
ABSTRACT

Title of dissertation: COVARIANCE LOCALIZATION IN
STRONGLY COUPLED DATA ASSIMILATION

Takuma Yoshida, Doctor of Philosophy, 2019

Dissertation directed by: Professor Eugenia Kalnay
Dept. of Atmospheric and Oceanic Science

The recent development of accurate coupled models of the Earth system and

enhanced computation power have enabled numerical prediction with the coupled

models in weather, sub-seasonal, seasonal, and interannual time scales as well as

climate projection. In the shorter timescales, the initial condition, or the estimate

of the present state of the system, is essential for accurate prediction. Coupled

data assimilation (DA) based on an ensemble of forecasts seems to be a promising

approach for this state estimate due to its inherent ability to estimate flow-dependent

error covariance.

Strongly coupled DA tries to incorporate more observations of the other sub-

systems into an analysis (e.g., ocean observations into the atmospheric analysis) us-

ing the coupled error covariances; the covariance is estimated with a finite ensemble,

and spurious covariance must be eliminated by localization. Because the coupling

strength between subsystems of the Earth is not a simple function of a distance, we

develop a better localization strategy than the distance-dependent localization.

Based on the estimated benefit of each observation into each analysis variable,



we first propose the correlation-cutoff method, where localization of strongly cou-

pled DA is guided by ensemble correlations of an offline DA cycle. The method

achieves improved analysis accuracy when tested with a simple coupled model of

the atmosphere and ocean.

As a related topic, error growth and predictability of a coupled dynamical

system with multiple timescales are explored using a simple chaotic model of the

atmosphere and ocean. A discontinuous response of the attractor’s characteristics

to the coupling strength is reported.

The characteristic of global atmosphere-ocean coupled error correlation is in-

vestigated using two sets of ensemble DA systems. This knowledge is essential for

effectively implementing global strongly coupled atmosphere-ocean DA. We report

and discuss common and uncommon features, and the importance of ocean model

resolution is stressed.

Finally, the correlation-cutoff method is realized for global atmosphere-ocean

strongly coupled DA with neural networks. The combination of static information

provided by the neural networks and flow-dependent error covariance estimated by

the ensemble improves the atmospheric analysis in our proof-of-concept experiment.

The neural networks’ ability to reproduce the error statistics, computation cost in

a DA system, as well as analysis quality are evaluated.
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Chapter 1: Introduction

1.1 Coupled problems

Numerical prediction models, in their successful 70-year history, have been

incorporating more and more components of the Earth. The first successful nu-

merical weather prediction by Charney et al. (1950) started with filtered quasi-

geostrophic equations with only one type of prognostic variable, potential vorticity.

Since then, numerical prediction models became to solve primitive equations of the

atmosphere, with parameterized physical processes such as radiation and convec-

tion. Furthermore, they are gradually internalizing other components: land surface

and vegetation, ocean, aerosols, atmospheric chemistry, and sea and land ice (Figure

1.1). These components, historically approximated to be steady boundary condi-

tions of the atmosphere, are expected to provide extra predictability exceeding the

two-week limit previously supposed (e.g., Shukla, 1998). This trend of internaliza-

tion may even incorporate the human system, which has now dominant influences

onto the Earth system and should be bidirectionally coupled with the Earth system

(Motesharrei et al., 2016).

To maximize prediction skills, it is essential to have both accurate initial con-

ditions that account for all the past observations, and the physical laws coded in the
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Figure 1.1: Growing complexity of coupled models used for climate projection. Fig-
ure courtesy IPCC WG1 (2014).

numerical models. Data assimilation (DA) is a broad class of practices to prepare

such initial conditions given a numerical model and observations based on statistical

assumptions. At the operational numerical prediction centers, data assimilation (or

objective analysis) has been done separately for each Earth’s component (e.g., at-

mospheric analysis, oceanic analysis, and land analysis). Those uncoupled analyses

are disregarding mutual constraints otherwise available in coupled models, possi-

bly undermining the analysis accuracy and consistency. Coupled data assimilation

refers to a class of methodologies to provide those coupled Earth system models

with accurate and consistent initial conditions (e.g., Penny et al., 2017).

Most straightforward, coupled DA is expected to provide more accurate esti-

mates of the truth because of additional constraints available, especially in under-
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observed components (e.g., Sluka et al., 2016). Another expectation is that coupled

DA provides more balanced initial condition (i.e., analysis state well settled onto

the coupled model’s attractor) to the coupled model. Although quantitative es-

timates of degradation caused by coupled imbalance are limited (e.g., Mulholland

et al., 2015), in some cases a combination of uncoupled atmospheric and land initial

conditions causes rapid heating of the lower atmosphere and subsequent excitation

of external gravity waves (Kenta Ochi, 2015, personal communication). Such fast

and imbalanced modes, although they hardly interact with slow modes of interest

and are finally dumped by adjustment processes, can cause a spurious observation

innovation when the short forecast is used for the background of the subsequent

analysis (Section 6.3 of Daley, 1993).

In addition to providing initial conditions for numerical (weather, seasonal,

or interannual) predictions, those objective analyses provide dynamically consistent

and uniform estimate of the Earth’s state for academic and industrial purposes.

Reanalysis is an objective analysis conducted retrospectively with minimum system

changes dedicated to these purposes. Therefore, reanalysis products with appropri-

ate coupled DA methodology will provide insights into coupled phenomena, includ-

ing those caused by complex, non-local interactions. One prominent example is El

Niño Southern Oscillation (ENSO), where air-sea flux exchange, atmospheric large

scale circulation, and oceanic basin-scale vacillation play a combined role.

However, coupled DA has many practical difficulties. First, the spatiotempo-

ral scales of physical processes are vastly different from each other. The variety of

spatiotemporal scales increase the computation cost (e.g., the broad range needs
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to be solved at fine resolution) and numerical inaccuracy/instability (e.g., inverting

ill-conditioned matrices). It also worsens the signal-to-noise ratio included in the

observations through representation error (e.g., Janjić et al., 2018). Second, the

increased complexity often causes superlinear growth of computation cost. For ex-

ample, for an n-element system, the number of covariances grows at O(n2). This in-

herent complexity makes the problem infeasible even with powerful supercomputers.

Third, coupled models often have biased model climatology to the correct climate

due to model and parameter errors, which has been obscured by using prescribed

boundary conditions.

Therefore, we are going to explore a methodology to overcome the dilemma

between the desire for more exhaustive use of information achieved and increasing

unreliable information faced in coupled DA. This will be achieved by the improved

practice of localization, one of the key element of ensemble-based DA systems (Sec-

tion 1.4).

1.2 Previous efforts on coupled DA

Efforts before 2016 are summarized in a white paper based on an International

Workshop on Coupled DA (Penny et al., 2017; Penny and Hamill, 2017), part of

which overlaps the review below. Furthermore, we review increasing efforts on

understanding and implementing coupled DA after the Workshop.

Although there exist a spectrum of coupling strengths possible in coupled state

estimate, we will follow the convention and roughly classify coupled DA algorithms
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as follows:

• Uncoupled DA: background state is propagated using uncoupled dynamic

models (with prescribed boundary conditions). The analysis is done inde-

pendently in each subsystem. A pair of atmospheric and oceanic reanalysis

products with one-way forcing is also classified as uncoupled (e.g., in the ERA-

20C atmospheric reanalysis and the ORA-20C oceanic reanalysis, the latter

uses surface fluxes estimated by the former).

• Weakly coupled data assimilation (WCDA): the background state is propa-

gated with a coupled model. However, the analysis is done independently in

each subsystem.

• Strongly coupled data assimilation (SCDA): the background state is propa-

gated with a coupled model. The analysis also is done in a coupled way using

the coupled background error covariances; atmospheric observations can be

used to correct the oceanic background and vice versa. A variety of approxi-

mations to partially use the coupled background error covariance information

are emerging (quasi-SCDA).

Although the maturity of coupled modeling has enabled recent study and im-

plementation of coupled DA, the idea of coupled DA is, in fact, not new. For exam-

ple, Miyakoda (1986), in a Global Atmospheric Research Programme publication,

suggested using a coupled model with continuous data injection scheme (e.g., nudg-

ing) for the initialization of seasonal forecasts (Figure 1.2). The primary motivation
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Figure 1.2: An early idea of coupled DA for initialization of seasonal forecasts
(originally called as a comprehensive DA system). In the design, a coupled model
is employed (−ta ≤ t ≤ 0) with its ocean part spun up for an extra period (−tb ≤
t ≤ −ta). Figure courtesy Miyakoda (1986)

for the design is a potentially improved estimate of the tropical sea surface temper-

ature (SST) and atmospheric sub-seasonal modes, and the design is equivalent to

the WCDA paradigm in today’s classifications.

1.2.1 Coupled data assimilation products

The world’s leading modeling centers are increasingly implementing atmosphere-

ocean coupled DA products.

The National Centers for Environmental Prediction (NCEP) of the United

States has been producing the Climate Forecast System Reanalysis (CFSR) and

climate forecast based on the analysis (Saha et al., 2010, 2014). The CFSR is clas-

sified as a weakly coupled DA system; the atmospheric and oceanic background

state is predicted by a coupled model, whereas the analyses are conducted in in-

6



dividual 3D-Var systems every 6 hours. One of its superiorities over the previous,

uncoupled atmospheric reanalysis is that the lead-lag temporal correlations between

precipitation and SST closely follow the observed relationship. With the presence

of atmosphere-to-ocean feedback in the forward model, the excessive simultaneous

correlation observed in the previous analysis was largely corrected1.

The Met Office of the United Kingdom also implemented a weakly coupled

data assimilation system (Lea et al., 2015). With a common window of 6 hours,

the atmosphere is updated by a 4D-Var system, the ocean and sea ice are analyzed

with a 3D-Var-first-guess-at-appropriate-time (FGAT) system. Its analysis quality

is comparable to the uncoupled DA, possibly undermined by the inaccurate diurnal

cycle of the ocean model and runoff from their river model, which are prescribed in

their uncoupled control.

The European Center for Medium-range Weather Forecast (ECMWF) is pro-

ducing a few coupled reanalysis products based on their Coupled ECMWF Re-

Analysis (CERA) system (Laloyaux et al., 2016). The CERA system combines an

atmospheric weakly-constrained 4D-Var and an oceanic 3D-Var-FGAT system with

a nonlinear coupled model used in each iteration of the outer loop (quasi-SCDA).

A common 24-hour window is used for the atmosphere and the ocean. Even in the

absence of coupled background error covariance at the beginning of the window,

an observation innovation can correct both the atmospheric and oceanic states with

their outer-loop coupling. With a long enough 24-hour window, their outer-loop cou-

1This improved relationship, however, is also attributed to the SST fields used for the verification

(Kumar et al., 2013).

7



pling is found as skillful as if the coupled background error covariance was explicitly

represented by a small ensemble (Laloyaux et al., 2018a). One of their products is

CERA-20C, which covers the twentieth century by only assimilating surface pressure

and marine observations. The CERA-20C reanalysis showed an improved represen-

tation of coupled features such as ocean heat budget and the tropical instability

waves (Laloyaux et al., 2018b). The other product is CERA-SAT, where the cou-

pled state from 2008 to 2016 is analyzed using both conventional and satellite-based

observations. With an eddy-permitting quarter-degree ocean model, the CERA-

SAT reanalysis shows improvement in the tropical analysis relative to the uncoupled

control. It also detects unrealistic ocean heat budget primarily constrained by the

analysis increments and the SST relaxation rather than the surface heat fluxes, a

defect of the coupled model (Schepers et al., 2018). Both of these products provide

uncertainty estimate based on the ensemble of data assimilation (EDA) generated

by perturbed model physics and observations (10 members each). The coupled fore-

casts initialized by the CERA system produce smaller initial adjustments than the

uncoupled counterparts (Mulholland et al., 2015).

1.2.2 Other global coupled DA efforts

The ocean reanalysis of the Estimating the Circulation and Climate of the

Ocean (ECCO) Consortium (Stammer et al., 2004) takes a unique approach, which

has something in common with the concept of strongly coupled DA. They use an

adjoint-based, strong-constrained 4D-Var approach with a very long (approximately
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10 years) analysis window. Its analysis control variables are three-dimensional initial

potential temperature and salinity (defined only at the beginning of the 10-year

window), as well as daily surface forcing of net heat, net freshwater, and momentum

fluxes. An underlying assumption is that the dominant uncertainty resides in these

initial and boundary conditions, not the model deficiencies or oceanic internal error

growth. Based on a comparison to independent estimates, they find that the global

error of net heat flux estimate from an atmospheric reanalysis reaches tens of watts

per square meter. They also argue that the estimate of wind stress (whose first guess

derives from the atmospheric reanalysis) adjusted by the ocean observations has a

smaller bias to wind measurements than that of the original atmospheric reanalysis.

Sugiura et al. (2008) adopted a similar approach to ECCO, using spatially

and temporally variable multiplicative adjustment factors of surface fluxes (latent

heat, sensible heat, and momentum) as well as initial ocean conditions as control

variables of 9-month 4D-Var windows. In their strongly coupled 4D-Var system,

both oceanic and atmospheric observations are assimilated after 10-day average, to

capture seasonal to interannual variabilities while filtering day-to-day variabilities.

They demonstrated that their analysis has predictive skill for the 1997-1998 El Niño

for a 1.5-year lead time.

With an ensemble method, Zhang et al. (2007) implemented a weakly coupled

ensemble adjustment Kalman filter (EAKF) of the global atmosphere and ocean and

explored the importance of multivariate analysis within each fluid. They showed

that the use of the atmospheric geostrophic relationship and oceanic temperature-

salinity relationship represented by the ensemble are necessary to obtain balanced
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and accurate analyses.

Sluka et al. (2016) conducted a strongly coupled atmosphere-ocean observa-

tion system simulation experiment (OSSE) with a low-resolution global atmosphere-

ocean model and the local ensemble transform Kalman filter (LETKF). Their ex-

periment showed that the assimilation of atmospheric observations, in the absence

of ocean observations, reduces the ocean analysis error. Sluka (2018), in Chapter

3, further applied the same methodology to a more realistic coupled model and as-

similation of both atmospheric and oceanic observations. They pointed out several

challenges to be overcome before strongly coupled DA brings substantial improve-

ments over weakly coupled DA: better representation of diurnal processes at the

surface, bias correction of observations, and appropriate localization. They also

discussed the directional benefit of SCDA relative to WCDA that the observations

of the downwind (i.e., dynamically driven) system have a greater positive impact

when directly assimilated to the upwind (i.e., dynamically driving) system than the

opposite. They explained that the observations of the upwind system can readily

correct the downwind system with WCDA through the dynamical coupling, and

there remains less room for improvement by direct assimilation (i.e., SCDA).

Karspeck et al. (2018) developed a weakly coupled EAKF system for the Com-

munity Earth System Model (CESM) and the Data Assimilation Research Testbed

(DART) at the National Center for Atmospheric Research (NCAR). Although they

disclaim their results are not a reanalysis product, their 30-member coupled reanal-

ysis is shown to have skills close to major reanalysis products in several metrics.

O’Kane et al. (2019) focused on the initialization of coupled ensemble forecast.
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They showed that their strongly coupled ensemble transform Kalman filter (ETKF)

assimilation of oceanic observations improves the ensemble mean analysis compared

to ensemble optimal interpolation (EnOI). For perturbations to initialize ensemble

forecast, bred vectors with a rescaling interval and an error norm targeting ENSO

perturbation outperformed the perturbations generated by ETKF.

1.2.3 Methodological advances and small model experiments

A majority of coupled DA methodologies utilize ensemble-based filtering, where

the coupled background error covariance is readily estimated. However, a variety of

approaches to strongly coupled variational DA is also emerging.

With a simple coupled model of the atmosphere and the ocean, Singleton

(2011) explored several strongly coupled DA methodologies, including ensemble

Kalman filter (EnKF), 4D-Var, and ECCO-like 4D-Var. They showed the EnKF’s

(4D-Var’s) preference of shorter (longer) analysis windows. An optimal analysis

window is especially relevant to coupled DA, where subsystems with different time

scales are analyzed together.

Han et al. (2013) investigated single-media (i.e., weakly coupled) and multiple-

media (i.e., strongly coupled) assimilation with a simple atmosphere-ocean coupled

model. They showed that the very different timescales between the subsystems ren-

der the ensemble-based estimate of error covariance inaccurate, and without thou-

sands of ensemble members, strongly coupled DA degrades the analysis accuracy

compared to weakly coupled DA2. They also showed a directional preference that

2This result mildly contradicts with recent understanding of deterministic EnSRFs that the
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the faster subsystem is more difficult to be improved by the assimilation of obser-

vations of slower subsystems.

Shen et al. (2018) conducted strongly coupled EAKF experiments with the

two-scale Lorenz (2005) model, showing that the observations of the small-scale

subsystem, when directly assimilated to the large-scale subsystem, have more pos-

itive impacts. This result supports the claim of Han et al. (2013) with a slightly

more realistic model with spatial extent. They also showed that the cross-domain

localization is a key for accurate strongly coupled analysis, with a cross-domain lo-

calization function derived from the localization function of the subsystem where

the observation resides.

Huntley and Hakim (2010) proposed assimilation of time-averaged observa-

tions into an atmospheric model to reduce the analysis cost without much degrad-

ing the analysis of long-term variabilities. Tardif et al. (2014, 2015) and Lu et al.

(2015a,b) further studied assimilation of time-averaged observations for coupled

atmosphere-ocean data assimilation with EnKFs. They showed that assimilation of

time-averaged atmospheric observations improves the ocean analysis by the reduced

detrimental effect of “weather noise” onto the ocean. Their approach is analogous to

the assimilation of superobservations, the spatial average of observation innovations

used to counteract the representation error (e.g., Janjić et al., 2018).

The interface solver of Frolov et al. (2016) enables a small subset of atmo-

spheric (oceanic) observations to be assimilated into the ocean (atmosphere) with

analysis accuracy for a deterministic-chaotic model is almost insensitive to the ensemble size if it

exceeds the dimension of the system’s unstable subspace.
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small additional costs in the variational framework. They showed with a regional

atmosphere-ocean coupled model that their interface solver can produce analyses of

higher accuracy than exhaustive strongly coupled DA. They also proposed how to in-

corporate different length scales into a localization function, which will be explained

later in Subsection 1.4.4.

Bishop et al. (2017) pointed out that the exact numerical differentiation of a

grid-based nonlinear model can be obtained if the ensemble size exceeds the number

of variables influenced by each model variable. Their local ensemble tangent linear

model (LETLM) can be used for strongly coupled 4D-Var, where the coupled tangent

linear model is unavailable in an analytical form to the date.

The convergence of variational DA minimization is sensitive to the conditioning

of the error covariance matrices to be inverted. Smith et al. (2018) pointed out that

the background error covariance matrix of an atmosphere-ocean coupled system

has a large conditional number. They suggested inflating smallest eigenvalues of

the background error correlation matrix and applying the model space localization

(Subsection 1.4.1) to condition the matrix.

Storto et al. (2018) augmented their ocean 3D-Var cost function with a balance

operator, the tangent linearized bulk formulas between the atmospheric mixed layer

and ocean variables. The tangent linear approximation is found to outperform

statistical regression based on monthly anomaly covariance.

A few researchers try to estimate the background error covariance between

the atmosphere and ocean, an integral part of variational data assimilation (Smith

et al., 2017; Feng et al., 2018). Those papers will be discussed in Section 5.1.
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All the above methodologies focus on either model (xb, M , or M) or back-

ground error covariance (B) coupling. An additional benefit of coupled DA can

come from the observation operator (h or H) coupling. Geer et al. (2018) discussed

how today’s uncoupled DA hinders the appropriate use of near-surface radiance ob-

servations. They showed that only strongly coupled DA with accurate observation

operators (i.e., radiative transfer models) can correctly handle uncertainties.

1.2.4 Coupled data assimilation not for atmosphere-ocean state

Aside from the atmosphere-ocean coupled system, the same methodology can

also be applied to other coupled systems. Lin and Pu (2018) thoroughly examined

the background error covariance of the atmosphere-land coupled model over the

contiguous United States, estimated by the National Meteorological Center (NMC)

method (Parrish and Derber, 1992). They found negative error correlation be-

tween near-surface air temperature and soil moisture (−0.20 when spatially and

temporarily averaged for July) and positive error correlation between near-surface

humidity and soil moisture (0.15 when similarly averaged). They also found that

the error correlations are stronger during local summer and daytime and concluded

that strongly coupled assimilation of soil moisture observations could improve the

near-surface atmospheric state estimate.

The same methodology works for parameter estimation as well as the state

estimation problem. Zhang et al. (2012) and Liu et al. (2014) investigated ensemble-

based parameter estimation simultaneous to the weakly coupled state estimate for
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Figure 1.3: Example of probability density functions (PDFs). The grey shading
shows the climatological PDF p(x) of the Lorenz (1963) attractor. The red shad-
ing shows an analysis PDF p(xt|yt) that have assimilated two scalar observations
shown with the plus sign (x = 10 and z = 20 at time t; with uncorrelated error
standard deviation of 3 implied) using the climatological distribution as the prior.
The blue shading is a forecast PDF p(xt+0.08|yt) (0.08 time units after the analysis).
All the PDFs shown are two-dimensional projections of three-dimensional density
numerically estimated.

toy and realistic atmosphere-ocean coupled models, respectively. With parameter

estimation activated after state estimation error reaching quasi-steady-state, they

showed an improved estimate of uncertain parameters dictating atmosphere-ocean

coupling.

1.3 Terminology: background error correlation and other

In order to clarify relevant terminologies for this thesis, we show a schematic of

climatological, analysis, and forecast probability density functions (PDFs) in Figure

1.3. We summarize important points, some of which are apparent from the figure:
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• The climatological PDF (grey) is invariant if the dynamical system is au-

tonomous. For autonomous and chaotic dynamical systems, we expect a long

time-average of some function of the state to converge to its expectation over

this PDF (ergodicity). Therefore, anomaly and temporal correlations refer to

the correlations calculated over this PDF.

• Given an analysis PDF (red; conditioned by past observations), we can obtain

the PDF of the negative analysis error (truth minus mean analysis) by trans-

lating the analysis PDF so that its mean corresponds to the origin; the truth

is one realization of the distribution from the Bayesian perspective, and the

mean analysis is our best point estimate. The forecast error PDF is similarly

obtained by translating the forecast PDF (blue).

• The analysis/forecast error PDFs are generally time-dependent, or flow-dependent.

However, we can also consider time-averaged error distributions as an approx-

imation to flow-dependent error distribution (e.g., static background error

covariance matrix used in variational methods).

• The PDFs of analysis and short forecast are generally more compact than

the climatological PDF. As a result, perturbations (or errors) in the analy-

sis/forecast PDF are less affected by the nonlinearities of the forward model,

and the analysis/forecast PDF is closer to a multivariate Gaussian than the

climatological PDF. This is why we can handle the errors as if they behave

linearly on a tangent space of the attractor; the extended Kalman filter and

incremental variational methods are examples.
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• The forecast PDF is generally more elongated than the analysis PDF because

the error has grown in some directions and decayed in other directions.

• Since the (short) forecast often serves as the background of the subsequent

analysis, the term background is used as a synonym for the short forecast

unless otherwise noted.

• In ensemble-based forecast-analysis systems, the analysis/background PDFs

are represented by an ensemble (i.e., a set of realizations of state). Therefore,

we use the terms “background error correlation” and “background ensemble

correlation” almost interchangeably to denote the correlation based on the

blue density; terms are similarly used for covariance and analyses. However,

to be more specific, we sometimes use the term error for the (true and un-

known) underlying distribution, and the term ensemble for its finite-sample

approximation.

1.4 Theory and approaches of localization

In the field of data assimilation, localization refers to a family of methods to

enhance the signal-to-noise ratio by ignoring unphysical background error covariance

between distant variables (e.g., Hamill et al., 2001). As we will shortly see, there

exist various approaches to achieve localization. Those approaches originate from

different concepts, and they have different characteristics.
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1.4.1 Localization in the model space

The non-localized EnKF gain is

K = PbHT[HPbHT + R]−1, (1.1)

where Pb = (K − 1)−1XbXbT is the background error covariance for background

ensemble perturbations Xb and the ensemble size K, H is the linearized observation

operator, and R is the observation error covariance matrix (Evensen, 1994).

The straightforward formulation of covariance localization is the model space

localization given by

K = (ρm ◦ Pb)HT[H(ρm ◦ Pb)HT + R]−1, (1.2)

where ρm ∈ Rn×n is a covariance localization matrix in the model space, which is

chosen to be positive semi-definite3 so that the Schur product ρm ◦ Pb is a valid

covariance matrix (e.g., Gaspari and Cohn, 1999; Houtekamer and Mitchell, 2001).

The elements of ρm, the localization weight between each pair of model variables, is

usually in a range [0, 1], and its less-than-unity elements discount the non-diagonal

elements of the background error covariance Pb. However, model space localization

is expensive because the convolution of the localization and observation functions is

necessary.

3See also Subsection 6.2.2.
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1.4.2 Localization in the observation space

The other form of localization, observation space localization, is further divided

into two forms, namely, B-localization and R-localization (Shlyaeva et al., 2018).

With the B-localization in the observation space, the gain matrix reads

K = [ρo1 ◦ (PbHT)][ρo2 ◦ (HPbHT) + R]−1, (1.3)

where ρo1 ∈ Rn×p and ρo2 ∈ Rp×p are covariance localization matrices in the observa-

tion space (Houtekamer and Mitchell, 2001; Lei and Whitaker, 2015). The elements

of ρo1 represent the localization weights between each pair of an observation and a

model variable, and the elements of ρo2 represent the localization weights between

each pair of observations. The B-localization in the observation space often takes

the sequential form, where the term ρo2 ◦ (HPbHT) is represented by using P that

has been updated by the assimilation of previous nearby observations (e.g., Hamill

et al., 2001; Whitaker and Hamill, 2002; Anderson, 2003). This sequential assim-

ilation renders the localization weight between observations ρo2 unnecessary, and

the B-localization problem in the observation space reduces to defining localization

weights between each observation and each model variable (ρo1, hereafter ρ ∈ Rn×p).

An early prototype of the other observation-space localization, R-localization,

can be found in Houtekamer and Mitchell (1998), who parallelly analyzed each

model variable using a subset of observations within a horizontal cutoff radius of

each analysis grid. By assimilating only observations which have accurate back-

ground error covariances to the analysis variable, this approach has a similar effect
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to B-localization. The R-localization for deterministic EnKF is later developed to

enhance the degree of parallelism of the algorithm (Ott et al., 2004). Hunt et al.

(2007) further proposed multiplying elements of the inverse observation error co-

variance matrix (R−1) used in each local analysis by factors between zero and one,

so that the influence of each observation smoothly decays from one (nearby observa-

tions) to zero (faraway observations). Therefore, the problem of R-localization also

reduces to defining localization weights between each observation and each model

variable (i.e., ρ ∈ Rn×p). Note that with the same localization weight matrix in the

observation space, the final analysis by the B-localization and the R-localization can

differ. Generally, the B-localization further reduces the impact of observation (i.e.,

the B-localization is tighter with the same ρ; Greybush et al., 2011; Nerger, 2015).

1.4.3 Effect of localization

The localization has two major effects: to increase the rank of the space to

which analysis increment belongs and to suppress the spurious ensemble correlation.

Without localization, an EnKF can find an analysis increment in the space

spanned by the ensemble perturbations, which is at most K − 1 dimension for a

K-member ensemble.

Ng et al. (2011) and Trevisan and Palatella (2011) showed that the number of

non-negative Lyapunov exponents, equal to the dimensionality the unstable tangent

space of an attractor, is the minimum requirement for the number of independent

ensemble perturbations (i.e., K − 1 ≥ D is a necessary condition for a deterministic
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ensemble filter for the system with D non-negative Lyapunov exponents to con-

verge). It turned out that all the growing error modes need to be constrained by

the analysis so that all the conditional Lyapunov exponents of the forecast-analysis

system become negative (Penny, 2017).

Indeed, the low-rank and spurious correlation problems are inseparable. Figure

1.4 (a-d) shows the 20-dimensional identity matrix I20 (panel a) and its low-rank

approximations numerically obtained. If the rank r is lower than the rank of the

underlying correlation matrix (20), spurious correlations must appear as the off-

diagonal elements (panels b and c). When the rank is full (20), we can reproduce the

target matrix almost error-free with the same method (panel d). If the underlying

distribution is more spatially correlated (i.e., if its effective rank is smaller), smaller

rank approximations can have considerably smaller spurious correlations (panels e-

h). Therefore, the rank problems discussed by Ng et al. (2011) and Trevisan and

Palatella (2011) and the spurious correlations apparent in a finite-size ensemble (e.g.,

Whitaker and Hamill, 2002; Miyoshi et al., 2014) are likely to be different aspects

of the same problem.

The spurious background error correlations do not only act as noise to the

ensemble mean analysis but also excessively reduce the analysis ensemble variance

(i.e., spread; Whitaker and Hamill, 2002). This underestimated variance is harm-

ful to the DA cycle because it leads to an overconfident analysis, which eventually

diverges from the truth ignoring the observations. This overconfident analysis en-

semble must be compensated with artificial inflation of error covariance (Anderson

and Anderson, 1999; Mitchell and Houtekamer, 2000; Zhang et al., 2004; Whitaker
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Figure 1.4: Inseparability of insufficient rank and spurious correlation problems.
Panel (a) shows an identity matrix I20. Each of the panels (b-d) shows one of its
r-rank approximations Cr. For r-rank approximation, its matrix square root Xr ∈
R20×r is randomly initialized and optimized numerically minimizing the Frobenius
norm ||I20 − Cr||F. The diagonal elements of Cr are constrained to unity. Panels
(e-h) are the same as panels (a-d) except that the target correlation matrix (e) is
more spatially correlated.
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Figure 1.5: Schematic representation of model-space covariance localization. Panel
(a) shows an example of a matrix of localization weights C. Panel (b) shows the
original background error covariance matrix P, and panel (c) shows the localized
background error covariance matrix C◦P. The matrices are for a 100-variable model
with the one-dimensional spatial extent with periodic boundary conditions. Figure
courtesy Petrie and Dance (2010).
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and Hamill, 2012).

To counteract those problems, global atmospheric analysis with EnKF almost

always needs localization. Figure 1.5 schematically shows the effect of model-space

localization, where most of spurious, off-diagonal error covariances are filtered out by

a Schur product. The 10,240-member LETKF experiment by Miyoshi et al. (2014)

is a rare exception with which they captured long-range, non-isotropic background

error correlations like a wave train.

1.4.4 Choice of localization length scale

For most atmospheric applications, the localization weight ρ is a static function

of the distance between the observation and analyzed variable:

ρij = ρ(distance between the ith analysis variable and the jth observation). (1.4)

A popular choice of this function is the compact support, piecewise polynomial,

positive definite function of Gaspari and Cohn (1999):

ρ(r) =



−1
4
r5 + 1

2
r4 + 5

8
r3 − 5

3
r2 + 1 (0 ≤ r ≤ 1)

1
12
r5 − 1

2
r4 + 5

8
r3 + 5

3
r2 − 5r + 4− 2

3
r−1 (1 < r ≤ 2)

0 (2 < r),

(1.5)

where r = d/c is the normalized distance for the distance d and the cut-off pa-

rameter c, and L = c
√

0.3 is the localization length scale. We can similarly ap-

ply three-dimensional localization by combining the distances in each direction as

r =
√

(dx/Lx)2 + (dy/Ly)2 + (dz/Lz)2 where the subscripts x, y, and z represent the
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longitudinal, latitudinal, and vertical directions. For most atmospheric application,

the function is horizontally isotropic (Lx = Ly), but for some ocean applications,

the zonal length scale is set a few times larger than the meridional length scale

(Lx > Ly) to account for the zonally prolonged error correlations.

The choice of localization length scale is affected by multiple factors. Ying

et al. (2018) is a comprehensive study on the selection of localization length scale,

who showed

• The optimal localization length can be associated with the spatial scale (i.e.,

correlation length) of the dynamics. On the other hand, the optimal local-

ization length is rather insensitive to the model resolution as long as the key

dynamical processes (e.g., synoptic weather) are well represented.

• When multiple scales of dynamics are resolved and analyzed simultaneously,

the smaller scale features are better analyzed with smaller localization length,

and vice versa.

• With a larger ensemble size, the optimal localization length becomes larger.

• Denser observation network results in shorter correlation length in background

error and prefers shorter localization length.

For a coupled atmosphere-ocean problem, where the atmosphere exist above

the ocean, the localization function of Frolov et al. (2016) is a natural extension of

this distance-dependent localization for a case that the observation and the analysis

variable locate in different subsystem (i.e., one is in the atmosphere, subscripts A,
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and the other is in the ocean, subscripts O):

r =

√[
xA − xO

0.5(Lx|A + Lx|O)

]2

+

[
yA − yO

0.5(Ly|A + Ly|O)

]2

+

[
zA

Lz|A
− zO

Lz|O

]2

+

[
tA − tO

0.5(Lt|A + Lt|O)

]2

,

(1.6)

where x, y, z, and t represent the longitude, latitude, vertical, and time of the

observation or the analysis variable, and L with subscripts represents the localization

length scale (for example, Lx|A is the localization length scale in the x-direction in the

atmosphere). This function allows the existence of different scales in the subsystems,

where horizontal localization length scale L{x,y} generally takes a smaller value in

the ocean than in the atmosphere (Figure 1.6). A limitation of this function is that

it assigns 100% weight to the adjacent variables (e.g., subsurface current and surface

wind), which will be shown to be an inaccurate representation (Chapter 5).

Laloyaux et al. (2018a), in order to evaluate their outer-loop coupling method,

compared the implicit background error correlation represented by outer-loop cou-

pling to the ensemble-based background error correlation. For that purpose, they

used the adaptive localization of Ménétrier et al. (2015a,b) to estimate the localiza-

tion weight from the instantaneous ensemble covariance. However, the limitation of

flow-dependent localization methods (to be reviewed) is that they are based on the

same instantaneous ensemble information to be localized and are generally noisy due

to the small available samples (generally tens of members). Therefore, a localiza-

tion method that combines the climatological information with the flow-dependent

ensemble information is needed to estimate the localization weight more robustly.
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Figure 1.6: An example of an atmosphere-ocean coupled localization function (Eq.
1.6). The localization length scales are different in the atmosphere-like fluid (Lx|A =
2 and Lz|A = 2000) and in the ocean-like fluid (Lx|O = 0.4 and Lz|O = 200). The
red lines show the r = 0.5 contours. Figure courtesy Frolov et al. (2016).
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1.4.5 Advanced localization methods

In contrast to the distance-dependent localization, there are several localiza-

tion methods, some of which are adaptive and flow-dependent.

Anderson (2007) proposed a flow-dependent localization method (hierarchical

filter) based on regression confidence factor; the localization weight is a function

of the degree of coincidence of ensemble covariances between sub-ensembles. This

method can deal with a localization function far from a bell shape, and also the tem-

poral localization. Gasperoni and Wang (2015) applied the method to the forecast

sensitivity problem.

Bishop and Hodyss (2009) developed the ensemble correlations raised to a

power (ECO-RAP) method, another flow-dependent localization. The ECO-RAP

method derives a localization weight from a convolution of a smoothing kernel and

an ensemble correlation matrix raised to high power (e.g., 6th power). This method

is based on an observation that the reliable ensemble correlation is close to be

unity, and an assumption that the ensemble correlation near the strong ensemble

correlation also is reliable.

The sampling error correlation method of Anderson (2012) converts the abso-

lute value of ensemble correlation and the ensemble size to the localization weight

by a look-up table obtained by an offline Monte Carlo simulation.

Those flow-dependent localizations, as well as our correlation-cutoff method

(Chapter 2), uses the fact that the stronger ensemble correlations generally are more

reliable (Figure 1.7) and also beneficial for reducing the uncertainty.
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Figure 1.7: The relative error of ensemble covariance as a function of the true
correlation ρ and ensemble size n. The larger the true correlation and the larger
the ensemble size, the ensemble correlation becomes more reliable. Figure courtesy
Hamill et al. (2001)
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Anderson and Lei (2013) proposed a method to derive a static localization

function ρ for binned pair of observation and analysis grid locations by minimization

of the analysis error in an OSSE. Their method is tested with the 40-variable model

of Lorenz (2005) to achieve a comparable analysis accuracy to the optimally tuned

Gaspari and Cohn (1999) localization.

Miyoshi and Kondo (2013) proposed a multi-scale localization, where the

small-scale features are analyzed with shorter localization length while the large-

scale features are analyzed with longer localization length, where the scale of fea-

tures is decomposed by spectral truncation. The multi-scale localization is shown

to improve the analysis.

Kang et al. (2011) studied localization between different types of variables,

who showed that the analysis of CO2 concentration and flux should be independent

of the observation of temperature, humidity, and surface pressure. Their approach

“variable localization” is based on the observation that the CO2 variables and those

dynamical variables are hardly interacting.

1.4.6 Localization for applications other than EnKF

Localization is also beneficial for geophysical analysis and inverse methods

other than EnKFs. Some of the important applications are discussed below.

Fukumori (2002) applied the partitioned Kalman filter and smoother to oceanic

data assimilation, which ignore the background error cross-covariances between the

different partitioned regions. By partitioning, the background error covariance ma-
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trix B reduces from an n×n matrix to the l sub-matrices of the shape (n/l)× (n/l)

for model dimension n and number of regional partitions l. This partition reduces

the overall computation and memory costs by l-fold.

Penny and Miyoshi (2015) and Poterjoy (2016) independently developed local-

ized particle filters, where the resampling weight of each particle is computed only

from the information within local patches. The localized particle filters alleviate the

exponential growth of computational cost required by particle filters by limiting the

dimensionality of the problem while retaining the advantages of particle filters that

allows non-Gaussian probability distributions that derive from nonlinear dynamics

and observation operators.

Other ensemble-based, data assimilation methods also require localization to

suppress spurious correlation and increase the rank of the analysis. Liu et al. (2009)

and Yokota et al. (2016) respectively applied model-space and observation-space

localizations to the ensemble-based variational data assimilation (EnVar). Liu and

Kalnay (2008) developed the ensemble forecast sensitivity to observations (EFSO)

method, which uses the ensemble regression between the analysis time and the

forecast time to obtain each observation’s impact to a forecast at a particular time.

Localization is also necessary for EFSO to obtain accurate regression with limited

ensemble sizes.

31



1.5 Problem statement and outline of this thesis

We have reviewed efforts toward strongly coupled DA and the approaches and

effects of localization. Most of these methodologies, however, are intended for uni-

variate or tightly coupled multivariate fluids (e.g., horizontal wind and geopotential

are tightly coupled in the shallow-water equations), where relevance of an observa-

tion to an analysis variable is well approximated by their physical distance. How-

ever, as is clear from Kang et al. (2011)’s example, this approximation does not hold

for more loosely coupled Earth’s subsystems. Furthermore, for Earth system mod-

els with growing complexity, it will be unrealistic to experimentally obtain a good

compromise between inclusive (strongly coupled) and exclusive (tightly localized or

univariate) data assimilation configurations4. Although we can employ physical in-

tuitions to obtain plausible configurations, the nonlinear interactions modeled into

the numerical models are diverse and complex.

Therefore, the goal of this thesis is to find a localization method that incor-

porates the variable type dependency as well as spatial separation, in a natural,

accurate, and effortless (data-driven) way. Although our experiments focus on the

atmosphere-ocean coupled system, we try to find a methodology that is also appli-

cable to other coupled systems.

This thesis is organized as follows. In Chapter 2, we introduce the correlation-

cutoff method, an objective criterion of covariance localization. The method is tested

4With lobs types of observations and lanl types of analysis variables, there exist 2lobslanl ways of

variable localization.
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with a nine-variable coupled model of the fast atmosphere and the slow ocean. Chap-

ter 3 explores the effect of coupling on chaotic models with very different timescales

by examining the Lyapunov exponents and other characteristics of the attractors.

Chapter 4 explains our strongly coupled assimilation system for the global atmo-

sphere and ocean that will be used in the following two chapters. In Chapter 5,

we investigate the background error correlation of atmosphere-ocean coupled sys-

tem, an essential quantity for the strongly coupled DA. Two ensemble-based weakly

coupled DA systems with different configurations reveal its strong sensitivity to

configurations, and suggestions for strongly coupled DA is made. We extend the

correlation-cutoff method (Chapter 2) in Chapter 6, by a combination of neural

networks and data from the previous chapter. For proof-of-concept experiments,

computational feasibility of our method is tested with the global atmosphere-ocean

coupled model, and its accuracy is compared to that of a strongly coupled DA ex-

periment with distance-dependent localization. Finally, in Chapter 7, we summarize

our findings and make suggestions for future directions.
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Chapter 2: The correlation-cutoff method — experiments with a nine-

variable coupled model

2.1 Introduction

We have reviewed efforts toward SCDA in Section 1.2, where the relative

accuracy of ensemble-based SCDA over WCDA is mixed; some study (e.g., Sluka

et al., 2016) showed improvements, while other (e.g., Han et al., 2013; Kang et al.,

2011) showed that a straightforward implementation of SCDA with finite ensemble

degrades the analysis.

These apparently contradicting results raise an important question: Under

what conditions does SCDA provide a better analysis than WCDA? Therefore, in

this chapter, we address this question and propose an offline method to determine

which observations should be assimilated into which variables during the analysis

update. This methodology, the correlation-cutoff method, is tested with a nine-

variable coupled chaotic model of the atmosphere and the ocean.
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2.2 Theoretical analysis

In this section, we derive an expression that estimates the analysis uncertainty

reduction by the assimilation of each observation.

Here, we assume that only a single observation is assimilated at a time. This is

not a strong assumption because, in both Gaussian and Bayesian frameworks, theo-

retical analysis shows that the observations can be assimilated sequentially without

changing the resulting analysis if they have mutually independent error distribu-

tions (Houtekamer and Mitchell, 2001; Anderson, 2003). Furthermore, Anderson

(2003) pointed out that the observations with correlated errors can be transformed

into ones with uncorrelated errors by performing a singular value decomposition on

the observation error covariance matrix RRR. Note that when considering a second or

later observation in sequential assimilation, the background error covariance BBB in

the following derivation should be replaced with the one used for the assimilation of

the observation of interest (i.e., the analysis error covariance after assimilating all

the previous scalar observations).

We start our derivation from the state-update equations of the Kalman filter

(Kalman, 1960). Assuming that the background error covariance BBB and observation

error covariance RRR are correctly specified, and that the observation errors are not

correlated with the background errors, the analysis error covariance AAA is given by

AAA = (III−KHKHKH)BBB (2.1)

KKK = BHBHBHT(HBHHBHHBHT + RRR)−1, (2.2)
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where KKK is the Kalman gain, III is the identity matrix, and HHH is a linearized observation

operator (e.g., Gelb et al., 1974).

Consider the analysis error variance of the ith model variable (1 ≤ i ≤ n),

Aii = Bii −
n∑
k=1

p∑
l=1

KilHlkBki, (2.3)

where n is the size of the state vector, p is the number of observations, and capital

scalars with a subscript denote corresponding matrix elements (e.g., Kil is the (i, l)

element of K). The fractional decrease of the uncertainty of the ith model variable

is given by

Bii − Aii
Bii

=

∑n
k=1

∑p
l=1KilHlkBki

Bii

. (2.4)

Assuming that there is only one observation (p = 1), the observation error

variance can be expressed by a scalar as R = R = σ2
yo. With this assumption, we

can reduce Eq. (2.4) to

Bii − Aii
Bii

=
[(HBHBHB)1i]

2

(HBHHBHHBHT +R)Bii

, (2.5)

where we have used the Kalman gain (Eq. 2.2) and the single observation assumption

repeatedly (note that HBHBHB and HBHHBHHBHT are a 1× n matrix and a scalar, respectively).

We then rewrite the covariance between the background errors of the observable

(δyb) and the ith model variable (δxbi) as a product of their correlation and standard

deviations (σyb =
√

HBHHBHHBHT and σbi =
√
Bii for the observable and the ith model

variable, respectively) as (HBHBHB)1i = σbiσybcorr(δxbi, δyb). We finally obtain

σ2
bi − σ2

ai

σ2
bi

=
σ2

yb

σ2
yb + σ2

yo

corr2(δxbi, δyb), (2.6)
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where σai =
√
Aii is the standard deviation of the analysis error of the ith model

variable. A similar derivation for a two-variable example is provided in Hamill et al.

(2001). It is informative to compare this equation with the analysis uncertainty re-

duction in the univariate analysis, in which a single state variable is directly observed

by a single observation,

σ2
b − σ2

a

σ2
b

=
σ2

b

σ2
b + σ2

o

, (2.7)

where σ2
b, σ2

a, and σ2
o are the error variances for the background, analysis, and

observation, respectively. Equation (2.6) is similar to Eq. (2.7), except that the

right-hand side is multiplied by the square of the correlation between the background

errors of the analyzed and observed variables.

Equation (2.6) indicates that the relative improvement of the estimate of the

state of each model variable by the assimilation of an observation is the product

of two quantities: (i) the ratio of the background and total error variances at the

observation location (which is large when observations are precise relative to the

background) and (ii) the square of the background error correlation between the

analyzed and observed variables. This equation also provides a quantitative estimate

of the analysis error reduction by SCDA using estimates of the background error

covariances between different components.

We hypothesize that in an EnKF, the assimilation of “irrelevant” observations

in SCDA degrades the analysis if the detrimental effect of spurious correlations from

the limited ensemble size exceeds the expected error reduction from the Kalman fil-

ter. Based on this hypothesis, we propose a correlation-cutoff method to localize

37



strongly coupled EnKFs, in which we only allow strongly coupled assimilation be-

tween variables that have strong background error correlations.

2.3 Methods

Local EnKFs such as the LETKF allows us to assimilate different subsets of

observations for each model variable. Therefore, we can define a “localization pat-

tern”, in which we select observations to be assimilated into each model variable

depending on which component the observation and the model variable are located

in (see details in Subsection 2.3.5 and Figure 2.2). In this section, the optimal local-

ization pattern for a simple coupled model is sought by estimating the strength of

background error correlation using an offline analysis cycle of the LETKF. Then, the

localization pattern is tested in independent LETKF cycles with various ensemble

sizes, and the accuracy of the resulting analysis is compared to those obtained with

other localization patterns.

2.3.1 Model

We test the correlation-cutoff method with a nine-variable, multi-timescale

coupled model proposed by Peña and Kalnay (2004). The governing equations of

38



the model are as follows:

ẋe = σ(ye − xe)− ce(Sxt + k1)

ẏe = rxe − ye − xeze + ce(Syt + k1)

że = xeye − bze

ẋt = σ(yt − xt)− c(SX + k2)− ce(Sxe + k1)

ẏt = rxt − yt − xtzt + c(SY + k2) + ce(Sye + k1)

żt = xtyt − bzt + czZ

Ẋ = τσ(Y −X)− c(xt + k2)

Ẏ = τrX − τY − τSXZ + c(yt + k2)

Ż = τSXY − τbZ − czzt.

(2.8)

This coupled model consists of three components: a fast “extratropical at-

mosphere” (xe, ye, ze), a fast “tropical atmosphere” (xt, yt, zt), and a slow “(tropi-

cal) ocean” (X, Y, Z). Each component is the Lorenz (1963) three-variable model,

and they are coupled by coefficients c, cz, and ce. The “ocean” is slowed down

by a factor of 10 through τ to mimic the slower variations of the ocean. The

extratropical atmosphere is only loosely coupled (ce = 0.08) with the tropical at-

mosphere, and the tropical atmosphere is tightly coupled (c = cz = 1) with the

ocean. There is no direct interaction between the extratropical atmosphere and

the ocean. The parameters are kept the same as in Peña and Kalnay (2004):

(σ, r, b, τ, c, cz, ce, S, k1, k2) = (10, 28, 8/3, 0.1, 1, 1, 0.08, 1, 10,−11). The model is in-

tegrated using the fourth order Runge-Kutta scheme with time steps ∆t = 0.01

non-dimensional time units.
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Despite its extreme simplicity, the multi-timescale coupled model shares sev-

eral important characteristics with the real atmosphere-ocean system and is an ex-

cellent testbed for testing ideas for coupled DA problems. The model shows a chaotic

behavior with two distinct regimes: the coupled “tropical atmosphere” and “ocean”

cycle into a random number of “normal years” (between 2 and 7), interrupted by

an “El Niño year” with large negative anomaly in X, before returning to “normal

years” (see Figure 2 of Peña and Kalnay, 2004). Since this asymmetric oscillation

neither occurs in the uncoupled “tropical atmosphere” nor “ocean”, it is regarded

as an intrinsically coupled instability. Therefore, the model developers called the

coupled “tropical atmosphere” and “ocean” as an ENSO-like coupled system. The

“extratropical atmosphere”, on the other hand, behaves almost like an individual

chaotic system due to its weak coupling with the other components. Norwood et al.

(2013) examined the properties of this coupled model and showed that it has two

positive, five negative, and two near-zero Lyapunov exponents.

2.3.2 Data assimilation method

We use the LETKF (Hunt et al., 2007), one of the deterministic implementa-

tions of the ensemble Kalman filters classified as ensemble square root filters (En-

SRFs; Tippett et al., 2003). The LETKF allows us to assimilate only a subset of

the observations into the analysis of each variable.

According to Ng et al. (2011) and Trevisan and Palatella (2011), the dimension

of the subspace spanned by perturbations is at most K − 1 for a K-member ensem-
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ble, and this dimension should be equal or larger than the number of non-negative

Lyapunov exponents. Hence our coupled model needs at least 5 ensemble members

so that the perturbations span the unstable subspace given its 4 non-negative Lya-

punov exponents. Therefore, we conduct our experiments with K = 4, 6, and 10

ensemble members. With 10 members, the ensemble perturbations can span the

entire 9-dimensional model space, so it represents a case with sufficient members.

We expect the 4-member experiment to represent a case with insufficient members,

and the 6-member experiment to represent an intermediate situation.

Although we have also conducted some experiments with 100 members, the

resulting temporal mean analysis RMS error is not qualitatively different, and only

the results with K = 4, 6, and 10 are shown below. Note that the LETKF is de-

signed to provide the same analysis mean and analysis error covariance matrix as

those of the extended Kalman filter for linear forward operators if ensemble size is

sufficient to factorize the background error covariance matrix (Hunt et al., 2007).

However, the premises may be violated if the model is biased or stochastic, or if

the nonlinearity is significant (i.e., the errors are too large to neglect the second

and higher order terms in the Taylor expansions of the nonlinear forward opera-

tors). In these difficult situations, a larger ensemble size will be beneficial because

the sampling of the stochastic or nonlinear error growth becomes more accurate.

The insensitivity of EnSRF’s averaged analysis error to excessive ensemble size is

thoroughly discussed in Sakov and Oke (2008).

For covariance inflation, we use the adaptive multiplicative inflation of Wang

and Bishop (2003). The diagnosed inflation factor ∆o is first limited within 0.9 ≤
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∆o ≤ 1.2 and then temporarily smoothed with a forgetting factor κ = 1.01 (we

follow the notation of Li et al., 2009).

2.3.3 Experimental settings

We test our method by performing identical twin experiments. The model

(Eq. 2.8) is started from random initial conditions and spun up for 25,000 time

steps before saving the subsequent 75,000 time steps as the truth. Observations are

produced by adding Gaussian noise to the truth with a mean of zero and standard

deviation of σatm
o = 1.0 and σocn

o = 5.0. The observations are available once every

8 time steps, and only one variable in each component (ye, yt, Y ) is observed to

simulate a sparse observation network. We use the y-variables here because the

observations of y are the most informative when assimilated in the three-variable

Lorenz model (Yang et al., 2006).

The ensemble members are initialized with random numbers (with different

random seeds from the one used for the truth) and spun up for 25,000 time steps

before starting the analysis cycle so that the background ensemble members for the

first analysis are random samples on the model’s attractor. Analysis experiments

are conducted for the subsequent 75,000 time steps, the same period as the one for

which we have saved the truth and the observations. The analysis is updated every

8 time steps, and therefore, the observations are only available at the end of each

window. Within the 75,000 time steps (9,375 analysis windows), only the last 50,000

time steps (6,250 analysis windows) are used for calculating the background error
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correlation and the analysis error in the following subsections because we are only

interested in the filter performance after its initial transient.

2.3.4 Offline experiment and error statistics

We first conduct an offline experiment to obtain the error statistics of the

model. For this purpose, we use the same analysis system as discussed in the

previous subsection but with the truth, observations, and initial ensemble members

independent from the main experiments. We use the fully coupled ETKF (Full

pattern in the following subsection) with K = 10 members for this offline run.

For each pair of model variables xi and xj, we first calculate an instantaneous

background ensemble correlation at each analysis time t:

corrij(t) =

∑K
k=1[xki(t)− x̄i(t)][xkj(t)− x̄j(t)]√∑K

k=1[xki(t)− x̄i(t)]2
√∑K

k=1[xkj(t)− x̄j(t)]2
, (2.9)

where xki(t) is the ith model variable of the kth ensemble member at time t, and

x̄i(t) is the ensemble mean of the ith model variable at time t. Then we obtain the

temporal mean the squared background error correlation for each pair (xi, xj):

〈
corr2

ij

〉
=

1

T

T∑
t=1

corr2
ij(t), (2.10)

where T = 6, 250 is the number of assimilation windows used to estimate the error

statistics.

Figure 2.1 shows the mean of squared background error correlation for each

pair of variables. In this model there are only weak error correlations (〈corr2〉 < 0.03)

between the “extratropical atmosphere” and the other components, whereas the er-

rors in the “tropical atmosphere” and the “ocean” are more strongly correlated
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Figure 2.1: (a) Temporal mean of the squared background error correlation for
each pair of variables, obtained by an offline LETKF run. (b) Temporal mean of
the squared background error correlation for all 81 ordered pairs of variables, in
descending order. Note that the correlation drops off after the first 45 pairs of
variables, which indicates that ENSO-coupling is optimal.

(〈corr2〉 ∼ 0.5). These offline statistics suggest ignoring the background error co-

variance between the extratropical atmosphere and the other components and using

only the background error covariance between the tropical atmosphere and the ocean

when performing data assimilation.

The use of time-mean squared error correlation instead of time-mean error

correlation is supported by a thought experiment. See the blue background PDF of

Figure 1.3, which shows a large positive error correlation between x and z, two state

variables of the Lorenz (1963) model. If we take time-mean of background error

correlation, both on the right and left robes, the mean will be near-zero because of

the symmetry against the x = 0 plane. However, even if the time-mean background

error correlation between x and z is near-zero, the background errors of these two

variables are still relevant to each other; they are sometimes positively correlated
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and sometimes negatively correlated. This average strength of error coupling is

captured by the mean squared error correlation.

Let us conduct another thought experiment for a more realistic system. Imag-

ine a point vortex with uncertain strength exists on a two-dimensional domain, and

its location is accurately known as a function of time. Then we think of error corre-

lation of zonal and meridional winds at the origin. Due to the strength uncertainty,

the zonal and meridional wind errors are negatively correlated when the vortex is

in the first or third quadrant; the errors are positively correlated when the vortex is

in the second or fourth quadrant. If the vortex location (over a period) is symmet-

rically distributed around the origin, then the time-mean error correlation of zonal

and meridional winds at the origin tends to zero. However, these wind errors are

still relevant to each other. Again, mean squared error correlation will be able to

apprehend that these errors are correlated at each instance.

2.3.5 Covariance localization

We test the five covariance localization patterns shown in Figure 2.2.

• Full is the standard SCDA in which every observation is assimilated into the

analysis of every state variable.

• Adjacent uses the background error covariance only between directly interact-

ing components. The background error covariances between the extratropical

atmosphere and ocean are therefore ignored.
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Figure 2.2: Covariance localization patterns tested. Allowed background error co-
variances between components are indicated by shading. Since only the y variables
are observed, only the background error covariances indicated by “+” signs are
actually used in our experiments.

• ENSO-coupling is the pattern suggested by our theoretical analysis and the

offline experiment. The observations of the ENSO-like coupled system (i.e.,

the tropical atmosphere and the ocean) are mutually assimilated, but the

extratropical atmosphere is analyzed individually.

• Atmos-coupling analyzes the extratropical and tropical atmosphere together

but the ocean separately. This pattern separately analyzes the fast and slow

components. This is same as the subsystem localization tested by Singleton

(2011).
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Figure 2.3: Temporal mean analysis root-mean-square error (RMSE) for each exper-
iment. The shading indicates the covariance localization pattern used. The errors in
the extratropical atmosphere, tropical atmosphere, and ocean are separately shown
in each panel. Horizontal lines show the observation errors σatm

o and σocn
o for com-

parison. Each panel is the result of experiments with (a) 4 members (b) 6 members,
and (c) 10 members. Note that the filter diverged in the 4-member Full experiment.

• Individual analyzes each component individually. The background is up-

dated by the coupled model, but the analysis step is individually implemented

for each component, which is equivalent to WCDA for this three-component

model.

2.4 Results

The resulting analysis errors are plotted in Figure 2.3.
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Full (standard SCDA) performs worse than Individual (WCDA) when the en-

semble size is small (K = 4, 6). The negative impact of SCDA in this case is expected

given the rank deficiency and the resulting spurious correlations. As the ensemble

becomes larger, Full gradually becomes better, whereas the analysis accuracy of In-

dividual is not so sensitive to the ensemble size. This result suggests the importance

of a larger ensemble for successful implementation of the strongly coupled LETKF.

As Eq. (2.6) indicates, the assimilation of any type of observations with the

Kalman filter will, on average, not increase the analysis uncertainty if the back-

ground and observation error covariance matrices are accurately specified. When

the ensemble size is sufficient, the assimilation of observations whose background

error is uncorrelated with that of an analysis variable will be neither beneficial nor

harmful since the ETKF converges to the Kalman filter. The number of ensem-

ble members needed for successful implementation of SCDA will be highly model

dependent and may be affected by other factors like the use of covariance inflation.

The ENSO-coupling pattern suggested by the correlation-cutoff method per-

forms best in essentially all experiments, as we expected. In comparison to Individual

(WCDA) and Atmos-coupling, ENSO-coupling is superior regardless of the ensem-

ble size. The inferior performance of Individual and Atmos-coupling is noticeable

in the tropical atmosphere and the ocean, between which these inferior patterns

ignore strong background error covariances. This comparison shows the importance

of including the background error covariances between the tropical atmosphere and

the ocean in this model. In contrast to Full (standard SCDA) and Adjacent, ENSO-

coupling performed well with the smaller ensembles (K = 4, 6), though all patterns
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using the background error covariance between the tropical atmosphere and the

ocean performed similarly well when the ensemble size was large enough (K = 10).

The inferior performance of Full and Adjacent with insufficient ensemble size is seen

in all components and can be attributed to the use of spurious correlations between

the extratropical atmosphere and the other components.

These comparisons support the ENSO-coupling pattern, or the decision of

ignoring the weak background error covariance between the “extratropical atmo-

sphere” and the other components while considering the strong covariance between

the “tropical atmosphere” and the “ocean”, as suggested by Figure 2.1.

2.5 Summary

We first derived a simplified equation for the expected analysis error reduction

when assimilating an observation into the analysis of each model variable. The

experimental results with five different covariance localization patterns support the

intuitive idea that SCDA benefits only when the variables of different components

have strong background error correlations.

We then experimentally showed that the use of background error covariance

in the LETKF could be detrimental when the ensemble size is too small. This

supports the claim of Han et al. (2013) that a large ensemble is needed to improve

the analysis using the full background error covariance. With a limited number of

ensemble members, localizing the background error covariance is essential to obtain

an accurate analysis. We proposed the correlation-cutoff method: first, estimate the
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mean squared background error correlation with an offline DA cycle, then, uncouple

the data assimilation if the background error correlation between the analyzed and

the observed variables is weak. In our experiments with the nine-variable coupled

model of Peña and Kalnay (2004), the correlation-cutoff method, intermediate to

the standard SCDA and WCDA approaches, results in the best analysis and is the

most robust to the choice of ensemble size.

Covariance localization guided by the correlation-cutoff method is a general

idea to increase the signal-to-noise ratio of data assimilation. This method, however,

is particularly important for the SCDA, where the correlation strength between dif-

ferent model components cannot be summarized by a simple function of distance,

as represented by the carbon-dynamics data assimilation of Kang et al. (2011).

Although the distance-dependent localization (Hamill et al., 2001) showed great

success in atmospheric and oceanic DA, it cannot deal with characteristics of the

dynamics that are distance-independent. On the other hand, the squared ensemble

correlation is a nondimensional quantity between 0 and 1, which can be measured

between any pair of observation and model variables. Furthermore, the method is

also applicable before the implementation of SCDA; if a weakly coupled EnKF sys-

tem has been already implemented, by measuring the squared ensemble correlations,

one can assess the variance reduction that could be achieved by implementing the

SCDA in advance. With these two characteristics, the correlation-cutoff method

can be particularly useful for coupled EnKF applications.

In the toy model we used, there was a clear distinction between strongly and

weakly correlated pairs of variables (Figure 2.1), and therefore, it was clear where to
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stop the coupled data assimilation. The application of the correlation-cutoff method

to more complex and realistic system will be explored in Chapter 6.

Most contents of this chapter are first published in Yoshida and Kalnay (2018), whose copyright is

reserved by the American Meteorological Society.
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Chapter 3: Sudden and major changes of dynamics observed in cou-

pled chaotic systems

3.1 Background

For a dynamical system, its Lyapunov exponents characterize, to first order,

the growth of perturbations in the state vector. That is, if a dynamical system has

positive Lyapunov exponents, small differences in the initial conditions will expo-

nentially grow so that it imposes a finite limit to the practical predictability of the

system (Lorenz, 1963). Also, in the data assimilation context, the number of non-

negative Lyapunov exponents is associated to the required minimum necessary en-

semble size such that a non-localized deterministic EnKF cycle converges (Ng et al.,

2011; Trevisan and Palatella, 2011). Furthermore, if we regard the forecast-analysis

cycle as a non-autonomous dynamical system (forced by observation information

from the true trajectory), the absence of non-negative conditional Lyapunov expo-

nents is directly related to the convergence of analysis and synchronization of the

analysis solution to the truth (Penny, 2017). Therefore, the Lyapunov exponents

and their associated subspaces (Lyapunov splitting/vectors) of the atmosphere and

the other dynamical systems has been an active area of research (e.g., Legras and
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Vautard, 1996).

For coupled geophysical dynamical systems such as the atmosphere-ocean sys-

tem, there exist several studies that try to associate each Lyapunov exponent of a

coupled dynamical system with its subsystem by projecting its associated Lyapunov

vector to each subsystem and understand its dynamical origin (e.g., Norwood et al.,

2013; Vannitsem and Lucarini, 2016). The Lyapunov spectrum of the multiple-

timescale coupled systems is characterized by many near-zero Lyapunov exponents

associated to slow or neutral modes and geometrically degenerated covariant Lya-

punov vectors1 (Vannitsem and Lucarini, 2016; Penny et al., 2019). In general,

the Lyapunov exponents of a dynamical system cannot always be associated with

one of its subsystems, especially if the coupling is tight. For an extreme example,

the geopotential and wind fields of the atmosphere are tightly coupled, and the

baroclinic instability resides neither within the geopotential nor wind field.

In this chapter, we do not try to associate each of Lyapunov exponents of the

coupled system deterministically. Instead, we try to answer the following questions:

• When can we associate each Lyapunov exponent of a coupled system with one

of its subsystems?

• How does the coupling strength affect the Lyapunov spectrum if a series of

dynamical systems with incremental coupling strength are examined?

For these purposes, we gradually change the coupling strength between zero (un-

coupled) to the original (coupled) and see how the coupling strength affects the

1That is, given some norm, covariant Lyapunov vectors have small angles with each other.
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Lyapunov spectrum and the attractor’s characteristics.

For this purpose, we use the ENSO-type 6-variable model introduced by Peña

and Kalnay (2004). Despite its simple construction, the 6-variable model exhibits a

realistic chaotic oscillation in its “tropical atmosphere” and “ocean” parts.

3.2 Brief introduction to Lyapunov exponents and vectors

In this section, we briefly introduce Lyapunov exponents and vectors of an

ergodic and nonlinear dynamical system, which have many implications on the sys-

tem’s predictability and stability of data assimilation cycles. The goal of this section

is to provide a feasible algorithm to obtain Lyapunov exponents and vectors given

a nonlinear forward operator of a dynamical system. We do not provide proof of

existence here, and readers are referred to more rigorous materials where necessary.

3.2.1 Tangent linear operator and its adjoint

Assume that an n-dimensional, autonomous, continuous-time dynamical sys-

tem whose tendency is described by a continuous mapping f(x) for a state vector

x ∈ Rn (f : Rn → Rn). We then define a once-differentiable mapping F (·)(·) :

R × Rn → Rn, which satisfies ∂F t(x)/∂t|t=0 = f(x), F 0(x) = x, and F s[F t(x)] =

F s+t(x) for times t, s ∈ R. The mapping F is called a nonlinear forward operator

in the numerical weather prediction context; that is, x(t0 + t) = F t]x(t0)].

For a window length t and a basic state x defined at the beginning of the
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window, we can then define a tangent linear operator Mt
x as

Mt
x =

∂F t(x′)

∂x′

∣∣∣∣
x′=x

, (3.1)

which can be expressed as an n× n matrix. We also write Mt
x(t0) as Mt0→t0+t if the

trajectory x(t0) is obvious from the context2, or we may completely drop the anno-

tation. By definition, a tangent linear operator Mt
x describes how an infinitesimal

perturbation δx added to x will be at the end of the window of length t:

δxt ≡ F t(x + δx)− F t(x) (3.2)

δxt
||δx||

−−−−→
||δx||→0

Mt
xδx

||δx||
. (3.3)

It is also useful to introduce an adjoint M∗ of a tangent linear operator M,

which is characterized by the property 〈x,My〉 = 〈M∗x,y〉 for an appropriate norm

〈·〉 and ∀x,y ∈ Rn. For our Rn formulation and the Euclidean norm, the adjoint

M∗ corresponds to the matrix transpose MT (Kalnay, 2003).

3.2.2 The multiplicative ergodic theorem of Oseledets: the existence

of Lyapunov exponents and covariant Lyapunov vectors

We next introduce the Lyapunov exponents and covariant Lyapunov vectors

guided by Bochi (2008).

We first assume the mapping F t to be invertible. If P (A) is either 0 or 1 for

all t ∈ R and all attractors A ⊂ Rn invariant to F t (i.e., F−t(A) = A), then a

2By definition, Mt0→t2 = Mt1→t2Mt0→t1 .
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probability measure P defined on Rn is said to be ergodic with respect to F 3. With

an ergodic probability measure P of a dynamical system, ergodic theorems prove

that a time-average of some function of the state vector converges to the function’s

space average on the attractor, which is independent of the initial condition and the

length of integration.

Of ergodic theorems, we are interested in the multiplicative ergodic theorem

of Oseledets (Oseledets, 1968; Bochi, 2008). The theorem assures the existence

of Lyapunov exponents and covariant Lyapunov vectors for an ergodic dynamical

system. Although the exponents and vectors will be defined using a specific norm,

the theorem proves that they are independent of the norm under general conditions.

The Lyapunov exponents are k (1 ≤ k ≤ n) distinct numbers unique to the

dynamical system

λ1 > λ2 > ... > λk (3.4)

with positive integer multiplicities di (i = 1, 2, ..., k)4, which satisfy
∑k

i=1 di = n.

3Intuitively, this condition claims that one and only one well-mixed attractor with nonzero

probability measure exists. If two disjoint attractors A,B ⊂ Rn that are invariant to F exist

and if both A and B have nonzero probability measures, the condition is not satisfied. When

two attractors A and B of the mapping F exist, then by re-defining probability measures PA and

PB that are vanishing on the other attractor, we can separately apply ergodic theorems for each

attractor and discuss the system’s characteristics in each basin of attraction.
4We will consistently use i for the index of distinct Lyapunov exponents throughout this section

(i = 1, ..., k). We will later use d (without subscript) for the index of Lyapunov exponents counted

with multiplicity (d = 1, ..., n). Both indices are in descending order (i.e., the first Lyapunov

exponent is the largest positive one).
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Note that the Lyapunov exponents depend on the mapping F and the probability

measure P of the attractor but are independent of the state vector x.

The Lyapunov splitting is a series of linear subspaces (represented by matrices

whose column vectors constitute each subspace’s basis)

E1
x ⊕ E2

x ⊕ ...⊕ Ekx = Rn, (3.5)

defined for P -almost-every x ∈ Rn, where the dimension of the subspace (i.e.,

number of columns of the matrix) Eix is di; each subspace is covariant in a sense

Mt
xEix = EiF t(x), that is, the i-th subspace of the Lyapunov splitting propagated with

the tangent linear operator remains the i-th subspace of the Lyapunov splitting for-

ever. A non-orthogonal basis of each subspace is called covariant Lyapunov vectors ;

for an exponent without multiplicity, there exists a unique covariant Lyapunov vec-

tor up to scalar multiplication.

The Lyapunov exponents and covariant Lyapunov vectors are related by

lim
t→±∞

1

t
log ||Mt

xv
i
x|| = λi for all vix ∈ Eix, ||vix|| = 1, (3.6)

that is, a Lyapunov exponent is the average long-term growth rate of its associated

covariant Lyapunov vectors.

3.2.3 Forward and backward Lyapunov vectors

As a corollary of the multiplicative ergodic theorem of Oseledets, we can also

define forward and backward Lyapunov vectors. The discussion below follows Legras

and Vautard (1996) and Ginelli et al. (2013).
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First, we obtain matrix limits called forward (+) and backward (−) Oseledets

matrices

Ξ+
x = lim

t→+∞

1

2t
log
(
MtT

x Mt
x

)
Ξ−x = lim

t→+∞

1

2t
log
(
Mt

F−t(x)M
tT
F−t(x)

)
,

(3.7)

which are symmetric and proved to exist under the same hypothesis of the multiplica-

tive ergodic theorem of Oseledets. These two matrices share the same eigenvalues

λ1 > λ2 > ... > λk independent of x, which correspond to the Lyapunov exponents

defined by Eqs. (3.4) and (3.6).

Then we obtain orthogonal eigenspaces U±(i)
x ∈ Rn×di (i = 1, ..., k) of the Os-

eledets matrices Ξ±x by eigendecomposition. The i-th eigenspaces associated with

eigenvalue λi have dimension di, the multiplicity of the Lyapunov exponent. Orthog-

onal bases of these eigenspaces are called forward and backward Lyapunov vectors.

For the future discussion, we define n × n orthogonal matrices U±x whose columns

are forward/backward Lyapunov vectors in descending order. Note the forward and

backward Lyapunov vectors are norm-dependent and not covariant.

We then construct two sequences of embedded subspaces called Oseledets sub-

spaces defined by

Γ+(i)
x =

k
⊕
j=i

U+(j)
x

Γ−(i)
x =

i
⊕
j=1

U−(j)
x ,

(3.8)

which satisfy

Rn = Γ+(1)
x ⊃ ... ⊃ Γ+(k)

x ⊃ Γ+(k+1)
x ≡ φ

Rn = Γ−(k)
x ⊃ ... ⊃ Γ−(1)

x ⊃ Γ−(0)
x ≡ φ

(3.9)
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and

Eix = Γ+(i)
x ∩ Γ−(i)

x (3.10)

for i = 1, ..., k, where (covariant) Lyapunov splitting Eix is defined in Eq. (3.5). We

note that almost every5 random vector in the i-th forward Lyapunov splitting Γ+(i)
x

will grow exponentially at average speed λi in the future. Similarly, almost every6

random vector in the i-th backward Lyapunov splitting Γ−(i)
x has exponentially grown

at average speed λi in the past.

3.2.4 Numerical methods for obtaining Lyapunov exponents and vec-

tors

So far, we have obtained constructive definitions of the Lyapunov exponents

and covariant/forward/backward Lyapunov vectors by Eqs. (3.1) and (3.7) - (3.10)

for a given nonlinear forward operator F . However, practically we cannot obtain

the exponents and vectors directly from the definition because the evaluation of Eq.

(3.7) requires evaluation of exponential functions of t. Computers can only handle

real numbers with finite precision and range, and the exponential growth leads to

computational overflow/underflow even with reasonably small t.

To overcome this issue, we exploit Eqs. (3.6), (3.9), and (3.10). Assume that

we can uniquely define a space spanned by the first d (d = 1, ..., n) Lyapunov vec-

tors (i.e., there exist 1 ≤ id ≤ k such that
∑id

i=1 di = d). With t → +∞, a random

5Exceptions are vectors in Γ+(i+1)
x . Thanks to the relationship (Eq. 3.9) and the dimensionality

of each subspace, this probability is zero for uniformly random vectors in Γ+(i)
x .

6Exceptions are vectors in Γ−(i−1)x .
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d-dimensional linear subspace of Rn defined at time −t (i.e., far past) almost surely

converges to the d-dimensional subspace spanned by the first d backward Lyapunov

vectors (at time 0) if it is propagated with a tangent linear operator M−t→0. Simi-

larly, with t→ +∞, a random d-dimensional linear subspace of Rn defined at time t

(i.e., far future) almost surely converges to the d-dimensional subspace spanned by

the first d forward Lyapunov vectors (at time 0) if propagated back with an adjoint

operator MT
0→t. Therefore, without explicitly calculating Oseledets matrices Ξ±x , we

can estimate the orthogonal spaces spanned by first d forward/backward Lyapunov

vectors. When propagating a space with the tangent linear operator and its ad-

joint, we can divide t into many small windows and regularly orthonormalize the

space’s basis to avoid overflow/underflow; see footnote 2. At the same time, we can

estimate the Lyapunov exponents by calculating the mean logarithm of the growth

rate of the orthogonal vectors. Algorithm 1 summarizes the procedure described in

this paragraph. This algorithm is also applicable for obtaining Lyapunov exponents

and vectors even if the Lyapunov spectrum has multiplicity; the resulting vectors

are one realization of non-unique basis vectors.

After obtaining estimated forward/backward Lyapunov vectors, covariant Lya-

punov vectors for each time are obtained by Eqs. (3.8) and (3.10). The intersection

of two subspaces can be obtained using the singular value decomposition.

Although there is another computational issue, namely that the computation

and memory costs grow at O(n4t) and O(n2t), the present algorithm is practical for

our purposes with small models. If we are only interested in obtaining few leading

Lyapunov exponents and vectors of a large dynamical system, there exist a few
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Algorithm 1: Gram-Schmidt method to obtain Lyapunov exponents and for-
ward/backward Lyapunov vectors. Note that backward Lyapunov vectors near
the beginning of the procedure and forward Lyapunov vectors near the end of
the procedure can be inaccurate due to spin-up.

Symbols for non-local variables:
x0: State vector at time 0
∆t: Orthonormalization interval (short enough to avoid overflow/underflow)
m: Number of orthonormalization windows

(as long as we afford; results are calculated from time 0 to m∆t)
j: Time index (0, 1, ...,m)

λ̂: Estimate of Lyapunov exponents in descending order
(n-vector; counted with multiplicity)

Û
±
t : Estimate of forward/backward Lyapunov vectors U±x(t)

QR(·): QR decomposition (returns two matrices)

Other symbols (n, F , and M) as defined in the text

function Gram-Schmidt Lyapunov(x0, ∆t, m)
. Get tangent linear operators

1 for j in 1, ...,m do
2 Compute and store M(j−1)∆t→j∆t using x(j−1)∆t

3 xj∆t ← F∆t
[
x(j−1)∆t

]
4 end
5

. Get backward Lyapunov vectors and exponents

6 Û
−
0 ← Q of QR(a random n× n matrix)

7 for j in 1, ...,m do

8 Û
−
j∆t,R(j−1)∆t→j∆t ← QR(M(j−1)∆t→j∆tÛ

−
(j−1)∆t)

9 γ(j−1)∆t→j∆t ← diagonal of R(j−1)∆t→j∆t . No sort by values

10 end

11 λ̂← 1
m∆t

∑m
j=1 lnγ(j−1)∆t→j∆t

12

. Get forward Lyapunov vectors

13 Û
+

m∆t ← Q of QR(a random n× n matrix)
14 for j in m,m− 1, ..., 1 do

15 Û
+

(j−1)∆t,Rj∆t→(j−1)∆t ← QR(MT
(j−1)∆t→j∆tÛ

+

j∆t)

16 end
17

18 return λ̂, {Û
−
j∆t}, {Û

+

j∆t}
end function
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algorithms to alleviate the cost; see Ginelli et al. (2013) and the references therein.

3.3 Methods

3.3.1 The coupled model and decoupling

We will now observe how the Lyapunov spectrum and other characteristics of

the attractor of a coupled model vary when the coupling strength is continuously

varied from the zero (uncoupled) to original (coupled).

For a simple but realistic model of a coupled chaotic dynamical system, we

use the 6-variable, “ENSO” type model of Peña and Kalnay (2004). The prognostic

equations of the model are as follows:

ẋt = σ(yt − xt)− αc(SX + k2)

ẏt = rxt − yt − xtzt + αc(SY + k2)

żt = xtyt − bzt + αczZ

Ẋ = τσ(Y −X)− αc(xt + k2)

Ẏ = τrX − τY − τSXZ + αc(yt + k2)

Ż = τSXY − τbZ − αczzt.

(3.11)

Here, x ≡ (xt, yt, zt, X, Y, Z)T represents state variables, a coupling strength param-

eter α = 1 is introduced (and will be modified), and other parameters are kept the

same as the original values, namely, (σ, r, b, τ, c, cz, S, k2) = (10, 28, 8/3, 0.1, 1, 1, 1,−11).

The dots above the state variables represent their temporal derivative. In compari-

son to the 9-variable model used in the previous chapter, this 6-variable model does
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not have the “extratropical atmosphere” for further simplicity. Note that the terms

including α are not diffusive and do not contain the time derivative. For example,

if the third equation was instead żt = xtyt − bzt + αcz(Z − zt), increasing α would

increase the diffusivity and stabilize the system.

This model is integrated using the fourth-order Runge-Kutta method with a

timestep of 0.01 nondimensional time unit (TU). This single (external) integration

step can be denoted as F 0.01TU in the previous section’s notation, and hereafter we

only think time intervals that are multiples of 0.01 TU. The tangent linear operator

M0.01TU
x is obtained by numerical differentiation of F 0.01TU around the basic state

x.

The original six-variable coupled model (α = 1) has Lyapunov exponents of

(0.318, 0, -0.47, -0.794, -1.811, -12.276) in our previous experiment; the model has

one positive, one near-zero, and four negative exponents.

On the other hand, the three Lyapunov exponents of the Lorenz (1963) model

with the proposed parameters are numerically known to be (0.906, 0, -14.572)

(Sprott, 1997). Our tropical atmosphere (the first three equations of Eq. 3.11)

is the same as the Lorenz model when uncoupled (α = 0). In addition, the uncou-

pled ocean (the last three equations of Eq. 3.11 with α = 0) should have Lyapunov

exponents of (0.0906, 0, -1.4572); these values are one-tenth of the ones for un-

coupled tropical atmosphere because the entire tendency equation is multiplied by

τ = 0.1, and the dynamics is unchanged except that it is ten times slower. With

these combined, the six-variable uncoupled (α = 0) model should have Lyapunov

exponents of (0.906, 0.0906, 0, 0, -1.4572, -14.572), which is numerically validated
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(the leftmost values of Figure 3.1 later).

The uncoupled three-variable model is designed to represent a hydrodynamic

flow, by trigonometric decomposition of two-dimensional (one horizontal and one

vertical dimensions) convective dynamics forced by vertical temperature gradient;

variable X represents the convective motion, and variables Y and Z represent the

horizontal and vertical temperature gradient perturbations, respectively (Lorenz,

1963). Therefore, the coupled model (Eq. 3.11) couples the momentum terms

(xt, X) and two pairs of thermal terms (yt, Y ) and (zt, Z), respectively. The k2

terms are introduced as an “uncentering” parameter, which can be thought as the

mean state felt by the other subsystem. As a result of coupling, the model exhibits

an asymmetric coupled oscillation with chaotic periods like ENSO; for example, the

ocean variable X experiences occasional large negative anomaly (analogous to an El

Niño), followed by several cycles of “normal years” (see Figure 3.2d later).

3.3.2 Experimental settings

Our main experiments vary the coupling strength parameter α within a range

[0, 1] by an interval of 0.005 and observe the system’s Lyapunov exponents and the

attractor’s other characteristics. For each value of α, the following procedure is

repeated to correct data:

1. We randomly initialize an initial state vector x(t = 0) ∈ N (0, 1002). The

initial variance of 1002 is determined to roughly cover the attractor. The

random initial state is independent for each value of α so that the results
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represent the entire basin of attraction.

2. We integrate the model for 5,000 TU to obtain x(t = 5,000 TU). This state

vector x(t = 5,000 TU) is expected to be a random sample from the attractor

due to ergodicity.

3. Using Algorithm 1 with arguments x(t = 5,000 TU), ∆t = 0.01 TU, and

m = 500,000, we obtain the estimate of Lyapunov exponents and vectors.

The trajectory x(t) for 5,000 ≤ t ≤ 10,000 TU is also saved for later examina-

tions. The random matrices to initialize Û
−
0 and Û

+

m∆t are sampled from the

multidimensional normal distribution so that each column vector’s direction

before orthonormalization is uniformly random in the R6 space. The random

vectors are independently sampled for each α.

3.4 Results

First, we investigate Figure 3.1, which shows that the Lyapunov exponents are

not continuously dependent on the coupling strength. The most prominent change

occurs between α = 0.22 and α = 0.225. We define this threshold as α1. When

we change from α < α1 to α > α1, the largest positive exponent disappears; at

the same time, another neutral mode (i.e., a near-zero exponent) appears. We also

notice that with α < α1, two neutral modes co-exist. However, it is well known

that a continuous-time, autonomous, and ergodic dynamical system has at least one
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(a)

(b)

Figure 3.1: Lyapunov exponents of the 6-variable model. (a): entire spectrum. (b):
magnification of the first five exponents. For each value of α, a red dot represents
the largest positive exponent of the system; orange, yellow, green, blue, and purple
follows.
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neutral exponent corresponding to temporal translation7. Similarly, if a dynamical

system has two non-interacting subsystems, then the system should have at least two

null Lyapunov exponents (counted with multiplicity), whose associated covariant

subspace contains the temporal translations in the two subsystems. Note that its

converse does not hold; a counterexample is a harmonic oscillator with two degrees

of freedom, which has two null Lyapunov exponents, but the two degrees of freedom

are interacting. We may interpret that the two temporal translation modes, each

originating from each uncoupled subsystem, are intact until we increase α to exceed

α1. Overall, the models with α < α1 are, from the Lyapunov spectrum perspective,

qualitatively same with a dynamical system with two uncoupled subsystems.

We can also find for some values of α > α1, no positive Lyapunov exponent

exist (e.g., α ∼ 0.56). These values of α are called periodic windows (e.g., Chapter

10 of Strogatz, 2015) and later examined in detail. Each model with α > α1 has a

single unstable mode (positive exponent) and a single null exponent except for the

periodic windows.

Let us look at other characteristics of the models with different coupling pa-

rameter α, especially those with values close to α1.

Figure 3.2 shows time series x(t) (9,900 ≤ t ≤ 10,000 TU) with different values

7For the mapping F , x ∈ Rn, and δt ∈ R, a nonlinear perturbation F δt(x) − x will be

F t[F δt(x)]−F t[x] = F δt[F t(x)]−F t[x] after time t. However, if x is randomly sampled from the

attractor, due to ergodicity, random variables x and F t(x) share the same probabilistic measure

for any t. Therefore, in particular,
〈
||F δt(x)− x||

〉
=
〈
||F δt[F t(x)]− F t[x]||

〉
is satisfied for any

δt.
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of α. Note that the first two panels correspond to α < α1, and the last two panels

correspond to α > α1. First, with α = 0.0 (panel a), the two systems are completely

independent. Then with α = 0.2 (panel b), we notice that the state evolution is

very similar to the previous case. When we increase α slightly beyond α1 (panel

c), the fast atmospheric oscillation suddenly disappears. Although it is hard to see

from the panel, the atmosphere is synchronized with the ocean oscillation with small

amplitude. By increasing α further toward unity (panel d), the amplitude and the

frequency of both the atmosphere and the ocean variations increase. This change

between panels (c) and (d) is rather gradual (not shown). Most of these features do

not contradict with what we can infer from the change of the Lyapunov spectrum.

To further investigate how parameter α affects the dynamics, we show pairwise

scatter diagrams of attractors in Figure 3.3. First, with α = 0.0 (panel a), we notice

that cross-relationships between (xt, yt, zt) and (X, Y, Z) shown in the nine lower left

subpanels are obviously independent. Here, two scalar random variables A and B are

called independent if for all a and b ∈ R, P{A ≤ a,B ≤ b} = P{A ≤ a}P{B ≤ b}.

This independence is also supported by near-zero mutual information

∫
B

∫
A

p(a, b) log2

[
p(a, b)

p(a)p(b)

]
da db (3.12)

between these variables, where p denotes the probability density function. If mutual

information is large between two variables, having access to climatological informa-

tion, we can infer one variable’s value with good accuracy given the other variable’s

value. The nearly independent behavior between (xt, yt, zt) and (X, Y, Z) persists

even if we increase α to 0.2 (panel b) although the slightly increased mutual in-
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(a) (b)

(c) (d)

Figure 3.2: Sample time series of the models with different α values (written in
each panel). The ordinate ranges shown are xt, yt ∈ [−25, 25]; zt ∈ [0, 60];X, Y ∈
[−100, 100]; and Z ∈ [−70, 130].
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(a) α = 0.0 (b) α = 0.2

(c) α = 0.3 (d) α = 1.0

Figure 3.3: Two-dimensional projections of attractors x(t) for 5,000 ≤ t ≤ 10,000
TU with different α values (written in each panel). The color shows the relative
frequency of each pair of values on a log scale. Superimposed numbers show mutual
information between the two variables in bits. The mutual information is calculated
after dividing each variable’s range into 100 bins with regular intervals. The abscissa
and ordinate ranges are automatically adjusted for each panel and not shown for
conciseness; see Figure 3.2 instead for obtaining a sense of variabilities.
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(a) (b)

Figure 3.4: Same as Figures 3.2 and 3.3 but for α = 0.56.

formation between (xt, yt) and (X, Y ) indicate weak mutual dependence. The two-

dimensional projections of the attractor look totally different when α is increased

beyond α1 (panels c and d). We can see distinct structures in the scatter diagrams,

which show that these pairs of variables are closely interacting. Values of mutual

information also support the tight coupling of these variables.

We have seen that the model has no positive Lyapunov exponents for some

values of α (periodic windows; Figure 3.1). Figure 3.4 shows a time series and two-

dimensional projection of the attractor for such value of α. First, we notice that the

trajectory is a closed loop in the panel (b), most obviously in the relation between

Z and Y . An autonomous system with a closed loop must be periodic, as we can see

in panel (a) that there exists a period of ∼18 TU. As expected from the Lyapunov

spectrum, the 6-variable model has a periodic attractor with these α values. This

periodic orbit is examined to be attracting by repeating experiments with a few

different initial conditions.
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3.5 Discussion and remarks

We have shown that the Lyapunov spectrum of two chaotic subsystems with

very different timescales experiences a qualitative and sudden change when the sub-

systems are coupled gradually.

When the chaotic subsystems have the same or similar dynamics and the

timescales, a behavior known as synchronization of chaos (Pecora and Carroll, 1990;

Pecora et al., 1997) is observed; for one-way coupling, this is characterized by all the

conditional Lyapunov exponents of the response system gradually becomes negative

as increasing coupling strength (e.g., Rosenblum et al., 1996; Liu et al., 2003). Our

study showed a similar, abrupt change of dynamics in a coupled dynamical system

with very different timescales.

The original coupled model of Peña and Kalnay (2004) (α = 1) is constructed

mimicking the strong coupling between chaotic tropical atmospheric weather with

the slow ocean, which also is chaotic. Each subsystem is designed to represent a

hydrodynamic flow by trigonometric decomposition of two-dimensional convective

dynamics forced by vertical temperature gradient. With α > 0, the two subsystems

are coupled both kinetically and thermally. Therefore, the model developers called

this coupled model as “ENSO type”, indicating that this coupling process closely

resembles that of the tropical atmosphere-ocean system, where the anomalous wind

stress drives the SST anomaly, which in turn drives anomalous wind circulation

(Bjerknes feedback). It is therefore interesting to see that these two subsystems

originating from fluid mechanics do not just affect each other but also modify the
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other subsystem’s dynamics dramatically through thermal and mechanical coupling.

Such discontinuous sensitivity to the coupling strength may also apply to more

realistic coupled geophysical subsystems, whose coupling strength can vary geologi-

cally and dynamically. For example, the momentum coupling strength between the

atmosphere (say top of the boundary layer) and the ocean (say a few meters depth)

will be affected by wave height and by vertical mixing coefficient within each fluid,

which in turn are affected by wind speed and vertical stability. For some regimes,

these subsystems may be tightly coupled and mutually provide a good amount of

information, while for another regime, these subsystems may behave as if they were

irrelevant to each other.

Another implication of our results is that a slight misspecification of the model

coupling parameters may cause severe over or under-estimation of uncertainty by its

model-based estimate such as ensemble forecast. In our example, if our best estimate

of α is greater than α1 but the true α is less than α1, then our estimate of coupled

predictability will be too optimistic (and vice versa). The nonlinear sensitivity

will also render parameter estimation difficult, where observable quantities of the

attractor discontinuously depend on the model parameter.

Further investigation is needed for more realistic coupled models of the atmo-

sphere and ocean, especially those with multiple positive Lyapunov exponents (i.e.,

hyperchaotic models) and abilities to reproduce coupled instabilities like ENSO.
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Chapter 4: Implementation of FOAM-LETKF

In this short chapter, we describe a FOAM-LETKF system, that will be com-

monly used for the two subsequent chapters.

4.1 Fast Ocean Atmosphere Model (FOAM)

4.1.1 FOAM specifications

To test our coupled data assimilation methodologies, we employ a more re-

alistic coupled model of the atmosphere and ocean, the Fast Ocean Atmosphere

Model (FOAM; Jacob, 1997). We acknowledge that the model program and guid-

ance on implementation of an analysis system are kindly provided by Dr. Yun Liu.

The model is a coupled general circulation model (GCM) efficiently implemented

for multi-processing and represents the atmosphere and the ocean as well as simple

parameterized processes of sea ice, land, and river runoff. Table 4.1 summarizes

FOAM’s general specifications.

The atmospheric component of the model, PCCM3, originates from the third

version of the NCAR Community Climate Model (CCM3) with modifications for

parallel computers. The dry dynamics of PCCM3 uses the spectral method for
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Table 4.1: Specification of the Fast Ocean Atmosphere Model (FOAM), version 1.5.

Atmospheric model (PCCM3)

Horizontal resolution R15 spectral (40 latitudes × 48 longitudes)

Vertical resolution 18 levels (hybrid σ-p)

Integration timestep 30 minutes
1 hour for radiation

Parameterized schemes Convection
Cloud
Radiation
Surface physics
Vertical diffusion
Gravity wave drag

Oceanic model (OM3)

Horizontal resolution 128 latitudes × 128 longitudes (polar grid)

Vertical resolution 24 levels (z-coordinate)

Integration timestep 6 hours

Vertical mixing scheme Bulk scheme (based on Richardson number)

Sea ice (CSIM 2.2.6)

Horizontal resolution 128 latitudes × 128 longitudes (same as ocean)

Integration timestep 30 minutes

Modeled processes Formation/melting
Thermal conduction
Snow on top
Radiation

Land, Hydrology, and River Runoff

Horizontal resolution 128 latitudes × 128 longitudes (same as ocean)

Integration timestep 30 minutes
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solving the primitive equations on the sphere, but the moisture advection is com-

puted with the semi-Lagrangian scheme. The model has 18 hybrid sigma-pressure

coordinate levels and resolves the spectral modes up to 15 zonal and meridional

wavenumbers (rhomboidal truncation; R15). This horizontal configuration corre-

sponds to 40 grids in latitudinal direction (approximately 500 km) and 48 grids in

the longitudinal direction (approximately 830 km at the equator). The subgrid,

moist, and radiative physics are parameterized. The prognostic variables of the

model are surface pressure, temperature, specific humidity, and zonal/meridional

components of the wind.

The ocean component of the model (Ocean Model version three developed

at the University of Wisconsin-Madison; OM3) uses the finite-difference represen-

tation of the primitive equations with hydrostatic and Boussinesq approximations.

The ocean model has 24 vertical levels in z-coordinate with a free surface. The

global ocean is divided into 128 × 128 horizontal (latitude-longitude) grid boxes.

Numerical instability in the Arctic is avoided by application of a spatial filter. The

oceanic prognostic variables are temperature, salinity, zonal/meridional components

of current, and the surface pressure anomaly. The vertical mixing is parameterized,

with the mixing length depending on the Richardson number (i.e., it depends on

the mechanical shear and static stability).

Coupling between the atmosphere and the ocean is implemented as follows.

First, the ocean model provides an SST field to the coupler, and similarly, the sea

ice/land models provide surface moisture, temperature, roughness, and albedo. The

coupler is a subroutine of the atmospheric model and computes the heat, momentum,
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and freshwater fluxes; the atmospheric state is updated consistently. The total heat

flux TH (in W/m2) is

TH = SW + LW + SH + LH , (4.1)

where SW and LW are shortwave and longwave radiations, and SH and LH are

sensible and latent heat fluxes (positive downward). The total freshwater flux FW

(in kg/m2s) is

FW = P − E + Rnf + SI , (4.2)

where P is the precipitation, E is the evaporation, Rnf is the runoff from the river

model, and SI is the water gain from sea ice melting (negative for sea ice formation).

Then, the fluxes are accumulated over a 6-hour window before passed to the ocean

model. Finally, the fluxes are used to update the ocean state at the top layer:

∂T

∂t
=

TH

ρhCocn
p

∂ lnS

∂t
= −FW

ρh

∂u

∂t
=
τx
ρh

∂v

∂t
=
τy
ρh
.

(4.3)

Here, (T, S, u, v) are the oceanic prognostic variables (temperature, salinity, zonal

current, and meridional current, respectively), ρ is the mean density of sea water, h

is the thickness of the top ocean level, (τx, τy) are the momentum fluxes (in N/m2),

and Cocn
p is the specific heat of sea water.

The flux calculations in the coupler follow the CCM3 parameterizations (Kiehl

et al., 1996). Here, we review only important flux calculations over the ocean. The
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sensible heat flux SH , evaporation E (proportional to the latent heat flux LH ), and

momentum fluxes (τx, τy) follow the bulk formulae:

SH = ρACpCHU0(θ0 − SST )

E = ρACEU0[q0 − qsat(SST )]

τx = ρACMU0u0

τy = ρACMU0v0.

(4.4)

Here, (CH , CE, CM) are the transfer coefficients for sensible heat, evaporation, and

momentum (which depend on the atmospheric vertical stratification and the wind

speed), Cp is the specific heat of the air at constant pressure, ρA is the density of the

air, (θ0, q0, U0 =
√
u2

0 + v2
0) are the potential temperature, the specific humidity, and

the wind speed at the bottom level, (u0, v0) are the wind velocity in the zonal and

meridional directions at the bottom level, and qsat is a saturation specific humidity

over the ocean as an exponential function of SST (SST ).

The land and sea ice components of the model are computed at the same

horizontal resolution as the ocean and interchange the fluxes with the atmosphere

through the coupler. The sea ice model predicts sea ice thickness, fraction, temper-

ature, as well as snow depth on it. Lateral and vertical formation/melting, thermal

conduction, and radiation in the sea ice are modeled (Bettge et al., 1996). The

existence of sea ice modifies surface roughness and albedo.

From a software perspective, the non-atmosphere components of the coupled

model are implemented as the subprocesses of the atmospheric model and serially

coupled with the other components. The FOAM utilizes collocated two-dimensional
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decomposition for parallel computing (i.e., each process computes the same hori-

zontal portion of the atmosphere, ocean, and the other components). The model

source code is compiled into a single executable, and the message passing inter-

face (MPI) is employed for the parallel implementation. When 16 processors of

the Deepthought2 cluster at the University of Maryland (Ivy Bridge, 2.8 GHz) are

employed, the model finishes a 50-model-year integration within three hours. The

computational efficiency of the model is essential for an early-stage study of cou-

pled DA since EnKFs need to run tens of ensemble members in parallel. Besides,

a coupled model has longer spin-up time than an atmospheric model, which means

we need more extended experiments to evaluate the method accurately.

4.1.2 FOAM characteristics

We briefly examine and review the relevant characteristics of the model in this

subsection. We focus on the model’s inherent ability to reproduce internal vari-

abilities, especially those originating from the atmosphere-ocean interaction (e.g.,

ENSO). However, quantitative comparisons of the model climate to the real climate

is omitted because all of the subsequent assimilation experiments are conducted in

a perfect-model scenario.

The model is integrated for 250 years from the sample initial condition pro-

vided by the model developers1. With this long integration, we can examine the

model’s climatology as well as its seasonal and interannual variabilities.

We first examine the discrepancy between the initial condition and the model’s

1ftp://ftp.mcs.anl.gov/chammp/foam, last accessed June 24, 2019.
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Figure 4.1: Monthly temporal anomaly of Niño3.4 regional (5◦S-5◦N and 170-120◦W)
average sea surface temperature. The anomaly is defined as the difference from the
average of 250 instances on the same day of a year. For visualization purpose, a
five-month running mean is applied to the anomaly.

attractor. Figure 4.1 shows the temporal anomaly of Niño3.4 regional average sea

surface temperature (SST); the variable is chosen to represent the prominent in-

terannual variabilities. We notice that the Niño3.4 SST has a downward drift of

roughly 2 Kelvins in the first 150 years of the integration. In contrast, the last 100

years show almost no signs of drift. Although some variables including the tem-

perature of the deep ocean continue to drift in the timescale of thousands of years

(examined in an independent experiment; not shown), for our purpose of real-time

analysis and reanalysis experiments, 150-year spin-up is long enough for the model

to settle on its attractor. Therefore, later in this subsection, we exclusively examine

the last 100 years of this integration as the model’s climatological behavior.

Next, we check the annual mean state to see if the model’s climatology is a

reasonable representation of the real atmosphere-ocean system. Figure 4.2 shows

the annual mean climatology of SST and the ocean temperature at the equator. In

the top panel, we can see that the warm pool extends over the Indian Ocean and
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Figure 4.2: One hundred year average of the ocean temperature. Within the 100-
year period, Total 1200 instances on the first day of each month are averaged. Top:
sea surface temperature. Bottom: ocean temperature cross-section at the equator.
The y-axis of the bottom panel shows depth in meters, and the color bar shows the
temperature in degrees Celsius.

the Maritime Continents. In comparison to the observed sea surface temperature

(e.g., Figure 7.14 and 8.9 of Hartmann, 2016), the tropical and equatorial sea surface

temperature in the model is colder by a few Kelvins. However, the model successfully

reproduces 3-5 K East-West temperature gradient at the equatorial Pacific, which

should be the result of the atmospheric Walker circulation coupled to the oceanic

model.
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Figure 4.3: Same as Figure 4.1 but only the last 100 years is shown; the anomaly is
defined against the 100-year average.

One of the primary expectation on the seasonal prediction by the atmosphere-

ocean coupled models is to reproduce the El Niño Southern Oscillation (ENSO)

variability, which is thought to be an intrinsically coupled mode explained by the

Bjerknes feedback. Figure 4.3 shows the temporal anomaly of the Niño3.4 regional

mean SST. Although the amplitude (∼1 K) is insufficient and the period (a few

years) is too short, the model exhibits anomalous SST at the region at the inter-

annual time scale. Since the El Niño variability is the largest variability of the sea

surface temperature in seasonal to interannual timescales, the variability is expected

to appear in the empirical orthogonal function (EOF) analysis. Figure 4.4 shows

the result of the EOF analysis. The EOF analysis is applied to the monthly sea

surface temperature field over the 100 years. Since monthly data is used, high-

frequency variabilities with period shorter than one month are implicitly filtered.

In panel (a), we can see that the EOF1 corresponds well to the known El Niño

variability. Comparing Figure 4.4(c) with Figure 4.3, we see that the variation of

Niño3.4 explains well the first principal component (PC1) time series. Hence the El
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Figure 4.4: The first two empirical orthogonal functions (EOFs) calculated from
the monthly, 100-year time series of the sea surface temperature. Top row: the first
and second EOFs normalized by the variance of each grid, i.e., each grid value’s
temporal correlation to the principal component. Bottom row: The time series of
the first and second principal components (PCs).

Niño naturally appears as the largest internal SST variability of this model. The

second EOF shown in panel (b) resembles the north Pacific oscillation (Deser and

Blackmon, 1995; Hartmann, 2015) whose typical timescale is slightly shorter than

that of ENSO (panel d).

Finally, we examine the seasonal variation of the atmospheric circulation, in-

cluding the Asian Monsoon. Figure 4.5 shows the 100-year average wind field at the

bottom model level on January 1st and July 1st. From the figure, we can first no-
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tice some features prevalent throughout the year; the most prominent is the strong

westerly wind at 45◦S surrounding Antarctica. Some other features are seasonally

varying. For example, in the boreal winter (upper panel), we can see cyclonic circu-

lation at the northernmost Pacific, which corresponds to the Aleutian low. We can

also see that the northeasterly wind is prevalent over India and Southeast Asia. In

the boreal summer (lower panel), the dominant wind direction over India and South-

east Asia is southwesterly, which advects moisture from the ocean to the continent.

In the northern Atlantic, anti-cyclonic circulation corresponding to the Bermuda

high is also apparent. These continental-scale, seasonally dependent surface wind

circulations closely resemble that of the real atmosphere (e.g., Figure 1.19 of Wallace

and Hobbs, 2006).

From these observations, we can conclude that this affordable coupled model

has good overall abilities to represent the global variabilities observed in the atmo-

sphere and the ocean, and it is suitable for our purpose of exploring coupled data

assimilation methodologies.

4.2 Observation network

In order to evaluate DA methodologies in idealized settings, we will conduct

observation system simulation experiments (OSSEs), which mimic the data assim-

ilation applications. In an OSSE, the true atmosphere-ocean state to be estimated

is simulated by an integration of a numerical prediction model, which is referred

to as the “nature run” or the “simulated truth”. Then, the state of the nature
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Figure 4.5: One-hundred-year average of bottom-level wind fields of different sea-
sons. The bottom model revel roughly corresponds to 992.5 hPa. The arrows’ length
represent the wind speed, with the arrow at the bottom being 15 m/s. Top: boreal
winter (January 1st). Bottom: boreal summer (July 1st).
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run is imperfectly observed by simulated observations, which are functions of the

simulated true state plus an observation error:

yo = h(xtruth) + εo, (4.5)

where h and xtruth are the observation operator and the simulated true state, and

εo ∼ N (0,R) is the observation error for the observation error covariance matrix R.

It is impossible to perfectly know the true state from these observations because the

number of observations available p is much smaller than the number of unknown

state variables n, and the observations are erroneous. This setting simulates the

actual data assimilation applications, where we can only infer the true state through

imperfect observations that only partially cover the domain.

Observation system simulation experiments have certain advantages and dis-

advantages compared to experiments with real observations. One major advantage is

that we can evaluate the analysis/forecast accuracy by comparing it to the “truth”,

which is unknown in the real applications. It also eliminates the imperfections in

the dynamical model M , observation operator h, and observation error covariance

R if these imperfections are not of interest. This ideal setting enables us to isolate

the differences caused by DA methods, and effectively investigate DA methodology.

In designing an OSSE, it is important to simulate the observability of the

real system sufficiently well. The real observing network is highly nonuniform. For

example, conventional atmospheric observations such as radiosondes, are mostly

available over land and thus more densely distributed over the northern hemisphere.

The observation networks simulated and assimilated are shown in Table 4.2 and
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Radiosonde: 500 stations, 25500 observations
(a)

Ship: 87 stations, 609 observations
(b)

Radiance: 1164 stations, 25608 observations
(c)

Surface: 2104 stations, 4208 observations
(d)

Argo: 202 stations, 11568 observations
(e)

Figure 4.6: Horizontal distribution of assimilated observation networks listed in
Table 4.2. The ship and Argo observations are randomly generated and vary with
time. The ship locations are sampled from historical Voluntary Observing Ship
program (VOS) locations to simulate its nonuniform distribution while Argo float
locations are uniformly random over the model ocean.

Figure 4.6. For some experiments, the quasi-uniform observation network of Figure

4.7 is also used.
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Table 4.2: Observation networks simulated and assimilated. For vertical profile
observations (radiosondes, radiance, and Argo floats), each model level is directly
observed; i.e., the observation operator only incorporates horizontal interpolation.

Observation
type

Observed
element

(error STDV)

Approx.
horizontal
number

of stations

Vertical
availability

(Atmosphere)

Radiosondes

U, V (1 m/s)
T (1 K)

Q (0.1 g/kg)
Ps (1 hPa)

500
Up to 100 hPa

(500 hPa for Q)

Satellite
radiance

T (2 K)
Q (0.2 g/kg)

1000
Up to 100 hPa

(500 hPa for Q)

Ship

U, V (1 m/s)
T (1 K)

Q (0.1 g/kg)
Ps (1 hPa)

100
Surface

(bottom level)

(Ocean)

Ship
T (1 K)

S (0.1 PSU)
100

Surface
(top level)

Satellite
SST, SSH

T (1 K)
SSH (1 cm)

2000
Surface

(top level)

Argo floats
U, V (1 cm/s)

T (1 K)
S (0.1 PSU)

200 Down to 2000 m
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(a)

(b)

Figure 4.7: The quasi-uniform observation network used for some experiments. (a):
atmospheric variables (T,Q, U, V, Ps) are observed in the bottom 12 levels with ob-
servation error standard deviations of (1 K, 1 g/kg, 1 m/s, 1 m/s, 1 hPa), respec-
tively. (b): oceanic variables (T, S, U, V ) are observed in the top 12 model levels
with observation error standard deviations of (0.1 K, 0.01 PSU, 1 cm/s, 1 cm/s),
respectively.
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4.3 Data assimilation system: FOAM-LETKF

We have implemented a strongly-coupled atmosphere-ocean LETKF system

for our experiments (FOAM-LETKF).

The analysis variables are the same as the prognostic variables of the model.

For the atmosphere, temperature (T ), specific humidity (Q), the zonal wind (U),

and the meridional wind (V ) are analyzed at every 3-D grid point, and surface

pressure (Ps) is analyzed at every 2-D grid point. These add up to 140,160 analysis

variables in the atmosphere. For the ocean, temperature (T ), salinity (S), the zonal

current (U), and the meridional current (V ) are analyzed at every 3-D grid point,

and pressure anomaly of the top layer (Ptop) is analyzed at every 2-D grid point.

These add up to 781,334 analysis variables in the ocean.

Although we may extend the same methodology to all the subsystems of the

coupled model, we focus on the analysis of the atmosphere and the ocean. Therefore,

the prognostic variables of land, sea ice, and river models are unchanged in the

analysis steps.

The analysis update is based on the local ensemble transform Kalman filter

(LETKF; Hunt et al., 2007), as summarized in Algorithm 2. The LETKF enables

each analysis variable to be updated concurrently and is implemented in parallel

using the Message Passing Interface (MPI).

Unless otherwise noted, spatial localization weight (Line 4 of Algorithm 2) is

given by the piecewise polynomial function (Eq. 1.5) based on the horizontal and

vertical distances between the analysis variable and the observation. In the analysis
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Algorithm 2: LETKF

1 n : Number of model variables
2 K : Number of ensemble members
3 p : Number of observations
4 weight(i, j) : Localization weight defined between ith model variable and jth

observation
5 x̄b

g : Background ensemble mean model state . (n× 1)

6 Xb
g : Background perturbation model state . (n×K)

7 yo
g : Observations . (p× 1)

8 ȳb
g : Background ensemble mean observations . (p× 1)

9 Yb
g : Background perturbation observations . (p×K)

10 Rg : Observation error covariance matrix . (p× p)
11

12 function LETKF(x̄b
g,X

b
g,y

o
g, ȳ

b
g ,Y

b
g,Rg)

13 x̄a
g ← Empty n-column vector

14 Xa
g ← Empty n×K matrix

15 for i ∈ [1, n] do
16 x̄b ← ith row of x̄b

g

17 Xb ← ith row of Xb
g

18 J ← {j|j ∈ [1, p], weight(i, j) > 0}
19 yo ← Rows J of yo

g

20 ȳb ← Rows J of ȳb
g

21 Yb ← Rows J of Yb
g

22 R← Rows J , columns J of Rg

23 for j ∈ J do
24 j′ ← Local index of yo which corresponds to j

25 Multiply j′th column of R−1 by
√
weight(i, j)

26 Multiply j′th row of R−1 by
√
weight(i, j)

27 end

28 P̃←
[
(K − 1)I + YbTR−1Yb

]−1

29 Wa ←
[
(K − 1)P̃

]1/2

30 w̄a ← P̃YbTR−1(yo − ȳb)

31 ith row of x̄a
g ← x̄b + Xbw̄a

32 ith row of Xa
g ← XbWa

33 end
34 return x̄a

g, Xa
g

35 end function
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system, integer vertical coordinates on Table 4.3 is used for vertical localization.

An important aspect of implementation is observation lookup, which is explained in

Appendix A.

To counteract the under-dispersive analysis ensemble, the relaxation to prior

perturbation method (RTPP; Zhang et al., 2004) is employed. The RTPP method

relaxes the analysis perturbations back to the prior perturbations:

Xa ← (1− α)Xa + αXb, (4.6)

where α ∈ [0, 1] is a relaxation parameter, Xa and Xb are the analysis and back-

ground ensemble perturbations.

After applying the LETKF and RTPP updates, the positive sign of specific

humidity analysis is ensured by rounding values up to 10−3 g/kg, independently for

each member and each grid point. This positive sign for the specific humidity is

required to avoid problems in running the subsequent forecast. The threshold used

is roughly equal to the minimum value found in the free integration of the model.

In order to enhance the stability of the DA cycle, incremental analysis update

(IAU; Bloom et al., 1996) is implemented into the model. Incremental analysis

update distributes the analysis increment estimated at certain time, into a finite time

window, so that the model state can gradually incorporate the analysis increment.

Incremental analysis update is implemented in both atmospheric and oceanic parts

of FOAM.

The original IAU by Bloom et al. (1996) distributes the analysis increment into

a window centered at the analysis time. For example, if the analysis interval is 24
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Table 4.3: Vertical coordinate of the FOAM-LETKF analysis system.

Level
Representative 

pressure/depth

Variables 

defined

18 4.81 hPa

17 13.07 hPa

16 32.56 hPa

15 63.95 hPa

14 99.04 hPa

13 138.71 hPa

12 189.19 hPa

11 252.14 hPa

10 324.85 hPa

9 408.96 hPa

8 501.28 hPa

7 598.25 hPa

6 695.17 hPa

5 786.51 hPa

4 866.41 hPa

3 929.28 hPa

2 970.45 hPa

1 992.53 hPa

0 - 
Ps (atmos),

Ptop (ocean)

-1 10 m

-2 30 m

-3 51 m

-4 74 m

-5 99.5 m

-6 129 m

-7 165 m

-8 210 m

-9 271 m

-10 357 m

-11 484 m

-12 675 m

-13 952.5 m

-14 1307.5 m

-15 1700 m

-16 2100 m

-17 2500 m

-18 2900 m

-19 3300 m

-20 3700 m

-21 4100 m

-22 4500 m

-23 4900 m

-24 5300 m

T, Q, U, V

(atmos)

T, S, U, V

(ocean)

93



hours, the analysis increment valid at 0 UTC, January 2 is distributed to a 24-hour

window from 12 UTC, January 1 to 12 UTC, January 2. Yan et al. (2014) named

this original method as IAU 50, as 50% of the window overlaps the pre-existing

background integration. However, we may also distribute the analysis increment to

a window not centered at the analysis time. Yan et al. (2014) tested three different

IAU implementations (IAU 0, IAU 50, and IAU 100; defined by how many percents

of the window overlaps the pre-existing background integration) with a simple non-

linear ocean model. They showed that the difference between these IAU schemes on

the global scale is limited, and they recommended the IAU 0 scheme when the com-

putational cost is taken into account. Following their recommendation, the IAU 0

scheme is adopted in our implementation for FOAM-LETKF; an analysis increment

valid at 0 UTC, January 2 is distributed to the subsequent 24-hour window from 0

UTC, January 2 to 0 UTC, January 3.

Incremental analysis update is implemented as if it was one of the physical

forcings in the model. Figure 4.8 shows the schematic call trees of the atmosphere

and ocean components of FOAM, implemented with IAU.

From a software perspective, the analysis system is implemented as follows:

the truth and background states are read from the restart files of FOAM, noisy

observations are generated within the LETKF executable, and the analysis ensemble

states are written into restart files. When IAU is enabled, the analysis increments are

written into independent files; then the coupled model reads analysis increment files

as well as the background restart files to compute the subsequent background states.

In this sense, FOAM-LETKF is an offline assimilation system that is implemented
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PCCM3

Coupler

PCCM3

Physics Dynamics,
Semi-Lag. 
transport

IAU Physics1 Coupler Physics2

Convection
Cloud

Diagnostics
Radiation

Vertical 
diffusion, ABL

Gravity wave 
drag

OM3

Horizontal
dissipation

Surface 
forcing

Advection IAUBarotropic 
and other 

adjustments

(a) Atmosphere model

(b) Ocean model

Figure 4.8: Abstract call trees of FOAM after implementation of incremental anal-
ysis update (IAU). PCCM3 and OM3 are the names of the component models, and
ABL stands for atmospheric boundary layer (parameterization scheme). In FOAM,
the ocean model (OM3) is called as one of the physical components of the atmo-
spheric model (PCCM3), and they are sequentially coupled through the exchange
of SST and fluxes. In the same level of a tree, tasks are generally processed from
left to right. The atmospheric call tree is a modification of Jacob (1997).

separately from the model executable (Liu et al., 2017).
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Chapter 5: Background error statistics of atmosphere-ocean systems

5.1 Introduction

In most methods of data assimilation including variational methods and Kalman

filters, estimation of error statistics is an essential problem. An underlying assump-

tion for these analysis methods is that we know better about the long-term statistics

of states or errors than the evolving state itself.

Of error statistics, we are particularly interested in the background error co-

variance (B matrix). The B matrix should reflect the dynamic processes, including

the growing error mode, that is, the direction (in the phase space) in which forecast

error tend to grow rapidly.

For variational methods, the B matrix must be specified a priori. For ensemble

Kalman filters (EnKFs), although they can estimate the flow-dependent background

error covariances, the covariance estimate can be improved by appropriate localiza-

tion based on offline statistics (Chapter 2). In other words, the EnKFs can also

benefit from the prior knowledge of background error covariances.

Correlations are covariances normalized by variances, and therefore useful for

multivariate systems where each variable has different units (e.g., hPa for surface

pressure and PSU for salinity). For the atmosphere-ocean coupled system, there
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exist two pilot studies that have examined the background or analysis error corre-

lations. Smith et al. (2017) investigated the vertical aspects of error correlations

between the atmosphere and ocean, using a strongly coupled ensemble of a single-

column model at a particular point in the northwestern Pacific. They have shown

strong diurnal and seasonal variabilities of error structures, as well as its vertical

distribution, mostly bounded to the atmospheric boundary layer and the oceanic

mixed layer. Feng et al. (2018) examined the analysis errors of surface temperatures

(surface air temperature and SST), which is expected to be one of the dominant

mechanisms of coupling. They used an ensemble of coupled variational data as-

similations (CERA-20C by ECMWF) to examine the analysis errors of the surface

temperatures. Both of these pilot studies provided substantial knowledge for the

coupled data assimilation community. However, they only examined the vertical

or pointwise features of coupled errors, which is insufficient for three-dimensional

data assimilation system. The influence of an observation must also be horizontally

distributed to provide smooth analysis increments.

Therefore, our study aims to extend their investigation in a few points:

• As examined by Feng et al. (2018), the thermal coupling through radiative

processes and exchange of sensible and latent heat fluxes is known to have

major impacts. However, the atmosphere and ocean also exchange momentum

(mostly the wind driving the currents) and freshwater (through precipitation

and evaporation). These processes also need attention because they play a

crucial role in, for example, the genesis of western boundary currents, El Nino
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Southern Oscillation, and Atlantic Meridional Overturning Circulation.

• Horizontal dynamics of ocean is absent in the investigation by Smith et al.

(2017), which may change the error structures.

• Atmosphere and ocean are known to have different length scales of error cor-

relations, vertically and horizontally. However, in the existence of coupled

processes, the horizontal correlation length scales near the surface should af-

fect each other. The consistent picture of horizontal error correlations near

the surface will be sought.

• The error growth of a coupled system is known to be affected by the model

resolutions, especially that of the ocean model (e.g., Hallberg, 2013; De Cruz

et al., 2018). We briefly compare the error statistics of two global coupled

models with very different resolutions.

• Finally, the time-mean error correlation does not include the flow-dependent

portion of error correlation. By examining the mean squared error correla-

tion, we obtain average strength of error correlation, which can be used for

localization of strongly coupled EnKFs (also see Section 5.3 later).

5.2 Previous efforts on estimating and modeling error correlations

Before estimating the coupled error structure between the atmosphere and the

ocean, we quickly review known characteristics and previous efforts on estimating

and modeling error correlations in the atmosphere and ocean. This review will help
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to interpret our results.

5.2.1 Background error correlations of the atmosphere

The estimation of background error statistics in the atmosphere given obser-

vation networks, has been attempted with several approaches.

An innovation-based estimation of background error statistics is proposed by

Hollingsworth and Lönnberg (1986). Daley (1993), in Chapters 4 and 5, summarizes

univariate and multivariate error covariances estimated by their method. The errors

are reported to be largely geostrophic and nondivergent. For example, Figure 5.1

shows the innovation correlation within the height field (panel a) and between the

height and wind fields (panel b). The height innovation is positively correlated over

a thousand kilometers with correlation decreasing with the distance. The transver-

sal wind (i.e., rotational wind centering the height observation) innovation has peak

correlation to the height innovation at the distance of hundreds of kilometers, re-

flecting the quasi-geostrophic and quasi-nondivergent wind structures.

To obtain the error statistics in the model space, Parrish and Derber (1992)

proposed the NMC method; the difference between two forecasts initialized at differ-

ent times and valid at the same time serves as a proxy to the background error. The

sampled forecast differences are then modeled into a product of sparse matrices so

that it can be stored in computers. They first transformed the model’s prognostic

variables to analysis variables with mutually uncorrelated errors by decomposing

them into balanced and unbalanced parts. Further, vertical error correlation is rep-
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(a)

(b)

Figure 5.1: Innovation (observation minus background; a proxy to the background
error) correlation between (a): height and height at the 500 hPa level and (b): height
and transversal (or tangential) wind at the 850 hPa level. The observations are
radiosonde over North America, and the background is 6-h forecast by their global
model with horizontal resolution T63. Figure courtesy Lönnberg and Hollingsworth
(1986).

100



Figure 5.2: Increment caused by the assimilation of a positive temperature innova-
tion at 45◦N, 100◦W at layer 5. Increment of (a): temperature at layer 5, (b): zonal
wind at layer 7, and (c): meridional wind at layer 7. Figure courtesy Parrish and
Derber (1992).

resented by empirical orthogonal functions for each analysis variable. They further

assume that background error of each analysis variable is horizontally homogeneous

and isotropic so that the background error covariance is diagonal in the spectral

space. By this way, spatial error correlation is represented by a sum of spectral

modes, and multivariate error correlation is represented by the balanced part of

analysis variables (Figure 5.2).

Two primary forms of grid-space correlation modeling are the diffusion oper-

ator (Derber and Rosati, 1989) and the higher-order recursive filter (Purser et al.,

2003), both of which can incorporate inhomogeneity and anisotropy. The latter
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is more computationally efficient for the same accuracy, while the former is more

flexible for complex boundary conditions and topographies.

Ingleby (2001) provided a broad picture of background errors based on the

NMC method. He noted several features: vertical correlation scale increases with

smaller horizontal wavenumber; horizontal error correlation length is larger in the

stratosphere and the tropics consistently to the Rossby deformation radius; latitu-

dinal dependency of correlation length; and multivariate error correlations between

pressure and temperature.

Fisher (2003) introduced an ensemble of (variational) analysis method for es-

timation of background error covariance and discussed its advantage over the NMC

method. The ensemble of analysis method is superior because the forecast length

is the same as the one used for background, and unlike the NMC method, the en-

semble method can capture large background errors where observations are sparse.

They further introduced wavelet representation of error modes, which enabled the

spatially and spectrally variable error structures.

Bannister (2008a,b) are review papers summarizing the atmospheric error co-

variance structure and how modeling centers model the covariance into a product of

sparse matrices. In addition to the efforts mentioned above, an important charac-

teristic of background error covariance models for variational applications is that its

matrix square root form is available for the efficient minimization (control variable

transform).
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5.2.2 Background error correlations of the ocean

For ocean models, due to topographic constraints, covariance modeling is lim-

ited to spatial representations.

The diffusion operator of Derber and Rosati (1989) was first developed for

the global ocean data assimilation at the Geophysical Fluid Dynamics Laboratory

(GFDL). In their univariate analysis of global ocean temperature with 3D-Var, the

Laplacian operator is repeatedly applied so that the resulting horizontal error corre-

lation approximates a Gaussian-shaped function. They further modeled the shorter

correlation length in higher latitudes and zonally elongated correlation near the

equator following the predominant dynamical scales.

Waters et al. (2015) discusses recent efforts at the United Kingdom Met Office

for the NEMOVAR system. Their system is set up with a global quarter-degree

ocean model, which may be referred to be eddy-permitting. The background co-

variance model includes the transform of variables to the balanced and unbalanced

variables, spatially variable horizontal and vertical correlation lengths via applica-

tion of diffusion operators, and inclusion of flow dependencies using the background

mixed layer depth and vertical temperature gradient. Figure 5.3 shows that the

correlation model can represent the well-correlated mixed layer, short correlation

length in the seasonal thermocline, and the longer correlation length in the deeper

ocean.

Weaver et al. (2017) explains another background error formulation in the

hybrid NEMOVAR system. Their implementation includes a approach unique for
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Figure 5.3: Modeled vertical background error correlation length when the mixed
layer depth is 97 m. Figure courtesy Waters et al. (2015).

the ocean error modeling, the use of multivariate empirical orthogonal functions

(EOFs). Here, empirical orthogonal functions are leading modes of anomaly (or

temporal) covariance, which explains the large-scale error correlations (Fujii and M.

Kamachi, 2003). Figure 5.4 shows how the EOF-based background error covariance

model can spread the observation information to the analysis field better than the

diffusion-based background error covariance model. The use of anomaly covariance

as the background error covariance is justified especially with sparse observation

network or during the spin-up period; the background (or forecast) PDF will fall

back to the climatological PDF when no observational constraints are available.

5.3 Methods and data sets

In this section, we explain the two data sets of global atmosphere-ocean weakly

coupled EnKF systems and important terminologies.
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Figure 5.4: Effect of empirical orthogonal functions as background error covariance
in the ocean temperature data assimilation. The top and bottom rows represent
assimilation experiment of dense and sparse observation networks, respectively. Left:
assimilated observations. Center: analysis increment with EOF-based background
error covariance. Right: analysis increment with diffusion-based background error
covariance. Figure courtesy Weaver et al. (2017).
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5.3.1 Ensemble-based estimates of background error correlations

In our investigation, ensemble covariance of EnKF serves as a proxy to the

background error covariance. The ensemble perturbations can contain multiple

sources of uncertainties by using perturbed initial conditions (e.g., Hoffman and

Kalnay, 1983) and perturbed observations (e.g., Houtekamer and Mitchell, 1998).

In the deterministic EnSRFs, the observation error uncertainty is implicitly consid-

ered without perturbing observations by matching the analysis ensemble covariance

to that of the extended Kalman filter (Tippett et al., 2003). One advantage of

ensemble-based covariance estimation is that it provides flow-dependent estimates

of error covariance represented by O(100) of ensemble perturbations.

We stress the difference between two distinct quantities that are thoroughly

discussed:

• Time-mean background ensemble correlations (or mean ensemble cor-

relations for short): 〈ρ〉 = 1
T

∑T
t=1 ρ(t) for some time-dependent ensemble

correlation ρ(t) and the number of assimilation windows T . This will be the

static background ensemble correlation used in the variational methods, with

which we expect predominant coupling mechanisms to be explained.

• Time-mean squared background ensemble correlations (or mean squared

ensemble correlations): 〈ρ2〉 = 1
T

∑T
t=1[ρ(t)]2 = 〈ρ〉2 + 〈[ρ′(t)]2〉, where ρ′(t) =

ρ(t)−〈ρ〉 is the temporal fluctuation of the ensemble correlation. As shown by

definition, this quantity includes the flow-dependent ensemble correlations as
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Table 5.1: Settings of the weakly coupled FOAM-LETKF observation system sim-
ulation experiment (OSSE) from which ensemble statistics are sampled.

Experiment period One model year (an arbitrary year from January 1; one
model year of FOAM is constituted by 360 days)

Observation network Quasi-uniform network available at the end of each win-
dow

Analysis method Weakly coupled LETKF

Horizontal localization 700 km (atmosphere) and 300 km (ocean)

Vertical localization 1.5 model levels (atmosphere) and 1 model levels (ocean)

Analysis variables T,Q, U, V, Ps (atmosphere), T, S, U, V, Ptop (ocean)

Analysis interval 24 hours

Ensemble 64 members; initial ensemble members and the true state
are sampled from a 100-year free integration (the same
date of a year)

Covariance inflation RTPP; 50% prior perturbations (atmosphere) and 99%
prior perturbations (ocean)

well as the time-mean ensemble correlation. Therefore, this quantity will be

useful to guide the localization of ensemble-based data assimilation methods

(Chapters 2 and 6). In some diagrams its square root, the root-mean-square

(RMS) ensemble correlation is shown to provide a direct comparison to time-

mean ensemble correlations.

5.3.2 FOAM-LETKF WCDA system/data

The first dataset is an observation system simulation experiment (OSSE) of

the FOAM-LETKF system described in the previous chapter. The setting of the

data assimilation cycle is listed in Table 5.1. We will explain a few important

characteristics of the model and experimental setups.
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The LETKF cycle is weakly coupled, that is, the forward evolution is calcu-

lated with the coupled model, but the atmosphere (ocean) model only assimilate the

atmosphere (ocean) observations. Although it is unclear how strongly coupled anal-

ysis changes the error correlation structure, the background ensemble is expected to

reflect the coupled error growth; preceding experiments with a coupled toy model

showed that the error correlation structure obtained with weakly coupled EnKF is

qualitatively similar with the one obtained with strongly coupled EnKF.

Note that the model is deterministic and uncertainty in model structure or pa-

rameters is not represented. Therefore, the background ensemble perturbations only

depend on the initial condition uncertainties (i.e., analysis ensemble perturbations)

and their growth in the coupled forward model; the analysis ensemble perturbations,

in turn, depend on the previous background ensemble perturbations and observation

uncertainties.

5.3.3 CFS-IITM system/data

To support the characteristics of coupled background error correlations found

with FOAM-LETKF, we repeat some analyses with a more realistic coupled assim-

ilation system, namely, CFS-IITM1.

1CFS stands for the Coupled Forecasting System, the atmosphere-ocean coupled model devel-

oped by the National Oceanic and Atmospheric Administration (version two, Saha et al., 2010,

2014). The LETKF system has been prepared by Dr. Travis Sluka (Sluka, 2018). IITM stands

for Indian Institute of Tropical Meteorology, where CFS-IITM reanalysis is carried out. The data

is provided by Dr. Sreenivas Pentakota and his collaborators.
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Table 5.2: Settings of CFS-IITM reanalysis from which ensemble statistics are sam-
pled.

Atmosphere model (GFS)

Horizontal resolution T126 (190 × 384 grids)

Vertical resolution 64 levels (hybrid σ − p coordinate)

Ocean model (MOM4)

Horizontal resolution 0.5 degrees (410 × 720 grids)

Vertical resolution 40 levels (z-coordinate)

Data assimilation system

Analysis scheme Weakly coupled 4D-LETKF

Analysis interval 6 hours

Ensemble size 40 members

Horizontal localization 1000 km (atmosphere) 200-720 km
(ocean)

Vertical localization 0.4 lnP (atmosphere) none (ocean)

Covariance inflation Relaxation to prior spread at 95%

Assimilated observations PREPBUFR (See Figure 3.1 and Table
3.1 of Sluka, 2018)

Other

Coupling frequency of the model 30 minutes

Period of analysis 2000-

Investigated period June 2006 (out of 120 six-hourly analyses,
six instances are excluded due to partial
data loss)

Table 5.2 summarizes the important characteristics of this reanalysis product.

We note three major differences from the FOAM-LETKF system. First, the system

assimilates real observations of the atmosphere and the ocean, unlike the identical-

twin setting of FOAM-LETKF. Second, the atmosphere and ocean models have
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higher horizontal and vertical resolutions. Third, the system produces four times

more frequent analysis; the six-hour analysis window is the same as major global

atmospheric analyses. Overall, the system should represent operational atmosphere-

ocean DA systems more closely, and some observed difference will be associated with

these systematic differences.

5.4 Results: background error correlations of FOAM-LETKF

In this section, the background error structures of FOAM-LETKF is shown.

The results of this section will serve as a basis for the correlation-cutoff experiments

in the next chapter.

5.4.1 Pointwise surface error correlations (FOAM-LETKF)

We first examine the pointwise background error correlations of surface vari-

ables, which is expected to have the largest correlations. Here, an ensemble of

atmospheric state vectors is bilinearly interpolated to the higher-resolution oceanic

grid before background ensemble correlations are calculated.

Figure 5.5 shows the surface error correlations mainly related to the thermal

coupling, namely, the exchange of sensible heat, latent heat, shortwave radiation,

and longwave radiations. In addition to the exchange of thermal fluxes (Eqs. 4.3 and

4.4), the temperature tendency in each subsystem includes horizontal and vertical

advections and diffusion as well as other diabatic physical processes. Most straight-

forward, the surface temperature errors of the atmosphere and ocean are positively
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(c) (d)

(a) (b)

Figure 5.5: Pointwise time-mean surface background ensemble correlations. (a):
between surface air temperature and sea surface temperature (SST). (b): between
surface specific humidity and SST. (c): between precipitation and SST. (d): be-
tween precipitation and sea surface salinity. Background precipitation is the value
accumulated over the preceding 24-hour window.
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(c) (d)

(a) (b)

Figure 5.6: Same as Figure 5.5 but for wind and currents. Top and bottom rows show
zonal and meridional winds, and left and right columns show zonal and meridional
currents, respectively.

correlated almost everywhere, with slightly larger correlation over the equator and

subtropics (panel a). Errors of specific humidity (Q) also is positively correlated to

the SST error throughout the globe with weaker strength (panel b). Precipitation,

which may be enhanced by the warmer SST, has positively correlated background

error to the SST (panel c). Precipitation, in turn, is negatively driving the surface

salinity error, by supplying freshwater (panel d).

Figure 5.6 shows the surface error correlations between the wind and currents.

Within the FOAM-LETKF background, the strongest error correlation exists be-

tween the midlatitude wind and current, especially in the perpendicular directions

(panels b and c). These relationships can be explained by the linearized Ekman
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layer dynamics, where the subsurface water is transported to the right (left) of the

wind direction in the northern (southern) hemisphere; at linear limit, the same re-

lationship will be applicable to the error fields. The wind and current errors in

the parallel directions (panels a and d) are correlated positively but less strongly

(panels b and c). The meridional stripes present in those figures are most likely to

be associated with FOAM’s coupling strategy, primarily designed for simplicity and

conservation of fluxes (Figure 4 of Jacob, 1997).

Errors of the other variables are correlated with weaker amplitude, consistently

with the internal and cross-correlations of other variables. For example, surface air

temperature and zonal subsurface current have positively correlated error in the

midlatitude (Figure 5.7a). Errors of both variables are strongly correlated with the

meridional wind error through thermal advection (panel b) and the Ekman transport

(panel c); symbolically, the panel (a) can be understood by the product of panels

(b) and (c).

5.4.2 Mean response to single observation assimilation (FOAM-LETKF)

We are also interested in how those error correlations penetrate the upper

atmosphere and deeper ocean, which dictates how deep an observation can provide

information by SCDA. Since background ensemble correlation serves as the proxy

to the normalized increment incurred by a single observation innovation, we will see

cross-sections of error correlation to hypothetical observation backgrounds.

Figure 5.8 shows examples that an ocean (atmosphere) observation can pro-
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(c)

(a) (b)

Figure 5.7: Mean pointwise background ensemble correlations of surface variables
without direct interactions. (a): air temperature and zonal current. (b): meridional
wind and air temperature (both variables in the atmosphere). (c): meridional wind
and zonal current (same as Figure 5.6c).

vide useful information to the atmosphere (ocean) analysis. Panels (a) and (b) show

the background ensemble correlation between air and sea temperatures. Both panels

show that the near-surface observations can, on average, provide useful information

to the analysis of the other subsystem. Although the strongest correlation exists

near the surface, the impact can penetrate a few hundred meters (ocean) or a few

hundreds of hectopascals (atmosphere). The correlations found in the very deep

ocean seem spurious; the one-year assimilation cycle is too short for those variables

to provide sufficiently independent samples. Panels (c) and (d) show the background

ensemble correlations between wind and subsurface currents. Those panels show, re-

spectively, surface current and wind observations can provide useful information into

the other subsystems. In the midlatitude atmosphere, the wind error is vertically

well correlated, showing quasi-barotropic nature of wind errors.
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(a) (b)

(c) (d)

Figure 5.8: Examples that strongly coupled DA can provide useful information to the
other subsystem. Each panel shows mean (RMS) background ensemble correlations
in a meridional cross-section by shading (contours) to an observation background
(white crosses). (a): atmospheric and oceanic temperature cross-section to surface
air temperature at 0◦N 120◦E, (b): atmospheric and oceanic temperature cross-
section to sea surface temperature at 40◦S 80◦E, (c): atmospheric meridional wind
and oceanic zonal current cross-section to surface zonal current at 40◦S 80◦E, and
(d): atmospheric zonal wind and oceanic meridional current cross-section to surface
zonal wind at 40◦N 180◦E.
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(a) (b)

Figure 5.9: Same as Figure 5.8, but for examples that strongly coupled DA will not
provide additional constraints to the other subsystem. (a): wind speed and oceanic
temperature cross-section to surface wind speed at 40◦N 180◦E, (b): atmospheric
temperature and salinity cross-section to the atmospheric temperature at 40◦S 80◦E.

However, there exist a larger number of examples where strongly coupled DA

will hardly provide any additional benefits by assimilation of near-surface obser-

vations. A limited number of examples are shown in Figure 5.9. Panels (a) and

(b) show that a wind speed observation will provide almost no constraints to ocean

temperature, and an atmospheric temperature observation will provide almost no

constraints to salinity. Indeed, the background error correlation between the atmo-

sphere and ocean is fairly sparse in our global OSSE, supporting the importance of

appropriate variable and spatial localizations in SCDA.

Those various strengths of background error correlation, especially among dif-

ferent types of variables, should be taken into account so that we obtain accurate

analysis from the strongly coupled DA (Chapter 6).
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5.5 Results: background error correlations of CFS-IITM

In this section, the investigations in the previous paragraph is repeated for

another data set so that we can discuss the fidelity of our observations and the

dependency of error structures on the coupled DA configurations.

5.5.1 Pointwise surface error correlations (CFS-IITM)

Figure 5.10 shows a global map of pointwise surface background error corre-

lation, which is comparable to Figure 5.5 of FOAM-LETKF. Panel (a) show the

error correlation between the atmospheric and oceanic surface temperatures, which

is almost everywhere positive. The strongest positive correlation resides near the

equatorial upwelling of the ocean and near Greenland, which is likely to be associ-

ated with the sea ice boundary. The average correlation is almost vanishing near

the Maritime Continents and northern Indian ocean, where the strongest convective

activity is observed. Feng et al. (2018) associated the weak ensemble correlations

between temperature fields in this region to cooling by re-evaporating precipitation,

which is internal variability of the atmosphere nearly independent of the SST. Those

geographical features of strong and weak error correlations are not found in Figure

5.5 with FOAM-LETKF. One most noticeable difference found near Greenland can

be associated with the sea ice schemes of the two models. The sea ice model of

FOAM (Section 4.1) does not represent horizontal advection. On the other hand,

the sea ice model of CFS accounts for the advection as well as latent heat of fu-

sion. Therefore, the existence and concentration of sea ice can be a large source

117



(a) (b)

(c) (d)

Figure 5.10: Same as Figure 5.5 but from CFS-IITM data. Background precipitation
is the value accumulated over the preceding 6-hour window.

of temperature uncertainty, strong enough to dictate the background errors of at-

mosphere and ocean temperatures. This interpretation is supported by the salinity

error, which is positively correlated to the temperature error showing that the melt-

ing sea ice provides freshwater as well as negative latent heat of fusion (not shown).

The error correlation between specific humidity and SST is weakly positive over the

globe but slightly negative over the intertropical convergence zone (ITCZ). Here,

the dominant error-coupling mechanism should be the enhanced convection reduces

the insolation (and vice versa).

Another significant difference is found in the momentum error correlations.

Figure 5.11 shows the pointwise error correlations of surface wind and currents.

The error correlations explained by parallel drag, between zonal wind and zonal
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(a) (b)

(c) (d)

Figure 5.11: Same as Figure 5.6 but from CFS-IITM data.

current (panel a), or meridional wind and meridional current (panel d) are globally

slightly weaker than those of FOAM-LETKF (Figure 5.6). The error correlations

in the perpendicular directions, namely, between zonal wind and meridional current

(panel b), and meridional wind and zonal current (panel c) are much weaker than

that of FOAM-LETKF. The error correlations in perpendicular direction in the

second and third ocean layers (which represent similar physical quantities to the

FOAM’s top ocean layer with 20 m thickness) is not much stronger than the surface

layer (not shown). The much weaker wind-current error correlations in CFS-IITM

dataset will be discussed later.
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5.5.2 Mean response to single observation assimilation

Figure 5.12 shows meridional cross-sections of background error correlation,

which is comparable to Figure 5.8. In general, the horizontal error correlation length

is smaller both in the atmosphere and the ocean, but the difference is most significant

in the ocean. This shorter correlation length will be the combined effect of denser

observation network, shorter analysis interval, and the higher model resolutions. The

panels (a) and (b) show that the atmospheric temperature observations can provide

some useful information to the ocean temperature analysis. As can be expected

from Figures 5.10 and 5.11, the smaller background error correlations between wind

and current render the mutual assimilation between these variables almost irrelevant

(panels c and d).

Similarly to FOAM-LETKF (Figure 5.9), the background error of CFS-IITM

is almost uncorrelated between most of the variables (such as salinity and wind; not

shown). Overall, the importance of variable and spatial localization of cross-update

is further stressed by the CFS-IITM data.

5.6 Discussion

From the dynamical viewpoint, the higher resolutions of CFS-IITM may ei-

ther strengthen or weaken the coupled error correlations. The discussion here is

qualitative and will apply to both anomaly and background-error cross-correlations.

First and most straightforward, higher vertical resolution can increase the

cross-correlations between the surface layers because the adjacent layers become
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(a)

(c) (d)

(b)

Figure 5.12: Time-mean background ensemble correlations to a point from CFS-
IITM data. Each panel shows mean (RMS) background ensemble correlations in
a meridional cross-section by shading (contours) to an observation background. (a
and b): temperature fields to atmospheric temperature at 0◦N, 120◦W and 40◦S,
80◦E; (c): meridional wind and zonal current fields to zonal current at 40◦S, 80◦E;
and (d): zonal wind and sanilinity fields to zonal wind at 55◦S, 30◦W.
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physically closer. For example, the bottom atmospheric layer of FOAM (18 layers)

represents an average over 0.985 ≤ σ ≤ 1, whereas the bottom atmospheric layer of

CFS (64 layers) represents an average over 0.995 ≤ σ ≤ 1. Here, σ = p/ps is the

vertical coordinate. Therefore, these “surface layers” represent different physical

quantities, and the latter is expected to be more strongly affected by the boundary

condition at σ = 1. In other words, the thinner surface layer has smaller mass

and heat capacity so that its response for given flux will be larger (see Eq. 4.3,

for example). For ocean models, it is known that surface processes such as diurnal

cycles of SST and freshwater lenses following precipitation can only be represented

with higher vertical resolutions (e.g., Miller et al., 2017).

The horizontal resolution of each model and the coupler will also affect how

well the model can react to the small-scale phenomena resolved in the other subsys-

tem. For example, Minobe et al. (2008) showed spatial correspondence between the

Laplacian of SST, atmospheric low-level wind convergence, and precipitation fields

using an atmospheric GCM (T239, ∼50 km resolution) driven by observed SST

fields. They showed that if the SST field used in the GCM is smoothed to a lower

resolution (tens of degrees), the GCM no longer reproduces the strong precipitation

observed over the warm flank of the Gulf stream. Therefore, if the atmospheric

model has an insufficient horizontal resolution, it will not be able to respond to

the SST variabilities with small horizontal scales and therefore can lower the cross-

correlations.

In addition, different resolutions lead to different dynamical processes repro-

duced within each subsystem. An ocean model is commonly referred to as “eddy-
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permitting” if its horizontal grid spacing is less than a half of the first baroclinic

deformation radius, which in turn depends on latitude, stratification, and the ocean

depth (e.g., Hallberg, 2013). The CFS ocean (0.25-0.5 degrees) has high enough

horizontal resolution to permit the oceanic baroclinic instabilities in the lower lati-

tudes while the FOAM ocean (1.4-2.8 degrees) does not. Therefore, we may assume

that the CFS ocean is more internally chaotic than the FOAM ocean. This as-

sumption is supported by apparently different horizontal dynamics of these ocean

models (Figure 5.13), where we can see meandering along with the western bound-

ary currents and Antarctic circumpolar current only in the CFS. On the other hand,

we may assume that both CFS and FOAM atmospheres are resolving the chaotic

quasi-geostrophic dynamics of the atmosphere, which have deformation radius of

thousands of kilometers. Former experiments with an atmosphere-ocean coupled

quasi-geostrophic model showed that the Lyapunov dimension (∼the number of

chaotic modes) increases with higher ocean resolution while it is insensitive to the

atmosphere resolution (De Cruz et al., 2018). Upon these considerations, the change

of oceanic horizontal resolution can work both ways on the cross-correlations. When

we change the ocean’s resolution (internal dynamics) from low (inert) to high (highly

chaotic), we will observe:

1. If no oceanic internal oscillation exists, then the ocean will behave like a “slave”

of the atmosphere.

2. If the oceanic internal oscillation has moderate amplitude, the atmosphere and

the ocean will follow their internal modes somewhat independently.
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(a) (b)

Figure 5.13: Sea surface height (SSH) anomaly in meters from (a): FOAM and (b):
CFS. Note the former is from a nature run, while the latter is the 6-hour forecast
(background) used in the analysis cycle. Also note these panels show different
seasons.

3. If the oceanic internal oscillation is very strong, then the atmosphere will

behave like the “slave” of the ocean.

Going from regime 1 to 2 will decrease the cross-correlations while going from regime

2 to 3 will increase the cross-correlations.

To support the idea, we think two highly-damped forced oscillators represent-

ing the atmosphere (A) and the ocean (O) that are mutually coupled:

kAxA(t) = CA cos(fAt) + xO(t)

kOxO(t) = CO cos(fOt) + xA(t),

(5.1)

with non-dimensional displacements x(t), non-dimensional restoring coefficients k,

forcing frequencies f , and non-dimensional forcing amplitudes C. The forcings are

analog of chaotic oscillations inherent to each subsystem. For fA 6= fO and kA, kO >

1, there exist analytical solutions of temporal anomaly correlation between xA and
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Figure 5.14: Temporal evolution and anomaly correlation of coupled forced oscilla-
tors (Eq. 5.1). Solid and dotted lines represent displacements xA and xO. Values of
CO are written in each panel, and other parameters kA = kO = 5, fA = 1, fO = 0.4,
CA = 1 are constant.
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which, as a function of CO, has a minimum in (0,∞). Figure 5.14 shows how

temporal anomaly correlations of the two variables first decrease and then increase

when amplitude CO is increased, supporting the discussion in the previous para-

graph. Therefore, the smaller wind-current error cross-correlations observed in the

CFS-IITM may be explained by the more chaotic ocean in CFS and the transition

from regime 1 to 2. On the other hand, the increased temperature error correla-

tions in the CFS-IITM near the sea ice boundaries can be thought as a transition

from regime 2 to 3, where only CFS ocean can have large error associated to the
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horizontal advection of sea ice.

Although not examined here, it is also possible that we can exploit lagged

(Lu et al., 2015b) or nonlocal error correlations between the atmosphere and ocean,

which may be represented only in more sophisticated systems. Configuration depen-

dency of such mutual information, and its exploitation should also be investigated

in the coupled DA context.

5.7 Summary

We have examined the background error correlations of the atmosphere-ocean

coupled system represented by ensemble DA systems. Our comparison of ensemble

statistics of two different DA systems revealed features common and uncommon for

those systems.

In both data sets, temperatures of the atmosphere and ocean are found to be

one of the strongest background error correlations, as expected. This temperature

error correlation is strongest at the equatorial upwelling and sea ice boundaries in

the CFS-IITM data set. In addition, strong wind-current relationship, especially in

the higher latitudes, is found only from the low-resolution FOAM-LETKF. Those

background error correlations, if accurately accounted for in strongly coupled data

assimilation between the atmosphere and ocean, will provide informative constraints.

At the same time, background error correlation between the atmosphere and ocean,

seems sparse between most other variables, supporting the use of appropriate vari-

able and spatial localization if only a small ensemble can be used for the background
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error covariance estimate.

We have also discussed how the horizontal resolution and internal error growth

in the ocean can affect the difference of momentum error correlations between the

two experiments. If a high-resolution ocean model is highly chaotic by itself, then the

background errors of atmospheric wind and ocean current are close to independent.

When this is the case, an atmospheric observation is not a good representation of

ocean state and vice versa. Under such condition, the approach by ECCO ocean

reanalysis (Stammer et al., 2004) and Sugiura et al. (2008) — to explain ocean state

evolution in a year-long window just by the oceanic initial condition and atmospheric

forcings — might fail. The need for high ocean resolution especially in the context

of ensemble DA, where the error growth represented by the model is responsible for

estimating error statistics, should be further explored.

The background error due to model and parameter uncertainties are not ac-

counted for in both experiments. Estimate for those error origins should be con-

ducted via the perturbed-parameter experiments or observation-based statistics.

Further implementation of WCDA systems, not only between the atmosphere

and ocean, but also land, sea/land ice, and wave models is also encouraged; with

either the NMC method or ensemble method, we will be able to obtain background

error statistics. Such studies (e.g., Lin and Pu, 2018) will provide useful guidance

for future planning and implementation of SCDA systems.

For variational data assimilation systems that use the static background error

covariance, we also need to develop a method to incorporate those sampled back-

ground error statistics into a covariance model. Considering the diffusive nature
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of thermal coupling (Eqs. 4.3 and 4.4), the diffusion operator (Derber and Rosati,

1989) can be a handy option to model the thermal coupling of background errors in

the grid space. Another option is to account for the coupled processes as a form of

balanced analysis variables as done by Storto et al. (2018).

Finally, the apparent complexity of coupled background error structures ren-

ders knowledge-based optimization of variable and spatial localization difficult. In

the next chapter, we explore how we can overcome this apparent complexity of

coupled background error correlations by employing data-driven, machine-learning

approaches.
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Chapter 6: Localization modeling with neural networks and assimi-

lation experiments with FOAM

6.1 Introduction

Previous studies have shown that an appropriate covariance localization is vi-

tal for successful strongly coupled data assimilation with ensemble methods, where

the background error covariance estimated by the ensemble is not always reliable.

However, it is not straightforward to define an appropriate “distance” between vari-

ables in the subsystems of the earth which are coupled with various strengths. For

example, salinity analysis is found to have little to do with wind observations in a

time scale of assimilation windows, even if they are physically collocated. In Chapter

2, we have introduced the correlation-cutoff method, where an observation is assim-

ilated into a part of analysis variables that are expected to have large background

error correlations to the observable. The remaining problem is how to encode the

average strength of background error correlations into a function, which is fast to

evaluate and small on the memory.

For that purpose, we employ neural networks to summarize the error statis-

tics. As we will see, this is a natural extension of the correlation-cutoff method
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proposed in Chapter 2. In this way, we can consider analysis/observation variable

types and geographical location, for example, as well as physical distance as explana-

tory variables of the localization weight. We will show an application of strongly

coupled assimilation experiments with an atmosphere-ocean coupled general circu-

lation model, in addition to precursor experiments with toy correlation models and

theoretical validity as a localization function.

6.2 Methodological concept: correlation-cutoff with neural networks

6.2.1 Overview of the correlation-cutoff method application

In Chapter 2, we have shown that the mean squared background ensemble

correlation from an ensemble DA cycle can be used as a “distance” for localization

between an observation and an analysis variable.

However, unlike experiments in Chapter 2, it is unrealistic to store the back-

ground ensemble correlation for all the pair of observable and analysis variable in

real applications. Also, storing the correlation matrix cannot adapt to temporary

varying observation networks. Therefore, it is necessary to summarize the climato-

logical strength of background error correlation in a function so that the information

can be used for localization. This methodology is illustrated in Figure 6.1, where

the localization function is expressed as a composite function of a nonlinear, mul-

tivariate regression function f : (attribute space) → R and an increasing function

g : R → R to be determined. Hereafter we call g as a cutoff function. The ex-

periments with the nine-variable coupled model in Chapter 2 can be thought as a
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Localization function in observation space 𝑔 ∘ 𝑓
Attributes of analysis variable 𝑥𝑖
› Latitude/longitude/level
› Analysis variable type
› Time (e.g., seasonal, diurnal)

Attributes of observable 𝑦𝑗
› Latitude/longitude/level/wavelength
› Observation type

Localization weight
 𝜌𝑖𝑗 ሺ0  𝜌𝑖𝑗  1ሻNonlinear

regression 𝑓
Increasing
function 𝑔

(cutoff function)

Expected squared
background

error correlation
between ሺ𝑥𝑖, 𝑦𝑗ሻ

Figure 6.1: Schematic of the correlation-cutoff localization method applied to anal-
ysis of coupled geophysical systems, where physical distance alone cannot explain
the relevance between an analysis variable and an observable.

special case of this methodology, where f was a function of variable indices, and the

cutoff function g was a step function.

With little prior knowledge of the shape of the function f , we choose neural

networks as a generic tool for multivariate nonlinear regression. Other possible

options for nonlinear regression are compared in Table 6.1. Although a neural

network requires relatively expensive training with iterative minimization of the loss

function, it is fast to be evaluated once trained and depends on fewer assumptions

than other nonlinear regression methods. The actual training and evaluation cost

will be examined later. To be more precise, we use one neural network for each pair of

observation and analysis variable types. In other words, the regression f is a lookup

table of neural networks. In this way, each neural network only uses numerical

attributes such as latitude and is trained independently from other neural networks.

We choose this approach because it is inefficient, if not impossible, to include those

categorical attributes as explanatory variables of a neural network.
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Table 6.1: Subjective comparison of regression methodologies. Here, curse of di-
mensionality refers to the exponential growth of nonlinear combinations of input
variables, which will affect necessary memory space, training samples needed, and
evaluation cost. An analytical training means that the regression parameters are
obtained by a weighted average of training data without iterative minimization.

Method Advantages Disadvantages

Linear regression
Simple to implement
Training is analytical

Linear

Lookup table

Nonlinear
Simple to implement
Training is analytical
Fast to evaluate

Discontinuous
Assumptions for boundaries
Curse of dimensionality

Linear combination
of nonlinear
basis functions
(e.g., polynomial fit)

Nonlinear
Training is analytical

Assumptions for basis functions
Curse of dimensionality

Neural network

Nonlinear
Fewer assumptions
Relatively tolerant of
input dimensionality

Training requires iteration

Gaussian processes
regression

Access to uncertainty
Nonlinear
Fewer assumptions

More expensive training
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6.2.2 Mathematical validity as a localization function

For a function to be a mathematically valid localization function, the localized

analysis must exist under general conditions.

Given a positive definite observation error covariance matrix R and a posi-

tive semidefinite (ensemble-based) background error covariance matrix Pb, the non-

localized gain matrix (Eq. 1.1) is well defined because HPbHT+R is positive definite

and therefore invertible, where H is the linearized observation operator.

For model space localization (Eq. 1.2), a well-known sufficient condition for

a well-defined gain matrix is that the localization matrix ρm ∈ Rn×n is positive

semidefinite. Then, the localized background error covariance matrix ρm◦Pb remains

positive semidefinite, and the gain matrix always exists. However, this is a restrictive

condition when we try to specify a flexible localization function because a localization

weight between two model variables cannot be specified independently from the

other localization weights. Therefore, the piecewise polynomial function of Gaspari

and Cohn (1999) (Eq. 1.5), which produces positive definite correlation matrix in

any discretization of R3, has been a popular localization function.

We avoid this restriction by limiting ourselves to two common forms of observation-

space localization, namely, the serial ensemble square root filter (EnSRF) and the

local ensemble transform Kalman filter (LETKF). For these forms of observation-

space localization, a less restrictive sufficient condition for mathematically valid

localization functions exists.

For the serial EnSRF, we assimilate each observation sequentially assuming
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uncorrelated observation errors. Consider we are assimilating the jth observation

(j = 1, ..., p). The update of the ith analysis variable (i = 1, ..., n) reduces to a

scalar regression

Kij = ρij(K − 1)−1Xb
i Y

bT
j

[
(K − 1)−1Yb

jY
bT
j + Rjj

]−1
, (6.1)

where Kij ∈ R is the localized regression coefficient from the innovation of the

jth observation to the increment of the ith analysis variable, ρij is the localization

weight between the ith analysis variable and the jth observation, Xb
i ∈ R1×K is the

background ensemble perturbations1 of the ith variable, Yb
j ∈ R1×K is the back-

ground ensemble perturbations of the jth observable, and Rjj ∈ R is the (positive)

observation error variance. The gain matrix for updating perturbations is the same

except that it is multiplied by a scalar function of background and observation er-

ror variances of the observable, which is independent of the localization. Now the

quantity to be inverted (K − 1)−1Yb
jY

bT
j + Rjj is independent of the localization

weight, and the analysis ensemble of the ith variable always exists for any finite ρij.

Inductively, the global update by a set of observations always exists.

For the LETKF (Algorithm 2), an update of the ith variable requires an

inversion of

(K − 1)IK + YbTR−1
i Yb ∈ RK×K , (6.2)

where Yb ∈ Rp×K is background ensemble perturbations of observables and Ri ∈

Rp×p is a localized observation error covariance matrix used for the analysis of the

1To be precise, for the serial assimilation, the background perturbations for the assimilation of

an observation is the analysis ensemble that has assimilated all the previous observations.
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ith variable (to be defined). The R-localization of LETKF is done as follows. For

an analysis of the ith variable, we discount the inverse observation error covariance

as

[R−1
i ]jk =

√
ρijρik[R

−1]jk, (6.3)

where j and k are observation indices (j, k = 1, ..., p), and R is the observation error

covariance matrix before localization. In other words,

R−1
i = DiR

−1Di (6.4)

for Di = diag(
√
ρi1, ...,

√
ρip). We assume that ρij is nonnegative for all j. Then

because both Di and R−1 are positive semidefinite symmetric, R−1
i will also be

positive semidefinite symmetric. Therefore, if only ρij is nonnegative for all i and

j, then the LETKF analysis exists. In practice, columns and rows of Yb and R−1
i

corresponding to observations with zero weights are not evaluated without changing

the resulting YbTR−1
i Yb ∈ RK×K .

We have shown that for the serial EnSRF and the LETKF, the localized analy-

sis always exists if only each localization weight ρij is nonnegative. This result helps

us to specify flexible localization functions. We further limit ourselves to 0 ≤ ρij ≤ 1

considering the nature of localization that reduces the effect of observations.

6.3 Preliminary neural network experiments with toy data

In this section, we will show that a minimal neural network can be used to

model a wide range of multidimensional functions.
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Figure 6.2: Four toy correlation models and their generating functions (r =√
x2 + y2). Shading shows the value z at each horizontal location (x, y). Contours

showing the same quantity are added for visual clarity.

6.3.1 Toy correlation models from geostrophic theory

Figure 6.2 shows the four toy correlation models used in this section. These

“correlation functions” mimick the typical multivariate correlation functions found

in the mid-latitude atmosphere (Figure 6.3). The amplitude of Sin and Cross models

has been adjusted to have a maximum amplitude close to unity. Similar background

error correlations are also observed with FOAM-LETKF and CFS-IITM in the mid-

latitude atmosphere when many instances are averaged (not shown). We expect

neural networks to reproduce these nonlinear functions and their squared values

from erroneous samples.
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Figure 6.3: Schematic illustration of the multivariate error correlation functions in
northern hemisphere mid-latitude atmosphere. These are generated assuming the
perfect geostrophic relation between wind (U, V ) and geopotential (Φ). Another
assumption is the isotropic and Gaussian-shaped spatial correlation of geopotential
errors shown in the upper left panel. Figure courtesy Kalnay (2003).
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For each toy correlation model, 1000 erroneous training data points are gen-

erated as follows. Each of 1000 training data points is generated by first sampling

(x, y) from uniformly random distribution −2 ≤ x, y ≤ 2, and then error-free z value

is computed from the equation overlaid in Figure 6.2. The z value is squared for

some experiments, and finally, Gaussian error with standard deviation 0.2 is added

to the (squared) z value. The validation dataset is similarly generated, except no

error is added.

6.3.2 Specification of neural networks and training algorithm

Figure 6.4 schematically shows the topology of a neural network, where we try

to explain an L-dimensional vector of dependent variables y with a D-dimensional

vector of explanatory variables x. Formally, the neural network can be written as

y = W2[h(W1x + b1)] + b2, where h is an elementwise nonlinear function called

an activation function (to be specified), w ≡ (W1,W2,b
T
1 ,b

T
2 )T (with matrices

flattened) are parameters to be trained2. In our example, the output dimension is

always L = 1, the input dimension is either D ∈ {1, 2, 3} depending on the choice

of explanatory variables (to be specified), and the number of hidden units is fixed

at M = 10. A forward evaluation of the network costs O(DM +ML) floating point

computations.

Two common choices of the activation function h are hyperbolic tangent and

a piecewise linear function, max(0, ·), called the rectifier function. We choose hy-

2w is a vector of DM +ML+M + L real-number parameters.
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linear
combination

𝐚 ൌ 𝐖1𝐱  𝐛1

linear
combination
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(elementwise)
𝐳 ൌ  ℎሺ𝐚ሻ

L

Figure 6.4: Schematic of a two-layer feedforward neural network. The green arrows
show how input signals propagate to the output. Modified Bishop (2006).

perbolic tangent as our activation function because it gives smoother fitting3 and

generally smaller regression error for our problems than the rectifier function in

preceding experiments.

A neural network tries to minimize a loss function, the squared regression

error to the training data, which is equivalent to estimating the mean of dependent

variable conditioned by the explanatory variables (Chapter 1 of Bishop, 2006). No

regularization term (i.e., weight decay) is added to the loss function because it

generally degrades the regression accuracy to the independent validation data set

in our problems. In general, regularization is unnecessary if the number of tunable

parameters is much smaller than the training sample size, and over fitting to the

3This is expected because affine transformation is C∞, and the entire network will have the

same smoothness to the activation function. Hyperbolic tangent is C∞, and the rectifier function

is C0.
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training data is unlikely.

The training data is normalized so that each independent and dependent vari-

able has zero mean and unit variance; the same linear transformation is applied when

we use the trained network for regression (recommendation by Glorot and Bengio,

2010). The parameters w of neural networks are uniformly randomly initialized with

the range recommended by Glorot and Bengio (2010) and trained with the Adam op-

timizer (Kingma and Ba, 2017). Adam is a stochastic gradient4-based optimization

algorithm with automatic adjustment of the learning rate, which otherwise needs to

be tuned manually. Adam also exploits the idea of momentum5 so that the training

does not stop at local minima or saddle points of loss functions. Adam works well

for our problems with the recommended hyperparameters; the training converges

with reasonable computation time, and the final function is almost insensitive to

the random initializations of w. In contrast, the classic stochastic gradient descent

does not usually converge to a single solution when we repeat training from different

random initializations of w. Therefore, we note that these recent advancements of

neural network methodology are essential for our applications.

4Stochastic gradient descent method evaluates the gradient of the loss function in the parameter

(w) space using one training sample at a time in a randomized order. It is more tolerant of local

minima than (non-stochastic) gradient descent, where the gradient is evaluated with all the training

samples.
5In gradient descent method without momentum, the change of parameters w in a step is

proportional to the gradient of the loss function. With momentum, on the other hand, the change

of velocity (i.e., acceleration) of parameter evolution is proportional to the gradient of the loss

function as if a ball descending a hill.
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The training period is 1000 epochs; that is, each training data point is used

1000 times. Each epoch digests all the training samples sequentially in a randomized

order. The 1000 epochs of training (106 total training samples digested) is decided

subjectively to be long enough for the training to converge.

6.3.3 Explanatory variables for fitting toy data

One purpose of toy correlation model experiments is to enlighten the explana-

tory variables used to explain the horizontal correlation structure. The four sets of

explanatory variables below are tested:

• (x, y) — by the definition of the correlation models (Figure 6.2), these are the

most straightforward explanatory variables used in the neural network.

• (r) — an incomplete set of explanatory variables. The azimuthal dependency

will be ignored.

• (r, θ) — where θ = arctan(y/x) (−π < θ ≤ π). Since these variables have

complete information of horizontal coordinate, they may be used as explana-

tory variables. However, regression with θ is expected to have a discontinuity

at θ = ±π.

• (r, cos θ, sin θ) — it is customary to separate a cyclic variable into its sine and

cosine to avoid discontinuities. The same technique can be used for expressing

seasonal or diurnal dependencies in regression.
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Figure 6.5: Regression by neural networks to toy correlation models. The leftmost
column shows the error-free generating function, and the other columns show the
regression field with a different set of explanatory variables. Superimposed to each
panel are root-mean-squared (RMS) regression errors to the independent validation
dataset.

6.3.4 Results and discussion — fitting toy correlation models

Figure 6.5 shows the regression results to the toy correlation models. First,

obviously the explanatory variable (r) cannot explain the asymmetric relationship.

This incompleteness causes severe misfit for the Sin and Cross models.

The other three sets of explanatory variables generally produce good regression

accuracy to independent validation dataset although (r, θ) has a discontinuity at
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Figure 6.6: Same to Figure 6.5 but for squared generating functions.

θ = ±π. When we compare (x, y) and (r, cos θ, sin θ), the former tend to have

slightly insufficient peak strengths. Considering each training data point has error

standard deviation 0.2, the regression is successful.

Figure 6.6 shows regression for the squared correlation models. The regression

accuracy to the independent validation dataset is now comparable for (x, y), (r),

and (r, θ). Here we find (x, y) and (r, θ) suffer to represent the small-scale features

such as Sin and Cross. Again, (r, θ) has discontinuity at θ = ±π. The regression

by (r, cos θ, sin θ) is generally most successful.

Overall, the neural networks have shown good abilities to reproduce spatially
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extended “correlation functions” when an appropriate set of predictors is chosen.

Finally, we discuss an important characteristic of the fitting to squared values

by comparing regression to the Cross function with (r) in Figures 6.5 and 6.6. In

the regression to the raw value (Figure 6.5 bottom center), positive and negative

values offset each other, and the resulting function is almost null. However, in the

regression to the squared value (Figure 6.6 bottom center), the azimuthal depen-

dency is smoothed out, but the resulting regression function is still nonzero. The

regression to the squared value still captures an important geostrophic feature that

the “correlation” reaches its maximum at a certain distance. This implies that we

do not need to include all the explanatory variables in the regression to get a decent

localization function.

6.4 Fitting to FOAM ensemble correlations

In this section we estimate and evaluate the regression function f that will be

used for localization of strongly coupled atmosphere-ocean DA.

6.4.1 Generation of training data

Training and validation data sets are generated by sampling the weakly coupled

LETKF cycle of FOAM used in the previous chapter. The 64-member LETKF

system analyzes the coupled atmosphere-ocean states every 24 hours for a model

year (Table 5.1).

In our experiments, there exist 10 types of analysis variables: (T,Q, U, V, Ps)
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from the atmosphere and (T, S, U, V, Ptop) from the ocean. Since only horizontal

interpolation operators are considered for observation operators, the set of observa-

tion types is the same as the types of analysis variables. Therefore, there are 100

combinations of observation and analysis variable types.

A training data sample for given observation and analysis variable types is

generated as follows:

1. Sample time t uniformly randomly from the available period.

2. Sample analysis grid location (λanl, φanl, zanl) uniformly randomly on the sphere,

where λ, φ, and z represent longitude, latitude, and vertical coordinate, re-

spectively. Repeat sampling if the analysis grid is topographically masked.

For vertical coordinate, the integer model levels in Table 4.3 are used.

3. Sample uniformly random (r, θ, zobs) (r ∈ [0, rmax), θ ∈ [0, 2π)), where r is the

distance between the analysis grid and the observation, rmax = 3000 km, θ

is the azimuth angle from the analysis location to the observation location,

and zobs is the observation level. Uniformly random sampling in (r, θ) space

is designed to more intensively sample observation locations near the analysis

grid compared to uniform sampling on the sphere.

4. Get the observation location (λobs, φobs) using (λanl, φanl, r, θ). Repeat sampling

(step 3-4) if the observable is topographically masked at (λobs, φobs, zobs).

5. Get background ensemble of the analysis variable and the observable by ap-

plying an observation operator to the background ensemble of state vectors.

145



Here, observation operators are horizontal interpolation.

6. Calculate the background ensemble correlation between the analysis variable

and the observable. Save it with the attributes

(t, λanl, φanl, zanl, λobs, φobs, zobs, r, θ).

In practice, we first complete steps 1-4 for all necessary samples to generate a list

of attributes (t, λanl, φanl, zanl, λobs, φobs, zobs, r, θ) and then steps 5-6 in the t-order

(simultaneously for all the variable types) to enhance computational efficiency.

For each pair of variable types, we prepare 8×106 training samples and 1×106

validation samples. Since there are 10 analysis variable types and 10 observation

types in our experiments, these add up to 10 × 10 × (8 × 106 + 1 × 106) = 9 × 108

total samples. Sampling 9×108 samples takes several hours with a single processor.

The number of necessary training samples depends on the number of explanatory

variables and the smoothness of the underlying function, which will not be very

sensitive to the model resolution as long as the process-of-interest (e.g., Rossby

waves) remains resolved (Ying et al., 2018). The input/output cost is expected

to increase for higher-resolution models, but the sampling (steps 5-6) can be done

parallely for each t. Also, the sampling is done only once, and this sampling cost

seems acceptable.

6.4.2 Neural network and training configurations

In our experiments, a neural network has M = 30 hidden units with hyper-

bolic tangent nonlinearity. We have increased the number of hidden units from the
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toy data experiments (M = 10, Section 6.3) because the networks have to con-

sider vertical and latitudinal effects as will be discussed. The training is done with

the Adam optimizer with the recommended hyperparameters for 3 epochs. Each

network, therefore, digests total of 3 × 8 × 106 samples. The other training set-

tings, including loss function, regularization, normalization of training samples, and

initialization of the parameters w, are the same to the experiments with the toy

correlation data set.

Training of each neural network takes tens of minutes with a single processor

and can be done in parallel for different pair of variable types. Again, this training

is done only once before starting the (production) assimilation cycle.

6.4.3 Explanatory variables for regression of FOAM ensemble corre-

lation

We test three sets of explanatory variables for regression of the (squared)

background ensemble correlations:

• (r, zanl, zobs) — this is analogous to (r) in the toy correlation model experiments

with additional vertical dependency.

• (r, zanl, zobs, φanl) — latitudinal dependency is added, considering different atmosphere-

ocean dynamics in the lower and higher latitudes.

• (r, zanl, zobs, φanl, cos θ, sin θ) — this is analogous to (r, cos θ, sin θ) in the toy

correlation model experiments. Azimuthal dependency can be explained.
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Recall that the analysis variable and observation types are also considered in our

regression f because different neural networks are trained and used for different

variable types.

Fitting is independently repeated for raw and squared ensemble correlations.

The fitting to the squared ensemble correlation serves directly for the correlation-

cutoff localization (Figure 6.1). The fitting to raw ensemble correlation mainly

serves for visualizing its ability to reproduce known background error statistics; the

term “mean ensemble correlation” refers to this regression.

6.4.4 Regression results and discussion

Figure 6.7 shows the RMS regression errors of squared background ensem-

ble correlations to the validation data set. First, in the left column, we see that

the diagonal blocks tend to have larger regression errors. This is expected because

larger background ensemble correlations tend to exist within each subsystem; the

regression is trivial if ensemble correlations between two variables are always close

to zero. The relative regression errors for different sets of explanatory variables

are more apparent when we plot the ratio of regression errors (right column). The

negative values in the panel (c) shows that the regression with additional latitudi-

nal dependency φanl achieved smaller regression error. The inclusion of latitudinal

dependency is beneficial for explaining atmospheric internal, oceanic internal, and

cross-correlations of background errors. On the other hand, the regression error is

mostly insensitive to the inclusion of azimuthal dependency (cos θ, sin θ) as can be
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seen in the panel (e). Relative regression accuracies for the raw background ensemble

correlations are similar to those for squared ensemble correlations (not shown).

Note that with more available training samples and a larger degree of freedom

(i.e., number of hidden nodes), more subtle relationships will be accurately resolved.

As a result, more inclusive predictors such as (r, zanl, zobs, φanl, cos θ, sin θ) will in-

creasingly perform better than exclusive predictors such as (r, zanl, zobs). Therefore,

the comparison in the previous paragraph only shows optimality for our specific

configurations but does not conclude the general independence of background error

correlations to the azimuth angle.

From the above observations, hereafter, we will examine the set of explanatory

variables (r, zanl, zobs, φanl) more carefully as our primary choice. We will show several

prominent characteristics of the four-dimensional function of (r, zanl, zobs, φanl).

Figure 6.8 shows how the neural networks with predictors (r, zanl, zobs, φanl)

can respond to the latitudinal sensitivity of the vertical error correlation length

of zonal wind. It is known that the wind error is more vertically correlated at

the higher latitudes (panel b). The background error correlation reproduced by a

neural network (panel a) captures most of the qualitative features such as tighter

vertical wind error correlation in the lower latitudes. This observation shows that

the neural networks and training data sampled from the FOAM-LETKF system can

incorporate the latitudinal dependency reported in the literature.

Next, we examine multivariate error correlation within the atmosphere. Since

we have opted out the azimuth angle (θ) from the predictors by choosing (r, zanl, zobs, φanl),

the geostrophic relationship between the geopotential and wind will only be cap-
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(a)

(b)

(d)

(c)

(e)

Figure 6.7: Panels (a, b, d): RMS regression error to validation data set of neural
networks to squared ensemble correlations with different set of explanatory vari-
ables: (r, zanl, zobs), (r, zanl, zobs, φanl), and (r, zanl, zobs, φanl, cos θ, sin θ), respectively.
Superimposed numbers are RMS regression error multiplied by 1000 (redundant to
color). Panels (c, e): relative regression errors, (b) divided by (a) and (d) divided
by (b), respectively. Blue color means improved regression by additional explana-
tory variable(s). Superimposed numbers are the ratio minus one multiplied by 1000
(redundant to color).
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(a)

(b)

Figure 6.8: Latitudinal sensitivity of vertical error correlation of U -wind. Panels
(a) vertical background ensemble auto-correlation of U -wind reproduced by neural
networks; correlations are to the 8th level of FOAM (approximately 500 hPa). Panel
(b): vertical error auto-correlation of U -wind to the 11th level of another model
(approximately 500 hPa), as a function of latitude, estimated by forecast difference
method (the NMC method) in January 1999; figure courtesy Ingleby (2001).
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(a)

(b)

Figure 6.9: Background ensemble correlation reproduced by a neural network, be-
tween surface pressure observation and V -wind field at 60◦S. Panels (a) and (b) are
regressions to the raw and squared background ensemble correlations, respectively.

tured by mean squared correlation (see regression of Sin generation function by

r of Figures 6.5 and 6.6). Figure 6.9b shows the squared background ensemble

correlation reproduced by a neural network, between surface pressure observation

and V -wind field as a function of horizontal distance r and analysis level zanl. The

result is consistent to the regression of Sin function by r in Figure 6.6 and the re-

lationship V Φ in Figure 6.3 that the squared error correlation has its peak near the

surface, a thousand kilometers away from the observation location. There also ex-

ists weaker sensitivity to upper V -wind just above the surface pressure observation

(zanl ∼10). This sensitivity might be explained by warm/cold air advection, where

the southerly wind (positive-V ) brings colder, denser air, and it may increase the

surface pressure (positive-P) in the southern hemisphere. These errors are positively

correlated (panel a), and the inverse relationship is seen in the northern hemisphere

(not shown).

Finally, to show its applicability for the SCDA problems, we see how the neural
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(a)

(b)

Figure 6.10: Capability of neural networks to reproduce the time-mean background
ensemble correlation between the atmosphere and the ocean. Top: time-average
of background ensemble correlation, between a hypothetical observation of surface
meridional wind at 40◦S 80◦E (southern Indian ocean) and meridional wind and
zonal current meridional cross-sections along 80◦E. Bottom: mean background en-
semble correlation reproduced by a neural network, between a hypothetical surface
meridional wind observation at 40◦S and meridional wind and zonal current field,
as a function of horizontal distance and the analysis levels. Note that the former is
a meridional cross-section, but the latter is a radially symmetric function.
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networks reproduce the coupled error correlations. Figure 6.10 compares the simply

time-averaged background ensemble correlation (panel a) and the background en-

semble correlation reproduced by the neural networks (panel b). Both panels show

a proxy to the sensitivity to a V -wind observation at 40◦S, and the heavy black

rectangles are showing almost comparable domains. Both panels are showing that

the surface V -wind observation can constrain the V -wind field above (background

error positively correlated with the observable) and the U -current field below (back-

ground error negatively correlated with the observable). As discussed in Section 6.2,

the quantity shown in the former panel cannot be computed and stored for all the

pairs of analysis variable and observable.

Overall, the regression to the (squared) background error correlation sampled

from the FOAM-LETKF analysis cycle is successful. However, the regression some-

times overshoots to impossible value. For example, the regression may produce a

negative estimate for squared error correlation. This overshoot can be removed a

posteriori when we apply a cutoff function g (next section). Also, the self-correlation

is often less than unity. These problems are alleviated by increasing training sam-

ples (the regression is much worse with eight times less training data; not shown).

Also, an increased number of hidden units may contribute to better regression to

fine structures.
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6.5 Assimilation experiments with correlation-cutoff

In this section, we present proof-of-concept experiments of the strongly coupled

atmosphere-ocean LETKF with the correlation-cutoff method.

6.5.1 Choice of cutoff function

Before conducting assimilation experiments, we briefly discuss a cutoff function

g. There are several desired characteristics for cutoff functions, some physical and

some computational.

First of all, a cutoff function should be a non-decreasing function from the

concept of the correlation-cutoff method introduced in Chapter 2. An observation

should be assimilated only to the analysis variables that have highly correlated

background error to the observable quantity. This characteristic may also help the

analysis to be balanced if we can consistently correct dynamically intimate variables

that should have highly correlated background errors.

Cutoff functions should be in a range [0, 1] from the discussion in Subsection

6.2.2. Combined with the non-decreasing condition, the cutoff function is likely to

map 0 to 0 and 1 to 1. Note that by setting g(x) = 0 for x ≤ 0 and g(x) = 1 for

x ≥ 1, we can ensure the localization weight to be in an appropriate range even

with overshooting regression f .

A cutoff function should be smooth enough to avoid unnecessary disturbance of

dynamics. Our choice of hyperbolic tangent activation ensures, for each observation

and analysis variable types, the estimated squared correlation is a C∞ function of
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numerical predictors (r, zanl, zobs, φanl). Therefore, the localization weight ρ is as

smooth as the cutoff function g. However, the desirable smoothness is unknown;

for example, Houtekamer and Mitchell (1998) and Ott et al. (2004) set localization

weight zero outside the cutoff radius (not even continuous), while many localized

ensemble DA systems use the piecewise polynomial function of Gaspari and Cohn

(1999) (twice continuously differentiable).

From a computational perspective, a cutoff function should provide a sparse

localization function. That is, localization weights should be identically zero if the

estimated squared error correlation is below some threshold. For both the serial

EnSRF and the LETKF, the analysis cost increases with the average number of

observations assimilated with nonzero weight into each analysis variable. Therefore,

observations with small estimated squared error correlations should not be assim-

ilated rather than assimilated with a small weight. We would probably like to set

the threshold larger than 1/(K − 1) for a K-member ensemble because the squared

sample correlation estimated by K random samples drawn from an uncorrelated

distribution converges to 1/(K − 1) (Pitman, 1937), and any value not much larger

than 1/(K − 1) would not be reliable6.

Finally, it may involve an appropriate number of tuning parameter(s). Too

many parameters unnecessarily increase manual intervention, while a few tunable

6However, some evidence shows that the ensemble perturbations of deterministic EnSRFs can

represent even smaller underlying error correlations under idealized situations (Sakov and Oke,

2008). This behavior is also apparent in Figure 2.1, where a 10-member ensemble can tell us mean

squared error correlation between some variables is much less than 1/9.
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parameters may be helpful to ensure the localization weight is appropriate for the

ensemble size and counteract other imperfections. The theoretically optimal cutoff

function is yet to be developed.

Upon these considerations, we tentatively opt a piecewise quadratic function

with a cutoff parameter c and vanishing derivative at x = 1:

ρ = g(x) =



0 (x ≤ c)

1−
(

1−x
1−c

)2
(c < x ≤ 1)

1 (x > 1),

(6.5)

where x is a squared background error correlation reproduced by the regression

function f . This cutoff function is continuous, produces sparse localization function,

and has heavier weight when x ∼ 1.

6.5.2 One-year forecast-analysis cycle experiment

Table 6.2 shows the configuration of two experiments, namely, Control and

Cutoff. The cutoff parameter 0.05 is experimentally chosen from 0.05 and 0.1. The

localization parameters for the Control experiment are manually tuned from several

configurations.

The regionally and temporally averaged analysis and background errors of

these experiments are shown in Figure 6.11.

First, we notice that the Cutoff experiment achieves overall smaller analysis

and background (i.e., 24-hour forecast) errors than the Control experiment in the

atmosphere (panels a-d). This improvement is apparent in all the variables and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.11: Global RMSE of Control (black) and Cutoff (red) experiments as a
function of model levels. Solid and dotted lines show the background (i.e., 24-hour
forecast) and analysis errors to the known truth. Panels (a-d) show atmospheric
temperature (K), specific humidity (g/kg), zonal wind (m/s), and meridional wind
(m/s), respectively. Panels (e-h) show oceanic temperature (K), salinity (PSU),
zonal current (cm/s), and meridional current (cm/s), respectively. Out of 360 days,
the first 30 days are excluded from averaging.
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Table 6.2: Settings of strongly coupled assimilation experiments Control and Cutoff.
See text for the differences between Cutoff, Cutoff-nodeep, and Cutoff-nodeep-ocnhalf
experiments.

Control Cutoff

Experiment period One model year (from January 1)

Analysis interval 24 hours

Observation network As Table 4.2, at the end of each window

Analysis method 64-member, strongly coupled LETKF with IAU 0

Localization Horizontally 1000 km
(atmosphere) and 400 km
(ocean), vertically 3 model
levels (atmosphere/ocean)

Eq. 1.6

Correlation-cutoff with
neural networks [predictors
(r, zanl, zobs, φanl) and Eq.
6.5 with parameter 0.05]

up to horizontally 3000 km,
vertically 16 levels away

Analysis variables T,Q, U, V, Ps (atmosphere), T, S, U, V, Ptop (ocean)

Covariance inflation RTPP; 30% prior perturbations (atmosphere) and 90%
prior perturbations (ocean)

levels. We will later examine the geographical features of errors.

The ocean analysis quality of Cutoff is generally worse than Control, especially

in the deep, unobserved ocean (panels e-h). With a conjecture that the one-year

offline experiment has not provided sufficiently reliable information for the deep

ocean, whose timescale reaches multiple years, we conduct two additional experi-

ments, Cutoff-nodeep and Cutoff-nodeep-ocnhalf.

In the Cutoff-nodeep experiment, the analysis of unobserved deep ocean vari-

ables below 2300 meters is turned off. Further, in the Cutoff-nodeep-ocnhalf exper-

iment, the localization weights for the ocean analysis variables are halved to reduce

the observation impacts on the ocean. Everything else remains the same as the

Cutoff experiment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.12: Same as Figure 6.11 but for Control (black) and Cutoff-nodeep (red)
experiments.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.13: Same as Figure 6.11 but for Control (black) and Cutoff-nodeep-ocnhalf
(red) experiments.
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The analysis and background errors of these experiments as a function of

model levels are shown in Figures 6.12 and 6.13, respectively. Both of these tunings

substantially reduced the ocean analysis and background errors from the Cutoff

experiment. The ocean errors of the Cutoff-nodeep-ocnhalf experiment are now

comparable or slightly superior to the Control experiment (Figure 6.13 e-h) with

improvements in shallower layers. Atmospheric analysis and background errors are

almost unaffected with these changes, showing overall improvement over Control.

Geologically, atmospheric background error is most reduced in the tropics

(Figure 6.14). This can be a result of improved variable localization; in the tropics,

the geostrophic relationship between mass and wind fields should be weaker than

in the higher latitudes. Hence, appropriately localizing this relationship should

improve the analysis. On the other hand, the Control experiment assimilates mass

and wind observations to the mass and wind fields without distinction.

Ocean surface errors of zonal and meridional currents are smaller than Control

almost everywhere, but the temperature, salinity, and altitude fields experience

regional degredation near the Antarctic (Figure 6.15). The reason for degradation

in these regions remains unclear.

Overall, the proof-of-concept experiments in this section support the neural

network usage for localization and the concept of the correlation-cutoff method,

with improved atmospheric analysis and comparable ocean analysis to Control. Re-

liability of the one-year offline experiment in the internal ocean is dubious and it

will need further sophistication. Manual tuning such as those applied to our Cutoff-

nodeep-ocnhalf experiment or tighter physical cutoff distance in the ocean may be
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(a)

(b)

(d)

(f)

(c)

(e)

(g)

Figure 6.14: Atmospheric background (24-hour forecast) RMSE of the
Cutoff-nodeep-ocnhalf experiment relative to the Control experiment
(RMSECutoff-nodeep-ocnhalf − RMSEControl). Blue (red) colors show improvement
(degradation) from the Control experiment. Panels (a-e) show surface pressure,
temperature, specific humidity, zonal wind, and meridional wind, respectively.
Panels (f) and (g) show zonal and meridional winds at 250 hPa (11th model level).
Units are written in each panel. Out of 360 days, the first 30 days are excluded
from averaging.
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(a)

(b)

(d)

(c)

(e)

Figure 6.15: Same as Figure 6.14 but for oceanic variables. Panels (a-e) show sea
surface height, sea surface temperature, sea surface salinity, surface zonal current,
and surface meridional current, respectively.
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necessary for domains where offline experiment alone cannot provide reliable clima-

tological information on the error structures.

6.5.3 Computation cost

In this section, we will examine the direct increase of analysis computation

time due to the introduction of neural network and then discuss auxiliary matters

for readers interested in more efficient implementation.

A forward evaluation of a neural network takes O(DM + ML) floating point

computations; this is a few hundreds in our configuration (D,M,L) = (4, 30, 1). On

the other hand, the analysis of a variable with the LETKF takes O(K2ploc + K3)

floating point computations for a K-member ensemble and ploc local observations

assimilated. Therefore, the evaluation of neural networks (which will be repeated

for O(ploc) times) will not dominate the analysis cost if DM +ML . K2, which is

true for our configuration (K = 64). We confirm this statement with experiments.

For a direct comparison of computation cost, we conduct two additional ex-

periments, Control-3000 and Neural-3000, both of which allow nonzero localization

weights up to 3000 km horizontal distance and ±16 vertical levels7. The Control-

3000 experiment uses the Frolov et al. (2016) normalized distance (Eqs. 1.5 and

1.6) so that the localization weights become identically zero beyond 3000 km and

16 vertical levels. The Neural-3000 experiment uses neural networks with predictors

(r, zanl, zobs, φanl) and the cutoff function Eq. (6.5) with a cutoff parameter c = 0.2,

7The Neural-3000 experiment is found to be using the regression coefficients to raw error cor-

relations, which does not significantly affect discussion here.
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and any observations beyond 3000 km or 16 vertical levels are given identically zero

localization weights. Both experiments assimilate all the observation networks in

Table 4.2 for three consecutive 24-hour windows.

With 256 Intel Ivy Bridge processors (2.8 GHz) and Intel Fortran compiler

with -O3 optimization, the computation times of Control-3000 and Neural-3000

experiments are 348 and 368 seconds, respectively (the Neural-3000 experiment

is 5.7% more expensive). This number includes the time spent on the ensemble

forecast, which is not dominant in our settings8.

By profiling the Neural-3000 experiment, the evaluation of neural networks

turns out to account for about 10% of the LETKF computation time; this number

is estimated by a line profiler and imprecise due to compiler optimization. Further-

more, two-thirds of the evaluation cost of neural networks is spent for the hyperbolic

tangent function (the rest is for linear combination). Therefore, there is a chance

to triple the number of hidden nodes without increasing the evaluation cost if we

choose a faster activation function like the rectifier function.

Having confirmed that the direct increase of computation cost is acceptable,

below we mention two causes that can indirectly increase the analysis cost and

discuss how to alleviate it.

8The ocean model has much more analysis variables than the atmosphere model due to their

relative resolutions. On the other hand, the 24-hour forecast for the ocean is cheap due to the

ocean model’s longer time step and the absence of expensive parameterized physics. As a result,

the ocean analysis dominates the entire forecast-analysis cost in our experiments. In contrast, for

atmosphere-only forecast-analysis systems, the ensemble forecast is usually more expensive than

the analysis (Houtekamer and Zhang, 2016).
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First, for localization depending only on the physical distance, there are estab-

lished and efficient algorithms of observation selection (kD-tree, Octree, and other

spatial decomposition; also see Appendix A). In these algorithms, many faraway

observations can be rejected by a single evaluation of distance between an analysis

variable and a subset of observations. On the other hand, we can only evaluate

localization weight of an observation at a time with neural networks. To reduce the

number of observations whose localization weight is actually evaluated, we can com-

bine physical cutoff distance, beyond which localization weights are set identically

zero. Physical cutoff distance is used in the Neural-3000 experiment above (3000

km and 16 levels). Evaluation of localization weight can also be avoided by setting

localization weight identically zero for some variable pairs (e.g., between salinity

and wind). This decision can also be guided by offline statistics.

Second, for distance-only localization, the LETKF (Algorithm 2) can reuse w̄a

and Wa for all the collocated analysis variables because those variables’ analyses are

identical in the ensemble space, which can speed up the analysis by a few times (Hunt

et al., 2007). This shortcut is not adopted in the Control-3000 experiment above.

For any localization that takes analysis variable types into account, including our

correlation-cutoff method and the variable localization of Kang et al. (2011), this

shortcut is unavailable. To alleviate the analysis cost, we might want to reduce

the number of analysis variable types that use independent localization weights; for

example, we might want to use a category “wind” instead of zonal and meridional

winds as two independent categories.

Overall, the correlation-cutoff method with neural networks has shown its
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feasibility for strongly coupled global atmosphere-ocean analysis.

6.6 Concluding remarks and future directions

In this chapter, we have demonstrated that the correlation-cutoff method can

be realized with neural networks even for a global atmosphere-ocean model, where

the computational cost was a primary concern.

With toy correlation models inspired by the geostrophic theory, we have shown

that neural networks, even with a small number of hidden units, can be used to

explain spatially extended “correlation functions”. The neural networks can be

used as an end-to-end measure of regression only with the recent development of

machine learning methodologies.

The neural networks are used to fit the (squared) background error of an

atmosphere-ocean coupled model, where we have shown that it can reproduce some

known features of background errors. For example, the dependency of the vertical

correlation length of wind error on latitude is reproduced. Another example is

the geostrophic error structure, where the peak sensitivity of the wind analysis to

a pressure observation resides a thousand kilometers away from the observation.

Also, mathematical validity of these localization functions for serial EnSRF and the

LETKF is shown.

The regression function that maps (r, zanl, zobs, φanl) to the squared background

error correlation is used in a localization function of a strongly coupled atmosphere-

ocean LETKF system. The experiments showed computational feasibility for global
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strongly coupled analysis. We have also discussed how to alleviate the indirect

increase of computation cost accompanying the correlation-cutoff method.

For the analysis accuracy, our proof-of-concept experiments have shown sub-

stantially improved atmospheric analysis with the largest improvements in the trop-

ics, and comparable ocean analysis to the Control experiment after some tuning.

The improved atmospheric analysis in the tropics may be attributed to the ap-

propriate variable localization between mass and wind variables. For the internal

ocean, whose timescale is longer than the offline experiment, tuning based on the

first principle seems necessary.

Here are future directions suggested:

• The use of neural networks in a localization function — one of the most ele-

mental parts of ensemble data assimilation algorithm that shall be evaluated

billions of times in an analysis — has been attempted for the first time. There-

fore, we have prioritized implementing the method with the global atmosphere-

ocean model to show its computational feasibility. However, we may want to

step back to simpler models (but more complex than the 9-variable model

tested in Chapter 2) and thoroughly examine the balance and accuracy of the

analysis compared to other localization methods. To show its ability to nat-

urally combine spatial and variable localizations, the simple model should be

multivariate and spatially extended like shallow water equations or the coupled

model of Lorenz (2005) used by Bishop et al. (2017).

• Further tuning of the cutoff function g, including exploration of its theoretical
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optimal.

• More accurate offline estimation of squared error correlation, especially for

the internal ocean. Longer offline experiments with appropriate covariance

inflation methods will provide more accurate information for localization of

the internal ocean. For this purpose, the relaxation to prior spread method

(RTPS; Whitaker and Hamill, 2012) seems more appropriate than the re-

laxation to prior perturbation method (RTPP; Zhang et al., 2004) because

the former does not change the analysis ensemble correlation structure in the

model space. Also, the initial ensemble must be carefully prepared because an

oceanic ensemble is slow to reach its steady state.

• The squared background error correlation estimated with training data from an

offline EnKF cycle (weakly coupled with spatial localization in our case) may

misfit that of the production EnKF cycle (strongly coupled with correlation-

cutoff). Also, we may want to incorporate the gradually changing observation

network, which is known to affect the background error correlation length (e.g.,

Ying et al., 2018). Therefore, it is worth exploring the iterative estimation of

squared error correlation using training data from correlation-cutoff EnKF cy-

cles (Brian Hunt, 2018, personal communication) or online training of squared

error correlation (Kayo Ide, 2019, personal communication).

• Usage of graphics processing units (GPUs). Although current computation

cost with central processing units (CPUs) is acceptable, training and evalua-

tion of neural networks are most efficiently done with GPUs. This will help
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to improve the regression accuracy without increasing training and evaluation

time. Training can also speed up by mini-batch training.

• Ultimately, our methodology should be tested with more complex and realis-

tic systems, including assimilation of real observations or extension to Earth

system models beyond the atmosphere and the ocean.
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Chapter 7: Concluding summary

7.1 Summary of this thesis

Strongly coupled data assimilation of the Earth system is thought to be an

ultimate methodology for its state estimate. Its concept is simple because we can

deal with the coupled system as a single, autonomous dynamical system. However,

several practical problems remain before we realize the operational strongly coupled

data assimilation systems, caused by the different temporal and spatial scales of the

dynamics. Another problem is our ignorance to the three-dimensional coupled error

structures, an essential element of strongly coupled DA.

Localization is one of the largest problems to realize the strongly coupled DA

with ensemble methods, where the background error covariance is generally less

reliable than in the weakly coupled DA. Therefore, we have explored a localiza-

tion method that applies to the analysis of the coupled system, where the physical

distance is not the only descriptor of the coupling strength between two quantities.

In Chapter 1, we have reviewed the current understanding and approaches for

coupled data assimilation and localization of ensemble-based analysis.

In Chapter 2, we have shown that the time-mean squared background en-

semble correlation can serve as a “distance” between an analysis variable and an
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observation. Based on this observation, we proposed the correlation-cutoff method,

where we only couple the analysis between pairs of subsystems with strong error cor-

relations. The method is tested with a nine-variable coupled model of the chaotic

atmosphere and ocean, showing smaller analysis errors with a limited ensemble size.

As a related topic, the effect of coupling on the error growth and the character-

istics of the attractor is examined with a simple chaotic coupled model with fast and

slow timescales (Chapter 3). Here, discontinuous sensitivity of the attractor’s char-

acteristics to the coupling strength is reported. The results call for more attention

to the forward dynamics of the coupled systems, which will affect the uncertainty

estimate, including those in the ensemble predictions.

Chapter 4 served for our system description, which is commonly used for the

investigation in Chapters 5 and 6.

In Chapter 5, we have investigated the structure of the atmosphere-ocean cou-

pled background errors and discussed where the strongly coupled DA will be most

beneficial. Certain background error correlations between some surface variables

exist, but at the same time, the correlation matrix is sparse enough to support

the importance of appropriate variable and spatial localization. We compared the

background ensemble statistics of two global atmosphere-ocean EnKF systems with

different level of sophistications. With more realistic CFS-IITM, more detailed geo-

logical features of local error correlations have revealed. Results of this chapter will

help future design of strongly coupled DA, either with the ensemble or variational

methods.

We have further extended the correlation-cutoff method for a non-static ob-
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servation network and a global atmosphere-ocean coupled model in Chapter 6 by

leveraging neural networks. With neural networks, we can build a localization func-

tion that considers the analysis variable and observation types as well as their geo-

graphical location and distance, with realistic storage and computation costs. Our

proof-of-concept experiments showed improved analysis in the atmosphere, but some

tuning was necessary for internal ocean, where the error statistics sampled from an

offline DA cycle could be inaccurate.

Throughout the thesis, we have examined a spectrum between uncoupled/localized

and fully coupled systems with a stress on the coupled atmosphere-ocean system.

However, active research on coupled data assimilation is likely to continue for the

coming decade with the emergence of increasingly sophisticated coupled models and

improved understanding of coupled systems.

7.2 Future direction

In addition to the future directions of the correlation-cutoff method discussed

in Section 6.6, the effect of the coupled forward model in the forecast-analysis sys-

tem (i.e., the difference between uncoupled and weakly coupled DAs) should also

be investigated more thoroughly. Our collaborative work with a coupled quasi-

geostrophic model (Penny et al., 2019) partially serves for this purpose, which has

examined the broad range of methodologies including a spectrum from uncoupled

to strongly coupled DA paradigms and a few assimilation algorithms including vari-

ational, ensemble, and hybrid methods on the accuracy and stability of coupled
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state estimate. Local causality or predictability1 analysis (Bach et al., 2019) will

also be a promising approach for investigating coupled forward dynamics in multiple

timescales, including those of DA windows.

Finally, coupled DA will also provide a basis on which we can estimate and

correct the model deficiencies related to coupled processes (Bhargava et al., 2018;

Carton et al., 2018; Liu et al., 2014), accurately account for uncertainties in cou-

pled observation operators (Geer et al., 2018), and estimate observation impact on

coupled forecasts (Kalnay et al., 2012; Chen and Kalnay, 2019). These by-products

of coupled DA will be as beneficial for future improvements of coupled numerical

predictions as the improved coupled state estimates, the main product of coupled

data assimilation.

1Global predictability has been examined by, for example, Atmospheric Model Intercomparison

Project (AMIP)-type experiments, where prescribed SST drives an atmospheric model. Local

predictability will be similarly important to understand more elemental coupling processes.

175



Appendix A: Speedup observation lookup with Octree

The standard algorithm of the LETKF was shown in Algorithm 2 (Chap-

ter 4). An essential part of this algorithm is the selection of observations within

the localization (query) radius (line 18 of Algorithm 2). When the simple linear

search algorithm (i.e., brute force) is employed, the computational cost of observa-

tion lookup for an analysis is O(np) for the number of model variables n and the

number of observations p. This process often dominates the computational cost of

the analysis when the localization radius is small enough (i.e., |J | � p, where J

is the set of observations assimilated into each model variable with nonzero weight)

and no other process costs O(np) or larger.

To speed up the observation lookup of the LETKF, an algorithm called kD-tree

is often used (e.g., Szunyogh et al., 2008). The kD-tree algorithm recursively divides

the set of observations into two disjoint sets. The division is done alternatively in x,

y, and z directions until a leaf (i.e., a box without children) of the tree satisfies some

stopping criteria (e.g., less than ten observations in the box). A drawback of kD-

tree is its complexity of implementation, especially when combined with addition

and removal of observations, which are sometimes unavoidable for DA applications

because of non-synoptic observations and quality control.
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In our implementation of LETKF for FOAM, a similar algorithm called Oc-

tree1 is adopted. The Octree algorithm divides each set of observations into eight

disjoint boxes so that the volumes of the boxes are almost equal (on the other hand,

kD-tree divides the set so that the numbers of observations are almost equal). The

advantage of Octree over kD-tree is, therefore, the static structure of the tree, which

enables easy addition or removal of observations. An Octree is often used for multi-

body simulations including video games, which require the heavy calculation of

collision detection in three-dimensional space.

Algorithms 3 and 4 are pseudocode to add and get observations using Octree.

Both octree add and octree query procedures are called recursively to walk through

the tree in the depth-first order.

To apply Octree for spherical geometry, we employ a technique called ball-tree

in the detection of the horizontal intersection of the query radius and the box. Each

box is given its center location at construction. When an observation is added to

a box, the radius of the box is updated so that all the observations in the box is

contained in the radius of the box. (Line 17 of Algorithm 3). The radius of the

box is later used to detect the possibility of having observation within the query

radius (Line 8 of Algorithm 4). The beauty of the ball-tree technique is that it

allows horizontal intersection detection between the query radius and the box by

just a single evaluation of horizontal distance. This simplicity can also speed up

the query compared to complex intersection evaluation between the rectangle box

and the query radius on the curved coordinate. This technique applies even to the

1The name Octree is a combination of oct (8) and tree (a recursive data structure).
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curved coordinate including poles because the triangle inequality holds everywhere

on the sphere [i.e., dist(A,C) ≤ dist(A,B) + dist(B,C) for any three points A, B,

and C].

Figure A.1 is the horizontal visualization of some boxes of Octree. Note that

the ball-tree technique may cause false detection of intersection between the box and

the query radius (see the blue circle around the Florida peninsula, which intersects

with the green circle but not with the green box). This false detection is acceptable

because any observation outside the query radius is finally filtered out (Line 13 of

Algorithm 4) and cannot be added to J .

To see the utility of Octree, computation time spent for an analysis is measured

with and without Octree. Our implementation divides the global three-dimensional

domain (latitude, longitude, and level) four times, which results in 84 = 4096 small-

est boxes. In this experiment, the 64-member LETKF assimilates total p = 34,520

observations into n = 1,822,380 model variables. The assimilation is parallelly con-

ducted using 128 MPI processes on the Deepthought2 supercomputer at the Univer-

sity of Maryland (Ivy Bridge, 2.8GHz). Horizontal localization allows assimilation

of observations up to 2000 km distance, and vertical localization up to 3 model-level

difference. Cross-assimilation between the atmosphere and the ocean is also allowed

(i.e., SCDA). With this localization, the average number of observations assimilated

into each model variable with nonzero weights |J | is 155.9. Table A.1 compares the

time spent for observation lookup with and without Octree. The results show that

Octree speeds-up the observation lookup by more than 40 times, with the final cost

much less than the LETKF core calculations.
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Figure A.1: Horizontal schematic of Octree application on the spherical coordinate.
The pink box is one of the three-time-divided boxes, which is 45 degrees in longitude
and 22.5 degrees in latitude. The green box is one of the four-time-divided boxes.
The green cross, dots, and circle show the center of the green box (at 39.375◦N
78.75◦W), hypothetical observations in the green box, and the radius of the box
after adding the observations (approximately 943 km), respectively. Note that the
observations (green dots) exist only in the intersection of the green box and circle.
Queries like the blue (red) circles intersect (does not intersect) with the green circle
and may (may not) find observations in the green box.
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Algorithm 3: Add an observation to Octree. Note that in Fortran nomencla-
ture, structures are called as derived types.

1 structure BoxStruct contains
2 is leaf : True if the box is leaf
3 children : Pointers to 8 child boxes unless the box is leaf
4 observations : Pointers to observations if the box is leaf
5 center : Horizontal center location
6 radius : Maximum horizontal distance from the center to observations,

initialized to zero
7 top : Top level
8 bottom : Bottom level

9 end structure
10

11 box : An instance of BoxStruct
12 j : Index of the observation added to the tree
13 obsloc : 3-dimensional location of the observation
14 dist(l1, l2) : Horizontal distance of two locations (l1, l2)
15

16 procedure octree add(box, j, obsloc)
17 box.radius← max(box.radius, dist(obsloc, box.center))
18 if box.is leaf then
19 Add j to box.observations
20 else
21 l← index of the child contains the observation

. l ∈ [1, 8], obtained using box.center, box.top, box.bottom,

and obsloc
22 octree add(box.children[l], j, obsloc)

23 end

24 end procedure
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Algorithm 4: Get a list of observations from Octree

1 box, dist : As defined in Algorithm 3
2 J : List of observation indices, initialized to be empty
3 gridloc : Location of analysis grid (i.e., query center)
4 qr : Query radius
5 zrange : Vertical range of query
6

7 procedure octree query(box, J , gridloc, qr, zrange)
8 if dist(box.center, gridloc) > qr + box.radius or

zrange ∩ [box.bottom, box.top] = φ then
9 return . No observations within the query radius

10 end
11 if box.is leaf then
12 for j ∈ box.observations do
13 if dist(location of jth observation, gridloc) ≤ qr and

level of jth observation ∈ zrange then
14 Add j to J
15 end

16 end

17 else
18 for l ∈ [1, 8] do
19 octree query(box.children[l],J , gridloc, qr)
20 end

21 end

22 end procedure
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Table A.1: Time spent on observation lookup with and without Octree. The com-
putation time for the slowest process and the mean of all 128 processes are shown.
Each number is the average of three experiments. For comparison, the computation
time for LETKF core calculation (roughly equivalent to lines 19 to 32 of Algorithm
2) is also shown.

Linear search Octree LETKF core
Slowest process 78.88 sec 1.91 sec 21.56 sec

Mean 43.00 sec 0.97 sec 11.76 sec

To conclude this appendix, the simplicity of Octree with the ball-tree technique

can be a favored choice over the commonly adopted kD-tree algorithm for localized

data assimilation applications. Although the balanced structure of kD-tree may

have an advantage for other problems like nearest neighbor search, it is expected that

these algorithms have similar performance for range search like finding observations

in a localization radius. Therefore, for our applications, we can choose one of these

algorithms by the ease of implementation if no ready-made libraries are available.
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