
ABSTRACT

Title of dissertation: Constraints and Priors for Inverse Rendering from Limited Observations

Soumyadip Sengupta, Doctor of Philosophy, 2019

Dissertation directed by: David Jacobs
Department of Electrical and Computer Engineering

Inverse Rendering deals with recovering the underlying intrinsic components of an image, i.e.

geometry, reflectance, illumination and the camera with which the image was captured. Inferring

these intrinsic components of an image is a fundamental problem in Computer Vision. Solving

Inverse Rendering unlocks a host of real world applications in Augmented and Virtual Reality,

Robotics, Computational Photography and gaming. Researchers have made significant progress in

solving Inverse Rendering from a large number of images of an object or a scene under relatively

constrained settings. However, most real life applications rely on a single or a small number of

images captured in an unconstrained environment. Thus in this thesis we explore Inverse Rendering

under limited observations from unconstrained images.

We consider two different approaches for solving Inverse Rendering under limited observations.

First, we consider learning data-driven priors that can be used for Inverse Rendering from a single

image. Our goal is to jointly learn all intrinsic components of an image, such that we can recombine

them and train on unlabeled real data using self-supervised reconstruction loss. A key component

that enables self-supervision is a differentiable rendering module that can combine the intrinsic

components to accurately regenerate the image. We show how such a self-supervised reconstruction



loss can be used for Inverse Rendering of faces. While this is relatively straightforward for faces,

complex appearance effects (e.g. inter-reflections, cast-shadows and near-field lighting) present in

a scene can’t be captured with a differentiable rendering module. Thus we also propose a deep

CNN based differentiable rendering module (Residual Appearance Renderer) that can capture these

complex appearance effects and enable self-supervised learning. Another contribution is a novel

Inverse Rendering architecture, SfSNet, that performs Inverse Rendering for faces and scenes.

Second, we consider enforcing low-rank multi-view constraints in an optimization framework

to enable Inverse Rendering from a few images. To this end, we propose a novel multi-view rank

constraint that connects all cameras capturing all the images in a scene and is enforced to ensure

accurate camera recovery. We also jointly enforce a low-rank constraint and remove ambiguity to

perform accurate Uncalibrated Photometric Stereo from a few images. In these problems, we for-

mulate a constrained low-rank optimization problem in the presence of noisy estimates and missing

data. Our proposed optimization framework can handle this non-convex optimization using Alter-

nate Direction Method of Multipliers (ADMM). Given a few images, enforcing low-rank constraints

significantly improves Inverse Rendering.
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Chapter 1

Introduction

1.1 Objective

Figure 1-1: Real objects have complex reflectance properties. In the two left images the shiny stove and
counter reflect strong highlights whose appearance depends on the viewpoint. In the third image, the chair’s
and table’s shiny material strongly affects its appearance. On the right we see the wall’s appearance affected
by varying distance to the light source.

Images taken of our everyday scenes with any camera consist of multiple different objects with

their unique shapes and materials, and the illumination conditions. Computer Graphics deals with

replicating these real world effects by modeling shape, material properties, illumination conditions

and the rendering process leading to the image generation. In Computer Vision, we are interested
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in solving the inverse problem, i.e. given an image, we want to obtain the underlying components

that produce this image. This is an ambitious goal and an ill-posed problem because we aim to

recover all underlying physical properties from an image. In this thesis we make a significant step

in achieving this ambitious goal.

In Inverse Rendering, given an image, we decompose it into its underlying components related

to geometry, reflectance, illumination and the camera parameters. This is a fundamental problem in

Computer Vision as understanding and recovering the intrinsic components of an image unlocks the

potential to solve a wide range of applications in AR/VR, Robotics, Computational Photography

etc. Inverse Rendering, refers to a broader class of problems, which have been classically studied in

Computer Vision over past decades. For example, in Structure from Motion, given multiple images

of a scene, the goal is to recover the scene geometry and the camera parameters, focusing only

on the structural components of Inverse Rendering. In Photometric Stereo, given multiple images

of an object captured under varying illumination conditions, the aim is to recover the shape and

reflectance of the object. In presence of a single image, the above problem is also known as Shape

from Shading. All these sub-problems are solved with a final goal of solving the Inverse Rendering

problem from unconstrained collections of images.

Given a large number of images of a scene, researchers have shown great promise in solving

many different sub-problems related to Inverse Rendering. A significant improvement came in

Structure from Motion to reconstruct a real world 3D scene from unconstrained image collections

[143, 2, 59]. Another success story is the facial 3D reconstruction from a video [149] or from

unconstrained internet photos [130]. However obtaining large number of images of an object or a

scene during inference significantly limits applications in solving many real life problems where

the users can only capture limited images. Thus, it is important to study Inverse Rendering given a

single or a few images, which is more realistic and challenging.
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In this thesis, we study the problem of Inverse Rendering under limited observations. In pres-

ence of a large number of images, different sub-problems of Inverse Rendering have been solved in

an optimization framework by enforcing the geometric and photometric constraints or by designing

the hand-crafted priors. In presence of a few images or a single image, this optimization framework

will be under-constrained. Thus we aim to seek and enforce additional constraints and learn data-

driven priors over intrinsic components that can allow us to perform inverse rendering from limited

observations.

1.2 Impact

Inverse Rendering deals with inferring the underlying components of an image, which unlocks a

host of real world applications that rely on one or more of them. Inverse Rendering has huge

potential applications in Robotics, AR/VR, Gaming, Computational Photography and many other

related areas.

Recovering only the geometric components of a scene, popularly known as Structure from Mo-

tion, has large potential applications in Robotics. A central problem in Robotics is navigating in an

indoor or outdoor environment using camera(s). In fact this problem is popularly known as Simul-

taneous Localization and Mapping (SLAM) [80], where the aim is to reconstruct the world around

the agent while also localizing the agent in the world. This problem is also important in context

of self-driving cars [58]. Due to the need for real-time performance in SLAM and limited pro-

cessing capabilities of the agent, many approaches often rely on using limited observations. These

approaches often rely on learning based methods [185, 164] to recover the geometry and camera

parameters.

Virtual and Augmented Reality is a major application where Inverse Rendering plays an impor-

tant role. AR and VR have numerous applications in education, workforce training, tele-presence,
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entertainment, gaming, and manufacturing. One of the chief challenges in improved AR/VR is the

accurate construction of the 3D world in terms of the geometry, material reflectance and illumination

condition. Understanding the geometry of the scene will allow us to insert virtual objects appropri-

ately in the scene, which leads to many interesting Augmented Reality applications like furniture

shopping [145] or clothes try-on [175]. Similarly, inferring the reflectance property of an object in

the scene will allow us to perform different editing applications like changing the texture, material

shininess and other attributes [98] which can be useful in Computational Photography, Computer

Graphics and Virtual Shopping. Understanding the illumination in the scene allows us to insert an

object in the scene with realistic lighting [75], or change the illumination in the scene to create

interesting visual effects. Recovering illumination also impacts Digital Forensics [72] by checking

whether the lighting in the scene matches that of the object of interest.

Most of the applications described above in AR, VR and computational photography are not

possible if the users are required to collect a large number of images of a scene. Applications like

Virtual Try-on, Virtual Shopping, Digital Forensics, Editing Photographs demand a single image or

a few images. Thus in this thesis we aim to study Inverse Rendering given limited observations.

Along with the practical impacts, studying Inverse Rendering from a single or a few images is an

extremely ambitious goal and poses major fundamental challenges.

1.3 Challenges

Given a large number of images and a relatively constrained settings, researchers have solved for

certain sub-problems related to Inverse Rendering in an optimization framework. A large number

of images gives rise to a highly over-constrained problem and constrained settings allows us to form

simplistic assumptions about the real world. However in presence of a single or a few images, In-

verse Rendering becomes severely ill-posed and under-constrained. Also simplistic assumptions do
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not hold true for unconstrained or in-the-wild images, which require the need of more complicated

models.

One direction explored in this thesis to solve Inverse Rendering is to learn data-driven priors

over intrinsic components. This means training a Convolutional Neural Network (CNN) to predict

geometry, reflectance and lighting from a single image. Training a CNN is effective in presence of a

large amount of labeled training data for predicting geometry, reflectance and lighting. It is possible

to create a highly realistic labeled synthetic dataset by using the most advanced Computer Graphics

techniques. However, the networks trained on synthetic data fails to generalize well when tested

on real data. This is because, even with the best graphics techniques, it is tremendously difficult

and expensive to capture the variations of shapes, material properties and illumination conditions

existing in real world. Thus, it is very important to train on real data. But it is also extremely

difficult to collect a large scale labeled real world dataset, specially with ground-truth reflectance

and illumination. Thus in this thesis we aim to address the lack of labeled large scale real world

datasets.

In Computer Graphics, researchers have improved the representation of geometry, reflectance

of real world objects and the rendering process for image generation to produce as realistic images

as possible. When solving for Inverse Rendering, we face an important question: What is a good

representation?. A good representation of intrinsic components and the rendering or image genera-

tion process should ideally be mathematically simple to be employed in an inverse framework and

yet representative enough to capture the realistic effects. In our thesis we have explored different

choices of representations depending on the object of interests.

In presence of a large number of images, researchers have used geometric and photometric

multi-view constraints that can relate multiple images of an object or a scene. In presence of a

small number of images, enforcing these constraints become crucial in inferring accurate and con-
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sistent intrinsics as the problem is less over-constrained. Thus a central challenge in presence of a

small number of images is to consider and strongly enforce all important multi-view constraints to

ensure consistent recovery. Many of these constraints manifest as low-rank optimization problem.

Low-rank constraints are non-convex, and along with missing data and noisy estimations pose a

significant challenge to be solved in an optimization framework. In our thesis, we show how to seek

and enforce such constraints and solve them efficiently using a constrained low rank optimization.

1.4 Our Proposed Solution

In this thesis, we aim to address these above challenges in a principled way. We consider inverse

rendering given a single image and a few images. In presence of a few images, we explore the role

of low-rank constraints in an optimization framework. For single image based inverse rendering,

we focus on the challenges of learning data-driven priors. In both cases, we explore the choices for

representing the intrinsic components and image rendering model.

1.4.1 Self-supervised Learning from Real Images

The main challenge in Inverse Rendering from a single image is the lack of labeled real world

datasets and the inability to generalize when trained on synthetic data. The goal is to reduce the

domain gap between synthetic and real data.

One way to reduce the domain gap is to use advanced Computer Graphics techniques to gen-

erate synthetic data. In our work on Inverse Rendering of a Scene in Chapter 4, we use physically

based ray-tracing with Mitsuba [68] to generate synthetic images. However even the most advanced

graphics engines are limited in the variability of objects and lighting conditions they can capture

under realistic processing capabilities. Thus an obvious answer to reduce the domain gap is to train

on real data.
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In absence of ground-truth labels, our goal is to train on real images using self-supervised pho-

tometric reconstruction loss. In Inverse Rendering, we decompose an image into its intrinsic com-

ponents, geometry, reflectance and illumination, using a deep CNN. Then we can combine them

using a previously defined differentiable image rendering module to reconstruct the original image.

This reconstructed image along with the original image will create a photometric reconstruction loss

that will be used for self-supervision.

However there are three key issues in using self-supervised reconstruction loss. The first issue

is the ambiguity in decomposition. In absence of any supervision over the intrinsic components,

the network can simply learn to produce a degenerate solution as intrinsic components such that the

reconstructed image perfectly matches the original image. For example, the network can learn to

simply reproduce the image as reflectance with flat geometry and uniform illumination, such that

the reconstructed image perfectly matches the original image. To avoid this space of ambiguity,

we take advantage of synthetic data. We propose a novel teacher-student learning based framework

‘SfS-supervision’ in Chapter 3 for resolving ambiguities in decomposition. This is used for both

Inverse Rendering of faces and scenes.

Our proposed ‘SfS-supervision’ consists of a teacher network that is first trained on synthetic

data with ground-truth labels and learns a strong data-driven prior over the intrinsic components.

Then for real training images, we use the inferred intrinsic components from this teacher network

as ‘pseudo-supervision’ for the student network to be trained on real data. We train the student

network on real data using ‘pseudo-supervision’ over intrinsic components and self-supervised re-

construction loss.

The second issue is the choice of the network architecture for inverse rendering. Previous works,

that mostly focus on obtaining only one of the components of inverse rendering, use a CNN archi-

tecture based on U-Net [129]. However we aim to decompose an image into all its intrinsic com-
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ponents. Since geometry and reflectance is in the same domain as the original image, it is easier to

learn a CNN that can transform an image into a geometric representation like depth or normal map,

or a reflectance representation like albedo map. However the illumination models are independent

of image domain. For example, representing illumination as spherical harmonics means regress-

ing a 27 dimensional vector from an image. This is a more difficult task to learn than regressing

geometry or reflectance which is more aligned to the original image domain. Thus we propose an

inverse rendering network, SfSNet in Section 3, that conditions lighting estimation on geometry and

reflectance inference. This greatly facilitates learning as evident from its application in faces and

scenes.

The last issue, is the choice of the differentiable image rendering module that can be used for

reconstructing the original image from its intrinsic components. This rendering module is ideally a

non-learnable physics based renderer that can recreate an image accurately from its intrinsic compo-

nents. In case of faces, simplistic assumptions allow us to use a differentiable lambertian renderer.

However for scenes, the actual rendering process is more complicated and can only be captured

by a non-differentiable recursive process called ray-tracing. As ray-tracing can not be employed in

a learning based framework we aim to represent the differentiable rendering module using a non-

learnable physics based model that only captures direct illumination effects and a learnable renderer,

Residual Appearance Renderer (RAR), that captures complex appearance effects. In Chapter 4 we

discuss the role of RAR in facilitating self-supervised learning for real world images of a scene.

1.4.2 Low-rank Constraints

Multi-view geometric and photometric constraints often manifest themselves as a constrained low-

rank optimization problem. Constrained low-rank optimization is non-convex and is particularly

difficult to solve in presence of noisy estimates with outliers and missing data. In Part II we focus
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on enforcing these low rank constraints in an optimization framework for different sub-problems of

Inverse Rendering.

In case of Structure from Motion in Chapter 7, given a few images of a scene, we aim to solve

for the camera parameters and subsequently reconstruct the 3D scene. We propose a new multi-view

rank constraint that relates all the camera parameters of the scene. Enforcing this rank constraint

ensures accurate recovery of the camera matrices given noisy estimates with outliers. We formulate

a constrained low-rank optimization problem that is solved using Augmented Direction Method

of Multipliers (ADMM). We show that our rank constraint improves camera parameter estimation

specially in presence of a few images.

In case of Uncalibrated Photometric Stereo in Chapter 8, given multiple images of a lambertian

object captured under distant, direct, point-source illumination, we aim to reconstruct the 3D object.

The mathematical formulation of photometric stereo consists of a low-rank constraint that connects

the images in multiple views. In presence of large number of images, traditional approaches first find

a low-rank approximation and then resolve a space of convex ambiguity. However, this sequential

approach of enforcing constraints produces more errors, specially in presence of a few images as

the problem is less over-constrained. Thus our goal is to jointly enforce the low-rank constraint

and convex ambiguity constraint in an optimization framework. We also use ADMM framework to

solve this non-convex constrained low-rank optimization problem.

1.4.3 Representations for Inverse Rendering

An important question while solving any Inverse Rendering problem is the choice of representing

geometry, reflectance and lighting, and the image rendering model. While some models are simple

and easy to use in an inverse framework, they fail to work well for an unconstrained scenario. In our

thesis we represent geometry as surface normals or depth map as it suffices to capture the geometry
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and can be easily employed in the image rendering process.

In our work on Uncalibrated Photometric Stereo, we consider the most constrained setup with

an object with lambertian reflectance being illuminated with a distant point source light assuming

only direct illumination. We also assume the camera projection to be orthographic as the camera

is assumed to be far-away from the object of interest. Although it makes mathematical treatments

of the problem relatively easier, it severely limits its application in unconstrained images. For

Structure from Motion, we only care about the geometric camera model and ignore the photometric

image rendering model. Geometry is represented by a point-cloud and perspective projection is

assumed for the camera model. This setup is more general and is applied for 3D reconstruction of

unconstrained images in real life.

In our work on learning based Inverse Rendering for faces, we consider lambertian reflectance

and represent it using albedo. Illumination is considered to be distant and direct and represented by

27 dimensional spherical harmonics, 9 for each of the RGB channels. This is a standard photometric

model for faces, and previous works have shown success in using these representations and model.

The main advantage stems from the fact that the image generation model is differentiable and can

be employed in a deep CNNs to regenerate back the image and train with self-supervision on real

data.

In case of Inverse Rendering for scenes, the representation and choices used for faces are not

enough. General objects are not lambertian and hence we need to also represent the shininess

or specularity of the material. An obvious choice is representing specularity using the Phong or

Ward model. However, we found that it is difficult to recover such detailed parametrization of

shininess just from a single image of a scene. Thus we represent material shininess as ‘matte’,

‘glossy’ and ‘semi-glossy’ and treat it as a segmentation problem. Illumination is represented as an

environment map. The major difference between face and scene stems from the image rendering
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model. In a scene we observe complex appearance effects like, inter-reflections, cast shadows,

near-field illumination, and realistic shading which needs to be modeled in order to regenerate

the image from its intrinsic components and train with self-supervision. In Computer Graphics

this can be modeled using a recursive non-differentiable procedure termed ray-tracing, which can

not be employed in a CNN. Thus we propose a module Residual Appearance Renderer (RAR)

that is trained to learn these complex appearance effects (inter-reflections, cast shadows, near-field

illumination, and realistic shading).

1.5 Thesis Outline

The structure of the thesis is as follows: In Part I we present our approach of learning data driven

priors for Inverse Rendering of a face (in Chapter 3) and a scene (in Chapter 4). In Chapter ?? we

introduce learning data-driven priors for inverse rendering and discuss related works in Chapter 2.

In Part II we discuss our approach of enforcing low-rank constraints for different sub-problems of

inverse rendering, like Structure from Motion (in Chapter 7) and Uncalibrated Photometric Stereo

(in Chapter 8). We introduce constrained low-rank optimization for Inverse Rendering in Chapter 5

and provide relevant background in Chapter 6
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Part I

Learning Data-driven Priors
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Chapter 2

Background

Classical approaches for inverse rendering: For inverse rendering from a few images, most tradi-

tional optimization-based approaches make strong assumptions about statistical priors on illumina-

tion and/or reflectance. A variety of sub-problems have been studied, such as intrinsic image decom-

position [155], shape from shading [123, 119], and BRDF estimation [103]. Recently, SIRFS [6]

showed it is possible to factorize an image of an object or a scene into surface normals, albedo, and

spherical harmonics lighting. In [136] the authors use CNNs to predict the initial depth and then

solve inverse rendering with an optimization. From an RGBD video, Zhang et. al. [178] proposed

an optimization method to obtain reflectance and illumination of an indoor room. The problem of

inverse rendering in the form of SfS gained particular attention in the domain of human facial mod-

eling. This research was precipitated by the advent of the 3D Morphable Model (3DMM) [14] as a

potential prior for shape and reflectance. Recent works used facial priors to reconstruct shape from

a single image [79, 78, 27, 131] or from multiple images [130]. These optimization-based methods,

although physically grounded, often do not generalize well to real images where those statistical

priors are no longer valid.

Learning based approaches for inverse rendering of faces: In recent years, researchers have
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focused on data driven approaches for learning priors rather than hand-designing them for the pur-

pose of inverse rendering. Attempts at learning such priors were presented in [153] using Deep

Belief Nets and in [88] using a convolutional encoder-decoder based network. However these early

works were limited in their performance on real world unconstrained faces. Recent work from Shu

et. al. [141] aims to find a meaningful latent space for normals, albedo and lighting to facilitate

various editing of faces. Tewari et. al. [156] solves this facial disentanglement problem by fit-

ting a 3DMM for shape and reflectance and regressing illumination coefficients. Both [141, 156]

learn directly from real world faces by using convolutional encoder-decoder based architectures.

Decompositions produced by [141] are often not realistic; and [156] only captures low frequency

variations. In contrast, our method learns from a mixture of labeled synthetic and unlabeled real

world faces using a novel decomposition architecture.

Another direction of research is to estimate shape or illumination of a face independently. Re-

cently many research works aim to reconstruct the shape of real world faces by learning from syn-

thetic data; by fitting a 3DMM [159, 91, 157], by predicting a depth map and subsequent non-rigid

deformation to obtain a mesh [133] and by regressing a normal map [160]. Similarly [184] proposed

a method to estimate lighting directly from a face. These learning based independent component

estimation methods can not be trained with unlabeled real world data and thus suffer from the ability

to handle unseen face modalities. In contrast our joint estimation approach performs the complete

decomposition while allowing us to train on unlabeled real world images using self-supervised re-

construction loss.

Learning based approaches for inverse rendering of scenes: With recent advances in deep

learning, researchers have proposed to learn data-driven priors to solve some of these inverse prob-

lems with CNNs, many of which have achieved promising results. For example, it is shown that

depth and normals may be estimated from a single image [39, 44, 188] or multiple images [154].
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Parametric BRDF may be estimated either from an RGBD sequence of an object [108, 83] or

for planar surfaces [97]. Lighting may also be estimated from images, either as an environment

map [45, 60], or spherical harmonics [184] or point lights [179]. Some recent works also jointly

learn some of the intrinsic components of an object, like reflectance and illumination [48, 165],

reflectance and shape [94], and normal, BRDF, and distant lighting [138, 99]. Nevertheless, these

efforts are mainly limited to objects rather than scenes, and do not model the aforementioned resid-

ual appearance effects such as inter-reflection, near-field lighting, and cast shadows present in real

images.

Architectures for learning based inverse rendering: In [141], a convolutional auto-encoder

was used for disentanglement and generating normal and albedo images. However recent advances

in skip-connection based convolutional encoder-decoder architectures for image to image trans-

lations [129, 65, 187] have also motivated their use in [139]. Even though skip connection based

architectures are successful in transferring high frequency information from input to output, they fail

to produce meaningful disentanglement of both low and high frequencies. Our proposed decom-

position architecture uses residual block based connections that allow the flow of high frequency

information from input to output while each layer learns both high and low frequency features. A

residual block based architecture was used for image to image translation in [71] for style trans-

fer and in a completely different domain to learn a latent subspace with Generative Adversarial

Networks [101].

Differentiable Renderer. A few recent works from the graphics community proposed differ-

entiable Monte Carlo renderers [93, 33] for optimizing rendering parameters (e.g., camera poses,

scattering parameters) for synthetic 3D scenes. Neural mesh renderer [77] addressed the problem

of differentiable visibility and rasterization. Our proposed RAR is in the same spirit, but its goal is

to synthesize the complex appearance effects for inverse rendering on real images, which is signifi-
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cantly more challenging.

Datasets for inverse rendering. High-quality synthetic data is essential for learning-based in-

verse rendering. SUNCG [144] created a large-scale 3D indoor scene dataset. The images of the

SUNCG dataset are not photo-realistic as they are rendered with OpenGL using diffuse materials

and point source lighting. An extension of this dataset, PBRS [180], uses physically based render-

ing to generate photo-realistic images. However, due to the computational bottleneck in ray-tracing,

the rendered images are quite noisy and limited to one lighting condition. There also exist a few

real-world datasets with partial labels on geometry, reflectance, or lighting. NYUv2 [111] provides

surface normals from indoor scenes. OpenSurface [12] provides partial segmentation of objects

with their glossiness properties labeled by humans. Relative reflectance judgments from humans

are provided in the IIW dataset [11] which are used in many intrinsic image decomposition meth-

ods. In contrast to these works, we created a large-scale synthetic dataset with significant image

quality improvement. For faces, we create synthetic data using 3DMM [14] in various viewpoints,

reflectance and illumination. We render these models using 27 dimensional spherical harmonics

coefficients (9 for each RGB channel), which comes from a distribution estimated by fitting 3DMM

over real images from the CelebA dataset using classical methods. We use CelebA [102] as real

data.

Intrinsic image decomposition. Intrinsic image decomposition is a sub-problem of inverse

rendering, where a single image is decomposed into albedo and shading. Recent methods learn

intrinsic image decomposition from labeled synthetic data [92, 110, 138] and from unlabeled [96]

or partially labeled real data [186, 95, 113, 11]. Intrinsic image decomposition methods do not

explicitly recover geometry, illumination or glossiness of the material, but rather combine them

together as shading. In contrast, our goal is to perform a complete inverse rendering which has a

wider range of applications in AR/VR.
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Chapter 3

Inverse Rendering of a Face

SfSNet
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Relit Images

Input
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Figure 3-1: Decomposing real world faces into shape, reflectance and illuminance. We present SfSNet
that learns from a combination of labeled synthetic and unlabeled real data to produce an accurate decompo-
sition of an image into surface normals, albedo and lighting. Relit images are shown to highlight the accuracy
of the decomposition. (Best viewed in color)

3.1 Introduction

In this work, we propose a method to decompose unconstrained real world faces into shape, re-

flectance and illuminance assuming lambertian reflectance. This decomposition or inverse render-

ing is a classical and fundamental problem in computer vision [155, 123, 119, 7]. It allows one to
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edit an image, for example with re-lighting and light transfer [166]. Inverse rendering also has po-

tential applications in Augmented Reality, where it is important to understand the illumination and

reflectance of a human face. A major obstacle in solving this decomposition or any of its individual

components for real images is the limited availability of ground-truth training data. Even though it

is possible to collect real world facial shapes, it is extremely difficult to build a dataset of reflectance

and illuminance of images in the wild at a large scale. Previous works have attempted to learn sur-

face normal from synthetic data [159, 133], which often performs imperfectly in the presence of

real world variations like illumination and expression. Supervised learning can generalize poorly if

real test data comes from a different distribution than the synthetic training data.

We propose a solution to this challenge by jointly learning all intrinsic components of the de-

composition from real data. In the absence of ground-truth supervision for real data, photometric

reconstruction loss can be used to validate the decomposition. This photometric consistency be-

tween the original image and inferred normal, albedo and illuminance provide strong cues for in-

verse rendering. However it is not possible to learn from real images only with reconstruction loss,

as this may cause the individual components to collapse on each other and produce trivial solutions.

Thus, a natural step forward is to get the best of both worlds by simultaneously using supervised

data when available and real world data with reconstruction loss in their absence. To this end we

propose a training paradigm ‘SfS-supervision’.

To achieve this goal we propose a novel deep architecture called SfSNet, which attempts to

mimic the physical model of lambertian image generation while learning from a mixture of labeled

synthetic and unlabeled real world images. Training from this mixed data allows the network to

learn low frequency variations in facial geometry, reflectance and lighting from synthetic data while

simultaneously understanding the high frequency details in real data using shading cues through

reconstruction loss. This idea is motivated by the classical works in the Shape from Shading (SfS)
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Figure 3-2: : Network Architecture. Our SfSNet consists of a novel decomposition architecture that uses
residual blocks to produce normal and albedo features. They are further utilized along with image features
to estimate lighting, inspired by a physical rendering model. 𝑓 combines normal and lighting to produce
shading. (Best viewed in color)

literature where often a reference model is used to compensate for the low frequency variations

and then shading cues are utilized for obtaining high frequency details [78]. To meet this goal

we develop a decomposition architecture with residual blocks that learns a complete separation

of image features into normals and albedo. Then we use normal, albedo and image features to

regress the illumination parameters. This is based on the observation that in classical illumination

modeling, lighting is estimated from image, normal and albedo by solving an over-constrained

system of equations. Our network architecture is illustrated in Figure 3-2. Our model and code is

available for research purposes at https://senguptaumd.github.io/SfSNet/.

We evaluate our approach on the real world CelebA dataset [102] and present extensive com-

parison with recent state-of-the-art methods [141, 156], which also perform inverse rendering of

faces. SfSNet produces significantly better reconstruction than [141, 156] on the same images that

are showcased in their papers. We further compare SfSNet with state-of-the-art methods that aim to

solve for only one component of the inverse rendering such as normals or lighting. SfSNet outper-

forms a recent approach that estimates normal independently [160], by improving normal estimation

accuracy by 47% (37% to 84%) on the Photoface dataset [177], which contains faces captured under
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harsh lighting. We also compare against ‘Pix2Vertex’ [133], which only estimate high resolution

meshes. We demonstrate that SfSNet reconstructions are significantly more robust to expression

and illumination variation compared to ‘Pix2Vertex’. This results from the fact that we are jointly

solving for all components, which allows us to train on real images through reconstruction loss.

SfSNet outperforms ‘Pix2Vertex’ (before meshing) by 19% (25% to 44%) without training on the

Photoface dataset. We also outperform a recent approach on lighting estimation ‘LDAN’ [184] by

12.5% (65.9% to 78.4%).

In summary our main contributions are as follows:

(1) We propose a network, SfSNet, inspired by a lambertian rendering model. This uses a decom-

position architecture with residual blocks to separate image features into normal and albedo, further

used to estimate lighting.

(2) We present a training paradigm ‘SfS-supervision’, which allows learning from a mixture of

labeled synthetic and unlabeled real world images. This allows us to jointly learn normal, albedo

and lighting from real images via reconstruction loss, outperforming approaches that only learn an

individual component.

(3) SfSNet produces remarkably better visual results compared to state-of-the-art methods for in-

verse rendering [141, 156]. In comparison with methods that obtain one component of the inverse

rendering [160, 133, 184], SfSNet is significantly better, especially for images with expression and

non-ambient illumination.

3.2 Approach

Our goal is to use synthetic data with ground-truth supervision over normal, albedo and lighting

along with real images with no ground-truth. We assume image formation under lambertian re-

flectance. Let 𝑁(𝑝), 𝐴(𝑝) and 𝐼(𝑝) denote the normal, albedo and image intensity at each pixel 𝑝.
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We represent lighting 𝐿 as nine dimensional second order spherical harmonics coefficients for each

of the RGB channels. The image formation process under lambertian reflectance, following [9] is

represented in equation (3.1), where 𝑓render(.) is a differentiable function.

𝐼(𝑝) = 𝑓render(𝑁(𝑝),𝐴(𝑝), 𝐿) (3.1)

3.2.1 ‘SfS-supervision’ Training

Our ‘SfS-supervision’ consists of a multi-stage training as follows: (a) We train a simple skip-

connection based encoder-decoder network on labeled synthetic data. (b) We apply this network

on real data to obtain normal, albedo and lighting estimates. These elements will be used in the

next stage as ‘pseudo-supervision’. (c) We train our SfSNet with a mini-batch of synthetic data with

ground-truth labels and real data with ‘pseudo-supervision’ labels. Along with supervision loss over

normal, albedo and lighting we use a photometric reconstruction loss that aims to minimize the error

between the original image and the reconstructed image following equation (3.1).

This reconstruction loss plays a key role in learning from real data using shading cues while

‘pseudo-supervision’ prevents the collapse of individual components of the decomposition that pro-

duce trivial solutions. In Section 3.5 we show that ‘SfS-supervision’ significantly improves inverse

rendering over training on synthetic data only. Our idea of ‘SfS-supervision’ is motivated by the

classical methods in SfS, where a 3DMM or a reference shape is first fitted and then used as a prior

to recover the details [78, 79]. Similarly in ‘SfS-supervision’, low frequency variations are obtained

by learning from synthetic data. Then they are used as priors or ‘pseudo-supervision’ along with

photometric reconstruction loss to add high frequency details.

Our loss function is described in equation (3.2). For 𝐸𝑁 , 𝐸𝐴 and 𝐸𝑟𝑒𝑐𝑜𝑛 we use 𝐿1 loss over all

pixels of the face for normal, albedo and reconstruction respectively; 𝐸𝐿 is defined as the 𝐿2 loss
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over 27 dimensional spherical harmonic coefficients. We train with a mixture of synthetic and real

data in every mini-batch. We use 𝜆𝑟𝑒𝑐𝑜𝑛, 𝜆𝑁 and 𝜆𝐴 = 0.5 and 𝜆𝐿 = 0.1. Details of reconstruction

loss under lambertian reflectance are presented in the Appendix 10.1.4.

𝐸 = 𝜆𝑟𝑒𝑐𝑜𝑛𝐸𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑁𝐸𝑁 + 𝜆𝐴𝐸𝐴 + 𝜆𝐿𝐸𝐿 (3.2)

3.2.2 Proposed Architecture

A common architecture in image to image translation is skip-connection based encoder-decoder

networks [129, 65]. In the context of inverse rendering, [139] used a similar skip-connection based

network to perform decomposition for synthetic images consisting of ShapeNet [31] objects. We

observe that in these networks most of the high frequency variations are passed from encoder to

decoders through the skip connections. Thus the networks do not have to necessarily reason about

whether high frequency variations like wrinkles and beards come from normal or albedo. Also in

these networks the illumination is estimated only from the image features directly and is connected

to normal and albedo through reconstruction loss only. However since illumination can be estimated

from image, normal and albedo by solving an over-constrained system of equations, it makes more

sense to predict lighting from image, normal and albedo features.

The above observations motivate us to develop an architecture that learns to separate both low

and high frequency variations into normal and albedo to obtain a meaningful subspace that can be

further used along with image features to predict lighting. Thus we use a residual block based ar-

chitecture as shown in Figure 3-2. The decomposition with ‘Normal Residual Blocks’ and ‘Albedo

Residual Blocks’ allows complete separation of image features into albedo and normal features as

shown in Figure 3-3b. The skip connections (shown in red) allow the high frequency information

to flow directly from input feature to output feature while the individual layers can also learn from
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Figure 3-3: Decomposition architectures. We experiment with two architectures: (a) skip con-
nection based encoder-decoder; (b) proposed residual block based network. Skip connections are
shown in red.

the high frequency information present in the skip connections. This lets the network learn from

both high and low frequency information and produce a meaningful separation of features at the

output. In contrast a skip connection based convolutional encoder-decoder network as shown in

Figure 3-3a consists of skip connections (shown in red) that bypass all the intermediate layers and

flow directly to the output. This architecture allows us to estimate lighting from a combination of

image, normal and albedo features. In Section 3.5 we show that using a residual block based de-

composition improves lighting estimation by 11% (67.7% to 78.4%) compared to a skip connection

based encoder-decoder.

The network uses few layers of convolution to obtain image features, denoted by 𝐼𝑓 which

is the output of the ‘Conv’ block in Figure 3-2. 𝐼𝑓 is the input to two different residual blocks

denoted as ‘Normal Residual Blocks’ and ‘Albedo Residual Blocks’, which take the image features

and learns to separate them into normal and albedo features. Let the output of ‘Normal Residual

Blocks’ and ‘Albedo Residual Blocks’ be 𝑁𝑓 and 𝐴𝑓 respectively. 𝑁𝑓 and 𝐴𝑓 are further processed

23



through ‘Normal Conv’ and ‘Albedo Conv’ respectively to obtain normal and albedo aligned with

the original face. To estimate lighting we use image (𝐼𝑓 ), normal (𝑁𝑓 ) and albedo (𝐴𝑓 ) features in

the ‘Light Estimator’ block of Figure 3-2 to obtain 27 dimensional spherical harmonic coefficients

of lighting. The ‘Light Estimator’ block simply concatenates image, normal and albedo features

followed by 1x1 convolutions, average pooling and a fully connected layer to produce lighting

coefficients. The details of the network are provided in the Appendix 10.1.1.

3.2.3 Implementation Details

To generate synthetic data we use 3DMM [14] in various viewpoints, reflectance and illumination.

We render these models using 27 dimensional spherical harmonics coefficients (9 for each RGB

channel), which comes from a distribution estimated by fitting 3DMM over real images from the

CelebA dataset using classical methods. We use CelebA [102] as real data for both training, vali-

dation and testing, following the provided protocol. We detect keypoints using [124] and create a

mask based on these keypoints. Each of the ‘Residual Blocks’ consists of 5 residual blocks based on

the structure proposed by [57]. Our network is trained with input images of size 128 × 128 and the

residual blocks all operate at 64×64 resolution. The ‘pseudo-supervision’ for real world images are

generated by training a simple skip-connection based encoder-decoder network, similar to [141], on

synthetic data. The details of this network, referred to as ‘SkipNet’ in Section 3.5, are provided in

the Appendix 10.1.2.

3.3 Comparison with State-of-the-art Methods

We compare our SfSNet with [141, 156] qualitatively on unconstrained real world faces. As an

application of inverse rendering we perform light transfer between a pair of images, which also

illustrates the correctness of the decomposition. We quantitatively evaluate the estimated normals
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Figure 3-4: Inverse Rendering. SfSNet vs ‘Neural Face’ [141] on the data showcased by the authors.

on the Photoface dataset [177] and compare with the state-of-the-art [160, 133]. Similarly we also

evaluate the accuracy of estimated lighting on the MultiPIE dataset [51] and compare with [184].

We outperform state-of-the-art methods by a large margin both qualitatively and quantitatively.

3.3.1 Evaluation of Inverse Rendering

In Figures 3-4 and 3-5 we compare performance of our SfSNet with ‘Neural Face’ [141] on inverse

rendering and light transfer respectively. The results are shown on the same images used in their

paper. The results clearly show that SfSNet performs more realistic decomposition than ‘Neural

Face’. Note that in light transfer ‘Neural Face’ does not use their decomposition, but rather recom-

putes the albedo of the target image numerically. Light transfer results in Figure 3-5, show that

SfSNet recovers and transfers the correct ambient light compared to ‘Neural Face’, which fails to
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Figure 3-5: Light Transfer. SfSNet vs ‘Neural Face’ [141] on the image showcased by the authors. We
transfer the lighting of the ‘Source’ image to the ‘Target’ image to produce ‘Transfer’ image. S denotes
shading. Both ‘Target’ images contain an orangey glow, which is not present in the ‘Source’ image. Ideally
in the ‘Transfer’ image, the orangey glow should be removed. ‘Neural Face’ fails to get rid of the orangey
lighting effect of the ‘Target’ image in the ‘Transfer’ image.
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Figure 3-6: Inverse Rendering. SfSNet vs ‘MoFA’ [156] on the data provided by the authors of the paper.
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Figure 3-7: Inverse Rendering on the Photoface dataset [177] with ‘SfSNet-finetuned’. The ground-truth
albedo is in gray-scale and it encourages our network to also output gray-scale albedo.

get rid of the orangey lighting from the target images. We also compare inverse rendering results of

SfSNet on the images provided to us by the authors of [156] in Figure 3-6. Since [156] aims to fit

a 3DMM that can only capture low frequency variations, we obtain more realistic normals, albedo

and lighting than them.

3.3.2 Evaluation of Facial Shape Recovery

In this section we compare the quality of our reconstructed normals with that of current state-of-

the-art methods that only recover shape from a single image. We use the Photoface dataset [177],

which provides ground-truth normals for images taken under harsh lighting. First we compare with

algorithms that also train on the Photoface dataset. We finetune our SfSNet on this dataset using

ground truth normals and albedo as supervision since they are available. We compare our ‘SfSNet-

ft’ with ‘NiW’ [160] and other baseline algorithms, ‘Marr Rev.’ [5] and ‘UberNet’ [84], reported

in [160] in Table 3.1. The metric used for this task is mean angular error of the normals and the

percentage of pixels at various angular error thresholds as in [160]. Since the exact training split

of the dataset is not provided by the authors, we create a random split based on identity with 100

individuals in test data as mentioned in their paper. Our ‘SfSNet-ft’ improves normal estimation

accuracy by more than a factor of two for the most challenging threshold of 20 degrees accuracy. In

Figure 3-7 we show visual results of decomposition on test data of the Photoface dataset.
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Figure 3-8: SfSNet vs Pix2Vertex [133]. Normals produced by SfSNet are significantly better than
Pix2Vertex, especially for non-ambient illumination and expression. ‘Relit’ images are generated by di-
rectional lighting and uniform albedo to highlight the quality of the reconstructed normals. Note that (a), (b)
and (c) are the images showcased by the authors. (Best viewed in color)

Algorithm Mean ±std < 20° < 25° < 30°
3DMM 26.3 ±10.2 4.3% 56.1% 89.4%

Pix2Vertex[133] 33.9 ±5.6 24.8% 36.1% 47.6%
SfSNet 25.5 ±9.3 43.6% 57.5% 68.7%

Marr Rev.[5] 28.3 ±10.1 31.8% 36.5% 44.4%
UberNet[84] 29.1 ±11.5 30.8% 36.5% 55.2%
NiW[160] 22.0 ±6.3 36.6% 59.8% 79.6%
SfSNet-ft 12.8 ±5.4 83.7% 90.8% 94.5%

Table 3.1: Normal reconstruction error on the Photoface dataset. 3DMM, Pix2Vertex and SfSNet are
not trained on this dataset. Marr Rev., UberNet, NiW and SfSNet-finetuned (SfSNet-ft) are trained on the
training split of this dataset. Lower is better for mean error (column 1), and higher is better for the percentage
of correct pixels at various thresholds (columns 3-5).

Next we compare our algorithm with ‘Pix2Vertex’ [133], which is trained on higher resolution

512×512 images. ‘Pix2Vertex’ learns to produce a depth map and a deformation map that are post-

processed to produce a mesh. In contrast our goal is to perform inverse rendering. Since we are able

to train on real data, unlike ‘Pix2Vertex’, which is trained on synthetic data, we can better capture

real world variations. Figure 3-8 compares normals produced by SfSNet with that of ‘Pix2Vertex’

both before and after meshing on the images showcased by the authors. Since ‘Pix2vertex’ han-

dles larger resolution and produces meshes, their normals can capture more details than ours. But
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Figure 3-9: Selected results from top 5% (a,b,c,d) and worst 5% (e,f,g,h) reconstructed images. (Best
viewed in color)

with more expression and non-ambient illumination like (c), (d), (e) and (f) in Figure 3-8, we pro-

duce fewer artifacts and more realistic normals and shading. SfSNet is around 2000× faster than

‘Pix2Vertex’ due to the expensive mesh generation post-processing. These results show that learning

all components of inverse rendering jointly allows us to train on real images to capture better vari-

ations than ‘Pix2Vertex’. We further compare SfSNet with the normals produced by ‘Pix2Vertex’

quantitatively before meshing on the Photoface dataset. SfSNet, ‘Pix2Vertex’ and 3DMM are not

trained on this dataset. The results shown in Table 3.1 shows that SfSNet outperforms ‘Pix2Vertex’

and 3DMM by a significant margin.
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Figure 3-10: Light transfer. Our SfSNet allows us to transfer lighting of the ‘Source’ image to the ‘Target’
image to produce ‘Transfer’ image. ‘S’ refers to shading. (Best viewed in color)

Algorithm top-1% top-2% top-3%
SIRFS log [7] 60.72 79.65 87.27
LDAN [184] 65.87 85.17 92.46

SfSNet 78.44 89.44 92.64

Table 3.2: Light Classification Accuracy on MultiPIE dataset. SfSNet significantly outperforms
‘LDAN’.

3.3.3 Evaluation of Light Estimation

We evaluate the quality of the estimated lighting using MultiPIE dataset [51] where each of the 250

individuals is photographed under 19 different lighting conditions. We perform 19-way classifi-

cation, to check the consistency of the estimated lighting as described in [184] and compare with

their proposed algorithm ‘LDAN’. ‘LDAN’ estimates lighting independently from a single face im-

age using adversarial learning. Results in Table 3.2 shows that we improve top-1% classification

accuracy by 12.6% over ‘LDAN’.
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3.4 Results on CelebA

In Figure 3-9 we provide sample results on CelebA test data from the best 5% and worst 5% recon-

structed images respectively. For every test face, we also relight the face using a directional light

source that highlights the flaws in the decomposition. As expected the best results are for frontal

faces with little or no expression and easy ambient lighting as shown in Figure 3-9 (a-d). The worst

reconstructed images have large amounts of cast shadows, specularity and occlusions as shown in

Figure 3-9 (e-h). However, the recovered normal and lighting are still reasonable. We also show

interesting results on light transfer in Figure 3-10, which also highlights the quality of the decom-

position. Note that the examples shown in (c) and (d) are particularly hard as source and target

images have opposite lighting directions. More qualitative results on CelebA and comparison with

[141, 156, 133] are provided in the Appendix 10.1.5.

3.5 Ablation Studies

We analyze the relative importance of mixed data training with ‘SfS-supervision’ compared to learn-

ing from synthetic data alone. We also contrast the SfSNet architecture with skip-connection based

networks. For ablation studies, we consider photometric reconstruction loss (Recon. Error) and

lighting classification accuracy (Lighting Acc.) as performance measures.

Role of ‘SfS-supervision’ training: To analyze the importance of our mixed data training we

consider the SfSNet architecture and compare its performance using different training paradigms.

We consider the following:

SfSNet-syn: We train SfSNet on synthetic data only.

SkipNet-syn: We observe that our residual block based network can not generalize well on unseen
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real world data when trained on synthetic data, as there is no direct skip connections that can transfer

high frequencies from input to output. However a skip connection based encoder-decoder network

can generalize on unseen real world data. Thus we consider a skip connection based network,

‘SkipNet’, which is similar in structure with the network presented in [141], but with increased

capacity and skip connections. We train ‘SkipNet’ on synthetic data only and this training paradigm

is similar to [139], which also uses a skip-connection based network for decomposition in ShapeNet

objects.

SfSNet: We use our ‘SfS-supervision’ to train our SfSNet, where ‘pseudo-supervision’ is generated

by ‘SkipNet’.

Training Paradigm
Recon. Error Lighting Acc.
MAE RMSE Rank 1 Rank 2 Rank 3

SkipNet-syn 42.83 48.22 54.86% 76.78% 85.76%
SfSNet-syn 48.54 58.13 63.88% 80.52% 87.24%

SfSNet 10.99 13.55 78.44% 89.52% 92.64%

Table 3.3: Role of ‘SfS-supervision’ training. ‘SfS-supervision’ outperforms training on synthetic
data only.

Note that another alternative is training on synthetic data and fine-tuning on real data. It has

been shown in [141] that it is not possible to train the network on real data alone by using only

reconstruction loss, as the ambiguities in the decomposition can not be constrained, leading to a

trivial solution. We also find that the same argument is true in our experiments. Thus we com-

pare our ‘SfS-supervision’ training paradigm with only synthetic data training in Table 3.3. The

results show that our ‘SfS-supervision’ improves significantly over the ‘pseudo-supervision’ used

from SkipNet, indicating that we are successfully using shading information to add details in the

reconstruction.

Role of SfSNet architecture: We evaluate the effectiveness of our proposed architecture against a

skip connection based architecture. Our proposed architecture estimates lighting from image, nor-
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mal and albedo, as opposed to a skip connection based network which estimates lighting directly

from the image only. SkipNet described in the Appendix based on [141] does not produce a good

decomposition because of the fully connected bottleneck. Thus we compare with a fully convo-

lutional architecture with skip connection, similar to Pix2Pix [65], which we refer to as Skipnet+.

This network has one encoder, two decoders for normal and albedo and a fully connected layer from

the output of the encoder to predict light (see Appendix 10.1.3 for details).

In Table 3.4 we show that our SfSNet outperforms SkipNet+, also trained using the ‘SfS-

supervision’ paradigm. Although reconstruction error is similar for both networks, SfSNet predicts

better lighting than ‘SkipNet+’. This improved performance can be attributed to the fact that Sf-

SNet learns an informative latent subspace for albedo and normal, which is further utilized along

with image features to estimate lighting. Whereas in the case of the skip connection based network,

the latent space is not informative as high frequency information is directly propagated from input

to output bypassing the latent space. Thus lighting parameters estimated only from the latent space

of the image encoder fail to capture the illumination variations.

Training Paradigm
Recon. Error Lighting Acc.
MAE RMSE top-1% top-2% top-3%

SkipNet+ 11.33 14.42 67.70% 85.08% 90.34%
SfSNet 10.99 13.55 78.44% 89.52% 92.64%

Table 3.4: SfSNet vs SkipNet+. Proposed SfSNet outperforms a skip connection based SkipNet+
which estimates lighting directly from the image.
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Chapter 4

Inverse Rendering of an Indoor Scene

Image Normal Albedo Glossiness ReconstructedLighting

Figure 4-1: We propose a holistic data-driven approach for inverse rendering, i.e. decompose an indoor scene
image into surface normals, albedo, glossiness segmentation (matte–blue, glossy–red and semi-glossy–green)
and environment map.

4.1 Introduction

Inverse Rendering of a scene from a single image is more challenging than a face. In case of faces,

researchers have traditionally modeled reflectance as lambertian. In contrast, a scene consists of

multiple different objects with varying reflectance properties. Similarly, illumination in a face can

be assumed to be distant and direct, thus can be modeled using spherical harmonics. Whereas, in a

scene we observe complex appearance effects like inter-reflections, cast-shadows, near-field lighting

and highlights. In this work we aim to learn from unlabeled real world images using self-supervised

reconstruction loss while tackling these challenges related to representing scene reflectance and

illumination.

In this chapter, we take the first step and propose a holistic data-driven approach for inverse
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rendering of an indoor scene from a single image with CNNs. Unlike recent works which either

estimate only one of the scene attributes [45, 39, 97] or are limited to single objects [83, 99, 108],

our approach jointly learns and estimates reflectance (albedo and gloss), surface normals, and illu-

mination of an indoor scene from a single image, as shown in Fig. 4-1. Inverse rendering of a scene

is particularly challenging due to complex appearance effects (e.g., inter-reflection, cast shadows,

near-field illumination, and realistic shading).

Two key contributions make our approach possible. 1) We introduce a new synthetic dataset us-

ing physically based rendering. 2) Our aim is to learn from unlabeled real data using self-supervised

reconstruction loss. To this end, we propose the Residual Appearance Renderer (RAR) which learns

to predict complex appearance effects on real images.

Rendering dataset. It is especially challenging for inverse rendering tasks to obtain accurate ground

truth labels for real images. Hence, we create a large-scale synthetic dataset with physically-based

rendering, named SUNCG-PBR, of all the 3D indoor scenes from SUNCG [144]. Compared to prior

work PBRS [180], SUNCG-PBR significantly improves data quality in the following ways: (1) The

rendering of a scene is performed under multiple natural illuminations. (2) We render the same

scene twice. Once with all materials set to Lambertian and once with the default material settings

to produce image pairs (diffuse, specular). (3) We utilize deep denoising [28], which allows us to

render high-quality images from limited samples per pixel. Our dataset consists of 235,893 images

with labels for normal, depth, albedo, Phong [90] model parameters and semantic segmentation.

Examples are shown in Fig. 4-4. We plan to release the SUNCG-PBR dataset upon acceptance.

Residual Appearance Renderer. Our key idea is to learn from unlabeled real data using self-

supervised reconstruction loss, which is enabled by our proposed Residual Appearance Renderer

(RAR) module. While using a reconstruction loss for domain transfer from synthetic to real has

been explored previously [134, 142, 99], their renderer is limited to direct illumination under distant
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lighting with a single material. For real images of a scene, however, this simple direct illumination

renderer cannot synthesize important, complex appearance effects, such as inter-reflections, cast

shadows, near-field lighting, and realistic shading. These effects termed residual appearance in this

paper, can only be simulated with the rendering equation via physically-based ray-tracing, which is

non-differentiable and cannot be employed in a learning-based framework. To this end, we propose

the Residual Appearance Renderer (RAR) module, which along with a direct illumination renderer,

can reconstruct the original image from the estimated scene attributes, for self-supervised learning

on real images.

Moreover, similar to prior works, we also incorporate sparse labels on real data (i.e., pair-wise

reflectance comparison [11, 95, 186], sparse material segmentation [12]) as a form of weakly super-

vised learning, to further improve the performance on real images.

To our knowledge, our approach is the first data-driven solution to single-image based inverse

rendering of a scene. SIRFS [6], which is a classical optimization based method, seems to be

the only prior work with similar goals. Compared with SIRFS, as shown in Sec. 4.4, our method

is more robust and accurate. In addition, we also compare with recent DL-based methods that

estimate only one of the scene attributes, such as intrinsic images [95, 96, 186, 113], lighting [45],

and normals [180]. Experimental results show that our approach outperforms most of these single-

attribute methods (especially on real images), which seems to indicate that the joint learning of all

these scene attributes is helpful for the ability to generalize.

4.2 Our Approach

We present a deep learning based approach for inverse rendering from a single 8-bit image, which

is shown in Fig. 4-2. Specifically, given an input image 𝐼 , we estimate all its intrinsic components,

i.e., reflectance, geometry, and lighting. The reflectance is represented as a diffuse albedo map 𝐴
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Figure 4-2: Overview of our approach. Our Inverse Rendering Network (IRN) consists of two modules
IRN-Diffuse and IRN-Specular to predict albedo, normals, illumination map and glossiness segmentation
respectively. We train on unlabeled real images using self-supervised reconstruction loss. Reconstruction loss
consists of a closed-form Direct Renderer with no learnable parameters and proposed Residual Appearance
Renderer (RAR), which learns to predict complex appearance effects.

plus Phong [90] model parameters for the specularity (i.e., 𝐾𝑠 and 𝑁𝑠). We represent the geometry

as a normal map 𝑁 and the lighting as an environment map 𝐿. To make per-pixel Phong parameter

estimation feasible, we simplify the task as a glossiness segmentation problem and define three

glossiness categories (et. al., matte, semi-glossy and glossy) based on the statistical distributions of

BRDFs in our dataset. The output probability maps from the glossiness-based segmentation network

are used as weights to compute the per-pixel Phong parameters. Thus, as shown in Fig. 4-2, our

proposed neural Inverse Rendering Network (IRN) consists of two sub-networks: IRN-Diffuse,

denoted as ℎ𝑑(⋅;Θ𝑑) which estimates 𝑁 , 𝐴, and 𝐿, and IRN-Specular, denoted as ℎ𝑠(⋅;Θ𝑠), which

estimates the glossiness segmentation 𝑆:

IRN-Diffuse ∶ ℎ𝑑(𝐼;Θ𝑑)→ {𝐴, �̂�, �̂�} (4.1)

IRN-Specular ∶ ℎ𝑠(𝐼,𝐴;Θ𝑠)→ 𝑆, (4.2)

where Θ𝑑 and Θ𝑠 are the network parameters. The estimated 𝐾𝑠 and 𝑁𝑠 can then be computed from

the soft segmentation mask 𝑆.

Using our synthetic data SUNCG-PBR, we can simply train these two networks (ℎ𝑑(⋅;Θ𝑑)
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and ℎ𝑠(⋅;Θ𝑠)) with supervised learning – with only one caveat, i.e. we need to approximate the

“ground truth” environment maps (using a separate network ℎ𝑒(⋅;Θ𝑒) → �̂�∗. See Sec. 4.2.1 for

details). To generalize on real images, we use a self-supervised reconstruction loss. Specifically, as

shown in Fig. 4-2, we use two renderers to re-synthesize the input image from the estimations. The

direct renderer 𝑓𝑑(⋅) is a simple closed-form shading function with no learnable parameters, which

synthesizes the direct illumination part 𝐼𝑑 of the the raytraced image. The Residual Appearance

Renderer (RAR), denoted by 𝑓𝑟(⋅;Θ𝑟), is a trainable network module, which learns to synthesize

the complex appearance effects 𝐼𝑟

Direct Renderer ∶ 𝑓𝑑(𝐴, �̂�, �̂�)→ 𝐼𝑑 (4.3)

RAR ∶ 𝑓𝑟(𝐼,𝐴, �̂� ;Θ𝑟)→ 𝐼𝑟. (4.4)

The self-supervised reconstruction loss is thus defined as ⋃︀⋃︀𝐼 − (𝐼𝑑 + 𝐼𝑟)⋃︀⋃︀1. We explain the details of

the direct renderer and the RAR in Sec. 4.2.2.

In summary, four sets of weights, Θ𝑑, Θ𝑠, Θ𝑒, and Θ𝑟, need to be learned from training. At

inference time, given an input image 𝐼 , we run IRN-Diffuse and IRN-Specular to estimate all the

intrinsic components for the scene.

4.2.1 Training on Synthetic Data

We first train IRN-Diffuse and IRN-Specular on our synthetic dataset SUNCG-PBR with supervised

learning. As shown in Fig. 4-2, IRN-Diffuse has a structure similar to [134], which consists of a

convolutional encoder, followed by nine residual blocks and a convolutional decoder for estimating

albedo and normals. We condition the lighting estimation block on the image, normals and albedo

features. IRN-Specular is trained on the image and the albedo predicted by IRN-Diffuse to produce
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a three-class glossiness segmentation map for matte, glossy and semi-glossy. IRN-Specular is based

on U-Net [129], which has been shown to be effective for simple segmentation problems. Details

of the IRN architecture are provided in the Appendix.

We use ground truth albedos 𝐴∗ and normals 𝑁∗ from SUNCG-PBR for supervised learning.

The ground truth glossiness segmentation mask 𝑆∗(𝑥) is obtained by performing per-pixel classifi-

cation based on the ground truth 𝐾∗

𝑠 (𝑥), 𝑁∗

𝑠 (𝑥), and 𝐴∗(𝑥) as follows:

matte:
𝐾∗

𝑠 (𝑥)
𝐾∗

𝑠 (𝑥) +𝐴∗(𝑥) ≤ 𝑇0, 𝑁∗

𝑠 (𝑥) ≤ 𝑁0

glossy:
𝐾∗

𝑠 (𝑥)
𝐾∗

𝑠 (𝑥) +𝐴∗(𝑥) ≥ 𝑇1, 𝑁∗

𝑠 (𝑥) > 𝑁1 (4.5)

semi-glossy: otherwise,

where 𝑇0 = 0.1, 𝑇1 = 0.2, 𝑁0 = 30, 𝑁1 = 50 are based on statistical distributions of the Phong

parameters 𝐾𝑠 and 𝑁𝑠 in the SUNCG-PBR dataset.

The ground truth environmental lighting 𝐿∗ is challenging to obtain, as it is the first-order

approximation of the actual surface light field. We use environment maps as the exterior lighting

for rendering SUNCG-PBR, but these environment maps cannot be directly set as 𝐿∗, because the

virtual cameras are placed inside each of the indoor scenes. Due to occlusions, only a small fraction

of the exterior lighting (e.g., through windows and open doors) is directly visible. The surface

light field of each scene is mainly attributed to global illumination (i.e., inter-reflection) and some

interior lighting. One could approximate 𝐿∗ by minimizing the difference between the raytraced

image 𝐼 and the output 𝐼𝑑 of the direct renderer 𝑓𝑑(⋅) with ground truth albedo 𝐴∗ and normal

𝑁∗. However, we found this approximation to be inaccurate, since 𝑓𝑑(⋅) cannot model the residual

appearance present in the raytraced image 𝐼 .

We thus resort to a learning-based method to approximate the ground truth lighting 𝐿∗. Specif-
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ically, we train a residual block based network, ℎ𝑒(⋅;Θ𝑒), to predict �̂�∗ from the input image 𝐼 ,

normalw 𝑁∗ and albedo 𝐴∗. We first train ℎ𝑒(⋅;Θ′

𝑒) with the images synthesized by the direct

renderer 𝑓𝑑(⋅) with ground truth normals, albedo and indoor lighting, 𝐼𝑑 = 𝑓𝑑(𝐴∗,𝑁∗, 𝐿), where 𝐿

is randomly sampled from a set of real indoor environment maps.

Here the network learns a prior over the distribution of indoor lighting, i.e., ℎ(𝐼𝑑;Θ′

𝑒) → 𝐿.

Next, we fine-tune this network ℎ𝑒(⋅;Θ′

𝑒) on the raytraced images 𝐼 , by minimizing the reconstruc-

tion loss: ∏︁𝐼−𝑓𝑑(𝐴∗,𝑁∗, �̂�∗)∏︁. Thus we obtain the approximated ground truth of the environmental

lighting �̂�∗ = ℎ𝑒(𝐼;Θ𝑒) which can best reconstruct the raytraced image 𝐼 modelled by the direct

render.

Finally, with all the ground truth components ready, the supervised loss for training IRN-Diffuse

is

𝐿𝑠 = 𝜆1⋃︀⋃︀�̂� −𝑁∗⋃︀⋃︀1 + 𝜆2⋃︀⋃︀𝐴 −𝐴∗⋃︀⋃︀1

+ 𝜆3⋃︀⋃︀𝑓𝑑(𝐴∗,𝑁∗, �̂�) − 𝑓𝑑(𝐴∗,𝑁∗, �̂�∗)⋃︀⋃︀1.
(4.6)

where 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 0.5. We use cross-entropy loss over 𝑆 and 𝑆∗ for training IRN-

Specular.

4.2.2 Training on Real Images with Self-supervision

Learning from synthetic data alone is not sufficient to perform well on real images. Although

SUNCG-PBR was created with physically-based rendering, the variation of objects, materials, and

illumination is still limited compared to those in real images. Since obtaining ground truth labels for

inverse rendering is almost impossible for real images (especially for reflectance and illumination),

we use two key ideas for domain transfer from synthetic to real: (1) self-supervised reconstruction

loss and (2) weak supervision from sparse labels.
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Previous works on faces [134, 142] and objects [99] have shown success in using a self-supervised

reconstruction loss for learning from unlabeled real images. As mentioned earlier, the reconstruction

in these prior works is limited to the direct renderer 𝑓𝑑(⋅), which is a simple closed-form shading

function (under distant lighting) with no learnable parameters. In this paper, we implement 𝑓𝑑(⋅)

simply as

𝐼𝑑 = 𝑓𝑑(𝐴, �̂�, �̂�) = 𝐴∑
𝑖

max(0, �̂� ⋅ �̂�𝑖), (4.7)

where �̂�𝑖 corresponds to the pixels on the environment map �̂�. While using 𝑓𝑑(⋅) to compute the

reconstruction loss may work well for faces [134] or small objects with homogeneous material [99],

we found that it fails for inverse rendering of a scene. In order to synthesize the aforementioned

residual appearances (e.g., inter-reflection, cast shadows, near-field lighting), we propose to use the

differentiable Residual Appearance Renderer (RAR), 𝑓𝑟(⋅;Θ𝑟), which learns to predict a residual

image 𝐼𝑟. The self-supervised reconstruction loss is thus defined as 𝐿𝑢 = ⋃︀⋃︀𝐼 − (𝐼𝑑 + 𝐼𝑟)⋃︀⋃︀1.

Image (I) Recon. DR (Id) Recon. DR+RAR (Id+ Is)

Figure 4-3: RAR 𝑓𝑟(⋅) learns to predict complex appearance effects (e.g. near-field lighting, cast shadows,
inter-reflections) which cannot be modeled by a direct renderer (DR) 𝑓𝑑(⋅).

Our goal is to train RAR to capture only the residual appearances but not to correct the artifacts

of the direct rendered image due to faulty normals, albedo, and lighting estimation of the IRN. To

achieve this goal, we train RAR only on synthetic data with ground-truth normals and albedo, and
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fix it for training on real data, so that it only learns to correctly predict the residual appearances

when the direct renderer reconstruction is accurate.

As shown in Fig. 4-2, RAR consists of a U-Net [129], with normals and albedo as its input,

and latent image features (𝐷 = 300 dimension) learned by a convolutional encoder (‘Enc’). We

combine the image features at the end of the U-Net encoder and process them with the U-Net

decoder to produce the residual image. As shown in Fig. 4-3, RAR indeed learns to synthesize

complex residual appearance effects present in the original input image.

Similar to prior work [186, 95], we use sparse labels over reflectance as weak supervision during

training on real images. Specifically, we use pair-wise relative reflectance judgments from the

Intrinsic Image in the Wild (IIW) dataset [11] as a form of supervision over albedo. For glossiness

segmentation we use sparse human annotations from the OpenSurfaces dataset [12] as weak labels.

More details are provided in the supplementary material. As shown later in Sec. 4.5, using such

weak supervision can substantially improve performance on real images.

4.2.3 Training Procedure

We summarize the different stages of training from synthetic to real data. More details are in the

supplementary.

Estimate GT indoor lighting: (a) First train ℎ𝑒(⋅;Θ′

𝑒) on images rendered by the direct ren-

derer 𝑓𝑑(⋅). (b) Fine-tune ℎ𝑒(⋅;Θ𝑒) on raytraced synthetic images to estimate GT indoor environ-

ment map �̂�∗.

Train on synthetic images: (a) Train IRN-Diffuse with supervised L1 loss on albedo, normal

and lighting. (b) Train RAR. (c) Train IRN-Specular with the input image and the albedo predicted

by IRN-Diffuse.

Train on real images: Fine-tune IRN-Diffuse and IRN-Specular on real data with (1) the
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pseudo-supervision over albedo, normal and lighting (to handle ambiguity of decomposition as

proposed in [134]), (2) the self-supervised reconstruction loss 𝐿𝑢 with RAR, and (3) the weak su-

pervision over the albedo (i.e., pair-wise relative reflectance judgment) and the sparse glossiness

segmentation.

4.3 The SUNCG-PBR Dataset
Image (specular) Image (diffuse) Depth Surface Normal Albedo Phong Model Semantic Segmentation Glossiness Segmentation

Figure 4-4: Our SUNCG-PBR Dataset. We provide 235,893 images of a scene assuming specular and
diffuse reflectance along with ground truth depth, surface normals, albedo, Phong model parameters, semantic
segmentation and glossiness segmentation.

High-quality synthetic datasets are essential for learning-based inverse rendering. The SUNCG

dataset [144] contains 45,622 indoor scenes with 2644 unique objects, but their images are rendered

with OpenGL under fixed point light sources. The PBRS dataset [180] extends the SUNCG dataset

by using physically based rendering with Mitsuba [68]. Yet, due to a limited computational budget,

many rendered images in PBRS are quite noisy. Moreover, the images in PBRS are rendered with

only diffuse materials and a single outdoor environment map, which also significantly limits the

photo-realism of the rendered images. High-quality photo-realistic images are necessary for training

RAR to capture residual appearances.

In this paper, we introduce a new dataset named SUNCG-PBR, which improves data quality

in the following ways: (1) The rendering is performed under multiple outdoor environment maps.

(2) We render the same scene twice, once with all materials set to lambertian and once with the
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default material settings. This offers (diffuse, specular) image pairs which can be useful to the

community for learning to remove highlights and many other potential applications. (3) We utilize

deep denoising [28], which allows us to raytrace high-quality images from limited samples per pixel.

Our dataset consists of 235,893 images with labels related to normal, depth, albedo, Phong [90]

model parameters, semantic and glossiness segmentation. Examples are shown in Fig. 4-4. A

comparison with the SUNCG and PBRS datasets is shown in Fig. 4-5.

SUNCG PBRS Ours

Figure 4-5: Comparison with PBRS [180] and SUNCG [144]. Our dataset provides more photo-realistic
and less noisy images with specular highlights under multiple lighting conditions.

4.4 Experimental Results

Comparison with SIRFS.

SIRFS [6] is an optimization-based method for inverse rendering, which estimates surface nor-

mals, albedo and spherical harmonics lighting from a single image. It is an inspiring work, as it

shows the power of using statistical priors (over lighting, reflectance, and geometry) for inverse

rendering from a single image. We compare with SIRFS on the test data from the IIW dataset [11].

As shown in Fig. 4-6, our method produces more accurate normals and better disambiguation of

reflectance from shading. This is expected, as we are using deep CNNs, which are known to better
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learn and utilize statistical priors present in the data than traditional optimization techniques.
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Figure 4-6: Comparison with SIRFS [6]. Using deep CNNs our method performs better disambiguation
of reflectance from shading and predicts better surface normals.

Image Bell et. al. [2] Zhou et. al. [47] Li et. al. [20] Ours

Figure 4-7: Comparison with intrinsic image algorithms. Our method seems to preserve more detailed
texture and has fewer artifacts in the predicted albedo, compared to the prior works.

Comparison with intrinsic image decomposition algorithms.

Intrinsic image decomposition aims to decompose an image into albedo and shading, which

is a sub-problem in inverse rendering. Several recent works [11, 186, 113, 95] showed promising

results with deep learning. While our goal is to solve the complete inverse rendering problem,

we still compare albedo prediction with these latest intrinsic image decomposition methods. We

evaluate the WHDR (Weighted Human Disagreement Rate) metric [11] on the test set of the IIW

dataset [11] and report the result in Table 4.1. As shown, we outperform these algorithms that
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Table 4.1: Intrinsic image decomposition on the IIW test set [11]

.

Algorithm Training set WHDR

Bell et. al. [11] - 20.6%
Li et. al. [96] - 20.3%

Zhou et. al. [186] IIW 19.9%
Nestmeyer et. al. [113] IIW 19.5%

Li et. al. [95] IIW 17.5%
Ours IIW 16.7%

train on the original IIW dataset [11]. Since our goal is not intrinsic image decomposition, we do

not train on additional intrinsic image specific datasets and avoid any post-processing as done in

CGIntrinsics [95]. We also present a qualitative comparison of the inferred albedo with different

existing algorithms in Figure 4-7 and with Li et. al. [95] in Figure 4-8. As shown, our method

seems to preserve more detailed texture and has fewer artifacts in the predicted albedo, compared

to the prior work.
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Figure 4-8: Comparison with CGI (Li et. al. [95]). In comparison with CGI [95], our method performs
better disambiguation of reflectance from shading and preserves the texture in the albedo.

Evaluation of lighting estimation.

We estimate an environment map of low spatial resolution from an image. Although this is not

the best representation of illumination, it can still capture the significant effects of illumination and
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can be inferred jointly with other components. We present a qualitative evaluation of lighting esti-

mation by inserting a diffuse hemisphere into the scene and rendering it with the inferred light from

the image in Figure 4-9. We compare this with our implementation of the method proposed by Gard-

ner et. al. [45], which also estimates an environment map from a single indoor image. ℎ𝑒(⋅,Θ𝑒) is a

deep network that predicts the environment map given the image, normals, and albedo. ‘GT+ℎ𝑒(⋅)’

estimates the environment map given the image, ground-truth normals and albedo, and thus serves

as an achievable upper-bound in the quality of the estimated lighting. ‘Ours’ estimates environment

map from an image with IRN. ‘Ours+ℎ𝑒(⋅)’ predicts environment map by combining the inferred

albedo and normals from IRN to predict lighting with ℎ𝑒(⋅). Both ‘Ours’ and ‘Ours+ℎ𝑒(⋅)’ seem

to produce more realistic environment maps and outperform Gardner et. al. [45]. ‘Ours+ℎ𝑒(⋅)’

improves lighting estimation over ‘Ours’ by utilizing the predicted albedo and normals to a greater

degree.

Image GT+he Gardner et. al. [8] Ours+heOurs

Figure 4-9: Evaluation of lighting estimation. We compare with our implementation of Gardner et.
al. [45]. ‘GT+ℎ𝑒(⋅)’ predicts lighting conditioned on the ground-truth normals and albedo. ‘Ours+ℎ𝑒(⋅)’
predicts the environment map by conditioning it on the albedo and normals inferred by IRN.

Evaluation of normal estimation.
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We also compare with PRBS [180] which predicts only surface normals from an image. Both

PRBS and our model are trained on NYUv2 [111], and are tested on both NYUv2 and 7-scenes

datasets [140]. As shown in Table 4.2, PBRS outperforms our method by about 2 degrees on NYUv2

dataset, and it is comparable to ours in the 7-scenes dataset. This shows that our joint decomposition

network IRN-Diffuse generalizes well across datasets and performs comparably to the state-of-the-

art normal prediction method PBRS.

Table 4.2: Mean and median angular errors for surface normals

.
Algorithm NYUv2 7-scenes

PBRS [180] 21.85○; 15.33○ 38.34○; 25.65○

Ours 23.89○; 16.92○ 37.75○; 24.54○

Our results.

Figure 4-10 shows two examples of our results, with the albedo, glossiness segmentation, nor-

mal and lighting predicted by the network, as well as the reconstructed image with the direct ren-

derer and the proposed Residual Appearance Renderer (RAR).

Image Normal Albedo Glossiness Recon. with RARLighting

Figure 4-10: Our Result. We show the estimated intrinsic components; normals, albedo, glossiness seg-
mentation (matte-blue, glossy-red and semi-glossy-green) and lighting predicted by the network, along with
the reconstructed image with our direct renderer and the RAR.

4.5 Ablation Study

Role of the RAR in self-supervised training.

We have argued before that the RAR plays an important role in self-supervised training on un-
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Input Image with RARwithout RAR

Figure 4-11: Role of RAR in self-supervised training. We train IRN on real data with and without RAR
with self-supervision, and show the predicted albedo in column 2 and 3. The albedo predicted by train-
ing ‘without RAR’ fails to remove complex appearance effects like highlights, cast shadows and near-field
lighting.

labeled real images, because the RAR captures complex appearance effects that cannot be modeled

by a direct renderer. As shown in Figure 4-11, when being trained without the RAR, the network

fails to separate such appearance effects from the estimated albedo, as it attributes these factors to

the albedo in order to minimize the reconstruction loss. When the RAR is used during training, the

network correctly removes such appearance effects from the albedo. We trained our network with

and without RAR on the IIW dataset [11] (without any weak supervision), and we observed that

using the RAR improves the quality of the albedo by reducing the WHDR metric from 37.4% to

32.8%. Thus, we conclude qualitatively and quantitatively that the RAR improves inverse rendering

with self-supervised training on real data.

Role of weak supervision.

Our inverse rendering framework allows us to use weak supervision over intrinsic components

whenever available. We train our method on the IIW dataset [11], which contains sparse pair-

wise relative reflectance judgments from humans. Training with this weak supervision significantly

49



Image with weak supervisionwithout weak supervision

Figure 4-12: Role of weak supervision. We predict more consistent albedo across large objects like walls,
floors and ceilings using pair-wise relative reflectance judgments from the IIW dataset [11].

improves albedo estimation, making it more consistent across large objects like walls, floors, and

ceilings as shown in Figure 4-12.

Role of albedo in glossiness segmentation.

We also show that conditioning IRN-Specular on the albedo predicted by IRN-Diffuse signif-

icantly improves glossiness segmentation. We train IRN-Specular with and without albedo as its

input on our synthetic SUNCG-PBR dataset. Conditioning on albedo predicted by IRN-Diffuse as

its input improves glossiness segmentation on real data by reducing cross-entropy loss from 0.76 to

0.62, which shows the benefits of joint multi-task learning in inverse rendering.
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Part II

Enforcing Low-Rank Constraints
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Chapter 5

Overview

In Part I we propose a data-driven technique for inverse rendering of faces and scenes from a single

image. We leverage the huge amount of labeled synthetic and unlabeled real data to learn priors over

intrinsic components (surface normals, reflectance and lighting) using a self-supervised reconstruc-

tion loss. In Part II, our goal is to explore the geometric and photometric constraints that connect

multiple images of a scene. Specifically, we aim to perform inverse rendering from a few images

by formulating a low-rank optimization problem that enforces the constraints that connect multiple

images.

We study two specific forms of inverse rendering. First, we consider the problem of Structure

from Motion, where given multiple images of a scene we aim to reconstruct the 3D scene and the

cameras. Here we only consider the geometric aspect of inverse rendering. Next, we consider

the problem of Uncalibrated Photometric Stereo, where given multiple images of an object cap-

tured under different illumination conditions, we aim to reconstruct the surface normals, albedo

and illumination, assuming lambertian reflectance with point source lighting. In both of the above

mentioned problems, we derive and enforce a low-rank constraint in an optimization framework.

Given a large number of images, Structure from Motion (SfM) and Uncalibrated Photometric
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Stereo (UPS) can be solved by enforcing simple multi-view constraints. Since in the presence of

a large number of images, the problem is highly over-constrained, we do not need to enforce any

additional constraints to obtain an accurate solution. However, in presence of a small number of

images, simple multi-view constraints are not enough to guarantee an accurate solution. Thus in

this part, we derive stricter constraints and enforce them in a constrained low-rank optimization

framework.

Low-rank optimization problems appear in many practical applications, when the data is low

dimensional and only certain entries of the data have been observed. They have a diverse range of

applications in machine learning, computer vision, bio-informatics [74], seismology [89] etc. In the

case of machine learning, they have been applied for solving collaborative filtering [128, 87], the

netflix problem [150, 146] , multi-label classification [22, 21] and label disambiguation [34]. In the

case of computer vision, matrix completion problems have been used in Photometric Stereo (PS)

[170, 3], Structure from Motion (SfM) [66, 62], image in-painting and completion [173, 125, 86,

100] and video denoising [69]. However in many such applications there are additional constraints

along with the rank constraint, which makes the problem harder to solve. In this thesis we consider

the low-rank matrix completion in the presence of additional constraints for solving Uncalibrated

Photometric Stereo (UPS) and SfM.

Given a measurement matrix �̂� of size 𝑚 × 𝑛 in which only certain entries of it are observed,

defined by 𝑊 (where 𝑊𝑖𝑗 = 1 indicates (𝑖, 𝑗)-th entry of �̂� is observed), in matrix completion

problems we want to solve for a matrix 𝑀 which is low rank, defined as :

min
𝑀

∏︁𝑊 ⊙ (�̂� −𝑀)∏︁𝐹 𝑠.𝑡. 𝑀 is low rank, (5.1)

In many computer vision applications, like Photometric Stereo and Structure from Motion, the rank
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of the measurement matrix 𝑀 is known beforehand. In this thesis we are particularly interested in

this class of problems, where the rank of the matrix is known a priori, defined as :

min
𝑀

∏︁𝑊 ⊙ (�̂� −𝑀)∏︁𝐹 𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝑀) = 𝑟, (5.2)

where ⊙ represents element-wise dot product. In the presence of convex constraints we can define

a low-rank constrained matrix completion problem as :

min
𝑀

∏︁𝑊 ⊙ (�̂� −𝑀)∏︁𝐹 𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝑀) = 𝑟, 𝑓(𝑀) ≤ 0, 𝑔(𝑀) = 0, (5.3)

where 𝑓(.) and 𝑔(.) are convex functions.

In this thesis we formulate and solve matrix completion problems in the presence of constraints

in the context of UPS and SfM. In both applications we solve a general optimization problem similar

to 5.3. we use Augmented Lagrangian Method of Multipliers (ADMM) [18, 50] to separately handle

a constrained least square cost function and a rank constraint, by creating a copy of 𝑀 as shown in

5.4.

max
Γ

min
𝑀,𝑁

∏︁𝑊 ⊙ (�̂� −𝑀)∏︁2𝐹 +
𝜏

2
∏︁𝑁 −𝑀 + Γ∏︁2𝐹

𝑠.𝑡. 𝑀 = 𝑁, 𝑟𝑎𝑛𝑘(𝑁) = 𝑟, 𝑓(𝑀) ≤ 0, 𝑔(𝑀) = 0, (5.4)

where Γ is a matrix of Lagrange multipliers of the same size as 𝑀 , and 𝜏 is a constant. The

constraint 𝑟𝑎𝑛𝑘(𝑁) = 𝑟 can be handled in different ways using convex relaxation or singular value

projection, which we will discuss later.

In Chapter 7 we introduce a novel rank constraint on collections of fundamental matrices in

multi-view settings. We show that in general, with the selection of proper scale factors, a matrix
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formed by stacking fundamental matrices between pairs of images has rank 6. Moreover, this matrix

forms the symmetric part of a rank 3 matrix whose factors relate directly to the corresponding

camera matrices. We use this new characterization to produce better estimations of fundamental

matrices by optimizing an L1-cost function using Iterative Re-weighted Least Squares and Alternate

Direction Method of Multiplier. The constraints of this problem relate to specific structure of multi-

view geometry. We further show that this procedure can improve the recovery of camera locations,

particularly in multi-view settings in which fewer images are available.

In Chapter 8, we introduce a new integrated approach for solving Uncalibrated Photometric

Stereo (UPS). We perform 3D reconstruction of Lambertian objects using multiple images produced

by unknown, directional point light sources. Under these assumptions, the collection of images

produced by light sources is rank three. Traditionally, UPS is solved as a series of sub-problems,

starting with SVD to produce a rank 3 decomposition into normals, albedos and lights. The surface

normals provided by SVD are in general inconsistent with the partial derivatives of the surface (i.e.

they are not integrable). Then additional steps are applied to recover an integrable set of surface

normals and then to fit a surface to those normals. We show how to formulate a single optimization

that includes rank and integrability constraints, allowing also for missing data. We then solve this

optimization using the Alternate Direction Method of Multipliers (ADMM). We conduct extensive

experimental evaluation on real and synthetic data sets. Our integrated approach is particularly

valuable when performing photometric stereo using as few as 4-6 images, since the integrability

constraint is capable of improving estimation of the linear subspace of possible solutions. We show

good improvements over prior work in these cases.
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Chapter 6

Background

6.1 Low-rank Matrix Completion

Researchers have worked on both theoretical and practical aspects of matrix completion problems in

the past. An overview on matrix completion is given in [37]. There are several different techniques

to perform matrix completion. We can broadly categorize them into methods that perform explicit

factorization of the matrix and methods that introduce convex relaxation of the rank constraint.

Explicit factorization methods decompose a rank 𝑟 matrix �̂� of size 𝑚×𝑛 into 𝐿𝑆, where 𝐿 is

𝑚 × 𝑟 and 𝑆 is 𝑟 × 𝑛. This leads to a non-convex optimization of the form :

min
𝐿,𝑆

∏︁𝑊 ⊙ (�̂� −𝐿𝑆)∏︁2𝐹 . (6.1)

One common technique to solve a bi-convex problem of this nature is to perform alternate least

squares [183]. In [20], the authors re-formulated the matrix completion problem as :

min
𝐿,𝑆

∏︁𝑊 ⊙ (�̂� −𝐿𝑆)∏︁2𝐹 + 𝜆1∏︁𝐿∏︁2𝐹 + 𝜆2∏︁𝑆∏︁2𝐹 . (6.2)
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The minimization is performed by standard Newton’s algorithm [19] that includes a damping factor.

Two drawbacks of this method are the extra memory required for Hessian computation and the

choice of parameters 𝜆1 and 𝜆2. One commonly used technique to solve this problem, namely

Wiberg’s algorithm, as discussed in [116] uses an alternate optimization approach to solve (6.1).

It first solves for 𝐿 assuming 𝑆 is fixed and then it updates 𝑆 using Gauss-Newton update. In

[117], the authors extended it to the damped-Wiberg’s algorithm, which includes a damping factor

or regularization in the Gauss-Newton update of the algorithm. In [17], the authors have re-cast the

matrix completion problem as an unconstrained optimization on the Grassmann manifold and solve

it using a gradient descent technique. Most of these methods are not guaranteed to find the global

optimum. However in [81], the authors have shown an interesting performance guarantee on their

explicit factorization based algorithm.

Another commonly used technique for solving matrix completion problems is to obtain a con-

vex relaxation of the rank constraint and subsequently formulate a convex optimization. One such

technique is to use the nuclear norm, i.e. the sum of singular values, of 𝑀 as a relaxation. This

translates to solving the following problem :

min
𝑀

∏︁𝑀∏︁∗ 𝑠.𝑡. 𝑊 ⊙ �̂� =𝑊 ⊙𝑀, (6.3)

where ∏︁𝑀∏︁∗ =
𝑚𝑖𝑛(𝑚,𝑛)

∑
𝑖=1

𝜎𝑖(𝑀) is the nuclear norm. Fazel in [42] suggested that the optimization

problem defined in (6.3) can be reformulated as semi-definite programming (SDP), which can be

solved by an interior point method. However in many cases the matrix 𝑀 is high-dimensional which

makes the SDP problem intractable. Current SDP solvers can only efficiently solve a problem of

size 100 × 100, which is too small for many computer vision applications.

Instead of solving a SDP problem, Cai et. al. in [24] proposed the Singular Value Thresholding
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(SVT) algorithm which formulates a strongly convex relaxation of the matrix completion problem

as follows :

min
𝑀

∏︁𝑀∏︁∗ + 𝛼∏︁𝑀∏︁2𝐹 𝑠.𝑡. 𝑊 ⊙ �̂� =𝑊 ⊙𝑀. (6.4)

The SVT method applies a gradient descent method to the lagrangian dual of (6.4). To improve the

convergence rate of SVT, [158] and [70] developed accelerated proximal gradient based techniques

to solve for the regularized least square version of (6.4) :

min
𝑀

𝜇∏︁𝑀∏︁∗ +
1

2
∏︁𝑊 ⊙ (�̂� −𝑀)∏︁2𝐹 . (6.5)

To improve robustness in real world applications, the authors developed Robust Principle Com-

ponent Analysis (Robust PCA) in [169], replacing least square regularization in (6.5) with an L1

regularization.

Authors in [26, 127, 126] have shown that in the absence of noise, the solution to nuclear norm

relaxation based convex optimization produces global minima of the original non-convex problem.

Some works [25, 41, 85, 112] have explored the inaccuracy of the solution of the convex relaxation

formulation in the presence of noise. Authors of [13, 46] have shown that for positive semi-definite

matrices matrix completion problems do not have any local minima in the absence of noise. In the

presence of noise, all local minima are very close to the global minimum.

In more challenging practical situations, where the theoretical assumptions on the distributions

of noise and missing data do not hold, it has been observed that nuclear norm relaxation for a

rank 𝑟 matrix leads also to reduction of the first 𝑟 singular values, degrading the quality of the

solution. The rank constraint treats all singular values of the matrix equally, whereas in nuclear

norm relaxation singular values are treated differently by adding them. To counter this effect, the

authors in [62] have introduced truncated nuclear norm relaxation, where all the singular values
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except the top 𝑟 are minimized. They define truncated nuclear norm regularization as a penalty of

the form 𝑓𝑡𝑛𝑛(𝑀) =
𝑚𝑖𝑛(𝑚,𝑛)

∑
𝑖=𝑟+1

𝜎𝑖(𝑀). However this leads to a non-convex optimization, which the

authors have convexified using a series of majorizations. At each iteration, we replace 𝑓𝑡𝑛𝑛(𝑀)

with a majorizer 𝑓𝑚𝑎𝑗(𝑀). Specifically, at iteration 𝑘, let 𝑀 (𝑘) = 𝑈Σ𝑉 𝑇 be the singular value

decomposition of 𝑀 (𝑘), and let 𝑈3 (and 𝑉3) be the matrices containing the left (right) singular

vectors corresponding to the three largest singular values of 𝑀 (𝑘). We then define

𝑓
(𝑘)
𝑚𝑎𝑗(𝑀) = ∏︁𝑀∏︁∗ − trace(𝑈𝑇

3 𝑀𝑉3). (6.6)

It was shown in [62] that 𝑓 (𝑘)𝑚𝑎𝑗(𝑀) ≥ 𝑓𝑡𝑛𝑛(𝑀) for all 𝑀 and that 𝑓 (𝑘)𝑚𝑎𝑗(𝑀 (𝑘)) = 𝑓𝑡𝑛𝑛(𝑀 (𝑘)), and

so decreasing 𝑓𝑚𝑎𝑗 leads to decreasing 𝑓𝑡𝑛𝑛. Thus at every iteration, (6.7) is solved using either

ADMM or accelerated proximal gradient method.

min
𝑀

1

2
∏︁𝑊 ⊙ (�̂� −𝑀)∏︁2𝐹 + 𝜇𝑓

(𝑘)
𝑚𝑎𝑗(𝑀) (6.7)

In this thesis, I investigate a more general problem of matrix completion in the presence of con-

vex constraints. This is similar to a class of problem termed Structured Low Rank Approximation

(SLRA), where the goal is to find a low rank matrix that satisfies certain affine constraints and is

closest to a given measurement. This can be expressed as :

min
𝑀

∏︁�̂� −𝑀∏︁𝐹 𝑠.𝑡. 𝑀 is low rank, 𝑀 ∈ Ω, (6.8)

where Ω is an affine subspace. Thus the solution 𝑀 lies at the intersection of an affine subspace and

a low-rank manifold. The matrix completion problem can be considered as a special case of SLRA,

where the affine subspace is defined by the known entries of the matrix �̂� .
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This problem is first formally introduced in [35]. Authors have discussed a wide range of

applications of SLRA from signal enhancement, protein folding to computer algebra. Specifically

in many applications the matrix of interest has a certain specific structure like the Henkel matrix

(denoising procedure), Sylvester matrix (univariate approximation of GCDs) and Toeplitz matrix

(signal processing). Based on Cadzow’s method in [23] the authors devised an alternate projection

based algorithm for solving SLRA problems. Alternating projection into the low rank space and

the affine subspace leads to solution at their intersection and the algorithm converges to a local

minima. Authors in [132] proposed a Newton-like iterative algorithm, which also performs alternate

projection, and shows that it converges locally quadratically.

Another class of algorithm solves the problem by considering explicit factorization. Authors in

[64] formulate this problem as :

min
𝐿,𝑆

∏︁�̂� −𝐿𝑆∏︁2𝐹 + 𝜆 dist(𝐿𝑆, closest structured matrix). (6.9)

They have devised two strategies where one of the constraints, i.e. either the rank or the affine

subspace constraint, is always satisfied and the other constraint is satisfied upon convergence. Both

of these optimization formulations are solved using alternate least squares and are shown below :

min
𝐿,𝑆

∏︁�̂� −𝐿𝑆∏︁2𝐹 + 𝜆∏︁𝐿𝑆 −PS(𝐿𝑆)∏︁2𝐹 , (6.10)

min
𝐿,𝑆

∏︁�̂� −PS(𝐿𝑆)∏︁2𝐹 + 𝜆∏︁𝐿𝑆 −PS(𝐿𝑆)∏︁2𝐹 , (6.11)

where PS(𝐿𝑆) is the orthogonal projection of 𝐿𝑆 into an affine subspace 𝑆. In (6.10), the low rank

constraint is always satisfied, whereas in (6.11) an affine subspace constraint is always satisfied.

Convex relaxation of the rank constraint, like nuclear norm, helps to formulate a convex op-

timization. In [52] the authors suggested a modified convex relaxation of the rank constraint and
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formulate a semi-definite programming (SDP) technique to solve it. The authors in [135] have

formulated a SDP problem using bi-convex relaxation for low-rank positive semi-definite matrices.

Another popular technique to tackle this problem is to use proximal methods to handle the

affine/convex constraint and the rank constraint separately. In fact these methods are more general

and can tackle any convex constraints. This idea is explained in (5.4) and is used in this thesis.

In [181] authors used an ADMM algorithm to solve this problem and discussed its convergence.

Similarly in [16] the author discussed an ADMM method for solving a structured low rank problem

in chemistry. A proximal gradient based penalty approach is discussed in [174].

6.2 Structure from Motion (SfM)

Given a large number of images of a scene, several recent works [143, 2, 59] have proposed different

incremental SfM techniques. These methods first recover camera matrices and structure from two

images. Then, adding one image at a time, they apply bundle adjustment to estimate the camera

matrix (and structure) of the new image. These methods aim to sequentially add images that can

lead to stable expansion of the structure while dealing with noise and outliers. Recent works also

attempt to further improve recovery by considering simultaneously subsets of multiple images and

recovering camera matrices that are consistent over the entire subsets. Indeed a number of papers

have focused on the consistent recovery of either camera orientation or location [4, 121, 120, 162,

167, 106].

Our work is related to a variety of approaches to structure from motion (SfM) that utilize rank

constraints [67, 66, 109]. Tomasi and Kanade showed that under an orthographic projection, and

after centering, projected points form a rank 3 matrix. Sturm and Triggs [147, 161] extended this

to perspective projection by showing that projected points, when scaled properly, form a rank 4

matrix. Unlike their work, which uses a rank constraint on tracks of points in images, our work
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only considers fundamental matrices and so in multiview settings it gives rise to systems with many

fewer variables, relying on potentially less noisy estimates. Our approach, which seeks to recover

a consistent set of fundamental matrices, is analogous to rotation or translation averaging and to

loop closure [54, 32, 36]. In fact, obtaining consistent fundamental matrices can be regarded as

simultaneous averaging of rotation, translation and camera calibration and as a way to close all

loops. Our experiments indicate that such joint averaging performs better than a separate averaging

of rotation and translation.

A number of algorithms have recently been proposed for solving unconstrained, low rank sys-

tems with outliers and missing data (e.g., [26, 63, 116]) with remarkable success. Extending such

techniques to incorporate SfM constraints is an important next step.

6.3 Uncalibrated Photometric Stereo (UPS)

In this section we review research works related to photometric stereo. Belheumer et al. [10] showed

that in UPS the integrable set of surface normals can only be recovered up to a Generalized Bas-

Relief transformation (GBR). A number of recent papers have concentrated on methods of solving

the GBR ambiguity. Researchers have used priors on the albedo distribution [3], reflectance ex-

trema [40], grouping based on image appearance and color [137], inter-reflections [30], isotropy

and symmetries [152], and specularity [38] as constraints while solving for the GBR. All of these

methods have first used the above mentioned baseline described in Algorithm 2 to obtain a solution

up to the GBR.

Recent works have explored a variety of other research directions in photometric stereo. Mecca

et al. [107] proposed an integrated, PDE based approach to calibrated photometric stereo that uses

a mere two images under perspective projection. It is not clear how to extend this to create an

integrated approach for uncalibrated photometric stereo. Basri et al. [8] extended the baseline to
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handle multiple light sources in each image using a spherical harmonics formulation. Chandraker et

al. [29] proposed a method to handle attached and cast shadows in the case of multiple light sources

per image. In [148] the authors determine the visibility subspace for a set of images to remove

the cast and attached shadows for performing UPS. Various works have addressed non-Lambertian

materials (e.g., Georghiades et al. [47] and Okabe et al. [115]).

In the context of Lambertian UPS, Georghiades et al. [47] proposed to remove shadows and

specularities and recover the missing pixel values using matrix completion algorithms, e.g., using

the damped Wiberg [118] or Cabral’s algorithm [22]. Wu et al. [170] proposed a Robust PCA for-

mulation as preprocessing for calibrated photometric stereo. Their approach seeks a low-rank (not

necessarily rank 3) approximation to 𝑀 while removing outlier pixels (corresponding to shadows

and specularities). Oh et al. [114] applied Robust PCA in the context of calibrated photometric

Stereo, replacing the Nuclear Norm with a Truncated Nuclear Norm (TNN) regularizer [62]. In

[40], Favaro et al. have used Robust PCA as preprocessing to the baseline algorithm for UPS.
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Chapter 7

Low-Rank Constraints in Structure

from Motion

7.1 Introduction

Accurate reconstruction of 3D scenes from multiview stereo images is one of the primary goals

of computer vision. Current techniques use point correspondences to estimate either the essential

or fundamental matrices between pairs of images, and then use the estimated matrices to recover

the camera matrices and structure. Notable success was achieved when sequential methods were

introduced [2, 143]. These methods first recover camera matrices and structure from two images.

Then, adding one image at a time, they apply bundle adjustment to estimate the camera matrix

(and structure) of the new image. Recent work attempts to further improve recovery by considering

simultaneously subsets of multiple images and recovering camera matrices that are consistent over

the entire subsets. Indeed a number of papers have focused on the consistent recovery of either

camera orientation or location [4, 121, 120, 162, 167, 106].

This paper introduces new constraints to enable the consistent recovery of fundamental and es-
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𝐹 Λ 𝐹
with 𝐹 = 𝐴 +𝐴𝑇 and rank(𝐴) = 3.

Figure 7-1: Illustration of our rank constraint. Collections of fundamental matrices {𝐹𝑖𝑗} estimated for pairs
of images (top) are arranged in a matrix 𝐹 (bottom). This matrix should be equal (up to noise) to a matrix 𝐹
or properly scaled fundamental matrix, which in turn forms the symmetric part of a rank 3 matrix 𝐴.

sential matrices. This is potentially advantageous since those matrices capture simultaneously the

location and orientation of the cameras, along (in the case of fundamental matrices) with their inter-

nal calibration parameters. For configurations of cameras that are not all collinear, our main result

establishes that, when scaled properly, the matrix formed by appending all pairwise fundamental

matrices in a multiview setting is of rank 6. More tightly, this matrix forms the symmetric part of a

rank 3 matrix whose factors relate directly to the entries of the corresponding camera matrices. We

further show that multiview settings of collinear cameras yield a rank 4 matrix.

We use this characterization to develop an optimization formulation for estimating consistent

sets of fundamental matrices. Our formulation can accept sets of estimated fundamental matrices

in which some are noisy, some are outliers, and some cannot be estimated at all from image pairs

(i.e., missing data). In solving this optimization we seek a set of scaled fundamental matrices that

satisfy our constraints and fit the estimated fundamental matrices. Our formulation uses an L1

cost function, which is optimized with Iterative Re-weighted Least Squares (IRLS) [61], to remove

outliers, and uses Alternating Direction Method of Multipliers (ADMM) [18] to incorporate rank
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constraints.

When thousands of images are available, existing methods that use pairwise epipolar constraints

or tri-focal tensors can exploit highly over-determined systems to handle noise and outliers quite

accurately. However, when fewer images are available the importance of rank constraints grows, and

their introduction can potentially yield more accurate estimation of camera parameters. Indeed, we

provide experiments that show that using our characterization, essential matrices can be estimated

more accurately than with current state-of-the-art methods, and these in turn can be translated to

better estimates of camera locations.

7.2 Low-Rank Characterization of Fundamental Matrices in Multi-

view Settings

7.2.1 Background

We first introduce notations and give a short summary of the relevant concepts in multi-view geom-

etry. An extensive discussion of this topic can be found in [55]. Let 𝐼1, ..., 𝐼𝑛 denote a collection

of 𝑛 images of a scene and let t𝑖 ∈ R3 and 𝑅𝑖 ∈ 𝑆𝑂(3) denote the location and orientation of the

𝑖’th camera in a global coordinate system. Let the 3 × 3 𝐾𝑖 denote the intrinsic camera calibration

matrix for 𝐼𝑖. 𝐾𝑖 is nonsingular and is typically specified in the form :

𝐾𝑖 =

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝑓𝑥 𝛼 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

, (7.1)

where, 𝑓𝑥 and 𝑓𝑦 respectively are the focal lengths in the 𝑥 and 𝑦 direction, (𝑢0, 𝑣0) form the

principal point and 𝛼 represents the skew coefficient. Let 𝑃 = (𝑋,𝑌,𝑍)𝑇 be a scene point in the
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global coordinate system. Its projection onto 𝐼𝑖 (expressed in homogeneous coordinates) is given

by p𝑖 = 𝑃𝑖⇑𝑍𝑖, where 𝑃𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)𝑇 = 𝐾𝑖𝑅
𝑇
𝑖 (𝑃 − t𝑖). We therefore associate with 𝐼𝑖 the 3 × 4

camera matrix 𝐶𝑖 =𝐾𝑖𝑅
𝑇
𝑖 ⌊︀𝐼,−t𝑖}︀, where 𝐼 is a 3 × 3 identity matrix and note that scaling 𝐶𝑖 does

not affect projection.

Next, we consider the relations between pairs of images, 𝐼𝑖 and 𝐼𝑗 . We can express the camera

rotation and translation relating two images by 𝑅𝑖𝑗 = 𝑅𝑇
𝑖 𝑅𝑗 and t𝑖𝑗 = 𝑅𝑇

𝑖 (t𝑖 − t𝑗). Clearly, 𝑅𝑗𝑖 =

𝑅𝑇
𝑖𝑗 and t𝑗𝑖 = −𝑅𝑇

𝑖𝑗t𝑖𝑗 . Two images are further related by epipolar line constraints, which are

expressed by p𝑇
𝑖 𝐹𝑖𝑗p𝑗 = 0, where 𝐹𝑖𝑗 denotes the fundamental matrix relating 𝐼𝑖 to 𝐼𝑗 . 𝐹𝑖𝑗 can

be estimated up to scale from point correspondences. 𝐹𝑖𝑗 is related to the rotation and translation

between 𝐼𝑖 and 𝐼𝑗 and to their respective calibration matrices by 𝐹𝑖𝑗 = 𝐾−𝑇
𝑖 (︀t𝑖𝑗⌋︀×𝑅𝑖𝑗𝐾

−1
𝑗 , where

(︀t𝑖𝑗⌋︀× denotes the skew-symmetric matrix corresponding to cross-product with t𝑖𝑗 . In cases in

which the cameras are calibrated we set 𝐾𝑖 = 𝐾𝑗 = 𝐼 and replace the fundamental matrix with the

essential matrix 𝐸𝑖𝑗 = (︀t𝑖𝑗⌋︀×𝑅𝑖𝑗 . Therefore, 𝐹𝑖𝑗 =𝐾−𝑇
𝑖 𝐸𝑖𝑗𝐾

−1
𝑗 .

To derive our rank constraint we will need to express the essential and fundamental matrices

relative to a global coordinate system. [182] derived an expression in terms of the camera matrices

𝐶𝑖 and 𝐶𝑗 . Here we will use the more recent derivation of [4] that, as we shall see below, is amenable

to factorization:

𝐸𝑖𝑗 =𝑅𝑇
𝑖 (𝑇𝑖 − 𝑇𝑗)𝑅𝑗 , (7.2)

𝐹𝑖𝑗 =𝐾−𝑇
𝑖 𝑅𝑇

𝑖 (𝑇𝑖 − 𝑇𝑗)𝑅𝑗𝐾
−1
𝑗 , (7.3)

where 𝑇𝑖 = (︀t𝑖⌋︀×.
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7.2.2 Low-rank Construction

We next introduce our main result, which includes a low rank characterization of the collection of

fundamental matrices in multiview settings. For our result we will construct a matrix of size 3𝑛×3𝑛,

denoted 𝐹 , in which each of the 3 × 3 blocks includes a fundamental matrix 𝐹𝑖𝑗 (see Figure 7-1),

where we assume that each of the pairwise fundamental matrices in 𝐹 is scaled properly. We further

define 𝐹𝑖𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛, and note that this is consistent with (7.3). Likewise we define the

3𝑛 × 3𝑛 matrix 𝐸 from the essential matrices 𝐸𝑖𝑗 . We refer to 𝐹 (resp. 𝐸) as the multiview matrix

of fundamentals (essentials).

Claim 1: 𝐹 (and likewise 𝐸) is symmetric and rank(𝐹 ) ≤ 6. Moreover,

1. If 𝐹 is produced by 𝑛 cameras whose centers are not all collinear then rank(𝐹 ) = 6 and there

exists a 3𝑛 × 3𝑛 matrix 𝐴 with rank(𝐴) = 3 such that 𝐹 = 𝐴 +𝐴𝑇 .

2. If 𝐹 is produced by 𝑛 cameras whose centers are all collinear then rank(𝐹 ) ≤ 4 and there

exists a matrix 𝐴 with rank(𝐴) ≤ 2 such that 𝐹 = 𝐴 +𝐴𝑇 .

Proof: To prove the claim we begin by defining the matrix 𝐴 as follows. Let 𝑈𝑖 = 𝐾−𝑇
𝑖 𝑅𝑇

𝑖 𝑇𝑖,

𝑉𝑖 = 𝐾−𝑇
𝑖 𝑅𝑇

𝑖 , and 𝐴𝑖𝑗 = 𝑈𝑖𝑉
𝑇
𝑗 . 𝑈𝑖, 𝑉𝑖, and 𝐴𝑖𝑗 are 3 × 3 matrices. Observing (7.3) and recalling

that 𝑇𝑖 is skew-symmetric we see that 𝐹𝑖𝑗 = 𝐴𝑖𝑗 +𝐴𝑇
𝑗𝑖.

Next we construct the 3𝑛 × 3 matrices 𝑈 and 𝑉 as

𝑈 =

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝑈1

⋮

𝑈𝑛

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

and 𝑉 =

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

𝑉1

⋮

𝑉𝑛

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

and set 𝐴 = 𝑈𝑉 𝑇 . Clearly, by construction, rank(𝐴) ≤ 3. Moreover, 𝐹 = 𝐴 + 𝐴𝑇 , and so 𝐹 is

symmetric and rank(𝐹 ) ≤ 6.
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Case 1: We show that unless the cameras are all collinear rank(𝐴) = 3. Clearly rank(𝑉 ) =

3. Therefore we need to show that also rank(𝑈) = 3. We prove this by contradiction. Assume

rank(𝑈) < 3. Then ∃ t ∈ R3, t ≠ 0, s.t. 𝑈t = 0. This implies that t𝑖 × t = 0 for all 1 ≤ 𝑖 ≤ 𝑛. Thus,

all the t𝑖’s are parallel to t, violating our assumption that not all camera locations are collinear.

Consequently rank(𝑈) = 3 and therefore also rank(𝐴) = 3.

Next we show that when the cameras are not all collinear rank(𝐹 ) = 6. We recall that 𝐹𝑖𝑗 =

𝐾−𝑇
𝑖 𝐸𝑖𝑗𝐾

−1
𝑗 where 𝐾𝑖 and 𝐾𝑗 are non-singular. We can therefore write 𝐹 = 𝐾𝑇𝐸𝐾 where the

3𝑛× 3𝑛 matrix 𝐾 is block diagonal with blocks formed by {𝐾−1
𝑖 }𝑛𝑖=1. This implies that rank(𝐹 ) =

rank(𝐸), and so we are left to show that rank(𝐸) = 6.

We assume WLOG that the camera locations are centered at the origin, i.e., ∑𝑛
𝑖=1 t𝑖 = 0 (since

𝐸 is invariant to global translation of the cameras). We further argue that each column of 𝑈 is

orthogonal to each column of 𝑉 . This is evident from the following identities

𝑉 𝑇𝑈 =
𝑛

∑
𝑖=1

𝑉 𝑇
𝑖 𝑈𝑖 =

𝑛

∑
𝑖=1

𝑇𝑖 = ⌊︀
𝑛

∑
𝑖=1

t𝑖}︀
×

= 03×3. (7.4)

Let 𝐴 denote the matrix 𝐴 where we substitute 𝐾𝑖 = 𝐼,∀𝑖 (so that 𝐸 = 𝐴 + 𝐴𝑇 .) Denote by

𝐴 = �̂�Σ𝑉 𝑇 the SVD of 𝐴 (�̂� and 𝑉 are 3𝑛 × 3 and Σ is 3 × 3). Since 𝐴 = 𝑈𝑉 𝑇 we have that

span(𝑈) = span(�̂�) and span(𝑉 ) = span(𝑉 ). Now we can decompose 𝐸 as :

𝐸 = 𝐴 +𝐴𝑇 = �̂�Σ𝑉 𝑇 + 𝑉 Σ�̂�𝑇

= ⌊︀�̂� 𝑉 }︀

⎨⎝⎝⎝⎝⎝⎝⎝⎪

Σ

Σ

⎬⎠⎠⎠⎠⎠⎠⎠⎮

⎨⎝⎝⎝⎝⎝⎝⎝⎪

𝑉 𝑇

�̂�𝑇

⎬⎠⎠⎠⎠⎠⎠⎠⎮

(7.5)

Since the columns of 𝑈 are orthogonal to those of 𝑉 , the matrix ⌊︀�̂� 𝑉 }︀ is column orthogonal. Thus,

(7.5) is the SVD of 𝐸. And since 𝐴 is rank 3, Σ is full rank. Consequently, rank(𝐹 ) = rank(𝐸) = 6.
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Case 2: Suppose all camera centers are collinear. WLOG assume that the origin of the global

coordinate system is also collinear with the 𝑛 cameras (since 𝐹 is unaffected by global translation),

and so we can write t𝑖 = 𝛼𝑖t for 1 ≤ 𝑖 ≤ 𝑛 where 𝛼𝑖 ∈ R and t ∈ R3. Let 𝑇 = (︀t⌋︀×, then clearly

𝑈𝑖 = 𝛼𝑖𝐾
−𝑇
𝑖 𝑅𝑇

𝑖 𝑇 . Define �̃�𝑖 = 𝛼𝑖𝐾
−𝑇
𝑖 𝑅𝑇

𝑖 (so 𝑈𝑖 = �̃�𝑖𝑇 ) and let the 3𝑛 × 3 matrix �̃� be formed by

stacking 𝑈1, 𝑈2, ... on top of each other then

𝐴 = 𝑈𝑉 𝑇 = �̃�𝑇𝑉 𝑇 .

Since 𝑇 is skew-symmetric its rank is at most 2 and so is rank(𝐴). It follows that rank(𝐹 ) ≤ 4. ∎

7.2.3 Tightness of our constraints

Claim 1 provides two constraints on the 3𝑛 × 3𝑛 matrix 𝐹 .

• 𝐹 = 𝐴 +𝐴𝑇 and rank(𝐴) = 3.

• The diagonal block of 𝐹 vanishes, i.e., 𝐹𝑖𝑖 = 0.

We now investigate how tight these constraints are in producing fundamental matrices that are

consistent with a set of camera parameters. We show that the number of degrees of freedom allowed

by these constraints is equal to the number of degrees of freedom in the camera matrices. However,

we find that there exist matrices that are allowed by these constraints, but do not produce valid

fundamental matrices.

Counting arguments show that our constraints allow 12𝑛 − 15 degrees of freedom (DOFs) in

defining 𝐹 . Specifically, since 𝐴 is rank 3 it can be written as 𝐴 = 𝑈𝑉 𝑇 where 𝑈 and 𝑉 are 3𝑛× 3,

so together they have 18𝑛 entries. The constraint 𝐹 = 𝐴 + 𝐴𝑇 , however, gives rise to a 15 DOF

ambiguity that should be subtracted from the number of entries of 𝑈 and 𝑉 , as we explain in the

next paragraph. The constraint that 𝐹𝑖𝑖 = 0 requires 𝑈𝑖𝑉
𝑇
𝑖 to be skew symmetric, yielding 6𝑛 more
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constraints on the entries of 𝑈 and 𝑉 , yielding together 12𝑛 − 15 DOFs.

To calculate the DOFs in the ambiguity of 𝐹 = 𝐴 + 𝐴𝑇 note that we can write 𝐹 as 𝐹 =

(︀𝑈,𝑉 ⌋︀𝐽(︀𝑈,𝑉 ⌋︀𝑇 , where 𝐽 is a 6 × 6 permutation matrix defined as 𝐽 = (︀ 0 𝐼
𝐼 0 ⌋︀ (so 𝐽(︀𝑈,𝑉 ⌋︀𝑇 =

(︀𝑉,𝑈⌋︀𝑇 ). With this notation the ambiguity in factorizing 𝐹 is obtained by introducing a 6 × 6

matrix Q such that 𝑄𝐽𝑄𝑇 = 𝐽 so that (︀𝑈,𝑉 ⌋︀𝑄𝐽𝑄𝑇 (︀𝑈,𝑉 ⌋︀𝑇 = (︀𝑈,𝑉 ⌋︀𝐽(︀𝑈,𝑉 ⌋︀𝑇 = 𝐹 . 𝑄 has 36

entries, but the constraints 𝑄𝐽𝑄𝑇 = 𝐽 reduces its degrees of freedom to 15. Denote 𝑄 = (︀𝑄11 𝑄12
𝑄21 𝑄22

]

these constraints restrict the products 𝑄11𝑄12 and 𝑄21𝑄22 to be skew symmetric and the sum

𝑄11𝑄22+𝑄12𝑄21 = 𝐼 , providing altogether 21 constraints on the 36 entries of 𝑄, leaving 15 DOFs.

Coincidentally, the number of DOFs in factoring 𝐹 is equal to the DOFs in defining 𝑛 cameras.

In general, the number of DOFs in defining 𝑛 perspective cameras is 11𝑛 − 15. However, each

camera matrix can be scaled arbitrarily and each choice of scale will (inversely) scale the respective

row and column of 𝐹 . In other words, 𝑛 camera matrices, 𝐶1, ...,𝐶𝑛, scaled arbitrarily by non zeros

1⇑𝑠1, ...,1⇑𝑠𝑛, produce a collection of equivalent multiview fundamental matrices defined by

{𝑆𝐹𝑆⋃︀𝑆 = diag{𝑠1, 𝑠1, 𝑠1, 𝑠2, ..., 𝑠𝑛}, 𝑠𝑖 ≠ 0}.

The freedom in choosing the entries of 𝑆 accounts for the 𝑛 missing DOFs.

We note however that although the DOFs in factoring 𝐹 with our constraints are equal to the

DOFs in defining 𝑛 camera matrices there exist matrices that satisfy our constraints but cannot

be realized with 𝑛 cameras. Specifically, these constraints do not guarantee that all the pairwise

fundamental matrices 𝐹𝑖𝑗 are rank deficient. The constraint 𝐹𝑖𝑖 = 0 restricts 𝑈𝑖𝑉
𝑇
𝑖 to be skew-

symmetric, implying that either 𝑈𝑖 or 𝑉𝑖 is rank deficient. If all 𝑈𝑖’s (or equivalently all 𝑉𝑖’s) are

chosen to be rank deficient then so are all the 𝐹𝑖𝑗 . If however some of the 𝑈𝑖’s and some of the 𝑉𝑖’s

are chosen to be full rank then they may produce 𝐹𝑖𝑗 blocks that are rank 3 and so they are not legal
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fundamental matrices. Note that the skew-symmetry of 𝑈𝑖𝑉𝑖 guarantees that no more than 1/4 of

the 𝐹𝑖𝑗’s can be of full rank. Indeed, our experiments (in Section 7.4) often produce 𝐹𝑖𝑗’s that are

near rank 2; in a typical run the average ratio of the third to second largest singular value ≈ 7× 10−8

, presumably because the problem is so over-constrained.

In conclusion, while our constraints provide a necessary but not sufficient conditions for consis-

tency, counting considerations indicate that our constraints are nearly tight. Below we develop an

optimization scheme that utilizes these constraints to infer the missing scale factors for collections

of estimated pairwise fundamental matrices, to recover missing fundamentals and to correct noisy

ones.

7.3 Low-rank Constrained Optimization to Recover Fundamental Ma-

trices

In this section we formulate an optimization problem that uses the constraints derived in section

7.2 to achieve a better recovery of pairwise fundamental matrices. Assume we are given a set of

fundamental matrices 𝐹𝑖𝑗 , where (𝑖, 𝑗) ∈ Ω and Ω denotes the subset of image pairs for which

fundamental matrices have been estimated. (We will further assume (𝑖, 𝑗) ∈ Ω Ô⇒ (𝑗, 𝑖) ∈ Ω.)

We use these matrices to construct our measurement matrix 𝐹 whose (𝑖, 𝑗)’s 3 × 3 block contains

𝐹𝑖𝑗 if (𝑖, 𝑗) ∈ Ω and is zero otherwise. Note that in the absence of errors each non-zero block is

related by an unknown scale factor 𝜆𝑖𝑗 to the corresponding block in the sought multiview matrix of

fundamentals 𝐹 , where 𝜆𝑖𝑗 depends on the distance between the 𝑖’th and 𝑗’th cameras. Recovering

these scale factors is essential in order to apply our constraints. Our task therefore can be expressed
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as:

min
𝐹,{𝜆𝑖𝑗}

∑
(𝑖,𝑗)∈Ω

∏︁𝐹𝑖𝑗 − 𝜆𝑖𝑗𝐹𝑖𝑗∏︁𝐹 , (7.6)

where 𝐹 is constrained to satisfy Claim 1. Here we have chosen to minimize over the sum of

Frobenius norms of each 3 × 3 block. Such mixed L1-L2 norm minimization is expected to be

robust to outlier estimates of 𝐹𝑖𝑗’s.

We note that the formulation (7.6) is bilinear in 𝐹 and the scale factors. We could avoid this

bilinearity by minimizing instead ∏︁𝜆𝑖𝑗𝐹𝑖𝑗 −𝐹𝑖𝑗∏︁𝐹 . Such minimization, however, is subject to a zero

trivial solution and so it requires an additional constraint such as ∑𝑖𝑗 𝜆
2
𝑖𝑗 = 1. Our experience with

such a formulation is that it is quite sensitive to errors.

Expressing (7.6) with the constraints results in the following problem:

min
𝐴,{𝜆𝑖𝑗}

1

2
∑

(𝑖,𝑗)∈Ω

∏︁𝐹𝑖𝑗 − 𝜆𝑖𝑗(𝐴𝑖𝑗 +𝐴𝑇
𝑗𝑖)∏︁𝐹

s.t. rank(𝐴) = 3, 𝐴𝑖𝑖 +𝐴𝑇
𝑖𝑖 = 0, 𝜆𝑖𝑗 = 𝜆𝑗𝑖 (7.7)

where 𝐴𝑖𝑗 denotes each 3 × 3 sub-block of 𝐴. Our solution for 𝐹 then is 𝐹 = 𝐴 +𝐴𝑇 .

(7.7) introduces a number of challenges, including the mixed L1-Frobenius norms, the bilinear-

ity, and the rank constraint. This problem is non-convex due to the latter two challenges. Below we

describe how we approach these challenges with IRLS and ADMM. Our algorithm is summarized

in Algorithm 1.

7.3.1 Handling Outliers with IRLS

We begin by addressing the mixed L1-Frobenius norm in the cost function. We approach this with

Iterative Re-weighted Least Squares (IRLS) [61]. IRLS converts the problem to weighted least
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squares where the weights are updated from one iteration to the next. At each iteration 𝑡 of the

IRLS we replace the cost function in (7.7) with

min
𝐴,{𝜆𝑖𝑗}

1

2
∑

(𝑖,𝑗)∈Ω

𝑤𝑡
𝑖𝑗∏︁𝐹𝑖𝑗 − (𝐴𝑖𝑗 +𝐴𝑇

𝑗𝑖)𝜆𝑖𝑗∏︁2𝐹 , (7.8)

where

𝑤𝑡
𝑖𝑗 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

1⇑max(𝛿, ∏︁𝐹𝑖𝑗 − 𝜆𝑡−1
𝑖𝑗 (𝐴𝑡−1

𝑖𝑗 + (𝐴𝑡−1
𝑗𝑖 )𝑇 )∏︁𝐹 ), if (𝑖, 𝑗) ∈ Ω

0, otherwise.

𝛿 is a regularization parameters (we use 𝛿 = 10−3).

To clarify presentation we simplify our notations as follows. Let 𝑊 and Λ be 3𝑛× 3𝑛 matrices.

Denoting their 3 × 3 sub-blocks by 𝑊𝑖𝑗 and Λ𝑖𝑗 , we set 𝑊𝑖𝑗 = 𝑤𝑖𝑗1 and Λ𝑖𝑗 = 𝜆𝑖𝑗1, where 1 is a

3 × 3 matrix with all 1’s. We further use the subscript WF to denote the weighted Frobenius norm,

i.e., ∏︁v∏︁2WF = trace(v𝑇𝑊v) and use ⊙ to denote element-wise product of matrices. Therefore, in

each IRLS iteration we seek to solve

min
𝐴,Λ

1

2
∏︁𝐹 −Λ⊙ (𝐴 +𝐴𝑇 )∏︁2WF (7.9)

s.t. rank(𝐴) = 3, 𝐴𝑖𝑖 +𝐴𝑇
𝑖𝑖 = 0, Λ𝑖𝑗 = 𝜆𝑖𝑗1, 𝜆𝑖𝑗 = 𝜆𝑗𝑖.

7.3.2 Optimization using ADMM

Next, we wish to solve the non-convex optimization problem in (7.9), including the bilinearity and

the rank constraint. To this end we will use a scaled version of Alternating Direction Method of

Multipliers (ADMM) [18, 50]. We maintain a second copy of 𝐴, which we denote as 𝐵, and form
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the augmented Lagrangian of (7.9) as:

max
Γ

min
𝐴,𝐵,Λ

1

2
∏︁𝐹 −Λ⊙ (𝐴 +𝐴𝑇 )∏︁2WF +

𝜏

2
∏︁𝐵 −𝐴 + Γ∏︁2𝐹

s.t. rank(𝐵) = 3, 𝐴𝑖𝑖 +𝐴𝑇
𝑖𝑖 = 0, Λ𝑖𝑗 = 𝜆𝑖𝑗1, 𝜆𝑖𝑗 = 𝜆𝑗𝑖. (7.10)

The last term in this objective, 𝜏
2∏︁𝐵 −𝐴 +Γ∏︁2𝐹 denotes the Lagrangian penalty; 𝜏 is a constant, and

Γ is a matrix of Lagrange multipliers of the same size as 𝐴 that is updated in the ADMM steps. We

next describe the ADMM steps, which are applied iteratively.

Step 1: Solving for (𝐴,Λ).

In each iteration, 𝑘, we solve the following sub-problems:

min
𝐴,Λ

1

2
∏︁𝐹 −Λ⊙ (𝐴 +𝐴𝑇 )∏︁2WF +

𝜏

2
∏︁𝐴 − (𝐵 + Γ)∏︁2𝐹

s.t. 𝐴𝑖𝑖 +𝐴𝑇
𝑖𝑖 = 0, Λ𝑖𝑗 = 𝜆𝑖𝑗1, 𝜆𝑖𝑗 = 𝜆𝑗𝑖. (7.11)

Since (7.11) is non-convex we will solve it by alternative minimization of 𝐴 and Λ

1. Optimize w.r.t. 𝐴:

Because of the form of (7.11) it is useful to separate 𝐴 into its symmetric and anti-symmetric

parts, 𝐴𝑠 and 𝐴𝑛, so that 𝐴 = 1
2(𝐴𝑠+𝐴𝑛) with 𝐴𝑠 = 𝐴+𝐴𝑇 and 𝐴𝑛 = 𝐴−𝐴𝑇 . Let 𝐺 = 𝐵+Γ;

𝐺𝑠 and 𝐺𝑛 respectively denote its symmetric and anti-symmetric part. We can write (7.11) in
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terms of 𝐴𝑠 and 𝐴𝑛 and separately solve for them as follows:

𝐴(𝑘+1)
𝑠 = argmin

𝐴𝑠

1

2
∏︁𝐹 −Λ(𝑘) ⊙𝐴𝑠∏︁2WF

+ 𝜏

8
∏︁𝐴𝑠 −𝐺(𝑘)

𝑠 ∏︁2𝐹 s.t. (𝐴𝑠)𝑖𝑖 = 0, (7.12)

𝐴(𝑘+1)
𝑛 = argmin

𝐴𝑛

𝜏

8
∏︁𝐴𝑛 −𝐺(𝑘)

𝑛 ∏︁2𝐹 = 𝐺(𝑘)
𝑛 . (7.13)

To solve (7.12) we take the derivative w.r.t. 𝐴𝑠 and equate to 0. Thus we update 𝐴𝑠 according

to

𝐴(𝑘+1)
𝑠 =𝑊 ⊙Λ(𝑘) ⊙ 𝐹 + 𝜏

4
𝐺(𝑘)

𝑠 (7.14)

⊘ (𝑊 ⊙Λ(𝑘) ⊙Λ(𝑘) + 𝜏

4
)

(𝐴(𝑘+1)
𝑠 )𝑖𝑖 = 0 (7.15)

where ⊘ denotes element-wise division.

2. Optimize w.r.t. Λ: We minimize the following sub-problem

Λ(𝑘+1) = argmin
Λ

∏︁𝐹 −Λ⊙𝐴(𝑘+1)
𝑠 ∏︁2WF

s.t. Λ𝑖𝑗 = 𝜆𝑖𝑗1, 𝜆𝑖𝑗 = 𝜆𝑗𝑖. (7.16)

We can solve (7.16) separately for each block as follows,

𝜆
(𝑘+1)
𝑖𝑗 = argmin

𝜆𝑖𝑗

∏︁𝐹𝑖𝑗 − 𝜆𝑖𝑗(𝐴(𝑘+1)
𝑠 )𝑖𝑗∏︁2WF, 𝑖 < 𝑗

=
trace(𝐹 𝑇

𝑖𝑗 (𝐴
(𝑘+1)
𝑠 )𝑖𝑗)

∏︁(𝐴(𝑘+1)
𝑠 )𝑖𝑗∏︁2𝐹

(7.17)
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Note that 𝜆(𝑘+1)𝑖𝑖 = 0, 𝜆(𝑘+1)𝑗𝑖 = 𝜆
(𝑘+1)
𝑖𝑗 and Λ

(𝑘+1)
𝑖𝑗 = 𝜆

(𝑘+1)
𝑖𝑗 1.

Step 2: Solving for 𝐵.

This part of the ADMM deals with the rank constraint. It requires a solution to

𝐵(𝑘+1) = argmin
𝐵

𝜏

2
⋃︀⋃︀𝐵 −𝐴(𝑘+1) + Γ(𝑘)⋃︀⋃︀2𝐹

s.t. rank(𝐵) = 3. (7.18)

This is solved by

𝐵(𝑘+1) = 𝑆𝑉 𝑃 (𝐴(𝑘+1) − Γ(𝑘),3), (7.19)

where 𝑆𝑉 𝑃 (𝑋,𝑟) denotes the Singular Value Projection (SVP) of X into space the of rank-𝑟 ma-

trices. To perform 𝑆𝑉 𝑃 (𝑋,𝑟) we compute the SVD of 𝑋 and keep its top 𝑟 singular values and

the corresponding singular vectors.

Step 3: Update of Γ. The matrix Γ contains Lagrange multipliers that are used in the saddle-point

formulation (7.10) to enforce the equality constraint 𝐴 = 𝐵. The following update is a gradient

ascent step that acts to maximize the augmented Lagrangian (7.10) for Γ. For details, see [18, 50].

Γ(𝑘+1) = Γ(𝑘) + (𝐵(𝑘+1) −𝐴(𝑘+1)). (7.20)

Empirically we observe monotonic convergence of the cost function defined in Equation 7.7

with each iteration of IRLS on a sample problem as shown in Figure 7-2. For every iteration of the

IRLS we run ADMM till convergence to optimize Equation 7.10.
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Algorithm 1 IRLS-ADMM solver

Input: Estimated fundamentals in 𝐹 and Ω.
Output: Recovered 𝐹 .
IRLS: Solve (7.7)
Initialize Λ and 𝐴 .
Create weights for IRLS, 𝑤0

𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ Ω and 𝑤0
𝑖𝑗 = 0 otherwise. Set 𝑡 = 1.

while not converged do
Solve (7.8) using ADMM formulation (7.10).

Set 𝑘 = 0, 𝜏 = ∑𝑤𝑖𝑗 , Γ0 = 0, 𝐵 = 𝐴.
while not converged do

Alternative minimization of (7.11).
Update 𝐴 using (7.13) and (7.15).
Update Λ using (7.17).

Update 𝐵 using (7.19) .
Update Γ using (8.27) .
𝑘 = 𝑘 + 1.

end while
Update Weights 𝑤𝑡

𝑖𝑗 using (7.8).
𝑡 = 𝑡 + 1.

end while
𝐹 = 𝐴 +𝐴𝑇 .
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Figure 7-2: Convergence of our optimization algorithm. The cost function is defined in (7.7).

7.4 Experiments

To demonstrate the utility of our method we tested it in the problem of estimating essential matrices

and camera locations from multiple images. Current iterative and global approaches to Structure

from Motion (SfM) are often tested on large datasets when many pairwise essential matrices can

be estimated, achieving outstanding performance. We argue that imposing rank constraints can

be useful particularly when the number of images is relatively small. To demonstrate this we run

our method on subsets of images of different sizes showing improved performance relative to the

existing methods particularly with smaller subsets.
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Figure 7-3: SfM pipelines for LUD (left) and our method (right).

We next describe the tested methods:

• LUD [120]: Figure 7-3 shows the pipeline used by LUD to estimate camera locations and ori-

entations from pairs of images. Starting from pairwise essential matrices estimated with SIFT

[105] and RANSAC [15], this method first solves for camera orientations, denoted by �̃�LUD
𝑖

in Figure 7-3, by iteratively applying [4] while rejecting outliers. Using camera orientations

it then returns to the image keypoints to estimate pairwise camera directions, denoted by

𝛾LUD
𝑖𝑗 . Using these pairwise directions it applies IRLS to solve for camera locations (𝑡LUD

𝑖 ),

which we compare to our method. In addition, we use the estimated camera locations and

orientations to reconstruct the pairwise essential matrices �̃�LUD
𝑖𝑗 .

• ShapeKick [49]: For this method we use the same pipeline as used with LUD, except that

we replace the translation recovery part of LUD with ShapeKick. ShapeKick formulates the

location recovery problem as a convex optimization and solves it with ADMM. They achieved
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comparable performance to LUD on the dataset of [167].

• 1DSfM [167]: This method uses a pre-processing technique, based on projection in many

random directions, to remove outliers in the original pairwise direction measurements. In

our experiments we use their software, which uses the pipeline described in [167] and only

provides camera locations.

• Our method: Figure 7-3 shows the pipeline used by our method. From the pair-wise essential

matrices we minimize (7.7) using the IRLS-ADMM summarized in Algorithm 1. Since our

method is not convex it requires a good initialization. We initialize it with essential matrices

produced by the LUD method of Ozyesil et al. [120], denoted �̃�LUD
𝑖𝑗 . Specifically �̃�𝐿𝑈𝐷

𝑖𝑗

is used to initialize Λ and 𝐴 in Algorithm 1. Our algorithm improves these essential matrix

estimates, producing a collection of new pairwise estimates in 𝐸, denoted �̃�Our
𝑖𝑗 . To further

produce camera locations we first use �̃�Our
𝑖𝑗 and the rotations obtained by the LUD pipeline,

�̃�LUD
𝑖 , to solve for the pairwise camera directions 𝛾Our

𝑖𝑗 . Then we apply the translation solver

of LUD to the 𝛾Our
𝑖𝑗 with (𝑖, 𝑗) ∈ Ω to produce camera locations 𝑡Our

𝑖 . As is shown below,

our improved estimates of essential matrices lead in turn to improved estimates of camera

locations compared to the LUD pipeline.

We tested these methods on real image collections from [167], which comes with ‘ground truth’

estimates of camera locations and essential matrices produced with a sequential method similar to

[143]. (These ground truth estimates are used also in [167, 120, 49].) For our experiments we used

14 different scenes from the dataset. For each scene we randomly selected 5 different sub-samples

of 𝑁 images from the dataset. We used 𝑁 = 50, 100, and 150 images, resulting in 70 different trials

for each 𝑁 . In each trial we compared the quality of the essential matrix recovered by our method

to that recovered by LUD and ShapeKick. Likewise, we compared the quality of our recovered
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camera locations to those obtained by the three competing methods.
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Figure 7-4: These graphs show a comparison of the recovery error of essential matrices achieved with our
method compared to LUD (in blue) and ShapeKick (in yellow), for collections of 50, 100, and 150 images
from [167], The graphs on the left show the amount of relative improvement and the ones on the right show
the fraction of improved trials.

Figures 7-4-7-5 show our results. Each graph summarizes the results of 70 trials with each value

of 𝑁 . Figure 7-4 shows the quality of our essential matrix estimates compared to those obtained

with LUD and ShapeKick, and Figure 7-5 shows the quality of our camera location estimates com-

pared to those achieved by the three competing algorithms. We measure these as follows. In each

experiment 𝑘 we consider the collection of pairwise essential matrices produced by our method. We

first normalize each matrix and measure its error to the respective (normalized) ground truth matrix.

We then take the mean (or median) of this error over all essential matrices. Denote this error by

𝑒Our
𝑘 . We then produce similar error measures for each competing algorithm, denoted 𝑒Other

𝑘 . We

then report:
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Figure 7-5: A comparison of the recovery error of camera locations achieved with our method compared to
LUD (in blue) and ShapeKick (in yellow), and 1DSfM (in red) for collections of 50, 100, and 150 images
from [167], The graphs on the left show the amount of relative improvement and the ones on the right show
the fraction of improved trials.
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Figure 7-6: Median camera location error obtained by the four algorithms for 5 subsets of 50 images for 14
different scenes (‘Notre Dame’, ‘Montreal Notre Dame’, ‘Alamo’, ‘Piazza del Popolo’, ‘Piccadilly’, ‘NYC
Library’, ‘Yorkminster’, ‘Union Square’, ‘Madrid Metropolis’, ‘Tower of London’, ‘Vienna Cathedral’, ‘Ro-
man Forum’ and ‘Ellis Island’, ‘Gendarmenmarkt’). For clarity we terminate the median T error axis at
30.

• Relative Improvement (in %): Here we report for each N and competing algorithm the

average of 𝑒Other
𝑘 −𝑒Our

𝑘

𝑒Other
𝑘

over all experiments.
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• Percent of Improved Trials: This provides the percentage of trials in which our algorithm

achieved more accurate results than a competing algorithm, i.e., 1
𝐾 ∑

𝐾
𝑘=1 I(𝑒Our

𝑘 < 𝑒Other
𝑘 ),

where I(.) is the indicator function and 𝐾 denotes the total number of trials.

We provide similar measures to assess the quality of our camera locations estimates. In Figure 7-

6 we further show the median error of camera location estimates for all methods in all trials for

𝑁 = 50.

It can be seen overall that our method leads to improved estimation of essential matrices and

of camera locations. With 50 images, compared to, e.g., LUD, our algorithm improves the median

essential matrix estimates by 17.69%. With 150 images a smaller overall improvement of 6.68%

is achieved. This suggests that our constraints are more effective when smaller numbers of images

are used. Interestingly, however, despite this reduction the fraction of trials in which our method

achieved more accurate estimates compared to LUD in fact increased slightly from 87% with 50 im-

ages to 98% with 150 images, indicating that our method remains effective also with larger number

of images (albeit yielding smaller improvement). Similar results are observed for camera location

estimation. With 50 and 150 images our algorithm improves the median camera location error by

19.73% and 8.77% respectively, while the fraction of trials in which our method achieved more

accurate estimates than LUD increased slightly from 84% with 50 images to 90% with 150 images.

In our previous experiments we applied our optimization algorithm to essential matrices, as-

suming calibration is given. Below we further apply our algorithm to fundamental matrices in an

uncalibrated setting. Since not all the entries of a 3 × 3 fundamental matrix are of same orders

of magnitude, we normalize each of the input pairwise fundamental matrices by centering all the

images and scaling them uniformly to within the (︀1,1⌋︀ square and then compute a normalized fun-

damental matrix. This does not affect our rank constraint and can be inverted at the end of the

process. We tested our method on 5 subsamples of 50 images for 14 different scenes and compared
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it to LUD. To evaluate the quality of the recovered fundamental matrices we convert them to es-

sential matrices by applying the known calibration matrices and further use these to recover camera

locations. The results can be seen in Figure 6. Using our method to recover fundamentals (in blue)

yielded comparable accuracies to our results for essential matrix recovery (yellow) and both our

approaches improve significantly (10-20%) over LUD as shown in Figure 7-7.
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Figure 7-7: Improvement of our method over LUD using fundamental matrix (in blue) and essential matrix
(yellow) for 50 images.

We further performed bundle adjustment (using [104]) initialized by the camera parameters ob-

tained with our method and LUD. After bundle adjustment compared to LUD our method improved

camera location estimates on average by 11.52%, 3.13% and 5.43%, improving in 70.59%, 64.29%

and 63.77% of all trials for 50, 100 and 150 images respectively in terms of median translation error.

These results indicate that our method maintains improved accuracies over LUD also after bundle

adjustment.

With 50 images the recovery of essential matrices with our method requires roughly 20 iterations

of IRLS and 1000 iterations of ADMM. These take overall about 2 minute on a 2.7 GHz Intel Core

i5 computer.

To conclude, these experiments indicate that our characterization of essential matrices in multi-

view settings can be used to improve essential matrix and cameral location estimates. The advantage

of these constraints appear to be particularly pronounced when fewer images are available.
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Chapter 8

Low Rank Constraints in Photometric

Stereo

8.1 Introduction

Uncalibrated photometric stereo (UPS) is the problem of recovering the 3D shape of an object and

associated lighting conditions, given images taken with varying, unknown illumination. We assume

that we view a lambertian object in multiple images from a fixed viewpoint. In each image the

object is illuminated by a single, distant point light source. We represent lighting in image 𝑖 with

𝑙𝑖 ∈ 𝑅3, in which the direction of 𝑙𝑖 represents the direction to the lighting, and ∏︁𝑙𝑖∏︁ represents its

magnitude. We represent the object using a set of surface normals �̂�𝑗 ∈ 𝑅3, and albedos 𝜌𝑗 ∈ 𝑅 for

each pixel. We then obtain images with the equation:

𝑀𝑖𝑗 =max(0, 𝜌𝑗𝑙𝑇𝑖 �̂�𝑗) (8.1)
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Figure 8-1: A cartoon of our approach. Blue represents the set of rank 3 matrices, while red represents the
subset of those that correspond to integrable surfaces. Our optimization seeks to find the integrable matrix
(red dot) that is closest to the measurements (black dot). If instead we first find the nearest rank 3 matrix and
then select an integrable matrix (the blue dots) we may produce a suboptimal solution.

where 𝑀𝑖𝑗 represents the 𝑗-th pixel of the 𝑖-th image. We define the surface normal �̂�𝑗 = 𝑛𝑗

∏︁𝑛𝑗∏︁
,

𝑛𝑗 = (−𝑧𝑥,−𝑧𝑦,1)𝑇 , where 𝑧𝑥 and 𝑧𝑦 represent partial derivatives of the surface 𝑧(𝑥, 𝑦) at pixel 𝑗.

Negative values of 𝜌𝑗𝑙𝑇𝑖 �̂�𝑗 are set to 0; these appear as attached shadows.

We now describe the creation of all images using matrix operations. We define 𝑆 to be a 3 × 𝑝

matrix in which column 𝑗 contains 𝜌𝑗�̂�𝑗 . Given 𝑚 images, we can stack the light into the matrix 𝐿

of dimension 𝑚 × 3, where each row denotes one light per image. We concatenate all the images to

form an observation matrix 𝑀 of dimension 𝑚 × 𝑝, where 𝑝 is the number of pixels. Now, in the

absence of shadows, we can write the equation of UPS as:

𝑀 = 𝐿𝑆. (8.2)

Classical work on photometric stereo (e.g. [168], see a recent review in [1]) has assumed that

known lighting is obtained by careful calibration. With 𝐿 known, equation (8.2) can be solved as

a linear least squares problem. A more general and challenging case is unconstrained photometric

stereo, in which the 𝐿 is unknown. A common approach, which we use as a baseline algorithm,

follows the steps in Algorithm 2.
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Algorithm 2 Baseline
Input : 𝑀
Output : 𝑍
Factorization : Perform SVD on 𝑀 to obtain light and scaled surface normals 𝑀 = �̃�𝑆 [56].
Integrability : Follow Yuille and Snow [176] to resolve ambiguity after the factorization using
integrability. In 𝑀 = 𝐿𝑆 = �̃�𝐴−1𝐴𝑆, we solve for 𝐴, such that 𝑆 = 𝐴𝑆 approximately forms a
set of integrable surface normals.
Depth Reconstruction : Obtain the depth map 𝑍 from the set of integrable surface normals 𝑆
as, e.g, in [8] or [43].

In this chapter, I show how we replace the existing pipeline for solving UPS with an integrated

approach. Existing methods, pioneered by [56], formulate UPS as the problem of finding a low-rank

factorization of the measurements. Specifically, given 𝑚 images each with 𝑝 pixels, let 𝑀 denote

the 𝑚 × 𝑝 matrix containing the pixel intensities. These methods optimize

min
�̂�

∏︁�̂� −𝑀∏︁2𝐹 s.t. rank(�̂�) = 3. (8.3)

This problem can be solved by SVD, from which we produce a family of solutions, each consisting

of a set of light sources, albedos, and surface normals. These solutions are related by a 3 × 3

ambiguity matrix. The surface normals provided by SVD are in general inconsistent with the partial

derivatives of the surface (i.e. they are not integrable). Consequently, existing methods apply an

additional sequence of steps aimed at reducing the ambiguity and fitting a surface to the recovered

normals. These steps are highlighted in algorithm 2.

In this work we propose instead to optimize:

min
�̂�

∏︁�̂� −𝑀∏︁2𝐹 (8.4)

s.t. �̂� is rank 3 and produced by an integrable surface.

Eq. (8.3) optimizes over rank 3 matrices, which can represent sets of images produced by any set of
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surface normals. In contrast, in 8.4 we optimize over only those rank 3 matrices that correspond to

integrable surfaces.

Intuitively, a single optimization over all constraints will have a better global optimum than

a sequence of optimizations in which constraints are used one at a time to increasingly narrow

the solution (see illustration in Figure 8-1). A similar intuition has motivated the use of bundle

adjustment [53] as the dominant approach to large scale structure-from-motion. Specifically in UPS

the measurement matrix may contain many errors due to shadows and specular effects. Therefore,

while in theory UPS can be solved with as few as three images, SVD can properly handle these

modeling errors only when many images are supplied. Indeed, current methods [3, 40] typically use

10 or more images. With fewer images SVD results tend to provide noisy solutions. Our method

incorporates integrability into this estimation, providing valuable additional constraints that can

reduce this noise. Our experiments indicate that our method can produce reasonable reconstructions

with as few as 4 images and good reconstruction with 6 images, significantly improving over state-

of-the-art methods with these few images.

For our approach we optimize a cost function based on (8.4) over the surface, lighting, normals,

and (restored) error-free observations. The cost ensures that normals and lighting are consistent with

the measurements, which must have low rank. We use constraints that ensure integrability. This is

somewhat tricky because rank constraints apply to the measurements while integrability constraints

apply to the normals. We show that by constructing a rank 3 matrix that contains normals, mea-

surements, and lighting, we can impose the rank and integrability constraints together. Specifically,

we use a truncated nuclear norm approach [62] to enforce the rank constraint, while integrability is

represented by linear equalities. This leads to a single non-convex problem that we solve using a

series of Alternating Direction Method of Multipliers (ADMM) operations [18, 50].

Our formulation allows us to easily account for missing data in the measurement matrix. This
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commonly occurs when pixels are dark due to shadows, or saturated due to specularities. In some

of the prior approaches, this can be solved with a preprocessing step, which may lead to a pipeline

with yet another optimization [170]. We handle missing data using matrix completion based on the

rank constraint. We initialize our optimization using prior approaches, in much the same way that

bundle adjustment is initialized using simpler, but non-optimal algorithms [53].

8.2 Our Approach

In this section we introduce our integrated formulation that enforces integrability of surface normals

in solving the uncalibrated photometric stereo problem. We recall from (8.2) that the measurement

matrix 𝑀 can be factored into 𝑀 = 𝐿𝑆. To access the derivatives of 𝑧(𝑥, 𝑦) we write 𝑆 as a product

𝑆 = 𝑁Λ, (8.5)

where 𝑁 is a 3 × 𝑝 matrix whose 𝑗’th column is 𝑛𝑗 = (−𝑧𝑥,−𝑧𝑦,1)𝑇 and Λ = diag(𝜆𝑖, 𝜆2, ..., 𝜆𝑝)

with 𝜆𝑗 = −𝜌𝑗⇑∏︁𝑛𝑗∏︁. We next define the matrix:

𝑋 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

𝑋𝐼 𝑋𝑁

𝑋𝐿 𝑋𝑀

⎬⎠⎠⎠⎠⎠⎠⎠⎮

=

⎨⎝⎝⎝⎝⎝⎝⎝⎪

𝐼 𝑁

𝐿 𝑀Λ−1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

, (8.6)

where 𝑋 is (3+𝑚)×(3+𝑝). The matrices 𝑋 , Λ, and the depth values (𝑧(𝑥, 𝑦)) form the unknowns in

our optimization. Note that, because 𝐿𝑁 =𝑀Λ−1, the following holds for any 3×3 non-degenerate

matrix 𝐴

𝑋 =

⎨⎝⎝⎝⎝⎝⎝⎝⎪

𝐴−1

𝐿𝐴−1

⎬⎠⎠⎠⎠⎠⎠⎠⎮

⌊︀𝐴 𝐴𝑁}︀ . (8.7)
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This shows that 𝑋 is rank 3. The matrix 𝐴 represents a linear ambiguity. However, forcing the

normals in 𝑁 to be integrable will reduce this ambiguity to the GBR.

To force integrability we denote by z = (𝑧1, ..., 𝑧𝑝)𝑇 the vector of unknown depth values and

require

𝑋𝑁 = ⌊︀𝐷𝑥z, 𝐷𝑦z, −1}︀
𝑇

, (8.8)

where 𝐷𝑥,𝐷𝑦 denote respectively the 𝑥- and 𝑦-derivative operators and 1 denotes the vector of all

1’s.

Additional constraints are obtained by noticing that, because 0 ≤ 𝜌𝑗 ≤ 1 and ∏︁𝑛𝑗∏︁ ≥ 1,

− 1 ≤ 𝜆𝑗 ≤ 0 (8.9)

and

𝑋𝐼 = 𝐼3×3. (8.10)

We are now ready to define our optimization function. Let 𝑊 be a binary, 𝑚 × 𝑝 matrix so that

𝑊𝑖𝑗 = 0 if 𝑀𝑖𝑗 is missing and 𝑊𝑖𝑗 = 1 otherwise, and let

𝑓𝑑𝑎𝑡𝑎(𝑋,Λ) = 1

2
⋃︀⋃︀𝑊 ⊙ (𝑀 −𝑋𝑀Λ)⋃︀⋃︀2𝐹 , (8.11)

where ⊙ denotes element-wise multiplication. Then (8.4) can be written as

min
𝑋,Λ,z

𝑓𝑑𝑎𝑡𝑎(𝑋,Λ)

s.t. rank(𝑋) = 3, (8.8), (8.9),and (8.10). (8.12)

Handling the rank-3 constraint: Enforcing the non-convex constraint rank(𝑋) = 3 can be chal-
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lenging. In the context of matrix completion a recent paper [62] proposed using the Truncated

Nuclear Norm (TNN) regularization term:

𝑓𝑡𝑛𝑛(𝑋) = ⋃︀⋃︀𝑋 ⋃︀⋃︀∗ −
3

∑
𝑘=1

𝜎𝑘(𝑋), (8.13)

where ⋃︀⋃︀𝑋 ⋃︀⋃︀∗ denotes the nuclear norm of 𝑋 and 𝜎𝑘(𝑋) is the 𝑘-th largest singular value of 𝑋 .

Clearly, 𝑓𝑡𝑛𝑛(𝑋) = 0 if and only if rank(𝑋) ≤ 3. We use 𝑓𝑡𝑛𝑛 as a regularizer and solve

min
𝑋,Λ,z

𝑓𝑑𝑎𝑡𝑎(𝑋,Λ) + 𝑐 𝑓𝑡𝑛𝑛(𝑋)

s.t. (8.8), (8.9),and (8.10), (8.14)

where 𝑐 is a preset scalar.

8.3 Optimization using ADMM

In this section we introduce a method for solving (8.14). This is a challenging problem because both

𝑓𝑑𝑎𝑡𝑎 and 𝑓𝑡𝑛𝑛 are non-convex. Specifically, 𝑓𝑑𝑎𝑡𝑎 (8.11) is bilinear in 𝑋 and Λ, while 𝑓𝑡𝑛𝑛 (8.13) is

a difference between two convex functions. Our solution is based on a nested iteration in which the

outer loop uses majorization to decrease 𝑓𝑡𝑛𝑛 whereas the inner loop uses the scaled ADMM with

alternation to decrease 𝑓𝑑𝑎𝑡𝑎.

Outer loop: Following [62] at each iteration of the outer loop we replace 𝑓𝑡𝑛𝑛(𝑋) with a majorizer

𝑓𝑚𝑎𝑗 . Specifically, at iteration 𝑘 let 𝑋(𝑘) = 𝑈Σ𝑉 𝑇 be the singular value decomposition of 𝑋(𝑘),

and let 𝑈3 (and 𝑉3) be the matrices containing the left (right) singular vectors corresponding to

the three largest singular values of 𝑋(𝑘). 𝑈3 and 𝑉3 are determined in the outer loop and are held
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constant throughout the inner loop. We then define

𝑓
(𝑘)
𝑚𝑎𝑗(𝑋) = ∏︁𝑋∏︁∗ − trace(𝑈𝑇

3 𝑋𝑉3). (8.15)

It was shown in [62] that 𝑓 (𝑘)𝑚𝑎𝑗(𝑋) ≥ 𝑓𝑡𝑛𝑛(𝑋) for all 𝑋 and that 𝑓 (𝑘)𝑚𝑎𝑗(𝑋(𝑘)) = 𝑓𝑡𝑛𝑛(𝑋(𝑘)), and so

decreasing 𝑓𝑚𝑎𝑗 leads to decreasing 𝑓𝑡𝑛𝑛.

Inner loop: In the inner loop we seek to minimize

min
𝑋,Λ,z

𝑓𝑑𝑎𝑡𝑎(𝑋,Λ) + 𝑐𝑓
(𝑘)
𝑚𝑎𝑗(𝑋)

s.t. (8.8), (8.9),and (8.10), (8.16)

We use scaled ADMM, a variant of the augmented Lagrangian method that splits the objective

function and aims to solve the different subproblems separately. We maintain a second copy of 𝑋 ,

which we denote by 𝑌 and form the augmented Lagrangian of (8.16) as follows

max
Γ

min
𝑋,Λ,z,𝑌

1

2
⋃︀⋃︀𝑊 ⊙ (𝑀 −𝑋𝑀Λ)⋃︀⋃︀2𝐹 + 𝑐 (⋃︀⋃︀𝑌 ⋃︀⋃︀∗ − trace(𝑈𝑇

3 𝑌 𝑉3)) +
𝜏

2
⋃︀⋃︀𝑌 −𝑋 + Γ⋃︀⋃︀2𝐹

𝑠.𝑡. 𝑋𝐼 = 𝐼3×3, − 1 ≤ 𝜆𝑗 ≤ 0 ∀𝑗, 𝑋𝑁 = ⌊︀𝐷𝑥z, 𝐷𝑦z, −1}︀
𝑇

, (8.17)

where ⋃︀⋃︀𝑌 −𝑋 +Γ⋃︀⋃︀2𝐹 , denotes the Lagrangian penalty; 𝜏 is a constant, and Γ is a matrix of Lagrange

multipliers the same size as 𝑋 that is updated by the ADMM steps [18, 50]. We next describe the

ADMM steps (applied iteratively).

Step 1: Solving for (𝑋,Λ,z).

In each iteration, 𝑘, we solve the following sub-problems:

1. Optimize w.r.t. 𝑋𝐼 : 𝑋𝐼 (𝑘+1) = 𝐼3×3.
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2. Optimize w.r.t. 𝑋𝐿:

𝑋𝐿 (𝑘+1) = argmin
𝑋𝐿

⋃︀⋃︀𝑌 𝐿 (𝑘) −𝑋𝐿 + Γ𝐿 (𝑘)⋃︀⋃︀2𝐹

= 𝑌 𝐿 (𝑘) + Γ𝐿 (𝑘). (8.18)

3. Optimize w.r.t. 𝑋𝑁 and z:

(𝑋𝑁 (𝑘+1),z(𝑘+1)) = argmin
𝑋𝑁 ,z

⋃︀⋃︀𝑌 𝑁 (𝑘) −𝑋𝑁 + Γ𝑁 (𝑘)⋃︀⋃︀2𝐹

s.t. 𝑋𝑁 = ⌊︀𝐷𝑥z, 𝐷𝑦z, −1}︀
𝑇

. (8.19)

The problem is solved by setting the third row of 𝑋𝑁 (𝑘+1) to −1 and by substituting 𝐷𝑥z and

𝐷𝑦z for the first two rows of 𝑋𝑁 in the objective, obtaining linear least squares equations in

z that can be solved directly.

4. Optimize w.r.t. 𝑋𝑀 and Λ:

(𝑋𝑀 (𝑘+1),Λ(𝑘+1)) =argmin
𝑋𝑀 ,Λ

1

2
∏︁𝑊 ⊙ (𝑀 −𝑋𝑀Λ)∏︁2𝐹 + 𝜏

2
∏︁𝑌 𝑀 (𝑘) −𝑋𝑀 + Γ𝑀 (𝑘)∏︁2𝐹

s.t. − 1 ≤ 𝜆𝑗 ≤ 0 ∀𝑗.

We will separate this into the known and unknown pixels based on 𝑊 . For an unknown

pixel 𝑗 in frame 𝑖 (𝑊𝑖𝑗 = 0) the first term vanishes and the minimization only determines the

respective entry of 𝑋𝑀 so that:

𝑋
𝑀 (𝑘+1)
𝑖𝑗 = 𝑌

𝑀 (𝑘)
𝑖𝑗 + Γ

𝑀 (𝑘)
𝑖𝑗 . (8.20)

For the known pixels, since Λ is diagonal we can write these equations separately for each
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column 𝑗 (corresponding to the 𝑗-th pixel):

(𝑋𝑀 (𝑘+1)
𝑗 , 𝜆

(𝑘+1)
𝑗 ) =argmin

𝑋𝑀
𝑗 ,𝜆𝑗

1

2
∏︁(𝑊𝑗 ⊙ (𝑀𝑗 − 𝜆𝑗𝑋

𝑀
𝑗 )∏︁22 +

𝜏

2
∏︁𝑌 𝑀 (𝑘)

𝑗 −𝑋𝑀
𝑗 + Γ

𝑀 (𝑘)
𝑗 ∏︁22

s.t. − 1 ≤ 𝜆𝑗 ≤ 0. (8.21)

The problem (8.21) is non-convex. We will solve it with alternate optimization. 𝑋𝑀 and Λ

are updated by the following steps until convergence.

XM : Let �̃�𝑗 =𝑊𝑗 ⊙𝑀𝑗 , 𝑋𝑗 =𝑊𝑗 ⊙𝑋𝑀
𝑗 and 𝐴

𝑀 (𝑘)
𝑗 =𝑊𝑗 ⊙ (𝑌 𝑀 (𝑘)

𝑗 + Γ
𝑀 (𝑘)
𝑗 ). Then,

𝑋𝑗 = argmin
𝑋𝑗

1

2
⋃︀⋃︀�̃�𝑗 − 𝜆𝑗𝑋𝑗 ⋃︀⋃︀22 +

𝜏

2
⋃︀⋃︀𝐴𝑀 (𝑘)

𝑗 −𝑋𝑗 ⋃︀⋃︀22

=
𝜆𝑗�̃�𝑗 + 𝜏𝐴

𝑀 (𝑘)
𝑗

𝜆2
𝑗 + 𝜏

. (8.22)

Λ:

𝜆𝑗 = argmin
𝜆𝑗

1

2
∏︁�̃�𝑗 − 𝜆𝑗𝑋𝑗 ⋃︀⋃︀22 s.t. − 1 ≤ 𝜆𝑗 ≤ 0,

=min(0,max(−1, �̃�𝑇
𝑗 �̃�𝑗⇑∏︁�̃�𝑗∏︁22)). (8.23)

Step 2: Solving for 𝑌 . Solving for 𝑌 requires a solution to

𝑌 (𝑘+1) = argmin
𝑌

𝑐 (∏︁𝑌 ∏︁∗ − trace(𝑈𝑇
3 𝑌 𝑉3)) +

𝜏

2
⋃︀⋃︀𝑌 −𝑋(𝑘+1) + Γ(𝑘)⋃︀⋃︀2𝐹 . (8.24)

Below we show that this problem can be solved in closed form by applying the shrinkage operator,

obtaining

𝑌 (𝑘+1) =𝐷𝑐⇑𝜏(𝑋(𝑘+1) − Γ(𝑘) + 𝑐

𝜏
𝑈3𝑉

𝑇
3 ), (8.25)
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where the shrinkage operator 𝐷𝑡(.) is defined as follows. For a scalar 𝑠 we define 𝐷𝑡(𝑠) =

sign(𝑠) × max(⋃︀𝑠⋃︀ − 𝑡,0). For a diagonal matrix 𝑆 = diag(𝑠1, 𝑠2, ...) with non-negative entries

we define 𝐷𝑡(𝑆) = diag(𝐷𝑡(𝑠1),𝐷𝑡(𝑠2), ...). Finally, for a general matrix ϒ, let ϒ = �̃�𝑆𝑉 𝑇 be its

singular value decomposition, then 𝐷𝑡(ϒ) = �̃�𝐷𝑡(𝑆)𝑉 𝑇 .

To derive (8.25), we rewrite (8.24) as:

𝑌 (𝑘+1) = argmin
𝑌

∏︁𝑌 ∏︁∗ +
𝜏

2𝑐
∏︁𝑌 −𝑋(𝑘+1) + Γ(𝑘) − 𝑐

𝜏
𝑈3𝑉

𝑇
3 ∏︁2𝐹 − 𝑇, (8.26)

where 𝑇 = trace(𝑉3𝑈
𝑇
3 (𝑋(𝑘+1) − Γ(𝑘))) + 𝑐

2𝜏
∏︁𝑈3𝑉

𝑇
3 ∏︁2𝐹 is independent of 𝑌 . Equation (8.26) is

of the general form min
𝑌

∏︁𝑌 ∏︁∗ +
1

2𝑡
∏︁𝑌 −𝐶∏︁2𝐹 , for which the solution is 𝐷𝑡(𝐶), as is shown in [24],

implying (8.25).

Step 3: Update of Γ. The matrix Γ contains Lagrange multipliers that are used in the saddle-point

formulation (8.17) to enforce the equality constraint 𝑋 = 𝑌 . The following update is a gradient

ascent step that acts to maximize the augmented Lagrangian (8.17) for Γ. For details, see [18, 50].

Γ(𝑘+1) = Γ(𝑘) + (𝑌 (𝑘+1) −𝑋(𝑘+1)). (8.27)

The entire optimization process is listed in Algorithm 3.

8.4 Experimental Results

In this section we evaluate and compare the performance of our algorithm with two versions of the

baseline algorithm, in both real world and synthetic examples. We compare the following methods:

Baseline: Algorithm 2 described in Section 8.1. This method is used in [3, 40, 137, 30, 152, 38].

RPCA: Images are preprocessed using Robust PCA [170], parameters are chosen as suggested
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Algorithm 3 TNN formulation solved with ADMM
Input: 𝑀 , 𝑊 .
Output: 𝑋 , z.
Initialization: Initialize 𝑋𝐿 and 𝑋𝑁 by running Baseline algorithm (without resolving GBR).
Initialize 𝑋𝑀 = −𝑀 , Λ = −𝐼 , and 𝑐 = 1. Set 𝑋(0) =𝑋 , 𝑌 =𝑋 , Γ = 0, and 𝜏 = 1.
𝑘 = 0.
while not converged do

Perform SVD over 𝑋(𝑘) to obtain 𝑈3 and 𝑉3.
Run ADMM:
while not converged do

Update of 𝑋 , z and Λ.
Update 𝑋𝐼(𝑘+1) = 𝐼3×3.
Update 𝑋𝐿(𝑘+1) using (8.18).
Update 𝑋𝑁(𝑘+1) and z using (8.19).
while not converged do

for each pixel 𝑗 do
Update 𝑋

𝑀(𝑘+1)
𝑗 using (8.22) and 𝜆

(𝑘+1)
𝑗 using (8.23).

end for
for each pixel 𝑗 in each image 𝑖 do

if 𝑊𝑖𝑗 = 0 i.e. pixel 𝑗 is not known then
Update 𝑋

𝑀(𝑘+1)
𝑖𝑗 using (8.20).

end if
end for

end while
Update 𝑌 using (8.25).
Update of Γ using (8.27).
𝑘 = 𝑘 + 1.

end while
end while

by [40]. Then we apply the baseline algorithm to the obtained matrix. This method is used in [40].

RPCA solves a sparse low rank optimization to detect shadows and other non-Lambertian effects.

The method uses 𝐿1 regularization to identify outlier pixels, even when they do not result in inten-

sities near 0 or 1.

Our(NC): Our proposed formulation as described in Section 8.3 using 𝑊 = 1, i.e., no completion.

This allows comparison to Baseline, which also does not perform matrix completion.

Our(MC): Our proposed formulation as in Section 8.3 with 𝑤𝑖𝑗 ∈ {0,1}, allowing for matrix com-

pletion. In both versions of our algorithm we use 𝑐 = 1 and use RPCA to initialize optimization. We
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identify missing pixels as those with normalized intensity outside the range of (0.02,0.98).

All the tested methods solve for the surface only up to a GBR ambiguity. To compare the results

with ground truth, we find the GBR that optimizes the fit to ground truth, and measure the residual

error.

In the presence of a large number of images with noise and non-Lambertian effects, we expect

the sequential pipeline of Baseline and RPCA, involving SVD, to produce accurate solutions, be-

cause the problem solved by SVD is heavily overconstrained. In the presence of fewer images, our

integrated method will be able to produce a more accurate decomposition by using both rank and

integrability constraints to find the right linear subspace. Thus we expect our integrated approach

to improve over the Baseline and RPCA as we reduce the number of images. In the following

sub-section we will show results with synthetic and real world data that supports our claim.

8.4.1 Experiments on Synthetic Data

We use five real objects (“cat”, “owl”, “rock”, “horse”, “buddha”) to produce synthetic images, their

shape is obtained by applying calibrated photometric stereo to a publicly available dataset [73]. We

use the normals and albedos from these objects to generate images. Each image is generated by a

randomly selected light source which lies at 30 degrees of the viewing direction on average. All

images are of size 512 × 340 with objects occupying 29-72K pixels. A segmentation mask is also

supplied. To show the variation of performance with the number of images 𝑁𝐼 , we use sets of 4,

6, 8, 10, 15, 20, 25 and 30 images respectively. We add Gaussian noise with standard deviation

ranging from 1% to 7% (in steps of 2%) of the maximum intensity. For each choice of noise, we

run 5 different trials with random noise and lighting to generate the synthetic images. Thus we

have 5 objects, 4 levels of noise and 5 random simulations, making a total of 100 experiments for

each of the 8 different sets of 4, 6, 8, 10, 15, 20, 25 and 30 images. As a measure of performance,
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we calculate the error in the reconstructed depth map. Let the ground truth surface be 𝑍𝑇 and the

reconstructed surface be 𝑍𝑟𝑒𝑐. We measure error in depth as 𝑍𝑒𝑟𝑟 = 100 × ⋃︀⋃︀𝑍𝑇−𝑍𝑟𝑒𝑐⋃︀⋃︀

⋃︀⋃︀𝑍𝑇 ⋃︀⋃︀
. To compare

two algorithms (say, algorithm A vs. algorithm B), we define the following two terms :

Relative Improvement (in %) : Denote 𝑒𝑎𝑘 and 𝑒𝑏𝑘 as the depth error for each trial 𝑘 by using

algorithm A and B respectively. The Relative Improvement of algorithm B over A is the average of

(𝑒𝑏𝑘−𝑒
𝑎
𝑘)

𝑒𝑏
𝑘

over all trials 𝐾 for each choice of 𝑁𝐼 expressed in percentage.

Percent of Improved Trials : This denotes the number of trials in which algorithm B improves over

A. In terms of notation introduced previously, this is 1
𝐾 ∑

𝐾
𝑘=1 I(𝑒a𝑘 < 𝑒b𝑘), where I(.) is in indicator

variable and 𝐾 is the total number of trials for each choice of 𝑁𝐼 . The measure is expressed in

percentage.

In Figure 8-2a we compare performance of Our(MC) with Baseline and RPCA, on synthetic

data in the presence of Gaussian noise. We initialize our methods with RPCA. We observe that

as the number of images decreases, our method improves compared to Baseline and RPCA. With

simple Gaussian noise RPCA doesn’t produce additional advantages as there are no outliers.

In Figure 8-2b we compare the performance of our methods on synthetic data with Gaussian

noise and with specularities generated by the Phong reflectance model [151, 122]. Mathematically

each image 𝑀𝑖 can be represented as :

𝑀𝑖 = 𝐿𝑖𝑆 + 𝑘𝑠(𝑉 𝑅)𝛼, (8.28)

where 𝑉 is the viewing direction and 𝑅 denotes the directions of perfect reflection for incoming

light 𝐿𝑖 for each pixel 𝑗. Larger 𝛼 produces sharper specularities, while larger 𝑘𝑠 causes more

light to be reflected as specularity. We use 𝑘𝑠 = 0.2 and 𝛼 = 10. We observe that the advantage

of Our(MC) degrades as the number of images increases, as expected. This experiment shows that
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(b) Gaussian noise with Phong model

Figure 8-2: Performance comparison of Our(MC) algorithm to RPCA (in blue) and Baseline (yellow) for
different numbers of input images with gaussian noise under either a pure lambertian model (top) or the Phong
model (bottom). The left bar plot shows the amount of relative improvement achieved with our algorithm,
and the right plot shows the percent of trials in which our algorithm out performed each one of the competing
algorithms.

even though our method is designed specifically for Lambertian objects it can tolerate a certain

amount of model irregularities such as specularity. With 4 images our method beats RPCA in 85%

of the all trials with a relative improvement of 22.12%.

In Figure 8-3 we compare Our(MC) with Baseline and RPCA with variation of noise for differ-

ent subsets of images (4, 6, 10 and 15). We can conclude that our method is robust to noise and its

advantages do not degrade with an increase in noise.
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Figure 8-3: Performance comparison of Our(MC) with RPCA and Baseline with varying noise created using
the Phong model.
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Figure 8-4: Performance comparison of Our (MC) and Our (NC) algorithms to RPCA and Baseline with
real images.

8.4.2 Experiments on Real World Data

To test our approach on real data, we used the two publicly available data sets [73] and [171]

consisting of 5 and 7 objects respectively. The datasets provide calibrated lighting, which we use

to perform calibrated photometric stereo. The obtained depth map, albedo, and surface normals are

considered as ground-truth for photometric stereo with unknown lighting similar to [3]. To show

the variation of performance with the number of images, we select subset of 4, 6, 8 and 10 images

for each object. We perform 10 random selections of subset of images for each of the 12 objects.
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Thus we have 120 experiments for every subset of images.

In Figure 8-4 we compare the performance of our methods, Our(MC) and Our(NC), with Base-

line and RPCA with variation in the number of images. We see that for fewer images our methods

outperform Baseline and RPCA by a significant amount and are comparable to RPCA for more

images. For 4 images Our(MC) outperforms Baseline in 84.9% cases with a relative improvement

of 30.6% and outperforms RPCA in 81.4% cases with a relative improvement of 12%. However for

10 images we beat Baseline in 75% cases with a relative improvement of 10.7% and beat RPCA in

only 47.3% cases with a relative improvement of -7.2%.
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Figure 8-5: Average surface reconstruction error with 4 (top) and 6 (bottom) real images of 12 objects over
10 random trials using Our(MC), RPCA and Baseline.

Figure 8-5 shows the average reconstruction error obtained by Our(MC), RPCA and Baseline on

12 real-world objects over 10 random simulations. We observe that Our(MC) outperforms RPCA
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Figure 8-6: Reconstruction error ⋃︀𝑍𝑇 −𝑍𝑟𝑒𝑐⋃︀ for Baseline, RPCA and Our(MC) on “Cat", “Owl", “Pig" and
“Hippo” shown in each row. The left column shows results for 4 images, the right shows results for 10.

Figure 8-7: Two views of surfaces reconstructed with Our(MC) algorithm for 4 images. Each column shows
two images of surfaces reconstructed on “Cat", “Owl", “Pig" and “Hippo” respectively.

on 11 out of 12 objects for 4 images and 10 out of 12 objects for 6 images (and is comparable in

1). With 10 images the average reconstruction error using Our(MC) over all objects and all trials is

4.6%. This increases to 8.1% with four images, and is only 5.4% with six images. This shows that

we have reasonable reconstruction with 4 images and good reconstruction with as few as 6 images.

In Figure 8-6 we compare the error in surface reconstruction between Baseline, RPCA, and

Our(MC) on some of our real world examples. Figure 8-7 shows two views of surfaces recon-

structed using the Our(MC) algorithm using 4 images, showing reasonable surface reconstruction.
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These results suggest that our joint approach to enforcing rank and integrability constraints can

significantly improve the performance of photometric stereo in the presence of a few images.

In general, we see that incorporating matrix completion into our formulation results in a slight

improvement, with Our(MC) somewhat outperforming Our(NC). This indicates that the improve-

ment of our method compared to RPCA or Baseline is mostly due to the joint optimization formu-

lation and not due to matrix completion. We further note that RPCA seems to significantly improve

over Baseline. RPCA is able to identify outliers and use that extra information for better recovery.

This also suggests that the robust error function used by RPCA is important. However our integrated

approach, which does not have a robust cost function like RPCA, still outperforms RPCA for 4 and

6 images and is almost equal for 8 or 10 images. This shows that an integrated approach is very

useful for a small number of images and provides similar gain compared to RPCA for more images.

It would be an interesting topic of future work to amend the cost function of Our(MC) to include

RPCA’s robust handling of error, to see if this further improves its performance.

For an image of size 512 × 340 with an object occupying an area of 30K pixels, our algorithm

takes 20 minutes on a 2.7 GHz Intel Core i5 machine.
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Chapter 9

Concluding Remarks

In this thesis we aim to solve the problem of Inverse Rendering from limited observations. The

goal of Inverse Rendering is to obtain the intrinsic components, i.e. geometry, reflectance and

illumination, of an image. In this thesis we study Inverse Rendering as different sub-problems like

Structure from Motion, Photometric Stereo and Shape from Shading. We propose two different

approaches to study Inverse Rendering. In presence of a fewer images, we aim to enforce low-rank

constraints in an optimization framework to ensure accurate recovery. Another direction is to learn

data-driven priors over intrinsic components for Inverse Rendering from a single image.

We summarize the major contributions of this thesis as follows:

• We propose a new multi-view rank constraint that connects all cameras capturing a scene. We

formulate a constrained low-rank optimization problem that aims at enforcing this constraint

to ensure accurate recovery of camera matrices in a Structure from Motion framework. This

additional constraint is particularly helpful in presence of a small number of images.

• We propose a joint approach for solving Uncalibrated Photometric Stereo. We aim to si-

multaneously obtain a low-rank decomposition of a set of images and remove ambiguity by

formulating a constrained low-rank optimization problem.
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• In pursuit of Inverse Rendering from a single image, we propose a self-supervised learning

paradigm that allows us to learn from unlabeled real data while disambiguating the intrinsic

components.

• To handle the complex components of the appearance of scenes, we propose Residual Ap-

pearance Renderer (RAR) which facilitates self-supervised learning from real world scene

images.

• We propose a novel inverse rendering decomposition architecture, SfSNet, which mimics a

physical rendering model.

• We introduce a large-scale photo-realistic dataset of indoor scenes with ground-truth labels

for geometry, reflectance, illumination and material classes.

• We show that jointly learning all components of an image is significantly better than learning

only one of the components of an image as it helps in better generalization.

In this thesis we explore a few directions and provide solutions that advances the goal of achiev-

ing Inverse Rendering from unconstrained images. There are some clear next steps that can improve

the quality of Inverse Rendering for in-the-wild images. As a concluding remarks, we briefly ex-

plore few of these directions.

Combining Priors and Constraints for Multi-view Inverse Rendering. In our thesis we

consider two possible setups for Inverse Rendering. In one setup we consider only a single image

during inference and provide a learning based solution to this problem. In another setup we consider

a few images during inference time and provide an optimization driven framework that can enforce

certain constraints. Clearly the next step forward is to combine learning data-driven priors with

enforcing constraints to achieve accurate Inverse Rendering from multiple images. Often, it is very

convenient for a user to take multiple images or a video of an object or scene of interest. As multi-
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view data provides more meaningful information, the goal will be to leverage them for accurate

reconstruction.

Unified Geometric and Photometric Inverse Rendering. So far in this thesis, we have sep-

arately considered the geometric and photometric aspects of Inverse Rendering. For example, in

SfM we consider only geometric aspects in terms of 3D shape and camera parameters. And in case

of single image based Inverse Rendering we mostly focus on the photometric aspects. Having mul-

tiple images or a video as input will allow us to combine both of these aspects and create a strong

self-supervision loss for learning from unlabeled real images

Improved Representations of Reflectance and Illumination. So far we have considered the

most simple representations of reflectance and illumination and mostly focused on developing an

approach to successfully recovering them. Given that we have a good progress in this direction,

it is now important to consider more expressive representations of reflectance and lighting. For

example, instead of predicting only albedo we can try to infer more detailed parametric models

for reflectance or even learn an improved data-driven BRDF model. Similarly, we can infer local

models of illumination as light fields or per-pixel lighting and utilize improved rendering models

like Pre-computed Radiance Transfer (PRT).

A Wide Range of Applications. Finally progress in understanding Inverse Rendering will lead

to creating and solving many interesting applications. For example, Inverse Rendering will improve

different applications in Virtual Shopping, where a user can virtually insert the furniture of their

choice in the room and change the material of the furniture to suit their purpose. Inverse Rendering

will also be useful in editing images and generating interesting content by inserting objects in the

image. Finally, it will be also useful for several AR/VR applications.
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Chapter 10

Appendix

10.1 Inverser Rendering of a Face

10.1.1 SfSNet Architecture
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Figure 10-1: SfSNet Architecture.

The schematic diagram of our SfSNet is again shown in Figure 10-1 for reference. Our input,

normal and albedo is of size 128×128. Below we provide the details of each of the blocks of SfSNet.

‘Conv.’: C64(k7) - C128(k3) - C*128(k3)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Nor-

malization and ReLU. ‘C*N(kS)’ denotes only convolution layers with N 𝑆 × 𝑆 filters with stride

2, without batch Normalization. The output of ‘Conv’ layer produces a blob of spatial resolution
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128 × 64 × 64.

‘Normal Residual Blocks’: 5 ResBLK - BN - ReLU

This consists of 5 Residual Blocks, ‘BesBLK’s, all of which operate at a spatial resolution of

128 × 64 × 64, followed by Batch Normalization (BN) and ReLU. Each ‘ResBLK’ consists of BN -

ReLU - C128 - BN - ReLU - C128.

‘Albedo Residual Blocks’: Same as ‘Normal Residual Blocks’ (weights are not shared).

‘Normal Conv’.: BU - CD128(k1) - C64(k3) - C*3(k1)

‘BU’ refers to Bilinear up-sampling that converts 128 × 64 × 64 to 128 × 128 × 128.‘CN(kS)’ rep-

resents convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Normalization and

ReLU. ‘C*N(kS)’ represents only convolution layer with N 𝑆 ×𝑆 filters with stride 1. The network

produces a normal map as output.

‘Albedo Conv.’: Same as ‘Normal Conv.’ (weights are not shared).

‘Light Estimator’: It first concatenates the responses of ‘Conv’, ‘Normal Residual Blocks’ and

‘Albedo Residual Blocks’ to produce a blob of spatial resolution 384 × 64 × 64. This is further

processed by 128 1 × 1 convolutions, Batch Normalization, ReLU, followed by Average Pooling

over 64×64 spatial resolution to produce 128 dimensional features. This 128 dimensional feature is

passed through a fully connected layer to produce 27 dimensional spherical harmonics coefficients

of lighting. Our model and code is available for research purposes at https://senguptaumd.

github.io/SfSNet/.
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Figure 10-2: SkipNet and SkipNet+ Network Architectures.

10.1.2 SkipNet Architecture

The schematic diagram of SkipNet is shown in Figure 10-2(a). SkipNet is based on the network

used in [141] with more capacity and skip connections. Similar to SfSNet the input is 128 × 128;

‘Normal Decoder’ and ‘Albedo Decoder’ produces normal and albedo maps. Normal, albedo and

‘light’ is also used to produce shading and the reconstructed image similar to Figure 10-1. Since

that part of the architecture does not contain any trainable parameters we omit them in the figure for

clarity. Note that the skip connections between encoder and decoder exist, which is also not shown

in the figure. Details of SkipNet are provided below:

Encoder: C*64(k4) - C128(k4) - C256(k4) - C256(k4) - C256(k4) - fc256

‘CN(kS)’ represents convolution layers with N 𝑆 × 𝑆 filters with stride 2, followed by Batch Nor-

malization and ReLU. ‘C*N(kS)’ is‘CN(ks)’ without Batch Normalization. All ReLUs are leaky

with slope 0.2. ’fc256’ is a fully connected layer that produces a 256 dimensional feature.

MLP: Contains a fully connected layer to take the response of Encoder and separate it into 256

dimensional features for ‘Normal Decoder’, ‘Albedo Decoder’ and ‘light’. For ‘Normal Decoder’

and ‘Albedo Decoder’ a 256 dimensional feature is further up-sampled to form a blob of shape

256 × 4 × 4. For ’light’ the 256 dimensional feature is passed through a fully connected network to

produce 27 dimensional spherical harmonics coefficients.

Decoder (Normal and Albedo): CD256(k4) - CD256(k4) - CD256(k4) - CD128(k4) - CD64(k4)

- C*3(k1) Both ‘Normal Decoder’ and ‘Albedo Decoder’ consists of the same architecture without
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weight sharing. ‘CDN(kS)’ represents a de-convolution layer with N 𝑆 × 𝑆 filters operated with

stride 2, followed by Batch Normalization and ReLU. ‘C*3(k1)’ consists of 3 1 × 1 convolution

filters with stride 1 to produce Normal or Albedo. Skip connections are present between encoders

and decoders similar to [65, 133].

10.1.3 SkipNet+

SkipNet+ is very similar to SkipNet, but with larger capacity and without a fully connected bottle-

neck ‘MLP’ as shown in Figure 10-2(b). The Details of the network are shown below.

Encoder: Co64(k3) - Co64(k1) - C64(k3) - Co64(k1) - C128(k3) - Co128(k1) - C256(k3) - Co256(k1)

- C256(k3) - Co256(k1) - C256(k3)

‘CN(kS)’ represents a convolution layer with N 𝑆 × 𝑆 filters with stride 2, followed by Batch Nor-

malization and ReLU. ‘CoN(kS)’ is similar to ‘CN(kS)’ but with stride 1. All ReLUs are leaky with

slope 0.3. The output of the Encoder is a feature of spatial resolution 256 × 4 × 4.

Decoder (Normal and Albedo): C256(k1) - CD256(k4) - CD256(k4) - CD256(k4) - CD128(k4) -

CD64(k4) - C*3(k1)

‘CDN(kS)’ represents a de-convolution layer with N 𝑆 × 𝑆 filters with stride 2, followed by Batch

Normalization and ReLU. ‘CN(kS)’ represents a convolution layer with N 𝑆 × 𝑆 filters with stride

1, followed by Batch Normalization and ReLU. ‘C*3(k1)’ consists of 3 1 × 1 convolution filters

to produce Normal or Albedo. Skip-connections exists between ‘CN(k3)’ layers of encoder and

‘CDN(k4)’ layers of decoder.

light: We perform Average pooling over 4 × 4 spatial resolution of the encoder output to produce a

256 dimensional feature. This feature is then passed through a fully connected layer to produce 27

dimensional spherical harmonics lighting.
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10.1.4 Spherical Harmonics

In this section, we define the image generation process under lambertian reflectance following equa-

tion (3.1). Let the normal be 𝑛(𝑝) = (︀𝑥, 𝑦, 𝑧⌋︀𝑇 at pixel 𝑝. Then the 9 dimensional spherical harmon-

ics basis 𝑌 (𝑝) at pixel 𝑝 is expressed as:

𝑌 = (︀𝑌00, 𝑌10, 𝑌 𝑒
11𝑌

0
11, 𝑌20, 𝑌
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Then the intensity at pixel 𝑝 is defined as:

𝐼(𝑝) = 𝑓𝑟𝑒𝑛𝑑𝑒𝑟(𝐴(𝑝),𝑁(𝑝), 𝐿) = 𝐴(𝑝)(𝑌 (𝑝)𝑇𝐿), (10.3)

where 𝐴(𝑝) is the albedo at pixel 𝑝, and 𝐿 is the lighting parameter denoting coefficients of spherical

harmonics basis. Note that, the above equations are only for one of the RGB channels and can be

repeated independently for 3 channels.

Next we define the reconstruction loss. Let 𝐼(𝑝) be the original image intensity and �̃�(𝑝),

𝐴(𝑝) be the inferred normal and albedo by SfSNet at pixel 𝑝. Let �̃� be the 27 dimensional spherical
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harmonic coefficients also inferred by SfSNet. The reconstruction loss is defined as:

𝐸𝑟𝑒𝑐𝑜𝑛 =∑
𝑝

⋃︀𝐼(𝑝) − 𝑓𝑟𝑒𝑛𝑑𝑒𝑟(𝐴(𝑝), �̃�(𝑝), �̃�)⋃︀. (10.4)

10.1.5 More Qualitative Comparisons

SfSNet on CelebA: In Figures 10-3 and 10-4 we present inverse rendering results on CelebA im-

ages with our SfSNet. To visualize the quality of the reconstructed normals, we use directional

lights with uniform albedo to produce ‘Relit’ images.

SfSNet vs Pix2Vertex: In Figure 10-5 we compare SfSNet to Pix2Vertex [133]. These images

contain non-ambient illuminations and expressions, where surface normal recovery is much more

robust for SfSNet than for Pix2Vertex. Figures 10-6, 10-7 and 10-8 also compares performance of

SfSNet and Pix2Vertex on the images showcased by Sela et. al in [133]. Since these images mostly

contain ambient illumination, SfSNet performs comparable to Pix2Vertex.

SfSNet vs MoFA: We also provide more comparison results with MoFA [156] on the images pro-

vided by the authors in Figures 10-10, 10-11 and 10-12. MoFA aims to fit a 3DMM which is limited

in its capability to represent real world shapes and reflectance, but can produce a full 3D mesh. Thus

SfSNet reconstructs more detailed shape and reflectance than MoFA.

SfSNet vs Neural Face: Similarly comparison with ‘Neural Face’ [141] in Figure 10-13 on the im-

ages showcased by the authors, show that SfSNet obtains more realistic reconstruction than ‘Neural

Face’.
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Input Reconstruction Normal Albedo Shading Relit 1 Relit 2

Figure 10-3: Results of SfSNet on CelebA. ‘Relit’ images are generated by directional lighting and uniform
albedo to highlight the quality of the reconstructed normals. (Best viewed in color)
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Input Reconstruction Normal Albedo Shading Relit 1 Relit 2

Figure 10-4: Results of SfSNet on CelebA. ‘Relit’ images are generated by directional lighting and uniform
albedo to highlight the quality of the reconstructed normals. (Best viewed in color)
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Input Our Normal Our Relit Pix2V Normal Pix2V Relit Pix2V-no mesh

Figure 10-5: SfSNet vs Pix2Vertex [133] on images selected by us with non-ambient illumination and
expression. ‘Relit’ images are generated by directional lighting and uniform albedo selected to highlight the
quality of the reconstructed normals. (Best viewed in color)
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Input Our Normal Our Relit Pix2V Normal Pix2V Relit Pix2V-no mesh

Figure 10-6: SfSNet vs Pix2Vertex [133] on the images showcased by Sela et. al. in [133]. ‘Relit’ images
are generated by directional lighting and uniform albedo selected to highlight the quality of the reconstructed
normals. (Best viewed in color)
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Input Our Normal Our Relit Pix2V Normal Pix2V Relit Pix2V-no mesh

Figure 10-7: SfSNet vs Pix2Vertex [133] on the images showcased by Sela et. al. in [133]. ‘Relit’ images
are generated by directional lighting and uniform albedo selected to highlight the quality of the reconstructed
normals. (Best viewed in color)
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Input Our Normal Our Relit Pix2V Normal Pix2V Relit Pix2V-no mesh

Figure 10-8: SfSNet vs Pix2Vertex [133] on the images showcased by Sela et. al. in [133]. ‘Relit’ images
are generated by directional lighting and uniform albedo selected to highlight the quality of the reconstructed
normals. (Best viewed in color)
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Source S-Source S-Transfer Transfer Target S-Target

Figure 10-9: Light transfer. Our SfSNet allows us to transfer lighting of the ‘Source’ image to the ‘Target’
image to produce ‘Transfer’ image. ‘S’ refers to shading. (Best viewed in color)
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Figure 10-10: Inverse Rendering. SfSNet vs ‘MoFA’ [156] on the data provided by the authors.
(Best viewed in color)

120



SfSNet
M
oFA

Input Reconstruction Geometry Albedo Shading

SfSNet
SfSNet

M
oFA

M
oFA

SfSNet
SfSNet

M
oFA

M
oFA

M
oFA

SfSNet

Figure 10-11: Inverse Rendering. SfSNet vs ‘MoFA’ [156] on the data provided by the authors.
(Best viewed in color)
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Figure 10-12: Inverse Rendering. SfSNet vs ‘MoFA’ [156] on the data provided by the authors.
(Best viewed in color)
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Figure 10-13: Inverse Rendering. SfSNet vs ‘Neural Face’ [141] on the images showcased by the authors.
(Best viewed in color)
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10.2 Inverse Rendering of an Indoor Scene

In this appendix we provide the details of our network architecture and the loss functions along with

more qualitative evaluations. Specifically, in Section 10.2.1 we discuss the details of the IRN and

RAR network architectures for reproducibility. Details of our training loss functions on real data

are provided in Section 10.2.2. In Section 10.2.5 we present additional qualitative evaluations.

10.2.1 Network Architectures
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N<latexit sha1_base64="/vs1hFfJXvt/50eZj1K6xL++zp4=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkuijZXBKEgCF7K3zMGGvb3L7p4JufATbCw0xtZfZOe/cYErFHyTTZ68M5OdeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo7aOU8WwxWIRq05ANQousWW4EdhJFNIoEPgYjK9n9ccnVJrH8sFMEvQjOpQ85Iwaa91Xb6v9csWtuXORVfByqECuZr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU146WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wK7XrNs3xXrzSu8jiKcAKncA4eXEADbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/JHz+QNdgo0s</latexit><latexit sha1_base64="/vs1hFfJXvt/50eZj1K6xL++zp4=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkuijZXBKEgCF7K3zMGGvb3L7p4JufATbCw0xtZfZOe/cYErFHyTTZ68M5OdeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo7aOU8WwxWIRq05ANQousWW4EdhJFNIoEPgYjK9n9ccnVJrH8sFMEvQjOpQ85Iwaa91Xb6v9csWtuXORVfByqECuZr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU146WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wK7XrNs3xXrzSu8jiKcAKncA4eXEADbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/JHz+QNdgo0s</latexit><latexit sha1_base64="/vs1hFfJXvt/50eZj1K6xL++zp4=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkuijZXBKEgCF7K3zMGGvb3L7p4JufATbCw0xtZfZOe/cYErFHyTTZ68M5OdeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo7aOU8WwxWIRq05ANQousWW4EdhJFNIoEPgYjK9n9ccnVJrH8sFMEvQjOpQ85Iwaa91Xb6v9csWtuXORVfByqECuZr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU146WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wK7XrNs3xXrzSu8jiKcAKncA4eXEADbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/JHz+QNdgo0s</latexit><latexit sha1_base64="/vs1hFfJXvt/50eZj1K6xL++zp4=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkuijZXBKEgCF7K3zMGGvb3L7p4JufATbCw0xtZfZOe/cYErFHyTTZ68M5OdeYNEcG1c99sprK1vbG4Vt0s7u3v7B+XDo7aOU8WwxWIRq05ANQousWW4EdhJFNIoEPgYjK9n9ccnVJrH8sFMEvQjOpQ85Iwaa91Xb6v9csWtuXORVfByqECuZr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSuRUkj1H42X3VKzqwzIGGs7JOGzN3fExmNtJ5Ege2MqBnp5drM/K/WTU146WdcJqlByRYfhakgJiazu8mAK2RGTCxQprjdlbARVZQZm07JhuAtn7wK7XrNs3xXrzSu8jiKcAKncA4eXEADbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/JHz+QNdgo0s</latexit>

A
<latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="5q+jdR2fyXRBF7pnhuseQl5nUGc=">AAAB33icbZBLSwMxFIXv+Ky1anXrJtgKrsqMG10qblxWtA9oh5JJb9vQTGZI7ghl6E9w40IR/5U7/43pY6GtBwIf5yTk3hOlSlry/W9vY3Nre2e3sFfcLx0cHpWPS02bZEZgQyQqMe2IW1RSY4MkKWynBnkcKWxF47tZ3npGY2Win2iSYhjzoZYDKTg567F6W+2VK37Nn4utQ7CECixV75W/uv1EZDFqEopb2wn8lMKcG5JC4bTYzSymXIz5EDsONY/Rhvl81Ck7d06fDRLjjiY2d3+/yHls7SSO3M2Y08iuZjPzv6yT0eA6zKVOM0ItFh8NMsUoYbO9WV8aFKQmDrgw0s3KxIgbLsi1U3QlBKsrr0PzshY4fvChAKdwBhcQwBXcwD3UoQEChvACb/DuKe/V+1jUteEtezuBP/I+fwA0gIvM</latexit><latexit sha1_base64="5q+jdR2fyXRBF7pnhuseQl5nUGc=">AAAB33icbZBLSwMxFIXv+Ky1anXrJtgKrsqMG10qblxWtA9oh5JJb9vQTGZI7ghl6E9w40IR/5U7/43pY6GtBwIf5yTk3hOlSlry/W9vY3Nre2e3sFfcLx0cHpWPS02bZEZgQyQqMe2IW1RSY4MkKWynBnkcKWxF47tZ3npGY2Win2iSYhjzoZYDKTg567F6W+2VK37Nn4utQ7CECixV75W/uv1EZDFqEopb2wn8lMKcG5JC4bTYzSymXIz5EDsONY/Rhvl81Ck7d06fDRLjjiY2d3+/yHls7SSO3M2Y08iuZjPzv6yT0eA6zKVOM0ItFh8NMsUoYbO9WV8aFKQmDrgw0s3KxIgbLsi1U3QlBKsrr0PzshY4fvChAKdwBhcQwBXcwD3UoQEChvACb/DuKe/V+1jUteEtezuBP/I+fwA0gIvM</latexit><latexit sha1_base64="/nv7NQikq1cLIqK6383q1ekZQSQ=">AAAB6nicbZA9T8MwEIYv5auUrwIji0WLxFQlLDAWWBiLoB9SG1WO67RWHSeyL0hV1J/AwgBCrPwiNv4NbpsBWl7J0qP37uS7N0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etUycasabLJax7gTUcCkUb6JAyTuJ5jQKJG8H49tZvf3EtRGxesRJwv2IDpUIBaNorYfqdbVfrrg1dy6yCl4OFcjV6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrUdGIGz+brzolZ9YZkDDW9ikkc/f3REYjYyZRYDsjiiOzXJuZ/9W6KYZXfiZUkiJXbPFRmEqCMZndTQZCc4ZyYoEyLeyuhI2opgxtOiUbgrd88iq0Lmqe5Xu3Ur/J4yjCCZzCOXhwCXW4gwY0gcEQnuEV3hzpvDjvzseiteDkM8fwR87nD0khjR0=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit><latexit sha1_base64="mHyMdqPUof5MP3WNP8tHCEuNdqk=">AAAB6nicbZA9TwJBEIbn8AvxC7W02QgmVuSORkvUxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8E02efLOTHbmDRLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpnVH59QaR7LBzNJ0I/oUPKQM2qsdV+9qvbLFbfmzkVWwcuhArma/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9l81Sk5s86AhLGyTxoyd39PZDTSehIFtjOiZqSXazPzv1o3NeGln3GZpAYlW3wUpoKYmMzuJgOukBkxsUCZ4nZXwkZUUWZsOiUbgrd88iq06zXP8l290rjO4yjCCZzCOXhwAQ24hSa0gMEQnuEV3hzhvDjvzseiteDkM8fwR87nD0nBjR8=</latexit>
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Figure 10-14: Our Proposed Architecture.

Our proposed Inverse Rendering Network (IRN), shown again in Figure 10-14 for reference,

consists of two modules IRN-Diffuse and IRN-Specular. IRN is trained on real data using the

Residual Appearance Renderer (RAR), which learns to capture the complex appearance effects(e.g.

inter-reflection, cast shadows, near-field illumination, and realistic shading). Next, we describe each

of the following modules, IRN-Diffuse, IRN-Specular and RAR.

IRN-Diffuse

In Figure 10-15 we present the network architecture of IRN-Diffuse. The input to IRN-Diffuse is an

image of spatial resolution 240 × 320, and the output is an albedo and normal map of same spatial

resolution along with a 18 × 36 resolution environment map. We provide the details of each of the
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Figure 10-15: IRN-Diffuse.

blocks of IRN-Diffuse.

‘Enc’: C64(k7) - C*128(k3) - C*256(k3)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Normal-

ization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆×𝑆 filters with stride 2, followed

by Batch Normalization and ReLU. The output of ‘Enc’ layer produces a blob of spatial resolution

256 × 60 × 80.

‘Normal ResBLKs’: 9 ResBLK

This consists of 9 Residual Blocks, ‘ResBLK’s, which operate at a spatial resolution of 256×60×80.

Each ‘ResBLK’ consists of Conv256(k3) - BN -ReLU - Conv256(k3) - BN, where ‘ConvN(kS)’ and

‘BN’ denote convolution layers with N 𝑆 × 𝑆 filters of stride 1 and Batch Normalization.

‘Albedo ResBLKs’: Same as ‘Normal Residual Blocks’ (weights are not shared).

‘Dec.’: CD*128(k3)-CD*64(k3)-Co3(k7)

‘CD*N(kS)’ denotes Transposed Convolution layers with N 𝑆 × 𝑆 filters with stride 2, followed

by Batch Normalization and ReLU. ‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with

stride 1, followed by Batch Normalization and ReLU. The last layer Co3k(7) consists of only con-

volution layers of 3 7 × 7 filters, followed by Tanh layer.
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‘Light Est.’: It first concatenates the responses of ‘Enc’, ‘Normal ResBLKs’ and ‘Albedo Res-

BLKs’ to produce a blob of spatial resolution 768× 60× 80. It is further processed by the following

module:

C256(k1) - C*256(k3) - C*128(k3) - C*3(k3) - BU(18,36)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Normal-

ization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆×𝑆 filters with stride 2, followed

by Batch Normalization and ReLU. BU(18,36) upsamples the response to produce 18 × 36 × 3

resolution environment map.

IRN-Specular

IRN-Specular consists of an U-Net architecture with image and albedo predicted by the IRN-Diffuse

as it’s input. Like U-Net, skip connections exist between encoder and decoder of the U-Net.

‘Encoder’: C64(k3) - C64(k1) - C*64(k3) - C64(k1) -C*128(k3) - C128(k1) - C*256(k3) - C256(k1)

- C*512(k3)

‘Decoder’: CU512(k3) - CU256(k3) - CU128(k3) - CU64(k3) - Co3(k1)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Nor-

malization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 2,

followed by Batch Normalization and ReLU. ‘CUN(kS)’ represents a bilinear up-sampling layer

, followed by convolution layers with N 𝑆 × 𝑆 filters with stride 1, and Batch Normalization and

ReLU. ‘Co3(k1)’ consists of 3 1 × 1 convolution filters, followed by Tanh layer, to produce Normal

or Albedo. Skip-connections exists between ‘C*N(k3)’ layers of encoder and ‘CUN(k3)’ layers of

decoder.
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RAR

As shown in Figure 10-14, Residual Appearance Renderer (RAR) consists of a U-Net architecture

and a convolution encoder. The U-Net consists of the following architecture, with normals and

albedo as its input:

‘Encoder’: C64(k3) - C*64(k3) - C*128(k3) - C*256(k3) - C*512(k3)

‘Decoder’: CU512(k3) - CU256(k3) - CU128(k3) - CU64(k3) - Co3(k1)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Normal-

ization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆×𝑆 filters with stride 2, followed

by Batch Normalization and ReLU. ‘CUN(kS)’ represents a bilinear up-sampling layer , followed

by convolution layers with N 𝑆×𝑆 filters with stride 1, followed by Batch Normalization and ReLU.

‘Co3(k1)’ consists of 3 1 × 1 convolution filters to produce Normal or Albedo. Skip-connections

exists between ‘C*N(k3)’ layers of encoder and ‘CUN(k3)’ layers of decoder. The encoder ‘Enc’

that encodes image features to a latent 𝐷 = 300 dimensional subspace is given by: ‘Enc’: C64(k7)

- C*128(k3) - C*256(k3) - C128(k1) - C64(k3) - C*32(k3) - C*16(k3) - MLP(300)

‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch Normal-

ization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆×𝑆 filters with stride 2, followed

by Batch Normalization and ReLU. MLP(300) takes the response of the previous layer and outputs

a 300 dimensional feature, which is concatenated with the last layer of the U-Net ‘Encoder’.

Environment Map Estimator

As discussed in Section 3.1 of the main paper, the ground-truth environment map is estimated

from the image, ground-truth albedo and normal using a deep network ℎ𝑒(⋅,Θ𝑒). The detailed

architecture of this network is presented below:

C64(k7) - C*128(k3) - C*256(k3) - 4 ResBLKS - C256(k1) - C*256(k3) - C*128(k3) - C*3(k3) -

127



BU(18,36),

where, ‘CN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride 1, followed by Batch

Normalization and ReLU. ‘C*N(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters with stride

2, followed by Batch Normalization and ReLU. BU(18,36) upsamples the response to produce

18 × 36 × 3 resolution environment map. Each ‘ResBLK’ contains Conv256(k3) - BN -ReLU -

Conv256(k3) - BN, where ‘ConvN(kS)’ denotes convolution layers with N 𝑆 × 𝑆 filters of stride 1,

‘BN’ denoted Batch Normalization.

10.2.2 Training Details

10.2.3 Training with weak supervision over albedo

IIW dataset presents relative reflectance judgments from humans. For any two points 𝑅1 and 𝑅2

on an image, a weighted confidence score classifies 𝑅1 to be same, brighter or darker than 𝑅2.

We use these labels to construct a hinge loss for sparse supervision based on WHRD metric pre-

sented in [11]. Specifically, if users predict 𝑅1 to be darker than 𝑅2 with confidence 𝑤𝑡, we use

a loss 𝑤𝑡max(1 + 𝛿 − 𝑅2⇑𝑅1,0). If 𝑅1 and 𝑅2 are predicted to have similar reflectance, we use

𝑤𝑡(︀max(𝑅1⇑𝑅2 − 1 − 𝛿,0) +max(𝑅2⇑𝑅1 − 1 − 𝛿,0)⌋︀. We observed empirically that this loss func-

tion performs better than WHRD metric, which is an L0 version of our loss. We train on real data

with the following losses: (i) Psuedo-supervision loss over albedo (𝐿𝑎), normal (𝐿𝑛) and light-

ing (𝐿𝑒) based on [134], (ii) Photometric Reconstruction loss with RAR (𝐿𝑢) (iii) Pair-wise weak

supervision (𝐿𝑤). Thus the net loss function is defined as:

𝐿 = 0.5 ∗𝐿𝑎 + 0.5 ∗𝐿𝑛 + 0.1 ∗𝐿𝑒 +𝐿𝑢 + 30 ∗𝐿𝑤. (10.5)
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Training with weak supervision over normals

We also train on NYUv2 dataset with weak supervision over normals, obtained from Kinect depth

data of the scene. We train with the following losses: (i) Psuedo-supervision loss over albedo

(𝐿𝑎) and lighting (𝐿𝑒) based on [134], (ii) Photometric Reconstruction loss with RAR (𝐿𝑢) (iii)

Supervision (𝐿𝑤) over kinect normals. Thus the net loss function is defined as:

𝐿 = 0.2 ∗𝐿𝑎 + 0.05 ∗𝐿𝑒 +𝐿𝑢 + 20 ∗𝐿𝑤. (10.6)

10.2.4 Our SUNCG-PBR Dataset

We present more example images of our SUNCG-PBRS dataset in Figure 10-16. We also compare

the renderings of our SUNCG-PBR Dataset with that of PBRS [180], under same illumination

condition in Figure 10-17 and 10-18. SUNCG-PBR provides more photo-realistic and less noisy

images with specular highlights. Both SUNCG-PBR and PBRS is rendered with Mitsuba [68]. We

will release the dataset upon publication.

10.2.5 More Experimental Results

Comparison with SIRFS. We present more detailed qualitative evaluations in this supplementary

material. In Figure 10-19 we compare the results of our algorithm with that of SIRFS [6]. SIRFS is

an optimization-based method for inverse rendering, which estimates surface normals, albedo and

spherical harmonics lighting from a single image. Compared to SIRFS we obtain more accurate

normals and better disambiguation of reflectance from shading.

Comparison with CGIntrinsic. In Figure 10-20 we compare the albedo predicted by our method

with that of CGIntrinsics [95], which performs intrinsic image decomposition of an image. Intrinsic

image decomposition methods do not explicitly recover geometry, illumination or glossiness of the
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material, but rather combine them together as shading. In contrast, our goal is to perform a complete

inverse rendering which has a wider range of applications in AR/VR.

Evaluation of lighting estimation. In Figure 10-21 we present a qualitative evaluation of lighting

estimation by inserting a diffuse hemisphere into the scene and rendering it with the inferred light

from the image. We compare this with our implementation of the method proposed by Gardner

et. al. [45], which also estimates an environment map from a single indoor image. ℎ𝑒(⋅,Θ𝑒) is a

deep network that predicts the environment map given the image, normals, and albedo. ‘GT+ℎ𝑒(⋅)’

estimates the environment map given the image, ground-truth normals and albedo, and thus serves

as an achievable upper-bound in the quality of the estimated lighting. ‘Ours’ estimates environment

map from an image with IRN. ‘Ours+ℎ𝑒(⋅)’ predicts environment map by combining the inferred

albedo and normals from IRN to predict lighting with ℎ𝑒(⋅). Both ‘Ours’ and ‘Ours+ℎ𝑒(⋅)’ outper-

form Gardner et. al. [45] as they seem to produce more realistic environment maps. ‘Ours+ℎ𝑒(⋅)’

improves lighting estimation over ‘Ours’ by utilizing the predicted albedo and normals to a greater

degree.

Our Results and Ablation study. Figure 10-22 shows examples of our results, with the albedo,

glossiness segmentation, normal and lighting predicted by the network, as well as the reconstructed

image with the direct renderer and the proposed Residual Appearance Renderer (RAR). In Fig-

ure 10-23 and 10-24, we perform a detailed ablation study of different components of our method.

We show that it is important to train on real data, as networks trained on synthetic data fails to

generalize well on real data. We also show that training on real data using Residual Appearance

Renderer (RAR), to capture complex appearance effects, significantly improves performance. Fi-

nally, incorporating weak supervisions from relative reflectance judgments helps the network to

predict uniform albedo across large objects.
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Image (specular) Image (diffuse) Depth Surface Normal Albedo Phong Model Semantic Segmentation Glossiness Segmentation

Figure 10-16: Our SUNCG-PBR Dataset. We provide 235,893 images of a scene assuming specular
and diffuse reflectance along with ground truth depth, surface normals, albedo, Phong model parameters,
semantic segmentation and glossiness segmentation.
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Figure 10-17: Comparison with PBRS [180]. Our dataset provides more photo-realistic and less noisy
images with specular highlights under multiple lighting conditions.
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Figure 10-18: Comparison with PBRS [180]. Our dataset provides more photo-realistic and less noisy
images with specular highlights under multiple lighting conditions.
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Figure 10-19: Comparison with SIRFS [6]. Using deep CNNs our method performs better disambiguation
of reflectance from shading and predicts better surface normals.
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Figure 10-20: Comparison with CGI (Li et. al. [95]). In comparison with CGI [95], our method performs
better disambiguation of reflectance from shading and preserves the texture in the albedo.
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Image GT+he Gardner et. al. [8] Ours+heOurs

Figure 10-21: Evaluation of lighting estimation. We compare with our implementation of Gardner et.
al. [45]. ‘GT+ℎ𝑒(⋅)’ predicts lighting conditioned on the ground-truth normals and albedo. ‘Ours+ℎ𝑒(⋅)’
predicts the environment map by conditioning it on the albedo and normals inferred by IRN.
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Image Normal Albedo Glossiness Recon. with RARLighting

Figure 10-22: Our Result. We show the estimated intrinsic components; normals, albedo, glossiness
segmentation (matte-blue, glossy-red and semi-glossy-green) and lighting predicted by the network, along
with the reconstructed image with our direct renderer and the RAR.
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Image Synthetic Real w/o RAR Real+RAR Real+RAR+weak

Figure 10-23: Ablation Study. We present the predicted albedo for each input image (in column 1) in
column 2-5. We show the albedo predicted by IRN trained on our SUNCG-PBR only in column 2. In column
3 and 4 we show the albedo predicted by IRN finetuned on real data without and with RAR respectively. We
present the albedo predicted by IRN, trained on real data with RAR and weak supervision, in column 5.
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Image Synthetic Real w/o RAR Real+RAR Real+RAR+weak

Figure 10-24: Ablation Study. We present the predicted albedo for each input image (in column 1) in
column 2-5. We show the albedo predicted by IRN trained on our SUNCG-PBR only in column 2. In column
3 and 4 we show the albedo predicted by IRN finetuned on real data without and with RAR respectively. We
present the albedo predicted by IRN, trained on real data with RAR and weak supervision, in column 5.
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