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While select aspects of Salmonella enterica subspecies enterica persistence in 

agricultural matrices have been illustrated, serovar specific survival strategies in 

surface water, transmission, and persistence on plants are multifaceted and remain 

only partially examined.   In the present work, we utilized an interdisciplinary 

approach to illustrate novel mechanisms by which S. enterica may adapt to plants as 

an alternative host. Furthermore, we leveraged the wealth of diversity in S. enterica 

serovars to investigate specific dynamics and drivers of persistence in water and 

transfer onto produce crops. Through biochemical, gene expression, and plant 

challenge assays of both tomato (Solanum lycopersicum) vegetative and fruit organs, 

we found that plant-derived NO was generated in response to S. Newport recognition. 

Furthermore, bacterial gene expression on both leaves and fruit was indicative of 

adaptation to a novel environment including upregulation in NO detoxification 

machinery, indicating plant-derived NO as a novel bacterial stress. NO tolerance of 

various S. enterica was then evaluated to investigate drivers of “produce associated’ 



  

S. enterica adaptation to the plant niche. We identified that plant derived NO can 

negatively affect titers of all S. enterica serovars tested and that serovar specific 

tolerance to NO in vitro was apparent in a concentration and exposure time dependent 

manner. Finally, the survival of various S. enterica in surface and reclaimed water 

was investigated while evaluating the potential for transition to viable but non-

culturable (VBNC) organisms.  Furthermore, surface water used for irrigation, a 

common water environment for S. enterica, was investigated as a priming reservoir 

for various S. enterica serovars for enhanced transmission onto tomato crops.  

Persistence in water included VBNC subpopulations and was driven by water type. 

Transfer success onto tomato was driven by serovar, and prolonged incubation in 

water increased the transfer ability of serovars that initially transferred poorly onto 

tomato. Finally, attachment to polystyrene and water oxidation-reduction potential 

were identified as possible indicators of foodborne pathogen transfer success onto 

tomato. Moving forward, a greater understanding of the environmental queues used 

by S. enterica subspecies enterica responding to the agricultural environment will aid 

researchers in developing S. enterica targeted on-farm management techniques to 

ensure safe yet sustainable fresh produce cultivation practices. 
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VBNC    Viable  but  non-culturable  

PMA     Propidium monoazide   

FSMA PSR   Food Safety Modernization Act Produce Safety Rule  

GAPs   Good agricultural practices  
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Chapter 1: Introduction 

 

The demand for eating fresh, local, sustainable fruits and vegetables has 

increased in recent years (Sparling, 2018; Tropp, 2014), and with it, foodborne illness 

outbreaks attributed to fresh produce consumption. From 1998 to 2016, multistate 

foodborne illness outbreaks in fresh produce caused by  S. enterica subspecies 

enterica have increased relative to meat, dairy, and nut products (Foodborne 

Outbreak Online Database (FOOD Tool), 2016), with recurrent serotypes frequently 

implicated. In 2018 this trend is sustaining, with S. enterica  illnesses from seeded 

vegetables alone accounting for the second highest number from any one pathogen-

commodity pair, only surpassed by S. enterica  in eggs (Jackson et al., 2013; Marder 

et al., 2018; Tack et al., 2019).  Several factors may contribute to this observation, 

including  the increased consumption of fresh produce with 94% growth in million 

tons of global production from 1980-2004, more centralized processing and 

distribution of fresh produce products, better outbreak detection methods, and 

pathogen adaptation to plant environments (Olaimat and Holley, 2012). While all 

factors may play a role, S. enterica has been firmly established as a prevalent microbe 

in agricultural environments from both environmental research surveys as well as 

historic salmonellosis outbreak traceback investigations successfully identifying farm 

production environments as the origin of contamination (Greene et al., 2008, McEgan 

et al., 2014 Bell et al., 2015; Callahan et al., 2019; Micallef et al., 2012 ). While there 

is a diversity of salmonellae in these agricultural matrices surveyed, outbreaks with 

produce are more likely to occur with select serotypes (Jackson et al., 2013).  
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Research within the farm to fork continuum has revealed key components 

necessary for persistence of select S. enterica serovars including; plant genotype and 

surface phytochemical profiles (Barak et al., 2011; Han and Micallef, 2014), bacterial 

attachment appariti (Barak et al., 2005, 2007; Salazar et al., 2013; Tan et al., 2016), 

and nutrient acquisition strategies (de Moraes et al., 2017, 2018; Goudeau et al., 

2013). However, serovar specific survival strategies of this persistent yet elusive 

pathogen in surface water, transmission, and persistence on plants are multifaceted 

and remain only partially examined. A thorough literature review in Chapter 2 

provides the current state of knowledge and emphasizes where research is needed to 

improve our understanding of enteric bacterial ecology in crop production 

environments.  

Leveraging the unique ability of interdisciplinary research, the present work 

aimed to better define survival strategies of Salmonella enterica as this foodborne 

pathogen negotiates diverse environments from farm to fork under the following 

hypotheses:  

1. Reciprocal responses between plants and S. enterica allows this bacterial 

pathogen to use plants as an alternative non-animal host. 

2. S. enterica serovar specific tolerance to nitric oxide, a common plant 

derived immune signaling molecule, contributes to preferential serovar – 

produce commodity associations.  

3. The ability to persist in surface irrigation water is a key function for 

successful transmission of S. enterica to produce.  
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To test these hypotheses, the model system of tomato (Solanum lycopersicum) and  S. 

enterica was utilized due to the regular association of this pathogen-commodity pair 

(Bennett et al., 2015; Jackson et al., 2013; Painter et al., 2013).  Following this effort, 

behavior of S. enterica serovars in the context of two agricultural matrices, plant and 

surface irrigation water, were then investigated. Together, this work evaluated the 

influence of key aspects of the agricultural environment on S. enterica persistence 

from farm to fork, contributing critical information for the development of regionally 

specific, efficient, effective, and sustainable food safety risk mitigation strategies for 

seamless incorporation into a holistic farm management plan. 

Previous research in our lab has corroborated the ability of  Salmonella 

enterica to colonize plants, and  transcriptomic study of Salmonella  colonizing 

tomato revealed upregulation of genes needed for abiotic stress mitigation, 

detoxification of reactive oxygen species (ROS) and nitric oxide (NO) (Han and 

Micallef, 2014, 2016), Han et al., unpublished).  Reports of upregulation of plant 

defense genes as well as induction of ROS including hydrogen peroxide (H2O2) have 

been documented in tobacco and Arabidopsis upon S. enterica challenge (Meng et al., 

2013; Shirron and Yaron, 2011).  However, no studies to date have implicated nitric 

oxide, another component in plant immune signaling, in the Salmonella-plant 

interaction. Therefore, its effect on S. enterica populations or colonization strategy in 

the phyllosphere is unknown.  As such, in Chapter 3 Objective 1 was addressed by 

evaluation of tomato – Salmonella Newport interactions mediated by plant derived 

NO and ROS, as well as the ensuing bacterial response. Fluorescent probes, targeted 

gene expression assays, and the use of NO and H2O2 modulators commonly employed 
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for fungal pathogen work provided the framework to investigate the extent of S. 

Newport – tomato interactions with the following specific aims:  

Specific aim 1-1: Release of NO, ROS from tomato fruits and seedlings upon 

Salmonella Newport challenge was detected. 

Specific aim 1-2: The effect of modulating tomato fruit and seedling levels of 

ROS, NO on Salmonella Newport survival was evaluated. 

Specific aim 1-3: Targeted Salmonella Newport gene expression profiles 

while colonizing tomato fruit and seedlings including queries for NO, ROS 

stress perception and mitigation were constructed.  

 

Although Salmonella enterica comprises of over 2500 different serotypes, 10 

are responsible for the majority of illnesses (Chapter 4). Furthermore, these 10 

serovars are not equally distributed among different food commodity associated 

illnesses.  Indeed, research as well as epidemiologic data suggest select Salmonella 

serovars may be source specific (Strawn et al., 2014; Tack et al., 2019), warranting 

investigation into drivers of adaptation of these organisms to different environmental 

niches. To add interactions with plants as a driver of serovar commodity associations 

to the current body of research, in Chapter 4 Objective 2 was assessed via 

determination of S. enterica serovar specific differences in response to nitric oxide, a 

common phyllosphere stressor.  This was accomplished under the following:  

Specific aim 2-1: S. enterica serovar-specific colonization ability on tomato 

seedlings were investigated via seedling colonization assays.  



 

 

5 

 

Specific aim 2-2: The relative NO tolerance of produce-associated and non-

produce-associated Salmonella enterica serovars was determined in vitro and 

in planta.  

 

Finally, surface water used for irrigation is a well-established harbor of 

Salmonella,  profiled extensively in the mid-Atlantic (Bell et al., 2015; Callahan et 

al., 2019; Micallef et al., 2012). However, it is less understood how the hazard of S. 

enterica in water translates to food safety risk of produce irrigated with this water.  In 

Chapter 5, Objective 3 was investigated through evaluation of various Salmonella 

enterica serovars population dynamics in MD surface water and reclaimed water 

sources as well as transfer potential onto tomatoes. Time course studies, culture 

independent methods, and transfer assays to tomato fruit were employed to evaluate 

the importance of surface water in the Salmonella farm to fork continuum via the 

following aims:  

Specific aim 3-1: Bacterial persistence in non-tidal fresh, tidal brackish, pond, 

and reclaimed water samples was assessed, and culture-based and culture-

independent approaches were compared to determine temporal effects on 

bacterial viability.  

Specific aim 3-2: The ability of environmental, clinical, and poultry house 

associated strain(s) of Salmonella enterica to transfer from water to tomato 

fruit were compared both as a function of water source and incubation time in 

water.  
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Specific Aim 3-3- Physicochemical data from water sources were analyzed 

and utilized to determine if any relationships were present between these 

profiles and S. enterica persistence, transfer, or attachment to abiotic surfaces.  

 

In Chapter 6, highlights of the present findings are discussed, as well as broader 

impacts to on-farm food safety management and educational approaches.  Limitations 

of the methodologies employed are discussed for each study, and a path forward for 

future applied research to address novel or unanswered questions is proposed. 
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Chapter 2: Literature Review 
 

1. Current trends in the fresh commodity agricultural industry 

The demand for sustainable, local, fresh produce is increasing, evidenced in 

part by fresh fruits and vegetables comprising the top selling category of organic food 

products (Organic Market Overview, 2017) (USDA, 2017) and the movement to 

direct-to-consumer fresh produce purchasing (Low et al., 2015; Sparling, 2018; 

Tropp, 2014). However, the increase in interest of eating more fruits and vegetables is 

coupled with the increased risk of foodborne illness from fresh produce, due to these 

products not receiving a commercial “kill” step. Between 2009 – 2015 the Food 

Disease Outbreak Surveillance System (FDOSS) reported 100,939 illnesses 

associated with foodborne outbreaks, with 10 percent in seeded vegetables alone 

(2,572 illnesses) (Dewey-Mattia et al., 2018). In terms of the produce category as a 

whole, one study across all etiologic agents from 1998 – 2008 found 46 % of all 

foodborne illnesses were attributed to produce commodities, corroborated by another 

study from 1973 -2010 finding leaf vegetables and fruits together responsible for 26% 

of multistate outbreaks, a higher percentage than even beef (22%) (Nguyen et al., 

2015).  

Foodborne illness is a heavy economic burden for the producer and consumer 

alike. Using foodborne  illness estimates from a 2011 report (Scallan et al., 2011) the 

USDA economic research service (ERS) estimates that the total economic burden to 

the US public is 15.5 billion dollars annually (Hoffman et al., 2015). Even more 

interesting, Salmonella enterica subspecies enterica, Listeria monocytogenes, 
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Toxoplasma gondii, and Norovirus attribute to 90 % of this burden (Hoffman et al., 

2015).  S. enterica subspecies enterica, the second largest cause of foodborne 

outbreaks preceded only by Norovirus (Callejón et al., 2015; Dewey-Mattia et al., 

2018),  is reported to have an average yearly burden of 3.67 million dollars, 

encompassing loss of productivity, hospitalization costs, and willingness to pay to 

prevent premature death (Hoffman et al., 2015).   

Across all foodborne pathogens, it is estimated that the economic burden to 

the restaurant sector alone is $3,968 to $2.6 million. This estimate is dependent on the 

number of lawsuits, outbreak size, lost revenue, and pathogen type (Bartsch et al., 

2018). This cost could amount to as much as 5970% of an establishment’s annual 

marketing costs and up to 101% of annual profits (Bartsch et al., 2018). A similar 

meta-analysis of the cost to primary fruit and vegetable producers has not been 

undertaken, but examining case studies of fresh produce outbreaks – the 2006 spinach 

O157:H7 outbreak as well as the 2008 S. enterica outbreaks of muskmelon and 

tomato -- estimate the short-term farm level costs varied from 5.8 million to 25 

million dollars (Ribera et al., 2012). Other indirect economic costs, such as the 

increased import rate of product and the depressed price of commodities after an 

outbreak also burden the primary producer in the long run (Ribera et al., 2012). 

Interestingly, this study estimates that the cost of the outbreak greatly outweighs the 

cost of prevention (Ribera et al., 2012). Taken together, research into strategies to 

minimize foodborne illness outbreaks from S. enterica especially are needed not only 

to promote public health, but also to sustain a healthy agricultural industry. 
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2. S. enterica and fresh produce: a growing problem 

2.1 S. enterica subspecies enterica background and clinical significance 

Phylogenetic studies estimate that S. enterica and Escherichia coli diverged 

from a common ancestor around 120 – 150 million years ago (Groisman and 

Ochman, 1996). This event was marked by the former acquiring S. enterica 

pathogenicity island 1 (SPI-1), among other factors (Groisman and Ochman, 1996).  

S. enterica encompasses two species, Salmonella enterica (n~2,557) and S. bongori 

(n=22). S. bongori is adapted to cold blooded animals, and divergence from S. 

enterica is marked by the acquisition of SPI-2 in the latter. (Groisman and Ochman, 

1996). S. enterica is further separated into 6 subspecies of around 2500 serovars: 

arizonae (n=99 serovars), diarizonae (n=336), houtenae (n=73), indica (n=15), 

salmae (n=505), and enterica (n= 1531) (Grimont and Weill, 2007), with only 

diarizonae and some indica having the ability to ferment lactose. The S. enterica 

subspecies enterica, (hereinafter referred to as S. enterica) is responsible for the 

majority of human diseases. Salmonella enterica serovars can be divided into 

typhoidal (not zoonotic), causing an estimated 7.5 million illnesses per year globally 

(Havelaar et al., 2015) and non-typhoidal (zoonotic), accounting  for 93.8 million 

cases a year globally. Of these, an estimated 80.3 million cases are foodborne 

gastroenteritis (Majowicz et al., 2010). Further differentiation of non-typhoidal 

illnesses find that 10 S. enterica serovars cause the majority of illnesses, comprising 

59% of annual infections in the US and around 70% in both Canada and the European 

Union (Arya et al., 2017) (Figure 1). Interestingly, S. enterica serovars S. Enteriditis, 

S. Typhimurium, S.  Heidelberg, S. 4,[5], 12:i:- , S. Javiana, and S. Newport are 
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among the most common S. enterica among each country with the exception of S. 

Heidelberg prevalence in the European Union (Arya et al., 2017).  

Gastroenteritis, the principle manifestation of disease from non-typhoidal S. 

enterica, requires an infectious dose of at least 10,000 cells on average (van der 

Heijden and Finlay, 2012). Gastroenteritis is characterized by a relatively short 

incubation period (8-72 h), followed by non-bloody inflammatory diarrhea, vomiting, 

nausea, headache, abdominal cramps, and myalgia (Coburn et al., 2007). Symptoms 

have been historically recorded as self-limiting (Eng et al., 2015), however, because 

S. enterica is an intracellular pathogen there is an increased risk of bacteremia if not 

resolved (Coburn et al., 2007). This can lead to extraintestinal complications of the 

lung, urinary tract, endocardium, and meninges (Eng et al., 2015).  Furthermore, 

sequelae, or the advent of chronic complications from an acute illness, has been 

documented in the aftermath of S. enterica outbreaks in the form of reactive arthritis 

(Arnedo-Pena et al., 2010; Porter et al., 2013). This drives home two important 

points; firstly, that the cost of foodborne pathogen outbreaks are not limited to 

product compromised from the marketplace, and secondly that foodborne illness is 

serious and can drastically alter human quality of life. 
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Figure 1: Top 10 S. enterica causing foodborne illness in the United States across 

all food commodities from 1998 – 2017. Number of illnesses are provided as well 

as percent of total illnesses.  Data adapted from CDC National Outbreak Reporting 

System https://wwwn.cdc.gov/norsdashboard/.  

 

2.2 S. enterica foodborne outbreak trends  

While S. enterica has been found to associate with a diverse range of food 

commodities from dried chia seed powder (Harvey et al., 2017) to poultry (Antunes et 

al., 2016) and papayas (Gibbs et al., 2009),  S. enterica and seeded vegetables are a 

formidable pathogen commodity pair. S. enterica  was second to only Norovirus in 

illnesses from fresh fruits and vegetables from 2004-2012 (Callejón et al., 2015).  

FDOSS and the National Outbreak Reporting System (NORS) reporting 2018 data 

from just 10 US laboratory sites ranked illnesses with this pathogen commodity pair 

second and third respectively behind S. enterica in chicken and S. enterica in pork 

https://wwwn.cdc.gov/norsdashboard/
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(Dewey-Mattia et al., 2018; Tack et al., 2019). Further, one study identified vegetable 

row crops, seeded vegetables, and fruits as the three most common sources of S. 

enterica associated produce outbreaks from 1998 -2013 (Bennett et al., 2018). 

Tomatoes were by far the most common produce item within the seeded vegetable 

category, with 42 out of a total 66 outbreaks (Bennett et al., 2018). This was 

corroborated by another study of Salmonella outbreaks between 1998- 2008, where in 

19 vine stalk vegetable outbreaks, 90% were from tomatoes (Jackson et al., 2013).  

Serovar specific associations in outbreaks can also be gleaned from 

epidemiological data. In a cross section of illnesses from NORS data of S. enterica 

illnesses in 2018, S. Typhimurium, S. Newport, and S. Enteriditis were the three most 

common isolates, following similar trends observed in 2008 and 2015. (Jackson et al., 

2013; Marder et al., 2018; Tack et al., 2019). Further, epidemiological evidence 

supports serovar specific associations with some food commodities over others.  One 

report found more than 80% of outbreaks caused by the serovars S.  Enteriditis, S. 

Heidelberg, and S. Hadar were attributed to eggs and poultry during the given study 

period (Jackson et al., 2013). In the case of S. Javiana, S. Mbandaka, S. Muenchen, S. 

Poona, and S. Senftenberg more than 50% of outbreaks were from plant commodities 

(Jackson et al., 2013). Interestingly, this research reported S. Typhimurium and S. 

Newport were associated with diverse food types and were therefore generalists, 

although 29% of vine stalk vegetable outbreaks were due to S. Newport (Jackson et 

al., 2013). Similarly, study of the 15 US multistate tomato outbreaks between 1990 

and 2010 revealed S. Newport as the most implicated serovar (n= 6 outbreaks) 

followed by S. Braenderup (n=2), S. Enteriditis, S. Javiana, S. Montevideo, S. 
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Thompson, and S. Typhimurium (n=1 each) (Bennett et al., 2015). Taken together, 

epidemiological data suggests that S. enterica outbreak trends reflect key serovar – 

commodity associations, therefore identifying the sources of these serovars and 

drivers behind their establishment or preference for different food commodities are 

important for reducing S. enterica outbreaks.  

2.3 Outbreak traceback establishes S. enterica as a hazard of pre-harvest crop 

production areas 

Finally, while changes in produce production, distribution, and consumption 

trends coupled with the increased ability of finely tuned molecular methods to detect 

outbreak could account for the observed increase in produce illnesses (Olaimat and 

Holley, 2012), there is no denying that the agricultural environment may be an 

amenable niche for this organism. This In key historic outbreaks S. enterica were not 

traced back to the point of consumption, retail, or packinghouse, but rather the crop 

production environment.  Outbreaks with tomato, peppers and papaya have been 

successfully traced back to irrigation or wash water (CDC, 2008; Gibbs et al., 2009; 

Greene et al., 2008). Furthermore, sampling of irrigation surface water sources has 

also identified S. enterica with identical Pulse Field Gel Electrophoresis (PFGE) 

patterns to outbreak isolates, found in the case of irrigation ponds in Georgia 

harboring S. Thompson, S. Enteriditis, and S. Javiana (Li et al., 2014a). Moreover, 

research also reports that surveys of livestock rarely find plant associated outbreak 

strains of S. enterica (Foley et al., 2008), suggesting that S. enterica may be 

specifically adapting to the produce agricultural environment as an amenable niche.  
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Additionally, geographic factors may play a role in S. enterica outbreaks. For 

example, two mid-Atlantic states-- Pennsylvania and Virginia-- were regularly 

implicated (9 and 10 outbreaks, respectively) out of the 15 tomato multistate tomato 

outbreaks from 1990 – 2010 (Bennett et al., 2015).  The Delmarva region specifically 

has hosted tomato outbreaks in 2002, 2005, 2006, and 2007 all with S. enterica 

Newport PFGE XbaI pattern JPX01.0061 (Bennett et al., 2015). The mid-Atlantic 

coastal region has furthermore been pinpointed as high risk for negative impacts on 

food safety due to climate change, where increased extreme temperature and rain 

events are associated with increased risk of salmonellosis (Jiang et al., 2015).   For 

these reasons, evaluating S. enterica dynamics or adaptation to the agricultural 

environment in the mid-Atlantic is imperative to continually improve management 

practices to minimize enteric bacteria contamination and persistence on fresh 

produce. 

3. Current efforts to control S. enterica on the farm 

3.1 Prior to 2010: voluntary standards and best practices for minimizing 

foodborne pathogen contamination during crop production 

Good agricultural practices (GAPs) are a series of farm production techniques and 

standard operating procedures that are devised to minimize the risk of microbial 

contamination and proliferation on the edible portions of fresh fruit and vegetables, as 

detailed in a 1998 guide published by the Food and Drug administration (FDA) 

(Services, 1998). When adopted, GAPs have been shown to improve farm efficiency, 

increase product quality, create better market access, and be protective against 
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commodity associated outbreaks (Bihn and Gravani, 2006). The practices were 

written in general terms with no reference to any specific agricultural system, such 

that they could apply to a diverse range of commodities, farm scale, and cropping 

systems. These practices are divided into four main areas that impart high probability 

of pathogen hazard; Water, animal Waste, Wildlife, livestock and domesticated 

animals and Workers – often dubbed the 4 W’s.  

According to GAPs, water used in production should be of appropriate microbial 

quality for the intended use (Services, 1998). To accomplish this, farmers should 

consider the historic and current use of their land, document weather events, maintain 

their water delivery and holding systems in good working conditions, and query their 

microbial water quality through periodic testing (Services, 1998).  Use of the fecal 

indicator E. coli is recommended to farmers to assess their water quality, selected for 

its low ability to multiply in the environment and because it shares a common source 

with pathogens of interest (US EPA, 1986). Generally, municipal water has high 

microbial quality and therefore would not usually require any intervention prior to 

use, although it is costly to obtain. Surface water sources such as lakes, ponds, rivers, 

creeks, and shallow wells on the other hand are exposed to the environment and 

subject to many factors that can cause fluctuations in their microbial quality, therefore 

careful monitoring of these water sources is warranted. If microbial testing deems the 

water to be of low quality, GAPs suggest farmers implement mitigation procedures to 

minimize potential contamination of edible portions of the crop with this “risky” 

water, which could potentially harbor pathogenic microbes. This can include 

installation of a sand filter, employment of drip irrigation lines, or implementing 
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microbial die off periods between last irrigation and crop harvest (Services, 1998).  

Mitigation procedures can also include water treatment, although costly and usually 

adopted as a last resort. Acceptable irrigation sanitizers include ethanol, isopropanol, 

calcium hypochlorite, chlorine dioxide, and sodium hypochlorite (National Organic 

Program, 2000). Peroxyacetic acid (PAA) can be used for controlling blight and 

pathogenic bacteria, seed disinfection, and food contact surface cleaners (National 

Organic Program, 2000). SaniDate 12.0, a 12% PAA solution, is a regularly used 

commercial form of peroxyacetic acid used in irrigation line treatment (Arancibia et 

al., 2017). While there is no doubt these efforts have minimized some on-farm food 

safety hazards, continuing outbreaks in fresh produce have revealed that a better 

understanding is needed surrounding pre-harvest interactions between pathogens and 

crops to identify gaps in this approach where contamination and persistence of human 

pathogens can still occur.  

3.2 From reactionary to preventative: the goal of FSMA PSR 

With the implementation of the Food Safety Modernization Act Produce Safety 

Rule (FSMA PSR) signed into law December 2010, several of the previously 

recommended GAPs became mandatory for farmers based on their operation size and 

income (Standards for the Growing, Harvesting, Packing, and Holding of Produce for 

Human Consumption). Included in this rule are strict standards for agricultural water-

- any water that contacts the edible portion of a “covered1” crop. Farmers are now 

required to assess the microbial water quality of their agricultural water through 

                                                 
1 Covered here meaning a commodity which is legally covered in the FSMA PSR, or a Raw 

Agricultural Commodity (RAC). 
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routine E. coli testing throughout the growing season for each irrigation source, 

developing a microbial water quality profile (MWQP) (Standards for the Growing, 

Harvesting, Packing, and Holding of Produce for Human Consumption). Because 

surface water is deemed more variable, these sources must be sampled at a higher 

frequency (N=20 samples with 5 new each year) compared to groundwater sources. 

Furthermore, the regulation has numerical criteria of E. coli which these water 

samples must fall under to deem appropriate for use without mitigation steps applied. 

For agricultural water, E. coli geometric mean of the samples must be below 126 

CFU/ 100 mL water, and no one sample can peak above the statistical threshold value 

of 410 CFU/ 100 mL water (Standards for the Growing, Harvesting, Packing, and 

Holding of Produce for Human Consumption). Mitigation steps if water is of 

insufficient quality are similar to what is recommended by GAPs, and have similar 

drawbacks (Standards for the Growing, Harvesting, Packing, and Holding of Produce 

for Human Consumption).  

It is important to consider the burden growers must shoulder in complying with 

the PSR.  The FDA environmental impact statement calculated that the cost of 

compliance could be estimated at $4,477 per year for very small farms, $12,384 per 

year for small farms, and $29,545 per year for large farms (Lichtenberg and Page, 

2016). As such, small and mid-sized farms may be disproportionately burdened with 

implementation tasks (especially copious water sampling) as well as the cost of PSR 

compliance compared to larger farm operations (Lichtenberg and Page, 2016). It is 

anticipated that these farms would be the most likely to make detrimental 

management decisions to keep production under a certain threshold so that they 
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remain excluded or can apply for a qualified exemption from the provisions of the 

PSR. These management decisions could adversely affect marketing channels and 

potential for future growth of small farms. Furthermore, by being excluded from the 

Rule these farms may not be engaging in practices to minimize food safety risk on the 

farm – a public health concern certainly against the tenants of the PSR to promote an 

“on-farm food safety culture.”  Agricultural Extension in many parts of the US has 

realized this issue, and is adopting a strategy to target these small farms for GAP 

trainings as a foundation for and relieving some burden to FSMA PSR compliance 

(Marine et al., 2016). However, opportunities also exist for on-farm research to 

support farmers by providing data which can be directly applied to sensible food 

safety policy making decisions. 

4. S. enterica in the specialty crop production environment: interactions in 

surface water used for irrigation 

4.1 S. enterica presence from farm to fork 

It is well known that enteric bacteria can persist on plants, in soil, and in water 

systems (Ongeng et al., 2015). This success can be affected by farm location, 

agricultural practices, temperature, season, humidity, resident microbiota, soil 

chemistry, and nutrient availability (Gu et al., 2018; Martínez-Vaz et al.). Salmonella 

enterica reservoirs include environmental matrices as well as asymptomatic and 

symptomatically shedding wildlife and livestock  (Cummings et al., 2009). For 

example, S. enterica can survive in manure for 21 days at 33°C and up to 227 days at 

7°C (Semenov et al., 2007).  Animals and their feces, hair and feathers can harbor and 
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transmit foodborne infectious disease agents (Beuchat, 2006). Furthermore, 

prevalence in animals may vary by region and by animal species (Olaimat and 

Holley, 2012). Apart from manure, pathogens may persist in soil and sediment. S. 

enterica and pathogenic E.coli  have been shown to survive in soil from 7 to 25 

weeks depending on soil type, climatic conditions,  moisture level, temperature, and 

farm management practices of biological soil amendments of animal origin (Erickson 

et al., 2010; Guo et al., 2002; Lang and Smith, 2007; Marine et al., 2015).  

Furthermore, survival in soil for some pathogens can be extended by low substrate 

pH, low water availability, high nutrient availability and soil composition with 

preference towards loamy soils (Bech et al., 2010; Franz et al., 2005).  

All said, surface waters, such as ponds, lakes and creeks, are the most 

common water source for harboring and persistence of foodborne pathogens (Maffei 

et al., 2016). This may be due to residency ability in water itself, or the continued 

shedding of Salmonella from harborages into these systems. Elucidating the 

interactions among plants, human bacterial pathogens, and the agricultural 

environment is important to fully understanding S. enterica food safety risk to fresh 

crops grown in such environments.  

4.2 Irrigation water sources available for fresh produce crops 

Water is used in many activities from farm to fork- from irrigation, frost 

protection, evaporative cooling, to cooling and washing produce, sanitizing tools and 

handwashing.  Many water uses contact the edible portion of crops and therefore 

opportunities exist for pathogen transfer if the water is contaminated. Irrigation water 

has been regularly implicated as a vehicle for foodborne pathogens, with differential 
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microbial risk associated for various water sources. Ground water sources that are 

properly designed and maintained are generally consistent in microbial quality 

(Gerba, 2009). However from a sustainability standpoint, groundwater aquifers are a 

precious natural resource under increased withdrawal pressure (Perlman, 2016). 

Reports from Maryland monitoring efforts have identified increased use of these 

aquifers for irrigation has led to lower levels in recent years (Groundwater Protection 

Program: Annual Report to the Maryland General Assembly, 2012). Further, one 

aquifer in the Maryland coastal plain (upper Patapsco) will take so long to recharge it 

is effectively rendered a non-renewable resource (Groundwater Protection Program: 

Annual Report to the Maryland General Assembly, 2012). Therefore, it is extremely 

important that in addition to safety, irrigation management decisions are made with 

sustainability in mind.  

Around many areas in Maryland groundwater use for irrigation of crops is 

prevalent and increasing (Figure 3). Notwithstanding, surface water is used for 

irrigation in key Maryland counties, with the majority on the eastern shore (Figure 

3). This variability is reflected on other areas on the east coast; a survey in Georgia, 

South Carolina, and Virginia reported 12.4% of farmers use surface water to irrigate 

specialty crops (Harrison et al., 2013). In New York, although the study did not state 

which crops, 57% of farmers in 2008- 2009 reported using surface water for irrigation 

(Bihn et al., 2013).  

Another option for irrigation currently being explored is the use of reclaimed 

water for fresh produce irrigation. Reclaimed water is waste water that has gone 

through secondary or tertiary treatment processing to regain high microbiological 
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quality (Samer, 2015; US Environemental Protection Agency, 1998).  Reclaimed 

water is not currently available for use in Maryland on fresh produce crops, but is 

emerging as an alternative source of irrigation water other places in the United States 

such as Arizona with strict guidelines for appropriate and inappropriate use (Rock et 

al., 2012). It is important to note that  S. enterica may still be present in this water, as 

one study from Spain found three S. enterica positive samples post tertiary treatment 

(Santiago et al., 2018). However, proper management can minimize this risk (Wu et 

al., 2009). As an emerging sustainable option for water, more research into S. enterica 

specific harborage in reclaimed water and transfer risk to produce is warranted. 
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Figure 2: Surface water and ground water withdrawals in Maryland in 2015 and 

2010 for crop irrigation, in log thousand gallons per day. Adapted from Dieter, 

C.A., et. al. U.S. Geological Survey data release, https://doi.org/10.5066/F7TB15V5.  

4.3 S. enterica prevalence and persistence in surface irrigation water 

Salmonella enterica specifically has been recognized as a potentially endemic 

taxon in surface waters in important agricultural regions of the US. Creeks, ponds, 

and rivers on the east coast have reported an S. enterica prevalence rate between 8.4% 

(Virginia eastern shore) to 79% (Georgia river basin) (Bell et al., 2015; Haley et al., 

2009). Reported prevalence is affected both by season, with more positive samples 

occurring in August (Haley et al., 2009; Li et al., 2014a; Luo et al., 2015), and 

positive associations with rainfall events (Jones et al., 2014; Luo et al., 2015).  

Commonly identified serotypes include S. Newport, S. Javiana and S. Typhimurium 

(Bell et al., 2015; Callahan et al., 2019; Haley et al., 2009; Jones et al., 2014; Li et al., 

2014a; Luo et al., 2015; McEgan et al., 2014; Micallef et al., 2012). These 

observations have been repeatedly found in other areas of the US and globally 

(Benjamin et al., 2013; Huang et al., 2014). This high environmental prevalence may 

have interesting implications in public health, as Georgia also endures an increased 

prevalence of salmonellosis compared to the national average (24 cases / 100,000 vs 

15 cases per 100,000) (Maurer et al., 2015). These data further necessitate research 

into understanding the connections between environmental prevalence and impact on 

the public health of the surrounding community. 

To address these data gaps, research in persistence and transfer ability to crops 

has been undertaken to understand foodborne pathogen risk to human health from 
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irrigation of S. enterica harboring water. This body of work has revealed that river 

and marine water can support S. enterica for up to 45 days, the level of which is strain 

dependent and may have included non-culturable metabolic states (Roszak et al., 

1984; Santo Domingo et al., 2000). In pond water, S. enterica was found to be viable 

and culturable after 168 days (Topalcengiz et al., 2019). Furthermore, S. enterica can 

survive well in water sediments (Moore et al., 2003). Formation of biofilms in water, 

water sediment, and water distribution systems can increase persistence of multiple 

Enterobacteriaceae including S. enterica (Pachepsky et al., 2012; Sha et al., 2011).  

Taken together, this continued source of inoculum could be a risk to irrigated crops, 

although many questions around the mechanisms and probabilities remain.  

4.4 S. enterica transferability from surface irrigation water to crops 

The current state of research concerning transfer ability of foodborne 

pathogens to crops illustrate the influence of irrigation method, contamination load, 

plant and bacterial genotype can influence successful transfer.  For example, E. coli 

O157:H7 was successfully transferred from overhead applied water to lettuce, but 

rapid bacterial declines occurred in days (Xu et al., 2016). Virulent S. Typhimurium 

persisted on parsley for 28 days and only 2 days with lower inoculum levels (Kisluk 

and Yaron, 2012). By contrast, irrigation with attenuated S.  Typhimurium 

contaminating parsley and lettuce persisted for 63 and 121 days, respectively (Islam 

et al., 2004). Further still, a group investigating S. Enteriditis found it did not transfer 

to tomatoes at all (Jablasone et al., 2004).  Finally, repeated contamination through 

irrigation spray has been shown to increase pathogen titers in the phyllosphere, 

suggesting continued irrigation with contaminated water can increase transfer success 
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(Solomon et al., 2003; Van der Linden et al., 2013). It is interesting to note that 

pathogen transfer is not limited to irrigation practices, as one study showed foliar 

pesticide constructed from a contaminated water source could support  S. enterica 

persistence and allow for transfer to crops (Lopez-Velasco et al., 2013).  

The necessary mechanisms needed for bacterial transfer are an active area of 

study, with most headway made in illustrating the importance of attachment apparati. 

For example, S. Typhimurium attachment to parsley following irrigation is dependent 

on curli and to a lesser extent cellulose production (Lapidot and Yaron, 2009).  

Biofilm production has been also identified as potentially important, as seen in lettuce 

models (Kroupitski et al., 2009). Interestingly, other groups have identified biofilm 

formation and attachment to produce may be serovar specific features. For example, 

Patel et al. identified poultry associated serovars were poor biofilm producers and 

attachers to spinach compared to produce isolates (2013). Taken together, there are 

numerous experimental factors which require controlling for robust and realistic study 

into transfer dynamics of foodborne pathogens. Once undertaken, these data can be 

more directly applied in risk modeling to inform safe irrigation practices without the 

explicit recommendation to switch to a less sustainable water source. 

4.5 Efforts in using E. coli to monitor water quality 

For foodborne pathogen risk mitigation, much research has been devoted to 

assessing the accuracy of biological indicators to provide fast, comparatively 

inexpensive data on the relative quality of a water source. E. coli has been an 

accepted indicator for fecal contamination and water quality for many years (US 

EPA, 1986), however recent research is uncovering that the efficacy of using this 
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organism as an indicator is variable. Over a 12-month period sampling Florida ponds, 

creeks, and rivers, McEgan et al. corroborated the adequacy of E.  coli as an indicator 

for S. enterica using logistic regression (2013), as did a study from southern Georgia 

and Florida (Luo et al., 2015). Conversely, a 3 year sampling effort of Florida ponds 

revealed that water quality parameters, including E. coli, did not guarantee the 

absence of S. enterica (Topalcengiz et al., 2017). Furthermore, in California pond and 

stream sediment E. coli prevalence was not correlated with S. enterica presence 

(Benjamin et al., 2013). Aside from S. enterica, one Canadian pond study found that 

E. coli was inversely correlated with Listeria monocytogenes presence (Wilkes et al., 

2009). Metadata assimilation of indicator studies in 2015 found that overall, the 

correlation coefficient between the presence of S. enterica and indicators was 

generally weak and region specific (Pachepsky et al., 2016). The season, water body 

size, water type, flow rate, past rain events, and sample size were all shown to 

influence indicator E. coli concentrations (He et al., 2007; Wu et al., 2011). Indeed, 

one of the aforementioned studies which asserted positive correlation between S. 

enterica and E. coli recommended that the sample size for such determination be 

greater than 20 samples due to high variability (Havelaar et al., 2017). From a 

produce grower’s perspective, the current FSMA PSR requirement of 20 samples 

(with an additional 5 each year) is already too burdensome, rendering 

recommendations for additional sampling ineffective. 

For selection of an appropriate indicator, and the scientific community must 

carefully consider robustness of the method, ease of sampling as well as ease of 

interpretation of results for maximum public health benefit. Some studies 
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investigating the effect of rain events on water bacterial community dynamics have 

indicated that there may be other candidates for indicators (Chen et al., 2018), as one 

study in Philadelphia found that following such events Bacteroides and not E. coli 

correlated with human pathogen prevalence in urban creeks (McGinnis et al., 2018). 

Through another metadata study, Wu et al. found that while no single indicator from  

a suite of viral and bacterial candidates correlated best with the presence of human 

pathogens, a combination of a few indicators including F specific coliphage2 and C. 

perfringes may more appropriately correlate with human pathogen presence (2011). 

Indeed, further study into both foodborne pathogen and potential indicator population 

dynamics in water and response to environmental, anthropogenic, geographic, and 

climatic variables is warranted. 

5. S. enterica in the specialty crop production environment: interactions in the 

phyllosphere  

For S. enterica to successfully make the connection between persistence in 

agricultural water and contamination on fresh produce, this organism must attach, 

colonize, and mitigate stressors on the plant surface. Elucidating the interaction 

between plants and enteropathogens is a burgeoning area of research, where the 

scientific community has capitalized on interdisciplinary collaboration to answer 

increasingly fine-tuned questions. From this research, several important components 

have been found to drive plant-bacterial associations; plant genotype, bacterial 

                                                 
2 “male” specific bacteriophage, infector of E. coli 
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genotype, ambient environment, and bacterial interaction with plant surface features 

both chemical and biotic [for review, see (Martínez-Vaz et al., 2014)].  

5.1 Plant factors  

One major determinant of colonization success lies in plant genotype and 

tissue site. Concerning the tomato plant structure and genotype, S. enterica 

colonization has been shown to be cultivar dependent with type 1 trichomes as 

preferred colonization sites (Barak et al., 2011; Han and Micallef, 2014). 

Furthermore, sugars, sugar alcohols, and organic acids differentially present on 

tomato cultivar surfaces were shown to be positively correlated with S. enterica 

growth, while fatty acids, including palmitic and oleic acids, were inversely 

correlated (Han and Micallef, 2016).  

Interaction with both epiphytes and plant pathogens have been found to be 

beneficial for S. enterica persistence on produce (Brandl and Mandrell, 2002; Potnis 

et al., 2015). Lettuce studies with S. Montevideo reported increased recovery from 

plants with healthy resident epiphyte populations, perhaps due in part to resident 

release of extracellular polysaccharides which  S. enterica can utilize (Poza-Carrion et 

al., 2013). More interesting is the thought that interactions with plant pathogens on 

produce could “prime” S. enterica by eliciting upregulation of certain virulence 

factors. One study investigating  S. Typhimurium colonization of lettuce soft rot 

reported an upregulation of multiple genes necessary for colonization on chicken host 

models including hmpA, a nitric oxide dioxygenase, and ycfR (Goudeau et al., 2013).   
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5.2 Bacterial factors  

Recently, interest has centered around the genetic profile required for S. 

enterica successful colonization and persistence on crops. Principally, bacterial 

serotype itself may play a role in determining successful colonization, as some 

serovars display successful persistence compared to others in sprout, lettuce, herb, 

and tomato models (Cui et al., 2018; Guo et al., 2002; Klerks et al., 2007; Patel and 

Sharma, 2010; Reed et al., 2018; Shi et al., 2007; Zheng et al., 2013). A host of 

bacterial genes involved in successful interactions with produce have also been 

elucidated which fall under the following categories: cell surface structure, virulence, 

motility, evasion and mitigation of plant defense, biofilm formation, and an overall 

downshift in bacterial metabolism [for comprehensive reviews, refer to (Brandl et al., 

2013; Martínez-Vaz et al.)]. While interrelated, these studies can be loosely grouped 

into two primary aims 1) investigating adaptation to the plant environment as an 

alternate host with a distinct suite of traits needed and 2) endeavoring to draw 

parallels between plant colonization and colonization strategies of S. enterica in the 

human gut.  Endophytic studies in plant wounds and soft rots have identified iron 

acquisition, amino acid biosynthesis, ascorbate metabolism and cell structure 

maintenance as important in S. enterica persistence (de Moraes et al., 2017, 2018; 

Goudeau et al., 2013).  On phyllosphere surfaces and plant cell wall models,  S. 

enterica preferentially exhibits chemotaxis towards photosynthetically active areas 

like stomata (Kroupitski et al., 2009) and attachment apparati including flagella, O-

antigen capsule assembly, curli nucleator, cellulose, and production of extracellular 

matrix (Barak et al., 2005, 2007; Salazar et al., 2013; Tan et al., 2016) also drive 
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colonization success.  ycfR, sirA, yigG, genes for stress regulation, biofilm formation, 

and virulence (in the case of  sirA) are important for chlorine stress response and 

attachment to spinach leaf and grape tomato in S. Saintpaul and S. Typhimurium 

(Salazar et al., 2013). Other virulence genes such as flagellin fliC are important for 

success in the basil model on a serovar specific basis -- with a mutation in  S. 

Senftenberg significantly negatively impacting attachment whereas S. Typhimurium 

remained unaffected (Berger et al., 2009).  Taken together, this suggests S. enterica 

persistence may include actively strategizing amenable niches for colonization of 

plants as an alternative host.  

5.3 Bacterial and plant interaction under plant immunity: PTI, ETI, NO, ROS 

Plants can engage in a range of interactions with resident epiphytes and 

endophytes, from assistance with plant growth promotion, nutrient availability, and 

gaining protection from abiotic and biotic stress to name a few (Chagas et al., 2018). 

Another driving interaction of plant-microbe associations is interaction with plant 

immunity. Plants have elegant mechanisms to not only distinguish self from non-self, 

but also to differentiate between beneficial bacteria from non-beneficial or pathogenic 

bacteria. Two scenarios of immunity have been classically described in plants; PAMP 

triggered immunity (PTI) and effector triggered immunity (ETI) (Jones and Dangl, 

2006).  In PAMP triggered immunity, pathogen associated molecular patterns 

(PAMPs) or microbe associated molecular patterns (MAMPs) are recognized by 

pathogen recognition receptor proteins (PRR) on the plant cell wall (Jones and Dangl, 

2006) such as flg22, elf18, or chitin (Felix et al., 1999; Hayafune et al., 2014; Kunze 

et al., 2004).  PRR interaction with PAMPs causes an influx of calcium and hydrogen 
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ions to initiate a signal cascade within the cell (Frederickson Matika and Loake, 

2014), triggering a release of nitric oxide (NO) and reactive oxygen species (ROS). 

The release of these two signaling molecules serve multiple purposes for the plant. 

ROS burst can directly control potential pathogen threat and may interact with some 

Mitogen activated protein kinase (MAPK) signaling, while through promotion of 

phosphatidic acid NO production engages in signaling downstream MAPK 

(Frederickson Matika and Loake, 2014; Raho et al., 2011), Calmodulin protein kinase 

(CDPK), and transcription factors which initiate transient defense responses 

(pathogenesis related protein 1 (PR-1), salicylic acid production) that comprise PTI 

(Bigeard et al., 2015). 

Some plant pathogens have evolved to use a second wave of proteins, called 

effector proteins, to disrupt the signaling cascade and PTI (Jones and Dangl, 2006). 

Furthermore, these effectors can be used to promote plant cell nutrient leakage and 

pathogen dispersal (Jones and Dangl, 2006).  Some effector proteins are plant 

hormone mimics, and can therefore disrupt developmental cellular processes 

(Lindeberg et al., 2012; Thomma et al., 2011). This disrupts plant immune signaling, 

allowing the pathogen to spread and cause disease. In another evolutionary push, 

some plants developed resistance or “R” proteins to interact with specifically released 

effectors from the pathogen in order to block effector protein modes of action (Jones 

and Dangl, 2006). This interaction maintains the integrity of the plant immune signal 

cascade, therefore eliciting an immune response dubbed effector triggered immunity, 

ETI. While interactions with PTI and ETI are described in the context of plant 

pathogens, plant-enteric pathogen recognition and response are less well known.  
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It is important to note that NO and ROS are involved in multiple plant 

physiological processes. ROS is produced in multiple cell types in plants by 

Respiratory burst oxidase homologs (RBOH) -NADPH oxidase genes (Zhang et al., 

2018).  NO production in plants is currently still under investigation, however it is 

postulated NO can be generated both enzymatically and non-enzymatically.  Nitrate 

reductase-dependent NO is important for stomatal movements, hormone responses, 

salt, osmotic, cold stress, root and floral development (Astier et al., 2018a).  Inducible 

nitric oxide synthases (NOS) were once thought to be responsible for immune related 

production of NO as there are homologous enzymes in mammalian host immunity, 

however studies which claimed to isolate the enzyme actually isolated a GTPase 

(Moreau et al., 2008), and in a study of 1000 land plant transcriptomes no homologs 

of NOS were found (Jeandroz et al., 2016).  

NO partakes in three main post-translational modifications of proteins that all 

impact the conformation, activity, or localization of the protein via 1) reversibly 

binding of a thiol group in cysteine residues (N-nitrosylation), 2) nitrosylation of 

tyrosine, and 3) interacting with the heme center of metalloproteins (Astier et al., 

2018b) This activity allows NO to interfere with phytohormone signaling pathways 

such as cytokinin, giberillin, abcisic acid, and auxin (Feng et al., 2013; Prakash et al., 

2018; Sanz et al., 2014; Signorelli and Considine, 2018), providing a pathway by 

which NO is involved in regulation of many plant developmental activities.  

Signaling crosstalk between NO and ROS has been identified. Research has 

revealed interaction between the two molecules are essential for leaf cell death (Lin et 

al., 2012), to delay senescence (Iakimova and Woltering, 2015), root growth and 
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development (Liao et al., 2009), stomatal closure (Huang et al., 2015), and pollen 

tube growth (Serrano et al., 2012). It is not yet clear production of which chemical 

precedes the other.  In the case of stomatal closure, ROS stimulates NO production, 

as seen in tomato (Shi et al., 2015). However in other processes NO may stimulate 

H2O2 production, as shown during rooting behavior of Tagetes erecta, the Texas 

marigold (Liao et al., 2011).  Furthermore, NO is required for H2O2 production in 

Arabidopsis thaliana  elicited by Botrytis oligosaccharides (Rasul et al., 2012). 

Finally, as mentioned earlier, NO production is partly required for phosphatidic acid 

(PA) which interacts with CDPK’s and PDK’s to activate downstream transcription 

factors, as well as RBOHD. Addition of PA has been shown to create an ROS burst, 

further suggesting the pathways are connected (Bigeard et al., 2015). Taken together, 

this illustrates NO ROS crosstalk is a complex signaling network which research to 

date has not completely elucidated all necessary players to fully understand these 

phenomena.  

5.4 Documented S. enterica response to plant immunity 

To determine the existence of a significant interaction between plants and 

enteric pathogens, demonstration of plant recognition to the select agent is key. To 

this effect, flagella from S. enterica Typhimurium has been shown to elicit MAPK 

signaling in A. thaliana leaves (Garcia et al., 2014). In this study, pretreatment of 

plants with S. Typhimurium flg22 triggered resistance against Pseudomonas syringae 

DC 3000 colonization. This was demonstrated by interaction with MAPK 3,4,6 and 

correlated with the upregulation of transcription factors, both hallmarks of PTI 

(Garcia et al., 2014). Low induction of MAPK and defense associated gene PR-1 
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expression from vacuum infiltrated S. Typhimurium challenged A. thaliana (Schikora 

et al., 2008) and PR-1 expression from drip inoculated S. Dublin on lettuce has also 

been documented (Klerks et al., 2007). A study conducted by Shirron and Yaron 

found that S. enterica Typhimurium does indeed elicit ROS production (corroborated 

by Meng et al. in tomatoes) when syringe infiltrated into tobacco leaves, however 

significantly more ROS was produced when the leaves were challenged with LPS, 

flagella or chloramphenicol treated cells alone (2011, 2013). Finally, in comparing 

plant stomatal responses to E. coli  and  S. enterica  it was found that stomatal 

immunity was only transiently displayed for S. Typhimurium in a plant cultivar 

dependent manner (Roy and Melotto, 2019) but robust for E. coli O157:H7 (Roy et 

al., 2013). These studies suggest S. enterica may either weakly initiate plant defense 

systems or employ mechanisms to mitigate plant defense related activity.  

  Interestingly, investigation of S. enterica - plant recognition studies have 

revealed some cellular components elicit variable, at times serovar specific responses. 

In one study,  S. Typhimurium flagella elicited such a response while S. Senftenberg 

flg22 failed to produce similar results (Garcia et al., 2014). To delve deeper into this,  

in silico it was found that S. Typhimurium flg22 had four amino acid residue 

differences from the FliC of Pseudomonas syringae pv tomato (Meng et al., 2013).  S. 

enterica can express two distinct flagellar filament proteins,  FliC and FljB,  leading 

to phase variation (Bonifield and Hughes, 2003). These two proteins are conserved in 

the amino and carboxy termini, yet have a variable middle region leading to different 

antigenic capacities in the mouse infection model (Bonifield and Hughes, 2003). 

Using fliC and fljB S. enterica mutants infiltrated into Nicotiana benthamania, it was 
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determined that the fliC gene was a major contributor to PTI response and not the fljB 

gene phase (Bonifield and Hughes, 2003; Meng et al., 2013). As S. enterica is a 

Gram-negative bacterium, it would also be reasonable to hypothesize that the 

lipopolysaccharide layer (LPS) in the outer wall of the cell could elicit PTI, however 

currently little research indicates significant solicitation of PTI from the LPS of  S. 

enterica  serovars Typhimurium, Montevideo, Dublin, Muenster, or Anatum (Meng et 

al., 2013).  Thus, while the flagella may be a significant immune response initiation 

factor, research into recognition of other cellular components across serotypes is 

warranted.  

Other plant defense molecules downstream of PAMP recognition have also 

been investigated in S. enterica plant interactions. Knowledge of S. enterica as an 

intracellular pathogen utilizing type 3 secretion systems (T3SS) (van der Heijden and 

Finlay, 2012) prompted investigation into analogous interactions in the plant 

phyllosphere. It has been shown that S. enterica with a defective T3SS colonizes 

plants significantly less efficiently, (Garcia et al., 2014; Iniguez et al., 2005). 

Furthermore, the S. enterica effector SpvC which is needed for host infection 

(Haneda et al., 2011) was shown to be active in protoplasts and upregulated plant 

defenses (Neumann et al., 2014). However, to date no realistic mechanism for S. 

enterica effector delivery during plant surface colonization has been described.  

Other downstream PTI activity, such as salicylic (SA), jasmonic acid (JA) and 

ethylene (ET) have also been described. One study reported increased transcription of 

hormone regulated defense proteins PR-1, PR-2, and PR-4 when challenged with S. 

Typhimurium, suggesting pathogen induction of salicylic acid and jasmonic acid 
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signaling activity (Schikora et al., 2008). Furthermore, when S. Typhimurium was 

inoculated via dip onto NahG, ein2, and coi1 plants (salicylic acid, ethylene, and 

jasmonic acid signaling deficient mutants) it was reported that JA and ET mutants 

harbored significantly more bacteria than the wild type A. thaliana, (Schikora et al., 

2008).  

5.5 Opportunity for identifying cross kingdom associations in S. enterica plant 

interactions in the context of NO and ROS stress mitigation 

S. enterica mitigation of murine model host NO and ROS production for 

successful invasion has been well documented (Spector and Kenyon, 2012; van der 

Heijden et al., 2015; Vazquez-Torres and Fang, 2001).  In early stages of infection, S. 

enterica must contend with ROS produced as a part of the gut inflammatory response 

(Diaz-Ochoa et al., 2016) and later in macrophages (van der Heijden et al., 2015). 

While S. enterica is known to enter dendritic cells and M cells (phagocytic cells) one 

hallmark of S. enterica infection is that it gains entry into the epithelial cell lumen via 

activity of the T3SS, which secretes effectors to promote host cell cytoskeleton 

rearrangement. This in turn induces phagocytosis of S. enterica into the cell and the 

development of  an S. enterica containing vacuole (SVC) which can protect the 

replicating S. enterica during infection (van der Heijden and Finlay, 2012).  Also 

interesting to note, S. enterica suppresses apoptosis of its host to establish a stable 

intracellular niche via one of its many effectors, SpvC which interferes with host 

immune signaling, specifically MAP kinases (van der Heijden and Finlay, 2012). 

Once phagocytized, S. enterica within the SCV must employ NO and ROS 

detoxification machinery to overcome NO, O2-, and H2O2 mediated cytotoxic effects 
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minimizing damage to proteins with metal centers, thiols, and DNA bases, by 

detoxifying NO to N2O, NH3  or NO3 
– and H2O2 to water (Imlay, 2013; Karlinsey et 

al., 2012; Reniere, 2018).  Outside of mammalian models, few studies have 

investigated the interaction of other exogenous sources of  NO and ROS with S. 

enterica in an environmental setting, with an exception of utilizing NO as a biofilm 

clearing agent on food contact surfaces (Marvasi et al., 2014) and post-harvest food 

grade ROS producing sanitizers against S. enterica (Singh et al., 2018; Ukuku and 

Sapers, 2001). Due to the ability of S. enterica to detoxify NO in the mammalian host 

model, opportunity for research into cross-kingdom connections is tantalizing. 

6. Alternative persistence strategies of foodborne pathogens for long-term 

success in the agricultural environment 

Other than persisting in the culturable fraction of the agricultural environment, 

foodborne pathogens may enter a viable but non-culturable state, known as VBNC, to 

achieve successful persistence.  When a population of cells are subjected to an 

exogenous stress, a subsection may not exhibit the same response (Oliver, 2010; 

Ramamurthy et al., 2014). A heterogeneity or diversification of the population in 

response to stress ensures the longevity of some individuals, therefore preserving 

genetic viability and the potential to produce progeny (Ayrapetyan et al., 2015; 

Helaine and Holden, 2013). Viable but non-culturable organisms are microbes which 

respire and metabolize but cannot be cultured using classical microbiological 

techniques (Li et al., 2014b). These microbes are not considered dead because they 

have intact cellular membranes with undamaged genetic information and have a basal 

rate of metabolic activity, albeit a dramatic decrease in transcription rates (Fu et al., 
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2015; Lesne et al., 2000).  This can be evidenced by incorporation of amino acids 3H-

Leucine and production of proteins (del Mar Lleo et al., 1998).  Transition into 

VBNC states involves the perception of environmental stress signals, such as UV, 

chlorine, reactive oxygen species, high salinity, and desiccation  (Asakura et al., 

2002; Lesne et al., 2000; Morishige et al., 2017; Oliver et al., 2005), all agents 

commonly found within an agricultural environment. Advantages of a VBNC strategy 

include resistance to sonication, pH, chlorine, and antibiotics. Furthermore, bacteria 

can spend a considerable amount of time in this state with no damage to their genetic 

information (Oliver, 2010). This strategy has been described for various species 

including Campylobacter jejuni, Vibrio parahaemolyticus, Vibrio vulnificus, 

Mycobacterium smegmatis, Salmonella enterica, and Enterobacter faecalis (Li et al., 

2014b).  In terms of S. enterica VBNC virulence, while in the dormant state cells 

have been reported as poor epithelial cell invaders (Passerat et al., 2009), passage 

through a host gut, growth in eukaryotic cell culture, co-incubation with cell free 

supernatants, or perception of quorum sensing autoinducers may resuscitate these 

agents to culturable organisms and restore invasive ability (Asakura et al., 2002; 

Ramamurthy et al., 2014; Senoh et al., 2012). 

 Another alternative strategy for survival available to bacteria is entering into 

the persister state. Persisters are said to be similar to VBNC cells yet are revived more 

readily (Ayrapetyan et al., 2015).  Debate exists in the scientific community as to if 

these two states are actually the same dormant phenotype (Kim et al., 2017), while 

others assert the existence of a “dormancy continuum” where VBNC are in a deeper 

dormant state compared to persisters (Ayrapetyan et al., 2016). Indeed, study has 
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shown both states can be induced via the same stress mechanisms,  acidity, oxidative 

stress, and antimicrobial pressure (Kim et al., 2017). In the mammalian host, 

persisters have been identified as a stress mitigation mechanism of some S. enterica 

in the SCV  from acidification- leading to long term chronic infections (Helaine et al., 

2014). Outside of the host, persister states have been described as a subpopulation 

type in S. enterica biofilms (Miyaue et al., 2018). Interestingly, cells in this state 

could be removed from the biofilm and maintained up for up to 4 weeks at 37 °C 

(Miyaue et al., 2018), a finding which has important implications in an agricultural 

context. For example, persisters in water sediment if dislodged during irrigation can 

remain viable, more resistant to environmental stress, and could contaminate crops. 

Indeed, the transition of foodborne pathogens to a non-culturable state would allow 

for long term chronic persistence in water in ponds, creeks, and the surface of crops if 

contamination was to occur.  

Select studies have suggested S. enterica could exist in a VBNC state in river 

and marine water (Roszak et al., 1984; Santo Domingo et al., 2000), findings which 

have important public health implications. If non-culturable states are a regular 

persistence strategy for S. enterica in the environment, this may result in under-

estimation or false negatives of environmental samples for enteric pathogens.  For 

food safety professionals to adequately serve the grower community, understanding 

the degree to which enteric pathogens can exist in a VBNC state and the relative risk 

of VBNC organisms on fresh produce is paramount for devising effective on-farm 

food safety monitoring and risk management practices. 
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Chapter 3: Salmonella enterica Elicits, Responds to, and Is 

Restricted by Tomato Immune Response Signals Nitric 

Oxide and Reactive Oxygen Species 

 

1. Introduction 

Between 2004 and 2012, non-typhoidal Salmonella enterica was the second 

most implicated causal agent of illness from fresh fruits and vegetables behind 

Norovirus (Callejón et al., 2015).  Salmonella enterica is frequently isolated from 

water and soil in agricultural settings (Bell et al., 2015; Callahan et al., 2019; Micallef 

et al., 2012) and foodborne illness outbreaks have been traced back to crop 

production areas (Bennett et al., 2015; Greene et al., 2008), suggesting the possibility 

of human pathogen-crop associations initiating during the crop cultivation stages. 

Human pathogen-plant interactions continue to be understudied, despite the far-

reaching public health and economic consequences. 

 Previous work has reported S. enterica can survive and multiply on plants 

(Brandl and Mandrell, 2002), the success of which is influenced by multiple factors 

(Brandl et al., 2013), including plant genotype and organ (Barak et al., 2011; Han and 

Micallef, 2014), age (Brandl and Amundson, 2008; Zheng et al., 2013), surface 

chemical profiles (Han and Micallef, 2016), as well as resident epiphytes (Poza-

Carrion et al., 2013). The genetic profile of S. enterica itself may also influence 

successful colonization and persistence on crops. Attachment apparati (Barak et al., 

2005, 2007; Salazar et al., 2013; Tan et al., 2016), nutrient acquisition (Kroupitski et 

al., 2009), and other specific metabolic pathways have been identified as important in 



 

 

40 

 

Salmonella persistence in the plant environment. For example, in endophytic studies 

including wounds and soft rots, iron acquisition, amino acid biosynthesis, ascorbate 

metabolism and cell structure maintenance have been identified as important in S. 

enterica persistence (de Moraes et al., 2017, 2018; Goudeau et al., 2013).  As far as 

stress mitigation is concerned, ycfR, sirA, yigG, genes for stress regulation, biofilm 

formation, and virulence (in the case of  sirA) are important for both chlorine stress 

response and S. Saintpaul and S. Typhimurium attachment to spinach leaf and grape 

tomato (Salazar et al., 2013). Research within our group has identified that S. 

Typhimurium upregulates multiple stress response genes when colonizing tomato 

plants including nitrosative and oxidative stress detoxification genes (Han et al, 

unpublished). These findings point to a possible bacterial counter-response to a plant 

immune response.   

One well-documented mechanism of plant-microbe interactions is in the 

context of plant immunity. Plants recognize potential microbial pathogens through 

detection of pathogen-associated molecular patterns (PAMPs) or microbe associated 

molecular patterns (MAMPs) (Jones and Dangl, 2006). If the microbe does not 

secrete effectors, the main mode of plant recognition is through pathogen recognition 

receptor protein (PRR) interaction with these PAMPs. This recognition causes several 

strong yet transient signaling events to occur initiating with an influx of calcium ions 

into the cell (Ranf et al., 2011) which induces a burst of reactive oxygen species 

(ROS) and nitric oxide (NO) (Bigeard et al., 2015). Mitogen associated protein 

kinases (MAPKs) are activated, leading to defense related gene transcription and 

ethylene biosynthesis (Meng and Zhang, 2013). The release of reactive oxygen 
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species (ROS) and the more recently identified nitric oxide (NO) serve multiple 

purposes for the plant. The ROS burst can directly control the potential pathogen 

threat and together with NO may signal the upregulation of transcription factors that 

initiate transient defense responses that comprise PAMP triggered immunity (PTI) 

(Bigeard et al., 2015). 

A growing body of evidence suggests Salmonella enterica, which is not a 

plant pathogen, may interact with parts of the plant immune system.  S. Typhimurium 

and its flagella have been shown to induce an ROS burst in tobacco and tomato leaf 

disks (Meng et al., 2013; Shirron and Yaron, 2011). Flagellin from S. Typhimurium is 

recognized by tobacco and Arabidopsis thaliana through the FLS2 receptor, inducing 

plant defenses similar to the well-studied flg22 epitope (Garcia et al., 2014).  

Furthermore, flagellar mutants of S. Typhimurium were shown to better colonize 

wheat, alfalfa and A. thaliana, suggesting that attenuation of PAMPs favours bacterial 

colonization (Iniguez et al., 2005).  

While the S. enterica - plant association profile is developing, gaps remain in 

our understanding of the reciprocal responses in this interaction. While even the 

extent of this interaction is not well described, the effects of this plant response to S. 

enterica PAMP recognition remains limited to the finding that several genes needed 

to detoxify ROS and NO are transcribed to higher levels in S. enterica cells 

associating with tomato leaf and fruit surfaces (Han et al., submitted). Moreover, data 

relevant to agricultural situations, which relate directly to salmonellosis outbreak-

causing S. enterica strains are not available. S. enterica mitigation of host-derived NO 

and ROS is crucial for successful invasion in animal host models. These processes 
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have been well documented (Spector and Kenyon, 2012; van der Heijden et al., 2015; 

Vazquez-Torres and Fang, 2001; Zheng et al., 2011a), compounding the importance 

of investigating the presence of analogous interactions in S. enterica -plant 

associations.   

To address these data gaps, and further investigate the possibility that in 

addition to ROS, NO may be an important signal in the S. enterica -tomato 

interaction, a Salmonella Newport – tomato model was used to represent the 

commonly associated enteropathogen-plant commodity pair in salmonellosis 

outbreaks (Anderson et al., 2011; Bennett et al., 2015). We investigated PTI induction 

in tomato seedling leaves and fruit in response to Salmonella Newport association by 

measuring NO and ROS production, the reciprocal bacterial response, and the effect 

of surface modulation of these molecules on S. enterica colonization of tomato leaves 

and fruit. 

2. Materials and Methods  

2.1 Cultivation of plant material  

Tomato seeds cv. ‘Heinz-1706’ were obtained from the Tomato Genetics 

Resource Center (TGRC) from the University of California, Davis. TGRC seeds were 

germinated at 25℃ after pre-treatment in 30% w/v polyethylene glycol solution at 

room temperature with shaking for 72 h. Germinated seeds were transferred to potting 

media (Sunshine LC1; Sungro Horticulture, Canada) supplemented with fertilizer and 

subjected to a 16 h-light/8 h-dark photoperiod and 26°C day temperature/18°C night 

temperature with 70% humidity (RH) at the University of Maryland Research 
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Greenhouse. Tomato seedlings were grown to 5 true leaves before experimentation 

unless otherwise noted.  For fruit, plants were either grown in the field at the Wye 

Research and Education Centre, Queenstown, MD, or transplanted into 1.7 gallon/ 6L  

pots to be grown in the greenhouse once they reached the 5-leaf stage. In the 

greenhouse, plants were fertilized once a week and treated with non-organophosphate 

containing pesticide once every two weeks for aphid and white fly management. Fruit 

was collected immediately prior to experimentation and rinsed with sterile water 

unless otherwise stated.   

2.2 Bacterial strains 

The Salmonella enterica Newport (SeN) strain used was an environmental 

isolate collected from an irrigation pond that matched a recurring tomato outbreak 

strain (Greene et al., 2008). SeN had been previously adapted to rifampicin (rif) and 

was therefore maintained at -80°C in Brucella Broth (BD, Sparks MD) containing 

15% glycerol and 50 µg/mL rifampicin (Tokyo Chemical Industry, Portland OR). For 

each experiment, cultures of SeN were grown overnight on Trypticase Soy Agar 

(TSA; BD)+rif at 35°C. A single colony was selected, suspended in sterile water, and 

diluted to OD600=0.34 - approximately 8.5 log CFU/mL. Serial dilutions for 

inoculation were performed in sterile water for the inoculum and 0.1% peptone water 

for enumeration (BD Difco, Sparks MD). Cells were enumerated on TSArif. 

Pseudomonas syringae  pv. maculicola ES4326 was generously provided by Dr. 

Shunyuan Xiao and prepared identically to S. enterica without Rifampicin.   
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2.3 Detection of H2O2 in leaves and fruit 

To detect the amount of H2O2 produced by tomato seedling leaves following 

SeN challenge, a method of staining with 3,3’-diaminobenzidine (DAB) was adapted 

from Bindschedler et al. (2006). Briefly, a third emerged leaflet from freshly watered 

5-leaved  ‘Heinz-1706’ seedlings was syringe infiltrated on the abaxial surface with 

500 uL of either SeN in sterile water at 8 Log CFU/mL, heat-killed SeN, or sterile 

water (no SeN control). Positive controls were conducted with Pst (data not shown). 

Inoculated plants were incubated in a growth chamber subjected to a 16 h-light/8 h-

dark photoperiod, 26°C and 70% RH. At 0 and 24 hours post-inoculation (hpi), 

inoculated leaflets were excised and submerged in 5 mL DAB solution (1 mg/mL 

aqueous DAB (Alfa Aesar, Ward Hill MA), 200 mM Na2HPO4 (VWR, Westchester 

PA), 0.05% Tween 20 (Amresco, Solon OH) and 100 uL 3 N HCl). Samples were 

vacuum-infiltrated for 4 min, then incubated in the dark with shaking at 50 rpm for 4 

h. At the end of staining, decolorizer solution was added (3:1:1 95% ethanol, 

glycerol, glacial acetic acid) and samples were incubated in a boiling water bath for 

15 min. Decolorized leaflets were fixed to paper and imaged with an Epson V330 

photo scanner. The stain, corresponding to the H2O2 produced, was analyzed for 

intensity via ImageJ2 FIJI package (Schindelin et al., 2012). Optical density in leaves 

was calculated using the formula  𝑂𝐷 = log10(max 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ÷

𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑒𝑎𝑓 𝑎𝑟𝑒𝑎). 

To detect a range of ROS produced from SeN challenge on fruit, staining with 6-

chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-

H2DCFDA; Invitrogen, Eugene OR) was adapted from Shin and Schachtman (2004). 
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Briefly, 3 mm sections of tomato exocarp were excised with a sterile razor and placed 

in black 96-well plates (Corning, Nazareth PA). Aliquots of 150 µL deionized water 

were delivered to the sample wells and incubated overnight in the dark at 4°C to 

allow for dissipation of any ROS production due to injury. Immediately before 

experimentation, wells were washed with 100 µL sterile water. One hundred µL of 

8.0 log CFU/mL SeN, heat killed SeN (14 h only) or sterile water were delivered to 

sample wells, vacuum-infiltrated for 5 min, then shaken at 100 rpm at 27°C for 3 and 

14 hpi. At the time of sampling, 25 µM CM-H2DCFDA in water was added to each 

well. The fluorophore was able to react for 30 min in the dark with shaking at 50 rpm 

before being imaged with a Synergy HTX Microplate reader (BioTek, Winooski VT) 

at 485 nm excitation, 520 nm emission with 50 gain. 

2.4 Detection of NO in leaves and fruit 

To measure amounts of nitric oxide release from tomato when challenged 

with SeN, 4,5-diaminofluorescein diacetate (DAF-2 DA) (Fisher Scientific, Hampton 

NH) was used for its ability to complex intercellular NO as well as NO in solution 

(Rasul et al., 2012). For measurements on leaves, leaflets of ‘Heinz-1706’ plants 

grown in the research greenhouse were punched with a 3 mm hole punch and cut 

tissue was placed in wells in a black 96-well plate (Corning, Nazareth PA). For 

measurements on fruit, 3 mm sections of tomato exocarp were excised with a sterile 

razor. For both experiments, 150 µL deionized water were delivered to the sample 

wells and samples were incubated overnight in the dark at 4°C to allow for 

dissipation of injury related NO signal. Prior to inoculation, tissues were washed 

twice with sterile water, then challenged with 100 µL of 8 log CFU/mL SeN, heat 
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killed SeN, distilled water or 8 log CFU/mL Pst. Plates were vacuum-infiltrated for 5 

min, then shaken at 100 rpm at 27°C. At 0.1, 1 and 3 h a final concentration of 15 µM 

DAF-2 DA in 50 mM Tris HCl pH 7.5 was delivered to the wells. Plates were 

incubated in the dark for 30 min at 27°C with shaking at 50 rpm and immediately 

read on the Synergy HTX (BioTek, Winooski VT) at 485 nm excitation, 520 nm 

emission with 50 gain.  

2.5 Targeted q-RT-PCR of SeN genes colonizing seedling and fruit surfaces 

To evaluate genes involved in nitrosative and oxidative stress responses in 

SeN colonizing the tomato phyllosphere, 3 leaf ‘Heinz-1706’ seedlings were pre-

treated with water (referred to as “native” environment), 2-4-carboxyphenyl-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, “limiting” NO environment) or CaCl2 

(“excess” NO environment), then challenged with SeN. To achieve this, 48 plants 

grown in autoclaved LC-1 potting media (Sunshine LC1; Sungro Horticulture, 

Canada) were separated into 3 groups and aerosol-sprayed with either 1 mL 0.5% 

CaCl2, ddH2O or 0.2 mM cPTIO. The plants were allowed to air-dry for 30 min. The 

second emerged leaf was challenged with 7 log CFU/mL SeN, delivered as ten 2-µL 

spots onto the leaf surface. Plants were incubated in a growth chamber subjected to a 

16 h-light/8 h-dark photoperiod, 26°C and 70% RH. At 6 hpi, inoculated leaves of 4 

plants were pooled to comprise one composite sample (N=4/treatment) and 

immediately fixed in 2:1 RNAProtect Bacteria (Qiagen, Germantown MD):ddH2O. 

Samples were sonicated on a 8510 Branson Sonicator at full strength for 2 min to 

dislodge surface attached bacteria.  
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To evaluate the role of genes involved in colonization of tomato fruit, ‘Heinz-

1706’ mature red fruit were washed with 200 ppm sodium hypochlorite and triple 

rinsed with ddH2O. Fruit were then syringe-injected at the calyx with either 500 µL 

ddH2O or 0.25 mM ascorbic acid. Seven log CFU/mL SeN was delivered as five 20-

µL spots on the fruit surface. Fruit were incubated in 80% RH at 23°C. At 6 hpi, 5 

fruit from each treatment were pooled to comprise one composite sample 

(N=4/treatment) and placed in RNALater stabilization solution (Invitrogen, Carlsbad 

CA). Fruit were vigorously vortexed for 3 min to dislodge attached cells. Washate 

containing SeN was transferred to a fresh tube and processed as described below. 

In both experiments, 0.5 mL SeN inoculum in water was immediately fixed with 

RNAProtect to serve as the baseline for gene expression. All samples were 

centrifuged 5,000 g for 30 min and total RNA was extracted using the Qiagen 

RNeasy Mini kit (seedlings) (Qiagen, Germantown MD) or the Purelink RNA 

Isolation kit (fruit) (Invitrogen, Carlsbad, CA) with 45 min on-column DNA digestion 

(Invitrogen, Carlsbad CA). Resulting RNA was evaluated on the Nanodrop 1000 

(ThermoFisher,) for quality. PCR of target genes was performed using 1uL RNA 

samples to ensure depletion of gDNA (data not shown). cDNA was synthesized with 

Verso cDNA kit (Thermo Scientific, Waltham MA) and 1 ng samples were subjected 

to q-PCR of genes using primers listed in Table 1. Primers were used at 100 nM 

concentration and verified to be 90-105% efficient. Plant material was verified to 

produce no off-target amplification (data not shown). In a series of experiments using 

TSB amended with treatment reagents, SeN gene expression gene expression was 

confirmed to be reflective of epiphytic habit on tomato surface and not an artifact of 
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interaction with elicitor or scavenger (Supplementary Figure 1). Amplification  was 

conducted on a ABI Step-One Plus (Applied Biosystems, Foster City CA) with 

SYBR as a reporter using the following parameters: 50°C for 2 min, 95°C for 2 min, 

followed by 40 cycles of  95°C for 15 s and 59°C for 30 s. Melt curve analysis was 

included to ensure product specificity. Data were analyzed on the ABI Step One Plus 

instrument using the ∆∆Ct method with sigma factor rpoD as the endogenous control 

(Pfaffl, 2001). The cutoff Ct was set to 35.5 cycles.  

Relative gene expression was compared to expression in SeN inoculum after 

internal normalization to rpoD  expression. Genes were determined to be 

differentially regulated if they experienced significantly lower expression in one plant 

environment (excess, limiting, or native levels of elicitor or scavenger) compared to 

inoculum (p< 0.05). 
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2.6 Modulation of endogenous hydrogen peroxide, nitric oxide levels and 

plant colonization assays 

To investigate the effect of plant derived H2O2 and NO on SeN survival on 

tomato surfaces, the third emerged leaf on 5-leaved ‘Heinz-1706’ seedlings or mature 

fruit were treated with reagents to either scavenge surface ROS (Bradley et al., 1992; 

Lee et al., 1999) or NO (Keshavarz-Tohid et al., 2016; Małolepsza and Różalska, 

2005), or elicit production of NO (Chakraborty et al., 2016), then subsequently 

inoculated with SeN. The reagents employed, concentrations and application methods 

for leaves and fruit are detailed in Table 2. After application of cPTIO and CaCl2, 

fruit and leaves were left to air-dry for 4 h at 25°C. Ascorbic acid-treated leaves were 
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left to dry for 2 h and fruit were left to dry for 30 min prior to SeN inoculation.  

Following pretreatment, a suspension of 5.5 log CFU/ml SeN in water was applied to 

the surface of the leaflets in 10 2-µL spots. Samples were incubated in 80% RH for 

12 h. To retrieve viable SeN, inoculated leaflets or carposphere were excised, diluted 

in 0.1% peptone water, and either hand-massaged (leaflets) or vortexed (fruit) for 2 

min before serially plating dilutions onto TSArif and incubating at 35°C for 20 h.   

 

Table 2: Chemicals and application methodology for modulation of Tomato leaf and 

fruit NO, ROS levels.  

 

Pretreatment 

Purpose 
Tissue  Chemical  Source 

Application 

Method 

H2O2 

Scavenger 

Fruit 0.25 mM ascorbic acid 
Sigma, St. Louis 

MO 

Calyx syringe 

injection 

Leaves 2.5 mM ascorbic acid 
Sigma, St. Louis 

MO 

Abaxial syringe 

infiltration 

NO Scavenger 
Leaves and 

Fruit  

0.22 mM 2-4-

carboxyphenyl-4,4,5,5-

tetramethylimidazoline-1-

oxyl-3-oxide 

Enzo Life Sciences, 

Farmingdale, NY 

Adaxial aerosol 

spray 

NO Elicitor  
Leaves and 

Fruit  
0.5% CaCl2 

Sigma, St. Louis 

MO 

Adaxial aerosol 

spray 

 

2.7 Statistical analysis  

All experiments had at least 3 biological replicates and were repeated twice. 

All experiments were performed in a completely randomized design (CRD). 

Statistical analysis was performed in JMP version 14.1, assessing treatment effects 

for significance using ANOVA and post-hoc Dunnett’s test (ɑ=0.05) for SeN 

compared to water unless otherwise noted. Targeted transcriptomic data was analyzed 

via Dunnett’s test (inoculum vs. on-plant environments), Tukey’s Honestly 
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Significant Difference (cPTIO vs. CaCl2 vs. H2O leaf environments), and Student’s T-

test (Ascorbic Acid vs. H2O tomato fruit environments) all at ɑ=0.05. For on-plant 

challenge assays, Student’s T-test was employed to compare the chemical modulator 

treatment to water treatments (ɑ=0.05).  

3. Results  

3.1 Salmonella Newport elicits H2O2 production in tomato seedlings and fruit 

Immediately following inoculation of leaves with SeN (0.1 hpi), a dark brown 

precipitate - indicative of H2O2 production - was detected in all samples, with 

calculated OD measurements ranging from 0.21-0.61 (Figure 1A).  The brown 

precipitate deposited in SeN-challenged (0.47±0.10) or heat-killed SeN-challenged 

leaves (0.45±0.08) was darker (p=0.067, dead SeN) and significantly darker 

(p=0.037, live SeN) than in water challenged leaves.  Twenty-four hpi, H2O2 

production was still measurable from all samples ranging from 0.14-0.64, with greater 

discrepancy among treatments. Heat-killed SeN (0.20±0.05) and water control 

(0.23±0.08) had comparable measurements, while leaves treated with live SeN 

exhibited darker staining (0.35±0.18) compared to water (p=0.072) treated leaves. 

At 3 h post-challenge, more ROS was detected in SeN-treated fruit exocarp 

than in water-treated exocarp (p=0.062, Student’s T-test) (Figure 1B).  At 14 hpi, 

significantly more ROS was detected in exocarp samples treated with heat-killed 

(98.18±51.0 Au) and live SeN (82.82±17.0 Au) compared to the water-treated 

controls (51.41±15.5 Au) (p=0.05). Heat-killed SeN measurements, while not 

significantly different from measurements taken from live SeN-treated samples, were 
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both the highest at 14 hpi and exhibited the largest variation among samples. These 

measurements suggest that live SeN induced an ROS burst in both tomato leaf and 

fruit exocarp tissue. 

 

 
Figure 1:  Plant derived ROS produced following challenge with sterile water 

(H2O), heat killed S. Newport (dead SeN), or S. Newport. (A) Calculated optical 

density showing degree of 1mg/mL DAB stain in tomato leaves following treatment 

via syringe infiltration at 0, 24 hpi. N=3, 2 technical replicates. OD was calculated 

using FIJI ImageJ package. (B) Average fluorescence from 25 µM CM-H2DCFDA of 

tomato fruit peel challenged with sterile water or 8.0 log CFU/mL S. Newport (SeN) 

at 3, 14 hpi followed by imaging on Synergy HTX 485 nm excitation, 520 nm 

emission. N=5, 3 technical replicates. Asterisks denote significance (*=p<0.1 or **= 

p≤0.05) between comparisons via post-hoc Dunnett’s test unless otherwise noted with 

water serving as control (α≤0.05). Error bars represent standard error of the means 

(SEM).  
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3.2 Salmonella Newport elicits NO production in tomato seedlings, but not in 

fruit 

Following leaf challenge, signal for NO detection increased over time for all 

treatments, with the smallest average increase detected in the water control (Δ 20.8 

Au) and the largest in Pst-treated leaf sections (Δ 29.4 Au). As expected, the tomato 

pathogen Pst induced significantly more NO than the water control at all sampling 

times (p<0.001) via orthogonal contrasts. At 0.1 hpi, SeN signal was not statistically 

significantly different to water, but at 1 and 3 hpi SeN induced a stronger signal in 

leaves compared to water at (100.6±13.4 Au; p=0.003), (112.9±18.8 Au; p=0.001) 

respectively (Figure 2A). A low level of NO was detected in leaf tissue challenged 

with heat-killed SeN, however the signal was only statistically significant when 

compared to water-treated leaves at 3 hpi (108.0±13.2 Au; p<0.01).  

Conversely to leaves, fruit tissue signal for all treatments decreased over time 

by an average of 100.1 Au, with the smallest average decrease observed in live SeN-

treated fruit tissue (Δ -54.67Au) and the largest change in Pst treated leaf sections (Δ 

-186.39 Au) (Figure 2B). Pst produced significantly higher NO than the water 

control at 5 min post-inoculation but not at 3 hpi (p<0.001, p>0.05). No significant 

exocarp production of NO was detected in SeN-treated fruit exocarp compared to the 

water control, either at 0.1 (323.6±180.7) and 3 (268.9±102.1) hpi. Heat-killed SeN 

did prompt some NO production, however the signal was not significantly different 

than water or live Salmonella.  

Fruit exocarp tissue produced a stronger NO signal than leaf sections 

regardless of treatment (Student’s t-test, p<0.001). However, exocarp measurements 
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exhibited a larger variation with a coefficient of variation (CV) of 0.52 compared to 

0.36 for leaf sections. Taken together, these data suggest that live SeN can induce 

release of H2O2 and NO consistent with a PTI response in tomato seedling leaves.  

 

Figure 2: Plant derived NO produced following 100µL water (H2O), heat killed 

S. Newport (dead SeN), assay control Pseudomonas syringae (Pst), or S. Newport 

on (A) tomato leaves or (B) tomato fruit. NO measured by addition of 15 µM 

fluorophore diaminofluorescein diacetate (DAF-2DA) at 0.1, 1, and 3 hpi followed by 

imaging on Synergy HTX 485 excitation, 520 emission. N=5 plants, 3 technical 

replicates each. Seedling leaf data is pooled between 2 experimental replicates, 

whereas tomato fruit data is a representative subset of 2 experimental replicates. Error 

bars represent SEM.  Asterisks denote significance (*=p<0.1 or **= p≤0.05) between 

comparisons via post-hoc Dunnett’s test with water serving as control (α≤0.05).  
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3.3 Differential regulation of S. enterica genes responsible for ROS and NO 

detoxification  

To investigate specific bacterial responses to the observed elicited H2O2 on 

tomato leaves and fruit and NO on leaves only, a targeted transcriptomic analysis 

approach was employed, assaying for expression of genes responsible for NO 

detoxification, ROS mitigation and other environmental fitness factors (Table 2).  On 

leaves, 78% of samples displayed ≥ |2|-fold change in expression compared to the 

inoculum culture. Genes involved in the nitrosative stress response hmpA, katG, yoaG 

a well as virulence phoP and sdiA were differentially transcribed among seedling 

treatments; native, excess, and limiting NO (Figure 3). Gene expression of hmpA and 

yoaG in SeN was significantly higher on native leaves and leaves producing excess 

NO compared to baseline, but not on NO-scavenged leaves. Expression of hmpA 

increased 3-fold (p<0.05) in SeN associating with native leaves and NO-excess 

leaves. The yoaG gene followed a similar trend with no increase in levels of 

transcription in SeN on NO-limiting leaves but transcribed at higher levels, to an 

almost 3-fold increase on native leaves and a 4-fold increase on NO-excess leaves 

(p<0.05). In the case of hmpA and yoaG, expression in NO excess and native 

environments were comparable, suggesting SeN can serve as a strong NO elicitor in 

the tomato seedling.  

Multiple antibiotic resistance transcriptional regulator MarA was also 

significantly upregulated in NO excess and native plant environment. The gene ahpC, 

which encodes the enzyme alkyl hydroperoxide reductase C that protects cells from 

oxidative stress by catalyzing the reduction of hydrogen peroxide and other organic 
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peroxides, was up-regulated in all treatments compared to inoculum (p<0.05), but was 

not found to be differentially expressed among treatments. Taken together, these 

findings suggest that SeN is inducing, recognizing and responding to plant derived 

NO and ROS. 

The virulence factors phoQ and sdiA both exhibited an increase in expression 

in native and NO excess environments, with sdiA increasing 4-fold in NO excess 

from NO-limiting environments and phoQ increasing 3-fold on native leaves from 

NO limiting leaves.  Other fitness factors tested, marA, nmpC and trpE - displayed 

uniform significant upregulation in all treatments compared to inoculum (p< 0.05), 

suggesting that these genes may be important for colonization of the phyllosphere, 

but are not impacted by NO stress.  
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Figure 3: Log base 2-fold change in expression of select S. Newport genes 

compared to expression in water inoculum. ΔΔCt results of S. Newport colonizing 

3 leaf Heinz seedlings pretreated to reflect the native environment (H2O), NO limiting 

(cPTIO), or NO excess (CaCl2) environments normalized with the sigma factor rpoD. 

N=4 groups of 4 pooled plants per treatment. Error bars=SEM. Asterisks denote 

significance in genetic expression compared to inoculum according to Dunnett’s test 

(ɑ=0.05). Letters denote significant differences in expression among treatments of 

one target gene query via Tukey’s Honestly Significant Difference (ɑ=0.05).  

3.4 NO, ROS detoxification also observed in S. Newport colonizing tomato 

fruits 

This approach was repeated on mature Heinz fruit to investigate NO and ROS 

detoxification responses in SeN colonization of fruit. Here, ascorbic acid was 

employed as a scavenger of fruit ROS (“limiting” environment) before challenging 

with S. Newport and comparing expression profiles to SeN on water treated tomato 

fruit (“native” environment). As observed on seedling leaves, SeN in 72% of fruit 

samples displayed a ≥ |2|-fold change in expression compared to water inoculum 

(Figure 4). SeN on native fruit exhibited significant up-regulation of hmpA, yoaG and 

ahpC compared to the inoculum (p<0.05). These genes were also up-regulated in the 

native fruit environment compared to the ROS limiting environment (p<0.05). Taken 

together, this again suggests a bacterial response to plant derived NO and ROS. Also 

similar to seedling samples, transcription levels of marA were higher in both fruit 

environments (p<0.05) compared to SeN inoculum and appeared unaffected by 

modulation of ROS. However, in contrast to SeN on seedlings both fruit 
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environments displayed significant down-regulation of nmpC (p< 0.05), compared to 

inoculum.  

 
Figure 4: Log base 2-fold change expression of selected S. Newport genes 

compared to expression in water inoculum. ΔΔCt results of S. Newport colonizing 

Heinz fruit pretreated to reflect the native fruit environment (H2O) or ROS limiting 

(AscA) environments normalized with the sigma factor rpoD. N=4 groups of 4 

pooled plants per treatment. Error bars=SEM. Asterisks denote significance in SeN 

regulation compared to inoculum via Dunnett’s test (ɑ=0.05). Double crosses denote 

significant differences in transcription between fruit environments of one target gene 

query (Student’s T-test, ɑ=0.05). 
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3.5 Scavenging hydrogen peroxide results in higher survival of Salmonella on 

tomato fruit and leaves 

To evaluate whether SeN colonization of tomato surfaces was significantly 

affected by modulated levels of plant-derived H2O2 and NO, a series of 12 h on-plant 

SeN challenge assays were conducted on plants pre-treated with endogenous elicitors 

or scavengers of these molecules. When the hydroxyl radical and H2O2 were 

scavenged from plant fruit and leaf samples with ascorbic acid, significantly more 

SeN was retrieved from scavenged leaflets (4.56 ± 0.10 log CFU/tomato leaf) and 

fruit surfaces (3.27±0.47 log CFU/tomato) compared to sterile water pre-treated fruit 

(p<0.05; Figure 5C). On fruit, regardless of treatment, SeN retrieval was 0.8 log 

CFU/unit lower than on leaves, with larger variation in retrieval from fruit compared 

to leaves (CVfruit =0.20 and CVleaves =0.07).  

3.6 Modulating tomato surface NO levels significantly affects S. Newport 

colonization success on leaves, but not fruit 

         After 12 hpi SeN counts recovered from NO-scavenged leaves were higher 

(4.85±0.5 log CFU/leaflet) compared to sterile water treated leaf tissue (p<0.05; 

Figure 5B).  This effect was not observed on fruit. SeN counts recovered from leaves 

pre-elicited to produce endogenous NO were almost 2 log lower at 12 hpi (p<0.001), 

measured at 3.32 ±0.2 log CFU/ leaflet compared to 5.15±0.3 log CFU/leaflet 

recovered from mock treated leaves (Figure 5A).   

         Regardless of pre-treatment SeN was retrieved at higher titres with smaller 

variation on leaves compared to fruit samples, in both NO scavenged tissue 
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(CVfruit=0.39 and CVleaves=0.10) and NO elicited tissue (CVfruit=0.42 and 

CVleaves=0.24).   

 
Figure 5: Surface populations of S. Newport after pre-treatment of plant tissue 

with (A) NO elicitor, (B) NO scavenger, or (C) H2O2 scavenger.  Samples were 

incubated at 25°C maintaining 80% humidity for 12 hpi before retrieval. Error bars 

represent SEM, significance was determined using Student’s T-test between 

treatments and water control (α= 0.05). (A) Plant tissue was aerosol sprayed with 1 

mL 0.5% CaCl2 and dried 4 h before surface inoculation with S. Newport. N=4 

plants, N=10 tomato fruits. (B) Plant tissue was aerosol sprayed with 1 mL 0.2mM 

cPTIO and dried 4 h before surface inoculation with S. Newport. N=18 plants, N=10 

tomato fruits. (C) Plant tissue was syringe infiltrated with 0.5mL 2.5mM (leaves) or 

0.25mM (fruit) ascorbic acid, and dried 30 min before surface inoculation with S. 

Newport. N=3 plants, N=11 tomato fruits.  
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4. Discussion 

In the present study, biochemical, targeted bacterial gene expression, and on-

plant colonization assays of both vegetative tissue and ripe mature fruit provided 

evidence to suggest that the tomato plant can not only recognize Salmonella Newport, 

but mount a response that the bacteria in turn interprets as a stress which requires 

mitigation to minimize inflicted damage. ROS was elicited in both leaf and fruit 

samples, and the reciprocal bacterial response effect was consistent with recognition 

and response to these stimuli as colony restricting stressors. On the other hand, NO 

induction and an adverse effect of NO modulators on SeN colonization was detected 

on leaves, but not fruit.  

The present work found evidence to suggest that plant-derived NO is 

generated in response to S. enterica recognition.  Up-regulation of S. enterica NO 

detoxification genes during tomato surface colonization indicates that this 

environmental Salmonella strain perceives plant-derived NO as a stressor, 

corroborated by lower colonization outcomes of S. enterica  on NO elicited seedling 

leaves. The NsrR regulon, controlled by the nitric oxide sensing transcriptional 

repressor NsrR, plays an important role in nitrosative stress resistance during 

infection. Within this regulon, the flavohaemoglobin HmpA is identified as the main 

protein responsible for NO detoxification activities in the presence of an oxygenated 

environment  (Karlinsey et al., 2012).  Supporting this, in the present study two genes 

in the NsrR regulon were measured that were differentially transcribed compared to 

all native fruit and leaf environments, hmpA and yoaG. The NO detoxification-

associated genes hmpA, nfrA  and ygbA were also found to be up-regulated in soft rot 



 

 

62 

 

macerated cilantro and lettuce leaf tissue caused by the plant pathogen Dickeya 

dadantii (Goudeau et al., 2013). In the present study, evidence of NO detoxification 

was reported in the absence of a plant pathogen or tissue injury, and tomato plants 

produced NO∙ upon perception of S. enterica which, in turn, led the bacteria to switch 

on reactive nitrogen species (RNS) detoxification machinery. It is therefore 

hypothesized that this action may be necessary in order for SeN to successfully persist 

on some plant tissue.  

Evidence of ROS elicitation by S. enterica was also observed, consistent with 

other reports of PAMP -response recognition interactions with this foodborne 

pathogen (Garcia et al., 2014; Klerks et al., 2007; Meng et al., 2013; Schikora et al., 

2008; Shirron and Yaron, 2011). Furthermore, evidence of bacterial mitigation of 

ROS stress while colonizing plants was observed via up-regulation of S. enterica 

catalase (katG) on leaves and ahpC in S. enterica on leaves and fruit. As the primary 

scavenging enzyme in non-stressed environments, AhpC is a two-component thiol-

based peroxidase which transfers electrons from NADH to H2O2, producing water 

(Imlay, 2013). Conversely, catalase G, katG  is heme dependent and only weakly 

expressed during active growth, however is strongly induced (via oxyR) when cells 

are stressed by exogenous H2O2 (Imlay, 2013). In the present study, these data can be 

taken to suggest while baseline ROS may be perceived by S. enterica on both leaves 

and fruit in native environments evidenced by ahpC activity, leaves may be 

producing more ROS evidenced by up-regulation of katG.   

Other than NO and ROS stress, gene expression of SeN on both leaves and 

fruit were indicative of adaptation to a novel environment.  In leaves, trpE, which has 
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been associated with biofilm development (Hamilton et al., 2009), was upregulated in 

all environments. Biofilm formation is known to enhance the capacity of pathogenic 

bacteria to survive stresses in the environment and during host infection. Thus, the 

present work provides more evidence to the growing body of work which define 

attachment as paramount to survival in the phyllosphere (Barak et al., 2005, 2007). 

MarA was also upregulated in all leaf and fruit environments. In addition to their 

importance as regulators of xenobiotic efflux, marRAB may have indirect effects on 

expression in the enzymatic systems of, iron metabolism, membrane composition, 

and the stress related sigma factor rpoS. (Lee et al., 2015). In S. enterica 

transcriptomic surveys (Brankatschk et al., 2014; Wang et al., 2010), the use of such 

machinery is pertinent to survival in stress-inducing environments. Interestingly, 

nmpC (also referred to in the literature as ompD) displayed differential expression 

among plant tissue types, upregulated compared to inoculum in all leaf samples and 

down-regulated on the tomato fruit surface. NmpC (ompD) is one of the most 

abundant outer membrane porins of S. enterica, used to passively transport nutrients 

into the cell and toxins out of the cell (van der Heijden et al., 2016). Additionally, 

OmpD may be needed for adherence and recognition of S. Typhimurium to human 

macrophages and epithelial cells during the initial stages of infection (Hara-Kaonga 

and Pistole, 2004). Currently there are conflicting reports as to whether or not nmpC 

(ompD) is a main contributor to H2O2 diffusion in and out of the cell, and it may be 

that environmental conditions dictate the contribution of nmpC to H2O2 transport 

across the outer membrane  (Ipinza et al., 2014; van der Heijden et al., 2016). In our 

study, down-regulation of nmpC in fruit coupled with up-regulation of ahpC may 



 

 

64 

 

suggest the hypothesis of nmpC (ompD) involvement in H2O2 diffusion. However, 

up-regulation of both nmpC (ompD) and ROS detoxification machinery on leaves 

may point to an additional unknown function of this porin, perhaps engaging in efflux 

activity of other xenobiotics. Taken together, targeted gene expression on both tissues 

provide evidence for S. enterica needing to attach and mitigate various stressors, 

potentially for niche development. 

In this study, some outcomes were unexpected. For example on fruit, while 

up-regulation of bacterial NO detoxification genes was observed, fruit NO generated 

from challenge with various biotic treatments including Salmonella produced a 

fluorescent response greater than that of leaves but was not treatment specific. In 

other fruit experiments, S. enterica colonization outcomes were affected with ascorbic 

acid mediated modulation, but not NO modulation. These unexpected results may be 

due in part by the interplay of ROS and NO as signaling molecules in other pathways 

important to plant development and metabolism. For example, large amounts of NO 

detected from fruits (Figure 2B) across all treatments may be due to exocarp 

senescence (Mur et al., 2013), causing a significant amount of noise in the assay and 

rendering no detection of treatment-based signal.  Further on fruit, the observation of 

ascorbic acid significantly affecting S. enterica colonization outcomes whereas NO 

modulation did not could be attributed to NO and ROS endogenous levels in mature 

red fruit at the time of study. Ripe red fruit are known to have lower concentrations of 

nitric oxide compared to mature green fruit, as NO is involved in regulating ethylene 

production and thus facilitating the ripening process (Ya’acov et al., 1998). 

Furthermore, the transition from green to red fruit is marked by accruement of  high 
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ROS concentrations (Kumar et al., 2016). Thus, the ascorbic acid injected in our plant 

colonization assays could have been targeting ripening-related ROS, nonetheless 

providing a more hospitable environment for colonizing S. enterica.  Taken together, 

these data suggest plant tissue-dependent mechanisms of S. enterica restriction may 

exist in addition to plant non-host immune response, and that they may be connected 

to or confounded by the ripening process.  While some research groups have 

measured ROS detoxification efforts from fungal pathogens colonizing red ripe fruit 

(Petrasch et al., 2019), most NO modulation studies in fruit responding to plant 

pathogens are routinely conducted with mature green fruit (Lai et al., 2011; Zheng et 

al., 2011b, 2011a; Zhu and Tian, 2012).  One reason for this could be that mature ripe 

fruit tissue have lower levels of pathogen recognition response capacity compared to 

vegetative tissue, perhaps due in part to the breakdown of cellular wall components 

during ripening (Cantu et al., 2009). This could result in the failure or high variability 

of exogenous chemicals to modulate these levels but nevertheless allowing for micro-

niche responses to exist. S. enterica studies on ripe and unripe tomato fruit have 

found the organism proliferates more readily in ripe red compared to mature green 

tomato fruit (Barak et al., 2011), an observation that could be explained by the 

robustness of mature green non-host immune response in addition to availability of 

surface nutrients. Regardless, more research is needed to evaluate the 

interconnectivity between ripening and pathogen defense, both in the contexts of 

plant and human pathogens.  

Overall, higher titres of  S. Newport were more consistently retrieved from 

leaves compared to fruits, an observation which has been reported elsewhere (Barak 
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et al., 2011). This variability could be due to the plant immune response, relative 

abundance of nutrients on the surface of the different plant organs, or a combination 

of both physiological processes which renders the tomato fruit a less hospitable long-

term environment compared to the leaves. Supporting evidence can be found in 

Salmonella field sampling studies. For example in one multi-year field study 

researchers sampling tomato leaves and fruit for wild S. enterica colonization found 

only leaves returned positive S. enterica result, never fruits (Gu et al., 2018). In a 

previous study from our group, we identified that Heinz fruit aqueous fraction of 

surface chemicals had higher proportions of fatty acids compared to seedling shoots 

or mature leaves, a feature which was negatively correlated with S. enterica growth 

(Han and Micallef, 2016). It was furthermore identified that SeN retrieval from leaves 

was less variable than fruit, suggesting a potential heterogeneity of response to unique 

stressors present on this plant organ. Diversification of stress response or “bet 

hedging” has been documented in S. enterica intercellular interaction with ROS and 

other stress agents (Burton et al., 2014; Helaine et al., 2014; Helaine and Holden, 

2013). Taken together, this suggests that tomato fruit may be a unique yet harsh 

environment for colonizing human pathogens for which “bet hedging” may be a 

significant strategy to ensure long term survival.  

While the leaves of the tomato are not eaten, in the field leaves and tomato 

fruits are in constant contact with one another, serving as a contamination source for 

fruit. As is current common practice, this vegetative matter may be harvested along 

with tomato fruit and could lead to widespread contamination if appropriate Good 

Agricultural Practices are not followed; for example using recirculated water to wash 
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the tomatoes without the appropriate concentration of sanitizer. Therefore, one 

effective way to minimize foodborne pathogen risk in tomato cultivation is to 

implement standard operating procedures which minimizes the presence of vegetative 

matter co-mingling with fruit during harvest and post-harvest.  

Perception and mitigation of NO stress may be one important process making 

up, with other important stress responses, a distinct strategy for successful plant 

colonization. Mitigation of these stresses, including NO and ROS which can be short-

term restricting agents, may lead to more established persistence long term in the 

field. This has been documented in the mammalian host model, where presence of 

RNS in the gut increased overall colonization fitness of S. enterica, possibly because 

it can outcompete some resident microflora (Stecher et al., 2007). As ROS may be 

present in many aspects of the agricultural environment (Diaz and Plummer, 2018), 

stress mitigation strategies may be key for enteric organisms to survive in multiple 

areas of the agricultural environment on their way to the mammalian gut.  Future 

work to investigate if this ability is shared by all S. enterica, or if it is specific to S. 

enterica serovars that are regularly implicated in produce outbreaks is imperative to 

continue to elucidate adaptation to alternative host environments. Investigation of 

minute plant- S. enterica interactions to further characterize the environmental 

lifestyle of this enteric pathogen is imperative to provide holistic, science-based farm  

management decisions for risk reduction during specialty crop cultivation.  
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Chapter 4: Salmonella enterica Serovar Specific Tolerance to 

Nitric Oxide Stress in vitro and in the Tomato Phyllosphere 

 

 

1. Introduction 

S. enterica subspecies enterica is comprised of over 2,500 different serovars, 

with around 10 responsible for 77% of foodborne illnesses (2010- 2016) (Foodborne 

Outbreak Online Database (FOOD Tool), 2016).  Within common serovars 

implicated in foodborne illness outbreaks, recent epidemiological research suggests 

associations between certain serovars and food commodity categories exist (Jackson 

et al., 2013). For example, S. Enteriditis, while present in the environment (Callahan 

et al., 2019), is disproportionately associated with outbreaks from meat and eggs 

compared to produce (Jackson et al., 2013). S. Newport on the other hand has been 

identified as a generalist, yet is the most common serovar in vine vegetable outbreaks 

(Jackson et al., 2013).  These data raise questions on the existence and drivers of 

specific serotype – food commodity relationships.  Previous work investigating 

bacterial ability to persist on produce crops has revealed colonization success  not 

only varies by produce type, but also by serotype (Cui et al., 2018; Guo et al., 2002; 

Klerks et al., 2007b; Patel and Sharma, 2010; Reed et al., 2018; Shi et al., 2007; 

Zheng et al., 2013).  Indeed, studies with tomatoes – a frequently implicated 

commodity in salmonellosis outbreaks (Bennett et al., 2015; Jackson et al., 2013) – 

report S. Newport  and S. Javiana as more prevalent than other serovars like S. 

Typhimurium, S. Enteriditis and S. Dublin, which are considered less likely to be  

‘produce-associated’ (Shi et al., 2007; Zheng et al., 2013). Furthermore, plant 
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metabolites may be involved in these interactions, as was shown in the positive 

correlation of S. Senftenberg persistence in the basil phyllosphere with persistence in 

basil oil compared to S. Typhimurium (Kisluk et al., 2013). Furthermore, correlations 

have been identified between S. Newport growth on tomato surfaces and tomato 

exudates (Han and Micallef, 2016).  

 Research into the genetic basis for ‘produce adaptation’ has identified 

differential traits among serovars in attachment to surfaces and ability to form 

biofilms. For example, Patel et al. showed that S. enterica isolated from produce 

formed significantly more biofilm in microbroth, polycarbonate, and stainless steel 

surfaces compared to poultry isolates, and is consistent with spinach colonization 

ability (2013). Mechanistically, it has been identified that  fliC may be important for 

attachment onto leafy greens on  a serovar specific basis (Berger et al., 2009). 

Deletion of ycfR and yigG, two genes necessary for attachment to spinach and grape 

tomatoes, resulted in serovar-specific deficiencies in aggregation and tolerance to 

chlorine (Salazar et al., 2013). Furthermore, serovar-specific interactions with sugar 

residues in plant cell walls may affect attachment to plants (Tan et al., 2016).   

Study into other factors that may contribute to serovar-specific persistence on 

plants is sparse, but several S. enterica-plant interactions have been reported that are 

important for bacterial colonization. In our previous work, we identified genetic 

mechanisms that are induced in S. Newport when associating with tomato surfaces 

which help mitigate plant-derived nitric oxide (NO) and reactive oxygen species 

released by plants upon recognition of S. enterica (see Chapter 3). NO in the 

traditional S. enterica pathogenesis model is released by animal host cells during S. 
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enterica invasion in an attempt to damage bacterial DNA and proteins (van der 

Heijden et al., 2015). S. enterica must detoxify this threat for successful pathogenesis, 

however save one study in chicken cells which found S. Typhimurium and S. 

Enteriditis adept at inhibiting host NO production, it is currently unclear if different 

Salmonella serovars mitigate NO stress with similar efficacy (He et al., 2012). In the 

phyllosphere, NO burst is an important component of the early stages of plant 

immunity (Frederickson Matika and Loake, 2014). In combination with other abiotic 

stresses such as desiccation and UV exposure, serovar-specific differences in NO 

mitigation may significantly drive serotype-specific persistence outcomes on plants.  

 The objective of this study was to evaluate if different S. enterica serovars 

possessed the ability to detoxify nitric oxide in vitro and to investigate whether the 

ability to mitigate this stress is associated with colonization outcomes on plants. With 

this effort, we hope to link potential factors driving serovar specific adaptations to 

non-animal host environments. Such work can aid the development of serovar-

targeted intervention strategies to minimize food safety risk in cultivation of fresh 

produce crops, especially in areas where many diverse serovars of salmonellae may 

be present in the agricultural environment.  

 

2. Materials and Methods 

2.1 Cultivation of plant material 

Tomato seeds cv. ‘Heinz-1706’were obtained from the Tomato Genetics 

Resource Center (TGRC) from the University of California, Davis. TGRC seeds were 

germinated at 25℃ after pre-treatment in 30% w/v polyethylene glycol solution at 
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room temperature shaking for 72 h. Germinated seeds were transferred to potting 

media (Sunshine LC1; Sungro Horticulture, Canada) supplemented with fertilizer and 

subjected to a 16 h-light–8 h-dark photoperiod, 26°C day temperature /18°C night 

temperature with 70% relative humidity in a plant growth chamber. Tomato seedlings 

were grown to the 5-true leaf stage before experimentation. 

2.2 Selection of serotypes for study 

An epidemiological assessment of S. enterica outbreaks from 1998-2017 was 

conducted to determine representative serovars in different food commodity 

classifications for the present study. Food tool data for the period 1998-2015 was 

acquired on 1-20-2016 and 2016-2017 data was acquired on 12-10-18 from the 

National Outbreak Reporting System Dashboard (NORS) 

https://wwwn.cdc.gov/norsdashboard/. All non-typhoidal S. enterica outbreaks from 

1998-2017 were included. Outbreaks which did not have an etiologic agent, were not 

confirmed, or did not have a food vehicle were filtered out. Outbreaks with multiple 

etiologic agents had illnesses divided equally among the agents. Food vehicles were 

classified into one of the following commodity classifications: produce, dairy, eggs, 

meat, nuts, and other. Any complex food vehicles (i.e. ‘deli sandwich’) or foods 

which could be grouped into multiple commodity classifications were labeled as 

‘other’. Seeds were included in the ‘nuts’ category, frozen produce and sprouts were 

treated as produce. Ice cream was treated as dairy unless otherwise specified. To 

compare influence of serovars on illnesses, a 5% cutoff was employed within each 

food commodity to return serovars responsible for 95% of illnesses.  

https://wwwn.cdc.gov/norsdashboard/
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2.3 Bacterial strains 

S. Newport XbaI pattern JJPX01.0061 (Greene et al., 2008), S. Typhimurium 

LT2 (ATCC 700720), S. Heidelberg, S. Enteriditis (both isolated from a poultry house 

environment), S. Javiana ATCC BAA-1593 (clinical isolate from a tomato outbreak) 

and S. Typhimurium (isolated from bird faeces; Micallef et al., 2012) were used for 

this study. Strains were maintained at -80°C in Brucella Broth (BD, Sparks MD) 

containing 15% glycerol and 50 µg/mL rifampicin (Rif; Tokyo Chemical Industry, 

Portland OR ). For each experiment, cultures of S. enterica were grown overnight on 

Trypticase Soy Agar (TSA; BD) with Rif at 35°C. A single colony was selected from 

each culture, suspended in sterile water and diluted to OD600= 0.34, approximately 8.5 

log CFU/mL. Serial dilutions were prepared in 1X PBS for in vitro inocula and sterile 

water for on-plant inocula. Remaining dilutions were performed in 0.1% peptone 

water for enumeration on TSA Rif by standard plate counting. 

2.4 Growth curve of S. enterica in presence of NO 

Fifty µL of S. Newport or S. Typhimurium LT2 in 1X Phosphate Buffered 

Saline (PBS) were inoculated into 5 mL tubes of Trypticase Soy Broth (TSB; BD) to 

obtain a final concentration of 4.3 log CFU/mL. To these suspensions, spermine 

NONOate (SPER/NONO; Calbiochem, Millipore Sigma), an NO donor, was 

suspended in 1X PBS and added to half of the tubes to a final concentration of 1 mM. 

Control tubes received equal volumes of 1X PBS. Tubes were incubated at 28°C with 

shaking at160 rpm for 24 h. Following incubation, 100 µL were retrieved at 0.5, 2 

and every subsequent 2 h thereafter up to 24 h for dilution plating and enumeration on 

TSA Rif.  
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2.5 In vitro determination of S. enterica NO tolerance 

One hundred and fifty µL of 7.8 –8.0 log CFU/mL of S. enterica suspensions 

in 1X PBS were inoculated into flat-bottom 96-well polystyrene plates (Sigma 

Aldrich St. Louis, MO). SPER/NONO was suspended in 1X PBS and added to the 

following final concentrations [0, 125, 250, 500, 1000, and 2000 μM]. Plates were 

sealed with parafilm and incubated at 28°C with shaking at 50 rpm. At 1, 4, and 24 h 

post-inoculation (hpi), wells were destructively sampled, serially diluted in 0.1% 

peptone water and plated on TSA+ Rif or TSA without antibiotic for bacterial 

quantification. The following calculation for “log decline” was applied for 

normalization across different inoculums and to correct for baseline persistence in 

PBS: (log CFU /mLinoculum - log CFU/mLX SPER/NONO concentration) – log CFU/mL 0 µM 

SPER/NONO.  

2.6 Serotype response to modulation of tomato nitric oxide levels 

To investigate serovar specific survival on tomato plant surfaces, the third 

emerged leaf on 5-leaved ‘Heinz-1706’ seedlings was treated with either 1 mL 0.5% 

v/v of CaCl2 (Sigma, St. Louis MO) to elicit endogenous production of NO 

(Chakraborty et al., 2016) or sterile water. Treatments were aerosol sprayed onto the 

leaf, then left to dry for 4 h at 25°C. Once pretreated, a suspension of 5.5 log CFU/ml 

S. enterica was applied to the surface of one leaflet in 10 x 2 µL spots. Samples were 

incubated in 80% RH for 12 h in a biosafety cabinet. To retrieve viable S. enterica 

cells, inoculated leaflets were excised, diluted in 0.1% peptone water and hand 

massaged for 30 s followed by 1 min sonication using an 8510 Branson Sonicator. 

Serial dilutions were then plated onto TSA Rif for bacterial quantification.  



 

 

74 

 

2.7 Statistical analysis 

All statistical analysis was performed using JMP 14.1. For epidemiological 

data, chi square tests were performed to determine the likelihood of independence in 

outbreak distribution at the commodity level across all S. enterica and across six 

serovars of interest (ɑ=0.05).  

Growth curve experiments were performed as a repeated measures design 

with three biological replicates per treatment. Data were fitted to the Huang full 

growth model through IPMP 2013 (Huang, 2014) software, as described in the 

following equation:   

𝑌(𝑡) = 𝑌0 + 𝑌𝑚𝑎𝑥 − ln {𝑒𝑌0 + [𝑒𝑌𝑚𝑎𝑥 − 𝑒𝑌0]𝑒−𝜇 max 𝐵(𝑡)} 

𝐵(𝑡) = 𝑡 + 
1

𝛼
ln

1 + 𝑒−𝛼(𝑡−𝜆)

1 + 𝑒𝛼𝜆
 

where Y(t), Y0 , Ymax  are bacterial populations in natural logarithm, at initial, 

maximum , and time (t).  µmax refers to the growth rate, and λ refers to lag time with 

the transition coefficient of α=4. Growth parameters among different treatments were 

analyzed for significance with ANOVA and pairwise comparisons were conducted 

using Student’s t-test (ɑ=0.05). 

 In vitro experiments were performed as a completely randomized design with 

three biological replicates per treatment combination, and each serovar was tested in 

at least two experimental replicates. The homogeneity of variances was evaluated 

using Brown-Forsythe’s test, and pairwise comparisons between treatments were 

performed via Welch’s test, followed by post-hoc Kruskal-Wallis / Wilcoxon rank 

test (ɑ=0.05).   
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On-plant challenge assays were performed as a Randomized Complete Block 

Design, with placement in the biosafety cabinet serving as the Block. Each plant 

treatment comprised of 4 biological replicates. The significance of treatment effects 

were assessed using Student’s T-test to compare leaf treatments and orthogonal 

contrasts to compare serovars within each leaf treatment (all at ɑ=0.05).   

3. Results 

3.1 Incidence of illness by serotype and food category 

In total, 1,132 unique foodborne illness outbreaks were returned from the 

NORS query, amounting to 50,042 illnesses from S. enterica outbreaks between 

1998-2017 caused by 90 serotypes (Figure 1). The commodity “meat” had the 

highest number of outbreaks and illnesses (471 outbreaks, 16,680 illnesses) followed 

by the “produce” commodity (233 outbreaks, 15,604 illnesses) (Figure 1B). Across 

all commodities, 10 Salmonella serovars were responsible for 78% of illnesses. S. 

Enteriditis was responsible for 14,036 illnesses, followed by S. Typhimurium (5,520), 

S. Heidelberg (5,286), S. Newport (4,380), S. Saintpaul (2,479), S. Javiana (2,092), S. 

I 4,[5],12:i:- (1,801), S. Montevideo (1,306), S. Muenchen (1,098) and S. Poona 

(1,097). Interestingly, the number of outbreaks caused by a serovar was significantly 

correlated with the number of illnesses (R2=0.97, p<0.001). 

95% of all S. enterica illnesses during 1998- 2017 returned 1,069 outbreaks 

and 47,706 illnesses.  S. Enteriditis in “eggs” had the highest frequency of associated 

illnesses (89%) compared to any other serovar-commodity classification (Figure 1A). 

Consequently, eggs had the fewest number of serovars responsible for 95% of 
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illnesses. S. Enteriditis was also the serovar exhibiting the highest frequency of 

illnesses in the “meat” (21%) and “other” (36%) categories at the 95% level. S. 

Typhimurium was the serovar in “nuts” (39%) and “dairy” (42%) displaying the 

highest frequency of illnesses, and S. Newport was the serovar in the “produce” 

commodity that had the highest frequency of illnesses (16.6%). Serovar-specific 

commodity associations at the 95% level were apparent, with S. Newport and S. 

Javiana both responsible for a higher frequency in illnesses associated with “produce” 

(16.6% and 7.5%, respectively) compared to meat (6.7% and 3.7%, respectively). 

Conversely, S. Heidelberg was more abundant in meat-associated illnesses (16.0%) 

compared to produce (5.5%).  

Comparing the number of outbreaks caused by S. enterica etiologic agent, it 

was found that S. enterica serovars were not equally likely to cause an outbreak 

across each food commodity type (Χ2 (5, N=1132) = 792.1, p<0.001), providing 

further evidence that serovar – commodity associations may exist. Investigation of 

outbreaks caused by six serovars of interest (Figure 1C); S.  Enteriditis, S. 

Heidelberg, S. Javiana, S. Newport, S. Typhimurium and S. 4,[5],12:i:-  revealed 

within this subsection of serovars, it was not likely that outbreaks were distributed 

evenly across food commodities (Χ2  (25, N=781) = 248.0 p<0.001), with S. Newport, 

S  Javiana, S. Typhimurium and S. Enteriditis more likely to be implicated in a 

produce outbreak compared to S. Heidelberg or S. 4,[5],12:i:-. Moreover, 50% of S. 

Newport outbreaks were attributed to produce compared to 4% of S. Heidelberg 

outbreaks.  These serovar-commodity associations informed serovar selection for 
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evaluating differential NO detoxification among serovars, choosing to evaluate S. 

Enteriditis, S. Heidelberg, S. Typhimurium, S. Javiana and S.  Newport.  

 

Figure 1:  Distribution and abundance of illnesses caused by S. enterica in each 

commodity classification, from 1998 – 2017. Data adapted from the CDC 

National Outbreak Reporting System https://wwwn.cdc.gov/norsdashboard/. (A) 

Summary of 95%  of illnesses caused by S. enterica in a given commodity 

classification.  (B) Total illnesses and outbreaks across all serovars from 1998 – 2017. 

(C) Contingency table of the number of outbreaks from six serovars of interest 

between 1998-2017 by food commodity classification.  

https://wwwn.cdc.gov/norsdashboard/
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3.2 Effect of 1 mM Spermine NONOate on S. enterica growth 

Comparing the growth model parameters of S. Newport and S. Typhimurium 

LT2 in TSB with or without 1 mM NO, all cultures had the same starting inoculum 

(𝑌0) (Table 1). Both serovars challenged with SPER/NONO exhibited significant 

increases in lag time compared to unamended TSB, from 1.9 and 1.3 h to 10.0 and 

10.8 h in the presence of SPER/NONO for S. Newport and S. Typhimurium, 

respectively (p<0.001). No significant difference in lag time was detected between 

serotypes grown in TSB, but the discrepancy approached significance between 

serotypes in the presence of the NO donor (p=0.055).  S. Newport exhibited a faster 

growth rate compared to S. Typhimurium regardless of SPER/NONO challenge 

(p<0.001). When normalized to TSB, the growth rate declined slightly more for S. 

Typhimurium in the presence of the NO donor compared to S. Newport, but this was 

not statistically significant. Serovar specific differences were apparent with respect to 

final population attained (Ymax) in SPER/NONO-amended TSB, with S. Newport 

growing to 1.1 log CFU/mL higher concentrations compared to S. Typhimurium 

(p<0.001).  
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3.3 Effect of increasing NO concentrations on S. enterica serovar survival over 24 

hours 

Across all serovars, 250 µM SPER/NONO was the minimum concentration at 

which retrieval was significantly lower compared to 0 µM, hereinafter referred to as 

the minimum concentration to reduce growth (MCRG). This activity was first 

detected at 4 hpi (p<0.05 Tukey HSD). (Figure 2A). At 1 hpi, 500 µM was detected 

as the MCRG (p<0.05 Tukey HSD). Interestingly, a significant (p<0.05) positive 

effect of 15 µM NO on S. enterica growth was found at 24 hpi. We set the range of 

concentrations for subsequent experiments from 250 to 2000 µM to assess NO 

tolerance among five serotypes. Population decline progressed in a SPER/NONO 

concentration-dependent manner (Figure 2B). In general, log decline from 1-24 hpi  

in 250 µM NO donor was constant, whereas in 500 µM the maximum log decline was 

reached at 4 hpi , except in the case of  S. Typhimurium which continued to 

experience log declines to the 24 hpi  timepoint. Populations of cells exposed to the 

higher concentrations of 1000 and 2000 µM SPER/NONO displayed continuous 

decline without reaching a maximum from 1 to 24 h for all serotypes except S. 

Heidelberg.  

Differences in the ability to tolerate NO were affected by serovar type and 

exposure time to SPER/NONO.  Differences between serovar tolerance were first 

evident at 1 hpi at 500 (p=0.121), 1000 (p=0.157) and 2000 µM (p<0.05) of 

SPER/NONO  (Figure 2B), with S. Typhimurium initially displaying more tolerance 

to NO compared to other serovars (p<0.05).  However, this ability was not sustained 

and S. Typhimurium lost this advantage at 24 hpi, exhibiting significantly more log 
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decline in solutions of 250, 500 and 1000 µM compared to S. Heidelberg and S. 

Javiana (p<0.05). This suggests that S. Typhimurium may be adept at mitigating 

initial NO stress, while S. Javiana and S. Heidelberg may be more competitive under 

long term stress. Other serovar specific differences were evident with S. Javiana. At 4 

hpi, this serovar displayed higher tolerance to NO compared to S.  Heidelberg and S. 

Enteriditis at 250 and 500 µM (p < 0.05 for S. Heidelberg at 250 and S. Enteriditis at 

500 µM).  

Serovar specific differences in decline following long term (24 hpi) exposure 

were highly dependent on NO concentration. At 250 µM, S. Heidelberg and S. 

Javiana experienced significantly less decline than S. Newport (p<0.05). In 500 µM 

solution, S. Javiana and S. Heidelberg experienced less decline than S. Typhimurium, 

S. Enteriditis, and S. Newport (p<0.05). In 1000 µM solution however, S. Javiana and 

S. Heidelberg seemed to lose tolerance with S. Enteriditis instead displaying less log 

decline compared to S. Javiana (p<0.05), S. Newport (p>0.05), and S. Typhimurium 

(p<0.05).  At 24 hpi, variances among samples increased with increasing NO 

concentrations, evidenced by significant Brown-Forsythe’s test at 2000 µM (Figure 

2C). Consequently, 2000 µM samples did not display specific differences in the log 

decline.  S. Heidelberg notably showed the highest increase in variance, attributed to 

significant variation introduced by one experimental replicate (Figure 2D). In this 

replicate (Figure. 2D), S. Heidelberg unexpectedly exhibited the least log decline 

compared to other serovars at all timepoints, an observation that was not reproducible 

but that skewed the overall data at the higher concentrations for this serotype.  
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Figure 2: Log decline from inoculum of five Salmonella enterica serovars at 

various SPER/NONO concentrations after 1, 4, and 24 h post inoculation.  (A) 

Concentrations of NO across serovars tested to find functional range of NO for 

subsequent in vitro assays. (B) Log decline from inoculum, corrected for log decline 

in 0 µM for each sample at each sampling time, of five serovars tested at 1, 4, and 24 

in hpi 96 well plates of PBS amended with various concentrations of NO. N=3 

biological replicates, with at least two technical replicates per serovar. (C) Standard 

deviations at 24 h of each serovar at each SPER/NONO concentration, averaged over 

4 experimental replicates. (D) Third experimental replicate pulled out to illustrate 

inter-experimental variability of S. Heidelberg. 
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3.4 S. enterica strain retrieval from tomato seedlings elicited to produce excess NO 

Different S. enterica strains were inoculated onto tomato surfaces to identify 

serovar specific differences in the capacity to associate with the tomato phyllosphere 

while negotiating either augmented or native plant concentrations of NO. Exogenous 

elicitation of NO in seedlings significantly decreased S. enterica survival by an 

average of 2.0 log CFU/seedling across all serovars (p<0.001, Student’s T-test). The 

most decrease between control and elicited seedlings was found in S.  Heidelberg 

(2.46 log CFU/seedling) and the least observed in S. Enteriditis (1.70 log 

CFU/seedling). 

Serovar specific differences in retrieval from seedlings in both treatment 

environments was also identified.  S. Javiana was retrieved from seedlings in higher 

concentrations compared to S. Newport (p=0.170) in the native environment, and 

significantly higher compared to Heidelberg in both the native and excess NO plant 

environments (p=0.022), (p<0.001), respectively (Figure 3).  In Fact, S.  Heidelberg 

retrieval from NO-excess seedlings was significantly reduced compared to all other 

serovars tested (p<0.05 via orthogonal contrasts).  

No significant differences in variances for each treatment by strain were found 

using Brown-Forsythe's test, however, in NO excess environments differences in 

variances approached significance (p=0.063), with S. Enteriditis (std dev =0.500) and 

S.  Heidelberg (std dev =0.250) variances higher than S. Javiana (std dev =0.139) and 

S. Newport (std dev =0.163). It was interesting to note serovar specific trends were 

apparent in the magnitude of variance depending on seedling treatment; where the 

variances in S. Javiana and S. Newport increased from CaCl2 samples to water 
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samples, and the variances of S. Heidelberg and S. Enteriditis displayed the opposite 

trend.

Figure 3: Surface populations of S. enterica after pre-treatment of plant tissue 

with H2O2 or NO elicitor. Five leaf seedlings were aerosol sprayed with 1 mL sterile 

water or 0.5% CaCl2 and dried 4 h before surface inoculation with S. enterica. Error 

bars represent SEM, significance was determined using Student’s T-test and 

orthogonal contrasts (α= 0.05).  N=4 plants per treatment. One S. Heidelberg outlier 

was removed from analysis.  

 

4. Discussion  

Investigating enteric pathogen-plant interactions is a burgeoning area of 

scientific research with recent interest in evaluating bacterial genotype as a factor for 

persistence. For example.  Patel and Sharma reported that a cocktail of S. enterica  
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produce isolate strains persisted longer and at higher concentrations when irrigated on 

spinach compared to poultry isolate cocktails (2013). However, comparatively few 

studies have investigated phenotypic and genetic factors behind these observed 

associations. Epidemiological results from the present work indicate that serovar 

specific associations exist for certain food commodity classifications, such that S. 

Newport and S. Javiana are more likely to be attributed to produce commodity 

illnesses and outbreaks compared to meat commodities. Initial growth curves 

comparing S. enterica serovar specific tolerance to NO found that the total population 

maximum in the presence of NO stress was serovar dependent. Furthermore, serovar 

specific tolerance to NO in vitro was apparent in a concentration and exposure time 

dependent manner such that one produce associated serovar and a generalist serovar, 

S. Javiana and S. Typhimurium, displayed increased tolerance to NO at lower 

concentrations (≤ 500 µM ) and at shorter exposure times (≤ 4hpi). However, at long 

exposure times and high NO concentrations, S. Enteriditis displayed increased 

tolerance. Finally, it was identified that plant derived NO can negatively affect 

colonization outcomes of all S. enterica serovars tested, a finding which necessitates 

future investigation into microbial responses to plant-released signals.  

 It was expected that serovars S. Newport and S. Javiana to perform well both 

in the in vitro and the on-plant studies. Previous work investigating strain specific 

persistence on red ripe tomatoes reported that during storage S. Newport could persist 

at levels similar to S. Javiana, both higher than S. Enteriditis and S. Typhimurium (Shi 

et al., 2007). Further, from a five strain inoculation of S. Montevideo, S. Javiana, and 

S. Typhimurium and S. Newport, the latter was regularly recovered from inoculated 
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leaves at concentrations similar to S. Javiana, and both were recovered significantly 

more compared to S. Typhimurium (Zheng et al., 2013).  Similar results were 

retrieved from fruit that was inoculated at the blossom stage. In the present study, S. 

Javiana did in part display an advantage over other serovars, evidenced at low 

SPER/NONO concentrations in vitro and also retrieval from plants consistent with 

previous work (Zheng et al., 2013). This could suggest that S. Javiana may be a 

hearty persister in phyllosphere environments, although longer term study (greater 

than 12 h) is needed to further explore this hypothesis. In vitro S. Newport did not 

follow this trend as expected, and S. Heidelberg instead displayed similar NO 

tolerance to S. Javiana. Furthermore, at high SPER/NONO concentrations in the in 

vitro study S. Enteriditis and S. Heidelberg and not S. Javiana displayed advantages 

compared to other serovars tested. One study in chicken macrophages may provide 

some insight to these findings. In this work, the authors found S. Enteriditis was able 

to completely block production of macrophage NO, providing evidence to support 

this observation (Balan and Babu, 2017; He et al., 2012). Interestingly, on tomato 

seedlings, S. Heidelberg was retrieved in lower concentrations compared to S. 

Javiana.  However, in the in vitro study S. Heidelberg was rarely different in its 

tolerance to NO except for 1 replicate of 2,000 µM at 24 hours. This discrepancy in 

tolerance across experimental conditions has been replicated in one other study: in 

chicken macrophage cell lines, while S. Typhimurium was able to abrogate NO 

production, it did not have significantly higher invasion rates in the host macrophage 

cells (He et al., 2012). Taken together, this may indicate that the interaction of 
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multiple factors governs colonization outcomes; either tied to NO (e.g. the degree of 

plant NO induction to certain serovars), or perhaps other unknown factors. 

Long term exposure (24 hpi) of extremely high concentrations of NO (2000 

µM) led to no serovar specific differences in tolerance and high variability among 

response, especially prominent in S. Javiana, Newport and Heidelberg. Heterogeneity 

of stress response within populations may be a survival strategy for long term 

persistence, and has been observed in murine infection models (Helaine et al., 2014). 

Furthermore, it may be reasonable to expect an erasure of all serovar specific 

responses as especially when levels extremely high levels of NO concentrations are 

reached which likely overwhelm cellular detoxification machinery. Nanomolar to two 

micromolar levels of NO are expected to be released from plants as part of their 

immune response when challenged with pathogens (Mur et al., 2011). In the present 

study using plate counts there was no observed effect on colony levels at the lowest 

level of SPER/NONO used, however cellular level transcriptomic effects may be 

present and are an opportunity for further investigation. 

Salmonella can mitigate NO stress in both aerobic and anaerobic conditions 

through direct detoxification or through efflux systems (Henard and Vazquez-Torres, 

2011).  Most studies investigating NO detoxification machinery are with Salmonella 

Typhimurium (Crawford and Goldberg, 1998; Fitzsimmons et al., 2018; Karlinsey et 

al., 2012), however variations in nitrosative stress response may exist among S. 

enterica serovars. For example, Salmonella Saintpaul does not have the ssrB region 

(needed to detect NO stress), and within S. Typhimurium clinical isolates there is a 

clade characterized by mutations in hmpA and katE, leading to a loss of fitness in 
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nitrosative and oxidative stress (Hayden et al., 2016). Serovar specific differences by 

time and NO concentration in the present study may be indicative of S. enterica 

serovars employing variable strategies and efficiencies to mitigate nitric oxide. It 

would be valuable in future work to identify if one machinery is favored over the 

other in various NO-producing environments.  

Unlike other papers which investigate Salmonella Newport in the 

phyllosphere and associated tomato fruits (Shi et al., 2007; Zheng et al., 2013), this 

study did not find that Salmonella Newport was in the strongest persister group. 

There may be two possible explanations for this observation. One possible reason for 

this could lie in differential plant response to Salmonella serovars. For example, 

plants may produce more NO after contact with S. Newport compared to other 

serovars, creating a comparatively more stressful environment for colonization of this 

serovar and leading to fewer recovered cells. In support of this hypothesis previous 

work has identified S. Typhimurium flagellin flg22 which induces PAMP triggered 

immunity as evidenced by up-regulation of immunity related transcription factors, 

oxidative burst, and salicylic acid accumulation over time while S. Senftenberg 

flagellin failed to elicit a similar response (Garcia et al., 2014).  The notion that only 

some Salmonella may elicit plant responses is highly interesting and could provide 

evidence of plant-enteropathogen reciprocal responses leading to strain specific 

adaptation to specific phyllosphere environments. To further investigate this, it would 

be prudent to investigate the ability of Salmonellae to elicit NO production.  

Another explanation for this result could be due to the tomato cultivar used. In 

a previous study by Han et al., it was identified that epiphytic S. enterica  persistence 
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was significantly influenced by tomato cultivar, with cv. ‘Heinz 1706’ resulting in 

significantly less retrieval of Salmonella Newport on leaves and fruit (2014). It was 

hypothesized these differences may be due in part to the plant immune response 

system in this cultivar, and therefore chose to use cv. ‘Heinz-1706’ for the present 

study. S. Newport persistence on this cultivar may be due to plant factors other than 

plant immunity, as it is well known that a suite of other factors drive bacterial 

persistence on plants (Brandl et al., 2013). In another study by our group, we 

investigated S. enterica persistence in surface exudates of various tomato cultivars. 

The study found that Heinz fruit surface washes were enriched in fatty acids in higher 

proportion to other compounds including sugar and sugar alcohols, and that these 

compounds were correlated with reduced S. Newport growth (Han and Micallef, 

2016). Therefore, it would be reasonable to suspect that aside from the immune 

response system, other components and chemicals making up physical barriers and 

physiological processes could also significantly affect S. enterica persistence on a 

serovar specific basis. Taken together, these results suggest further investigation is 

needed to explore colonization dynamics in the context of plant surface features. 

In this study it was found that seedling-derived NO significantly decreased 

colonization outcomes for all serovars tested. This highlights an important discovery 

that plant activity can significantly influence enteric pathogen activity, such as 

colonization. Furthermore, S.  Heidelberg, a serotype that has not been implicated in 

fresh produce outbreaks, was more affected by plant-derived NO than other serovars, 

as evidenced by lower retrieval compared to other serovars. A similar phenomenon 

has been documented where S. Typhimurium had similar to low viability in chickens 
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but in vitro almost completely inhibited NO production in HD11 cells (He et al., 

2012). From this, investigation into other factors which interact with NO to 

negatively affect S. enterica colonization is warranted.   

It is also important to consider how plant cultivar, age, and tissue type would 

affect serovar specific dynamics. For example, it has been reported that recovery of 

various S. enterica serovars from tomato seeds was significantly lower than 

fenugreek, alfalfa, and lettuce seeds (Cui et al., 2018). In terms of plant genotype,  

while studies in tomato and basil found Typhimurium uncompetitive in the 

phyllosphere (Kisluk et al., 2013; Zheng et al., 2013) this serovar was robust in 

endophytic colonization of lettuce leaves (Klerks et al., 2007a). These studies signify 

that there may be more factors at play that may determine success in non-animal hosts 

which remain to be elucidated for S. enterica. 

In conclusion, this work identified that serovar specific differences in NO 

tolerance may exist, dictated by both exposure time and concentration of nitric oxide. 

All serovars persisted on Heinz seedling leaves and were negatively affected by plant 

derived NO, and the meat associated S. Heidelberg strain was retrieved in lower titers 

from the phyllosphere following NO elicitation compared to other serovars tested. We 

also found that S. Newport, an isolate commonly associated with tomato outbreaks, 

was retrieved at lower bacterial concentrations compared to other strains. More work 

is needed to understand this phenomenon, including carrying out experimentation for 

longer periods of time to investigate the presence of serovar specific long term 

survival outcomes on plants. Furthermore, additional study into other plant factors 

and their interaction with the diverse serovars of S. enterica must be pursued to 
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further investigate drivers behind “produce-associated” and “meat-associated” 

serovars.   

Bridging environmental stressors S. enterica may encounter with persistence 

outcomes on plants is imperative to provide a sufficient profile of the hurdles each 

foodborne pathogen must interact with to establish itself on fresh produce crops. It is 

likely plant derived NO may be one stimulus included in a wider symphony of plant- 

enteric pathogen interactions, all working in concert to produce an outcome of 

colonization.  Understanding these environmental queues for adaptation to the 

agricultural environment will aid researchers and farmers to develop targeted 

management techniques to ensure safe cultivation of food.  
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Chapter 5:  S. enterica Serovar Specific Dynamics in Surface 

and Reclaimed Water and Transferability onto Tomato Fruit 

 

1. Introduction 

When assessing routes of vegetable contamination with foodborne pathogens 

during cultivation, irrigation water has been regularly implicated as a reservoir for 

Salmonella enterica.  Evidence comes from successful trace-back investigations of 

foodborne illness outbreaks and the isolation of S. enterica  from water sources that 

match clinical strains (Bell et al., 2015; Bennett et al., 2015; Callahan et al., 2019; 

Greene et al., 2008).  

In an effort to minimize food safety risk imposed by irrigation water sources, 

the US Food Safety Modernization Act Produce Safety Rule (FSMA PSR) has 

compiled stringent guidelines for water quality to be used for irrigating the edible 

portion of fresh fruit and vegetables (Standards for the Growing, Harvesting, Packing, 

and Holding of Produce for Human Consumption).  This includes developing a water 

quality profile based on generic Escherichia coli, a bacterial indicator of fecal 

contamination, for all irrigation sources used on produce covered by the regulation, as 

well as employing mitigation steps for water sources that fail to meet the E. coli 

standard. Mitigation steps can include initiating a wait period between irrigation and 

harvest which may impose unfeasible restrictions on growers selling to farmers’ and 

other direct markets. Farmers can also opt to treat the water to reduce microbial 

loads- requiring added production cost, labor, and time, as well as compromising 

sustainable farming. Farmers can also choose to switch to other water sources such as 
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groundwater, but this places a burden on a precious natural resource (Perlman, 2016). 

For these reasons, protecting the quality of water used for irrigation is the most cost-

effective and environmentally friendly approach to reducing the risk of water-related 

foodborne pathogen contaminating crops. 

Even more troubling, the food safety risk to crops that foodborne pathogens 

like S. enterica pose if present in these waters is not well understood (Benjamin et al., 

2013; Winfield and Groisman, 2003). Current research suggests S. enterica may or 

may not co-exist or correlate with E. coli levels in water (Benjamin et al., 2013; 

McEgan et al., 2013; Payment and Locas, 2011; Wilkes et al., 2009; Wu et al., 2011). 

Further, studies in autoclaved river water samples have illustrated  S. enterica can 

persist in river and marine waters, the level of which is strain dependent and may 

include non-culturable metabolic states (Roszak et al., 1984; Santo Domingo et al., 

2000). However, no work has been completed on mid-Atlantic surface water 

comparing “produce associated” with other commodity associated strains. 

Furthermore, there is a lack of information on foodborne pathogen persistence in 

reclaimed (recycled) water – an increasingly attractive alternative water source to 

alleviate pressure on groundwater resources. 

Investigation into how S. enterica prevalence in water translates to probability 

of crop contamination is a new area of research. Some study of transfer potential from 

environmental media to crops has been undertaken, reporting highly variable 

persistence from 2 – 121 days (Xu et al., 2016, Islam et al., 2004, Kisluk and Yaron, 

2012) which seems to be affected by contamination load, pathogen, and crop type. It 

has also been shown that culturing media for bacteria can positively influence 
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persistence on plants, such as pre-incubation of E. coli O157:H7 with manure extracts 

(Seo and Matthews, 2014), but impact of environmental media on S. enterica has not 

been established. Finally, preferential plant colonization of some S. enterica serovars 

relative to others has been documented (Zheng et al., 2013), but whether previous 

adaptation to surface water environments impacts this proclivity still remains to be 

investigated.  Data are needed to better understand the agricultural risk of S. enterica 

presence in surface irrigation waters to develop strategies enable farmers to continue 

to use surface waters for irrigation of fresh produce, rather than resorting to expensive 

and energy-consuming remedial actions or expanding use of groundwater, a finite 

natural resource. Furthermore, expanding farmer access to highly treated reclaimed 

water would reduce pressure on groundwater resources, however additional research 

is needed to understand how to enable safe reclaimed water use for fresh produce 

irrigation in the mid-Atlantic. 

 The dearth of knowledge provides a strong rationale for further investigation 

into 1) S. enterica serovar-specific interactions in water and 2) connections between 

survival in water to persistence on plants.  The objectives of this study were to 

investigate the presence of serovar specific differences in persistence in various types 

of surface water present in the mid-Atlantic, and to determine if persistence in water 

included the formation of viable but non-culturable states. This study also aimed to 

investigate whether attachment ability and incubation time in various types of water 

influenced serovar ability to transfer to tomato fruit.  Finally, physicochemical 

parameter data of surface water when sampled was collected and evaluated via 

bivariate analysis to assess associations among persistence in water, transfer onto 
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tomatoes, or attachment to polystyrene. Investigating the influence of colonization in 

water environments on transference onto crops is essential to understanding the true 

risk pathogen presence in irrigation water environments poses to fresh produce crops 

and is critical to the development of practical and sustainable management strategies. 

2. Materials and Methods 

2.1 Bacterial strains 

S. enterica 4,[5], 12:i:-, S. Newport, S. Typhimurium, and multidrug resistant 

S. Newport and  S. Typhimurium (“MDR+”, resistant against Ampicillin, Clavulanic 

acid, Cefoxitin, Ceftriaxone, Sulfisoxazole, and Tetracycline) were collected from 

rivers in  Maryland (Callahan et al., 2019).  S. Heidelberg was isolated from a poultry 

house environment and was kindly provided by FDA (Laurel MD).  S. Javiana ATCC 

BAA-1593 strain is a clinical isolate from a tomato foodborne illness outbreak.  The 

S. enterica strains were maintained at -80°C in Brucella Broth (BD, Sparks MD) 

containing 15% glycerol. For each experiment, cultures of S. enterica were grown 

overnight on Trypticase Soy Agar (TSA; BD) at 35°C. A single colony was selected 

from each culture, suspended in sterile water and diluted to OD600= 0.34, 

approximately 8.5 log CFU/mL. Serial dilutions were performed in sterile water and 

cells were enumerated on TSA by standard plate counting.  

2.2 Water preparation 

Surface and reclaimed water (Table 1) was aseptically collected from sites as 

previously described (Allard et al., 2019a, 2019b) in sterile 1 L Nalgene containers. 

Immediately after collection, reclaimed water samples were quenched of free chlorine 
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via addition of 1 mL of 10% sodium thiosulfate (Alfa Aesar, Heysham, England).  

Water was kept at 4°C prior to 0.22 µm polyethersulfone membrane filtration 

(Corning, VWR). Filtered water was then stored at 4°C until experimentation. At the 

time of collection, a ProDSS digital sampling system (YSI, Yellow Springs, OH, 

USA) was submerged into the surface water body at a depth of 30 cm or into a 20 L 

carboy containing reclaimed water to collect triplicate measurements for the 

following physicochemical parameters: water temperature (°C), % dissolved oxygen, 

conductivity (SPC uS/cm), pH, oxidation/reduction potential (mV), turbidity  (FNU), 

nitrate (mg/L), and chloride (mg/L). Salinity was indirectly calculated from 

conductivity using the following resource (https://jsta.shinyapps.io/cond2sal_shiny/).  

 

2.3 Cultivation of plant material 

Tomato seeds cv. ‘Heinz-1706’ were obtained from the Tomato Genetics 

Resource Center (TGRC) from the University of California, Davis. Seeds were 

germinated at 25℃ after pre-treatment in 30% w/v polyethylene glycol solution at 

room temperature with shaking for 72 h. Germinated seeds were transferred to LC-1 

https://jsta.shinyapps.io/cond2sal_shiny/
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soil (Sunshine LC1; Sungro Horticulture, Canada) supplemented with fertilizer and 

subjected to a 16 h-light/8 h-dark photoperiod and 26°C day temperature/18°C night 

temperature with 70% humidity (RH) at the University of Maryland Research 

Greenhouse. Tomato seedlings were transplanted at the into 1.7 gallon / 6 liter pots 

once they reached 5 leaf stage. Plants were irrigated via drip line. The plants were 

fertilized once a week and treated with non-organophosphate containing pesticide 

once every two weeks for aphid and white fly management. Fruit was collected 

immediately before experimentation and rinsed with ddH2O.  In summer months, 

‘Heinz-1706’ where grown in the field at the Wye Research and Education Centre, 

Queenstown, MD. 

2.4 Attachment capacity on polystyrene 

Crystal violet staining was used to evaluate the ability of S. enterica strains to 

attach to a surface. All strains and water types were used for this experiment. Aliquots 

of 150 µL of filtered surface water or distilled water (control) were delivered to the 

central inner wells of a flat bottom 96-well polystyrene plates (Corning, Nazareth PA) 

followed by inoculation with 50 µL S. enterica in sterile water to a final concentration 

of 7.9 log CFU/mL. The wells comprising the perimeter of the plate were filled with 

200 µL distilled water to prevent evaporation. Plates were sealed with parafilm and 

statically incubated at 24°C for 48 h before washing and staining. Wells were 

carefully washed once with distilled water before staining with 0.2% w/v crystal 

violet for 30 min. Stained wells were carefully washed thrice with distilled water, 

then solubilized in 200 µL of  30% v/v glacial acetic acid for 15 min prior to reading 

OD at 600 nm on a Synergy HTX microplate reader (BioTek, Winooski VT). For 
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each sample, an “attachment index” was calculated for each serovar in each surface 

water by normalizing for attachment in TSB using the formula ODsample / ODAverage TSB 

. These data were used for statistical analysis. This experiment was repeated thrice for 

all water types except MA05 and MA06 for which this was repeated twice. JMP 14.0 

(SAS Institute Inc., Cary, NC) was used to perform ANOVA and Tukey’s Honestly 

Significant Difference (α=0.05) to determine the effect of water type and serovar on 

attachment index. Serovar specific differences in attachment for each water type were 

determined by ANOVA or Welch’s test following a significant Brown-Forsythe test 

indicating homogeneity of variances was violated.  Pairwise comparisons performed 

by Tukey’s HSD or Wilcoxon test, respectively (α=0.05).  

2.5 Persistence in surface water samples over 90 days via agar plating 

S. enterica strains were singly inoculated into 9.9 mL of 0.22 µm filtered 

surface water to a final concentration of 3.70 (replicate 1) or 4.65 (replicate 2) log 

CFU/mL (see Table 2 for more information on strains and water used for each 

experiment).  Samples were incubated at 24°C with shaking at 100 rpm for 90 days 

with caps on but not tightened to allow for oxygen flow. Samples were taken at day 1, 

3, 5, 10, 20, 30, 60, 90 for replicate 1; day 3 and 5 were deleted from the sampling 

scheme of replicate 2 due to lack of change in population. At each sampling time, 100 

µL aliquots were collected for preparation of 10-fold dilutions that were plated on 

Trypticase Soy Agar.  This experiment was repeated twice with three experimental 

replicates per treatment combination. Bacterial decline was modeled using 

Buchanan’s two-phase log-linear model (Buchanan and Golden, 1995) via IPMP 

2014 (Huang, 2014) software, as described in the following equation:  
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𝑦 = 𝑦0, 𝑡 ≤ 𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟  

𝑦 = 𝑦0 −
𝑡 − 𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟

𝐷
,   𝑡 > 𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟  

where Y is the population of bacteria at day  x; y0  is the log normalized population of 

cells at each day during the lag time before a decline in agar plate count commences; t 

shoulder  is the time in days at which linear decline begins;  and  D  is the negative 

reciprocal of the rate of decay.   

Parameters obtained as well as the Root mean squared error (RMSE) and R2 

were compared with linear decay models generated in DMfit 3.5 

(https://www.combase.cc/index.php/en/8-category-en-gb/21-tools) based on the 

Baranyi linear reduction model  (Baranyi and Roberts, 1994). Due to DMfit 3.5 over-

estimation in lag and larger variations in RMSE, Buchanan’s two-phase log-linear 

model output was selected for biological analysis (data not shown). Total log 

inactivation over 90 days (calculated via LogCFU/mLDay 1 - LogCFU/mLDay 90 ), lag 

time, and the rate of decay were used to compare bacterial persistence in water by 

water type, serovar, and experimental replicate using JMP 14.0 (SAS Institute Inc., 

Cary, NC) via ANOVA and Tukey’s Honestly Significant Difference test (α =0.05).  

 

https://www.combase.cc/index.php/en/8-category-en-gb/21-tools
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2.6 Comparing agar plate counts with total viable cells using culture-independent 

methods for evaluating persistence in water 

S. enterica strains were singly inoculated into 30 mL aliquots of 0.22 µm 

filtered surface water to a concentration of either 4.69 log CFU/mL or 5.5 log 

CFU/mL (Table 2). The samples were incubated as detailed above. The experimental 

design was a completely randomized design (CRD) with three experimental replicates 

per treatment combination. Samples were destructively sampled at day 1, 30, 60 and 

97. At each sampling time, conical tubes were centrifuged at 7,000 rpm for 8 min at 

room temperature.  The supernatant was decanted, and 1 mL of sterile water was 

added. Conical tubes were vigorously vortexed for 30 s to dislodge the cell pellet. Six 

hundred µL were taken for dilution plating on TSA, hereinafter referred to as “plate 

count” data, and 400 µL was reserved in clear 1.5 mL eppendorf tubes for propidium 

monoazide (PMA; Biotium, Fremont CA) treatment, hereinafter referred to “culture-

independent count” (Banihashemi et al., 2012; Li and Chen, 2013). One hundred µL 

PMA enhancer was delivered to culture independent samples, followed by 2µL PMA 

for a final concentration of 25 µM. PMA treated samples were incubated in darkness 

with shaking at 90 rpm for 10 min. Samples were then placed on aluminum foil lined 

with ice and exposed for cross-linking to a 500 W halogen lamp at a distance of 21 

cm for 12 min, rotated once at 6 min. Cells were pelleted by 5000 g for 10 min, 

supernatant was decanted and tubes inverted onto an aseptic laboratory wipe to 

remove any excess supernatant from the pellet. DNA was extracted using the Purelink 

Genomic DNA mini kit (Invitrogen, Carlsbad CA) and eluted in 40 µL with 10 mM 

Tris HCl pH 8.0.  One µL was used for amplification of the rpoD gene (RNA 
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polymerase σ factor D) via qPCR (forward primer 5´-

GTGAAATGGGCACTGTTGAACTG-3´, reverse primer 5´- 

TTCCAGCAGATAGGTAATGGCTTC-3´ yielding a 131 bp product (Karlinsey et 

al., 2012)). A standard curve was used to determine total viable CFU/mL in each 

sample. Q-PCR was performed on an ABI Step-One Plus (Applied Biosystems, 

Foster City CA) system with SYBR as a reporter using the following cycling 

parameters: 50°C for 2 min, 95°C for 2 min, followed by 40 cycles of  95°C for 15 s, 

and 59°C for 30 s, followed by Melt Curve analysis to ensure specificity. PMA and 

primers were validated for efficiency, specificity, and sensitivity prior to 

experimentation (data not shown).  

Agar plate total log inactivation over 90 days and PMA-qPCR total log 

inactivation over 90 days were calculated via LogCFU/mLDay 1 - LogCFU/mLDay 90 .  

Agar plate decay was modeled as described above using Buchanan’s two-phase log-

linear model (Buchanan and Golden, 1995) through IPMP 2014 (Huang, 2014). Total 

log inactivation, lag time, and the rate of decay were used to compare persistence by 

water type, serovar, retrieval method (PMA-qPCR or plate count), and experimental 

replicate through JMP 14.0 (SAS Institute Inc., Cary, NC) via Analysis of Variance 

and Tukey’s Honestly Significant Difference (α =0.05). Orthogonal contrasts were 

used to compare retrieval methods for each serovar x water type combination (α 

=0.05). 

2.7 Evaluating transfer of S. enterica strains from surface water to tomato fruit 

To assess transfer potential onto tomatoes, S. Heidelberg, S. Javiana, S.  4,[5], 

12:i:-, S. Newport,  S. Typhimurium MDR +, or S. Typhimurium were singly 
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inoculated into 30 mL aliquots of 0.22 µm filtered MA05 water (fresh water creek) to 

a final concentration of 6.5 log CFU/mL and allowed to persist for 30 days. Samples 

were incubated as detailed above. At day 1, 5, 10, and 30 an aliquot of inoculated 

water (“test”) was centrifuged 7000 rpm for 8 min, washed 1x with sterile water. 

Twenty µL was inoculated onto cv. ‘Heinz-1706’ tomatoes which had been washed 

with 100 ppm sodium hypochlorite, triple rinsed and dried. To assess the effect of 

water habitation on serovar transferability, the following control was constructed for 

each serovar at each time point: one day prior to transfer on day 5, 10, and 30, 4 mL 

of each water x serovar x replicate combination was 0.22 µm filter sterilized using a 

cellulose acetate filter (VWR, Radnor PA). Into this medium, suspensions of fresh 

culture of the same S. enterica strain were singly inoculated (at an equivalent 

concentration as that of the “test” samples) and allowed to incubate for 24 h. These 

samples will hereinafter be referred to as “control” samples. Cell centrifugation, 

washing, resuspension and inoculation onto tomatoes proceeded concurrently with 

“control” and “test” water sample samples. Tomato was treated as a random effect 

due to inter-tomato variability; all “test” and “control” inoculations for one water type 

were performed on one tomato, with replicates. Tomatoes were incubated at 24˚C and 

75% RH for 14 h before inoculated exocarp was aseptically removed with sterile 

razors. Tissue was vortexed in 0.1% peptone for 3 min (Difco, Sparks MD), and 

dilutions plated on TSA for enumeration. Thirty day incubations and transfers were 

repeated for MA03, MA06 and MA10. When plate counts were below the limit of 

detection, 46 ˚C Xylene-Lysine-Tergitol-4 (XLT-4, Difco, Franklin Lakes NJ) were 

pour plated onto fruit peels to ensure bacteria did not remain attached.  
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This experiment was repeated thrice with at least 5 tomatoes per water type 

for each experimental replicate. Bacterial populations retrieved from tomatoes were 

normalized with each respective serovar x tomato inoculum level via (log 

CFU/mLTomato inoculum - logCFU/mL Tomato peel ) to produce ‘Log decline from inoculum’ 

heretofore described as ‘transferability’ or “transfer success” where lower log 

declines from inoculum were regarded as more successful.  “Test” and “control 

water” transferability were compared by water type, serovar, incubation time in water 

and experimental replicate using JMP 14.0 (SAS Institute Inc., Cary, NC). 

Orthogonal contrasts between the same serovar x water combinations were used to 

compare transferability of serovars in “test” versus “control water” samples (α=0.05). 

Main effect differences of water type and serovar were determined by ANOVA and 

serovar specific differences in transferability in each water type were determined 

using Tukey’s Honestly Significant Difference (α =0.05).   

2.8 Evaluating relationships among bacterial inactivation, attachment, transfer and 

water physicochemical parameter data 

To explore relationships among data collected, physicochemical parameter 

data of the water bodies at the time of sampling was paired to each experiment based 

on water sampling date (Table 2). Datasets were constructed for total log inactivation 

(all 4 replicates of 90-day decay assays, Agar plate count only), attachment index and 

transfer to tomato. Statistical analyses were performed using R version 3.5.2. First, a 

correlogram was made to visually assess any significant correlations between the 

bacterial parameter of interest and physicochemical data with the R package 

“Performance Analytics” using Pearson’s correlation coefficient calculated (α=0.05). 
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Then, linear regression models were evaluated for each bacterial output as a function 

of significant physicochemical parameters (α=0.05). The fit of the model was 

examined with residuals, q-q plots and statistical power of the model (data not 

shown). 

3. Results 

3.1 Surface water physicochemical profiles 

Each biological experiment was the result of at least two independent water sampling 

events, resulting in 28 unique water samples. During water sampling, dissolved 

oxygen (DO%), conductivity (SPC uS/cm), pH, oxidation-reduction potential (ORP 

mV), turbidity (FNU), nitrate (mg/L) and chloride (mg/L) measurements were 

obtained (Table 3). Across all sampling times, MA03 and MA05 – the two non-tidal 

freshwater samples, had statistically similar physicochemical profiles. Comparing all 

water types, it was found that conductivity, nitrate, and chloride attributes varied 

widely among MA04, MA05 and MA06. When variances were equal, salinity varied 

significantly by water type (p<0.001) with MA06 displaying statistically higher 

salinity compared to other water types. Significant differences in water type 

conductivity, nitrate and chloride were also observed (p<0.05 via Welch’s test). 

Conductivity of reclaimed water was significantly higher than either non-tidal fresh 

or pond water.  Further, reclaimed and tidal brackish water were found to have 

significantly higher chloride levels compared to MA03. Finally, reclaimed water had 

significantly higher nitrate levels compared to MA04. Taken together, this indicates 

that each type of surface water; non-tidal fresh, tidal brackish, pond and reclaimed, all 
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had unique physicochemical profiles, with reclaimed water being the most distinct. It 

is important to note that reclaimed water physicochemical parameters were measured 

before sodium thiosulfate quenching, which likely changed some aspects of the 

physicochemical parameter profile. For this reason, MA06 physicochemical 

parameter data was not used in bivariate analyses with experimental data. 

 

3.2 Agar plate decline in surface water samples over 90 days 

3.2.1 Evaluating rate of decay, lag time, and agar plate total log inactivation of  S. 

enterica in 90 day surface water samples 

 

After modeling the dataset using the Buchanan two-phase model, >0.50 

RMSE values were identified in MA03 and MA10 (Supplementary Figure 1). In 

these instances, the data fit better to the Buchanan 3 phase model which incorporates 

a “tail,” indicating maximum inactivation was reached and a new level of persistence 

was initiated. Parameters from the Buchanan two-phase model were utilized to 

compare serovar specific differences in persistence among water types.  
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Based on plate count data in replicated experiments, water type was a 

significant driver of bacterial decline rate, lag time and agar plate total log 

inactivation (t90-t0) (p<0.05, p<0.001, p<0.001, respectively). Total log decline was 

more pronounced in replicate 1 compared to replicate 2 (p<0.005) (Figure 1). 

Excluding MA06, replicate 1 and 2 rates of decay were significantly correlated with 

agar plate total log inactivation (R2=0.55, p<0.005, R2  = 0.12, p<0.001) 

(Supplementary Figure 2). Across all serovars, reclaimed water (MA06) displayed 

the lowest rate of decay and total log inactivation and was the most consistent 

between experimental replicates. Brackish water (MA04) displayed the largest 

difference between rates of decay and total log inactivation from replicated 

experiments (1.65 ± 0.46 and 0.60 ± 0.35). Pond water (MA10) was the least 

favourable for S. enterica persistence in replicate one, with the largest log declines 

reported. Replicates using non-tidal fresh water (MA03 and MA05) were consistent.  

Across all serovars, a significant interaction between water type and replicate 

was detected for rate of decay (p<0.001), with MA10 displaying significantly higher 

decay rates in replicate one (p<0.05). This may have contributed to this water type 

also displaying largest average total log inactivation across all water types in replicate 

one as well. Furthermore, across all serovars lag time (shoulder) was significantly 

impacted by experimental replicate (p<0.001) (Figure 2B). With the exception of 

MA10, every water type in replicate two had a significantly longer shoulder 

compared to the same water type in replicate one (p<0.05). This may contribute to 

lower R 2 values in replicate two (Supplementary Figure 2), as longer lag times may 
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have contributed to less agar plate total log inactivation but may not have affected 

rate of decay.  

3.2.2 Evaluating serovar specific dynamics in rate of decay, lag time, and total log 

inactivation of S. enterica in 90-day surface water samples 

Serovar specific differences in agar plate total log inactivation were detected 

in both replicate one and two in MA03 and MA04, and in replicate two only in MA05 

water (Figure 1C). In replicate 1, S. Heidelberg was seen to have significantly more 

total log inactivation compared to S. 4,[5], 12:i:–  in MA04 and S.  Newport MDR+ in 

MA03 (p<0.05). The latter was the only serovar specific difference in decline that 

was consistent between experimental replicates.   In replicate two, although there was 

less total inactivation overall compared to replicate one, there were more serovar 

specific differences in total log inactivation. S. Heidelberg again exhibited the most 

agar plate total log inactivation compared to S. Javiana in MA03, MA04, and MA05 

and additionally compared to S. Typhimurium MDR+ and S. 4, [5], 12:i:– in MA03 

and MA05.  

Concerning rate of decay, S. Heidelberg displayed significantly more severe 

rates of decay compared to S.  4, [5], 12:i:– and S. Newport in MA03 and MA04 in 

replicate one, and S. Typhimurium MDR +/- and  S. Newport in MA04  during 

replicate two (Figure 2A,  Supplementary Tables 1 &2 ). Concerning lag time, only 

MA05 in replicate two saw serovar specific differences in lag with S. Javiana 

displaying a significantly longer lag time than both S. Typhimurium MDR+ and 

MDR- (Figure 2B). Taken together, this suggests lag time and rate of decline are 

experimentally specific, but total log inactivation is more consistent with S. 
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Heidelberg displaying more total log inactivation compared to at least one other 

serovar in non-tidal fresh or tidal brackish water in both experimental replicates 

(Figure 1C).  

 
 

Figure 1: Agar plate counts from 1-90 days of various Salmonella enterica in 

10mL samples of 0.22 µM filtered mid-Atlantic surface water. N=3 for each 

serovar and water type combination. Panels represent experimental replicate one (A) 

and two (B). Error bars represent the standard error of the mean (SEM). (C) Agar 

plate total log inactivation from 1 -90 days of S. enterica survival in surface water 

multiplied by negative one. Std dev represent the standard deviations.  Letters denote 

serovar specific differences in agar plate total log inactivation within water types 

through Analysis of Variance and Tukey’s Honestly Significant Difference (α =0.05). 

– denotes the removal of S. Newport MDR + from experimental replicate 2.  
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Figure 2: Rate of decay(A) and Lag time (λ) (B) in days of various Salmonella 

enterica in 9.9 mL samples of 0.22 µM filtered surface water. Decay parameters 

were obtained from Buchanan’s two-phase log-linear inactivation model (IPMP 

2014). N= 3 experimental replicates, error bars represent SEM.  Letters, colored by 

water type, denote serovar specific differences in rate of decay within water types 

through Analysis of Variance and Tukey’s Honestly Significant Difference (α=0.05). 

ǂ  denotes the removal of S. Newport MDR + from experimental replicate 2.  

3.3 Comparing culture-based data to culture independent bacterial persistence data 

in surface water 

To assess if the decline observed in the 90-day sample study resulted from 

bacterial death of transition to a VBNC state, the study was repeated using water from 

MA03, MA06 and MA10. Here, bacterial plate counts were compared with a PMA-q-

PCR method that would detect not only culturable cells but also viable but non-

culturable cells.  Agar plate count data were again modeled using Buchanan’s two- 

phase log-linear model, resulting in similar trends with regard to water type and 
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serovar specific dynamics in rates of decay as the 9.9mL sample study (for more 

detail, see Supplementary Figure 3A-D). As seen in the previous two replicates, 

again agar plate count total log inactivation was significantly affected by water type, 

serovar and experimental replicate (p<0.001 for all, Supplementary Figure 3E). It is 

important to note that in both replicates S. 4, [5], 12:i:–  in MA03 exhibited 

significantly lower agar plate total log inactivation compared to S. Heidelberg, 

consistent with the 9.9 mL 90-day persistence study.  

Comparing both types of recovery methods for viable cells across all water 

types and serovars revealed PMA-q-PCR reported significantly less total log 

inactivation compared to plate counting (p<0.001). Although population levels 

measured by the two methods were equivalent at t0, the curves started to diverge after 

t60. One exception was MA06 in replicate two (Figure 3). In this water type, across 

all serovars, plate counts and PMA-q-PCR results were statistically similar. This was 

expected because MA06 in culture studies did not report appreciable decline 

throughout the course of the previous two studies (Figure 1). In fact, pairwise 

comparisons of plate count versus PMA-q-PCR for each serovar within each water 

type and replicate found that MA03 had the most discrepancies between plate count 

and PMA treated qPCR recorded total log inactivation, suggesting water type may 

significantly influence transition into VBNC state (p<0.05 Figure 4). Interestingly, 

while all serovars in MA03 indicated subpopulations entering VBNC states, only 

select serovars in MA06 and MA10 indicated transition to VBNC. For example, in 

MA06 and MA10 of experimental replicate one, S. Heidelberg displayed significant 

differences between plate count and qPCR, whereas S. 4, [5], 12:i:– and S. Javiana 
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did not. This suggests that serotype x water type interactions may play a significant 

role in the decision of subpopulations to transition to VBNC persistence.  

 

Figure 3: Agar plate count (solid line) and PMA treated qPCR (dashed line) 

persistence over 90 days of various Salmonella enterica in 30 mL samples of 0.22 

µM filtered mid-Atlantic surface water. Left panel represents experimental 

replicate 1, and right replicate 2. For each experimental replicate, N=3 for each 

serovar and water type combination. Each sample was split for qPCR and culture-

based plate count, as described in the materials and methods. Error bars represent the 

SEM. 
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Figure 4: Total log inactivation from 1-90 days of S. enterica obtained from PMA 

treated qPCR (blue) and plate counts (purple). N=3 for each serovar and water 

type combination. Each sample was split for qPCR and plate count, as described in 

materials and methods. Error bars represent the SEM. Asterisks denote significant 

discrepancies in total log inactivation recorded by agar plate compared to PMA 

treated qCR (orthogonal contrasts α=0.05).  

3.4 Surface water mediated attachment to polystyrene 

Water type and serovar were significant driving factors of attachment capacity 

(p=0.001). Across all serotypes tested, reclaimed water (MA06) harbored a 

significantly lower attachment index than pond and non-tidal freshwater (MA10 and 

MA05) in replicate one and three (Figure 5). Across all water types, S. Newport 

MDR - and S. 4, [5], 12:i:– displayed a significantly higher attachment index than S. 

Javiana and S. Heidelberg.  
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Reproducible serovar specific differences in attachment indices were observed 

for every surface water type except for sterile water. S.  4, [5], 12:i:– displayed 

reproducibly significantly higher attachment indices compared to S. Javiana in MA03, 

MA04, and MA10, and significantly higher than S. Heidelberg in MA03 and MA10 

(p<0.05). Furthermore, S. Typhimurium MDR- also displayed significantly higher 

attachment indices compared to S. Javiana in MA03 and MA04, and S. Heidelberg in 

MA03 (p<0.05).  S. Newport MDR + displayed variable attachment indices 

dependent on surface water type; this organism performed similarly to S. Javiana in 

MA03, yet in MA10 was statistically similar to S. 4, [5], 12:i:–. No advantage of 

multidrug resistance on attachment was registered for S. Newport. Differences 

between S. Typhimurium MDR + and MDR – were only registered in replicate two of 

the study. In this replicate, S. Typhimurium MDR – displayed a significantly higher 

attachment index to polystyrene compared to S. Typhimurium MDR + in MA03, 

MA04, and MA10 (p<0.05). Taken together, these results suggest that the interaction 

of bacterial genotype incubating in different water types could significantly affect 

attachment success to polystyrene. 
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Figure 5: (A) Serovar specific attachment to 96 well plate during static 

incubation in various water types and (B) averaged across three experimental 

replicates. N=6. £ Indicates a significant Welch’s test, performed when data violated 

homogeneity of variances through a significant Brown-Forsythe test (p<0.05), 

otherwise comparisons were compiled with ANOVA. Letters indicate significant 

differences in serovar attachment index within a given water type (rows), performed 

with Tukey HSD or Wilcoxon’s test (α=0.05) where appropriate. -- denotes data was 

not analyzed for these samples.  

3.5 Evaluating the effect of prolonged incubation in surface water on transferability 

onto tomato fruit 

3.5.1 Effect of increased incubation time in MA05 water on tomato transfer 

success  
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Evaluating the effect of increased incubation in water on transfer success 

found as little as 10 days incubation in water (“test” samples) was shown to 

significantly increase transferability onto tomatoes compared to incubation in water 

for 24 hours (“control” samples), as evidenced by Typhimurium MDR – (p=0.034) in 

replicate one (Figure 6). When replicated, these tendencies were consistent, with 10- 

day incubation additionally positively influencing transfer in S. Heidelberg, S Javiana, 

and S. Typhimurium MDR + (p≤0.0002 for all). This advantage was expanded 30 

days after incubation for S. 4, [5], 12:i:– and S. Heidelberg in replicate one, and every 

serovar except for S. Typhimurium MDR+ compared to 24 h of incubation in 

replicate two (p<0.05 via orthogonal contrasts).  

Serovar type was also a significant factor for transfer success. Serovar specific 

differences in transferability onto tomatoes were evident from day 1 to day 30 in both 

experimental replicates, but were reproducible starting at day 10 (Figure 6). In 

“control” samples, S. Javiana, S. Newport, and  S. 4, [5], 12:i:–  transferred to 

tomatoes significantly better than S. Heidelberg on day 10 and 30 in both 

experimental replicates. Interestingly, even though S. Heidelberg transfer improved 

with prolonged incubation in water, it was still retrieved in the lowest concentrations 

from tomato fruits compared to other serovars after 30 days of incubation in water. 

When evaluating multidrug resistant differences in tomato transfer, a significant 

reproducible MDR + advantage on tomato transfer was registered on day 30 “control” 

samples ( p<0.05), but prolonged incubation improved S. Typhimurium MDR- 

transfer to S. Typhimurium MDR+ levels (replicate one p<0.05, replicate two 

p>0.05).  
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3.5.2 Comparing the Effect of Incubation in Multiple Water Types on Tomato 

Transfer Success  

This study was repeated with the 30-day transfer time point to investigate if, 

in addition to prolonged incubation, water type also influenced serovar specific 

transfer success to tomatoes. For this experiment MA03, MA06 and MA10 water was 

used (Table 2). Water type was found to be a significant factor in S. enterica transfer 

success to tomato, variable by experimental replicate. In the first experimental 

replicate, regardless of incubation time and serovar tested, MA06 conferred higher 

transfer success compared to other water types (p>0.05) (Figure 7A). Conversely, in 

replicate one and two, MA10 exhibited the least transfer success compared to MA03 

and MA06 (p<0.05) (Figure 7A-B).   

Across all serovars in the second (p=0.056) and third (p<0.001) replicates, 

bacteria which were incubated for 30 days in water had more successful transfer to 

tomatoes compared to bacteria incubated for 24 hours (Figure 7B-C). Evaluating this 

by water type revealed across all serovars MA06 supported significantly higher 

retrieval of “test” samples from tomatoes compared to “control” samples (p<0.05) 

(Figure 7C). Increased incubation time in water significantly and reproducibly 

improved transfer of S. Typhimurium MDR- in MA06 water (p<0.05, orthogonal 

contrasts) (Figure 7B-C). Positive influence of prolonged incubation was observed 

for other serovars as well, exhibited by S. Heidelberg (MA03, MA06), S. 

Typhimurium MDR- (MA10) and S. Javiana (MA06), but varying with experimental 

replicate.  
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Serovar specific differences in transfer success were evident for every 

experimental replicate in at least one water type. Regardless of incubation time in 

water or experimental replicate, S. Heidelberg transferred to tomato with the least 

success compared to at least one other serovar in every water type which registered 

serovar specific differences in transfer. In MA03 and MA10, S. 4, [5], 12:i:– 

displayed significantly more transfer compared to S. Heidelberg.  In MA06, S. 

Javiana displayed more transfer than S. Heidelberg (p<0.05, Tukey HSD).  Similarly 

to the MA05 time course transfer study, a significant reproducible MDR+ advantage 

on tomato transfer was identified on day 30 “control” samples in at least one 

experimental replicate of MA03 and MA10 water. Prolonged incubation improved S. 

Typhimurium MDR- transfer to the same level as S. Typhimurium MDR+.  

Interestingly, prolonged incubation did not result in the rescue of S. Heidelberg 

transfer success.  

Other serovar specific differences in transfer were observed among water type 

tested, but they varied by experimental replicate.  Interestingly across all replicates, a 

larger range of serovar specific differences is present in “control” samples and was 

distilled to fewer differences after 30 days of incubation.  For example, in addition to 

S. 4, [5], 12:i:–  outperforming S. Heidelberg, in MA03 the serovars  S. Typhimurium 

MDR+ and S. Javiana also transferred to tomato with significantly more efficiency in 

“control” samples (Figure 7A, C). Also in control samples of MA10 and MA05, S.  

Newport outperformed S.  Heidelberg (Figure 7A, C). After 30 days of incubation in 

water, serovar specific differences in ability to transfer to tomato were evident in 

MA06 and MA10. In both cases, S.  Heidelberg was retrieved at significantly lower 
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titers after transfer compared to S. Javiana, and in MA10 also compared to S.  

Typhimurium MDR+ and S.  4, [5], 12:i:–  

Taken together, it is evident that serovar drives transfer success onto tomato 

more consistently than water type, with S.  Heidelberg and S. Typhimurium MDR – 

displayed significantly less transferability compared to all other serovars tested, when 

corrected for inoculum level. Furthermore, while increased incubation time in water 

increases transfer to tomato-providing evidence for water as a “priming” reservoir for 

successful persistence on crops- this was serovar specific. This suggests that at least 

in this study S. Heidelberg may not utilize water as a priming reservoir.  

 

 Figure 6: Tomato transferability of multiple  S. enterica serovars to cv. ‘Heinz’ 

fruit after 1,  5, 10 and 30 day incubation in 0.22 µM filtered non-tidal fresh 

water MA05.  Multi-day incubated “test” (purple) samples are compared to 24 h 

incubation in 0.22 µM “control,” (blue) water samples in (A) replicate one or (B) 

replicate 2. N=5 tomatoes per treatment combination, error bars represent SEM. 
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Figure 7: Tomato transferability of multiple S. enterica serovars to cv. ‘Heinz’ 

tomatoes after 1, 5, 10, and 30 day incubation in 0.22 µM filtered MA03, MA06, 

MA05, MA10. Multi-day incubation “test” (purple) samples are compared to 24 h 

incubation in 0.22 µM “control” (blue) water samples in replicate one (A) two (B), or 

three (C). N=5 tomatoes per treatment combination, error bars represent SEM. 

3.6 Evaluating relationships among surface water physicochemical profile, total log 

inactivation in water over 90 days, attachment to polystyrene, and transfer onto 

tomato 

3.6.1 Surface water physicochemical relationships with experimental data  

First, it was investigated if there were any associations with physicochemical 

parameters of the surface waters at time of sampling and experimental data acquired. 

Through correlograms (Supplementary Figures 4, 5, and 6) it was identified that 

water oxidation reduction potential was significantly associated with both attachment 

to polystyrene and tomato transfer success, but not total log inactivation data 
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(p<0.05). Total log inactivation data correlated strongly with dissolved oxygen and 

nitrate concentration (p<0.05). 

Simple linear regression models were then used to assess the associations 

between significant physicochemical parameters and experimental data.  Evaluating 

the association of attachment index to polystyrene, it was found that with one 

standard deviation decrease in ORP, attachment index increased by 0.48 standard 

deviations (p<0.001).  It was also identified that water ORP significantly affected the 

transferability onto tomato, where one standard deviation decrease in water ORP 

decreased total log inactivation on tomato from inoculum by 0.35 standard deviation  

(p=0.009).  Interestingly, ORP was not significantly associated with transfer capacity 

from organisms incubated in “control” water treatments. Finally, it was revealed that 

water DO significantly affected agar plate total log inactivation in water, in which one 

standard deviation increase in water DO was associated with 0.44 standard deviation 

decrease in total log decline over 90 days (p<0.001) This indicated that higher DO 

may associated with high concentrations of colonies retrieved from agar plates. Close 

inspection of each water shows that this association was mainly driven by MA10 

(R2=0.51) and MA04 (R2=0.72). Interestingly, MA10 and MA04 each exhibited 

greater agar plate count log declines during the fall replicate of the 90-day persistence 

experiment compared to the spring, consistent with the change in the dissolved 

oxygen levels recorded at the time of sampling. These results have two implications, 

1) that high levels of water DO are associated with high S. enterica persistence, and 

2) that lower levels of DO may be an important factor in the decision for sub-

populations to transition to VBNC survival strategies.  
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3.6.2 Relationships among Inactivation, Attachment to Polystyrene, and Tomato Fruit 

Transfer Success   

Through correlograms (Supplementary Figure 7), it was identified that 

transfer success onto tomato after prolonged incubation in water was significantly 

correlated with attachment indices (p<0.05). One standard deviation increase in 

attachment index was associated with 0.4 standard deviation less log decline from 

inoculum onto tomato (p<0.05). This was driven more by serovar than by water type, 

as the average R2 fit by water type was 0.12±0.11 compared to 0.61±0.31 for serovar 

(Supplementary Figure 8).  S. Javiana, interestingly, was the only serovar which did 

not follow this trend, displaying low attachment indices on polystyrene but had strong 

transfer to tomato. This suggests that there may be other S. Javiana-tomato specific 

interactions which determine tomato fruit attachment. Interestingly, bacteria which 

were only incubated for 24 h were not correlated with attachment indices. Finally, no 

significant associations were found between attachment or “test” transfer samples and 

total log inactivation over 90-day water incubation.  

4. Discussion  

Much study has been devoted to understanding S. enterica prevalence in 

surface water body systems (Bell et al., 2015; Callahan et al., 2019; Haley et al., 

2009; Li et al., 2014; Luo et al., 2015; McEgan et al., 2014; Micallef et al., 2012), 

however less is known about S. enterica serovar specific ecology in water, including 

persistence strategies, associations with water physicochemical parameters, and 

transfer potential onto crops from water which the present study aimed to address. 

Results from this study indicate that persistence in water was principally driven by 
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water type and may include viable but non-culturable states over prolonged periods. 

Furthermore, transfer success onto tomato fruits was driven by serovar more than 

water, and prolonged incubation in water increased the transferability of all serovars, 

including those that initially transferred poorly onto tomato fruits. Finally, linear 

regression analysis of experimental data with water physicochemical variables 

revealed that attachment to polystyrene and water oxidation reduction potential 

should be further evaluated as potential indicators of foodborne pathogen transfer 

probability onto tomato.  

Assessing physicochemical parameter profiles, it was apparent that both non-

tidal freshwater sites were the most alike, and reclaimed water was the most 

dissimilar of all water types profiled. This is expected, as reclaimed water goes 

through an aerobic digestion process, filtration, and in the case of this site, 

chlorination (Wu et al., 2009). Interestingly, brackish water along with reclaimed 

water were highly variable in the parameters tested over sampling time. This is 

expected for brackish water site MA04, as this water source is subjected to tidal 

currents. Variation in reclaimed water is much less understood, although it could be 

very plausible that over the course of sampling varied inputs into the wastewater 

treatment plant during different months could cause physicochemical parameters to 

vary widely, as it is known nutrients like nitrogen and phosphorous concentrations 

can vary in reclaimed water over seasons (Fan et al., 2014). 

In the present study, S. enterica persisted in all water types tested for at least 

90 days. Furthermore, persistence in water included viable but non-culturable states 

for all S. enterica serovars tested in non-tidal fresh and pond water, a finding which 
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agrees with previous work in S. enterica persistence in marine and river water 

(Roszak et al., 1984; Santo Domingo et al., 2000). This finding has pertinent public 

health implications in that there is an increased risk of under-estimating S. enterica 

prevalence in these water systems, especially in non-tidal fresh water (MA03) where 

the discrepancies between culturable populations and VBNC were consistently 

significant. Moving forward, it is recommended that more exploration into 

inexpensive, rapid, and reproducible culture independent methods for assessing S. 

enterica presence in these waters is further explored to accurately profile water 

hazards. 

Over the course of this study, reclaimed water retained the highest populations 

of viable and culturable cells while non-tidal fresh and pond water exhibited the most 

decline from agar plate counts. One reason for this observation could be lower 

nutrient levels in pond and non-tidal fresh water types could result in higher VBNC 

turnover to mitigate starvation (Riedel et al., 2013). Furthermore, tertiary treatment of 

the reclaimed water, which is employed to reduce potential pathogens in the water, 

could also have resulted in a significantly different “microbial fingerprint” of 

exudates or secondary metabolites compared to un-treated pond and non-tidal fresh 

water, which could influence S. enterica persistence.  Finally, at the time of sampling, 

sodium thiosulfate was added to reclaimed water to quench any remaining chlorine. S. 

enterica is known to utilize the oxidized form thiosulfate, tetrathionate, as a terminal 

electron acceptor when persisting in anerobic and microaerophilic environments 

(Winter et al., 2010). Since all water samples were not tightly closed allowing for air 
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flow and aeration from shaking, it is unlikely this contributed to increased persistence 

in reclaimed water, but is presented for consideration nonetheless.   

Biofilm attachment to polystyrene study showed the clinical isolate S. Javiana 

and poultry house isolate S. Heidelberg attached to polystyrene poorly when 

incubated in surface water compared to other isolates tested. This could possibly be 

explained by the source nature of the other isolates used in the study – all of these 

strains were isolated from mid-Atlantic water (Callahan et al., 2019). As the ability to 

form biofilms in an environment has been shown to aid in environmental persistence, 

(Moore et al., 2003; Sha et al., 2011), it is reasonable therefore to expect that 

waterborne S. enterica isolates have increased ability to form biofilms in the surface 

waters tested. It was also interesting that reclaimed water did not support attachment 

onto polystyrene, but also did not significantly hinder transfer onto tomatoes. These 

observations point to interesting and possibly unique unknown water – serovar – 

tomato dynamics in play, which more research should undertake to increase 

understanding of S. enterica transition to different environmental niches.   

Serovar specific propensity for crop may exist (Patel and Sharma, 2010; 

Zheng et al., 2013), so it was hypothesized that transfer success from irrigation water 

to produce would vary between poultry house isolate S. Heidelberg and produce 

outbreak isolate S. Javiana. Indeed, across the transfer study, it was found that S. 

Heidelberg and S. Typhimurium MDR- consistently transferred poorly onto tomatoes 

compared to other serovars. Interestingly, prolonged incubation in water significantly 

increased the transferability of these serovars, but not enough in the case of S. 

Heidelberg to render it equivalent to other serovars tested. It is interesting to postulate 
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the genetic changes taking place over 30 days’ time leading to increased transfer 

success from an aqueous to a desiccated, perhaps more harsh environment of a tomato 

fruit. Some studies have investigated the effect of previous niches on foodborne 

pathogen survival in diverse environments; pathogenic E. coli after passing through a 

cow intestine has been shown to persist longer in water (Scott et al., 2006), and S. 

enterica passing through the protist tetrahymena gut has emerged acid tolerant and 

more resistant to hypochlorite (Brandl et al., 2005; Gourabathini et al., 2008; Rehfuss 

et al., 2011).  Indeed, nutrient starvation and stress mitigation may all be important 

factors in “priming” these serovars for increased transfer to tomato fruits providing 

opportunities for future research.   

In the case of S. Heidelberg, despite longer incubation increasing in transfer 

success, this serovar was still recovered at the lowest concentrations compared to 

other strains after 30 days incubation in water. This result was validated with another 

poultry house isolated S. Heidelberg in our collection when singly inoculated into 

water (Supplementary Figure 9). This observation points to a lack of adaptation to 

the tomato surface, possibly arising from insufficient attachment machinery or poor 

nutrient acquisition machinery once on the surface of tomato. Interestingly, when 

both S. Heidelberg strains in the collection were 50: 50 mixed into water samples and 

left for incubation, prolonged (30 day) incubation resulted in transfer success similar 

to that of a two strain S. Newport cocktail. The reason for this is unclear but could 

indicate that in addition to incubation in a harsh environment perhaps a mutual 

hardening off, competition, horizontal gene transfer, or synergistic cooperation of the 
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two strains together in water over time could contribute into increased transfer 

success.  

In the present work, S. Javiana and S. 4, [5], 12:i:–   were the dominant 

serovars in tomato transfer, and not S. Newport. it was expected that S. Newport 

would have a competitive advantage on fruit due to the observed pathogen-

commodity associations this serovar has with tomatoes, as evidenced by the 

disproportionate number of historic outbreaks (Bennett et al., 2015). However, in the 

present studies while S. Newport performed better than S. Heidelberg, it was by no 

means the superior isolate. This could mean that in the environment, other factors 

may be at play other than initial transfer success that ultimately result in more S. 

Newport outbreaks. Such factors could include: long term persistence ability on 

plants including competition ability with other microbes or environmental stress (UV 

and desiccation), the relative abundance of S. Newport in the watershed compared to 

other serovars (due to local anthropogenic activity or other reasons), or even post-

harvest factors including susceptibility during washing, handling, and storage. Indeed, 

more study is needed to clearly tease apart S. Newport – tomato outbreak clustering.  

In early experiments, no difference in result was registered between MDR + 

and MDR – S. Newport, so the remainder of the study was executed with MDR – S. 

Newport only. This is also because most S. Newport associated salmonellosis 

illnesses are from pan-susceptible isolates (Crim et al., 2018), so using this organism 

could reflect the outbreak strain more realistically.  Considering the two S. 

Typhimurium strains manipulated in this study, when differences in experimental 

outcome between MDR + and – variants existed, it was more often found that MDR + 
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was more competitive compared to MDR- variants. This was unexpected at first, as it 

was hypothesized that acquiring antimicrobial resistance may lead to trade-offs in 

survival and persistence, as has been documented [for a review, please see (Melnyk et 

al., 2015)]. However, this was not the case. Supporting these findings, one study 

assessing rpoB fitness costs in E. coli populations found that in nutrient limiting 

conditions, mutations had a positive fitness effect (Maharjan and Ferenci, 2017). 

Finding a fitness advantage of multidrug resistance isolates has pertinent public 

health implications, as this makes the MDR+ strain more likely to be established in a 

niche and therefore may be more likely to contaminate crops (Bengtsson-Palme et al., 

2017). Moving forward, it may be important to regularly assess antimicrobial 

resistance profiles of waterways to better understand persistence of antimicrobial 

resistance ecology and investigate if this is a good indicator for pathogen transfer or 

general water quality.  

In the present study multiple associations among experimental results were 

identified. Positive correlations between transfer of microbes to tomatoes after 24 

hours of incubation in water and prolonged incubation in water was encouraging to 

observe, which suggests transfer after incubation in water for one day can potentially 

be predictive of transfer after a prolonged period of time.  Furthermore, total agar 

plate log inactivation was associated with low transfer success after 1 day water 

incubation. This can suggest low culturability in water may indicate a lower 

likelihood of transfer success onto tomato fruits.  Finally, through three independent 

replications of data, the average transfer success onto tomato after prolonged 

incubation, and not transfer data from 24 h incubation in water, was significantly 
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positively associated with attachment to polystyrene.  This finding provides evidence 

that biofilm formation may not only be predictive of transfer to tomato fruits but is 

also a key plant persistence trait which previous history in water affords microbes. 

Previous studies have identified that biofilm formation, mediated by CsgD and 

including curli, cellulose capsule, and O antigen formation, are important for S. 

enterica successful establishment on plants (Barak et al., 2005, 2007; Kroupitski et 

al., 2009; Lapidot and Yaron, 2009; Patel et al., 2013). However, this is the first study 

which related biofilm formation in water to transfer success on plants.  This is 

extremely encouraging and provides evidence to suggest water is not a static reservoir 

but acts as driving stimulus for S. enterica to exhibit increased fitness on plants. It is 

exciting to postulate the reasoning for this; nutrient starvation, interaction with 

xenobiotics, stress, or activation of  other processes like motility that enhances 

attachment could all contribute to this phenomenon. More work is certainly needed in 

this realm to further understand driving mechanisms behind pathogen transfer from 

sources to food crops.  

Leveraging water source physicochemical data at the time of sampling 

revealed that transfer to tomato fruits after 30-day incubation was significantly 

correlated with attachment onto polystyrene and water ORP.  Oxidation reduction 

potential has been previously investigated as an indicator for S. enterica prevalence in 

water with limited success (Haley et al., 2009; McEgan et al., 2014), however this is 

the first report to our knowledge where ORP is associated with S. enterica attachment 

to polystyrene in surface water and transfer onto tomato fruits.  Oxidation reduction 

potential is currently used to monitor efficacy of water disinfection parameters in 
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post-harvest agricultural water (Suslow, 2004). This is because at significantly high 

ORP levels (>450mV), strong oxidants can remove electrons from the cellular 

membrane, destabilizing the membrane and having significant negative effects on 

bacteria (Suslow, 2004). However, lower levels of ORP (<450mV) have also been 

identified as important for biofilm formation, as studies have shown decreased 

biofilm formation when in an environment overwhelmed by reductants as opposed to 

having access to oxidants for microbial electron transfer (Gomez-Carretero et al., 

2017). Therefore, there may be a Goldilocks mechanism in play, as evidenced in a 

previous study evaluating  P. fluoresens biofilm formation, where an optimal level of 

ORP is required for biofilm formation, between -200mV < x < 450mV (Busalmen 

and de Sánchez, 2005).  Moving forward, oxidation reduction potential in water 

bodies should be further investigated as an indicator of successful pathogen transfer.  

The knowledge of this can translate to useful on-farm technologies to better profile 

water quality.  

While microbial safety of fresh produce is a priority, the current obligation 

under the Produce Safety Rule for growers to comply with E. coli standards for water 

quality is imposed without a comprehensive knowledge of the true food safety risk 

that irrigating fresh produce in a S. enterica endemic region poses. This study begins 

to bridge the gaps between S. enterica persistence dynamics in surface water and on-

plant interactions, which could inform long term persistence strategies. More research 

is needed to investigate the genetic responses of S. enterica negotiating transition 

from water to crops, both in crop specific and region-specific realms. These data can 

then be integrated into comprehensive risk assessments to accurately identify 
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regionally specific hazards and practices needed to efficiently, effectively, and 

sustainably mitigate food safety risk in fresh produce production.  
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Chapter 6:  Conclusions, Limitations, and Future Directions 

 

As research in each individual silo of science advances, the scientific 

community now has an unparalleled opportunity to engage in transdisciplinary 

collaboration and tackle increasingly complex and interconnected research questions 

in the pursuit of a safe and sustainable fresh food supply. Trans-disciplinary work 

lends itself well to a “One Health” approach to food safety whereby research can now 

integrate multiple variables into a single study such as water, plant, and bacterial 

genotype,  to provide better understanding of enteropathogen environmental 

interactions. In the present work, we utilized this approach to illustrate novel 

mechanisms by which S. enterica may adapt to plants as an alternative host. 

Furthermore, we leveraged the wealth of diversity in S. enterica serovars to 

investigate specific dynamics and drivers of persistence in water and transfer onto 

produce crops.    

Study Highlights  

 

 Novel insight into strategies S. enterica may utilize for survival along the farm 

to fork continuum are provided in the present work.  In Chapter 3, it was illustrated 

that Salmonella Newport elicits and actively responds to not only plant-derived 

hydrogen peroxide, but also nitric oxide. This finding has major implications in how 

the interaction between human pathogens and plants is viewed. Opportunity now 

exists to expand this realm of research to investigate other mechanisms of 

enteropathogen-plant mutual responses. In this study it was observed that the majority 

of NO reciprocal responses were present on tomato leaves compared to fruit, and that 
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overall higher concentrations of  S. Newport were more consistently retrieved from 

leaves compared to fruits. While this may indicate that survival strategies on fruit 

may include additional factors not explored in the current work, it also suggests that 

leaves could be the preferred niche of culturable pre-harvest associated S. enterica.  

Therefore, it is advantageous to augment current tomato harvesting GAPs to include 

procedures which minimize contact between fruit and leaves, especially during key 

contamination multiplier events; at harvest, in post-harvest dunk tanks, and storage.  

Investigating S. enterica serovar dynamics in surface and reclaimed water 

revealed that persistence in water is principally driven by water type and may include 

viable but non-culturable states. Furthermore, data was provided to suggest transfer 

success onto tomato is driven by serovar more than water, and residency in water may 

increase the transfer ability of S. enterica (Chapter 5).  This indicates that water may 

act as a priming reservoir for select S. enterica for downstream increased success on 

plants.  Further, linear regression of experimental data with water physicochemical 

variables revealed that attachment to polystyrene and water oxidation reduction 

potential should be further evaluated as potential indicators of foodborne pathogen 

transfer probability onto tomato (Chapter 5).  In an age where we are still evaluating 

the effectiveness of sampling for fecal indicators to assess water quality, investigation 

into additional methods for water quality estimations is very important.  

In our studies, one thing is clear – serovars of Salmonella enterica are unique. 

In Chapter 4 a differential nitric oxide stress effect was observed across serovars 

which was concentration-dependent. Importantly, it was identified that increasing 

plant-derived nitric oxide in the phyllosphere had a negative effect on Salmonella 
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retrieval.  In terms of Salmonella Newport, while we identified active mutual 

recognition and response present between this organism and tomatoes (Chapter 3), 

this serovar did not outperform others on tomato seedling or fruit assays (Chapters 4 

and 5, respectively). Furthermore, it was expected that S. Heidelberg- the poultry 

associate isolate- would perform poorly in every experiment, yet it persisted well in 

water (Chapter 5). Furthermore, along with S. Enteriditis, S. Heidelberg had 

increased tolerance to nitric oxide at higher concentrations (Chapter 4). Finally, 

surprisingly S. 4,[5], 12:i:-, a serovar not historically isolated from tomatoes, 

transferred extremely well from each water source to tomato fruit. Taken together, 

these data suggest that Salmonella enterica is a diverse species and the probability of 

one specific serovar causing an outbreak is likely due to a symphony of 

interconnected variables, some synergistic, some antagonistic, ultimately leading to 

contamination and persistence through the food chain. In the present work we were 

able to provide insights into driving factors behind currently observed epidemiologic 

trends of serovar- source specificity, however more research must be conducted 

before we can understand a clearer picture of why one serovar over another ultimately 

causes an outbreak. For instance – serovar specific interaction with the resident 

epiphytic community, manipulation of plant surface exudates, and mitigation of 

abiotic stress may all factor into success or failure to persist in the agricultural 

environment.  Research, which has traditionally focused on S. Typhimurium and a 

few other select serovars, should work to incorporate a wider breadth of S. enterica 

serovars to more accurately obtain this profile.  
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Limitations 

 

This work is not without its limitations and challenges, however, each 

challenge identified also presents renewed opportunity for future work with 

increasingly finer tuned questions in the farm to fork continuum under a “One 

Health” approach to solutions for on-farm produce safety.  

In our tomato experiments, the inter-variability of individual plants and 

responses to chemical modulation was a challenge for experimental reproducibility, 

and a considerable amount of time was taken to devise the best standardization 

technique. In working with NO, variability in results has been previously documented 

(effectiveness of the treatment ranging from 0 to 100%, sometimes in the same 

model) (Astier et al., 2018) and underscores the complexity of this system in plants.  

To address these challenges, in Chapter 3 multiple replications of experiments were 

conducted, whereas in Chapter 5 robust experimental design and statistical treatment 

addressed this issue.  

Another challenge in Chapter 3 arose from efforts to create a Salmonella 

knockout hmpA mutant. There was effort during this process to construct a Newport 

knockout mutant via the lambda red system in the principle NO detoxification 

enzymes flavoahaemoglobin hmpA and yoaG, however due to the nature of this 

serovar this study was unsuccessful. Investigation into other methods of constructing 

competent cells and mutagenesis procedure, such as conjugation via a suicide vector 

(Morrison et al., 2012) are main avenues to consider in future efforts.   

Our plant experimental system could also be viewed as a limiting factor, as all 

experiments were completed with ‘Heinz-1706’ tomato, a canning variety. We chose 
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this variety based on previous work showing that S. Newport colonized seedling 

leaves significantly poorly compared to other cultivars and embarked on the 

dissertation journey to investigate if this discrepancy was in part due to immune 

response signaling molecules (Chapter 3).   Moving forward, it seems imperative to 

evaluate if this interplay between Salmonella and plant NO is restricted to this 

cultivar of tomato, Solanum lycopersicum only, or if this is a relevant interaction in 

other Salmonella  -plant crop interactions. One could suppose another limitation in 

the experimental system chosen is that select experiments in the phyllosphere study 

were completed with seedling leaves. Seedling leaves were chosen to work with due 

to ease of experimentation, but it is important to consider the age-based biases of this 

work with young plant material. Several studies have profiled plant age as a factor in 

effector triggered immunity studies, where older plants observe more resistance 

against plant pathogenic agents (Shah et al., 2015). While the mechanism of age 

related immunity in plants is not fully profiled, work by Carella et al. reports that 

baseline immune function is not altered by age related resistance, however 

engagement with effector “R” proteins from a pathogen is affected. Therefore plant 

age may be more important in ETI studies (2015). However, this question certainly 

sparks interest in another aspect of foodborne pathogens in the context of the farm to 

fork continuum; how do foodborne pathogens adapt to a changing plant as it grows 

and develops? Time course studies may elucidate more interesting information about 

Salmonella niche development in the context of plant development.   

Another limitation can be observed in our water type comparison studies. In 

Chapter 5, water samples were 0.22 µm filtered in order to eliminate competition 
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and the possibility of protozoal grazers which would skew results (Fischer et al., 

2006). Furthermore, we thought that adding additional antimicrobial resistance 

marker through a plasmid may be unstable and skew results. It has been documented 

that persistence in sterilized or treated water may not be identical to untreated water 

(Santo Domingo et al., 2000, Topalcengiz et al., 2019). Moving forward, construction 

of antibiotic resistance in the chromosome of strains of interest and evaluating 

persistence in water with either native communities or via spiking in a standardized 

microbial “community” after cycloheximide treatment to eliminate protozoa may 

provide opportunity to be able to draw more real-world laboratory water study.  

Finally, while evidence of active stress negotiation and niche adaptation was 

observed in S. Newport -tomato interaction (Chapter 3), parallel targeted 

transcriptomic study to evaluate serovar specific adaptation strategies from water to 

tomato using a similar approach were unsuccessful due to insufficient concentrations 

of RNA in ~30% of the samples. In bacterial transcriptomic studies, it is 

recommended that 108 cells are retrieved for optimal RNA concentrations in  

downstream experimentation (Sirsat et al., 2011). However, it is a challenge to 

achieve this, yet perform an experiment with a real world concentration of Salmonella 

contamination (5 or 6 log CFU/mL at most). Moving forward, increasing the number 

of pooled samples and decreasing the number of treatments can allow for successful 

investigation of genetic machinery necessary to negotiate transition from water to a 

tomato surface.  

Broader Impacts and Future Directions  
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Our studies revealed key water, plant organ, and bacterial factors that 

influence contamination and persistence on food crops, however further exploration 

remains a necessity.  For example, to further explore serovar specific reactions to 

plant-derived nitric oxide, additional experiments employing DAF fluorescence 

detection could be undertaken to relate NO tolerance to the amount of NO each 

serovar elicits from the seedling material. This work and parallel efforts are important 

steps in the growing body of work illustrating serovar specific propensity for specific 

niches, which can lead to serovar specific mitigation strategies based on the 

Salmonella ecology of a given agricultural environment in the near future.  

 Another major outcome of this work is that there is a wealth of study 

opportunity in Salmonella – water interactions that may have direct profound outputs 

for mid-Atlantic farmers. In our studies we found that VBNC states may be a strategy 

for persistence. This physiological state has been under-evaluated in an agricultural 

context. Moving forward, during routine microbial testing of water sources, it will be 

important to consider that water samples which test negative for S. enterica may be 

false negatives and instead may harbor cells in a VBNC state that are not detectable 

by culture methods. Moreover, investigation of other drivers or environments in the 

farm to fork continuum used by Salmonella to engage in this persistence strategy 

remains to be explored.  In terms of translatable outputs, knowledge gained from the 

present work on S. enterica associated risks in surface irrigation water, as well as 

updates on current efforts to augment water quality measurements could be 

disseminated to the grower constituency on a regular basis.   



 

 

137 

 

One year into compliance of the FSMA PSR, especially for smaller more 

diversified farms (like we have here in Maryland), “one size” adaptation of the Rule 

will not fit all. This has been recognized on a limited commodity basis; as Mushroom 

Good Agricultural Practices, Tomato Good Agricultural Practices, and the Leafy 

Green Marketing Agreement exist to translate food safety principles into sensible on-

farm practices.  While these resources are important in helping growers tailor food 

safety needs to their farm, there is a sense that the next step must be taken in the 

development of regionally and operational-scale specific guidance whose goals are to 

enhance food safety minded practices based on individualized hazards and varying 

technology available for risk mitigation. The present work endeavored to more 

holistically track one organism, S. enterica, as it moves through the agro-

environment, focusing on key negotiation strategies used to combat hurdles from 

farm to fork.  While we provide some insight on S. enterica dynamics, more research 

is needed to investigate the genetic responses of this and other foodborne pathogens 

negotiating the transition from water to crops, both in crop-specific and region-

specific realms. Expanding the scope of research to understand 1) new and emerging 

crop production strategies such as hydroponics, greenhouse cultivation, permaculture, 

and urban farming and 2) current and future pressures on the farm environment such 

as climate change and the impact of surrounding anthropogenic activity  is crucial for 

the future of food safety research. With these perspectives, a better understanding can 

be gained of current hazards and can be used to anticipate future issues from  S. 

enterica, other foodborne pathogens, and chemical contaminants which threaten the 

safety and sustainability of our food and water supply. This variation of a “One 
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health” approach to interdisciplinary public health research can elevate on-farm food 

safety practices, driving past the previous goal of compliance to regulation towards a 

farming and research culture which incorporates equitability, innovation, 

sustainability, and safety. 
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Appendix I 

 
 Supplementary Figure 1: (A) Plate counts of 6 hr S. Newport  incubation in 

PBS amended with plant scavenger or elicitor of NO. (B) Plate counts of 6 hr 

Salmonella incubation in TSB amended with plant scavenger or elicitor of NO. 

Inoculum was 7 log CFU/mL for both A and B, with no significant differences in 

growth after 6h.  (C) 1/2 strength TSB S. Newport control- hmpA, katG, and yoaG 

expression relative to rpoD. All average log based 2-fold change in expression are -1 

< x < 1. 
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Appendix II 
 

Supplementary Table 1: Log decline from inoculum of various S. enterica when 

exposed to different concentrations of Spermine NONOate, corrected for 0 µM at 

each time point. Letters denote significant differences among serovars at each time 

point and concentration via Kruskal-Wallis / Wilcoxon rank test (ɑ=0.05). This is the 

average of 4 experimental replicates. 
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Appendix III 
 

Supplementary Table 1: IPMP Buchanan’s two-phase log-linear model parameters 

for 90 day persistence in surface water measured by agar plate count, replicate one. 

The average lag time in days, rate of decay * 100, Sum of squares due to error (SSE) 

and root mean square error (RMSE) are reported.  
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Supplementary Table 2: IPMP Buchanan’s two-phase log-linear model parameters 

for 90-day persistence in surface water measured by agar plate count, replicate two. 

The average lag time in days, rate of decay * 100, Sum of squares due to error (SSE) 

and root mean square error (RMSE) are reported.  
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Supplementary Figure 1: Histogram of Root Mean Squared Error (RMSE) values 

calculated from Buchanan’s two-phase log-linear model, by water type. Cutoff for a 

“high RMSE” was determined to equal = 0.5. High RMSE values for 2 phase fit were 

identified in MA03 and MA10. In these instances, the data fit better to Buchanan’s 

three phase log linear model of decay, indicating the presence of a tail.   
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Supplementary Figure 2: Correlation of each experimental replicate agar plate total 

log inactivation and rate of decay. Red data represent replicate one and blue 

represents replicate two. R2 values reported reflect Pearson’s correlation coefficient 

(α=0.05).  
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Supplementary Figure 3: Rate of decay (A, C) and lag time in days (B, D) of 

various Salmonella enterica in 30 mL samples of 0.22 µM filtered MA03, MA10 in 

replicate 1 (A, B) and 2 (C, D) of Agar plate – qPCR PMA study. Agar plate counts 

over 90 days were modeled via Buchanan’s two-phase log-linear inactivation 

equation (IPMP 2014). N=3 for each serovar and water type combination. Error bars 

represent the SEM.  Letters denote serovar specific within water types through 

Analysis of Variance and Tukey’s Honestly Significant Difference (α =0.05). (E): 

Agar plate total log inactivation from 1-90 days of S. enterica in 30 mL water 

samples. Letters denote serovar specific differences in total bacterial death within 

water types for culture-based counts through Analysis of Variance and Tukey’s 

Honestly Significant Difference (α=0.05).  
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Supplementary Figure 4: Correlogram of physicochemical parameter data at the 

time of sampling from water sources used for experimentation and attachment index 

to polystyrene, “AvgAindex.” Attachment indices for each serovar x water type 
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combination were averaged over two experimental replicates for MA05, and three 

experimental replicates for all other water types. Triple asterisks denote significant 

Pearson’s correlation coefficient (p<0.001).  
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Supplementary Figure 5: Correlogram of physicochemical parameter data at the 

time of sampling from water sources used for experimentation and plate count total 

inactivation from N=4 water sample studies, “Totalinact.” Experimental data were 

averaged over two experimental replicates for MA04 and MA10, and four 

experimental replicates for all other water types. Triple asterisks denote significant 

Pearson’s correlation coefficient (p<0.001). 
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Supplementary Figure 6: Correlogram of physicochemical parameter data at the 

time of sampling from water sources used for experimentation and transfer success 

onto tomato after 24 h in water, “trans.cont” or 30 days in water “trans.test.” 
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Experimental data are averaged over three experimental replicates. Triple asterisks 

denote significant Pearson’s correlation coefficient (p<0.001). 

 

 

Supplementary Figure 7: Correlogram of attachment index to polystyrene 

“AvgAindex”, plate count total inactivation over 90 days “Totalinact,” transfer 

success onto tomato after 24 h in water, “trans.cont” and after 30 days in water 

“trans.test.” Data were paired by water type. Triple asterisks denote significant 

Pearson’s correlation coefficient (p<0.001).  
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Supplementary Figure 8: Correlations and R2 fits between attachment index and 

transfer success onto tomato. Panel A and B depict transfer success from serovars 

incubating in water for 30 d; Panel C and D depict transfer success from serovars 

incubating in water for 24 h (“spent”). Fits are clustered by water type (Panel A, C) 

and serovar (B, D).  
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Supplementary Figure 9: Transfer success of two S. Heidelberg strains and two S. 

Newport strains 50:50 mixed in MA05 samples (denoted by “cocktail”), or singly 

inoculated S. enterica. Samples were incubated for 24 h “control” or 30 d “test” in 

MA05. N=3, error bars represent the SEM. Letters denote significant differences in 

transfer within water incubation treatment (Tukey’s HSD α=0.05).  
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