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We report experimental research into the possibility of using shot noise mea-

surements to detect the entangled states of electron spins. The study is part of

the effort towards the demonstration of the use of electron spins as quantum bits

(qubits) for quantum computing and quantum information processing. Electrons

are electrically injected into two neighboring quantum dots and interact with each

other through the exchange coupling, after which they tunnel out of the dots and are

incident on a beam splitter, which introduces quantum interference between electron

states. Depending on the state of the electrons exiting the dots, the outgoing states

of electrons scattering off the beam splitter are different, corresponding to different

shot noise in the electrical currents flowing into the channels after the beam splitter.

Our experimental data is consistent with most theoretical predictions and provides



initial evidence of electron spin entanglement.

A comprehensive study of the shot noise in mesoscopic semiconductor tunnel

barriers is also reported. Besides the theoretically predicted full shot noise, sup-

pressed and enhanced shot noise are also observed. Normal conductance measure-

ments and numerical simulations are done to understand the shot noise deviation.

Our study shows that shot noise in mesoscopic systems is extremely sensitive to the

microscopic details, such as potential disorder and impurity configuration.
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Chapter 1

Introduction

This thesis reports on experimental research into the possibility of using shot noise

detection in a transport measurement to detect the entangled states of electron

spins. The study is part of an effort towards the demonstration of the use of electron

spins as quantum bits (qubits) for quantum computing and quantum information

processing.

The outline of this thesis is as follows. In this chapter, I discuss the motivation

of the experimental work reported in this thesis by reviewing relevant progress in the

study of quantum computing, quantum entanglement and shot noise in mesoscopic

systems. The theoretical proposal on which my experimental work is based is also

discussed briefly.

Chapter 2 introduces some basic mesoscopic physics. The electrical properties

of the studied system and the transport properties of quantum point contacts and

quantum dots are discussed. A general theory of shot noise and its application to

mesoscopic systems is also discussed.

In Chapter 3, I first give a brief introduction to quantum entanglement and

then discuss in detail the theoretical proposal for the generation and detection of

entangled electron spins using coupled quantum dots and a beam splitter. Chapter

4 contains a discussion of the sample fabrication process and the experimental setup
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used for the measurements reported in Chapters 5 and 6. The purpose, design, con-

struction, and calibration of two cryogenic amplifiers is discussed in detail. Chapter

5 presents the results of shot noise measurements in mesoscopic tunnel barriers.

Numerical simulation results are given for tunnel barriers with different microscopic

details which affect charge transport and are used to explain the experimental data.

Chapter 6 reports on the first experimental results from the measurement of

the shot noise from two coupled quantum dots to detect entangled electron spins. I

give a detailed description of the experimental preparation and present data which

provides initial evidence of electron spin entanglement. Some potential problems of

this experiment are also discussed. The last chapter concludes with an overview of

existing results and some future directions for research.

1.1 Quantum computing

The representation of information by classical quantities such as voltage levels in

a microprocessor is well-known. Much less well-known is that information can be

encoded in a two-state quantum system [1], such as: the two internal states of a

trapped ion [2]; the two lowest energy levels of a current biased Josephson junction

[3]; or the two spin eigenstates of an electron [4, 5] or atomic nucleus [6] in a magnetic

field. A single quantum bit in this form has come to be known as a “qubit”. With

two or more qubits it becomes possible to consider quantum logical gate operations

in which a controlled interaction between qubits produces a (quantum mechanically

coherent) change in the state of one qubit that is contingent upon the state of
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another. These gate operations are the building blocks of a quantum computer.

It is believed that if a quantum computer can be built, it will be able to solve

some difficult problems in computational science, such as factorization of very large

integers [7], searching one entry in a large unsorted database [8], and quantum

modelling [9, 10].

Unique resources in quantum mechanics such as quantum superposition and

quantum entanglement are essential for achieving the expected superior computing

power of a quantum computer. For a system with N qubits, the set of all possible

quantum states comprises a Hilbert space of 2N -dimensions. In general, a quantum

computation process can be viewed as a unitary transformation in such a space. The

resulting parallelism confers a quantum computer exponential information process-

ing ability for certain types of computations.

Many physical systems have been proposed for implementing quantum com-

puting and quantum information processing. Among the various proposals those

based on solid state systems have mainly attracted interest because of their poten-

tial for being scaled up to create complex quantum circuits. One category of these

systems is superconducting devices [11], such as Cooper pair boxes [12, 13], current

biased Josephson junctions [3] and superconducting quantum interference devices

(SQUID’s) [14]. In these devices, two macroscopically distinct quantum states are

used to represent a qubit. Another category uses microscopic states of real particles

as qubits, for example, the nuclear spin states of a phosphorus atom [6].

In an electron spin-based quantum computing proposal by DiVincenzo et al.

3



[4, 5], the two spin eigenstates of a conduction electron are used as a qubit. Qubits

can be electrically transported to desired places or be trapped in devices known

as quantum dots, thus in principle they can be easily addressed. A quantum dot

is simply a solid state device that traps a few electrons in a known location. It

consists of a small island of electrons surround by several controlling gates and

is usually connected to two electron reservoirs. By adjusting the voltage on the

controlling gates, electrons are allowed to tunnel into and out of the quantum dot.

The initialization of qubits can be realized by applying a global magnetic field which

aligns all electron spins into one direction. In principle single qubit operations can

be achieved by coherently manipulating electron states in a single quantum dot with

carefully engineered local magnetic fields and/or external microwave pulses. Two

qubit operations would be realized by using two electrically coupled quantum dots

to introduce exchange couplings between two qubits. A universal set of quantum

logic gates could then be constructed based on the above two types of operations.

1.2 Quantum entanglement

The search for experimental proof of quantum coherence between two or more macro-

scopically distinct quantum states in condensed matter systems has been a very ac-

tive field over the past 20 years [15, 16, 17, 18, 19, 20, 21]. Much progress has been

made in producing coherent superpositions between different states contained within

a quantum system. For example, the existence of quantum coherence was first in-

ferred and later clearly demonstrated by the experiments carried out in the energy
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domain in a superconducting single electron transistor [22, 23, 24], in a persistent

current superconducting loop device [20] and in a SQUID device [19]. Coherent tem-

poral oscillations between two quantum states have also been observed in a single

Cooper pair box [18] and in a current biased Josephson junction [17].

Recently the new focus has been to produce entangled quantum states. Quan-

tum entanglement is a manifestly non-classical and non-local property of the quan-

tum state of a composite system (e.g., two or more distinct particles) where the

entangled composite state cannot be decomposed into a product of the individual

states of local constituents. Therefore these objects are entangled no matter how far

they are separated spatially. A classical example of entangled states is the singlet

state of two electron spins.

The study of entanglement is important for both fundamental physics and

practical applications. For example, pair-wise entangled electron spins (e.g., a sin-

glet state) should be equivalent to Einstein-Podolsky-Rosen (EPR) pairs [25] whose

main feature is their non-locality and should give rise to violations of Bell’s in-

equalities [26, 27]. Testing Bell’s inequalities is important for understanding the

foundation of quantum mechanics. So far almost all tests that have been done were

carried out with photons [28, 29, 30, 31], and no such test has been done for mas-

sive particles in a condensed matter environment. Condensed matter systems are

inherently highly correlated many particle systems. Entanglement in such systems

with strong interactions is an interesting and challenging topic.

The recent progress in quantum computing and quantum information process-
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ing boosts the study of entanglement for practical applications. Spectroscopic evi-

dence for entanglement between both the charge states of two coupled Cooper pair

boxes [32] and two capacitively coupled Josephson junctions [33] has been reported,

although the observed entanglement has not been tested in the context of Bell’s

inequalities and there are still debates on its nature. Conditional gate operations

using coupled Cooper pair boxes have already been demonstrated [34]. The research

on electron spin based quantum computing, however, has not reached this stage yet.

The main effort is still on obtaining well characterized qubits. For example, semi-

conductor quantum dots containing one electron have been successfully fabricated

only recently [35, 36] and coherent control of single electron states has not been

achieved yet. How to entangle two electron spins remains an outstanding problem

in this community.

1.3 Shot noise

In general, shot noise describes the fluctuations in any transport process in which

the transported quantity has a discrete nature. For example, counting the number

of photons arriving at a detector or the number of rain drops falling into a collector

as a function of time reveals shot noise. For electrical transport in a conductor, shot

noise is due to charge quantization of the current carrying particles. This is directly

observed in the well known result for the full shot noise power spectrum density: 2eI,

where e is the electron charge and I is the time averaged current. If e → 0, charge

transport would be continuous and shot noise would vanish. Correspondingly, the
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shot noise of the current at a normal-superconductor interface where the Andreev

reflection mechanism [37, 38] dominates should be 4eI, since the transport is now

essentially the transfer of particles with a charge of 2e [37]. On the other hand,

theory predicts that the current in a system in the fractional quantum Hall regime

is carried by quasi-particles with fractional charges [39], thus the electron charge

e in the 2eI should be replaced by the corresponding fractional charge [40]. Both

predictions have been verified experimentally [41, 42, 43].

Experimentally, it is convenient to measure the power density of shot noise in

the frequency domain. In almost all cases, the power density is frequency indepen-

dent at low frequencies1, so shot noise is usually considered to be white. Mathemat-

ically, the noise power spectrum density of a current I(t) is defined as:

S(ω) =
∫ ∞

−∞
e−iωτ [

∫ ∞

−∞
I(t)I(t + τ)dt]dτ, (1.1)

where ω is the frequency. According to this definition, shot noise is sensitive to

the temporal correlation of a current, or the correlation between consecutive charge

transfer events. Compared to the time averaged current, shot noise contains addi-

tional information about the transport process. For example, shot noise has a power

spectrum density of 2eI only for transport processes that can be described by Pois-

sonian statistics and usually deviates from that value in non-Poissonian processes.

1“Low frequencies” means frequencies lower than the inverse of the average transition time of

one unit (e.g., one electron). For semiconductor devices, shot noise is white up to the GHz range

or even higher.
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However, a standard conductance measurement that detects the time averaged cur-

rent cannot distinguish these different processes.

The deviation of shot noise from the Poissonian value 2eI in mesoscopic con-

ductors has attracted much interest in recent years [44]. For example, it has been

shown theoretically and experimentally that due to the Pauli principle and Coulomb

interaction between electrons, shot noise is often suppressed to below 2eI [45, 46].

In some special cases, shot noise can also be much enhanced due to various mecha-

nisms [47, 48]. Therefore the study of shot noise deviations helps illuminate details

of the transport processes in mesoscopic conductors.

More recently, progress in the study of the shot noise in mesoscopic systems

has been made by probing quantum statistics of particles in multi-terminal con-

ductors [44, 49]. These studies have examined the effect of quantum statistical

properties of a system on its shot noise. This new direction has much interplay with

the field of quantum optics. Indeed, the theory of shot noise in mesoscopic physics

borrows many ideas from quantum optics, where certain aspects of noise have been

much better studied than in condensed matter systems. A few elegant mesoscopic

experiments have recently demonstrated a fermionic analogy to high order quan-

tum interference measurements in quantum optics [50, 51, 52]. This work will be

discussed further in Chapter 3.
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1.4 Detecting electron spin entanglement

DiVincenzo et al. [4, 5] have proposed using the spin eigenstates of single conduction

electrons as qubits for quantum computing. They have suggested theoretically that

the entanglement of two electron spins can be achieved by using two electrostati-

cally coupled quantum dots as an entangler. To verify this possibility Loss et al [53]

have suggested a scheme using shot noise measurements to detect entangled elec-

tron spin pairs. The basic idea is as follows. Electrons are electrically injected into

two electrostatically coupled quantum dots and interact with each other through

the exchange coupling. The electrons then tunnel out of the dots and traverse a

beam splitter, which introduces quantum interference between the electron states.

Depending on the type of entangled state of the electrons exiting the dots, the out-

going states of electrons scattering off the beam splitter are different, corresponding

to different shot noise in the electrical currents flowing into the channels after the

beam splitter. Thus the idea is that by measuring shot noise one can test the use

of coupled quantum dots for generating entangled spin states.

In this entanglement detection proposal, the quantum statistical properties of

the electron pairs exiting the two dots will determine the level of shot noise. This

type of experiment belongs to the same class of measurements that probe quantum

statistical properties in mesoscopic systems that I mentioned in the previous section.

Therefore this experiment is interesting not only in the context of demonstrating

entanglement but also in the sense that it enriches our understanding of shot noise

in mesoscopic systems.
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Chapter 2

Mesoscopic Physics

In this chapter, I give an introduction to transport processes in mesoscopic systems.

Since this is a very broad field, only those subjects relevant to the experimental work

reported in this thesis will be discussed. The first section is a brief review of the elec-

trical properties of a two dimensional electron gas (2DEG) system in GaAs/AlGaAs

heterostructures. The second section summarizes some recent experimental trans-

port measurements obtained in these systems, focusing on quantum point contacts

and quantum dots. The last section covers a general description of shot noise in

mesoscopic systems.

2.1 Two dimensional electron gas

In the last 50 years the general trend in microelectronics industry has been to min-

imize device sizes so that chips with higher density, operation speed, and more

complex functionality could be made. This trend has been very successful. How-

ever, it is expected that progress will slow dramatically in the near future because

of at least two factors: the limitations of the current lithography technology to

produce even smaller features and the fact that classical transport theory does not

adequately describe device operation at the nano-scale. As the dimension of devices

approaches the deBroglie wave length of the charge carriers, the wave nature of the
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particles dominates the transport characteristics. The first problem may be solved

by developing new lithographic techniques or completely new ways of fabricating

chips, such as the bottoms-up paradigm used in the chemical synthesis technology

[54]. The second factor, however, is a more fundamental matter, which may or may

not limit the performance of computers, but will certainly require new type of de-

vices. The solution to this problem requires knowledge from the field of mesoscopic

physics.

Mesoscopic physics involves the study of devices on a length scale between

the microscopic atomic regime and the macroscopic classical regime. For transport

in electronic mesoscopic devices, two important length scales are involved: the de-

Broglie wavelength of electrons, λ, and the phase coherence length Lφ, defined as the

length scale over which the electron wave function maintains its phase coherence.

In the classical regime, the typical size L of a device is much larger than Lφ. In this

limit, electrons can be treated as particles and classical transport theory works very

well. For transport in these classical devices, electrons experience many scattering

events caused by various interaction mechanisms and lose their phase information

very fast, so their wave nature only introduces minor corrections to the classical

transport theory. In the other limit where the device size L approaches the atomic

scales, electrons must be described using quantum mechanics. Wave characteris-

tics such as diffraction and interference become dominant. The transition region

between these two limits is the realm of mesoscopic physics.

Low dimensional electronic systems based on semiconductor heterostructures

11
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Figure 2.1: ((a) The epitaxial structure of the wafer used for the work in this thesis;

(b) Conduction band energy diagram near the interface between the GaAs and

AlGaAs. A two dimensional electron gas forms in the triangular well.

are ideal for studying mesoscopic phenomena. With the help of modern crystal

growth and microelectronics fabrication techniques, the electrons in these systems

are confined in one or more dimensions. Compared to metals, these systems usually

have a lower electron concentration and smaller effective electron mass. This results

in a large deBroglie wavelength (typically ∼ 50 nm) which is comparable to the

size of the devices. Two well studied semiconductor heterostructure systems are the

two dimensional electron gas (2DEG) formed in Metal Oxide Semiconductor Field

Effect Transistors (MOSFETs) [55] and GaAs/AlGaAs heterostructures [56].

Figure 2.1 shows the epitaxial structure and conduction band energy diagram

of the GaAs/AlGaAs heterostructure used for the experimental work reported in this

thesis. The wafer I used was grown by Molecular Beam Epitaxy (MBE). Starting

12



with a standard GaAs wafer, a thick GaAs buffer layer is grown followed by 2.0 nm

AlAs and 37.0 nm Al0.3Ga0.7As spacer layer. Next, 6.0 nm of doped Al0.3Ga0.7As

(10 layers of δ-doped Silicon with a dopant concentration of 1 × 1012 cm−2 for

each layer and separated by 0.6 nm of Al0.3Ga0.7As) are grown followed by a final

5.0 nm GaAs cap layer. Due to the conduction band offset between GaAs and

AlAs, a triangular potential well is formed at the interface between them. At low

temperatures, electrons contributed by the silicon donors are trapped in this well.

Typically electrons are confined within 1.0 nm in the z direction, so they can only

move freely in the xy plane.

A 2DEG of this type is a many electron system. A full quantum mechanical

calculation would take into account the lattice potential, confinement potential,

electron-phonon interaction and electron-electron interaction, etc. However, this is

neither practical nor necessary. As is well justified in many solid state systems, the

independent electron picture is a good approximation. Within this picture, electrons

are described by the following time-independent single particle Schördinger equation:

[
p̂2

2me

+ Vl(~r) + Vc(~r)]Ψ(~r) = EΨ(~r), (2.1)

where me is the free electron mass and Vl(~r) and Vc(~r) are the lattice potential and

confinement potential for a single electron. Since Vl(~r) and Vc(~r) have very different

length scales1, they can be treated separately. In other words, the slowly varying

1Vl(~r) has the periodicity of the lattice while Vc(~r) reflects the band bending due to band offset

and usually varies on a much larger scale.
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Vc(~r) can be viewed as a perturbation on Vl(~r). With this in mind, we proceed by

solving the following equation:

[
p̂2

2me

+ Vl(~r)]Ψ(~r) = EΨ(~r). (2.2)

Solving this equation leads to the well known band structure in solids where Ψ(~r)

has the Bloch form [57]:

Ψ(~r) = un~k(~r)e
i~k·~r, (2.3)

where un~k(~r) has the periodicity of the lattice. n and ~k are the band index and wave

vector. They are good quantum numbers in a periodic potential. Another way to

view the result is that Ψ(~r) is a periodic wave function modulated by an envelope

function, which is a plane wave.

For GaAs, it can be shown that the conduction band has the following disper-

sion relation [56]:

Ec(~k) = Ec0 +
h̄2~k2

2m∗ , (2.4)

where Ec0 is the bottom of the conduction band and m∗ = 0.067me is the effective

mass of electrons.

The next step is to treat the confinement potential Vc(~r) as a perturbation and

solve the full Schördinger equation 2.1 with the Bloch wave as a basis for expansion:
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Ψ(~r) =
∑

n,~k

cn,~kun~k(~r)e
i~k·~r, (2.5)

Under the assumption of that Vc(~r) is a slowly varying potential, equation 2.1 can

be reformulated into the following single band equation [58]:

[
p̂2

2m∗ + Vc(~r)]Φ(~r) = EΦ(~r), (2.6)

where Φ(~r) =
∑

n,~k cn,~ke
i~k·~r is the new envelope function. Notice that in equation

2.6 the effective mass m∗ was used in the kinetic energy term and the Vl(~r) term

disappeared. The physical meaning is that the effect of the lattice can be fully taken

into account by a single parameter m∗ and Vc(~r) only affects the envelope function.

This is reasonable; since Vc(~r) is a slowly varying potential, it should not alter the

total wave function at the atomic scale.

Equation 2.6 can be decomposed into a one-dimensional equation in the z

direction and an equation of free motion in the xy plane. As a result, Φ(~r) has the

following form:

Φ(~r) = Zj(z)ei~k·~rxy , (2.7)

where Zj(z) is the wave function in the z direction due to the confinement and ~rxy

is the position vector in the xy plane. j is an index of solutions. The energy of the

eigenstates are [56]:

Ej~k = Ec0 + Ej +
h̄2~k2

2m∗ . (2.8)
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Here Ej is the quantized energy levels due to the confinement in the z direction

and h̄2~k2

2m∗ is the kinetic energy in the xy plane. From Eq. 2.8, we see that the

dispersion relation is a set of paraboloids with the bottoms at Ej. For GaAs/AlGaAs

heterostructures, the triangular well is very shallow and only one sub-band is formed

(see Fig. 2.1).

So far I have not discussed the effect of scattering in the 2DEG. Depending on

the magnitude of scattering, the transport in the system can be in different regimes:

ballistic, diffusive but phase coherent and phase incoherent. Scattering mechanisms

in semiconductor heterostructures include electron - phonon interactions, electron

- electron interactions, interfacial scattering and impurity scattering. At very low

temperatures, the electron-phonon interaction can be neglected. For MBE grown

GaAs/AlGaAs heterostructures, the interface roughness is at the atomic scale; since

the roughness is much less than λ, interfacial scattering is highly reduced. The

high purity sources used in MBE growth help to guarantee a low impurity concen-

tration in the 2DEG plane. In this case, the dominant impurity scattering comes

from the silicon donors. With the modulation doping technique shown in Fig. 2.1,

the scatterers are spatially separated from the 2DEG, so the scattering strength is

much weaker than that in the 2DEG in MOSFETs, where scatters and carriers are

not spatially separated. As a result, the 2DEG in GaAs/AlGaAs heterostructures

usually has much higher electron mobility. With present day MBE technologies,

mobilities as high as 107 cm2/V·s at 4.2 K can be achieved and correspond to a

mean free path of 100 µm.
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At low temperatures, the 2DEG is a degenerate Fermi liquid. Once the elec-

tron concentration and mobility are known, key parameters such as Fermi energy

and Fermi wave length can be calculated. Table 2.1 gives the analytical results and

typical values of the electronic properties of a 2DEG in GaAs/AlGaAs heterostruc-

tures [56]. The electron concentration n and mobility µe tabulated are the values

appropriate for my experiments.

Table 2.1: Electronic properties of the 2DEG in the GaAs/AlGaAs heterostructure

I used for experiments in this thesis.

analytical value units

Effective mass m∗ 0.067 me = 9.1 ×10−31 kg

Density of states ρ(E) = m∗/2πh̄2 0.28 1011 cm−2meV−1

electron desity n 2 1011 cm−2

Fermi wave vector kF = (2πn)1/2 1.12 106 cm−1

Fermi wavelength λF = 2π/kF 57 nm

Fermi velocity vF = h̄kF /m∗ 1.9 107 cm/s

Fermi energy EF = (h̄kF )2/2m∗ 7 meV

Electron mobility µe 4 × 105 cm2/V·s

Scattering time τ = m∗µe/e 15.2 ps

Diffusion constant D = v2
F τ/2 2800 cm2/s

Resistivity ρ = (neµe)
−1 80 Ω

Mean free path l = vF τ 2.89 µm
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2.2 Quantum point contact and quantum dot

Quantum point contacts (QPC) and quantum dots (QD) are among the simplest

of mesoscopic devices and can serve as building blocks for more complicated struc-

tures. In this section, I discuss the transport properties of QPCs and QDs. The

first subsection is on the split-gate technique [59, 60] used to fabricate mesoscopic

samples. The next two subsections discuss QPCs and QDs respectively.

2.2.1 Split-gate technique

In a 2DEG, the electrons are confined to on a plane. To further control the di-

mensions of the sample, a way to achieve lateral confinement is required. Gating

technology has long been used in semiconductor industry for this purpose. For ex-

ample, surface gates are used in MOSFETs to change the effective channel width.

For GaAs devices, a metal is deposited on the surface to form Schottky gates. A

negative voltage (relative to the 2DEG) is then applied to the metal. Due to the

Coulomb interaction, electrons under the metal will be depleted and a potential

barrier is formed, thus constraining the electron flow. Since these gates are very

close to the 2DEG, the potential profile in the 2DEG created by them mimics the

pattern of the metal. By designing different patterns, one can achieve almost any

desired sample configuration. With modern e-beam lithography, surface gates with

features as small as 30 nm can be fabricated, i.e. down to the size scale as the Fermi

wave length. This is why the 2DEG in GaAs/AlGaAs heterostructures is an ideal

test bed for mesoscopic physics. Details of the e-beam lithography technique I used
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Figure 2.2: (a) Schematic of a QPC; lithography pattern (grey) and depletion region

(between dashed curves); (b) subband electronic structure of a QPC; (c), (d) and

(e) subbands with respect to the chemical potential in the reservoirs at different

gate settings.

will be discussed in Chapter 4.

2.2.2 Quantum point contact

Figure 2.2(a) shows the schematic of a QPC. The dark area represents two metal

gates on the sample surface. When a negative voltage is applied to the gates,

potential barriers are formed underneath them. The dashed lines represent the edge

of the electron depleted area. A channel of length L and width W is formed. Electron
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flow between the two reservoirs can only happen through the channel. When L and

W are comparable to the Fermi wave length, the wave nature of the electrons must

be taken into account to understand the transport through such a QPC.

A simplified model treats this channel as quasi one dimensional [61]. If we fur-

ther assume the confinement in the x direction due to the depletion is parabolic, the

electronic properties of the channel can be calculated analytically. The Schödinger

equation of electrons can be decomposed into two independent parts, one for each

direction. In the x direction, the solution is a set of equally spaced energy states of

a harmonic oscillator due to the parabolic confining potential. In the y direction,

electrons can move freely, so the solution is a set of plane waves. As a result, the

dispersion relation has the form (see Fig. 2.2(b)):

E(ky) = En0 +
h̄2k2

y

2m∗ , (2.9)

where n is the index of the harmonic states. Another way to view this result is that

a set of energy subbands are formed in the channel.

The bottom of each subband, En0, depends on the profile of the confining

potential, which, in turn, depends on the gate voltages. Figure 2.2(c), (d) and

(e) show how the relationship between the subbands and the chemical potential in

the two reservoirs changes as a function of the gate voltage settings. Figure 2.2(c)

represents the case of a very negative applied voltage, which generates a strong

confinement, so all the subbands are above the chemical potential. In this case

there are no energy states in the channel available for transmitting electrons. Figure
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2.2(d) and (e) represent the cases of more positive gate voltages, so the subbands

are lowered and one or two of them are now available for electron transmission. In

either case, the energy states within the window of the bias (eV ) applied across the

QPC can fully transmit electrons2. The total current carried by one subband can

be calculated as following:

I ≈ 2e

h

∫ µ1

µ2

dEρ1D(E)v(E)f(E)

=
2e2

h
V, (2.10)

where ρ1D(E) and v(E) are the 1D density of states and velocity of electrons; f(E) is

the Fermi-Dirac function. For the second line in equation 2.10, note that ρ1D(E) ∝

E−1/2 ∝ v(E)−1, so ρ1D(E)v(E) is a constant. According to equation 2.10, the

conductance of one subband at zero magnetic field is G0 = 2e2/h where the factor

of 2 takes into account electron spin degeneracy. If we consider the change from

Fig. 2.2(c) to (e), as the subbands are lowered, more and more subbands become

available for conduction. Each time the bottom of a subband moves below µ1, the

total conductance G of the QPC should increase by G0. As a result, a quantized G

as a function of Vg is expected (see Fig. 2.3(a)).

The quantized conductance plateaus in a QPC were first observed in 1988 in

a GaAs 2DEG by B. J. van Wees et al. [61] and Wharam et al. [62], as shown in

Fig. 2.3(b). The slope at each step is due to thermal smearing.

2Since W and L are much less than the mean free path (which is 2.9 µm according to table

2.1), electrons are assumed to transport ballistically, or there is no scattering in the channel.
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Figure 2.3: (a) Theoretical prediction of the conductance of a QPC as the function

of the gate voltage; (b) experimental data (from Ref. [61]).

While it is able to capture the main features of the experimental data, the

above model is certainly oversimplified. For example, it predicts that G should go

to zero suddenly at some Vg, corresponding to the point at which the bottom of the

lowest subband aligns with µ1. This never happens in a real system for two reasons.

First, at finite temperatures the energy width of any subband is increased by an

amount proportional to temperature. Second, tunneling between the two reservoirs

causes smearing even at zero temperature.

Thus far the transport I have discussed has involved occupation of the energy

states in the subbands. However, transmission of electrons is possible even when

there is no available state in the channel. In such a case, the gates are so negatively

charged that effective W decreases to zero or the QPC is pinched off. Electrons in

both reservoirs see a potential barrier. At low temperatures, the only possibility
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for electron transmission is tunneling through the barrier. A significant difference

between this process and the transport through channel states is that electrons now

encounter a potential barrier so scattering occurs. Nevertheless, both processes can

be characterized by a parameter Tj, the transmission coefficient of the QPC, which

is the transmission probability of electrons incident on the QPC. For 0 < Tj < 1,

electrons tunnel through the QPC and for Tj = 1, electrons are fully transmitted

through the channel states without scattering.

The scattering by the potential barrier is phase coherent, so the Landauer-

Büttiker theory [63, 64, 65, 66] of mesoscopic transport applies. The total conduc-

tance G of a QPC is related to its transmission coefficients by:

G =
2e2

h

∑

j

Tj, (2.11)

where j is the index for subbands (more details can be found in section 2.3.2).

2.2.3 Quantum dots

Figure 2.4(a) shows a schematic of the lithography pattern and depletion region of

a quantum dot. The black regions are metal gates. The dashed line represents the

edge of the horizontal depletion layer. The small pool of electrons enclosed by all

gates forms a QD. The two point contacts formed by the upper and lower pairs

of gates control the coupling between the QD and the drain and source reservoirs.

The middle pair of gates (also called plunger gates) are used to change the overall

potential of the QD without significantly changing the tunneling rates through the
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Figure 2.4: (a) Top view of lithography pattern and depletion region of a QD; (b)

a circuit model of a QD.

two point contacts.

Classically a QD can be viewed as a small island of N electrons with a total ca-

pacitance C. Electrons transfer can happen between the QD and the two reservoirs.

The plunger gate is capacitively coupled to the QD. There are three contributions to

the total capacitance C; the self capacitance of the QD, capacitive coupling between

the QD and the reservoirs, and coupling to the plunger gates. Figure 2.4(b) shows

an equivalent circuit model of a QD. Due to the Coulomb interaction, adding one

electron to a QD requires certain amount of charging energy. In the classical model

discussed here, the charging energy is EC = e2/2C, so the Coulomb interaction is

characterized by a single parameter C.

The classical model ignores the details of the electronic states in the QDs.

While this usually works fine for QDs in metallic systems provided they are not
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too small, the situation is more complicated for QDs fabricated in the 2DEG in

semiconductors. From Table 2.1, the density of states in the 2DEG is ρ(E) =

m∗/2πh̄2, so the average energy spacing between the states in these QDs is about

∆E = 1/(ρ(E)A) = 2πh̄2/(m∗A), where A is the area of the QD. The typical size

of my QDs is on the order of 100 nm, so ∆E is ∼ 0.03 meV. At temperatures below

100 mK (so kBT < 8.6 µeV) this spacing becomes observable. In metallic QDs, ∆E

is usually much smaller and can be neglected due to the very large ρ(E).

Now let us consider transport in a QD in which both the charging energy EC

and the level spacing ∆E are taken into account. Usually two types of transport

measurements are performed. In the first, a small bias voltage (usually a few µV)

is applied across the QD and the conductance is measured as a function of the

gate voltage Vg. This type of measurement is also called a spectroscopic measure-

ment. The second standard transport measurement is the current-voltage I − V

characteristic of the dot. I first discuss the spectroscopic measurement.

Figure 2.5 shows the potential profile through a QD at zero temperature with

different gate voltages, where a small bias eV is applied. Figure 2.5(a) shows the

case of Coulomb Blockade [67, 68, 69] where eV ¿ EC = e2/2C. In this range, there

are no energy states available between µ1 and µ2 for electrons to tunnel through, so

the electron transport is blocked. The gap between the lowest available state and

the electrochemical potential µ(N) of the QD is ∆E + E2/2C.

By tuning the gate voltage Vg, one can change the electrostatic potential of

the QD, thus shifting the energy levels. Figure 2.5(b) shows the case when one
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Figure 2.5: Potential profile through a QD. (a) Coulomb blockade; dashed lines show

unfilled levels, solid lines filled levels, with splitting caused by Coulomb blockade;

(b),(c) degenerate point where the QD has either N or N + 1 electrons.

energy level is within µ1 and µ2 so one electron can tunnel from the left reservoir

onto the QD. When such a tunneling occurs, the electrostatic potential of the QD

will be raised by an amount of e2/2C and the overall potential profile is shown in

Fig. 2.5(c). In this case, the QD has one more electron, but that extra electron

can now tunnel into the right reservoir. Figure 2.5(b) and (c) are for the same Vg.

At this specific gate voltage, the system is in two degenerate states, one with N

electrons and the other one with N + 1 electrons. The switching between these two

states as electrons tunnel on and off generates a current through the QD. As Vg is

swept across this value, a conductance peak appears.

To be more quantitative, the electrochemical potential of the QD is given by

[70]:

µ(N, Vg) = EN +
(N −N0 − 1/2)e2

C
+ e

Cg

C
Vg, (2.12)
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where EN is the Nth single particle state and Cg is the capacitance between the

QD and the plunger gate. N0 is the number of electrons at zero gate voltage. At

the degeneracy points discussed above, one has:

µ(N, Vg) = µ(N + 1, Vg + ∆Vg). (2.13)

Solving equation 2.12 with this constraint gives:

∆Vg =
C

eCg

(∆E +
e2

C
), (2.14)

where ∆E = EN+1 − EN is the level spacing between two single particle states. As

a result, plotting the conductance G vs Vg yields a series of peaks separated by ∆Vg.

This phenomenon is called Coulomb Oscillations [68, 71, 72].
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Figure 2.6: Coulomb oscillation in a QD. (a) theoretical prediction; (b) experiment

result.
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Figure 2.6 gives the theoretical prediction along with my experimental mea-

surements of Coulomb Oscillations. The experimental data was taken on a QD

fabricated in the GaAs/AlGaAs heterostructure discussed in section 2.1. The data

shows many interesting features not present in the simple model discussed here,

such as the gate voltage dependence of the peak height and line width. For a more

detailed discussion of the cause of these effects, I refer the reader to a review on

QDs [73].

(c)(b)(a)

Figure 2.7: Potential profile in a QD as the bias is changed. (a) Coulomb blockade;

(b) at the bias where one charge state is available; (c) at the same bias as in (b) but

with one electron tunneled into the QD.

Besides the spectroscopy measurement, an I−V measurement can also be used

to study the electronic structure of a QD. The difference between these two is that

in the spectroscopy method, the energy levels in the QD are shifted with respect

to the two reservoirs, while in the I − V measurement the chemical potential of

the reservoirs change. Figure 2.7 shows the potential profile in a QD when the bias
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voltage is changed. Figure 2.7(a) is the case of Coulomb Blockade. Due to the

Coulomb charging energy, there are no energy states available for tunneling. As the

bias is increased to overcome the charging energy, some energy states now become

available for transport, as shown in (b). Electrons can tunnel through any of these

levels. However, once one electron tunnels, the potential of the QD will be changed

by an amount of the charging energy, as shown in (c). As a result, other electrons

in the left reservoir will be blocked until one electron in the QD tunnels into the

right reservoir, then the potential profile changes back into (b). Equivalently, we

can say that increasing the bias opens a conducting channel, thus an increase in the

conductance should be observed. As the bias is increased further, more channels will

be available. Each time when such a channel becomes available, the conductance of

the QD increases, so a pattern called Coulomb staircase [70, 74, 75] is produced if

the current through the dot is plotted as a function of bias voltage.

Figure 2.8 shows an I − V curve measured for a QD fabricated on my wafer.

The absolute value of the current is plotted on the vertical axis. As can be seen,

the conductance increases in a stepwise manner, although the steps are noticeably

rounded.

Further analysis [73] reveals that the Coulomb staircase should only show up

for QDs having two very asymmetric tunnel barriers (with very different impedance).

For symmetric QDs, the I−V curve shows a Coulomb blockade with a size of e/2C

around the zero bias. Ideally, outside of the blockade regime the I − V relation is

simply Ohmic [73].
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Figure 2.8: |I| − V curve for a QD.

2.3 Shot noise

In this section, I discuss the shot noise theory that is related to the experimental

work reported in this thesis. The first subsection gives a general discussion of shot

noise. The second subsection is on the shot noise in mesoscopic systems.

2.3.1 General theory of shot noise

Shot noise is the time-dependent fluctuations present in a current i(t) due to the

discreteness of the charge carriers. That is, it originates from the discrete nature of

the current carrying particles. In the following, I will first discuss a general noise

theory and then apply it to the case of shot noise.

While noise is a random fluctuating quantity in the time domain, perhaps the
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most natural way to study it is by analyzing its Fourier spectrum. Mathematically,

the Fourier spectrum of a random signal is calculated for an infinite time inter-

val. Experimentally, the current i(t) is always measured over a finite time interval

[−T, T ], so I will calculate the spectrum for the interval [−T, T ] and take the limit

as T →∞ at the end. Thus

i(t) =





iT (t) if −T < t < T

0 otherwise

The Fourier transform is:

IT (f) =
∫ ∞

−∞
i(t)e−i2πftdt. (2.15)

Since i(t) is real, IT (−f) = I∗T (f), where * represents the complex conjugate.

According to Parseval theorem[76], one has:

∫ ∞

−∞
i2(t)dt =

∫ ∞

−∞
|IT (f)|2df, (2.16)

As T → ∞, both sides of the above equation go to infinity, so one considers

the time averaged noise3 (or the mean square value):

M [i2(t)] =
1

2T

∫ T

−T
i2(t)dt =

1

2T

∫ T

−T
|IT (f)|2df. (2.17)

3For a random variable i(t) with a zero mean value, its standard deviation is i2 − i
2

= i2. By

definition, this is the total noise associated with i(t), which is shot noise in the case considered

here.
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With this equation, the total noise can be calculated once the Fourier spectrum

IT (f) is known. A new quantity, power density, is defined as:

S(f) = lim
T→∞

1

T
|IT (f)|2 0 < f < ∞. (2.18)

Note here f is limited to positive values since experimentally only a one-sided

power spectrum can be measured. As a result, the average factor changes from 2T

to T . S(f) has the units of A2/Hz. It represents the total noise power in a unit

bandwidth.

It can be shown [76] that for the case where electrons arriving at a detector

have a Poissonian distribution, the power density has the following form:

S(f) = 2eI, (2.19)

where I = i(t) is the time averaged value of the current. This is the well known form

of full shot noise. S(f) is a constant at all frequencies, namely, a white noise. This

result can be generalized to any random process governed by Poissonian statistics.

On the other hand, for non-Poissonian processes the power density have other values.

This will be shown shortly.

To better understand the physical meaning of shot noise, I will consider the

cross-correlation of two random variables i1(t) and i2(t):

Γ(τ) =
1

2T

∫ ∞

−∞
i1T (t)i2T (t + τ)dt. (2.20)

The Fourier spectrum of Γ(τ) is:
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X(f) =
∫ ∞

−∞
e−i2πfτ [

1

2T

∫ ∞

−∞
i1T (t)i2T (t + τ)dt]dτ. (2.21)

After completing the integration, one has:

X(f) =
1

2T
I1T (f)I∗2T (f). (2.22)

X(f) is also called the cross-spectrum of i1(t) and i2(t). X(f) and Γ(τ) both

characterize the correlation between the two signals at different time. Now consider

a special case where i1(t) = i2(t), then Γ(τ) and X(f) describe the auto-correlation

of i(t). By taking the T → ∞ limit and combining equations 2.22 and 2.18, one

has:

X(f) =
1

2
S(f). (2.23)

The power density of a random variable is related to its auto-correlation func-

tion. For a Poissonian process, X(f) = 1
2
S(f) = eI. The Fourier transform of

X(f), which by definition is Γ(τ), is thus a δ function. The physical meaning of

this result is that for a Poissonian process i(t), there is no correlation between its

values at different times. Equivalently, one can say things the other way around: if

Γ(τ) has a finite width, then X(f), thus S(f), will not have a white spectrum. In

an electron transport process, if for any reason there is a correlation between the

motion of electrons at different times, the shot noise will then deviate from a white

spectrum of 2eI. In this sense, shot noise detection is a powerful tool to explore the

temporal correlation of the motion of electrons.
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So far I have only discussed the auto-correlation function. This is enough for

two terminal devices where there is only one continuous current present, or only

one random variable. For multiple terminal devices, however, currents in different

terminals are different variables. In such a case, the cross-correlation, or the cross

spectrum, between them carries important information about the system [44]. The

entanglement experiment reported in this thesis belongs in this category. The theory

of this experiment will be discussed in the next chapter.

2.3.2 Shot noise in mesoscopic systems

Historically, shot noise was first studied theoretically in a vacuum tube by Schottky

[77]. When a vacuum tube is operated in the saturation region4, the emission of

electrons at the cathode is a Poissonian process. Electrons come off of the cathode

randomly and independently, so there is no correlation between the tube current at

different times. According to the result in section 2.3.1, this process yields a white

shot noise with a power density of 2eI. However, if the tube is operated in the

space charge regime where electrons accumulate around the cathode, the shot noise

is found to be less than 2eI [76]. This is because Coulomb interaction between the

electrons in the cathode and the space charge regulates the emitting process. It

turns out that such a regulation can introduce a correlation between the emitting

time of subsequent electrons. As a result, the emission is now a sub-Poissonian

4In the saturation region, the tube current is independent of the voltage between the cathode

and anode. Microscopically, all electrons coming out of the cathode will be swept into the anode,

so no space charge accumulation happens around the cathode.
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process, and thus less random fluctuations in the tube current are observed.

In mesoscopic systems, the Coulomb interaction between electrons becomes

extremely important due to the small size scale. For example, as discussed in sec-

tion 2.2, the Coulomb interaction determines the transport in QDs. The Coulomb

blockade effect correlates consecutively tunneled electrons. This reduces the shot

noise significantly. Another essential feature of mesoscopic devices fabricated in

2DEGs is that at low temperatures, the system is degenerate Fermi liquid, so the

effect of the Pauli principle becomes important. According to the Pauli principle,

each occupied state in the Fermi liquid contains exactly one electron and there are

no fluctuations in the occupation numbers. This introduces another type of regu-

lation for transport which suppresses shot noise [44]. In the following, I will first

discuss the general formalism of the shot noise in mesoscopic samples and then give

some examples.

Shot noise in mesoscopic samples can be theoretically studied by different

methods, such as the master equation approach [78, 79], the Green’s function method

[38, 80] or the scattering approach [44]. The Landauer-Büttiker transport theory

[63, 64, 65, 66] for mesoscopic samples has been a great success, and a scattering

approach based on such a theory is a very natural way to understand the shot noise

in mesoscopic systems.

The basic idea of the Landauer-Büttiker formulation is to relate the conduc-

tance of a mesoscopic sample to its scattering properties, for example, to the scatter-

ing matrix. Phase coherent transport is assumed for the system under study. This is
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especially suitable for mesoscopic samples since their typical dimensions are smaller

than the phase coherence length. Another important feature is that this formula-

tion does not use ensemble averaging over many samples with different scattering

sites. Instead, it concerns individual samples. Classical transport theory usually

ignore the microscopic details of samples because it averages over all possible im-

purity configurations and takes the limit as the size of the system goes to infinity

(ensemble averaging), so some sample specific information is inevitably lost in this

process. For macroscopic samples, this procedure works well and only small cor-

rections are needed. On the other hand, in mesoscopic samples the sample specific

fluctuations can be of the same order of magnitude as the quantities (conductance,

etc.) measured. In such a case ensemble averaging makes no sense.

Within the second quantization formalism, this approach first defines creation

and annihilation operators for electron states. The operators of current and shot

noise can then be constructed and evaluated. The shot noise operator is defined

as the temporal correlation between currents, and its Fourier spectrum is the noise

power density. The transport in the sample is viewed as a scattering process where

incoming electrons are coherently scattered to the outgoing channels. Incoming

and outgoing currents are related by the scattering matrix of the system, which

can be obtained by a quantum mechanical calculation. I will not discuss the full

mathematical details here. Instead, I will give some basic results and refer the reader

to a review article [44] for details.

At zero temperature and for a small voltage bias, the conductance of a two
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terminal device is:

G =
2e2

h
Tr[t†(EF )t(EF )]. (2.24)

Here t(EF ) is the transmission matrix of the sample, which relates the ampli-

tude of the outgoing states to that of the incoming states. For low bias, the matrix

only needs to be evaluated at the Fermi energy EF . The matrix t†t can be diago-

nalized. The eigenvalues Tn are usually called the transmission coefficients, each of

them having a value between 0 and 1. The conductance can then be rewritten in

the form:

G =
2e2

h

∑
n

Tn, (2.25)

which is identical to equation 2.11.

At zero temperature the shot noise of a two terminal device has the form:

S(f) =
4e2

h
Tr(r†rt†t)e|V |, (2.26)

where r is the reflection matrix and V is the applied bias voltage. r also has a set

of eigenvalues Rn which satisfy Rn = 1− Tn, so the shot noise can be rewritten as:

S(f) =
4e3|V |

h

∑
n

Tn(1− Tn). (2.27)

According to this result, neither closed (Tn = 0) nor fully transmitting (Tn = 1)

channels (also called open quantum channels) contribute to shot noise. For closed
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channels, no transport of electrons happens, while for the other case, electrons

get transmitted without any scattering. In either case, no shot noise should be

generated. The maximum contribution comes from those channels with Tn = 1/2.

If all channels are nearly closed such that Tn ¿ 1, then:

S(f) ≈ 4e3|V |
h

∑
n

Tn = 2e〈I〉, (2.28)

where 〈I〉 is the time averaged current and the equation 2.24 is applied to get the

final result. This is the well known form of full shot noise.

At finite temperatures, a device exhibits both shot noise and thermal noise.

Within the scattering approach, these two noise sources can be united in one form:

S =
e2

πh̄
[2kBT

∑
n

T 2
n + eV coth (

eV

2kBT
)
∑
n

Tn(1− Tn)]. (2.29)

In the limit that V → 0, S → 4kBTG (G is given by Eq. 2.25), so the thermal

noise is recovered. For the case of Tn ¿ 1 for any n (which means a very resistive

device according to equation 2.25), S reduces to the following form:

S =
e3V

πh̄
coth (

eV

2kBT
)
∑
n

Tn = 2eI coth (
eV

2kBT
). (2.30)

Again, S = 4kBTG at V = 0 and 2eI for eV À kBT . Equation 2.30 thus

describes the transition from the thermal noise to full shot noise for a resistive

device (e.g., a tunnel barrier with an impedance well above the resistance quanta

h/2e2).

A convenient factor to measure shot noise is the Fano factor defined as:
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F =
S

2eI
. (2.31)

It is the ratio between the measured shot noise power density and the full shot

noise power density for the same current. For the case discussed above,

F =

∑
n Tn(1− Tn)∑

n Tn

. (2.32)

From this we see that the Fano factor is always expected to be less than 1,

namely, suppressed shot noise.

The transport in a QPC was studied in section 2.2.2. The total conductance

is given by equation 2.11. In the plateau regime, all conducting channels have a

transmission coefficient of 1. According to equation 2.27, there should be no shot

noise generated on a plateau. In a real system, the transition from one plateau to

the next occurs over a finite range in the gate voltage and this should give a rise

to a nonzero value for the shot noise. Figure 2.9 shows the theoretical prediction

and the first experimental evidence of shot noise suppression in a QPC by Reznikov

etal. [81].

I note that Reznikov etal.’s experimental data is not in quantitative agreement

with the theory. The authors addressed this issue in their paper. Nevertheless, the

suppression of shot noise at the plateau regime is clearly demonstrated. A more

precise measurement was later given by Kumar et al. [82]. They found excellent

agreement between their results and the theory. The experimental data validated

two main predictions of the theory (see equation 2.29): the suppression of Poissonian

39



Gate Voltage (V)

N
oi

se
 (1

0-2
6  A

2 /H
z)

G
 (e

2 /h
)

G
 (2

e2 /h
)

Gate Voltage

(b)(a)

Figure 2.9: Shot noise in a QPC as a function of gate voltage: (a) theoretical

prediction; curve 1 is the conductance in unit of 2e2/h; curve 2 is the shot noise

in unit of e3|V |/3πh̄. (b) First experimental evidence of suppressed shot noise in a

QPC, measured by Reznikov et al. The upper plot is the conductance and the lower

plots are the shot noise. Different curves correspond to different bias voltages.
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shot noise and the transition from thermal noise to shot noise as the bias voltage is

increased.

While the scattering approach is suitable for describing many mesoscopic sys-

tems in which the independent electron picture is valid, it certainly does not include

the Coulomb interaction between electrons. Thus it is not surprising that this

method is not applicable in the cases where electron-electron interaction can not be

neglected, such as in a QD. The shot noise in a QD is much more complicated than

in a QPC. In general, in strongly correlated systems there is no universal approach

to study shot noise. In addition, different approaches may apparently lead to differ-

ent or even contradictory results [44]. Experimentally, there is no systematic study

on this subject yet. In the following, I will outline some theoretical results.

Similar to the conductance discussed in section 2.2.3, the shot noise of QDs

can be also studied in the linear (V ¿ e/C) and non-linear regime. Wang et

al. [83] investigated shot noise in semiconductor QDs in the linear regime, both

analytically and numerically. Their analytical result shows that as a function of the

gate voltage, the Fano factor F = 1 (Poissonian shot noise) everywhere except at

the gate voltages corresponding to the position of the conductance peaks where shot

noise is suppressed. Their numerical result shows that a suppression of F below 1/2

is possible. However, other people argued that F ¿ 1/2 is quite unlikely to happen

in the simple model of Coulomb blockade [44]. This is still a subject in debate.

In the non-linear regime, depending on whether a Coulomb staircase is present,

the shot noise is quite different. The case without a staircase was studied by Ko-
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rotkov et al. [84] using the master equation approach. Their results show that the

shot noise is zero in the Coulomb blockade regime and is Poissonian at the onset of

current. For high voltages the Fano factor is:

F =
Γ2

1 + Γ2
2

(Γ1 + Γ2)2
, (2.33)

where Γ1,2 are the tunneling rates through the two barriers. Hershfield et al. [85]

have studied the case when a Coulomb staircase is present. They showed that in the

plateau regime F is one, and near the degenerate points (where the conductance has

a stepwise change) F has the form of equation 2.33. According to these results, the

shot noise of a QD in the non-linear regime is always between F = 1 and F = 1/2.

From the discussion above, it is very obvious that the shot noise from quantum

dots is still a field with many unsolved problems. An accepted theoretical model

has not been produced. In addition, very few experimental results are available,

especially for QDs in semiconductor materials. This lack of reliable experimental

data is due to several technical problems. The first is that measuring shot noise

at small currents is an extremely difficult task. The second is that shot noise may

be extremely sensitive to microscopic details in the sample (potential disorder and

impurities) and these details are very difficult to characterize in mesoscopic samples.

In Chapter 5, I will discuss these issues further.
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Chapter 3

Quantum entanglement

The main motivation for the work reported in this thesis is performing an experiment

that would demonstrate the entanglement of electron spins. In this chapter I discuss

the theoretical background of such an experiment. The first section covers some basic

aspects of quantum entanglement, including a short history of entanglement studies,

some important theoretical results, and a brief review on existing experiments. In

the second section I discuss the proposal upon which my experiment is based.

3.1 Entanglement

3.1.1 A short history of studies of entanglement

Quantum mechanics is one of the pillars of modern physics. It has achieved great

success in various branches of physics because it allows us to understand experimen-

tal phenomena that could not be described using classical physics. In spite of this,

many people believe it remains one of the most mysterious scientific theories ever

invented. How to interpret predictions based upon quantum mechanical calculations

has been frequently debated from the beginning.

The surprising behavior implied by quantum mechanics can be best illustrated

with a few experiments in which any classical theory cannot interpret the observed
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results. For example, in a double slit interference experiment, the result can only

be explained when each particle is assumed to go through both slits simultaneously.

Quantum mechanics explains this phenomenon with the concept of wave-particle

duality: wave and particle are two complementary and necessary elements of the

nature of microscopic particles; the behavior of these particles (wave-like or particle-

like) depends on the type of measurements performed. Quantum mechanics does

not answer the question of “What kind of reality (in the classical sense) is the

origin of the wave-particle duality?”, but rather emphasizes that the duality is the

reality. In the microscopic world, the effort of trying to recover a classical picture

usually fails. Quantum mechanics simply refuses to answer certain questions, or,

according to the orthodox Copenhagen interpretation, these questions may not be

meaningful in the microscopic world. Einstein and his followers tended to think

that the refusal of quantum mechanic to answer these questions meant that it was

not a complete theory and thus could not provide a complete description of reality.

On the other hand, the Copenhagen interpretation argues that objective reality in

the classical sense simply does not exist, so the refusal to answer certain questions

is actually a great virtue of quantum theory instead of being a defect. According

to the complementarity principle, one can only learn part of the knowledge of a

microscopic system at one time (e.g., the position or the momentum of a particle,

but not both), not due to technical difficulties but rather to intrinsic limits: there

is simply no such state with both definite position and momentum.

However, in 1935 Einstein, Podolsky and Rosen (EPR) wrote a paper [25]
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in which they proposed a thought experiment showing how to generate quantum

states with definite values for both members of a pair of complementary variables.

A system of two particles was considered in this paper. At some initial time the

particles interact with each other for a while, then they are spatially separated

so that the interaction between them is turned off. Due to the interaction at the

beginning there is a correlation between the position and momentum of the two

particles even when they are separated. By measuring the position or momentum

of one particle the experimenter can deduce those of the other one. Since the

experimenter has the choice of which quantity to measure, the other particle must

have definite values for both position and momentum prior to the measurement.

This conclusion disagrees with the complementarity principle.

Against this attack on quantum mechanics, Bohr argued that the assumptions

of the EPR argument were questionable [86]. Later, inspired by the EPR para-

dox, Schördinger proposed the famous gedanken cat experiment [87]. He also gave

a name to the strange correlation existing in an EPR system: quantum entangle-

ment. David Bohm reformulated the EPR problem by considering systems where

discrete quantities [88], such as spin, were studied, so there were only a finite num-

ber of possible results, unlike the case of continuous variables such as position and

momentum.

At that time there was no way to implement the thought experiment in the

EPR argument, and the debate remained at a philosophical level until 1964 when

John Bell published the first of his two papers on this problem [26, 27]. These
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two papers significantly changed the field of the foundations of quantum mechanics.

The main results are now referred to as Bell’s inequalities. These inequalities study

the correlation between the results of independent measurements performed on two

EPR particles. Quantum mechanics should violate these inequalities, while all other

possible theories based on the assumptions made in the original EPR argument

should satisfy the inequalities. This result is very general in the sense that it does

not depend on things like the properties of the particles and the details of their

interaction. The significance of Bell’s result is that the profound difference between

quantum mechanics and classical theories can be expressed in a direct quantitative

way and becomes experimentally testable.

Many experiments have been implemented to test Bell’s inequalities [28, 29,

30, 31]. In all tests, the inequalities were violated, which means quantum mechanics

is correct. Most tests were carried out with photons and to date no similar work has

been done in any condensed matter system. In solid state systems particles tend

to strongly interact with each other so it is nearly impossible to isolate particles to

generate EPR pairs. In addition, in strongly correlated systems quantum states are

likely to suffer more from decoherence. Both factors make testing Bell’s inequalities

in condensed matter systems a formidable task.

Recently the entanglement problem has attracted more attention due to the

rising interest in quantum computing and quantum information processing. Unique

resources in quantum systems, such as superposition and entanglement, are believed

to be essential for achieving the expected superior computing power of a quantum
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computer. A few experiments have demonstrated (not in the context of testing

Bell’s inequalities) entanglement in condensed matter systems [32, 33]. For quantum

computing applications, a demonstration of basic quantum gate operations with

entangled states is the current goal.

3.1.2 Properties of entangled states

Entanglement is a non-classical property of the quantum states of a multiple particle

system. An entangled state cannot be decomposed into a product of the states of

the constituents. For example, the singlet and one of the triplets of two electron

spins are entangled states:

ψ = | ↑↓〉 ± | ↓↑〉. (3.1)

These states cannot be written as the product of the spin states of two elec-

trons. In this sense, an entangled state is actually one quantum object although

it contains two particles. If the two particles are non-interacting, an EPR pair is

generated.

Let us consider the singlet of two electron spins. Suppose the two electrons

are denoted as A and B and their spins are to be measured by two independent

sets of apparatus. In principle, it is always possible to separate the two electrons

so far away that the measurement performed on one electron does not disturb the

other electron. This can be guaranteed by the fact that no signal can be transmitted

faster than the speed of light.
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Before any measurement both electrons are not in a single spin eigenstate.

Suppose we make a measurement of electron A and spin up is found, then after this

measurement electron B must be in the spin down state, although B is not affected

by this measurement. This correlation between A and B implies that there is some

sort of quantum non-locality in the system. Due to this non-locality, an entangled

state must be always treated as one entity no matter how far away the two particles

are separated. The fact that the measurement performed on one particle has no

dynamical effect on the other particle does not mean the two entangled particles are

independent.

The test of Bell’s inequalities is more complicated than the simple measure-

ment discussed above. I will not discuss the details here but refer the reader to the

literature [89].

3.2 Entanglement of electron spins

3.2.1 Using coupled quantum dots as an entangler

In recent years many physical systems have been proposed as potential candidates

for quantum computing and quantum information processing. Loss and DiVincenzo

have proposed a quantum computing scheme using electron spins as qubits and

quantum dots to manipulate the spins [4, 5]. Each electron has two spin eigen-

states, so it is a qubit given by nature. This type of qubits can be easily initialized

by applying a global magnetic field and waiting a time T1 for the system to relax

to the ground state. Single qubit operations can be realized by applying carefully
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Figure 3.1: Two electrostatically coupled quantum dots, each containing one elec-

tron spin. A gate (not shown in the figure) controls the tunnel barrier separating

the two dots. Intra-dot tunnelling becomes possible when the gate voltage is pulsed

to be low (dashed line) and prohibited when that voltage is high (solid line).

engineered local magnetic fields or external microwave pulses. Two-qubit gate oper-

ations can be realized by using the exchange interaction between neighboring spins.

With the single qubit and two-qubit operations, a set of universal quantum gates

required for quantum computing can be constructed. Electron spins usually have a

longer decoherence time compared to other degrees of freedom such as orbital states

[90, 91]. This is a welcome feature for quantum computing since in general quantum

computation processes are expected to be very fragile to decoherence.

As discussed in the last section, entanglement is essential for quantum com-

puting and quantum information processing. In the spin-based scheme, entangled

spin states are generated by the exchange coupling between two neighboring spins.

Experimentally, two quantum dots, like those discussed in Chapter 2, can be

fabricated very close to each other (see Fig. 3.1). One electron spin is placed in each

dot, denoted as
−→
S1 and

−→
S2. Each dot has a Coulomb charging energy u = e2/2C
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where C is the capacitance of the dots. The tunneling between the two dots is

controlled by the voltage on a gate (not shown in the figure) separating them. When

the potential barrier formed by the gate is high so that no tunneling is allowed (solid

lines in Fig. 3.1), the two spins are held in stationary states without evolution in

time. If the barrier is low (dashed lines in Fig. 3.1), the two spins interact with

each other through the exchange coupling Hamiltonian 1:

H(t) = J(t)
−→
S1 · −→S2, (3.2)

where J(t) = 4t20(t)/u is the strength of the exchange coupling between the two

electron spins. Here t0(t) is the intra-dot tunneling matrix element. In general,

J(t) is a time varying quantity determined by the gate voltage settings and external

magnetic fields. For the static case in which J(t) is a non-zero constant, the two

coupled spins have four eigenstates: a singlet and three triplets. The energy differ-

ence between the triplets and singlet is defined as J = Et − Es. Depending on the

sign of J , the system could have the singlet or triplets as its ground state(s). Thus

by carefully tuning the coupled quantum dots, it is possible to use this system to

generate entangled electron spin states.

1Besides the exchange coupling, there is also a direct term of Coulomb interaction between the

two electrons. The effect of that term will be briefly analyzed in section 6.3
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3.2.2 Detection of entangled electron spins

It has been shown theoretically that a coupled quantum dot system can be used as an

entangler for electron spins. An outstanding problem in this field is to demonstrate

this experimentally. This is really a measurement problem, that is, how to detect

spin entangled states. Performing an EPR test would be an ideal demonstration.

However, to date there is no efficient way to detect the spin state of single electrons.

In general, up-to-date nano-technology is not efficient enough to carry out even

fairly complicated manipulations of the states of single electrons. Alternatively,

Burkard et al. have proposed a scheme of performing ensemble measurements on

many entangled electron spin pairs [53]. This scheme utilizes the quantum statistical

properties of entangled electrons and the resulting shot noise properties of electrical

currents.

It is well known that bosons, such as photons, exhibit a phenomenon called

”bunching” behavior when the correlation between particle currents is measured

[92]. In other words, bosons tend to aggregate. On the other hand, fermions are

expected to avoid each other due to the Pauli principle and Coulomb interaction (for

charged particles), thus showing an “anti-bunching” behavior [93]. This difference

originates from the different quantum statistical properties of bosons and fermions.

The correlation experiments on photons are the famous HBT (Hanbury Brown

and Twiss) type of measurements in quantum optics [92], named after the work by

the two pioneers who measured the correlation of the intensity of two light beams

from a distant star to determine its angular diameter. In contrast to the Michelson-
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type of measurements in which the interference of the electrical fields
−→
E of light is

measured, the HBT measurements detect the correlation of the intensity I ∝ |−→E |2

of light. Sometimes the Michelson-type detection is called the first order correlation,

while the HBT type is called the second order correlation. Quantum mechanically,

−→
E represents the wave function of photons, while I is proportional to the density

of probability currents, or the number of photons. Thus the HBT measurement

can be also viewed as the correlation of the fluctuations of particle numbers, which

is basically equivalent to shot noise detection. The result is very sensitive to the

quantum statistical properties of the light source, therefore the HBT measurement

has been used extensively to study the statistics of different light sources.

In principle, the HBT measurement can also be used to study the statistics

of fermionic systems. Recently, a few elegant experiments have been carried out

in 2DEGs in GaAs/AlGaAs heterostructures [50, 51, 52]. The “anti-bunching” of

electrons in non-entangled states has been demonstrated. Naively one would think

that electrons should exhibit “anti-bunching” under any circumstance. However,

as pointed out by DiVincenzo and Loss [94], “bunching” and “anti-bunching” are

phenomena occurring in space, so the actual behavior of an electronic system should

be sensitive, in the absence of spin-scattering processes, only to the symmetry of the

spatial part of the overall wave function. While the overall wave function is always

anti-symmetric for multiple electrons, the spatial part can have different symmetries;

symmetric for the singlet state and anti-symmetric for the triplets. Thus one expects

a “bunching” behavior for the spin singlet and an “anti-bunching” behavior for
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Figure 3.2: (a) Schematic diagram of entanglement detection method proposed by

Burkard et al.; (b) collision of electron pairs in the singlet at a T = 1/2 beam

splitter; (c) collision of electron pairs in the spin triplet states.

triplets. The “bunching” and “anti-bunching” behaviors manifest themselves in a

measurement of the correlation between particle currents, namely, in a shot noise

measurement. The entanglement detection scheme by Burkard et al. is based on

the above analysis. In the following, I will discuss the microscopic picture and

experimental implementation of such a scheme.

In Fig. 3.2(a) an entangler, such as the coupled quantum dot system shown

in Fig. 3.1, generates entangled electron pairs and injects them into leads 1 and

2, one electron in each channel. A beam splitter is inserted after the entangler to

introduce quantum interference effects between the two electrons. A beam splitter is

a tunneling barrier for electrons, characterized by its transmission probability T . It

is basically the quantum point contact discussed in Chapter 2. Electrons incident on
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Figure 3.3: Different scattering patterns of two particles at a beam splitter.

the beam splitter are coherently scattered into leads 3 and 4 with certain probability.

Within this picture, the transport through the beam splitter can be studied by the

scattering approach discussed in Chapter 2. The wavefunctions of the outgoing

particles in leads 3 and 4 are related to those of the incoming particles in leads 1

and 2 by the scattering matrix of the beam splitter. Consequently, electron pairs

coming out of the entangler in different states will have different scattering patterns

at the beam splitter, thus leading to different fluctuations in the electrical currents

in leads 3 and 4.

In order to see why this is true, one can consider the special case where

T = 1/2. Each particle incident on the beam splitter has a probability of 1/2

of being transmitted or reflected. For a pair of particles, there are four different

scattering patterns, as shown in Fig. 3.3. If the two particles are distinguishable,

the four patterns are independent events and each occurs with a probability of 1/4.

For identical particles, however, Figs. 3.3 (a) and (b) become indistinguishable.
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According to quantum mechanics, they correspond to one event and its probability

can be found by applying the Feynman rule: add the probability amplitude of (a)

and (b) and then take the squared absolute value. At T = 1/2, the quantum me-

chanical calculation shows that for bosons, the probability amplitudes of Fig. 3.3

(a) and (b) have the same magnitude but opposite sign, so the probability of (a) and

(b) happening is zero. As a result, two bosons are always scattered into the same

lead, as shown in Figs. 3.3 (c) and (d). In other words, bosons exhibit “bunching”

behavior.

For fermions the situation is more complicated. As pointed out earlier in this

section, for two electrons in the singlet state, their spatial wavefunction is symmetric.

If only the spatial part is concerned, the two electrons are expected to behave like

bosons. A quantum mechanical calculation confirms this analogy [53], so for two

electrons in the singlet state, they exhibit “bunching” behavior. On the other hand,

for electrons in a triplet state, the probability amplitudes of Figs. 3.3 (c) and (d)

are zero. As a result, the two electrons are always scattered into different leads

exhibiting “anti-bunching” behavior.

If the entangler in Fig. 3.2(a) continuously generates electron pairs in the

singlet state, the outcome after the beam splitter will look like Fig. 3.2(b) according

to the analysis above, while for triplets the result is shown in Fig. 3.2(c). By

measuring the average currents in leads 3 and 4, one finds no difference between

Figs. 3.2(b) and (c) since on average the same number of electrons are scattered

into both channels. However, it is obvious that Fig. 3.2(b) and (c) are different
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if the fluctuation pattern in the current is concerned. For example, in Fig. 3.2(c),

the current in each channel is composed of a series of electrons arriving at equally

spaced times, so there should be no fluctuations in the current and the shot noise

should be fully suppressed. Thus by measuring shot noise, one can distinguish Figs.

3.2(b) and (c), and therefore the cases of singlet and triplets.

To quantify the difference one needs to apply to the system the scattering ap-

proach for shot noise discussed in Chapter 2. The scattered states can be calculated

with the help of the scattering matrix of the beam splitter. Based on that, current

operators can be constructed and the shot noise can be calculated. Assuming the

average current in both channels is I, the power density of the shot noise is [53]:

S34(ω) = −S33(ω) = −S44(ω) =





−4eIT (1− T ) singlet

0 triplets

−2eIT (1− T ) independent electrons

(3.3)

Here S34(ω) is the cross spectrum of the currents in leads 3 and 4, defined

as I3(ω)I∗4 (ω), and Sii(ω) (i = 3,4) is the shot noise of each channel, defined as

Ii(ω)I∗i (ω). The case of independent electrons corresponds to the situation where

two independent currents (to realize this, one can turn off the exchange interaction

by tuning gate voltage settings) are incident on the beam splitter and each current

contributes to the total shot noise independently. According to equation 3.3, the

enhanced shot noise is a signature of the single state, while a fully suppressed shot
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noise indicates the presence of any of the triplet states.

So far I have shown that by performing shot noise measurements one can

distinguish the singlet from the triplets generated in an entangler such as a coupled

quantum dot system. This is not, of course, a direct proof of entanglement. In such

a measurement one cannot gain direct knowledge about the correlation between the

spin states of the two electrons, but only deduce indirectly the information about

the entangled states. However, I want to point out that two features in such an

experiment resemble two crucial conditions required in a test of Bell’s inequalities:

turning off the initial interaction between particles and keeping the system away from

any decoherence before a measurement. In the shot noise measurement discussed

here the exchange interaction between the two electrons is turned off after they

leave the quantum dots. This is true even when they are scattered at the beam

splitter. In addition, in the absence of a spin-orbit coupling and other spin scattering

mechanisms, the spin states of the two electrons are conserved.

A real test of Bell’s inequalities for the entangled states generated by a coupled

quantum dot system can be realized only when a few more conditions are fulfilled: a

fast single spin detector and efficient bus lines for transporting electrons coherently.

These requirements are beyond present day technology. Developing these techniques

certainly represents one very important research direction for the quantum comput-

ing and spintronics community. On the other hand, as pointed out by Hu et al.

[95], exploring new methods for studying entanglement in condensed matter sys-

tems is another interesting direction, especially in strongly correlated systems when
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the generation of EPR pairs is very difficult. Nevertheless, an implementation of

a shot noise detection experiment is an important step towards the demonstration

of entanglement in such systems. In addition, this experiment is especially impor-

tant for the study of quantum computing, since the coupled quantum dots system

is essential for realizing the necessary gate operations for the quantum computing

scheme based on electron spins and quantum dots.

3.2.3 Related theoretical work

A variety of theories have been developed to understand the electronic properties

of a coupled quantum dot system [4, 5, 96, 97]. In general, this problem cannot

be solved analytically, so calculations are all numerical. To proceed, a particular

form for the confinement potential profile in the quantum dots is assumed, and the

electron states in a single dot are calculated. Loss et al. [5] applied the Heither-

London method and the Hund-Mulliken approach to a coupled quantum dot system

in GaAs/AlGaAs heterostructures. Both methods use electron wave functions of a

single dot to construct molecular states for the coupled dots, taking into account the

symmetry issues. The energy of these states is then evaluated. Although the two

methods yield different results, they share some important qualitative features. It

is predicted that at zero magnetic field the triplet states always have higher energy

than the singlet state, as expected for a two particle system with time reversal

symmetry. Both methods show a singlet-triplet crossing at some finite magnetic

field. In both cases the energy difference between the singlet and triplet states, or
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the exchange coupling strength J , decays exponentially as the intra-dot distance

increases.

Recent work by Hu et al. [96] goes beyond the above two methods by using

more single electron wave functions to construct molecular states. Their calcula-

tions have shown similar features. In addition, they studied the dependence of J on

the height of the tunneling barrier between the two dots and found that J decays

exponentially as the barrier height increases. Hu etal. also studied the more realis-

tic case of multi-electron quantum dots. The original proposal assumed that each

quantum dot has only one electron. However, for the quantum dots based on the

gating technology in the 2DEG in GaAs/AlGaAs heterostructures, even with the

most advanced fabrication process, it is still very difficult to make quantum dots

containing only one electron. For quantum dots with multiple electrons, the elec-

tronic states usually have a shell structure similar to that of atoms. For example, in

the case of an even number of electrons, they always pair up and form closed shells,

while in the case of an odd number of electrons, one valence electron is left at the

upmost state. In addition, in very small dots the energy difference between these

shells is usually much larger than other relevant energy scales (e.g., the thermal

energy, the Zeeman splitting, etc.). As a result, it is reasonable to expect that all

the electrons in the closed shells have little effects on the dynamics of the valence

electron, suggesting that two dots each having an odd number of electrons can be

used to implement the proposed entanglement experiment. Indeed, Hu etal. showed

theoretically [97] that quantum operations can still be performed with as many as
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three electrons in each quantum dot.
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Chapter 4

Fabrication and Instrumentation

In this chapter I discuss the sample fabrication and the instrumentation used for

my experimental work. The first section explains the three level e-beam lithography

technique I used for fabricating mesoscopic samples. Since my experiments require

amplifiers with very low noise and relatively high frequency response, two cryogenic

amplifiers were developed. They are discussed in detail in the second section. The

third section describes the dilution refrigerator setup. Some critical noise reduction

techniques are discussed in the last section.

4.1 Sample fabrication

The starting material for my 2DEG samples is an MBE grown GaAs/AlGaAs het-

erostructure (see Fig. 2.1)1. At low temperatures, a 2DEG is formed about 50 nm

below the surface. Compared to other similar structures, this is a shallow 2DEG.

The dark mobility and carrier density of the 2DEG at 4.2 K are 4 × 105 cm2/V·s and

2 × 1011 cm−2 (This is the result from the wafer grower; my own characterization

with a Hall bar geometry gave a similar result). Each time a 4 mm × 4 mm chip is

cut from the wafer, and four samples can be made on this chip.

I used E-beam lithography techniques for fabricating all the samples used in

1The wafer was purchased from the Shayegan group at Princeton
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the experiments reported in this thesis. This is the only reproducible way of fabri-

cating the nano-scale high quality mesoscopic samples required for the entanglement

experiment.

The fabrication process is composed of three main steps, as shown in Fig.

4.1(a): (1) forming Ohmic contacts to the 2DEG; (2) defining the active region by

wet etching; and (3) depositing metallic gates. Each step includes e-beam lithogra-

phy. An alternative to e-beam lithography for the first two steps, where there are

no small features to be defined, consists of an optical lithography process. However,

e-beam lithography is convenient for all steps since it allows me to make modifi-

cations to an existing design without going through the time consuming process of

fabricating of optical masks.

The purpose of the first step is to make low resistance Ohmic contacts to the

2DEG so leads can be connected. The chip is first cleaned in hot acetone and hot

IPA (Isopropanol Alcohol) (both at 80◦C), each for 5 minutes. Sometimes I would

spray the solution using with a syringe in order to remove dirt on the chip. In

general, ultrasonic cleaning should not be applied to GaAs 2DEG heterostructures,

since this may cause possible degradation of the electron mobility2. The chip is

then coated with three layers of positive3 e-beam resist [poly methyl methacrylate

(PMMA)] (Fig. 4.1(b)). The first layer of PMMA has a molecular weight of 150,000.

It is spun at 4000 rpm and then baked at 40◦C for 1 minute, 80◦C for 2 minutes,

2Ultrasound is expected to introduce defects or worsen existing ones in samples.
3A positive reist will be removed by a developer only if it is exposed to an e-beam while a

negative one will be removed only if it is unexposed.
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and 140◦C for 30 minutes. The second layer of PMMA is processed in the same way

except that the chip is baked at 140◦C for 1 hour. The third layer of PMMA, with

a molecular weight of 360,000, is spun at 6000 rpm and then baked at 40◦C for 1

minute, 80◦C for 2 minutes, and 140◦C for 2 hours. The approximate thickness is

400 nm for the first two layers and 100 nm for the last layer. The baking for all

three layers helps solidify the PMMA and thus avoid inter-layer mixing, which is

very important for fabricating samples with small features.

I did e-beam lithography using a JEOL-420 Scanning Electron Microscope

(SEM). Typical settings are an accelerating voltage of 30 kV, a working distance of

8 mm and a field scale of 1.5 mm. An e-beam current of about 6000 pA (and a dose

of 10 pC/µm2) is used to expose the PMMA in the area where Ohmic contacts are

to be made [Fig. 4.1(c)]. The chip is then developed in a solution of methyl isobutyl

ketone (MIBK):IPA (1:3 by volume) at 23 ◦C for 30 seconds (Fig. 4.1 (d)), rinsed

in IPA, and blown dry with research grade N2. An undercut profile is created in

the resist due to the different sensitivity to the e-beam of the two types of PMMA

and also due to the backscattering and secondary electrons, as shown in Fig. 4.1(d).

After developing, the chip is immediately transferred into the vacuum chamber of an

evaporator. The chamber is pumped down to 1×10−6 Torr by a cryo-pump. Metals

are thermally evaporated in the following sequence: 5.0 nm Ni at 0.1 nm/sec, 100 nm

AuGe alloy (Au:Ge = 85:15 by weight) at 0.15 nm/sec, 10 nm Ni at 0.1 nm/sec and

200 nm Au at 0.2 ∼ 0.4 nm/sec (Fig. 4.1(e)). After waiting for about 20 minutes

for the system to cool down, the chip is taken out of the chamber and immersed
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(a)

Figure 4.1: Sample fabrication. (a) The three level e-beam lithography: Ohmic

contacts, etching and gate level; (b) PMMA configuration; (c) e-beam exposure; (d)

developing; (e) thermal evaporation; (f) lift-off; (g) annealing; (h) e-beam exposure

for etching level; (i) developing; (j) etching.
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into acetone for a few minutes for lift-off (Fig. 4.1(f)), then rinsed in IPA and blown

dry. The undercut profile in the resist is crucial for the lift-off step. Without such a

profile, metal deposited on top of the resist could adhere to the metal deposited on

the chip surface and the desired gate pattern would not be achieved. This is also

true for the gate level process.

During the first level of lithography, a few small regions of PMMA are over-

exposed for the purpose of fine focus adjustment and alignment between different

levels of lithography. Overexposed PMMA provides very good contrast with respect

to unexposed PMMA and can be used to tune the focus and stigmation precisely.

In these focusing spots the PMMA molecular chains are cross-linked due to overex-

posure and cannot be removed by the developer. During the evaporation, metal is

deposited on top of the cross-linked PMMA and can be used as an alignment mark

for the second and third levels of lithography.

Annealing the chip at high temperatures is a very important step for creating

Ohmic contacts [Fig. 4.1(g)]. It is a complex process sensitive to both temperature

and annealing time. Different annealing parameters yield very different contact

resistances, ranging from a few hundred Ω to a few kΩ. Over-annealing (> 10 min)

sometimes leads to a resistance of a few MΩ. The smallest resistance (< 600 Ω) is

achieved by using the following recipe: 110◦C for 10 s, 330◦C for 30 s, and 430◦C

for 1 min. The annealing is done in a forming gas (Nitrogen:Hydrogen = 87:13 by

volume) atmosphere. After annealing, the chip is cleaned in hot acetone and hot

IPA, each for 5 minutes.
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The active region of a device includes the Ohmic contacts and the inner gate

area where the mesoscopic samples are to be fabricated. For the entanglement

experiment, these are two quantum dots and the beam splitter. The rest of the chip

is etched to remove the 2DEG. Although the 2DEG is 50 nm below the surface, a

shallow etch of 10 nm is enough to deplete the 2DEG due to a surface depletion.

This not only defines the active area of the sample but also removes large areas of

the 2DEG, reducing the gate to 2DEG leakage.

The e-beam lithography process for the etching level is very similar to that

used for the Ohmic contacts, except that now only one layer of 150,000 PMMA is

used for coating the chip. Focusing spots made in the first level of lithography are

used as alignment marks to adjust the position of the chip. The PMMA outside of

the active region is exposed and removed by the same developing procedure. The

chip is then dipped into a solution of H2O2:H2SO4:H2O (1:4:100 by volume) at 22◦C

for 1 minute. This solution etches GaAs at a rate of 0.5 nm/sec. However, the chip

is usually covered with an oxidized layer, which takes about 20∼30 s to remove, so

the overall etching depth is about 15 ∼ 20 nm. After etching, the chip is rinsed in

deionized water and IPA and then blow dried.

Before the third level processing, the chip is cleaned again with hot acetone

and hot IPA for 5 minutes each. A bilayer of PMMA is used for coating the chip for

this stage. The first layer is 150,000 PMMA and the second layer is 300,000 PMMA,

both spun at 8,000 rpm. The approximate thickness is 100 nm for the first layer and

60 nm for the second layer. The gate level process is similar to that for the Ohmic
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level [Fig. 4.1(b) ∼ (f)] except for some additional details described below.

The lithography for the gate level is done with a three field-scale self-alignment

technique. In this technique, the coated chip is exposed to the e-beam sequentially

at three different field scales: 30 µm, 100 µm, and 1.5 mm. The first scale is for the

finest features with a typical line width of 30 nm, including the two dots and the

beam splitter [see Fig. 4.2(b)]; the 1.5 mm scale is for 16 bonding pads each with a

size of 150 µm × 150 µm; and the middle scale is for the leads connecting bonding

pads and the inner small features (see Fig. 4.2(a)).

On my samples there are 12 gates altogether and they come very close to

each other at the center of the device. Very fine focus and precise dose control are

required to make narrow lines close to each other (separation < 30 nm) due to the

proximity effect (the actual exposure area in PMMA is larger than the e-beam size

due to the backscattering and secondary electrons). These fine features can only be

made at small field scales. Self alignment means that after aligning the e-beam with

the marker at the smallest field-scale, no further stage displacement is necessary to

write the patterns at the three different field-scales, therefore a careful design should

be made to join the features exposed at the three scales. Typical e-beam currents

used for the three scales are: 10 pA, 20 pA, and 6000 pA.

After lithography the chip is developed as before and immediately transferred

into the vacuum chamber of an evaporator. At a base pressure below 2 × 10−6 Torr,

25 to 30 nm AuGe alloy (Au:Ge = 85:15 by weight) is thermally evaporated onto

the chip at a rate of 0.1 nm/sec. To reduce the gate to 2DEG leakage, one can use
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(a)

(b)

Figure 4.2: (a) SEM picture of the intermediate and inner gates (the bonding pads

are not shown); (b) a sample used in the entanglement experiment.
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the following recipe: deposit 1 nm Al and oxidize it with an oxygen pressure of 18

mTorr, and then repeating this a total of 5 times. AuGe alloy is then deposited on

top of the Al2O3 layer. The chip is then put into acetone for lift-off, rinsed in IPA

and blown dry. The chip is glued onto a 16-pin sample header with silver paint for

wire bonding. Aluminum wires are connected to the 16 leads (4 Ohmic contacts

and 12 gates) using a Kulik and Soffa wire bonder. Before cooling, the resistance

between the leads is measured to check for shorted and disconnected bonds.

Mesoscopic samples are delicate devices that have to be handled very carefully.

In particular for GaAs/AlGaAs heterostructure 2DEGs, special care should be taken

during fabrication to maintain the sample quality, i.e. the electron mobility. As

mentioned early, ultrasonic power should not be used for either cleaning or lift-off

to avoid possible 2DEG degradation and the possibility of ripping off very fine gate

structures. Mesoscopic samples can also be very sensitive to electrostatic discharge,

so all sample fabrication processes should be done in an environment with humidity

control. The experimenter should ground himself properly when wire bonding and

checking resistance. In general, the active region where fine gate structures are

made should not be exposed to a high dose e-beam, because this can degrade the

electron mobility in the 2DEG. The mechanism of this degradation is not very well

understood. A possible explanation is that a high dose e-beam can cause surface

contamination on the chip which partially depletes the 2DEG even at zero gate

voltages.
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4.2 Cryogenic amplifiers

I used two cryogenic amplifiers for the experimental work reported in this thesis. In

this section I discuss their purpose, design, construction, and calibration.

For all types of measurements the signal to noise ratio (SNR) is an important

quantity. In most transport measurements “signal” refers to some electrical quantity

such as current or voltage at a fixed frequency or within a specific frequency span,

while noise refers to all sorts of unwanted fluctuations including thermal noise, low

frequency noise, and external interference. Many techniques have been developed to

filter noise out of the frequency range of interest, so that high SNR can be achieved.

A classical example is the lock-in technique in which phase sensitive detection is used

to extract the signal. For shot noise detection, however, the “signal” now refers to

the shot noise generated in the device under test. Since the shot noise is expected

to have an almost flat power spectrum over the accessible measurement range, the

“signal” is distributed over a very broad band. Therefore for my experiment the

SNR is defined as the shot noise in a frequency span over the total noise in the

same span. Many traditional noise reduction techniques will not work in such a

situation. As a simple example, consider an ac current signal of 1 nA measured

with a 1 Hz bandwidth and a shot noise signal with a RMS value of 1 nA measured

with a bandwidth of 1 MHz. For a background thermal noise with a power density

of 10−22 A2/Hz, the SNR for shot noise detection is only 1% ((1 nA)2/(10−22 A2/Hz

× 1 MHz) = 0.01). On the other hand, for the 1 nA ac current the total measured

power is also 10−18 A2, but the detected thermal noise power is only 10−22 A2 in a
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1 Hz detection bandwidth, therefore the SNR is 10,000. This difference makes shot

noise detection much more difficult, which is why a low noise broad band amplifier

is required.

To determine the frequency range for shot noise detection, a few things must

be taken into account. Both amplifiers and devices under test exhibit low frequency

noise, such as 1/f noise and random telegraph noise. In general, the magnitude of

this noise depends on temperature, applied current, and frequency. In most cases,

we found the frequency range below 100 kHz was not suitable for our experiment

due to high excess noise levels. On the other hand, working at very high frequencies

(∼ GHz) requires special wiring in the dilution refrigerator. In addition, most

broadband amplifiers require the use of 50 Ω matching exclusively, which is not

easy to achieve in our system. As a result, the ideal frequency range is from a few

hundred kHz to a few MHz. In this range most commercial amplifiers do not have

the performance required for our measurements; these amplifiers usually contribute

too much background noise. Most of the amplifier noise comes from the thermal

noise of the components of which the amplifiers are made, so the natural solution is

a cryogenic amplifier.

Operating amplifiers at cryogenic temperatures has the following advantages.

First, low temperatures tend to lower the noise contributed by the amplifiers them-

selves. Second, using a cryogenic amplifier minimizes stray capacitance of long

wiring. In order to build these amplifiers, one has to carefully select the constituent

components. They should function properly at low temperatures and dissipate little
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power to avoid substantially heating the sample and the dilution refrigerator.

The amplifiers used in our experiment are based on a design by the Cabrera

group at Stanford [98]. These amplifiers use a two stage cascode configuration as

shown in Fig. 4.3. The cryogenic stage is four MESFETs (Metal-Semiconductor-

Field-Effect Transistor) operating in parallel. This stage can be viewed as a transcon-

ductance amplifier in the sense that it converts the voltage signal present at the in-

put to a current signal in the channels of the MESFETs. The current signal is then

transmitted to the source of a JFET (Junction-Field-Effect-Transistor) through a

coax cable. The JFET behaves like a transimpedance amplifier converting the cur-

rent signal back to a voltage signal, which is further amplified by the operational

amplifiers.

Specific design details can be found in the reference given above. Here I only

discuss the essential features of the design. To achieve a superior performance, these

cryogenic amplifiers should be as cold as possible and should be brought very close to

the devices under test. In our dilution refrigerator, the ideal place for them is about

1 to 2 feet above the sample cell (see section 4.3 for details), where the ambient

temperature is around 4 K. At this temperature, silicon based transistors suffer the

carrier “freeze out” problem. Germanium devices can operate at this temperature

but are not commercially available. The only choice left is GaAs based transistors,

either MESFETs or HEMTs (High Electron Mobility Transistors). The MESFETs

I used are GaAs N-channel dual gate MESFETs manufactured by SONY (model

3SK164). The JFET I used is silicon N-channel JFET manufactured by SONY
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Figure 4.3: Schematic of the cryogenic amplifier.
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(model 2SK152).

There are three benefits of using a cascode configuration [98]. First, for the

cryogenic stage, the low source impedance of the JFET, typically 100 Ω, is easy

to drive. From the circuitry point of view, this gives a small RC time constant

and thus a relatively large bandwidth (for a typical C = 300 pF, the bandwidth is

about 5 MHz). Second, this source impedance is a reasonable match to the coax

cable at this frequency range, so a good high frequency response can be obtained.

Finally, the Miller effect is reduced in such a configuration. The Miller effect refers

to the effective increase of the input capacitance due to the gate-drain capacitive

coupling and a high voltage gain. This effect can decrease the bandwidth and cause

instabilities due to positive feedback. In a cascode configuration, this effect can be

avoided because of the low voltage gain of the first stage.

Figure 4.4(a) shows a noise model of a MESFET [99]. The noise in a MES-

FET can be characterized by two noise current sources, ig and id. Another more

commonly used model is shown in Fig. 4.4(b), where the id in (a) is represented as a

noise voltage source en at the input. These two models are related by the following

equations: in = ig, en = id/gm, with gm being the transconductance of the MES-

FET. The model in (b) is useful because any signal at the gate can be compared to

in and en directly. However, the model in (a) is more fundamental.

In the model shown in Fig. 4.4(b), the two noise generators can be expressed

as [98]:
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Figure 4.4: FET noise models. (a) the drain-current-noise model including two

current-noise generators: ig and id; (b) the gate-voltage-noise model, in which the

id in (a) is replaced by an equivalent voltage noise generator at the gate.
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i2n = 2eIg +
4kBT

gm

4ω2C2
gs

15

e2
n =

4kBTα

gm

. (4.1)

where Ig is the gate leakage current, T is the channel temperature, gm is the transcon-

ductance, Cgs is the gate-source capacitance, and α is a constant of the order of 1.

There are two contributions to i2n: one is the shot noise of the gate leakage current;

the other one is the thermal noise of the channel. Operating MESFETs at cryogenic

temperatures highly reduces the gate leakage current. As a result, the first term in

i2n is usually a few orders magnitude less than the second term [98]. Therefore the

optimum matching impedance can be found as:

Z2
opt = e2

n/i
2
n =

15α

4ω2C2
gs

, (4.2)

For a typical Cgs value of 1 pF, Zopt ≈ 1 MΩ for a frequency of 200 kHz 4,

and is much higher than the source impedance (typically around 10 kΩ) in all my

measurements. In such a case, the contribution of the i2n to the total amplifier noise

is much less than that of the e2
n term, and this was experimentally verified for my

amplifiers. In the following, the i2n term will be neglected.

Operating MESFETs in parallel reduces the background voltage noise contri-

bution from the amplifiers. According to the model in Fig. 4.4(b), the total id of N

MESFETs operating in parallel is:

4My experimental data in Chapters 5 and 6 was taken around this frequency.
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i2dN = Ni2d (4.3)

The noise power from different devices should be added since their noise sources

are expected to be uncorrelated. From equation 4.3 one has idN =
√

Nid. On the

other hand, the transconductance of N MESFETs in parallel is Ngm, so enN =

√
Nid/(Ngm) = en/

√
N . As a result of operating N devices in parallel, the noise

voltage source enN decreases by a factor of
√

N . However, the power dissipated by

N devices is also N times as that dissipated by one device, which can heat up the

sample and dilution refrigerator significantly. A reasonable compromise is obtained

by using 4 MESFETs in parallel (8 for the two cryogenic amplifiers) which results in

the temperature of the sample cell increasing from 50 mK to 70 mK. The pressure in

the still line of the refrigerator increases correspondingly, approaching the operation

limit.

In general when these amplifiers are cooled to below liquid helium temperature,

the bias conditions have to be readjusted in order to achieve the best performance.

Figure 4.5 shows results for one amplifier at 4.2 K (the other is very similar). I

found a constant voltage gain from about 10 kHz to 1 MHz. For the equivalent

input voltage noise, it is clear that low frequency noise dominates below 200 kHz,

while at higher frequencies a white thermal noise background with a magnitude of

0.8 nV/(Hz)1/2 appears.

The FET noise model shown in Fig. 4.4(b) can be generalized to describe

any amplifier. For an amplifier with an equivalent input voltage noise e2
n and an
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Figure 4.5: Calibration of the cryogenic amplifier at 4.2 K. (a) voltage gain; (b)

equivalent input voltage noise en.

equivalent input current noise i2n, the total background noise contributed by the

amplifier is e2
n + i2nZ

2
in, where Zin is the input impedance of the amplifier. If the

shot noise to be detected has a power density i2s, the signal to noise ratio will be

S/N = i2sZ
2
in/(e2

n + i2nZ2
in). Amplifiers with both a small e2

n and a small i2n are

required to detect the shot noise of a very small current. Commercial amplifiers can

be roughly categorized into two groups: current amplifiers and voltage amplifiers.

They are designed to have very low voltage noise or current noise but usually not

both. The unique feature of the cryogenic amplifiers discussed in this section is

the combination of a small e2
n, a small i2n, and a good frequency response. Such a

combination is crucial for the low noise measurements reported in this thesis. With

the cross correlation technique that I will discuss in section 4.4, the sensitivity of
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our amplifiers is one order of magnitude higher than what was achieved in similar

works using a much more complicated setup.

4.3 Dilution refrigerator wiring

The experimental shot noise data in this thesis was taken at low temperatures. The

cooling system consists of a “home-built” dilution refrigerator (see Fig. 4.6).

The dilution refrigerator consists of two parts: a helium gas circulation system

and a top-loading probe (see grey area in Fig. 4.6). The low temperature part of the

refrigerator is enclosed in a vacuum can immersed in a liquid helium bath. Its inner

shell is a tubing for the top-loading probe, which can be removed from and inserted

into the tubing for sample exchange without warming up the whole system. The

space between the outer shell and inner shell of the helium circulation system serves

as a still line. Cold 3He vapor from the mixing chamber is pumped out through the

still line and cools the gas returned via the condensing line. At the bottom of the

tubing for the top-loading probe there is a thin metallic foil separating the sample

cell and the mixing chamber. In operation, pure 3He is liquified in the tubing and

makes good thermal contact with the solution in the mixing chamber via the thin

foil. When the top-loading probe is completely inserted, the sample is thus immersed

directly in liquid 3He and can be cooled down to 70 mK. The main part of the top-

loading probe is a rigid supporting structure made of nonmagnetic stainless steel

tubing. The bottom part of the probe (below the cryogenic amplifier) is a plastic

rod that provides good thermal isolation. The part between the stainless steel and
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Figure 4.6: Dilution refrigerator wiring schematic.
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the plastic rod is a brass plate where the two cryogenic amplifiers are mounted. The

plate is thermally grounded through the tubing for the top-loading probe. A 16

Tesla superconducting magnet sits at the bottom of the helium bath.

Five groups of wires are used. The first group, not shown in the figure, is

for thermometry. A ruthenium dioxide resistor located right beside the sample

holder (about 5 mm away horizontally from the sample) is used as a thermometer

by monitoring its resistance in a four terminal configuration. The second group is a

pair of wires for an infrared diode used to excite electrons in the sample. The diode

is located about 2 inches above the sample and controlled by a Keithley current

source. The third group is a set of wires for gate control and sample biasing. A

typical sample has 4 Ohmic leads and 12 gates, so the minimum number of wires

for this group is 16. I chose Cu-Ni wires for their low thermal conductivity and low

thermoelectric coefficient (which means low thermal emf). Using wires with very

low thermal emf is crucial for implementing low level signal cryogenic experiments to

avoid unaccounted for dc biases. The fourth group of wires is a set of power lines for

the two cryogenic amplifiers, and the last group is a pair of coax cables that transmit

the shot noise signal from the cryogenic amplifiers to the post amplifiers at room

temperature. The coax cables connecting the sample to the cryogenic amplifiers

have both the inner and outer conductors made from nonmagnetic stainless steel.

They are chosen for their low thermal conductivity. To avoid coupling between the

different groups and also for convenience, a few Cu-Ni shielded tubes enclose the

different groups of wires in the probe.
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Due to the limited space (the diameter of the top-loading probe is about 3
4
”),

installing five groups of wires and two cryogenic amplifiers is a challenge. One has

to be very careful, since any modification may damage nearby parts. Also, frequent

removal and insertion of the top-loading probe can damage the wires and other

parts. Before every cool down, a routine check should be performed on the diode,

the amplifiers, the thermometer, and all the electrical leads for the sample. An-

other major problem caused by the limited space is the grounding for the cryogenic

amplifiers. In principle, the ground of these amplifiers should be isolated from the

metal supporting structure of the dilution refrigerator. However, in our system it is

extremely difficult to make a full isolation. This causes some noise problems, that

can, however, be improved as discussed in the next section.

4.4 Noise reduction

For the experimental work in this thesis, the shot noise of very small currents (∼

100 pA) is to be detected. To have an idea of the order of magnitude of the signal,

consider for example that the full shot noise power spectrum density of 100 pA,

which is 3.2 × 10−29 A2/Hz. The RMS value of this noise in a frequency span of

1 MHz is only 5.7 pA. In order to detect such a small signal, the experiment has

to be designed very carefully. The main effort was to develop low noise broadband

amplifiers, as discussed in section 4.2. In this section, I discuss some additional

noise reduction techniques I used.

All the wires in the top-loading probe are well shielded. As mentioned above,
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the wires are grouped and placed in different Cu-Ni tubes and these tubes are further

shielded by the main support tube of the top-loading probe. The head of the probe

is an aluminum box with BNC connectors. Two feed-through SMA connectors are

used for the outputs of the cryogenic amplifiers.

For most cases, gates are controlled by batteries. When a variable gate voltage

source is needed, a home-made RC low pass filter is used to filter out the high

frequency noise generated by the instrument. Other instruments are powered by

batteries whenever possible. The cryogenic amplifiers are powered by Scorpion ±

15 Volts dc voltage sources with low pass filters. All instruments to be added

to the measurement system are checked before any real data acquisition to avoid

introducing extra noise.

The head of the top-loading probe is grounded with a 3 cm wide grounding

braid. The outputs of the post amplifiers are fed into differential amplifiers with

both inputs isolated from the chassis ground, so ground loops can be avoided. This

is a crucial arrangement for achieving low noise circuitry. Since the outer shell of the

input BNC connectors of the spectrum analyzer is also its chassis ground, connecting

the post amplifiers directly to the spectrum analyzer would produce ground loops.

The gate control battery box is floating at all time, while the Scorpion voltage sources

for the cryogenic amplifiers have their own neutral terminals and are isolated from

the ac power ground.

The most serious problems associated with grounding in this system have two

sources. One source of problem is interference from noisy apparatus sharing the
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same ground, such as the circulation pump in the gas handling system. In principle,

these noisy parts should be grounded separately. Since the dilution refrigerator

was not built specifically for a shot noise measurement, the grounding is not ideal.

However, this can be much improved by carefully choosing the main grounding point

(where the grounding braid is connected). Another source of problem is from ground

loops formed when electrical instruments are added to the measurement system.

Usually, these instruments are not battery powered and do not have differential

inputs isolated from the normal ac power ground. As a result, we have multiple

grounding in the measurement system. This situation is avoided whenever possible;

otherwise, a comparison between the noise before and after the instrument is added

should be done to assure that no significant increase in noise occurs.

Given the complexity of the measurement system, it is hard to find a routine

way to achieve good grounding. Often a working configuration can become noisy

when some changes are made to the system. The general rule is to always monitor

the output of the spectrum analyzer to find the best configuration.

With all the techniques used above, one can get rid of most external interfer-

ence coupled to the system by means of radiation, conducting channels and ground-

ing loops, etc. However, the intrinsic noise sources, such as the thermal noise from

the sample and the cryogenic amplifiers, are always present together with the shot

noise signal. In the following, I discuss how spectrum analysis can be used to solve

this problem.

Due to the broadband nature of shot noise, a spectrum analyzer is a proper
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instrument to do the measurement. I used an Agilent 89410A spectrum analyzer

for all the noise detection. This is a dual-channel broadband (dc to 10 MHz) digital

spectrum analyzer using a fast Fourier transform (FFT) technique. It can be used

to measure the Fourier spectrum of a signal, its noise power, and the cross spectrum

of two signals, among many other quantities.

An FFT spectrum analyzer samples a signal presented at its input at a certain

frequency (25 MHz for the Agilent 89410A) and then digitizes the samples. The

outcome is a sequence of digitized voltages in the time domain. An FFT is then

performed on the sequence to calculate the spectrum in the frequency domain. These

spectrums can be further used for calculating more complex functions, such as the

cross spectrum. Due to the limited number of time domain samples, the resulting

spectrum has large fluctuations from point to point even for a white noise signal.

Usually many averages are required to achieve a stable and uniform spectrum.

For shot noise detection, the total signal V (t) detected by the analyzer includes

the shot noise V1(t), the thermal noise from the sample V2(t), and the noise from

the amplifier V3(t). The Fourier spectrum of V (t) is:

V (ω) = V1(ω) + V2(ω) + V3(ω), (4.4)

where Vi(ω) are Fourier spectrums of the three voltages. The total noise power is

then

P = V (ω)V ∗(ω) = V1(ω)V ∗
1 (ω) + V2(ω)V ∗

2 (ω) + V3(ω)V ∗
3 (ω), (4.5)
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where I assume there is no correlation between any of the noise sources. Typically

the shot noise power is only 10% of the thermal noise power of the sample and

1% of the amplifier noise. To increase the signal to noise ratio, a cross correlation

technique is used. The basic idea is using two independent amplifiers to measure the

voltage across the device under test, which is V1(t)+V2(t). The outcomes of the two

amplifiers are then fed into two independent channels (A and B) of the spectrum

analyzer. Now the spectrums coming out of the two channels are:

VA(ω) = V1A(ω) + V2A(ω) + V3A(ω)

VB(ω) = V1B(ω) + V2B(ω) + V3B(ω). (4.6)

Instead of measuring the noise power in each channel, we measure the cross spectrum

of both channels, which is defined as

X(ω) = VA(ω)V ∗
B(ω)

= V1A(ω)V ∗
1B(ω) + V2A(ω)V ∗

2B(ω) + V3A(ω)V ∗
3B(ω), (4.7)

where ∗ means complex conjugation. Since V3A(ω) and V3B(ω) are the spectrum of

the noise from two independent amplifiers, there should be no correlation between

them. However, this is only statistically true, in other words, the average value of

V3A(ω)V ∗
3B(ω) = 0. By averaging many times, one has

〈X(ω)〉 = 〈V1(ω)V ∗
1 (ω)〉+ 〈V2(ω)V ∗

2 (ω)〉, (4.8)
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where I assume the two amplifiers are identical so ViA(ω) = ViB(ω) = Vi(ω) (i =

1,2). Equation 4.8 basically says that by measuring the cross spectrum one can get

rid of the noise contribution from the amplifiers. Practically there is always some

residual correlation between the amplifiers, so 〈V3A(ω)V ∗
3B(ω)〉 is never zero, but it

is negligible in most cases.
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Chapter 5

Shot noise of mesoscopic tunnel barriers

In this chapter I discuss shot noise measured I made in mesoscopic tunnel barriers

fabricated in GaAs/AlGaAs heterostructures [100]. There are two main motivations

for making these measurements. First, mesoscopic tunnel barriers have been well

studied in the context of standard transport properties. However, as pointed out in

Chapter 2, a lot of useful information about the transport processes is contained in

the temporal correlation in the current, which is not accessible by standard transport

measurements but is readily probed by shot noise detection. Therefore the study of

shot noise will enrich our understanding of these systems. Second, tunnel barriers

are one of the basic building blocks for more complicated mesoscopic structures

and a thorough understanding of their noise properties will be helpful for the study

of other mesoscopic structures. One example is the coupled quantum dot system

proposed for quantum entanglement in Chapter 3, where a shot noise measurement

is suggested for demonstrating electron spin entanglement. Thus knowledge of the

shot noise properties of all components of such a system are crucial for implementing

the entanglement experiment.
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5.1 Overview

In 1918 Schottky first predicted [77] that a vacuum tube has two intrinsic sources

of time-dependent current fluctuations: thermal noise and shot noise. Thermal

noise is due to the thermal agitation of electrons. It is universal in all dissipative

electrical conductors at finite temperatures and is well characterized by the Johnson-

Niquist theorem. Shot noise is caused by the discrete nature of electron charge. In

a vacuum tube, the cathode emits electrons randomly and independently. Such a

Poisson process leads to a shot noise of 2eI or full shot noise. This result can be

generalized to other electrical transport processes that have Poisson statistics [99].

For example, full shot noise was experimentally observed in semiconductor diodes,

bipolar transistors, and field effect transistors. In all of these systems, electrons

encounter tunnel barriers. It is the random and independent scattering of electrons

occurring at the barriers that generates the shot noise. However, these systems

generally cannot be considered as mesoscopic conductors.

Recently shot noise in smaller tunnel barriers has been studied by different

groups. Theoretical results are discussed in Chapter 2. For example, Birk et al.

[101] measured the shot noise of a tunnel junction formed by an STM tip and a

metallic surface. In their experiment the distance between the tip and the sur-

face was kept constant, and the potential difference between them was varied. The

tunnelling current and the shot noise were measured simultaneously as a function

of the potential difference. Their result is in very good agreement with theory,

especially the crossover between thermal noise and shot noise. Cron et al. [102] per-
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formed similar shot noise measurements in aluminum atomic contacts (fabricated

by a break-junction technique) in both the normal and the superconducting regime.

Again, they found good agreement between theory and experiment. I want to point

out that these measurements were all done in metallic conductors with tunnel bar-

riers. Since the transport in these systems occurs at the atomic size level, these

tunnel barriers are considered to be microscopic. In general, they suffer less from

impurity problems than barriers fabricated in semiconductor systems. Indeed, shot

noise has been used as a tool to obtain information about the conduction details in

gold atomic contacts [103].

Another often studied system is the tunnel barrier formed in the 2DEG in

GaAs/AlGaAs heterostructures by means of the split-gate technique discussed in

Chapter 2. The fabrication details were summarized in Chapter 4. One main

advantage of this type of barrier is that its transmission properties can be easily

tuned by changing the voltages on the gates forming the barriers. For a single device,

one can study both highly resistive tunnel barriers and quantum point contacts

(QPCs). As explained in Chapter 2, open quantum channels in QPCs suppress the

shot noise due to the Pauli principle. The first experiment was carried out by Li et

al. [104] in 1990. They observed shot noise suppression below the Poissonian value,

although the measurement was done at low frequency (f <100 kHz) where 1/f

noise and random telegraph noise dominate, and the measured shot noise did not

have the expected linear dependence on dc current. Reznikov et al. [81] measured

the shot noise of a QPC from 8-18 GHz by using cryogenic microwave amplifiers.
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With a constant bias current, shot noise was measured as a function of the gate

voltages. Minima of the shot noise were observed whenever the point contact had a

conductance of an integer times G0=2e2/h, indicating that shot noise was suppressed

by open quantum channels. However, the data was only in qualitative agreement

with theory. With a noise correlation technique, Kumar et al. [82] were able to

measure the shot noise of a QPC in the sub-nA regime at very low frequencies (a

few kHz). The 1/f noise from the sample could be ignored at the low currents

used, while the correlation technique helped remove the low frequency noise from

the amplifiers. They studied a point contact in the pinch-off regime with different

transmission coefficients and found quantitative agreement between their results and

theory.

The experiments just discussed focused on the shot noise suppression issue

for QPCs where the barrier has either multiple fully conducting channels or/and

one partially conducting channel with T ∼1. At the other extreme where T ¿ 1,

only full shot noise was expected. More recently Safonov et al. [105] reported a

measurement of shot noise in a tunnel barrier in an n-GaAs MESFET. Surprisingly

they observed enhanced shot noise in the pinch off regime (T ∼1). Meanwhile,

they identified resonant tunneling processes in their samples. They explained the

enhancement by a model of interacting resonant tunneling states. To our knowledge,

this is the first experimental work explicitly showing that the microscopic details,

such as potential disorder and impurity configuration, can alter a barrier’s shot noise

significantly. Unfortunately, they could only do the noise measurement at relatively
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high temperature (T > 1.5 K), thus only a Fano factor of 1.5 was observed.

5.2 Experimental data

In this section I present the experimental data taken on our tunnel barrier samples

fabricated in GaAs/AlGaAs heterostructures. For sample fabrication and measure-

ment system details I refer the reader to Chapter 4.

1µm

A

B

C

D

E

Figure 5.1: SEM picture of a sample I used to measure shot noise in tunnel barriers.

Gate A in combination with one of B, C, D and E form a tunnel barrier.

Figure 5.1 shows a SEM picture of a typical sample used for the experiments.

These samples were designed for the entanglement experiment discussed in Chapter

6. On each sample two quantum dots are fabricated. For the measurements in this
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chapter, only gates A, B, C, D, and E are used, while all other gates are grounded.

Gate A in combination with any of B, C, D, and E form a tunnel barrier when

negative voltages are applied, so on each sample four tunnel barriers can be tested.

The data presented in this chapter are from 4 different samples with very similar

design. In the following I will denote gate A as gate 1 and any of B, C, D, and E as

gate 2.

According to the theory discussed in Chapter 2, a very resistive (G ¿ e2/h,

or Tj ¿ 1) tunnel barrier at temperature T should have a total noise power

SI(f) =
e3V Tj

πh̄
coth (

eV

2kBT
) = 2eI coth (

eV

2kBT
), (5.1)

where ω is the frequency and I and V are the time averaged current and bias. For

all the measurements in this chapter, T=70 mK, corresponding to 6 µeV, and V

used is between 40 µV and 25 mV, so kBT ¿ eV is satisfied at all times. Under

this condition equation (5.1) reduces to the classical Poissonian value 2eI, so full

shot noise is expected for a resistive tunnel barrier at low temperatures.

Figure 5.2 shows the noise measured in four different barriers. This measure-

ment detects the noise as a function of the applied dc current by measuring the

voltage across a bias resistor in series with the barrier. Power spectrum of noise

was measured in a 20 kHz window centered at 220 kHz and then integrated over the

frequency span to find the average value. The value at zero dc current (including the

thermal noise from the sample and the noise contributed by amplifiers) was taken

as a background and subtracted from all data points. Different current levels that
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Figure 5.2: Noise power SI(f) of tunnel barriers as a function of dc current. Solid

line represent full shot noise with the Fano factor F = 1 (see Chapter 2 for the

definition of F ). (a),(b) full shot noise at low and high currents; (c) suppressed shot

noise; (d) enhanced shot noise.
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ranged from a few tens of pA to a few tens of nA were used. All barriers had a

conductance of around 0.01 e2/h and changed by less than 5% over the whole mea-

surement range. For reference, the theoretical prediction 2eI is also plotted with

solid lines. Some barriers exhibited a noise that was linearly dependent on the dc

current and in excellent agreement with the full shot noise result (see Fig. 5.2 (a)

and (b)). The theoretical value 2eI fits the data reasonably well, so for these bar-

riers F = 1. However, on other barriers, I observed both suppressed and enhanced

shot noise, as shown in (c) and (d). In these cases, the measured shot noise does

not have a simple dependence on the dc current.

All results were reproducible when the gate voltages were turned off and back

on, as long as the sample was kept at low temperatures. After a thermal cycle to

room temperature and back to low temperature, barriers showing full shot noise

usually do not change, while barriers showing deviations still showed deviations but

often of a different magnitude. Unknown problems in the measurement system would

have caused systematic errors in noise detection. For example, passing large currents

through the sample may introduce extra 1/f noise. However this is not the reason for

the deviation observed here since it was common to see full, suppressed and enhanced

noise in different barriers in the same sample. In other words, the observed deviation

does not resemble systematic errors, but rather a barrier specific phenomenon. In

addition, the measured noise power was always frequency independent, excluding

1/f noise as a possible case.

Figure 5.3 shows noise in one barrier as a function of the dc bias at different
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Figure 5.3: Shot noise as a function of dc bias for the same barrier at different gate

settings. Points are measured noise (left scale). Solid lines are for F=1 and are

obtained by multiplying the |I| ∼V data by 2e (left scale). They also represent the

|I| ∼V data when the right scale is used.
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gate settings. In this type of measurement the conductance and noise are measured

simultaneously while the dc bias is swept slowly by a function generator. The data

acquisition procedure was the same as used in Fig. 5.2. The conductance data,

namely the I∼V curve, is multiplied by 2e to give the theoretical value for F=1,

shown as solid lines in the figure. The actual Fano factor can be calculated by

dividing the experimental data (dotted curve) by the solid curve.

At all four different gate settings, the conductance of the barrier increased

as the bias increased from zero to finite values. For example, in (a) G=0.0025

e2/h for zero bias and increases to about 0.011 e2/h for the highest positive bias.

Correspondingly, the Fano factor changes from 2 to 0.75. This general trend is

also true when the noise at different gate voltages are compared. As the voltage

on gate 2 is changed from -400 mV to -388 mV ((a) → (b)), the conductance at 1

mV bias changes from 0.008 e2/h to 0.011 e2/h and the fano factor changes from

bigger than 1 to less than 1. Other than this trend, the measured shot noise is a

complex function of both the bias and gate voltages. Again suppressed, enhanced,

and full shot noise were observed. Even for a fixed gate setting the Fano factor can

have significant changes as the dc bias is swept, going from enhanced to suppressed

as in (a). In general there is no simple dependence of the measured noise on the

parameters.

Given the fact that the shot noise theory of a tunnel barrier has been well

established and tested in other systems, our data suggests that the transport mech-

anism in our samples may be more complicated than in simple tunnel barriers.
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Indeed, people have measured deviations from full shot noise in various mesoscopic

samples. For instance open quantum channels (Tj ∼ 1) or the ensemble averaging

process in diffusive conductors can suppress shot noise [106, 107]. These two effects

should not take place here since our samples have very high resistance (Tj ∼ 0.005)

and the scattering range of the barrier (a few hundred nm) is very short compared

to the mean free path (several µm). Shot noise enhancement has been reported for

a resonant tunneling diode biased in the negative differential conductance regime

[47]. However, no negative differential conductance was observed in our samples.

Actually the purpose of the measurement in Fig. 5.3 was to relate the shot noise of

a barrier to its conductance. However, the measured conductance actually has the

simple behavior of a typical tunnel barrier. This suggests that as the dc bias and

gate settings change, the microscopic transport picture of the barriers undergoes

changes that may not be detectable by simple conductance measurements but that

can be revealed by shot noise measurements. In other words, shot noise depends

on microscopic details in the vicinity of the tunnel barriers. Additional evidence is

found in the asymmetry in dc bias evident in Fig. 5.3. Although in all cases the I-V

curves are quite symmetric with respect to positive and negative bias, the shot noise

can be very asymmetric. For a two terminal measurement, like the one shown in

Fig. 5.3, the potential profile of the barrier seen by electrons is different for positive

and negative bias. As a result, the noise may change as the bias is reversed.

To better understand the dependence of the noise on the microscopic details,

spectroscopy measurements were used. For the data shown in Fig. 5.4, a constant
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Figure 5.4: Shot noise as a function of gate voltage. (a) The squares show noise; the

solid line is for F = 1, obtained by multiplying the I-V data by 2e; the inset shows

the same measurement for a different barrier where experimental data agrees with

the shot noise theory for an ideal tunnel barrier. (b) The solid line is the I-Vgate

curve measured at Vac = 3µV; the squares are the Fano factors of the measurement

in (a).
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dc bias of 2.5 mV was applied across the barrier while the current and noise were

simultaneously measured as a function of the voltage on gate 2. Gate 1 was kept

at a constant voltage. In the whole range of Vgate2, the conductance of the barrier

varied between 0.002 e2/h and 0.05 e2/h (i.e., Tj = 0.001 to 0.025) so that full shot

noise should be expected. Again, as in Fig. 5.3, the I-Vgate2 curve is multiplied by

2e to represent the theoretical value for F = 1, and the actual Fano factor is the

ratio of two curves (plotted as the squared curve in Fig. 5.4(b)). For some barriers,

we indeed observe full shot noise, as shown in the inset of Fig. 5.4(a). However,

deviations from full shot noise were observed in some barriers, as shown in Fig.

5.4(a). For most of the measurement range the shot noise is suppressed. As the

gate voltage changes the shot noise power oscillates, corresponding to F oscillating

between 0.3 and 1.15. The I-Vgate2 curve (the solid line in Fig. 5.4(a)) also has a

complex structure. It is clear from this data that the pinch off process of the barrier

is non-trivial. Due to the high dc bias used (2.5 mV), peaks in the I-Vgate2 curve are

not well isolated, so it is difficult to establish a correspondence between this curve

and the shot noise data. Figure 5.4(b) shows the conductance (solid curve) of the

same barrier measured at a small ac bias using a lock-in technique. Peaked structure

is found on top of a decreasing background as the gate voltage is decreased. On the

same plot is the Fano factor of the dc measurement in Fig. 5.4(a). F has minima

wherever the conductance has maxima and vice versa.

The peaks on the conductance curve suggest resonant tunneling or phonon

assisted tunneling (hopping) through localized states in the barrier. These transport
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mechanisms have been studied in various mesoscopic samples [108, 109]. They have

also been predicted to suppress shot noise [79, 110]. In the case of one localized

state the tunneling can be described by two leak rates, ΓL,R ∝ exp(-2rL,R/r0),

where rL,R are the distance between the localized state and the two contacts and r0

is the localization radius of the state. Shot noise is suppressed by a Fano factor of

F = (Γ2
L + Γ2

R)/(ΓL + ΓR)2 [44]. This result applies to both resonant tunneling and

hopping [44]. F ranges from 0.5 to 1 depending on the relative size of ΓL and ΓR.

Resonant tunneling conductance through one localized state at zero tempera-

ture can be described by [111]:

G =
e2

h

ΓLΓR

(δE)2 + (ΓL+ΓR

2
)2

, (5.2)

where δE = E0 − µ, E0 being the resonant level energy and µ being the chemical

potential of the contacts. δE is related to the gate voltage Vg by δE = eaVg − µ.

The factor a has a typical value of the order of 0.1 [71]. This equation can be written

in the form

G = G0
1

1 + (2eaVg−µ
Γe

)2
, (5.3)

where G0 is the peak value of 4e2

h
(ΓLΓR)/(ΓL + ΓR)2 and Γe = ΓL + ΓR is the line

width of the resonant state. This result has a Lorentzian form.

At finite temperature, thermal broadening should be taken into account, so

that
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G = G0

∫ 1

1 + (2eaVg−µ
Γe

)2

df(E, µ)

dE
dE, (5.4)

where f is the Fermi-Dirac distribution. For ΓL + ΓR ¿ kBT the Lorentzian in

equation 5.3 looks like a δ-function, and

G ∼ df(E0 − µ)

dE
=

f(1− f)

kBT
, (5.5)

which has a line width of 3.5 kBT . In order to use this form to fit the conductance

data in Fig. 5.4(b), an unreasonably small a (∼ 0.002) is needed, which is very

unlikely in the current system. In the other extreme of ΓL + ΓR À kBT , the

df(E, µ)/dE looks like a δ function and G has the form given by Equation 5.3. The

solid curve in Fig. 5.5 shows a fitting to the peak at Vgate2 = -0.392 V in Fig. 5.4(b)

with equation 5.3. The following parameters are used: ΓL = 795 µeV, ΓR = 5 µeV

and a = 0.1.

I also tried to fit the conductance data with a modified resonant tunneling

model which incorporates inelastic scattering. In such a case, the conductance has

the form [112]

G =
e2

h

ΓLΓR

ΓL + ΓR

Γ

(δE)2 + (Γ/2)2

= G0
1

1 + (2eaVg−µ
Γ

)2
, (5.6)

where Γ = ΓL + ΓR + Γin and Γin is the inelastic scattering line width. This is in

the same form as equation 5.3 except that Γe is replaced by Γ. With this model
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Figure 5.5: Shot noise data (squares) together with fit (line) to equations 5.3 or 5.6

using the conductance data.
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the following fitting parameters are obtained: ΓL = ΓR = 9.5 µeV, Γ = 800 µeV

and a = 0.1. Both fittings fall too slowly on the tails, which suggests that resonant

tunneling through one localized state is not the only transport mechanism. This

is further confirmed by the fact the maximum F in Fig. 5.4(b) is 1.15 at Vgate2 =

-0.375 V, while the shot noise theory for single state resonant tunneling predicts a

maximum F of 1. The same argument applies to hopping processes. In the next

section, I will try to develop a microscopic model to understand the results shown

in this figure.

I also observed enhanced noise in some barriers, as shown in Fig. 5.6. This

is the same type of measurement as that shown in Fig. 5.4. As the gate voltage

changes, the noise exhibits both suppression and enhancement. Figure 5.6(b) is for

the same barrier but with different settings. Compared to Fig. 5.6(a), the voltage

on gate 1 is 20 mV higher; correspondingly the highest peak shifts by 30 mV and

two peaks in Fig. 5.6(a) disappear. F of the highest peak increases by a factor

of 3. The largest enhancement corresponds to a Fano factor F ≈ 11. This barrier

has a simple I-V, similar to that of the barrier in Fig. 5.3. No negative differential

conductance was observed, so again the shot noise enhancement can not be related

to that mechanism.

Figures 5.6(c) and (d) show closer views for the enhanced shot noise peaks

observed in the same barrier at different gate settings. Figure 5.6(d) shows that the

shot noise enhancement mechanism in the sample could be unstable. The enhance-

ment experienced an abrupt change as the gate voltage was varied. The position
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Figure 5.6: Enhanced noise for the same barrier at different gate settings; solid lines

are for F = 1.
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where this jump happens and the size of the jump may not be reproducible in dif-

ferent measurements. This implies that some other very slow (the time scale could

be hours) mechanism, such as impurity motion may also exist in the system.

In this section, I have discussed the noise measured in tunnel barriers fab-

ricated in GaAs/AlGaAs heterostructures. In contrast to expectations, our data

shows that the noise of tunnel barriers contains very rich physics. In the next

section, I will try to relate the shot noise of tunnel barriers to their microscopic

structure and explain the data presented in this section.

5.3 Numerical simulation and modelling

In this section I present some numerical simulations of shot noise in tunnel barriers

with different microscopic details. These simulations help us interpret deviations

from full shot noise. I will then develop a microscopic model to explain some of the

data presented in the previous section.

Equation 5.1 describes the shot noise of an ideal tunnel barrier in which elec-

trons tunnel through the barrier. Under such a condition, electrons tunnel randomly

and independently, thus a Poissonian process and full shot noise are expected. This

picture is appropriate for systems like a STM tip very close to a metallic surface,

where the tunneling occurs in an atomic size region. For mesoscopic barriers fabri-

cated in semiconductor heterostructures, the situation is more complicated mainly

due to two new features. First, potential disorder and impurities can cause local-

ized states in semiconductor heterostructures. As a result, transport mechanisms
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like resonant tunneling and phonon-assisted tunneling should be taken into account.

Second, in mesoscopic samples Coulomb interaction and Fermi statistics are very

important and they can change shot noise significantly.

In the following, I present some numerical simulations for a barrier with dif-

ferent localized state configurations. Coulomb interactions will also be considered

in most cases. The essence of the simulation is the following: for a configuration

with all the tunneling rates specified, the tunneling probability density function can

be calculated; with this function and a random number generator, one can gener-

ate a series of random tunneling events in the time domain, namely the tunneling

current i(t). This simulation models a real tunneling process happening for a fixed

configuration. The shot noise (∝ (i2 − i
2
)) can then be calculated.

The first case considered is that of an ideal tunnel barrier with no localized

states, as illustrated in Fig. 5.7(a). Electrons directly tunnel through the barrier.

The simulation always gives a Fano factor of 1, as expected.

The second case is with one localized state, characterized by two leak rates Γ1

and Γ2, as illustrated in Fig. 5.7(b). The Coulomb interaction is taken into account

in the following way: once an electron tunnels onto the localized state, it blocks all

other electrons from tunneling. This effect regulates consecutive tunneling events

and is expected to suppress shot noise. Theory predicts that the Fano factor in this

case is [113, 114]

F =
Γ2

1 + Γ2
2

(Γ1 + Γ2)2
. (5.7)
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Figure 5.7: Tunnel barriers with different localized states configurations: (a) no

localized state; (b) one localized state; (c) two independent localized states; (d) two

localized states in series.
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Figure 5.8: Numerical simulation and theoretical prediction for Fano factor for

tunneling through one localized state.
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Figure 5.8 shows numerical simulations and the theoretical prediction. De-

pending on the ratio of Γ1 and Γ2, F changes between 0.5 and 1. The simulation

agrees well with the theory.

The third case is that of two independent localized states. Again, Coulomb

interaction is considered for both states, but there is no correlation between them.

The Fano factor for tunneling through two parallel channels is:

F =
F1I1 + F2I2

I1 + I2

, (5.8)

where F1,2 and I1,2 are the Fano factor and current of the two states. F1 and F2 can

both change between 0.5 and 1, while F always lies in between F1 and F2. Figure

5.9 shows a simulation where Γ1 and Γ2 are fixed and the ratio of Γ4/Γ3 changes.

For the first three cases, the simulation results agree well with the theory. The

discrepancy between them at some points is likely caused by the finite number of

samples used in the numerical simulations, and decrease as more samples are used.

This agreement justifies our numerical simulation method, and suggests we can

confidently simulate more complicated configurations where an analytical expression

for F is not available or not easy to find.

The next case is that of two localized states in series, characterized by three

leak rates, as shown in Fig. 5.7(d). Figure 5.10 shows the simulation result. The

solid line is a fit of the simulation data to the formula

F =
Γ2

1Γ
2
2 + Γ2

2Γ
2
3 + Γ2

3Γ
2
1

(Γ1Γ2 + Γ2Γ3 + Γ3Γ1)2
. (5.9)
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Figure 5.9: Numerical simulation and theoretical prediction for two independent

localized states.
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Figure 5.10: Numerical simulation and theoretical prediction for two localized states

in series.
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This formula was confirmed later by an analytical calculation. According to

equation 5.9, the minimum of F occurs at Γ1 = Γ2 = Γ3 and is equal to 1/3. For

all the cases discussed so far, this is the only case where F can go below 0.5. On

the other hand, if one of the Γ’s is much less than the others, F approaches one.

This is expected since in that case one tunneling site dominates the whole transport

process.

The simulation method and Fano factor calculation can also be done for more

than two localized states. I will not discuss the details here but give some brief

results. In the case of N localized states in series, shot noise can be suppressed by a

Fano factor of 1/(N + 1) if all (N + 1) tunneling rates are equal [115]. For multiple

tunneling paths in parallel and without any correlation, the overall Fano factor is

always within the range defined by the minimum and maximum of the F ’s of all

paths.

In the one localized state case considered in Fig. 5.7(b), only one tunneling

channel is allowed. Now let us generalize this case by allowing two tunneling channels

through the same state. In the first path, electrons first hop from the left contact to

the localized state with rate Γ1 and then hop to the right contact with rate Γ2. In

the second path electrons resonantly tunnel through the localized state characterized

by rates Γ3 and Γ4. In both paths consecutive tunneling events are regulated by

Coulomb interaction. Let us further assume there is also a Coulomb correlation

between the two paths, that is, an electron in the localized state blocks both paths

and the electrons in the reservoirs cannot tunnel into the localized state until this
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Figure 5.11: One localized state with two correlated tunneling paths

electron leaves. This case is illustrated in Fig. 5.11.

In order to do numerical simulations the following relation is used: Γ1 = αΓ2

= βΓ3 = γΓ4. Different combinations of α, β and γ are studied. Figure 5.12 shows

the Fano factor as a function of β for the cases α = γ = 0.1, α = γ = 1, and α =

γ = 10. The points are simulation results. Shot noise is suppressed in the whole

parameter range simulated, with a maximum of 1 and a minimum of 0.5. When

β → 0, F → 1. As β increases, F saturates.

Physically, β → 0 (so Γ3 → ∞) means electrons always resonantly tunnel

through the barrier via the second path. The problem reduces to the case described

by equation 5.7 but with Γ1 → Γ3 and Γ2 → Γ4. For the second path, Γ4 ¿ Γ3, thus
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Figure 5.12: Simulation results of F as a function of β when α = γ. Scattered points

are simulation results and lines are fits to equation 5.10.
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F → 1. This is somewhat counterintuitive, especially for the case where α = γ = 10,

where the average tunneling time for the first path is Γ−1
1 + Γ−1

2 = 11/Γ1 and for

the second path is Γ−1
3 + Γ−1

4 = (β + 10)/Γ1. As β → 0 the two tunneling times are

very close, so one would expect that electrons should have almost equal probabilities

of choosing any of the paths. However, this is only true when the two paths are

not correlated. With the Coulomb correlation, the probability of a path to be

chosen depends on the tunneling rate of its first step. As β → 0 the rate of the

first step in the second path is very high, so electrons take this path exclusively.

The F saturation at large β values can be explained in the same way. As β → ∞

electrons always choose the first path, so F can be calculated by equation 5.7, which

is constant once α is fixed. For α = 0.1, 1, and 10, F goes to 0.835, 0.5, and 0.835

respectively as β →∞.

Figure 5.13 shows the simulation results (points) for another case where α = 1,

so the first path is symmetric. As before, when β → 0, F → 1. This was explained

above. As β →∞, F → 0.5 for all different γ values. The reason is that as β →∞

electrons always choose the first path to tunnel. Since now for the first path Γ1 =

Γ2, F = 0.5 according to equation 5.7. The most important feature in this case is

the shot noise enhancement in some parameter range. By comparing this figure to

Fig. 5.12, one can find that whenever α = γ, shot noise is suppressed. Shot noise

enhancement is possible only when α 6= γ. In order to understand the origin of the

enhancement, let us considered the tunneling events in the time domain.

Suppose we put an electron detector that is sensitive enough to record single
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Figure 5.13: Simulation results of F as a function of γ when α = 1. Points are

results of the simulation and lines are fits to equation 5.10.
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Figure 5.14: Time sequence of tunneling events: (a) an ideal barrier; (b) an electron

pump; (c) tunnel barrier with one localized state; (d) tunnel barrier with two in-

dependent paths; (e) tunnel barrier with two Coulomb correlated tunneling paths.

In (d) and (e) two different types of bars are for tunneling events through different

paths.
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electron tunneling events as a function of time. Figure 5.14 shows a section of

the time sequence of tunneling events recorded for different cases: (a) is for an ideal

tunnel barrier where electrons tunnel randomly and independently. The arrival time

of electrons has a Poisson distribution, thus F = 1. (b) shows an extreme case where

electrons tunnel through an “electron pump”1, so consecutive events are equally

spaced. Since the arrival time has no distribution, F = 0. (c) is for a tunnel barrier

with one localized state. The arrival time has a distribution, but is sub-Poissonian

due to the Coulomb regulation effect on consecutive events, thus 0 < F < 1. (d) is

for the case of two independent tunneling paths. Here I use two different symbols

for electrons tunneling through different paths. There is no correlation between the

two categories and each category has a sub-Poissonian distribution, so the overall

Fano factor also satisfies 0 < F < 1. Figure 5.14(e) corresponds to the special case

illustrated in Fig. 5.11 with γ À α (assuming the bars without arrows are from

path 1). Under such condition Γ4 ¿ Γ2, so whenever an electron chooses the second

path, it will block other electrons for a long time about Γ−1
4 . As a consequence

electrons will tunnel through the barrier in a “bunched” manner, as shown in (e).

The current fluctuations in this case are expected to be larger than those in the case

where electrons are not “bunched”. On the other hand, for each tunneling path the

Coulomb regulation still exists and will reduce the fluctuations. The actual current

fluctuations depend on the relative weight of these two effects. For very different

1An electron pump is such a device that the tunneling time for each electron can be precisely

controlled.
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α and γ, F > 1 is obtained; however, if γ ≈ α, the Coulomb regulation for each

path dominates, and the result is F < 1. This argument explains our numerical

simulation results.

So far the discussion of the tunneling process in Fig. 5.11 is all qualitative. By

considering the physical meaning and asymptotic behaviors, I have argued that the

numerical simulation results are reasonable. Even though the simulation method

should work here because it has been applied to many other cases and has agreed

well with theory, an analytical result is still very helpful for further study. After the

simulation, I calculated the Fano factor for this case and found the following result:

F =
β2 + α2β(2 + β)− 2αβγ + γ2 + 2βγ2

(β + αβ + γ)2
. (5.10)

This equation is then compared to the numerical simulation results in Fig.

5.12 and Fig. 5.13 (see the lines in the two figures). Good agreement is found in

both cases. With this equation one can explore a larger parameter space. It can be

easily shown that F has no upper bound and has a minimum of 0.5 if β = α
1−α

and

γ = α.

Another way to view this shot noise enhancement is to say that the fast tun-

neling path is modulated by the slow tunneling path. This modulation mechanism

can also be found in other cases. For example in the case shown in Fig. 5.7(c),

if the two localized states are very close to each other, then Coulomb interaction

between them has to be taken into account. When one electron tunnels into one

state it will shift the potential profile nearby due to the Coulomb interaction. As a
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result, no electron can tunnel to either state until the first electron leaves. Under

such a condition the two states are Coulomb correlated. Imagine Γ2 and Γ4 are very

different, then the tunneling across the whole barrier can be switched on and off

depending on the occupation status of the slow tunneling state. This again results

in “bunched” tunneling events and enhanced shot noise.

So far, I have discussed the shot noise in a tunnel barrier with a few different

impurity configurations. to summarize, I list the main results: (1) full shot noise only

shows up in an ideal tunnel barrier; (2) tunneling through N localized states in series

can suppress the shot noise by a factor of 1/(N+1); (3) for a set of independent paths

characterized by Fano factors F1, F2, ..., FN , the overall Fano factor always satisfies

min{F1, F2, ..., FN} < F < max{F1, F2, ..., FN}; (4) shot noise may be enhanced

when parallel tunneling paths are correlated by Coulomb interaction.

In principle, it appears that the results given here can explain all the exper-

imental data presented in the previous section. The missing link in determining if

this really is the cause is the lack of microscopic details of localized states and im-

purities in the vicinity of the tunnel barriers. Additionally, how these details change

as gate voltages are tuned is also very important. Unfortunately information about

these details appears to be difficult to obtain. In the following, I will try to apply

the model discussed in Fig. 5.11 to the data in Fig. 5.4, which contains information

on conductance measurements that can be used as a cross check of our modeling.

As pointed out in the previous section, the peaks in the ac conductance mea-

surements shown in Fig. 5.4(b) can not be fitted by the theory of resonant tunneling
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through one localized state. Also, that theory can not account for the enhanced shot

noise. In that fitting the tunneling rates were assumed to be constant as a function

of the gate voltage. Generally speaking this may not be true. As the gate voltage

is tuned the localized state is also shifted, so the coupling between the state and

the two contacts can also change. In the following, I will assume that α, β and γ in

equation 5.10 are functions of the gate voltage. Within this model the conductance

and the Fano factor can be calculated as

G(Vg) =
4αβγ

(β + γ)(αβγ + αβ + βγ + γα)
×

1

1 + ( eα(Vg−V0)
Γ1(1+1/α+1/β+1/γ)

)2
, (5.11)

F (Vg) =
β2 + α2β(2 + β)− 2αβγ + γ2 + 2βγ2

(β + αβ + γ)2
, (5.12)

where V0 is the gate voltage at which conductance peaks occur.

Figure 5.15 shows a fit of part of the data in Fig. 5.4 (for the range −0.495V <

Vg < −0.345V ) to equations 5.11 and 5.12. The following parameters are used: for

peak 1, α = 0.1 and Γ1 = 100 µeV ; for peak 2, α = 0.1 and Γ1 = 120 µeV . β, γ

used are given in Fig. 5.16.

I want to point out that given the large phase space of α, β and γ, it is possible

to fit the experimental data with other combinations of these parameters. In this

sense, the fit in Fig. 5.15 cannot be an exact simulation of the system. In order to

justify a specific choice of parameters, further knowledge of the microscopic details
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Figure 5.15: Fit of part of the data in Fig. 5.4 (−0.495V < Vg < −0.345V ) to

equations 5.11 and 5.12: (a) conductance; (b) Fano factor.
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Figure 5.16: Gate voltage dependence of parameters used for fits in Fig. 5.15.

in the barrier is required. Nevertheless, the good agreement between the theory and

data shows that this model is capable of reproducing the most important features of

the measurements by comparing the experimental data to a possible configuration

of the model.

The main features of the data modeled in Fig. 5.15 include: the Fano factor

oscillates as Vg is tuned; the minimum Fano factor is 0.5 while the maximum is

larger than 1; the Fano factor anti-correlates with the conductance. By allowing

α, β and γ to vary as a function of Vg, our model can produce oscillating Fano

factors. The shot noise suppression and enhancement has been explained above.

The anti-correlation between the conductance and shot noise can be explained by
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the fact that as the gate voltage is tuned, the ratio between resonant tunneling and

hopping also changes. Off the conductance peaks β is small, which means more

electrons choose the second path hopping, while the blocking time Γ−1
4 is larger,

so the bunching effect is more significant than that on resonance. As a result F is

larger off the conductance peaks.

5.4 Summary

In the context of shot noise, tunnel barriers have received much less attention than

other mesoscopic structures. This is mainly due to the simplicity of ideal tunnel

barriers, so not much interesting physics has been expected from such systems. For

an ideal tunnel barrier in which no localized states (generated by impurities and/or

potential disorder) are found, electrons can only directly tunnel through the barrier

and full shot noise is expected. In terms of localized states, barriers fabricated in

metallic systems are usually cleaner. As a result the shot noise measured in these

samples shows very good agreement with the theory for ideal barriers. For barriers

with additional structure, shot noise generally deviates from the classical value and

can have a very complicated gate and bias dependence, due to microscopic details.

Shot noise becomes even more complicated when these microscopic details

are time dependent. In such a case the conductance of the barrier, Tj, is a time

varying quantity. The model of Coulomb correlated tunneling paths discussed in

the previous section is such an example. A similar model was studied by Safonov

et al. [105], where the resonant tunneling through a localized state was modulated
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by another nearby localized state. In both examples fast modulation was assumed,

which means the conductance change is so fast that it only affects shot noise, while

the normal conductance measurements are totally insensitive to it. Sometimes the

modulation can be very slow, for example a modulation caused by a deep impurity

state which takes a very long time to populate and depopulate. In such a case the

modulation can be one of the causes of excess low frequency noise, such as 1/f

noise and random telegraph noise. The latter can also be monitored by normal

conductance measurements.

In this chapter, I have discussed both stable and time dependent localized

state configurations. For the stable ones, normal conductance measurements can

also be used to study the behavior; for example, resonant tunneling and hopping

are well studied subjects in mesoscopic physics. On the other hand, it turns out

that shot noise can be very sensitive to the system details, and can supply additional

information. For the time dependent cases, especially those of fast processes, shot

noise detection can reveal much more physics than normal conductance measure-

ments. This should be expected since shot noise measures the temporal correlation

between electron transport events.

Finally, I note that the work reported here was the first comprehensive study

of shot noise in mesoscopic semiconductor tunnel barriers. It was the initial step

leading to a better understanding and characterization of the shot noise in more

complicated mesoscopic systems.
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Chapter 6

Shot noise study of quantum entanglement

In this chapter, I report my experimental result on shot noise properties of a coupled

quantum dot system [116]. The main goal of this work is to demonstrate quantum

entanglement of two electron spins as discussed in Chapter 3. In the first section, I

discuss the preparation work needed in order to make the measurement and some

related important issues. The second section shows my first results, which give

possible evidence for entanglement. The third section provides deeper insights into

various aspects of this experiment, while the last section gives a summary of the

chapter.

6.1 Experimental preparation

In this section I first give a brief description of the samples used in the entangle-

ment experiment, followed by the discussion of relevant sample set-up issues. I

will then talk about the experimental arrangements, and finally, I will discuss noise

sources other than shot noise that are present in the system and how we handle and

characterize them.

Figure 6.1 shows a SEM picture of a typical sample I made for the experiments.

It was fabricated using the three level e-beam lithography technique described in

Chapter 4. Each sample has four Ohmic contacts connected to four reservoirs labeled

127



Figure 6.1: SEM picture of a sample used in the entanglement experiment.

as A, B, C and D, and twelve metallic gates shown as numbered bright patterns.

Applying negative voltages to gates 1, 2, 3, and 4 (gates 1, 5, 6, and 7) defines

quantum dot 1 (dot 2). The point contact formed by gate 1 and 12 serves as a beam

splitter whose transmission probability Tj is controlled by a voltage on gate 12. The

negative voltage on gate 1, also denoted as the spin exchange gate, changes both

the height and width of the tunnelling barrier between the two dots and controls

the strength of the exchange interaction (see Eq. 3.2). Gates 8, 9, 10 and 11 were

designed to change the width of the outgoing channels leading to the shot noise

detectors but were not used in the experiment reported here.
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The theoretical proposal discussed in Chapter 3 assumed that each quantum

dot contains only one electron and that the two electrons can be controlled very

well by adjusting the quantum dot settings. However, these are formidable tasks for

quantum dots in GaAs/AlGaAs heterostructures. The common picture of a quan-

tum dot is that electrons occupy the eigenstates of a smooth confinement potential

and they can be removed from the dot one by one as the voltage on the plunger gate

decreases. In a real system, however, the confinement potential is always rough and

irregular due to potential disorder and impurities. As the size of a dot is reduced,

the roughness and irregularity become important and eventually all electrons left

in the dot fall into the localized states formed by potential disorder and impurities.

Given the random nature of these microscopic details, the electronic structure and,

therefore, the transport properties of a dot in this regime are usually very compli-

cated and unpredictable. For example, the well known Coulomb charge oscillation

simply disappears when the number of electrons in a dot decreases to a certain value

and tunneling through randomly distributing localized states dominates. Depending

on the sample quality, this value varies from a few to a few tens. As a result, the

control of electrons in such a dot becomes very difficult.

Creating quantum dots with a few or even one electron has been a goal in the

mesoscopic community for a long time. Very recently a few groups have claimed

the capability of creating single electron quantum dots [35, 36]. Their technique

employs a set of auxiliary gates as detectors. This is not a plausible solution for

my experiment since the two quantum dots are required to be very close to each

129



other, so no space is available for more gates. The best we can do here is to make

the quantum dots as small as possible. However, as discussed in Chapter 3, it is

expected that quantum dots with a few electrons can still be used for generating

entangled states.

Although the two quantum dots are designed to be identical and are actually

quite similar lithographically, I do not expect to be able to produce two micro-

scopically identical quantum dots. Due to the random potential fluctuations, the

confinement profile for the two dots could be quite different, making the electronic

structure of each of the dots different. Therefore in a real coupled quantum dot

system one may get two quantum dots having different number of electrons and dif-

ferent electronic structure. The work by Hu et al. [96, 97] addressed some of these

issues, but further work, including data on real systems, is needed to see how they

affect the entanglement.

The system is set up in the following way. Gates 1 and 12 are both biased with

large negative voltages so there is no conduction between contacts A and B. The

voltage on gate 1 is then lowered until the resistance between A and B decreases to

about 100 MΩ (the reason will be given shortly). At this time gate 12 still has a

large negative voltage, so the conduction between A and B should occur underneath

gate 1. On the other hand, the tunneling probability is exponentially dependent on

the gate width, so the conductance should only be associated with the narrow part

of gate 1. I then apply voltage to gates 3 and 6 so that the two channels formed by

1 & 3 and 1 & 6 have a resistance of the order of 13 kΩ. Under this condition both
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channels have a width of about half the Fermi wavelength. Gates 2, 4, 5 and 7 are

then energized to form the two dots. We raise the voltage on these gates iteratively

so that each time the change made on one gate increases the resistance of the dot by

a small amount. In this way dots with two symmetric point contacts are obtained.

Needless to say setting the voltages on each of the gates that form the sample is

somewhat tedious. A voltage applied to one gate can produce small but measurable

changes in the transport characteristics of nearby gates. Each time a change is

made, one has to wait for some time for the transient effects of depletion to settle

down. I found that sometimes it took more than a week to set up one stable coupled

quantum dot sample.

A few things need to be clarified in the sample set-up procedure. The potential

barrier formed by the exchange gate determines the strength of exchange interaction

between electrons in the two dots. Since this interaction decays exponentially as the

height and width of the barrier increase [96], we do not want to fabricate a sample

with a very wide exchange gate or put a very negative voltage on it. On the other

hand, if the exchange barrier is too low, the tunnelling probability between the two

dots will be too high, and then the two dots become a “molecule”, which is not

a favored state for generating entanglement, according to Hu et al. [97]. I set the

exchange gate so that its resistance is about 100 times larger than that of the two

dots to reduce the inter-dot tunnelling. Normally, I set the dots with a resistance

of the order of 1 MΩ, so the resistance between the two dots is about 100 MΩ. By

reducing the channel width between gates 1 and 2 and 1 and 6 to half the Fermi
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wavelength, we can make two small quantum dots very close to each other. This

helps increase the exchange interaction strength.

The magnitude of the entanglement signal depends not only on the exchange

interaction strength but also on the interaction time τ between the two electrons. For

very small quantum dots, the Coulomb charging energy is of the order of meV, much

higher than the thermal energy (∼ 6µeV ) and bias across the dots (∼ 100µeV ), so

they should be in the single electron tunnelling regime. In this regime the average

time between two consecutive electrons is τI = e/I (I is the dc current), so τI

is an upper bound of the actual exchange interaction time τ . In order to have a

large τ , a small current should be used. In our measurements, a current of 100pA

has been used, corresponding to τI ∼ 1 nsec, and thus τ < 1 nsec. Without

modeling the system, it is impossible to determine what interaction time is required.

Experimentally, the smallest current we can use is set by the shot noise measurement

sensitivity. In our system, a noise signal as small as 5×10−30 A2/Hz can be detected,

corresponding to the full shot noise of I = 16 pA.

Another important issue is the bias direction. For this experiment electrons

have to be injected from reservoirs A and B to the two dots and tunnel to C and D.

We want to make sure that the Fermi energy of A and B is always higher than that

of C and D. This sounds trivial, however, given that the bias across the dots is only

100 µeV , any thermal electromotive force in the wiring can change it significantly.

Care must be taken during wiring and set-up to avoid or minimize such stray dc

voltages. The static current in the system is monitored at all times.
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Figure 6.2: Experimental arrangement for the entanglement experiment.
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Figure 6.2 shows the experimental arrangement. The sample is kept in the

sample cell of a top-loading dilution refrigerator (see Chapter 4) with a base tem-

perature of 70 mK. Eight gates used in this experiment are connected to independent

batteries, each channel having a low pass filter to reduce the noise coupling from

the environment. Two source reservoirs, A and B, are independently biased, and

the voltages on two bias resistors are monitored by digital voltage meters, from

which the injected dc currents are obtained. The two drain reservoirs, C and D, are

connected to two short coax cables. In each channel, the current coming out of the

sample is fed to two amplifiers. One is a room temperature current preamplifier that

measures the dc current, while the other one is a cryogenic amplifier (see Chapter

4 for details), which is ac coupled to the sample and measures the high frequency

components of the current, namely the current noise signal. The noise signals from

both channels are further amplified at room temperature and then fed into an Agi-

lent spectrum analyzer, which calculates the noise power of both channels and their

cross correlation.

In a real system we not only have the wanted noise signal but also all kinds of

other noise sources, such as low frequency noise and thermal noise. Low frequency

noise can come from the sample and amplifiers. The frequency range where this

noise is negligible depends on temperature, current level, and device specifications.

In this experiment, the samples and noise amplifiers were kept at very low temper-

atures and the current was always below 1 nA. Additionally MESFETs with very

good low frequency noise specifications were used to build the noise amplifiers and
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measurements were done at a relatively high frequency (210-230 kHz). All these

efforts helped reduce the importance of low frequency noise. As a result, in our

measurements the low frequency noise is always negligible.

Any dissipative electrical component at a finite temperature contributes ther-

mal noise. In this experiment the thermal noise from the cryogenic amplifiers dom-

inates, as will be shown. Besides these two intrinsic noise sources, there will also

be noise produced by external interference. Interference is coupled to the system by

means of radiation, conduction, etc. Careful shielding and grounding can eliminate

most interference problems.

The measurement system I used is shown schematically in Fig. 6.2. The noise

amplifiers measure the shot noise and thermal noise from the sample and contribute

their own thermal noise. In order to extract useful information a noise model needs

to be developed.

i s

Zs

e1 e2

i 1 i 2Z1 Z2ZZQD1 QD2

Figure 6.3: Noise model of the system.

Figure 6.3 shows a simplified noise model of the system, including the sample

and the two cryogenic amplifiers. ei, ii and Zi (i = 1, 2) are the voltage noise sources,
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current noise sources and the load impedance of the two amplifiers. ZQDi (i = 1, 2)

are the impedances of the two quantum dots. Zs and is are the impedance and the

noise associated with the part of the sample between reservoirs C and D in Fig. 6.1.

In principle the two dots also contribute thermal noise. However, due to their high

impedance (ZQD ∼ 1MΩ), the thermal noise current (∝ 4kBT/ZQD) from them is

very small compared to that of the beam splitter (∝ 4kBT/ZBS where ZBS ¿ ZQD),

so it can be ignored. In the following, I assume that the two sides of the system

are symmetric, so the subindexes 1 and 2 will be dropped. According to the noise

model of MESFETs discussed in Chapter 4, the correlation between e and i can be

neglected. Within this model, the noise measured by each amplifier and the cross

spectrum can be calculated as:

S1 = S2 = e2 + i2(| Z(Z + Zs)

2Z + Zs

|2 + | Z2

Zs + 2Z
|2) + i2s |

ZsZ

Zs + 2Z
|2, (6.1)

S12 = 2i2Re[
Z(Z + Zs)

Zs + 2Z
(

Z2

Zs + 2Z
)∗]− i2s |

ZZs

2Z + Zs

|2 . (6.2)

For S1 and S2 the e2 term dominates. The two cryogenic amplifiers have an

equivalent input voltage noise of 6 × 10−19 V2/Hz. The other two terms in S1 and

S2 are about tens times smaller for realistic component parameters. On the other

hand, the shot noise signal to be detected is of the order of 4 × 10−21 V2/Hz (it is

converted to these units for comparison), about 1% of the total background.

The cross-spectrum of the two channels can eliminate the huge background

contributed by the two cryogenic amplifiers. Therefore the signal to noise ratio in
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the cross-spectrum is much higher. In general, the cross-spectrum of two signals is

a complex quantity. The physical meaning is that the average phase angle between

the two signals needs not to be an integer multiple of π. In this model, however,

S12 is always a real number according to equation 6.2. I verified this experimentally,

and found the imaginary part of S12 is always around zero.
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Figure 6.4: Background noise of the system.

S12 is a function of both i2 and i2s. Note that i2 contains two parts, one

being caused by the equivalent input current noise source of the MESFETs and the

other due to one being the thermal noise from the load impedance. According to
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the discussion in Chapter 4, the first part can be neglected. The second part is

4kBT/Re(Z). For the equilibrium case (no current anywhere), i2s = 4kBT/Re(Zs).

The solid line in figure 6.4 shows a calculation based on equation 6.2 with parameters

from the experimental system. Dots in the same figure are the measured background

noise. This background noise must be subtracted from the total noise measured for

the entanglement experiment.

6.2 Experimental data

In this section, I discuss the first results for the shot noise measurements of two

coupled quantum dots. The data shows both exchange gate and beam splitter

dependence, which agrees qualitatively with the entanglement theory discussed in

Chapter 3. Discrepancies between the data and the theory will also be addressed in

this section.

The typical cross-spectrum data after a background subtraction from our sam-

ple as a function of beam splitter voltage in 2 mV steps is shown in Fig. 6.5. The

four traces correspond to different exchange gate voltages Vex. At each beam split-

ter voltage VBS two data points are taken, one with Idc = 100 pA and the other

with Idc = 0 A. For each data point the spectrum analyzer averages 40,000 times

and integrates to obtain the total noise power over a 20 kHz window around 220

kHz. The zero current data is subtracted from the finite current data. For the

two intermediate exchange gate voltages, Vex= -184 mV and -181 mV, the cross

spectrum exhibits a pronounced negative spike in the vicinity of VBS = -181 mV
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Figure 6.5: Typical cross-spectrum data after background subtraction; inset: back-

ground noise.

that corresponds to (-3±1)eI shot noise. At both higher and lower VBS the signal

fluctuates about (0±1)eI. When Vex is raised to -190 mV or lowered to -175 mV,

no evidence for a strong negative signal is observed.

According to the theory discussed in Chapter 3, the cross spectrum of an

entanglement signal has the form −4eITj(1 − Tj), with Tj being the transmission

coefficient of the beam splitter. This form has a minimum when Tj = 1/2, corre-

sponding to a beam splitter resistance of 26 kΩ. An independent transport mea-
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Figure 6.6: Beam splitter resistance and exchange gate resistance.
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surement is carried out to find out the beam splitter resistance, as shown in Fig.

6.6. At VBS = -181 mV where the minimum cross spectrum occurs in Fig. 6.5, the

beam splitter has a resistance of 40 kΩ. However, this number is actually the sum

of the beam splitter resistance, the 2DEG resistance, and the contact resistance.

The contribution of the last two terms is about 4 kΩ. By taking this into account,

the result is still 36 kΩ, about 10 kΩ higher than expected. This discrepancy can

be explained by two facts: first, the resistance measurements were done after the

voltages on some of the gates forming the quantum dots were turned off and this

may affect the transport properties of the beam splitter; second, as shown in Fig.

6.6, the beam splitter resistance is very sensitive to VBS, so it can be a function of

time if the beam splitter has any sort of instability.

The tunneling resistance under the exchange gate is also measured, as shown

in Fig. 6.6. The data shows a saturation below Vex = -180 mV. This is due

to the distributive capacitance of the dilution refrigerator wiring. The capacitance

between the two leads used for resistance measurement is about 1 nF. The resistance

measurement is done with a lock in technique with a reference frequency of 25 Hz.

At this frequency, 1 nF corresponds to 6 MΩ, which is consistent with the resistance

measurement. For Vex = -181 mV and -184 mV, where the cross spectrum in Fig.

6.5 shows VBS dependence, the exchange gate has an resistance between 20 MΩ

and 100 MΩ, according to the extrapolation curve shown in Fig. 6.6. At Vex =

-175 mV the exchange gate resistance between the two dots is only of the order

of 175 kΩ, 3 times smaller than the tunnelling resistance out of the dots. Direct
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tunnelling between the two dots becomes significant and the system begins to behave

as one quantum dot. In this case it has been predicted theoretically that electron

spin entanglement cannot be detected by a beam-splitter arrangement [97]. In the

opposite limit of very large exchange gate voltages the potential barrier between

the two dots is much higher and the strength of the exchange interaction should

be greatly reduced. We estimate that at Vex= -190 mV the tunnelling resistance

between the two dots is greater than 1 GΩ and the separation between the centers of

the dots has increased to more than 70 nm. In such a case, the two dots are nearly

decoupled and the electrons coming out of them are independent of one another so

no entanglement should be possible.

The inset of Fig. 6.5 shows the typical background (Idc=0) at Vex = -184mV

as a function of VBS. The shape and magnitude of this curve are insensitive to Vex

because the main contribution to this background is the thermal noise of the part

of the sample between reservoirs C and D in Fig. 6.1, as discussed in the previous

section. The minimum background occurs around -178 mV (not -181 mV) as ex-

pected from our noise circuit model. According to Fig. 6.4 a minimum background

should occur at Zs ≈ 30kΩ. In Fig. 6.6, that corresponds to -178 mV. Notice that

the fluctuations in the background are very small and therefore it is very unlikely

that the measured cross spectrum minimum in Fig. 6.5 is an artifact.

As a check of the reproducibility and our ability to set up the sample, I re-

moved all the voltages on the gates and warmed up to well above 4.2 K. After cooling

the sample back to 70 mK and applying voltages to the gates, I repeated the mea-
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Figure 6.7: (a) & (b) Reproducibility check with three different step sizes in the

beam splitter voltage; (c) single dot partition noise at different current level; (d)

cross-spectrum for decoupled quantum dots.
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surements shown in Fig. 6.5 with different VBS steps. Figure 6.7 displays three

measurements of our cross-spectrum data for VBS steps of 0.5, 1, and 2 mV taken

at Vex = -184 mV. For unknown reasons, at a voltage step size of 1 mV I found less

reproducibility than at other voltages but at all values I found a maximum negative

cross-spectrum of -eI to -3eI at nearly the same value of VBS and in agreement with

my earlier measurements. This data also allows me to test the T (1− T ) theoretical

dependence of the entanglement signal. From measurements of the beam splitter

resistance as a function of VBS, I estimate that the half-width of the negative cross-

spectrum dip should be approximately 2.5 mV centered about VBS = -182 mV. The

actual data appears to be a factor of 2 narrower than computed. This may simply

suggest less than perfect operation of the beam splitter.

Figure 6.7(b) shows another measurement after the sample experienced a com-

plete thermal cycle (warmed up to room temperature). Again, this data repeats all

important features of the previous data with only a minor shift in the Vex and VBS

dependence.

The Vex and VBS dependence of the cross spectrum noise shown in figs. 6.5 and

6.7(a), (b) is qualitatively consistent with the theoretical predictions for entangled

singlet electrons exiting our coupled quantum dots. However, there are a few serious

issues to be addressed about these results.

The theoretically predicted magnitude of the maximum negative cross spec-

trum noise for entangled spin singlet states occurs when Tj = 0.5 and has a value

of -eI, but our total background subtracted noise is -3eI. Uncorrelated electrons
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exiting the two dots can generate partition noise at the beam splitter, which also

contributes to the total measured signal. However, this partition noise has the form

−2eITj(1− Tj) (see Chapter 3 for details), with a maximum value of -0.5eI for Tj

= 0.5. As a result, a current with both entanglement and non-entanglement com-

ponents should have a shot noise less than that of a current with full entanglement.

In other words, the −3eI result cannot be explained by a presence of uncorrelated

electrons.

We measured the partition noise when only one quantum dot was active at

currents of 100 and 500 pA. As shown in Fig. 6.7(c), we found no more than -eI.

At large exchange gate voltages, where we do not believe we have any strong spin

exchange coupling between the dots, we have attempted to measure the uncorrelated

partition noise from the double dot system and, as shown in Fig. 6.7(d), have not

found any negative correlation greater than -eI and we have never found any positive

correlation. We have not found any other possible contribution to our negative

cross spectrum and are left with a signal that appears to be 2-3 times larger than

theoretical expectations. We point out that the largest uncorrelated noise signal

theoretically predicted [45, 53, 117] or experimentally observed [50, 51, 52] is at

least a factor of 6 smaller than we have observed in this entanglement experiment,

so the measured signal must be associated with intra-dot couplings.

Ideally, this entanglement experiment should be carried out for the case of

single electron quantum dots, or at least for quantum dots with odd number of

electrons, as discussed in Chapter 3. The numbers of electrons in two dots have three
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different combinations: odd-odd, odd-even and even-even. The shot noise signal for

entangled states should disappear for the last two cases. We estimate the number of

electrons in each dot to be 2∼8 based on the depletion pattern and the carrier density

in the 2DEG. However, as pointed out in the previous section, counting electrons

down to a few in such small quantum dots is extremely difficult. In particular, the

Coulomb charge oscillation becomes undetectable in this regime. As a result, we

do not know the exact number of electrons in the dots at different gate voltages.

Therefore it is impossible to demonstrate how the measured shot noise signal changes

depending on the electronic configuration of the two dots. Nevertheless, by tuning

the gate voltages away from the settings used in Fig. 6.5, we observed that the

measured negative cross spectrum disappeared, indicating the intra-dot coupling is

sensitive to the single dot settings.

Another curious feature is that for most of our data, the negative cross spec-

trum occurs at only one point, even when the data acquisition step size is reduced.

Sometimes we do observe large fluctuations in the shot noise at a single point due

to some type of sample instability. However, they usually happen when we use less

average times on the spectrum analyzer and are not reproducible in size and gate

voltages. We believe the signal observed is not due to random fluctuations. Further

study of the properties of the beam splitter is required to fully understand the data.
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6.3 Potential problems in the experiment

In this section, I will discuss some other aspects of the entanglement experiment.

I will first talk about the problem of synchronizing electrons and then discuss the

effect of Coulomb interaction on the entanglement.

The original proposal of electron spin entanglement discussed in Chapter 3

uses two coupled quantum dots as an entangler. It works in the following way: two

electrons are placed in the quantum dots and interact with each other through spin

exchange interaction; they are then moved out from the dots to the beam splitter

where the quantum interference takes place. The underlying assumption is that one

has full control of the quantum dots. The two electrons are forced to stay in the

dots for the same amount of time, then they leave the dots and arrive at the beam

splitter at the same time.

In a realistic system, however, the synchronization of the two electrons is very

difficult to achieve. Manipulating single electrons with a set of complicated oper-

ations like those assumed by the original proposal of electron spin entanglement is

still a big challenge, even with state-of-the-art nano-technology. In our arrangement,

the electrons are controlled by electrical currents. They tunnel into and out of the

two dots. Since the tunnelling is a random process, there is no control over the

entering and leaving time, so even for two microscopically identical quantum dots,

electrons are not necessarily synchronized. The Fermi velocity of electrons in the

2DEG is about 107 cm/sec (see Table 2.1 for details). Suppose two electrons exit

the dots with a lag of 100 ps and travel ballistically afterwards. Then the distance
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between them will be 10 µm. From the particle point of view the two electrons may

simply miss each other, so the expected quantum interference at the beam splitter

may not happen at all. On the other hand, in the original proposal the electrons

are assumed to tunnel out of the two dots as plane waves, so from the wave point of

view the two electrons can still have interference at the beam splitter even if they

exit the dots at different times, so long as the electron waves have an overlap in

space. Strictly speaking electrons exiting the dots should be viewed as wave packets

with a spatial width. The impact of this effect on the quantum interference at the

beam splitter was theoretically studied by Blanter et al. [44] Their result shows

that the magnitude of the interference signal decays exponentially as the time lag

of the two wave packets increases, with a characteristic time (Typical values of this

characteristic time are below 100 ps.) corresponding to δ/v where δ and v are the

spatial width and group velocity of the wave packets respectively.

In principle, the problem can be solved by using an electron pump, or turnstile

[118], to replace the static quantum dots used. The basic idea is to use fast gate

operations to synchronize electron motion. In that way, electrons enter and leave

the dots in a controlled manner instead of in a random process. In other words,

electrons are “forced” to move by programmed gate operations. The turnstile devices

have been studied experimentally and theoretically. Kouwenhoven et al. [118] have

demonstrated a turnstile operation on a quantum dot fabricated in GaAs/AlGaAs

heterostructures. Hu et al. [95] studied theoretically the difference between static

quantum dots and turnstile devices and pointed out the latter is more suitable for the
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entanglement experiment. However, achieving the high precision of timing required

for the entanglement experiment may be a challenge. According to the analysis

above, the timing should be better than 100 ps.

Fast gate operation by itself is an interesting topic, since high speed applica-

tions for new devices are always demanded. For the entanglement experiment this

kind of operation should also be applied to the exchange gate, so the spin exchange

interaction can be under control. Another interesting topic is the shot noise of a

turnstile device. Once electrons are regulated by a periodic gate signal, the current

will be composed of a series of single electron events almost equally spaced in time,

so there should be little shot noise exhibited.

There are still other factors affecting the electron synchronization, even in

turnstile devices. When two quantum dots are placed very close to each other, the

Coulomb interaction between them is quite significant. To give an idea of the order

of magnitude, in our sample the presence of an electron in one dot can shift the

energy levels in the other dot by an amount of 1 meV. This shift can make the

other dot unavailable for electrons. The closer the two dots are, the more severe

this problem is. The extreme situation is at any time at most only one quantum

dot is occupied. In this case there will be no entanglement.

The two dots coupled by strong Coulomb interaction can be viewed as two

parallel tunneling paths modulating each other. As discussed in Chapter 5, shot

noise measurements are a nice tool to study these fast modulation processes. One

can measure the shot noise of one dot as a function of the status of the other dot.
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If the modulation really exists, enhanced shot noise should be observed.

The shot noise of quantum dots is another important issue to be addressed.

In the original proposal electrons are assumed to be synchronized so, as pointed

out earlier in this section, the currents coming out of the two dots should have no

fluctuation. In static quantum dots, however, due to the random tunnelling process,

the exiting time of consecutive electrons does have fluctuations, which means that

the quantum dots contribute shot noise. In general, this is a suppressed shot noise

compared to the Poissonian value 2eI. The exact Fano factor depends on the gate

settings. When the dots are squeezed down to the regime of a few electrons, the

localized states caused by potential fluctuations and impurities can change the shot

noise of the dots drastically. Both enhanced and suppressed shot noise could appear,

as shown in Chapter 5. The contribution of this extra shot noise to the cross

spectrum becomes more complex when the current carrying it is partitioned at

the beam splitter. Depending on the Fano factor of the two dots, this extra shot

noise can generate both a positive (if FQD > 1) or a negative (if FQD < 1) cross-

spectrum [44]. We indeed observed super enhanced shot noise for quantum dots. As

a result, the cross-spectrum of the shot noise of the two dots becomes positive. This

extra signal will be mixed with any entanglement related signal, thus in a static

arrangement, without carefully characterizing the shot noise properties of the dots,

it will be very difficult to extract any useful information.

The last issue I want to discuss in this section is the nature of the beam

splitter. In a particle picture a beam splitter is just a tunnel barrier characterized
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by its transmission coefficient Tj. This may change when electrons come in as waves.

For instance, different part of the beam splitter could have different transmission

coefficients. In the original proposal, electrons either tunnel through the beam

splitter or get reflected, then they are absorbed by the reservoirs afterwards. In a

realistic system, electrons, especially viewed as waves, can have multiple reflections.

In addition, reservoirs can also inject electrons back to the beam splitter. All these

extra factors can change the signal size, or even cause a qualitative change. To

fully understand the beam splitter, a study of its behavior in a more controllable

configuration is desirable.

To conclude, in this section, I discussed the difference between a synchronized

(turnstile) and non-synchronized (static model) double dot system. The effect of

Coulomb interaction between dots on the synchronization scheme was discussed

briefly. Other complexities raised by the extra noise of quantum dots, by the wave

nature of electrons, and by the imperfect operations of the beam splitter have been

mentioned as well. Some future work and possible directions were discussed.

6.4 Summary

The creation of entangled electron spin states is very important for both potential

device applications and basic research. Electron spins are proposed as qubit can-

didates for quantum computing. Since entanglement is essential for the superior

power of quantum computers, the study of entanglement of electron spins becomes

critical. Being one of the most mysterious properties in quantum systems, entan-
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glement has attracted interest since Schrödinger’s landmark 1935 response to EPR.

Experimentally, scientists have created entangled photon states. The violation of

Bell’s inequality has been shown, in agreement with the predictions of quantum me-

chanics. Since entanglement is a universal property of quantum states, it should also

manifest itself for other particles. However, no definitive experimental proof of en-

tanglement for massive particles in a solid-state environment has been demonstrated

yet.

In this chapter, I discussed the first experimental work on the shot noise of

a coupled quantum dot system. This experiment has been proposed as a possible

way to create and detect entangled electron spin states. Our data is in qualitative

agreement with some aspects of the theory of entanglement discussed in Chapter

3. In particular, the measured negative cross spectrum shows both exchange gate

and beam splitter voltage dependence, indicating that the signal is related to both

intra-dot couplings and quantum interference effects at the beam splitter. A few

possibilities which may also contribute to the signal have been excluded. However,

a quantitative agreement is still lacking; the measured signal does not have the size

and shape predicted by theory. At the very least, these results are encouraging for

further investigation. Better characterization of the two dots and the beam splitter

is required, and reproducibility on more samples is desired.
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Chapter 7

Conclusion and future work

7.1 Shot noise measurements

The main experimental techniques I used for this thesis is shot noise measurements.

In order to detect the shot noise of the small current required for the entanglement

experiment, I developed two low noise cryogenic amplifiers. When operated at low

temperatures (∼ 4 K), these amplifiers have a voltage noise of 0.8 nV/(Hz)1/2 and

negligible current noise. They work properly up to 1 MHz. Combined with the noise

cross-correlation technique realized by an Agilent 89410A spectrum analyzer, these

amplifiers can be used to measure the shot noise of a current as low as 20 pA in

a reasonable amount of time for averaging (i.e., 1 hour). Quieter amplifiers can be

achieved by making a better circuity design and choosing devices with better per-

formance. However, as discussed in Chapter 6, the shot noise signal to be detected

is always accompanied by thermal noise from the sample, so the pursuit of ultra low

noise amplifiers becomes less important at some point.

As far as the noise (any noise other than the shot noise to be detected) is

concerned, the most serious problem in the measurement system was not the noise

from the instruments but rather the instability in the samples and some long term

drift in the background noise due to unknown causes. One typical form of the insta-
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bility is shown in Fig. 5.6(d). It resembles random telegraph noise commonly seen

in GaAs/AlGaAs heterostructures. Fortunately, this phenomenon does not occur

very often, and can be “overcome” simply by discarding data with this problem.

On the other hand, long term drift is a serious problem that needs to be solved to

improve the experiment. As mentioned above, given the background contributed by

the amplifier noise and the thermal noise of the sample, measuring the shot noise of

a small current always requires considerable time averaging. For the entanglement

experiment, obtaining a complete set of data may take a few days or even a few

weeks, depending on the data resolution one asks for. As a result, the system is

required to be very stable over the time of data acquisition. With the present setup

this is impossible. The worst aspect is that long term drift appears to be random

and cannot be well characterized. The lack of reproducibility of some experimental

data is mainly caused by this drift. Its origin is still not very clear, although there

are indications that it may be related to sample quality.

7.2 Shot noise in mesoscopic tunnel barriers

In this thesis, I have shown measurements of the shot noise in mesoscopic tunnel

barriers. Besides the expected full shot noise for tunnel barriers, suppressed and

enhanced shot noise were also observed. To my knowledge, this was the first time

anyone has seen such deviations of the shot noise from the full value in tunnel

barriers. In particular, a Fano factor of over 10 that I observed in some barriers was

totally unexpected. In general, the measured shot noise is a complicated function of
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the applied bias and gate voltages and varies from sample to sample. This resembles

conductance measurements of mesoscopic conductors where the result is sample

specific since the conductance is very sensitive to the microscopic details which vary

from sample to sample. Thus the disagreement between the noise data and theory

can be explained by the tunnel barriers being non-ideal. I have studied numerically

the dependence of shot noise on the microscopic details of a tunnel barrier. The

simulation results show that localized states induced by impurities and/or potential

disorder can affect the shot noise significantly. For example, shot noise can be

much enhanced if the current is composed of electrons tunnelling through interacting

localized states. The simulations capture most of the important features presented

by the experimental data and can be used to explain the data.

This work clearly indicates that shot noise of mesoscopic samples is generally

much more complicated than what is expected from simple models. Many details

of the transport processes in these sample can be revealed by shot noise detection.

This will benefit both mesoscopic physics and potential device applications in the

future.

Although the shot noise study of mesoscopic tunnel barriers reported in this

thesis is more comprehensive compared to the existing results, a more systematic

investigation is required to obtain a better understanding. For example, more results

of the standard conductance measurement may be helpful for understanding the shot

noise properties. Given the uncontrollable nature of the microscopic details (e.g.,

their existence, location and properties), it seems that there is not much that can
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be done with them. However, one interesting direction is to study the shot noise of

mesoscopic samples with fabricated “controllable” details. For example, a quantum

dot resembles a localized state studied in section 5.3 in many aspects. As pointed out

in Chapter 2, the shot noise of a quantum dot is still far from being well understood,

especially in the linear transport regime (eV ≤ kBT ). Another example is that two

electrostatically coupled quantum dots can be viewed as two interacting localized

states, so some interesting effects on the shot noise of the two dots may be expected.

7.3 Quantum entanglement

In this thesis, I reported the first shot noise cross-spectrum evidence for entangled

electron spin states in two coupled GaAs/AlGaAs quantum dots. Electrons are

injected into two quantum dots that are separated by a tunnelling barrier exchange

gate and allowed to exit onto a beam splitter. Cross-correlated shot noise was

measured between the two exiting channels. A large negative cross-spectrum signal

was observed as the transmission coefficient of the beam splitter is changed for only

certain values of the spin exchange coupling constant. This provides compelling

evidence that something related to intra-dot couplings was measured. I excluded

some possible contributions to the expected negative signal from other sources.

The experimental results are qualitatively consistent with most of the theoretical

expectations for spin singlet entanglement in this double dot system.

Quantitatively the measured shot noise is not in good agreement with the

theory. The size of the signal is larger than expected and the important beam
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splitter transmission dependence has not been verified. More work should be done

to characterize the system. For example, spectroscopy of the energy states in the

two dots is desired for doing the experiment in a more controllable way. The exact

nature of the beam splitter remains a problem which deserves further study. In

Chapter 6 I also discussed other potential problems in the experiment. Nevertheless,

the observation of the expected qualitative behavior of the shot noise in such a

system gives us the confidence that we have the initial evidence of electron spin

entanglement, although further work is required for a definitive demonstration.

The entanglement experiment belongs to a large class of experiments probing

the quantum statistics by measuring shot noise, as pointed out in Chapter 1. This

is another important aspect of this experiment, besides demonstrating the entangle-

ment of electron spins. Measuring shot noise in multi-terminal conductors presents

difficulties from both technical challenges and the lack of a clear physical picture.

Technical challenges include reducing the disturbance of the noise detection appa-

ratus on the transport process in the samples and reducing the cross-talk between

the apparatus for different terminals. From the point of view of physical insight,

the shot noise properties of multi-terminal conductors are not well understood even

theoretically yet. Needless to say, there are very few experimental results avail-

able at this time. In general, this is an interesting and important direction in the

study of mesoscopic systems. The work reported in this thesis contributes to the

understanding of both aspects mentioned above.
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