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The competition between the Republican and the Democrat nominees in the

U.S presidential election is known as Colonel Blotto in game theory. In the classical

Colonel Blotto game – introduced by Borel in 1921 – two colonels simultaneously

distribute their troops across multiple battlefields. The outcome of each battlefield

is determined by a winner-take-all rule, independently of other battlefields. In the

original formulation, the goal of each colonel is to win as many battlefields as pos-

sible. The Colonel Blotto game and its extensions have been used in a wide range

of applications from political campaigns (exemplified by the U.S presidential elec-

tion) to marketing campaigns, from (innovative) technology competitions, to sports

competitions. For almost a century, there have been persistent efforts for finding

the optimal strategies of the Colonel Blotto game, however it was left unanswered

whether the optimal strategies are polynomially tractable. In this thesis, we present

several algorithms for solving Blotto games in polynomial time and will discuss their

applications in practice.
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Chapter 1: Introduction

Game theory is the study of mathematical models of strategic interaction

between rational decision-makers. The disciplines of game theory was founded in the

early 20th century by famous mathematicians Ernst Zermelo and John von Neumann

(1928). Game theory has had a major impact on the several branches of economics,

social science, logic, and computer science. The field received considerable attention

in computer science by the work of John Nash on the equilibria of games. John Nash

introduced the concept of Nash equilibrium as a situation wherein no player benefits

from changing his strategy unilaterally. His work on game theory is mostly known

for his proof for the existence of Nash equilibria in all normal form games. Since

then, computing such equilibria has become one of the most central problems in

algorithmic game theory.

As mentioned earlier, it is known that every finite game admits a Nash equi-

librium (that is, a profile of strategies from which no player can benefit from a

unilateral deviation) [6]. However, it is not necessarily obvious how to find an equi-

librium. Indeed, the conclusions to date have been largely negative: computing a

Nash equilibrium of a normal-form game is known to be PPAD-complete [7–10], even

for two-player games [11]. In fact, it is PPAD-complete to find an 1
nO(1) approxima-
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tion to a Nash equilibrium [12]. These results call into question the predictiveness of

Nash equilibrium as a solution concept. This motivates the study of classes of games

for which equilibria can be computed efficiently. It has been found that many nat-

ural and important classes of games have structure that can be exploited to admit

computational results [13–16]. Perhaps the most well-known example is the class

of zero-sum two-player games1, where player 2’s payoff is the negation of player 1’s

payoff. The normal-form representation of a zero-sum game is a matrix A, which

specifies the game payoffs for player 1. This is a very natural class of games, as it

models perfect competition between two parties. Given the payoff matrix for a zero-

sum game as input, a Nash equilibrium can be computed in polynomial time, and

hence time polynomial in the number of pure strategies available to each player [13].

Yet even for zero-sum games, this algorithmic result is often unsatisfactory. The

issue is that for many games the most natural representation is more succinct than

simply listing a payoff matrix, so that the number of strategies is actually expo-

nential in the most natural input size. In this case the algorithm described above

fails to guarantee efficient computation of equilibria, and alternative approaches are

required.

1.1 The Colonel Blotto Game

A classical and important example illustrating these issues is the Colonel

Blotto game, first introduced by Borel in 1921 [17–21]. In the Colonel Blotto game,

two colonels each have a pool of troops and must fight against each other over a set

1Or, equivalently, constant-sum games.
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of battlefields. The colonels simultaneously divide their troops between the battle-

fields. A colonel wins a battlefield if the number of his troops dominates the number

of troops of his opponent. The final payoff of each colonel is the (weighted) number

of battlefields won.

An equilibrium of the game is a pair of colonels’ strategies, which is a (po-

tentially randomized) distribution of troops across battlefields, such that no colonel

has incentive to change his strategy. Although the Colonel Blotto game was initially

proposed to study a war situation, it has found applications in the analysis of many

different forms of competition: from sports, to advertisement, to politics [22–27],

and has thus become one of the most well-known games in classic game theory.

Colonel Blotto is a zero-sum game. However, the number of strategies in the

Colonel Blotto game is exponential in its natural representation. After all, there

are
(
n+k−1
k−1

)
ways to partition n troops among k battlefields. The classical methods

for computing the equilibra of a zero-sum game therefore do not yield computation-

ally efficient results. Moreover, significant effort has been made in the economics

literature to understand the structure of equilibria of the Colonel Blotto game, i.e.,

by solving for equilibrium explicitly [27–37]. Despite this effort, progress remains

sparse. Much of the existing work considers a continuous relaxation of the prob-

lem where troops are divisible, and for this relaxation a significant breakthrough

came only quite recently in the seminal work of Roberson [34], 85 years after the

introduction of the game. Roberson finds an equilibrium solution for the continuous

version of the game, in the special case that all battlefields have the same weight.

The more general weighted version of the problem remains open, as does the original
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non-relaxed version with discrete strategies. Given the apparent difficulty of solving

for equilibrium explicitly, it is natural to revisit the equilibrium computation prob-

lem for Colonel Blotto games. As part of this thesis, we show that Colonel Blotto

admits a polynomial time solution in its most general form.

This work received a lot of attention in the U.S medial and elsewhere (see

e.g. NSF [38], DARPA [39], Business Insider [40], Europapress [41] (in Spanish),

Tivi [42] (in Finnish), Forskning [43] (in Norwegian), Mandiner [44] (in Hungarian),

etc.).

“Colonel Blotto met its match in a team from @UMDScience supporting

DARPA’s GRAPHS program” (DARPA)

“And while variations of the game have been solved, until now no one has been

able to find a way to arrive at a definitive solution for a two-party scenario. Now, a

team from the University of Maryland, Stanford University and Microsoft Research

says it has developed a generalized algorithm, which can now be applied to specific

scenarios, such as the 2016 presidential election.” (Business Insider)

“This solution allowed the team from UMD to develop a generalized algo-

rithm, which can now be applied to specific situations, such as the 2016 presidential

election.” (Europapress, translated from Spanish)

1.2 A Faster Algorithm for Blotto

The ideas explained in Chapter 2 show how one can find the optimal strategies

of Blotto in polynomial time even though the strategy space is exponentially large.
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With this approach, the solution is found in three steps: 1) transferring the space

of the game, 2) solving the game in the secondary space, and 3) translating the

solution back to the primary space of the game. Steps 1 and 3 are necessary to

reduce the size of the game as it is exponentially large in its current form. However,

Step 2 deals with the computational barrier for solving Blotto. Roughly speaking,

in this step we model the game with an LP with exponentially many constraints

and we prove that using Ellipsoid method, one can optimize the LP in polynomial

time.

This approach to solve Blotto involves sophisticated LP techniques such as the

ellipsoid method. Although theoretically, ellipsoid method is a very powerful tool

with deep consequences in complexity and optimization, it is “too inefficient to be

used in practice” [45]. Interior point methods and simplex algorithm (even though it

has exponential running-time in the worst case) are “far more efficient” [45]. Thus

a practical algorithm for finding optimal strategies for the Blotto games remains

an open problem. In fact, there have been huge studies in existence of efficient

LP reformulations for different exponential-size LPs. For example Rothvoss [46]

proved that the answer to the long-standing open problem, asking whether a graph’s

perfect matching polytope can be represented by an LP with a polynomial number

of constraints, is negative. The seminal work of Applegate and Cohen [47] also

provides polynomial-size LPs for finding an optimal oblivious routing. We provide

a polynomial-size LP for finding the optimal strategies of the Colonel Blotto games.

Although our original solution (Chapter 2) uses an LP with an exponential number of

constraints, our new LP formulation (Chapter 3) has only O(cnttroops
2k) constraints,
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where cnttroops = a + b is the total number of troops and k denotes the number

of battlefields. Consequently, we provide a novel, simpler, and significantly faster

algorithm using the polynomial-size LP.

Furthermore, we show that our LP representation is asymptotically tight. The

rough idea behind obtaining a polynomial-size LP is the following. Given a polytope

P with exponentially many facets, we project P onto another polytope Q in a higher

dimensional space which has a polynomial number of facets. Thus basically we are

adding a few variables to the LP in order to reduce the number of constraints down

to a polynomial. Q is called the linear extension of P . The minimum number

of facets of any linear extension is called the extension complexity. We show that

the extension complexity of the polytope of the optimal strategies of the Colonel

Blotto game is Θ(cnttroops
2k). In other words, there exists no LP-formulation for

the polytope of MaxMin strategies of the Colonel Blotto game with fewer than

Θ(cnttroops
2k) constraints.

By implementing our LP, we observe the payoff of players in the continuous

version considered by Roberson [34] very well predicts the outcome of the game in

the auctionary and symmetric version of our model.

1.3 Maximizing the Likelihood of Winning an Election

The U.S. presidential election can be modeled as a Colonel Blotto game by

corresponding each state to a battlefield and modeling the candidates’ resources with

the troops of the colonels. If the candidates were to maximize the expected number
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of electoral votes, the optimal strategies could be characterized and computed via

the algorithm presented in Chapter 2 (see also [1]). However, in the U.S. election,

the goal of the parties is to maximize the likelihood of winning the race which is

the probability that their candidate wins the majority of the electoral votes. To

illustrate how different the two objectives could be, imagine that a strategy of a

candidate secures an expected number of 280 electoral votes out of 538 votes in

total. Now, if this solution guarantees 270 electoral votes with probability 0.5 and

receives 290 electoral votes with probability 0.5, then the corresponding strategy

always wins the race. Another (artificial) possibility is that this strategy receives

260 electoral votes with probability 9/10 and 460 votes with probability 1/10 and

thus losing the race with probability 9/10 despite receiving more than half of the

electoral votes in expectation.

Although expectation maximizer strategies of Blotto have received a lot of

attention over the past few decades [17–20], prior to this, not much was known for

the case where the goal is to maximize the likelihood of winning a certain amount

of payoff. In this thesis, we also study this problem for both the discrete and

continuous variants of Colonel Blotto. In particular, for the discrete variant of

Colonel Blotto, we present a logarithmic approximation algorithm and improve this

result for the continuous case to a constant approximation algorithm. We also

present an exact algorithm for the guaranteed payoff setting (when the goal is to

obtain a utility u with probability 1) in the continuous case. Moreover, we provide

improved algorithms for the uniform case (when all the battlefields have the same

7



weight). Consider a two-player game between player A and player B.2 We call a

strategy of player A a (u, p)-maxmin strategy, if it guarantees a utility of at least u

for her with probability at least p, regardless of the strategy that player B chooses.

In other words, a strategy X is (u, p)-maxmin if for every (possibly mixed) strategy

Y of the opponent we have

Pr
x∼X,y∼Y

[UA(x, y) ≥ u] ≥ p,

where UA(x, y) denotes the payoff of player A if she plays strategy x and player B

plays strategy y. Now for a given required payoff u and probability p, the problem

is to find a (u, p)-maxmin strategy or report that there is no such strategy.

For many natural games, solving (u, p)-maxmin (for any given u and p) is

computationally harder than the case where we focus on expected payoff (e.g., see

Chapter 4 for a discussion about why it seems to be computationally harder to solve

(u, p)-maxmin rather than maximizing expected payoff for Colonel Blotto). There-

fore, it is reasonable to look for approximation algorithms. An approximate solution

may relax the given probability, the given payoff, or both. We show in Chapter 4

that (u, p)-maxmin strategies can be approximated within provable guarantees in

polynomial time.

2Our definition could easily be generalized to multi-player games.
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1.4 Strategies with Small Profiles

Maximin strategies, or equivalently Nash equilibrium for constant-sum games

such as Colonel Blotto, are often criticized for that they may be too complicated

(see e.g., [48–50]). That is, even if we are able to find such a solution in polynomial

time, we may not be able to deploy it since the equilibria can have a large support3.

In the case of the Blotto game, the potential size of the support is enormous, while

every possible pure strategy in the support requires a prior (often costly) setup.

Therefore it is tempting to find a near-optimal strategy that uses very few pure

strategies, and is near optimum against the opponent’s best response — the last

contribution of this thesis.

However, limiting the support size often renders the game intractable. For

instance, the decision problem of existence of a Nash equilibrium when the support

size is bounded by a given number is NP-hard even in two-player zero-sum games

[51], while this problem is unlikely to be fixed parameter tractable when the problem

is parameterized by the support size [52]. These results imply that in order to find

optimal strategies with bounded support, we need to use structural properties of

the game at hand, even when the players have polynomially many strategies. It

becomes even more challenging for succinct games such as Colonel Blotto wherein

the strategy space itself is exponentially large.

Note that even the unbounded case is challenging to solve as discussed ear-

lier. In spite of that, for maximizing the expected utility, one can obtain optimal

3The support of a mixed strategy is the set of all pure strategies to which a non-zero probability
is associated.
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strategies in polynomial time by algorithms of Chapters 2 and 4.

All of the results explained in Chapter 4 rely crucially on the fact that the

support size is unbounded. The challenges in obtaining bounded support strategies

turn out to be entirely different. On one hand, for the choice of each pure strategy

in the support we still have exponentially4 many possibilities. On the other hand,

we show that bounding the support size makes the solution space non-convex. The

latter prevents us from using convex programming techniques in finding optimal

strategies — which are essentially the main tools that are used in the literature for

solving succinct games in polynomial time [1,3,53,54]. However, we show through a

set of structural results that the solution space can, interestingly, be partitioned into

polynomially many disjoint convex polytopes, allowing us to consider each of these

sub-polytopes independently. This leads to polynomial time approximation schemes

(PTASs) for both the expectation case and the case of (u, p)-maxmin strategies.

We also provide in Chapter 5 the first complexity result for finding the maximin

of Blotto-like games: we show that computing the maximin of a generalization of

the Colonel Blotto game that we call General Colonel Blotto — roughly, the

utility is a general function of the two allocations — is exponential time-complete.

1.5 Future Work and Open Problems

Indeed, improving the approximation factors of the algorithms of Chapters 4

and 5 are interesting directions for future work. Moreover, a particularly realistic

4Or even an unbounded number of strategies for the continuous variant of Colonel Blotto where
the troops are capable of fractional partitioning.
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variant of the Blotto game which we still do not know how to solve is when each

troop contributes to each battlefield differently. Although our representation in this

case remains convex and the utility functions are bilinear, finding a best-response of

this game is NP-hard and therefore our framework does not provide a polynomial

time solution.

Perhaps a broader and more relevant question that can be answered as future

work is “to which games the presented framework apply?”. Many classic zero-

sum games have exponentially many strategies for players. Examples are dueling

games, security games, parity games, stochastic games, poker heads up, etc. Apart

from dueling and security games, our knowledge of the computational complexity

of the rest of the games is limited. In particular, parity and stochastic games are

proven to be in the intersection of NP and CoNP and therefore investigating their

computational complexity is a very old and fundamental open question not only in

game theory but in TCS in general.

In Chapter 2 we study the computational complexity of Blotto. This is essen-

tially the main result of this thesis. In the following chapters, we study different

variants: Chapter 3 discusses a faster algorithm for Blotto and Chapters 4 and 5

consider probabilistic versions of Blotto.
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Chapter 2: Polynomial Time Solution for Colonel Blotto

We present a general method for computing Nash equilibria of a broad class of

zero-sum games. Our approach is to reduce the problem of computing equilibria of a

given game to the problem of optimizing linear functions over the space of strategies

in a payoff-equivalent bilinear game.

Before presenting our general reduction, we will first illustrate our techniques

by considering the Colonel Blotto game as a specific example. In Section 2 we

describe our approach in detail for the Colonel Blotto game, explaining the process

by which equilibria can be computed. Then in Section 2 we will present the general

reduction. Further applications of this technique are provided in Section 2.1 (for

dueling games) and Section 2.3 (for the General Lotto game).

Here, we propose a polynomial-time algorithm for finding an equilibrium of

discrete Colonel Blotto in its general form. We allow the game to be asymmetric

across both the battlefields and the players. A game is asymmetric across the

battlefields when different battlefields have different contributions to the outcome

of the game, and a game is asymmetric across the players when two players have

different number of troops.

In the Colonel Blotto game, two players A and B simultaneously distribute
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a and b troops, respectively, over k battlefields. A pure strategy of player A is a

k-partition x = 〈x1, x2, . . . , xk〉 where
∑k

i=1 xi = a, and a pure strategy of player B

is a k-partition y = 〈y1, y2, . . . , yk〉 where
∑k

i=1 yi = b. Let uAi (xi, yi) and uBi (xi, yi)

be the payoff of player A and player B from the i-th battlefield, respectively. Note

that the payoff functions of the i-th battlefield, uAi and uBi , have (a + 1) × (b + 1)

entries. This means the size of input is Θ(kab). Since Colonel Blotto is a zero-sum

game, we have uAi (xi, yi) = −uBi (xi, yi)
1. Note that we do not need to put any

constraint on the payoff functions, and our result works for all payoff functions. We

also represent the total payoff of player A and player B by hAB(x, y) =
∑

i u
A
i (xi, yi)

and hBB(x, y) =
∑

i u
B
i (xi, yi), respectively. A mixed strategy of each player would

be a probability distribution over his pure strategies.

Theorem 1. One can compute an equilibrium of any Colonel Blotto game in poly-

nomial time.

Proof. Let X and Y be the set of all pure strategies of players A and B respectively,

i.e., each member of X is a k-partition of a troops and each member of Y is a

k-partition of b troops. We represent a mixed strategy of player A with function

p : X → [0, 1] such that
∑

x∈X p(x) = 1. Similarly, let function q : Y → [0, 1] be

a mixed strategy of player B. We may also use x and y, instead of p and q, for

referring to a mixed strategy of player A and B respectively. Since Colonel Blotto

is a zero-sum game, we leverage the MinMax theorem for finding an NE of the

game. This theorem says that pair (p∗, q∗) is an NE of the Colonel Blotto game if

1Note that in the Colonel Blotto game if uAi (xi, yi) is not necessarily equal to −uBi (xi, yi) then a
special case of this game with two battlefields can model an arbitrary 2-person normal-form game
and thus finding a Nash Equilibrium would be PPAD-complete.
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and only if strategies p∗ and q∗ maximize the guaranteed payoff of players A and B

respectively [55]. Now, we are going to find strategy p∗ of player A which maximizes

his guaranteed payoff. The same technique can be used for finding q∗. It is known

that for each mixed strategy p, at least one of the best-response strategies to p is a

pure strategy. Therefore, a solution to the following program characterizes strategy

p∗.

max U (2.1)

s.t.
∑

x∈X px = 1,

∑
x∈X pxh

A
B(x, y) ≥ U, ∀y ∈ Y,

Unfortunately, LP 2.1 has |X| variables and |Y|+ 1 constraints where |X| and |Y|+ 1

are exponential. We therefore cannot solve LP 2.1 directly.

Step 1: Transferring to a new space. We address this issue by transforming the

solution space to a new space in which an LP equivalent to LP 2.1 becomes tractable

(See, e.g., [56], for similar technique). This new space will project mixed strategies

onto the marginal probabilities for each (battlefield, troop count) pair. For each pure

strategy x ∈ X of player A, we map it to a point in {0, 1}n(A) where n(A) = k×(a+1).

For convenience, we may abuse the notation, and index each point x̂ ∈ {0, 1}n(A)

by two indices i and j such that x̂i,j represents x̂(i−1)(a+1)+j+1. Now we map a pure

strategy x to GA(x) = x̂ ∈ {0, 1}n(A) such that x̂i,j = 1 if and only if xi = j. In other

words, if player A puts j troops in the i-th battlefield then x̂i,j = 1. Let IA = {x̂ ∈

{0, 1}n(A)|∃x ∈ X,GA(x) = x̂} be the set of points in {0, 1}n(A) which represent
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pure strategies of player A. Let M(X) and M(Y) be the set of mixed strategies

of players A and B respectively. Similarly, we map mixed strategy x to point

GA(x) = x̂ ∈ [0, 1]n(A) such that x̂i,j represents the probability that mixed strategy

x puts j troops in the i-th battlefield. Note that mapping GA is not necessarily

one-to-one nor onto, i.e., each point in [0, 1]n(A) may be mapped to zero, one, or

more than one strategies. Let SA = {x̂ ∈ [0, 1]n(A)|∃x ∈ M(X),GA(x) = x̂} be the

set of points in [0, 1]n(A) which represent at least one mixed strategy of player A.

Similarly, we use function GB to map each strategy of player B to a point in [0, 1]n(B)

where n(B) = k × (b+ 1), and define IB = {ŷ ∈ {0, 1}n(B)|∃y ∈ Y,GB(y) = ŷ} and

SB = {ŷ ∈ [0, 1]n(B)|∃y ∈M(Y),GB(y) = ŷ}.

Lemma 2. Set SA forms a convex polyhedron with an exponential number of vertices

and facets.

Now, we are ready to rewrite linear program 2.1 in the new space as follows.

max U (2.2)

s.t. x̂ ∈ SA (Membership constraint)

hAB(x̂, ŷ) ≥ U, ∀ŷ ∈ IB (Payoff constraints)

where

hAB(x̂, ŷ) =
k∑
i=1

a∑
ta=0

b∑
tb=0

x̂i,ta ŷi,tbu
A
i (ta, tb)

is the expected payoff of player A.

Step 2: Solving LP 2.2. The modified LP above, LP 2.2, has exponentially many
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constraints, but only polynomially many variables. One can therefore apply the

Ellipsoid method to solve the LP, given a separation oracle that runs in polynomial

time [57,58]. By the equivalence of separation and optimization [59], one can imple-

ment such a separation oracle given the ability to optimize linear functions over the

polytopes SA (for the membership constraints) and SB (for the payoff constraints).

Stated more explicitly, given a sequence c0, c1, . . . , ck(m+1), where k is the num-

ber of battlefields and m is the number of troops for a player, the required oracle

must find a pure strategy x = (x1, x2, . . . , xk) ∈ X such that
∑k

i=1 xi = m, and

x̂ = G(x) minimizes the following equation:

c0 +

k(m+1)∑
i=1

cix̂i, (2.3)

and similarly for polytope Y. The following lemma shows that one can indeed find

a minimizer of Equation (2.3) in polynomial time.

Lemma 3. Given two integers m and k and a sequence c0, c1, . . . , ck(m+1), one

can find (in polynomial time) an optimal pure strategy x = (x1, x2, . . . , xk) where∑k
i=1 xi = m, x̂ = G(x) and x̂ minimizes c0 +

∑k(m+1)
i=1 cix̂i.

Proof. We employ a dynamic programming approach. Define d[i, t] to be the mini-

mum possible value of c0 +
∑i(t+1)

i′=1 ci′x̂i′ where
∑i

i′=1 xi′ = t. Hence, d[k,m] denotes

the minimum possible value of c0 +
∑k(m+1)

i=1 cix̂i. We have that d[0, j] is equal to

c0 for all j. For an arbitrary i > 0 and t, the optimal strategy x puts 0 ≤ t′ ≤ t

units in the i-th battlefield and the applied cost in the equation 2.3 is equal to
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c(i−1)(m+1)+t′+1. Thus, we can express d[i, t] as

d[i, t] = min
0≤t′≤t

{d[i− 1, t− t′] + c(i−1)(m+1)+t′+1}.

Solving this dynamic program, we can find the allocation of troops that minimizes∑
αix̂i in polynomial time, as required.

Step 3: Transferring to the original space. At last we should transfer the solution of

LP 2.2 to the original space. In particular, we are given a point x̂ ∈ SA and our goal

is to find a strategy x ∈ M(X) such that GA(x) = x̂. To achieve this, we invoke a

classic result of [59] which states that an interior point of an n-dimensional polytope

P can be decomposed as a convex combination of at most n + 1 extreme points of

P , in polynomial time, given an oracle that optimizes linear functions over P . Note

that this is precisely the oracle required for Step 2, above. Applying this result to

the solution of LP 2.2 in polytope SA, we obtain a convex decomposition of x̂ into

extreme points of SA, say x̂ =
∑

i αix̂i. Since each x̂i corresponds to a pure strategy

in X, it is trivial to find point xi with GA(xi) = x̂i, since the marginals of each x̂i

lie in {0, 1}. We then have that x =
∑

i αixi is the required mixed strategy profile.

Combining these three steps, we find a Nash Equilibrium of the Colonel Blotto

game in polynomial time, completing the proof of Theorem 1. See Section 2.2 for

more details.

In our method for finding a Nash Equilibrium of the Colonel Blotto game, the

main steps were to express the game as a bilinear game of polynomial dimension,
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solve for an equilibrium of the bilinear game, then express that point as an equi-

librium of the original game. To implement the final two steps, it sufficed to show

how to optimize linear functions over the polytope of strategies in the bilinear game.

This suggests a general reduction, where the equilibrium computation problem is

reduced to finding the appropriate bilinear game and implementing the required

optimization algorithm. In other words, the method for computing Nash equilibria

applies to a zero-sum game when:

1. One can transfer each strategy x of player A to GA(x) = x̂ ∈ Rn(A), and each

strategy y of player B to GB(y) = ŷ ∈ Rn(B) such that the payoff of the game

for strategies x̂ and ŷ can be represented in a bilinear form based on x̂ and ŷ,

i.e., the payoff is x̂tM ŷ where M is a n(A)× n(B) matrix.

2. For any given vector α and real number α0 we can find, in polynomial time,

whether there is a pure strategy x̂ in the transferred space such that α0 +∑
i αix̂i ≥ 0.

We refer to such a game as polynomially separable. A direct extension of the proof

of Theorem 1 implies that Nash equilibria can be found for polynomially separable

games.

Theorem 4. There is a polytime algorithm which finds a Nash Equilibrium of a

given polynomially separable game.

This general methodology can be used for finding a NE in many zero-sum

games. In subsequent sections, we show how our framework can be used to find
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Nash equilibria for a generalization of Blotto games, known as games, and for a

class of dueling games introduced by Immorlica et al. [60].

We also show one can use similar techniques to compute the approximate

equilibrium payoffs of a dueling game when we are not able to answer the separation

problem in polynomial time but instead we can polynomially solve the ε-separation

problem for any ε > 0.

Theorem 5. Given an oracle function for the ε-separation problem, one can find

an ε-approximation to the equilibrium payoffs of a polynomially separable game in

polynomial time.

The General Lotto game is a relaxation of the Colonel Lotto game (See [36]

for details). In this game each player’s strategy is a distribution of a nonnegative

integer-valued random variable with a given expectation. In particular, players A

and B simultaneously determine (two distributions of) two nonnegative integer-

valued random variables X and Y , respectively, such that E[X] = a and E[Y ] = b.

The payoff of player A is

hAΓ (X, Y ) =
∞∑
i=0

∞∑
j=0

Pr(X = i) Pr(Y = j)u(i, j), (2.4)

and again the payoff of player B is the negative of the payoff of player A, i.e.,

hBΓ (X, Y ) = −hAΓ (X, Y ). Hart [36] presents a solution for the General Lotto game

when u(i, j) = sign(i− j). Here, we generalize this result and present a polynomial-

time algorithm for finding an equilibrium when u is a bounded distance function.

Function u is a bounded distance function, if one can write it as u(i, j) = fu(i − j)
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such that fu is a monotone function and reaches its maximum value at uM = fu(u
T )

where uT ∈ O(poly(a, b)). Note that u(i, j) = sign(i − j) is a bounded distance

function where it reaches its maximum value at i − j = 1. Now, we are ready to

present our main result regarding the General Lotto game.

Theorem 6. There is a polynomial-time algorithm which finds an equilibrium of a

General Lotto game where the payoff function is a bounded distance function.

Main challenge Note that in the General Lotto game, each player has infinite

number of pure strategies, and thus one cannot use neither our proposed algorithm

for the Colonel Blotto game nor the technique of [60] for solving the problem. We

should prune strategies such that the problem becomes tractable. Therefore, we

characterize the extreme point of the polytope of all strategies, and use this char-

acterization for pruning possible strategies.

To the best of our knowledge, our algorithm is the first algorithm of this kind

which computes an NE of a game with infinite number of pure strategies.

2.1 Application to Dueling Games

Immorlica et al. [60] introduced the class of dueling games. In these games, an

optimization problem with an element of uncertainty is considered as a competition

between two players. They also provide a technique for finding Nash equilibria for

a set of games in this class. Later Dehghani et al. [61] studied dueling games in a

non-computational point of view and proved upper bounds on the price of anarchy

of many dueling games. In this section, we formally define the dueling games and
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bilinear duels. Then, in Section 2.1.3, we describe our method and show that our

technique solves a more general class of dueling games. Furthermore, we provide

examples to show how our method can be a simpler tool for solving bilinear duel

games compared to [60] method. Finally, in Section 2.1.4, we examine the matching

duel game to provide an example where the method of [60] does not work, but our

presented method can yet be applied.

2.1.1 Dueling Games

Formally, dueling games are two player zero-sum games with a set of strategies

X, a set of possible situations Ω, a probability distribution p over Ω, and a cost

function c : X × Ω→ R that defines the cost measure for each player based on her

strategy and the element of uncertainty. The payoff of each player is defined as the

probability that she beats her opponent minus the probability that she is beaten.

More precisely, the utility function is defined as

hA(x, y) = −hB(x, y) = Pr
ω∼p

[c(x, ω) < c(y, ω)]− Pr
ω∼p

[c(x, ω) > c(y, ω)]

where x and y are strategies for player A and B respectively. In the following there

are two dueling games mentioned in [60].

Binary search tree duel. In the Binary search tree duel, there is a set of

elements Ω and a probability distribution p over Ω. Each player is going to construct

a binary search tree containing the elements of Ω. Strategy x beats strategy y for

element ω ∈ Ω if and only if the path from ω to the root in x is shorter than the
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path from ω to the root in y. Thus, the set of strategies X is the set of all binary

search trees with elements of Ω, and c(x, ω) is defined to be the depth of element ω

in strategy x.

Ranking duel. In the Ranking duel, there is a set of m pages Ω, and a

probability distribution p over Ω, notifying the probability that each page is going

to be searched. In the Ranking duel, two search engines compete against each other.

Each search engine has to provide a permutation of these pages, and a player beats

the other if page ω comes earlier in her permutation. Hence, set of strategies X is

all m! permutations of the pages and for permutation x = (x1, x2, . . . , xm) and page

ω, c(x, ω) = i iff ω = xi.

2.1.2 Dueling Games are Polynomially Separable

Consider a dueling game in which each strategy x̂ of player A is an n(A)

dimensional point in Euclidean space. Let SA be the convex hull of these strategy

points. Thus each point in SA is a mixed strategy of player A. Similarly define

strategy ŷ, n(B), and SB for player B. A dueling game is bilinear if utility function

hA(x̂, ŷ) has the form x̂tMŷ where M is an n(A) × n(B) matrix. Again for player

B, we have hB(x̂, ŷ) = −hA(x̂, ŷ). [60] provides a method for finding an equilibrium

of a class of bilinear games which is defined as follows:

Definition 7. Polynomially-representable bilinear dueling games: A bilinear duel-

ing game is polynomially representable if one can present the convex hull of strate-

gies SA and SB with m polynomial linear constraints, i.e. there are m vectors
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{v1, v2, . . . , vm} and m real numbers {b1, b2, . . . , bm} such that SA = {x̂ ∈ Rn(A)|∀i ∈ {1, 2, . . . ,m}, vi.x̂ ≥

bi}. Similarly SB = {ŷ ∈ Rn(B)|∀i ∈ {1, 2, . . . ,m′}, v′i.ŷ ≥ b′i}.

In the following theorem, we show that every polynomially representable bi-

linear duel is also polynomially separable, as defined in Section 2. This implies

that the general reduction described in Section 2 can be used to solve polynomially

representable bilinear duels as well.

Theorem 8. Every polynomially-representable bilinear duel is polynomially separa-

ble.

Proof. Let SA and SB be the set of strategy points for player A and player B,

respectively. We show that if SA can be specified with polynomial number of linear

constraints, then one could design an algorithm that finds out whether there exists

a point x̂ ∈ SA such that α0 +
∑
αix̂i ≥ 0. Let {(v1, b1), (v2, b2), . . . , (vm, bm)} be

the set of constraints which specify SA where vi is a vector of size n(A) and bi is a

real number. We need to check if there exists a point satisfying both constraints in

{(v1, b1), (v2, b2), . . . , (vm, bm)} and α0 +
∑
αix̂i ≥ 0. Recall that m is polynomial.

Since all these constraints are linear, we can solve this feasibility problem by a LP

in polynomial time. The same argument holds for SB, therefore every polynomially

representable bilinear duel is polynomially separable as well.

2.1.3 A Simplified Argument for Ranking and Binary Search Duels

In this section, we revisit some examples of dueling games, and show how

to use Theorem 4 to establish that they can be solved in polynomial time. The
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application of Theorem 4 as two main steps. First, it is necessary to express the

duel as a bilinear game: that is, one must transfer every strategy of the players to

a point in n(A) and n(B) dimensional space, such the outcome of the game can be

determined for two given strategy points with an n(A)× n(B) matrix M . Second,

one must implement an oracle that determines whether there exists a strategy point

satisfying a given linear constraint.

To illustrate our method more precisely, we propose a polynomial-time algo-

rithm for finding an NE for ranking and binary search tree dueling games in what

follows.

Theorem 9. There exists an algorithm that finds an NE of the Ranking duel in

polynomial time.

Proof. We transfer each strategy x of player A to point x̂ in Rm2
where x̂i,j denotes

the probability that ωi stands at position j in x. The outcome of the game is

determined by the following equation

m∑
i=1

m∑
j=1

m∑
k=j+1

x̂i,j ŷi,kp(ωi)−
m∑
i=1

m∑
j=1

j−1∑
k=1

x̂i,j ŷi,kp(ωi)

Where p(ωi) denotes the probability that ωi is searched.

Here, we need to provide an oracle that determines whether there exists a

strategy point for a player that satisfies a given linear constraint α0 +
∑
αi,jx̂i,j ≥ 0.

Since each pure strategy is a matching between pages and indices, we can find

the pure strategy that maximizes
∑
αi,jx̂i,j with the maximum weighted matching

algorithm. Therefore, this query can be answered in polynomial time. Since we
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have reduced this game to a polynomially-separable bilinear duel, we can find a

Nash equilibrium in polynomial time.

Theorem 10. There exists an algorithm that finds an NE of the Binary search tree

duel in polynomial time.

Proof. Here we map each strategy x to the point x̂ = 〈x̂1,1, x̂1,2, . . . , x̂1,m, x̂2,1, x̂2,2, . . . , x̂m,m〉 ∈

Rm2
where x̂i,j denotes the probability that depth of the i-th element is equal to j.

Therefore, the payoff of the game for strategies x̂ and ŷ is equal to

m∑
i=1

m∑
j=1

m∑
k=j+1

x̂i,j ŷi,kp(ωi)−
m∑
i=1

m∑
j=1

j−1∑
k=1

x̂i,j ŷi,kp(ωi)

Where p(ωi) denotes the probability that i-th element is searched.

Next, we need to provide an oracle that determines whether there exists a

strategy point for a player that satisfies a given linear constraint α0 +
∑
αi,jx̂i,j ≥ 0.

To do this, we find the binary search tree that maximizes
∑
αi,jx̂i,j. This can

be done with a dynamic program. Let D(a, b, k) denote the maximum value of∑b
i=a αi,jx̂i,j for a subtree that its root is at depth k. D(a, b, k) can be formulated

as

D(a, b, k) =
a < b, mina≤c≤b{D(a, c− 1, k + 1) +D(c+ 1, b, k + 1) + αc,k}

a = b, αa,k

Therefore, we can find the Binary search tree which maximizes
∑
αi,jx̂i,j in poly-
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nomial time and see if it meets the constraint. Since we have reduced this game to

a polynomially-separable bilinear duel, we can find an NE in polynomial time.

2.1.4 Matching Duel

In matching duel we are given a weighted graph G = (V,E,W ) which is not

necessarily bipartite. In a matching duel each pure strategy of players is a perfect

matching, set of possible situations Ω is the same as the set of nodes in G, and

probability distribution p over Ω determines the probability of selection of each

node. In this game, strategy x beats strategy y for element ω ∈ Ω if ω is matched

to a higher weighted edge in strategy x than strategy y.

The matching duel may find its application in a competition between websites

that try to match people according to their desire. In this competition the website

that suggest a better match for each user will get that user, and the goal of each

website is to maximize the number of its users. We mention that the ranking duel

is a special case of the matching duel, when G is a complete bipartite graph with

n nodes on each side, in which the first part denotes the web pages and the second

part denotes the positions in the ranking. Thus, the weight of the edge between

page i and rank j is equal to j.

First, we describe how our method can solve this game and then we show the

method of Immorlica et al. [60] cannot be applied to find an NE of the matching

duel.

Theorem 11. There exists an algorithm that finds an NE of the matching duel in
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polynomial time.

Proof. We transfer every strategy x to a point in |E|-dimensional Euclidean space

x̂, where x̂e denotes the probability that x chooses e in the matching. Thus, the

payoff function is bilinear and is as follows:

∑
ω∈Ω

∑
e1∈N(ω)

∑
e2∈N(ω)

[p(ω)x̂e1 ŷe2 × sign(w(e1)− w(e2))]

where N(ω) is the set of edges adjacent to ω2. Next, we need to prove that the game

is polynomially separable. That is, given a vector α and a real number α0, we are to

find out whether there is a strategy x̂ such that α0 + α.x̂ ≥ 0. This problem can be

solved by a maximum weighted prefect matching, where the graph is G = (V,E,W )

and w(e) = αe. Thus our framework can be used to find an NE of the matching

duel in polynomial time.

Note that Rothvoss [62] showed that the feasible strategy polytope (the perfect

matching polytope) has exponentially many facets. Therefore, the prior approach

represented in the work of Immorlica et al. [60] is not applicable to the matching

duel. This example shows that our framework nontrivially generalizes the method

of Immorlica et al. [60] and completes the presentation of our simpler and more

powerful tool for solving bilinear duels.

2Note that sign(w) is 1, −1, and 0 if w is positive, negative, and zero respectively.
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2.2 Colonel Blotto

In this section we provide a more detailed description of our polynomial time

algorithm for finding a Nash equilibrium (NE) of the Colonel Blotto game. Hart

showed that the Colonel Lotto game is equivalent to a special case of the Colonel

Blotto game [36]. Therefore, our algorithm could be used to find a NE of the Colonel

Lotto game as well.

In section 2.2.1, we present a procedure for mapping strategies of both players

to a new space. The new space maintains the important information of each strategy

and helps us to find a Nash equilibrium of the game. Next in section 2.2.2, we

show how we check the feasibility of the membership constraint in the new space.

Moreover, we present a polynomial-time algorithm for determining an equilibrium

of the Colonel Blotto game in the new space. At last in section 2.2.3, we present

an algorithm which transfers a Nash equilibrium from the new space to the original

space.

2.2.1 Transferring to a New Space

In this subsection we define a new notation for describing the strategies of

players and discuss about the properties of the transferred strategies. Let n(A) =

k(a+1), and x be a strategy of player A. We define the function GA in the following

way: GA(x) = x̂ where x̂ is a point in Rn(A) such that x̂(i−1)(a+1)+j+1 is equal to the

probability that strategy x puts j units in the i-th battlefield, for 1 ≤ i ≤ k and

0 ≤ j ≤ a. For simplicity we may represent x̂(i−1)(a+1)+j+1 by x̂i,j. We define n(B)
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and GB similarly for player B. Let n = max{n(A), n(B)}. Note that, GA maps each

strategy of the first player to exactly one point in Rn(A). However, each point in

Rn(A) may be mapped to zero, one, or more than one strategies. Let us recall the

definition of M(X) which is the set of all strategies of player A, and the definition

of SA which is

SA = {x̂ ∈ [0, 1]n(A)|∃x ∈M(X),GA(x) = x̂}.

In order to design an algorithm for checking the membership constraint, we first

demonstrate in Lemma 12 that set SA is a polyhedron with an exponential number

of vertices and facets. This lemma is a more formal statement of Lemma 2. Then

we prove in Lemma 13 that set SA can be formulated with O(2poly(n)) number of

constraints. These results allow us to leverage the Ellipsoid method for checking the

membership constraint [57].

Lemma 12. Set SA forms a convex polyhedron with no more than n(A)n(A) vertices

and no more than n(A)(n(A)2) facets.

Lemma 13. Set SA can be formulated with O(2poly(n)) number of constraints

2.2.2 Verifying the Membership Constraints and the Payoff Con-

straints

The final goal of this section is to determine a NE of the Colonel Blotto

game. To do this, we provide linear program 2.2 and show that this LP can be

solved in polynomial time. Since we use the Ellipsoid method to solve the LP, we
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have to implement an oracle function that reports a violating constraint for any

infeasible solution. In this subsection we focus on the membership constraint of LP

2.2 and show that for any infeasible point x̂ which violates membership constraint,

a polynomial-time algorithm finds a hyperplane that separates x̂ from SA.

Lemma 14. There exists a polynomial time algorithm that gets a point x̂ as input,

and either finds a hyperplane that separates x̂ from SA, or reports that no such

hyperplane exists.

Proof. Let x̂ = (x̂1, x̂2, . . . , x̂n(A)). Consider the following LP, which we will refer to

as LP 2.5:

α0 +

n(A)∑
j=1

αjx̂j < 0 (2.5)

α0 +

n(A)∑
j=1

αj v̂j ≥ 0 ∀v̂ ∈ IA (2.6)

The variables of the linear program are α0, α1, . . . , αn(A), which describe the following

hyperplane:

α0 +

n(A)∑
j=1

αjx̂
′
j = 0.

Constraints 2.5 and 2.6 force LP 2.5 to find a hyperplane that separates x̂ from SA.

Hence, LP 2.5 finds a separating hyperplane if and only if x̂ is not in SA.

Hyperplane separating oracle is an oracle that gets variables α0, α1, . . . , αn(A)

as input and finds if constraints 2.6 are satisfied. Moreover, if some constraints are

violated it returns at least one of the violated constraints. In Section 2.4 we describe

a polynomial-time algorithm for the hyperplane separating oracle. Constraint 2.5
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also can be checked in polynomial time. Our LP has n(A) + 1 variables and |IA|+

1 constraints which is O(2poly(n)) by Lemma 12. Thus we can solve this LP in

polynomial time with the Ellipsoid method [57].

In the next step, we present an algorithm to determine the outcome of the

game when both players play optimally. We say x is an optimal strategy of player

A, if it maximizes the guaranteed payoff of player A. By the MinMax Theorem,

in a NE of a zero-sum game players play optimally [55]. Therefore, it is enough to

find an optimal strategy of both players. Before we discuss the algorithm, we show

the payoff hAB(x,y) can be determined by GA(x) and GB(y). Recall the definition of

hAB(x̂, ŷ) which is

hAB(x̂, ŷ) =
k∑
i=1

a∑
α=0

b∑
β=0

x̂i,αŷi,βu
A
i (α, β).

Lemma 15. Let x ∈ M(X) and y ∈ M(Y) be two mixed strategies for player A

and B respectively. Let x̂ = GA(x) and ŷ = GB(y). The outcome of the game is

determined by hAB(x̂, ŷ).

Proof. Let x and y be two mixed strategies of players A and B respectively, and

let E[uAi (x,y)] be the expected value of the outcome in battlefield i. We can write

E[uAi (x,y)] as follows

E[uAi (x,y)] =
a∑

α=0

b∑
β=0

x̂i,αŷi,βu
A
i (α, β).

We know that the total outcome of the game is the sum of the outcome in all
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battlefields, which is

E

[
k∑
i=1

uAi (x,y)

]
=

k∑
i=1

E[uAi (x,y)] =
k∑
i=1

a∑
α=0

b∑
β=0

x̂i,αŷi,βu
A
i (α, β) = hAB(x̂, ŷ).

Theorem 16. There exists a polynomial time algorithm that finds a NE of the

Colonel Blotto game in the new space.

Proof. The Colonel Blotto is a zero-sum game, and the MinMax theorem states that

a pair of strategies (x̂, ŷ) is a Nash equilibrium if x̂ and ŷ maximize the guaranteed

payoff of players A and B respectively [55].

Recall that LP 2.2 finds a point x̂ ∈ SA which describes an optimal strat-

egy of player A3. This LP has n(A) + 1 variables x̂1, x̂2, . . . , x̂n(A) and U where

x̂1, x̂2, . . . , x̂n(A) describe point x̂. The membership constraint guarantees x̂ is in

SA. It is known that in any normal-form game there always exists a best-response

strategy which is a pure strategy [63]. Hence, variable U represents the maximum

payoff of player A with strategy x̂ when player B plays his best-response strategy

against x̂. Note that, Lemma 15 shows hAB(x̂, ŷ) is a linear function of x̂, when ŷ is a

fixed strategy of player B. This means the payoff constraints are linear constraints.

Putting all these together show, LP 2.2 finds a point x̂ such that:

1. There exists strategy x such that GA(x) = x̂.

2. The minimum value of hAB(x,y) is maximized for every y ∈M(Y).

3The same procedure finds an optimal strategy of player B.
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Next we show that this LP can be solved in polynomial time with the Ellipsoid

method. First, Lemma 14 proposes a polynomial-time algorithm for checking the

membership constraint. Second, best-response separating oracle is an oracle that

gets point x̂ and variable U as input and either reports point x̂ passes all payoff

constrains or reports a violated payoff constraint. In Section 2.4, we will show that

the running time of this oracle is O(poly(n)).

At last we prove LP 2.2 has O(2poly(n)) number of constraints, and we can

leverage the Ellipsoid method for finding a solution of this LP. Note that Lemma 13

indicates that set SA can be represented by O(2poly(n)) number of hyperplanes. On

the other hand, Lemma 12 shows LP 2.2 has at most |IB| = O(2poly(n)) constraints.

2.2.3 Finding a Nash Equilibrium in the Original Space

In the previous subsection, we presented an algorithm which finds a Nash

equilibrium (GA(x),GB(y)) of the game in the new space. The remaining problem

is to retrieve x from GA(x).

Theorem 17. Given a point x̂ ∈ SA, there exists a polynomial time algorithm which

finds a strategy x ∈M(X) such that GA(x) = x̂.

Proof. Since every strategy of player A is a convex combination of elements of X,
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our goal is to find a feasible solution of the following LP.

min . 0 (2.7)

s.t.
∑
x∈X

αx = 1 (2.8)∑
x∈X

αxGA(x)j = x̂j ∀1 ≤ j ≤ n(A) (2.9)

αx ≥ 0 ∀x ∈ X (2.10)

where αx is the probability of pure strategy x ∈ X. Note that, this LP finds a

mixed strategy of player A by finding the probability of each pure strategy. Since

every feasible solution is acceptable, objective function does not matter. To find a

solution of this LP, we write its dual LP as follows.

max . β0 +

n(A)∑
j=1

x̂jβj (2.11)

s.t. β0 +

n(A)∑
j=1

GA(x)jβj ≤ 0 ∀x ∈ X (2.12)

Where variable β0 stands for constraint 2.8, and variables β1, β2, . . . , βn(A) stand

for constraints 2.9. An oracle similar to the hyperplane separating oracle can find

a violating constraint for any infeasible solution of the dual LP. Since the number

of constraints in the dual LP is |IA| = O(2poly(n)) based on Lemma 12, we can use

the Ellipsoid method and find an optimal solution of the dual LP in polynomial time.

The next challenge is to find an optimal solution of the primal LP from an
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optimal solution of the dual LP. We resolve this problem by the following lemma.

We know x̂ is in SA. This means there is strategy x ∈M(X) such that GA(x) = x̂.

Hence, linear program 2.7 and its dual are feasible, and we can apply Lemma 18.

Lemma 18. Assume we have a separation oracle for primal LP max{cTx : Ax ≤ b}

with exponentially many constraints and polynomially many variables. If primal LP

is feasible, then there is a polynomial-time algorithm which returns an optimum

solution of dual LP min{bTy : ATy ≥ c}.

Proof. Since the primal LP is feasible, we can assume OPT = max{cTx : Ax ≤ b}.

The Ellipsoid method returns an optimum solution of primal LP by doing binary

search and finding the largest K which guarantees feasibility of {cTx ≤ K : Ax ≤ b}.

Let (Â, b̂) be the set of polynomially many constraints returned by the separation

oracle during all iterations. We first prove max{cTx : Âx ≤ b̂} = OPT . Note that

(Â, b̂) is a set of constraints returned by the Ellipsoid method. Note that (Â, b̂) is

a subset of all constraints (A, b). This means every vector x which satisfies Ax ≤ b

will satisfy Âx ≤ b̂ as well. Therefore, max{cTx : Âx ≤ b̂} ≥ max{cTx : Ax ≤ b} =

OPT . On the other hand, we know (Â, b̂) contains constraints which guarantees

infeasibility of max{cTx ≥ OPT + ε : Ax ≤ b}. So, LP max{cTx ≥ OPI + ε : Âx ≤

b̂} is infeasible which means max{cTx : Âx ≤ b̂} ≤ OPT . Putting all these together

we can conclude that max{cTx : Âx ≤ b̂} = OPT .

Linear program max{cTx : Âx ≤ b̂} has polynomially many constraints and

polynomially many variables, and we can find an optimum solution to its dual

min{b̂T ŷ : ÂT ŷ ≥ c} in polynomial time. Let ŷ∗ be an optimum solution of dual LP
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min{b̂T ŷ : ÂT ŷ ≥ c}, and let S = {i|(Ai, bi) is in (Â, b̂)} where Ai is the i-th row

of matrix A, i.e., be set of indices corresponding to constraints in (Â, b̂). For every

vector y and every set of indices R we define yR to be the projection of vector y on

set R. Now consider vector y∗ as a solution of dual LP min{bTy : ATy ≥ c} such

that y∗S = ŷ∗ and y∗i = 0 for all i 6∈ S. We prove y∗ is an optimum solution of dual

LP min{bTy : ATy ≥ c} as follows:

• We first show y∗ is feasible. Note that y∗i = 0 for all i 6∈ S which means

ATy∗ = ÂT ŷ∗ ≥ c where the last inequality comes from the feasibility of ŷ∗ in

dual LP min{b̂Ty : ÂTy ≥ c}.

• Note that bTy∗ =
∑

i b
T
i y
∗
i =

∑
i∈S b

T
i y
∗
i +
∑

i 6∈S b
T
i y
∗
i = b̂T ŷ∗. The last equality

comes from the facts that y∗i = 0 for all i 6∈ S, and
∑

i∈S b
T
i y
∗
i = b̂T ŷ∗. Since

ŷ∗ is an optimum solution of dual the LP min{b̂Ty : ÂTy ≥ c}, by the weak

duality, it is equal to max{cTx : Âx ≤ b̂} = OPT . Therefore, bTy∗ = OPT .

We have proved y∗ is a feasible solution to dual LP min{bTy : ATy ≥ c} and

bTy∗ = OPT . We also know OPT = max{cTx : Ax ≤ b} by definition. Therefore,

the weak duality insures y∗ is an optimum solution of dual LP min{bTy : ATy ≥ c}.

2.3 General Lotto

In this section we study the General Lotto game. An instance of the General

Lotto game is defined by Γ(a, b, u), where players A and B simultaneously define

probability distributions of non-negative integers X and Y , respectively, such that
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E[X] = a and E[Y ] = b. In this game, player A’s aim is to maximize hAΓ (X, Y ) and

player B’s aim is to maximize hBΓ (X, Y ) = −hAΓ (X, Y ) where hAΓ (X, Y ) is defined

as Ei∼X,j∼Y u(i, j). The previous studies of the General Lotto game considered a

special case of the problem where u(i, j) = sign(i − j)4. Here, we generalize the

payoff function to a bounded distance function and present an algorithm for finding

a Nash equilibrium of the General Lotto game in this case. Function u is a bounded

distance function, if one can write it as u(i, j) = fu(i−j) such that fu is a monotone

function and reaches its maximum value at fu(tu) where tu ∈ O(poly(a, b)).

We first define a new version of the General Lotto game, which is called the

finite General Lotto game. We prove a Nash equilibrium of the finite General Lotto

game can be found in polynomial time. Then we reduce the problem of finding a

Nash equilibrium of the General Lotto game with a bounded distance function to

the problem of finding a Nash equilibrium of the finite General Lotto game. This

helps us to propose a polynomial-time algorithm which finds a Nash equilibrium of

the General Lotto game where the payoff function is a bounded distance function.

2.3.1 Finite General Lotto

We define the finite General Lotto game Γ(a, b, u, S) to be an instance of the

General Lotto game where every strategy of players is a distribution over a finite set

of numbers S. Here, we leverage our general technique to show the finite General

Lotto game is a polynomially-separable bilinear game and, as a consequence, it leads

4sign(x) =

−1 x < 0

0 x = 0

1 x > 0
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to a polynomial time algorithm to find a Nash equilibrium for this game.

Theorem 19. There exists an algorithm which finds a Nash equilibrium of the finite

General Lotto game Γ(a, b, u, S) in time O(poly(|S|)).

Proof. First we map each strategy X to a point x̂ = 〈x̂1, x̂2, . . . , x̂|S|〉, where x̂i

denotes Pr(X = Si). Without loss of generality we assume the elements of S are

sorted in strictly ascending order, i.e. for each 1 ≤ i < j ≤ |S|, Si < Sj. Now

the utility of player A when A plays a strategy corresponding to x̂ and B plays a

strategy corresponding to ŷ is obtained by the following linear function.

hAΓ (x̂, ŷ) =

|S|∑
i=1

i−1∑
j=1

x̂ŷu(i, j)−
|S|∑
i=1

|S|∑
j=i+1

x̂ŷu(i, j).

Therefore the game is bilinear. Now we prove the game is polynomially separable.

Given a real number r and a vector v, we provide a polynomial-time algorithm

which determines whether there exists a strategy point x̂ such that r+ v.x̂ ≥ 0. We

design the following feasibility program for this problem with |S| variables x̂1 to x̂|S|

and three constraints.

|S|∑
i=1

x̂i = 1 (2.13)

|S|∑
i=1

x̂iSi = a (2.14)

r + v.x̂ ≥ 0 (2.15)

Constraints 2.13 and 2.14 force the variables to represent a valid strategy point (i.e.,
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the probabilities sum to 1 and the expectation equals a). Thus every point x̂ is a

valid strategy point iff it satisfies Constraints 2.13 and 2.14. On the other hand,

Constraint 2.15 enforces the program to satisfy the given linear constraint of the

separation problem. Thus there exists a strategy point x̂ such that b + v.x̂ ≥ 0

iff there is a solution for the feasibility LP. The feasibility of the program can

be determined in polynomial time, hence, the separation problem is polynomially

tractable.

Therefore the finite General Lotto game is a polynomially-separable bilinear

game and by Theorem 4, there exists a polynomial-time algorithm which finds a

Nash equilibrium of the finite General Lotto game.

2.3.2 General Lotto with Bounded Distance Functions

In this section, we consider General Lotto game Γ(a, b, u) where u is a bounded

distance function and design a polynomial-time algorithm for finding a Nash equi-

librium of the game. In the following part of this section we assume a ≤ b. Recall

the definition of bounded distance functions.

Definition 20. Function u is a bounded distance function, if one can write it as

u(i, j) = fu(i − j) such that fu is a monotone function and reaches its maximum

value at uM = fu(u
T ) where uT ∈ O(poly(a, b)). We call uT the threshold of function

u, and uM the maximum of function u 5 .

First we define a notion of paired strategies and claim that for every strategy

5Note that sign function is a special case of distance functions.
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of a player there is a best-response strategy which is a paired strategy. Then, using

this observation, we can prove nice bounds on the set of optimal strategies.

Consider a probability distribution which only allows two possible outcomes,

i.e., there are only two elements in S with non-zero probabilities. We call such a

distribution a paired strategy. We define Ti,j to be a paired strategy which only has

non-zero probabilities at elements i and j. Furthermore, we define T ai,j to be a paired

strategy with E[T ai,j] = a. In paired strategy T ai,j, the probabilities of elements i and j

are determined by αai,j = Pr(T ai,j = i) = a−j
i−j and αaj,i = Pr(T ai,j = j) = a−i

j−i = 1−αai,j.

In the following structural lemma, we show that every distribution T over a finite

set S can be constructed by a set of paired strategies.

Lemma 21. For every distribution T over S with E[T ] = a and t elements with

non-zero probability, there are m ≤ t paired strategies σ1, σ2, . . . , σm such that T =∑m
r=1 βrσr

6, and for all 1 ≤ i ≤ m we have βi ∈ [0, 1] and E[σi] = a.

Proof. We prove this claim by induction on the number of elements with non-zero

probabilities in T . If there is only one element with non-zero probability in T , i.e.,

t = 1, then we have Pr(T = a) = 1. Thus T = T a0,a is a paired strategy and the

claim holds by setting σ1 = T a0,a and β1 = 1. Now assuming the claim holds for

all 1 ≤ t′ < t, we prove the claim also holds for t. Suppose T be a probability

distribution with t non-zero probability elements. Since t ≥ 2, there should be

some i < a with Pr(T = i) > 0 and some j > a with Pr(T = j) > 0. We

choose the largest possible number 0 < β ≤ 1 such that βαai,j ≤ Pr(T = i) and

6This lemma claims that the strategy of a player in the finite General Lotto game can be written
as a probability distribution over paired strategies. Thus T = β1σ1 + β2σ2 + . . .+ βmσm describes
a strategy in which the paired strategy σi is played with probability βi.
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βαaj,i ≤ Pr(T = j). If β = 1, then Pr(T = i) + Pr(T = j) ≥ αai,j + αaj,i = 1.

This means T = T ai,j is a paired strategy and the claim holds by setting σ1 = T ai,j

and β1 = 1. Otherwise, we can write T = (1 − β)T ′ + βT ai,j where T ′ =
T−βTa

i,j

1−β .

Furthermore we have

E[T ′] =
E[T − βT ai,j]

1− β
=

E[T ]− βE[T ai,j]

1− β
= a.

We select β such that at least one of the probabilities Pr[T ′ = i] or Pr[T ′ = j]

becomes zero. Thus compared to T , the number of elements with non-zero prob-

ability in T ′ is at least decreased by one, and by the induction hypothesis we can

write T ′ = β′1σ
′
1 + β′2σ

′
2 + . . . + β′m′σ

′
m′ where m′ ≤ t − 1. Let βi = (1 − β)β′i

and σi = σ′i for 1 ≤ i ≤ m′ and βm′+1 = β and σm′+1 = T ai,j. Now we can write

T = β1σ1 +β2σ2 + . . .+βm′+1σm′+1 where each σi is a paired strategy and E(σi) = a.

Furthermore, m = m′ + 1 ≤ t and the proof is complete. Since t ≤ |S|, m is poly-

nomial in the size of input. Therefore paired strategies σ1, σ2, . . . , σm and their

corresponding coefficients β1, β2, . . . , βm can be computed in polynomial time.

Lemma 22. For every strategy of player A in a finite General Lotto game there is

a best-response strategy of player B which is a paired strategy.

Proof. Consider finite General Lotto game Γ(a, b, u, S), strategy X of player A, and

a best-response strategy Z of player B. Since Z is a distribution on S, by using

Lemma 21 we can write Z =
∑m

r=1 βrσr. Thus, we have hBΓ (X,Z) = hBΓ (X,
∑m

r=1 βrσr)

and because of the linearity of expectation we can write hBΓ (X,Z) =
∑m

r=1 βrh
B
Γ (X, σr).
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Since Z is a best-response strategy, we have:

∀1 ≤ r ≤ m, hBΓ (X, σr) = hBΓ (X,Z). (2.16)

This means paired strategy σr, for each 1 ≤ r ≤ m, is a best-response strategy of

player B.

In the following lemmas, using the structural property of the best-response

strategies, we show some bounds for each player’s optimal strategies.

Lemma 23. For any strategy X with E[X] = c and any integer j we have
∑j

i=0 Pr(X = i) ≥

1− c
j+1

.

Proof. Since
∑+∞

i=0 iPr(X = i) = c, we have (j + 1)
∑+∞

i=j+1 Pr(X = i) ≤ c. This

implies
j∑
i=0

Pr(X = i) = 1−
+∞∑
i=j+1

Pr(X = i) ≥ 1− c

j + 1
.

Lemma 24. Consider Nash equilibrium (X, Y ) of General Lotto game Γ(a, b, u)

where u is a bounded distance function with threshold uT . We have
∑a−1

i=0 Pr(Y = i) ≤

uT

uT +1
.

Proof. Let X ′ be a pair distribution of player A that chooses a− 1 with probability

p and chooses a + uT − 1 with probability 1 − p. Thus p = uT−1
uT

. The payoff of
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playing strategy X ′ against Y is

hAΓ (X ′, Y ) =
+∞∑
i=0

Pr(Y = i)[pu(a− 1, i) + (1− p)u(a+ uT − 1, i)]. (2.17)

Note that by the definition of u, u(i, j) ≥ 0 if and only if i − j ≥ 0 and

u(i, j) ≤ 0 if and only if i− j ≤ 0. Furthermore, if i− j ≥ uT then u(i, j) = uM and

if i− j ≤ −uT then u(i, j) = −uM . Therefore,

a−1∑
i=0

Pr(Y = i)pu(a− 1, i) ≥ 0

a−1∑
i=0

Pr(Y = i)(1− p)u(a+ uT − 1, i) ≥ (1− p)uM
a−1∑
i=0

Pr(Y = i)

+∞∑
i=a

Pr(Y = i)[pu(a− 1, i) + (1− p)u(a+ uT − 1, i)] ≥ − uM
+∞∑
i=a

Pr(Y = i)

(2.18)

Note that a ≤ b and (X, Y ) is a Nash equilibrium which means hAΓ (X, Y ) ≤ 0.

This implies hAΓ (X ′, Y ) ≤ 0. Thus, by applying Equality 2.17 and Inequality 2.18

we have

0 ≥ hAΓ (X ′, Y ) ≥ (1− p)uM
a−1∑
i=0

Pr(Y = i)− uM
+∞∑
i=a

Pr(Y = i),

which implies
∑+∞

i=0 Pr(Y = i) ≥ (2− p)
∑a−1

i=0 Pr(Y = i). Thus,
∑a−1

i=0 Pr(Y = i) ≤

1
2−p . By substituting uT−1

uT
instead of p we can conclude

∑a−1
i=0 Pr(Y = i) ≤ uT

uT +1
.

In the following lemma we provide an upper-bound for the maximum variable

with non-zero probability of a player’s strategy in the equilibrium.

43



Lemma 25. Consider a Nash equilibrium (X, Y ) of General Lotto game Γ(a, b, u)

where u is a bounded distance function with threshold uT . If û = (4buT + 4b +

uT )(2uT + 2), then we have Pr(Y > û+ uT ) = 0 and Pr(X > û) = 0.

Proof. First, we prove for any integer z > û, Pr(X = z) = 0. The proof is by

contradiction. Let z > û be an integer with non-zero probability in X. Thus there

is an integer x < a with non-zero probability in X. Consider the pair distribution

T ax,z. We define another pair distribution T ax,y where y = 4buT + 4b+ uT .

Consider strategy Xε = X − εT ax,z + εT ax,y. Note that (X, Y ) is a Nash equilib-

rium of the game. This means strategy X is a best response of player A to strategy

Y of player B which implies hAΓ (X, Y ) ≥ hAΓ (Xε, Y ). On the other hand, because of

the linearity of expectation we can write

hAΓ (Xε, Y ) = hAΓ (X, Y )− εhAΓ (T ax,z, Y ) + εhAΓ (T ax,y, Y ).

Therefore, we conclude w = hAΓ (T ax,z, Y )−hAΓ (T ax,y, Y ) ≥ 0. Let p = αaz,x and q = αay,x.

We have

w =
+∞∑
i=0

Pr(Y = i)[(1− p)u(x, i) + pu(z, i)]−
+∞∑
i=0

Pr(Y = i)[(1− q)u(x, i) + qu(y, i)] ≥ 0.

44



We write w as w = w1 + w2 − w3 − w4 + w5, where

w1 =
x∑
i=0

Pr(Y = i)[[(1− p)u(x, i) + pu(z, i)]− [(1− q)u(x, i) + qu(y, i)]],

w2 =
+∞∑
i=x+1

Pr(Y = i)[(1− p)u(x, i)− (1− q)u(x, i)],

w3 =

y−uT−1∑
i=x+1

Pr(Y = i)qu(y, i),

w4 =
+∞∑

i=y−uT
Pr(Y = i)qu(y, i),

w5 =
+∞∑
i=x+1

Pr(Y = i)pu(z, i).

Since 1 − p ≥ 1 − q and u(z, i) = u(y, i) = uM for all i ≤ x, we can conclude

w1 ≤ 0. For all i > x, we have u(x, i) ≤ 0, and we also know 1− p ≥ 1− q. These

mean w2 ≤ 0. Since for all i ≤ y − uT we have u(y, i) = uM , we conclude

w3 = quM
y−uT−1∑
i=x+1

Pr(Y = i) (2.19)

Moreover, for any arbitrary integers i and j, we have −uM ≤ u(i, j) ≤ uM . Thus

−w4 ≤ quM
+∞∑

i=y−uT
Pr(Y = i) (2.20)

w5 ≤ puM
+∞∑
i=x+1

Pr(Y = i) (2.21)

Therefore by knowing w ≥ 0, w1 ≤ 0, w2 ≤ 0, and considering Inequalities 2.19,
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2.20, and 2.21, we conclude

uM(−q
y−uT−1∑
i=x+1

Pr(Y = i) + q

+∞∑
i=y−uT

Pr(Y = i) + p
+∞∑
i=x+1

Pr(Y = i)) ≥ w ≥ 0.

(2.22)

y − uT − 1 = 4buT + 4b− 1 and by Lemma 23,
∑y−uT−1

i=0 Pr(Y = i) ≥ 1− b
4buT +4b

=

4uT +3
4uT +4

. Note that x < a which means
∑x

i=0 Pr(Y = i) ≤
∑a−1

i=0 Pr(Y = i). On

the other hand, Lemma 24 says
∑a−1

i=0 Pr(Y = i) ≤ uT

uT +1
. Hence we can conclude∑x

i=0 Pr(Y = i) ≤ uT

uT +1
. Therefore

y−uT−1∑
i=x+1

Pr(Y = i) =

y−uT−1∑
i=0

Pr(Y = i)−
x∑
i=0

Pr(Y = i) ≥ 3

4uT + 4
(2.23)

and
+∞∑

i=y−uT
Pr(Y = i) = 1−

y−uT−1∑
i=0

Pr(Y = i) ≤ 1

4uT + 4
. (2.24)

By Inequalities 2.22, 2.23, 2.24, and
∑+∞

i=x+1 Pr(Y = i) ≤ 1, we have

−q 3

4uT + 4
+ q

1

4uT + 4
+ p ≥ 0. (2.25)

which implies q
p
≤ 2uT + 2. Recalling p = αaz,x = a−x

z−x , q = αay,x = a−x
y−x , and z > y, we

can bound z
y

as follows z
y
≤ z−x

y−x = q
p
≤ 2uT+2. Therefore z ≤ y(2uT+2) = û which is

a contradiction. Knowing that player A put zero probability on every number z > û

and considering the definition of bounded distance function u, player B will put

zero probability of every number greater than û+ uT in any Nash equilibrium.
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The following theorem follows immediately after Theorem 19 and Lemma 25.

Theorem 26. There is a polynomial time algorithm which finds a Nash Equilibrium

of the General Lotto game Γ(a, b, u) where u is a bounded distance function.

Proof. Let ū = (4buT +4b+uT )(2uT +2)+uT . Lemma 25 shows there is a bound on

the optimal strategies in a Nash equilibrium. More precisely Pr(Y > ū) = 0, where

Y is a strategy of player A or B. Thus General Lotto game Γ(a, b, u) is equivalent

to finite General Lotto game Γ(a, b, f, S), where S = {1, 2, . . . , ū}. By Theorem 19,

a polynomial-time algorithm finds a Nash equilibrium of the game.

2.4 Oracles

In this section we describe, in precise detail, the separating oracles used by the

ellipsoid method to solve our represented linear programs. Consider we are given

a sequence c0, c1, . . . , ck(m+1), where k is the number of battlefields and m is the

number of troops for a player. We first present an algorithm which finds a pure

strategy x = (x1, x2, . . . , xk) ∈ X such that
∑k

i=1 xi = m, and x̂ = G(x) minimizes

the following equation.

c0 +

k(m+1)∑
i=1

cix̂i (2.26)

Then we leverage this algorithm and design polynomial-time algorithms for the

hyperplane separating oracle and best-response separating oracle. The following

lemma shows that Algorithm 1 (FindBestPure ) finds the minimizer of Equation

2.26.
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Algorithm 1: FindBestPure

input: m, k, c0, c1, c2, . . . , ck(m+1)

1: for j ← 1 to m do
2: d[0, j]← c0

3: end for
4: for i← 1 to k do
5: for t← 0 to m do
6: for j ← 0 to t do
7: if d[i− 1, t− j] + c(i−1)(m+1)+j+1 < d[i, t] then
8: d[i, t]← d[i− 1, t− j] + c(i−1)(m+1)+j+1

9: r[i, t]← j
10: end if
11: end for
12: end for
13: end for
14: rem← m
15: for i← k downto 1 do
16: xi ← r[i, rem]
17: rem← rem− r[i, rem]
18: end for
19: return x = (x1, x2, . . . , xk)
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Lemma 27. Given two integers m and k and a sequence c0, c1, . . . , ck(m+1), algo-

rithm FindBestPure correctly finds an optimal pure strategy x = (x1, x2, . . . , xk)

where
∑k

i=1 xi = m, x̂ = G(x) and x̂ minimizes c0 +
∑k(m+1)

i=1 cix̂i.

Proof. In Algorithm FindBestPure , using a dynamic programming approach, we

define d[i, t] to be the minimum possible value of c0 +
∑i(t+1)

i′=1 ci′x̂i′ where
∑i

i′=1 xi′ =

t. Hence, d[k,m] denotes the minimum possible value of c0 +
∑k(m+1)

i=1 cix̂i. Now, we

show that Algorithm FindBestPure correctly computes d[i, t] for all 0 ≤ i ≤ k

and 0 ≤ t ≤ m. Obviously d[0, j] is equal to c0. For an arbitrary i > 0 and t, the

optimal strategy x puts 0 ≤ t′ ≤ t units in the i-th battlefield and the applied cost

in the equation 2.26 is equal to c(i−1)(m+1)+t′+1. Thus,

d[i, t] = min
0≤t′≤t

{d[i− 1, t− t′] + c(i−1)(m+1)+t′+1}

To compute the optimal pure strategy x = (x1, x2, . . . , xk) we also keep a value

r[i, t] = argmin
0≤t′≤t

{d[i− 1, t− t′] + c(i−1)(m+1)+t′+1}

which determines the number of units the optimal strategy should put in the i-th

battlefield to minimize c0 +
∑i(t+1)

i′=1 ci′x̂i′ . Assuming we have correctly computed

xi+1, . . . , xk, in line 16, algorithm FindBestPure correctly computes xi which

is equal to r[i,m −
∑k

j=i+1 xj]. Since xk = r[k,m] we can conclude algorithm

FindBestPure correctly computes the optimal strategy x = (x1, x2, . . . , xk).
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2.4.1 Hyperplane Separating Oracle

Algorithm 2 (HyperplaneOracle ) gets a hyperplane as input and either

finds a point in IA which violates constraints in LP 2.5 or reports that all points in

IA are satisfying all constraints in LP 2.5. We suppose that the input hyperplane is

described by the following equation,

α0 + α1x̂1 + . . .+ αk(a+1)x̂k(a+1) = 0 (2.27)

and we want to find a point x̂ ∈ IA that violates the following constraint:

α0 +
n∑
i=1

αix̂i ≥ 0 (2.28)

This problem is equivalent to finding a point x̂min ∈ IA which minimizes

equation α0 +
∑n

i=1 αix̂i. If α0 +
∑n

i=1 αix̂
min
i ≥ 0 it means all points in IA are

satisfying the constraints of LP, and otherwise x̂min is a point which violates con-

straint 2.6. Since points in IA are equivalent to pure strategies of player A, we

can use algorithm FindBestPure to find x̂min. Thus we can conclude algorithm

HyperplaneOracle correctly finds a violated constraint or reports that the hy-

perplane satisfies constraints 2.6 of LP 2.5.
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Algorithm 2: HyperplaneOracle

input: a, k, α0, α1, . . . , αk(a+1)

1: xmin ← FindBestPure(a, k, α0, α1, . . . , αk(a+1))
2: x̂min ← GA(xmin)

3: if α0 +
∑k(a+1)

i=1 αix̂
min
i ≥ 0 then

4: return pass
5: else
6: return α0 +

∑k(a+1)
i=1 αix̂

min
i < 0

7: end if

2.4.2 Best-response Separating Oracle

Algorithm 3 (BestRespOracle ) gets a pair (x̂, U) as input and decides

whether there is a pure strategy y = (y1, y2, . . . , yk) ∈ Y such that for ŷ = GB(y),

we have
k∑
i=1

a∑
ta=0

b∑
tb=0

x̂i,ta ŷi,tbu
A
i (ta, tb) < U. (2.29)

We can rewrite inequality 2.29 as follows:

k∑
i=1

b∑
tb=0

ŷi,tb

a∑
ta=0

x̂i,tau
A
i (ta, tb) < U

Therefore, by letting ci,tb =
∑a

ta=0 x̂i,tau
A
i (ta, tb), this problem is equivalent to

find a point ŷmin ∈ IB which minimizes
∑k(b+1)

i′=1 ci′ ŷi′ . If
∑k(b+1)

i′=1 ci′ ŷ
min
i′ < U we

have found a violating payoff constraint of LP 2.2 and if
∑k(b+1)

i′=1 ci′ ŷ
min
i′ ≥ U , pair

(x̂, U) satisfies all the payoff constraints of LP 2.2. Thus, by Lemma 27 we conclude

that algorithm BestRespOracle correctly finds a violating payoff constraint of

LP 2.2 or reports that (x̂, U) satisfies all the payoff constrains.
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Algorithm 3: BestRespOracle

input: a, b, k, U , x̂1, . . . , x̂k(a+1)

1: for i← 1 to k do
2: for tb ← 0 to b do
3: c(i−1)(b+1)+tb+1 = ci,tb =

∑a
ta=0 x̂i,ta u

A
i (ta, tb)

4: end for
5: end for
6: ymin ← FindBestPure(b, k, c0, c1, c2, . . . , ck(b+1))
7: ŷmin ← GB(ymin)

8: if
∑k(b+1)

i=1 ciŷ
min
i ≥ U then

9: return pass
10: else
11: return

∑k(b+1)
i=1 ciŷ

min
i < U

12: end if
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Chapter 3: A Faster Algorithm: Replacing Ellipsoid by Flows

Throughout this chapter we assume the number of battlefields is denoted by

k and the number of troops of players A and B are denoted by a and b respectively.

Also in some cases we use cnttroops to denote the number of troops of an unknown

player.

Generally mixed strategies are shown by a probability vector over pure strate-

gies. However at some points in this chapter we project this representation to

another space that specifies probabilities to each battlefield and troop count pair.

More precisely, we map a mixed strategy x of player A to GA(x) = x̂ ∈ [0, 1]d(A)

where d(A) = k× (a+ 1). We may abuse this notation for convenience and use x̂i,j

to show the probability the mixed strategy x puts j troops in the i-th battlefield.

Note that this mapping is not one-to-one. Similarly, we define GB(x) to map a mixed

strategy x of player B to a point in [0, 1]d(B) where d(B) = k×(b+1). Let RA and RB

denote the set of all possible mixed strategies of A and B in a Nash equilibrium. We

define PA = {x̂ | ∃x ∈ RA,GA(x) = x̂} and PB = {x̂ | ∃x ∈ RB,GB(x) = x̂} to be

the set of all Nash equilibrium strategies in the new space for A and B respectively.

Multi-Resource Colonel Blotto is a generalization of Colonel Blotto where each

player may have different types of resources. In MRCB, there are k battlefields and c
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resource types. Players simultaneously distribute all their resources of all types over

the battlefields. Let ai and bi denote the number of resources of type i player A and

B respectively have. A pure strategy of a player would be a partition of his resources

over battlefields. In other words, let xi,j and yi,j denote the amount of resources of

type j, players A and B put in battlefield i respectively. A vector x = 〈x1,1, . . . , xk,c〉

is a pure strategy of player A if for any 1 ≤ j ≤ c,
∑k

i=1 xi,j = aj. Similarly

a vector y = 〈y1,1, . . . , yk,c〉 is a pure strategy of player B if for any 1 ≤ j ≤ c,∑k
i=1 yi,j = bj. Let UA(x, y) and UB(x, y) denote the payoff of A and B and let

UA
i (x, y) and UB

i (x, y) show their payoff over the i-th battlefield respectively. Note

that

UA(x, y) =
k∑
i=1

UA
i (x, y)

and

UB(x, y) =
k∑
i=1

UB
i (x, y).

On the other hand since MRCB is a zero-sum game UA
i (x, y) = −UB

i (x, y). Similar

to Colonel Blotto we define RA
M and RB

M to denote the set of all possible mixed

strategies of A and B in a Nash equilibrium of MRCB and for any mixed strategy

x for player A we define the mapping GAM(x) = x̂ ∈ [0, 1]d
M(A) where dM(A) =

k × (a1 + 1) . . . × (ac + 1p) and by x̂i,j1,...,jc we mean the probability that in mixed

strategy x, A puts jt amount of resource type t in the i-th battlefield for any t where

1 ≤ t ≤ c. We also define the same mapping for player B, GBM(x) = x̂ ∈ [0, 1]d
M(B)

where dM(B) = k × (b1 + 1) . . . × (bc + 1). Lastly we define PM
A = {x̂ | ∃x ∈

RA
M,G

A
M(x) = x̂} and PM

B = {x̂ | ∃x ∈ RB
M,G

B
M(x) = x̂} to be the set of all Nash
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equilibrium strategies after the mapping.

3.1 LP Formulation

In this section we explain the LP formulation of Colonel Blotto proposed in

Chapter 2 and show how it can be reformulated in a more efficient way. Recall

that in the Colonel Blotto game, we have two players A and B, each in charge of

a number of troops, namely a and b respectively. Moreover, the game is played on

k battlefields and every player’s pure strategy is an allocation of his troops to the

battlefields. Therefore, the number of pure strategies of the players is
(
a+k−1
k−1

)
for

player A and
(
b+k−1
k−1

)
for player B.

The conventional approach to formulate the mixed strategies of a game is to

represent every strategy by a vector of probabilities over the pure strategies. More

precisely, a mixed strategy of a player is denoted by a vector of size equal to the

number of his pure strategies, whose every element indicates the likelihood of taking

a specific action in the game. The only constraint that this vector adheres to, is that

the probabilities are non-negative and add up to 1. Such a formulation for Colonel

Blotto requires a huge amount of space and computation, since the number of pure

strategies of each player in this game is exponentially large.

To overcome this hardness, we propose a more concise representation that

doesn’t suffer from the above problem. This is of course made possible by taking

a significant hit on the simplicity of the description. They suggest, instead of in-

dicating the probability of taking every action in the representation, we only keep
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track of the probabilities that a mixed strategy allocates a certain amount of troops

to every battlefield. In other words, in the new representation, for every number of

troops and any battlefield we have a real number, that denotes the probability of

allocating that amount of troops to the battlefield. As a result, the length of the

representation reduces from the number of pure strategies to (a + 1)k for player A

and (b + 1)k for player B. This is indeed followed by a key observation: given the

corresponding representations of the strategies of both players, one can determine

the outcome of the game regardless of the actual strategies. In other words, the

information stored in the representations of the strategies suffices to determine the

outcome of the game.

In contrast to the conventional formulation, the exponential representation is

much more complicated and not well-understood. For example, in order to see if a

representation corresponds to an actual strategy in the conventional formulation, we

only need to verify that all of the probabilities are non-negative and their total sum

is equal to 1. exponential representation, however, is not trivial to verify. Apart

from the trivial constraints such as the probabilities add up to 1 or the number of

allocated troops matches the number of the player’s troops, there are many other

constraints to be met. Moreover, it is not even proven whether such a representation

can be verified with a polynomial number of linear constraints.

We leverage the new representation to determine the equilibria of Colonel

Blotto in polynomial time. Recall that in zero-sum games such as Colonel Blotto,

the minmax strategies are the same as the maxmin strategies, and the game is in

Nash Equilibrium if and only if both players play a maxmin strategy [64]. Roughly
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speaking, the high-level idea is to find a mixed strategy which performs the best

against every strategy of the opponent. By the equivalence of the minmax and

maxmin strategies then, one can show such a strategy is optimal for that player.

Therefore, the naive formulation of the equilibria of Blotto is as follows:

max u (3.1)

s.t. x̂ is a valid strategy for player A

UA(x̂, ŷ) ≥ u ∀ŷ

Note that, x̂ is a vector of size (a + 1)k that represents a strategy of player

A. Similarly, for every mixed strategy of player B, represented by ŷ, we have a

constraint to ensure x̂ achieves a payoff of at least u against ŷ. Notice that the

only variables of the program are the probabilities encoded in vector x̂. All other

parameters are given as input, and hence appear as constant coefficients in the

program. As declared, there are two types of constraints in Program 3.1. The first

set of constraints ensures the validity of x̂, and the second set of constraints makes

sure x̂ performs well against every strategy of player B. We call the first set the

membership constraints and the second set the payoff constraints. Since for every

mixed strategy, there exists a best response of the opponent which is pure, one can

narrow dawn the payoff constraints to the pure strategies of player B.

The last observation is to show both types of the constraints are convex in

the sense that if two strategy profiles x̂1 and x̂2 meet either set of constraints, then
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x̂1+x̂2
2

is also a feasible solution for that set. This implies that Program 3.1 is indeed

a linear program that can be solved efficiently via the ellipsoid method. However,

our algorithm is practically impossible to run, as its computational complexity is

O(cnttroops
12k4).

The reason our algorithm is so slow is that their LP has exponentially many

constraints. Therefore, they need to run the ellipsoid algorithm run solve the pro-

gram. In addition to this, their separation oracle is itself a linear program with

exponentially many constraints which is again very time consuming to run. How-

ever, a careful analysis shows that these exponentially many constraints are all

necessary and none of them are redundant. This implies that the space of the LP

as described in Chapter 2 requires exponentially many constraints to formulate and

hence we cannot hope for a better algorithm. A natural question that emerges, how-

ever, is whether we can change the space of the LP to solve it with a more efficient

algorithm?

In this chapter we answer the above question in the affirmative. There has

been persistent effort to find efficient formulations for many classic polytopes. As an

example, spanning trees of a graph can be formulated via a linear program that has

an exponential number of linear constraints. It is also not hard to show none of those

constraints are redundant [65]. However, Martin [66] showed that the same polytope

can be formulated with O(n3) linear constraints where n is the number of nodes of

the graph. Other examples are the permutahedron [67], the parity polytope [68],

and the matching polytope [46]. In these examples, a substantial decrease in the

number of constraints of the linear formulation of a problem is made possible by
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adding auxiliary variables to the program. Our work follows the same guideline to

formulate the equilibria of Blotto with a small number of constraints.

In Section 3.2, we explain how to formulate the membership and payoff limita-

tions with a small number of linear constraints. Finally in Section 3.3, we show that

our formulation is near optimal. In other words, we show that any linear program

that formulates the equilibria of Blotto, has to have as many linear constraints as

the number of constraints in our formulation within a constant factor. We show this

via rectangle covering lower bound proposed by Yannakakis [69]

3.2 Main Results

In this section we give a linear program to find a maxmin strategy for a

player in an instance of Colonel Blotto with polynomially many constraints and

variables. To do this, we describe the same representation for exponential LP in

another dimension, to reduce the number of constraints. This gives us a much

better running time, since they had to use ellipsoid method to find a solution for

their LP in polynomial time, which makes their algorithm very slow and impractical.

We define a layered graph for each player and show any mixed strategy of a player

can be mapped to a particular flow in his layered graph. Our LP includes two set of

constraints, membership constraints and payoff constraints. Membership constraints

guarantee we find a valid strategy and payoff constraints guarantee this strategy

minimizes the maximum benefit of the other player.

Definition 28 (Layered Graph). For an instance of a Blotto game with k battle-
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fields, we define a layered graph for a player with cnttroops troops as follows: The

layered graph has k+ 1 layers and cnttroops + 1 vertices in each layer. Let vi,j denote

the j’th vertex in the i’th layer ( 0 ≤ i ≤ k and 0 ≤ j ≤ cnttroops). For any 1 ≤ i ≤ k

there exists a directed edge from vi−1,j to vi,l iff 0 ≤ j ≤ l ≤ cnttroops. We denote the

layered graph of player A and B by LA and LB respectively.

Based on the definition of layered graph we define canonical paths as follows:

Definition 29 (Canonical Path). A canonical path is a directed path in a layered

graph that starts from v0,0 and ends at vk,cnttroops.

(a) (b) (c)

0.3

0.3

0.4

0.4

0.7

0.3

0.3

0.3

Figure 3.1: Figure (a) shows a layered graph for a player with 3 troops playing
over 3 battlefields. In Figure (b) a canonical path corresponding to a pure strategy
where the player puts no troops on the first battlefield, 1 troop on the second
one and two troops on the 3rd one is shown. Figure (c) shows a flow of size 1,
that is a representation of a mixed strategy consisting of three pure strategies with
probabilities 0.3, 0.4 and 0.3.

Figure 3.1 shows a layered graph and a canonical path. Now, we give a one-

to-one mapping between canonical paths and pure strategies.

Lemma 30. Each pure strategy for a player is equivalent to exactly one canonical

path in the layered graph of him and vice versa.

60



Proof. Since the edges in the layered graph exist only between two consecutive

layers, each canonical path contains exactly k edges. Let p be an arbitrary canonical

path in the layered graph of a player with cnttroops troops. In the equivalent pure

strategy put li troops in the battlefield i if p contains the edge between vi−1,j and

vi,j+li for some j. By definition of the layered graph, we have li ≥ 0. Also since

p starts from v0,0 and ends in vk,cnttroops we have
∑k

i=0 li = cnttroops. Therefore this

strategy is a valid pure strategy.

On the other hand, let s be a valid pure strategy and let si denote the total

number of troops in battlefields 1 to i in strategy s. We claim the set of edges

between vi−1,si−1
and vi,si for 1 ≤ i ≤ k is a canonical path. Note that s0 = 0 and

sk = cnttroops also the endpoint of any of such edges is the starting point of the edge

chosen from the next layer, so we have constructed a valid canonical path.

So far it is clear how layered graphs are related to pure strategies using canon-

ical paths. Now we explain the relation between mixed strategies and flows of size

1 where v0,0 is the source and vk,cnttroops is the sink. One approach to formulate the

mixed strategies of a game is to represent every strategy by a vector of probabilities

over the pure strategies. Since based on Lemma 30 each pure strategy is equivalent

to a canonical path in the layered graph; for any pure strategy s with probability

P (s) in a mixed strategy we assign a flow of size P (s) to the corresponding canonical

paths of s in the layered graph. All these paths begin and end in v0,0 and vk,cnttroops

respectively. Therefore since
∑
P (s) = 1 for all pure strategies of a mixed strategy,

the size of the corresponding flow would be exactly 1.
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Corollary 31. For any mixed strategy of a player with cnttroops troops there is exactly

one corresponding flow from vertex v0,0 to vk,cnttroops in the layered graph of that player.

Note that although we map any given mixed strategy to a flow of size 1 in

the layered graph, this is not a one-to-one mapping because several mixed strategies

could be mapped to the same flow. However in the following lemma we show that

this mapping is surjective.

Lemma 32. For any flow of size 1 from v0,0 to vk,cnttroops in the layered graph of a

player with cnttroops troops, there is at least one mixed strategy of that player with a

polynomial size support that is mapped to this flow.

Proof. First, note that we can decompose any given flow to polynomially many flow

paths from source to sink [70]. A flow path is a flow over only one path from source

to sink. One algorithm to find such decomposition finds a path p from source to

sink in each step and subtracts the minimum passing flow through its edges from

every edge in p. The steps are repeated until there is no flow from source to sink.

Since the flow passing through at least one edge becomes 0 at each step, the total

number of these paths will not exceed the total number of edges in the graph. This

means the number of flow paths in the decomposition will be polynomial.

Now, given a flow of size 1 from v0,0 to vk,cnttroops , we can basically decompose

it to polynomially many flow paths using the aforementioned algorithm. The paths

over which these flow paths are defined correspond to pure strategies and the amount

of flow passing through each, corresponds to its probability in the mixed strategy.
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Using the flow representation for mixed strategies and the shown properties

for it, we give the first LP with polynomially many constraints and variables to find

a maxmin strategy for any player in an instance of Colonel Blotto. Our LP consists

of two set of constraints, the first set (membership constraints) ensures we have a

valid flow of size 1. This means we will be able to map the solution to a valid mixed

strategy. The second set of constraints are needed to ensure the minimum payoff of

the player we are finding the maxmin strategy for, is at least u. Now, by maximizing

u we will get a maxmin strategy. In the following theorem we prove PA could be

formulated with polynomially many constraints and variables. Note that one can

swap a and b and use the same LP to formulate PB.

Theorem 33. In an instance of Colonel Blotto, with k battlefields and at most

cnttroops troops for each player, PA could be formulated with Θ(cnttroops
2k) constraints

and Θ(cnttroops
2k) variables.

Proof. The high-level representation of our LP is as follows:

max u (3.2)

s.t. x̂ is a valid strategy for player A

UB(x̂, ŷ) ≤ −u ∀ŷ.

The strategies x̂ and ŷ are represented using a flow of size 1 in the layered graph of

player A and B respectively. In Lemma 32 we proved any valid flow representation

could be mapped to a mixed strategy.
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Figure 3.2: Figure (a) shows Pr(k = i) for the pure strategy specified in Figure 3.1-b
and Figure (b) shows Pr(k = i) for the mixed strategy specified in Figure 3.1-c. The
rows correspond to battlefields and the columns correspond to the number of troops.

To ensure we a have a valid flow of size 1 from v0,0 to vk,a in LA (recall that

LA denotes the layered graph of player A), we use the classic LP representation of

flow [71]. That is, not having any negative flow and the total incoming flow of each

vertex must be equal to its total outgoing flow except for the source and the sink.

We denote the amount of flow passing through the edge from vk,i to vk+1,j by variable

Fk,i,j. The exact membership constraints are shown in Linear Program 3.1-a.

On the other hand, we maximize the guaranteed payoff of player A, by bound-

ing the maximum possible payoff of player B. To do this, first note that for any

given strategy of player A, there exists a pure strategy for player B, that maximizes

his payoff. Let Pr(k = j) denote the probability that player A puts j troops in the

k-th battlefield. Figure 3.2 shows the value of Pr(k = j) for the illustrated examples

in Figure 3.1. We can compute these probabilities using the variables defined in the

previous constraints, as follows:

Pr(k = i) =

a−j∑
i=0

Fk,i,i+j (3.3)

By having these probabilities we can compute the expected payoff that player B
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gets over battlefield k, if he puts i troops in it. Moreover consider a given canonical

path p in LB and let sp be the pure strategy of player B, equivalent to p. We use

WB
k,i to denote the expected payoff of player B over battlefield k by putting i troops

in it. This means the expected payoff of playing strategy sp would be
∑
WB
k,j−i for

any k, i and j such that there exists an edge from vk,i to vk+1,j in p. It is possible

to compute WB
k,i using the following equation:

WB
k,i =

a∑
l=0

Pr(k = l)× UB
k (i, l) ∀k : 1 ≤ t ≤ k (3.4)

Note that both equations to compute Pr(k = i) and WB
k,i are linear and could be

computed in our LP.

Assume WB
k,i is the weight of the edge from vk,j to vk+1,i+j in LB. Given the

probability distribution of player A (which we denoted by Pr(k = i)), the problem

of finding the pure strategy of B with the maximum possible expected payoff, would

be equivalent to finding a path from v0,0 to vk,b with the maximum weight.

To find the path with the maximum weight from v0,0 to vk,b, we define an

LP variable DB
k,i where its value is equal to the weight of the maximum weighted

path from v0,0 to vk,i and we update it using a simple dynamic programming like

constraint:

DB
k,i ≥ DB

k−1,j +WB
k−1,i−j ∀i, j : 0 ≤ j ≤ i ≤ b

The maximum weighted path from v0,0 to vk,b would be equal to the value of DB
k,b.

The detailed constraints are shown in Linear Program 3.1-b.
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max u

(a)



Σl
i=0Fk,i,l = Σa

j=lFk+1,l,j ∀k, l : 1 ≤ k ≤ k − 1, 0 ≤ l ≤ a

Fk,i,j ≥ 0 ∀k, i, j : 1 ≤ k ≤ k, 0 ≤ i ≤ j ≤ a

Σa
j=lF1,l,j = 0 ∀l : 0 < l ≤ a

Σa
j=0F1,0,j = 1

Σa
j=0Fk,j,a = 1

(b)



Pr(k = i) = Σa−j
i=0Fk,i,i+j ∀k, j : 1 ≤ k ≤ k, 0 ≤ j ≤ a

WB
k,i = Σa

l=0Pr(k = l)× UB
k (i, l) ∀k, i : 1 ≤ k ≤ k, 0 ≤ i ≤ b

DB
0,i = 0 ∀i : 0 ≤ i ≤ b

DB
k,i ≥ DB

k−1,j +WB
k−1,i−j ∀i, j : 0 ≤ j ≤ i ≤ b

DB
k,b ≤ −u

Linear Program 3.1: The detailed linear program to find a maxmin strategy for
player A. The first set of constraints denoted by (a) ensure we get a valid flow of
size 1 from v0,0 to vk,a in the layered graph of player A (a mixed strategy of him) and
the second set of constraints denoted by (b) ensure the guaranteed payoff of player
A is at least u. The value of variable Fk,i,j is the amount of flow passing through
the edge from vk,i to vk+1,j for any valid k, i and j. Variable DB

i,j is the size of the
maximum weighted path from v0,0 to vi,j in the layered graph of player B, therefore
DB
k,b denotes the maximum payoff of B and u is the guaranteed payoff of player A.

For an informal explanation of the LP see the text.
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Note that the number of variables we use in Linear Program 3.1 is as follows:

• Variables of type Fk,i,l: Θ(a2k).

• Variables of type Pr(k = i) : Θ(ak).

• Variables of type WB
k,i : Θ(bk).

• Variables of type DB
k,i : Θ(bk).

Therefore the total number of variables is Θ(cnttroops
2k). Also note that the number

of non-negativity constraints (Fk,i,j ≥ 0) is more than any other constraints and is

Θ(cnttroops
2k), therefore the total number of constraints is also Θ(cnttroops

2k).

To obtain a mixed strategy for player A, it suffices to run Linear Program 3.1

and find a mixed strategy of A that is mapped to the flow it finds. Note that based

on Lemma 32 such mixed strategy always exists. Afterwards we do the same for

player B by simply substituting a and b in the LP.

3.3 Lower Bound

A classic approach to reduce the number of LP constraints needed to describe

a polytope is to do it in a higher dimension. More precisely, adding extra variables

might reduce the number of facets of a polytope. This means a complex polytope

may be much simpler in a higher dimension. This is exactly what we did in Section

3.2 to improve the previous algorithm. In this section we prove that any LP for-

mulation that describes solutions of a Blotto game requires at least Θ(cnttroops
2k)
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constraints, no matter what the dimension is. This proves the given LP in Section

3.2 is tight up to constant factors.

The minimum needed number of constraints in any formulation of a polytope

P is called extension complexity of P , denoted by xc(P ). It is not usually easy

to prove a lower bound directly on the extension complexity, because all possible

formulations of the polytope must be considered. A very useful technique given by

Yannakakis [69] is to prove a lower bound on the positive rank of the slack matrix

of P which is proven to be equal to xc(P ). Note that you could define the slack

matrix over any formulation of P and its positive rank would be equal to xc(P ),

which means you do not have to worry about all possible formulations. To prove

this lower bound we use a method called rectangle covering lower bound, already

given in Yannakakis’s paper. We will now formally define some of the concepts we

used:

Definition 34 (Extension Complexity). Extension complexity of a polytope P , de-

noted by xc(P ) is the smallest number of facets of any other higher dimensional

polytope Q that has a linear projection function π with π(Q) = P .

The next concept we need is slack matrix, which is a matrix of non-negative

real values where its columns correspond to vertices of P and its rows correspond to

its facets. The value of each element of slack matrix is basically the distance of the

vertex corresponding to its column from the facet corresponding to its row. More

formally:

Definition 35 (Slack Matrix). Let {v1, . . . , vv} be the set of vertices of P and let
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{x ∈ Rn|Ax ≤ b} be the description of it. The slack matrix of P denoted by SP , is

defined by SPij = bi − Aivj.

Also, the non-negative rank of a matrix S is the minimum number m such

that S could be factored into two non-negative matrices F and V with dimensions

f ×m and m× v.

Definition 36 (Non-negative Rank). We define the non-negative rank of a matrix

S with f rows and v columns, denoted by rk+(S) to be:

rk+(S) = min{m|∃F ∈ Rf×m
≥0 , V ∈ Rm×v

≥0 : S = FV } (3.5)

Yannakakis [69] proved that xc(P ) = rk+(SP ). Therefore instead of proving

a lower bound on the extension complexity of P , it only suffices to prove a lower

bound on the positive rank of the corresponding slack matrix. As mentioned before,

to do so, we will use the rectangle covering lower bound. A rectangle covering for a

given non-negative matrix S is the minimum number of rectangles needed, to cover

all the positive elements of S and none of its zeros (Figure 3.3), formally defined as

follows:

Definition 37 (Rectangle Covering). Suppose r = rk+(S) and let S = UV be a

factorization of S by non-negative matrices U and V . Let supp(S) denote the set of

all the positive values of S. Then

supp(S) =
r⋃
l=1

({i : Uil > 0} × {j : Vlj > 0})
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is a rectangle covering of S with r rectangles.

4 0 1 7
2 5 2 9

0 1 0 3
0 5 4 1

0 + 0 +
0 + + +
+ 0 + +
+ + + +

0 + 0 +
0 + + +
+ 0 + +
+ + + +

(a) (b) (c)

Figure 3.3: Figure (a) shows a sample matrix, in Figure (b) we change any non-
negative value in the matrix of Figure (a) to “+” and in Figure (c) all these non-
negative elements are covered by the minimum possible number of rectangles. Note
that the non-negative rank of the matrix in Figure (a) could not be less than 4.

Yannakakis showed that the number of rectangles in a minimum rectangle

covering could never be greater than rk+(S), using a very simple proof. This means

any lower bound of it, is also a lower bound of the actual rk+(S). This is the

technique we use in the proof of the following lemma, which is used later to prove

the main theorem:

Lemma 38. The extension complexity of the membership polytope of a player in an

instance of Blotto with k battlefields and cnttroops troops for each player is at least

Θ(cnttroops
2k).

Proof. Assume w.l.g. that we are trying to describe the polytope of all valid strate-

gies of player A, denoted by P . One way of describing this polytope was explained

in the LP described in Section 3.2. Now from its membership constraints, only con-

sider the ones that ensure the non-negativity of the flow passing through the edges
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of the layered graph of player A:

Fi,j,t ≥ 0 ∀i, j, t : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ j + t ≤ a (3.6)

From now on, only consider the part of the slack matrix corresponding to these

constraints (we may occasionally call it the slack matrix), its columns as mentioned

before, correspond to the vertices of the polytope, which in this case are all possible

pure strategies of player A. Also its rows correspond to the mentioned constraints.

Recall that any pure strategy is a canonical path in the layered graph of player A.

Note that the slack matrix element corresponding to any arbitrarily chosen non-

negativity constraint e ≥ 0 and any arbitrary vertex vj corresponding to a pure

strategy S is 0 iff the equivalent canonical path of S does not contain e and is 1

if it does; since the elements of the slack matrix are calculated using the formula

SPij = b − Aivj and in this case b is always zero and Aivj is −1 iff S contains the

edge in the constraint and is zero otherwise. This implies it is only consisted of zero

and one values.

We call any edge Fb,i,j with j − i > cnttroops
2

a long edge. A canonical path

may only contain at most one such edge. On the other hand, any rectangle in the

rectangle covering is basically a set of vertices and a set of constraints. Note that all

the equivalent pure strategies of those vertices must contain the edges over which

the constraints are defined. Therefore no rectangle could contain more than one
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constraint over long edges. The number of long edges in the layered graph is exactly

k(cnttroops − d cnttroops+1

2
e)(cnttroops − d cnttroops+1

2
e+ 1)

2
. (3.7)

Therefore the minimum number of rectangles to cover all non-negative elements of

the slack matrix is at least of the same size and therefore Θ(cnttroops
2k).

Theorem 39. In an instance of Blotto with k battlefields and cnttroops troops for

each player the extension complexity of PA is Θ(cnttroops
2k).

Proof. Assume the utility function is defined as follows:

UA(x̂, ŷ) = 0 ∀x̂, ŷ. (3.8)

This means any possible strategy is a maxmin strategy for both players. In particu-

lar, the polytope of all possible maxmin strategies of any arbitrarily chosen player of

this game, denoted by P contains all possible valid strategies. Now using Lemma 38

we know xc(P ) is at least Θ(cnttroops
2k). On the other hand, in Section 3.2 we gave

an LP with Θ(cnttroops
2k) constraints to formulate the maxmin polytope, therefore

the extension complexity of it is exactly Θ(cnttroops
2k).

3.4 Multi-Resource Colonel Blotto

In this section we explain how our results could be generalized to solve Multi-

Resource Colonel Blotto, or MRCB. We define MRCB to be exactly the same game

as Colonel Blotto, except instead of having only one type of resource (troops), players
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may have any constant number of resource types. Examples of resource types would

be time, money, energy, etc.

To solve MRCB we generalize some of the concepts we defined for Colonel

Blotto. We first define generalized layered graphs and generalized canonical paths

as follows:

Definition 40 (Generalized Layered Graph). Let cnttroopsm denote the total number

of available resources of m-th resource type for player X. The generalized layered

graph of X has k×cnttroops1×. . .×cnttroopsc vertices denoted by v(i, r1, . . . , rc), with a

directed edge from v(i, r1, . . . , rm−1, x, rm+1, . . . , rc) to v(i+1, r1, . . . , rm−1, y, rm+1, . . . , rc)

for any possible i, r and 0 ≤ x ≤ y ≤ cnttroopsm.

Definition 41 (Generalized Canonical Path). A generalized canonical path is de-

fined over a generalized layered graph and is a directed path from v0,0,...,0 to vk,cnttroops1,...,cnttroopsc.

By these generalization we can simply prove that pure strategies of a player

are equivalent to canonical paths in his generalized layered graph and there could

be a surjective mapping from his mixed strategies to flows of size 1 from v(0, . . . , 0)

to v(k, cnttroops1, . . . , cnttroopsc) using similar techniques we used in Section 3.2.

Lemma 42. Each pure strategy for a player in an instance of MRCB is equivalent

to exactly one generalized canonical path in the generalized layered graph of him and

vice versa.

Lemma 43. For any flow f of size 1 from v(0, . . . , 0) to v(k, cnttroops1, . . . , cnttroopsc)

in the generalized layered graph of a player with cnttroopsi troops of type i, there is at

least one mixed strategy with a polynomial size support that is mapped to f .
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Using these properties, we can prove the following theorem:

Theorem 44. In an instance of MRCB, PM
A could be formulated with O(cnttroops

2ck)

constraints and Θ(cnttroops
2ck) variables.

Proof. The linear program would again look like this:

max u (3.9)

s.t. x̂ is a valid strategy for player A

UB(x̂, ŷ) ≤ −u ∀ŷ

For the first set of constraints (membership constraints) we can use the flow con-

straints over the generalized layered graph of player A to make sure we have a valid

flow of size 1 from v(0, . . . , 0) to v(K, cnttroops1, . . . , cnttroopsc). And for the second

constraint (payoff constraint) we can find the maximum payoff of player B using

a very similar set of constraints to the described one in Section 3.2, but over the

generalized layered graph of player B.

We can also prove the following lowerbound for MRCB.

Theorem 45. In an instance of MRCB, the extension complexity of PM
A is Θ(cnttroops

2ck).

Proof. The proof is very similar to the proof of Theorem 39. We only consider

the rectangle covering lower bound over the part of the slack matrix corresponding

to the non-negativity of flow through edges in the maxmin. We call an edge from

v(i, r1, . . . , rm−1, x, rm+1, . . . , rc) to v(i+1, r1, . . . , rm−1, y, rm+1, . . . , rc) long if y−x >
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nm

2
. No generalzied canonical path could contain more than c long edges therefore

no rectangle could cover more than c constraints. On the other hand there are

Θ(cnttroops
2ck) long edges in the layered graph. Since c is a constant number the

extension complexity is Ω(cnttroops
2ck). Moreover since we already gave a possible

formulation with O(cnttroops
2ck) constraints in Theorem 3.4 the extension complexity

is also O(cnttroops
2ck) and therefore Θ(cnttroops

2ck).

3.5 Experimental Results

We implemented the algorithm described in Section 3.2 using Simplex method

to solve the LP. We ran the code on a machine with a dual-core processor and an

8GB memory. The running time and the number of constraints of the LP for each

input is shown in Table 3.1. Using this fast implementation we were able to run the

code for different cases. In this section we will mention some of our observations

that mostly confirm the theoretical predications.

An instance of Colonel Blotto is symmetric if the payoff function is the same

for all battlefields, or in other words for any pure strategies x and y for player A

and B and for any two battlefields i and j, UA
i (x, y) = UA

j (x, y). Also, an instance

of blotto is auctionary if the player allocating more troops in a battlefield wins it

(gets more payoff over that battlefield). More formally in an auctionary instance of

Colonel Blotto, if x and y are some pure strategies for player A and B respectively,
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k a b Constraints Running Time

10 20 20 3595 0m3.575s
10 20 25 4855 0m3.993s
10 20 30 6365 0m6.695s
10 25 25 5295 0m8.245s
10 25 30 6805 0m7.502s
10 30 30 7320 0m30.955s
15 20 20 5065 0m14.965s
15 20 25 6950 0m11.842s
15 20 30 9210 0m24.196s
15 25 25 7440 0m46.165s
15 25 30 9700 0m31.714s
15 30 30 10265 2m20.776s
20 20 20 6535 0m46.282s
20 20 25 9045 0m35.758s
20 20 30 12055 0m38.507s
20 25 25 9585 1m38.367s
20 25 30 12595 0m51.795s
20 30 30 13210 9m13.288s

Table 3.1: The number of constraints and the running time of the implemented
Colonel Blotto based on different inputs. The first column shows the number of
battlefields, the second and third columns show the number of troops of player A
and B respectively. The number of constraints does not include the non-negativity
constraints since by default every variable was assumed to be non-negative in the
library we used.
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then

UA
i (x, y) =



+w(i), if xi > yi

0, if xi = yi

−w(i), otherwise

Recall that xi and yi denote the amount of troops A and B put in the i-th battlefield

respectively.

Note that in an auctionary Colonel Blotto if a ≥ (b+1)k, then by putting b+1

troops in each battlefield, player A wins all the battlefields and gets the maximum

possible overall payoff. On the other hand if a = b, the payoff of player A in any

Nash equilibrium is exactly 0 because there is no difference between player A and

player B by definition of an auctionary Colonel Blotto if a = b, and any strategy

for A could also be used for B and vice versa. W.l.g. we can ignore the case where

a < b. However, it is not easy to guess the payoff of A in a Nash equilibrium

if b ≤ a < (b + 1)k. After running the code for different inputs, we noticed the

growth of UA with respect to a (when b is fixed) has a common shape for all inputs.

Figure 3.4 shows the chart for different values of a, b and cnttroops.

There has been several attempts to mathematically find the optimum payoff

of players under different conditions. For example Roberson [34] considered the

continuous version of Colonel Blotto and solved it. Hart [36] solved the symmetric

and auctionary model and solved it for some special cases. Little is known about

whether it is possible to completely solve the discrete version when the game is

symmetric and auctionary or not.
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Figure 3.4: The y-axis is the payoff of A in the Nash equilibrium and the x-axis
shows the value of a− b. In Figure (a), k = 6 and b = 10. In Figure (b), k = 6 and
for different values of b in the range of 1 to 10 the same diagram as Figure (a-) is
drawn. Figure (c) is the same plot as Figure (b) but for different values of k. For
instance for the blue lines k = 4, for the red lines k = 6, for the green lines k = 8
and for the purple lines k = 10. In all examples payoff function of player A over a
battlefield i, is sgn(xi − yi) where xi and yi denote the number of troops A and B
put in the i-th battlefield respectively.

Surprisingly, we observed the payoff of players in the symmetric and auctionary

discrete version, is very close to the continuous version Roberson considered. The

payoffs are specially very close when the number of troops are large compared to the

number of battlefields, making the strategies more flexible and more similar to the

continuous version. Figure 3.5 compares the payoffs in the aforementioned models.

In Roberson’s model in case of a tie, the player with more resources wins while in

the normal case there is no such assumption; however a tie rarely happens since by

adding any small amount of resources the player losing the battlefield would win it.
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Figure 3.5: The y-axis is the payoff of A in the Nash equilibrium and the x-axis
shows the value of a− b. The black and red line show the payoff in the continuous
model and discrete model respectively. In figure (a), k = 6 and b = 10, in figure
(b), k = 4 and b = 12 and in figure (c), k = 2 and b = 30.
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Chapter 4: Probability Maximization Versus Expectation Maximiza-

tion

Throughout this chapter, we consider the discrete and continuous variants of

Colonel Blotto, as well as the auditing game and provide approximately optimal

(u, p)-maxmin strategies for these games. Our main result is an algorithm with

logarithmic approximation factor for the discrete Colonel Blotto game. Next, we

provide a constant approximation algorithm for the continuous variant of Colonel

Blotto and finally we provide a constant approximation algorithm for the auditing

game.

At a high level, our techniques are inspired by recent developments in game

theory and optimization. For instance, when the goal is to maximize the guaranteed

payoff of a player (finding a (u, 1)-maxmin strategy) our problem settings generalizes

Stackelberg games. In addition to this, when the goal is to find a (u, p)-maxmin

strategy for arbitrary 0 ≤ p ≤ 1, the problem extends the robust optimization

problem studied in [72]. We also devise a decomposition technique inspired by

[73–76].

We recall that a plethora of studies have analyzed and characterized the equi-

libria of structured zero-sum games such as Colonel Blotto [1,2,53,77–79]. In partic-
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ular, we present in Chapter 2 a polynomial time algorithm to compute the maxmin

strategies of Colonel Blotto. Provided that the maxmin strategies of Colonel Blotto

are available, it is crucial to understand how well such strategies perform when the

objective is not to maximize the expected payoff but to approximate a (u, p)-maxmin

strategy. We begin in Section 4.2, by illustrating the difference between the maxmin

strategies and (u, p)-maxmin strategies. Although we show that in special cases, a

maxmin strategy provides a decent approximation of a (u, p)-maxmin strategy, we

present an example to show that in general, maxmin strategies are not competitive

to the (u, p)-maxmin ones. Our counter-example is a Colonel Blotto game in which

the number of troops of player B is many times more than the troops of player A.

Theorem 46 [restated]. For any given u, p and arbitrarily small constants 0 < α <

1 and 0 < β < 1, there exists an instance of Colonel Blotto (both discrete and con-

tinuous), where for any approximate (α′u, β′p)-maxmin strategy that an expectation

maximizer algorithm returns, either α′ < α or β′ < β.

Theorem 46 states that in order to provide an exact or even an approximation

algorithm for (u, p)-maxmin strategies, one needs to go beyond the expectation max-

imizer algorithms. Following this observation, we begin our results by studying the

special case of (u, 1)-maxmin or in other words the u-guaranteed payoff strategies

for the discrete variant of Colonel Blotto game.

For the special case of p = 1, one possible strategy of the opponent is to

randomize over all pure strategies. Thus, any strategy of player A that guarantees
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a payoff of at least u with probability one, must obtain a payoff of at least u against

any pure strategy of the opponent. Indeed this condition is sufficient to declare a

strategy (u, p)-maxmin or in other words, any strategy of player A that obtains a

payoff of at least u against any pure strategy of player B is (u, 1)-maxmin. Moreover,

one can show that randomization offers no benefit to player A when the objective is

to find a (u, 1)-maxmin strategy. Therefore, the definition of (u, 1)-maxmin strategies

coincides with the notion of pure maxmin strategies. Based on this, our objective is

to find a pure strategy for player A that obtains the maximum payoff against any

best response of the opponent. This is very similar to Stackelberg games with the

exception that here we only incorporate the pure strategies of player A.

For a fixed strategy of player A, the best response of player B can be modeled

as a knapsack problem. Let ai denote the number of troops of player A in battlefield

i. In order for player B to maximize her payoff (or equivalently minimize player

A’s payoff) she needs to find a subset of battlefields S and put ai troops in every

battlefield i in this subset. The constraint is that she can only afford to put M troops

in those battlefields and therefore
∑

i∈S ai should be bounded by M . Therefore the

problem is to find a subset S of battlefields with the maximum total weight subject

to
∑

i∈S ai ≤ M . This problem can be solved in time poly(N,M,K) with a classic

knapsack algorithm. However, a polytime algorithm for best response does not lead

to a polytime solution since player A has exponentially many pure strategies and

verifying all such strategies takes exponential time.

To overcome this challenge, we relax the best response algorithm of player B

to an almost best response greedy algorithm. Let Wmax = maxwi be the maximum
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weight of a battlefield or equivalently the maximum profit of an item in the knapsack

problem. It is well-known that the following greedy algorithm for knapsack guaran-

tees an additive error of at most Wmax in comparison to the optimal solution: sort

the items based on the ratio of profit over size and put these items into the knapsack

accordingly. Based on this observation, if we restrict the opponent to play according

to the greedy algorithm, the performance of our solution drops by an additive factor

of at most Wmax. Once we replace the strategy of player B by the greedy knapsack

algorithm, finding a maxmin strategy of player A becomes tractable. More precisely,

we show that the problem of finding an optimal strategy for player A against the

greedy knapsack algorithm boils down to a dynamic program that can be solved in

polynomial time.

In order to turn the Wmax additive error into a 1/2 multiplicative error, we also

consider a strategy of player A that puts all her troops in the battlefield with the

highest weight. We show that the better of the two strategies guarantees a profit of

at least u/2 against any strategy of the opponent where u is the maximum possible

guaranteed payoff of player A.

Theorem 50 [restated]. There exists a polynomial time algorithm that gives a

(u/2, 1)-maxmin strategy of player A, assuming that u is the maximum guaranteed

payoff of player A.

In Section 4.3.2, we consider the problem of approximating a (u, p)-maxmin

strategy for an arbitrary u and 0 ≤ p ≤ 1. This case is more challenging than the case
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of guaranteed payoff since (1) the solution is not necessarily a pure strategy; and (2)

the knapsack modeling for the best response of player B is no longer available. We

begin by considering the special case of uniform weights (wherein all the weights are

equal to 1) and providing an algorithm for approximating a (u, p)-maxmin strategy

in this setting. Later, we reduce the case of 0 ≤ p ≤ 1 to this case. Since all

the weights are equal to 1, we are able to characterize the optimal strategies of the

players and based on that we provide simple strategies that obtain a fraction of the

guarantees that the optimal strategies provide.

Lemma 57 [restated]. Given that there exists a (u, p)-maxmin strategy for player A

in an instance of discrete Colonel Blotto with uniform weights, there exists a poly-

nomial time algorithm that provides a (u/8, p/2)-maxmin strategy.

The more technically involved result of Section 4.3.2 concerns the case where

the weights are not necessarily uniform. We show a reduction from the case of

non-uniform weights to the case of uniform weights that loses an O(logK) on the

payoff of the algorithm. The high-level idea is as follows: In order to approximate

a (u, p)-maxmin strategy, we separate the battlefields into two categories high-value

and low-value. High-value battlefields have a weight of at least u/O(logK) and

the payoff of the low-value battlefields is below this threshold. The idea is that

in order for player A to obtain a payoff of at least u/O(logK) it only suffices to

win a high-value battlefield. Moreover, if the number of low-value battlefields is

considerable, player A may distribute her troops over those battlefields and obtain
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a payoff of at least u/O(logK). Since any high-value battlefield provides a payoff

of at least u/O(logK), we can ignore the weights and play on these battlefields as

if all their weights were equal. For the low-value battlefields, on the other hand,

we take advantage of the fact that any battlefield of this type contributes a small

payoff to the optimal solution and thus via a combinatorial argument we reduce the

problem to the case of uniform weight. We then state that if player A flips a coin

and plays on each set of battlefield with probability 1/2 she can obtain a payoff of

at least u/O(logK) with probability at least p/O(1) given that there exists a (u, p)-

maxmin strategy for player A. This method is similar to the core-tail decomposition

technique used in [73–76] to design approximately optimal mechanisms in the worst

case scenarios.

Lemma 59 [restated]. Given that a (u, p)-maxmin strategy exists for player A in

an instance of discrete Colonel Blotto, there exists a polynomial time algorithm that

provides a (u/(16(dlogKe+ 1)), p/4)-maxmin strategy.

We also consider the continuous Colonel Blotto problem in Section 4.4. In

the continuous variant of the problem, the players may allocate a real number of

troops to a battlefield. We show that this enables us to exactly compute the optimal

guaranteed payoff of player A with an LP. Recall that the best response of player B in

the guaranteed payoff case can be modeled via a knapsack problem. Let ai denote the

number of troops that player A allocates to a battlefield i. Based on the knapsack

model, player B’s best response is to select a subset S of battlefields with the
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maximum possible payoff subject to
∑

i∈S ai ≤M . Indeed this is a linear constraint

and thus the problem of computing a (u, 1)-maxmin strategy can be formulated as a

linear program as follows: define K variables a1, a2, . . . , aK to denote the number of

troops of player A in each of the K battlefields. Every strategy of player B cannot

get a payoff more than
∑
wi − u and thus any subset of battlefields with a total

weight of at least
∑
wi − u should have a total number of troops more than M . Of

course, this adds an exponential number of linear constraints to the LP, nonetheless,

we show that ellipsoid method can solve this program in polynomial time.

Lemma 60 [restated]. For any given instance of continuous Colonel Blotto and

any given u, there exists a polynomial time algorithm to either find a (u, 1)-maxmin

strategy or report that no (u, 1)-maxmin strategy exists.

Furthermore, similar to the high-value, low-value decomposition of the battle-

fields we described above, we show that the problem for the case of (u, p)-maxmin

reduces to the case of uniform battlefield weights and as a result, one can design a

polynomial time algorithm to provide a constant approximation of a (u, p)-maxmin

strategy.

Theorem 62 [restated]. Given that a (u, p)-maxmin strategy exists for player A in

an instance of continuous Colonel Blotto, Algorithm 8 provides a (u/8, p/8)-maxmin

strategy.

Finally, in Section 4.5 we study the notion of (u, p)-maxmin strategies for the
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auditing game. In the auditing game, an instance of the Colonel Blotto game (such

as the US presidential election) is given and a hacker is trying to meddle in the game

in favor of one of the players, say player A. Therefore, each strategy of the hacker

is to choose a subset of the battlefields in which player A loses and flip the results

of those battlefields by hacking the system. The auditor, on the other hand, wants

to secure the game by establishing extra security for up to m battlefields. If the

auditor protects a battlefield that the hacker attacks, she’ll catch the attacker and

thus the attacker receives a payoff of 0. Otherwise, the payoff of the hacker is the

total sum of the weights of the states that she hacks. The game is constant-sum and

the summation of the payoffs of the players is always the total number of electoral

votes. Note that both the auditor and the hacker are aware of the strategies in the

Colonel Blotto instance.

In Section 4.5, we seek to approximate a (u, p)-maxmin strategy for the auditor

in this game. We show that given that there exists a (u, p)-maxmin strategy for the

auditor, one can find in polynomial time a strategy for the auditor which is at

least (u, p/(1− 1/e))-maxmin. To this end, we define a benchmark LP and make a

connection between the optimal solution of this LP and the highest probability for

which the auditor can obtain a payoff of at least u. Next, we take the dual of the

program and based on a primal-dual argument, provide a strategy for the auditor

that guarantees a payoff of at least u with at least a probability of p′. Finally, we

make a connection between p′ and the solution of the benchmark LP and argue that

p′ is at least a 1− 1/e fraction of p. This yields the following theorem.
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Theorem 64 [restated]. For any given u and p, where a (u, p)-maxmin strategy is

guaranteed to exist for the auditor, a polynomial time algorithm exists that finds a

(u, (1− 1/e)p)-maxmin approximation strategy.

Last but not least, we show a reduction from the auditing game to an instance

of the Colonel Blotto game when the winner of each battlefield is specified by a

given function.

4.1 Preliminaries

Colonel Blotto Game In the Colonel Blotto game, two players A and B are com-

peting over a number of battlefields. We denote the number of battlefields by K and

denote by N and M the total troops of players A and B, respectively. Associated

to each battlefield i is a weight wi which shows the amount of profit a player wins

if she wins that battlefield. This way, every strategy of a player is a partitioning

of her troops over the battlefields. In the discrete version of Colonel Blotto, the

number of troops that the players put in the battlefields must be an integer. In

contrast, in the continuous version, a battlefield may contain any fraction of the

troops. Player A wins a battlefield i if she puts more troops in that battlefield than

her opponent. For simplicity, we break the ties in favor of player B, that is, if player

B puts as many troops as player A’s troops in a battlefield i, then she wins that

battlefield and receives a payoff of wi. The final payoff of the players in this game is

the total payoff she receives over all battlefields. For a pair of pure strategies x and
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y, we denote by uA(x, y) and uB(x, y) the payoff of the players if they play x and y

respectively. Similarly, for a pair of mixed strategies X and Y we have

uA(X, Y ) = E
x∼X,y∼Y

[uA(x, y)] uB(X, Y ) = E
x∼X,y∼Y

[uB(x, y)].

Auditing game. Suppose there are K states in a presidential election race, each

corresponding to a number of electoral votes. An outsider wants to hack into the

system and change the outcome of the election in favor of the losing candidate.

Moreover, an auditor wants to make recounts to avoid possible frauds. Refering

to the players by the hacker and the auditor, we assume the simplest and full

information case, that is both the hacker and the auditor have access to the exact

results.1 If the auditor conducts an inspection in a state whose winner is manipulated

by the hacker, she catches the hacker and thus she wins the game (i.e., receives the

maximum possible utility). On the other hand, if the hacker survives the inspection,

her utility would be the number of electoral votes that she hacks in favor of her

candidate.

We formally define the game as follows. Given in the input, is a set {s1, s2, . . . , sK}

of K states. For each state si, a value vi is specified in the input, which is the number

of its electoral votes if it is won by the losing candidate (i.e., the hacker’s candidate)

and zero otherwise. A limit m on the number of states that can be inspected by

the auditor is also given in the input. A strategy of the hacker is a subset H of the

states to hack, and a strategy of the auditor is a set A of size at most m of the states

1In practice, this could be obtained by polls.
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to audit. The game is constant sum and the summation of utilities is always
∑
vi.

If the attacker is caught (i.e., if H∩A 6= ∅), the auditor receives utility
∑
vi and the

attacker receives utility 0. However, if the attacker is not caught (i.e., if H∩A = ∅),

she receives utility
∑

si∈H vi and the auditor receives utility
∑
vi −

∑
si∈H vi.

Similar to the notation that we use for the Colonel Blotto problem, for (pos-

sibly mixed) strategies x and y, we denote by uA(x, y) and uB(x, y) the payoff of the

auditor and the hacker if they play x and y respectively.

(u, p)-maxmin strategies. We call a strategy of a player, a (u, p)-maxmin, if it guar-

antees a utility of at least u for her with probability at least p, regardless of her

opponent’s strategy. In other words, a strategy x is (u, p)-maxmin if for every (pos-

sibly mixed) strategy y of the opponent we have

Pr
x∼X,y∼Y

[uA(x, y) ≥ u] ≥ p.

4.2 Maximizing Expectation Versus (u, p)-maxmin Strategies

In this section, we compare algorithms that are designed to maximize the

expected payoff to the algorithms that are specifically designed to approximate a

(u, p)-maxmin strategy from two perspectives: (i) the approximation factor that they

guarantee; (ii) their computational complexity.
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4.2.1 Comparison of the Approximation Factors

As it was already mentioned, our main results are algorithms that approximate

the problem of finding a (u, p)-maxmin strategy. Given that at least for the Colonel

Blotto problem, exact algorithms that maximize the expected payoff exist [1, 2],

one might be interested in the possible approximation factor that an expectation

maximizer algorithm guarantees, and whether designing new algorithms is really

needed or not.

Conceptually, the main difference between an expectation maximizer algorithm

and a (u, p)-maxmin optimizer, is in that the (u, p)-maxmin optimizer, in addition

to the instance of the game, takes u and p as extra parameters in the input and

designs a strategy accordingly, whereas the expectation maximizer returns a single

strategy for the game instance. Therefore an expectation maximizer would achieve

a relatively good approximation of our problem, only if it does so for all possible

values of u and p.

Unsurprisingly, this is not the case. The following theorem implies that the

expectation maximizers do not guarantee any constant approximation for (u, p)-

maxmin problem.

Theorem 46. For any given u, p and arbitrarily small constants 0 < α < 1 and

0 < β < 1, there exists an instance of Colonel Blotto (both discrete and continuous),

where for any approximate (α′u, β′p)-maxmin strategy that an expectation maximizer

algorithm returns, either α′ < α or β′ < β.

Proof. We construct a Colonel Blotto instance in such a way that guarantees ex-
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istence of a (u, p)-maxmin strategy for player A. Then show that an expectation

maximizer algorithm does not achieve anything strickly better than an (αu, βp)-

maxmin solution.

Construct the following Colonel Blotto instance: as usual, denote the troops

of player A by N and assume that player B has M = N/(βp) − 1 troops.2 The

game has K = 1/(βp) + M/(1 − p) battlefields, where 1/(βp) of which are called

high-value battlefields and the rest are called low-value battlefields. The weight of a

high-value battlefield is a sufficiently large number which we denote by ∞ (suffices

if ∞ > Nu) and the weight of a low-value battlefield is u.

We first show that in the mentioned instance, player A has a (u, p)-maxmin

strategy. The strategy is as follows: choose one low-value battlefield uniformly at

random and put N troops in it. Since there are M/(1− p) low-value battlefields, in

any pure strategy, player B can put a non-zero number of troops in at most a (1−p)

fraction of the low-value battlefields. Hence player A wins a low-value battlefield

with probability at least 1−(1−p) = p. Since the low-value battlefields have weight

u, this is a (u, p)-maxmin strategy.

However, if the goal of player A is to achieve the maximum expected payoff

she will end up playing a totally different strategy. Since M < N/(βp), there exists

at least one high-value battlefield in which player B puts less than N troops, so the

strategy that maximizes the expected payoff of player A is to choose a high-value

battlefield uniformly at random and put N troops in it. This guarantees that with

2Assume for ease of exposition that all the fractions that are used in constructing the strategy
are integers, otherwise consider a smaller value for β for which that holds.
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probability at least βp, player A wins a high-value battlefield, which achieves an

expected payoff of at least βp · ∞. It is easy to see that no other strategy of player

A achieves this expected payoff. Note that this strategy gets a non-zero payoff with

probability at most βp. Hence for any αu > 0, it does not achieve any strategy that

is strictly better than (αu, βp)-maxmin.

However, we show that for the special case where a (u, p)-maxmin strategy,

for sufficiently large values of u and p is guaranteed to exist, the solution of an

expectation maximizer is a good approximation of it.

Lemma 47. Let W := Σk
i=1wi denote the total weight of the battlefields. Given

that there exists a (u, p)-maxmin strategy of player A where u ≥ W
α

and p ≥ 1
β

for

α, β ≥ 1 the expected maximizer returns a ( u
2β
, p

2α
)-maxmin strategy.

Proof. Let U denote the maximum expected utility of player A. Since there exist

a (u, p)-maxmin strategy of player A, U ≥ u · p. Note that u · p ≥ W
αβ

, and the

maximum payoff that a player achieves from playing a strategy is W . Let q denote

the probability with which player A achieves more than u
2β

utility in the strategy

with expected utility of U . Therefore, U < (1− q) · u
2β

+ qW . Assume that q < p
2α

then we obtain a contradiction. In this case,

U < (1− p

2α
) · u

2β
+

p

2α
W ≤ (1− p

2α
)
W

2αβ
+

W

2αβ
<
W

αβ

holds which contradicts U ≥ W
αβ

, so the expected maximizer strategy is a ( u
2β
, p

2α
)-

maxmin strategy of player A.
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4.2.2 Comparison of their Computational Complexity

Let us again focus on the Colonel Blotto problem. It has been shown in

the literature that the problem of finding a maxmin strategy that maximizes the

expected payoff could be efficiently solved in polynomial time [1,2]. The goal of this

section is to illustrate why the problem of finding a (u, p)-maxmin strategy seems to

be computationally harder.

In particular, we show that while the “best response” could easily be computed

in polynomial time when the goal is to maximize the expected payoff [2], it is NP-

hard to find the best-response for the case where the goal is to give a (u, p)-maxmin

strategy.

Although the hardness of finding the best response does not necessarily imply

any hardness result for the actual game; it is often a good indicator of how hard the

game is to solve. We refer interested readers to the paper of Xu [78] which, for a

large family of games, proves solving the actual game is as hard as finding the best

response.

Assume a (mixed) strategy sB of player B, and a minimum utility u are given;

the best response problem for the Colonel Blotto game, denoted by BR, is to find a

pure strategy sA of player A which maximizes Pr[uA(sA, sB) ≥ u].

Theorem 48. There is no polynomial time algorithm to solve BR unless P=NP.

Proof. To prove this hardness, we reduce max-coverage problem to BR. A number

k and a collection of sets S = {S1, S2, . . . , Sn} are given. The maximum coverage

problem is to find a subset S ′ ⊆ S of the collection, such that |S ′| ≤ k and the
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number of covered elements (i.e., | ∪Si∈S′ Si|) is maximized.

Consider an instance of Colonel Blotto game with |S| battlefields of the same

weight where the first player has k troops and the second player has a sufficiently

large number of troops.

Let E = ∪Si∈SSi denote the set of all items in the given max coverage instance.

The support of the mixed strategy sB of player B contains |E| pure strategies, each

corresponding to an item and player B plays one of these pure strategies uniformly

at random (i.e., all of the pure strategies are played with the same probability).

For the corresponding pure strategy to an item e ∈ E, we put k + 1 troops in each

battlefield that its corresponding set does not contain e and put zero troops in all

other battlefields.

Assume that our goal is to find the best response of player A that maximizes

the probability of winning at least one battlefield. Let p denote this probability.

We claim p|E| is indeed the solution of the max-coverage instance. Since player B

puts either 0 troops or k+ 1 troops in each battlefield, it suffices for player A to put

either 0 or 1 troops in each battlefield. To see this recall that player A has only k

troops and clearly cannot win the battlefields in which player B puts k + 1 troops.

If player A puts more than zero troops in a battlefield, we choose its corresponding

set in the max-coverage problem. Since there are at most k such battlefields, it is

indeed a valid solution and it is easy to see that it maximizes the number of covered

elements.
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4.3 Discrete Colonel Blotto

4.3.1 Approximating (u, 1)-maxmin

In this section we study the problem of finding a (u, 1)-maxmin strategy for

player A with the maximum possible u. In this case, u is also called the guaranteed

payoff that player A achieves in an instance of Colonel Blotto game. It is easy to

see that the maximum guaranteed payoff of player A in a Colonel Blotto game,

denoted by opt is equal to the minimax strategy in a slightly modified version of

this game which is as follows: player A first chooses a pure strategy and reveals it to

her opponent, then player B, based on this observation, plays a pure strategy that

maximizes her payoff. In this game if N ≤ M , there exists no strategy of player A

that guarantees a payoff more than zero for this player, therefore in this section we

assume that N > M .

Let SA be an arbitrary pure strategy of player A, and let strategy RB be a

best response of player B to SA. We first give an algorithm that finds a response R′B

of player B such that uB(SA, R
′
B) ≥ uB(SA, RB) − maxKi=1wi. Then, by fixing this

algorithm for player B, we are able to find a strategy of player A that guarantees at

least half of the maximum guaranteed payoff of player A.

Lemma 49. Let R′B denote the strategy that Algorithm 4 provides for player B, and

let RB denote her best response against the strategy of player A, which is denoted

by S. Thus, we have uB(S,R′B) ≥ uB(S,RB)−maxKi=1wi.

Proof. Let si denote the number of troops that player A puts in the i-th battlefield
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Algorithm 4: An approximation algorithm for the best response of player B

1: Let wi denote the weight of the i-th battlefield and let si denote the number of
troops that player A has in this battlefield.

2: Sort the battlefields such that for any i ∈ [K − 1], wi

si
≥ wi+1

si+1

3: i← 1
4: while M ≥ si do
5: Player B puts si troops in the i-th battlefield
6: M ←M − si
7: i← i+ 1
8: end while

while playing strategy S, and let ri := wi/si denote the value of a battlefield.

The algorithm first sorts the battlefields in the decreasing order of their values.

Assume w.l.g. that the initial order is the desired one, i.e., ri−1 ≥ ri. Starting from

the first battlefield in the sorted order, player B puts as many troops as player A

has until there are no more troops left for player B. Let the k-th battlefield be the

stopping point of the algorithm. Clearly uB(S,R′B) = Σk−1
i=1wi. Moreover, one can

easily see that uB(S,RB) ≤ Σk
i=1wi. Therefore uB(S,R′B) ≥ uB(S,RB) − maxKi=1 wi

as desired.

Theorem 50. There exists a polynomial time algorithm that gives a (u/2, 1)-maxmin

strategy of player A, assuming that u is the maximum guaranteed payoff of player

A.

Proof. We first define a new optimization problem, then we prove that the solution

to that problem is also a 2-approximation solution for the maximum guaranteed

payoff of player A (i.e., opt). For any strategy s of player A, let U(s) denote the

payoff that player A achieves if the response of player B to strategy s is determined

by Algorithm 4. The optimization problem is to find a strategy s of player A
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that maximizes U(s). Let S denote the set of all possible strategies of player A,

and let opt′ = maxs∈S U(s). Since this is a constant-sum game, by Lemma 49,

opt′ ≤ opt + maxKi=1wi. Moreover, opt ≥ maxKi=1 wi since N > M , and player

A can win the battlefield with maximum weight by putting all her troops in that

battlefield. Therefore, opt′ ≤ 2opt, and to prove this lemma it suffices to give an

algorithm that finds opt′. Algorithm 5 finds opt′ via dynamic programming.

Algorithm 5: A 2-approximation algorithm for the guaranteed payoff of player A

1: function ApproximateGuaranteedPayoff
2: Let wk denote the weight of k-th battlefild.
3: s← −∞
4: for k in {1, . . . , K} do
5: for m in {1, . . . , N} do
6: s← max (s,FindBestPayoff(m, k))
7: end for
8: return s
9: end for

10: end function
11: function FindBestPayoff(m, k)
12: r ← wk/m
13: U [0][0][0]← 0
14: for any i in {1, . . . , K}, a in {0, . . . , N −m} and b in {0, . . . ,M} do
15: U [i][a][b]← −∞
16: if i = k then
17: U [i][a][b]← U [i− 1][a−m][b] + wi
18: else
19: for t in {0, . . . ,min (a, b, dwi/re − 1)} do
20: U [i][a][b]← max (U [i][a][b], U [i− 1][a− t][b− t])
21: end for
22: if a ≥ dwi/re then
23: U [i][a][b]← max (U [i][a][b], U [i− 1][a− dwi/re][b] + wi)
24: end if
25: end if
26: end for
27: return maxm−1

i=0 U [K][N ][M − i]
28: end function

For any strategy s of player A, let si denote the number of troops that player
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A puts in the i-th battlefield and let B(s) denote the set of battlefields that player A

wins given that the response of player B is determined by Algorithm 4. In addition

let b(s) := arg maxi∈B(s)
wi

si
be the first battlefield in which player B loses (in the

sorted list of battlefields in Algorithm 4) and let t(s) := sb(s). Furthermore, let

S(k,m) be a subset of strategies of player A where b(s) = k and t(s) = m for any s ∈

S(k,m). Function FindBestPayoff, for given inputs 1 ≤ k ≤ K and 0 ≤ m ≤ N

finds maxs∈S(k,m) U(s). Finally, in function ApproximateGuaranteedPayoff,

we find opt′ by calling function FindBestPayoff for all sets S(k,m) such that

1 ≤ k ≤ and 0 ≤ m ≤ N , and returning the maximum answer.

Let UA(j, s) denote the payoff that player A achieves in the j-th battlefield if

the response of player B to strategy s is determined by Algorithm 4, and let P (i, a, b)

denote the set of strategies of player A such that for any s ∈ P (i, a, b), Σi
j=1sj = a,

and in the response to s that is determined by Algorithm 4, player B puts exactly

b troops in the first i battlefields.

Claim 51. In Algorithm 5,

U [i][a][b] = max
s∈S(k,m)∩P (i,a,b)

Σi
j=1U

A(j, s).

Proof. We use induction on i.

1. Induction hypothesis: for any 1 ≤ i ≤ K, and any arbitrary a′ and b′ such that

0 ≤ a′ ≤ N and 0 ≤ b′ ≤M , U [i][a′][b′] = maxs∈S(k,m)∩P (i,a′,b′) Σi
j=1U

A(j, s).

2. Base case: U [0][0][0] = 0 and all the other cells for i = 0 are undefined (we
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assume that the value of any undefined cell is equal to −∞).

3. For the induction step we prove the correctness of hypothesis for i + 1: It is

easy to verify if i + 1 = k since by the constraints, player A puts exactly m

troops and player B puts no troops in the k-th battlefield, therefore U [i][a][b] =

U [i− 1][a−m][b] +wi. However, if i+ 1 6= k, there are different possible cases

for the number of troops that player A puts in this battlefield, denoted by si.

As a result she either gains wi+1 or 0 utility in this battlefield. By Algorithm

4, if wi+1

si+1
≥ wk

m
player B wins this battlefield, otherwise she loses it. In other

words, if si+1 <
m×wi+1

wk
, by Algorithm 4, player B, puts si+1 troops in this

battlefield and wins it. These cases are handled in line 20 of the function

FindBestPayoff. In addition, if si+1 ≥ m×wi+1

wk
, by Algorithm 4, player

B puts no troop in it so player A wins it. Also, player A never puts more

than dm×wi+1

wk
e in this battlefield since any number of troops more than this

results in the same payoff (winning wi+1). This case is handled in line 23 of

the algorithm. To sum up, the induction step is proved.

To complete the proof, it suffices to prove that function FindBestPayoff

correctly finds maxs∈S(k,m) U(s). Note that the output of function FindBestPay-

off is maxm−1
i=0 U [K][N ][M − i], hence we need to prove

max
s∈S(k,m)

U(s) =
m−1
max
i=0

U [K][N ][M − i]. (4.1)
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Claim 51 is indeed the main technical ingredient that we use to prove (4.1).

m−1
max
i=0

U [K][N ][M − i] =
m−1
max
i=0

(
max

s∈S(k,m)∩P (K,A,B−i)
ΣK
j=1U

A(j, s)
)

By Claim 51

(4.2)

=
m−1
max
i=0

(
max

s∈S(k,m)∩P (K,A,B−i)
U(s)

)
(4.3)

= max
s∈S(k,m)∩(∪m−1

i=0 P (K,A,B−i))
U(s) (4.4)

Note that player B may have at most m−1 unused troops since otherwise she could

use them to win battlefield k which contradicts the assumption of this function.

This implies S(k,m) ⊆ ∪m−1
i=0 P (K,A,B − i) and therefore by (4.4) we obtain (4.1)

as desired.

4.3.2 Approximating (u, p)-maxmin

In this section, we present a polynomial time algorithm for approximating a

(u, p)-maxmin strategy in the Colonel Blotto game. More precisely, given that there

exists a (u, p)-maxmin strategy for player A, we present a polynomial time algorithm

to find a (O(u/(logK)), O(p))-maxmin strategy. In Section 4.3.2.1 we study the

problem for a special case where wi = 1 for all i ∈ [K]. We show that in this case,

if K and N are large enough then player A can win a fraction of the battlefields

proportional to the ratio of N over M . We also argue that in some cases, no strategy

can be (u, p)-maxmin for player A with u, p > 0. We then use these observations

to obtain a (u/8, p/4)-maxmin strategy for player A in the uniform setting and a
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(u/(16(dlogKe+ 1)), p/8)-maxmin strategy for the general setting.

4.3.2.1 The Case of Uniform Weights

A special case of the problem is when all weights are uniform. We study this

case in this section. We assume w.l.g. that all weights are equal to 1 since one

can always satisfy this condition by scaling the weights. Given that there exists a

(u, p)-maxmin strategy for player A, we present a strategy for player A that is at

least (u/8, p/4)-maxmin. Recall that we denote the number of troops of players A

and B by N and M , respectively. Our first observation is that if both u and p are

non-zero then p ≤ 4(K − bM/Nc)/K holds.

Lemma 52. Given that there exists a (u, p)-maxmin strategy for player A with u, p >

0, then p ≤ 2(K − bM/Nc)/K holds.

Proof. We assume w.l.g. that bM/Nc ≥ 1 (otherwise p ≤ 2(K − bM/Nc)/K = 2

trivially holds). Also K ≥ 2bM/Nc implies 2(K − bM/Nc)/K ≥ 1 which yields

p ≤ 2(K − bM/Nc)/K. Suppose for the sake of contradiction that the conditions

doesn’t hold. Therefore we have K < 2bM/Nc and also p > 2(K−bM/Nc)/K. We

show that in this case, no strategy of player A can be (u, p)-maxmin for u > 0.

If K ≤ bM/Nc then player B can put N troops in all battlefields and always

prevent player A from winning any battlefield. Thus, K > bM/Nc. Now if player B

plays the following strategy, the probability that player A wins a single battlefield

is smaller than p: randomly choose 2(K − bM/Nc) battlefields and put N/2 ( =

bN/2c in the discrete version of the game) troops in them and put N troops in the
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rest of the battlefields. Recall that K < 2bM/Nc and thus 2(K−bM/Nc) does not

exceed the number of battlefields. This requires at most the total number of

2(K − bM/Nc)N/2 + (2bM/Nc −K)N ≤ bM/Nc(2N − 2N/2) +K(2N/2−N)

= bM/Nc(2N −N) +K(N −N)

= bM/NcN

≤M

troops. Notice that in order for a strategy of player A to win a battlefield, it needs

to put more than N/2 troops in that battlefield. Moreover, each pure strategy of

player A can put more than N/2 troops in at most one battlefield. Thus, a pure

strategy of player A gains a non-zero payoff only if player B puts at most N/2

troops in that chosen battlefild. This probability is bounded by 2(K − bM/Nc)/K

for each battlefield due to the strategy of player B. Therefore, player A can get a

non-zero payoff with probability no more than 2(K −bM/Nc)/K. This contradicts

the existence of a (u, p)-maxmin strategy for player A with u > 0 and p > 2(K −

bM/Nc)/K.

Although we consider Lemma 52 in the uniform and discrete setting, the proof

doesn’t rely on any of these conditions. Thus, Lemma 52 holds for the general setting

(both continuous and discrete). Based on Lemma 52, we present a simple algorithm

and show that the strategy obtained from this algorithm is at least (u/8, p/4)-

maxmin. In our algorithm, if K ≤ 2bM/Nc then we randomly select a battlefield

and put N troops in it. Otherwise, we find the smallest t such that t(bK/2c+1) > M
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and put t troops in bN/tc battlefields uniformly at random. The logic behind this

is that we choose a large enough t to make sure player B can put t troops in no

more than bK/2c battlefields. Therefore, when player A puts t troops in a random

battlefield, we can argue that she wins that battlefield with probability at least 1/2

regardless of player B’s strategy. We use this fact to show that player A wins at

least d1/8 min{N,K,K(N/M)}e battlefields with probability at least 1/2. Finally

we provide almost matching upper bounds to show the tightness of our solution.

We first provide a lower bound in Lemma 53 on the payoff of this strategy against

any response of player B.

Algorithm 6: An algorithm to find a (u/8, p/4)-maxmin strategy for player A

1: if K < 2bM/Nc then
2: Choose a battlefield i uniformly at random.
3: Put N troops in battlefield i.
4: else
5: t← 0.
6: while t(bK/2c+ 1) ≤M do
7: t← t+ 1
8: end while
9: if N ≥ Kt then

10: put t troops in all battlefields
11: else
12: Choose bN/tc battlefields a1, a2, . . . , abN/tc uniformly at random.
13: Put t troops in every battlefield ai.
14: end if
15: end if

Lemma 53. The strategy of Algorithm 6 provides the following guarantees for player

A in any instance of discrete Colonel Blotto game:

• If K < 2bM/Nc, player A wins a battlefield with probability at least (K −

bM/Nc)/K.
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• If K ≥ 2bM/Nc, player A wins d1/8 min{N,K,K(N/M)}e battlefields with

probability at least 1/2.

Proof. We prove each of the cases separately. If K < 2bM/Nc, player A’s strategy

is to randomly choose a battlefield and put all her troops in it. Notice that any

strategy of player B can put N troops in at most bM/Nc battlefields. Thus, with

probability at least (K − bM/Nc)/K, player B puts fewer than N troops in the

selected battlefield of player A and thus player A wins that battlefield.

If K ≥ 2bM/Nc, Algorithm 6 finds the smallest t such that t(bK/2c+1) > M

and puts t troops in min{K, bN/tc} randomly selected battlefields. As we mentioned

earlier, since t(bK/2c + 1) > M , player B can put t troops in no more than bK/2c

battlefields and thus she puts fewer than t troops in at least half of the battlefields.

If K ≤ bN/tc, player A puts t troops in all battlefields and since player B can

protect at most bK/2c of the battlefields, player A wins at least dK/2e battlefields

with probability 1. If K > bN/tc, player A wins any of the selected battlefields with

pobability at least 1/2 and therefore, with probability at least 1/2, player A wins

at least dbN/tc/2e of the bN/tc battlefields wherein she puts t troops. The rest of

the proof follows from a mathematical observation. In the interest of space we omit

the proof of Observation 54 here.

Observation 54. Let N , M , and K be three positive integer numbers such that

K ≥ 2bM/Nc and t be the smallest integer number such that t(bK/2c + 1) > M .

Then we have

dbN/tc/2e ≥ d1/8 min{N,K(N/M)}e.
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To show that Algorithm 6 provides a strategy competitive to that of the op-

timal, we present two upper bounds for each of the cases separately.

Lemma 55. Given that there exists a (u, p)-maxmin strategy for player A with non-

zero u and p in an instance of discrete Colonel Blotto with uniform wrights, for

K < 2bM/Nc we have u ≤ 2 and p ≤ 2(K − bM/Nc)/K.

Proof. p ≤ 2(K − bM/Nc)/K follows directly from Lemma 52. Next we argue that

in this case u is also bounded by 2. To this end, suppose that player B puts bM/Kc

troops in every battlefield. This way, in order for player A to win a battlefield,

she should put at least bM/Kc + 1 ≥ dM/Ke troops in that battlefield. Since

K < 2bM/Nc, then dM/Ke ≥ N/2 and thus player A can never achieve a payoff

more than 2.

Lemma 56. Given that there exists a (u, p)-maxmin strategy for player A with non-

zero u and p in an instance of discrete Colonel Blotto with uniform wrights, for

K ≥ 2bM/Nc we have u ≤ min{K,N,K(N/M)}.

Proof. u ≤ K and u ≤ N hold since there are at most K battlefields to win and

player A can put non-zero troops in at most N of them. Therefore, the only non-

trivial part is to show u ≤ K(N/M). We show that no strategy of player A can

achieve a payoff more than K(N/M) with non-zero probability. To this end, suppose

that player B puts bM/Kc troops in every battlefield. This way, in order for player

A to win a battlefield, she has to put at least bM/Kc + 1 ≥ dM/Ke troops in
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that battlefield. Thus, any strategy of player A wins no more than N/dM/Ke ≤

K/(M/N) battlefields. Therefore, u is bounded by K/(M/N).

Lemma 53 along with the upper bounds provided in Lemmas 55 and 56 prove

that the strategy of Algorithm 6 is competitive with the optimal strategy of player

A.

Theorem 57 (as a corollary of Lemmas 53, 55, and 56). Given that there exists a

(u, p)-maxmin strategy for player A in an instance of discrete Colonel Blotto with

uniform weights, Algorithm 6 provides a (u/8, p/2)-maxmin strategy.

4.3.2.2 The General Setting

We showed in Section 4.3.2.1 that when all the weights are equal to 1, there

is a polynomial time solution for finding an approximate (u, p)-maxmin solution for

a given u and p. In this section, we extend this result to the case of non-uniform

weights. The main ingredient of our proposal is a mathematical argument which we

state in Lemma 58.

Lemma 58. Given n non-negative values a1 ≥ a2 ≥ a3 ≥ . . . ≥ an, there exists a k

with 1 ≤ k ≤ n such that

kak ≥ 1/(dlog ne+ 1)
n∑
i=1

ai.

Proof. We assume w.l.g. that n = 2k − 1 for some k (otherwise we add enough 0’s

to the end of the sequence to satisfy this condition). We divide the sequence into
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dlog ne buckets as follows: The first bucket contains only a1. The second bucket

contains a2 and a3. More precisely, the i’th bucket contains all variables from a2i−1

to a2i−1. Since the variables are non-decreasing, for each bucket i the summation of

the variables inside it is upper bounded by 2i−1a2i−1 . Since we have dlog ne buckets,

the total sum of the values of at least one bucket is no less than (
∑
ai)/dlog ne and

therefore at least for one i we have 2i−1a2i−1 ≥ (
∑
ai)/dlog ne. An extra +1 appears

in the guarantee because of the adjustment to n that we made in the beginning of

the proof.

Given that player A has a (u, p)-maxmin strategy, we present a randomized

strategy for player A and show that this strategy is at least (u/(16(dlogKe +

1)), p/8)-maxmin. In our strategy, we split the battlefields into two categories high-

value and low-value. A battlefield is called high-value if the winner of that battlefield

obtains a payoff of at least u/(16(dlog ne+ 1)) and low-value otherwise. We denote

the high-value battlefields by A = {a1, a2, . . . , a|A|} and the low-value battlefields

by B = {b1, b2, . . . , b|B|}. We assume w.l.g. that both ai’s and bi’s are sorted in

non-decreasing order according to the weights of the battlefields. In other words,

wa1 ≥ wa2 ≥ . . . ≥ wa|A| and wb1 ≥ wb2 ≥ . . . ≥ wb|B| . Let M ′ be the smallest

number of troops that player B needs to put in the high-value battlefields to make

sure player A wins any of such battlefields with probability less than p due to the

upperbound of Lemma 52 . In our proposal, with probability 1/2 we play Algo-

rithm 6 on the high-value battlefields with the assumption that player B has M ′−1

troops. Also, with probability 1/2 we play Algorithm 6 on a prefix of battlefields
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b1, b2, . . . , bk as if player B had M −M ′ troops. Note that in both cases, we assume

that the weights of all battlefields are equal to 1 when using Algorithm 6. If any of

A or B is empty, we only play on the non-empty set. If M ′ > M , we only play on

battlefields of set A. A formal description of our proposal is given in Algorithm 7.

Algorithm 7: An algorithm to find a (u/(16(dlogKe+ 1)), p/4)-maxmin strategy for
player A

1: A = {a1, a2, . . . , a|A|} ← the set of battlefield with weight at least u/(16(dlog ne+
1))

2: B = {b1, b2, . . . , b|B|} ← the set of battlefield with weight less than
u/(16(dlog ne+ 1))

3: M ′ ← 0
4: while 2(|A| − bM ′/Nc)/|A| ≥ p do
5: M ′ ←M ′ + 1
6: end while
7: coin← either 0 or 1 with equal probability
8: if coin = 0 and |A| = 0 then
9: coin← 1

10: end if
11: if coin = 1 and (|B| = 0 or M ′ > M) then
12: coin← 0
13: end if
14: if coin = 0 then
15: Run Algorithm 6 on the battlefields a1, a2, . . . , a|A| with N and M ′−1 troops

for the players.
16: else
17: if N ≥M −M ′ then
18: k ← arg max

min{|B|,N}
i=1 iwbi

19: else
20: k ← arg max

min{|B|,M−M ′}
i=1 iwbi

21: end if
22: Run Algorithm 6 on the battlefields b1, b2, . . . , bk with N and M −M ′ troops

for the players.
23: end if

Our claim is that Algorithm 7 is (u/(16(dlogKe + 1)), p/8)-maxmin. Before

we provide a formal proof, we mention the high level idea briefly. Notice that in

Algorithm 7 we flip a coin and attack each set of the battlefields with probability 1/2.

109



The best response of player B is always a pure strategy. Such a pure strategy either

puts fewer than M ′ troops in the high-value battlefields or no more than M −M ′

troops in the low-value battlefields. In each case, we argue that the strategy of

Algorithm 7 performs well with probability at least p/4.

Theorem 59. Given that a (u, p)-maxmin strategy exists for player A in an instance

of discrete Colonel Blotto, Algorithm 7 provides a (u/(16(dlogKe+1)), p/4)-maxmin

strategy.

Proof. In order to show that the strategy obtained from Algorithm 7 is (u/(16(dlogKe+

1)), p/4)-maxmin, we show that it achieves a payoff at least (16(dlogKe + 1)) with

probability at least p/4 against any pure strategy of player B. To this end, we con-

sider two cases. Either the pure strategy of player B puts fewer than M ′ troops in

the high-value battlefields, or puts no more than M −M ′ troops in the low-value

battlefields. We investigate each of the possibilities in the following:

Fewer than M ′ troops in the high-value battlefields: Line 4 of Algorithm

7 terminates right after 2(|A| − bM ′/Nc)/|A| < p happens. Therefore, for M ′ − 1

troops we have 2(|A| − b(M ′ − 1)/Nc)/|A| ≥ p. It follows from Lemma 53 that

if player B puts M ′ − 1 (or fewer) troops in these battlefields and player A plays

according to Algorithm 6, she wins at least a battlefield with probability at least

min{1/2, (|A| − b(M ′− 1)/Nc)/|A|} which is at least p/2. Moreover, the payoff she

achieves from winning any of the battlefields is at least u(16(dlogKe + 1)). Since

the strategy of Algorithm 7 plays on the high-value battlefields with probability (at

least) 1/2, this guarantees a payoff of u/(16(dlogKe+ 1)) with probability at least
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p/4.

No more than M −M ′ troops in the low-value battlefields: We first

provide some lower bounds on summation of the weights of the low-value battlefields.

We show that unless the total weight of certain battlefields is lower bounded by fixed

values, player B can play in a way to prevent player A from obtaining a payoff of

at least u with probability at least p. Recall that due to Line 4 of Algorithm 7,

2(|A| − bM ′/Nc)/|A| < p holds. It follows from Lemma 52 that player B can put

M ′ troops in the high-value battlefields to make sure player A wins no high-value

battlefield with probability at least 1 − p. Therefore, efficient alloctations of the

remaining M −M ′ troops of player B to the low-value battlefields imply:

• If N ≤ |B| then wb1 +wb2 + . . .+wbN ≥ u since a (u, p)-maxmin stratey of the

player A should obtain at least a payoff of u from the low-value battlefields.

• wb1 +wb2 + . . .+wb|B| ≥ u(M −M ′)/N since otherwise the following strategy

of player B can prevent player A from achiving a payoff of u with non-zero

probability: Let W =
∑
wbi be the summation of the weights of the low-value

battelfields. Put b(M −M ′)wbi/W c troops in every battlefield bi. Note that

this requires no more than M −M ′ troops since

∑
(M −M ′)wbi/W = (M −M ′)(

∑
wbi)/W = (M −M ′)W/W = M −M ′.

In addition to this, in order for player A to win a battlefield bi, she has to put

at least b(M −M ′)wbi/W c+ 1 ≥ d(M −M ′)wbi/W e troops in that battlefield.
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Therefore, the ratio of the payoff over the number of necessary troop to win

for each battlefield is at least W/(M −M ′) and thus player A can obtain no

more than WN/(M −M ′) payoff. This implies W ≥ u(M −M ′)/N provided

that there exists a (u, p)-maxmin strategy for player A.

• If N ≤ M − M ′ ≤ |B| then wb1 + wb2 + . . . + wb|M−M′|
≥ u(M − M ′)/N :

This follows from an argument similar to the one just stated. Suppose for

the sake of contradiction that wb1 + wb2 + . . . + wb|M−M′|
< u(M − M ′)/N .

We define W =
∑M−M ′

i=1 wbi and propose the following strategy for player B.

For each 1 ≤ i ≤ M − M ′, put b(M − M ′)wbi/W c troops in battlefield bi

and put no troops in the rest of the low value battlefields. This way, for each

such battlefield the ratio of payoff per troop necessary to win that battlefield

is bounded by W/(M − M ′) for player A. Moreover, since we assume the

weights of the battlefields are non-decreasing, we have wbi ≤ W/(M −M ′) for

i > M−M ′ and thus winning each of those battlefields has a payoff of at most

W/(M −M ′) for player A. Therefore, no strategy of player A can achieve a

payoff more than NW/(M −M ′) against such a strategy of player B. This

implies that wb1 + wb2 + . . . + wb|M−M′|
≥ u(M −M ′)/N provided that there

exists a (u, p)-maxmin strategy for player A in this game.

The above lower bounds along with Lemma 58 imply that

kwbk ≥ umax{1, (M −M ′)/N}/(dlog |B|e+ 1).
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Moreover, k < 2b(M − M ′)/Nc cannot hold since the weight of each low-value

battlefield is bounded by u/(16dlogKe+ 1). Thus, if player A plays Algorithm 6 on

battlefields b2, b2, . . . , bk she wins at least d1/8 min{N, k, k(N/(M −M ′))}e of them

with probability at least 1/2 due to Lemma 53. This provides player A with a payoff

of at least u/(16(dlogKe + 1)) against any pure strategy of player B that puts no

more than M −M ′ troops in the low-value battlefields. Since Algorithm 7 plays on

the low-value battlefields with probability at least 1/2, this guarantees a payoff of

u/(16(dlogKe+ 1)) with probability at least 1/4.

4.4 Continuous Colonel Blotto

In this section we study the continuous version of the Colonel Blotto game. In

this version we relax the assumption that the number of troops that a player puts in

a battlefield is an integer. In fact, for certain applications (e.g., where money is the

resource that is to be distributed among battlefields) the continuous model is more

realistic.3 We first show in Section 4.4.1 that it is possible to find a (u, 1)-maxmin

strategy for each player in the continuous Colonel Blotto in polynomial time. We

also give an approximation algorithm for (u, p)-maxmin in the continuous version of

the game in Section 4.4.2. Our algorithm provides a (u/8, p/8)-maxmin strategy for

any instance of continuous Colonel Blotto, given that there exists a (u, p)-maxmin

for that instance.

3To remain consistent to the rest of the thesis, we use “troops” to refer to the resources even
for the continuous version of the game.
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4.4.1 An Exact Algorithm for (u, 1)-maxmin

In this section we provide a polynomial time algorithm to find a (u, 1)-maxmin

strategy for player A. The formal statement of the theorem is as follows.

Theorem 60. For any given instance of continuous Colonel Blotto and any given

u, there exists a polynomial time algorithm to either find a (u, 1)-maxmin strategy

or report that no (u, 1)-maxmin strategy exists.

The algorithm is a linear program. It is worth mentioning that using this LP,

one can search over u to find the maximum payoff that can be guaranteed for player

A (i.e., her pure maxmin strategy).

Let W :=
∑k

i=1 wi denote the total weight of all battlefields. We define a

subset S = {b1, . . . , bk} of the battlefields to be critical if the total weight of the

battlefields in it is more than W − u (i.e.,
∑

i∈S wi > W − u). The following lemma

is the main observation behind the LP.

Lemma 61. A strategy SA is an (u, 1)-maxmin strategy of player A if and only if

for any critical subset S of the battlefields, strategy SA puts more than M(the total

troops of player B) troops into the battlefields in S.

Proof. Assume SA is an (u, 1)-maxmin strategy of player A and assume for the sake

of contradiction that there exists a critical subset S of the battlefields in which SA

does not put more than M troops. Clearly, player B is able to win any battlefield

i ∈ S by putting in it the same number of troops that SA puts in it. This means

player A is only able win the battlefields that are not in S, but since S is a critical
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subset of the battlefields, the total weight of the battlefields that are not in S is less

than u — which contradicts the assumption that SA is an (u, 1)-maxmin strategy.

For the other direction, consider a strategy SA that puts more than M troops

in any critical subset of the battlefields, we prove SA is indeed an (u, 1)-maxmin

strategy. Again, for the sake of contradiction, assume this is not the case and there

exists a strategy SB of player B that gets a payoff of more than W − u agains SA.

The contradiction is that the subset of battlefields that player B wins is a critical

subset in which player A has put at most M troops.

We are now ready to explain the LP. There are K variables x1, . . . , xK where

variable xi denotes the number of troops that we put in the i-th battlefield. Apart

from the constraints that enforce these variables correspond to a validK-partitioning

of N , for each critical subset, there is a constraint that ensures the total number of

troops in this subset of battlefields is more than M . Since there maybe exponentially

many critical subsets, we use the ellipsoid method to solve it. The linear program

is formally given as LP 1.

(LP 1)

xi ≥ 0 ∀i : 1 ≤ i ≤ K

x1 + x2 + . . .+ xK = N∑
j∈S

xj > M ∀S: S is a critical subset of battlefields

To apply the ellipsoid method, we need a separation oracle that decides whether

a given assignment x̂ = 〈x1, . . . , xK〉 is a valid solution of LP 1, and if not, finds
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a violated constraint. The separation oracle first checks whether the first two con-

straints are violated or not, and if not runs the following instance of knapsack. The

knapsack has capacity M , and for any battlefield i, there is an item with volume

xi and value wi. Clearly, the solution of this knapsack problem is the best response

of player B to the strategy of player A that corresponds to x̂. It suffices to check

whether in this best response, the battlefields that player B wins form a critical

subset or not. If they do not form a critical subset, by Lemma 61, x̂ is a valid

solution of LP 1, and if they form a critical subset, the constraint that corresponds

to this critical subset is violated.

4.4.2 An Approximation Algorithm for (u, p)-maxmin

In this section we present a polynomial time algorithm to find a (u/8, p/8)-

maxmin algorithm of player A in any instance of continuous Colonel Blotto given

that there exist a (u, p)-maxmin strategy of her in this instance of the game. In this

algorithm we partition the battlefields to two sets of low-value and high-value bat-

tlefields. If both sets are non-empty player A either puts all her troops in high-value

battlefields with probability 1/4 or she puts all the troops in low-value battlefields

with probability 3/4. The strategies that she plays in any of these cases are dif-

ferent. Algorithm 8 contains the details of the algorithm. We also prove that this

algorithm gives a (u/8, p/8)-maxmin strategy of player A in Theorem 62.

Theorem 62. Given that a (u, p)-maxmin strategy exists for player A in an instance

of continuous Colonel Blotto, Algorithm 8 provides a (u/8, p/8)-maxmin strategy.
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Proof. In order to show that the strategy obtained from Algorithm 8 is (u/8, p/8)-

maxmin, we show that it achieves a payoff at least u/8 with probability at least p/8

against any pure strategy of player B. To this end, we consider two cases. Either the

pure strategy of player B puts fewer than M ′ troops in the high-value battlefields,

or puts no more than M −M ′ troops in the low-value battlefields. We investigate

both of the possibilities:

Fewer than M ′ troops in the high-value battlefields: Let Mh denote the

amount of troops that player B puts in the high value battlefields. Note that M ′ =

N(|A|(1−p/2)+1) and in this case Mh < M ′, which means Mh < N(|A|(1−p/2)+1)

and player B can put in at most |A|(1−p/2) battlefields at least N troops. Therefore,

when player A chooses a high-value battlefield uniformly at random, with probability

at least p/2 player B puts less than N troops in that battlefield and player A wins

it. As a result of playing this strategy player A wins at least a battlefield with

probability at least p/2. Moreover, the payoff she achieves from winning any of

these battlefields is at least u/8, so this guarantees a payoff of u/8 with probability

at least p/8 = (2/p)(1/4) since player A puts her troops in high-value battlefields

with 1/4 probability (by Line 16 of the algorithm).

No more than M −M ′ troops in the low-value battlefields: We first

prove that the summation of the weight of all the low-value battlefields is at least

u(M−M ′)/N . We show that otherwise, player B can play in a way to prevent player

A from obtaining a payoff of at least u with probability at least p. Recall that due to

Line 14 of Algorithm 8, M ′ = N(|A|(1−p/2)+1), therefore 2(|A|−bM ′/Nc)/|A| < p

holds. It follows from Lemma 52 that player B can put M ′ troops in the high-value
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battlefields to make sure player A wins no high-value battlefield with probability at

least 1− p. Therefore, there exists an strategy of player A that achieves a payoff of

at least u from the low-value battlefields with non-zero probability. However, if

wb1 + wb2 + . . .+ wb|B| ≥ u(M −M ′)/N

does not hold, the following strategy of player B can prevent player A from having

that strategy : Let W =
∑
wbi be sum of the weights of the low-value battlefields.

Put (M −M ′)wbi/W troops in every battlefield bi. Note that this requires no more

than M −M ′ troops since

∑
(M −M ′)wbi/W = (M −M ′)(

∑
wbi)/W = (M −M ′)W/W = M −M ′.

In addition to this, in order for player A to win a battlefield bi, she has to put more

than (M −M ′)wbi/W troops in that battlefield. Therefore, the ratio of the payoff

over the number of necessary troop to win for each battlefield is at least W/(M−M ′)

and thus player A can obtain no more than WN/(M −M ′) payoff. This implies

W ≥ u(M −M ′)/N provided that there exists a (u, p)-maxmin strategy for player

A.

Using this lower bound on the total size of the low-value battlefields, we also

prove that |∆| ≥ 8
5
(M −M ′)/N . Since by Line 6 of the algorithm, for any bundle of

battlefields δ ∈ ∆, the total weight of the battlefields in δ is less than 5
8
u (= 1

2
u+ 1

8
u),

118



|∆| is bounded as follows:

|∆| ≥ u(M −M ′)/N

u5/8
≥ 8

5
(M −M ′)/N.

In Algorithm 8, with probability at least 3/4 player A plays on the low-value

battlefields. She chooses a bundle δ of set ∆ uniformly at random and distributes

her money over all the battlefields in this bundle proportional to their weights. In

this case if player B puts at most 3
4
N troops in this bundle player A wins at least

1
4

fraction of the overall weight of the battlefields in bundle δ which is at least u/8.

Since |∆| ≥ 8
5
(M−M ′)/N , and player B can put in at most (M−M ′)

3N/4
bundles at least

3
4
N troops, there are at least

8(M −M ′)

5N
− 4(M −M ′)

3N
≤ 4(M −M ′)

15N

bundles that player B puts at most 3
4
N troops in them, which is 1

6
of all the bundles.

As a result, in this case with probability at least 1
8

= 1
6
· 3

4
player A gains u

8
payoff

since by line 16 of the algorithm she plays this strategy on the low-value battlefidls

with probability at least 3
4
.

4.5 Auditing Game

In what follows we propose an approximation solution for the auditor. We

first begin by showing an upper-bound on the highest protection that the auditor
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can provide, and then proceed by proposing a strategy to obtain a fraction of that.

Note that if the hacker chooses a set of states with total value less than
∑
vi−

u, the auditor is guaranteed to receive a payoff of at least u. Hence we assume

throughout that any valid strategy of the hacker chooses a set of states that have a

total value of more than
∑
vi − u.

We show an upper bound on the best that the auditor can do via a linear

program. In this linear program, for every pure strategy x of the hacker, there is

a variable fx ≥ 0 which is a real value corresponding to this strategy. We refer to

fx as the flow of strategy x. Moreover, for every state vi, we have a constraint to

ensure that the total flow of the strategies of the hacker that change the result of

state vi is bounded by 1. The objective of the program is to maximize the total flow

of all strategies.

maximize:
∑
x∈X

fx (4.5)

subject to:
∑
si3X

fx ≤ 1 ∀i ∈ [n]

Let opt be the optimal solution of LP 4.5. We show that no strategy of the

auditor can achieve a utility of u with probability more than m/opt. Of course, if

opt ≤ m, this bound is meaningless. To this end, let f ∗ be an optimal solution of

LP 4.5 and consider a mixed strategy of the hacker that plays every strategy x with

probability f ∗x/opt (notice that the probabilities sum up to 1 since opt =
∑
f ∗x).
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Recall that the total flow of the strategies that hack every state is bounded by

1, and the hacker plays every strategy with probability f ∗x/opt, thus the probability

that any strategy of the hacker changes the outcome of any state is bounded by

1/opt. Moreover, every strategy of the auditor is to inspect at most m states, thus

she catches the hacker with a probability of at most m/opt. Hence, no strategy of

the auditor can protect the election with a probability more than m/opt.

Lemma 63. There is no (u, p′)-maxmin strategy for the auditor for p′ > m/opt,

where opt is the optimal solution of LP 4.5.

Now, in order to find an approximation solution for the auditor, we take the

dual of LP 4.5 to obtain the following linear program.

minimize:
∑
i∈[n]

gi (4.6)

subject to:
∑
si∈x

gi ≥ 1 ∀x ∈ X

By the strong duality theorem, the optimal solutions of LP 4.6 and LP 4.5

are equal. Consider an optimal solution g∗ of LP 4.6. Based on this solution, we

construct a strategy for the auditor that protects the election with probability at

least (1−1/e)m/opt. Notice that in LP 4.6, for every state si, we have a variable gi

and the total sum of the variables is equal to opt. Moreover, for every strategy x of

the hacker, we have a constraint to ensure that the sum of the g∗i ’s corresponding to

x is at least 1. Consider a probability distribution D over the states, such that for
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every state si, Dsi = g∗i /opt. Trivially,
∑
Dsi = 1 holds. Now, we define a strategy

for the auditor and show its approximation factor is bounded by 1 − 1/e. In this

strategy, we draw m states from the probability distribution D and investigate the

results of those states. Notice that some states might appear several times in our

solution, but we can ignore repetitions and consider each just once.

Now, let us analyze this strategy. Fix a pure strategy x for the hacker. We

know that the sum of {g∗i } for the states corresponding to strategy x is at least

1. Therefore, every time we draw a state according to the probability distribution

D, one of the states of x is audited with probability at least 1/opt. We draw m

different states, therefore, the probability that one of the states of x appears in the

strategy of the auditor is at least

1− (1− 1/opt)m ≥(1− 1/e)m/opt.

If m ≥ opt, then

1− (1− 1/opt)m ≥1− (1− 1/opt)opt

≥(1− 1/e)

and hence the proof is trivial. Otherwise,

1− (1− 1/opt)m ≥(1− 1/e)m/opt

Thus, if the auditor follows this strategy, she can protect the election with
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probability at least (1−1/e)m/opt. Notice that solving the linear programs can be

done in polynomial time via the ellipsoid method, and thus we can find this strategy

in polynomial time. This result married with the upper-bound mentioned earlier

gives us the following theorem.

Theorem 64. For any given u and p, where a (u, p)-maxmin strategy is guaranteed

to exist for the auditor, a polynomial time algorithm exists that finds a (u, (1−1/e)p)-

maxmin approximation strategy.

4.5.1 A Reduction From Generalized Blotto to Auditing Game

In a generalized version of Colonel Blotto which we call Threshold Blotto

game, we have two players A and B, each with a given number of troops. Both of

the players distribute their troops over k battlefields and the payoff of each battlefield

i is determined based on a specific function hi with respected to the troops of each

side in battlefield i. If the total payoff of player A is more than a threshold τ then

player A wins the game, otherwise player B is declared the winner.
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Threshold Blotto game

Players: Colonels A and B

Settings: x and y specify the number of troops of the players. A set of k bat-

tlefields with payoff functions {h1, h2, . . . , hk}, where each function hi admits

two inputs α and β corresponding to the number of troops of the players in

that battlefield and determines the payoff based on these values. A threshold

τ denoting the minimum payoff for A to win the game.

Players’ pure strategies: Distribute their troops over k battlefields. This can be

represented with a vector of size k whose sum of indices is equal to the number

of troops of that player.

Payoffs: A wins if
∑
hi(αi, βi) ≥ τ where α and β are vectors of size k for

players strategies. If A wins, she receives a payoff of 1, otherwise a payoff of

-1. Colonel B’s payoff is the negation of colonel A’s payoff and thus the game

is zero-sum.

In what follows, we show a reduction from Threshold Blotto to the auditing

game. Suppose we have an Auditing game with n states s1, s2, . . . , sn and the hacker

needs to flip the results of some states with a total number of electoral votes of at

least t and the auditor audits the results of at most m states. Based on this, we

construct an instance of the Threshold Blotto game with k = n+ 1 battlefield. We

associate colonel A to the hacker and colonel B to the auditor. We set the number

of troops of colonel A equal to the total number of electoral votes of all states (
∑
vi)

and the number of troops of Colonel B equal to m.

124



To make the reduction cleaner, we set the payoff function of each battlefield i

(hi) in such a way that the optimal strategies meet the following conditions:

• For every battlefield 1 ≤ i ≤ n, player A either puts 0 or vi troops (the number

of electoral votes of state si) in the i’th battlefield.

• For every battlefield 1 ≤ i ≤ n, player B either allocated 0 or 1 troop to that

battlefield.

• The total number of troops of player A in the first n battlefields is at least t.

If all these conditions are met then, every time colonel A puts vi troops in some

battlefield 1 ≤ i ≤ n, we can think of that as if the hacker hacks state si’s results.

Similarly, whenever colonel B puts a troop in a battlefield 1 ≤ i ≤ n, we can

interpret that as the auditor issuing a recount for state si. Therefore, we can define

the payoff functions accordingly: For 1 ≤ i ≤ n we set

hi(αi, βi) =

−∞, if βi /∈ {0, 1}

∞, if αi /∈ {0, vi}

0 if αi = 0 or βi = 0

1 if αi > 0 and βi > 0

where αi and βi denote the number of troops of colonels A and B in battlefield i

respectively. This payoff function specifies the payoff of colonel B. The payoff of

colonel A is the nagation of that. This guarantees that in an NE we always have

αi = {0, vi} and βi = {0, 1} for all 1 ≤ i ≤ n. Notice that colonel B gets a payoff
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of 1 if she puts a troop in a battlefield and colonel A also puts vi troops in that

battlefield. To make sure the total number of electoral votes of the hacker is at least

t, we set the following payoff function for the last battlefield:

hk(αi, βi) =

−∞, if βi 6= 0

∞, if αi >
∑
vi − t

0 otherwise

Notice that if αi ≤
∑
vi − t, then the total number of troops of colonel A in the

first n battlefield is at least t and thus the corresponding strategy of the hacker is

valid. Now, colonel B gets a non-zero payoff in this game if and only if she puts

some troops in a battlefield which also contains some troops of colonel A as well.

Therefore, if we set τ = 1 an NE of this game corresponds to an NE of the auditing

game.

Theorem 65. Threshold Blotto game is computationally harder than the auditing

game.
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Algorithm 8: An algorithm to find a (u/8, p/8)-maxmin strategy of player A in
continuous Blotto

1: A = {a1, a2, . . . , a|A|} ← the set of battlefield with weight at least u/8
2: B = {b1, b2, . . . , b|B|} ← the set of battlefield with weight less than u/8
3: s← 0
4: i← 1
5: for b in B do
6: if s ≥ u/2 then
7: Add δi to ∆
8: i← i+ 1
9: s← 0

10: end if
11: Add b to set δn.
12: s← s+ weight of battlefield b
13: end for
14: M ′ ← N(|A|(1− p/2) + 1)
15: coin← 0
16: With 3/4 probability set coin to 1.
17: if coin = 0 and |A| = 0 then
18: coin← 1
19: end if
20: if coin = 1 and (|B| = 0 or M ′ > M) then
21: coin← 0
22: end if
23: if coin = 0 then
24: Choose a battlefield a uniformly at random from set A.
25: Put N troops in battlefield a.
26: else
27: Choose a set δ from ∆ uniformly at random.
28: for b in δ do
29: Put N/wb troops in battlefield b.
30: end for
31: end if
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Chapter 5: Solutions with Small Profiles

Throughout the chapter, for any integer n, we use [n] to denote the set

{1, 2, . . . , n}. We denote the vectors by bold fonts and for every vector v, use

vi to denote its ith entry.

The Colonel Blotto game. The Colonel Blotto game is played between two

players which we refer to as player 1 and player 2. Any instance of the game can be

represented by a tuple B(n,m,w) where n and m respectively denote the number

of troops of player 1 and player 2, and w = (w1, . . . , wk) is a vector of length k of

positive integers denoting the weight of k battlefields on which the game is being

played.

A pure strategy of each of the players is a partitioning of his troops over

the battlefields. That is, any pure strategy of player 1 (resp. player 2) can be

represented by a vector x = (x1, . . . , xk) of length k of non-negative numbers where∑
i∈[k] xi ≤ n (resp.

∑
i∈[k] xi ≤ m). In the discrete variant of the game, the number

of troops that are assigned to each of the battlefields must be non-negative integers.

In contrast, in the continuous variant, any assignment with non-negative real values

is considered valid. Throughout the chapter, we denote respectively by S1 and S2

the set of all valid pure strategies of player 1 and player 2.
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Let x and y be the pure strategies that are played respectively by player 1

and player 2. Player 1 wins battlefield i if xi > yi and loses it otherwise. The

winner of battlefield i gets a partial utility of wi on that battlefield, and the overall

utility of each player is the sum of his partial utilities on all the battlefields. More

precisely, the utilities of players 1 and 2, which we respectively denote by u1(x,y)

and u2(x,y), are as follows:

u1(x,y) =
∑

i∈[k]:xi>yi

wi, u2(x,y) =
∑

i∈[k]:xi≤yi

wi.

Note that in the definition above, we break the ties in favor of player 2, i.e., when

both players put the same number of troops on a battlefield, we assume the winner

is player 2.

Also, we define the uniform Colonel Blotto game to be a special case of Colonel

Blotto in which all of the battlefields have the same weights, i.e., w1 = w2 = . . . =

wk = 1.

The objective. The guaranteed expected utility of a (possibly mixed) strategy

x of player 1 is u, if against any (possibly mixed) strategy y of player 2, we have

Ex′∼x,y′∼y[u1(x′,y′)] ≥ u. A strategy is maximin if it maximizes this guaranteed

expected utility.

In this chapter, we are interested in bounded support strategies. The support

of a mixed strategy is the set of pure strategies to which it assigns a non-zero

probability. We call a strategy c-strategy if its support has size at most c. A maximin

c-strategy is a c-strategy that has the highest guaranteed expected utility among all
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c-strategies. Observe that we do not restrict the adversary to play a c-strategy here.

In fact, given the mixed strategy of a player, it is well-known that the best response

of the opponent can be assumed to be a pure strategy w.l.o.g. This means that an

opponent that can respond by only one pure strategy is as powerful as an opponent

that can play mixed strategies as far as maximin strategies are concerned.

Another standard objective for many natural applications of the Colonel Blotto

game is to maximize the probability of obtaining a utility of at least u. This has

been captured in the literature by the notion of (u, p)-maximin strategies.

Definition 66. For any two-player game, a (possibly mixed) strategy x of player 1

is called a (u, p)-maximin strategy, if for any (possibly mixed) strategy y of player 2,

Pr
x′∼x,y′∼y

[u(x′,y′) ≥ u] ≥ p.

In such scenarios, for a given minimum utility u, our goal is to compute (or approx-

imate) a (u, p)-maximin with maximum possible p. Similar to the expected case, we

are interested in bounded support strategies. That is, given u and c, our goal is

to compute (or approximate) a (u, p)-maximin c-strategy with maximum possible p.

Again, we do not restrict the adversary’s strategy.

Throughout this section, we discuss the optimal strategies of the Colonel Blotto

game when the support size is small. That is, when player 1 can only randomize over

at most c pure strategies and wishes to maximize his utility. Our main interest is in

finding (almost) optimal (u, p)-maximin strategies as discussed above. Nonetheless,

we show in Section 5.5 that our results carry over to the conventional definition of
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the maximin strategies and can be used when the goal is to maximize the expected

utility.

When randomization is not allowed, any (u, p)-maximin 1-strategy with p > 0

is also (u, 1)-maximin. Thus, the problem boils down to finding a pure strategy

with the maximum guaranteed payoff. However, when randomization over two pure

strategies is allowed, we may play two pure strategies with different probabilities q

and 1−q and thus the problem of finding a (u, p)-maximin 2-strategy with p 6= 1 does

not necessarily reduce to the case where the goal is to find a single pure strategy. As

an example, when n = m = 2 and we have two battlefields with equal weights (w1 =

w2 = 1), a (1, 1/2)-maximin 2-strategy can be obtained by selecting a battlefield at

random and placing two troops on the selected battlefield. However, in this example

(or in any example with m = n), no 2-strategy is (1, p)-maximin for p > 1/2 since

the opponent can just select our higher-probability strategy and copy it, ensuring

we get utility 0 with probability at least 1/2. More generally, for c = 2, even if

n ≤ m, a simple observation shows that the only interesting cases are when p = 1

(which reduces to the c = 1 case) or when p = 1/2. The idea is that when p > 1/2

holds, existence of a (u, p)-maximin 2-strategy for an arbitrary u implies that of a

(u, 1)-maximin 2-strategy. Similarly, if a 2-strategy is (u, p)-maximin for some u and

0 < p < 1/2, one can modify the same strategy to make it (u, 1/2)-maximin. Therefore,

for c = 2, the problem is (computationally) challenging only when a (u, 1/2)-maximin

2-strategy is desired. Thus, for c = 2, the problem essentially reduces to finding two

pure strategies x,x′ such that no strategy of the opponent can prevent both x and

x′ from getting a utility of at least u. A similar, but more in-depth analysis gives us
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the same structure for c = 3. That is, in this case, we may look for a (u, 1/3)-maximin

or a (u, 2/3)-maximin 3-strategy. This implies that in an optimal solution, we look for

three strategies x,x′,x′′ such that no strategy of the opponent prevents two of or

all of (depending on whether p = 1/3 or p = 2/3) x,x′ and x′′ from getting a utility

of at least u.

It is surprising to see that this structure breaks when considering more than

three pure strategies (c ≥ 4). For instance, consider an instance of the Colonel

Blotto game with 4 battlefields (k = 4) in which the players have 4 and 6 troops,

respectively (n = 4, m = 6). Let the weights of the first 3 battlefields be 5 and

the weight of the last battlefield be 10. In this example, the goal of player 1 is

to obtain a utility of at least 10 with the highest probability. One can verify with

an exhaustive search that if player 1 were to randomize over 4 pure strategies with

equal probability, he could guarantee a utility of at least 10 with probability no

more than 1/4.1 However, we present in Table 5.1, a (10, 2/5)-maximin 4-strategy for

player 1 that plays 4 pure strategies with non-uniform probabilities.

Battlefield
1

w1 = 5

Battlefield
2

w2 = 5

Battlefield
3

w3 = 5

Battlefield
4

w4 = 10

Strategy 1, played with probability 2⁄5. 0 0 0 4

Strategy 2, played with probability 1⁄5. 1 1 2 0

Strategy 3, played with probability 1⁄5. 1 2 1 0

Strategy 4, played with probability 1⁄5. 2 1 1 0

Table 5.1: A (10, 2/5)-maximin 4-strategy for player 1 on instance B(4, 6, (5, 5, 5, 10)).

In order to design an algorithm for finding (u, p)-maximin strategies that does

not lose on p, it is essential to understand how player 1 randomizes over his strategies

1We have verified this claim with a computer program.
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in an optimal solution. We begin in Section 5.2 by showing that when randomization

is allowed only on a small number of pure strategies, the number of different ways to

distribute the probability over the pure strategies in an optimal solution is limited.

That is, one can list a number of probability distributions and be sure that at least

one of such probability distributions leads to an optimal solution. This structural

property is general and applies to any game so long as (u, p)-maximin strategies are

concerned.

Theorem 77 (restated informally). When randomization is only allowed on a con-

stant number of pure strategies, the number of possible probability distributions for

an optimal (u, p)-maximin strategies is limited by a constant.

Theorem 77 is proven via a combinatorial analysis of the optimal solutions.

On one hand, we leverage the optimality of the solution to argue that p cannot

be improved. On the other hand, we use the maximality of p to derive relations

between the probabilities that the pure strategies are played with. Finally, we use

these relations to narrow down the probabilities a to a small set.

Indeed, a consequence of Theorem 77 is that when we fix a utility u and

wish to find a (u, p)-maximin c-strategy with highest p, p can only take a constant

number of values. This observation makes the problem substantially easier as we

can iterate over all possible probability profiles and solve the problem separately for

each profile. Thus, from now on, we assume that we fix a probability distribution

over the pure strategies, and the goal is to select c strategies to be played according

to the fixed probabilities. We assume that (i) u and p are given in the input, (ii)
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we are guaranteed that a (u, p)-maximin c-strategy exists, and (iii) the goal is to

compute/approximate such a strategy.

Continuous Colonel Blotto. For the continuous case, we can represent each pure

strategy with a vector of size k of real values indicating the number of troops that

is placed on each battlefield. Thus, a c-strategy can be represented by c vectors

of length k (given that we have fixed the probability distribution over the pure

strategies). A simple observation (also pointed out in Chapter 4) is that when the

goal is to find a pure maximin strategy, the solution is essentially a convex set with

respect to the representations. That is, if x1 and x2 are both (u, p)-maximin, any

strategy whose representation is a convex combination of the representations of x1

and x2 is also (u, p)-maximin. The pure maximin problem coincides with our setting

when c = 1. However, it is surprising to see that for c > 2, the solution may not be

convex, even though we use the same approach to represent the strategies.

As an example, imagine we have two battlefields with equal weights (say 1)

and n = m = 2. Indeed a (1, 1/2)-maximin strategy can be obtained for player 1 by

randomizing over (0, 2) and (2, 0) uniformly. Similarly, randomizing over (2, 0) and

(0, 2) (the order is changed) gives us the same guarantee. However, a convex combi-

nation of the two strategies plays (1, 1) deterministically and loses both battlefields

against the strategy (1, 1) of player 2. The situation may be even worse as one can

construct a delicate instance whose solution set is the union of up to 2Ω(k) convex

regions no two of which make a convex set when merged.

A key observation that enables us to compute/approximate the solution is
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the partial convexity of the solution. That is, we show that although the solution

set is not necessarily convex, one can identify regions of the space where for each

region, the solution is convex. To be more precise, denote by x1,x2, . . . ,xc the

representations of the strategies. In this representation, xij denotes the number

of troops that i’th pure strategy places on the j’th battlefield. This gives us a

ck dimensional problem space [0, n]ck. Divide this space by k
(
c
2

)
hyperplanes each

formulated as xij = xi
′
j for some i, i′ ∈ [c] and j ∈ [k]. Partial convexity implies that

the solution space in each region is convex, and as a result, gives us an exponential

time solution for the problem in the continuous setting. Roughly speaking, since the

solution is convex in each region, we can iterate over all regions and solve the problem

separately using a linear program for each region. However, we have exponentially

many regions and therefore the running time of this approach is exponentially large.

x1 ≤ x1, x2 ≤ x2, x3 ≤ x3

x1 ≤ x1, x2 ≥ x2, x3 ≥ x3
1 2 1 2 1 2

1 2 1 2 1 2

x1    x1
1 2=

x2    x2
1 2=

x3    x3
1 2=

Figure 5.1: An example of how the solution space is decomposed for the case when
k = 3 and c = 2. The figure on the left illustrates 3 hyperplanes x1

j = x2
j . These

hyperplanes divide the solution space into 8 regions and for all the points in each
region, as illustrated in the figure on right, x1

j and x2
j for j ∈ [3] compare in the

same way.

The above algorithm can be modified to run in polynomial time in the uniform

setting. The high-level idea is that when the battlefields have equal weights, there

is a strong symmetry between the solutions of the regions. Based on this, we show

that in the uniform setting, one only needs to search a polynomial number of regions

for a solution. This idea along with the partial convexity gives us a polynomial time
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solution for the uniform setting.

Theorem 71 (restated informally – proven in Section 5.1.1 for c = 2 and extended

in Section 5.3.1 to c > 2). There exists a polynomial time solution for finding

a (u, p)-maximin c-strategy for Colonel Blotto in the continuous case when all the

battlefields have the same weight.

Indeed, the uniform setting is a very special case since we are essentially in-

different to the battlefields. When we incorporate the weights of the battlefields,

we no longer expect the solutions to be symmetric with respect to the battlefields.

However, one may still observe a weak notion of symmetry between the regions.

Recall that we denote the weights of the battlefields with w1, w2, . . . , wk. Let us lose

a factor of 1 + ε in the utility and assume w.l.o.g. that each weight wi is equal to

(1+ ε)j for some integer j ≥ 0. Assuming that the maximum weight is polynomially

bounded (we only make this assumption for the sake of simplicity and our solution

does not depend on this constraint), the number of different battlefield weights is

logarithmically small. Thus, we expect many battlefield to have equal weights which

as a result makes the solution regions more symmetric. However, this idea alone

gives us a quasi-polynomial time algorithm for searching the regions as we may have

a logarithmic number of different battlefield weights. To reduce the running time

to polynomial, we need to further prune the regions of the solution to polynomi-

ally many. Indeed, we show that it suffices to search over a polynomial number of

regions if we allow an approximate solution. Via this observation, we can design

a polynomial time algorithm that approximates the solution within a factor 1 + ε.
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This settles the problem for the continuous setting.

Theorem 84 (restated informally – proven in Section 5.1.1 for c = 2 and extended

in Section 5.3.1 to c > 2). (u, p)-maximin c-strategy strategies of the Colonel Blotto

admit a PTAS in the continuous setting.

Discrete Colonel Blotto. For the discrete setting, we take a rather different

approach. The main reason is that in this setting, even if we are guaranteed that

the solution is convex, we cannot use LP’s to compute/approximate a solution. In

Chapter 4 we give a 2 approximation algorithm that finds a pure maximin strategy

for the discrete setting. Indeed, this solution can be used to get a 2 approximate

solution for the case of c = 1. We both extend their algorithm to work for c ≥ 2

and also devise a heavy-light decomposition to improve the approximation factor to

1 + ε. Both our extension and decomposition techniques are novel.

We introduce the notion of a weak adversary. Roughly speaking, we define

a relaxed best response for player 2 that does not maximize the utility of player

2, but instead, approximately maximizes his utility. We call a player that plays

a relaxed best response, a weak adversary. By proposing a greedy algorithm for

the weak adversary, we show that the payoff of the weak adversary and the actual

adversary differ by the value of at most one battlefield. That is, if the weights of

the battlefields are bounded by wmax, then the difference between the utility of an

adversary and that of a weak adversary is always bounded by wmax. Next, we show

that a dynamic program can find a pure strategy of player 1 that performs best

against a relaxed adversary and turn this algorithm into a 2 approximate solution
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for the problem, by considering two cases 2wmax ≥ u and 2wmax < u.

Indeed losing an additive error of wmax may hurt the approximation factor a

lot when the desired utility u is not much more than wmax. Thus, in order to improve

the approximation factor, one needs to design a separate algorithm for the heavy

battlefields. To this end, we introduce our heavy-light decomposition. We define a

threshold τ ≈ εu and call a battlefield i heavy if wi > τ and light otherwise. In

addition to this, we assume w.l.o.g. that wmax ≤ u since otherwise one can set a cap

of u on the weights without changing the solution. Therefore, the maximum weight

and the minimum weight of heavy battlefields are within a multiplicative factor of

1/ε. Next, by incurring an additional 1+ε multiplicative factor to the approximation

guarantee, we round down the weight of each battlefield to the nearest (1 + ε)i. We

show that this leaves us with a constant number of different weights for the heavy

battlefields. Next, we state that since the number of different weights for the heavy

battlefields is constant, the total number of (reasonable) pure strategies of player 1

over these battlefields can be reduced down to a polynomial. Indeed this also holds

for player 2, but for the sake of our solution, we should further bound the number

of responses of player 2 over these battlefields. We show in fact, that the number

of (reasonable) responses of player 2 over the heavy battlefields against a strategy

of player 1 is bounded by a constant! For light battlefields, we use the idea of a

weak adversary. However, in order to find a solution that considers both heavy and

light battlefields, we need to define multiple weak adversaries each with regard to a

response of player 2 on the heavy battlefields.

Let us clarify the challenge of mixing the two solutions via an example. Sup-
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pose we have 4 battlefields with weights 10, 8, 7 and 5 and the players’ troops are

as follows: n = 5 and m = 2. One can verify that in this case, the following pure

strategy of player 1 guarantees a payoff of 15 for him.

Battlefield
1

w1 = 10

Battlefield
2

w2 = 8

Battlefield
3

w3 = 7

Battlefield
4

w4 = 5

A (15, 1)-maximin 1-strategy for player 1. 2 2 1 0

Table 5.2: A (15, 1)-maximin 1-strategy for player 1 on instance B(5, 2, (10, 8, 7, 5)).

In fact, 15 is the highest utility player 1 can get with a single pure strategy

as no other pure strategy of player 1 can guarantee a payoff more than 15 for him.

Now, assume that we select the first two battlefields with weights 10 and 8 as heavy

battlefields and the rest of the battlefields as the light ones. One may think that

by taking a maximin approach for the heavy battlefields and solving the problem

separately for the light battlefields, we can obtain a correct solution. The above

example shows that this is not the case. We show in what follows, that the maximin

approach reports a payoff of 17 for player 1 which is more than the actual solution.

Fix the strategy of player 1 on the heavy battlefields to be placing 2 troops on

battlefield 1 and 1 troop on battlefield 2. As such, the only reasonable responses of

player 2 on these battlefields are as shown in the following table.

Battlefield
1

w1 = 10

Battlefield
2

w2 = 8
troops left for player 2

response 1 2 0 0

response 2 0 1 1

response 3 0 0 2

Table 5.3: The responses of player 2 on the heavy battlefields.
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Response 3 already gives player 1 a payoff of 18 which is more than 17. Also, response

1 of player 2 leaves him with no troops for the light battlefields and thus he loses

both light battlefields against strategy (1, 1) of player 1 on the light battlefields.

Therefore, this gives player 1 a payoff of 20. Also, if player 2 plays response 2 on the

heavy battlefields, player 1 can win the light battlefield w3 by putting two troops on

it. Indeed player 2 has only one troop left and there is no way for him to win this

battlefield. Thus, in this case, the payoff of player 1 would be 17. Since we take the

maximum solution over all strategies of player 1 for the heavy battlefields, our final

utility would be at least 17.

What the above analysis shows is that, if we take a maximin approach on the

heavy battlefields and then solve (or approximate) the problem for the light bat-

tlefields, we may incorrectly report a higher payoff for player 1. Roughly speaking,

this error happens since in this approach, we allow player 1 to have different actions

over the light battlefields against different responses of player 2. To resolve this

issue, we design a dynamic program that takes into account all responses of player

2 simultaneously. Indeed, to make sure the program can be solved in polynomial

time, we need to narrow down the number of responses of player 2 to a constant.

Our heavy-light decomposition along with our structural properties of the optimal

strategies enables us to reach this goal. This gives us a non-trivial dynamic program

that can approximate the solution within a factor 1 + ε for the case of a single pure

strategy.

Theorem 85 (restated informally). The problem of finding a (u, 1)-maximin strategy
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for player 1 in discrete Colonel Blotto admits a PTAS.

To extend the result to the case of c ≥ 2, we need to design a weak adversary

that plays a relaxed best response against more than 1 strategy of player 1. For

c = 1, the greedy algorithm follows from the well-known greedy solution of knap-

sack. However, when c ≥ 2 the best-response problem does not necessarily reduce

to knapsack and therefore our greedy solution is much more intricate. Roughly

speaking, we design a non-trivial procedure for player 2 that gets c thresholds as

input, and based on these thresholds, decides about the response for each battlefield

locally. This local decision making is a key property that we later exploit in our

dynamic program to find an optimal strategy against a weak adversary. This in ad-

dition to the heavy-light decomposition technique gives us a PTAS for (u, p)-maximin

c-strategy strategies of Colonel Blotto in the discrete setting.

Theorem 108 (restated informally). The problem of finding a (u, p)-maximin c-strategy

for player 1 in discrete Colonel Blotto admits a PTAS.

Further results. We show in Section 5.5, that our techniques also imply PTASs for

the Colonel Blotto game when instead of a (u, p)-maximin c-strategy we wish to find

a maximin c-strategy. For the continuous case, similar to the case of (u, p)-maximin

strategies, we divide the solution space into polynomially many convex subregions

and prove that among them a (1 + ε)-approximate solution is guaranteed to exist.

The main difference with the case of (u, p)-maximin strategies is in the LP formu-

lation of the problem, but the general approach is essentially the same. For the

discrete variant of Colonel Blotto, we also follow a similar approach as in the case
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of (u, p)-maximin strategies. In more details, we partition the battlefields into heavy

and light subsets and define a weaker adversary that is adapted to approximately

best respond against maximin strategies. We find it surprising and possibly of in-

dependent interest that essentially the same approach (though with minor changes)

can be applied to these two variants of Colonel Blotto. Prior algorithms proposed

for these two variants were fundamentally different [1, 3, 54].

Theorems 120 and 124 (restated informally). The problem of finding a maximin

c-strategy for player 1 in both discrete and continuous variants of Colonel Blotto

admits a PTAS.

Finally, recall that motivation for approximate algorithms comes from in-

tractability. In view of all the recent sophisticated algorithmic approaches to solving,

approximately, various special cases of the Colonel Blotto game, it is worth asking,

what is the computational complexity of the full fledged problem of computing a

maximin strategy of the Colonel Blotto game? (Notice that, since the full strategy

is too long to return, we should formulate the problem in terms of something suc-

cinct, for example one component of the maximin.) In Section 5.6 we present the

first complexity results in this area, establishing that an interesting variant of the

problem that we call General Colonel Blotto — roughly, the utility is a gen-

eral function of the two allocations, instead of the probability of winning more than

a certain goal of total battlefield weight — is complete for exponential time. The

precise complexity of the two versions of the original game (computing a maximin

of the probability of winning a majority, or of the expectation of the total weights of
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battlefields won) is left as an open question here. We conjecture that both problems

are also exponential time-complete.

Theorems 125. General Colonel Blotto is exponential time-complete.

We formalize our algorithm for the continuous case in the remainder of section.

In Section 5.2, we discuss possible probability distributions over the pure strategies

in an optimal (u, p)-maximin c-strategy. In Section 5.4, we show that the discrete

variant of the game also admits a PTAS. We further show how it is possible to adapt

these results to the case of maximin strategies in Section 5.5. Finally, in Section 5.6,

we describe our complexity results.

5.1 Continuous Colonel Blotto

In this section we consider the continuous variant of Colonel Blotto. We start

with the case where our goal is to find a (u, p)-maximin 1-strategy and show how we

can generalize it to 2-strategies and, further, to any bounded number of strategies.

For the particular case of c = 1, our goal is to find a single pure strategy

that is (u, p)-maximin. Indeed, since we are playing a single pure strategy with no

randomization, the probability p must be 1. One can think of the solution of this

case as a vector of non-negative real values that sum up to n and formulate the
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problem in the following way.

find x

subject to xi ≥ 0 ∀i ∈ [k]∑
xi ≤ n

u1(x,y) ≥ u ∀y ∈ S2

(5.1)

To analyze Program 5.1, we need to better understand the payoff constraints. To

this end, we state another interpretation of the payoff constraints in Observation 67.

Observation 67 ( [3]). A pure strategy x of player 1 guarantees a payoff of at least

u against any pure strategy of player 2 if and only if
∑

i∈S xi > m for any set S of

battlefields with
∑

i/∈S wi < u.

Proof. (⇒): Suppose that a strategy x does not get a payoff of u against a strategy

y of player 2. This means that there exists a set S of battlefields that player x loses.

The total payoff of x is below u, and therefore
∑

i/∈S wi < u. In addition to this∑
i∈S xi ≤ m holds since player 2 needs to match player 1’s troops in all battlefields

of S.

(⇐): It is trivial to show that if there exists such a violating set S, then x

cannot promise a payoff of u against any strategy of player 2. The reason is that

since
∑

i∈S xi ≤ m player 2 can match the troops of player 1 in set S and that

suffices to prevent player 1 from winning a payoff of u.

Via Observation 67, we can turn Program 5.1 into LP 5.2 where we have a

constraint for every possible subset S of battlefields with
∑

i/∈S wi < u. Although
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the number of these subsets can be exponentially large, we show in Chapter 4 that

one can find a violating constraint of LP 5.2 in polynomial time and thus find a

feasible solution using the ellipsoid method.

find x

subject to xi ≥ 0 ∀i ∈ [k]∑
xi ≤ n∑
i∈S xi > m for every subset S of battlefields with

∑
i/∈S wi < u.

(5.2)

The key idea that enables us to solve this variant is that we are playing only

one pure strategy. Even the case of having two pure strategies in the support is

much more challenging. To illustrate the challenges and ideas, we next focus on

how to obtain a 2-strategy and later generalize it to c-strategies.

5.1.1 The Case of 2-Strategies

Recall by Observation 78 of Section 5.2 that if a 2-strategy is (u, p)-maximin

for some p > 1/2, then there also exists a pure (u, 1)-maximin strategy that, by

aforementioned techniques, can be found in polynomial time. It was further shown

in Observation 79 that if a 2-strategy is (u, p)-maximin for some p < 1/2, we can

simply play the two strategies in its support with equal probability 1/2 to obtain a

better (u, 1/2)-maximin strategy. Combining these two observations, we can assume

w.l.o.g., that in the case of c = 2, we wish to find two pure strategies x and x′,
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and play them with equal probabilities such that any strategy of player 2 gives us

a payoff of at least u for at least one of x or x′. A mathematical formulation of the

problem is given below.

find x and x′

subject to xi ≥ 0 and x′i ≥ 0 ∀i ∈ [k]∑
xi ≤ n∑
x′i ≤ n

either u1(x,y) ≥ u or u1(x′,y) ≥ u ∀y ∈ S2

(5.3)

Observe that the fourth constraint of the above program is not linear. In

the following, we show that even the polytope that is described by this program is

essentially nonconvex.

Observation 68. Program 5.3 is not convex.

Proof. Suppose n = m = 2, w1 = w2 = 1 and the goal is to find a (1, 1/2)-maximin

strategy by randomizing over two pure strategies. A possible solution is to play

x = (2, 0) with probability 1/2 and play x′ = (0, 2) with probability 1/2 which

guarantees a payoff of 1 with probability 1/2. An alternative way to achieve this

goal is to set x = (2, 0) and x′ = (0, 2) which is the same strategy except that x and

x′ are exchanged. However, the linear combination of the two strategies results in

x = (1, 1) and x′ = (1, 1) which always loses both battlefields against y = (1, 1).

A more careful analysis shows that the feasible region of Program 5.3 may be

the union of up to 2k convex polytopes which makes it particularly difficult to find a
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desired solution. In what follows, we present algorithms to overcome this challenge

for both the uniform and nonuniform settings.

5.1.1.1 Uniform Setting

Recall that in order to find a pure (u, 1)-maximin strategy, we proved the

linearity of Program 5.1 by characterizing the optimal solution. Similar to that, we

show necessary and sufficient conditions for the solution of Program 5.3. To this

end, we define critical tuples as follows.

Definition 69. Let L1, L2, and L12 be three disjoint subsets of battlefields. We call

the tuple 〈L1, L2, L12〉 a critical tuple, if critical any of L1 ∪L12 or L2 ∪L12 suffices

to prevent player 1 from getting a payoff of u. In other words, 〈L1, L2, L12〉 is a

critical tuple, if and only if

∑
i/∈L1∪L12

wi < u, and,
∑

i/∈L2∪L12

wi < u.

Via this definition, we can now describe the feasible solutions of Program 5.3

as follows.

Observation 70. Two pure strategies x and x′ of player 1 meet the constraints of

Program 5.3 if and only if for any critical tuple 〈L1, L2, L12〉 we have

∑
i∈L1

xi +
∑
i∈L2

x′i +
∑
i∈L12

max{xi, x′i} > m.

Proof. The proof is similar to that of Observation 67. Note that x and x′ violate a
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payoff constraint of Program 5.3 if they both get a payoff less than u against a pure

strategy y of player 2. In this case we define three sets L1, L2, and L12 as

L1 = {i : xi ≤ yi and x′i > yi}, L2 = {i : xi > yi and x′i ≤ yi}, L12 = {i : xi ≤ yi and x′i ≤ yi}.

Observe that L1, L2, and L12 make a critical tuple since both x and x′ get a payoff

less than u against y. Since L1, L2, and L12 are disjoint and
∑
yi = m we have∑

i∈L1
xi +

∑
i∈L2

x′i +
∑

i∈L12
max{xi, x′i} ≤ m. A similar argument implies that if

this condition does not hold for any critical tuple, then x and x′ meet the conditions

of Program 5.3.

Based on Observation 70 we rewrite Program 5.3 in the following way.

find x and x′

subject to xi ≥ 0 and x′i ≥ 0 ∀i ∈ [k]∑
xi ≤ n∑
x′i ≤ n

zi = max{xi, x′i} ∀i ∈ [k]∑
i∈L1

xi +
∑

i∈L2
x′i +

∑
i∈L12

zi > m for every critical tuple 〈L1, L2, L12〉
(5.4)

Indeed Program 5.4 is not convex since zi = max{xi, x′i} is not a linear constraint.

The naive approach to get around this issue is to consider 2k possibilities for the

assignment of zi’s. More precisely, if we knew in an optimal strategy for which

i’s we have xi > x′i and for which xi ≤ x′i, we could turn Program 5.4 into a
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linear program by replacing each zi with either xi or x′i. This observation gives

us an exponential time solution to find a (u, p)-maximin strategy by trying all 2k

combinations. However, for the uniform case, we can further improve the running

time to a polynomial. The overall idea is that when we are indifferent between the

battlefields, we do not necessarily need to know for which subset of battlefields x

puts more troops that x′. It suffices to be given the count!

In the uniform setting, let x̂ and x̂′ be the actual solution. Count the number of

battlefields on which x̂ puts more troops than x̂′ and call this number α. Therefore,

on k−α battlefields, x′ puts at least as many troops as x. Since the battlefields are

identical, we can rearrange the order of the battlefields to make sure x puts more

troops than x′ in the first α battlefields. If α is given to us, we can formulate the

problem as follows.

find x and x′

subject to xi ≥ 0 and x′i ≥ 0 ∀i ∈ [k]∑
xi ≤ n∑
x′i ≤ n

xi ≥ x′i, zi = xi ∀i : 1 ≤ i ≤ α

xi ≤ x′i, zi = x′i ∀i : α < i ≤ k∑
i∈L1

xi +
∑

i∈L2
x′i +

∑
i∈L12

zi > m for every critical tuple L1, L2, L12

(5.5)

Program 5.5 is clearly an LP. We show in Theorem 71 that LP 5.5 can indeed
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be solved in polynomial time. This settles the problem when α is given. Note that α

takes an integer value between 0 and k and thus we can iterate over all possibilities

and solve the problem in polytime.

Theorem 71. Given that an instance of continuous Colonel Blotto in the uniform

setting admits a (u, 1/2)-maximin 2-strategy for player 1, there exists an algorithm to

find one such solution in polynomial time.

Proof. As discussed earlier, the solution boils down to solving LP 5.5. Here we show

that LP 5.5 can be solved in polynomial time using the ellipsoid method. For that,

we need a separating oracle that for any given assignment to the variables decides

in polynomial time whether any constraint is violated and if so, reports one. LP 5.5

has polynomially many constraints, except the constraints of form

∑
i∈L1

xi +
∑
i∈L2

x′i +
∑
i∈L12

zi > m for every critical tuple L1, L2, L12,

since there may be exponentially many critical tuples. Therefore the only challenge

is whether any constraint of this form is violated. That is for given strategies x and

x′ and with zi = max{xi, x′i}, we need to design an algorithm that finds a critical

tuple 〈L1, L2, L12〉 (if any) for which we have

∑
i∈L1

xi +
∑
i∈L2

x′i +
∑
i∈L12

max{xi, x′i} ≤ m. (5.6)

For this, note that as implied by Observation 70, it suffices to be able to find a pure
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strategy y of player 2 such that

u1(x,y) < u, and, u1(x′,y) < u. (5.7)

This is in some sense, equivalent to player 2’s best-response which we show can be

solved in polynomial time via a dynamic program. Define D(j,m′, υ, υ′) to be 1

if and only if player 2 can use up to m′ troops in the first j battlefields in a way

that prevents x (resp. x′) from obtaining a payoff of at least υ (resp. υ′) in those

battlefields. More precisely, D(j,m′, υ, υ′) is 1 if and only if there exists a strategy

y for player 2 such that

j∑
i=1

yi ≤ m′,
∑

i:i∈[j],xi>yi

wi ≤ υ, and,
∑

i:i∈[j],x′i>yi

wi ≤ υ′.

Clearly, if we are able to solve D(j,m′, υ, υ′) for all possible inputs, then it suffices

to check the value of D(k,m, u, u) to see whether we can find a strategy y satisfying

(5.7). Indeed, we can update the dynamic program in the following way:

D(j,m′, υ, υ′) = max
yj∈{0,...,m′}

D
(
j − 1,m′ − yj, υ − g(yj, j), υ

′ − g′(yj, j)
)
,

where,

g(yj, j) =
wj, if xj > yj,

0 otherwise,

and, g′(yj, j) =
wj, if x′j > yj,

0 otherwise.
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As for the base case, we set D(0, 0, 0, 0) = 1. The correctness of the dynamic

program is easy to confirm, since we basically check all possibilities for the number

of troops that the second player can put on the jth battlefield and update the

requirements on the previous battlefields accordingly. A minor issue, here, is that

this only confirms whether a strategy y exists that satisfies (5.7) or not and does

not give the actual strategy. However, one can simply obtain the actual strategy by

slightly modifying the dynamic program to also store the strategy itself.

To summarize, we gave a polynomial time separating oracle for LP 5.5 that

gives a polynomial time algorithm to solve it which leads to a (u, 1/2)-maximin

2-strategy for player 1 in polynomial.

5.1.1.2 General Weights

Theorem 71 shows that the problem of computing a (u, 1/2)-maximin 2-strategy

is computationally tractable when the weights are uniform. In this section, we

study the general (i.e., non-uniform) setting and show that it is possible to obtain

an (almost) optimal solution for this problem in polynomial time.

Recall that we assume there exists a (u, 1/2)-maximin 2-strategy and the goal

is to either compute or approximate such a strategy. Fix the pure strategies of the

solution to be x̂ and x̂′. Similar to Section 5.1.1.1, if we knew for which i’s x̂i ≥ x̂′i

holds and for which i’s it is the opposite, we could model the problem as a linear

program and find a solution in polynomial time. Since wi’s are not necessarily the

same, unlike Section 5.1.1.1, we need to try an exponential number of combinations

152



to make a correct decision. To alleviate this problem, we show a generalized variant

of the above argument. Define the status of battlefield i to be compatible with

either ≤ or ≥ (or both in case of equality) based on the comparison of x̂i and x̂′i.

Assume we make a guess for the status of battlefields, which is incorrect for a set S

of battlefields but correct for the rest of them. This means that for every battlefield

i in set S, if x̂i > x̂′i, we assume xi ≤ x′i and vice versa. We show that if the total

weight of the battlefields in S is small, there exists an almost optimal solution for

the problem whose status is compatible with our guess.

For simplicity, we represent a guess for the status of the battlefields with a

vector g ∈ {≤,≥}k of length k in which every entry is either ‘≤’ or ‘≥’. A solution

(x,x′) is compatible with this guess if gi correctly compares xi to x′i.

Lemma 72. Let (x̂, x̂′) be an optimal (u, p)-maximin solution of the problem and

g be a guess for the status of the battlefields. Let S be the set of battlefields for

which g makes an incorrect comparison between x̂ and x̂′ on these battlefields. If∑
i∈S wi = α then there exists a (u − α, p)-maximin strategy that is compatible with

g.

Proof. We construct a pair of strategies (x,x′) based on x̂ and x̂′. For every bat-

tlefield i ∈ S, we set xi = x′i = 0 and for every battlefield i /∈ S we set xi = x̂i and

x′i = x̂′i. If a strategy of player 2 prevents both x and x′ from getting a utility of

u − α, then the same strategy prevents both x̂ and x̂′ from getting a payoff of u.

Therefore, (x,x′) is (u− α, p)-maximin. Since for every battlefield outside set S we

have xi = x′i = 0, then both ≤ and ≥ correctly compare the corresponding values
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for such battlefields. Therefore, (x,x′) is compatible with g.

A simple interpretation of Lemma 72 is that if we make a guess that differs

from a correct guess in a subset of battlefields with a total weight of α, we can use

this guess to find a solution with an additive error of at most α in the utility. Based

on this idea, we present a polynomial time algorithm that for any arbitrarily small

constant ε < 1 computes a ((1− ε)u, 1/2)-maximin 2-strategy.

δ-Uniform weights. One of the crucial steps of our algorithms, is updating bat-

tlefield weights. This step, is indeed used in multiple other places of this thesis

as well. For a parameter δ, we define a δ-uniform variant of the game to be an

instance on which the weight of each of the battlefields is rounded down to be in set

W = {1, (1 + δ)1, (1 + δ)2, . . .}. That is, for any i ∈ [k], we set the updated weight of

battlefield i to be w′i = max{w : w ∈W, w ≤ wi}. The following observation implies

that we can safely assume the game is played on the updated weights without losing

a considerable payoff.

Observation 73. For any u′, any (u′, p)-maximin strategy of the game instance

B(n,m,w′) with the updated weights is a ((1− δ)u′, p)-maximin strategy of the orig-

inal instance B(n,m,w). Similarly, any (u′, p)-maximin strategy of the original in-

stance B(n,m,w) is a ((1− δ)u′, p)-maximin for instance B(n,m,w′).

Proof. Let x = (x1, . . . , xk) be any pure strategy in the support of the (u′, p)-maximin

strategy of B(n,m,w′). Consider any arbitrary strategy y of player 2, it suffices

to show that x gets a payoff of at least (1 − δ)u′ against y in the original instance

B(n,m,w). Note that for any i ∈ [k] we have w′i ≥ wi/(1 + δ) ≥ (1 − δ)wi by the
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way that we round down the weights; therefore, we have that

∑
i:xi>yi

w′i ≥
∑
i:xi>yi

(1− δ)wi ≥ (1− δ)
∑
i:xi>yi

wi ≥ (1− δ)u′,

completing the proof for the first part.

Similarly, since the weight of each battlefield is multiplied by a factor of at

most 1/(1 + δ), any (u′, p)-maximin strategy for the original instance is a (u′/(1 +

δ), p)-maximin or simply a ((1 − δ)u′, p)-maximin strategy for instance B(n,m,w′).

The algorithm in a nutshell. We first update the weight of every battlefield i to

be min{u,wi}. This, in fact, does not change the game instance for player 1 since

his only objective is to guarantee a payoff of at least u. Now, for δ = ε3/10 which is

a relatively smaller error threshold than ε, we consider the δ-uniform variant of the

game. In the δ-uniform instance, since the weights change exponentially in 1+δ, we

have at most O(1/δ · log u) distinct weights . We put the battlefields with the same

weight into a bucket and denote the sizes of the buckets by k1, k2, . . . , kb where b is

the number of buckets. Recall from Section 5.1.1.1 that if a set of battlefields have

the same weight, then we are indifferent between these battlefields and thus the

only information relevant to these battlefields is on how many of them x̂ puts more

troops than x̂′. Therefore one way to make a correct guess is to try all
∏

(ki + 1)

possibilities for all of the buckets. Unfortunately,
∏

(ki + 1) is not polynomial since

the number of buckets is not constant. In order to reduce the number of possibilities
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to a polynomial, we make a number of observations.

First, since the weights decrease exponentially between the buckets, the num-

ber of distinct weights that are larger than δu/k (and smaller than u as described

above,) is at most log1+δ k/δ = Oδ(log k). Observe that we can safely ignore (i.e.,

make a wrong guess for) all the buckets with weight less than δu/k since sum of the

weights of all battlefields in such buckets is at most δu and by Lemma 72 it causes

us to lose an additive error of at most δu. Although this reduces the number of

buckets down to Oδ(log k), it is still more than we can afford to try all
∏

(ki + 1)

possibilities.

Second, instead of trying kj + 1 possibilities for bucket j, we reduce it down to

only O(1/δ) options. More precisely, let tj be the number of battlefields i in bucket

j such that x̂i ≥ x̂′i. For any bucket j with kj > 1/δ, if we only consider tj to be

in set {0, bδkjc, b2δkjc, b3δkjc, . . . , kj} one of the realizations of tj makes at most

δkj + 1 incorrect guesses for bucket j. We use this later to argue that we do not lose

a significant payoff by considering only O(1/δ) possibilities per bucket. As a result,

we reduce the size of the cartesian product of all possibilities over all the buckets

down to a polynomial.

Third, we show that if n ≥ (1 + ε)m/2, we can safely assume that losing the

value of at most bδkjc battlefields of buckets with more than 1/δ battlefields does

not hurt the payoff significantly. In other words, when n ≥ (1 + ε)m/2, the optimal

utility u is much larger than the total sum of the payoff we lose by only trying 1/δ

possibilities for every bucket j (proven in Lemma 74).

Based on the above ideas, we outline our PTAS as follows: (i) We first set a
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cap of u for the weight of the battlefields. (ii) Let δ = ε3/10. Next, we round down

the weight of the battlefields to be powers of (1 + δ). (iii) We put the battlefields

with the same weights in the same bucket and remove the buckets whose battlefield

weights are smaller than δu/k. (iv) Finally, we try O(1/δ) possibilities for the status

of the battlefields within each bucket and check its feasibility using LP 5.5.2 We

return the first feasible solution that we find. The formal algorithm is given as

Algorithm 9.

Algorithm 9: Algorithm to find a (u, p)-maximin 2-strategy for general weights.

Input: A payoff u for which existence of a (u, 1/2)-maximin 2-strategy is guaran-
teed.
Output: Two pure strategies x and x′ that form a (u, 1/2)-maximin when played
with equal prob. 1/2.

1: For every battlefield i, update wi to be min{u,wi}.
2: For δ = ε3/10, we further update the battlefield weights and consider its δ-

uniform variant.
3: Ignore every battlefield i with weight less than δu/k (i.e., naively guess xi ≥ x′i).
4: Put all battlefields of the same weight into the same bucket and denote by kj

the number of battlefields in bucket j.
5: For each bucket j with kj ≤ 1/δ, let Gj = {≤,≥}kj be the set of all possible

guesses for it.
6: For each bucket j with kj > 1/δ, let Gj be the set of all guesses where for any
d ∈ {0, bδkjc, b2δkjc, b3δkjc, . . . , kj} we have xi ≥ x′i for any i ≤ d and xi ≤ x′i
for any i > d.

7: Let G = G1 × . . . × Gb be the cartesian product of the partial guesses of the
buckets.

8: For any guess g ∈ G, construct an instance of LP 5.5 and return the first found
feasible solution (x,x′).

Before we present a formal proof, we state an auxiliary lemma to show a lower

bound on the value of u when n ≥ (1 + ε)m/2.

2As a minor technical detail, since our goal is to guarantee a payoff of at least (1− ε)u instead
of u, we need to update the definition of losing tuples accordingly for this case.
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Lemma 74. Let α be the total sum of the weights of the battlefields whose buckets

have a size of at least 1/δ. If n > (1 + ε)m/2 then there exists a (εα/8, 1/2)-maximin

strategy for player 1 that randomizes over two pure strategies.

Proof. Let B = {B1, . . . , Bb} be the set of all buckets with at least 1/δ battlefields.

We slightly abuse the notation and respectively denote by wi and ki the weight and

the number of battlefields in Bi. This means we have
∑b

i=1 kiwi = α. We construct

a 2-strategy (x,x′) where both x and x′ are played with equal probability 1/2 and

claim that it is (εα/8, 1/2)-maximin. To that end, for any bucket Bi ∈ B with an

odd number of battlefields, we ignore one battlefield (i.e., we put zero troops in it

in both x and x′) to consider only an even number of battlefields for each bucket.

Denote by α′ the total weight of the remaining battlefields, i.e., the battlefields in

some Bi ∈ B that are not ignored. It is easy to confirm that

α′ ≥ (1− δ)α (5.8)

since from each of the buckets in B, at most one battlefield is ignored, which is only

a δ fraction of the battlefields in that bucket since all buckets in B are assumed to

have at least 1/δ battlefields. Now, since only an even number of battlefields remain

in each bucket Bi, we can partition them into two disjoint subsets B
(1)
i and B

(2)
i of

equal size. Strategies x and x′ are then constructed as follows:

• In strategy x, for any i ∈ [b], we put exactly 2win/α
′ troops in each battlefield

in B
(1)
i . We put zero troops in all other battlefields.
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• In strategy x′, for any i ∈ [b], we put exactly 2win/α
′ troops in each battlefield

in B
(2)
i . We put zero troops in all other battlefields.

Observe that the total number of troops that we use in each of the strategies x and

x′ is exactly n as required. To see this, in strategy x for instance, the number of

troops that are used is

∑
i∈[b]

2win

α′
|B(1)

i | =
2n
∑

i∈[b] wi|B
(1)
i |

α′
=

2n
∑

i∈[b] wi|B
(1)
i |∑

i∈[b] wi · 2|B
(1)
i |

= n.

It only remains to prove that this strategy is (εα/8, 1/2)-maximin. Assume for the

sake of contradiction that player 2 has a strategy y that prevents both x and x′

from achieving a payoff of at least εα/8. We can assume w.l.o.g., that for every

battlefield i, we have yi ∈ {0, xi, x′i}, thus, on all battlefields that are ignored (i.e.,

xi = x′i = 0), we have yi = 0. Further, note that because of the special construction

of strategies x and x′, in each battlefield, at most one of x or x′ put non-zero troops;

therefore, on every battlefield i where yi > 0, either we have xi > 0 or x′i > 0. Define

m1 =
∑

i∈[k]:xi>0

yi, and, m2 =
∑

i∈[k]:x′i>0

yi.

Note that m1 +m2 ≤ m since it cannot be the case that both xi and x′i are non-zero

at the same time as described above. Therefore at least one of m1 or m2 is not more

than m/2. Assume w.l.o.g., that m1 ≤ m/2. One can think of m1 as the number

of troops that are spent by player 2 to prevent strategy x from getting a payoff of

at least εα/8. To obtain the contradiction, we prove that player 2 cannot use only
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m/2 troops to prevent x from obtaining a payoff of εα/8. Recall that we denote the

total sum of battlefields on which we put a non-zero number of troops either in x or

x′ by α′. Strategy x puts non-zero troops in half of these battlefields, and therefore

sum of their weights is at least α′/2. To prevent x from getting a payoff of at least

εα/8, player 2 can lose a weight of less than εα/8 on these battlefields. Let Y be

the subset of battlefields on which y wins x and let w(Y) be the total weight of all

these battlefields. We need to have

w(Y) > α′/2− εα/8. (5.9)

Since the number of troops that is put on the battlefields in x is proportional to the

battlefield weights on which x puts non-zero troops, we have

∑
i∈Y

xi ≥
(w(Y)

α′/2

)
n

By (5.9)

≥
(α′/2− εα/8

α′/2

)
n ≥

(
1− εα

4α′

)
n

By (5.8)

≥
(

1− ε

4(1− δ)

)
n

Since δ = ε3/10

≥ n

1 + ε
.

Therefore, to be able to match the troops of x in every battlefield in Y, using only

m/2 troops, we have

m/2 ≥
∑
i∈Y

xi ≥
n

1 + ε
. (5.10)

The last inequality contradicts the assumption of the lemma that n > (1 + ε)m/2.

Therefore, there exists no such strategy y for player 2. That means, the constructed

strategy is indeed a (εα/8, 1/2)-maximin 2-strategy.

Theorem 75. Let ε > 0 be an arbitrarily small constant and suppose that we have

an instance of continuous Colonel Blotto in which n ≥ (1 + ε)m/2. Given that
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player 1 has a (u, 1/2)-maximin 2-strategy, there exists an algorithm that finds a

((1− ε)u, 1/2)-maximin 2-strategy for him in polynomial time.

Proof. The algorithm to achieve this strategy is given as Algorithm 9. We first

analyze the approximation factor of Algorithm 9 and then prove that it runs in

polynomial time.

Approximation factor. Let w′ denote the updated battlefield weights by the

end of Line 2 of Algorithm 9. First note that setting a cap of u for the battle-

field weights in the first line of algorithm does not change the game instance at

all since the only goal of player 1 is to guarantee a payoff of at least u. Second,

we know by Observation 73 that for any u′, any (u′, p)-maximin strategy for the

δ-uniform variant is a ((1 − δ)u′, p)-maximin strategy for the original (i.e., not δ-

uniform) instance. Roughly speaking, since δ is relatively smaller than ε, we still

get a ((1 − ε)u, 1/2)-maximin strategy for the original instance if we achieve a good

approximation on the δ-uniform variant.

Consider an optimal (u, 1/2)-maximin 2-strategy for player 1 on the original

instance (which recall is guaranteed to exist) and assume that it randomizes over two

pure strategies x̂ and x̂′. By Observation 73, this is a ((1−δ)u, 1/2)-maximin strategy

for the δ-uniform variant. Let us denote by vector c ∈ {≤,≥}k the comparison

between the entries of x̂ and x̂′. That is, ci is ‘≥’ if and only if x̂i ≥ x̂′i and it is ‘≤’

otherwise. Our goal is to argue that there exists a guess g ∈ G that is sufficiently

close to c — where by sufficiently close we mean sum of weights of all battlefields

with gi 6= ci is very small. We will later combine this with Lemma 72 to obtain the
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desired guarantee.

We first assume w.l.o.g. that for any two battlefields i and j with i ≤ j that

have the same weight, if ci 6= cj, then ci = ‘≤’ and cj = ‘≥’ (otherwise we swap

these two battlefields without changing the payoff guaranteed by the strategy). We

have two relaxations over the guesses in Lines 3 and 6 of Algorithm 9.

First, in Line 3 of Algorithm 9, sum of weights of all light battlefields with

weight at most δu/k is not more than δu since k is the total number of battlefields.

Thus, even if gi 6= ci on these battlefields, their total sum is less than δu.

Second, in Line 6 of Algorithm 9, let us denote by α the sum of weights of

all battlefields whose bucket contains more than 1/δ battlefields. Observe that we

check almost all possibilities of guesses on these buckets, except on δ fraction of

their battlefields. More precisely, the total sum of weights of such battlefields on

which our guess is wrong is at most δα. It only remains to argue that δα cannot

be very large. Note that by Lemma 74, we can obtain a simple (εα/8, 1/2)-maximin

strategy since the condition of n ≥ (1 + ε)m/2 is also satisfied here. Thus, we can

assume u ≥ εα/8 or simply α ≤ 8u/ε (otherwise instead of Algorithm 9 we return

the strategy of Lemma 74). Therefore the total weight of battlefields of this type,

on which we guess wrong is no more than

δα ≤ δ8u

ε

Since δ = ε3/10

≤ 4

5
ε2u.

Combining these two, we show that there exists a guess g ∈ G for which sum
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of battlefields with gi 6= ci is at most

δu+
4

5
ε2u =

1

10
ε3u+

4

5
ε2u < ε2u.

By Lemma 72, this implies a ((1−δ)u−ε2u, 1/2)-maximin 2-strategy for the δ-uniform

variant; and by Observation 73, guarantees a utility of at least

(1− δ − ε2)(1− δ)u = (1− ε3

10
− ε2)(1− ε3

10
)u ≥ (1− ε)u

for the original instance with probability at least 1/2, which in other words, gives a

((1− ε)u, 1/2)-maximin 2-strategy as desired.

Running time. It is easy to confirm that the running time of Algorithm 9 is

poly(|G|). Thus, it suffices to show that the total number of guesses in G is polyno-

mial. Observe that for any i ∈ [b], the total number of partial guesses for bucket i

is O(1) (though dependent on δ). On the other hand, the total number of buckets

as mentioned before is at most O(log k) (we hide the dependence on δ) therefore

|G| ≤ O(1)O(log k) which is polynomial.

Notice that when n ≤ m/2, there is no chance for player 1 to get a nonzero

utility by randomizing over two pure strategies since player 2 can always play yi =

max{xi, x′i} troops on every every battlefield and win all of them.

By generalizing the ideas mentioned above, we can extend our approach to the

case when c > 2. However, the core ideas behind the generalization are mentioned

above.
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5.2 Probability Distribution Over the Support

In this section we discuss the structure of probabilities that are assigned to

the pure strategies in the support of an optimal (u, p)-maximin strategy. It is worth

mentioning that our results in this section apply to any two player game so long as

the goal is to compute a (u, p)-maximin strategy.

Recall that given a minimum utility u, and a given upper bound c on the

support size, our goal is to compute a (u, p)-maximin c-strategy for maximum possible

p; we call this an optimal (u, p)-maximin c-strategy or simply an optimal strategy

when it is clear from context. Naively, there are uncountably many ways to assign

probabilities to the c pure strategies in the support. However, in this section we

show that there are a small number of (efficiently constructible) possibilities for the

probabilities among which an optimal solution is guaranteed to exist.

Definition 76. For a mixed strategy x, define the profile ρ(x) of x to be the multiset

of probabilities associated to the pure strategies in the support of x.

The main theorem of this section is the following.

Theorem 77. For every constant c > 0, there exists an algorithm to construct a set

Pc of O(1) profiles in time O(1), such that existence of an optimal (u, p)-maximin

c-strategy x with ρ(x) ∈ Pc is guaranteed.

As a corollary of Theorem 77, in order to find an optimal (u, p)-maximin

c-strategy, one can iterate over the profiles in Pc, optimize the strategy based on

each profile, and report the best solution.
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Let us start with the case when c = 1. Clearly, in this case, we have no choice

but to play our pure strategy with probability 1, therefore it suffices to have profile

{1} in set P1, i.e., P1 = {{1}}. For the case of c = 2, we play two pure strategies

with probabilities q and q′ = 1 − q. Our claim for this case, is that it suffices to

have P2 = {{1}, {1/2, 1/2}}.3 Note that if the profile of a 2-strategy x is {1} it is also

a 1-strategy since it plays only 1 pure strategy with non-zero probability.

To prove that P2 = {{1}, {1/2, 1/2}} is sufficient, we first show that if a 2-strategy

is (u, p)-maximin for some p > 1/2, then there also exists a (u, 1)-maximin 1-strategy,

thus, {1} ∈ P2 suffices.

Observation 78. If player 1 has a (u, p)-maximin 2-strategy with p > 1/2, then he

also has a (u, 1)-maximin 1-strategy.

Proof. Let x and x′ be the two strategies in the support of a given (u, p)-maximin

2-strategy for some p > 1/2 and assume w.l.o.g., that strategy x is played with

probability at least 1/2 (this should be true for at least one of the strategies in the

support of any 2-strategy). Since p > 1/2, by definition of a (u, p)-maximin strategy,

x should obtain a payoff of at least u against any strategy of player 2. This means

that pure strategy x itself, is a (u, 1)-maximin 1-strategy.

On the other hand, the following observation shows that for an optimal (u, p)-maximin

2-strategy, we have p ≥ 1/2.

Observation 79. If player 1 has a (u, p)-maximin 2-strategy x for some 0 < p < 1/2,

3Note that the elements in Pc are multisets, hence multiple occurrences of the same element is
allowed in them.
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then by playing each of the two pure strategies of x with probability 1/2, he gets a

better (u, 1/2)-maximin 2-strategy.

Proof. Let x1 and x2 be the two pure strategies in the support of x. Since p > 0,

against any pure strategy y of the opponent, at least one of x1 or x2 obtain a utility

of at least u. Thus, if they are both played with probability 1/2, the resulting strategy

is (u, 1/2)-maximin.

Combining the two observations above, we can conclude that for an optimal

(u, p)-maximin 2-strategy, either p = 1 or p = 1/2. For the former case Observation 78

implies that {1} ∈ P2 is sufficient and for the latter {1/2, 1/2} ∈ P2 is sufficient by

Observation 79. We remark that it is necessary for any choice of P2 to have both

{1} and {1/2, 1/2}. Therefore our choice of P2 = {{1}, {1/2, 1/2}} is both sufficient

and necessary.

We do not attempt to prove it here, as it is not required for the proof of our

main theorem in this section, however, it can also be shown that for the case of

3-strategies, it suffices to have

P3 = {{1}, {1/2, 1/2}, {1/3, 1/3, 1/3}}.

Unfortunately, the case of c ≥ 4 does not follow the same pattern. That is, e.g. when

c = 4, it is not sufficient to have P4 =
{
{1}, {1/2, 1/2}, {1/3, 1/3, 1/3}, {1/4, 1/4, 1/4, 1/4}

}
.

An example was given for this in Table 5.1 in the context of the Colonel Blotto game

where the optimal 4-strategy has profile {2/5, 1/5, 1/5, 1/5}. Nevertheless, we show that
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size of Pc, for any constant c, can be bounded by a constant.

Consider a (u, p)-maximin c-strategy x for player 1 in a two player game G and

assume w.l.o.g. that the strategies in its support are numbered from 1 to c. A

subset W ⊆ [c] is a u-winning-subset of x, if player 2 has a strategy y such that the

ith strategy in the support of x gets a payoff of at least u against y if and only if

i ∈ W . We denote by Wu(x) the set of all u-winning-subsets of x. The following

claim implies that it suffices to have the set Wu(x) of any strategy x to decide how

to assign probabilities to the strategies in its support.

Lemma 80. Given the set Wu(x) of a (u, p)-maximin c-strategy x, one can, in time

O(1), assign probabilities ρ1, . . . , ρc to the pure strategies in the support of x in a

way that the modified strategy x′ is (u, p′)-maximin for some p′ ≥ p.

Proof. Let W be the given set. Clearly we have |W| ≤ O(1) since it is a subset of the

power set of [c] and c is a constant. The following linear program finds ρ1, . . . , ρc

in time O(1) since it has O(1) variables and O(1) constraints. We show that by

playing the ith pure strategy in the support of x with probability ρi, we obtain a

strategy x′ that is as good as x.

maximize p′

subject to ρi ≥ 0 ∀i ∈ [c]∑
ρi = 1

p′ ≤
∑

i∈W ρi ∀W ∈W

(5.11)

Let us denote by qi the actual probability with which the ith strategy in the support
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of x is played. Observe that the probability p for which strategy x guarantees

receiving a payoff of at least u is exactly minW∈Wu(x)

∑
i∈W qi. This comes from the

fact that by definition if W is a u-winning-subset of x, then player 2 has a strategy y

against which player 1 receives a payoff of u by its ith pure strategy iff i ∈ W . This

means the probability of guaranteeing a utility of u against y is equal to
∑

i∈W qi.

On the other hand, by definition of (u, p)-maximin, we need to guarantee a payoff of

at least u with probability at least p against any strategy of the opponent. Therefore

we have p = minW∈Wu(x)

∑
i∈W qi. Now, observe that LP 5.11 finds probabilities ρi

in a way that precisely maximizes minW∈Wu(x)

∑
i∈W ρi. Therefore, if we play the

ith pure strategy in the support of x with probability ρi, we obtain a strategy that

is as good as x.

Claim 81. One can obtain a set S of size O(1) in time O(1) such that for some

optimal (u, p)-maximin c-strategy x, we have Wu(x) ∈ S.

Proof. Let S be the power set of the power set of C = {1, . . . , c}. Note that

|S| = 22c = O(1); thus, we can simply construct S in time O(1). On the other hand,

take an optimal (u, p)-maximin c-strategy x. By definition each u-winning-subset of

x is a subset of C and, thus, Wu(x) is a set of some subsets of C, thus, Wu(x) ∈ S

as desired.

Indeed the two claims above are sufficient to prove Theorem 77.

Theorem 77 (restated). For every constant c > 0, there exists an algorithm to

construct a set Pc of O(1) profiles in time O(1), such that existence of an optimal

(u, p)-maximin c-strategy x with ρ(x) ∈ Pc is guaranteed.
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Proof. Consider the set S provided by Claim 81. For every set W ∈ S, construct

a profile ρ using the algorithm of Lemma 80 and put it in a set P . Observe that

|P | = |S| = O(1). Therefore it only remains to prove that the profile of at least one

optimal strategy is in P .

Note that by Claim 81, at least one set W ∈ S is the set of all u-winning-

subsets of an optimal strategy. By Lemma 80, the constructed profile for W is the

profile of a strategy that is also optimal. Therefore among the profiles in P , we have

the profile of at least one optimal strategy which concludes the proof.

5.3 Continuous Colonel Blotto

5.3.1 Generalization to the Case of c-Strategies for c > 2

In this section we generalize our results for the continuous variant to the case

of multiple (i.e., more than 2) strategies in the support. That is, for a given u, we

seek to find a (u, p)-maximin c-strategy x for maximum possible p. Throughout the

section, we denote the support of x by x1, . . . ,xc.

We showed that the only computationally challenging problem for the case

of 2-strategies is when our goal is to find (u, 1/2)-maximin strategies. For that we

only needed to give two pure strategies x1 and x2 and make sure that against every

pure strategy of the opponent, at least one of these strategies obtains a utility of

at least u. This structure becomes more complicated when we allow more than 2

strategies in the support. Consider, for instance, the case of 3-strategies and suppose

for simplicity that we are promised that the three pure strategies in the support of
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an optimal strategy are each played with probability 1⁄3. For this example, the

computationally challenging cases are obtaining either a (u, 2/3)-maximin strategy or

a (u, 1/3)-maximin strategy. For the former case, we need to make sure that against

every strategy of the opponent at least 2 of the strategies in the support obtain a

utility of at least u. For the latter it suffices for 1 of the strategies to obtain a utility

of at least u. The idea is to first attempt to find a (u, 2/3)-maximin. It could be the

case that no such strategy exists; if so, we then attempt to find a (u, 1/3)-maximin

strategy.

To generalize this to more than 3 strategies, we use the notion of non-losing

sets.

Definition 82 (Non-losing sets). Consider a (u, p)-maximin c-strategy x with sup-

port x1, . . . ,xc. We define a set N ∈ [c] to be a non-losing set of x if for every

strategy y of player 2 there exists some i ∈ N for which u1(xi,y) ≥ u. A set N ∈ [c]

is a minimal non-losing set of x if it is a non-losing set of x and there is no strict

subset N ′ ( N of N that is a non-losing set of x. We denote the set of all minimal

non-losing sets of a strategy x by N(x).

Observe that for a (u, 1/2)-maximin 2-strategy, its only minimal non-losing set

is {1, 2}. Moreover, for our example of a (u, p)-maximin 3-strategy, if p = 2/3, the

minimal non-losing sets are {1, 2}, {1, 3}, {2, 3}. In the same example, if p = 1/3, the

only minimal non-losing set is {1, 2, 3}.

The general structure of our algorithm is to first guess the set of all minimal

non-losing sets N and see whether it is possible to satisfy it by constructing the
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pure strategies x1, . . . ,xc in such a way that we get N(x) = N. Recall that there

are only a constant number of possibilities for the choice of N since it is a subset

of the power set of [c] and c is constant. We also know by Lemma 80 that having

N(x) is sufficient to decide what is the best way to assign probabilities to strategies

x1, . . . ,xc as it uniquely determines the winning subsets. Therefore we can find

the optimal c-strategy if for a given choice of N we can decide in polynomial time

whether it is satisfiable or not.

Now, given that our guess N is fixed, we need to find strategies x1, . . . ,xc in

such a way that every N ∈ N is indeed a nonlosing set. This gives the following

formulation of the problem.

find x1, . . . ,xc

subject to xji ≥ 0 ∀i, j : i ∈ [k], j ∈ [c]∑
i∈[k] x

j
i ≤ n ∀j ∈ [c]

for some i ∈ N we have u1(xi,y) ≥ u ∀y ∈ S2,∀N ∈ N

(5.12)

Program 5.12 is in fact the generalization of Program 5.3 to the case of c-strategies.

Clearly, the last constraint in its current form is not linear. We showed how Pro-

gram 5.3 can be decomposed into a set of convex polytopes and how each of them

can be solved in polynomial time via the definition of critical tuples. We follow a

similar approach and give a generalized definition of critical tuples.

Definition 83 (Critical tuples). Consider a tuple W = (W1, . . . ,Wk) where each

Wi is a subset of [c]. We call W a critical tuple if and only if for some N ∈ N we
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have ∑
i:j∈Wi

wi < u ∀j ∈ N.

Consider a tuple W = (W1, . . . ,Wk). Fix a strategy y of player 2, and assume

x1, . . . ,xc are constructed in such a way that xji > yi iff j ∈ Wi. In other words,

Wi is the set of indices of the strategies that win the ith battlefield against y. Now

W is a critical tuple iff x1, . . . ,xc do not satisfy N. More precisely, W is a critical

tuple iff all of the strategies in one of the minimal non-losing sets of N lose (i.e., get

a payoff of less than u) against y.

Before describing how we can use critical tuples in rewriting Program 5.12, we

need to know precisely how for each i ∈ [k], the values of x1
i , x

2
i , . . . , x

c
i compare to

each other. To that end, we define a configuration G to be a vector of k matrices

G1, . . . , Gk which we call partial configurations, where for any i ∈ [k], and for any

j1, j2 ∈ [c], the value of Gi(j1, j2) is ‘≤’ if xj1i ≤ xj2i and it is ‘≥’ otherwise.

Clearly if we fix the configuration G of strategies a priori, it is possible to

ensure the found strategies comply with it via O(kc2) linear constraints. It suffices

to have one constraint for every Gi(j1, j2). The linear program below shows that if

the configuration is fixed, we can even rewrite Program 5.12 as a linear program. For

configuration G and critical tuple W, define zi(G,W) := arg maxj:j 6∈Wi
xji . Note

that it is crucial that zi(G,W) is solely a function of G and W (and not the actual
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strategies x1, . . . ,xc) so long as strategies x1, . . . ,xc comply with G.

find x1, . . . ,xc

subject to xji ≥ 0 ∀i, j : i ∈ [k], j ∈ [c]∑
i∈[k] x

j
i ≤ n ∀j ∈ [c]

ensure that x1, . . . ,xc comply with G∑
i∈[k] x

zi(G,W)
i > m for every critical tuple W = (W1, . . . ,Wk)

(5.13)

The intuition behind the last constraint is that for player 2 to be able to enforce any

critical tuple to happen, he needs to have more than m troops. This is a sufficient

and necessary condition to ensure that all of the non-losing sets in N are satisfied.

Observe that if our guess for N is wrong, for every configuration G, LP 5.13 will be

infeasible.

The takeaway from LP 5.13, is that if we fix the configuration G, the solution

space becomes convex and can be described via linear constraints. Although there

may be exponentially many critical tuples W and, thus, exponentially many con-

straints in LP 5.13, one can design an appropriate separating oracle and use ellipsoid

method to solve it in polynomial time using a dynamic programming approach simi-

lar to the one used for solving LP 5.5. Therefore one algorithm to solve the problem

is to iterate over all possible configurations, solve LP 5.13 for each and report the

best solution. This gives us an exponential time algorithm with running time (c!)k.

Recall that we followed a rather similar approach for the case of 2-strategies and

showed that the solution space can be decomposed to 2k convex polytopes. To
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overcome this when c = 2, we showed how it is possible to only consider polynomi-

ally many such polytopes as far as the problem is concerned. We follow the same

approach here.

Let us start with uniform setting where all the battlefield weights are the same.

Since the players are both indifferent to the battlefields in the uniform setting,

instead of individually fixing the partial configuration of each battlefield, it only

suffices to know the number of battlefields having a particular partial configuration.

Note that each partial configuration, e.g., G1, is determined uniquely if we are given

the sorted order of x1
1, x

2
1, . . . , x

c
1. Therefore, there are a total number of c! = O(1)

possibilities for each partial configuration. This means, if we only count the number

of battlefields having each partial configuration, we reduce the total number of

considered configurations down to a polynomial (O(kc!) to be more precise). This

gives a polynomial time algorithm for the uniform case.

Generalization to the case where the weights are not are equal follows from

similar ideas described in Section 5.1.1.2. That is, we can consider the δ-uniform

variant of the game for a relatively smaller error threshold than ε and group battle-

fields into buckets with each bucket containing the battlefields of the same updated

weight. Then in each bucket, similar to the uniform case, it suffices to only count

the number of battlefields of each configuration. Recall, however, that the crucial

property for this idea to work was to show that for each bucket, it suffices to check

only a constant number of different possibilities. Naively, the number of possibil-

ities for each bucket is k
O(1)
i . Therefore, if ki ≤ 1/δ it is bounded by O(1) as

desired. However, if ki > 1/δ, the idea, similar to Section 5.1.1.2, is to discretize
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the number of battlefields having one particular partial configuration of Gj to be in

set {0, δki, 2δki, . . . , ki}. This way, a similar argument as in Lemma 74 shows that

making a mistake on only a δ fraction of buckets with at least 1/δ battlefields is

negligible so long as our goal is to guarantee a utility of (1 − ε)u, resulting in the

following theorem.

Theorem 84. Let ε > 0 be an arbitrarily small constant. Given that player 1 in an

instance of continuous Colonel Blotto has a (u, p)-maximin c-strategy for a constant

c, and given that n ≥ (1 + ε)m/b(1 − p)c + 1c, there exists an algorithm that finds

a ((1− ε)u, p)-maximin c-strategy for him in polynomial time.

We remark that if n ≤ m/b(1− p)c + 1c, then player 1 has no (u, p)-maximin

strategy.

5.4 Discrete Colonel Blotto

In this section we focus on the discrete variant of Colonel Blotto. Though

similar in spirit to the continuous variant, discrete Colonel Blotto is an inherently

different game (especially from a computational perspective) and requires different

techniques.

5.4.1 The Case of One Strategy

Similar to the continuous variant, we start with the case where the support size

is bounded by 1. We showed how for the continuous case, it is possible to obtain an

optimal (u, 1)-maximin strategy by solving LP 5.2. Observe, however, that variable
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xi in LP 5.2 denotes the number of troops in battlefield i; this implies that LP 5.2

relies crucially on the fact that a fractional number of troops in a battlefield is

allowed. As such, the same idea cannot be applied to the discrete case since the

integer variant of LP 5.2 is not necessarily solvable in polynomial time.

Prior algorithm of [3] gives a 2-approximation for this problem, i.e., given

that there exists a (u, 1)-maximin strategy for player 1, they give a (u/2, 1)-maximin

strategy in polynomial time. We improve this result by obtaining an almost optimal

solution in polynomial time.

Theorem 85. Given that player 1 has a (u, 1)-maximin strategy, there exists a

polynomial time algorithm that obtains a ((1 − ε)u, 1)-maximin strategy of player 1

for any arbitrarily small constant ε > 0.

The algorithm in a nutshell. The algorithm that we use to prove Theorem 85

is composed of three main steps. In step 1, we round down the battlefield weights

to be powers of (1 + ε/2), i.e., we consider the (ε/2)-uniform variant of the game.

The goal here is to reduce the number of distinct battlefield weights. As it was

previously shown, by optimizing over this updated instance of the game, player 1

does not lose a considerable payoff on the original instance.

In step 2, we partition the battlefields into two subsets: light battlefields that

have a weight of at most (ε/2)u and heavy battlefields that each has a weight of

more than (ε/2)u. Roughly speaking, the goal is to separate battlefields that have

a high impact on the outcome of the game from the lower weight ones. We show

that as a result of step 1, we can give a new representation for strategies of player 1
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that reduces the total number of partial strategies of player 1 on heavy battlefields

down to a polynomial. We further show that for any strategy of player 1 on heavy

battlefields, player 2 has only a constant number of valid responses as far as the

optimal solution is concerned. Importantly, bounding the number of responses of

player 2 by a constant has a crucial role in solving the problem in polynomial time

— we will elaborate more on this in the next paragraph.

In step 3, we propose a weaker adversary than player 2. Roughly speaking,

we assume that for any given strategy of player 1, the weaker adversary responds

greedily on light battlefields (though we do not limit him on heavy battlefields). We

show that optimizing player 1’s strategy against this weaker adversary guarantees

an acceptable payoff against the actual adversary (i.e., player 2). In brief, the

main advantage of optimizing player 1’s strategy against the weaker adversary is in

that it allows us to exploit the more predictable greedy response of the opponent.

Recall, however, that we do not limit the weaker adversary on heavy battlefields

and, therefore, his response to a strategy that we give for player 1 may still come

from a somewhat unpredictable function. However, step 2 guarantees that for every

strategy of player 1, it suffices to consider only a constant number of responses of

the weaker adversary. This allows us to use a dynamic program that has, roughly,

the same number of dimensions as the number of strategies of the weaker adversary

and solve the problem in polynomial time.

Basic structural properties. Recall that a (u, 1)-maximin strategy guarantees a

payoff of u against any strategy of player 2. Therefore, if u > 0, we need to have
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n > m; or otherwise, no matter what pure strategy the first player chooses, the

second player can match the number of troops of the first player in all battlefields

and win them all. Now, assuming that n > m, if there exists one battlefield with

weight at least u, the first player can simply put all his troops in that battlefield

and guarantee a payoff of at least u. Therefore we assume throughout the rest of

the section that n > m and that the maximum battlefield weight is less than u.

Step 1: Updating the battlefield weights. We first round down the weight of

each of the battlefields to be in set W = {1, (1 + ε/2)1, (1 + ε/2)2, . . .} and denote

the modified weights vector by w′. That is, we consider the (ε/2)-uniform variant

of the game (see Section 5.1 and Observation 73 for the formal definition).

Corollary 86 (of Observation 73). For any u′, any (u′, 1)-maximin strategy of the

game instance B(n,m,w′) with the updated weights is a ((1 − ε/2)u′, 1)-maximin

strategy of the original instance B(n,m,w).

Corollary 86 implies that to obtain a ((1 − ε)u, 1)-maximin strategy on the

original instance B(n,m,w), it suffices to find a ((1− ε/2)u, 1)-maximin strategy on

instance B(n,m,w′). Therefore, from now on, we only focus on the instance with

the updated weights and, for simplicity of notations, denote the updated weight of

battlefield i by wi.

Updating the battlefield weights in the aforementioned way results in reducing

the total number of distinct weights down to O(1/ε · log u) (recall that the maximum

weight among original weights was assumed to be at most u). We later show how

this can be used to represent pure strategies of player 1 in a different way that
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results in a significantly fewer number of strategies.

Step 2: Partitioning the battlefields into heavy and light subsets. We

set a threshold τ = εu/2 and partition the battlefields into two subsets of heavy

battlefields with weights of at least τ and light battlefields with weights of less than

τ . Roughly speaking, for light battlefields, we can afford to be the weight of one

battlefield away from the optimal strategy and remain (1 − ε/2)-competitive since

the maximum weight among them is bounded by εu/2. For the heavy battlefields,

however, we need to be more careful as even one battlefield might have a huge

impact on the outcome of the game. The idea is to significantly reduce the number

of strategies of the players that have to be considered on heavy battlefields so that

we can consider them all. Let us denote by kd the number of distinct battlefield

weights; further, we denote by khd the number of distinct battlefield weights that are

larger than τ (i.e., are heavy). The following observation bounds khd by a constant.

Observation 87. The number of distinct heavy battlefield weights, khd , is bounded

by a constant.

Proof. Recall that we assume no battlefield has weight more than u. Moreover, all

heavy battlefields have weight at least εu/2. Since we updated the weight of all

battlefields to be in set {1, (1 + ε/2)1, (1 + ε/2)2, . . .}, it leaves only log1+ε/2(2/ε) =

log(2/ε)
log(1+ε/2)

≤ 4/ε · log(2/ε) values in range [εu/2, u] which is a constant number since

ε is a constant.

We show by Claim 88 that there always exists an optimal strategy that puts

roughly the same number of troops in all battlefields of the same weight. Intuitively,
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the players are indifferent to battlefields of the same weights and therefore the first

player has no incentive to put significantly more troops on one of them.

Claim 88. If player 1 has a (u, 1)-maximin strategy, he also has a (u, 1)-maximin

strategy x where for any two battlefields i and j with wi = wj, we have |xi−xj| ≤ 1.

Proof. Consider two battlefields j and j′ with the same weights and assume that for

(u, 1)-maximin strategy x̂, we have x̂j ≥ x̂j′+2. We construct another strategy x′ in

the following way: x′j = x̂j − 1, x′j′ = x̂j′ + 1, and x′i = x̂i for all other battlefields.

It is easy to confirm that x′ is also a (u, 1)-maximin strategy. Applying the same

function to x′, we can inductively update the strategy to finally achieve a strategy

(u, 1)-maximin strategy x for which we have |xi − xj| ≥ 1 for all battlefields of the

same weight.

Now, the idea is to represent the pure strategies of player 1 differently. That

is, instead of specifying the number of troops that are put on each battlefield, we

represent each valid pure strategy of player 1 by the number of troops that are

put on each battlefield weight. By Claim 88, this uniquely determines an optimal

strategy without loss of generality. Therefore the dimension of each pure strategies

of player 1 is now changed from k to O(1/ε · log u). Note that this is not sufficient to

solve the problem in polynomial time since the number of pure strategies of player

1 can still be up to nO(1/ε·log u). However, we show how this can bound the number

of pure strategies of player 1 on heavy battlefields.

We define a partial strategy of player 1 on heavy battlefields to be a strategy in

the new representation that only specifies how player 1 plays on heavy battlefields.

180



Formally, each partial strategy of player 1 on heavy battlefields can be represented

by a vector xh of length khd , with non-negative entries in [n] that sum up to at most

n. Let us denote the set of all such strategies by Sh1 . The following observation

bounds the total number of strategies in Sh1 .

Observation 89. |Sh1 | ≤ npoly(1/ε).

Proof. Since by Observation 87, khd ≤ poly(1/ε), each strategy in Sh1 is a vector of

length at most poly(1/ε). This, combined with the fact that each entry is an integer

between 0 and n, leads to the desired bound.

A similar analysis can show that the strategies of player 2 can also be bounded

by a polynomial on heavy battlefields; however, for technical reasons that we will

elaborate on later, it is crucial to further bound the number of pure strategies of

player 2 on heavy battlefields by a constant. The key idea here, is that to prevent

player 1 from achieving a payoff of u, player 2 can only lose in at most 2/ε heavy

battlefields. Similar to that of player 1, we represent each partial strategy of player

2 on heavy battlefields by a vector of length khd . However, instead of specifying the

number of troops that player 2 puts on each battlefield weight, we only specify how

many battlefields of each weight player 2 loses in. Therefore, formally, each partial

strategy of player 2 on heavy battlefields can be represented by a vector of length

khd where each entry is a non-negative integer and all entries sum up to at most 2/ε.

Denoting the set of all these partial strategies by Sh2 , we can bound its size to be a

constant.

Observation 90. |Sh2 | ≤ O(1).
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Proof. By Observation 87, the vectors in Sh2 have khd ≤ poly(1/ε) dimensions and

each entry is a number in [0, 2/ε] therefore there are at most poly(1/ε)2/ε+1 such

vectors which is O(1) since ε is a constant.

Step 3: Solving the problem against a weaker adversary. Given a strategy

x of player 1, the second player’s best response is a strategy that maximizes his

payoff. That is, player 2 seeks to find a strategy y ∈ S2 such that u2(x,y), which

is the weight of the battlefields in which y puts more troops than x, is maximized.

This is precisely equivalent to the following knapsack problem: The knapsack has

capacity m (the number of troops of player 2) and for any i ∈ [k], there exists an

item with weight xi and value wi. Indeed one of the main challenges in finding

an optimal (u, 1)-maximin strategy for player 1 is in that the second player’s best

response problem is a rather complicated function that makes it hard for the first

player to optimize his strategy against. To resolve this issue, we optimize player

1’s strategy against a weaker adversary than player 2. That is, we assume that the

second player, instead of solving the aforementioned knapsack problem optimally,

follows a simpler and more predictable algorithm. Note that there is a trade-off

on the best-response algorithm that we fix for the weaker adversary. If it is too

simplified, the strategy that we find for player 1 against it cannot perform well

against player 2 who best-responds optimally; and if it is not simplified enough,

there is no gain in considering the weaker adversary instead of player 2. To balance

this, we allow the weak adversary to try all possible strategies on heavy battlefields,

but only allow him to combine it with a greedy algorithm on light battlefields; this
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process is formalized in Algorithm 10.4 As we show in the rest of this section, while

being only ε away from the optimal best-response algorithm, it becomes possible to

compute an optimal strategy of player 1 against the weak adversary who responds

by Algorithm 10 in polynomial time.

Algorithm 10: Weaker adversary’s best response algorithm.

Input: a strategy x = (x1, . . . , xk) of player 1.
Output: a strategy y = (y1, . . . , yk) of player 2.

1: For every battlefield i, denote its ratio ri to be wi/xi.
2: Let σ(i) denote the index of the ith light battlefield with the highest ratio.
3: y← (0, . . . , 0)
4: for every possible strategy y′ of player 2 that puts non-zero troops only on heavy

battlefields do
5: i← 1
6: while m−

∑
i y
′
i ≥ xσ(i) and i ≤ k do . Play greedily on light battlefields

based on their ratios.
7: y′σ(i) ← xσ(i)

8: i← i+ 1
9: end while

10: if u2(x,y′) ≥ u2(x,y) then update y← y′

11: end for
12: return y

Lemma 91. For any strategy x of player 1, let y be the optimal best-response of

player 2 and let ỹ be the strategy obtained by Algorithm 10. We have u2(x, ỹ) ≥

u2(x,y)− εu
2

.

Proof. Consider the iteration of the for loop in Algorithm 10 where the chosen

partial strategy y′ over the heavy battlefields is exactly equal to that of the optimal

best-response y of player 2. We claim that after this strategy is combined with the

4For ease of exposition, we do not explicitly mention how to sort the battlefields when two have
the same ratio in Algorithm 10. This can be simply handled by assuming that the battlefield with
a lower index is preferred by the weaker adversary.
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greedy algorithm over light battlefields to obtain a potential strategy p, it provides

a payoff of at least u2(x,y)− εu/2. Note that this is sufficient to prove the lemma

since the returned solution y guarantees a payoff against x that is not less than that

of p.

Observe that we can safely ignore heavy battlefields since both y and p choose

similar strategies over them. It only suffices to guarantee that the difference over

light battlefields is at most εu/2. Let us denote by m′ the number of troops that

are left for player 2 over light battlefields. The optimal best-response is equivalent

to the solution of the following knapsack problem: The knapsack has capacity m′,

and for each light battlefield i, there is an item with cost xi (since player 2 has to

put at least xi troops to win it) and value wi. Observe that the greedy approach

of the weaker-adversary on light battlefields, is equivalent to a greedy algorithm

for this knapsack problem where items are sorted based on their value per weight

(i.e., wi/xi) and chosen greedily. This is in fact, the well-known greedy algorithm

of knapsack that is known to guarantee an additive error of up to the maximum

item value. Since here we only consider light battlefields and the maximum item

value, or equivalently, the maximum battlefield weight is at most εu/2, we lose an

additive error of at most εu/2 compared to optimal strategy y, which concludes the

proof.

Corollary 92. Any strategy x of player 1 that obtains a payoff of u against the

weaker adversary, obtains a payoff of at least (1−ε/2)u against all possible strategies

of player 2.

184



Proof. Since the game is constant sum with
∑

iwi being sum of utilities, the weaker

adversary gets a payoff of at most
∑

iwi−u against x. Therefore since by Lemma 91

the optimal best response of player 2 obtains a payoff of at most
∑

iwi − u+ εu/2.

This means that the first player gets a payoff of at least u − εu/2 = (1 − ε/2)u

against any strategy of the second player.

By Corollary 92, to obtain the desired ((1 − ε/2)u, 1)-maximin strategy, it

suffices to guarantee a payoff of u against the weaker adversary. Note that such

strategy is guaranteed to exist since existence of a (u, 1)-maximin strategy against

player 2 is guaranteed.

A wrong approach. We start with a wrong approach in guaranteeing a payoff of

u against the weaker adversary and later show how to fix its shortcomings. Observe

that the weaker adversary exhaustively searches through all of his possible strategies

among heavy battlefields and plays greedily on light battlefields. Therefore, the

first player needs to approach heavy and light battlefields differently. One way of

doing this is to fix the number of troops that each of the players will spend on

heavy and light battlefields, which is bounded by O(nm), and solve two instances

independently. On light battlefields, since player 2 responds greedily, it is not hard

to optimize the first player’s strategy. On heavy battlefields, the number of pairs of

valid strategies of the players are bounded by a polynomial by Observations 110 and

111. Therefore, player 1 can find his optimal strategy among them by exhaustively

checking all of his strategies against all possible responses of player 2.

The problem with this approach, is that it is not possible to solve the sub-
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problems on heavy and light battlefields independently. More precisely, the number

of troops that player 2 puts on heavy and light battlefields is a direct function of

the strategy of player 1. This implies that it is not possible to fix the number of

troops of player 2 over heavy and light battlefields a priori, without specifying the

exact strategy of player 1.

The correct approach. To resolve the aforementioned problem, we do not fix

the budget of player 2 on light and heavy battlefields beforehand. Instead, we first

only fix the strategy xh ∈ Sh1 of player 1 on heavy battlefields. (By Observation 110

there are only polynomially many such strategies, therefore it is possible to try them

all.) Next, note that player 2, by Observation 111, has only a constant number of

responses to xh that we would have to consider (other responses simply guarantee

us a payoff of u on heavy battlefields alone). Roughly speaking, while finding the

optimal strategy of player 1 on light battlefields, we would have to consider all these

responses of player 2 on heavy battlefields. That is, each response yh ∈ Sh2 of player

2 on heavy battlefields uniquely determines (1) what payoff the players get on heavy

battlefields, (2) how many troops is left for player 2 to play on light battlefields. The

strategy that we find for player 1 on light battlefields, has to perform well against

all of these responses.

In a thought experiment, consider the optimal strategy x` of player 1 on light

battlefields, given that his strategy on heavy battlefields is fixed to be xh. For every

strategy yh of player 2 on heavy battlefields, the greedy algorithm of player 2 on

light battlefields first sorts light battlefields based on their ratios wi/x
`
i and greedily
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wins battlefields of higher ratio. This means that for every response of player 2 on

heavy battlefields, there is a unique light battlefield of highest ratio that player 2

loses in. Let us denote by bi the index of this battlefield for the ith response of player

2 in Sh2 . We also denote by ri := wbi/x
`
bi

the ratio of battlefield bi based on x`. The

takeaway, here, is that given the optimal strategy x` of player 2 on light battlefields,

we can uniquely determine vectors b = (b1, b2, . . . , b|Sh2 |) and r = (r1, r2, . . . , r|Sh2 |).

We have no way of knowing these vectors without knowing x`, however, we find the

right value of them by checking all possible vectors. To achieve this, the first step

is to show that there are only polynomially many options that we need to try.

Claim 93. There are only polynomially many valid triplets (xh,b, r).

Proof. We already know from Observation 110 that there are only polynomially

many possible choices for xh. To conclude the proof, it suffices to show that for

the choice of b and r, we also have polynomially many possibilities. To see this,

note that b and r only have |Sh2 | dimensions which is bounded by a constant by

Observation 111. Furthermore, each entry of b is a number in {0, 1, . . . , k} and

each entry of r has at most O(nk) values. This means there are only kO(1) many

possibilities for b and (nk)O(1) many possibilities for r. Both of these upper bounds

are polynomial, which proves there are only polynomially many triplets (xh,b, r).

The next step is to find a strategy x` of player 1 on light battlefields that

satisfies a given triplet (xh,b, r). We start by formalizing what satisfying exactly

means.
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Definition 94. We say a strategy x` of player 1 on light battlefields satisfies a triplet

(xh,b, r) if the following conditions hold.

1. The number of troops that are used in x` is at most n−
∑

i x
h
i .

2. If player 2 chooses his ith strategy from Sh2 over heavy battlefields and plays

greedily (according to Algorithm 10) on light battlefields, the highest ratio light

battlefield in which he loses becomes bi.

3. The ratio wbi/x
`
bi

is indeed equal to ri.

Note that it is not necessarily possible to satisfy any given triplet (xh,b, r).

However, it is guaranteed that the right choice of it, where xh corresponds to the

optimal partial strategy of player 1 on heavy battlefields and b and r correspond

to their actual value (as described before) for the optimal strategy of player 1, is

satisfiable. Recall that our goal is to exhaustively try all possible triplets and find the

optimal one. To achieve this, we need an oracle that confirms whether a given triplet

is satisfiable. Lemma 95 provides this oracle via a dynamic program that further

guarantees that the obtained strategy is maximin against the weak adversary given

that player 1 is committed to satisfy (xh,b, r).

Lemma 95. Given a triplet T = (xh,b, r), one can in polynomial time, either report

that T is not satisfiable, or find a strategy x` that satisfies T while guaranteeing that

the payoff of the response of the weaker adversary to strategy (xh,x`) of player 1

that is obtained by Algorithm 10 is minimized.

Proof. For simplicity of notations, let us denote by c := |Sh2 | the total number of

responses of player 2 over the heavy battlefields, and consequently, the size of vectors
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b and r. Furthermore, given that player 1 plays strategy xh on heavy battlefields

and that player 2 plays his ith response in Sh2 to xh, we denote by mi the number of

troops that are left for player 2 to play on light battlefields, and denote respectively

by g1(i) and g2(i) the guaranteed payoff that players 1 and 2 get on heavy battlefields.

To satisfy condition 1 of Definition 94, we ensure that the strategy that we find

for player 1 over the light battlefields only uses n` := n−
∑

i x
h
i troops. Satisfying

the third condition is also straightforward: for any i ∈ [c], it suffices for player 1 to

put exactly wbi/ri troops on battlefield bi. (We emphasize that we should not change

the number of troops on these battlefields throughout the algorithm.) If during this

process, we need to use more than n` troops or if for some i and j we have bi = bj

and wbi/ri 6= wbj/rj we report that the given triplet is not satisfiable. The main

difficulty is to ensure that the second condition of Definition 94 also holds. For

that, the only decision that we have to make is on the number of troops that we put

on the remaining battlefields. For our final strategy x` over the light battlefields,

assume that the battlefields are sorted decreasingly based on their ratio wi/x
`
i and

let us denote by σ(i) the index of the battlefield in position i. To convey the overall

idea of how to satisfy this condition, let us first focus on the ith strategy of player 2

over the heavy battlefields. We need to make sure that in our strategy x` over light

battlefields, the ratio of battlefields are such that if player 2 wins them greedily, he

stops at battlefield bi. More precisely, let σ(γ) = bi, we need to have5

0 ≤ mi −
γ−1∑
j=1

x`σ(j) < x`bi . (5.14)

5In case of a tie, we assume the battlefield with the lower index has a higher ratio.
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Fix battlefield bi, roughly speaking, in order to satisfy (5.14), we need to decide

which battlefields will have a higher ratio than battlefield bi so as to ensure that

once player 2 wins them, he will have less than x`bi troops. Now recall that we need

to satisfy this, simultaneously, for every entry bi of b. For this we use a dynamic

program D(j, n′, ω1, . . . , ωc, u1, . . . , uc) with j ∈ {0, . . . , k`}, n′ ∈ {0, , . . . , n`}, ui ∈

{0, . . . ,
∑

iwi}, and ωi ∈ {0, 1, . . . ,mi}. The value of D(j, n′, ω1, . . . , ωc, u1, . . . , uc)

is either 0 or 1 and it is 1 iff it is possible to give a partial strategy (x1, . . . , xj) over

the first j light battlefields such that all the following conditions are satisfied.

1. We use exactly n′ troops over them, i.e.,

∑
j′∈[j]

xj′ = n′. (5.15)

2. For any i ∈ [c], we put at least ωi troops in battlefields with ratio higher than

ri, i.e., ∑
j′∈[j]:

wj′
xj′
≥ri

xj′ ≥ ωi, ∀i ∈ [c]. (5.16)

3. For any i ∈ [c], sum of weights of battlefields with lower ratio than ri is at

least ui − g1(i), i.e.,

∑
j′∈[j]:

wj′
xj′

<ri

wj′ ≥ ui − g1(i), ∀i ∈ [c]. (5.17)
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It is easy to confirm, by definition, that we can satisfy (xh,b, r) iff,

D(k`, n`,m1 − x`b1 − 1, . . . ,mc − x`bc − 1, 0, . . . , 0) = 1.

To further maximize the payoff that player 1 gets against the weaker adversary as

well as satisfying the given triplet it suffices to find the maximum value of u where

D(k`, n`,m1 − x`b1 − 1, . . . ,mc − x`bc − 1, u, . . . , u) = 1.

Base case. We start with the base case, where j = 0. Here, clearly, if ωi > 0 or

ui > 0 for some i, then the value of D must be 0 as we have no way of satisfying

(5.16) or (5.17). Moreover, if n′ > 0, the value must again be 0, as (5.15) requires

that we need to spend exactly n′ troops over the first j battlefields. Therefore, the

only case where the value of the case where j = 0 is one is where n′ = 0, and ωi = 0

and ui = 0 for all i ∈ [c].

Updating the DP. To update D(j, n′, ω1, . . . , ωc, u1, . . . , uc), we only have to decide

on how many troops to put on the jth battlefield. The idea is to try all possibilities

and check, recursively, whether any of these choices satisfies the requirements for thy

dynamic value to be 1. Let us denote by P = {0, . . . , n′} the set of all possibilities

for the number of troops that we can put on battlefield j. We update D as follows:

D(j, n′, ω1, . . . , ωc, u1, . . . , uc) = max
x∈P

D
(
j−1, n′−x, ω1(x, j), . . . , ωc(x, j), u1(x, j), . . . , uc(x, j)

)
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where for any i ∈ [c], ωi(x, j) and ui(x, j) are defined as

ωi(x, j) =
ωi, if wj/x < rd,

ωi − x, otherwise,

and, ui(x, j) =
ui − wj, if wj/x < rd,

ui, otherwise.

Recall that when j = bi for some i ∈ [c], as previously mentioned, to prevent

violation of condition 3 of Definition 94, we have to put exactly wj/ri troops on

battlefield j. If this is the case, and we cannot afford wj/ri troops (i.e., if wj/ri > n′),

we update D to be 0. If wj/ri ≤ n′, we make an exception for battlefield j and

overload the set P to be {wj/ri} instead of {0, . . . , n′}; the rest of the updating

procedure would be the same.

Correctness. Here, we argue that our updating procedure produces the right an-

swer. We use induction on the value of j and assume thatD(j′, n′, ω1, . . . , ωc, u1, . . . , uc)

is correctly updated for j′ < j. We argued why the base case, where j = 0 is correctly

updated. It only suffices to prove for that we correctly updateD(j, n′, ω1, . . . , ωc, u1, . . . , uc).

Assume for now that D(j, n′, ω1, . . . , ωc, u1, . . . , uc) = 1. This implies, by defi-

nition, that there exists a strategy (x1, . . . , xj) over the first j light battlefields

that satisfies (5.15), (5.16), and (5.17). Observe that 0 ≤ xj ≤ n′, and thus,

xj ∈ P . Once putting xj troops in battlefield j, ωi(xj, j) denotes the number of

troops that still has to be put on battlefields with higher ratio than ri. More-

over, ui(xj, j) denotes the requirement for the sum of weights of battlefields with

lower ratio than ri. Therefore, by (5.16), and (5.17) we need to have D
(
j − 1, n′ −

xj, ω1(xj, j), . . . , ωc(xj, j), u1(xj, j), . . . , uc(xj, j)
)

= 1 concluding this case. On the
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other hand, if D(j, n′, ω1, . . . , ωc, u1, . . . , uc) = 0, no such strategy (x1, . . . , xj) can be

found, therefore for all choices of xj in P , the requirements over the prior battlefields

cannot be satisfied andD
(
j−1, n′−xj, ω1(xj, j), . . . , ωc(xj, j), u1(xj, j), . . . , uc(xj, j)

)
=

0 for all choices of xj ∈ P .

Wrap up. To obtain the strategy (xh,x`) of player 1 that satisfies the triplet

(xh,b, r) while providing the maximum guaranteed payoff against all possible strate-

gies of the weaker adversary, we solve the aforementioned dynamic program and

linear search over [0,
∑

iwi] to find the maximum value of u where

D(k`, n`,m1 − x`b1 − 1, . . . ,mc − x`bc − 1, u, . . . , u) = 1.

While this only outputs the maximum payoff that can be guaranteed — and not the

actual strategy to provide it — it is easy to construct the strategy using standard

DP techniques. Roughly speaking, to achieve this, we need to slightly modify the

DP to also store the actual partial strategy in case its value is 1.

To conclude this section, for any choice of the triplet T = (xh,b, r) for which

there are only polynomially many options by Claim 93, we find the optimal strategy

of player 1 among light battlefields that satisfies T if possible. Lemma 95 guarantees

that the obtained strategy over the light battlefields is indeed the optimal solution

if the choice of triplet T is right. Therefore, it suffices to compare the guaranteed

payoff of all obtained solutions for different triplets and report the one that provides

the maximum guaranteed payoff for player 1. This procedure gives us the optimal

193



strategy of player 1 against the weaker adversary and therefore it guarantees a payoff

of u against him. By Corollary 92, this gives a ((1 − ε/2)u, 1)-maximin strategy

against player 2. Recall that this is achieved over the updated battlefield weights.

However, by Corollary 86, any ((1−ε/2)u, 1)-maximin strategy of player 1 on updated

battlefields, gives a ((1 − ε)u, 1)-maximin on the original game instance and this

proves the main theorem of this section.

Theorem 85 (restated). Given that player 1 has a (u, 1)-maximin strategy, there

exists a polynomial time algorithm that obtains a ((1 − ε)u, 1)-maximin strategy of

player 1 for any arbitrarily small constant ε > 0.

5.4.2 The Case of 2-Strategies

In this section we generalize the results of the previous section to the case of

2-strategies. To achieve this we first design an algorithm that obtains a (u/3, p)-maximin

2-strategy. Then, we use this algorithm and adapt some of the techniques from Sec-

tion 5.4.1 to give an algorithm that finds a ((1− ε)u, p)-maximin 2-strategy.

The proof of the following theorem which is the main result of this section

comes later in the section.

Theorem 96. Given that player 1 has a (u, p)-maximin 2-strategy, there exists a

polynomial time algorithm that obtains a ((1 − ε)u, p)-maximin 2-strategy of player

1 for any arbitrarily small constant ε > 0.

Given that the first player randomizes over two pure strategies x and x′, the

second player’s best response is a strategy that maximizes his payoff. That is, player
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2 seeks to find a strategy y ∈ S2 such that min(u2(x,y), u2(x′,y)) is maximized. In

this case, we assume that player 1 cannot guarantee utility u for himself, otherwise

he would just play one pure strategy. Therefore, by Observation 78 and Observation

79 We can safely assume that in any (u, p)-maximin 2-strategy of the first player p=1/2

holds.

Although, there exist polynomial time algorithms to find the best response of

player 2, we still need simpler algorithms to be able to use them and find an optimal

((1− ε)u, p)-maximin 2-strategy for player 1. To this end, we define a new opponent

which is a weaker version of the second player and we call it the greedy opponent.

Instead of solving the best response problem optimally, the greedy opponent just

takes a simple greedy approach. We prove that playing against this weaker opponent

gives us a (u/3, p)-maximin 2-strategy. To approach that we first give an alternative

formulation of the best response problem in which the solution is represented by two

binary vectors. We then relax the integrality condition of elements in the vectors

and design a greedy algorithm that finds the best response of the second player

in this case. This algorithm is the base for the greedy opponent’s strategy. We

prove that if the second player takes this approach he loses at most 2 · wmax payoff

compared to his best response strategy. Recall that wmax is the maximum weight of

the battlefields.

To give an alternative formulation of the best response problem, we define a

new problem in which any solution is represent by two vectors of size k. Given

strategies x and x′ we first define cost vectors c and c′. For any battlefield i, if

xi ≤ x′i then ci := xi and c′i := x′i − xi. Otherwise, c′i := x′i and ci := xi − x′i.
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Roughly speaking, when xi ≤ x′i holds, ci is the number of troops that player 2

needs to put in battlefield i to win strategy x in this battlefield and c′i is the number

of troops that he should add to win both strategies. The solution to this problem

is two vectors h and h′ that maximizes min(w · h,w · h′) subject to the following

conditions.

1. For any i ∈ [k], elements hi and h′i are binary variables.

2. If xi ≤ x′i, then h′i ≤ hi holds. Otherwise, hi ≤ h′i holds.

3. Also, c · h + c′ · h′ ≤ m.

Given vectors h and h′, the solution of this problem, one can find a strategy y of

player 2 where u = w · h and u′ = w · h. (Recall that u and u′ respectively denote

the utility that strategy y gets against strategies x and x′.) We claim that if for

any i ∈ [k], player 2 puts hi · ci + h′i · c′i troops in battlefield i, then u ≥ w · h and

u′ ≥ w ·h hold. Note that by condition 3, he has enough troops to play this strategy.

Without loss of generality, assume that xi ≤ x′i. Therefore, by condition 2, h′i ≤ hi

holds. There are three possible cases. Either both h′i and hi are 0, both are equal

to 1, or h′i = 0 and hi = 1. If hi = h′i = 0, then wi · hi and w′i · h′i are both equal

to zero. In the case of hi = 1 and hi = 0, we have hi · ci + h′i · c′i = xi. Therefore,

in battlefield i, player 2 gets utility wi against strategy xi. Also, if hi = h′i = 1, the

equality hi · ci + h′i · c′i = x′i holds which means player 2 gets utility wi against both

strategies in this battlefield. Thus, in all three cases, the utility that player 2 gets

against strategies x and x′ in battlefield i is receptively at least wi · hi and at least

w′i · h′i.
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Moreover, given any strategy y of player 2, one can give two valid vectors h

and h′ such that u = w · h and u′ = w · h. Iff yi ≥ xi, let hi := 1. Also iff yi ≥ x′i,

we set h′i := 1. Therefore, u = w ·h and u′ = w ·h hold. We also need to show that

c · h + c′ · h′ ≤ m. For this, it suffices to show ci · hi + c′i · h′i ≤ yi for any i ∈ [k].

Without loss of generality, assume that xi ≤ x′i. Thus, ci = xi and c′i = x′i − xi

hold. Note that we can assume that yi is either 0, xi or x′i. In all these three cases,

ci ·hi+ c′i ·h′i ≤ yi holds; therefore, vectors h and h′ satisfy the necessary conditions.

To sum up, for any solution of the defined problem which we denote by vectors

h and h′ there is a strategy of the opponent with payoff c · h + c′ · h′. Also,

for any (u, p)-maximin 2-strategy of player 2, there are two vectors h and h′ that

satisfy the necessary conditions of the problem and min(w · h,w · h′) = u holds for

them. Therefore, this formulation is indeed a valid formulation of the best response

problem. From now on, we may use these two formulations interchangeably.

5.4.2.1 A 1/3-Approximation

Any strategy of the player 2 against a 2-strategy of the first player can be

represented by two vectors h and h′. If we relax the integrality constraint of the

elements in these vectors, they can be fractional numbers between 0 and 1. We call

such a strategy a fractional strategy. In this section, we give an algorithm to find

the best fractional strategy of the opponent. Using this algorithm we give an exact

definition of the greedy opponent. Also, using some properties of the algorithm we

prove that player 1 achieves a (u/3, p)-maximin strategy by finding his best strategy
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against the greedy opponent.

Given s = (x,x′) a 2-strategy of the first player, vectors h and h′ are a valid

representation of a fractional response y iff:

1. For any i ∈ [k], hi and h′i are real numbers between 0 and 1.

2. If xi ≤ x′i, then h′i ≤ hi holds. Otherwise, hi ≤ h′i holds.

3. Also, c · h + c′ · h′ ≤ m.

The utility that this strategy gets against x and x′ is respectively u2(x, y) =

w · h and u2(x′, y) = w · h′. Let (h, h′) be such a strategy. We call an element

hi (or h′i) an available element if it is possible to increase hi by a nonzero amount

without changing h′i. Formally element hi is available iff the following conditions

hold: hi < 1 and if x′i ≤ xi, then hi ≤ h′i holds. We also call hi and h′i jointly

available iff hi < 1 and h′i < 1. In the other words, it is possible to increase both of

them by a nonzero amount without violating the necessary conditions on h and h′.

Let c and c′ be the cost vectors of a 2-strategy of the first player denoted by s. We

define two ratio vectors of length k for this strategy and denote them by r and r′.

For any battlefield i ∈ [k], we set ri = ci
wi

and r′i =
c′i
wi

. Note that spending ε amount

of troop on an available element, hi, increases it by ε/ci and increases u2(x, y) by

ε/ri. Roughly speaking, elements with smaller ratios are more valuable.

Given a 2-strategy of the first player in an instance of the Colonel Blotto,

Algorithm 11 find a best fractional response of the second player. This algorithm

consists of several iterations. At the beginning, all the elements of vectors h and h′

are 0. In each iteration, the algorithm chooses two elements hi and h′j where they
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are independently or jointly available and they minimize ri + r′j. Then, it increases

each one by a nonzero amount such that h · w and h′ · w increase equally. Note

that to increase these elements the algorithm spends an amount of troop that is

determined by the cost vectors. This algorithm stops if there is no troop left or

it is not possible to increase the elements. Note that the output of this algorithm

satisfies equation h ·w = h′ ·w. In the other words, the strategy that this algorithm

finds gets the same amount of utility against strategies x and x′. In Lemma 97, we

prove that any best fractional response of the second player has this property. Also,

we prove in Lemma 98 that this algorithm indeed finds a best fractional response.

Lemma 97. If vectors h and h′ represent a best fractional strategy of the player 2

against an arbitrary 2-strategy of the first player, then w · h = w · h′ holds.

Proof. Let y be a best fractional strategy of the second player represented by h

and h′ where w · h 6= w · h′. Without loss of generality, assume w · h > w · h′.

We show that it is possible to increase min(w · h,w · h′) by modifying y. Since

w ·h > w ·h′ holds, there exists a battlefield i ∈ [k] where hi > h′i. We can decrease

hi by a nonzero amount and increase h′i using the extra amount of troop achieved

from that. This modification of hi and h′i increases min(w · h,w · h′) by a nonzero

amount which is a contradiction with the assumption that y is a best fractional

strategy.

Lemma 98. Algorithm 11 gives a best fractional response of the second player.

Proof. Let strategy y denote the output of Algorithm 11. Assume y is not a best

response of the second player and let strategy y′ represented by a pair of vectors η
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Algorithm 11: Best fractional strategy of the second player.

Input: strategies x and x′ of the first player and vector w which is the battle-
fields’ weight vector.
Output: two vectors h and h′ which denote a fractional strategy of player 2.

1: Let c, c′ denote cost vectors of x and x′.
2: h,h′ ← (0, . . . , 0)
3: while m′ > 0 do
4: B1 ← {i : i ∈ [k], hi is available} and a← argmini∈B1

ri
5: B′1 ← {i : i ∈ [k], h′i is available} and b← argmini∈B′1 r

′
i

6: B2 ← {i : i ∈ [k], hi and h′i are jointly available} and d← argmini∈B2
ri + r′i

. In the case of tie, pick the smaller index
7: if ra + r′b < rd + r′d then
8: Maximize t+ t′ subject to the following conditions:

• After increasing ha by t and h′b by t′, vectors h and h′ are valid.
• t · wa = t′ · wb
• t · ca + t′ · c′b ≤ m′

9: Increase ha by t and h′b by t′.
10: m′ ← m′ − (t · ca + t′ · c′b)
11: else
12: Maximize t subject to the following conditions:

• After increasing hd and h′d by t, vectors h and h′ are valid.
• t · (cd + c′d) ≤ m′

13: Increase both hd and h′d by t.
14: m′ ← t · (cd + c′d)
15: end if
16: end while
17: return h,h′

and η′ be a best response of player 2 against the 2-strategy (x, x′). Let t denote the

first iteration of the algorithm after which there exists at least a battlefield i ∈ [k]

where ηi < hi or η′i < h′i (Vectors h and h′ are defined in Algorithm 11.) Let i and

j denote the battlefields where hi and h′j are increased in the t-th iteration of the

algorithm. (It is possible that j = i.) Assume that among all the best strategies

of the second player y′ is the strategy that minimizes t. Also among all those with

minimum t, y′ is the one that minimizes (hi − ηi) + (h′j − η′j). We show that given
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such a strategy we can modify it in a way that t or (hi − ηi) + (h′i − η′i) decreases

which is a contradiction. Note that u2(x,y) = u2(x′,y) holds since each iteration of

the Algorithm 11 increases them by the same amount. Therefore, strategy y′ should

perform better than y against both x and x′. More formally, u2(x,y) < u2(x,y′)

and u2(x′,y) < u2(x′,y′) hold. There are two possible cases for the relation between

h and h′ after iteration t. In both cases we prove that it is possible to modify y′

and lower (hi−ηi)+(h′i−η′i) or t while it is still a best strategy of the second player.

Case 1: Both hi > ηi and h′j > η′j hold. In this case, strategy y achieves more

utility against x in battlefield i and against x′ in battlefield j than strategy y′ does.

Therefore, strategy y′ compensates this by putting more troops in other battlefields.

If there is a battlefield i′ ∈ [k], where hi′ < ηi′ and h′i′ < η′i′ then it is possible to

modify strategy y′ by decreasing ηi′ and η′i′ by a nonzero amount and increasing ηi

and η′j such that the amount of troops used by strategy y′ does not increase and its

utility does not decrease. It is possible since Algorithm 11 in each iteration, among

all the available elements chooses a pair that spending a unit of troop in them gives

us the maximum amount of utility, and elements hi′ and h′i′ are both available at

this iteration. If this does not hold then there are two battlefields i′, j′ ∈ [k] where

hi′ < ηi′ and h′j′ < η′j′ . In this case, the only difference is that we need to make sure

that both hi′ and h′j′ are available at this iteration which can be inferred from the

fact that for both i′ and j′, equations h′i′ ≥ η′i′ and hj′ ≥ ηj′ hold.

Case 2: Exactly one of hi > ηi and h′j > η′j holds. Without loss of generality, we

assume hi > ηi holds. Note that by Lemma 97 the amount of utility that strategy y′
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gets against strategies x and x′ is equal. Also, since hi > ηi and h′j ≤ η′j hold, there

exists a battlefield i′ ∈ [k] where ηi′−hi′ > η′i′−h′i′ . This means that hi′ is available

at iteration t. However, in each iteration, Algorithm 11, chooses a pair of elements

in h and h′ where the amount of utility achieved per spending a unit of troop in their

combination is maximized. This yields that it is possible to modify y′ by decreasing

ηi′ and increasing ηi in a way that η′ and η are still a valid representation of strategy

y′ and u2(y,x) is not decreased.

In both cases we proved that it is possible to modify strategy y such that

either t decreases by 1 or (hi−ηi)+(h′j−η′j) decreases while t is not changed, which

is a contradiction with the assumptions that we had on strategy y′. Thus, strategy

y the output of Algorithm 11 is indeed the best fractional response of the second

player

To give a 2-approximation of the first player’s best 2-strategy, we first define

the greedy opponent. The exact definition is given in Definition 99. His response is

to find a fractional response using Algorithm 11 and round it down to an integral

one. In Observation 100 we prove that the greedy opponent’s response differs from

the fractional response in at most two battlefields. Note that if wmax > u/3 holds,

the first player simply achieves (u/3, p)-maximin 2-strategy by putting all his troops

on the battlefield with wight wmax. For simplicity, throughout the chapter we assume

wmax ≤ u/3 holds. This yields that the best 2-strategy of the first player against

such an opponent is a (u/3, p)-maximin 2-strategy. Thus, in the rest of this section

we focus on finding the best strategy of player 1 against the greedy opponent.
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Definition 99 (Greedy Opponent). Greedy opponent is a weaker version of the

second player. The response of this opponent against a 2-strategy of the first player,

s = (x,x′), is as follows. Using Algorithm 11, he first finds a best fractional response

of the second player against s , which is denoted by vectors h and h′. Since it is

a fractional response some of the elements in these vectors are fractional. The

greedy opponent rounds down the elements of these vectors and plays according to

the rounded vectors.

Observation 100. Let strategy s be the fractional response of player 2 against a

given 2-strategy of the first player that is obtained from Algorithm 11. Also, let s′

denote the response of the greedy opponent against the same strategy of the first

player. Strategies s and s′ put different amount of troops in at most two battlefields.

Proof. We prove in Lemma 101 that there are at most two battlefields i, j ∈ [k] where

hi, hj, h
′
i or h′j are fractional. Since the greedy opponent rounds down these vectors,

his strategy differs from the fractional strategy in at most two battlefields.

In the following lemma we present three import properties of Algorithm 11

which we use later to prove the main theorem of this section.

Lemma 101. Consider a, b and c that are defined in lines 4, 5 and 6 of Algorithm 11.

1. At the beginning of each iteration of Algorithm 11, any fractional element of

h and h′ is in {ha, h′b, hc, h′c}.

2. Also, at the beginning of each iteration at most one of ha, h
′
b, hc or h′c is frac-

tional.
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3. After the last iteration of the algorithm there are at most two indices i, j ∈ [k]

where hi, hj, h
′
i or hj is fractional.

Proof. We first prove that at the beginning of the algorithm, all the elements of h

and h′ other than ha, h
′
b, hc, and h′c are integral. Let r, r′ respectively denote the

minimum ratios among the available elements of vectors h and h′ in an arbitrary

iteration of the algorithm. It is easy to see that neither r nor r′ decreases throughout

the algorithm. Thus, any element that is increased before this iteration is either

unavailable or is in {ha, h′b, hc, h′c}. Also note that any element that has value less

than 1 is either available or jointly available. Therefore, any element that is not in

{ha, h′b, hc, h′c} is equal to either 0 or 1.

Moreover, we show that at the beginning of each iteration of Algorithm 11,

at most one of ha, h
′
b, hc and h′c is fractional. We use proof by induction. We prove

that if it is not the last iteration of the algorithm, and at the beginning of that at

most one element in {ha, h′b, hc, h′c} is fractional, after this iteration the same holds.

It suffices since we know that any fractional element is in {ha, h′b, hc, h′c}. Note that

since at most one element in both vectors is fractional this fractional element is

independently available. Therefore, it is either ha or h′b. If ra + r′b ≤ rc + rc then the

algorithm increases ha and h′b until one of them is not available anymore (note that

it is not the last iteration) which means it is equal to 1. Otherwise, the algorithm

increases both hc and h′c by the same amount until one of them becomes equal to 1.

Therefore, in both cases at most one element remains fractional.

Now, consider the last iteration of the algorithm. We proved that at the
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beginning, at most one element in {ha, h′b, hc, h′c} is fractional. Also, the fractional

element is either ha or h′b. If at this iteration, the algorithm changes ha and h′b, then

these are the only ones that can be fractional. Also, if the algorithm changes hc and

h′c, then only hc, h
′
c and one of ha or h′b can be fractional. In both cases there are

at most two battlefields i and j where hi, hj, h
′
i or h′j are fractional.

For any 2-strategy of the first player we define a signature which is determined

by Algorithm 11 and the state in which this algorithm terminates.

Definition 102 (Signature of a 2-strategy). For any strategy s = (x,x′) find the

best fractional response of the algorithm using Algorithm 11 and denote it by vectors

h and h′. consider sets B1, B′1, and B2 in the last iteration of the algorithm. Define

• a := argmini∈B1
ri,

• b := argmini∈B′1 r
′
i, and

• c := argmini∈B2
ri + r′i.

Also, let µ be the total number of troops that are spent on ha, h
′
b, hc and h′c. For

instance, if a, b and c are three different battlefields, µ := ca · ha + c′b · h′b + cc · hc +

c′c · h′c. Moreover, denote by u̇1 and u̇2 the utility that the greedy opponent achieves

against strategies x and x′ in these battlefields. We define the signature of strategy

s to be (a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2) and we denote it by σs. Note that we represent

(xa, xb, xc) by xa,b,c.

Lemma 103. Let σ be the signature of the greedy opponent’s response against a

2-strategy of the first player (x,x′). There exists a function that determines the

response of the greedy opponent in any battlefield i ∈ [k]− {a, b, c} given xi, x
′
i and
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σ.

Proof. Let σ be (a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2). Also without loss of generality, we

assume that xi ≤ x′i: therefore, ci = xi and c′i = x′i − xi hold. We claim that

Algorithm 12 finds hi and h′i given xi, x
′
i, and signature σ. To prove that this

algorithm is correct, we need to show that if hi or hj is set to 1 by this algorithm,

any greedy response to a strategy with this signature also sets this to 1. We also

need to prove that any element that is set to 0 is also 0 any greedy response to a

strategy with this signature.

Note that the minimum ratio of the available (or jointly available) elements

does not decrease after each iteration. Also, note that in Algorithm 11, the tie

breaking rule while finding the available element with the minimum ratio is the

index of elements. Thus, the definition of the signature directly results that any

element that is set to 1 by this algorithm is indeed correct. We just need to show

the second part. By Algorithm 11, for battlefield i, if ri + r′i > rc + r′c holds or

ri + r′i = rc + r′c and i > c hold, h′i = 0. Also, if in addition to the mentioned

condition, ri > ra holds and ri = ra and i > a hold then, hi = 0. The only

remaining case is when ri < ra and r′i ≥ r′b holds. In this case the algorithm sets

h′i = 0 even if ri + r′i ≤ rc + r′c. We prove by contradiction that h′i = 0 is correct

in this situation. Assume that there exists a response in which h′i = 1. Let γ and

γ′ respectively denote the minimum ratios among the ratio of available elements in

vectors h and h′ at the iteration that h′i first changes. The only way that h′i changes

is as a jointly available element. For this to be possible, conditions ri + r′i ≤ γ + γ′
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and ri + γ′ > γ + γ′ must hold. This is a contradiction with the fact that minimum

ratio of the available elements does not decrease throughout the algorithm. Thus,

Algorithm 12 correctly finds the best response of the greedy opponent in battlefield

i.

Algorithm 12: Greedy opponent’s response in battlefield i given xi, x
′
i and σ =

(a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2)

Without loss of generality, this algorithm assumes that xi ≤ x′i. Also ri and r′i
are i-th elements of ratio vectors that can be computed using xi, x

′
i and wi.

1: hi, h
′
i ← 0

2: if ri < ra or (ri = ra, i < a) then
3: hi ← 1
4: if r′i < r′b or (r′i = r′b, i < b) then
5: h′i ← 1
6: end if
7: else if ri + r′i < rc + r′c or (ri + r′i = rc + r′c, i < c) then
8: hi, h

′
i ← 1

9: end if
10: return hi and h′i

Lemma 104. Let S be the set of 2-strategies of the first player in an instance of

Discrete Colonel Blotto and let σS denote the set of signatures of the strategies in

S. Size of the set σS is polynomial and there exists a polynomial time algorithm to

find it.

Proof. Let (a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2) denote the signature of an arbitrary 2-strategy

s = (x,x′). Note that all possible values of a, b, c, xa,b,c and x′a,b,c is bounded by a

polynomial in n and k. Also, by Lemma 101, the amounts of troop that the second

player spends in the rest of the battlefields is integral. Therefore, µ is polynomial in

m. Thus, we just need to prove that given an assignment to these variables there are

polynomially many possible cases for values of u̇1 and u̇2. Let u1 and u2 denote the
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amount of troops that the the greedy opponent gets in the other k − 3 battlefields.

By Lemma 97, in a valid response of this opponent, u1 + u̇1 = u̇2 + u2 holds. Since

u1−u2 has polynomially many possible values, the same holds for u̇1− u̇2. We claim

that there is a polynomial time algorithm that finds u̇1 and u̇2 given value of u̇1− u̇2.

By Lemma 101, before the last iteration of Algorithm 11, at most one of ha, h
′
b, hc

and h′c is fractional and all the other elements are integral. We also mention in the

proof that this fractional one is either ha or h′b. This element is responsible for the

difference between u̇1 and u̇2; therefore, the value of that is uniquely determined

given u̇1 − u̇2. After fixing the value of this fractional element, we find the exact

values of u̇1 and u̇2 by simulating the last iteration of the algorithm.

Theorem 105. Given that there exists a (u, p)-maximin 2-strategy of the first player,

there is an algorithm that finds a (u/3, p)-maximin 2-strategy of this player in poly-

nomial time.

Proof. By Observation 100, the strategy of the greedy opponent differs from the

fractional best response in at most two battlefields. Also, the best integral strategy

gets utility at most equal to the fractional one. Therefore, this weaker opponent

loses at most 2 ·wmax compared to his best response strategy. Note that if losing at

most 2 · wmax does not guarantee a (u/3, p)-maximin 2-strategy for player 1, he can

put all his troops in the battlefield with the maximum weight and just win that one.

This yields that the best strategy of the first player against the greedy opponent

guarantees a (u/3, p)-maximin 2-strategy for him.

The problem that we need to solve now is how to find the best strategy of
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player 1 against the greedy opponent. We cannot afford to go over all the pos-

sible strategies and search for the best one. However, playing against the greedy

opponent gives us the ability to narrow down our search space and find the best

response by solving polynomially many dynamic programs. For any signature σ,

let Sσ denote the set of all the first player’s strategies with signature σ. To find

the best strategy of player 1 against the greedy opponent, we just need to ex-

haustively searches through all the possible signatures and for any σ find the best

strategy of player 1 in set Sσ . Note that by Lemma 104 there are polynomi-

ally many valid signatures. We give a dynamic program that given a signature

σ = (a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2), finds the best strategy in set Sσ . By Lemma 103,

there exists a function that determines the response of the greedy opponent in

any battlefield i given xi, x
′
i, and σ. Let f(i, xi, x

′
i, σ) denote this function. The

dynamic program that we use is D(j, n1, n2, ω, u1, u2) with j ∈ {0, . . . , k − 3},

n1, n2 ∈ {0, , . . . , n}, ω ∈ {0, 1, . . . ,m − µ} and u1, u2 ∈ {0, . . . ,
∑

iwi}. Note

that j is in set {0, . . . , k − 3} since before the dynamic program we remove three

battlefields a, b and c. The value of D(j, n1, n2, ω, u1, u2) is either 0 or 1. It is 1 iff it

is possible to give two partial strategies x = (x1, . . . , xj) and x′ = (x′1, . . . , x
′
j) over

the first j battlefields such that all the following conditions are satisfied. Let h and

h′ denote the partial response of the greedy opponent to 2-strategy (x,x′) where for

any i, hi and h′i are determined by f(i, xi, x
′
i, σ).

• Condition 1: Σi∈[j]xi = n1 and Σi∈[j]x
′
i = n2. This is a condition on the amount

of troops that the first player uses in the first j battlefields.
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• Condition 2: w · h = u1 and w · h′ = u2. This condition guarantees that the

utility that the greedy opponent gets against strategies x and x′ in the first j

battlefield is respectively u1 and u2.

• Condition 3: c · h + c′ · h′ = ω, where c′ and c are partial cost vectors of x

and x′. This condition guarantees that the greedy opponent uses ω troops in

the first j battlefields.

Base case. We start with the case where j = 0. Here, clearly, D(0, n1, n2, ω, u1, u2) =

1 iff n1, n2, ω, u1 and u2 are all 0.

Updating the DP. To update D(j, n1, n2, ω, u1, u2), we only have to decide on how

many troops to put on the j-th battlefield in strategies x and x′. We try all the pos-

sibilities for values of variables xj and x′j and check, recursively, whether any of these

choices satisfies the requirements for the dynamic value to be 1. Let ξ and ξ′ denote

an assignment to xj and x′j. Also, let ω′ denote the amount of troops that the greedy

opponent puts in battlefield j if xj = ξ and x′j = ξ′. Moreover, u′1 and u′2 respec-

tively denote the utility that he gets against strategies x and x′ in this battlefield.

Note that u′1, u′2 and ω′ can be achieved using function f . D(j, n1, n2, ω, u1, u2) = 1

iff there exist at least a pair of ξ ∈ {0, . . . , n1} and ξ′ ∈ {0, . . . , n2} where

D(j − 1, n1 − ξ, n2 − ξ′, ω − ω′, u1 − u′1, u2 − u′2) = 1.

After finding the value of D for all the valid inputs, we need to identify the

strategies that are in set Sσ to be able to find the best one. Roughly speaking, one
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may think that to find the best strategy of player 1 in set Sσ , it is enough if using

the dynamic data we find the strategy that minimizes the utility that the greedy

opponent gets in k−3 remaining battlefields. However, it is not true since using this

method we may end up finding a strategy that is apparently very good for the first

player but does not have the same signature as σ. This may happen since in the

dynamic we do not consider the fact that the greedy opponent finds a strategy in

which he gets the same utility against both strategies x and x′. To avoid that, before

finding the best strategy using the dynamic data we need to filter out the strategies

that are not in Sσ . Recall that signature σ is (a, b, c, µ, xa,b,c, x
′
a,b,c, u̇1, u̇2). For any

pair of u1 and u2 thatD(k−3, n1, n2,m−µ, u1, u2) = 1 there exists a 2-strategy s ∈ Sσ

against which the greedy opponent gets utility u1 + u̇1 iff u1 + u̇1 = u2 + u̇2 since any

response of the greedy opponent to a 2-strategy s = (x,x′) achieves the same utility

against both strategies x and x′. Therefore, to find the best 2-strategy in Sσ , using

the dynamic data we find a pair of u1 and u2 such that D(j, n1, n2, ω, u1, u2) = 1

and u1 + u̇1 = u2 + u̇2 subject to minimizing u1 + u̇1. This means that there exists a

2-strategy s of the first player against which the greedy opponent achieves u1 + u̇1

utility.

By Lemma 104, there are polynomially many different valid signatures and

there is a polynomial time algorithm to find them. Therefore, one can find the

best strategy of the first player against the greedy opponent by going over all the

possible signatures and finding the best 2-strategy using the described dynamic

program. Note that having a best strategy against the greedy opponent gives a

(u/3, p)-maximin 2-strategy of player 1.
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5.4.2.2 A (1− ε)-Approximation

In Section 5.4.1 we give a (1 − ε)-Approximation for the case of one pure

strategy. Here, we use the same idea and adapt it for our purpose. Recall that,

we first define an updated wight vector by rounding down the weight of battlefields

to a power of (1 + ε). Then, we partition them to two sets of heavy and light

battlefields with threshold τ = εu/4. Corollary 86 implies that finding a ((1 −

ε/2)u, 1)-maximin 2-strategy after this modification gives us a ((1 − ε)u, 1)-maximin

2-strategy. Therefore, we only focus on the instance with the updated weights. The

overall idea is to first define a weaker opponent such that finding the best strategy of

the first player against him gives us a ((1− ε/2)u, 1)-maximin 2-strategy. Then, give

a polynomial time algorithm that finds this best strategy. The weaker adversary in

the previous section is an opponent whose response against a strategy of the first

player is to go over all his pure strategies on the heavy battlefields and for each one,

play greedily on the light battlefields. The weaker adversary that we define against

2-strategies is almost similar to the one in the previous section. The only difference

is on the greedy algorithm that he uses on the light battlefields which is to respond

as a greedy opponent (with a minor technical modification that we explain later).

Note that the greedy opponent loses at most 2 ·wmax compared to his best response;

thus, playing against this weaker opponent gives a ((1− ε/2)u, 1)-maximin 2-strategy

of the first player.

To be able to provide a best response algorithm, we first give a new repre-

sentations for the strategies of both players on heavy battlefields so that we can
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give proper limits on the number of strategies that they have. By Observation 87,

the number of distinct heavy battlefields in bounded by a constant. For the case

of 1-strategies, we represent first player’s strategies by the number of troops that

he puts on each battlefield weight. However, the exact same representation does

not work for 2-strategies of the first player, but we are still able to represent them

by vectors of polynomial length such that the number of valid representations is

polynomial as well. Note that given a 2-strategy s = (x,x′) of the first player, for

each battlefield i ∈ [k], either xi ≤ x′i or xi > x′i holds. Based on this we partition

the battlefields to two types. A battlefield i is of type 1 if xi ≤ x′i otherwise it is

of type 2. Lemma 106 proves that there is an optimal 2-strategy s = (x,x′) of the

first player where both strategies x and x′ put roughly the same number of troops

in battlefields of the same type and the same weight.

Lemma 106. If player 1 has a (u, p)-maximin 2-strategy , he also has a (u, p)-maximin

2-strategy s = (x,x′) where for any two battlefields i and j that conditions wi = wj,

i ≤ j, and xi ≤ x′i hold we have 0 ≤ xi − xj ≤ 1 and 0 ≤ x′i − x′j ≤ 1.

Proof. Let s = (x,x′) be a (u, P )-maximin 2-strategy of player 1. Assume battlefields

i and j, where i < j, are of the same type and the same weight, but conditions

|xi−xj| ≤ 1 and |x′i−x′j| ≤ 1 do not hold for them. Let t = xi +xj and t′ = x′i +x′j

respectively denote the amount of troops that strategies x′ and x′ put on these

battlefields. There are five possible cases for the utility that the second player gets

in these battlefields. We show that it is possible to redistribute t and t′ on battlefields

i and j to satisfy the mentioned conditions without lowering the number of troops
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that the opponents needs to spend in each case. Let u and u′ respectively denote the

utility that the second player gets against strategies x and x′ in these battlefields.

All the possible cases for value of u and u′ are as follows.

1. Case 1: u = w and u′ = w. The second player achives this by spending

min(x′i, x
′
j) troops which is maximized when x′i = dt′/2e, x′j = bt′/2c.

2. Case 2: u = 2w and u′ = w. The opponent spends min(x′i +xj, x
′
j +xi) troops

to get this utility. This is maximized when x′i = dt′/2e, x′j = bt′/2c, xi = dt/2e

and xj = bt/2c.

3. Case 3: (u = 0 and u′ = 0), (u = w and u′ = w) or (u = 2w and u′ =

2w). These cases are independent of the distribution. The opponent spends

respectively 0, t and t+ t′ troops to achieve theses results.

Therefore, if a given strategy does not satisfy the desired conditions, we modify it by

setting x′i = dt′/2e, x′j = bt′/2c, xi = dt/2e and xj = bt/2c. As we showed, after this

modification there is no possible amount of utility that the second player can get

with spending fewer number of troops in battlefields i and j. Also this modifidied

strategy satisfies 0 ≤ xi − xj ≤ 1 and 0 ≤ x′i − x′j ≤ 1.

We represent any partial 2-strategy of the first player on the heavy battlefields

by a vector of length poly(1/ε). Each entry of this vector is associated with a heavy

weight. The i-th entry consists of a tuple which determines how many battlefields

of the i-th heavy weight are from type 1, and how many troops each of x and x′

spend on the battlefields of each type with this weight. Let us denote by Sh1 the
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set of all such vectors. Note that each entry of a vector in this representation has

polynomially many possible values. The following is a corollary of this fact.

Corollary 107. |Sh1 | ≤ npoly(1/ε) where Sh1 is the set of 2-strategies of the first player

on the heavy battlefields.

Also, using the same argument as we had for the case of 1-strategies, one can

see that, here as well, it is possible to represent pure strategies of the second player

on heavy battlefields by vectors of constant size. Let Sh2 denote the set of all such

vectors. It is easy to see that bservation 87 holds for this case as well, and |Sh2 | is

bounded by a constant.

As we mentioned, the weaker adversary acts as a greedy opponent on the light

battlefields; therefore, he uses Algorithm 11 to find a best fractional response on

these battlefields. However, there is a technical detail that we should consider here.

Let s = (x,x′) denote the strategy of player 1 and let y be a partial response of the

weaker adversary on heavy battlefields. By Lemma 97 any best fractional response

gets the same utility against both the strategies of the first player. Note that it is

possible that u2(x,y) = u2(x′,y) does not hold. Thus, the amount of utility that

a best fractional response gets against x and x′ on the light battlefields differs by

u2(x,y) − u2(x′,y). Here, the issue is that in Algorithm 11 we assume that at the

beginning the amounts of utility that the greedy opponent has against strategies x

and x′ are both equal to 0. Therefore, at each iteration the algorithm increases them

by the same amount. Hence, the same algorithm cannot be used here, but with a

slight modification we can use it for the case of u2(x,y) 6= u2(x′,y) as well. Denote
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by u and u′ the amount of utility that the fractional response gets against strategies

x and x′ until an arbitrary iteration of Algorithm 11. If we use it to complete

the partial strategy y on the light battlefields, at the beginning u = u2(x,y) and

u′ = u2(x′,y). Without loss of generality, assume u′ ≤ u. The modification is as

follows. Since we want u and u′ to be equal at the end, before we start increasing

both of them, we greedily increase the available elements of vector h (to increases

u) until u = u′ holds. This is a correct approach since in a best fractional response

the overall weight of the light battlefields in which hi > h′i is at least u − u′. Also,

any such battlefield is available at the beginning of Algorithm 11. One can easily

verify that this modification does not affect the properties that we have proved for

the greedy opponent’s response.

Also, recall that signature of any 2-strategies of the first player, defined in Def-

inition 102, is unique since the response of the greedy opponent against a 2-strategy

is unique as well. However, the signature of a 2-strategy on the light battlefields

also depends on the strategy of the opponent on the heavy battlefields. Roughly

speaking, a 2-strategy of the first player s = (x,x′), for any yh ∈ Sh2 faces a differ-

ent type of greedy opponent on the light battlefields since the remaining amount of

troops and u2(x,yh)−u2(x′,yh) changes the strategy of the greedy opponent on the

light battlefields. Therefore, in the definition of signature of a 2-strategy on the light

battlefields we should also include the type of the opponent which is determined by

a strategy of the second player on the heavy battlefields. Given any such strategy,

yh, we denote signature of 2-strategy s by σ(s,yh). Now, we are ready to prove the

main theorem of this section which is as follows.
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Theorem 96 (restated). Given that player 1 has a (u, p)-maximin 2-strategy, there

exists a polynomial time algorithm that obtains a ((1− ε)u, p)-maximin 2-strategy of

player 1 for any arbitrarily small constant ε > 0.

Proof. Let sh = (x,x′) ∈ Sh1 be a 2-strategy of the first player on heavy battlefields

and let S(sh) denote the set of all the 2-strategies of the first player that plays

strategy sh on heavy battlefields. We find a partial 2-strategy on the light battlefields

sl such that the combination of these 2-strategies, denoted by s = (sh, sl), loses at

most εu/2 compared to the best strategy in S(sh). For any i ∈ |Sh2 |, strategy yh
i

denotes the i-th strategy in Sh2 . For any i ∈ |Sh2 |, we fix a signature σi and find a

2-strategy sl such that for any i, σ((sh, sl),yh
i ) = σi is satisfied. Also, among all

such strategies, we pick the one that minimizes the utility of the weaker adversary

against (sh, sl). Recall that to find a best strategy of the first player against a single

greedy opponent we design a dynamic program in the proof of Theorem 105. The

main difference here is that we want a strategy that is the best against multiple

greedy opponents; therefore, we need to run these dynamic programs in parallel

and update them simultaneously. For that, we use an idea that is presented in

the previous section. In Section 5.4.1, we design a dynamic program that finds the

best strategy of the first player against multiple weaker adversaries at the same

time. Combining this idea with the dynamic program presented in the proof of

Theorem 105 gives us a polynomial time algorithm to find a best strategy of the

first player against the weaker adversary.

Note that —Sh2— is bounded by a constant and by Lemma 104 the number
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of possible signatures is polynomial; thus, all the possible cases that we consider to

find the best strategy of the first player against the weaker adversary in S(sh) is

polynomial as well. Also, size of the set Sh1 is polynomial. Hence, we can find the

best 2-strategy of the first player against the weaker adversary in polynomial time.

As we mentioned such a strategy is a ((1− ε)u, p)-maximin 2-strategy strategy of the

first player.

5.4.3 Generalization to the Case of c-Strategies for c > 2

In this section the goal is to provide an algorithm that finds a ((1−ε)u, p)-maximin

c-strategy of the first player given that the existence of a (u, p)-maximin c-strategy

is guaranteed. The result of this section is stated in the following theorem more

formally.

Theorem 108. Given that there exists a (u, p)-maximin c-strategy of player 1, there

is a polynomial time algorithm that finds a ((1 − ε)u, p)-maximin c-strategy of this

player.

Note that in the case of (u, P )-maximin 2-strategy we show that in an optimal

strategy the first player plays both strategies with the same probability. It is easy to

see that for the case of c > 2 this does not hold. However, we show that to find an

optimal strategy it suffice to just consider a constant set of probability assignment to

the strategies. By Theorem 77 given that a (u, p)-maximin c-strategy is guaranteed,

there exists an algorithm to construct a set Pc of O(1) profiles in time O(1). Recall

that for a mixed strategy x, its profile, denoted by ρ(x), is a multisite of probabilities

218



associated to the pure strategies in the support of x. Since |Pc| is bounded by a

constant we can solve the problem for all profiles Pc and for each one find the best

strategy of player 1 that has this profile. In the rest of this section we assume that a

probability assignment to the strategies is given. Let s = (x1, . . .xc) be a c-strategy

of the first player. For any i ∈ [c] denote by pi the probability with which the first

player plays strategy xi.

Similar to the case of ((1−ε)u, p)-maximin 2-strategy, we start by decomposing

the battlefields to sets of heavy and light battlefields. the threshold for that is

τ = εu/2c. We also round down the wights as mentioned in the previous sections

and just solve the problem for rounded wights. Then, we give proper limits on the

number of possible c-strategies of the first player and the strategies of the second

player on heavy battlefields to be able to design a polynomial time dynamic program

that finds this a (1− ε)-approximate c-strategy. Let s = (x1, . . . ,xc) be a c-strategy

of the first player. We say two heavy battlefields i and j are from the same type

if wi = wj and there exists a permutation (a1, a2, . . . , ac) of numbers 1 to c where

xa1i ≤ · · · ≤ xaci and xa1j ≤ · · · ≤ xacj hold. We claim if a (u, p)-maximin c-strategy

of the first player exists, there also exists a (u, p)-maximin c-strategy in which the

number of troops that the first player puts in the battlefields of the same type in

each strategy is almost the same. The formal claim is stated in the following lemma.

Lemma 109. If player 1 has a (u, p)-maximin c-strategy, he also has a (u, p)-maximin

c-strategy (x1, . . .xc) where for any two battlefields of the same type i and j and any

a ∈ [c] we have 0 ≤ xai − xaj ≤ 1.
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Proof. Assume a best (u, p)-maximin c-strategy s is given that does not satisfy con-

dition 0 ≤ xai − xaj ≤ 1 for some a ∈ [c]. For any strategy xa, let ta denote the

number of troops that this strategy spends in battlefields i and j. We modify s by

redistributing these troops. For any a ∈ [c], set xaj = bta/2c and xai = dta/2e. We

prove that this modification does not lower the amount of troops that the opponent

needs to spend in these two battlefields to get any possible amounts of utility from

strategies x1 . . .xc. Let w denote the weight of battlefields i and j. Also we say a

strategy xa is smaller than xb in these battlefields if a comes before b in the given

permutation (that defines their type). Utility of the second player in these battle-

fields has the following form: there are two strategies xa and xb where xa < xb and

the second player gets utilities 2·w against strategies smaller than or equal to xa and

gets utility w against the ones that are between xa and xb. To get this utility the

second player spends min(xai + xbj, x
a
j + xbi) number of troops. One can easily verify

that our modification does not decrease this. Therefore, any given (u, p)-maximin

c-strategy can be transformed to a c-strategy that gets the same utility and satisfies

the mentioned conditions.

Note that there are poly(1/ε) different weights of heavy battlefields. Also, the

number of permutation of numbers 1 to c is c!. Therefore, there are poly(1/ε) types

of heavy battlefields. This means that we can represent any c-strategy of the first

player on the heavy battlefields by a vector of length poly(1/ε). Each element of this

vector, for any i ∈ [c], contains a variable that shows how many troops strategy xi

puts in battlefields of this type. Let Sh1 denote the set of all such partial c-strategies
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in this representation. Since the total number of troops is n, each variable has n

possible values. The following is a corollary of this.

Corollary 110. |Sh1 | ≤ npoly(1/ε).

When the goal of the first player is to achieve utility u with probability p, he

loses if the second player gets utility at least u with probability more than 1 − p.

We call a set of strategies in x1, . . . xc a losing set if the sum of probability of the

strategies in it is more than (1 − p). If the second player gets utility at least u

against all the strategies in at least one losing set, the first player loses in the sense

that he can not get utility u with probability p. Therefore, a c-strategy of the first

player is a (u, p)-maximin c-strategy iff there does not exist a pair of a losing set L

and a pure strategy of the second player y where y gets utility at least u against

all the strategies in L. Let Lc be the set of all the losing sets. For any L ∈ Lc we

define a new type of opponent whose goal is to get utility at least u against all the

pure strategies in set L and we denote it by PL. Also, recall that to prevent player 1

from achieving a payoff of u, any opponent of type PL can only lose in at most 2c/ε

heavy battlefields against any strategy in L. We represent any pure strategy of this

opponent by a vector of size poly(1/ε). Entries of this vector represent the number

of battlefields of any type that the second player wins against any strategy of the

first player in set L. Therefore, each entry contains c · c! numbers where each one

is in [0, 2c/ε]. Let |Sh2(L)| be the set of all partial pure strategies of the opponent of

type PL on heavy battlefields. We denote any pure strategy of the second player on

heavy battlefields by a pair of (L,y) where L determines the type of the opponent
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and y is his partial strategy on the heavy battlefields. Let |Sh2 | denotes the set of all

such pairs.

Corollary 111. |Sh2 | ≤ O(1).

Similar to the Section 5.4.1 and Section 5.4.2 we define a weaker adversary

such that his best strategy loses at most u/2c compared to the best strategy of the

second player. We also design a dynamic program that given a partial c-strategy of

player 1 and a partial strategy of the weaker adversary on the heavy battlefields,

finds the best c-strategy of player 1 against this opponent on the light battlefields.

Without loss of generality we assume that the utility of the opponent is the minimum

utility that he gets against all the strategies of the first player. The reason is that

we have different types of opponents and for each one we fix the strategies that he

is playing against. One can verify that combining these with the methods of the

pervious sections gives us an algorithm to find a ((1− ε)u, p)-maximin c-strategy of

the first player.

Recall that in the case of 2-strategies, we had an alternative representation of

the second player’s response which is a pair of binary vectors of length k. We define

a similar representation for the response of the second player against c-strategies.

Note that the main representation of his response is by a vector of length [k] in

which the i-th entry is the number of troops that the second player puts in the i-th

battlefield. An alternative representation is to represent any response of player 2

against a c-strategy s = (x1, . . . ,xc) of player 1 by c vectors of length k which we

denote by (h1, . . . ,hc). For any i ∈ [c], vector hi determines the strategy of player
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2 against strategy xi. If hib = 1 holds for a battlefield b ∈ [k], the second player

wins strategy xi in this battlefield. Note that if for a pair of i, j ∈ [c], xib < xjb

holds, then hjb = 1 yields hib = 1 which means hjb ≤ hib. We also define c cost vectors

(c1, . . . , cc) for the strategy of first player. These cost vectors, are to transform

strategies of player 2 between the two representations. For any battlefield b, let πb

be a permutation of numbers 1 to c where for any two consecutive elements i, j in

that, xib ≤ xjb. We set cjb := xjb − xib. Roughly speaking, assuming that the second

player wins strategy xi in battlefield b, entry cjb is the number of troops that he

needs to add to this battlefield to win strategy xi as well. Also, for l := πb1 we set

clb := xlb. A set of vectors is a fractional solution to the best response problem iff:

1. For any pair of i, j ∈ [c], xib < xjb yields hjb ≤ hib.

2. Entries of the vectors are fractional numbers between 0 and 1.

3. The amount of troops used by the second player is at most m. In the other

words, Σi∈[c]c
i · hi ≤ m.

Such a response is a best response iff mini∈[c] w · hi is maximized. We define the

strategy of the weaker adversary as follows: he searches through all his pure strate-

gies on the heavy battlefields and for each one, finds his best fractional response on

the light battlefields. Then, he rounds down the fractional vectors and plays accord-

ing to the rounded vectors on the light battlefields. Note that any integral response

gets utility at most equal to the best fractional strategy. We prove that there exists

a best fractional response that the number of battlefields in which at least one of
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the vectors h1, . . . ,hc is fractional is at most c. Thus, the weaker adversary loses at

most εu/2 compared to the best integral strategy of the second player.

Lemma 112. For any response of the second player y, let By denote the set of

battlefields where for any i ∈ By there exists at least one j ∈ [c] where hji is fractional.

There exists a best fractional response of player 2 for which |By| ≤ c.

Proof. Let y be a best fractional strategy with minimum |By|. For any i ∈ By

define a vector vi. For any j ∈ [c], entry vij := 1 if hij is fractional. Otherwise it is

0. By the optimality of the solution, all such vectors are independent. Thus, the

number of such vectors is bounded by the dimension which is c here.

Let s = (x1, . . . ,xc) be a strategy of player 1 and let y be the response of the

weaker adversary to that. We define the signature of s to be the set of c battlefields

that have at least a fractional element in y and the number of troops that each

player puts in them. We claim that knowing the signature of a strategy and the

number of troops that different strategies of player 1 put in a given battlefield, one

can uniquely determine the strategy of player 2 in that battlefield. Define the ratio

of a subset of strategies in s to be the minimum amount of troops that one need

to add to the fractional solution to increase the utility of the second player against

these strategies by a very small fixed amount denoted by δ. The overall idea is

that given the signature of a strategy, we can find these ratios for all the subsets

and similar to what we do in Algorithm 12 for the case of 2-strategies, these ratios

and the index of the fractional battlefields are enough to determine the strategy

of player 2 in a given battlefield. Having this function and combining it with the
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ideas of the previous section (the dynamic program designed in the proof of 105)

gives us a dynamic program to find the best strategy of player 1 against the weaker

adversary.

5.5 Extension to Maximin Strategies

In this section, we show that our results carry over to the case where our

goal is to maximize the guaranteed expected utility. Recall that for the case of

(u, p)-maximin strategies, we proved in Section 5.2 that regardless of the game struc-

ture, it suffices to only consider a constant number of probability assignments (pro-

files) to the pure strategies. We used this to first fix the profile and then solve the

game by finding the actual pure strategies. Unfortunately, this is not the case when

the objective is to maximize the expected utility. However, we show that it is possi-

ble to consider only a polynomial number of profiles while ensuring that the found

solution among them is a (1− ε)-approximation of the actual maximin strategy.

Throughout this section we denote by OPT the guaranteed expected payoff of

the optimal maximin c-strategy. Our goal is to construct a c-strategy in polynomial

time that guarantees an expected utility of at least (1− ε)OPT against any strategy

of the opponent for any given constant ε > 0. We call this a (1 − ε)-approximate

maximin strategy. We start with the following claim.

Claim 113. Either OPT = 0 or OPT > 1/c.

Proof. Assume that OPT > 0. This means that there exists a set S of c pure

strategies, where against any strategy of player 2, at least one of the strategies in
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S obtains a non-zero utility. Since the battlefield weights are integers, against any

strategy of player 2, at least one strategy in S obtains a payoff of at least 1. Now,

by playing each of these strategies with probability 1/c, we guarantee an expected

utility of at least 1/c against any strategy of the opponent. Hence OPT > 1/c.

Let us denote by w :=
∑

i∈[k] wi the sum of all battlefield weights. Our next

claim gives a lower bound for the probabilities assigned to the strategies in the

support.

Claim 114. For any given ε > 0, there exists a (1−ε)-approximate maximin strategy

for any instance of (continuous or discrete) Colonel Blotto where every strategy in

the support is played with probability at least εOPT
cw

.

Proof. Consider an optimal maximin strategy. If no strategy in its support is played

with probability less than εOPT
cw

, we are done. Otherwise, set the probability of all

such strategies in the support to be 0 (i.e., remove them from the support). Now

consider a strategy of player 2. Each of the removed strategies gets a utility of

at most w against this strategy since w is sum of battlefield weights. On the other

hand, there are at most c such strategies. Therefore, the overall cost for the expected

utility is

εOPT

cw
· c · w = εOPT. (5.18)

This implies that the remaining strategies in the support obtain an expected utility

of at least (1− ε)OPT concluding the proof.

Assuming that OPT > 0 (otherwise a single pure strategy without any troops
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is the solution), by combining the two claims above we get the following observation.

Observation 115. We can assume w.l.o.g., that the minimum probability is Ω(1/w).

We use this observation to consider only O(logw) probabilities for each strat-

egy, leading to a polynomial number of profiles that have to be considered.

Lemma 116. For any constant ε > 0, and for any instance of continuous or discrete

Colonel Blotto, there are only polynomially many profiles among which an (1 − ε)-

approximate maximin is guaranteed to exist.

Proof. Suppose that the probabilities are all in set P = {p0, (1+ε)p0, (1+ε)2p0, . . . , 1}

where p0 is the lower bound for minimum probability. We showed in Observation 115

that it suffices to have p0 = Ω(1/w), therefore |P | ≤ O(logw) since ε is assumed to

be constant. Note that O(logw) is polynomial in the input size, thus, even if we try

O(logw) possibilities for c strategies, we have to try polynomially many possibilities.

It remains to prove that P provides a (1 − ε)-approximate maximin. Consider an

optimal maximin strategy. Round down the probability of each of its strategies to

be in set P . Clearly, the updated probability of each strategy is more than a (1− ε)

fraction of its original probability. Therefore, against every strategy of player 2, the

updated strategy with probabilities in P obtains a payoff of at least (1 − ε)OPT

concluding the proof.

We use Lemma 116 to first fix the probabilities that are assigned to the strate-

gies in the support and then construct them. We further need to fix the value of

OPT a priori. This can be done via a binary search so long as by having probabilities
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p1, . . . , pc and the value of OPT, we have an oracle that decides whether it is feasi-

ble to construct strategies x1, . . . ,xc that guarantee an expected payoff of at least

(1− ε)OPT with these probabilities or not. Therefore it suffices for the continuous

and discrete variants of Colonel Blotto to provide this oracle. This is our goal in

the next two sections.

5.5.1 Continuous Colonel Blotto

Given probabilities p1, . . . , pc and the optimal maximin value OPT, our goal

in this section is to construct c strategies x1, . . . ,xc for the continuous variant of

Colonel Blotto that guarantee a payoff of at least (1−ε)OPT in expectation, against

any strategy of player 2 (or report that this is infeasible). As in Section 5.1, we start

by formulating the original problem as a (non-linear) program.

find x1, . . . ,xc

subject to xji ≥ 0 ∀i, j : i ∈ [k], j ∈ [c]∑
i∈[k] x

j
i ≤ n ∀j ∈ [c]∑

j∈[c] pj · u1(xj,y) ≥ OPT ∀y ∈ S2

(5.19)

We need to better understand the last constraint of the formulation above to be

able to solve it in polynomial time. For this, similar to the case of (u, p)-maximin

strategies, we give an appropriately adapted definition of critical tuples and combine

it with configurations that were introduced in Section 5.3.1.

Definition 117 (Critical tuples). Consider a tuple W = (W1, . . . ,Wk) where each

228



Wi is a subset of [c]. We call W a critical tuple if and only if we have
∑

i,j:j∈Wi
pjwi <

OPT.

Recall from Section 5.3.1 that a configuration G is a vector of k matrices

G1, . . . , Gk which we call partial configurations, where for any i ∈ [k], and for any

j1, j2 ∈ [c], the value of Gi(j1, j2) is ‘≤’ if xj1i ≤ xj2i and it is ‘≥’ otherwise. Further-

more, for configuration G and critical tuple W, define zi(G,W) := arg maxj:j 6∈Wi
xji .

Note that it is crucial that zi(G,W) is solely a function of G and W (and not the

actual strategies x1, . . . ,xc) so long as strategies x1, . . . ,xc comply with G.

find x1, . . . ,xc

subject to xji ≥ 0 ∀i, j : i ∈ [k], j ∈ [c]∑
i∈[k] x

j
i ≤ n ∀j ∈ [c]

ensure that x1, . . . ,xc comply with G∑
i∈[k] x

zi(G,W)
i > m for every critical tuple W = (W1, . . . ,Wk)

(5.20)

This is essentially the same LP as LP 5.13 of Section 5.3.1 except that we use a

different notion of critical tuples.

Observation 118. Suppose that the configuration G of the optimal solution we

seek to find is fixed. Then, the last constraint of LP 5.20 is equivalent to the last

constraint of Program 5.19.

Proof. Suppose at first that the last constraint of LP 5.20 is violated. We show that

given that the solution should comply with G, Program 5.19 is infeasible. To do so,

consider the critical tuple W = (W1, . . . ,Wk) for which we have
∑

i∈[k] x
zi(G,W)
i ≤ m.
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Consider the strategy y of player 2 where yi = x
zi(G,W)
i . Clearly this is a feasible

strategy for player 2 since it requires only
∑

i∈[k] x
zi(G,W)
i troops which is assumed to

be no more than m. By Definition 117, the expected utility of any strategy of player

1 that complies with G is less than OPT against y, meaning that Program 5.19 is

infeasible.

Now suppose that LP 5.20 has a feasible solution x1, . . . ,xc. We show that this

is also a valid solution for Program 5.19. Assume for the sake of contradiction that

this is not true. That is, player 2 has a strategy y that prevents strategy x1, . . . ,xc to

obtain an expected payoff of OPT. For any i ∈ [k], define Wi := {j : xji > yi}. Since

the expected utility of player 1 by playing this strategy is less than OPT against

y, we have
∑

i,j:j∈Wi
pjwi < OPT. which means (W1, . . . ,Wk) is indeed a critical

tuple. Consider the constraint of LP 5.20 corresponding to this critical tuple, we

need to have
∑

i∈[k] x
zi(G,W)
i ≤ m and therefore this constraint must be violated;

contradicting the fact that x1, . . . ,xc is a feasible solution of LP 5.20.

Lemma 119. LP 5.20 can be solved in polynomial time using the ellipsoid method.

Proof. We only need to give a separating oracle for the last constraint of LP 5.20

since there are only polynomially many constraints of other types. Observation 118

shows that this constraint is essentially equivalent to the best response of player

2 which is used in Program 5.19. That is, if we can solve the best response of

player 2 in polynomial time, we will be able to check whether any constraint of

LP 5.20 is violated. We show that in fact, the best-response of player 2 can be

solved in polynomial time. To do so, given c strategies x1, . . . ,xc along with their
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probabilities p1, . . . , pc, we seek to find a strategy y of player 2 that maximizes his

expected utility. For this, one can use a simple knapsack-like dynamic program

D(i,m′) which essentially represents what expected payoff can be obtained from

the first i battlefields given that player 2 uses only m′ troops among them. One

can easily confirm that this dynamic program can be updated by considering all

possibilities of the number of troops over the ith battlefield and recurse over the

prior battlefields. This gives a polynomial time algorithm for the best response of

player 2, and therefore, a polynomial time algorithm for the separating oracle of

LP 5.20.

The lemma above shows that if we are given the actual configuration G, we can

solve the problem in polynomial time. In Sections 5.1.1 and 5.3.1, we showed how it

suffices to only consider a polynomial number of configurations when all battlefields

have the same weight (i.e., the uniform variant of the game). The same argument

applies to the expected case since the players are still indifferent to the battlefields

of the same weight. The generalization to the case of different battlefield weights

follows from essentially the same approach described in Section 5.3.1. It suffices

to consider the δ-uniform variant of the game for δ being a relatively smaller error

threshold than ε. Then on each bucket of battlefields of the same weight, we only

count the number of battlefields of each partial configuration instead of specifying

the exact partial configuration of each battlefield. Using similar techniques as in

Sections 5.1.1 and 5.3.1, it can be shown that it suffices to consider only a constant

number of possibilities per bucket and therefore a polynomial number of configura-
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tions in total. This concludes the continuous variant of the game when the objective

is to compute an approximate maximin strategy.

Theorem 120. For any ε > 0, and any constant c, there exists a polynomial time

algorithm to obtain a (1 − ε)-approximate maximin c-strategy for player 1 in the

continuous Colonel Blotto game.

5.5.2 Discrete Colonel Blotto

In this section we solve the same problem solved above for the discrete variant

of Colonel Blotto. That is, given probabilities p1, . . . , pc and the optimal maximin

value OPT, our goal is to construct c strategies x1, . . . ,xc for the discrete variant of

Colonel Blotto that guarantee a payoff of at least (1−ε)OPT in expectation, against

any strategy of player 2 (or report that this is infeasible).

We show that a similar approach to that of Section 5.4, with minor changes,

can be applied to this case. Recall that the main idea that we used in Section 5.4 was

to partition the battlefields into two disjoint subsets of heavy and light battlefields.

Then roughly speaking, the idea was to perform an exhaustive search over the

heavy battlefields and solve the problem over the light battlefields against a number

of weaker adversaries each corresponding to a response of player 2 over the heavy

battlefields. Fix δ to be a relatively smaller error threshold than ε. We say battlefield

i is heavy if and only if wi ≥ δOPT. We first show that w.l.o.g. we can assume

that the number of heavy battlefields is at most O(1) or otherwise a simple strategy

obtains an expected utility of at least OPT.
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Claim 121. If the number of heavy battlefields is more than 2c2/(εδ), there exists

an algorithm to find a c-strategy minimax strategy providing a utility of at least OPT

in polynomial time if m < (1− ε)nc.

Proof. If the number of heavy battlefields is more than 2c2/(εδ), partition them into

c disjoint subsets of size 2c/(εδ). Consider the c-strategy of player 1 that chooses

one of these subsets uniformly at random (i.e., with probability 1/c) and distributes

his troops among its battlefields almost uniformly (i.e., with pairwise difference of

at most 1). Observe that even if in one of these strategies, player 1, wins c/δ heavy

battlefields, the expected utility that he gets would be more than OPT, since

1

c
· c
δ
· δOPT = OPT.

Therefore for player 2 to prevent player 1 from getting an expected utility of OPT,

he has to win at least (1 − ε)c/εδ battlefields of each strategy which is not feasible

for him since he needs to have m ≥ (1− ε)nc.

Now, since we bound the number of heavy battlefields by a constant, we have

our desired property that the number of relevant responses of player 2 over the heavy

battlefields is bounded by a constant.

Observation 122. Given a strategy of player 1 over the heavy battlefields, there

exists a set Sh2 of a constant number of responses of player 2 over heavy battlefields

among which an optimal response is guaranteed to exist.

Proof. We can assume that the number of troops that player 2 puts on the ith heavy
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battlefield is equal to the number of troops that player 1 puts in this battlefield

in one of his c pure strategies. Therefore on each battlefield player 2 has c + 1

options. Combined with the fact that the number of heavy battlefields is O(1), this

means there are only (c + 1)O(1) ∈ O(1) relevant responses for player 2 over heavy

battlefields.

The observation above implies that the techniques of Section 5.4.3 where we

perform an exhaustive search over the heavy battlefields and solve a dynamic pro-

gram with as many dimensions as the number of responses of player 2 over the

heavy battlefields is essentially feasible. It only remains to define the weaker adver-

sary over the light battlefields. This turns out to be much simpler than the case of

finding a (u, p)-maximin strategy.

The weaker adversary. Given strategies x1, . . . ,xc with probabilities p1, . . . , pc,

for any i ∈ [k] and any j ∈ [c] define u(i, j) to be the expected payoff that player

2 gets by putting exactly xji troops in battlefield i. Moreover, we define the ratio

r(i, j) to be u(i, j)/xji . The first action of the weaker adversary is to choose i ∈ [k],

j ∈ [c] with maximum ratio r(i, j) and put exactly xji troops in battlefield i. Next,

for any strategy j′, we decrease xj
′

i by xji . Intuitively, this updates the additional

number of troops that the weaker adversary has to put in this battlefield to win

strategies with higher number of troops. Now over the updated strategies, the

weaker adversary again computes the ratios, picks the one with the higher value

and update the strategies accordingly. This continues until the weaker adversary

spends all of his m troops.
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Lemma 123. By optimizing against the weaker adversary’s greedy best response,

one can guarantee an expected payoff of OPT− wmax.

The lemma above shows that if we optimize our strategy against the weaker

adversary over the light battlefields we obtain our desired (1 − ε)OPT expected

utility so long as we allow the adversary to play any arbitrary strategy over the

heavy battlefields. We capture the last iteration of algorithm above by signatures

similar to Definition 102 of Section 5.4.3. Then by fixing strategy of player 1 over

the heavy battlefields, and the signature of the weaker adversary for each of his

constant relevant responses, we construct the optimal strategy of player 1 over the

light battlefields in polynomial time using a dynamic program as in Section 5.4.3.

Theorem 124. For any ε > 0, and any constant c, there exists a polynomial time

algorithm to obtain a (1 − ε)-approximate maximin c-strategy for player 1 in the

discrete Colonel Blotto game if n ≥ (1 + ε)m/c.

Note that for the case where n < m/c, the second player can simply put

max{x1
i , . . . , x

c
i} troops on battlefield i, ensuring that we get expected utility 0.

5.6 Further Complexity Results

For the purpose of studying its complexity, let us define Colonel Blotto

as the following computational problem: Given a description of the discrete Colonel

Blotto game — that is, the integer number of available troops for both players, and

integer weights for the k battlefields — what are the maxmin strategies of the two

players in the game whose utility is the probability of winning more than a threshold,
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say half, of the total weight? Since the maxmin strategy is an exponential object,

we only require the probability with which the last strategy (a specific allocation)

is played6. It is clear that this problem can be solved by the ellipsoid algorithm in

2n
O(1)

(exponential) time, where n is the size of the input. We conjecture that the

problem is exponential time-complete.

We have been unable to prove this conjecture; but as a promising start and

consolation prize, we can show exponential time-completeness for the following gen-

eralization of the problem: In General Colonel Blotto7 we are given a function

u1 : S1 × S2 to the integers; that is, for each allocation of troops, u1 computes the

utility of Player 1 (the utility of Player 2 is, as always, its negation). The function

u1 is of course given as a Boolean circuit, U , since its explicit form is exponential.

Thus, the circuit U is the input of the problem.

We can show the following:

Theorem 125. General Colonel Blotto is exponential time-complete.

Proof. We start with a problem we call Succinct Circuit Value: You are given a

Boolean circuit with 2n gates implicitly through another circuit C with n inputs. For

each input i ∈ [2n], C outputs 2n+3 bits interpreted as a triple (t(i), j(i), k(i)), where

t(i) ∈ {0, 1,∨,∧,¬} is the type of the gate, and j(i), k(i) < i are the gates that are

inputs of gate i. If t(i) ∈ {0, 1} then j(i) = k(i) = 0, and if t(i) = ¬, k(i) = 0. The

question asked is, does the output gate 2n− 1 evaluate to 1? It follows immediately

6It would be more natural to ask the value of the game; we require instead a component of
the maxmin strategy for a technical reason: in our reduction below for the generalized problem,
computing the value is easy: the game is symmetric, and the value is always zero.

7According to the Wikipedia, “General Colonel” is an extant rank in certain armies.
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from the techniques in [80] that Succinct Circuit Value is exponential time-

complete. Fo technical reasons, we require that not all inputs are zero (say, t(0) = 1),

a restriction that obviously maintains complexity.

We reduce this problem to another we call Succinct Linear Inequalities:

We are given a circuit C which, in input i, j gives the integer entry Aij of an

M × N matrix A — j = N + 1 it returns the value bi of an M -vector b. The

question is, does the system Ax = b, x ≥ 0 have a solution? We claim that this

problem is also exponential time-complete, by a simple reduction from Succinct

Circuit Value, emulating the well known reduction between the non-succinct

versions (see for example the textbook [81], page 222). In proof, we know from [80]

that it suffices for such reductions between succinct problems to work that the

corresponding reduction between the non-succinct problems is of a special kind

called projection, and the vast majority of known reductions can be easily rendered

as projections. Again for technical reasons, we modify slightly the construction by

adding redundant constraints to the 0, 1,¬ gates to make sure that N = 2n and

M = 3 · 2n − 3

Finally, we reduce Succinct Linear Inequalities to General Colonel

Blotto. For this part we follow the surprisingly recent reduction [82] from linear

programming to zero-sum games (a 60 year old reduction due to Danzig was known

to be incomplete, but it was far too much technical work to fix it...). Adler’s

reduction starts from a system Ax = b, x ≥ 0 and produces a skew-symmetric
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payoff matrix

P =



0 0 A e −b

0 0 −eTA 1 −eT b

−AT AT e 0 0 1

−eT −1 0 0 1

bT −bT e 0 −1 0


.

Actually, Adler starts by adding one extra row to A to ensure that Ax = 0 has no

nonzero, nonnegative solutions; however, in our case this is guaranteed by requiring

that the original circuit has at least one nonzero input. He shows that the system

Ax = b, x ≥ 0 has a solution iff the last component of the (symmetric) maxmin

strategy of this zero-sum game is nonzero.

What remains is to label the L = M + N + 3 = 4n rows and columns of this

matrix by allocations of troops by the two general colonels, and define the utility u1.

The number of battlefields is 4n, and we define the set of feasible allocations to be of

the form C(S) where S is any subset of the first half of the battlefields. C(S) assigns

one troop to each battlefield in S, and each battlefield j such that j−2n 6∈ S. That

is, troop assignments in the first and the second half of the battlefields complement

each other. Finally, we define the utility function u1: Given two allocations A,B,

u1(A,B) is defined as follows:

• If both A and B are infeasible, u1(A,B) = 0;

• if A is feasible and B is infeasible, u1(A,B) = −c, where c is larger than any

payoff; this way, player 1 is disincentivized from using A;
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• similarly, if B is feasible and A is infeasible, u1(A,B) = c;

• finally, if both A and B are feasible, say A = C(S) and B = C(T ) for subsets

S, T of [2n], u1(A,B) = Pij, the (i, j)-th entry of the payoff matrix P con-

structed in Adler’s reduction, where the binary representation of i is the set

S followed by the set [2n]− S, and similarly for j and T .

It is clear that infeasible allocations are dominated, and can thus be eliminated from

the game. The feasible strategies are in one-to-one correspondence with the rows

and columns of the matrix P , and thus the maxmin of the General Colonel

Blotto game is the same as the maxmin of P . Therefore, the last component of

the maxmin strategy is nonzero if and only if the original circuit has value one, and

the reduction is complete.
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[59] Martin Grötschel, Lacuteászló Lovász, and Alexander Schrijver. The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica,
1981.

[60] Nicole Immorlica, Adam Tauman Kalai, Brendan Lucier, Ankur Moitra, An-
drew Postlewaite, and Moshe Tennenholtz. Dueling algorithms. In STOC,
2011.

[61] Sina Dehghani, Mohammad Taghi Hajiaghayi, Hamid Mahini, and Saeed Sed-
dighin. Price of Competition and Dueling Games. In ICALP, 2016.

[62] Thomas Rothvoss. The matching polytope has exponential extension complex-
ity. In STOC, 2014.

[63] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. 1994.

243



[64] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic
game theory. 2007.

[65] Jack Edmonds. Matroids and the greedy algorithm. Mathematical program-
ming, 1971.

[66] R Kipp Martin. Using separation algorithms to generate mixed integer model
reformulations. Operations Research Letters, 1991.

[67] Michel X Goemans. Smallest compact formulation for the permutahedron.
Mathematical Programming, 2015.

[68] Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formu-
lations. Mathematical Programming, 2013.

[69] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear
programs. In STOC, 1988.

[70] T.H. Cormen. Introduction to Algorithms. 2009.

[71] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network
Flows. 2011.

[72] Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mirrokni. Robust
Combinatorial Optimization with Exponential Scenarios. Integer programming
and combinatorial optimization, 2007.

[73] MohammadHossein Bateni, Sina Dehghani, MohammadTaghi Hajiaghayi, and
Saeed Seddighin. Revenue maximization for selling multiple correlated items.
In ESA. 2015.

[74] Xinye Li and Andrew Chi-Chih Yao. On Revenue Maximization for Selling
Multiple Independently Distributed Items. NAS, 2013.

[75] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S Matthew Weinberg.
A Simple and Approximately Optimal Mechanism for an Additive Buyer. In
FOCS, 2014.

[76] Aviad Rubinstein and S Matthew Weinberg. Simple Mechanisms for a Subad-
ditive Buyer and Applications to Revenue Monotonicity. In ACM EC, 2015.

[77] Jugal Garg, Albert Xin Jiang, and Ruta Mehta. Bilinear games: Polynomial
time algorithms for rank based subclasses. In International Workshop on In-
ternet and Network Economics, 2011.

[78] Haifeng Xu. The Mysteries of Security Games: Equilibrium Computation Be-
comes Combinatorial Algorithm Design. In ACM EC, 2016.

[79] Sinong Wang and Ness Shroff. Security Game with Non-additive Utilities and
Multiple Attacker Resources. arXiv preprint arXiv:1701.08644, 2017.

244



[80] Christos H Papadimitriou and Mihalis Yannakakis. A note on succinct repre-
sentations of graphs. Information and Control, 1986.

[81] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Vazirani. Algorithms.
2006.

[82] Ilan Adler. The equivalence of linear programs and zero-sum games. Interna-
tional Journal of Game Theory, 2013.

245


	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Colonel Blotto Game
	A Faster Algorithm for Blotto
	Maximizing the Likelihood of Winning an Election
	Strategies with Small Profiles
	Future Work and Open Problems

	Polynomial Time Solution for Colonel Blotto
	Application to Dueling Games
	Dueling Games
	Dueling Games are Polynomially Separable
	A Simplified Argument for Ranking and Binary Search Duels
	Matching Duel

	Colonel Blotto
	Transferring to a New Space
	Verifying the Membership Constraints and the Payoff Constraints
	Finding a Nash Equilibrium in the Original Space

	General Lotto
	Finite General Lotto
	General Lotto with Bounded Distance Functions

	Oracles
	Hyperplane Separating Oracle
	Best-response Separating Oracle


	A Faster Algorithm: Replacing Ellipsoid by Flows
	LP Formulation
	Main Results
	Lower Bound
	Multi-Resource Colonel Blotto
	Experimental Results

	Probability Maximization Versus Expectation Maximization
	Preliminaries
	Maximizing Expectation Versus (u,p)-maxmin Strategies
	Comparison of the Approximation Factors
	Comparison of their Computational Complexity

	Discrete Colonel Blotto
	Approximating (u,1)-maxmin
	Approximating (u,p)-maxmin

	Continuous Colonel Blotto
	An Exact Algorithm for (u,1)-maxmin
	An Approximation Algorithm for (u,p)-maxmin 

	Auditing Game
	A Reduction From Generalized Blotto to Auditing Game


	Solutions with Small Profiles
	Continuous Colonel Blotto
	The Case of 2-Strategies

	Probability Distribution Over the Support
	Continuous Colonel Blotto
	Generalization to the Case of c-Strategies for c > 2

	Discrete Colonel Blotto
	The Case of One Strategy
	The Case of 2-Strategies
	Generalization to the Case of c-Strategies for c > 2

	Extension to Maximin Strategies
	Continuous Colonel Blotto
	Discrete Colonel Blotto

	Further Complexity Results

	Bibliography

