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Riparian forests are unique due to increased exposure of trees to winds and radiation 

and the subsequent effects on the quality and quantity of water discharge from the 

system.  Since “edge effects” can enhance evapotranspiration (ET) of exposed trees, 

ET rates of a first-order red maple riparian wetland were assessed with thermal 

dissipation probes during the 2002 growing season to address: a) if edge trees 

transpire more water daily than interior trees, b) correlations among sap flow rates 

and energy balance-derived estimates, c) variations in ecosystem ET estimates based 

on 6 scaling variables, and d) diurnal correlations between maximum sap flow rates 

and streamflow losses.  Results from this study indicate that: a) edge trees transpire 

more water daily than interior trees during early summer, b) choice of scaling variable 

affects estimation of ecosystem ET rates, and c) maximum sap flow rates correlate 

with streamflow losses diurnally under specific environmental conditions.    
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1 Introduction 

1.1 Research Justification 
 
In the early 1600s, the 64,000 square mile Chesapeake Bay watershed was a forested 

wilderness, with over 500 prominent tree species.  Land clearing continued through 

the 1800s in response to the need for wood and farmland, and by the early 1900s, 

only 30-40% of the watershed remained forested.  In the mid 1900s, forests gradually 

reclaimed previously harvested areas, and by 1980 forested areas had reached 60%.  

Since then, suburban sprawl and development have again decreased forested areas 

(Alliance for the Chesapeake Bay 1996).  This loss of forest land has adversely 

influenced water quality since forests decrease soil erosion and nutrient runoff.  As a 

result, streamside (riparian) forests have slowly become the preferred management 

practice to mitigate the loss of forests in the surrounding landscape.  Currently, nearly 

50% of the Chesapeake Bay Watershed’s 100,000 miles of river and stream remain 

unbuffered, despite rising interest in improving water quality (Alliance for the 

Chesapeake Bay 1996).  These circumstances have placed more interest in defining 

the optimum riparian zone planting and maintenance strategies to help protect the 

Chesapeake Bay Watershed.     

 

To help offset the impact of suburban sprawl on the water quality of the Chesapeake 

Bay, a three-zone riparian buffer model was developed by the USDA Forest Service 

in cooperation with the Chesapeake Bay Program (see Figure 1).  Zone 1 of the 

riparian buffer model is a permanent tree buffer adjacent to the stream bank.  This 
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zone should prevent stream bank erosion, shade stream waters, and provide wildlife 

habitat.  Zone 2 is a managed forest immediately upslope of zone 1, and should 

primarily remove pollutants carried by surface runoff and shallow groundwater.  Root 

zone hydrology and the effects of vegetation on subsurface waters in this zone have 

been widely studied.  Despite inconsistent results, his zone can be effective if 

preferential flow pathways are minimized.  Zone 3 is an herbaceous or grass filter 

strip upslope from zone 2 which should protect the forested buffer, slow runoff, and 

improve the sediment trapping ability of zone 2 (Alliance for the Chesapeake Bay 

1996; Palone and Todd 1998).  The Chesapeake 2000 Agreement set the goal of 

implementing 2,010 miles of forested riparian buffers by the year 2010.  The goal was 

achieved 8 years in advance and a new goal was established in 2003 to implement 

10,000 miles of buffers by 2010 (Chesapeake Bay Program, 2005).   More research is 

needed to develop optimum vegetation planting and maintenance strategies for these 

ecologically and economically important areas.  

 
Figure 1 Three-zone approach to forested riparian buffer corridor management (Alliance for the 
Chesapeake Bay 1996). 
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Evapotranspiration (ET), or the water that vaporizes from the water or soil 

(evaporation) together with moisture that passes through plants to the atmosphere 

(transpiration), plays an important role in riparian and wetland hydrology (Dunne and 

Leopold 1978).  As a result, concerned natural resource managers and hydrologists 

have developed a variety of ways to estimate riparian and wetland ET.  One recently 

developed method used to estimate forest ET rates is the usage of Thermal 

Dissipation Probes.  By quantifying the sap flow velocity of a tree using heated and 

reference thermocouples, whole-tree transpiration rates can be estimated.  Scaling up 

transpiration estimates from a single tree to a forest stand, however, is complicated 

due to species, topographic, and environmental heterogeneities throughout the stand.   

 

Riparian forest buffers and forested riparian wetlands pose additional sap flow scaling 

error due to the presence of “edge effects”.  That is, trees on the edge of a forested 

area are exposed to higher levels of radiation and winds relative to interior trees.  As 

riparian corridors consist of a high proportion of trees exposed to these effects, an 

accurate ET estimation method for riparian areas has not yet been developed since 

energy balances (commonly used to estimate forest stand ET) are inaccurate when 

applied to these small-fetched areas.   

 

1.2 Research Objectives 
 
The primary goal of this study is to determine if there are significant differences in 

ET levels between red maple trees exposed to edge effects, interior trees along the 

stream, and those located in intermediate areas.  In order to test the validity of the sap 
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flow-derived ET estimates of the riparian wetland near Laurel, MD, this I compare 

the sap flow-derived estimates to those calculated from a simple energy balance.  

Ecosystem-level ET estimates based on the ET estimates of six red maples will be 

calculated according to a vegetation survey of the wetland while comparing six 

sapwood-based scaling parameters.  Finally, I test if daily maximum sap flow rates 

and daily streamflow losses are correlated.  In addition, these tests will allow me to a) 

develop a series of representative daily hydrographs depicting the impact ET has on 

the riparian wetland water balance under baseflow conditions, and b) aid in the 

understanding of the effect ET and the subsequent stream flow trends have on daily 

nutrient cycles within the riparian wetland. 

1.3 Literature Review 
 
Evapotranspiration (ET) and its effect on riparian system hydrology, while frequently 

assessed in arid systems, is less often modeled in temperate systems.  Forested 

riparian wetlands in particular are beginning to receive increased attention due to the 

awareness of the role riparian buffers can play in helping to “buffer” waterways from 

watershed pollutants such as N, P, K, and pesticides.  Since understanding and 

evaluating the impact ET has on stream flow is critical when interpreting nutrient 

cycling, many methods of ET estimation have been developed.  Descriptions of some 

of these methods are outlined in this review.  However, assessment of riparian forest 

ET is difficult due to the presence of “edge effects”.  Since edge trees are exposed to 

increased radiation intensities and wind speeds relative to interior trees, edge trees 

experience elevated transpiration rates.  It is unknown the extent to which edge 
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effects impact sap flow within riparian forests, though differences in available energy 

between forest edge and streamside sites do exist (Giambelluca, Ziegler et al. 2003).  

 

Riparian forests differ from other forests because they: a) generally have a serpentine 

form as a consequence of their proximity to rivers and streams, b) are open systems 

that receive frequent energy inputs and have the ability to regulate nutrient cycles of 

waters entering a stream network, and c) connect upstream and downstream as well as 

aquatic and terrestrial ecosystems, and thus they share ecological characteristics of 

these systems (Mitsch and Gosselink 2000).  Riparian buffers and riparian wetland 

ecosystems in particular have positive impacts on water quality because: 

1) Deep-rooting woody vegetation act as a nutrient sink and buffers the non-

point source pollution from surrounding agroecosystems (Peterjohn and 

Correll 1984).  

2) Woody vegetation, shrubs, and grasses can slow saturated overland flow 

(runoff) and increases sedimentation rates, effectively "buffering" the 

surface water from sediment and its associated pollutants (i.e. 

phosphorous, pesticides, herbicides) (Lowrance, Vellidis et al. 1997).   

3) Wetland oxidation/reduction potentials can enhance soil and water 

quality if organic matter is present in adequate quantity and specie due to 

the potential for denitrification, decomposition, and other nutrient 

transformations associated with wetland soils (Mitsch and Gosselink 

2000). 
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Due to the prevalence of interconnected cycles within riparian systems, these areas 

have opportunities to influence water quality.  Riparian wetland ecosystems, above 

and beyond riparian ecosystems, can typically further influence water quality by 

having increased species richness, increased primary productivity, increased organic 

matter accumulation rates, increased nutrient cycling capability, and greater nutrient 

availability (Zhang and Mitsch 2004).  A conceptual model outlining the fundamental 

role of hydrology in wetland ecosystems can be seen in Figure 2.    

Figure 2 Conceptual diagram illustrating the effects of hydrology on wetland function and the 
biotic feedbacks that affect wetland hydrology.  Pathways A and B are feedbacks to the 
hydrology and physiochemistry of the wetland (Mitsch and Gosselink 2000). 
 

 
 
 
Riparian wetland ET is important because of its role in wetland hydrology, and is a 

function of factors such as stand density, nutrient availability, soil water availability, 

wind speed, radiation intensity, etc..  Vegetation density, vegetation location, and 
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vegetation composition all influence and are, in turn, influenced by hydrology.  

Wetland vegetation plays a unique role in influencing nutrient dynamics within any 

wetland, but in riparian wetlands in particular.     

 

Since ET plays such an important role in impacting ecosystems, a variety of ET 

estimation methods have been developed.  According to Wilson et al 2001, ET 

measurement techniques 1) are only representative within a certain spatial and 

temporal scale, 2) differ in which components they measure, and 3) require unique 

assumptions and associated errors.  ET estimation methods can be grouped into three 

categories: 1) water balance methods, 2) energy balance methods, and 3) 

thermometric methods.  Brief descriptions of the most common methods within these 

categories follow.    

 

Water balance calculations are based on the concept that what enters a system must 

also exit that system.  An example of a standard water balance equation for a riparian 

stream system is:  

 
Qin + GWnet + Pptws = Qout + ETripcanopy + Ews + ∆Storage  

          Equation 1 
 

where: 
Qin = volume of water flowing into the zone as streamflow 
GWnet = net volume of water flowing into the zone as groundwater 
Pptws = volume of water falling onto the stream surface as precipitation  
Qout = volume of water flowing out of the zone as streamflow 
ETripcanopy = volume of water transpired by riparian canopy of each zone 
Ews = volume of water evaporating from the stream surface 
∆Storage = net change in soil water storage during time period in each zone. 
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Water balance studies of forest transpiration involve calculating ET as the residual 

term while utilizing direct measurements of rainfall interception, soil water storage 

changes, and surface runoff.  Errors in calculated ET are considerable because of the 

error associated with each of the other measured terms, and depend on time scales 

(Dunne and Leopold 1978; Shuttleworth 1993; Wullschleger, Meinzer et al. 1998).  

Despite their known inaccuracies, local water balance analyses (including lysimeter 

studies and baseflow recession curve studies) are still recommended for time scales 

greater than one day unless water uptake is high and/or drainage is relatively low in 

comparison to moisture extraction through ET.  Local water balances have proven to 

be particularly useful when estimating ET for small plots, but are not recommended 

for areas with vegetation supporting deep roots ( >2m) (Oren and Pataki 2001).  Local 

water balances have been widely used for measuring forest stand ET (Shuttleworth 

1993), (Mitsch and Gosselink 2000) and often other methods are checked for 

accuracy in comparison to water balance-derived ET estimates. 

 

Energy balance calculations utilize aerodynamic and energy measurements from 

above and below a forest canopy to quantify the amount of latent energy used for ET 

(Dunne and Leopold 1978).  By calculating the ratio of latent heat (used by the plants 

to transform water into vapor) to sensible heat (heat lost to the atmosphere) within the 

system, ET can be estimated.  Though useful for calculating ET for homogeneous 

agronomic species, energy balance methods are usually not applicable to small forest 

systems due to varying canopy albedo and topographic heterogeneity.  Energy 



 

16 

balance calculations are especially not appropriate for estimating riparian ET, as fetch 

conditions and forest canopy boundary layer heterogeneities are the norm.         

 

The Penman and Penman-Monteith models are commonly referenced combination 

equations (simplified energy balances) which take into account local energy balances 

and aerodynamic principles (Stannard 1993).  More accurate in water limited 

situations, the Penman-Monteith model also incorporates an index of canopy 

resistance (stomatal resistance).  Both models are assumed accurate if fetch 

conditions are met and if the canopy is closed (Kustas, Stannard et al. 1996).  

However, both conditions are rarely met in riparian systems.  Overall, the empirical 

methods mentioned here are most commonly used for estimating ET over large areas 

and they are most effective when applied to agricultural crops where the plant canopy 

is homogenous both in composition and in height, and where the fetch conditions are 

relatively large. 

 

Transpiration rates of whole plants or branches can also be determined through the 

use of three thermometric techniques that use heat to measure sap flow.  These 

techniques are: the heat balance method, the heat-pulse method, and the thermal 

dissipation probe method.  A thorough overview of these three methods as pertaining 

to whole-tree water can be found in Smith and Allen 1996.  Heat balance methods 

measure sap velocity by applying heat to an entire woody or herbaceous stem and 

calculating the speed with which sap flow carries away the heat from the heater. 

Since insulation limits external influences, heat applied to the stem surface can be 
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divided into the heat that is lost to vertical conduction within the stem, radial heat lost 

to conduction, and heat taken up by the moving sap. A variation of the heat balance 

method is the "trunk sector" heat balance method for stems greater than 120mm in 

diameter, in which steel plates divide sapwood into separate sectors for ease of radial 

sap flow velocity calculations.   

 

The thermal dissipation probe method of sap flow velocity estimation was developed 

by A. Granier (Granier 1987) and is also referred to as the "Granier-type sensor" 

method.  In this method, two cylindrical probes are inserted radially into the sapwood 

of a stem with the upper probe being roughly 40-100mm above the lower probe.  The 

upper probe contains a heater element and a thermocouple junction that is referenced 

to the lower probe (Granier 1987; Smith and Allen 1996).  Constant heat is applied to 

the sapwood surrounding the upper probe and the difference in the temperature 

between the two probes is dependent on the sap flux density around the probes.  

Increased sap flux density (sap flow per unit area active sapwood) allows heat to be 

dissipated more quickly, which lowers the temperature difference between the probes.  

Thus, transpiration can be calculated through gauging the temperature differences 

(Granier 1987, Smith and Allen 1996).   

 
Some problems have been identified when monitoring sap flow using thermometric 

methods: 

1) Sap velocities in woody stems vary with radial depth (Smith and Allen 1996), 

(Phillips, Oren et al. 1996).  To combat this variability, sensors must be 

located at varying depths below the cambium in order to determine the radial 
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profile of sap flux density across the sapwood.  Radial variation in sap flow is 

remedied by the thermal dissipation probe method, as measurements of sap 

flow are integrated and averaged along the length of the probe (Dynamax 

1997; Simpson 2003).   

2) The heat-pulse methods work best in softwood species and in ring-porous 

species or diffuse-porous species with closely-spaced xylem vessels (Smith 

and Allen 1996).   

3) Distances between the thermocouple probes in all of the thermometric 

methods must be measured precisely in order to ensure accurate results 

(Cermak and Nadezhdina 1998).   

4) Inaccuracies can result from wound reactions within the woody tissue of the 

stem following probe installation.  Wound reactions caused by the 

accumulation of resin within the xylem vessels cause sap flow diversions 

which can only be averted by monitoring sap flow sensitivities closely and 

moving probes to another location within the stem when appropriate (Smith 

and Allen 1996).   

 
Despite these inaccuracies, thermometric methods are the preferred method if stand 

heterogeneity is high and if site-specific, species-specific, and time-specific ET 

estimations are needed. 

 

Scaling up sap flow measurements to a homogeneous stand is relatively easy:  

extrapolation from a single plant could be done based on plant density and stand area.  

However, accurate scaling becomes more of a challenge when vegetation is 
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heterogeneous in species, size, and age, or when canopy gaps are present. The most 

obvious approach for these stands is to measure sap flow of all plants within a 

representative portion of land and scale up based on land area.  This, however, 

presents error due to differing soil water moisture and microclimatic conditions 

throughout the stand.  To resolve this, scaling methods have been developed based on 

determining relationships between sap flow rates and stem diameter, sapwood area, or 

leaf area and scaling up based on a full stand survey of these parameters.  Error can 

then only be introduced two times during the scaling up process:  when scaling from 

probe to tree and from tree to stand (Hatton and Wu 1995b; Cermak and Nadezhdina 

1998; Wullschleger, Meinzer et al. 1998; Clearwater, Meinzer et al. 1999).  These 

errors can and should be dealt with on a local scale by informed resource managers. 

 

In general: 

1) Proportional sampling and scaling procedures should be used when scaling 

short-term and long-term sap flow measurements (Granier, Biron et al. 1996); 

Granier et al 1996).  By allocating trees into categories based on diameter 

class or some other measure of tree size, scaling up becomes repeatable and 

reliable, despite the fact that transpiration rates are known to be more related 

to exposure to evaporative conditions and within-stand competition (Oren and 

Pataki 2001); (Hatton, Moore et al. 1995a).  

2) At least 3 or more (and ideally 6-15) trees should be monitored within any 

fully grown stand (Cermak and Kucera 1990).  Though the number of trees 

needed is dependent on the accuracy of the required results, it is important to 



 

20 

choose trees based on a field survey of species, crown position, DBH, tree 

height, etc. in order to adequately represent any area. 

3) Sap flow rates are more variable between trees within the same stand under 

drought stress conditions and relatively low when water supply is adequate 

(Cermak, Cienciala et al. 1995).  This suggests that forested wetland trees 

should be less prone to within-stand variability. 

 
According to Wullschleger et al 1998, "The best way to determine the transpiration 

rate of a stand is to measure the water use of every tree in a plot large enough to be 

unaffected by edge effects."  However, in logistically-limited situations or in 

situations where almost the entire stand is influenced by edge effects (as is the case 

for most riparian wetlands and corridors), this approach is not plausible.  Only one 

known study to date has focused on this issue using a thermometric method. 

Giambelluca et al, 2003 tested the significance of edge effects using 

micrometeorologic calculations of energy flows and sap flow analyses.  They found 

that while a microclimatic gradient existed between edge and interior forested areas, 

mean transpiration rates of the edge and interior areas did not differ significantly.  It 

was suggested that this was likely due to the high variability both between trees and 

within a species.  It was also noted that the difference between evaporation at the 

edge and interior sites decreased as conditions became wetter.  

 

Numerous studies have assessed edge effects based on altered energy flows, though 

they bear little relevance to studies based on sap flow measurements and require an 

understanding of thermodynamics beyond the scope of this review.  In addition, most 



 

21 

riparian zones are too small to affect the properties of their surrounding regional 

atmospheres.  As a result, riparian zones are supplied with unlimited saturation deficit 

which enhances evaporation above normal levels expected from available energy 

(Hipps, Cooper et al. 1998; Giambelluca, Ziegler et al. 2003).  For these reasons, 

discussions of energy flow as they pertain to riparian ET will not be included here.  It 

has been well established by these studies, however, that edge effects do play an 

important role in influencing areas with high occurrence of trees exposed to edge 

effects; hence the justification of this study.        
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2 General Materials and Methods 

2.1 Experimental Site Description 
 
The study site is located in a first-order agricultural watershed in the Mid-Atlantic 

coastal plain in Laurel, MD, and is part of the Optimizing Production Inputs for 

Economic and Environmental Enhancement (OPE3) research projects conducted at 

USDA/ARS Beltsville Agricultural Research Center (BARC).  The OPE3 projects are 

part of an international research program involving several U.S. Federal agencies and 

universities.  The four major research areas of this project are: remote sensing, 

atmospheric monitoring, water and chemical behavior, and riparian buffer research.  

This study will provide insight into the impact the red maples have on riparian 

wetland hydrological function and nutrient cycling on site.   

 

A first-order stream ~1200 m in length runs Northeast to Southwest through the 

riparian wetland.  At the southern end, the stream joins a higher-order stream.  Five 

permanent sampling and measuring stations divide the stream into four zones varying 

in length and characteristics (see Figure 3).  The zone located between stations 1 and 

2 has variable groundwater depth ranging from near surface in winter to much lower 

in summer (Angier, McCarty et al. 2001).  The zone between stations 2 and 3 is a 

groundwater-fed wetland with perennially saturated surface conditions.  The zone 

located between stations 3 and 4 contains the lower half of the riparian forest and is 

wider than the upstream portion.  The zone located between stations 4 and 5 is driven 

by a highly variable water table.  No surface water inputs contribute to any of the 

riparian wetland areas.   
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The soils have been identified in a previous study by Angier et al, 2002, as Typic 

Haplosaprist (Johnston silt-loam series) and are about 2 m deep.  The entire study site 

is underlain by an oxic sand and gravel aquifer.  The riparian soils have been 

estimated to be nearly 10,000 years old.  Little is known about activity on the site 

prior to the 20th century.  Up until the 1980s, a pig farm was located on the adjacent 

agricultural fields, which undoubtedly played a role in site geochemistry. 

 

Throughout the zones, the following species are present in varying compositions 

(Herbert 2003):  red maple (Acer rubrum), white oak (Quercus alba), northern red 

oak (Quercus rubra), southern red oak (Quercus falcata), black gum (Nyssa 

sylvatica), sweet gum (Liquidambar styraciflua), holly (Ilex sp.), river birch (Betula 

nigra), willow oak (Quercus phellos), beech (Fagus grandifolia), and tulip poplar 

(Liriodendron tulipifera).  The area between stations 1 and 2 is dominated by red 

maple and white oak and the area between stations 2 and 3 is predominately red 

maple. 

 

Skunk cabbage (Symplocarpus foetidus) is the most prevalent herbaceous species 

throughout the zones.  Between stations 1 and 2, jewelweed (Impatiens capensis) and 

bladder sedge (Carex intumescens) are dominant herbaceous species.  Further 

downstream between stations 2 and 3, cinnamon fern (Osmundo cinnamonae) 

accompanies skunk cabbage and jewelweed.  Between stations 3 and 4, false nettle 

(Boehemeria cylindrica), rice cutgrass (Leersia oryzoides), wild strawberry 
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(Fragraria sp.) and Virginia creeper (Polygonum arifolium) cohabitate.  Between 

stations 4 and 5, hastate tearthumb (Polygonum arifolium), Canadian clearweed 

(Pilea pumelia) and jewelweed increase in percent cover. 

 

 

2.2 Vegetation Survey 
 
The first-order stream was divided into 4 zones by 5 streamflow sampling stations by 

previous Beltsville National Agricultural Research Center Environmental Quality Lab 
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Figure 3 Aerial photo of experimental site.  Yellow shows boundary of riparian wetland, blue 
droplets represent streamflow sampling stations, green trees represent the vegetation survey 
transects. 
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researchers.  Six 25-m wide transects were randomly established to represent these 

zones for the vegetation survey.  Zones 1 and 2 each have 1 transect and zones 3 and 

4 contain 2 transects each, as can be seen in Figure 3.  Transect locations were 

assigned by measuring the distances between the streamflow sampling stations and 

randomly choosing the number of meters to pace from each station while following 

the stream.  Transect azimuths were assigned by exactly bisecting the stream at the 

measured point.   

 

Transects were flagged along the azimuth which bisected the stream.  Transect 

boundaries were flagged 12.5m from either side of the initial transect in order to 

create 25m-wide transects.  Each tree located within the transect boundaries was then 

tagged with a unique number.  Data collected from each tree included: species and 

diameter (cm) at breast height (1.3m from the ground).  Relative importance values of 

each tree species found within the riparian wetland can be seen in Figure 4.   

Additional data collected for each red maple included:  distance to riparian edge (m), 

distance to gap edge (m), canopy position (dominant, co-dominant, intermediate, or 

suppressed), % live crown, % crown density, bark depth, and sapwood depth (see tree 

core analysis section). 
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Relative Importance Values of Species by Transect
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Figure 4 Relative importance values of tree species on site.  Importance value = relative 
frequency + relative density + relative dominance (Burns and Honkala 1990). 
 

2.3 Tree Core Analysis 
 
A tree core analysis of all red maple trees within the 6 transects was needed to 

provide information on sapwood area within the wetland.  Three increment cores (5-

mm thick) were taken from every red maple tree within the six transects (>10-cm 

DBH).  Standard operating procedures for tree coring and interpretation outlined by 

EPA (EPA 1994) were used.  A picture of the increment borer used is shown in 

Figure 5. 
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Figure 5 Tree increment borer.  Upper drill bit is used to penetrate tree and lower extractor 
sleeve is used to retrieve a 5-mm diameter core. 
 

 
 
Sapwood depth was identified through techniques similar to (Dunn and Connor 

1993), by holding the cores up to a bright light. Light has been shown to be blocked 

by tylose within the heartwood (and not in sapwood) and thus sapwood can be 

differentiated from the heartwood. Sapwood was measured to the nearest millimeter 

and the three values were averaged for each tree. Pictures of representative cores can 

be seen below in Figures 6 and 7. 

 
 
 
 

 
 
 
 

 

 

 

 

 

Figure 7 Tree core exhibiting severe decay. 

Figure 6 Tree core showing obvious heartwood/sapwood boundary.  Color 
differences due to tylose blockage in inactive heartwood (to the right). 
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Calculations of sapwood area were completed as shown in Figure 8.  Measurements 

of bark depth, sapwood depth and diameter at breast height (DBH) were taken from 

every surveyed red maple tree >10-cm DBH.  In instances where the 

sapwood/heartwood boundary was unidentifiable due to decay (or if the trunk was not 

circular and the heartwood was “missed” by the borer), substituted values were 

calculated using information derived from the calculated relationship of sapwood area 

to DBH (see Figure 9) where r2=0.9573. 

 
Figure 8 Idealized cross-section of red maple showing sapwood area calculation formula. 
 

Sapwood; 
Active xylem

Heartwood;
Inactive xylem

Tree diameter at breast height, 
including bark (DBH)

Bark

Sapwood Area = 
Areacross-section -Areabark- Areaheartwood  
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2.4 Monitoring Meteorology 
 
Meteorological data were collected throughout the study in an agricultural field 

adjacent to study site (USDA-Beltsville ARS Station #3 at Old Beltsville Airport).  

All data were monitored every 15 seconds and logged at 15 minute intervals.  

Temperature and relative humidity data were gathered five feet from the ground 

surface in a 12-gill plate radiation shield.  Wind speed, wind direction, and solar 

radiation (pyranometer) were all assessed at a ten foot elevation.  A tipping rain gage 

Figure 9 Relationship developed between measured diameter at breast height and calculated 
sapwood area. 
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was installed at three feet above the ground to collect precipitation data.  Figures 10 

and 11 show yearly meteorological trends for the 2002 and 2003 growing seasons. 

 
 



 

31 

 
 

Figure 10 Meteorological trends of the 2002 growing season. 
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Figure 11 Meteorological trends of the 2003 growing season. 
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3 Edge Effect Study 

3.1 Introduction 
 
Forested riparian areas and riparian wetlands surrounding first-order streams are 

being implemented as agricultural best management practices, though buffer 

effectiveness depends fully on hydrology and its associated processes.  Riparian 

forest evapotranspiration (ET) therefore must be quantified for these areas in order to 

develop accurate hydrologic models.  A variety of methods have been used to assess 

forest ET.  However, energy balances require adequate fetch conditions which cannot 

be met in riparian forests and water balances do not provide instantaneous 

measurements of ET which would be useful, if not necessary, to gain an 

understanding of how ET affects stream flow (see Chapter 2). 

 

Quantification of riparian forest ET is difficult due to the presence of “edge effects”, 

since edge trees are exposed to increased radiation intensities and wind speeds 

relative to interior trees.  This increase of available energy is assumed to increase 

transpiration levels of trees located on forest edges (Giambelluca, Ziegler et al. 2003).  

This phenomenon could be of special importance in riparian systems, though it is 

unknown if daily ET rates of edge trees are greater than those of non-edge trees.  

Riparian buffer planting strategies could be improved to maximize tree exposure and 

maximize buffer effectiveness if it is established that edge trees transpire greater 

volumes of water. 
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In this study, thermal dissipation probes (a type of sap flow sensor) were used to 

quantify daily ET rates of six red maple trees.  Sap flow sensors are the ideal method 

with which to determine if edge tree ET rates differ from interior tree ET rates, as 

they provide localized instantaneous measurements.  In this chapter, I test whether 

edge effects significantly influenced sap flow rates of red maples in a Mid-Atlantic 

riparian wetland during the 2002 growing season and early portions of the 2003 

growing season.     

 

3.2 Materials and Methods 

3.2.1 Sap Flow Monitoring 
 
Transpiration rates of woody plants are closely approximated by the volumetric sap 

flow rates in the main stem.  Thermal dissipation probes measure sapwood heat 

dissipation and, in turn, sap flow velocity.  This can be done since thermal 

conductance of sapwood increases with sap velocity (Dynamax 1997).  Thermal 

dissipation probes were chosen to estimate ET for this study because they a) 

minimize error due to radial variation in sap flow rates by integrating sap flow 

velocity measurements along the length of the thermocouple probes, and b) require no 

daily calibration in order for accurate data to be collected for long periods of time, 

since calibration (needed due to meteorological differences between days) can occur 

after data collection.     

 

A total of six red maples were monitored for sap flow throughout the riparian 

wetland.  Installation of the upstream transect (see Figure 3) of sensors was 
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completed by Dynamax representatives in July 2001 according to company standards 

of Dynamax, Inc., Houston, TX (Dynamax 1997).  The second transect of sensors 

was installed by USDA researchers in May 2002, and is located downstream.  

Sensors were chosen to monitor red (swamp) maple trees since red maples dominate 

the area (see Figure 4).  Physical and biological characteristics of the six monitored 

trees are outlined in Table 1. 

 
Figure 12 One set of thermal dissipation probes. 
 

 
 
Each monitored tree contained three equidistant Thermal Dissipation Probe Sets 

(TDP-30).  Both probes in each probe set were 30mm long and 1.2mm in diameter.  

Probes were installed at ~25 cm depth at 1.3 m from the ground at 40mm apart (see 

Figure 10).  Distances between the probe sets were based on tree diameter.  To 

account for variation in sap flow throughout the depth of the sapwood profile, the 

measurements are integrated down the length of the probe.  It was assumed that the 

probe length was similar enough to sapwood depth to provide an adequate estimate of 

sap flux density throughout the depth of the sapwood (Dynamax 1997), Simpson 

2003).    
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Table 1 Environmental and biological characteristics of six monitored Red maples. 
 

Tree  1 2 3 4 5 6 

Location Upstream Upstream Upstream Upstream Downstream Downstream 

DBH (cm) 32.9 43.2 63 31.2 36.7 42.5 

Distance To                 
Riparian Edge (m) 12 13 8 0 17 0 

Distance To                 
Gap Edge (m) 0 not near gap not near gap not near gap 0 not near gap 

Edge Treatment Stream Intermediate Intermediate Edge Stream Edge 

Relative Canopy 
Position Dominant Dominant Dominant Intermediate Intermediate Intermediate 

% Live Crown 20 25 35 80 80 95 

Crown Density 40 35 30 65 50 85 

No Bark Tree 
Area (cm2) 773.2 1308.2 2822.9 645.1 927.4 1260.5 

Heartwood Area 
(cm2) 89.0 decay 954.0 38.4 30.5 58.9 

Sapwood Area 
(cm2) 684.2 decay 1868.9 606.7 896.9 1201.6 

Water Present at           
Soil Surface Yes Yes Half yes,     

half no No  No No  

Outstanding Bole 
Characteristics None None None None 

4 vertical 
seams along 

length of lower 
bole 

None 

Outstanding 
Canopy 

Characteristics 
None 

Lowest large 
branch in 

crown 
missing 

None None 

Many 
epicormic 

shoots present,    
2 of 7 main 

branches dead 

None 

Direction(s) of 
Canopy Exposure gap to N NE to edge, 

E to gap 

No exposure 
to gap or 

edge, nearest 
edge NW 

All branches 
face SW 
toward          
W edge 

exposure 

NNW to NNE Gap NE, NW 
toward edge 

Picture(s) 
See Figure 

31 in 
Appendix 

See Figure 32 
in Appendix 

See Figure 33 
in Appendix 

See Figure 34 
in Appendix 

See Figure 35 
in Appendix 

See Figure 36 
in Appendix 
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Temperature differences between the two probes were measured every 15 seconds 

and the 30 minute averages were recorded by a Campbell Scientific CR10X 

datalogger (Campbell Scientific, Inc., Logan, UT).  The sensors (Dynamax, Inc., 

Houston, TX) were powered on 12-volt deep cycle batteries.  Temperature 

differences were automatically converted to sap velocity according to Granier’s 

dimensionless “flow index” (Granier 1987), (Dynamax 1997) using the spreadsheet 

which accompanied the sensors.  This “flow index” (K) was calculated from the 

measured temperature difference and the maximum temperature difference (which 

occurs at zero flow velocity).  An exponential empirical relationship between sap 

flow velocity and K representative of several hardwood species (including red maple) 

was established by Granier: Velocity = 0.0119 * K^1.231.  Sap flow rates can 

therefore be calculated using(Granier 1987; Dynamax 1997): 

  
 Sap flow rate = sapwood area * sap flow velocity    
Where:          Equation 2 
 Sap flow rate = calculated rate of sap flow (cm3 hr-1) 
 Sapwood area = area of sapwood in monitored tree (cm2)  
 Sap flow velocity = measured velocity of sap flow (cm hr-1). 
 
Gaps in the sap flow data resulted from differing installation dates, lightning strikes, 

high winds, battery failure and/or improperly functioning probes. 

 

Comparisons between the sap flow rates of the six monitored trees (which differed in 

size/DBH) were possible because each of the probes represented only a 1 cm2 area of 

active sapwood.  Thus, the sap flow values measured did not need to be normalized 

on an area basis (Arneth, Kelliher et al. 1996) (O'Brien, Oberbauer et al. 2004). 
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3.2.2 Data Processing 
 
In order to remove obvious outliers due to lightning strikes, if the daily ET volume or 

if the maximum flow rate was zero for any probe, then days containing those values 

were deleted.  Data losses were due to lightning strikes, battery maintenance issues, 

or equipment failure.  Though this was expected for a study of this duration, this 

resulted in a significant loss of data.  Data were used only if all six trees had at least 

two sets of functioning probes throughout the length of the day (08:00 through 

20:00).  The days used for the duration of this study are listed in Table 2.   

 
Table 2 All days during the 2002 and 2003 growing seasons when all six trees had functioning 
probes.  Each growing season was divided into early, mid-, and late summer time periods. 
 

  Early Summer Mid-Summer Late Summer 

2002 155, 156, 157, 161, 
169 through 203 

229 through 240, 
242 through 253 

273, 274,                   
285 through 289,  

300, 301, 302, 304 
2003 152 through 156, 187 211, 212  

   
 
Sap flow rates from all functioning probes for each study tree were averaged per each 

day considered.  Mean daily maximum flow rates were determined using plots of 

diurnal flow rates.  Mean daily volumetric flow was determined for each probe by 

calculating the area under the diurnal flow rates (08:00-20:00).  Figure 13 shows sap 

flow rates for each of the six trees on six representative days.   
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Figure 13 Diurnal sap flow trends of the six monitored red maples on representative sample days. 
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Each of the 2002 and 2003 growing seasons were broken down into 3 “seasons”:  

early Summer (days of year 155 to 205), mid-Summer (days of year 206 to 255) and 

late Summer (days of year 256 to 305).  To further decrease confounding effects due 

to climatic differences, days within each “season” were separated into evaporative 

condition groups.  Since “edge effects” can partially relate to differing radiation 

levels and wind speeds between edge and non-edge trees, days were separated 

according to average daily and maximum solar radiation, average daily wind speed, 

average daily and maximum % relative humidity, and average daily and maximum 

temperature.  By graphing each of these parameters according to day of year, each 

day was assigned a rating of “+”, “-“, or “med” when conditions were highly 

evaporative, not evaporative, or neutral.  For example, on day 170 of year 2002, solar 

radiation was ranked “+”, humidity was ranked “med”, wind speeds were ranked “-“ 

and temperature was ranked “med”.  This was done because solar radiation conditions 

inspired evaporation, humidity conditions were average, wind speeds were slow, and 

temperature was average.  After these conditions were assigned, all days within each 

time period (early, mid-, and late summer) were sorted according to solar radiation 

rank, relative humidity rank, wind speed rank, and temperature rank, in that order.  

This order was chosen, as solar radiation may be the most influential parameter and 

temperature was the least influential of the known parameters.  Then, each day was 

assigned an evaporative condition group:  “Very High”, “High”, “Mid”, or “Very 

Low”.  Rules for group assignment were followed in this order: 

1) If all conditions = + med, then:  Very High 

2) If all conditions = -, then: Very Low 
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3) If solar radiation and humidity = + and other conditions = + or med, then 

High 

4) If solar radiation and humidity = + and other conditions = – or med, then 

Mid. 

 
Grouping days according to evaporative conditions was effective, though as 

demonstrated in Figure 13, within-tree and between-tree variability is high regardless 

of evaporative conditions. 

 

Tables 11, 12 and 13 in the appendix show the days of year under investigation and 

each day’s group ranking based on meteorological conditions.  Micrometeorological 

differences between the edge, intermediate, and stream canopy locations were not 

quantified, nor were eddy covariance or Bowen ratio techniques available for ET 

calculations above or below the canopy.  Differences between the interior and edge 

tree crown conditions were assumed and meteorological data were collected from an 

adjacent agricultural field.      

 

3.2.3 Experimental Design and Statistical Analysis 
 
Average daily maximum sap flow rates and average total daily volume sap flow for 

each tree (based on the average of at least 2 sets of probes within each tree) were used 

to compare edge-influenced (“edge”), somewhat-influenced (“intermediate”), and 

trees along the stream receiving little or not edge effects (“stream”).  The vegetation 

survey (see Chapter 2) provided information on tree crown proximity to the edge for 

each of the six trees.  Accordingly, two trees were considered “edge” trees, as they 
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were adjacent to the riparian edge, two trees were considered “stream” trees, as they 

were located along the stream in the interior of the riparian wetland, and two trees 

were considered “intermediate” trees, as they were situated between the stream and 

the riparian edge.  Therefore, the edge effect factor had 3 levels, each having 2 

replicates (2 trees). 

 

Analysis of variance (ANOVA) of the edge effects were performed using the SAS 

system (SAS 2005).  Tests were first performed based on the average of all days of 

the 2002 and 2003 growing seasons.  Tests were then performed on 4 evaporative 

condition groups in 2002 (very high, high, medium, and very low) and on 2 (high and 

very low) in 2003.  Lastly, tests were performed on data grouped by evaporative 

condition group and by season (Early, Mid-, and Late Summer).  When a significant 

treatment effect was found (if treatment P<.10), then the Tukey’s multiple mean 

comparison test was performed to determine pairwise treatment differences.  All 

related SAS codes can be found in the Appendix (see entries 1 and 2).   

 

P-values less than .10 were considered significant for this study because a) even 

minor differences between daily ET rates of edge and interior trees could be 

biologically important, b) so few replicates would make detection of even large 

differences between edge and interior trees difficult, c) no risk is involved if I 

determine that the edge treatment is significant at P<.10 rather than <.05; riparian 

forest management can only improve if scaling methods take into account more 

environmental conditions. 
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3.3 Results 

3.3.1 Test of Edge Effect Based on Mean Daily Volume Sap Flow 
 
The edge treatment effect was significant on mean daily sap flow volumes during 

2002 (P=.0805).  Differences between the mean daily sap flow volumes for the three 

edge treatments can be seen in Figure 14.  Tukey’s multiple mean comparison test 

determined that the mean daily sap flow volume of edge trees differed significantly 

(P=.0703) from intermediate trees.  Differences between edge and stream mean 

volumes and stream and intermediate mean volumes were not significant (P>.10).  

Detailed results of these tests of the differences between the edge, intermediate, and 

stream means are in the Appendix.   

 

The edge treatment effect was not significant on mean daily sap flow volumes during 

2003 (P=.2242).  Figure 14 shows the differences between the mean daily sap flow 

volumes for the three edge treatments for the 2003 growing season.  Detailed results 

of these tests of the differences between the edge, intermediate, and stream means are 

in the Appendix.   
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Figure 14 Yearly edge treatment effect means (based on daily sap flow volumes in cm3/day/cm2 
sapwood) with standard error bars for the 2002 and 2003 growing seasons.   Different letters on 
the top of the bars represent significant differences between the means (P<.10 according to 
Tukey’s multiple mean comparison test) and ns denotes no significant differences between the 
means. 
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When days were divided into seasons (Early, Mid-, and Late Summer), ET volumes 

were influenced by the edge treatment effect only on Early Summer days of 2002 

(P=.0568) (see Figure 15).  During those Early Summer days, edge trees transpired a 

significantly greater volume of water than did intermediate trees (P=.0628) and trees 

located near the stream (P=.0881).  The edge treatment did not significantly impact 

daily ET volumes during Mid- or Late Summer days of 2002.  However, detailed 

results of these tests of the differences between the edge, intermediate, and stream 

means are in the Appendix.   

 
 
 



 

45 

Figure 15 Edge treatment effect means (based on daily sap flow volumes in cm3/day/cm2 sapwood 
averaged by season) with standard error bars.   Different letters on the top of the bars represent 
significant differences between the means (P<.10 according to Tukey’s multiple mean 
comparison test) and ns denotes no significant differences between the means.   
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When days for each year were divided into evaporative condition groups, very high, 

high, and medium evaporative condition days during 2002 experienced an edge 

treatment effect (P=.0890, P=.0700, and P=.0729, respectively) (see Figure 16).  On 

high evaporative days of 2002 and on very low evaporative condition days of 2002 

and 2003, the edge effect did not influence mean daily sap flow volumes (P>.10).  

Detailed results of these tests of the differences between the edge, intermediate, and 

stream means are in the Appendix.   
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Figure 16 Edge treatment effect means (based on mean daily sap flow volumes for each 
evaporative condition group in cm3/day/cm2 sapwood) with standard error bars for the 2002 and 
2003 growing seasons.   Different letters on the top of the bars represent significant differences 
(p<.10 according to Tukey’s multiple mean comparison test) and ns denotes not significant. 
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Tests were then performed based on grouping by season and by evaporative condition 

groups.  Early Summer was the only season to experience a significant edge effect for 

any evaporative condition group (see Figures 17, 18, 19).  On high evaporative 

condition days in Early Summer 2002, the edge treatment effect was significant 

(P=.0574).  On these days, the edge treatment mean was significantly greater than the 

intermediate treatment mean (P=.0623) and the stream treatment mean (P=.0920).  

On medium evaporative condition days during Early Summer 2002, the edge 

treatment mean was significantly greater than the intermediate treatment mean 

(P=.0858), with an overall treatment effect (P=.0822).   

 

The edge effect did not significantly influence mean daily sap flow volumes on the 

remaining evaporative condition days and seasons during 2002 and 2003 (see Figures 

17, 18, 19).  Differences between edge treatment means and the interior (intermediate 

and stream) treatment means were not significant during these periods.  However, for 

12 out of 13 evaporative condition groups throughout the 2002 and 2003 growing 

seasons (6 Early Summer groups, 4 Mid-Summer groups, and 3 Late Summer 

groups), the edge treatment mean daily sap flow volumes were greater (though not 

significantly) than the intermediate and stream treatment mean daily sap flow 

volumes.  Detailed results of these tests of the differences between the edge, 

intermediate, and stream means are in the Appendix.   
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Figure 17 Early Summer edge treatment means (based on daily sap flow volumes in cm3/day/cm2 
sapwood) for each group of evaporative condition days with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences (p<.10 according to Tukey’s multiple mean comparison test) and ns denotes not 
significant. 
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Figure 18 Mid-Summer edge treatment means (based on daily sap flow volumes in cm3/day/cm2 
sapwood) for each group of evaporative condition days with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences (p<.10 according to Tukey’s multiple mean comparison test) and ns denotes not 
significant. 
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Figure 19 Late Summer edge treatment means (based on daily sap flow volumes in cm3/day/cm2 
sapwood) for each group of evaporative condition days with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences (p<.10 according to Tukey’s multiple mean comparison test) and ns denotes not 
significant. 
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Mean daily sap flow volumes for the 2002 growing season ranged from 3 

cm3/day/cm2 sapwood (for intermediate trees on very low evaporative condition days 

during Late Summer) to 465 cm3/day/cm2 sapwood (for edge trees on medium 

evaporative condition days during Late Summer) (see Table 3).  Within-treatment 

variability can also be seen in Table 3.  Within-treatment variability was highest for 

edge trees during Mid-Summer, for Intermediate trees during Late Summer, and for 

Stream trees during Early Summer.  Within-treatment variability was lowest for 

intermediate trees during Mid-Summer and for stream trees during Late Summer.   

 
 
Table 3 Ranges of mean daily sap flow volumes (in cm3/day/cm2 sapwood) by edge treatment, 
season, and evaporative condition group for the 2002 growing season. 
 

  

Very High 
Evaporative 
Conditions 

High 
Evaporative 
Conditions 

Medium 
Evaporative 
Conditions 

Very Low 
Evaporative 
Conditions 

Early Summer         
Edge 148 to 294 115 to 289 172 to 281 5 to 172 

Intermediate 26 to 162 20 to 139 30 to 151 12 to 104 
Stream 73 to 161 40 to 155 81 to 157 13 to 147 

Mid-Summer         
Edge 65 to 431 142 to 404 58 to 116 5 to 361 

Intermediate 15 to 129 25 to 144 12 to 45 10 to 55 
Stream 79 to 151 75-160 64 to 195 7 to 82 

Late Summer         
Edge 92 to 157 n/a 10 to 465 8 to 116 

Intermediate 24 to 87 n/a 3 to 36 3 to 21 
Stream 84 to 142 n/a 4 to 69 15 to 95 
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3.3.2 Test of Edge Effect Based on Mean Daily Maximum Sap Flow Rates 
 
The edge treatment effect was significant on mean daily maximum sap flow rates 

(P=.0820) for the 2002 growing season.  Differences between the mean daily 

maximum sap flow rates for the three edge treatments can be seen in Figure 16.  

Tukey’s multiple mean comparison test determined that the mean daily sap flow 

volume of edge trees differed significantly (P=.0740) from intermediate trees.  

Differences between edge and stream mean sap flow rates and stream and 

intermediate mean sap flow rates were not significant (P>.10).  Detailed results of 

these tests of the differences between the edge, intermediate, and stream means are in 

the Appendix.   

 

The edge treatment effect was not significant on mean daily maximum sap flow rates 

during 2003 (P=.2242) and differences between the mean daily maximum sap flow 

rates for the three edge treatments can be found in Figure 20.  Detailed results of 

these tests of the differences between the edge, intermediate, and stream means based 

on yearly averages are in the Appendix.     
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Figure 20 Edge treatment means for the 2002 and 2003 growing seasons (based on daily 
maximum sap flow rates in cm3/hour/cm2 sapwood) with standard error bars for the 2002 and 
2003 growing seasons.   Different letters on the top of the bars represent significant differences 
between the means (P<.10 according to Tukey’s multiple mean comparison test), and ns denotes 
not significant. 
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When days were divided into seasons (Early, Mid-, and Late Summer), maximum ET 

rates on Early Summer days were significantly influenced by the edge effect 

(P=.0653) (see Figure 21).  On those days, the trees located near the riparian edge 

transpired greater peak rates than did intermediate trees (P=.0621).  On the remaining 

days of 2002, the edge treatment effect did not significantly influence daily maximum 

ET rates (P>.10) (see Figure 21).  Detailed results of these tests of the differences 

between the edge, intermediate, and stream means based on season averages are in 

the Appendix.   
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Figure 21 Edge treatment effect means (based on daily maximum sap flow rates in cm3/hour/cm2 
sapwood and averaged by season) with standard error bars.   Different letters on the top of the 
bars represent significant differences between the means (P<.10 according to Tukey’s multiple 
mean comparison test) and ns denotes no significant differences between the means.   
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When days for each year were divided into evaporative condition groups, very high, 

high, and medium evaporative condition days during 2002 experienced an edge 

treatment effect (P=.0890, P=..0642, and P=.0792, respectively) on mean daily 

maximum sap flow rates (see Figure 22).  On very low evaporative condition days 

during 2002 and 2003 and on high evaporative condition days during 2002, the edge 

effect did not influence (P>.10) mean daily maximum sap flow rates.  Detailed results 

of these tests of the differences between the edge, intermediate, and stream means 

based on evaporative condition groups are in the Appendix.    
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Figure 22 Edge treatment means for each evaporative condition group (based on daily maximum 
sap flow rates in cm3/hour/cm2 sapwood) with standard error bars for the 2002 and 2003 
growing seasons.   Different letters on the top of the bars represent significant differences 
between the treatments (P<.10 according to Tukey’s multiple mean comparison test) and ns 
denotes not significant. 
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Tests were then performed based on grouping days by season and by evaporative 

conditions.  The edge effect significantly influenced mean daily maximum sap flow 

rates on Early Summer days with high evaporative conditions (P=.0586), on Early 

Summer days with medium evaporative conditions (P=.0916), and on Late Summer 

days with very high evaporative conditions (P=.0412) (see Figure 23).  In Early 

Summer, the edge treatment mean daily maximum sap flow rate was significantly 

greater than the intermediate treatment mean daily sap flow rate during high 

(P=.0609) and medium (P=.0847) evaporative condition days (see Figure 23).  During 

very high evaporative condition days during Late Summer 2002, the edge treatment 

mean daily maximum sap flow rate was greater than intermediate treatment mean 

(P=.0427) and the stream treatment mean (P=.0739) daily maximum sap flow rates 

(see Figure 25).  Detailed results of these tests of the differences between the edge, 

intermediate, and stream means are in the Appendix.    

 

The edge effect did not significantly influence mean daily maximum sap flow rates 

on the remaining evaporative condition days or seasons during 2002 and 2003 (see 

Figures 23, 24, 25).  Differences between edge treatment means and the interior 

(intermediate and stream) treatment means were not significant during these periods.  

However, for 13 out of 13 evaporative condition groups throughout the 2002 and 

2003 growing seasons (6 Early Summer groups, 4 Mid-Summer groups, and 3 Late 

Summer groups), the edge treatment mean daily sap flow rates were greater (though 

not significantly) than the intermediate and stream treatment mean daily sap flow 

rates. 
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Figure 23 Early Summer edge treatment means for each evaporative condition group (based on 
daily maximum sap flow rates in cm3/hour/cm2 sapwood) with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences between the treatments (P<.10 according to Tukey’s multiple mean comparison test) 
and ns denotes not significant. 
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Figure 24 Mid-Summer edge treatment means for each evaporative condition group (based on 
daily maximum sap flow rates in cm3/hour/cm2 sapwood) with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences between the treatments (P<.10 according to Tukey’s multiple mean comparison test) 
and ns denotes not significant. 
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Figure 25 Late Summer edge treatment means for each evaporative condition group (based on 
daily maximum sap flow rates in cm3/hour/cm2 sapwood) with standard error bars for the 2002 
and 2003 growing seasons.   Different letters on the top of the bars represent significant 
differences between the treatments (P<.10 according to Tukey’s multiple mean comparison test) 
and ns denotes not significant. 
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Mean daily maximum sap flow rates for the 2002 growing season ranged from 1 

cm3/hour/cm2 sapwood (on a few very low evaporative conditions days) to 112 

cm3/hour/cm2 sapwood (for a stream tree on an Early Summer very high evaporative 

conditions day) (see Table 4).  Within-treatment variability can also be seen in Table 

3.  Within-treatment variability was highest for edge trees during Mid-Summer, for 

Intermediate trees during Early Summer, and for Stream trees during Early Summer.  

Within-treatment variability was lowest for edge, intermediate, and stream trees 

during Late Summer.  Variability within evaporative condition groups was highest 

during very high and very low evaporative condition days (see Table 4). 

 
 
Table 4 Ranges of average daily maximum sap flow rates (in cm3/hour/cm2 sapwood) by edge 
treatment, season, and evaporative condition. 
 

  

Very High 
Evaporative 
Conditions 

High 
Evaporative 
Conditions 

Medium 
Evaporative 
Conditions 

Very Low 
Evaporative 
Conditions 

Early Summer         
Edge 18 to 39 19 to 38 21 to 41 1 to 30 

Intermediate 3 to 17 3 to 16 4 to 16 2 to 15 
Stream 13 to 112 9 to 10 12 to 21 3 to 22 

Mid-Summer         
Edge 12 to 72 19 to 77 11 to 21 1 to 86 

Intermediate 2 to 16 3 to 16 2 to 8 2 to 9 
Stream 12 to 20 11 to 51 11 to 21 1 to 18 

Late Summer         
Edge 18 to 34 n/a 2 to 75 1 to 24 

Intermediate 4 to 21 n/a 1 to 6 1 to 4 
Stream 14 to 19 n/a 1 to 9 3 to 16 
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3.3.3 Conclusions and Discussion 
 
Daily maximum ET rates and daily volume ET of the study wetland were influenced 

by edge effects during the 2002 growing season (P<.10).  Despite the variation caused 

by daily and seasonal environmental fluctuations in radiation intensities, wind speeds, 

relative humidity, and temperature, detection of the edge effect was possible.  Data 

loss due to lightning strikes, frequent precipitation, and battery failure likely 

attributed to the inability to detect a significant edge treatment effect for the 2003 

growing season, since the testable days were likely not representative of the whole 

season.  Therefore, the discussion will focus on the 2002 growing season unless 

otherwise specified. 

 

In a general study of seasonal ET, daily ET volumes and daily maximum ET rates 

during Early Summer were influenced by the edge effect.  This suggests that 

vegetation planting strategies should focus on maximizing crown exposure 

throughout the growing season by reducing stand density.  Further, if this finding is 

repeated in other studies of riparian ET, then planting strategies should arrange for a 

high proportion of trees to be exposed to edge effects.  Since pollutant concentrations 

in both overland flow and stream flow are highest during Early Summer and Spring, 

planting a greater number of trees near the riparian edge could positively influence 

stream flow nutrient concentrations.  Studies of the impact edge effects have on early 

and late Spring ET rates are necessary to confirm this proposition.   
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When testing the significance of the edge effect during the three seasons, Mid-

Summer and Late Summer ET levels were not influenced by edge effects.  High 

within-treatment variability and environmental heterogeneity throughout the stand 

likely prevented the detection of a significant edge effect during these times.  This 

finding is important because it implies that planting strategies which do not take edge 

effects into account would have the same hydrological impact on the first-order 

stream as planting strategies which do take them into account.          

 

When days were separated into evaporative condition groups, it was found that ET 

rates are most influenced by edge effects during Early Summer days with high and 

medium evaporative conditions.  During these days, trees in close proximity to the 

riparian edge experienced a pronounced edge effect relative to trees located either 

near the stream or riparian edge.  Days with very low evaporative conditions likely do 

not account for a very high portion of seasonal ET.  However, days with very high 

evaporative conditions likely do.  It seems likely that high within-treatment variability 

on very high evaporative condition days prevented the detection of the edge effect.  

Further studies on these prospectively significant days should be carried out.  In this 

study, daily maximum sap flow rates were significantly influenced by edge effects on 

Late Summer days with very high evaporative conditions.        

 

Trees exposed to the “edge effects” experienced higher maximum ET rates and daily 

ET volumes than intermediate trees on days with very high, high, and medium 

evaporative conditions, while they did not on days with very low evaporative 
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conditions.  This was expected, as wind speeds, temperature, relative humidity, and 

radiation are all needed at higher levels along the forest edge in order to create 

micrometeorological differences between interior and edge tree canopies (which 

would lead to a pronounced edge treatment effect).   

 

Variability was highest among the edge trees during Mid-Summer and among the 

trees located near the stream during Early Summer, though variability among the 4 

non-edge trees for the duration of the study was lower than expected.  This was made 

evident in Figure 13, which shows diurnal ET trends for the 6 monitored trees on 6 

randomly chosen days.  This suggests that ET rates for interior trees are less 

responsive to changing environmental conditions than edge trees.  In fact, 

intermediate tree ET never differed significantly from stream tree ET.  Thus, it seems 

as if high day-to-day variation between the 2 edge trees may be responsible for 

masking the edge effect.  Additional studies with increased replication are needed to 

establish if edge effects significantly impact riparian ET during Mid- and Late 

Summer.    

 

Variability within evaporative condition groups was highest on days with very high 

and very low evaporative conditions, as was expected.  As mentioned previously, ET 

levels on days with very low evaporative conditions are not likely to influence stream 

flow and the associated stream flow nutrient concentrations even if all trees were 

highly exposed.  Days with very high evaporative conditions, however, likely do 
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influence stream flow most of all.  Therefore, further testing should focus on 

monitoring only very high, high, and medium evaporative condition days. 

 

Test results based on daily maximum sap flow rates and total daily volume sap flow 

were similar.  Two differences between the results were: 1) Edge trees were shown to 

have higher peak rates during very high evaporative conditions days of Late Summer 

2002, while the daily volumes were not different, and 2) Edge trees were shown to 

have significantly higher daily sap flow volumes than stream trees during Early 

Summer of 2002.  Other than these minor differences, the two methods of testing for 

the edge effect were comparable.  

 

Overall, it was obvious that more replication and uniform sampling strategies would 

have aided in establishing the significance of the edge effect on ET rates of the 

riparian wetland under consideration.  The two edge trees within the “edge” treatment 

group were not located near each other, and thus received differing radiation 

intensities throughout the day.  This likely often prevented the statistical detection of 

the edge effect for this riparian system.  Despite high variability within treatments and 

throughout the seasons, the edge effect was shown to be significant (P<.10) most 

frequently during Early Summer and on days with very high, high, and medium 

evaporative conditions.   
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4 Ecosystem Evapotranspiration 

4.1 Introduction 
 
In order to use sap flow data practically, sap flow measurements for a set of particular 

trees must be scaled up to the ecosystem level.  A variety of scaling methods have 

been used for this purpose (see Chapter 1).  In this study, I used sapwood area (from 

the vegetation survey data previously explained in Chapter 2) as an areal scalar.  

While the ratio of active xylem to projected crown area is a commonly used scalar, 

using the ratio of sapwood area to stand area has the same effect.  I compared daily 

riparian wetland ET estimates derived from six different scaling methods (each using 

sapwood area as a scalar) based on the following measurements: diameter at breast 

height (DBH), proximity of tree crown to riparian edge (Edge), proximity of tree 

crown to gap (Gap), canopy position (Canopy), % live crown (LC), and % crown 

density (CD).  The primary goal of this study is not to test the accuracy of each of the 

six scaling parameters; rather, my intent is to compare these six parameters on a 

relative scale.  The 4 zones within the riparian wetland are four trial forests for this 

purpose.  No other known study has attempted to compare scaling variables, and I 

intend to demonstrate that choice of scaling parameter can influence ecosystem sap 

flow estimate validity.  Results from the method which produces average ET 

estimates will then be used in Chapter 6. 

 

Because of the many meteorological and biological factors that affect ET, no one ET 

estimation method is entirely satisfactory for estimating wetland ET (Mitsch and 

Gosselink 2000).  Therefore, in the second portion of this chapter, I will compare the 
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ET estimates based on the six scaling variables to ET estimates derived from a 

commonly used ET energy balance model.  First, ecosystem ET for each of the four 

zones will be quantified using a one-dimensional energy balance developed by 

Priestley and Taylor (Priestley and Taylor 1972).  This model is an improvement on 

the earlier Penman and Penman-Monteith ET models since it involves a coefficient, 

α, which is accepted as a unitless value =1.26 under well-watered/wetland conditions 

(Priestley and Taylor 1972; Stannard 1993; Eichinger, Parlange et al. 1996; Souch, 

Wolfe et al. 1996).  It must be noted that this method, and all energy balance methods 

of ET estimation, are only valid over homogeneous surfaces.  While riparian zones by 

definition invalidate this assumption, it is still necessary to complete these 

calculations in order to provide some reference value of stand ET.     

 

Lastly, these estimates of daily average red maple ET based on scaled up sap flow 

will be compared to findings in previous studies of red maple ET.  This will establish 

if the sap flow estimates derived from Chapter 4 are consistent with findings of other 

studies and will help to determine if the riparian red maples at this site transpire more 

water in general. 

4.2 Materials and Methods 
 
As described in Chapter 2, the forested riparian wetland studied was divided into four 

zones which differ in stand density, species diversity, water availability, etc.  It was 

possible that stand density differences between the zones would present problems 

when scaling up sap flow data to the ecosystem level.  To resolve this issue, the 

relationship between measured sapwood area within a zone (SAmeas) and the actual 
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stand area that the sapwood represents (Aactual) was quantified for each zone.  This 

was done for each zone by utilizing the relationship:  

 
 ΣSAmeas/Atransect = ΣSAactual/Aactual                                                  
          Equation 3 
Where:  ΣSAmeas = sum of measured Red maple sapwood area within a  
   representative area 
  Atransect = representative area that measured sapwood area represents 
  ΣSAactual = sum of actual sapwood area within zone 
  Aactual = actual zone area that actual sapwood area represents.    
 
The area of the riparian wetland studied was estimated at 19,378m2.  This was 

estimated by using a Global Positioning System (GPS) unit to delineate the ecosystem 

boundaries (see Figure 3).  The zonal areas were:  zone 1=3510m2, zone 2= 4532m2, 

zone 3= 6651m2, and zone 4= 4685m2. 

 

To scale up the sap flow data from the six monitored trees to the ecosystem level, 

some method of accounting for variation in tree characteristics is needed.  Granier 

(Granier 1987) suggested the use of DBH.  His recommendation is widely followed 

since DBH is easily measured.  However, it has been suggested that another scaling 

parameter is needed to differentiate among trees throughout any given area to account 

for topographic, soil water availability, and/or stand competition differences (Cermak 

and Kucera 1990; Hatton and Wu 1995b; Oren 1998).  Leaf Area Index (LAI) is often 

suggested as a measure for scaling and is commonly used when assessing ET with 

remote sensing techniques.  Unfortunately, these measures were not available for the 

2002 growing season.  
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In this study, I compared the use of six scaling variables:  diameter at breast height 

(DBH), distance of tree crown to riparian edge (Edge), distance of tree crown to gap 

(Gap), canopy position (Canopy), % live crown (LC), and % crown density (CD). 

Based on the vegetation survey data outlined in Chapter 2, each tree was assigned a 

group, according to the guidelines shown in Table 5 below. 

 
 
Table 5 Scaling class assignment descriptions for each of the six scaling groups. 
 

Group Class Assignment Standards 
DBH 35cm- (35cm in diameter and below) 

  35 to 50 (Between 35 to 50 cm in diameter) 
  50+ (Greater than 50 cm in diameter) 

Proximity to Riparian Edge Edge (0-10m from edge) 
  Intermediate (10-25m from edge) 
  Stream (25m+ from edge) 

Proximity to Gap Edge  At (0-5m from gap exposure) 
  Near (5-15m from gap) 
  None (15m+ from gap) 

Canopy Position CoDom (dominant or codominant crown positioning) 
  IntSup (intermediate or suppressed crown positioning) 

% Live Crown High (50+% live crown) 
   Low (50-% live crown) 

% Crown Density High (50+% crown density) 
   Low (50-% crown density) 

      
Once each tree was assigned a class from each variable group, actual sapwood area 

per group per zone was calculated using the equation: 

 
SAactual = (SAtotalrep/Atotalrep) * SAtotalactual 
          Equation 4 
Where:  SAactual = actual sapwood area per group within any given zone  
  SAtotalrep = total sapwood area per group within a represented area 
   Atotalrep = total land area per group within a represented area 
  SAtotalactual = actual total sapwood area per group within a zone. 
 
In this way, estimates of daily transpiration for each zone using each of these six 

scaling parameters were derived.  Table 6 shows % zonal red maple sapwood area 

allocated to each scaling parameter group.  Graphs of ET for each zone, based on 
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these six methods (Figures 27 through 30) show how the methods vary in relation to 

one another throughout the growing season. 

 
Table 6 Percent sapwood area within each zone of each scaling variable group. 
 

Scaling Parameter Group Zone 1 Zone 2 Zone 3 Zone 4 
  35 to 50 34.4 5.5 10.8 32.5 

Diameter at Breast Height 35 Below 33.3 31.4 17.4 38.2 
  50+ 32.3 63.1 71.8 29.3 
  Edge 18.9 40.5 27.2 1.0 

Proximity to Riparian Edge Intermediate 41.5 51.6 24.4 11.5 
  Stream 39.5 7.9 48.4 87.5 
  Near 34.4 5.5 10.8 32.5 

Proximity to Gap Edge None 33.3 31.4 17.4 38.2 
  On 32.3 63.1 71.8 29.3 

Canopy Position CoDom 86.5 86.4 88.9 75.4 
  IntSup 13.5 18.9 11.1 24.6 

% Live Crown High 46.5 47.3 30.4 38.2 
  Low 53.5 52.7 69.6 61.8 

% Crown Density High 38.3 48.3 64.0 35.2 
  Low 61.7 51.7 36.0 64.8 

 
Priestley and Taylor (1972) established that:  
 

 )(
)(

γαλ +∆
−∆= GRE        Equation 5 

 
Where: λ = the latent heat of the vaporization of water (=2.501-0.002361*T) (MJ/kg) 
   and  T = surface temperature in ◦C  
 E = evaporation (solving for) (mm day-1) 
 α = Priestley-Taylor coefficient (unitless) 
 ∆ = slope of the saturation vapor pressure curve  

  2)^3.237(
*4098

T
vpsat
+=∆ )  

   and  T
Tvpsat += 3.237

*27.17^6108.0 (kPa/◦C) 
 R = net radiation (W m-2) 
  RrefRsolR −=  
  Rsol = solar radiation (W m-2) 
  Rref = reflected radiation (=Rsol*alb)) (W m-2) 
   and  alb = albedo, surface reflectivity = 0.07+(0.053*LAI) 
    LAI = leaf area index of site under investigation 
 G = soil heat flux (W m-2)  
 γ =  psychrometric constant at a given temperature and pressure (kPa/◦C) 
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Surface temperature and solar radiation measurements were measured in a nearby 

agricultural field by USDA Agricultural Research Service scientists.  All 

meteorological variables were measured every 15 seconds, logged every 15 minutes, 

and averaged every 30 minutes during the study as is detailed in Chapter 2.  LAI (leaf 

area index) measured at six locations throughout the riparian wetland averaged 

2.57167 in 2003 (Herbert 2003).  Soil heat flux (G) was considered zero, as time 

frames used in this study experienced negligible soil heat retention (Shuttleworth 

1993).  The psychrometric constant was quantified from a commonly referenced table 

according to surface temperature (Shuttleworth 1993).  The Priestley-Taylor 

coefficient was assumed = 1.26, as recommended for wet surface conditions 

originally by Priestley and Taylor (Priestley and Taylor 1972; Eichinger, Parlange et 

al. 1996; Souch, Wolfe et al. 1996; Drexler, Snyder et al. 2004).     

 

Daily ET estimates based on the Priestley-Taylor method are expected to depict 

higher daily volume ET than the sap flow-derived methods for a number of reasons:   

 1)  Average daily solar radiation and average daily temperature values were 

 used in daily Priestley-Taylor calculations, which is required for energy 

 balance calculations of this sort (Priestley and Taylor 1972; Eichinger, 

 Parlange et al. 1996; Souch, Wolfe et al. 1996; Drexler, Snyder et al. 2004), 

 which is required for energy balance  calculations.  However, sap flow 

 methods estimate ET on an instantaneous time frame and therefore provide 

 much more precise estimates (though perhaps not as accurate). 
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 2) No method of estimating soil heat flux was available for the 2002 growing 

 season, so soil heat flux was estimated at %10 of solar radiation.  This (likely) 

 unavoidably overestimated the energy available for latent heat flux, which 

 would result in overestimating daily ET. 

  

 3)  Potential ET derived from the Priestley-Taylor equation is the combination 

 of evaporation and transpiration, while sap flow is strictly a measure of 

 transpiration.  Even after accounting for this difference (by assessing pan 

 evaporation and combining evaporation + transpiration), sap flow estimates 

 have been known to underestimate potential ET, most likely due to 

 physiological factors (stomatal resistance, delayed stomatal opening to 

 evaporative conditions, etc.) (Wullschleger, Meinzer et al. 1998; Wilson, 

 Hanson et al. 2001). 

 
Days used for these comparisons were the same as used in Chapter 3, as these were 

the days with valid sap flow data.   

 

Correlations among seven methods of daily ET estimation were analyzed using the 

Analyst Application of the SAS System v. 8.2 (see Appendix entry 3).  The seven 

methods were:  daily ET estimations based on the six previously mentioned sapwood 

scaling variable groups, and daily ET estimations derived from the Priestley-Taylor 

method.   
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4.3 Results 

4.3.1 Comparisons of Six Scaling Variable Methods of ET Estimation 
 
First, it should be pointed out that it is not the goal of this chapter to recommend one 

scaling parameter over another.  These results pertain to this ecosystem and serve 

only as an example of variability that can arise when scaling up sap flow estimates 

from individual trees to four different ecosystems with varying stand characteristics. 

 

Figures 27 through 30 at the end of this chapter compare daily sap flow estimates 

based on the six scaling parameters, as will be discussed in detail.  The trends shown 

throughout the zones in these graphs are summarized in Table 7.   

 
 
Table 7 Zonal comparisons of the six scaling variables used to estimate daily sap flow depth 
relative to the average of all of the variables. 
 

  Zone 1 Zone 2 Zone 3 Zone 4 
Diameter  at 

Breast Height Relatively high Relatively low, 
often lowest 

Relatively low, 
often lowest 

Average, but 
spikes relatively 

quite high 
Proximity to 

Riparian 
Edge 

 Average Average Average Average 

Proximity to 
Gap Edge 

Average to      
below average Average Relatively high, 

often highest Very low 

Canopy 
Position 

Relatively low, 
often lowest 

Relatively low, 
often lowest Usually lowest Relatively low, 

often lowest 

% Live Crown
Usually high,  
often second 

highest 

Often follows 
same trend as % 
crown density, 

but usually 
average 

Average 
Usually high,  
often second 

highest 

% Crown 
Density 

Quite variable, 
middle to low,    
but spikes high 

Often average,    
but spikes high 

Often highest,    
but spikes low 

Often average,     
but spikes high 
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Overall, the Proximity to Riparian Edge scaling variable yielded average ET 

estimates relative to the other 5 scaling variable methods.  Although the percentage of 

sapwood that came from the Edge group for each zone ranged from 40.5% in zone 2 

to 1% in zone 4 (Table 6), the method based on Proximity to Riparian Edge provided 

average results throughout the growing season.   

 

The Canopy Position variable consistently yielded low zonal ET estimates throughout 

the growing season relative to the other 5 methods.  The percentage of sapwood area 

for the CoDom group (Table 6) was somewhat uniform between the zones, which 

could explain the consistent results, despite that the categorization of trees into four 

groups (dominant, co-dominant, intermediate, and suppressed) was not doable due to 

logistical limitations.  In the only other known study which used Canopy as a scaling 

variable, they, too, found that ecosystem ET estimates based on sap flow tended to 

underestimate daily ET relative to energy balance-derived estimates (Wullschleger, 

Meinzer et al. 1998).  Evidence is unclear as to why this would be the case.   

 

The % Live Crown scaling variable yielded zonal ET estimates higher than average 

estimates (relative to the other 5 methods) throughout the growing season.  When 

comparing across zones, the higher the % of sapwood area within the High group, the 

higher the ecosystem estimate ranged above average.  That is, in zones where the 

estimates based on % Live Crown were average, a lower percentage (30 to 38%) of 

sapwood area was designated as High.  In zones where the estimates based on % Live 

Crown rose above average, a higher percentage (46 to 47%) was designated as Low.  
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This seems to be in accordance with what is known about % live crown in relation to 

canopy position; lower light availability (as is the case with intermediate or 

suppressed crowns) leads to greater percentage live crown.    

 

The Proximity to Gap Edge scaling parameter yielded average to below average daily 

ET estimates for zones 1,2 and 4, though for zone 3, it often yielded the highest daily 

sap flow estimates.  Zones 1 and 4, which have fairly even distributions of red maples 

located on, near, and nowhere near gaps in the canopy, resulted in low ET 

estimations.  Zone 2, which has ~30% of red maples not experiencing gap edge 

effects and ~63% experiencing gap edge effects, yielded average ET estimates.  In 

stark contrast to the other zones, zone 3 boasted high daily sap flow estimates, likely 

due to the high % (~72%) of red maple crowns open to edge effects.  Though zone 2 

had nearly that many red maple crowns located on gap edges (~63%), nearly half that 

many crowns were located nowhere near a gap edge; this perhaps could have resulted 

in average daily ET estimates.  

 

The Diameter at Breast Height scaling variable yielded unreliable ET estimates in 

relation to estimates based on the other 5 scaling variables.  In zones 2 and 3, with a 

high proportion of sapwood area in the 50+ group and a low proportion of sapwood 

area in the 35 to 50 group, ET estimates were lower than estimates based on other 

variables.  Zones 1 and 4, with more evenly distributed stands in terms of diameter at 

breast height, yielded consistently higher daily sap flow estimates.  The high spikes in 

daily sap flow estimates in zone 4 could be attributed to the higher percentage of 
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sapwood in the 35 below group.  It should be noted that estimates based on the 

Diameter at Breast Height parameter should be considered suspect, as the 50+ group 

is comprised of only one red maple.           

 

The % Crown Density scaling variable yielded erratic ET estimates.  This was 

expected, since % crown density is often not a parameter associated with determining 

daily sap flow rates (though it can be if loss in crown density is due to health-related 

issues which may impede transpiration processes).  When sapwood area was evenly 

divided (as was the case for zone 2), then estimates based on % Crown Density 

roughly mimicked estimates based on % Live Crown.  Having over 60% of sapwood 

area in the Low group yielded average daily ET estimates, though on days with very 

low evaporative conditions (i.e. Days 285, 286) this resulted high daily ET estimates.   

 

After comparing these six scaling variables, it is clear that the choice of sap flow 

scaling parameter is an important issue to consider when working with localized sap 

flow data.  As can be seen in Table 8, estimates of total daily ET can vary depending 

on which method of scaling is used.  This idea has not been stressed in the literature.  

Discussions of scaling error and its associated issues suggest sapwood area as a 

method of scaling on an areal basis; the creation of scaling variables such as these 

presented here have not been suggested before, other than the Diameter at Breast 

Height method initially mentioned by Granier (Granier 1987) and the Canopy 

Position method suggested by Wullschleger (Wullschleger, Hanson et al. 2001).  

Often it is thought that scaling should be done based on tree age (or some measure of 
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that, such as diameter at breast height), but that method ignores other influential 

environmental conditions.  Additional studies are needed in order to verify if these 

trends are similar elsewhere.  Only then can suggestions be made on which variables 

or measurements should be used in estimating ecosystem ET.   

 
 
Table 8 Range of daily ET estimates in mm day-1 for the 2002 growing season based on each 
scaling method. 
 

  DBH 
Proximity 
to Edge 

Proximity to 
Gap Edge 

Canopy 
Position 

% Live 
Crown 

% Crown 
Density 

Average of  
6 Methods 

Minimum 0.25 0.25 0.24 0.13 0.25 0.08 0.35 
Maximum 6.77 4.18 4.3 3.83 5.11 7.53 4.8 
Average 2.2 2.16 2.03 1.83 2.21 2.27 2.12 

 
 

4.3.2 Priestley-Taylor Comparisons 
 
The correlation matrices for the ET estimates based on the seven methods during each 

season (Early, Mid-, and Later Summer) and throughout all 4 zones are in the 

Appendix (see Appendix Tables 17-20).  ET estimates based on the six sapwood 

scaling methods were highly correlated (P<.0001) for all of the zones throughout the 

2002 growing season.  As this was expected, the remainder of this discussion will 

focus on the pairwise comparisons of each of the six ET estimation methods with the 

Priestley-Taylor estimates (Table 9).  The Priestley-Taylor estimate is assumed to be 

a baseline method of ET estimation against which accuracy comparisons will be 

made, as many prior studies have used energy balances as baselines against which to 

compare innovative approaches.       
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Table 9 Correlation coefficients among the six scaling variable ET estimation methods and estimates 
based on Priestley-Taylor (PT) method for each season (Early, Mid, Late) by zone.   Early Summer 
n=39, Mid-Summer n=19, Late Summer n=11. Where:  *, **, ***, and **** denote significance at the 
0.10, 0.01, 0.001, and 0.0001 probability levels, respectively, and ns denotes not significant at the 0.1 
probability level. 

       

 Zone 1 DBH 
Proximity to 

Riparian Edge 
Proximity to 

Gap Edge 
Canopy 
Position 

% Live 
Crown 

% Crown 
Density 

PT, Early 0.59**** 0.56*** 0.59**** 0.52*** 0.59**** 0.58*** 
PT, Mid 0.23ns 0.41* 0.14ns 0.39* 0.31ns -0.3ns 
PT, Late 0.32ns 0.3ns 0.29ns 0.25ns 0.31ns 0.42ns 

       
Zone 2        
PT, Early 0.59**** 0.59**** 0.57*** 0.53*** 0.59**** 0.59**** 
PT, Mid 0.2ns 0.21ns 0.16ns 0.21ns 0.31ns -0.27ns 
PT, Late 0.3ns 0.35ns 0.38ns 0.41ns 0.36ns 0.11ns 

       
Zone 3       
PT, Early 0.59**** 0.59**** 0.58*** 0.51*** 0.56*** 0.61**** 
PT, Mid 0.33ns 0.41* 0.16ns 0.32ns 0.33ns -0.42* 
PT, Late 0.28ns 0.3ns 0.31ns 0.29ns 0.3ns 0.52ns 

       
Zone 4       
PT, Early 0.6**** 0.44** 0.59**** 0.55*** 0.58*** 0.57*** 
PT, Mid 0.19ns 0.56* 0.28ns 0.17ns 0.32ns -0.33ns 
PT, Late 0.31ns 0.26ns 0.28ns 0.3ns 0.31ns 0.51ns   
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The Diameter at Breast Height (DBH) scaling method was of special interest, since this 

scaling variable was initially suggested by Granier in 1987 in association with his 

development of the thermal dissipation probe method.  However, this study demonstrates 

that using DBH as a scaling variable may not be the best choice.  Discounting Early Summer 

(when all six scaling parameters produced estimates correlated to PT estimates (P<.0001)), 

DBH often produced estimates which were weakly correlated to PT-derived estimates (see 

Appendix Table 17).  In Mid-Summer, DBH was found to be weakly correlated with PT 

estimates for all 4 zones (P>.15).  In Late Summer, estimates based on the DBH variable 

were not correlated with PT estimates for 3 out of 4 zones.  This evidence suggests that 

scaling variables which account for factors other than tree age might be better when scaling 

up the flow estimates in a riparian forested wetland.  Out of the twelve tested periods (3 

seasons * 4 zones), only the 4 Early Summer estimates based on DBH were correlated to PT 

estimates (P<.10). 

 

The Proximity to Riparian Edge (Edge) scaling variable was also of special interest, since 

the premise of this project was to discern if the edge effect results in significant differences 

between sap flow rates between edge and interior trees.  In Early Summer, the Edge variable 

ET estimates were correlated (P<.01) to PT estimates.  This is not exceptional, as many of 

the methods yielded correlated results in Early Summer.  In Mid-Summer, estimates based 

on the Edge variable for zones 1, 3, and 4 yielded the only estimates correlated to PT 

(P<.10) estimates. In Late Summer, like estimates based on many scaling variables, ET 
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estimates based on Proximity to Riparian Edge were not significantly correlated with PT 

estimates (P>.10).  Out of the twelve tested periods, 7 estimates based on the Edge variable 

were correlated to PT estimates (P<.10), which was the highest number of correlated 

periods.   

 

The Proximity to Gap Edge (Gap) scaling variable was a prospective choice since it seemed 

to play a substantial role in influencing sap flow rates in Chapter 4 and also because the 

increased radiation intensity and wind speeds associated with canopy gaps have received 

frequent attention in the literature.  However, ET estimates based on the Gap method were 

frequently not correlated with PT estimates.  In Mid- and Late Summer, estimates for 3 out 

of 4 zones were not correlated with PT estimates (P>.10).  Out of the twelve tested periods, 

only the 4 Early Summer estimates based on the Gap variable were correlated to PT 

estimates (P<.10). 

 

The Canopy Position (Canopy) scaling variable was considered since relative canopy 

position often dictates light intensity and wind speeds experienced by a tree canopy.  In 

Early Summer, all zonal estimates based on Canopy were correlated with PT estimates 

(P<.01).  In Mid-Summer, zone 1 estimates based on the Canopy variable were correlated 

(P<.05) with PT estimates, though estimates for zones 2, 3, and 4 were not correlated 

(P>.10).  In Late Summer, Canopy estimates were not correlated with the PT estimates for 

each of the 4 zones.  Out of the twelve tested periods, 5 estimates based on the Canopy 

variable were correlated to PT estimates (P<.10).  
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The % Live Crown (LC) scaling variable was considered since the portion of physiologically 

active crown may determine tree crown health and is also often associated with canopy 

position.  In Early Summer, ET estimates based on LC for all 4 zones were significantly 

correlated with PT estimates (P<.10).  In Mid-Summer and Late Summer, ET estimates 

based on the LC method were not correlated with PT estimates (P>.10).  Out of the twelve 

tested periods, only the 4 Early Summer estimates based on the LC variable were correlated 

to PT estimates (P<.10).    

 

The % Crown Density scaling variable was tested since the density of a crown determines 

the quantity of leaf area that is able to transpire.  If a low amount of leaf area (i.e. a low % 

crown density) is present in a crown, then high ET rates are more unlikely to result.  If a 

high amount of leaf area is available to transpire in the crown, then higher ET rates are 

likely.  In Early Summer, all 4 zonal estimates based on LC were highly correlated 

(P<.0001) with PT estimates.  In Mid-Summer, LC estimates for zone 3 were highly 

correlated (P<.10) with PT estimates, though estimates for zones 1, 2, and 4 were not 

correlated with PT estimates (P>.10).  In Late Summer, estimates based on the LC variable 

for all 4 zones were not correlated with PT estimates (P>.10).  Out of the twelve tested 

periods, 5 estimates based on the CD variable were correlated to PT estimates (P<.10). 

 

It was expected that no one parameter would provide estimates that are significantly 

correlated with Priestley-Taylor estimates.  Often, significant correlations between sap flow 

and some other meteorologically-derived estimate of ET cannot be found (Dunn and Connor 

1993; Wilson, Hanson et al. 2001).  Based on the number of periods out of 12 (3 seasons * 4 
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zones), the Proximity to Riparian Edge variable seems to provide both the most consistently 

average estimates and the estimates most frequently correlated to PT estimates (P<.10). 

 

All of the daily volumes based on the six methods were averaged to attain representative 

daily ecosystem ET estimates, which can be seen in comparison to the daily Priestley-Taylor 

estimates in Figure 21.  The average of the sap flow scaling methods and the PT estimates 

were most similar on days with low evaporative conditions (i.e. days of year 238, 240, 288, 

289, 301).  However, for zone 1, days with similar estimates varied, since some days had 

very high, very low and medium evaporative conditions.  Zone 1, however, varied from the 

other zones (see section 2.2) and it is unknown why this occurred.  Zone 1 also 

demonstrated on a number of days (i.e. days of year 238, 239, 274, 285, 302) that the scaled 

up sap flow average estimate was greater than the Priestley-Taylor estimate.  This usually 

occurred on days with very low evaporative conditions, but also occurred on days with 

higher temperatures.  Reasons for this are also unclear. 

 

Daily ET estimates based on scaled up sap flow averaged around 57% of the Priestley-

Taylor estimates for zones 2, 3, and 4 and 91% for zone 1.  These ratios are similar to ratios 

found for a stand of Maritime pine, which averaged a 55% ratio of sap flow estimates to 

energy balance-derived estimates (Granier 1990).  Again, it is unclear why zone 1 estimates 

were so different. 
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Figure 26 Daily estimates of ET for each zone based on the average of the six sap flow scaling methods 
and the Priestley-Taylor method. 
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4.3.3 Conclusions and Discussion  
 
Although there are few reported estimates of hourly sap flow for temperature hardwood 

species, three studies to date have reported values for Eastern hardwood forests including 

red maples.  Sap flow monitoring in an Eastern upland oak forest in Tennessee in 1997 

showed that understory red maples transpired a maximum daily depth of 2.2 mm/day 
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(Wullschleger, Hanson et al. 2001).  Present study maximum daily ET based on the six 

scaling parameters frequently surpassed this level.  Daily ET depths in zones 2, 3, and 4 

often rose to 3 mm/day, and in zone 1, most days except those with very low evaporative 

conditions experienced ET levels greater than 3 mm/day (see Figures 27 through 30).  The 

greater ET experienced in this study (if significant) is likely due to the shallow groundwater 

table and/or the presence of “edge effects”.  The maximum depth of water “lost” to ET in 

the upland oak forest occurred in mid-May before canopy closure and again in late June.  

The maximum depth of water lost to ET in this riparian wetland occurred mid-August and 

mid-October.  This could be due to meteorological differences between the years of the 

studies. 

 

Red maples in an upland oak forest in eastern Tennessee experienced unprecedented high 

hourly sap flow rates approaching 30cm3/cm2sapwood/hour (Wilson, Hanson et al. 2001).  

In the present study, daily maximum sap flow rates frequently exceeded 

30cm3/cm2sapwood/hour.  Of the 444 maximum sap flow rates recorded in 2002 (74 days, 6 

trees each day, 1 maximum for each tree), 58 maximum flow rates were above 

30cm3/cm2sapwood/hour, and 11 out of those 58 were greater than 

75cm3/cm2sapwood/hour.  The maximum daily sap flow rate experienced by any tree was 

138cm3/cm2sapwood/hour for tree 4 on day of year 187.  The dissimilarities between the red 

maples in this study and those in TN are likely due the monitored red maples in TN being 

located in the understory.  Most of the daily maximum sap flow rates recorded in this study 

were for trees 4 and 6 (both edge trees with intermediate canopy positioning). 
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An earlier study of red maple decoupling coefficients in an upland oak forest provided 

information on 12 red maples, some of which were dominant (Wullschleger, Wilson et al. 

2000).  Those 12 red maples in TN averaged daily sap flow depths of 0.7 to 2.5mm/day.  

Depending on the scaling parameter used, daily depth of sap flow in this study ranged from 

0.08 to 7.53mm/day with the average of all of the methods being 0.35 to 4.8mm/day 

throughout the zones.  The overall average daily depth of sap flow in the TN forest was 

1.5mm/day, while the riparian wetland in this study averaged 2.12mm/day.   

 

Another southeastern deciduous forest where sap flow monitoring of lower and mid-canopy 

red maples took place was in Duke Forest, NC (Oren and Pataki 2001).  Daily sap flow rates 

for the 1993 growing season there ranged from 6 to 40cm3/cm2sapwood/hour.  Daily sap 

flow rates for this study ranged up to 35cm3/cm2sapwood/hour.   

 
Overall, no one scaling method reliably provided ET estimates strongly correlated to 

the Priestley-Taylor derived ET estimates.  Figures 27 through 30 show the variability 

of the six methods based on sap flow scaling.  Figure 21 shows the variability of the 

Priestley-Taylor method in comparison to an average of the six sap flow derived ET 

estimates.  It is clear that estimates based on these seven methods varied throughout 

the seasons and throughout zones.   

 

When comparing sap flow-derived ET estimates with other water balance or energy 

balance techniques, quantifiable differences are prevalent.  Studies have shown that 

sap flow techniques provide lower ET daily and/or seasonal ET estimates than 

estimates based on water balances or energy balances (Dunn and Connor 1993; 
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Kostner, Granier et al. 1998; Wullschleger, Meinzer et al. 1998).  Discrepancies 

between methods have been attributed to:  radial variation in sap flow, delayed 

coupling between the atmosphere and stomatal response, daily radiation/shadowing 

regimes, and/or lack of accounting for the presence of understory ET.    

 

More studies of this nature are needed in order to understand the dynamics of each of 

these methods so that the most efficient and accurate scaling variable can be 

determined.  Though few conclusions can be extrapolated to other ecosystems based 

on the current data, it would be interesting to discern if these scaling variables result 

in similar findings in other ecosystems.  Similar findings at other ecosystems are 

doubtful, since even within the four zones results for each scaling variable varied in 

relation to one another.   
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Figure 27 Zone 1 daily ET estimates based on each of the six scaling variables for the 2002 growing season.   
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Figure 28 Zone 2 daily ET estimates based on each of the six scaling variables for the 2002 growing season. 
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Figure 29 Zone 3 daily ET estimates based on each of the six scaling variables for the 2002 growing season. 
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Figure 29 Zone 4 daily ET estimates based on each of the six scaling variables for the 2002 growing season. 
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5 Streamflow and Sap Flow Correlation Study 

5.1 Introduction 
 
Understanding and evaluating the impact of ET on riparian ecosystems is important 

for determining water budgets and interpreting nutrient cycles.  Riparian forests 

intercept groundwater flow bound for the stream channel.  Ultimately, this intercepted 

water returns to the atmosphere, while the nutrients absorbed from the groundwater 

remain within the woody vegetation (hence performing a nutrient-removing or 

“buffering” function).  Therefore, diurnal riparian ET rates must be understood to 

understand water and nutrient dynamics within a riparian ecosystem.  The effect of 

diurnal riparian ET rates on streamflow has not been studied fully.  This is likely due 

to the fact that ET rates are often assessed based on water balances (which cannot 

provide instantaneous measurements of ET due to storage changes) and energy 

balances (which are valid when analyzing longer time frames and not valid for 

riparian forest due to fetch limitations).   

 

Streamflow rates provide instantaneous measures of riparian ecosystem hydrology 

and reflect recent ET rates.  Thus, in this study, I examined the correlation between 

daily maximum sap flow rates and daily streamflow losses under baseflow conditions.  

In turn, hydrographs depicting those correlations will be developed.  Those 

relationships can then be used to help predict the effect of ET on streamflow and 

subsequent nutrient cycles.  
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5.2 Materials and Methods 
 
Streamflow data were needed to assess the impact of ET on hydrology within the 

wetland.  Streamflow sampling stations equipped with V-notch weirs were previously 

installed by the USDA Environmental Quality Lab.  Locations of these stations can 

be seen in Figure 3.  Stations are numbered upstream to downstream and they divide 

the area into 4 distinct zones.  Streamflow data from stations 2, 3 will be used when 

analyzing zone 2 ET.  Streamflow data from stations 3 and 4 will be used when 

analyzing zone 3 ET.  Streamflow sampling station 2 (where streamflow is relatively 

low) is equipped with a 60° V-notch weir.  Stations 3 and 4 are equipped with 90° V-

notch weirs.  All data were averaged every 30 min.  Days influenced by elevated 

groundwater levels due to recent precipitation events were not used; therefore, the 

results of this study can only be extrapolated to days with baseflow conditions.   

 

Sap flow data for zones 2 and 3 (see Chapter 2) were also needed to assess the impact 

of ET on hydrology within the study wetland.  ET rates from sap flow rates scaled up 

based on Distance from Edge (from Chapter 4) were used for this purpose.   

 

First, daily sap flow and streamflow trends were plotted for each evaporative 

condition group (Figures 31 and 32) to assess the differences between trends during 

very high, high, medium, and very low evaporative condition days.  Sap flow and 

streamflow trends were then averaged by evaporative condition group in order to 

quantify correlations. 
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Diurnal ET trends influence diurnal streamflow trends (Bowie and Kam 1968).  

Although useful, estimation of daily ET rates based on daily streamflow rates has not 

been done.  Daily maximum sap flow rates (DMSFR) and daily streamflow losses 

(DSL) were correlated in order to evaluate linkages between streamflow and sap flow 

trends within the riparian system.  Since streamflow peaks during the night (when ET 

does not impact streamflow), DSL were calculated by: 

 
Streammax – Streammin = Streamloss   
         Equation 6 
Where:  Streammax = maximum streamflow rate between 00:00 and 06:00  
  Streammin = minimum streamflow rate between 08:00 and 20:00 
  Streamloss = streamflow loss during the day 
 
Correlation analysis was performed between DSL and DMSFR using the Analyst 

Application of SAS v. 8.2.  The Appendix contains information on these tests.  

Correlation analysis was first performed for Zone 2 DMSFR and DSL at Stations 2 

and 3, and Zone 3 DMSFR and DSL at Stations 3 and 4.  After the initial correlation 

analysis was completed, correlation analysis was then performed for each evaporative 

condition group (see Chapter 3). 

 

Since streamflow varies due precipitation events, days were separated into stream 

groups based on 00:00 streamflow rates.  00:00 streamflow rates are typical of 

nighttime streamflow rates, which are not influenced by sap flow.  Daily streamflow 

levels for each station were divided into high, medium, and low groups according to 

Table 10 guidelines.  This method of grouping days decreased noise, as indicated by 

an analysis of variance (see Appendix Item 4) of Zone 3 daily volume ET showing 
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the streamflow grouping was significant (P=.0118).  Grouping days by evaporative 

conditions (Chapter 3) also decreased noise (P=.0024).    

 
Table 10 Guidelines used to separate days into streamflow groups.  Units in Liters/Hour 
streamflow. 
 

  Low  Medium High 

Station 2 0 to 200 200 to 350 350 to 600 
Station 3 0 to 500 500 to 800 800 to 1600  
Station 4 0 to 500 500 to 1000 1000 to 2000 

  
 

Correlation analysis between DSL and DMSFR was then performed based on all 

combinations of evaporative condition groups and streamflow groups when sufficient 

days (n>2) were available. 

 

Lastly, a correlation analysis between DSL at all 3 stations and daily ET estimates 

estimated using the Priestley-Taylor energy balance equation (in mm per day) was 

performed for the entire 2002 growing season (see Chapter 4 for description of 

Preistley-Taylor methods).   

5.3 Results 
 
Streamflow and sap flow trends for all evaporative condition groups and streamflow 

groups are shown in Figures 31 and 32.  These graphs depict the average impact daily 

ET trends have on daily streamflow trends.  Daily streamflow losses at stations 3 and 

4 roughly mimicked each other, except for when station 4 streamflow rates neared 

zero due to high sap flow rates and/or low groundwater inputs (see Figure 31d).  
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Average streamflow losses were greatest under very high and high evaporative 

condition days on days with high streamflow (see Figures 31a, 31d, and 32a). 

 

Daily sap flow rates typically began to climb around 07:00, peaked around 12:00 and 

ended their decline around 20:00.  In contrast, streamflow rates peaked right before 

sap flow began (around 07:00), bottomed out around 15:00, and rose gradually until 

morning.   

 

ET rates peaked between 11:00 and 12:00 except on days with very low evaporative 

conditions when peak times varied.  Minimum streamflow rates occurred between 

15:00 and 16:00, indicating a nearly 4-hour lag between peak sap flow rates and 

minimum streamflow rates.   
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Figure 30 Average daily streamflow and sap flow trends on very high and high evaporative 
condition days. 
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Figure 31 Average daily streamflow and sap flow trends on medium and very low evaporative 
condition days. 
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Table 11 indicates the correlation between DMSFR and DSL for the 2002 growing 

season.  Zone 2 DMSFR were correlated (P<.05) with Station 2 daily streamflow 

losses.  Station 3 streamflow losses were not correlated (i.e. P>.25) with Zone 2 or 

Zone 3 DMSFR, nor did Station 4 DSL correlate with Zone 3 DMSFR. 

 
 
Table 11 Correlation coefficients between maximum sap flow rates and streamflow losses during 
the 2002 growing season.  * indicates significance at the P<.05 level, ns denotes not significant at 
the .25 probability level, number in parentheses dictates number of sample days tested, and n/a 
means not available. 
 

  
Station 2 

Streamflow Losses 
Station 3 

Streamflow Losses 
Station 4 

Streamflow Losses 
Zone 2                    

Maximum Sap Flow Rates -0.44* (28) ns (39) n/a 
Zone 3                    

Maximum Sap Flow Rates n/a ns (39) ns (36) 
 
 
Table 12 indicates the correlation between DMSFR and DSL for groups of days with 

similar evaporative conditions.  Zone 2 DMSFR were correlated (P<.05) with Station 

2 DSL only on days with very high evaporative conditions.  Zone 2 DMSFR were 

correlated with Station 3 DSL on days very low evaporative conditions P<.10, 

respectively).  Zone 3 DMSFR were not correlated (P>.10) with Station 3 DSL 

regardless of evaporative conditions.  Zone 3 DMSFR were correlated (P<.10) with 

Station 4 DSL.       
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Table 12 Correlation coefficients between daily maximum ET (sap flow) rates and daily 
streamflow losses as calculated by evaporative condition group (very high, high, medium, and 
very low).  * and ** denote significance at the .05 and .10  probability levels, respectively.  ns 

denotes not significant at .10 probability level, number in parentheses dictates number of sample 
days tested, and n/a means not available. 
 

  
Very 
High High Medium 

Very 
Low 

Zone 2 Daily Max ET &       
Station 2 Daily Streamflow Losses 

-0.586* 
(15) 

ns         
(6) 

ns       
(5) n/a 

Zone 2 Daily Max ET &      
Station 3 Daily Streamflow Losses 

ns        
(20) 

ns           

(10) 
ns       
(6) 

0.993** 
(3) 

Zone 3 Daily Max ET &  
Station 3 Daily Streamflow Losses 

-0.546* 
(20) 

ns        
(10) 

ns           

(6) 
ns     
(3) 

Zone 3 Daily Max ET &      
Station 4 Daily Streamflow Losses 

ns        
(20) 

0.670** 
(7) 

ns       
(6) 

ns      
(3) 

 
 
Table 13 shows the results from the correlation analysis between DMSFR and DSL or 

groups of days with similar nighttime (baseflow) streamflow rates.  Zone 2 DMSFR 

were correlated with Station 2 DSL on days with High streamflow (P<.05).   

 
 
Table 13 Correlation coefficients between daily maximum ET (sap flow) rates and daily 
streamflow losses, as calculataed for streamflow groups (high, medium, and low).  * denotes 
significance at the .05 probability level. Ns denotes not significant at the .10 probability level, and 
number in parentheses dictates number of sample days tested. 
 

  High Medium Low 
Zone 2 Daily Max ET &         

Station 2 Daily Streamflow Losses 0.611* (14) ns (11) ns (14) 
Zone 2 Daily Max ET &         

Station 3 Daily Streamflow Losses ns (10) ns (9) ns (9) 
Zone 3 Daily Max ET &  

Station 3 Daily Streamflow Losses ns (14) ns (11) ns (14) 
Zone 3 Daily Max ET &         

Station 4 Daily Streamflow Losses ns (11) ns (11) ns (14) 
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Table 14 indicates results from the correlation analysis between DMSFR and DSL for 

groups of days with similar evaporative and streamflow conditions.  Zone 2 DMSFR 

were not correlated (P>.10) with Station 2 or Station 3 DSL under any conditions.  

Except on days with high evaporative conditions and low streamflow conditions 

(when P<.10), Zone 3 and Zone 4 DMSFR were not correlated with DSL at Stations 3 

and 4.   

 
 
Table 14 Correlation coefficients between maximum daily sap flow rates (ET) and daily 
streamflow losses as calculated for streamflow group (high, medium, and low) and evaporative 
condition group combinations.  * and ** denote significance at the .05 and .10 probability levels, 
respectively,  ns denotes not significant at the .10 probability level, number in parentheses 
dictates number of sample days tested, and n/a means not available. 
 

Zone 2 ET & Station 2 Streamflow 
High 

Streamflow 
Medium 

Streamflow 
Low 

Streamflow 
Very High Evaporative Conditions ns (3) ns (7) ns (5) 

High Evaporative Conditions ns (3) n/a ns (3) 
Medium Evaporative Conditions ns (3) n/a n/a 

Zone 2 ET & Station 3 Streamflow       
Very High Evaporative Conditions ns (7) ns (8) ns (5) 

High Evaporative Conditions ns (3) n/a ns (7) 
Medium Evaporative Conditions ns (3) ns (3) n/a 

Zone 3 ET & Station 3 Streamflow       
Very High Evaporative Conditions ns (7) ns (8) ns (5) 

High Evaporative Conditions ns (3) n/a 0.789*  (7) 
Medium Evaporative Conditions ns (3) ns (3) n/a 

Zone 3 ET & Station 4 Streamflow       
Very High Evaporative Conditions ns (7) ns (8) ns (5) 

High Evaporative Conditions n/a n/a 0.67** (7) 
Medium Evaporative Conditions ns (3) ns (3) n/a 
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Correlation analysis results between Priestley-Taylor-derived daily ET estimates and 

DSL at the three streamflow sampling stations are shown in Figure 33.  Daily 

streamflow losses at Station 2 were not correlated (P>.05) with daily ET estimates 

calculated from the Priestley-Taylor energy balance equation.  DSL at Stations 3 and 

4 were correlated (P<.05) with daily Priestley-Taylor-derived ET estimates.   

 
Figure 32 Relationships between Priestley-Taylor-derived daily ET estimates and daily 
streamflow losses incurred at each sampling station. 
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5.4 Discussion and Conclusions 
 
Average streamflow losses were greatest under very high and high evaporative 

conditions on days with high streamflow.  This was expected, as high ET rates would 

consequentially have a high impact on streamflow.  The greatest streamflow losses 

also occurred during days with high streamflow.  This was not expected, as it was 

thought that evaporative conditions would play a more influential role in determining 

streamflow losses.   

 

ET rates peaked between 11:00 and 12:00, except on days with very low evaporative 

conditions when peak times varied.  Minimum streamflow rates occurred between 

15:00 and 16:00.  This 4-hour lag between peak sap flow rates and minimum 

streamflow rates could play a major role in determining stream nutrient fluxes.     

 

Streamflow levels increased from upstream to downstream station, as groundwater 

flow accumulates as it progresses downstream.  Therefore, Station 2 streamflow rates 

were the lowest of Stations 2, 3, and 4 streamflow (as it is located upstream in the 

wetland).  Interestingly, Station 2 streamflow also indicated the least diurnal 

fluctuation due to ET.  This could be attributed to a narrower (and thus smaller) forest 

influencing streamflow at this station. 

 

Maximum sap flow rates of Zone 2 were correlated with Station 2 streamflow losses 

when averaged for the 2002 growing season.  This finding will allow Zone 2 
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maximum sap flow rates to be estimated using streamflow data and the relationship 

shown in Figure 33.   

 
Figure 33 Correlated (P<.05) average daily hydrological trends during the 2002 growing season 
between Zone 2 sap flow rates and Station 2 streamflow rates. 
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It is generally accepted that upstream riparian ET rates influence downstream 

streamflow rates.  However, results for Zones 2 and 3 suggest this is not the case 

here.  On days with very high evaporative conditions (when sap flow is perhaps most 

influential), zonal daily maximum sap flow rates were correlated to streamflow losses 

at their immediate upstream sampling stations (see Chapter 2 and Figure 34).  In 

addition, daily maximum sap flow rates for Zones 2 and 3 were not correlated with 

streamflow losses at their immediate downstream sampling stations.  On days with 

very low evaporative conditions, zonal ET was correlated with streamflow losses at 

their immediate downstream sampling stations (see Figures 34).  Results indicate that 
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maximum sap flow rates are correlated with both upstream and downstream 

streamflow losses depending on environmental conditions.     
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Figure 34 Correlated relationships between daily maximum sap flow rates and daily streamflow 
losses on days with similar evaporative conditions.    
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Figure 35 shows the relationship between DMSFR and DSL on days with high 

streamflow conditions, where Zone 2 DMSFR were correlated with Station 2 DSL.  

No correlations existed between maximum sap flow rates and streamflow losses 

during medium or low streamflow conditions.   

    

Figure 36 indicates the relationships between DMSFR and DSL under specific 

evaporative and streamflow conditions.  These relationships could be utilized when 

estimating maximum ET rates from streamflow rates on specific days with similar 

streamflow and evaporative conditions.  Using these graphs, ET rates for Zone 3 

could be estimated using streamflow data gathered on days with low streamflow.      
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Figure 35 Correlated (P<.05) relationships between daily maximum sap flow rates and daily 
streamflow losses on days with high streamflow conditions. 
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Figure 36 Correlated (P<.10) relationships between sap flow rates and streamflow rates under 
specific combinations of evaporative and streamflow conditions. 
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Results of the correlation analysis between Priestley-Taylor-derived daily ET 

estimates and DSL at the three streamflow sampling stations indicated that DSL at 

Stations 3 and 4 were correlated (P<.05) with daily Priestley-Taylor-derived ET 

estimates, but DSL at Station 2 were not (P>.05).  This suggests that streamflow 

losses at Station 2 may be more influenced by other conditions, such as a) a highly 

variable water table (and thus groundwater input), or b) the immediately upstream 

riparian forest being too narrow to influence streamflow losses.  

 

Overall, the limited number of days with available sap flow and streamflow often 

prevented the detection of correlations between daily maximum sap flow rates and 

daily streamflow losses for days with specific environmental conditions (i.e. 

streamflow conditions and evaporative conditions).  I would suggest monitoring sap 
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flow and streamflow on predetermined days (with specific streamflow conditions and 

similar evaporative conditions) for future studies to develop similar relationships.   

 

No DMSFR for any one zone correlated consistently with DSL from any one 

streamflow station.  I expected upstream sap flow rates to correlate with downstream 

streamflow rates, but this was seldom the case. Availabilty of more days for testing 

would allow determining the correlation between upstream streamflow rates and 

downstream sap flow rates.  It would be useful to ascertain if a) streamflow input into 

an area influences riparian ET due the upstream area “controlling” the water 

availability of the downstream area, b) streamflow output from an area is influenced 

by upstream sap flow, c) neither is true, or d) either is true under which conditions.  

All of these aspects of riparian hydrology must be explored further in order to 

continue to improve riparian vegetation planting strategies based on the impact ET 

has on streamflow.          
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6  Discussion and Conclusions 

6.1 Edge Effect Study Conclusions 
 
Results from the Edge Effect Study for the 2002 growing season indicate that trees 

located on the forest edge which were exposed to increased radiation intensities and 

wind speeds experienced greater daily volume sap flow and higher maximum daily 

sap flow rates than trees not exposed to the “edge effects” (P<.10).  This finding is 

notable since the edge effect was significant despite the variation caused by daily and 

seasonal environmental fluctuations in radiation intensities, wind speeds, relative 

humidity, and temperature.   

 

Forest edge trees were then shown to transpire more water daily than interior trees 

during Early Summer.  This suggests that vegetation planting strategies for Zone 2 of 

riparian forested areas (see Figure 1) should focus on maximizing crown exposure 

throughout the growing season by reducing stand density.  Further, if this finding is 

repeated in other studies of riparian ET, then planting strategies should arrange for a 

high proportion of trees to be exposed to edge effects.  Since pollutant concentrations 

in both overland flow and stream flow are highest during Spring and Early Summer, 

planting a greater number of trees near the riparian edge could positively influence 

stream flow nutrient concentrations.  Further studies of the impact edge effects have 

on early and late Spring ET rates are necessary to confirm this proposition.   

    

Edge effects did not influence ET levels during Mid-Summer or Late Summer.  High 

within-treatment variability and environmental heterogeneity throughout the stand 



 

111 

likely prevented the detection of a significant edge effect during these times.  This 

suggests that, during Mid- and Late Summer, planting strategies which do not take 

edge effects into account would have the same hydrological impact on the first-order 

stream as planting strategies which do take them into account.          

 

When days were separated into evaporative condition groups, it was found that ET 

rates are most influenced by edge effects during Early Summer days with high and 

medium evaporative conditions.  During these days, trees in close proximity to the 

riparian edge experienced a pronounced edge effect relative to trees located either 

near the stream or riparian edge.  Days with very low evaporative conditions likely do 

not account for a very high portion of seasonal ET.  However, days with very high 

evaporative conditions likely do.  It seems likely that high within-treatment variability 

on very high evaporative condition days prevented the detection of the edge effect.  

Further studies of days with very high evaporative conditions should be carried out.   

 

Results based on daily maximum sap flow rates and total daily sap flow volumes 

were similar.  Two differences between the results were: 1) Edge trees had higher 

peak rates during very high evaporative conditions days of Late Summer 2002, while 

the daily volumes were not different, and 2) Edge trees had significantly higher daily 

sap flow volumes than stream trees during Early Summer of 2002.  Other than these 

minor differences, the two methods of testing for the edge effect were comparable, 

which suggests that either test can be used to assess the influence edge effects have 

on riparian ET.  
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Overall, it was obvious that more replication and uniform sampling strategies would 

have increased the statistical power of detecting the edge effect on ET rates of the 

riparian wetland under consideration.  The two edge trees within the “edge” treatment 

group were not adjacent, and thus received differing radiation intensities throughout 

the day.  This likely often prevented the statistical detection of the edge effect for this 

riparian system.  Despite high variability within treatments and throughout the 

seasons, the edge effect was significant (P<.10) during Early Summer and on days 

with very high, high, and medium evaporative conditions.   

 

Finally, findings from the Edge Effect Study suggest that riparian buffer vegetation 

planting strategies should be improved to optimize the number of trees exposed to 

edge effects by staggering plantings along the forest edge and/or by decreasing stand 

density to increase available energy within existing stands.  Increasing the number of 

trees exposed to “edge effects” could increase the volume of water transpired by the 

buffer, thereby increasing nutrient uptake and buffering capability of the system.  

Edge effects, since found to significantly influence ET rates during Early Summer, 

could help decrease streamflow nutrient levels during this ecologically sensitive 

season.          

6.2 Ecosystem ET Study Conclusions 
 
In the Ecosystem ET Study, I compared ET estimates for four ecosystems based on 

seven scaling variables.  Results from this study demonstrated that, despite the 

widespread use of DBH as a scaling variable, it may not be the best choice.  Further 
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results indicated that scaling variables which account for factors other than tree age 

might be better when scaling up the flow estimates in a riparian forested wetland.   

 

Often, correlations between sap flow and some other meteorologically-derived 

estimate of ET were not significant (Dunn and Connor 1993; Wilson, Hanson et al. 

2001).  However, when ecosystem ET estimates for twelve periods (3 seasons * 4 

zones) were compared to estimates derived from the Priestley-Taylor (P-T) energy 

balance method, estimates based on DBH, Proximity to Gap Edge, and % Live 

Crown, were correlated (P<.10) to PT estimates for only 4 out of 12 periods.  

Estimates based on Canopy Position and % Crown Density were correlated (P<.10) to 

PT estimates for 5 out of 12 periods.  Estimates based on Proximity to Riparian Edge 

were correlated (P<.10) to PT estimates for 7 out of 12 periods.   

 

It should be noted that ecosystem estimates based on all of the 6 scaling methods did 

not correlate (P>.10) with Priestley-Taylor-derived estimates during Late Summer 

and were correlated (P<.10) with PT-derived estimates during Early Summer.  This 

suggests that ET rates of an Early Summer canopy were more coupled to atmospheric 

changes than ET rates of a Late Summer canopy.  This could be due to the Early 

Summer canopy being less full, which would allow for less shadowing and more 

available energy; perhaps these conditions are more reflected in the Priestley-Taylor 

model than those of a closed Late Summer canopy.     

 

Although there are few reported estimates of hourly sap flow for temperature hardwood  
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species, three studies to date have reported values for Eastern hardwood forests including 

red maples.  Sap flow monitoring in an Eastern upland oak forest in Tennessee in 1997 

showed that understory red maples transpired a maximum daily depth of 2.2 mm/day 

(Wullschleger, Hanson et al. 2001).   

 

Daily depth of water transpired by each of the four ecosystems frequently approached 3-mm 

per day.  In zone 1, daily ET frequently surpassed 3-mm.  Previous to this study, the 

reported depth of water transpired by a stand of red maples was 2.2-mm per day 

(Wullschleger, Wilson et al. 2000).  The greater ET experienced in this study (if significant) 

is likely due to the shallow groundwater table and/or the presence of “edge effects”.  The 

maximum depth of water “lost” to ET in the upland oak forest occurred in mid-May before 

canopy closure and again in late June.  The maximum depth of water lost to ET in this 

riparian wetland occurred mid-August and mid-October.  This could be due to 

meteorological differences between the years of the studies. 

 

Daily maximum sap flow rates frequently exceeded 30cm3/cm2sapwood/hour.  In 

comparison, red maples in an upland oak forest in eastern Tennessee experienced 

unprecedented high hourly sap flow rates approaching 30cm3/cm2sapwood/hour (Wilson, 

Hanson et al. 2001).  In the present study, of the 444 maximum sap flow rates recorded in 

2002 (74 days, 6 trees each day, 1 maximum for each tree), 58 maximum flow rates were 

above 30cm3/cm2sapwood/hour, and 11 out of those 58 were greater than 

75cm3/cm2sapwood/hour.  In a different study of 12 red maples in TN, average daily sap 

flow depths ranged from 0.7 to 2.5mm/day (Wullschleger, Wilson et al. 2000).  Depending 
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on the scaling variable used, daily depth of sap flow for this study’s riparian wetland ranged 

from 0.08 to 7.53mm/day with the average of all of the methods being 0.35 to 4.8mm/day 

throughout the zones.  The overall average daily depth of sap flow in the TN forest was 

1.5mm/day, while the riparian wetland in this study averaged 2.12mm/day.  The 

dissimilarities between the red maples in this study and those in TN are likely due the 

monitored red maples in TN being located in the understory.  Most of the daily maximum 

sap flow rates recorded in this study were for trees 4 and 6 (both edge trees with 

intermediate canopy positioning).   

 

When comparing sap flow-derived daily ET estimates with Priestley-Taylor energy 

balance ET estimates, differences were apparent.  Studies have shown that sap flow 

techniques provide lower ET daily and/or seasonal ET estimates than estimates based 

on water balances or energy balances (Dunn and Connor 1993; Kostner, Granier et al. 

1998; Wullschleger, Meinzer et al. 1998).  Discrepancies between methods have been 

attributed to:  radial variation in sap flow, delayed coupling between the atmosphere 

and stomatal response, daily radiation/shadowing regimes, and/or lack of accounting 

for the presence of understory ET.    

 

More studies of this nature are needed in order to understand the dynamics of each of 

these methods so that the most efficient and accurate scaling variable can be 

determined.  Though few conclusions can be extrapolated to other ecosystems based 

on the current data, it would be interesting to discern if these scaling variables result 

in similar findings in other ecosystems.   
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6.3 Streamflow and Sap Flow Linkage Study Conclusions 
 
ET rates peaked between 11:00 and 12:00, except on days with very low evaporative 

conditions when peak times varied.  Minimum streamflow rates normally occurred 

between 15:00 and 16:00.  This 4-hour lag between peak sap flow rates and minimum 

streamflow rates could play a major role in determining stream nutrient fluxes.     

 

Streamflow levels increased from upstream to downstream station, as groundwater 

flow accumulates as it progresses downstream.  Therefore, Station 2 streamflow rates 

were the lowest of Stations 2, 3, and 4 streamflow (as it is located upstream in the 

wetland).  Interestingly, Station 2 streamflow also experienced the least diurnal 

fluctuation due to ET.  This could be attributed to a narrower (and thus smaller) forest 

influencing streamflow at this station. 

 

Average streamflow losses were greatest under very high and high evaporative 

condition days on days with high streamflow.  This was expected, as high ET rates 

would consequentially have a high impact on streamflow.   

 

Maximum sap flow rates of Zone 2 were correlated with Station 2 streamflow losses 

when averaged for the 2002 growing season.  This finding will allow Zone 2 

maximum sap flow rates to be estimated using streamflow data and the relationship 

shown in Figure 36.   
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Results indicated that upstream riparian ET rates correlated with both downstream 

and upstream streamflow rates.  Daily maximum sap flow rates for Zones 2 and 3 on 

days with very high evaporative conditions (when sap flow is perhaps most 

influential), were correlated to streamflow losses at their immediate upstream 

sampling stations.  On days with medium and very low evaporative conditions, 

maximum ET rates for both zones were correlated with streamflow losses at their 

immediate downstream sampling stations. These results indicate that maximum sap 

flow rates are correlated with both upstream and downstream streamflow losses 

depending on environmental (both streamflow and evaporative) conditions. 

 

 



 

118 

Appendix 
 

1. SAS v. 8.2 Program:  Analysis of Variance (and Unplanned 
Mean Comparison Tests) of Edge Treatment Effect Using 
Total Daily Sap Flow Volumes. 

 When testing by year: 
  proc sort data=x; 
  by year edgetreatment treerep; 
  run; 
  proc means data=x noprint; 
  var dailysapflowvolume; 
  output out=y mean= ; 
  by year edgetreatment treerep; 
  run; 
  Proc mixed data=y; 
  class edgetreatment; 
  model dailysapflowvolume=edgetreatment; 
  lsmeans edgetreatment/adjust=tukey; 
  by year; 
  run; 
 When testing by year and evaporative condition group: 
  proc sort data=x; 
  by year evapgroup edgetreatment treerep; 
  run; 
  proc means data=x noprint; 
  var dailysapflowvolume; 
  output out=y mean= ; 
  by year edgetreatment treerep; 
  run; 
  Proc mixed data=y; 
  class year evapgroup edgetreatment; 
  model dailysapflowvolume=edgetreatment; 
  lsmeans edgetreatment/adjust=tukey; 
  by year; 
  run; 
 When testing by year, evaporative condition group, and season: 
  proc sort data=x; 
  by year season evapgroup edgetreatment treerep; 
  run; 
  proc means data=x noprint; 
  var dailysapflowvolume; 
  output out=y mean= ; 
  by year season edgetreatment treerep; 
  run; 
  Proc mixed data=y; 
  class year season evapgroup edgetreatment; 
  model dailysapflowvolume=edgetreatment; 
  lsmeans edgetreatment/adjust=tukey; 
  by year; 
  run; 
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2. SAS v. 8.2 (Analyst Application):  Correlation of Six ET 
Scaling Parameters.  Tested by Zone, Meteorological Group. 

 
 Correlated:  DBH, Edge, Gap, Canopy, LC, CD, PT 
 Where: DBH = ET estimates based on diameter at breast height scaling varia 
  Edge = ET estimates based on proximity to riparian edge scaling variable 
  Gap = ET estimates based on proximity to gap edge scaling variable 
  LC = ET estimates based on % live crown scaling variable 
  CD  = ET estimates based on % crown density scaling variable 
  PT = ET estimates based on Priestley-Taylor equation 
 By:  EvapGroup, Zone 
 Where:  EvapGroup = evaporative condition group (very high, high, medium, or very low) 

  Zone = zone 1,2,3 or 4 of the wetland. 
 
3. SAS v. 8.2 (Analyst Application):  Correlations Between Daily 

Streamflow Losses and Daily Maximum Sap Flow Rates.   
  
 Correlated:   Zn2ET with St2Strm  
   Zn2ET with St3Strm  
   Zn3ET with St3Strm  
   Zn4ET with St4Strm    
  Where: Zn2ET = maximum daily ET rate for wetland zone 2 
  Zn3ET = maximum daily ET rate for wetland zone 3 
  St2Strm = daily streamflow loss incurred at station 2 
  St3Strm = daily streamflow loss incurred at station 3 
  St4Strm = daily streamflow loss incurred at station 4 
  
 By:  EvapGroup, StrmGroup  
  
 Where:  EvapGroup = evaporative condition group (very high, high, medium, or very low) 

  StrmGroup = streamflow condition group (high, medium, or low).   
 
 
4. SAS v. 8.2: Analysis of Variance for Ecosystem ET for Zones 2 

and 3. 
 proc mixed data=AnovaData; 
 class evapgroup strmgroup; 
 model st3strm=evapgroup|strmgroup|zn2et; 
 run; 
 proc mixed data=AnovaData; 
 class evapgroup strmgroup; 
 model st3strm=evapgroup|strmgroup|zn3et; 

 run; 
 Where: EvapGroup= evaporative condition group 
  StrmGroup = nighttime streamflow condition group 
  St3Strm = daily streamflow losses at Station 3 
  Zn3ET = daily ecosystem ET estimate for Zone 2 
  Zn2ET = daily ecosystem ET estimate for Zone 3. 
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Figure 37 Monitored red maple #1 (see Table 1 in Chapter 3). 
 

 
Figure 38 Monitored red maple #2 (see Table 1 in Chapter 3). 
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Figure 39 Tree crown of monitored red maple #3 (see Table 1 in Chapter 3). 
 

 
Figure 40 Tree crown of monitored red maple #4 (see Table 1 in Chapter 3). 
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Figure 41 Tree crown of monitored red maple #5 (see Table 1 in Chapter 3). 
 

 
Figure 42 Tree crown of monitored red maple #6 (see Table 1 in Chapter 3). 
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Table 11 Early Summer meteorological descriptions for each day of year 2002 leading to 
evaporative condition groupings. 
 

2002 Early 
Summer 

Day of Year 

Precip-
itation 

Solar 
Radiation 

% Relative 
Humidity 

Wind 
Speeds 

Temp-
erature 

Evaporative 
Condition 

Group 

179 - - - - - Very Low 
195 - - - Med - Very Low 
169 - + + - - Average 
157 - + Med - + High 
170 - + Med - Med High 
178 - + Med Med + Very High 
191 + - - Med - Very Low 
188 + - + - - Very Low 
194 + - + Med - Very Low 
202 + - Med - Med Very Low 
172 + + + - - Average 
173 + + + - - Average 
175 + + + - + Average 
180 + + + - + High 
181 + + + Med + Very High 
184 + + + Med + Very High 
185 + + + Med + Very High 
186 + + + Med + Very High 
187 + + + Med - Average 
189 + + + Med Med Very High 
190 + + + + + Very High 
192 + + + + - Average 
193 + + + + + Very High 
197 + + + + - Average 
198 + + + + Med Very High 
155 + + Med - - High 
156 + + Med - - High 
161 + + Med - + High 
171 + + Med Med - High 
174 + + Med Med + Very High 
176 + + Med Med - High 
177 + + Med Med + Very High 
182 + + Med Med + Very High 
183 + + Med Med Med Very High 
196 + + Med Med Med Very High 
199 + + Med Med Med Very High 
200 + + Med + + Very High 
201 + + Med + + Very High 
203 + + Med + + Very High 
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Table 12 Mid-Summer and Late Summer meteorological descriptions for each day of year 2002 
leading to evaporative condition groupings. 
 

2002 Mid-
Summer 

Day of Year 

Precip-
itation 

Solar 
Radiation 

% Relative 
Humidity 

Wind 
Speeds 

Temp-
erature 

Evaporative 
Condition 

Group 

240 - - - - + Very Low 
244 - - Med + + Very Low 
235 - Med Med - + Average 
236 - Med Med Med Med Average 
243 + - - + + Very Low 
238 + - Med Med + Very Low 
229 + + + - - High 
230 + + + - - High 
231 + + + - - High 
232 + + + - - High 
233 + + + - - High 
234 + + + - - High 
237 + + + Med Med Very High 
246 + + + Med Med Very High 
247 + + + Med Med Very High 
248 + + + Med Med Very High 
249 + + + Med Med Very High 
250 + + + Med Med Very High 
251 + + + Med + Very High 
252 + + + Med - High 
253 + + + + Med Very High 
245 + + Med Med + Very High 
239 + Med + - + Average 
241 + Med Med Med Med Average 
242 + Med Med + Med Average 

 
 
 

      

2002 Late 
Summer 

Day of Year 
Precipitation Solar 

Radiation 
% Relative 
Humidity 

Wind 
Speeds Temperature 

Evaporative 
Condition 

Group 

289 - - - Med Med Very Low 
301 - - - Med - Very Low 
302 - - - + Med Average 
285 + - - - + Average 
286 + - - - Med Very Low 
288 + - - - - Very Low 
304 + - - + - Average 
300 + - + Med Med Average 
273 + + + - + Average 
274 + + + Med + Very High 
287 + + + Med Med Very High 
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Table 13 Meteorological descriptions for each day of year 2003 leading to evaporative condition groupings. 
 

2003 Day of 
Year 

Time 
Period Precipitation Solar 

Radiation 
% Relative 
Humidity 

Wind 
Speeds Temperature Evaporative 

Condition Group 

152 Early - - - - - Very Low 
153 Early - - - - - Very Low 
154 Early - - Med + - Very Low 
155 Early + + + - - Very Low 
156 Early + + Med Med - High 
187 Early + + Med Med + High 
211 Mid + - - - Med Very Low 
212 Mid + - - - Med Very Low 
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Table 14 P-value results of Chapter 3 tests of edge effect based on mean daily sap flow volumes.   
Results are arranged by relevant test (left-hand column) and by:  overall edge treatment effect 
(overall), Tukey’s adjusted Edge vs. Intermediate effect, and Tukey’s adjusted Edge vs. Stream 
effect. 
 

Yearly Overall Edge vs. Intermediate Edge vs. Stream 
2002 0.0805 0.0763 0.1775 
2003 0.2242 0.3865 0.2165 

 
Seasonal       

Early Summer 0.0568 0.0628 0.0881 
Mid-Summer 0.2608 0.2445 0.4903 
Late Summer 0.4075 0.3834 0.6868 

 
Evaporation 

Group       
Very High 2002 0.0997 0.0941 0.2171 

High 2002 0.0724 0.0741 0.1273 
Medium 2002 0.0769 0.0755 0.1501 

Very Low 2002 0.2255 0.2069 0.603 
High 2003 0.2201 0.4179 0.2075 

Very Low 2003 0.2307 0.3645 0.2291 
 

Early Summer       
Very High 2002 0.1391 0.1385 0.2402 

High 2002 0.0574 0.0623 0.092 
Medium 2002 0.0822 0.0858 0.1368 

Very Low 2002 0.211 0.2145 0.8952 
High 2003 0.2592 0.3688 0.2671 

Very Low 2003 0.2347 0.9917 0.2652 
 

Mid-Summer       
Very High 2002 0.1831 0.1668 0.4761 

High 2002 0.3431 0.3315 0.5319 
Medium 2002 0.363 0.6338 0.7753 

Very Low 2002 0.3797 0.3947 0.4869 
 

Late Summer       
Very High 2002 0.169 0.1764 0.9092 
Medium 2002 0.5266 0.5425 0.6269 

Very Low 2002 0.5069 0.4841 0.8642 
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Table 15 P-value results of Chapter 3 tests of edge effect based on mean daily maximum sap flow 
rates.   Results are arranged by relevant test (left-hand column) and by:  overall edge treatment 
effect (overall), Tukey’s adjusted Edge vs. Intermediate effect, and Tukey’s adjusted Edge vs. 
Stream effect. 
 

 

 
 
 
 

Yearly Overall Edge vs. Intermediate Edge vs. Stream 
2002 0.0805 0.0763 0.1775 
2003 0.2242 0.3865 0.2165 

 
Seasonal       

Early Summer 0.0568 0.0628 0.0881 
Mid-Summer 0.2608 0.2445 0.4903 
Late Summer 0.4075 0.3834 0.6868 

 
Evaporation Group (tested by season and 

evaporation condition group)     
Very High 2002 0.0997 0.0941 0.2171 

High 2002 0.0724 0.0741 0.1273 
Medium 2002 0.0769 0.0755 0.1501 

Very Low 2002 0.2255 0.2069 0.603 
High 2003 0.2201 0.4179 0.2075 

Very Low 2003 0.2307 0.3645 0.2291 
 

Early Summer (tested by season and 
evaporation condition group)     

Very High 2002 0.1391 0.1385 0.2402 
High 2002 0.0574 0.0623 0.092 

Medium 2002 0.0822 0.0858 0.1368 
Very Low 2002 0.211 0.2145 0.8952 

High 2003 0.2592 0.3688 0.2671 
Very Low 2003 0.2347 0.9917 0.2652 

 
Mid-Summer (tested by season and 

evaporation condition group)     
Very High 2002 0.1831 0.1668 0.4761 

High 2002 0.3431 0.3315 0.5319 
Medium 2002 0.363 0.6338 0.7753 

Very Low 2002 0.3797 0.3947 0.4869 
 

Late Summer (tested by season and 
evaporation condition group)     

Very High 2002 0.169 0.1764 0.9092 
Medium 2002 0.5266 0.5425 0.6269 

Very Low 2002 0.5069 0.4841 0.8642 
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Table 16 P-value results of Chapter 3 tests of edge effect based on mean daily sap flow volumes.   
Results are arranged by relevant test (left-hand column) and by:  overall significance of edge 
treatment effect (overall), Tukey’s adjusted Edge vs. Intermediate effect, and Tukey’s adjusted 
Edge vs. Stream effect. 
 

Yearly Overall Edge vs. Intermediate Edge vs. Stream 
2002 0.082 0.074 0.247 
2003 0.2316 0.3476 0.2351 

 
Seasonal       

Early Summer 0.0653 0.0621 0.1458 
Mid-Summer 0.2404 0.2248 0.4666 
Late Summer 0.389 0.3879 0.5362 

 
Evaporation Group       

Very High 2002 0.089 0.0799 0.3053 
High 2002 0.07 0.0642 0.1872 

Medium 2002 0.0729 0.0679 0.1769 
Very Low 2002 0.2243 0.2062 0.5052 

High 2003 0.2482 0.3747 0.2497 
Very Low 2003 0.2128 0.3169 0.2187 

 
Early Summer (tested by season 

and evaporation condition group)     
Very High 2002 0.1767 0.1617 0.5766 

High 2002 0.0586 0.0609 0.102 
Medium 2002 0.0916 0.0847 0.2242 

Very Low 2002 0.2014 0.1937 0.781 
High 2003 0.2482 0.3747 0.2497 

Very Low 2003 0.2446 0.3372 0.2583 
 

Mid-Summer (tested by season 
and evaporation condition group)     

Very High 2002 0.1271 0.1212 0.2555 
High 2002 0.3429 0.3238 0.7982 

Medium 2002 0.2819 0.3275 0.9998 
Very Low 2002 0.3856 0.4016 0.4911 

 
Late Summer (tested by season 

and evaporation condition group)     
Very High 2002 0.0412 0.0427 0.0739 
Medium 2002 0.5173 0.545 0.5994 

Very Low 2002 0.4898 0.4643 0.7652 
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Table 17 Zone 1 correlation coefficients for Early, Mid-, and Late Summer for the 7 ET 
estimation methods used in Chapter 5. Early Summer n=39, Mid-Summer n=19, Late Summer 
n=11. Where:  *, **, ***, and **** denote significance at the .10, .01, .001, and .0001 probability 
levels, and where ns denotes not significant at the .10 probability level. 
 
 
 

Early 
Summer DBH 

Proximity to 
Riparian 

Edge 

Proximity 
to Gap 
Edge 

Canopy 
Position 

% Live 
Crown 

% 
Crown 
Density 

Priestley-
Taylor 

DBH 1             
Edge 0.98**** 1           
Gap 0.98**** 0.98**** 1         

Canopy 0.96**** 0.98**** 0.96**** 1       
LC 0.99**** 0.99**** 0.99**** 0.97**** 1     
CD 0.99**** 0.99**** 0.99**** 0.98**** 0.99**** 1   
PT 0.59**** 0.56*** 0.59**** 0.52*** 0.59**** 0.58*** 1 

        
Mid-

Summer        
DBH 1             
Edge 0.94**** 1           
Gap 0.88**** 0.84**** 1         

Canopy 0.87**** 0.92**** 0.79**** 1       
LC 0.98**** 0.97**** 0.91**** 0.9**** 1     
CD 0.48* 0.38* 0.66* 0.24ns 0.47* 1   
PT 0.23ns 0.41* 0.14ns 0.39* 0.31ns -0.3ns 1 

        
Late 

Summer        
DBH 1             
Edge 0.97**** 1           
Gap 0.98**** 0.99**** 1         

Canopy 0.89*** 0.96**** 0.96**** 1       
LC 0.99**** 0.99**** 0.99**** 0.94**** 1     
CD 0.65* 0.65* 0.65* 0.69* 0.66* 1   
PT 0.32ns 0.3ns 0.29ns 0.25ns 0.31ns 0.42ns 1 
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Table 18 Zone 2 correlation coefficients for Early, Mid-, and Late Summer for the 7 ET 
estimation methods used in Chapter 5. Early Summer n=39, Mid-Summer n=19, Late Summer 
n=11. Where:  *, **, ***, and **** denote significance at the .10, .01, .001, and .0001 probability 
levels, and where ns denotes not significant at the .10 probability level. 
 
 

Early 
Summer DBH 

Proximity to 
Riparian 

Edge 

Proximity 
to Gap 
Edge 

Canopy 
Position 

% Live 
Crown 

% Crown 
Density 

Priestley-
Taylor 

DBH 1             
Edge 0.99**** 1          
Gap 0.97**** 0.94**** 1         

Canopy 0.97**** 0.97**** 0.93**** 1      
LC 0.99**** 0.99**** 0.96**** 0.98**** 1     
CD 0.99**** 0.99**** 0.96**** 0.97**** 0.99**** 1  
PT 0.59**** 0.59**** 0.57*** 0.53*** 0.59**** 0.59**** 1 

        
Mid-

Summer        
DBH 1             
Edge 0.98**** 1           
Gap 0.99**** 0.99**** 1         

Canopy 0.84**** 0.87**** 0.86**** 1      
LC 0.98**** 0.98**** 0.97**** 0.85**** 1     
CD 0.36ns 0.38ns 0.41* 0.63* 0.3ns 1   
PT 0.2ns 0.21ns 0.16ns 0.21ns 0.31ns -0.27ns 1 

        
Late 

Summer        
DBH 1          
Edge 0.99**** 1           
Gap 0.99**** 0.99**** 1       

Canopy 0.96**** 0.97**** 0.94**** 1       
LC 0.99**** 0.99**** 0.97**** 0.98**** 1    
CD 0.66* 0.69* 0.65* 0.7* 0.69* 1   
PT 0.3ns 0.35ns 0.38ns 0.41ns 0.36ns 0.11ns 1 
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Table 19 Zone 3 correlation coefficients for Early, Mid-, and Late Summer for the 7 ET 
estimation methods used in Chapter 5. Early Summer n=39, Mid-Summer n=19, Late Summer 
n=11. Where:  *, **, ***, and **** denote significance at the .10, .01, .001, and .0001 probability 
levels, and where ns denotes not significant at the .10 probability level. 
 
 
 

Early 
Summer DBH 

Proximity to 
Riparian 

Edge 

Proximity 
to Gap 
Edge 

Canopy 
Position 

% Live 
Crown 

% Crown 
Density 

Priestley-
Taylor 

DBH 1           
Edge 0.99**** 1           
Gap 0.96**** 0.98**** 1       

Canopy 0.95**** 0.96**** 0.93**** 1       
LC 0.99**** 0.99**** 0.96**** 0.99**** 1    
CD 0.99**** 0.99**** 0.97**** 0.93**** 0.98**** 1   
PT 0.59**** 0.59**** 0.58*** 0.51*** 0.56*** 0.61**** 1 

        
Mid-

Summer        
DBH 1             
Edge 0.98**** 1           
Gap 0.96**** 0.91**** 1         

Canopy 0.92**** 0.88**** 0.89**** 1       
LC 0.99**** 0.96**** 0.96**** 0.94**** 1     
CD 0.38ns 0.25ns 0.56* 0.49ns 0.42* 1   
PT 0.33ns 0.41* 0.16ns 0.32ns 0.33ns -0.42* 1 

        
Late 

Summer        
DBH 1             
Edge 0.99**** 1           
Gap 0.97**** 0.98**** 1         

Canopy 0.98**** 0.97**** 0.92**** 1       
LC 0.99**** 0.99**** 0.97**** 0.99**** 1     
CD 0.68* 0.71* 0.68* 0.7* 0.71* 1   
PT 0.28ns 0.3ns 0.31ns 0.29ns 0.3ns 0.52ns 1 
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Table 20 Zone 4 correlation coefficients for Early, Mid-, and Late Summer for the 7 ET 
estimation methods used in Chapter 5. Early Summer n=39, Mid-Summer n=19, Late Summer 
n=11. Where:  *, **, ***, and **** denote significance at the .10, .01, .001, and .0001 probability 
levels, and where ns denotes not significant at the .10 probability level. 
 

        

Early 
Summer DBH 

Proximity to 
Riparian 

Edge 

Proximity 
to Gap 
Edge 

Canopy 
Position 

% Live 
Crown 

% Crown 
Density 

Priestley-
Taylor 

DBH 1             
Edge 0.83**** 1           
Gap 0.98**** 0.8**** 1         

Canopy 0.98**** 0.85**** 0.98**** 1       
LC 0.99**** 0.85**** 0.99**** 0.99**** 1     
CD 0.99**** 0.85**** 0.99**** 0.99**** 0.99**** 1   
PT 0.6**** 0.44** 0.59**** 0.55*** 0.58*** 0.57*** 1 

        
Mid-

Summer        
DBH 1             
Edge 0.68** 1           
Gap 0.94**** 0.83**** 1         

Canopy 0.88**** 0.67* 0.92**** 1       
LC 0.96**** 0.84**** 0.99**** 0.9**** 1     
CD 0.38ns 0.09ns 0.44* 0.58** 0.36ns 1   
PT 0.19ns 0.56* 0.28ns 0.17ns 0.32ns -0.33ns 1 

        
Late 

Summer        
DBH 1             
Edge 0.88*** 1           
Gap 0.97**** 0.97**** 1         

Canopy 0.94**** 0.98**** 0.99**** 1       
LC 0.98**** 0.95**** 0.99**** 0.99**** 1     
CD 0.7* 0.67* 0.7* 0.71* 0.72* 1   
PT 0.31ns 0.26ns 0.28ns 0.3ns 0.31ns 0.51ns 1 
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