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Chapter 1

Introduction

In this paper, our aim is to give a more or less complete description of the

global regularity properties of generic homogeneous quadratic non–linear wave

equations on (6 + 1) and higher dimensional Minkowski space. The equations we

will consider are all of the form:

2φ = N (φ,Dφ) , (1.1)

where N is a smooth function of φ and its first partial derivatives, which we

denote by Dφ. For all of the nonlinearities we study here, N will be assumed to

be at least quadratic in nature, that is:

N (X,Y ) = O(|(X,Y )|2) , (X,Y ) ∼ 0 .

The homogeneity condition we require N to satisfy is that there exist a (vector)

σ such that:

N (λσφ, λσ+1Dφ) = λσ+2N (φ,Dφ) , (1.2)

where we use multiindex notation for vector N . The condition (1.2) implies that

solutions to the system (1.1) are invariant (again solutions) if one performs the

scale transformations:

φ(·)  λσφ(λ ·) . (1.3)
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The general class of equations which falls under this description contains virtu-

ally all massless non–linear field theories on Minkowski space, including the Yang

Mills equations (YM), the wave–maps equations (WM), and the Maxwell–Dirac

equations (MD). We list the schematics for these systems respectively as:

2A = ADA+ A3 , (YM)

2φ = |Dφ|2 , (WM)

2u = ADu ,

2A = |Du|2 .
(MD)

The various values of σ for these equations are (respectively) σ = 1, σ = 0, and

σ = (1
2
, 1).

The central problem we will be concerned with is that of giving a precise

description of the regularity assumptions needed in order to guarantee that

the Cauchy problem for the system (1.1) is globally well posed with scattering

(GWPS). That is, given initial data:

φ(0) = f , ∂tφ (0) = g , (1.4)

we wish to describe how much smoothness and decay (f, g) needs to possess in

order for there to exist a unique global solution to the system (1.1) with this given
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initial data. We also wish to show that the solutions we construct depend con-

tinuously on the initial data, and are asymptotic to solutions of the linear part of

(1.1). We will describe shortly in what sense we will require these notions to hold.

There are many reasons for the importance of discussing the low regularity

properties of non–linear wave equations of the form (1.1) which go well beyond

the simple desire to “count derivatives”. In fact, our work here is not at all

motivated by the desire to prove “local well posedness in the energy space” type

results.1 Rather, our main concern is to be able to prove global well posedness

and scattering in a context where the initial data may be very smooth but does

not possess enough decay at infinity to be in L2. That is, we would like to con-

sider data sets which are in homogeneous Sobolev spaces. From the point of view

of homogeneity, it is not really possible to separate the smoothness and decay

properties of initial data for equations like (1.1). Furthermore, from the point of

view of constructing a Picard iteration for (1.1) which works globally in time, it is

most natural to work with function spaces which are scale invariant with respect

to (1.3). This leads directly to considerations of the low regularity properties of

these equations as follows: By a simple scaling argument2, one can see that the

most efficient L2 based regularity assumption possible on the initial data involves

sc = n
2
− σ derivatives. Again, by scale invariance and looking at unit frequency

initial data, one can see that if we are to impose only an L2 smallness condition

1In fact the type of function spaces we use here are not geared toward that kind of work as

they involve an `1 structure.

2In conjunction with finite time blowup for large data. This phenomena is known to happen

for higher dimensional equations with derivative non–linearities even in the presence of positive

conserved quantities.
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with no physical space weights, then sc = n
2
− σ is in fact the largest amount of

derivatives we may work with. This leads us to consider the question of GWPS

for initial data in the homogeneous Besov spaces Ḃsc,p.

In recent years, there has been significant progress in our understanding of

the low regularity local theory for general non–linear wave equations of the form

(1.1). In the lower dimensional setting, i.e. when n = 2, 3, 4, it is known from

counterexamples of Lindblad (see [8]) that there is ill posedness for initial data

in the Sobolev space Hs0 , where s0 6 sc + 5−n
4

. Intimately connected with this

phenomena is the failure of certain space–time estimates for the linear wave equa-

tion known as Strichartz estimates. Specifically, one does not have anything close

to an L2(L4) estimate in these dimensions. Such an estimate obviously plays a

crucial role (via Duhamel’s principle) in the quadratic theory. Also, using the

Strichartz estimates available in these dimensions along with Picard iteration in

certain function spaces, one can show that the Lindblad counterexamples are

sharp in that there is local well–posedness for initial data in the spaces H s when

sc + 5−n
4

< s. Once in the higher dimensional setting, i.e. when the number of

spatial dimensions is n = 5 or greater, one does have access to the L2(L4) esti-

mate (see [1]), and it is possible to push the local theory down to H sc+ε, where

0 < ε is arbitrary (see [13]).

In all dimensions, the single most important factor which determines the local

theory as well as the range of validity for Strichartz estimates is the existence

of free waves which are highly concentrated along null directions in Minkowski

space. These waves, known as Knapp counterexamples, resemble a single beam of
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light, which remains coherent for a long period of time before dispersing. For a

special class of non–linearities, known as “null structures”, interactions between

these coherent beams are effectively canceled, and one gains an improvement in

the local theory of equations whose nonlinearities have this form (see for example

[3], [7]).

In both high and low dimensional settings, the analysis of certain null struc-

tures, specifically non–linearities containing the Q0 null from3, has led to the

proof that the wave–maps model equations4 are well posed in the scale invariant

`1 Besov space Ḃ
n
2

,1 (see [11] and [12]). While the proof of this result is quite

simple for high dimensions, it relies in an essential way on the structure of the

Q0 null form. In fact, there is no direct way to extend the proof of this result to

include the less regular Qij null forms which show up in the equations of gauge

field theory. However, the high dimensional non–linear interaction of coherent

waves is quite weak (e.g. giving the desired range of validity for Strichartz esti-

mates), and one would expect that it is possible to prove local well posedness for

quadratic equations with initial data in the scale invariant `1 Besov space without

resorting to any additional structure in the nonlinearity. For n = 5 dimensions, it

may be that this is not quite possible, and we have no proof or conjecture here.5

For n = 6 and higher dimensions, we will prove that in fact no null structure is

3This is defined by the equation Q0(φ, ψ) = ∂αφ∂
αψ.

4Not the rough schematic we have listed here, but rather equations of the form

2φ = Γ(φ)Q0(φ, φ).

5If true, this is probably quite technical, being that the L2(L4) Strichartz estimate is an

endpoint estimate in this dimension ([1]). In some sense, the n = 5 case is the endpoint of an

endpoint.
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needed for there to be well posedness in Ḃsc,1. This leads to the statement of our

main result which is as follows:

Theorem 1.0.1 (Global Well Posedness). Let 6 6 n be the number of spatial

dimensions. For any of the generic equations listed above: YM, WM, or MD,

let (f, g) be a (possibly vector valued) initial data set. Let sc = n
2
− σ be the

corresponding L2 scaling exponent. Then there exists constants 0 < ε0, C such

that if

‖ (f, g) ‖Ḃsc,1×Ḃsc−1,1 6 ε0 , (1.5)

there exits a global solution ψ which satisfies the continuity condition:

‖ψ ‖C(Ḃsc,1)∩C(1)(Ḃsc−1,1) 6 C‖ (f, g) ‖Ḃsc,1×Ḃsc−1,1 . (1.6)

The solution ψ is unique in the following sense: There exists a sequence of smooth

functions (fN , gN) such that:

lim
N→∞

‖ (f, g) − (fN , gN) ‖Ḃsc,1×Ḃsc−1,1 = 0 .

For this sequence of functions, there exists a sequence of unique smooth global

solutions ψN of (1.1) with this initial data. Furthermore, the ψN converge to ψ

as follows:

lim
N→∞

‖ψ − ψN ‖C(Ḃsc,1)∩C(1)(Ḃsc−1,1) = 0 .

Also, ψ is the only solution which may be obtained as a limit (in the above sense)

of solutions to (1.1) with regularizations of (f, g) as initial data. Finally, ψ

retains any extra smoothness inherent in the initial data. That is, if (f, g) also

has finite Ḣs × Ḣs−1 norm, for sc < s, then so does ψ at fixed time and one has

the following estimate:

‖ψ ‖C(Ḣs)∩C(1)(Ḣs−1) 6 C‖ (f, g) ‖Ḣs×Ḣs−1 . (1.7)
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In a straightforward way, our estimates also prove the following scattering result:

Theorem 1.0.2. Using the same notation as above we have that there exists data

sets (f±, g±), such that if ψ± is the solution to the homogeneous wave equation

with the corresponding initial data, the following asymptotics hold:

lim
t→∞

‖ψ+ − ψ ‖Ḃsc,1∩∂tḂsc−1,1 = 0 , (1.8)

lim
t→−∞

‖ψ− − ψ ‖Ḃsc,1∩∂tḂsc−1,1 = 0 . (1.9)

Furthermore, the scattering operator retains any additional regularity inherent in

the initial data. That is, if (f, g) has finite Ḣs norm, then so does (f±, g±), and

the following asymptotics hold:

lim
t→∞

‖ψ+ − ψ ‖Ḣs∩∂tḢs−1 = 0 , (1.10)

lim
t→−∞

‖ψ− − ψ ‖Ḣs∩∂tḢs−1 = 0 . (1.11)

Remark 1.0.3. The dividends of the low regularity point of view are already appar-

ent here in the high dimensional setting. For instance, they show that the results

of [2] can be recovered in a context which is translation independent and where

there is relatively little decay of the initial data and no reference to uniform decay

of the solution. Furthermore, our method leads to a precise description of what

needs to be “small” in order for there to global existence for (even smooth) initial

data sets. Also, we construct a proof of scattering which shows exactly which

frequency interactions in the non–linear part of (1.1) contribute to the scattering

operator, and which frequency interactions “drop out” at infinity. However, we

expect that the greatest payoffs of this work will come when investigating the
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small data global theory for (3+1) and (4+1) dimensional gauge field equations.

Specifically, we hope that the methods here will6 be able to resolve the GWPS

problem for gauge field theories in the presence of charge (see [10] and [9]). This

will be the subject of further work.

6With the help of some new technical devices in the (3 + 1) dimensional regime.
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Chapter 2

Preliminary Notation

For quantities A and B, we denote by A . B to mean that A 6 C · B for some

large constant C. The constant C may change from line to line, but will always

remain fixed for any given instance where this notation appears. Likewise we

use the notation A ∼ B to mean that 1
C
· B 6 A 6 C · B. We also use the

notation A � B to mean that A 6 1
C
· B for some large constant C. This is

the notation we will use throughout the paper to break down quantities into the

standard cases: A ∼ B, or A � B, or B � A; and A . B, or B � A, without

ever discussing which constants we are using.

For a given function of two variables (t, x) ∈ R×R3 we write the spatial and

space–time Fourier transform as:

f̂(t, ξ) =

∫
e−2πiξ·x f(t, x) dx ,

f̃(τ, ξ) =

∫
e−2πi(τt+ξ·x) f(t, x) dtdx .

respectively. At times, we will also write F[f ] = f̃ .

For a given set of functions of the spatial variable only, we denote by W (f, g)
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the solution of the homogeneous wave equation with Cauchy data (f, g). If F is

a function on space–time, we will denote byW (F ) the functionW (F (0), ∂tF (0)).

Let E denote any fundamental solution to the homogeneous wave equation.

i.e., one has the formula 2E = δ. We define the standard Cauchy parametrix for

the wave equation by the formula:

1

2
F = E ∗ F −W (E ∗ F ) .

Explicitly, one has the identity:

1̂

2
F (t, ξ) =

∫ t

0

sin (2π|ξ|(t− s))

2π|ξ| F̂ (s, ξ) ds . (2.1)

For any function F which is supported away from the light cone in Fourier

space, we shall use the following notation for division by the symbol of the wave

equation:

1

Ξ
F = E ∗ F .

Of course, the definition of 1
Ξ

does not depend on E so long as for F is supported

away from the light cone; for us that will always be the case when we use this

notation. Explicitly, one has the formula:

F
[

1

Ξ
F

]
(τ, ξ) =

1

4π2(τ 2 − |ξ|2) F̃ (τ, ξ) .
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Chapter 3

Multipliers and Function Spaces

Let ϕ be a smooth bump function (i.e. supported on the set |s| 6 2 such that

ϕ = 1 for |s| 6 1). In what follows, it will be a great convenience for us to as-

sume that ϕ may change its exact form for two separate instances of the symbol

ϕ (even if they occur on the same line). In this way, we may assume without

loss of generality that in addition to being smooth, we also have the idempotence

identity ϕ2 = ϕ. We shall use this convention for all the cutoff functions we

introduce in the sequel.

For λ ∈ 2Z, we denote the dyadic scaling of ϕ by ϕλ(s) = ϕ( s
λ
). The most basic

Fourier localizations we shall use here are with respect to the space-time variable

and the distance from the cone. Accordingly, we form the Littlewood-Paley type

cutoff functions:

sλ(τ, ξ) = ϕ2λ(|(τ, ξ)|) − ϕ 1
2
λ(|(τ, ξ)|) , (3.1)

cd(τ, ξ) = ϕ2d(|τ | − |ξ|) − ϕ 1
2
d(|τ | − |ξ|) . (3.2)

We now denote the corresponding Fourier multiplier operator via the formulas

S̃λu = sλũ and C̃du = cdũ respectively. We also use a multi-subscript notation
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to denote products of the above operators, e.g. Sλ,d = SλCd . We shall use the

notation:

Sλ,•6d =
∑

δ6d

Sλ,δ , (3.3)

to denote cutoff in an O(d) neighborhood of the light cone in Fourier space. At

times it will also be convenient to write Sλ,d6• = Sλ − Sλ,•<d . We shall also

use the notation S±
λ,d etc. to denote the multiplier Sλ,d cutoff in the half space

±τ > 0 .

The other type of Fourier localization which will be central to our analysis is

the decomposition of the spatial variable into radially directed blocks of various

sizes. To begin with, we denote the spatial frequency cutoff by:

pλ(ξ) = ϕ2λ(|ξ|) − ϕ 1
2
λ(|ξ|) , (3.4)

with Pλ the corresponding operator. For a given parameter δ 6 λ, we now

decompose Pλ radially as follows. First decompose the the unit sphere Sn−1 ⊂

Rn into angular sectors of size δ
λ
×. . .× δ

λ
with bounded overlap (independent of

δ). These angular sectors are then projected out to frequency λ via rays through

the origin. The result is a decomposition of supp{pλ} into radially directed blocks

of size λ× δ × . . .× δ with bounded overlap. We enumerate these blocks and

label the corresponding partition of unity by bωλ,δ. It is clear that things may be

arranged so that upon rotation onto the ξ1–axis, each bωλ,δ satisfies the bound:

|∂N
1 b

ω
λ,δ| 6 CNλ

−N , |∂N
i b

ω
λ,δ| 6 CNδ

−N . (3.5)

In particular, each Bω
λ,δ is given by convolution with an L1 kernel. We shall also

denote:

Sω
λ,d = Bω

λ,(λd)
1
2
Sλ,d , Sω

λ,•6d = Bω

λ,(λd)
1
2
Sλ,•6d .
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Note that the operators Sω
λ,d and Sω

λ,•6d are only supported in the region where

|τ | . |ξ| .

We now use these multipliers to define the following dyadic norms, which will

be the building blocks for the function spaces we will use here.

‖u ‖p

X
1
2
λ,p

=
∑

d∈2Z

d
p
2 ‖Sλ,du ‖p

L2 , (“classical” Hs,δ) (3.6)

‖u ‖Yλ
= λ−1‖2Sλu ‖L1(L2) , (Duhamel) (3.7)

‖u ‖Zλ
= λ

2−n
2

∑

d

(∑

ω

‖Sω
λ,du ‖2

L1(L∞)

) 1
2

. (outer block) (3.8)

We define the spaces X
1
2
λ,p and Yλ to be the completion of test functions under

the respective (semi) norms. It is no too difficult to see that the resulting space

of distributions contains more than Fourier transforms of Lp functions with finite

weighted norms, and includes L2 measures supported on the light cone in Fourier

space.1 Because of this it will be convenient for us to include an extra L∞(L2)

norm in the definition of our function spaces. However, it should be noted that

this extra norm is implicit in the completion of test functions under (3.6)–(3.7).

These considerations lead us to define, at fixed frequency, the (semi) norms:

‖u ‖Fλ
=
(
X

1
2
λ,1 + Yλ

)
∩ Sλ

(
L∞(L2)

)
. (3.9)

Unfortunately, the above norm is still not strong enough for us to be able to

iterate equations of the form (1.1) which contain derivatives. This is due to

1See the next section for details.
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a very specific Low × High frequency interaction in quadratic non–linearities.

Fortunately, this problem has been effectively handled by Tataru in [13], based

on ideas from [5] and [6]. What is necessary is to add some extra L1(L∞) norms

on “outer block” regions of Fourier space. This is the essence of the norm (3.8)

above, which is a slight variant of that which appeared in [13]. This leads to our

second main dyadic norm:

‖u ‖Gλ
=
(
X

1
2
λ,1 + Yλ

)
∩ Sλ

(
L∞(L2)

)
∩ Zλ . (3.10)

Finally, the spaces we will iterate in are produced by adding the appropriate

number of derivatives combined with the necessary Besov structures:

‖u ‖2
F s =

∑

λ

λ2s‖u ‖2
Fλ
, (3.11)

‖u ‖Gs =
∑

λ

λs‖u ‖Gλ
. (3.12)

Due to the need for precise microlocal decompositions, of crucial importance

to us will be the boundedness of certain multipliers on the components (3.6)–(3.7)

of our function spaces as well as mixed Lebesgue spaces. We state these as follows:

Lemma 3.0.4 (Multiplier boundedness).

1. The following multipliers are given by L1 kernels: λ−1∇Sλ, S
ω
λ,d, S

ω
λ,•6d,

and (λd)Ξ−1Sω
λ,d . In particular, all of these are bounded on every mixed

Lebesgue space Lq(Lr).

2. The following multipliers are bounded on the spaces Lq(L2), for 1 6 q 6∞:

Sλ,d and Sλ,•6d.
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Proof of Lemma 3.0.4 (1). First, notice that after a rescaling, the symbol for the

multiplier λ−1∇Sλ is a C∞ bump function with O(1) support. Thus, its kernel

is in L1 with norm independent of λ.

For the remainder of the operators listed in (1) above, it suffices to work with

(λd)Ξ−1Sω
λ,d. The boundedness of the others follows from a similar argument.

We let χ± denote the symbol of this operator cut off in the upper resp. lower half

plane. After a rotation in the spatial domain, we may assume that the spatial

projection of χ± is directed along the positive ξ1 axis. Now look at χ+(s, η) with

coordinates:

s =
1√
2
(τ − ξ1) ,

η1 =
1√
2
(τ + ξ1) ,

η′ = ξ′ .

It is apparent that χ+(s, η) has support in a box of dimension ∼ λ ×
√
λd ×

. . .×
√
λd× d with sides parallel to the coordinate axis and longest side in the η1

direction and shortest side in the s direction. Furthermore, a direction calculation

shows that one has the bounds:

|∂N
η1
χ+| 6 CNλ

−N , |∂N
η′χ

+| 6 CN(λd)−N/2 , |∂N
s χ

+| 6 CNd
−N .

Therefore, we have that χ+ yields an L1 kernel. A similar argument works for

the cutoff function χ−, using the rotation:

s =
1√
2
(τ + ξ1) ,

η1 =
1√
2
(−τ + ξ1) ,

η′ = ξ′ .
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Proof of Lemma 3.0.4 (2). We will argue here for Sλ,d. The estimates for the

others follow similarly. If we denote by K±(t, x) the convolution kernel associated

with S±
λ,d, then a simple calculation shows that:

e∓2πit|ξ|K̂±(t, ξ) =

∫
e2πitτψ(τ, ξ) dτ ,

where supp{ψ} is contained in a box of dimension ∼ λ × . . . × λ × d with

sides along the coordinate axis and short side in the τ direction. Furthermore,

one has the estimate:

|∂N
τ ψ| 6 CN d

−N .

This shows that we have the bound:

‖ K̂± ‖L1
τ (L∞

ξ ) . 1 ,

independent of λ and d. Thus, we get the desired bounds for the convolution

kernels.

As an immediate application of the above lemma, we show that the extra Zλ

intersection in the Gλ norm above only effects the X
1
2
λ,1 portion of things.

Lemma 3.0.5 (Outer block estimate on Yλ). For 5 < n, one has the following

uniform inclusion:

Yλ ⊆ Zλ . (3.13)
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proof of (3.13). It is enough to show that:

(∑

ω

‖Ξ−1Sω
λ,du ‖2

L1(L∞)

) 1
2

. λ
n−4

2

(
d

λ

)n−5
4

‖Sλu ‖L1(L2) .

First, using a local Sobolev embedding, we see that:

‖Bω

λ,(λd)
1
2
Ξ−1Sω

λ,du ‖L1(L∞) . λ
n+1

4 d
n−1

4 ‖Ξ−1Sω
λ,du ‖L1(L2) .

Therefore, using the boundedness Lemma 3.0.4, it suffices to note that by Minkowski’s

inequality we can bound:

(∑

ω

(

∫
‖Sω

λ,du ‖L2
x
)2

) 1
2

.

∫ (∑

ω

‖Sω
λ,du ‖2

L2
x

) 1
2

,

. ‖Sλ,du ‖L1(L2) .

The last line of the above proof showed that it is possible to bound a square

sum over an angular decomposition of a given function in L1(L2). It is also

clear that this same procedure works for the X
1
2
λ,1 spaces because one can use

Minkowski’s inequality for the `1 sum with respect to the cone variable d. This

fact will be of great importance in what follows and we record it here as:

Lemma 3.0.6 (Angular reconstruction of norms). Given a test function u

and parameter δ 6 λ, one can bound:

(∑

ω

‖Bω
λ,δu ‖2

X
1
2
λ,1,Yλ

) 1
2

. ‖u ‖
X

1
2
λ,1,Yλ

. (3.14)
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Chapter 4

Structure of the Fλ spaces

The purpose of this section is to clarify some remarks of the previous section and

write down two integral formulas for functions in the Fλ space. This material is

all more or less standard in the literature and we include it here primarily because

the notation will be useful for our scattering result. Our first order of business is

to write down a decomposition for functions in the Fλ space:

Lemma 4.0.7 (Fλ decomposition). For any uλ ∈ Fλ, one can write:

uλ = uX̊λ
+ u

X
1/2
λ,1

+ uYλ
, (4.1)

where uX̊λ
is a solution to the homogeneous wave equation, u

X
1/2
λ,1

is the Fourier

transform of a function, and uYλ
satisfies:

uYλ
(0) = ∂tuYλ

(0) = 0 .

Furthermore, one has the norm bounds:

1

C
‖uλ ‖Fλ

6

(
‖uX̊λ

‖L∞(L2) + ‖u
X

1/2
λ,1

‖
X

1
2
λ,1

+ ‖uYλ
‖Yλ

)
6 C‖uλ ‖Fλ

. (4.2)
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We now show that the two inhomogeneous terms on the right hand side of

(4.1) can be written as integrals over solutions to the wave equation with L2 data.

This fact will be of crucial importance to us in the sequel. The first formula is

simply a restatement of (2.1):

Lemma 4.0.8 (Duhamel’s principle). Using the same notation as above, for

any uYλ
, one can write:

uYλ
(t) =

∫ t

0

|Dx|−1sin
(
(t− s)|Dx|

)
2uYλ

(s) ds . (4.3)

Likewise, one can write the u
X

1/2
λ,1

portion of the sum (4.1) as an integral over

modulated solutions to the wave equation be foliating Fourier space by forward

and backward facing light–cones:

Lemma 4.0.9 (X
1
2
λ,1 Trace lemma). For any u

X
1/2
λ,1

, let u±
X

1/2
λ,1

denote its restric-

tion to the frequency half space 0 < ±τ . Then one can write:

u±
X

1/2
λ,1

(t) =

∫
e±2πit(s+|Dx|) u±λ,s ds , (4.4)

where u±λ,s is the spatial Fourier transform of ũ± to the forward or backward

light–cone, i.e.:

û±λ,s(ξ) =

∫
δ(τ ∓ s∓ |ξ|) ũ±(τ, ξ) dτ .

In particular. one has the formula:

∫
‖u±λ,s ‖L2 ds . ‖u±

X
1/2
λ,1

‖
X

1
2
λ,1

. (4.5)
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Chapter 5

Strichartz estimates

Our inductive estimates will be based on a method of bilinear decompositions

and local Strichartz estimates as in the work [13]. We first state the standard

Strichartz from which the local estimates follow.

Lemma 5.0.10 (Homogeneous Strichartz estimates (see [1])). Let 5 < n,

σ = n−1
2

, and suppose u is a given function of the spatial variable only. Then if

1
q

+ σ
r
6 σ

2
and 1

q
+ n

r
= n

2
− γ, the following estimate holds:

‖ e±2πit|Dx| P•6λu ‖Lq
t (Lr

x) . λγ ‖P•6λu ‖L2 . (5.1)

Combining the L2(L
2(n−1)

n−3 ) endpoint of the above estimate with a local Sobolev

in the spatial domain, we arrive at the following local version of (5.1):

Lemma 5.0.11 (Local Strichartz estimate). Let 5 < n, then the following

estimate holds:

‖ e±2πit|Dx|Bω

λ,(λd)
1
2
u ‖L2

t (L∞

x ) . λ
n+1

4 d
n−3

4 ‖Bω

λ,(λd)
1
2
u ‖L2 . (5.2)

20



Using the integral formulas (4.3) and (4.4), we can transfer the above estimates

to the Fλ spaces:

Lemma 5.0.12 (Fλ Strichartz estimates). Let 5 < n and set σ = n−1
2

. Then

if 1
q

+ σ
r
6 σ

2
and 1

q
+ n

r
= n

2
− γ, the following estimates hold:

‖Sλu ‖Lq(Lr) . λγ ‖u ‖Fλ
, (5.3)

(∑

ω

‖Sα
λ,•6du ‖2

L2(L∞)

) 1
2

. λ
n+1

4 d
n−3

4 ‖u ‖Fλ
. (5.4)

Proof of 5.0.12. Using the decomposition (4.0.7) and the angular reconstruction

formula (3.14), it is enough to prove (5.3) for functions u
X

1/2
λ,1

and uYλ
. Using the

integral formula (4.4), we see immediately that:

‖u
X

1/2
λ,1

‖Lq(Lr) 6
∑

±

∫
‖ e±2πit|Dx| u±λ,s ‖Lq(Lr) ds ,

. λγ
∑

±

∫
‖u±λ,s ‖L2 ds ,

. λγ ‖u
X

1/2
λ,1

‖
X

1
2
λ,1

.

For the uYλ
portion of things, we can chop the function up into a fixed number

of space–time angular sectors using L1 convolution kernels. Doing this and using

Rα to denote an operator from the set {I, ∂i|Dx|−1}, we estimate:

‖uYλ
‖Lq(Lr) 6 λ−1

∑

α

‖ ∂αuYλ
‖Lq(Lr) ,

. λ−1
∑

± , α

∫
‖ e±2πit|Dx|

(
e∓2πis|Dx|Rα 2uYλ

(s, x)
)
‖Lq

t (Lr
x) ds ,

. λγλ−1
∑

α

∫
‖ e∓2πis|Dx|Rα 2uYλ

(s, x) ‖L2
x
ds ,

6 λγ ‖uYλ
‖Yλ

.
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A consequence of (5.3) is that we have the embedding:

X
1
2
λ,1 ⊆ L∞(L2) .

Using a simple approximation argument along with uniform convergence, we ar-

rive at the following energy estimate for the F s and Gs spaces:

Lemma 5.0.13 (Energy estimates). For space–time functions u, one has the

following estimates:

‖u ‖C(Ḣs)∩C(1)(Ḣs−1) . ‖u ‖F s , (5.5)

‖u ‖C(Ḃs)∩C(1)(Ḃs−1) . ‖u ‖Gs . (5.6)

Also, by duality and the estimate (5.5), we have that:

λΞ−1L1(L2) ⊆ λΞ−1X
− 1

2
λ,∞ ⊆ X

1
2
λ,∞ . (5.7)

This proves shows:

Lemma 5.0.14 (L2 estimate for Yλ). The following inclusion holds uniformly:

d
1
2Sλ,d(Yλ) ⊆ L2(L2) , (5.8)

in particular, by dyadic summing one has:

d
1
2Sλ,d6•(Fλ) ⊆ L2(L2) .
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Chapter 6

Scattering

It turns out that our scattering result, Theorem 1.0.2, is implicitly contained in

the function spaces F s and Gs. That is, there is scattering in these spaces inde-

pendently of any specific equation being considered. Therefore, to prove Theorem

1.0.2, it will only be necessary to show that our solution to (1.1) belongs to these

spaces.

Using a simple approximation argument, it suffices to deal with things at

fixed frequency. Because the estimates in Theorem 1.0.2 deal with more than

one derivative, we will show that:

Lemma 6.0.15 (Fλ scattering). For any function uλ ∈ Fλ, there exists a set

of initial data (f±
λ , g

±
λ ) ∈ Pλ(L

2)×λPλ(L
2) such that the following asymptotic

holds:

lim
t→∞

‖uλ(t) −W (f+
λ , g

+
λ )(t) ‖Ḣ1∩∂t(L2) = 0 , (6.1)

lim
t→−∞

‖uλ(t) −W (f−
λ , g

−
λ )(t) ‖Ḣ1∩∂t(L2) = 0 . (6.2)
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Proof of Lemma 6.0.15. Using the notation of Section 4, we may write:

uλ = uX̊λ
+ u+

X
1/2
λ,1

+ u−
X

1/2
λ,1

+ uYλ
,

We now define the scattering data implicitly by the relations:

W (f+
λ , g

+
λ )(t) = uX̊λ

+

∫ ∞

0

|Dx|−1sin (|Dx|(t− s)) 2uYλ
(s) ds ,

W (f−
λ , g

−
λ )(t) = uX̊λ

+

∫ 0

−∞

|Dx|−1sin (|Dx|(t− s)) 2uYλ
(s) ds .

Using the fact that 2uYλ
has finite L1(L2) norm, it suffices to show that one has

the limits:

lim
t→±∞

‖u+

X
1/2
λ,1

(t) + u−
X

1/2
λ,1

(t) ‖Ḣ1∩∂t(L2) = 0 .

Squaring this, we see that we must show the limits:

lim
t→±∞

∫
|Dx|u+

X
1/2
λ,1

(t) |Dx|u±
X

1/2
λ,1

(t) = 0 , (6.3)

lim
t→±∞

∫
∂tu

+

X
1/2
λ,1

(t) ∂tu
±

X
1/2
λ,1

(t) = 0 . (6.4)

We’ll only deal here with the limit (6.3), as the limit (6.4) follows from a virtually

identical argument. Using the trace formula (4.4) along with the Plancherel

theorem, we compute:

(L.H.S.)(6.3)

= lim
t→±∞

∫
e2πit(|ξ|∓|ξ|) |ξ|2

∫
e2πits1 û+

λ,s1±s2
(ξ) û±λ,s2

(ξ) ds1 ds2 dξ.

By (4.5) we have the bounds:
∥∥∥∥ |ξ|2

∫
e2πits1 û+

λ,s1±s2
(ξ) û±λ,s2

(ξ) ds1 ds2

∥∥∥∥
L1

ξ

. λ2 ‖u−
X

1/2
λ,1

‖
X

1
2
λ,1

‖u±
X

1/2
λ,1

‖
X

1
2
λ,1

.

Furthermore, by Fubini’s theorem and the Riemann–Lebesgue Lemma, the fol-

lowing pointwise limit holds for almost every fixed ξ:

lim
t→±∞

|ξ|2
∫
e2πits1 û+

λ,s1±s2
(ξ) û±λ,s2

(ξ) ds1 ds2 = 0 .
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The desired result now follows from the Dominated Convergence Theorem. This

completes the proof of estimates (6.1)–(6.2).
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Chapter 7

Inductive Estimates I

Our solution to (1.1) will be produced through the usual procedure of Picard

iteration. Because the initial data and our function spaces are both invariant with

respect to the scaling (1.3), any iteration procedure must effectively be global in

time. Therefore, we shall have no need of an auxiliary time cutoff system as in

the works [4]–[13]. Instead, we write (1.1) directly as an integral equation:

φ = W (f, g) + 2
−1N (φ,Dφ) . (7.1)

By the contraction mapping principle and the quadratic nature of the nonlinear-

ity, to produce a solution to (7.1) which satisfies the regularity assumptions of

our main theorem, it suffices to prove the following two sets of estimates:

Theorem 7.0.16 (Solution of the division problem). Let 5 < n, then the F

and G spaces solve the division problem for quadratic wave equations in the sense

that for any of the model systems we have written above: YM, WM, or MD, one
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has the following estimates:

‖2
−1N (u,Dv) ‖Gsc . ‖u ‖Gsc‖ v ‖Gsc , (7.2)

‖2
−1N (u,Dv) ‖F s . ‖u ‖Gsc‖ v ‖F s + ‖u ‖F s‖ v ‖Gsc . (7.3)

The remainder of the paper is devoted to the proof of Theorem 7.0.16. In

what follows, we will work exclusively with the equation:

φ = W (f, g) + 2
−1(φ∇φ) . (7.4)

In this case, we set sc = n−2
2

. The proof of Theorem 7.0.16 for the other model

equations can be achieved through a straightforward adaptation of the estimates

we give here. In fact, after the various derivatives and values of sc are taken into

account, the proof in these cases follows verbatim from estimates (7.6) and (7.7)

below.

Our first step is to take a Littlewood-Paley decomposition of 2
−1(u∇v) with

respect to space–time frequencies:

2
−1(u∇v) =

∑

µi

2
−1(Sµ1u∇Sµ2v) . (7.5)

We now follow the standard procedure of splitting the sum (7.5) into three pieces

depending on the cases µ1 � µ2, µ2 � µ1, and µ2 ∼ µ1. Therefore, due to the `1

Besov structure in the F spaces, in order to prove both (7.2) and (7.3), it suffices

to show the two estimates:
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‖2
−1(Sµ1u∇Sµ2v) ‖Gλ

. λ−1µ
n
2
1 ‖u ‖Fµ1

‖ v ‖Fµ2
, µ1 ∼ µ2 , (7.6)

‖2
−1(Sµu∇Sλv) ‖Gλ

. µ
n−2

2 ‖u ‖Gµ‖ v ‖Fλ
, µ� λ . (7.7)

Notice that after some weight trading, the estimates (7.2) and (7.3) follow from

(7.7) in the case where µ2 � µ1.

proof of (7.6). It is enough if we show the following two estimates:

‖Sλ(Sµ1u∇Sµ2v) ‖L1(L2) . µ
n
2
1 ‖u ‖Fµ1

‖ v ‖Fµ2
, µ1 ∼ µ2 , (7.8)

‖Sλ2
−1(Sµ1u∇Sµ2v) ‖L∞(L2) . λ−1µ

n
2
1 ‖u ‖Fµ1

‖ v ‖Fµ2
, µ1 ∼ µ2 . (7.9)

In fact, it (essentially) suffices to prove (7.8). To see this, notice that one has the

formula:
[
Sλ,2

−1
]
G = W (E ∗ SλF ) − SλW (E ∗ F ) .

Thus, after multiplying by Sλ, we see that:

Sλ

[
Sλ,2

−1
]
G = Pλ

(
W (E ∗ SλF ) − SλW (E ∗ F )

)
,

= W (E ∗ SλPλF ) − SλW (E ∗ PλF ) ,

= Sλ

[
Sλ,2

−1
]
PλG .
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Therefore, by the (approximate) idempotence of Sλ one has:

Sλ2
−1G = Sλ2

−1SλG+ Sλ

[
Sλ,2

−1
]
G ,

= Sλ2
−1SλG+ Sλ

[
Sλ,2

−1
]
PλG .

Thus, by the boundedness of Sλ on the spaces L∞(L2) andL1(L2) and the energy

estimate, one can bound:

‖Sλ2
−1G ‖L∞(L2) . λ−1

(
‖SλG ‖L1(L2) + ‖PλG ‖L1(L2)

)
.

To proceed, we now estimate:

‖Sµ1u∇Sµ2v ‖L1(L2) . ‖Sµ1u ‖L2(L4)‖∇Sµ2v ‖L2(L4) ,

µ
n−2

4
1 µ

n+2
4

2 ‖u ‖Fµ1
‖ v ‖Fµ2

.

Taking into account the the bound µ1 ∼ µ2, the claim now follows.

Next, we’ll deal with the estimate (7.7). For the remainder of the paper we

shall fix both λ and µ and assume they such that µ� λ for a fixed constant. We

now decompose the product Sλ(Sµu∇Sλv) into a sum of three pieces:

Sλ(Sµu∇Sλv) = A+B + C ,

where

A = Sλ(Sµu∇Sλ,cµ6•v) ,

B = Sλ,cµ6•(Sµu∇Sλ,•<cµv) ,

C = Sλ,•<cµ(Sµu∇Sλ,•<cµv) .
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Here c is a suitably small constant which will be chosen later. It will be needed

to make explicit a dependency between some of the constants which arise in a

specific frequency localization in the sequel. We now work to recover the estimate

(7.7) for each of the three above terms separately.

proof of (7.7) for the term A. Following the remarks at the beginning of the

proof of (7.6), it suffices to compute:

‖Sλ(Sµu∇Sλ,cµ6•v) ‖L1(L2) . λ ‖Sµu ‖L2(L∞)‖Sλ,cµ6•v) ‖L2(L2) ,

. λµ
n−1

2 ‖u ‖Fµ (cµ)−
1
2‖ v ‖Fλ

,

. c−1λµ
n−2

2 ‖u ‖Fµ‖ v ‖Fλ
.

For a fixed c, we obtain the desired result.

We now move on to showing the inclusion (7.7) for the B term above. In this

range, we are forced to work outside the context of L1(L2) estimates. This is

the reason we have included the L2(L2) based X
1
2
λ,1 spaces. This also means that

we will need to recover Zλ norms by hand (because they are only covered by the

Yλ spaces). However, because this last task will require a somewhat finer anal-

ysis than what we will do in this section, we contend ourselves here with showing:

proof of the X
1
2
λ,1 ∩ Sλ(L

∞(L2)) estimates for the term B. Our first task will be

deal with the energy estimate which we write as:

‖Sλ2
−1Sλ,cµ6•(Sµu∇Sλ,•<cµv) ‖L∞(L2) . µ

n−2
2 ‖u ‖Fµ‖ v ‖Fλ

.

For G supported away from the light–cone in Fourier space, we have the identity:

Sλ2
−1SλG = Ξ−1SλG−W (Ξ−1PλSλG) .
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By energy, this allows us to estimate:

‖Sλ2
−1SλG ‖L∞(L2) . ‖Ξ−1SλG ‖L∞(L2) . ‖Ξ−1SλG ‖

X
1
2
λ,1

.

Therefore, we are left with estimating the term B in the X
1
2
λ,1 space. For a fixed

distance d from the cone, we compute that:

‖Ξ−1Sλ,dSλ,cµ6•(Sµu∇Sλ,•<cµv) ‖L2(L2) . d−1 ‖Sµu ‖L2(L∞)‖Sλv ‖L∞(L2) ,

. d−1µ
n−2

2 ‖ v ‖Fµ‖u ‖Fλ
.

Summing d
1
2 times this last expression over all cµ 6 d yields:

∑

cµ6d

d
1
2‖Ξ−1Sλ,dSλ,cµ6•(Sµu∇Sλ,•<cµv) ‖L2(L2)

.
∑

cµ6d

(µ
d

) 1
2
µ

n−2
2 ‖ v ‖Fµ‖u ‖Fλ

.

For a fixed c we obtain the desired result.
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Chapter 8

Interlude: Some bilinear decompositions

To proceed further, it will be necessary for us to take a closer look at the expres-

sion:

Sω
λ,d(Sµu∇Sλ,•<cµv) , cµ 6 d , (8.1)

as well as the sum:

C = Sλ,•<cµ(Sµu∇Sλ,•<cµv) = CI + CII + CIII ,

where

CI =
∑

d<cµ

Sλ,d(Sµ,•6du ∇Sλ,•6dv) ,

CII =
∑

d<cµ

Sλ,•6d(Sµ,•6du ∇Sλ,dv) ,

CIII =
∑

d6µ

Sλ,•<min{cµ,d}(Sµ,du ∇Sλ,•<min{cµ,d}v) .
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We’ll begin with a decomposition of CI and CII . The CIII term is basically

the same but requires a slightly more delicate analysis. All of the decompositions

we compute here will be for a fixed d. The full decomposition will then be given

by summing over the relevant values of d. Because our decompositions will be

with respect to Fourier supports, it suffices to look at the convolution product of

the corresponding cutoff functions in Fourier space. In what follows, we’ll only

deal with the CI term. It will become apparent that the same idea works for CII .

Therefore, without loss of generality, we shall decompose the product:

s+
λ,d(s

±
µ,•6d ∗ s+

λ,•6d) . (8.2)

To do this, we use the standard device of restricting the angle of interaction in

the above product. It will be crucial for us to be able to make these restrictions

based only on the spatial Fourier variables, because we will need to reconstruct

our decompositions through square–summing. For (τ ′, ξ′) ∈ supp{s±µ,•6d} and

(τ, ξ) ∈ supp{s+
λ,•6d} we compute that:

O(d) =
∣∣|τ ′ + τ | − |ξ′ + ξ|

∣∣ ,

=
∣∣∣
∣∣± |ξ′| + |ξ| +O(d)

∣∣− |ξ′ + ξ|
∣∣∣ ,

=
∣∣∣O(d) +

∣∣± |ξ′| + |ξ|
∣∣− |ξ′ + ξ|

∣∣∣ .

Using now the fact that d < cµ and µ < cλ to conclude that |ξ ′| ∼ µ

and |ξ| ∼ λ , we see that one has the angular restriction:

µΘ2
±ξ′,ξ .

∣∣∣± |ξ′| + |ξ| − |ξ′ + ξ|
∣∣∣ = O(d) .
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In particular we have that Θ±ξ′,ξ .
√

d
µ

. This allows us to decompose the

product (8.2) into a sum over angular regions with O(
√

d
µ
) spread. The result is:

Lemma 8.0.17 (Wide angle decomposition). In the ranges stated for the CI

term above, one can write:

s+
λ,d(s

±
µ,•6d ∗ s+

λ,•6d) =
∑

ω1,ω2,ω3 :

|ω1∓ω2|∼(d/µ)
1
2

|ω1−ω3|∼(d/µ)
1
2

bω1

λ,λ( d
µ

)
1
2
s+

λ,d

(
sω2

µ,•6d
± ∗ bω3

λ,λ( d
µ

)
1
2
s+

λ,•6d

)
.

(8.3)

for the convolution of the associated cutoff functions in Fourier space.

We note here that the key feature in the decomposition (8.3) is that the sum

is (essentially) diagonal in all three angles which appear there (ω1, ω2, ω3). It is

useful here to keep in mind the following diagram:

ω ∼

√

d
µ

ξ′

ξ
µ

λ

λ
√

d
µ

√
µd

Figure 8.1: Spatial supports in the wide angle decomposition.

We now focus our attention on decomposing the convolution:

s+
λ,•6min{cµ,d}(s

±
µ,d ∗ s+

λ,•6min{cµ,d}) . (8.4)
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If it is the case that d� µ , then the same calculation which was used to produce

(8.3) works and we end up with the same type of sum. However, if we are in the

case where d ∼ µ , we need to compute things a bit more carefully. We will now

assume that things are set up so that cµ� d . It is clear that all the previous

decompositions can be made so that we can reduce things to this consideration.

If we now take (τ ′, ξ′) ∈ supp{s±µ,d} and (τ, ξ) ∈ supp{s+
λ,•6min{cµ,d}} , we

can use the facts that τ ′ = O∓(d)± |ξ′| , τ = O(cµ) + |ξ| , and |ξ| � µ to

compute that:

O(cµ) =
∣∣∣
∣∣τ ′ + τ

∣∣− |ξ′ + ξ|
∣∣∣ ,

=
∣∣∣O∓(d) ± |ξ′| +O(cµ) + |ξ| − |ξ ′ + ξ|

∣∣∣ , (8.5)

where the term O∓(d) in the above expression is such that |O±(d)| ∼ d . In fact,

one can see that the equality (8.5) forces ±O∓(d) > 0 on account of the fact

that ±(±|ξ′|+ |ξ|−|ξ′+ξ|) > 0 and the assumption |O(cµ)+O∓(d)| ∼ d . In

particular, this means that we can multiply s±µ,d in the product (8.4) by the cutoff

s|τ |<|ξ| without effecting things. This in turn shows that we may decompose the

product (8.4) based solely on restriction of the spatial Fourier variables, just as

we did to get the sum in Lemma 8.0.17.

We now return to the CI term. For the sequel, we will need to know what
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the contribution of the factor Sλ,•6dv to the following localized product is:

Sω1
λ,d(Sµ,•6du ∇Sλ,•6dv) .

Using Lemma 8.0.17, we see that we may write:

sω1
λ,d(sµ,•6d ∗ sλ,•6d) = sω1

λ,d

(
sω2

µ,•6d ∗ bω3

λ,λ( d
µ

)
1
2
sλ,•6d

)
, (8.6)

where |ω1−±ω2| ∼ |ω3−±ω2| ∼
√

d
µ

. However, this can be refined significantly.

To see this, assume that the spatial support of sω1
λ,d lies along the positive ξ1 axis.

We’ll label this block by bω1
λ,d. Because we are in the range where

√
µd�

√
λd ,

we see that any ξ ∈ supp{bω3

λ,λ( d
µ

)
1
2
} and ξ′ ∈ suppξ′{sω2

µ,•6d} that the sum

ξ + ξ′ must in fact belong to (a slight thickening of) supp{bω1
λ,d} . This allows

us to write:

Lemma 8.0.18 (Small angle decomposition). In the ranges stated for the

CI term above, we can write:

sω1
λ,d(sµ,•6d ∗ sλ,•6d) = sω1

λ,d(s
ω2
µ,•6d ∗ sω3

λ,•6d) . (8.7)

where |ω1 − ω3| ∼
√

d
λ

, and |ω1 −±ω2| ∼
√

d
µ

.

It is important to note here that if one were to sum the expression (8.7) over ω1,

the resulting sum would be (essentially) diagonal in ω3, but there would be many

ω1 which would contribute to a single ω2. This means that the resulting would

not be diagonal in ω2 as was the case for the sum (8.3). It is helpful to visualize

things through the following figure:
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Figure 8.2: Spatial supports in the small angular decomposition.

Our final task here is to mention an analog of Lemma 8.0.18 for the term

(8.1). Here we can frequency localize the factor Sλ,•<cµ in the product using the

fact that one has µ� c−
1
2

√
λd . The result is:

Lemma 8.0.19 (Small angle decomposition for the term B). In the ranges

stated for the B term above, we can write:

sω1
λ,d(sµ ∗ sλ,•6cµ) = sω1

λ,d(sµ ∗ bω3

λ,(λd)
1
2
sλ,•6cµ) . (8.8)

where |ω1 − ω3| ∼
√

d
λ

.

Finally, we note here the important fact that in the decomposition (8.8) above,

the range of interaction in the product forces d . µ . This completes our list

of bilinear decompositions.
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Chapter 9

Inductive Estimates II: Remainder of the

High× Low ⇒ High frequency interaction

It remains for us is to bound the term B from line (8.1) in the Zλ space, as well

as show the inclusion (7.7) for the terms CI – CIII from line (8.2). We do this

now, proceeding in reverse order.

proof of estimate (7.7) for the CIII term. To begin with we fix d. Using the re-

marks at the beginning of the proof of (7.6), we see that it is enough to show

that:

‖Sλ,•<min{cµ,d}(Sµ,du ∇Sλ,•<min{cµ,d}v) ‖L1(L2)

. λ

(∑

ω

‖Sω
µ,du ‖2

L1(L∞)

) 1
2

‖ v ‖Fλ
. (9.1)

To accomplish this, we first use the wide angle decomposition, (8.3), on the left
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hand side of (9.1). This allows us to compute:

‖Sλ,•<min{cµ,d}(Sµ,du ∇Sλ,•<min{cµ,d}v) ‖L1(L2) ,

.
∑

ω2,ω3 :

|ω3±ω2|∼(d/µ)
1
2

‖Sω2
µ,du ‖L1(L∞) · ‖∇Bω3

λ,λ( d
µ

)
1
2
Sλ,•<min{cµ,d}v) ‖L∞(L2) ,

. λ

(∑

ω

‖Sω
µ,du ‖2

L1(L∞)

) 1
2
(∑

ω

‖Bω

λ,λ( d
µ

)
1
2
Sλ,•<min{cµ,d}v) ‖2

L∞(L2
x)

) 1
2

,

. λ

(∑

ω

‖Sω
µ,du ‖2

L1(L∞)

) 1
2

‖ v ‖Fλ
.

Summing over d yields the desired result.

proof of (7.7) for the CII term. Again, fixing d, and using the angular decompo-

sition lemma 8.0.17, we compute that:

‖Sλ,•6d(Sµ,•6du ∇Sλ,dv) ‖L1(L2) ,

. λ
∑

ω2,ω3 :

|ω3±ω2|∼(d/µ)
1
2

‖Sω2
µ,•6du ‖L2(L∞) · ‖Bω3

λ,λ( d
µ

)
1
2
Sλ,dv ‖L2(L2) ,

. λ

(∑

ω

‖Sω
µ,•6du ‖2

L2(L∞)

) 1
2

‖Sλ,dv ‖L2(L2) ,

. λµ
n−2

2

(
d

µ

)n−5
4

‖u ‖Fµ‖ v ‖Fλ
.

This last expression can now be summed over d, using the condition d < cµ, to

obtain the desired result.

proof of (7.7) for the CI term. This is the other instance where we will have to

rely on the X
1
2
λ,1 space. Following the same reasoning used previously, we first
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bound:

‖Ξ−1Sλ,d(Sµ,•6du ∇Sλ,•6dv) ‖L2(L2) ,

. d−1
∑

ω2,ω3 :

|ω3±ω2|∼(d/µ)
1
2

‖Sω2
µ,•6du ‖L2(L∞) · ‖Bω3

λ,λ( d
µ

)
1
2
Sλ,•6dv) ‖L∞(L2) ,

. d−1

(∑

ω

‖Sω
µ,•6du ‖2

L2(L∞)

) 1
2

·
(∑

ω

‖Bω

λ,λ( d
µ

)
1
2
Sλ,•6dv) ‖2

L∞(L2
x)

) 1
2

,

. d−
1
2µ

n−2
2

(
d

µ

)n−5
4

‖u ‖Fµ‖ v ‖Fλ
.

Multiplying this last expression by d
1
2 and then using the condition d < cµ to

sum over d yields the desired result for the X
1
2
λ,1 space part of estimate (7.7). It

remains to prove the Zλ estimate. Here we use the second angular decomposition

lemma 8.0.18 to compute that for fixed d:
(∑

ω1

‖Ξ−1Sω1
λ,d(Sµ,•6du ∇Sλ,•6dv) ‖2

L1(L∞)

) 1
2

,

. (λd)−1




∑

ω1,ω2,ω3 :

ω1−ω3∼(d/λ)
1
2

ω1±ω2∼(d/µ)
1
2

‖Sω1
λ,d(S

ω2
µ,•6du ∇Sω3

λ,•6dv) ‖2
L1(L∞)




1
2

,

. d−1 sup
ω

‖Sω
µ,•6du ‖L2(L∞) ·

(∑

ω

‖Sω
λ,•6dv ‖2

L2(L∞)

) 1
2

,

.

(
d

µ

)n−5
4
(
d

λ

)n−5
4

µ
n−2

2 λ
n−2

2 ‖u ‖Fµ‖ v ‖Fλ
.

Multiplying this last expression by λ
2−n

2 and summing over d using the condition

d < λ, µ yields the desired result.

proof of the Zλ embedding for the B term. The pattern here follows that of the

last few lines of the previous proof. Fixing d, we use the decomposition Lemma
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8.0.19 to compute that:

(∑

ω

‖Ξ−1Sω
λ,d(Sµu ∇Sλ,•6cµv) ‖2

L1(L∞)

) 1
2

,

. (λd)−1




∑

ω1,ω3 :

|ω1−ω3|∼(d/λ)
1
2

‖Sω1
λ,d(Sµu ∇Bω3

λ,(λd)
1
2
Sλ,•6cµv) ‖2

L1(L∞)




1
2

,

. d−1‖Sµu ‖L2(L∞) ·
(∑

ω

‖Bω

λ,(λd)
1
2
Sλ,•6cµv ‖2

L2(L∞)

) 1
2

,

.
(µ
d

) 1
2

(
d

λ

)n−5
4

µ
n−2

2 λ
n−2

2 ‖u ‖Fµ‖ v ‖Fλ
.

Multiplying the last line above by a factor of λ
2−n

2 and using the conditions

d < λ and cµ < d . µ , we may sum over d to yield the desired result.
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