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Inquiry is fundamental to communication, and machines cannot effectively
collaborate with humans unless they can ask questions. Asking questions is also a
natural way for machines to express uncertainty, a task of increasing importance in
an automated society. In the field of natural language processing, despite decades of
work on question answering, there is relatively little work in question asking. More-
over, most of the previous work has focused on generating reading comprehension
style questions which are answerable from the provided text. The goal of my disser-
tation work, on the other hand, is to understand how can we teach machines to ask
clarification questions that point at the missing information in a text. Primarily, we
focus on two scenarios where we find such question asking to be useful: (1) clarifi-
cation questions on posts found in community-driven technical support forums such
as StackExchange (2) clarification questions on descriptions of products in e-retail
platforms such as Amazon.

In this dissertation we claim that, given large amounts of previously asked
questions in various contexts (within a particular scenario), we can build machine
learning models that can ask useful questions in a new unseen context (within the
same scenario). In order to validate this hypothesis, we firstly create two large
datasets of context paired with clarification question (and answer) for the two scenar-
ios of technical support and e-retail by automatically extracting these information
from available datadumps of StackExchange and Amazon. Given these datasets, in
our first line of research, we build a machine learning model that first extracts a set
of candidate clarification questions and then ranks them such that a more useful
question would be higher up in the ranking. Our model is inspired by the idea of
expected value of perfect information: a good question is one whose expected answer
will be useful. We hypothesize that by explicitly modeling the value added by an
answer to a given context, our model can learn to identify more useful questions. We
evaluate our model against expert human judgments on the StackExchange dataset
and demonstrate significant improvements over controlled baselines.



In our second line of research, we build a machine learning model that learns to
generate a new clarification question from scratch, instead of ranking previously seen
questions. We hypothesize that we can train our model to generate good clarification
questions by incorporating the usefulness of an answer to the clarification question
into the recent sequence-to-sequence based neural network approaches. We develop
a Generative Adversarial Network (GAN) where the generator is a sequence-to-
sequence model and the discriminator is a utility function that models the value of
updating the context with the answer to the clarification question. We evaluate our
model on our two datasets of StackExchange and Amazon, using both automatic
metrics and human judgments of usefulness, specificity and relevance, showing that
our approach outperforms both a retrieval-based model and ablations that exclude
the utility model and the adversarial training.

We observe that our question generation model generates questions that range
a wide spectrum of specificity to the given context. We argue that generating
questions at a desired level of specificity (to a given context) can be useful in many
scenarios. In our last line of research we, therefore, build a question generation
model which given a context and a level of specificity (generic or specific), generates
a question at that level of specificity. We hypothesize that by providing the level of
specificity of the question to our model during training time, it can learn patterns in
the question that indicate the level of specificity and use those to generate questions
at a desired level of specificity. To automatically label the large number of questions
in our training data with the level of specificity, we train a binary classifier which
given a context and a question, predicts whether the question is specific (to the
context) or generic. We demonstrate the effectiveness of our specificity-controlled
question generation model by evaluating it on the Amazon dataset using human
judgements.
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Chapter 1: Introduction

1.1 Motivation

An overarching goal of the natural language processing community is to de-

velop techniques that would enable machines to process naturally occurring text as

accurately as humans do. However, as humans, we may not always understand each

other. In pragmatics, Grice’s theory of conversational implicatures (Grice, 1975)

says that there is a difference between what someone says and what someone ‘impli-

cates’ by uttering a sentence. What someone says is determined by the conventional

meaning of the sentence uttered and contextual processes of disambiguation; what

she implicates is associated with the existence of some rational principles and max-

ims governing conversation. The Gricean maxims of conversation suggest speakers

and listeners adhere to a Cooperative Principle where a speaker communicates in-

formation that is as informative as required and not more. The speaker assumes

a certain common ground or mutual information or shared knowledge with the lis-

tener (Clark, 1981; Clark et al., 1991; Clark and Carlson, 1982). In case of gaps

or mismatches in knowledge, the listener resorts to asking questions. Correction

of such knowledge deficits has been identified as one of the key purposes of asking

questions (Graesser et al., 2008).
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With the advancements of artificial intelligence technologies, automated agents

such as text-based or voice-based search engines, interactive robots, automated car

navigation systems, etc are becoming increasingly common in our day-to-day lives.

We frequently use these bots to search for information or accomplish certain tasks.

However, often when a human user’s input to a bot is underspecified i.e. it is missing

some information, the bot might fail in its task. One key reasons for such failures is

the lack of common understanding between the human user and the bot. The human

user has a certain understanding of their problem/request and often times she fails

to convey the same understanding to the bot. In such a scenario, the bot can be

much more useful if it could try to establish this common understanding by asking

relevant questions. For example, if we search in a search engine “How long does it

take to get a PhD”, then the search engine could in turn ask “In which field?” since

the duration of the program would differ according to the field of study. Or if we

instruct a robot “Please bring me my coffee mug from the kitchen” and if there are

multiple mugs in the kitchen, the robot could in turn ask “What color is your coffee

mug?” in order to distinguish our mug from the other mugs in the kitchen. If we

wish to make such human-bot interactions as efficient as human-human interactions

are, it is important that we teach machines to ask clarification questions when faced

with uncertainty or knowledge gaps. We define “clarification question” as a question

that asks for some missing information in a given context.

In the field of natural language processing, however, despite decades of work

on question answering, there has been little work in question asking. Moreover

most of the previous work on generating questions has been on generating reading
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comprehension style questions: given a text, write a question that one might find

on a standardized test with the goal of assessing someone’s understanding of the

text. Comprehension questions, by definition, are answerable from the provided

text. Clarification questions, on the other hand, ask about information that is

missing from the given text and hence is not answerable from the text. The goal of

my thesis work is to explore how can a machine automatically generate clarification

questions when faced with uncertainty or knowledge gaps. More concretely, we

define our goal as given a context, we want to automatically generate a question

whose answer can fill in the information missing from the given context.

1.2 Specific Scenarios Considered in this Dissertation

Text generation has been studied extensively in the field of natural language

processing. Tasks such as machine translation, summarization, dialogue generation

have achieved varied degrees of success in this field. Most of the successful models

have been machine learning models where the models learn from vast amounts of

data. For instance, in the task of machine translation, models learn to translate

from say French to English by having access to large number of French-English

sentence pairs where the French sentence has been translated into English or vice-

versa. The French sentence in this case can be considered as the input whereas

the English sentence can be considered as the label or the output. A supervised

machine learning model will then learn to predict the label (or the output) given

the input. Motivated by these successes, in this thesis, we take a supervised learning
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approach for our task of generating useful clarification questions given a context.

Supervised learning approaches need access to large amounts of labelled data or

large amounts of input-output pairs (in our setting). We, therefore, approach the

problem of clarification question generation under two specific scenarios where we

have access to abundant such input-output data online.

Our first scenario is the generation of clarification questions during trou-

bleshooting of technical issues. About a decade ago, if you faced a technical problem

the only way to solve it would be to go to an expert. Due to the recent surge in the

use of internet, most of the problem solving these days happen online on question

answering (Q&A) forums where users post their problems and others provide assis-

tance by replying to the posts. However, Asaduzzaman et al. (2013) observed that

on StackExchange, which is one such community-driven problem solving platforms,

posts often go unanswered for a long time because they are not clear enough i.e.

they are missing some information. Consequently, other users ask clarification ques-

tions to those posts so that they can better offer assistance to the original poster.

For instance, in Figure 1.1, a user posts an issue she is facing while installing a

certain software on Ubuntu operating system. Another user on the forum asks for

the version of Ubuntu in the comment section of the post suggesting that the ver-

sion information could be useful in debugging the issue and hence should have been

included in the initial post. In this dissertation, we train a machine learning model

that learns to automatically generate a useful clarification question given an under-

specified post. We imagine a use case in which while a user is writing their post, a

system generates a single (or a shortlist of) question(s) asking for information that
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Figure 1.1: Sample post paired with a clarification question on StackExchange, an

online question-answering forum.

it thinks other users on the forum might need to provide a solution, thus enabling

the original poster to immediately clarify their post, potentially leading to a much

quicker resolution.

Our second scenario is the generation of clarification questions during online

shopping on e-retail platforms such as amazon.com. With the emergence of internet,

people frequently resort to online shopping for buying different products. Often

times the description of a product on these e-retail platforms could omit important

information that a potential buyer might seek. For example, Figure 1.2 shows the

description of a cookware set on amazon.com. A potential buyer asks “Are they

ok for induction stove?” in the FAQ section pointing out that this information

about the compatibility of the pan with induction stove tops is missing from the

current product description. In this dissertation, we train a machine learning model

that learns to automatically generate a useful clarification question given a product

description. As in the previous scenario, we imagine a use case in which while a
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Figure 1.2: Sample product description paired with a clarification question on Ama-

zon, an online shopping platform.

product seller is writing their initial product description, a system generates a single

(or a shortlist of) question(s) asking for information that it thinks a potential buyer

might need to make a more informed decision about the purchasing of the product,

thus enabling the seller to immediately clarify their description. In future, one

could also imagine building systems that can in turn answer these auto-generated

questions from other similar product descriptions or product reviews.

1.3 Contributions

Our first contribution is the creation of two clarification questions dataset.

Most previous work on question generation took the approach of transforming state-

ments into questions using syntactic rules. We instead take a novel approach where

we investigate how can we use existing human written questions to train a machine

learning model to in turn generate new questions. We hypothesize that given abun-

dant amounts of such naturally occurring questions, we can build a machine learning
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model that can learn useful patterns of question asking and generalize those to new

unseen contexts. We build our first dataset for the scenario of technical support.

We use existing StackExchange datadump to find posts on which people have asked

clarification questions and the author of the post has subsequently answered the

question to create our dataset of (context, question, answer) triples. We build our

second dataset for the scenario of online shopping (e-retail). We use existing Ama-

zon dataset to find product descriptions on which people have asked clarification

questions and the product seller (or another user) has answered the question to

create our dataset of (context, question, answer) triples.

In both the aforementioned scenarios, similar contexts tend to reoccur fre-

quently. For instance, under the StackExchange scenario, a post describing the

issue with the installation of a certain software X on Ubuntu operating system

might have similarities with another post describing the issue with the installation

of a different software Y on Ubuntu. Therefore, a question such as “What version

of Ubuntu are you using?” previously asked on a certain post could be useful for a

new post as well. Similarly, under the Amazon scenario, a kitchen appliance such

as toaster might share common features with another appliance such as a sandwich

maker. Therefore, a question such as “How long is the cord?” asked about toaster,

can be a useful question about sandwich maker as well. This motivates a learning

approach that looks at questions asked previously to contexts that are similar to the

given context and chooses a question from that candidate set that could be useful

to the given context as well. Our second contribution is a novel question ranking

model which first extracts a set of candidate questions from a pool of previously
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asked questions based on the similarity with the given context and then ranks these

questions in a way that a question more useful to the given context would be higher

up in the ranking.

A major limitation of the ranking approach is that it can only reuse the ques-

tions already existing in a dataset. It cannot generalize to new unseen scenarios. For

example, under the StackExchange scenario, if the previous posts only discuss issues

faced when using Ubuntu operating system, the model will not be able to generate

a question such as “What version of Windows are you using?”. We hypothesize

that we can train a sequence-to-sequence learning model (Sutskever et al., 2014)

to generate a clarification question one word at a time, given the context as the

input. Our third contribution is a clarification question generation model trained

to maximize an answer-based utility function. We use an approach similar to the

more recent generative adversarial networks (Goodfellow et al., 2014) to train our

model.

We observe that humans ask clarification questions at different levels of speci-

ficity. For instance, in Figure 1.1, the question “What version of Ubuntu are you

using?” is a generic question i.e. it could be useful for many other posts. Whereas,

a question such as “Does your bashrc file include the path to the library installa-

tion?” is specific to the given post. In Figure 1.2, the question “Are they ok for

induction stove?” is a question specific to the given product whereas the question

“Is there a guarantee or warranty?” is a generic question. We hypothesize that

we can guide a machine learning model to generate questions at a desired level of

specificity by providing the level of specificity as a signal while training the model.
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Our fourth contribution is a specificity-controlled question generation model which

given a context and a level of specificity (specific or generic), generates a question

at that level of specificity.

1.4 Roadmap

Chapter 2 presents a background study where we first define “clarification

questions” in more detail and discuss their importance. We describe some of the

existing works on question generation in the natural language processing literature.

We also review the different approaches to question generation including the tradi-

tional syntax based methods and the more recent neural network based methods.

The chapter also includes a brief review of the neural network models most relevant

to this dissertation. Finally, related to our specificity-controlled question generation

model, we discuss some of the recent works on generating text controlled for a given

style.

1.4.1 Dataset Creation

Chapter 3 describes our method for creating the StackExchange and the Ama-

zon clarification questions dataset. We begin by discussing the importance of asking

clarification questions in these two scenarios. We then describe in detail how we

extract the (context, question, answer) triple from the raw data including the pre-

processing steps. To create the dataset for the StackExchange scenario, we use the
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publicly available StackExchange datadump. On StackExchange, users routinely

ask clarification questions to post. The author of the post subsequently edits the

post answering the question. We use the StackExchange’s edit history to extract

the initial post as the “context”, the question asked in the comment section of the

post as the “question” and the edit made to the post in response to the question as

the “answer” to create our dataset of (context, question, answer) triples. To create

the dataset for the Amazon scenario, we repurpose the formally created Amazon

product review dataset (McAuley et al., 2015) and the Amazon question-answering

dataset (McAuley and Yang, 2016). We extract the product description as the

“context”, the question asked by a potential buyer in the FAQ section of the cor-

responding product as the “question” and the response given by the seller (or an

existing customer) to the question as the “answer” to create our dataset of (context,

question, answer) triples. We also include some data analysis.

1.4.2 Question Ranking Model

Chapter 4 introduces our novel question ranking model. In our learning model,

we represent the words in the context, question and answer using word embeddings

(Mikolov et al., 2013; Pennington et al., 2014) which correspond to vector represen-

tations of words in some N-dimensional space in a way that words that are closer in

meaning would be closer in the vector space. From these word level representations,

we obtain the sentence level representation using recurrent neural networks (Hochre-
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iter and Schmidhuber, 1997; Mikolov, 2010) which perform a series of non-linear

transformations on the input word vectors guided by a task specific loss function.

Such neural network models have recently proven to be effective for several natu-

ral language processing tasks such as part-of-speech tagging (Santos and Zadrozny,

2014), dependency parsing (Chen and Manning, 2014), sentiment analysis (Glorot

et al., 2011), etc. Our neural network model is inspired by the decision theoretic

framework of expected value of perfect information (EVPI). EVPI is a measurement

of the value of gathering information. We use EVPI to calculate which question is

most likely to elicit an answer that would make the post more informative. Given

a context and a set of candidate questions, we rank the questions by their EVPI

value.

In this chapter, we start by describing the notion of Expected Value of Per-

fect Information (EVPI) and then discuss how we model our problem under the

EVPI framework. We describe the three components of our model: question & an-

swer generator, answer model and utility calculator, and describe the details of our

neural network based representations. We discuss our human-based evaluation de-

sign and conclude with the results of our experiments on the StackExchange dataset.

1.4.3 Question Generation Model

Chapter 5 introduces our novel question generation model. Our question gen-

eration model is built on the sequence-to-sequence approach that has proven effective
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for several language generation tasks (Du et al., 2017; Serban et al., 2016b; Sutskever

et al., 2014; Yin et al., 2016). Unfortunately, training a sequence-to-sequence model

directly on context/question pairs yields generated questions that are highly generic.

For instance, in the context of asking questions about home appliances, these mod-

els frequently generate bland questions such “What are the dimensions?” or “Is

it made in China?’,’ corroborating a common finding in dialog systems (Li et al.,

2016b). Our goal is to be able to generate questions that are useful and specific.

Inspired by the idea of expected value of perfect information, we build a model that

uses the answer to the generated question to decide the usefulness of the question

by measuring the value of updating the context with the answer. We construct a

model that first generates a question given a context, and then generates a hypo-

thetical answer to that question. Given this (context, question, answer) tuple, we

train a utility calculator to estimate the usefulness of this question. We reinterpret

the utility value as a reward in reinforcement learning setting and train our model

to generate questions that will give us a high reward.

Reinforcement learning is one of the learning paradigms under machine learn-

ing which unlike supervised learning does not assume access to input-output pairs

apriori. Given some input, the model makes predictions and gets a reward for that

prediction from the environment. The goal of the model is to maximize its end

reward. The use of such a reward based learning strategy relaxes the strong de-

pendence on input-output pairs that is otherwise observed in a supervised learning

strategy. This is especially attractive in our problem setting since we find that a

given context can have multiple useful clarification questions. For instance, in Fig-
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ure 1.2, a question such as “Is there a guarantee or warranty?” could be useful

as well even though the question is very different from the one that the product

was paired with in the dataset. The use of a reward based learning strategy allows

the model to quantify the usefulness of a generated question by its utility value as

opposed to its similarity to the question paired with the given context in the dataset.

Further, we improve the utility calculator by training it along with our question

generation model. We show that the utility calculator can be generalized using ideas

for generative adversarial networks (Goodfellow et al., 2014) for text (Yu et al.,

2017). A generative adversarial network is a training procedure for “generative”

models that can be interpreted as a game between a generator and a discriminator.

The goal of the generator is to generate data such that it can fool the discriminator;

the goal of the discriminator is to be able to successfully distinguish between real

and generated data. In the process of trying to fool the discriminator, the generator

produces data that is as close as possible to the real data distribution. In our problem

setting, the utility predictor plays the role of the “discriminator” and the question

generator is the “generator” and we train our model end-to-end using adversarial

training approach. We find that our adversarially-trained model generates questions

that are more specific to the context.

In this chapter, we begin by describing the sequence-to-sequence neural net-

work framework on which we base our question generation model. We then discuss

the limitations of such sequence-to-sequence models and motivate the use of utility-

function based reward. Further, we describe the generative adversarial training

paradigm and discuss how we reinterpret our utility predictor in this adversarial
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training setting. Finally, we describe our automatic metric-based and human-based

evaluation strategy and present results of our experiments on both the StackEx-

change and the Amazon dataset.

1.4.4 Specificity-Controlled Question Generation Model

Chapter 6 introduces our specificity-controlled question generation model.

There has been previous work on generating text with specific stylistic constraints

both at the lexical (Edmonds and Hirst, 2002; Inkpen and Hirst, 2006; Kamps et al.,

2004; Reiter et al., 2005) and more recently at sentence level (Jhamtani et al., 2017;

Xu et al., 2012; ?). Our model is primarily based on the idea of side constraints

where the source is appended with an artificial token denoting the style in which we

want the model to generate its target. This idea has been used before for control-

ling politeness (Sennrich et al., 2016), voice (Yamagishi et al., 2016), and formality

(Niu et al., 2017, 2018) in machine translation. In our setting, the side constraint

corresponds to the level of specificity. We annotate a set of 3000 questions from

the Amazon dataset with their level of specificity using crowdsourcing. Next, we

train a model to automatically identify the level of specificity given the context and

the question (Louis and Nenkova, 2011). We use this model to append the source

context with the level of specificity of the target question. We finally retrain our

previously described question generation model with the modified source. At test

time, given a context and a level of specificity, our model generates a clarification

question at that level of specificity.
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In this chapter, we begin by describing our method for annotating the ques-

tions with their level of specificity using crowdsourcing. We then describe our feature

based learning model for automatically identifying the level of specificity of clarifi-

cation questions. Finally, we describe how we integrate these specificity annotations

as side constraints into our question generation model. We present the results of

our experiments on the Amazon dataset.

1.4.5 Future Directions

Chapter 7 concludes this thesis by summarizing our contributions and dis-

cussing the shortcomings of our approaches. We also present some avenues of future

work where teaching machines to ask useful questions would be helpful. For in-

stance, in the context of goal oriented dialogue, teaching an agent to ask the right

questions to a human can help the agent successfully solve a task. In the context of

writing assistance, teaching machines to identify important gaps in the content and

ask the right questions to the human writer can help the writer fill those informa-

tional gaps. Another potential direction is the use of multi-modal inputs to guide

machines to ask useful questions. For instance, in the context of robot navigation,

teaching a robot to ask the right questions using both visual context (surrounding

environment) and textual context (human interaction) can help the robot resolve its

uncertainty and thus enable it to navigate more easily in a given environment. The

skill of asking the right questions is an important yardstick of human intelligence

and therefore teaching machines to ask useful questions can take us a step closer to
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building intelligent artificial agents.
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Chapter 2: Background

2.1 Definition and Importance of Clarification Questions

We define “clarification question” as a question that asks about some informa-

tion “X” that is currently missing from a given context but is essential for someone

trying to solve a task or make a decision using the given context. Graesser et al.

(1992) identify the four different purposes of questions as correction of knowledge

deficits (e.g. information seeking question such as “What is the color of the coffee

mug?”), monitoring common ground (e.g. “Are we meeting after lunch today?”),

social coordination of action (e.g. “Can you please close the door behind you?”)

and control of conversation and attention (e.g. “Hello Sir, how are you doing to-

day?”). Our definition of clarification question aligns most with the first purpose:

correction of knowledge deficits. We consider this definition of clarification ques-

tions in the context of problem solving. This definition is subsumed by the broader

definition of clarification questions which includes any questions whose purpose is

to eliminate confusion, ambiguity or misunderstanding and seek additional essen-

tial information. Clarification questions can be of two types: open questions and

closed questions. Open clarifying questions are the ones that take the form of what,

when, where, which, how and why questions (e.g. How are you installing this soft-

17



ware? ). Whereas, closed clarifying questions take the form of yes/no questions (e.g.

Do you have Powerpoint installed in your computer? ). Clarification questions are

sometimes also known as probing questions since they probe the participants of the

discussion to give more information on what they said.

Asking questions is considered to be central to learning, cognition and ed-

ucation. Researchers in education and development psychology have found that

teaching students to ask probing questions in a classroom setting can help foster

their learning (Graesser and Person, 1994; Rosenshine et al., 1996). The art of

asking good probing questions requires a deep understanding of the subject matter

and the ability to identify what is the essential missing information. Therefore,

learning to ask useful questions can help students develop essential skills such as

reasoning, problem solving and knowledge building. Adults ask clarification ques-

tions often when participating in discussions. Asking clarification questions helps

the speaker and the listener establish a common ground which is required for an

effective communication.

With the advancements of artificial intelligence technologies, we find ourselves

interacting more and more with automated agents in our daily lives. In order for

these agents to be successfully communicating with humans, it is important that

they are able to establish the same mutual common ground with humans. There-

fore, it is important that these agents learn how to ask clarification questions to

humans when they face with uncertainty. Learning to ask useful questions would

also help these agents achieve the same kind of reasoning and understanding abilities

as humans (Vanderwende, 2008).
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Figure 2.1: An example of a reading comprehension passage and a question whose

answer can be found in the given passage from Heilman (2011).

2.2 Different Types of Question Generation Work

2.2.1 Reading Comprehension Question Generation

The task of question generation is defined as automatically generating a ques-

tion, given a context. Most previous work on question generation has been on

generating reading comprehension style questions: given text, generate a question

whose answer can be found in the given text (Heilman, 2011; Olney et al., 2012;

Rus et al., 2011; Vanderwende, 2008). For instance, in Figure 2.1, given the passage

highlighted in green, the task is to generate a question such as the one highlighted

in red with the goal of assessing someone’s understanding of the given passage.

Automatically generating such reading comprehension questions can be helpful in

creating standardized tests. In this dissertation, on the other hand, our goal is

to generate questions whose answer cannot be found in the given text. Therefore,

the challenge in our work is not limited to identifying relevant information from a
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given text, but requires a broader understanding of the subject at hand and asking

questions that can identify important missing information in a given text.

2.2.2 Question Generation in Dialogue

Outside reading comprehension, the task of question generation has been stud-

ied the most under the context of task oriented dialogue (Grosz and Sidner, 1986).

In a task oriented dialogue, a system interacts with a human with the purpose of

accomplishing a given task. For instance, consider the task of flight booking. A

system interacting with a human user would ask the user a set of questions that

would enable the system to book a flight for the human user. Under the context of

such task oriented dialogue, the intent of teaching a system to ask questions is to fill

some predefined slots (Bobrow et al., 1977; Goddeau et al., 1996; Lemon et al., 2006;

Williams et al., 2013; Young et al., 2013). For instance, in travel booking, the slots

would include origin city, origin time, airline etc (refer Figure 2.2). Correspondingly,

the system would generate questions such as “What time do you want to leave?”,

“Which airline would you prefer?”, etc that would help fill those predefined slots.

In contrast, in our work we do not assume access to such predefined slots apriori.

The goal is to identify these missing slots implicitly and ask a question about it.

Another use case of question generation in dialogue is to resolve ambiguity.

For instance, in spoken dialogue, due to error prone automatic speech recognition

(ASR) systems, clarifying the intent of the user becomes important. Clark (1996)

and Allwood (2000) argue that the aim of clarification questions in human-human
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Figure 2.2: An example interaction between a user and a system in the context of

travel booking where they system asks questions to fill a set of predefined slots.

dialogue is to resolve misunderstanding at the following levels: securing attention,

hearing an utterance, meaning of an utterance and deciding which action is appro-

priate. Most spoken dialogue systems ask generic clarification questions such as

“What did you say?” or “Can you please repeat?” when faced with uncertainty.

Stoyanchev et al. (2014), on the other hand, develop a model with the aim of gen-

erating more targeted clarification questions. For instance, consider the interaction

below:

A: When did the problems with [power ] start?

B: The problem with what?

A: Power

Speaker B asks a targeted clarification question instead of merely saying “Please re-

peat”. They present an approach for generating more natural clarification questions

using rules based on human behavior. Our work is similar to this work in that our

goal is also to generate more natural clarification questions. However, in our work,

the ambiguity in the original intent is not because of failure of the ASR system but

because of a piece of information that is missing from the given context. Hence, we
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aim to generate clarification questions that point at the missing information instead

of those that point at an information that is unclear in the given context.

Following Stoyanchev et al. (2014), there have been other similar works such

as recognizing intention through clarification dialogue (Trott et al., 2016) and entity

disambiguation through clarification dialogue (Coden et al., 2015). Our work is

similar to these in that we also aim to generate questions to better understand the

original intent. But our work aims to resolve such ambiguity at a more general level

by asking for missing information instead of specifically disambiguating an intent or

an entity.

2.2.3 Question Generation for Text Understanding

Liu et al. (2010) propose a novel question generation model that generates

trigger questions as a form of support for students’ learning through writing. For

instance, if a student is writing a related work section, then their system would gen-

erate questions that would help the student augment their writing with supporting

arguments. Figure 2.3 shows an example use case of this system where, when the

author writes an argument, the system generates the questions that encourage the

author to provide more reasoning to the argument. Our work is similar to this work

in that our aim is also to augment the given context with additional informational

content. However, the intent of generating questions in our scenario is to resolve an

uncertainty or to fill informational gaps rather than help the author improve their

understanding of the original text.
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Figure 2.3: An example of an argument followed by questions that encourage further

explanation of the argument from Liu et al. (2010)

Figure 2.4: Example of a system asking series of questions to simplify the original

user query from Artzi and Zettlemoyer (2011)

Artzi and Zettlemoyer (2011) use human-generated clarification questions to

drive a semantic parser where the clarification questions are aimed towards simplify-

ing a user query. For instance, consider the user query shown in Figure 2.4. In order

to simplify the complex query, the system in turn asks the user follow-up questions

that helps the system parse the original user query more easily. Our work departs

from this work in that we generate questions to fill some missing information in a

given text instead of generating questions that reiterates something that was already

stated before.
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2.2.4 Visual Question Generation

Most previous work at the intersection of language and image processing has

been in caption generation where given an image the goal is to generate a caption

that explains the image. For instance, given an image such as the top image in

Figure 2.5, the goal would be to generate a caption such as “A man and a woman

standing next to a fallen motorcycle”. However, recently Mostafazadeh et al. (2016)

introduced the visual question generation task where the goal is to generate natural

and engaging questions about an image. For instance, for the top image in Fig-

ure 2.5, the goal is to generate questions such as “Was anyone injured?”, similar to

what a human would think about when they look at this image. Somewhat similar

to clarification questions in our work, these questions do not ask about something

that is already present in the image but rather ask about something that can be

inferred from the given image. Following this work, Mostafazadeh et al. (2017)

introduced an extension of this task called the Image Grounded Conversation task

where they use both the image and some initial textual context to generate a natural

follow-up question and a response to that question. Our work departs from these

work in that, given a context, we assume there is a goal to be accomplished using

the given information (which is more specific than say the broader goal of image

understanding suggested perhaps by Mostafazadeh et al. (2016)). And therefore,

the questions generated by our work aim at asking for information that can help

someone achieve that goal faster.
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Figure 2.5: Example from the Visual Question Generation task (Mostafazadeh et al.,

2016) and the Image Grounded Conversation task (Mostafazadeh et al., 2017).

2.2.5 Question Refinement to Help Question-Answering

The task of question-answering can be defined as given a question, retrieve

(or generate) an answer to the question from a document (or a set of documents)

or a database. Previous work in question-answering find that retrieving the correct

answer could largely depend on the way the question is asked. Therefore, there has

been work on refining a given question with the aim of improving the accuracy of a

question-answering system. For instance, the keywords to questions (K2Q) system

(Zheng et al., 2011) generates a list of candidate questions and refinement words,

given a set of input keywords, to help a user ask a better question. Figueroa and

Neumann (2013) rank different paraphrases of query for effective search on forums.
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Romeo et al. (2016) develop a neural network based model for ranking questions

on forums with the intent of retrieving similar other question. Buck et al. (2017)

propose an active question answering model where they build an agent that learns

to reformulate the question to be asked to a question-answering system so as to

elicit the best possible answers. As a future direction, one could imagine building a

complementary system to our work which can automatically answer the questions

generated by our system with the help of previous related contextual information.

2.3 Approaches to Question Generation

In this section, we describe the different major approaches to question gener-

ation explored by the natural language processing community.

2.3.1 Syntactic Rule based Methods

Given that most previous work on question generation has been on reading

comprehension style question generation, the task of question generation then turns

out to be, given a sentence (or a text), transform the sentence to a question. For

instance, given a statement “John met Sally”, their system generates “Who met

Sally?”, “Who did John meet?” and “Did John meet Sally?”. One way to achieve

this would to identify name entities or adjunct roles in the statement and map

them to the appropriate Wh-question. For instance, the sentence “<Person>Albert

Einstein</Person> developed the theory of relativity.” may be transformed into the

question “Who developed the theory of relativity?” by mapping the Person named
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entity “Albert Einstein” to the question type “Who”. Enumerating rules for such

wh-movement based transformations can be sometimes challenging, especially in the

English language. For instance, the sentence “James Madison, following Thomas

Jefferson, was elected as the 4th president of United States.” should be transformed

into “Following Thomas Jefferson, who was elected as the 4th president of United

States?” instead of the awkward transformation “Who, following Thomas Jefferson,

was elected as the 4th president of United States?”

Heilman (2011) propose a three step approach for factoid question generation

where they first extract a set of factual statements from complex input texts, trans-

form the factual statements into candidate questions and then rank them such that

a better question is higher up in the ranking. Their system uses semantic entail-

ment and presupposition for the extraction of sets of simplified factual statements

from embedded constructions in complex input sentences, Given the simplified state-

ments, they identify the answer phrases that may be targets for WH-movement and

convert them into question phrases. Lastly, they use a feature-based linear regression

model to rank the candidate questions.

Rus et al. (2011, 2010) introduced the question generation shared task where

the task is defined as generate a question from a paragraph and generate ques-

tion from a sentence such that the answer to the question can be found in the

corresponding paragraph or the sentence. The systems submitted to these tasks

mainly used handcrafted rules and features for generating questions (Ali et al.,

2010; Kalady et al., 2010). Under template based methods, Chen (2009) generate

questions from knowledge structure by filling templates “Why/How did <character>
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<verb> <complement>?”. Olney et al. (2012) generate questions from knowledge

representation modeled as a concept map. Labutov et al. (2015) generate high-level

question templates by crowdsourcing and given a text segment, rank question tem-

plates that are relevant. However the crowdsourcing method of collecting data leads

to significantly less data than we collect using our method.

2.3.2 Neural Network based Methods

Sequence-to-sequence based network based models (explained in detail in §2.4)

have had significant success at a variety of text generation tasks, including machine

translation (Bahdanau et al., 2015; Luong et al., 2015), summarization (Nallapati

et al., 2016), dialog (Bordes and Weston, 2016; Li et al., 2016a; Serban et al., 2016b,

2017), textual style transfer (Jhamtani et al., 2017; Kabbara and Cheung, 2016;

Rao and Tetreault, 2018) and question answering (Serban et al., 2016b; Yin et al.,

2016). The key idea behind these sequence-to-sequence approaches is that given

large amounts of input, output sequence pairs, the model learns internal represen-

tations such that at test time, given an input sequence, it generates the appropriate

output sequence.

Recently, there have been work on generating reading comprehension style

questions using such neural network models. Serban et al. (2016a) created a large

(30 million) factoid question-answering dataset by transforming facts in the Freebase

into natural language questions. Their question generation model was inspired by

the well-known attention-based encoder-decoder model (Luong et al., 2015) used for
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machine translation. Duan et al. (2017) extract a large number of question-answer

pairs from community question answering forums and use them to train an attention-

based sequence-to-sequence learning approach to generate challenging questions for

the reading comprehension task. They find that their approach outperforms previous

rule-based question generation approaches when evaluated using automatic metrics

and human judgments. Du et al. (2017) propose an attention-based encoder-decoder

model for generating questions from text passages and show that humans find the

questions generated by their model to be more natural and more difficult to answer

compared to rule-based systems.

There has been also work on using neural networks for building question gener-

ation models that in turn assist question answering. Yuan et al. (2017) use sequence-

to-sequence learning approach to generate natural language questions from docu-

ments, conditioned on answers. Their question generation model maximizes a re-

ward which is defined by the performance on a downstream question answering task.

Sachan and Xing (2018) propose a self-training method for jointly learning to ask

and answer questions. Their model is also based on sequence-to-sequence learning

with soft attention. Tang et al. (2018) use generative adversarial network (GAN)

based approach for jointly learning the tasks of question answering and question

generation.

Under visual question generation, Mostafazadeh et al. (2016) propose a neural

network based approach for question generation where they process the image input

using a convolutional neural network (CNN) and the text input using a recurrent

neural network (RNN). Li et al. (2018) propose to jointly train the two tasks of visual
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question generation and visual question answering using recurrent neural networks.

In our work, we use sequence-to-sequence based neural network to generate

clarification question, given a textual context. In Chapter 5, we describe our ques-

tion generation model where we begin with a maximum-likelihood based training

approach followed by a reinforcement learning based training. Our final model uses

a generative adversarial training approach to train a sequence-to-sequence based

neural network model.

2.4 Relevant Neural Network Models

Applying machine learning algorithms to natural language data requires trans-

forming text into numeric representation as a first step. Until recently, the dominant

approach to learning such representations has been the use of hand-crafted features

that are developed based on the task at hand. Deep learning or neural network

modeling (Goodfellow et al., 2016) allows us to automatically learn representations

of text without requiring feature engineering. In this section, we give an overview

of the neural network models used in this dissertation.

2.4.1 Feedforward neural network

Feedforward neural networks or multilayer perceptrons are functions that per-

form a series of nonlinear transformations on a given input vector to obtain an

output. The term feedforward comes from the fact that in these models, informa-

tion flows from the input into intermediate computations and finally to the output.
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There are no feedback connections in which the output is fed back into the model.

In our work, we use a feedforward neural network to compute a value between 0 and

1, given an input vector. In Figure 2.6, the input layer consists of the input vector

(~x = {x1, x2, ..., xn}) of n dimensions, the hidden layers consists of hidden units (hi)

and the output layer consists of single output unit y. We use a fully connected

feedforward neural network consisting of K hidden layers where each hidden unit hi

in the input layer lk is connected to each of the units in the next hidden layer lk+1.

Each of the connections correspond to a nonlinear transformation such as a tanh.

hki = tanh( ~wki · ~ok−1 + bki ) (2.1)

oki = tanh(hki ) (2.2)

y = sigmoid(oK1 ) (2.3)

~wki = {wk1 , wk2 , ..., wkrk}

~ok = {ok1, ok2, ..., okrk}

wkij : weight for hidden unit hkj in layer lk for incoming hidden unit hk−1
i in layer lk−1

bki : bias for hidden unit i in layer lk

hki : hidden unit i in layer lk

oki : output for hidden unit i in layer lk

rk : number of hidden units in layer lk

This network is trained (i.e. the weights w and the bias b are learned) using
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Figure 2.6: A fully connected feedforward neural network with an input layer, two

hidden layers (with four hidden units each) and an output layer.

backpropagation to minimize loss such as the cross-entropy loss between all (x, y)

pairs in the training data.

2.4.2 Recurrent neural network

The feedforward neural network described before cannot make use of sequen-

tial information present in language. It processes each word in the sentence inde-

pendently without considering the dependencies between those words. However, in

language, words in a sentence are related to each other. For instance, to predict the

next word in a sentence, we need to look at the previous words. Recurrent neural

networks (RNN) allows us to capture these dependencies (Hopfield, 1982; LeCun

et al., 1990). Given an input sequence (x1, x2, x3, ..., xn), RNN reads the input from

left to right and computes an hidden state ht at each timestep t. The hidden state

is computed using both the input at the current timestep xt and the hidden state
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from the previous timestep ht−1.

ht = σh(Whxt + Uhht−1 + bh) (2.4)

ot = σy(Wyht + by) (2.5)

where xt: input vector

ht: hidden layer vector

yt: output vector

Wh, Uh,Wy: weight matrices (parameters)

bh, by: bias (parameter)

σh, σy: nonlinear activation functions such as tanh

The model is trained using a variant of backpropagation called backpropa-

gation through time. RNNs suffer from the issue of vanishing gradient when the

input sequences are very long. Long-short term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) networks are a variant of RNNs that try to overcome this issue

by having an extended memory which allows them to remember inputs over a long

period of time.

2.4.3 Sequence-to-sequence neural network

We describe sequence-to-sequence learning model (Sutskever et al., 2014).

Given an input sequence x = (x1, x2, ..., xN), this model generates an output se-

quence y = (y1, y2, ..., yT ). The architecture of this model is an encoder-decoder
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Figure 2.7: Recurrent neural network operating over the input sequence x one word

at a time.

with attention. The encoder is a recurrent neural network (RNN) operating over

the input word embeddings to compute a source representation S̃. The decoder uses

this source representation to generate the target sequence one word at a time:

p(y|S) = p(y1, y2, ..., yT |S) =
T∏
t=1

p(yt|y1, y2, ..., yt−1, S) (2.6)

In the above equation, the chain rule permits the calculation of the joint

distribution of the output token probabilities using the product of the individual

output token probabilities. The predicted token yt is the token in the vocabulary

that is assigned the highest probability using a softmax function. The standard

training objective for sequence-to-sequence model is to maximize the log-likelihood

of all (x, y) pairs in the training data D.
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Figure 2.8: Sequence-to-sequence learning model which takes in an input sequence

and generates an output sequence one word at a time.

2.5 Generating Text with Stylistic Variations

In the field of natural language processing, the task of automatically generating

text in a particular style has been studied using parallel data and without using

parallel data. Under style transfer using parallel data, Sheikha and Inkpen (2011)

collect pairs of formal and informal words and phrases from different sources and

use a natural language generation system to generate informal and formal texts by

replacing lexical items based on user preferences. Xu et al. (2012) was one of the first

works to treat style transfer as a sequence to sequence task. They generate a parallel

corpus of 30K sentence pairs by scraping the modern translations of Shakespeare

plays and train a phrase-based machine translation system to translate from modern

English to Shakespearean English. More recently, Jhamtani et al. (2017) show that a

copy-mechanism enriched sequence-to-sequence neural model outperforms Xu et al.

(2012) on the same set. In text simplification, the availability of parallel data

extracted from English Wikipedia and Simple Wikipedia (Zhu et al., 2010) led to

the application of phrase-based machine translation (Wubben et al., 2012) and more
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recently neural network based machine translation (Wang et al., 2016) models.

Under style transfer without using parallel data, Hu et al. (2017) control the

sentiment and the tense of the generated text by learning a disentangled latent rep-

resentation in a neural generative model. Ficler and Goldberg (2017) control several

linguistic style aspects simultaneously by conditioning a recurrent neural network

language model on specific style (professional, personal, length) and content (theme,

sentiment) parameters. There has also been work on controlling style in neural ma-

chine translation. Sennrich et al. (2016) control the politeness of the translated

text via side constraints, and the methods raised BLEU score by 3.2 points. Niu

et al. (2017) control the level of formality of machine translation output by selecting

phrases of a requisite formality level from the k-best list during decoding. They find

that the best BLEU scores are obtained when the level of formality given as input

to the machine translation system matches the nature of the text being translated.

In the field of text simplification, more recently, Xu et al. (2016) learn large-scale

paraphrase rules using bilingual texts whereas Kajiwara and Komachi (2016) build

a monolingual parallel corpus using sentence similarity based on alignment between

word embeddings.

In our work, we use a semi-supervised approach to generating text in a given

style. During training our model, we append the source with a special token in-

dicative of the style of the target sentence. These tokens are embedded into the

source sentence representation and control target sequence generation via the at-

tention mechanism. Sennrich et al. (2016) append <T> or <V> to the source text

for distinguishing between the familiar (Latin Tu) and the polite (Latin Vos) second
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person pronoun in the German output. Johnson et al. (2017) and Niu et al. (2018)

concatenate parallel data of various language directions and mark the source with

the desired output language to perform multilingual or bi-directional NMT. KOBUS

et al. (2017) and Chu et al. (2017) add domain tags for domain adaptation in neural

machine translation. Mima et al. (1997) improve rule-based machine translation by

using extra-linguistic information such as speaker’s role and gender. Lewis et al.

(2015) and Niu and Carpuat (2016) equate style with domain, and train conversa-

tional machine translation systems by selecting in-domain (i.e. conversation-like)

training data. Similarly, Wintner et al. (2017) and Michel and Neubig (2018) take

an adaptation approach to personalize machine translation with gender-specific or

speaker-specific data.

In summary, in this chapter we present a background study where we first

define clarification questions and state their importance in human communication

and therefore in human computer interactions. We discuss previous works in the

general area of question generation and briefly explain previous major approaches

to question generation. We also introduce the major neural network models that we

use in our work. Finally, we discuss previous work related to text generation with

stylistic variations.
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Chapter 3: Dataset Creation

3.1 StackExchange Dataset

StackExchange is a network of online question answering websites about varied

topics like Academia, Ubuntu operating system, Latex, etc. The sites are modeled

after StackOverflow, a popular platform used for asking and answering questions on

a wide range of topics in computer programming. On this platform, users frequently

post issues they are facing with a particular topic and other users on the forum help

resolve the issue. For instance, in Figure 3.1, a user posts an issue they are facing

with installing an application on Ubuntu operating system. Another user comes and

asks a clarification question in the comment section asking for the version of Ubuntu

suggesting that that information is important for resolving the issue. The author

subsequently comes back and edits the original post adding the version information.

The data dump of StackExchange contains timestamped information about

the posts, comments on the post and the history of the revisions made to the post.

We use this data dump to create our dataset of (post, question, answer) triples:

where the post is the initial unedited post, the question is the comment containing

a question and the answer is either the edit made to the post after the question or
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Figure 3.1: Example of a post on askubuntu.com where a user asked a clarification

question in the comments section of the post following which the author of the

post edited the post adding the missing information pointed out by the clarification

question.

the author’s response to the question in the comments section.1

Extract posts: We use the post histories to identify posts that have been updated

by its author. We use the timestamp information to retrieve the initial unedited

version of the post.

Extract questions: For each such initial version of the post, we use the timestamp

information of its comments to identify the first comment made to the post. If the

1We use data from StackExchange; per license cc-by-sa 3.0, the data is “intended to be shared

and remixed” (with attribution).
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comment contains a question mark ‘?’, we truncate the comment till the question

mark ‘?’ to retrieve the question part of the comment.

Filtering out questions: We find that about 7% of the questions are rhetoric that

indirectly suggest a solution to the post. For e.g. “have you considered installing

X?”. We do a manual analysis of these non-clarification questions and hand-crafted

a few rules to remove them. We filter out questions that indirectly suggest a solution

by ignoring questions that start with one of these phrases: “have you”, “did you

try”, “can you try” or “could you try”. We also ignore questions that contain one

of the following words ‘duplicate’, ‘upvote’, ‘downvote’, ‘vote’, ‘related’, ‘upvoted’,

‘downvoted’ or ‘edit’. We ignore questions that contain more than 20 tokens. Ques-

tions often start with “@username” when it is directed to a specific user. In these

cases, we remove the initial part of the question corresponding to “@username”.

Extract answers: We extract the answer to a clarification question in the follow-

ing two ways:

1. Edited post : Authors tend to respond to a clarification question by editing

their original post and adding the missing information. In order to account for

edits made for other reasons like stylistic updates and grammatical corrections,

we consider only those edits that are longer than four words. Authors can

make multiple edits to a post in response to multiple clarification questions.To

identify the edit made corresponding to the given question comment, we choose
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Figure 3.2: Example of a post on askubuntu.com where a user asked a clarification

question in the comments section of the post and the author of the post answered

the question as a subsequent comment.

the edit closest in time following the question.

2. Response to the question: Authors also respond to clarification questions as

subsequent comments in the comment section (see Figure 3.2). We extract the

first comment by the author following the clarification question as the answer

to the question.

In cases where both the methods above yield an answer, we pick the one that is

the most semantically similar to the question, where the measure of similarity is

the cosine distance between the average word embeddings of the question and the

answer.
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Train Tune Test

askubuntu 19,944 2493 2493

unix 10,882 1360 1360

superuser 30,852 3857 3856

Table 3.1: Table above shows the sizes of the train, tune and test split of our dataset

for three domains.

We extract a total of 77,097 (post, question, answer) triples across three do-

mains in StackExchange (Table 3.1). Although StackExchange consists of many

sites, we choose the ones above because: a) the data dump available for them were

moderately big in size to train a model on; b) these domains contain clarification

questions that are generic enough to be useful for many different posts; and finally

c) the three domains were close enough so that we could combine them and train

on a larger dataset.

3.2 Analysis of StackExchange Dataset

How often are extracted questions clarifications? A natural question to our

process of data creation would be how often is the extracted question a clarification

question. We sample a set of 1000 questions from our dataset and design a crowd-

sourced task on Figure-Eight where given a question we ask annotators to choose

whether the question was: (a) Asking for more information, (b) Providing an answer

or a suggestion; or (c) Neither.2 We collect three annotations per question. We find

2www.figureeight.com

42



that 91% of the questions were marked with option (a), 7% with option (b) and 2%

with option (c). These numbers suggest that a large portion of the extracted ques-

tions are indeed “clarification questions”. Additionally, we analyze the questions

marked as “providing a solution” and find that majority of these started with one

of the following phrases: “have you”, “did you try”, “can you try”, “could you try”.

We preprocess our dataset to remove all such instances.

How useful are clarifications questions? A clarification question is useful if it

helps in generating an answer for a given post. Imagine a scenario in which a post

goes unanswered for some time. Following this, a clarification question gets asked on

this post and then the post gets an answer. Such a scenario will help showcase the

usefulness of clarification questions. We estimate such a usefulness by calculating

the following two probabilities for posts that have not received an answer within a

week:

Pr(A|CQ) =
#(A|CQ)

#(A|CQ) + #(¬A|CQ)

Pr(A|¬CQ) =
#(A|¬CQ)

#(A|¬CQ) + #(¬A|¬CQ)

where:

#(A|CQ): # answered posts with a clarification question

#(¬A|CQ): # unanswered posts with a clarification question

#(A|¬CQ): # answered posts without a clarification question

#(¬A|¬CQ): # unanswered posts without a clarification question
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Table 3.2 shows these probabilities for the three data domains. We can see

that, overall, the likelihood of a post getting an answer with a clarification question

is higher than the the likelihood of a post getting an answer without a clarification

question.

Yes/No clarification questions We argue in the introduction of Chapter 4 that

asking a question like “What version of Ubuntu do you have?” is more useful than

asking a more specific question that might yield a Yes/No answer. This raises the

question of how many clarification questions in our dataset are Yes/No questions.

We manually inspect 100 randomly selected clarification questions in our dataset

and find that 13 of them were Yes/No questions. This suggests that users, on these

forums, tend to ask questions that are generic enough to elicit a useful answer more

than a specific question.

Multiple clarification questions On analysis, we find that 35%-40% of the posts

get asked multiple clarification questions. We include only the first clarification

question to a post in our dataset since identifying if the following questions are

clarifications or a part of a dialogue is non-trivial.
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askubuntu unix superuser

Pr(A|CQ) 0.82 0.85 0.45

Pr(A|¬CQ) 0.77 0.80 0.34

Table 3.2: Likelihood of a post getting answered with and without a clarification

question

3.3 Amazon Dataset

Amazon (amazon.com) is an online shopping platform where product sellers

post descriptions of their products and users buy them online. Often when the

given description is missing some important information, users ask questions in the

frequently-asked-questions section of the product. For instance, Figure 3.3 shows the

description of a cookware set under the “Home & Kitchen” category of amazon.com

and a clarification question that asks if the cookware set is induction safe (i.e. works

on induction stove).

McAuley and Yang (2016) introduced the Amazon question-answering dataset

where each instance consists of a question asked about a product on amazon.com

combined with other information (product ID, question type “Yes/No”, answer type,

answer and answer time). We extract the product ID, question and answer from

this dataset. To obtain the description of the product, we use the Amazon reviews

dataset (McAuley et al., 2015) which includes product ID and product description.

We consider at most 10 questions for each product. This dataset includes several

different product categories. We choose the Home and Kitchen category since it
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Figure 3.3: Example of a product description on amazon.com followed by a clarifi-

cation question and an answer to the question.

contains a high number of questions. This dataset consists of 19, 119 training, 2, 435

validation and 2, 305 test examples, and each product description contains between

3 and 10 questions (average: 7).
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Chapter 4: Question Ranking Model

4.1 Introduction

In this chapter we describe our model for ranking clarification questions. A

principal goal of asking questions is to fill information gaps, typically through clar-

ification questions. We take the perspective that a good question is the one whose

likely answer will be useful. Consider the exchange in Figure 4.1, in which an ini-

tial poster (who we call “Terry”) asks for help configuring environment variables.

This post is underspecified and a responder (“Parker”) asks a clarifying question (a)

below, but could alternatively have asked (b) or (c):

(a) What version of Ubuntu do you have?

(b) What is the make of your wifi card?

(c) Are you running Ubuntu 14.10 kernel 4.4.0-59-generic on an x86 64 architecture?

Parker should not ask (b) because an answer is unlikely to be useful; they should

not ask (c) because it is too specific and an answer like “No” or “I do not know”

gives little help. Parker’s question (a) is much better: it is both likely to be useful,

and is plausibly answerable by Terry.

In this work, we design a model to rank a candidate set of clarification questions

by their usefulness to the given post. We imagine a use case (more discussion in §4.6)
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Figure 4.1: A post on an online Q & A forum “askubuntu.com” is updated to fill

the missing information pointed out by the question comment.

in which, while Terry is writing their post, a system suggests a shortlist of questions

asking for information that it thinks people like Parker might need to provide a

solution, thus enabling Terry to immediately clarify their post, potentially leading

to a much quicker resolution.

To develop our model we take inspiration from the decision theoretic frame-

work of the Expected Value of Perfect Information (EVPI) (Avriel and Williams,

1970), a measure of the value of gathering additional information. In our setting, we

use EVPI to calculate which question is most likely to elicit an answer that would

make the post more informative (§ 4.2). Formally, for an input post p, we want to

choose a question q that maximizes Ea|p,q[U(p+a)], where a is a hypothetical answer

and U is a function measuring the utility of post p if a were to be added to it. To
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Figure 4.2: We formulate our ranking problem as, given a post, first extract a set of

ten candidate questions and then rank them such that a more useful question would

be higher up in the ranking

achieve this, we construct two models:

(1) an answer model, which estimates P[a | p, q], the likelihood of receiving answer

a if one were to ask question q on post p (§4.2.2);

(2) an utility calculator, U(p), which measures the utility of the post (§4.2.3).

Given these two models, at prediction time we search over a shortlist of possible

questions for that which maximizes the EVPI. We formulate this task as a ranking

problem where given a post and a list of candidate questions, the task is to rank the

questions such that a more useful question would be higher up in the ranking (refer

Figure 4.2). The candidate list includes the “original” question asked to the post

and nine other questions that we extract from posts that are similar to the given

post.1 Note that this setting is different from the distractor-based setting popularly

1Henceforth we refer to the question paired with the post as the “original” question
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used in dialogue (Lowe et al., 2015) in that the nine other questions can include a

good question.

We train our answer model and our utility calculator jointly based on (p, q, a)

triples that we extract from StackExchange (§3.1), using its edit history (Figure 4.1).

In the figure, the initial post fails to state what version of Ubuntu is being run. In

response to Parker’s question in the comments section, Terry, the author of the post,

edits the post to answer Parker’s clarification question. Terry might also choose to

answer the clarification question in the subsequent comment. We extract the initial

post p, question posted in the comments section q, and edit to the original post or

the comment following the clarification question comment as answer a to form our

(p, q, a) triples.

We evaluate our models using human judgments that we collect on Upwork.2

We ask annotators to select what they thought was the single best question to ask,

and additionally mark as “valid” any other questions that they thought would be

okay to ask (§ 4.3). We evaluate models both on the task of returning the original

clarification question and also on the task of picking any of the candidate clarification

questions marked as good by experts. We find that our EVPI model outperforms

the baseline models when evaluated against expert human annotations. We include

a few examples of human annotations along with our model performance on them

in § 4.5. We have released our dataset of ∼77K (p, q, a) triples and the expert

annotations on 500 triples to help facilitate further research in this task.3

2https://www.upwork.com
3https://github.com/raosudha89/ranking_clarification_questions
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4.2 Model description

We build a neural network model inspired by the theory of expected value

of perfect information (EVPI). EVPI is a measurement of: if I were to acquire

information X, how useful would that be to me? However, because we haven’t

acquired X yet, we have to take this quantity in expectation over all possible X,

weighted by each X’s likelihood. In our setting, for any given question qi that we

can ask, there is a set A of possible answers that could be given. For each possible

answer aj ∈ A, there is some probability of getting that answer, and some utility if

that were the answer we got. The value of this question qi is the expected utility,

over all possible answers:

EV PI(qi|p) =
∑
aj∈A

P[aj|p, qi]U(p+ aj) (4.1)

In Eq 4.1, p is the post, qi is a potential question from a set of candidate

questions Q and aj is a potential answer from a set of candidate answers A. Here,

P[aj|p, qi] measures the probability of getting an answer aj given an initial post p

and a clarifying question qi, and U(p + aj) is a utility function that measures how

much more complete p would be if it were augmented with answer aj. The modeling

question then is how to model:

1. The probability distribution P[aj|p, qi] and

2. The utility function U(p+ aj).

In our work, we represent both using neural networks over the appropriate inputs.

We train the parameters of the two models jointly to minimize a joint loss defined
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such that an answer that has a higher potential of increasing the utility of a post

gets a higher probability.

Figure 5.1 describes the behavior of our model during test time. Given a post

p, we generate a set of candidate questions and a set of candidate answers (§4.2.1).

Given a post p and a question candidate qi, we calculate how likely is this question

to be answered using one of our answer candidates aj (§4.2.2). Given a post p and

an answer candidate aj, we calculate the utility of the updated post i.e. U(p + aj)

(§ 4.2.3). We compose these modules into a joint neural network that we optimize

end-to-end over our data (§4.2.4).

4.2.1 Question & answer candidate generator

Given a post p, our first step is to generate a set of question and answer

candidates. One way that humans learn to ask questions is by looking at how

others ask questions in a similar situation. Using this intuition we generate question

candidates for a given post by identifying posts similar to the given post and then

looking at the questions asked to those posts. For identifying similar posts, we use

Lucene, a software extensively used in information retrieval for extracting documents

relevant to a given query from a pool of documents.4 Lucene implements a variant

of the term frequency-inverse document frequency (TF-IDF) model to score the

extracted documents according to their relevance to the query. We use Lucene to

find the top 10 posts most similar to a given post from our dataset (§ 3.1). We

consider the questions asked to these 10 posts as our set of question candidates Q

4https://lucene.apache.org/
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Figure 4.3: The behavior of our model during test time: Given a post p, we

retrieve 10 posts similar to post p using Lucene. The questions asked to those 10

posts are our question candidates Q and the edits made to the posts in response to

the questions (or the author’s response to the question in the comments section) are

our answer candidates A. For each question candidate qi, we generate an answer

representation F (p, qi) and calculate how close is the answer candidate aj to our

answer representation F (p, qi). We then calculate the utility of the post p if it were

updated with the answer aj. Finally, we rank the candidate questions Q by their

expected utility given the post p (Eq 4.1).

and the edits made to the posts in response to the questions as our set of answer

candidates A. Since the top-most similar candidate extracted by Lucene is always

the original post itself, the original question and answer paired with the post is

always one of the candidates in Q and A. § 3.1 describes in detail the process of

extracting the (post, question, answer) triples from the StackExchange datadump.
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4.2.2 Answer modeling

Given a post p and a question candidate qi, our second step is to calculate

how likely is this question to be answered using one of our answer candidates aj.

We first generate an answer representation by combining the neural representations

of the post and the question using a function Fans(p̄, q̄i) (details in § 4.2.4). Given

such a representation, we measure the distance between this answer representation

and one of the answer candidates aj using the function below:

dist(Fans(p̄, q̄i), âj) = 1− cos sim(Fans(p̄, q̄i), âj)

The likelihood of an answer candidate aj being the answer to a question qi

on post p is finally calculated by combining this distance with the cosine similarity

between the question qi and the question qj paired with the answer candidate aj:

P[aj |p, qi] = exp−dist(Fans(p̄, q̄i), âj) ∗cos sim(q̂i, q̂j) (4.2)

where âj, q̂i and q̂j are the average word vector of aj, qi and qj respectively

(details in §4.2.4) and cos sim is the cosine similarity between the two input vectors.

We model our answer generator using the following intuition: a question can be

asked in several different ways. For e.g. in Figure 4.1, the question “What version of

Ubuntu do you have?” can be asked in other ways like “What version of operating system

are you using?”, “Version of OS?”, etc. Additionally, for a given post and a question,

there can be several different answers to that question. For instance, “Ubuntu 14.04
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LTS”, “Ubuntu 12.0”, “Ubuntu 9.0”, are all valid answers. To generate an answer

representation capturing these generalizations, we train our answer generator on

our triples dataset (§3.1) using the loss function below:

lossans(pi, qi, ai, Qi) = dist(Fans(p̄i, q̄i), âi) (4.3)

+
∑
j∈Q

(
dist(Fans(p̄i, q̄i), âj) ∗ cos sim(q̂i, q̂j)

)

where, â and q̂ is the average word vectors of a and q respectively (details in §4.2.4),

cos sim is the cosine similarity between the two input vectors.

This loss function can be explained using the example in Figure 4.4. Question

qi is the question paired with the given post pi. In Eq 4.3, the first term forces the

function Fans(p̄i, q̄i) to generate an answer representation as close as possible to the

correct answer ai. Now, a question can be asked in several different ways. Let Qi be

the set of candidate questions for post pi, retrieved from the dataset using Lucene

(§ 4.2.1). Suppose a question candidate qj is very similar to the correct question

qi ( i.e. cos sim(q̂i, q̂j) is near zero). Then the second term forces the answer

representation Fans(p̄i, q̄i) to be close to the answer aj corresponding to the question

qj as well. Thus in Figure 4.4, the answer representation will be close to aj (since qj

is similar to qi), but may not be necessarily close to ak (since qk is dissimilar to qi).

This is similar to the idea of co-occurrence smoothing (Essen and Steinbiss, 1992;

Resnik, 1993), a method which combines prediction information of distinct words

based on their distributional similarity in order to smooth language models.

55



Figure 4.4: Training of our answer generator. Given a post pi and its question qi,

we generate an answer representation that is not only close to its original answer ai,

but also close to one of its candidate answers aj if the candidate question qj is close

to the original question qi.

4.2.3 Utility calculator

Given a post p and an answer candidate aj, the third step is to calculate the

utility of the updated post i.e. U(p+aj). As expressed in Eq 4.1, this utility function

measures how useful it would be if a given post p were augmented with an answer aj

paired with a different question qj in the candidate set. Although theoretically, the

utility of the updated post can be calculated only using the given post (p) and the

candidate answer (aj), empirically we find that our neural EVPI model performs

better when the candidate question (qj) paired with the candidate answer is a part

of the utility function. We attribute this to the fact that much information about

whether an answer increases the utility of a post is also contained in the question

asked to the post. We train our utility calculator using our dataset of (p, q, a) triples

(§3.1). We label all the (pi, qi, ai) pairs from our triples dataset with label y = 1. To
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get negative samples, we make use of the answer candidates generated using Lucene

as described in § 4.2.1. For each aj ∈ Ai, where Ai is the set of answer candidates

for post pi, we label the pair (pi, qj, aj) with label y = 0, except for when aj = ai.

Thus, for each post pi in our triples dataset, we have one positive sample and nine

negative samples. This idea of using implicit negative evidence for training is similar

to the notion of contrastive estimation (Smith and Eisner, 2005). It should be noted

that this is a noisy labelling scheme since a question not paired with the original

question in our dataset can often times be a good question to ask to the post (§4.3).

However, since we do not have annotations for such other good questions at train

time, we assume such a labelling.

Given a post pi and an answer aj paired with the question qj, we combine

their neural representations using a function Futil(p̄i, q̄j, āj) (details in §4.2.4). The

utility of the updated post is then defined as U(pi + aj) = σ(Futil(p̄i, q̄j, āj)), where

σ is the sigmoid function. We want this utility to be close to 1 for all the positively

labelled (p, q, a) triples and close to 0 for all the negatively labelled (p, q, a) triples.

We therefore define our loss using the binary cross-entropy formulation below:

lossutil(yi, p̄i, q̄j, āj) = yi log(σ(Futil(p̄i, q̄j, āj))) (4.4)

4.2.4 Our joint neural network model

Our fundamental representation is based on recurrent neural networks over

word embeddings. We obtain the word embeddings using the GloVe (Pennington

et al., 2014) model trained on the entire datadump of StackExchange. In Eq 4.2 and
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Eq 4.3, the average word vector representations q̂ and â are obtained by averaging the

GloVe word embeddings for all words in the question and the answer respectively.

Given an initial post p, we generate a post neural representation p̄ using a post

LSTM (long short-term memory architecture) (Hochreiter and Schmidhuber, 1997).

The input layer consists of word embeddings of the words in the post which is fed

into a single hidden layer. The output of each of the hidden states is averaged

together to get our neural representation p̄. Similarly, given a question q and an

answer a, we generate the neural representations q̄ and ā using a question LSTM

and an answer LSTM respectively. We define the function Fans in our answer model

as a feedforward neural network with five hidden layers on the inputs p̄ and q̄ as

shown in Figure 4.5. Likewise, we define the function Futil in our utility calculator

as a feedforward neural network with five hidden layers on the inputs p̄, q̄ and ā.

We train the parameters of the three LSTMs corresponding to p, q and a, and the

parameters of the two feedforward neural networks jointly to minimize the sum of

the loss of our answer model (Eq 4.3) and our utility calculator (Eq 4.4) over our

entire dataset:

∑
i

∑
j

lossans(p̄i, q̄i, āi, Qi) + lossutil(yi, p̄i, q̄j, āj) (4.5)

Given such an estimate P[aj|p, qi] of an answer and a utility U(p + aj) of the

updated post, we rank the candidate questions by their value as calculated using

Eq 4.1. The remaining question, then, is how to get data that enables us to train

our answer model and our utility calculator. Given data, the training becomes a

multitask learning problem, where we learn simultaneously to predict utility and to
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Figure 4.5: Left: Fans computed using a feedfoward neural network over post LSTM

p̄ and question LSTM q̄ representations and â computed using average word embed-

dings over words in the answer. Right: Futil computed using a feedforward neural

network over post LSTM p̄, question LSTM q̄ and answer LSTM ā representations.

estimate the probability of answers.

4.3 Evaluation design

We define our task as given a post p, and a set of candidate clarification

questions Q, rank the questions according to their usefulness to the post. Since

the candidate set includes the original question q that was asked to the post p, one

possible approach to evaluation would be to look at how often the original question

is ranked higher up in the ranking predicted by a model. However, there are two
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Figure 4.6: Our LSTM architecture on a post pi. The input layer consists of pre-

trained word embeddings of the words in the post which is fed into a single hidden

layer. The output ok of each of the hidden states is averaged together to get our

neural representation p̄i

problems to this approach: 1) Our dataset creation process is noisy. The original

question paired with the post may not be a useful question. For e.g. “are you

seriously asking this question?”, “do you mind making that an answer?”.5 2) The

nine other questions in the candidate set are obtained by looking at questions asked

to posts that are similar to the given post.6 This greatly increases the possibility

of some other question(s) being more useful than the original question paired with

the post. This motivates an evaluation design that does not rely solely on the

original question but also uses human judgments. We randomly choose a total of

5Data analysis in Chapter 3 suggests 9% of the questions are not useful.
6Note that this setting is different from the distractor-based setting popularly used in dialogue

(Lowe et al., 2015) where the distractor candidates are chosen randomly from the corpus.
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500 examples from the test sets of the three domains proportional to their train set

sizes (askubuntu:160, unix:90 and superuser:250) to construct our evaluation set.

4.3.1 Annotation scheme

Due to the technical nature of the posts in our dataset, identifying useful

questions requires technical experts. We recruit 10 such experts on Upwork who

have prior experience in Unix based operating system administration. As a training

process, we first ask the annotators to annotate a sample of 5 examples and provide

them with feedback and additional guidance. We also ask annotators to rate their

confidence in {1: Educated guess, 2: Pretty sure, 3: Quite sure}. The confidence on

17% of the annotations was rated as low, 47% was rated as medium and 37% was

rated as high.

We provide the annotators with a post and a randomized list of the ten question

candidates obtained using Lucene (§ 4.2.1) and ask them to select a single “best”

(B) question to ask, and additionally mark as “valid” (V ) other questions that

they thought would be okay to ask in the context of the original post. We enforce

that the “best” question be always marked as a “valid” question. We group the 10

annotators into 5 pairs and assign the same 100 examples to the two annotators in

a pair.
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4.3.2 Annotation analysis

We calculate the inter-annotator agreement on the “best” and the “valid”

annotations using Cohen’s Kappa measurement. When calculating the agreement

on the “best” in the strict sense, we get a low agreement of 0.15. However, when we

relax this to a case where the question marked as“best” by one annotator is marked

as “valid” by another, we get an agreement of 0.87. The agreement on the “valid”

annotations, on the other hand, was higher: 0.58. We calculate this agreement on

the binary judgment of whether a question was marked as valid by the annotator.

Given these annotations, we calculate how often is the original question marked

as “best” or “valid” by the two annotators. We find that 72% of the time one of

the annotators mark the original as the “best”, whereas only 20% of the time both

annotators mark it as the “best” suggesting against an evaluation solely based on

the original question. On the other hand, 88% of the time one of the two annotators

mark it as a “valid” question confirming the noise in our training data.7

Figure 4.7 shows the distribution of the counts of questions in the intersection

of “valid” annotations (blue legend). We see that about 85% of the posts have more

than 2 valid questions and 50% have more than 3 valid questions. The figure also

shows the distribution of the counts when the original question is removed from the

intersection (red legend). Even in this set, we find that about 60% of the posts

have more than two valid questions. These numbers suggests that the candidate set

of questions retrieved using Lucene (§ 4.2.1) very often contains useful clarification

776% of the time both the annotators mark it as a “valid”.
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Figure 4.7: Distribution of the count of questions in the intersection of the “valid”

annotations.

questions.

4.4 Experimental results

Our primary research questions that we evaluate experimentally are:

1. Does a neural architecture with learned representations improve upon a simple

bag-of-ngrams baseline?

2. Does the expected value of perfect information (EVPI) formalism provide

leverage over a similarly expressive feedforward network?

3. Are answers useful in identifying the right question?

4. How do the models perform when evaluated on the candidate questions ex-

cluding the original?

4.4.1 Baseline methods

We compare our model with following baselines:
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B1 ∪B2 V 1 ∩ V 2 Original

Model p@1 p@3 p@5 MAP p@1 p@3 p@5 MAP p@1

Random 17.5 17.5 17.5 35.2 26.4 26.4 26.4 42.1 10.0

Bag-of-ngrams 19.4 19.4 18.7 34.4 25.6 27.6 27.5 42.7 10.7

Community QA 23.1 21.2 20.0 40.2 33.6 30.8 29.1 47.0 18.5

Neural (p, q) 21.9 20.9 19.5 39.2 31.6 30.0 28.9 45.5 15.4

Neural (p, a) 24.1 23.5 20.6 41.4 32.3 31.5 29.0 46.5 18.8

Neural (p, q, a) 25.2 22.7 21.3 42.5 34.4 31.8 30.1 47.7 20.5

EVPI 27.7 23.4 21.5 43.6 36.1 32.2 30.5 49.2 21.4

Table 4.1: Model performances on 500 samples when evaluated against the union

of the “best” annotations (B1 ∪B2), intersection of the “valid” annotations (V 1 ∩

V 2) and the original question paired with the post in the dataset. The difference

between the bold and the non-bold numbers is statistically significant with p <

0.05 as calculated using bootstrap test. p@k is the precision of the k questions

ranked highest by the model and MAP is the mean average precision of the ranking

predicted by the model.
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Random: Given a post, we randomly permute its set of 10 candidate questions

uniformly. We take the average over 1000 random permutations.

Bag-of-ngrams: Given a post and a set of 10 question and answer candidates,

we construct a bag-of-ngrams representation for the post, question and answer. We

train the baseline on all the positive and negative candidate triples (same as in our

utility calculator (§ 4.2.3)) to minimize hinge loss on misclassification error using

cross-product features between each of (p, q), (q, a) and (p, a). We tune the ngram

length and choose n=3 which performs best on the tune set. The question candidates

are finally ranked according to their predictions for the positive label.

Community QA: The recent SemEval2017 Community Question-Answering (CQA)

(Nakov et al., 2017) included a subtask for ranking a set of comments according to

their relevance to a given post in the Qatar Living forum. 8 Nandi et al. (2017),

winners of this subtask, developed a logistic regression model using features based

on string similarity, word embeddings, etc. We train this model on all the positively

and negatively labelled (p, q) pairs in our dataset (same as in our utility calculator

(§ 4.2.3), but without a). We use a subset of their features relevant to our task.

Details in §4.4.2.

Neural baselines: We construct the following neural baselines based on the LSTM

representation of their inputs (as described in §4.2.4):

1. Neural(p, q): Input is concatenation of p̄ and q̄.

8http://www.qatarliving.com/forum
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2. Neural(p, a): Input is concatenation of p̄ and ā.

3. Neural(p, q, a): Input is concatenation of p̄, q̄ and ā.

Given these inputs, we construct a fully connected feedforward neural network with

10 hidden layers and train it to minimize the binary cross entropy across all positive

and negative candidate triples (same as in our utility calculator (§ 4.2.3)). We use

10 (double the number of hidden layers used in our EVPI model) hidden layers

to ensure that the improvement in our EVPI model is not merely because of the

increased number of parameters in the EVPI model. The major difference between

the neural baselines and our EVPI model is in the loss function: the EVPI model is

trained to minimize the joint loss between the answer model (defined on Fans(p, q)

in Eq 4.3) and the utility calculator (defined on Futil(p, q, a) in Eq 4.4) whereas

the neural baselines are trained to minimize the loss directly on F (p, q), F (p, a) or

F (p, q, a).

4.4.2 Implementation details

Preprocessing: We tokenize the raw text in our post, question and answer using

the NLTK tokenizer. We restrict the post to its first 300 tokens and the question

and answer to first 40 tokens. In our work, we choose these token lengths based on

the average lengths of posts and questions in the dataset. However, it is an open

research question as to how would changing these token lengths influence the model

predictions.
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Word embedding model: Each post, question and answer in our dataset is rep-

resented using embeddings. To generate these embeddings, we train 200 dimensional

word embeddings using GloVe on the 3 billion token datadump of StackExchange.

Since the total number of tokens in the datadump is large, we use an unusually large

threshold frequency of 100 to create a vocabulary of 250,000 tokens. All tokens with

a frequency of less than 100 in our dataset get assigned an ‘UNK’ token.

Model hyperparameters: The hidden layers in all the neural models are of size

200. We use ReLU non-linearity as our activation function between the hidden

layers. We use a batch size of 128. We train the models for up to 14 epochs and

at test time we use the predictions of the epoch where the performance on the tune

set is the best.

Community QA baseline: We use the implementation provided by the winning

team of the SemEval2017 Community Question-Answering (cQA) subtask 3.9 Their

original model contains six feature groups: string similarity features, word embed-

ding features, topic modeling features, keyword features, meta data features and

dialogue identification features. Since we do not have information about the latter

three features in our dataset, we use only the first three features and train a logistic

regression model to obtain the confidence scores on the positive labels.

9https://github.com/TitasNandi/cQARank
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4.4.3 Results

4.4.3.1 Evaluating against expert annotations

We first describe the results of the different models when evaluated against the

expert annotations we collect on 500 samples (§4.3). Since the annotators had a low

agreement on a single best, we evaluate against the union of the “best” annotations

(B1 ∪ B2 in Table 4.1) and against the intersection of the “valid” annotations

(V 1 ∩ V 2 in Table 4.1).

Among non-neural baselines, we find that the bag-of-ngrams baseline performs

slightly better than random but worse than all the other models. The Community

QA baseline, on the other hand, performs better than the neural baseline (Neural

(p, q)), both of which are trained without using the answers. The neural baselines

with answers (Neural(p, q, a) and Neural(p, a)) outperform the neural baseline with-

out answers (Neural(p, q)), showing that answer helps in selecting the right question.

More importantly, EVPI outperforms the Neural (p, q, a) baseline across most

metrics. Both models use the same information regarding the true question and

answer and are trained using the same number of model parameters.10 However,

the EVPI model, unlike the neural baseline, additionally makes use of alternate

question and answer candidates to compute its loss function. This shows that when

the candidate set consists of questions similar to the original question, summing

over their utilities gives us a boost.

10We use 10 hidden layers in the feedforward network of the neural baseline and five hidden

layers each in the two feedforward networks Fans and Futil of the EVPI model.
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We can interpret the absolute numbers obtained by our best (EVPI) model in

a real world setting as follows: Given 10 candidate questions obtained from Lucene,

around 28% of the time, the top ranked question is the best question whereas around

36% of the time, the top ranked question is a valid question. Likewise, around 23%

of the time, the top three questions are the best questions whereas around 32%

of the time, the top three questions are valid questions. Although these absolute

numbers are relatively low, in this work, we set the baseline for this novel task and

hope that this work will encourage future work in this space.

4.4.3.2 Evaluating against the original question

The last column in Table 4.1 shows the results when evaluated against the

original question paired with the post. The bag-of-ngrams baseline performs similar

to random, unlike when evaluated against human judgments. The Community QA

baseline again outperforms Neural(p, q) model and comes very close to the Neural

(p, a) model.

As before, the neural baselines that make use of the answer outperform the

one that does not use the answer and the EVPI model performs significantly better

than Neural(p, q, a).

4.4.3.3 Excluding the original question

In the preceding analysis, we considered a setting in which the “ground truth”

original question was in the candidate set Q. While this is a common evaluation
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B1 ∪B2 V 1 ∩ V 2

Model p@1 p@3 p@5 MAP p@1 p@3 p@5 MAP

Random 17.4 17.5 17.5 26.7 26.3 26.4 26.4 37.0

Bag-of-ngrams 16.3 18.9 17.5 25.2 26.7 28.3 26.8 37.3

Community QA 22.6 20.6 18.6 29.3 30.2 29.4 27.4 38.5

Neural (p,q) 20.6 20.1 18.7 27.8 29.0 29.0 27.8 38.9

Neural (p,a) 22.6 20.1 18.3 28.9 30.5 28.6 26.3 37.9

Neural (p,q,a) 22.2 21.1 19.9 28.5 29.7 29.7 28.0 38.7

EVPI 23.7 21.2 19.4 29.1 31.0 30.0 28.4 39.6

Table 4.2: Model performances on 500 samples when evaluated against the union

of the “best” annotations (B1 ∪ B2) and intersection of the “valid” annotations

(V 1∩V 2), with the original question excluded. The difference between all numbers

except the random and bag-of-ngrams are statistically insignificant.

framework in dialog response selection (Lowe et al., 2015), it is overly optimistic.

We, therefore, evaluate against the “best” and the “valid” annotations on the nine

other question candidates. We find that the neural models beat the non-neural

baselines. However, the differences between all the neural models are statistically

insignificant. Results are shown in Table 4.2
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4.5 Example outputs

To understand the behavior of our EVPI model, we have included three exam-

ple outputs in Table 4.4 one each from the three domains in our dataset. The first

example is a case where the EVPI model predicts both the “best” and the “valid”

questions higher in its ranking. The original poster is facing some issue they call

the “suspend resume” issue. The post is unclear on what problem the poster is

facing. Hence the “best” question asks for that information. In the second example,

the model predicts one of the “valid” questions higher up in its ranking but fails to

predict the “best” question. The model predicts “why would you need this” with

very high probability likely because it is a very generic question, unlike the question

marked as “best” by the annotator which is too specific. In the third example, the

model again predicts a very generic question which is also marked as “valid” by the

annotator. These examples suggest that the model is good at correctly predicting

generic questions, but not at predicting very specific questions.

4.6 Conclusion

In this chapter we describe a novel model for the task of ranking clarification

questions. Our model integrates well-known deep network architectures with the

classic notion of expected value of perfect information, which effectively models

a pragmatic choice on the part of the questioner: how do I imagine the other

party would answer if I were to ask this question. Such pragmatic principles have
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recently been shown to be useful in other tasks as well (Andreas and Klein, 2016;

Golland et al., 2010; Orita et al., 2015; Smith et al., 2013). One can naturally extend

our EVPI approach to a full reinforcement learning approach to handle multi-turn

conversations.

Our results show that the EVPI model is a promising formalism for the ques-

tion generation task. In order to move to a full system that can help users like Terry

write better posts, the model needs to be able to generalize. For instance, if our

model has access to posts in the training data that only discuss Ubuntu operating

system, then our ranking model will never be able to generate a question such as

“What version of Windows are you using?” even if it has seen questions such as

“What version of Ubuntu are you using?”. Another issue with our ranking model

is that it relies on Lucene to retrieve a good initial set of candidate questions. In

order to be able to exploit the usefulness of our model to the fullest, we therefore

move from question ranking to a question generation task setup where given a con-

text, we develop a model to generate a question from scratch. In our next chapter,

we describe our question generation model that is based on sequence-to-sequence

neural network models that have recently proven to be effective for several language

generation tasks (Serban et al., 2016b; Sutskever et al., 2014; Yin et al., 2016).
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Title: Ubuntu 15.10 instant resume from suspend
Post: I have an ASUS desktop PC that I decided to install Ubuntu onto.

I have used Linux before, specifically for 3 years in High School.
I have never encountered suspend resume issues on Linux before.
It appears that my PC is resuming from suspend on Ubuntu 15.10
I am not sure what is causing this, but my hardware is as follows:
Intel Core i5 4460 @ 3.2 GHz
2 TB Toshiba 7200 RPM disk
8 GB DDR3 RAM
Corsair CX 500 Power Supply
AMD Radeon R9 270X Graphics - 4 Gigs
ASUS Motherboard for OEM builds
VIA technologies USB 3.0 Hub
Realtek Network Adapter
Any help is greatly appreciated.
I haven’t worked with Linux in over a year,
and as I plan to pursue a career in Comp Science
(specifically through internshipsl) and this is a problem,
as I don’t want to drive the power bill up.
(Even though I don’t pay it, my parents do.)

0.87 does suspend - resume work as expected ?
0.71 what , specifically , is the problem you want help with ?
0.70 the suspend problem exits only if a virtual machines is running ?
0.67 is the pasted workaround still working for you ?
0.57 just wondering if you got a solution for this ?
0.50 we *could* try a workaround , with a keyboard shortcut .

would that interest you ?
0.49 did you restart the systemd daemon after the

changes ‘sudo restart systemd-logind‘ ?
0.49 does running ‘sudo modprobe -r psmouse ; sleep 1 ;

sudo modprobe psmouse‘ enable the touchpad ?
0.49 2 to 5 minutes ?
0.49 does it work from the menu or not ?

Table 4.3: Example of human annotation from the askubuntu domain of our dataset.
The questions are sorted by expected utility, given in the first column. The “best”
annotation is marked with black ticks and the “valid”’ annotations are marked
with grey ticks .
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Title: Frozen Linux Recovery Without SysReq
Post: RHEL system has run out of memory and is now frozen.

The SysReq commands are not working, so I am not even sure that
/proc/sys/kernel/sysrq is set to 1.
Is there any other ”safe” way I can reboot w/out power cycling?

0.91 why would you need this ?
0.77 maybe you need to use your ‘fn‘ key when pressing print screen ?
0.59 do you have sudo rights on this computer ?
0.55 are you sure sysrq is enabled on your machine ?
0.52 did you look carefully at the logs when you rebooted after it hung ?
0.51 i assume you have data open which needs to be saved ?
0.50 define “ frozen ” . did it panic ? or did something else happen ?
0.50 maybe you need to use your ‘fn‘ key when pressing print screen ?
0.50 tried ctrl + alt + f2 ?
0.49 does the script process 1 iteration successfully ?
0.49 laptop or desktop ?

Title: How to flash a USB drive?.
Post: I have a 8 GB Sandisk USB drive. Recently it became write somehow.

So I searched in Google and I tried to remove the write protection
through almost all the methods I found. Unfortunately nothing worked.
So I decided to try some other ways.
Some said that flashing the USB drive will solve the problem.
But I don’t know how. So how can it be done ?

1.01 what file system was the drive using ?
1.00 was it 16gb before or it has been 16mb from the first day you used it ?
0.74 which os are you using ? which file system is used by your pen drive ?
0.64 what operation system you use ?
0.51 can you narrow ’a hp usb down ’ ?
0.50 could the device be simply broken ?
0.50 does it work properly on any other pc ?
0.50 usb is an interface , not a storage device .

was it a flash drive or a portable disk ?
0.49 does usb flash drive tester have anything useful to say about the drive ?
0.49 your drive became writeable ? or read-only ?

Table 4.4: Examples of human annotation from the unix and superuser domain of
our dataset. The questions are sorted by expected utility, given in the first column.
The “best” annotation is marked with black ticks and the “valid”’ annotations
are marked with grey ticks .
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Chapter 5: Question Generation Model

5.1 Introduction

In this chapter, we describe our clarification question generation model which

given a context, generates a question one word at a time. Our clarification question

generation model builds on the sequence-to-sequence approach that has proven ef-

fective for several language generation tasks (Du et al., 2017; Serban et al., 2016b;

Sutskever et al., 2014; Yin et al., 2016). Unfortunately, training a sequence-to-

sequence model directly on (context, question) pairs yields questions that are highly

generic1, corroborating a common finding in dialog systems (Li et al., 2016b). Our

goal is to be able to generate clarification questions that are useful and specific.

To achieve this, we begin with a recent observation of Rao and Daumé III

(2018), who considered the task of question reranking: a good clarification question

is the one whose answer has a high utility, which they defined as the likelihood that

this question would lead to an answer that will make the context more complete

(§5.2.3). Inspired by this, we construct a question generation model that first gen-

erates a question given a context, and then generates a hypothetical answer to that

1For instance, under home appliances, frequently asking “Is it made in China?” or “What are

the dimensions?”
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question. Given this (context, question, answer) triple, we train a utility calculator

to estimate the usefulness of this question. We then show that this utility calculator

can be generalized using ideas for generative adversarial networks Goodfellow et al.

(2014) for text Yu et al. (2017), wherein the utility calculator plays the role of the

“discriminator” and the question generator is the “generator” (§ 5.2.2), which we

train using the Mixer algorithm Ranzato et al. (2015).

We evaluate our approach on two question generation datasets. The first is

the Stack Exchange dataset (Table 5.2) where given a post, we train a model to

generate a clarification question that points at missing information that could be

potentially useful to someone trying to resolve the issue in the post. The second

is the Amazon dataset (Table 5.1) where given a product description, we train a

model to generate a clarification question that points at missing information that

a potentially buyer might find useful. Using both automatic metrics and human

evaluation, we demonstrate that although all models generate questions that are

relevant to the context at hand, our adversarially-trained model generates more

useful and specific questions than all the baseline models.

5.2 Training a Clarification Question Generator

Our goal is to build a model that, given a context, can generate an appro-

priate clarification question. Our dataset consists of (context, question, answer)

triples where the context is an initial textual context, question is the clarification

question that asks about some missing information in the context and answer is the
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Product T-fal Nonstick Cookware Set,
title 18 pieces, Red

Product Easy non-stick 18pc set includes every
description piece for your everyday meals.

Exceptionally durable dishwasher
safe cookware for easy clean up.
Durable non-stick interior.
Oven safe up to 350.F/177.C

Question Are they induction compatible?

Answer They are aluminium so the answer is NO.

Table 5.1: Sample product description from amazon.com paired with a clarification
question and answer.

Title Wifi keeps dropping on 5Ghz network

Post Recently my wireless has been very iffy at my
university. I notice that I am connected to a 5Ghz
network, while I am usually connected to a 2.4Ghz
everywhere else (where everything works just fine).
Sometimes it reconnects, but often I have to run
‘sudo service network-manager restart‘.
Is it possible a kernel update has caused this?

Question what is the make of your wifi card ?

Answer intel corporation wireless 7260 ( rev 73 )

Table 5.2: Sample post from stackexchange.com paired with a clarification question
and answer.

answer to the clarification question (details in ??). Representationally, our question

generator is a standard sequence-to-sequence model with attention (§ 5.2.1). The

learning problem is: how to train the sequence-to-sequence model to generate good

clarification questions.

An overview of our training setup is shown in Figure 5.1. Given a context, our

question generator, which is a sequence-to-sequence model, outputs a question. In

order to evaluate the usefulness of this question, we then have a second sequence-to-
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Figure 5.1: Overview of our GAN-based clarification question generation model.

sequence model called the “answer generator” that generates a hypothetical answer

based on the context and the question (§ 5.2.5). This (context, generated question

and generated answer) triple is fed into a Utility calculator, whose initial goal

is to estimate the probability that this (question, answer) pair is useful in this

context (§ 5.2.3). This Utility is treated as a reward, which is used to update

the question generator using the Mixer Ranzato et al. (2015) algorithm (§ 5.2.2).

Finally, we reinterpret the answer-generator-plus-utility-calculator component as a

discriminator for differentiating between (context, true question, generated answer)

triples and (context, generated question, generated answer) triples , and optimize

the generator for this adversarial objective using Mixer (§5.2.4).
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5.2.1 Sequence-to-sequence Model for Question Generation

We use a standard attention based sequence-to-sequence model (Luong et al.,

2015) for our question generator. Given an input sequence (context) c = (c1, c2, ..., cN),

this model generates an output sequence (question) q = (q1, q2, ..., qT ). The architec-

ture of this model is an encoder-decoder with attention. The encoder is a recurrent

neural network (RNN) operating over the input word embeddings to compute a

source context representation c̃. The decoder uses this source representation to

generate the target sequence one word at a time:

p(q|c̃t) =
T∏
t=1

p(qt|q1, q2, ..., qt−1, c̃t) =
T∏
t=1

softmax(Wsh̃t) ; where h̃t = tanh(Wc[c̃t;ht])

(5.1)

In Eq 5.1, h̃t is the attentional hidden state of the RNN at time t and Ws and Wc

are parameters of the model. The predicted token qt is the token in the vocabulary

that is assigned the highest probability using the softmax function. The standard

training objective for sequence-to-sequence model is to maximize the log-likelihood

of all (c, q) pairs in the training data D which is equivalent to minimizing the loss,

Lmle(D) = −
∑

(c,q)∈D

T∑
t=1

log p(qt|q1, q2, ..., qt−1, c) (5.2)

In Eq 5.1, h̃t is the attentional hidden state of the RNN at time t obtained by

concatenating the target hidden state ht and the source-side context vector c̃t, and

Ws is a linear transformation that maps ht to an output vocabulary-sized vector.

The predicted token qt is the token in the vocabulary that is assigned the highest

probability using the softmax function. Each attentional hidden state h̃t depends
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on a distinct input context vector c̃t computed using a global attention mechanism

over the input hidden states as:

c̃t =
N∑
n=1

anthn (5.3)

ant = align(hn, ht) = exp
[
hTt Wahn

]/∑
n′

exp
[
hTt Wahn′

]
(5.4)

The attention weights ant are calculated based on the alignment score between the

source hidden state hn and the current target hidden state ht.

5.2.2 Training the Generator to Optimize Utility

Training sequence-to-sequence models for the task of clarification question

generation (with context as input and question as output) using maximum likelihood

objective unfortunately leads to the generation of highly generic questions, such

as “What are the dimensions?” when asking questions about home appliances.

Recently, Rao and Daumé III (2018) observed that the usefulness of a question can

be better measured as the utility that would be obtained if the context were updated

with the answer to the proposed question. Following this observation, we first use

a pretrained answer generator (§ 5.2.5) to generate an answer given a context and

a question. We then use a pretrained Utility calculator (§ 5.2.3 ) to predict the

likelihood that the generated answer would increase the utility of the context by

adding useful information to it. Finally, we train our question generator to optimize

this Utility based reward.

Similar to optimizing metrics like Bleu and Rouge, this Utility calculator

also operates on discrete text outputs, which makes optimization difficult due to non-
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differentiability. A successful recent approach dealing with the non-differentiability

while also retaining some advantages of maximum likelihood training is the Mixed

Incremental Cross-Entropy Reinforce (Ranzato et al., 2015) algorithm (Mixer). In

Mixer, the overall loss L is differentiated as in Reinforce (Williams, 1992):

L(θ) = −Eqs∼pθr(qs) ;

∇θL(θ) = −Eqs∼pθr(qs)∇θ log pθ(q
s)

(5.5)

where ys is a random output sample according to the model pθ, where θ are the

parameters of the network. The expected gradient is then approximated using a

single sample qs = (qs1, q
s
2, ..., q

s
T ) from the model distribution (pθ). In Reinforce,

the policy is initialized randomly, which can cause long convergence times. To solve

this, Mixer starts by optimizing maximum likelihood for the initial ∆ time steps,

and slowly shifts to optimizing the expected reward from Eq 5.5 for the remaining

(T −∆) time steps.

In our model, for the initial ∆ time steps, we minimize Lmle and for the

remaining steps, we minimize the following Utility-based loss:

Lmax-utility = −(r(qp)− r(qb))
T∑
t=1

log p(qt|q1, ..., qt−1, ct) (5.6)

where r(qp) is the Utility based reward on the predicted question and r(qb) is

a baseline reward introduced to reduce the high variance otherwise observed when

using Reinforce. To estimate this baseline reward, we take the idea from the

self-critical training approach Rennie et al. (2017) where the baseline is estimated

using the reward obtained by the current model under greedy decoding during test

time. We find that this approach for baseline estimation stabilizes our model better
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than the approach used in Mixer.

5.2.3 Estimating a Utility Function from Historical Data

Given a (context, question, answer) triple, in the previous chapter we in-

troduced a utility calculator Utility(c, q, a) to calculate the value of updating a

context c with the answer a to a clarification question q. The inspiration for their

utility calculator is to estimate the probability that an answer would be a mean-

ingful addition to a context, and treat this as a binary classification problem where

the positive instances are the true (context, question, answer) triples in the dataset

whereas the negative instances are contexts paired with a random (question, answer)

from the dataset. The model we use is to first embed the words in the context c,

then use an LSTM (long-short term memory) (Hochreiter and Schmidhuber, 1997)

to generate a neural representation c̄ of the context by averaging the output of each

of the hidden states. Similarly, we obtain a neural representation q̄ and ā of q and

a respectively using question and answer LSTM models. Finally, a feed forward

neural network FUtility(c̄, q̄, ā) predicts the usefulness of the question.

5.2.4 Utility GAN for Clarification Question Generation

The Utility function trained on true vs random samples from real data (as

described in the previous section) can be a weak reward signal for questions gener-

ated by a model due to the large discrepancy between the true data and the model’s

outputs. In order to strengthen the reward signal, we reinterpret the Utility
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function (coupled with the answer generator) as a discriminator in an adversarial

learning setting. That is, instead of taking the Utility calculator to be a fixed

model that outputs the expected quality of a question/answer pair, we additionally

optimize it to distinguish between true question/answer pairs and model-generated

ones. This reinterpretation turns our model into a form of a generative adversarial

network (GAN) (Goodfellow et al., 2014).

A GAN is a training procedure for “generative” models that can be interpreted

as a game between a generator and a discriminator. The generator is an arbitrary

model g ∈ G that produces outputs (in our case, questions). The discriminator is

another model d ∈ D that attempts to classify between true outputs and model-

generated outputs. The goal of the generator is to generate data such that it can

fool the discriminator; the goal of the discriminator is to be able to successfully

distinguish between real and generated data. In the process of trying to fool the

discriminator, the generator produces data that is as close as possible to the real

data distribution. Generically, the GAN objective is:

LGAN(D,G) = max
d∈D

min
g∈G

Ex∼p̂ log d(x) + Ez∼pz log(1− d(g(z))) (5.7)

where x is sampled from the true data distribution p̂, and z is sampled from a prior

defined on input noise variables pz.

Although GANs have been successfully used for image tasks, training GANs

for text generation is challenging due to the discrete nature of outputs in text. The

discrete outputs from the generator make it difficult to pass the gradient update

from the discriminator to the generator. Recently, Yu et al. (2017) proposed a
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sequence GAN model for text generation to overcome this issue. They treat their

generator as an agent and use the discriminator as a reward function to update

the generative model using reinforcement learning techniques. By modeling the

generator as a stochastic policy and directly training the policy via policy gradient,

they avoid the differentiation difficulty at the cost of a much harder optimization

problem. Our GAN-based approach is inspired by this sequence GAN model with

two main modifications: a) We use the Mixer algorithm as our generator (§5.2.2)

instead of policy gradient approach; and b) We use the Utility function (§ 5.2.3)

as our discriminator instead of a convolutional neural network (CNN).

Theoretically, the discriminator should be trained using (context, true ques-

tion, true answer) triples as positive instances and (context, generated question,

generated answer) triples as the negative instances. However, we find that training

a discriminator using such positive instances makes it very strong since the gener-

ator would have to not only generate real looking questions but also generate real

looking answers to fool the discriminator. Since our main goal is question genera-

tion and since we use answers only as latent variables, we instead use (context, true

question, generated answer) as our positive instances where we use the pretrained

answer generator to get the generated answer for the true question. Formally, our

objective function is:

LGAN-U(U ,M) = max
u∈U

min
m∈M

Eq∼p̂ log u(c, q,A(c, q)) + Ec∼p̂ log(1− u(c,m(c),A(c,m(c))))

(5.8)

where U is the Utility discriminator, M is the Mixer generator, p̂ is our data of

(context, question, answer) triples and A is our answer generator.
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5.2.5 Pretraining

Question Generator. We pretrain our question generator using the sequence-

to-sequence model (§5.2.1) to maximize the log-likelihood of all (context, question)

pairs in the training data. Parameters of this model are updated during adversarial

training.

Answer Generator. We pretrain our answer generator using the sequence-

to-sequence model (§5.2.1) to maximize the log-likelihood of all ([context+question],

answer) pairs in the training data. Parameters of this model are kept fixed during

the adversarial training.2

Discriminator. In our Utility GAN model (§ 5.2.4), the discriminator is

trained to differentiate between true and generated questions. However, since we

want to guide our Utility based discriminator to also differentiate between true

(“good”) and random (“bad”) questions, we pretrain our discriminator in the same

way we trained our Utility calculator. For positive instances, we use a context

and its true question, answer from the training data and for negative instances, we

use the same context but randomly sample a question from the training data (and

use the answer paired with that random question).

5.3 Experimental Results

We base our experimental design on the following research questions:

2We leave the experimentation of updating parameters of answer generator during adversarial

training to future work.
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1. Do generation models outperform simpler retrieval baselines?

2. Does optimizing the Utility reward improve over maximum likelihood train-

ing?

3. Does using adversarial training improve over optimizing the pretrained Util-

ity?

4. How do the models perform when evaluated for nuances such as specificity

and usefulness?

We evaluate our model on both the StackExchange and the Amazon datasets de-

scribed in Chapter 3

5.3.1 Baselines and Ablated Models

We compare three variants (ablations) of our proposed approach, together with

an information retrieval baseline:

GAN-Utility is our full model which is a Utility function based GAN training

(§ 5.2.4) including the Utility discriminator, a Mixer question generator and a

sequence-to-sequence based answer generator.

Max-Utility is our reinforcement learning baseline with a pretrained question gen-

erator described model (§5.2.2) without the adversarial training.

MLE is the question generator model pretrained on context, question pairs using
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maximum likelihood objective (§5.2.1).

Lucene Given a context, we use Lucene to retrieve top 10 contexts that are most

similar to the given context. We randomly choose a question from the 10 ques-

tions paired with these contexts to construct our Lucene baseline. For the Amazon

dataset, we ignore questions asked to products of the same brand as the given prod-

uct since Amazon replicates questions across same brand allowing the true question

to be included in that set.

5.3.2 Experimental Details

In this section, we describe the details of our experimental setup. We prepro-

cess all inputs (context, question and answers) using tokenization and lowercasing.

We set the max length of context to be 100, question to be 20 and answer to be 20.

We test with context length 150 and 200 and find that the automatic metric results

are similar as that of context length 100 but the experiments take much longer.

Hence, we set the max context length to be 100 for all our experiments. Similarity,

we find that an increased length of question and answer yields similar results with

increased experimentation time.

Our sequence-to-sequence model (§5.2.1) operates on word embeddings which

are pretrained on in domain data using Glove (Pennington et al., 2014). As fre-

quently used in previous work on neural network modeling, we use an embeddings

of size 200 and a vocabulary with cut off frequency set to 10. During train time,
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we use teacher forcing (Williams and Zipser, 1989). During test time, we use beam

search decoding with beam size 5. We use a hidden layer of size two for both the

encoder and decoder recurrent neural network models with size of hidden unit set

to 100. We use a dropout of 0.5 and learning ratio of 0.0001. We use a batch size

of 128.

In the Mixer model, we start with ∆ = T and decrease it by 2 for every

epoch (we found decreasing ∆ to 0 is ineffective for our task, hence we stop at 2).

We run the pretrain the question generator and the answer generator for 100 epochs

and run the Reinforce and the adversarial training for 8 epochs.

We would like to note here that our decisions of these hyperparameter settings

have been influenced by the following previous works that have done a more system-

atic investigation of how these hyperparameters influence model predictions. Neishi

et al. (2017) perform a detailed analysis of hyperparameter tuning of sequence-

to-sequence models for the task of machine translation. Khandelwal et al. (2018)

discuss how neural language models make use of context and find that these models

are more sensitive to nearby contexts (upto 100 tokens) and less sensitive to tokens

beyond that window. Qi et al. (2018) investigate the usefulness of using pretrained

word embeddings and find that in case of scarcity of in-domain data (such as low

resource machine translation), the use of pretrained word embeddings can be very

effective.

88



5.3.3 Evaluation Metrics

We evaluate initially with several automated evaluation metrics, and then

more substantially based on crowdsourced human judgments.

5.3.3.1 Automatic Metrics

Diversity, which calculates the proportion of unique trigrams in the output

to measure the diversity as commonly used to evaluate dialogue generation (Li et al.,

2016b). We report trigrams, but bigrams and unigrams follow similar trends.

Bleu (Papineni et al., 2002), which evaluates n-gram precision between a

predicted sentence and reference sentences.

Meteor (Banerjee and Lavie, 2005), which is similar to Bleu but includes

stemmed and synonym matches when measuring the similarity between the pre-

dicted sequence and the reference sequences.

5.3.3.2 Human Judgements

We use Figure-Eight (https://www.figure-eight.com), which is a crowd-

sourcing platform, to collect human judgements. Each question was annotated by

five annotators. We paid crowdworkers 5 cents per judgment. Below are the exact

wordings of the questions we asked the annotators with the numeric scores corre-

sponding to each option:

Relevance: We ask ”Is the question on topic” and let workers choose from:
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1: Yes

0: No

Grammaticality: We ask ”Is the question grammatical?”, and let workers choose

from:

1: Yes

0: No

Seeking new information: We ask “Does the question ask for new information

currently not included in the description?” and let workers choose from:

1: Yes

0: No

Specificity: We ask ”How specific is the question?” and let workers choose from:

4: Specific pretty much only to this product (or same product from different man-

ufacturer)

3: Specific to this and other very similar products

2: Generic enough to be applicable to many other products of this type

1: Generic enough to be applicable to any product under Home and Kitchen

N/A (Not applicable): Question is not on topic OR is incomprehensible

Usefulness: We ask “How useful is the question to a potential buyer (or a current

user) of the product?” and let workers choose from:

4: Useful enough to be included in the product description

3: Useful to a large number of potential buyers (or current users)

2: Useful to a small number of potential buyers (or current users)

1: Useful only to the person asking the question

90



Criteria Agreement

Relevance 0.92

Grammaticality 0.92

Seeking new information 0.84

Usefulness 0.65

Specificity 0.72

Table 5.3: Inter-annotator agreement on the five criteria used in human-based eval-

uation.

N/A (Not applicable): Question is not on topic OR is incomprehensible OR is not

seeking new information

Since the inter-annotator agreement on the usefulness criteria was low (refer to

Table 5.3), in order to reduce the subjectivity involved in the fine grained annotation,

we convert the range [1-4] to a more coarse binary range [0-1] by mapping the scores

4 and 3 to 1 and the scores 2 and 1 to 0.

The inter annotator agreement on each of the above five criteria is shown in

Table 5.3. Agreement on Relevance, Grammaticality and Seeking new information

is high. This is not surprising given that these criteria are not very subjective. On

the other hand, the agreement on usefulness and specificity is quite moderate since

these judgments can be very subjective.
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Amazon StackExchange

Model Diversity Bleu Meteor Diversity Bleu Meteor

Reference 0.6934 — — 0.7509 — —

Lucene 0.6289 4.26 10.85 0.7453 1.63 7.96

MLE 0.1059 17.02 12.72 0.2183 3.49 8.49

Max-Utility 0.1214 16.77 12.69 0.2508 3.89 8.79

GAN-Utility 0.1296 15.20 12.82 0.2256 4.26 8.99

Table 5.4: Diversity as measured by the proportion of unique trigrams in model

outputs. Bleu and Meteor scores using up to 10 references for the Amazon

dataset and up to six references for the StackExchange dataset. Numbers in bold

are the highest among the models. All results for Amazon are on the entire test set

whereas for StackExchange they are on the 500 instances of the test set that have

multiple references.

5.3.4 Automatic Metric Results

Table 5.4 shows the results on the two datasets when evaluated according to

automatic metrics.

In the Amazon dataset, GAN-Utility outperforms both MLE and Max-Utility

models on Diversity, suggesting that it produces more diverse outputs. Lucene,

on the other hand, has the highest Diversity since it consists of human generated

questions, which tend to be more diverse because they are much longer compared to
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model generated questions. This comes at the cost of lower match with the reference

as visible in the Bleu and Meteor scores. In terms of Bleu and Meteor,

there is inconsistency. Although GAN-Utility outperforms all baselines according

to Meteor, the fully ablated MLE model has a higher Bleu score. This is because

Bleu score looks for exact n-gram matches and since MLE produces more generic

outputs, it is much more likely that it will match one of 10 references compared to

the specific/diverse outputs of GAN-Utility, since one of those ten is highly likely

to itself be generic.

In the StackExchange dataset GAN-Utility outperforms both MLE and Max-

Utility models on both Bleu and Meteor. Unlike in the Amazon dataset, MLE

does not outperform GAN-Utility in Bleu. This is because the MLE outputs in

this dataset are not as generic as in the Amazon dataset due to the highly technical

nature of contexts in StackExchange. As in the Amazon dataset, GAN-Utility

outperforms MLE on Diversity. Interestingly, the Max-Utility ablation achieves a

higher Diversity score than GAN-Utility. On manual analysis we find that Max-

Utility produces longer outputs compared to GAN-Utility but at the cost of being

less grammatical.

5.3.5 Human Judgements Analysis

Table 5.5 shows the numeric results of human-based evaluation performed on

the reference and the system outputs on 300 random samples from the test set

93



Model Relevant [0-1] Grammatical [0-1] New Info [0-1] Useful [0-1] Specific [0-4]

Reference 0.96 0.99 0.93 0.72 3.38

Lucene 0.90 0.99 0.95 0.68 2.87

MLE 0.92 0.96 0.85 0.91 3.05

Max-Utility 0.93 0.96 0.88 0.91 3.29

GAN-Utility 0.94 0.96 0.87 0.96 3.52

Table 5.5: Results of human judgments on model generated questions on 300 sam-

ple Home & Kitchen product descriptions. The options described in § 5.3.3 are

converted to corresponding numeric range (see supplementary material). The dif-

ference between the bold and the non-bold numbers is statistically significant with

p <0.05. Reference is excluded in the significance calculation.

of the Amazon dataset.3 Overall, these results show that the GAN-Utility model

successfully generates the most useful and the most specific questions while being

equally good at seeking new information. All approaches produce relevant and

grammatical questions. All models are all equally good at seeking new information,

but are weaker than Lucene, which performs better at seeking new information but

at the cost of much lower specificity and lower usefulness.

Our full model, GAN-Utility, performs significantly better at the usefulness

criteria showing that the adversarial training approach generates more useful ques-

3We could not ask crowdworkers evaluate the StackExchange data due to its highly technical

nature.
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tions. Interestingly, all our models produce questions that are more useful than

Lucene and Reference, largely because Lucene and Reference tend to ask questions

that are more often useful only to the person asking the question, making them

less useful for potential other buyers (see Figure 5.3). GAN-Utility also performs

significantly better at generating questions that are more specific to the product

(see details in Figure 5.2), which aligns with the higher Diversity score obtained

by GAN-Utility under automatic metric evaluation.

Table 5.6 contains example outputs from different models along with their use-

fulness and specificity scores. MLE generates questions such as “is it waterproof?”

and “what is the wattage?”, which are applicable to many other products. Whereas

our GAN-Utility model generates more specific question such as “is this shower

curtain mildew resistant?”. We provide further analysis of system outputs on both

Amazon and Stack Exchange datasets in the next section.

5.3.6 Analysis of System Outputs on Amazon Dataset

Table 5.7 shows the system generated questions for three product descriptions

in the Amazon dataset.

In the first example, the product is a shower curtain. The Reference question

is specific and highly useful. Lucene, on the other hand, picks a moderately specific

(“how to clean it?”) but useful question. MLE model generates a generic but useful

“is it waterproof?”. Max-Utility generates comparatively a much longer question

but in doing so loses out on relevance. This behavior of generating two unrelated
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Figure 5.2: Results of human judgements on the specificity criteria.

sentences is observed quite a few times in both Max-Utility and GAN-Utility models.

This suggests that these models, in trying to be very specific, end up losing out on

relevance. In the same example, GAN-Utility also generates a fairly long question

which, although awkwardly phrase, is quite specific and useful.

In the second example, the product is a Duvet Cover Set. Both Reference and

Lucene questions here are examples of questions that are pretty much useful only

to the person asking the question. We find many such questions in both Reference

and Lucene outputs which is the main reason for the comparatively lower usefulness

scores for their outputs. All three of our models generate irrelevant questions since
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Figure 5.3: Results of human judgements on the usefulness criteria.

the product description explicitly says that the set is full size.

In the last example, the product is a set of mopping clothes. Reference ques-

tion is quite specific but has low usefulness. Lucene picks an irrelevant question.

MLE and Max-Utility generate highly specific and useful questions. GAN-Utility

generates an ungrammatical question by repeating the last word many times. We

observe this behavior quite a few times in the outputs of both Max-Utility and

GAN-Utility models suggesting that our sequence-to-sequence models are not very

good at maintaining long range dependencies.
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Title Raining Cats and Dogs Vinyl
Bathroom Shower Curtain

Product This adorable shower curtain measures
Description 70x72 inches and would make a great gift!

Useful [1-4] Specific [1-4]

Reference does the vinyl smells? 3 4
Lucene other than home sweet home , 2 4

what other sayings on the shower curtain ?
MLE is it waterproof ? 4 2
Max-Utility is this shower curtain mildew ? N/A N/A
GAN-Utility is this shower curtain mildew resistant ? 4 4

Title PURSONIC HF200 Pedestal
Bladeless Fan & Humidifier All-in-one

Product The first bladeless fan to incoporate a humidifier! ,
Description This product operates solely as a fan,

a humidifier or both simultaneously.
5.5L tank lasts up to 12 hours.

Useful [1-4] Specific [1-4]

Reference i can not get the humidifier to work 1 2
Lucene does it come with the vent kit 3 3
MLE what is the wattage of this fan ? 4 2
Max-Utility is this battery operated ? 3 2
GAN-Utility does this fan have an automatic shut off ? 4 4

Table 5.6: Example outputs from each of the systems for two product descriptions
along with the usefulness and the specificity score given by human annotators. De-
scriptions of scores are in the supplementary material.

5.3.7 Analysis of System Outputs on Stack Exchange Dataset

Table 5.8 includes system outputs for three posts from the Stack Exchange

dataset.

The first example is of a post where someone describes their issue of not being

able to recover from their boot. Reference and Lucene questions are useful. MLE

generates a generic question that is not very useful. Max-Utility generates a useful

question but has slight ungrammaticality in it. GAN-Utility, on the other hand,

generates a specific and an useful question.
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In the second example, again Reference and Lucene questions are useful. MLE

generates a generic question. Max-Utility and GAN-Utility both generate fairly

specific question but contain unknown tokens. The Stack Exchange dataset contains

several technical terms leading to a long tail in the vocabulary. Owing to this, we

find that both Max-Utility and GAN-Utility models generate many instances of

questions with unknown tokens.

In the third example, the Reference question is very generic. Lucene asks a

relevant question. MLE again generates a generic question. Both Max-Utility and

GAN-Utility generate specific and relevant questions.

5.4 Conclusion

In this chapter, we describe a novel approach to the problem of clarification

question generation. Given a context, we use the observation from the previous

chapter that the usefulness of a clarification question can be measured by the value

of updating the context with an answer to the question. We use a sequence-to-

sequence model to generate a question given a context and a second sequence-to-

sequence model to generate an answer given the context and the question. Given the

(context, predicted question, predicted answer) triple we calculator the utility of this

triple and use it as a reward to retrain the question generator using reinforcement

learning based Mixer model. Further, to improve upon the utility function, we

reinterpret it as a discriminator in an adversarial setting and train both the utility

function and the Mixer model in a minimax fashion. We find that our adversar-
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ial training approach produces more diverse questions compared to both a model

trained using maximum likelihood objective and a model trained using utility re-

ward based reinforcement learning. A model that can generate diverse questions is

useful since a model that only generates generic questions can be very repetitive and

might not help elicit useful information about a given context. Motivated by this

idea, in the next chapter, we look into how can we guide our clarification question

generation model to generate more specific questions.
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Title Chezmoi Collection 7-piece Chic Ruched
Duvet Cover Set, Full Size (with Pillows)

Product Create a world of romance with the elegant,
Description and luxurious all white duvet cover set.

Useful [1-4] Specific [1-4]

Reference How long will it take to ship 1 1
this to my pin code?

Lucene and can you use the duvet as is ? if not what 1 4
shall i purchase to put in it for winter or fall ?

MLE what are the dimensions of the king size ? N/A N/A
Max-Utility what are the dimensions of the king size ? N/A N/A
GAN-Utility does the king size come with a duvet cover N/A N/A

or do you have to buy a king duvet ?

Title Microfiber 3-Pack, Pro-Clean Mopping
Cloths for Braava Floor Mopping Robot

Product Braavas textured Pro-Clean microfiber
Description mopping cloths remove dirt and

hair from your floors. The cloths
can be washed and used hundreds of times
They are compatible with all Braava models,
including the Pro-Clean Reservoir Pad.
Each cloth is easy to attach and remove
from the magnetic cleaning pad.

Useful [1-4] Specific [1-4]

Reference do i have to use a new cloth every 2 4
time i want to clean my floor?
$5/$6 seems expensive per clean

Lucene do they remove pet odor ? N/A N/A
MLE will these work with the scooba ? 3 3
Max-Utility do these cloths work on hardwood floors ? 3 4
GAN-Utility will this work with the scooba mop N/A N/A

mop mop mop mop mop mop

Table 5.7: Example outputs from each of the systems for three product descriptions
from the Home & Kitchen category of the Amazon dataset.
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Title how can i recover my boot ?

Post since last week i am trying to recover my boot .
after the last update for ubuntu 12.04 i lost it and
nobody could help me , i used boot-repair but
there are problems with dependences , which ca n’t be fix .
i will be very grateful if somebody could help me .

Reference what happens when you try to boot ?
Lucene can you get into bios ?
MLE how much ram do you have ?
Max-Utility do you have a swap partition partition ?
GAN-Utility what happens when you try to boot into safe mode ?

Title packages have unmet dependencies
when trying to install anything

Post i ’m running ubuntu 14.04 lts . ive recently run
into this problem when updating or installing ,
after trying a few solutions to no avail ,
but now i ’m having the same issue with steam
trying to update , which i use quite a lot .
ive looked through dozens of posts about similar issues
and tried a lot of solutions and nothing seems to work.

Reference sudo dpkg -reconfigure all ? ?
Lucene if you use the graphical package manager ,

does n’t add the required packages automatically ?
MLE how long did you wait ?
Max-Utility can you post the output of ‘apt-cache policy UNK ?
GAN-Utility can you post a screenshot of the output

of ‘sudo apt-get install UNK

Title full lubuntu installation on usb ( uefi capable )

Post i want to do a full lubuntu installation on a
usb stick that can be booted in uefi mode.
i do not want persistent live usb but a full lubuntu
installation ( which happens to live on a usb stick )
and that can boot fromanyuefi-capable computer ...

Reference hello and welcome on askubuntu .
could you please clarify what you want ?

Lucene so , ubuntu was installed to the pen drive ?
MLE which version of ubuntu ?
Max-Utility do you have a live cd or usb stick ?
GAN-Utility what is the model of the usb stick ?

Table 5.8: Example outputs from each of the systems for three posts of the Stack
Exchange dataset.
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Chapter 6: Specificity-Controlled Question Generation Model

6.1 Introduction

In the last chapter, we saw how we can train a sequence-to-sequence neural

network model to generate a useful question given an under-specified context. We

used answer-based adversarial training strategy to train the sequence-to-sequence

model. One of our key findings was that an adversarially trained model generates

questions that are more specific to the context compared to a model trained using

the traditional maximum-likelihood training objective. Generating questions with

a desired level of specificity can be useful in many scenarios. For instance, consider

an automated agent assisting a human in a technical issue through a dialogue.

At the start of the conversation, we would want the automated agent to ask the

human more generic questions in order to understand the general domain of the

problem. Whereas, at a later stage of the conversation, we would want the agent

to ask more specific questions to narrow down the problem. In the e-retail scenario

considered in this dissertation, if the given description belongs to a product which

is similar to several other products that currently exist in the dataset, then we

might want our automated system to generate more specific questions (since we

could easily generate generic questions for this product by retrieving the top-K
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frequently asked questions in the dataset, for instance). On the other hand, if the

given product belongs to a fairly new category, then we might want our system to

generate more generic questions. In this chapter, therefore, we propose to build a

model that given a context and a level of specificity (specific or generic), generates

a question with that level of specificity. For instance, in Figure 6.1, given a product

description (context) and a level of specificity as “<generic>”, our goal is to generate

a question such as “Where was this manufactured?” which is applicable to many

products on amazon.com. Whereas, given the same product description and the

level of specificity as “<specific>”, we would like to generate a question that is

more specific to the given product such as “Is this induction safe?”

Figure 6.1: Sample product description from amazon.com paired with a generic and

a specific clarification question.

We take a semi-supervised approach to our problem of generating specificity

controlled questions. Motivated by Sennrich et al. (2016), we build a question gen-

eration model that incorporates the level of specificity as additional input signal
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during training1. In our work, we hypothesize that at training time if we append

the context (source) with the level of specificity of the question (target), then the

model will learn how to generate questions that at a given level of specificity. In

Figure 6.2, the question generation model is trained using context appended with

specificity as input and question as the output. In order to do this training, we

would need to label all the questions in our training data with their level of speci-

ficity i.e. generic vs specific. Doing this labeling manually for the entire training

dataset of approximately 150K questions would be too expensive. Hence, we train

a supervised model that automatically labels a question (given a context) with its

level of specificity to the given context. Figure 6.2 shows our specificity classifier

trained using a relatively small set of questions manually annotated with their level

of specificity.

Our specificity classifier is inspired by the model introduced by Louis and

Nenkova (2011) who train a binary classifier to automatically identify generic vs

specific sentences in news articles. Their classifier is based on features that capture

lexical and syntactic information, as well as specificity and word polarity. They

use human annotators to manually annotate a set of sentences with generic/specific

labels and train a binary classifier using a logistic regression model. Following

their work, we use crowdsourcing to annotate a set of 3000 questions from the

Amazon dataset with their level of specificity to the product description. We use

this annotated data to train a binary classifier to predict the level of specificity of

a question, given a context. We use some of the features introduced by Louis and

1Sennrich et al. (2016) refer to this as side constraints.
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Figure 6.2: Specificity-controlled question generation model.

Nenkova (2011) and introduce new features that are indicative of the specificity level

of the question to train our binary classifier.

We use our specificity classifier to append the context with the level of speci-

ficity of the target question. We finally retrain the question generation model de-

scribed in the previous chapter with the modified context. At test time, given a

context appended with a level of specificity (generic or specific), our model gener-

ates a clarification question at that level of specificity.
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6.2 Related Work

We consider specificity as a dimension of style. Sociolinguistics defines style

as a set of linguistic variants with specific social meanings. Hovy (1987) argues that

by varying the style of a text, people convey more information than is present in the

literal meaning of the words. In order to build automated intelligent agents that can

effectively communicate with humans, it is important that we teach these agents to

recognize the various stylistic variations in human language and also teach them

to generate language in a particular given style. In the field of natural language

processing, there has been previous work on both identifying style and generating

text in a given style.

Under style identification, there has been work on detecting formality of a

given text at the lexical level (Brooke and Hirst, 2014; Brooke et al., 2010; Lahiri

et al., 2011; Pavlick and Nenkova, 2015), at the sentence level (Pavlick and Tetreault,

2016) and at the document level (Mosquera and Moreda, 2012; Peterson et al., 2011;

Sheikha and Inkpen, 2010). Markowitz and Hancock (2016) studied writing styles in

fraudulent papers whereas Feng et al. (2012) build models for deception detection.

Koppel et al. (2002, 2009, 2011) develop machine learning models for authorship

identification, where the style corresponds to the writing style of an author. Previous

work most relevant to us is the work around detecting generic/specific distinctions

of text. Reiter and Frank (2010) introduce a method for distinguishing between

noun phrases that describes class of individuals (generic) versus those that refer to

specific individuals. Mathew (2009) distinguish between sentences that relate to
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specific event versus those that relate to general facts. Louis and Nenkova (2011)

build a model to automatically identify general and specific sentences motivated by

potential applications in summarization and writing feedback.

Generating style-controlled text has been studied in three different settings be-

fore: supervised learning, semi-supervised setting and unsupervised setting. Under

supervised setting, Xu et al. (2012) develop a statistical machine translation based

model for paraphrasing sentences into Shakespearean English whereas Jhamtani

et al. (2017) develop a neural machine translation based model for the same task.

Recently, we (Rao and Tetreault, 2018) developed models for automatically rewrit-

ing sentences from informal to formal style and vice-versa. Under semi-supervised

setting, Sennrich et al. (2016) develop models to control politeness of the generated

text using side constraints where the source is appended with an artificial token de-

noting the style in which we want the model to generate its target. Yamagishi et al.

(2016) use a similar idea for controlling the voice of the generated text. Niu et al.

(2017, 2018) control formality during translation. Under unsupervised setting, Hu

et al. (2017) control the sentiment and the tense of the generated text by learning

a disentangled latent representation in a neural generative model. Ficler and Gold-

berg (2017) control several linguistic style aspects simultaneously by conditioning

a recurrent neural network language model on specific style (professional, personal,

length) and content (theme, sentiment) parameters.
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6.3 Annotating Questions with Specificity Level

The key idea behind the use of side constraints is to guide a model to generate

text constrained with a certain linguistic phenomenon by training it on sentences

that have been annotated with such constraints. In our scenario, the constraint is

the level of specificity. More specifically, our input is the context and the output is

the question as the per the specified level of specificity. Hence, while training this

model we need to append the source i.e. the context with the level of specificity

of the target i.e. the question. Given that our neural network based question

generation model requires huge amounts of training data, annotating the entire

training data (around 100K questions) with the level of specificity manually would

be too time consuming and costly. Therefore, we take a machine learning approach

to this problem where we annotate a subset of the training data using humans and

train a machine learning model on this annotated data which learns to predict the

level of specificity of a question given the context. In this section, we describe how

we collect human annotations on the subset of the training data.

6.3.1 Annotation Design

We define our annotation task as given a context and a clarification question,

annotate if the question is generic or specific to the given context. One obvious

way to do this task would be to show the annotators the context and the question

and ask them to choose between generic or specific. However, we found that doing

this annotation task for a question (given a context) without knowing the other
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questions asked to that context is really hard and unintuitive. We found that an

easier task would be to compare the level of specificity of two questions given a

context. For instance, given the context in Figure 1.2, annotating the level of

specificity of the question “Are they ok for induction stove?” in isolation is difficult.

However, comparing the specificity level of this question with say another question

“Where are they made?” is easier, we can say that the former question is more

specific than the latter since the latter is applicable to a larger set of products.

Hence, we design an annotation scheme where given a context and two questions

Question A and Question B, we ask annotators to compare the level of specificity

of the two questions by choosing from the following options:

1. Question A is more specific

2. Question B is more specific

3. Both questions are at the same level of specificity

Each question pair is annotated by five annotators. We use Figure-Eight to collect

these annotations. Each pair of questions is annotated by five annotators.2

6.3.2 Getting Specificity Levels from Annotations

The next step would be how to convert these comparisons into individual

generic/specific labels for the questions. Given a context and the N questions asked

to that context, we collect annotations such that each question is compared to K

other questions in the set N . Each question pair (qi, qj) is annotated by five an-

2We started with three annotators per pair of questions but obtained a low inter-annotator

agreement and hence we moved up to five annotators.
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notators. The platform we use to collect annotations assigns a trust value to each

of its annotators based on the number of annotations performed by the annotator

and how well the annotator performed on the test questions.3 This trust value is

between 0 and 1. We calculate the specificity score for each question as

specificity score(qi) = 1
K

∑K
j=1

1
5

∑5
a=1 ta ∗ da(i, j)

where ta is the trust of the annotator a who annotated the question pair (qi, qj),

da(i, j) = 1; if annotator a annotated qi as more specific than qj,

da(i, j) = −1; if annotator a annotated qj as more specific than qi,

da(i, j) = 0; if annotator a annotated qi is at the same level of specificity as qj

The specificity score calculated as above is a value between -1 and 1. Given

this value, we set a threshold S and when the score for a question is less than S,

we label it as generic whereas when it is greater than or equal to S, we label it as

specific. We set a global threshold of S = 0 for all contexts.

If we collect annotations such that each question is compared to every other

questions in the set of N , then we could get a more accurate specificity score for a

question. However, given that N can be as high as 10, collecting N(N−1)
2

annotations

per context could be expensive. We, therefore, collect annotations such that each

question is compared to two other questions in the set N .

To ensure that this method is reliable, for 25 of the contexts, we collect anno-

3The trust score assigned by the platform is similar to inter-annotator agreement.

111



tations such that each question is compared to every other question in the set N .

On this subset, we calculate the specificity scores of the questions using (N − 1)

comparisons per question (Sall comparisons) and we calculate the specificity scores of

the questions using two comparisons per question (Stwo comparisons). In order to un-

derstand how much do the specificity scores vary when they are calculated using

these two different methods, we calculate the accuracy of the Stwo comparisons scores

over the Sall comparisons scores. We get an accuracy of 0.89 suggesting that, although

the scores calculated using two comparisons can be noisy, they do not deviate too

much from those obtained using all comparisons.

6.4 Model for Automatically Predicting Specificity Level

Given the specific/generic annotations on a subset of our training data, our

next step is to train a machine learning model that can learn to predict the speci-

ficity level given a context and a question. Louis and Nenkova (2011) introduce a

supervised classifier for automatically predicting whether a sentence in a summary

is generic or specific. They define specificity as the level of detail present in a given

sentence. The definition of specificity in our setting is how specific the question is

to the given context. Their classifier is based on lexical and syntactic features. We

use some of the features described in their work and introduce some new features

relevant to our setting to create a similar classifier that predicts the level of speci-

ficity of a question given its context. The features used in our model are described

below:
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Question Length. Generic questions tend to be shorter in length compared to

specific questions. For instance, “What are the dimensions?”, “What is the size

of the pillow?” are shorter in length compared to questions like “Does this pillow

have a zipper or does it come with a cover?”. We count the number of words in the

question and use the count as a feature. Additionally, we use a part-of-speech tagger

to tag the words in the question and count the number of nouns in the question and

use that as feature. These two features were used by Louis and Nenkova (2011) in

their model as well.

Path in WordNet. Questions that are more specific to a context tend to have

more specific words. Motivated by this idea, we compute the length of the path of

every noun and verb in a question to the root of WordNet (Miller et al., 1990) tree

through hypernym relations. Longer paths would indicate that the words are more

specific. Similar to Louis and Nenkova (2011), we use the average, min and max

values of these lengths and use them as features.

Inverse Document Frequency. Another way to identify specific words is to cal-

culate its inverse document frequency (IDF). IDF of a given term is defined by

the inverse of the number of documents that contain that term. More formally

IDF(w) = log( 1
count of docs containing w

). In our setting, we consider a product descrip-

tion to be a document. So the IDF of a word in a given question is defined by

the inverse of the counts of product descriptions that contain that word. We cal-
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culate the IDF for every word in the question and include the maximum IDF, the

minimum IDF and the average IDF as features. This feature is similar to the one

used by Louis and Nenkova (2011) except that instead of calculating the document

frequency over New York Times articles, we calculate the document frequency over

product descriptions

Syntax. Similar to Louis and Nenkova (2011), we find that the use of nouns, ad-

jectives and cardinals are good indicators of specificity. For instance, more specific

questions tend to use more proper nouns, adjectives and cardinals (numbers). We

use parts-of-speech tagger to tag the words in the questions and include the counts

of proper nouns (NNP), adjectives (ADJ) and cardinals (CD) as features.

Polarity. Louis and Nenkova (2011) find that word polarity can be strong indica-

tor of the level of specificity. For instance, strong opinions are indicative of generic

sentences. To identify positive, negative and polar words, they use The General

Inquirer and the MPQA Subjectivity lexicons. We find that these two lexicons,

which mainly contain words frequently appearing in news articles, are less relevant

for us due to the different nature of our dataset. Hence, we use the Linguistic and

Word Inquiry (LIWC) (Pennebaker et al., 2001) instead.4 We use the dictionary

category of words in the question as features. Specifically, we consider the following

categories under cognitive processes: insight, causation, discrepancy, tentative, cer-

tainty, differentiation. For each of these categories, we count the number of words

4http://lit.eecs.umich.edu/~geoliwc/LIWC_Dictionary.htm
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in question that belong to that category and include that as a feature.

Question bag-of-words. We define a vector of the size of the vocabulary over the

words in all the questions of our train set. Given a question, we set all the word

positions that are included in the question to one in the vector and set the remaining

to zero. We include this vector as a feature. This is similar to the “lexical (words)”

features used by Louis and Nenkova (2011).

The features described above were adapted from Louis and Nenkova (2011).

We now describe the new features we introduced specifically for our problem.

*Average word embeddings. We train GloVe (Pennington et al., 2014), a word

embedding model, on all contexts and questions in our Amazon dataset. We com-

pute an average over the word embeddings of all the words in the question (q̄) and

include it as a feature. Likewise, we compute an average over the word embeddings

of all the words in the context (c̄) and include it as a feature.

*Similarity to context using word embeddings. Louis and Nenkova (2011)

define generic/specific based on the level of detail present in a sentence in isolation.

In contrast, the specificity in our setting is measured by how specific is the question

to the given context. Hence, we find that the similarity between the question and

the given context to be a useful indicator of specificity. We measure this similarity

using two ways. In the first way, we measure the similarity between the context and
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the question in the vector semantic space. We compute an average over the word

embeddings of all the words in the context (c̄). Similarly, we compute an average

over the word embeddings of all the words in the question (q̄). We calculate the

cosine similarity between c̄ and q̄ and use it as a feature.

*Similarity to context using WordNet. In the second way, we measure the

similarity in the WordNet space. Resnik (1995) compute semantic similarity be-

tween word pairs by looking at the minimal path between the words in WordNet.

Motivated by this idea, we look at the hypernym relation path of every word in the

question and every word in the context and count the number of hypernyms that

were common in the two paths. We do this for every word pair (wq, wc) where wq

is a word in the question and wc is the word in the context and use the aggregate

count as a feature.

Given these features, we train a logistic regression model to make a binary

prediction (-1: generic, 1: specific) given a context and a question. We use the

Adam (?) optimizer. We use L2 regularizer.

6.5 Specificity-Controlled Question Generation Model

We use the specificity classifier described in the previous section to label all the

questions in the training (and tune) data with generic/specific labels. We use these

labels to append each context with the <specific> tag when the question paired
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with the context is labeled as specific and with the <generic> tag when the ques-

tion paired with the context is labeled as generic. We use this specificity annotated

training data to train two specificity-controlled question generation model:

Specificity-MLE: Similar to the MLE model in the previous chapter, we train a

sequence-to-sequence learning model (Sutskever et al., 2014) on (context+specificity,

question) pairs using maximum likelihood objective (§5.2.1).

Specificity-GAN-Utility: This is the full question generation model described in

previous chapter which we train using

(context+specificity, question) pairs instead of (context, question) pairs. We first

pretrain a question generator on (context+specificity, question) pairs and an answer

generator model using (context+specificity+question, answer) pairs using maximum

likelihood objective. We then fine tune the question generator model using Util-

ity function based GAN training (§ 5.2.4) including the Utility discriminator, a

Mixer question generator.

At test time, we predict the specificity level of the target question using our

specificity classifier and append the tag corresponding to that label to the context.
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Features Train Accuracy Test Accuracy

Question length 0.55 0.55

Path in WordNet 0.63 0.64

Inverse Document Frequency 0.58 0.57

Syntax 0.71 0.70

Polarity 0.65 0.65

Question bag-of-words 0.80 0.71

*Average word embeddings 0.66 0.64

*Similarity to context using embeddings 0.58 0.59

*Similarity to context using WordNet 0.57 0.55

All features 0.79 0.73

Table 6.1: Average specificity classifier accuracy under 10 fold cross validation on

train set and test set using different feature sets. * denotes new features not present

in the model by Louis and Nenkova (2011).

6.6 Experimental Results

6.6.1 Specificity Classifier Results

We randomly select 500 contexts from our Amazon dataset and collect speci-

ficity annotations on the questions asked to those contexts. Given that each context

has six questions on an average, we collect annotations on a total of 3310 questions.

2034 questions were annotated as generic and remaining were annotated as specific.
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Generic Specific

Model Diversity Bleu Meteor Diversity Bleu Meteor

Reference 0.6071 — — 0.7474 — —

Lucene 0.6289 2.90 12.04 0.6289 1.76 6.96

MLE 0.1201 12.61 13.29 0.1201 1.41 5.06

Max-Utility 0.1299 12.17 14.06 0.1299 1.79 5.57

GAN-Utility 0.1304 12.01 14.35 0.1304 2.69 6.12

Specificity-MLE 0.1023 12.61 13.53 0.1640 4.45 7.85

Specificity-GAN-Utility 0.1012 12.84 14.18 0.1357 2.95 6.08

Table 6.2: Diversity as measured by the proportion of unique trigrams in model

outputs. Bleu and Meteor scores are calculated using an average of 6 references

under generic setting and using an average of 3 references under specific setting.

The highest numbers within a column is in bold (except for diversity under generic

setting where the lowest number is bold).

Table 6.1 shows the result of our specificity classifier. We evaluate using 10-fold cross

validation on our labelled set of 3310 questions. We perform feature ablation where

we evaluate the performance of our model using each of the feature sets separately.

Similar to Louis and Nenkova (2011), we find that syntax and polarity are strong

indicators of specificity whereas question length is comparatively a weak indicator,

even though intuitively we might think length to be a strong indicator since specific

questions tend to be longer. Under specificity features, we find that path in Word-

Net feature to be more useful than the Inverse Document Frequency feature. Similar

to Louis and Nenkova (2011), we find that the question bag-of-words feature to be
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the most useful. Among the newly introduced features, we find the average word

embeddings feature is more useful that the features that calculate the similarity of

the question to the context.

Our best model is the one that uses all the features and attains an accuracy

of 0.73 on the test set. In comparison, a baseline model that predicts the specificity

label at random gets an accuracy of 0.58 on the test set.

6.6.2 Question Generation Results

Table 6.2 compares the performance of our specificity-controlled question gen-

eration model to the question generation models described in the previous chapter.

We aim to evaluate how good are these models at generating questions at a given

level of specificity. In our amazon dataset, each context is paired with upto 10 ref-

erence questions. We use our specificity classifier to identify generic reference ques-

tions and specific reference questions. We then use our evaluation metrics Bleu and

Meteor to compare the model outputs to generic references and specific references

separately. We call these generic and specific settings respectively. In case of the

Lucene, MLE, Max-Utility and GAN-Utility models, the same model output is com-

pared to the references in the two cases. Whereas in case of Specificity-MLE and

Specificity-GAN-Utility models, under generic setting, the generic references are

compared to the model output when the context is append with the “<generic>”

token, whereas under specific setting, the specific references are compared to the

model output when the context is append with the “<specific>” token. Diversity

120



is measured using the proportion of unique trigrams in the model output.

Under generic setting, we find that given a context appended with a “<generic>”

token, the specificity-controlled models (Specificity-MLE & Specificity-GAN-Utility)

generates questions that is at a lower Diversity than the other models. Whereas,

under specific setting, we find that given a context appended with a “<specific>”

token, these models generate questions with a higher Diversity compared to the

other models. This shows that our specificity-controlled models are capable of gen-

erating questions are varied diversity, thus varied specificity.

Under specific setting, we find that the Specificity-MLE model generates ques-

tions that get much higher Bleu and Meteor scores when compare to the specific

reference questions compared to the other models. Under generic setting, however,

we find that the specificity-controlled models generate questions that are at a similar

Bleu and Meteor scores as the other models. This suggests that the specificity-

controlled models tend to be more closer to the specific reference questions than to

the generic reference questions. Interestingly, unlike the results from the previous

chapter, a maximum-likelihood (MLE) training objective seems to be more effec-

tive for training a specificity-controlled question generation model than the more

sophisticated GAN-Utility training objective.

Table 6.3 shows two example product descriptions and the questions generated

by different models. As you can see, the specificity-controlled models generate more

specific and more generic questions compared to other models.
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6.7 Conclusion

In this chapter, we described our specificity-controlled question model which

given a context and a level of specificity, generates a question at that desired level of

specificity. We train a specificity classifier which given a context and a question can

predict the level of specificity of the question to the context with 73% accuracy. We

use this specificity classifier to automatically label all the questions in the training

data of the question generation model described in the previous chapter. Further,

we use the specificity label as additional signal during the training of the ques-

tion generation model described in the previous chapter. We use automatic metric

based evaluation to show that our specificity-controlled question generation model

can generate questions that are more generic or more specific to the given context

depending on the given input specificity level in comparison to other models.
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Title Signature sleep renewfoam infused memory foam
and independently encased coil mattress , 8-inch

Product Undecided between a coil mattress and a memory foam mattress ?
Description Why not experience the best of both worlds with the signature

sleep 8x201d; renewfoam coil mattress.
The gel infused memory foam and coolmax; outer cover are
perfectly paired to provide a fresh and cool sleeping surface,
while the independently encased coils eliminate motion disturbance.
With the signature sleep renewfoam coil mattress,
always wake up feeling refreshed, rejuvenated and renewed.

Reference do you need a separate box springs to go with this mattress ?
Lucene how long does this matress last ?
MLE what is the weight limit for this mattress ?
Max-Utility what is the weight limit for this mattress ?
GAN-Utility what are the dimensions of the mattress pad pad ?
Spec-MLE (g) does it come with a cover ?
Spec-MLE (s) does this mattress come with a box spring ?
Spec-GAN-Utility (g) what is the warranty on this mattress ?
Spec-GAN-Utility (s) what is the density of the mattress ?

Title new cutting blade knife for kitchenaid mixer meat grinder; fga food chopper

Product New sharp design cutting blade for the white fga kitchenaid meat grinder &
Description food chopper. This knife is much improved from the original style

cutter that came with the grinder attachment.
You will see the improved difference when
using a true cutting blade when grinding meat or vegetables.
Stainless steel part with lifetime no rust guarantee from butcher-baker.
Making sausage with our kitchenaid meat grinder ?
We have the stainless steel stuffer tubes also.
Need replacment meat grinder discs? We have them also.
Add these parts to your order now for combined shipping discounts.

Reference does this fit an older model kitchenaid mixer-grinder attachment
fga model or not ? some reviewers are saying it does not fit ?

Lucene can anyone confirm the dimensions of the square hole ?
MLE will this fit the ?
Max-Utility can this be used to grind almonds ?
GAN-Utility does this blade fit the?
Spec-MLE (g) does it come with a blade ?
Spec-MLE (s) does this blade work with the kitchenaid professional model ?
Spec-GAN-Utility (g) will this blade work with the weston model ?
Spec-GAN-Utility (s) does this work well for a full size ? like a fine blade ?

Table 6.3: Example outputs from each of the systems for a single product descrip-
tion. g indicates generic token whereas s indicates specific token.
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Chapter 7: Conclusion

7.1 Summary

In this dissertation we identify the importance of teaching machines to ask

clarification questions i.e. questions that point at missing information in a given text.

We propose to take a machine learning approach to clarification question generation

where a model is trained using large amounts of (context, question) pairs. In order

to do this learning effectively, we create datasets for two scenarios: technical support

(StackExchange) and e-retail (Amazon). We present two approaches to the problem

of clarification question generation. In the first approach, we develop a model which

given a context, extracts a set of potential candidate questions from a pool of existing

questions and then ranks them in the order of their usefulness to the given context.

We model the usefulness of a question using the idea of expected value of perfect

information: a good question is one whose expected answer will be useful. We

find that “answer” helps in identifying good clarification questions. In the second

approach, we develop a model which given a context, generates questions from

scratch instead of ranking existing question. We train a sequence-to-sequence neural

network model using the recent idea of Generative Adversarial Network (GAN) to

maximize an answer-based reward function. We show that our adversarially trained
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model generates questions that are more specific to the given context. We further

explore the notion of controlling the specificity of generated question by explicitly

training a question generation model which given a context and a level of specificity

(generic or specific), generates a question at that level of specificity. To label the

large number of questions in our training data with the level of specificity, we train a

binary classifier which given a context and a question, predicts whether the question

is specific (to the context) or generic. We include the level of specificity as an

additional signal during the training of our question generation model and find

that our specificity-controlled question generation model can generate questions at

a desired level of specificity.

7.2 Future Directions

In this section, we discuss some potential future directions of research in the

area of clarification question generation.

7.2.1 Using Multi-modal Context

The question generation models proposed in this work only make use of textual

context. However, often contexts include other modals of information as well. For

instance, textual descriptions of products on amazon.com are paired with the image

of the product. We can make use of the image to ask more relevant questions.

Consider the description of a cookware set in Figure 7.1. A question generation

model that uses only the textual context might generate the question “Does the
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Figure 7.1: An example of product description on amazon.com paired with the

image of the product.

set include a ladle?” since the description does not contain the details of the items

included in the cookware set. However, if the model were to use the image of the

product as well, then it could find that the ladle is already included and hence would

not generate such a redundant question. Thus, a potential future direction would

be to use both textual and image contexts to train a question generation model.

7.2.2 Using External Knowledge Sources

The models described in this work learn to ask a clarification question by

looking at previously asked questions in a similar context. More specifically, we

rely on our data to include the kinds of questions that we would like to ask. The

main purpose of generating the clarification questions is to identify the missing

information in a given text. To understand what is missing, one needs to first

know what should have been there. As humans, we rely on our prior knowledge
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Figure 7.2: Example of a question generation model that uses a knowledge base

containing attributes of an operating system (or attributes of a toaster) to ask a

relevant clarification question.

about the subject to decide what should have been there but is missing and then

ask a clarification question pointing out the missing information. Therefore, one

potential extension to our work would be to automatically extract information from

existing knowledge sources and makes use of it to generate a clarification question.

For instance, in Figure 7.2, given a post related to Ubuntu operating system, if the

model had access to a knowledge base that contained the information that operating

systems differ by versions and bits, then the model could use that information to

generate a question. Similarly, in the context of Amazon, if the model had access

to a knowledge base containing various attributes of a product, then it could use

that to understand what information is missing from the given description and ask

a useful question.
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7.2.3 Interactive Search Queries

With the emergence of internet, vast amounts of data is stored online. We

frequently use search engines to extract relevant information from this abundance

of online data. However, we might often find ourselves sifting through the search

results when our original search query is not specific enough. In such a scenario, it

might have been useful if the search engine would have asked us a follow-up question.

For instance, if a user query is “How long does it take to get a PhD?”, the search

engine could ask the user “In which field?” because the answer would differ based

on the field of study. Likewise, if a user query is “Historical gas prices”, the search

engine could ask “Which region?” or “Which year?” because the prices would differ

by region and year. Thus, a potential future direction of our work would be to train

a clarification question generation model which given a search query can generate

follow-up question(s) that can help narrow down the original query.

7.2.4 Question Asking in Writing Assistance

Figure 7.3: An example of a writing assistance tool which given a content, identifies

the missing information and asks a question about it.
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In our day-to-day lives, we frequently use computers for writing documents,

emails, etc. With the advancements of technologies, many of the text processing

tools these days help us write better by pointing our spelling errors or other minor

grammatical errors. However, these tools still are not at par with humans when it

comes to suggesting content level changes. For example, consider a scenario where

a student is writing their statement of purpose. A human reviewing this document

might suggest changes such as possible addition of description of a project, addition

of a missing reference to a related work, etc. Given the vast amounts of available

data online, writing assistance tools might soon be able to suggest such informational

changes. A first step towards this direction might be an email assistance tools that

can point out missing information in your email. For instance, consider you have

drafted an email such as the one in Figure 7.4. Since you have forgotten to mention

the location of the meeting, Kathy might send you a follow-up email asking for the

location. Such a follow-up email exchange could have been avoided if the email

application could have suggested to include the location in the first place.

7.2.5 Towards Intelligent Dialogue Agents

Asking questions is one of the key components of a conversation. Humans often

ask questions to miss information gaps during a conversation. Therefore, in order

for automated agents to be successful at conversations, it is important that we teach

these agents to ask intelligent questions. Consider a scenario where I have asked a

robot to get me my coffee mug from the kitchen (Figure 7.4). If there are multiple
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Figure 7.4: An example conversation with a robot where the robot asks questions

to resolve its uncertainty.

mugs in the kitchen, an intelligent robot would ask a question such as “What color

is your coffee mug?” to resolve this ambiguity. Further, if I reply by saying that the

color of my mug is black, and if the robot finds multiple black mugs in the kitchen,

it could ask a follow-up question to further resolve the ambiguity. Teaching robots

to ask such useful questions would enable them to be more intelligent.

7.2.6 Question Asking to Help Build Reasoning

Asking intelligent questions can also be used as a tool for enabling automated

building of reasoning. For example, consider a robot is reading the passage shown

in Figure 7.5. As it is reading this passage, assume it is building an understanding

of the world. Suppose the robot asks a question such as “Why was Jill upset?” as

it is building this reasoning. And a human answers the robot by saying “Because

she did not win the race.”. This will help the robot understand that reaching the
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Figure 7.5: An example scenario where a robot is reading a passage and asking

questions to a human to build an understanding of the world.

finish line leads to winning the race and not winning a race would make someone

upset. The robot could then go ahead and update its understanding of the world

using these reasonings.

7.2.7 Generalization Beyond Large Datasets

In this dissertation, we have described methods for generating clarification

questions that rely heavily on learning from large datasets. In future, we would

want to be able to generate questions without going through the same substantial

dataset-building process. One method for this would be to bootstrap the process

by using template based approach (or humans) to initially generate some small set

of questions. Then train our model on this small set to generate more questions.
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And finally use these generated questions to further retrain our model. Second

method of generalization would be using the idea of domain adaptation where we

could use large amounts of existing out-of-domain data to train a model and then

use small amounts of in-domain data to tune the model. Lastly, we could modify

existing reading comprehension datasets to create clarification questions dataset by

removing the answer sentence from the passage and then using the question as the

clarification question and the passage as the context.
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Appendix A: Crowdsourcing Annotation Details

A.1 Question Ranking Task Evaluation

In this section we describe the details of the process of collecting human judg-

ments for the evaluation of the outputs of our question ranking model described in

Chapter 4. We use Upwork1 for collecting our expert human judgments. Upwork is

a platform which allows us to post a job description and recruit people specifically

for a task.

We show the following instructions to the annotator:

Your task is to ask the right question.

You will be shown a post to StackExchange that is incomplete: that is, in order

to provide a useful solution to this post, the original poster needs to provide some

additional information.

In order to elicit that additional information from the original poster, you want to

ask a question.

You will be provided a list of ten possible questions that you can ask. You must

provide two pieces of information:

1) Which of these questions is the single best one? If you could only ask one question,

1https://upwork.com
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which one would you ask?

2) Which other questions would be valid to ask, even if not best.

The interface will force you to choose a single best question by marking it with a

radio button, and other valid questions with check boxes.

Some of these are hard. Try your best to answer them. It took us 5-6 minutes per

example, so please don’t rush.

After every question you’ll be asked for your confidence in your selection of the ‘best’

question. For some of them you may just have to take an educated guess, for others

you will be quite sure.

Note: ‘Best’ by definition is also ‘valid’: so whatever you select as ‘best’ you should

also mark as ‘valid’.
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We show the Upwork annotators the following interface for performing the

task of annotating the one “best” question and one or more “valid” questions, given

a post from StackExchange dataset.
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A.2 Question Generation Task Evaluation

In this section we describe the details of human based evaluation process for

evaluating outputs of the question generation models described in Chapter 5.

Figure A.2 is overview of the task shown to the annotators.

Figure A.3 is the set of instructions shown to the annotators.

Figure A.4 is the set of rules and tips shown to the annotators.

Figure A.5 shows two example annotations shown to the annotators.

Figure A.6 shows the interface shown to the annotators.

A.3 Specificity Labeling Task

In this section we describe the details of the annotation task for labeling ques-

tions with their specificity levels presented in Chapter 6. Figure A.7 shows the

instructions shown to the annotators.

Figure A.8 shows the rules and tips shown to the annotators.
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Figure A.9 shows an example annotation shown to the annotators to guide them to

do the task.
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Figure A.10 shows the interface shown to the annotators.
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Figure A.1: Example of the interface shown to annotators on UpWork for annotating

“best” and “valid” questions, given a post.
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Figure A.2: Task overview shown to annotators on Figure-Eight for the task of

evaluating model generated questions.
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Figure A.3: Instructions shown to annotators on Figure-Eight for the task of eval-

uating model generated questions.
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Figure A.4: Rules and tips shown to annotators on Figure-Eight for the task of

evaluating model generated questions.
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Figure A.5: Example annotations shown to annotators on Figure-Eight for the task

of evaluating model generated questions.
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Figure A.6: Interface shown to the annotators on Figure-Eight for the task of eval-

uating model generated questions.
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Figure A.7: Instructions shown to the annotators for the task of comparing the

specificity of two questions asked about a product on amazon.com .

Figure A.8: Rules and Tips shown to the annotators for the task of comparing the

specificity of two questions asked about a product on amazon.com .
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Figure A.9: Example shown to the annotators for the task of comparing the speci-

ficity of two questions asked about a product on amazon.com .
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Figure A.10: Interface shown to the annotators for the task of comparing the speci-

ficity of two questions asked about a product on amazon.com .
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