affected laser shock peening area created in SolidWorks 2019. The 

dimensions of the actual sample, the modeling sample, and laser shock peening affected 

area are listed in Table 12. 

 

Figure 23. The actual sample and the modeling sample. The modeling sample is 1/8 

of the actual sample. The diameter of the laser shock peening affected area is 6.35mm 

(0.25in). 
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Table 12. Dimensions of the actual and modeling sample and the laser shock peening 

affected area. 

 Actual Sample Modeling Sample 

Length 76.2mm (3in) 38.1mm (1.5in) 

Width 76.2mm (3in) 38.1mm (1.5in) 

Thickness 9.53mm (0.375in) 4.77mm (0.188in) 

Laser Shock Peening Affected Area 

Diameter 6.35mm (0.25in) 

Area 31.67𝑚𝑚2 (0.04909𝑖𝑛2) 

 

After the 3D model was created, the file was imported into ANSYS 19.4 Workbench 

as an Initial Graphics Specification (IGS) file. 

The mechanical FEM analysis was performed in ANSYS 19.4 Workbench. The 

laser shock peening process simulated in the FEM model followed the same laser shock 

peening process for the real sample. The water and opaque black overlays were not 

included in the model because this FEM simulation was purely testing the mechanical 

behavior of the material, and the thermal effect was neglected. In ANSYS 19.4 

Workbench, the analysis system is categorized in the transient analysis because laser 

shock peening process is a work done on the sample surface as a function of time. The 

transient structural analysis can capture the effect of laser shock peening on the sample 

within each time frame or time step. Next, the material properties of AA5083-H116 

were added to the software’s Engineering Data. The material properties entered are 

listed in Table 13 [11, 66].  
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Table 13. Inputted AA5083 – H116 mechanical properties. 

AA5083 – H116 

Density 2770 
𝑘𝑔

𝑚3  

Linear Elasticity 

Elastic Modulus 7.1 × 1010 𝑃𝑎 

Poisson’s Ratio 0.33 

Non-Linear Elasticity – Bilinear Isotropic Hardening 

Proportional Limit 2.75 × 108 𝑃𝑎 

Tangent Modulus 1.08 × 109 𝑃𝑎 

  

It is critical to know when and where the material start to plastically deform, so the 

proportional limit for yield strength was used instead of the 0.2% offset. The 

proportional limit and tangent modulus were gathered from the AA5083-H116 

engineering stress – strain curve, shown in Figure 24 [66]. 
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Figure 24. AA5083-H116 engineering stress – strain curve. 

 

After entering the material properties into the ANSYS Workbench Engineering Data, 

the IGS file with 3D structure created from SolidWorks 2019 was imported into 

ANSYS 19.4 Workbench. The next step was to open the ANSYS Workbench 

Mechanical and made sure each 3D bodies created in SolidWorks correctly showed up 

in ANSYS Workbench. Next, all the 3D bodies were assigned with the correct material 

properties from the Engineering Data. Sometime when transferring 3D geometry from 

SolidWorks to ANSYS Workbench, the bodies were not correctly bonded. Thus, it is 

important to make sure the connection between each body is bonded correctly.  
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Next, the mesh is applied. The mesh near the circular tubes region is finer than the 

mesh around the region far away from the circular tubes. This kind of mesh application 

will provide more accurate results while keeping the calculation time short. The finer 

the mesh, the more accurate the result as more data points are interpreted and 

calculated. Figure 25 shows the mesh application on the modeling geometry.  

 

Figure 25. Mesh application and mesh size distribution. 

 

The three constraints were applied on the model: 

• On the back XY plane (x, y, 0) with Z = 0 mm displacement 

• On the bottom XZ plane (x, 0, z) with Y = 0 mm displacement 

• On the left YZ plane (0, y, z) with X = 0 mm displacement  
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This allows the structure to move freely in the X and Y direction on the (x, y, 0) plane, 

in the X and Z direction on the (x, 0, z) plane, and in the Y and Z direction on the (0, 

y, z) plane. Figure 26 provides a schematic view of the constraints.  

 

 

Figure 26. Model constraints. 

The last step of setting up the FEM model was to assign the calculated force to 

the correct time steps in the Analysis Setting. The value of force used in this simulation 

was calculated based on Equation (1), Equation (2), and Equation (3) [67].  

                                        𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐺𝑃𝑎) = 0.01√
𝛼

𝛼+3
√𝑍√𝐼0                                (1) 

𝛼 is the fraction of the internal energy devoted to the thermal energy, and it is typically 

about 0.25. 𝐼0 is the incident power density. 𝑍 is the reduced shock impedance between 

the target and the confining water, which can be found by using Equation 2. 

(0, 0, 0) 

Y 

X 

Z 

Back XY plane (x, y, 0) with 

Z = 0 mm displacement 

Bottom XZ plane (x, 0, z) 

with Y = 0 mm 

displacement 

Left YZ plane (0, y, z) 

with X = 0 mm 

displacement 
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2

𝑍
=

1

𝑍𝑤𝑎𝑡𝑒𝑟
+

1

𝑍𝑡𝑎𝑟𝑔𝑒𝑡
                                                  (2) 

𝑍𝑤𝑎𝑡𝑒𝑟 = 0.165 × 106
𝑔

𝑐𝑚2𝑠−1
 

𝑍𝐴𝑙 = 1.5 × 106
𝑔

𝑐𝑚2𝑠−1
 

                                                      𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
                                                 (3) 

 

Therefore, by using Equation 1, Equation 2, and 4
𝐺𝑊

𝑐𝑚2 for the incident power density, 

the maximum pressure generated during the laser shock peening process is 

3.0245 𝐺𝑃𝑎. To convert pressure to force, apply Equation 3 with the affected laser 

shock peening area of 3.167 × 10−5 𝑚2 and get −95, 785𝑁 for the force generated on 

one laser shock peening affected area. The applied force is negative to indicate the force 

is applied into the target. In order to properly assign the force to the corresponding time 

step, it is important to understand each step during the two-layer application of laser 

shock peening process. The two-layer application laser shock peening process can be 

seen as 4 steps:  

1. Step 1: The laser shock pulse only applied in one area 

2. Step 1 + Step 2: The laser shock pulse first applied at the Step 1 area and then 

applied separately to each of the surrounding areas 

3. Step 1 + Step 2 + Step 3: The laser shock pulse first applied at the Step 1 area, 

then applied separately to each of the surrounding areas, and reapplied back to 

the Step 1 area 
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4. Step 1 + Step 2 + Step 3 + Step 4: The laser shock pulse first applied at the Step 

1 area, then applied separately to each of the surrounding areas, reapplied back 

to the Step 1 area, and reapplied separately to each surrounding areas  

Figure 27 illustrates Step 1 to Step 4 of the two-layer application laser shock peening 

process.  

    

    

Figure 27. Two-layer laser shock peening process in four steps. 

Step 1 Step 1 + Step 2 

Step 1 + Step 2 

+ Step 3 

Step 1 + Step 2 + 

Step 3 + Step 4 

1 1 

2 
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2 2 
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2 

1,3 
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2 

2 2 

2 

2 

1,3 

2,4 

2,4 

2,4 2,4 

2,4 
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The duration of each laser shock peen is 20ns, and this FEM simulation neglected the 

time for the laser machine to move from one spot to another as the distance between 

each laser shock peening spot is small. The applied force and corresponding time for 

Step 1 to Step 4 of the laser shock peening process is shown in Table 14 (orange = 

loading condition and green = unloading condition) and graphical representation is 

shown in Figure 28. 

Table 14. Applied force and corresponding time for Step 1 to Step 4. 

Time (s) 
Step 1  

Force (N) 

Step 1 + 2  

Force (N) 

Step 1 + 2 +3   

Force (N) 

Step 1 + 2 + 3 

+ 4  

Force (N) 

0 0 0 0 0 

1E-08 -95783 -95783 -95783 -95783 

2E-08 0 0 0 0 

3E-08 0 -95783 -95783 -95783 

4E-08 0 0 0 0 

5E-08 0 -95783 -95783 -95783 

6E-08 0 0 0 0 

7E-08 0 -95783 -95783 -95783 

8E-08 0 0 0 0 

9E-08 0 -95783 -95783 -95783 

1E-07 0 0 0 0 

1.1E-07 0 -95783 -95783 -95783 

1.2E-07 0 0 0 0 

1.3E-07 0 -95783 -95783 -95783 

1.4E-07 0 0 0 0 

1.5E-07 0 0 -95783 -95783 

1.6E-07 0 0 0 0 

1.7E-07 0 0 0 -95783 

1.8E-07 0 0 0 0 

1.9E-07 0 0 0 -95783 

2E-07 0 0 0 0 

2.1E-07 0 0 0 -95783 

2.2E-07 0 0 0 0 

2.3E-07 0 0 0 -95783 

2.4E-07 0 0 0 0 

2.5E-07 0 0 0 -95783 

2.6E-07 0 0 0 0 

2.7E-07 0 0 0 -95783 
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2.8E-07 0 0 0 0 

1 0 0 0 0 
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Figure 28. Graphical representations of applied force (N) and corresponding time (s) 

for Step 1 to Step 4. 
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The model was solved and used obtained the von-Mises Stress, Z-axis displacement, 

Z-axis normal stress and strain, and the hydrostatic stress. Since ANSYS Workbench 

does not have hydrostatic stress preprogrammed as one of the results, hydrostatic stress 

had to be defined. Hydrostatic stress can be calculated based Equation (4).  

                                            𝜎𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =
𝜎𝑥+𝜎𝑦+𝜎𝑧

3
                                                   (4) 

𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 are stress in the x, y, and z direction, respectively. To show hydrostatic 

stress results in ANSYS Workbench, Equation (4) had to be manually added as 

(𝑆𝑥+𝑆𝑦+𝑆𝑧)

3
 to the “User Defined Results” option. 

The following list provides the general steps for setting up and performed the 

laser shock peening process FEM simulation in ANSYS 19.4 Workbench.  

1. Select Transient Structural analysis system 

2. Input AA5083-H116 mechanical properties into Engineering Data 

3. Import the IGS file of 3D structure created from SolidWorks 2019 

4. Assign the material properties from Engineering Data to the 3D structure 

5. Create a mesh profile for the 3D structure (Finer mesh near the circular 

tubes) 

6. Apply constraints at the back XY plane with Z = 0mm displacement, bottom 

XZ plane with Y = 0mm displacement, and left YZ plane with X = 0mm 

displacement 

7. Assign appropriate time, time steps, and calculated force in the Analysis 

Setting 

8. Solve and view the von-Mises Stress, Z-axis displacement, Z-axis normal 

Stress and strain, and the hydrostatic stress. 
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• 4.2. Validation 

To ensure the FEM models and results generated from the software were 

accurate, three validation tests were performed prior to running the actual models. All 

three validation tests were testing the material’s mechanical properties within the 

elastic region. In the material’s elastic region, any deformation, stress, and strain must 

return to zero once the applied load is removed and the material is not experiencing any 

load. Moreover, under the elastic loading condition, the stress the material experiences 

are divided by the strain the material experiences and should return the material’s 

elastic modulus. The following sections describe the three validation testing conditions 

and results. 

o 4.2.1. Test 1: Elastic Modulus Check (Large Region) 

The first FEM model validation check was applying a known, calculated 

compressive stress, 𝜎 , on the entire front XY plane where Z ≠ 0. The applied 

compressive stress was calculated by multiplying the elastic strain, 𝜀, (gathered from 

Figure 24 the stress-strain curve) with material’s elastic modulus, E. By using the 

elastic strain to calculate the applied stress, the model should behave elastically. The 

following calculation shows the process of obtaining the applied stress. 

𝜀 = 0.003
𝑚𝑚

𝑚𝑚
 (𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑠𝑡𝑟𝑎𝑖𝑛 𝑐𝑢𝑟𝑣𝑒) 

𝐸 = 7.1 × 1010 𝑃𝑎 

𝜎 = 𝐸𝜀 = (7.1 × 1010)(0.003) = −2.13 × 108 𝑃𝑎 

(The negative sign was added to indicate it is a compressive stress) 
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The model was constrained the same way as previously mentioned in Section 4.1. Back 

XY plane (x, y, 0) with Z = 0 mm displacement, bottom XZ plane (x, 0, z) with Y = 0 

mm displacement, and left YZ plane (0, y, z) with X = 0 mm displacement. After all 

the material properties, constraints, and compressive stress were correctly assigned to 

the model, the model was solved for the stress and strain in the Z direction during 

loading.  

 The validity of the model was checked by first compared the maximum Z 

direction stress value to the applied compressive stress value, which the values are very 

similar. Then, the elastic modulus was calculated by dividing the average Z direction 

stress by the average Z direction strain. The calculated elastic modulus is the same as 

the actual material elastic modulus. Table 15 shows the FEM results and calculated 

values. Figure 29 and Figure 30 are visual diagrams of the results. 

Table 15. Validation test 1 FEM results. 

Z Stress −2.13 × 108 Pa 

Z Strain −2.9998 × 10−3
𝑚

𝑚
 

Calculated Elastic Modulus from FEM 

Results 𝐸 =
−2.13 × 108

−2.9998 × 10−3
= 7.1 × 1010 𝑃𝑎 
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Figure 29. Validation Test 1: Z stress result. 

 

Figure 30. Validation Test 1: Z strain result. 

o 4.2.2. Test 2: Zero Deformation, Stress, and Strain Check (Large Region) 

The second validation test is based on the setting from Test 1 and removed the 

applied stress from the material. The main goal is to check if the material comes back 

to its original shape with zero stress and strain remain in the material. As Test 1 was 

testing within the elastic region, the structure should not experience any permanent 

deformation and plastic strain. Figure 31, Figure 32, and Figure 33 show no permanent 

deformation and zero stress and strain in Z direction in the material after the applied 

stress is removed. 
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Figure 31. Validation Test 2: Deformation in Z direction after the load is removed. 

 

Figure 32. Validation Test 2: Stress in Z direction after the load is removed. 

 

Figure 33. Validation Test 2: Strain in Z direction after the load is removed. 
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o 4.2.3. Test 3: Zero Deformation, Stress, and Strain Check (Small Region) 

The third validation test is to check if the model will behave the same way as 

Test 2 when the same amount of compressive stress from Test 1 is applied on a smaller 

region. A compressive stress of  −2.13 × 108 𝑃𝑎 was applied at the center circular 

area on the front XY plane with Z≠0, shown in Figure 34. After the load is removed, 

both the load applied area and the entire surface region were checked to see if the model 

came back to its original shape and with no plastic deformation and strain remaining in 

the structure. Figure 35, Figure 36, and Figure 37 shows that there is no plastic 

deformation, stress, and strain remained in the material after the load is removed from 

the small applied region. 

 

Figure 34. Force applied at a small region. 

 

Figure 35. Validation Test 3: Deformation in Z direction after the load is removed. 
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Figure 36. Validation Test 3: Stress in Z direction after the load is removed.

 

Figure 37. Validation Test 3: Strain in Z direction after the load is removed. 
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• 4.3. Results 

The FEM results provide clear visual representations and in-depth analyses of 

the two-layer laser shock peening process. In each step, the Z direction displacement, 

Z direction stress and strain, and von-Mises stress were interpreted. Moreover, the 

residual stress, residual stress depth, and type of residual stress are also measured for 

the unloaded condition. In the final step, the hydrostatic stress was calculated in 

addition to all other stress results. The depth of each measurement was taken from the 

central circular region and the average of four different depth measurements within the 

region. For this FEM modeling, there are four steps simulating the two-layer laser 

shock peening process. Visual representations are shown in Figure 27. Within each of 

the four steps, there are two sub-steps that simulate the loaded and unloaded laser shock 

peening conditions. Furthermore, in order to measure the affected depth of each of the 

steps, a YZ section plane is made and inserted in the middle of the sample. Figure 38 

shows the YZ section plane and the place of insertion. The following sections show 

individual FEM results for each steps and conditions. Table 24 summarizes all the Z-

axis displacement, Z-axis Normal Stress and strain, von-Mises stress, hydrostatic 

stress, residual stress, and depth of plastic stress and residual stress for all the steps. 
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Figure 38. YZ section plane and place of insertion. 

 

o 4.3.1. Step 1 Results: Force Applied at the Center  

Loading Condition  

The FEM results of Z direction displacement, Z direction stress and strain, and 

von-Mises stress for Step 1 loading condition are shown in Table 16 and Figure 39 a), 

b), c), d), e), f), g), and h).  

Table 16. FEM results of step 1 in the loading condition. 

Step 1 Loading Condition 

 Tensile Compressive 

Z Displacement 0.32622 𝜇𝑚 −1.1876 𝜇𝑚 

Z Stress 93.406 MPa −467.24 MPa 

Z Strain 8.9320 × 10−4
𝑚

𝑚
 −4.4457 × 10−3

𝑚

𝑚
 

von-Mises Stress 237.68 MPa 
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(a) 

(b) 

(c) 
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(d) 

(e) 

(f) 
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Figure 39. FEM results for Step 1 loading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z stress, (d) Z stress section view, (e) Z 

strain, (f) Z strain section view, (g) von-Mises stress, and (h) von-Mises stress section 

view. 

 

Unloading Condition  

 The FEM results of Z direction displacement, Z direction strain, von-Mises 

stress, and residual stress for Step 1 unloading condition are shown in Table 17 and 

Figure 40 a), b), c), d), e), and f). 

(g) 

(h) 
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Table 17. FEM results of Step 1 in the unloading condition. 

Step 1 Unloading Condition 

 Tensile Compressive 

Z Displacement 2.1673 × 10−5𝜇𝑚 −1.6457 × 10−5𝜇𝑚 

Z Strain 5.7103 × 10−8
𝑚

𝑚
 −4.4058 × 10−8

𝑚

𝑚
 

von-Mises Stress 0.019106 MPa 

 

Step 1 

Depth of Stress Beyond 

the Proportional Limit 

N/A 

(von-Mises stress did not exceed the 

proportional limit) 

Depth of Residual Stress 0.354 mm 

Residual Stress 

Tensile Stress 
0.0046751 MPa 

(Max) 

Compressive Stress 
−0.0041163 MPa 

(Min) 

 

  
(a) 
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(b) 

(c) 

(d) 



 

 

80 

 

 

 

Figure 40. FEM results for Step 1 unloading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z strain, (d) Z strain section view, (e) 

von-Mises stress, and (f) von-Mises stress section view. 

 

 

  

(e) 

(f) 
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o 4.3.2. Step 2 Results: Force Applied at the Center then Surrounding 

Loading Condition  

The FEM results of Z direction displacement, Z direction stress and strain, and 

von-Mises stress for Step 2 loading condition are shown in Table 18 and Figure 41 a), 

b), c), d), e), f), g), and h).  

Table 18. FEM results of Step 2 in the loading condition. 

Step 2 Loading Condition 

 Tensile Compressive 

Z Displacement 0.83885 𝜇𝑚 −3.6556 𝜇𝑚 

Z Stress 273.48 MPa −874.10 MPa 

Z Strain 3.0856 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

von-Mises Stress 425.93 MPa 

 

 

(a) 
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(b) 

(c) 

(d) 
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(e) 

(f) 

(g) 
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Figure 41. FEM results for Step 2 loading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z stress, (d) Z stress section view, (e) Z 

strain, (f) Z strain section view, (g) von-Mises stress, and (h) von-Mises stress section 

view. 

 

Unloading Condition  

The FEM results of Z direction displacement, Z direction strain, von-Mises 

stress, and residual stress for Step 2 unloading condition are shown in Table 19 and 

Figure 42 a), b), c), d), e), and f).  

Table 19. FEM results of Step 2 in the unloading condition. 

Step 2 Unloading Condition 

 Tensile Compressive 

Z Displacement 0.38634 𝜇𝑚 −1.5645 𝜇𝑚 

Z Strain 1.1902 × 10−3
𝑚

𝑚
 −9.7193 × 10−4

𝑚

𝑚
 

von-Mises Stress 173.96 MPa 

 

 

(h) 
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Step 2 

Depth of Stress Beyond 

the Proportional Limit 
1.417 mm 

Depth of Residual Stress 0.628 mm 

Residual Stress 
Tensile Stress 94.108 MPa (Max) 

Compressive Stress −77.998 MPa (Min) 

 

 

 

 

 

(a) 

(b) 
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(c) 

(d) 

(e) 
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Figure 42. FEM results for Step 2 unloading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z strain, (d) Z strain section view, (e) 

von-Mises stress, and (f) von-Mises stress section view. 

 

o 4.3.3. Step 3 Results: Force Applied at the Center, then Surrounding, and 

Back to Center 

Loading Condition  

The FEM results of Z direction displacement, Z direction stress and strain, and 

von-Mises stress for Step 3 loading condition are shown in Table 20 and Figure 43 a), 

b), c), d), e), f), g), and h).  

Table 20. FEM results of Step 3 in the loading condition. 

Step 3 Loading Condition 

 Tensile Compressive 

Z Displacement 0.87270 𝜇𝑚 −3.9289 𝜇𝑚 

Z Stress 275.24 MPa −874.10 MPa 

Z Strain 3.0870 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

von-Mises Stress 436.62 MPa 

 

(f) 



 

 

88 

 

 

 

  

(a) 

(b) 

(c) 
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(d) 

(e) 

(f) 
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Figure 43. FEM results for Step 3 loading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z stress, (d) Z stress section view, (e) Z 

strain, (f) Z strain section view, (g) von-Mises stress, and (h) von-Mises stress section 

view. 

 

Unloading Condition  

The FEM results of Z direction displacement, Z direction strain, von-Mises 

stress, and residual stress for Step 3 unloading condition are shown in Table 21 and 

Figure 44 a), b), c), d), e), and f). 

 

(g) 

(h) 
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Table 21. FEM results of Step 3 in the unloading condition. 

Step 3 Unloading Condition 

 Tensile Compressive 

Z Displacement 0.51369 𝜇𝑚 −1.5886 𝜇𝑚 

Z Strain 2.0613 × 10−3
𝑚

𝑚
 −1.2576 × 10−3

𝑚

𝑚
 

von-Mises Stress 217.23 MPa 

 

Step 3 

Depth of Stress Beyond 

the Proportional Limit 
1.788 mm 

Depth of Residual Stress 0.653 mm 

Residual Stress 
Tensile Stress 173.30 MPa (Max) 

Compressive Stress −101.68 MPa (Min) 

 

 

(a) 
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(b) 

(c) 

(d) 
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Figure 44. FEM results for Step 3 unloading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z strain, (d) Z strain section view, (e) 

von-Mises stress, and (f) von-Mises stress section view. 

 

  

(e) 

(f) 
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o 4.3.4. Step 4 Results: Force Applied at the Center, then Surrounding, Back to 

Center and Back to Surrounding 

Loading Condition  

The FEM results of Z direction displacement, Z direction stress and strain, and 

von-Mises stress for Step 4 loading condition are shown in Table 22 and Figure 45 a), 

b), c), d), e), f), g), h), i), and j).  

Table 22. FEM results of Step 4 in the loading condition. 

Step 4 Loading Condition 

 Tensile Compressive 

Z Displacement 1.2351 𝜇𝑚 −8.2997 𝜇𝑚 

Z Stress 407.59 MPa −874.10 MPa 

Z Strain 4.3823 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

Hydrostatic Stress 268.29 MPa −660.44 MPa 

von-Mises Stress 436.62 MPa 

 

 

(a) 
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(b) 

(c) 

(d) 
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(e) 

(f) 

(g) 
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Figure 45. FEM results for Step 4 loading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z stress, (d) Z stress section view, (e) Z 

(h) 

(i) 

(j) 
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strain, (f) Z strain section view, (g) von-Mises stress, (h) von-Mises stress section 

view, (i) Hydrostatic stress, and (j) Hydrostatic stress section view. 

 

Unloading Condition  

The FEM results of Z direction displacement, Z direction strain, von-Mises 

stress, residual stress, and hydrostatic stress for Step 4 unloading condition are shown 

in Table 23 and Figure 46 a), b), c), d), e), f), g), and h). 

Table 23. FEM results of Step 4 in the unloading condition. 

Step 4 Unloading Condition 

 Tensile Compressive 

Z Displacement 1.5692 𝜇𝑚 −5.1740 𝜇𝑚 

Z Strain 1.9183 × 10−3
𝑚

𝑚
 −1.6108 × 10−3

𝑚

𝑚
 

Hydrostatic Stress 86.598 MPa −75.800 MPa 

von-Mises Stress 224.56 MPa 

 

Step 4 

Depth of Stress Beyond 

the Proportional Limit 
1.821 mm 

Depth of Residual Stress 1.656 mm 

Residual Stress 
Tensile Stress 162.77 MPa (Max) 

Compressive Stress −116.08 MPa (Min) 
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Figure 46. FEM results for Step 4 unloading condition. (a) Z direction displacement, 

(b) Z direction displacement section view, (c) Z strain, (d) Z strain section view, (e) 

von-Mises stress, (f) von-Mises stress section view, (g) Hydrostatic stress, and (h) 

Hydrostatic stress section view. 
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o 4.3.5. Summary of All FEM Results 

Table 24. FEM results for all steps loading and unloading conditions. 

Step 1 Loading Condition 

 Tensile Compressive 

Z Displacement 0.32622 𝜇𝑚 −1.1876 𝜇𝑚 

Z Stress 93.406 MPa −467.24 MPa 

Z Strain 8.9320 × 10−4
𝑚

𝑚
 −4.4457 × 10−3

𝑚

𝑚
 

von-Mises Stress 237.68 MPa 

 

Step 1 Unloading Condition 

 Tensile Compressive 

Z Displacement 2.1673 × 10−5𝜇𝑚 −1.6457 × 10−5𝜇𝑚 

Z Strain 5.7103 × 10−8
𝑚

𝑚
 −4.4058 × 10−8

𝑚

𝑚
 

von-Mises Stress 0.019106 MPa 

 

Step 1 

Depth of Stress Beyond 

the Proportional Limit 

N/A 

(von-Mises stress did not exceed the 

proportional limit) 

Depth of Residual Stress 0.354 mm 

Residual Stress 

Tensile Stress 
0.0046751 MPa 

(Max) 

Compressive Stress 
−0.0041163 MPa 

(Min) 
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Step 2 Loading Condition 

 Tensile Compressive 

Z Displacement 0.83885 𝜇𝑚 −3.6556 𝜇𝑚 

Z Stress 273.48 MPa −874.10 MPa 

Z Strain 3.0856 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

von-Mises Stress 425.93 MPa 

 

Step 2 Unloading Condition 

 Tensile Compressive 

Z Displacement 0.38634 𝜇𝑚 −1.5645 𝜇𝑚 

Z Strain 1.1902 × 10−3
𝑚

𝑚
 −9.7193 × 10−4

𝑚

𝑚
 

von-Mises Stress 173.96 MPa 

 

Step 2 

Depth of Stress Beyond 

the Proportional Limit 
1.417 mm 

Depth of Residual Stress 0.628 mm 

Residual Stress 
Tensile Stress 94.108 MPa (Max) 

Compressive Stress −77.998 MPa (Min) 
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Step 3 Loading Condition 

 Tensile Compressive 

Z Displacement 0.87270 𝜇𝑚 −3.9289 𝜇𝑚 

Z Stress 275.24 MPa −874.10 MPa 

Z Strain 3.0870 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

von-Mises Stress 436.62 MPa 

 

Step 3 Unloading Condition 

 Tensile Compressive 

Z Displacement 0.51369 𝜇𝑚 −1.5886 𝜇𝑚 

Z Strain 2.0613 × 10−3
𝑚

𝑚
 −1.2576 × 10−3

𝑚

𝑚
 

von-Mises Stress 217.23 MPa 

 

Step 3 

Depth of Stress Beyond 

the Proportional Limit 
1.788 mm 

Depth of Residual Stress 0.653 mm 

Residual Stress 
Tensile Stress 173.30 MPa (Max) 

Compressive Stress −101.68 MPa (Min) 
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Step 4 Loading Condition 

 Tensile Compressive 

Z Displacement 1.2351 𝜇𝑚 −8.2997 𝜇𝑚 

Z Stress 407.59 MPa −874.10 MPa 

Z Strain 4.3823 × 10−3
𝑚

𝑚
 −7.8037 × 10−3

𝑚

𝑚
 

Hydrostatic Stress 268.29 MPa −660.44 MPa 

von-Mises Stress 436.62 MPa 

 

Step 4 Unloading Condition 

 Tensile Compressive 

Z Displacement 1.5692 𝜇𝑚 −5.1740 𝜇𝑚 

Z Strain 1.9183 × 10−3
𝑚

𝑚
 −1.6108 × 10−3

𝑚

𝑚
 

Hydrostatic Stress 86.598 MPa −75.800 MPa 

von-Mises Stress 224.56 MPa 

 

 

Step 4 

Depth of Stress Beyond 

the Proportional Limit 
1.821 mm 

Depth of Residual Stress 1.656 mm 

Residual Stress 
Tensile Stress 162.77 MPa (Max) 

Compressive Stress −116.08 MPa (Min) 
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Chapter 5:  Discussion 

This chapter discusses the effect of laser shock peening process on AA5083-

H116 microstructure changes, dislocation behaviors, and Al3Mg2 𝛽 phase formation 

based on the results obtained and observed in the previous chapters. Every result and 

data point provided valuable details to show the changes made by laser shock peening 

on AA5083-H116. This chapter is divided into three main sections that cover the 

discussion of the results from light optical microscopy, transmission electron 

microscopy (TEM), and finite element method (FEM) modeling. 

• 5.1. Optical Microscopy 

The results gathered from optical microscope can be summarized into four main 

points. First, the precipitation of Al3Mg2 𝛽 phase increases as the aging temperature 

increases under the same aging time. Second, the precipitation of Al3Mg2 𝛽  phase 

increases as the aging time increases with the same aging temperature. Third, small 

amount of Al3Mg2 𝛽 phase was already formed in the system. Last, the grain size near 

the surfaces is smaller as compared to the grain size in the middle of the sample. In 

order to show the changes made by the laser shock peening process, there are a total of 

nine pairs of laser shock peened and unpeened samples subjected to the same aging 

temperature and time. Based on the results shown in Figure 9 – 15, there are no 

significant changes observed between laser shock peened and unpeened samples. All 

the four main points summarized from observing microstructure images happened in 

both laser shock peened and unpeened samples. If only based on the comparison 

between laser shock peened and unpeened sample light optical microscope images, it 
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is very difficult to conclude that there are any changes caused by laser shock peening 

process. However, the maximum useful magnification of a light optical microscope is 

1000x, and the changes caused by the laser shock peening process are more observable 

in the nanometer scale. Therefore, TEM analysis was performed and changes are 

observed in the TEM images, which is discussed in the next section. 

• 5.2. Transmission Electron Microscopy 

The TEM images show a clear difference between unaged laser shock peened 

and unpeened samples, where some phenomena on observed in one type of sample but 

not on the other sample. This indicates that the changes caused by laser shock peening 

are at the nanometer scale, which is unlikely to be observable in the optical microscope. 

This TEM discussion section is further separated into three sections, where each section 

discusses and analyze three main changes caused by laser shock peening process 

observed from the TEM images. 

o 5.2.1. Thermal Effect from Laser Shock Peening Process 

It has been observed that there are melt pools consistently appearing on the 

surface of the laser shock peened sample that did not undergo any artificial aging 

process. The TEM image of melt pool on the unaged laser shock peened sample can be 

seen in Figure 20. The melt pools appear on the sample surface imply that the laser 

shock peening process still generated enough heat to create localized melting on 

AA5083-H116 surface (Tmelt ~ 591℃ to 638℃) [11]. With the TEM image showing 

the appearance of melt pools, the sample near the laser shock peening surface must be 
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thermally affected. This could lead to the increased diffusivity of atoms and material 

properties change.  

o 5.2.2. Al3Mg2 𝜷 Phase Precipitates 

Through the TEM analysis, the fine precipitations near and on the dislocations 

were suspected to be Al3Mg2 𝛽  phase in the laser shock peened sample, shown in 

Figure 19(b). With localized melting generated during the laser shock peening process, 

sample surface experienced a temperature gradient. Higher temperature near the melt 

pool center and lower temperature away from the melt pool center. Thus, some 

thermally affected regions experienced a temperature that is above the solvus 

temperature, and some regions experienced a temperature that is below the solvus 

temperature. The thermally affected regions that with a temperature that is below the 

solvus temperature could promote the diffusion and segregation of Mg atoms to the 

nearest preferential sites and allow the precipitation of Al3Mg2 𝛽 phase.  

The Mg enrichment and segregation preferential site for the unaged laser shock 

peened sample is at the dislocation as these phenomena could possibly be explained by 

the following reasons. First, even though the laser pulse from laser shock peening 

process provides sufficient thermal energy for atomic diffusion, the duration time of 

each laser pulse is too short for atoms to diffuse in a long distance. The atomic diffusion 

time is limited by the laser pulse duration time, which only allows Mg atoms to diffuse 

in a short range to the nearest site that has enough segregation energy. Second, 

according to C. Hin et al., a dislocation has an equivalent segregation energy to a grain 

boundary to permit solute enrichment and segregation [68]. Dislocation cores have a 

naturally disordered structures that give the same segregation energy as a grain 
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boundary and allow Mg atoms to diffuse and segregate at a dislocation in a short 

amount of time. Moreover, many studies have shown that a supersaturated solute will 

segregate and enrich preferentially at dislocation [68 – 73]. The segregation and 

enrichment of Mg at the dislocation site has a very high possibility that led to the 

precipitation of Al3Mg2 𝛽 phase. As pointed out in Chapter 2 Section 2.5 and Section 

2.6, Magnesium segregation and enrichment has been highly suspected to be associated 

with the formation of Al3Mg2 𝛽 phase, but the actual kinetics behind the nucleation and 

precipitation of Al3Mg2 𝛽 phase still requires further research. Lastly, the precipitation 

of Al3Mg2 𝛽 phase can help release some of the strain energy between dislocation and 

lattice. Dislocations create distortion in the lattice causing strain energy to increase. 

When the misfitted Al3Mg2 𝛽 phase precipitate forms on and/or near the dislocation, 

part of the distortion strain energy can be reduced with the misfitted precipitates [68, 

72, 73]. The actual kinetics and phases involved with the precipitations near and on the 

dislocations require further investigation and understanding to verify. 

o 5.2.3. Dislocation Morphology 

From TEM analysis, there are differences in the dislocation configuration and 

dislocation density between the unaged laser shock peened and unpeened samples. In 

Figure 17 and 18, the unaged laser shock peened sample has a preferential orientation 

for the dislocation lines as compared to the randomly orientated dislocations in the 

unaged, no laser shock peened sample. The preferred dislocation line direction in the 

laser shock peened sample could be caused by the plastic deformation generated during 

the laser shock peening process. During the deformation process, dislocations slip 

preferentially on a family of planes that contains the highest density of atoms and slip 
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in the direction that has the most closely packed atoms [74]. Compared to the unaged, 

no laser peened sample, there is no clear dislocation orientation direction due to no 

additional plastic deformation from the laser shock peening process on the sample. 

Additionally, laser shock peening process introduced more dislocations near the sample 

surface as the laser pulse plastically deformed the sample surface. When the high 

energy laser pulse strikes the sample surface, large distortion of lattice is created and 

allow dislocations to create. The strength of impact stress that exceeds the yield 

strength of a material has an increasing relationship with the amount of dislocations 

generated in the system. In Chapter 3 Section 3.5.8., unaged laser shock peened sample 

shows a growth in dislocation density compared to unaged, no laser shock peened 

sample. 

• 5.3. Finite Element Method Modeling  

The finite element method (FEM) modeling performed in Chapter 4 shows 

plastic deformation did occur during the laser shock peening process, and it has been 

confirmed by TEM analysis. As the ANSYS Workbench 19.2 software simulated the 

impact force of the laser pulse on the sample surface, the stress created on the sample 

surface exceeded the proportional limit of AA5083-H116 ( 2.75 × 108 𝑃𝑎 ). This 

indicates that the sample surface is being plastically deformed by the laser shock 

peening process. The FEM model shows an agreement with the plastic deformation 

characteristic that is observable with the naked eye on the sample surface. Moreover, 

the FEM results were further confirmed by the TEM analysis on dislocation density 

and morphology. The agreement and confirmation by material microscopy 
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characterization allows the FEM simulation to be used as a prediction on material 

deformation behavior with a given amount of laser beam intensity. 

The FEM results also calculated the amount of residual stress left in the sample 

and the depth of the residual stress. There are both tensile residual stresses (Max 

162.77MPa) and compressive residual stresses (Min -116.08MPa) left in the sample 

after the laser shock peening process. The depth of the compressive residual stress from 

the laser shock peening surface is about 1.388mm, and the depth of the tensile residual 

stress is about 3.382mm. Figure 47 shows the transition from residual compressive 

stress in the sample surface to residual tensile stress in the sample bulk.  
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Figure 47. Tensile and compressive residual stress distribution. 

 

The appearance of both compressive and tensile residual stress is due to the interaction 

between plastic and elastic deformation. During the laser shock peening process, the 

stress the sample experiences increases gradually during the force loaded condition, 

then the stress decreases after the force is removed. Only for a portion of the time during 

the laser shock peening process does the sample experience a stress that is greater than 

the material’s proportional limit. This causes some parts of the sample to be 

permanently deformed. Since some regions experienced plastic deformation and other 

regions experienced elastic deformation, the tensile and compressive residual stresses 

are formed due to the interaction between plastic and elastic deformation. When the 

load is removed from the sample, the elastic regions of the sample tried to come back 

to its original shape, but the plastic regions constrained the movement of the material. 

Thus, tensile residual stress seems to be near the middle toward the end of the sample 

depth as the sample was more plastically deformed around that region. Additionally, 
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the phenomemon of the interaction between elastic and plastic deformation also has 

similar effect on the hydrostatic stress, Z direction strain, and von-Mises stress, shown 

in Figure 48 (a), (b), and (c). 
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Figure 48. Graphical representations of (a) hydrostatic stress, (b) Z-direction strain, 

and (c) von-Mises stress changed through the sample thickness with the elastic and 

plastic deformation interaction. 
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Chapter 6:  Conclusions 

• 6.1. Summary and Conclusions 

This research explores the effect of laser shock peening process on AA5083-

H116 with a focus on the microstructural evolution and dislocation morphology 

changes. As the detrimental problems of sensitization of Al3Mg2 𝛽 phase along grain 

boundaries and stress corrosion cracking of the 5xxx series aluminum have drawn a 

great amount of concerns, the main goals of this research is to provide results and data 

on the effectiveness of laser shock peening on AA5083-H116 and allow the results to 

be used in the future studies on whether or not the laser shock peening process helps to 

prevent and reduce Al3Mg2 𝛽 phase sensitization and stress corrosion cracking. 

Within this research, a total of 28 samples were being evaluated on the effect 

and alteration on AA5083-H116 caused by the laser shock peening process. The testing 

samples can be categorized into laser shock peened samples and no laser shock peened 

sample. There are 18 samples laser shock peened and 10 no laser shock peened 

samples. During the artificial aging process, 17 laser shock peened samples and 9 no 

laser shock peened samples were aged to cause sensitization of the Al3Mg2 𝛽 phase. A 

laser shock peened and unpeened sample were unaged to allow for the direct 

comparison of laser shock peening on the material. The artificial aging process aged 

the samples in four different temperatures (70℃, 100℃, 150℃, and 175℃) with a range 

of aging times. After the aging process, the sample were characterized with light optical 

microscopy and a few selective samples were analyzed with transmission electron 

microscope (TEM). Grain size measurements (ASTM E112) and dislocation density 
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measurements were later performed to validate the phenomena observed in light optical 

microscopy images and TEM images. The laser shock peening process was simulated 

using the finite element method (FEM), which provided supplementary data to further 

understand the results gathered from light optical microscopy images and TEM images. 

In addition, the FEM model gave predictions on material mechanical behaviors with 

various changes in the laser pulse energy intensity.  

Based on the results presented in Chapter 3 and Chapter 4 and the analysis 

performed in Chapter 5, several important conclusions and possible explanations can 

be drawn, and are listed below: 

1. The observation through optical microscope, both laser shock peened and 

unpeened samples experienced the similar effects with different aging 

processes. The precipitation of Al3Mg2 𝛽  phase increases as the aging 

temperature and time increases. Furthermore, prior to the sensitization 

aging process, both types of samples have pre-existing Al3Mg2 𝛽  phase 

presented in the microstructure. All samples experienced the same grain 

size variation within the sample: a small grain size near the surface and a 

larger grain size in the middle of the sample. 

2. As the optical microscopy image analysis did not show any differences 

between laser shock peened and unpeened samples, it can be concluded that 

the most observable laser shock peening effects are at a nanometer scale and 

higher-magnification techniques, such as TEM, are required to observe 

changes. 
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3. At the nanometer scale, several effects caused by laser shock peening 

process are observed. In the unaged laser shock peened sample, melt spots 

formed consistently across the sample surface. Melt spots were created from 

the high energy intensity laser beam during the laser shock peening process. 

This occurs despite the fact that the laser shock peening process is a cold 

work process and the water and black opaque overlays are applied on the 

sample surface to prevent any thermal effects and alterations. If localized 

melting is occuring, the thermal energy generated during each laser pulse 

would increase the atomic diffusivity. 

4. With the thermal energy introduced to the sample surface by the laser shock 

peening process and increased atomic diffusion, fine precipitations were 

observed near and on the dislocations. This is only observed in the unaged 

laser shock peened sample. The fine precipitations were suspected to be 

Al3Mg2 𝛽 phase, and further analysis is required to confirm the identity of 

those fine precipitations. The phenomena of fine precipitations observed 

near and on the dislocations could possibly be explained by the following 

reasons. 

• Due to the naturally disordered structure of dislocation cores, the 

segregation energy of dislocation is the same as grain boundary, 

which allows segregation and enrichment of Mg atoms at 

dislocations.  

• It is highly suspected that the precipitation of Al3Mg2 𝛽 phase at 

dislocations is caused by the enrichment of Mg atoms at 
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dislocations. The actual kinetics of Al3Mg3 beta phase 

nucleation and formation are still under debate.  

• Additionally, the precipitation of misfitted Al3Mg2 𝛽  phase 

around dislocation helps to reduce the distortion strain energy 

caused by dislocation formation, reducing the energy of 

nucleation.  

5. For the laser shock peened sample, the dislocation density increased, and 

the dislocation lines are all orientated in a preferential direction. The 

increase in dislocation density and preferential direction of dislocation lines 

is created by the plastic deformation process from laser shock peening, and 

dislocations will slip on a close-packed plane and in close-packed direction.  

6. The FEM model confirms during the laser shock peening process, the 

sample surface is being plastically deformed by the high energy laser pulse. 

The stress generated at the sample surface exceeds the proportional limit of 

the material and created both tensile and compressive residual stresses. The 

creation of both tensile and compressive residual stresses is due to the 

interaction between plastic and elastic deformation. The plastic deformed 

region inhibits the elastic region to elastically recover to material’s original 

shape, which creates tensile and compressive residual stresses within the 

material after the laser shock peening process. 
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• 6.2. Future Works 

This research focused on the effect of laser shock peening process on samples 

that have either been artificially aged first or unaged at all. The results and conclusions 

provide better understanding of the effect of laser shock peening process on AA5083-

H116 microstructural evolution and dislocation morphology changes, and can also be 

beneficial for applications that want to use the laser shock peened 5xxx series 

aluminum alloys as structural material. The study of the laser shock peening process 

on 5xxx series aluminum alloys can be further expanded by conducting a reverse heat 

treatment and laser shock peening process of this research and performing corrosion 

testing such as stress corrosion cracking (SCC) test, to observe the effect of laser shock 

peening process on material SCC resistance. Therefore, the future works of this project 

are suggested in the following: 

1. Perform a reverse heat treatment and laser shock peening process, where 

the as-received 5xxx series aluminum alloys sample is first artificially aged 

to create Al3Mg2 𝛽 phase. Next, apply laser shock peening process to the 

sample. Conduct the same material characterizations with light optical 

microscopy and TEM. Compare the results to see any changes between 

testing sequences. 

2. As intergranular stress corrosion cracking (IGSCC) is a major concern with 

the 5xxx series aluminum alloys, it would be worthwhile to perform a stress 

corrosion cracking (SCC) sea water immersion test and understand the 

effect of laser shock peening process on material’s corrosion and 

intergranular corrosion properties. The SCC sea water immersion test 
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should perform on both kinds of heat treatment and laser shock peening 

sequences. First sequence, laser shock peened the sample then age. Second 

sequence, aged the sample prior to laser shock peening process. 

3. For future FEM study, additional variables can be applied onto the FEM 

model, such as the thermal effect caused by laser shock peening and the 

effect of water and black opaque overlays on sample. With such additional 

variables, the FEM model can provide a more detailed insight on the 

sample’s mechanical properties. Moreover, besides creating an as-received 

aluminum sample FEM model, a FEM model with both aluminum matrix 

and Al3Mg2 𝛽  phase precipitates will provide more understanding on 

sensitized materials. 

4. For TEM analysis, a complete analysis and  phase identification of the fine 

precipitations near and on the dislocations observed in this project should 

be performed and further understand the kinetic phenomena behind the 

precipitations and the preferred precipitation locations. 

5. Investigate whether the fine precipitations observed near and on the 

dislocations are detrimental to the material. 

6. Perform TEM analysis on the aged laser shock peened and unpeened 

samples to observe the effect of laser shock peening process.  
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