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Chapter 1

Introduction

Decision making is a part of everyone’s daily life. We are always making conscious and

subconscious decisions that have many different long- and short-term consequences. For complex

decisions, we often consult many sources, gather information, and make observations to aid our

selection. One tool that can assist with the decision-making process is the analytic hierarchy

process (AHP). This thesis studies two problems involving the AHP. First, we examine well-known

great sports records and use the AHP to determine the greatest single-season, career, and single-

event sports records. Second, we investigate a new method for evaluating pairwise comparison

matrices in the AHP that contain interval judgments.

Several questions come to mind when we consider ranking the greatest sports records of

all time. How can we compare different types of performances from a single sport? Can we

determine whether Nolan Ryan’s single-season strikeout record is better than Ty Cobb’s career

batting average? How can records from different sports be compared when the environment among

sports is very different? Can we compare records such as John Stockton’s career assist record to

Pete Sampras’s 14 grand slam tennis titles? Questions such as these abound in living rooms, at

bars and pubs, on Internet message boards, and on sports media shows across the country. Why

not make a formal, quantitative attempt to answer these questions?

The world of sports is a good candidate for a study in decision making with the AHP

for several reasons. First, modern sports have been intertwined with numbers and statistical

measurements since the early twentieth century. In almost every sport played today, winning

involves maximizing or minimizing some measurable quantity, for example, running the fastest

time, scoring the most points or goals, or shooting the lowest score. It is a world in which

performances can be measured, recorded, and compared against others objectively. It is through
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numbers that we remember some of the greatest athletes in sports history: Joe DiMaggio (56),

Wilt Chamberlain (100), and Wayne Gretzky (99), to name three [5].

Second, the sports environment lends itself to being an area that promotes many different

opinions. People are often naturally drawn to favor one sport over another. Fans of one team are

diametrically opposed to followers of their team’s rival. Sports evoke some of the deepest emotions

within fans and hence, a lot of subjectivity regarding sports exists today (for example, see any

Internet message board such as CBS.Sportsline.com [6]).

Third, many individuals have an interest in a sport of some kind, be it as a participant

or fan. The act of playing, watching, or reading about sports can occupy a considerable amount

of leisure time for the average person. The discussion of the greatest athletes and athletic feats

permeates all walks of life: rich and poor, young and old. For example, a recent article in the

KidsPost section of the Washington Post [4] highlighted some of the athletes associated with a

variety of sports records. It discussed athletes such as Paul Hornung and his single-season points

record in football to Wilt “the Stilt” Chamberlain and his single-season scoring and rebounding

records in basketball. A study of the greatest sports records would be of general interest to a large

number of people from all age groups.

Taken together, these three reasons (objective data, subjective data, and a large following)

indicate that the world of sports would be receptive to a study that determines the greatest sports

record.

Ambiguity and uncertainty play an influential role in decision making. Often, we are faced

with situations where we must weigh many different feelings and opinions before we can make

a decision. In some instances, we encounter a decision but are hampered by indecisiveness. We

attempt to evaluate the factors involved in the selection but remain uncertain about the best choice

to make. Other times, we become involved in making a decision with a heterogeneous group of

people. Each person in the group has different preferences that need to be considered before the

decision can be made. In such cases, we would like to account for the ambiguity and uncertainty

in our decision-making method.
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Comparing different solutions to a problem two-at-a-time is one way to break down a com-

plex decision into several smaller, more manageable decision problems. Performing pairwise com-

parisons, or measurements of the relative importance of one alternative to another, is a key com-

ponent of the analytic hierarchy process. The AHP requires the decision maker (DM) to assign a

numerical value to a comparison of two items to capture his or her preferences between each pair

of alternatives. Sometimes, when faced with a large amount of ambiguity, the DM might not be

able to specify an exact value for these comparisons. Instead of single numbers, interval pairwise

comparisons can be used by a DM to express this uncertainty with his or her actual judgments.

Using the AHP to make decisions whenever interval pairwise comparisons have been made is

an active area of research in management science. Techniques based on linear programming [3, 19,

23, 26] and nonlinear optimization [26, 34] to solve interval AHP problems have been proposed in

the literature. Each of these techniques has its own limitation when interval pairwise comparisons

are used (more about this in Chapter 4). In this thesis, we introduce a linear programming model

with stretching (LP-S) that generates solutions for all types of AHP problems involving interval

pairwise comparison. We demonstrate that the LP-S does not have the same limitations as other

interval techniques. The LP-S method provides an efficient, practical way for generating priority

vectors.

The rest of this thesis is divided into four chapters. Chapter 2 introduces the analytic

hierarchy process and describes its application to decision-making problems. Chapter 3 discusses

single-season, career, and single-event sports records and applies the AHP to determine the greatest

sports records in each category. In Chapter 4, we describe a new technique for generating weights

for interval pairwise comparison matrices and focus on solving AHP problems with inconsistent

interval judgments. Chapter 5 concludes by summarizing the thesis and indicating areas for future

work.
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Chapter 2

Introduction to the Analytic Hierarchy Process

Making complex decisions whenever both quantitative and qualitative information are

present can be a difficult task. How can we accurately choose between a set of items when con-

sidering both objective and subjective factors that influence the overall decision? In this chapter,

we provide a brief introduction to the analytic hierarchy process, a well-known method for solving

decision-making problems. We give a short description of the AHP and describe how it can be

used for making decisions. In addition, we provide the mathematical framework underlying the

eigenvector method (EM), which is the most widely used method for finding a priority vector in

the AHP.

The last section of this chapter introduces two modifications to traditional AHP problems:

the ratings mode and interval pairwise comparisons. In studies when the number of alternatives

(items that the decision maker is choosing among) is large, it is often convenient to break the

problem down into smaller pieces. The ratings mode provides a simple approach to solving prob-

lems with many alternatives and decision factors. Interval pairwise comparisons are used when

a decision maker wishes to specify an interval of values for each comparison rather than assign a

single value for a comparison.

2.1 The Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a widely-used technique for comparing a set of

alternatives with respect to an overall goal [31]. It is a popular tool used by decision makers when

the choice of alternatives is influenced by both quantitative and qualitative data. The AHP relies

on the ability of the decision maker to decompose the main problem into a hierarchy of smaller

decision problems that consist of different objective and subjective factors that work together to

influence the overall goal. The overall result of using the AHP is a priority vector that provides a

4



ranking of the different alternatives under consideration.

There are four main steps to the analytic hierarchy process: building the hierarchy, making

pairwise comparisons, generating priority vectors, and synthesizing with respect to the overall goal.

The following subsections introduce and illustrate these steps.

2.1.1 Hierarchies

Building the hierarchy is often the most challenging of the four main steps in the AHP.

Creating the hierarchy requires an intuitive feel for the various factors and subfactors that directly

influence the overall goal as well as an ability to identify alternatives suitable for accomplishing

the goal. The hierarchy must be designed so that these alternatives are accurately evaluated

on their ability to satisfy the overall goal. Both of these tasks require the DM to be extremely

knowledgeable and familiar with all facets of the problem.

The hierarchy starts at the top by clearly stating the goal of the problem. Directly beneath

this goal are the primary criteria to be considered when making the decision. In Figure 2.1, we see

that the overall goal is listed at the top of the hierarchy and is broken down into three key criteria

that directly influence the goal above them. These criteria can also be called factors, and in this

thesis, we use the two terms interchangeably.

These criteria can be further broken down into subcriteria. For example, in Figure 2.1,

Criterion 1 is broken down into two subcriteria, while Criterion 3 is broken down into three subcri-

teria. In general, there is no limit to the size and number of levels within the hierarchy, although,

as a practical matter, there are usually only two or three levels of criteria and subcriteria beneath

the overall goal. Ideally, the hierarchy should be large enough to capture all important criteria

involved in the decision-making process but small enough for the problem to remain manageable

and meaningful.

At the bottom level of the hierarchy, the alternatives are listed beneath the subcriteria

and are connected to each one. We see the lines extending from Subcriterion 1 down to all five

alternatives. This indicates that the DM compares all five alternatives with respect to Subcriterion

5



Overall Goal

Alternative 5Alternative 4Alternative 3Alternative 2Alternative 1

Subcriterion 1 Subcriterion 2 Subcriterion 3 Subcriterion 4 Subcriterion 5 Subcriterion 6

Criterion 3Criterion 2Criterion 1

Figure 2.1: General hierarchy structure

1. The lines extending from the other four subcriteria indicate the comparisons also made between

the five alternatives beneath each subcriterion.

2.1.2 Pairwise Comparisons

The analytic hierarchy process relies on pairwise comparisons to evaluate the importance

of the criteria, subcriteria, and alternatives. With pairwise comparisons, there is no need for the

DM to choose an ordering for all the criteria or alternatives at once; he or she only needs to

compare the relative importance of one criterion or alternative to another. Saaty [31] has argued

that making judgments in a pairwise fashion puts the problem into a comfortable form that can

be handled easily. Comparing alternatives in a pairwise fashion allows us to reduce the problem

from evaluating many choices to evaluating only two at a time.

The comparison process moves from the top of the hierarchy down. The criteria beneath the

goal are pairwise compared, followed by the subcriteria beneath each criterion. At the bottom of the

hierarchy, the alternatives are then compared relative to the subcriteria. For example, in Figure 2.1,

Criterion 1 through Criterion 3 are first compared with respect to the goal. Subcriterion 1 and

Subcriterion 2 are then compared relative to Criterion 1. Finally, Alternative 1 through Alternative

5 are compared with respect to Subcriterion 1. This is completed for the entire hierarchy.

The pairwise comparisons made by the DM are assigned numerical values based on the 1
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to 9 scale recommended by Saaty [31]. These comparisons represent a ratio of the weight assigned

to one alternative versus the weight assigned to another. For example, if alternative one is three

times as important as alternative three with respect to the current subcriterion, then the DM

would assign the value of three to this ratio. Comparing all alternatives allows the decision maker

to construct a pairwise comparison matrix to store these judgments for each subfactor. In a

pairwise comparison matrix, the (i, j) entry represents the DM’s opinion on the relative strength

of alternative i to alternative j with respect to that subcriterion.

Pairwise comparison matrices are positive reciprocal matrices. The weights of the alter-

natives are all positive, and the comparisons of one alternative to another satisfies 1

9
≤ aij ≤

9, aij 6= 0 ∀i, j. The comparison of alternative j to alternative i will always be the reciprocal

of the comparison of alternative i to alternative j. This reduces the work of the decision maker;

only the upper triangular portion of a pairwise comparison matrix needs to be filled in. A typical

pairwise comparison matrix has the following form:

A =

































1 a12 a13 . . . a1n

1

a12

1 a23 . . . a2n

1

a13

1

a23

. . .
. . .

...

...
...

. . .
. . .

...

1

a1n

1

a2n
. . . . . . 1

































. (2.1)

2.1.3 Determining the Priority Vector

The goal of the AHP is to use the pairwise comparison matrices to determine the values for

the weights of the criteria and alternatives. The positive reciprocal nature of a pairwise comparison

matrix can be used to determine a priority vector that contains these weights.

An important property we would like each pairwise comparison matrix to possess is con-

sistency. The pairwise comparison matrix A is called consistent if aij · ajk = aik for all i, j, k =

1, 2, . . . , n. For consistent matrices, each matrix element in A then represents an exact ratio of

the weights assigned to each alternative. If we define wi to be the relative weight of criterion or
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alternative i, a consistent pairwise comparison matrix has the property that aij = wi

wj
∀i, j. A

consistent pairwise comparison matrix A with these entries has the form of (2.2).

A =

























w1

w1

w1

w2

w1

w3

. . . w1

wn

w2

w1

w2

w2

w2

w3

. . . w2

wn

...
...

. . .
...

wn

w1

wn

w2

wn

w3

. . . wn

wn

























. (2.2)

Perfectly consistent pairwise comparison matrices have rank one, and this allows us to

extract a priority vector. Using the properties possessed by a consistent pairwise comparison

matrix, we can find a priority vector using simple algebraic manipulation.

aij

wj

wi

= 1 i, j = 1, 2, . . . , n

n
∑

j=1

aij

wj

wi

= n i = 1, 2, . . . , n

n
∑

j=1

aijwj = nwi i = 1, 2, . . . , n .

If we denote the priority vector by w = [w1 w2 . . . wn]T , then we can rewrite this system of

equations in matrix-vector form. This gives us the familiar eigenvalue equation

Aw = nw. (2.3)

Given a perfectly consistent pairwise comparison matrix A, the right eigenvector of A is composed

of a set of weights that are derived directly from the comparison ratios. Normalizing this eigenvector

so that its elements sum to one gives a unique set of weights for the alternatives.

In practice, the decision maker is typically not perfectly consistent in making pairwise

comparisons. Inconsistencies occur whenever aij · ajk 6= aik, and we usually allow a small amount

of inconsistency in making comparisons.

The presence of inconsistencies implies that each (i, j) entry of A is actually an approxima-

tion to the ratio of the weight of alternative i to the weight of alternative j. Thus, A is no longer

of rank one, and more than one nonzero eigenvalue might be present. When inconsistencies exist,

Saaty [31] has shown that determining the priority vector for any pairwise comparison matrix
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involves solving the altered eigenvalue problem

Aŵ = λmaxŵ, (2.4)

where ŵ is an approximation to the underlying true priority vector, and λmax is the maximum

eigenvalue of A. This method is called the eigenvector method (EM). Saaty has shown that

λmax ≥ n, with equality holding in the purely consistent case. Whenever λmax is close to n we

typically find ŵ to be a relatively good approximation to w. It is this vector ŵ that gives us the

priority vector for a pairwise comparison matrix.

A measure of how “close” λmax is to n is the consistency index (CI), given by:

CI =
λmax − n

n− 1
. (2.5)

A common practice is that as long as the CI is less than 0.1, we can accept the priority vector as a

good approximation. Whenever the CI is greater than 0.1, the pairwise comparison matrix might

contain some contradictory information. A few individual pairwise comparisons might need to be

adjusted by the decision maker to make the judgments more consistent.

2.1.4 Hierarchical Composition

Employing the eigenvector method on a pairwise comparison matrix returns the weights

needed to determine the final alternative rankings. The principle of hierarchical composition is

used to find the overall priority vector. The total weight assigned to an alternative is found by

tracing the paths that lead from the goal down to the alternative, multiplying the weights of the

branches in the path to determine the weight of the path, and adding these path weights together.

We illustrate this concept in Figure 2.2.

2.2 Variations of the Standard AHP

The previous section presents the standard version of the analytic hierarchy process. Some

situations require a variant of the AHP to determine the assignment of weights to each alternative.

The following two subsections discuss two possible variants.
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ALT1 ALT2 ALT1 ALT2 ALT1 ALT2

0.667 0.333 0.8 0.2

0.10.30.6

0.1 0.9

W1 = (0.6)0.667 + (0.3)0.8 + (0.1)0.1 = 0.6502

W2 = (0.6)0.333 + (0.3)0.2 + (0.1)0.9 = 0.3498

Factor 1 Factor 2 Factor 3

Overall Goal

Figure 2.2: Hierarchical composition for the standard AHP

2.2.1 AHP with Ratings Mode

The standard AHP relies on individual pairwise comparisons in order to generate priority

weights for the alternatives. When the number of alternatives is large, the task of performing

individual pairwise comparisons can be time consuming. In order to simplify the process, each

subfactor is further divided several different categories or ratings.

Beneath each subfactor, we first list several different ratings. These ratings are pairwise

compared to one another, and the eigenvector of weights for the ratings is determined. In contrast

to the normalization used by the normal EM described in the previous section, the eigenvector is

normalized so that its largest weight is equal to one. The alternatives are not pairwise compared.

Instead, an alternative is assigned a rating and receives the weight of that rating. Hierarchical

composition is then used to determine the overall weights. In contrast to the standard AHP, the

overall alternative weights do not sum to one when the ratings mode is used.

To illustrate how an overall weight is generated for an alternative when ratings are used,

we provide an example. Consider Alternative 1 for the illustration given in Figure 2.3. Suppose

that we rate Alternative 1 to be “High” for Subfactor A, “Good” with respect to Subfactor B,

“Above Average” with respect to Subfactor C, and “Low” for Subfactor D. The weight assigned

to Alternative 1 is then calculated in the following manner: w1 = 1(0.75)(0.6) + 0.3(0.25)(0.6) +

1(0.8)(0.4) + 0.154(0.2)(0.4) = 0.827. The weights for other alternatives are found in a similar
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Subfactor A

High

Medium

Low

1.000

0.385

0.154

Subfactor B

Superior

Very Good

Good

Poor

1.000

0.600

0.300

0.100

Subfactor C

Average

Above Average 1.000

 Below Average 0.167

0.500

Subfactor D

High

Medium

Low

1.000

0.385

0.154

Factor 2Factor 1

0.75 0.25 0.8 0.2

0.6

Overall Goal

0.4

Figure 2.3: Hierarchical composition for the AHP with ratings mode

fashion.

2.2.2 Interval Pairwise Comparison Matrices

Sometimes, it is difficult for a decision maker to identify a single pairwise comparison value

between alternatives. An interval of comparison values might then be specified by the DM instead

of a single number. Interval judgments are most commonly employed in the AHP to express the

uncertainty of the DM concerning a judgment.

For interval judgments, the comparison of alternative i to alternative j requires that the

decision maker create a nonnegative lower bound (lij) and an upper bound (uij) to be placed on

the relative strength of alternative i to alternative j, yielding lij ≤
wi

wj
≤ uij . This process is

continued until all judgments are assigned interval bounds. Interval pairwise comparison matrices

are represented in the following form:

B =

























1 [l12, u12] . . . [l1n, u1n]

[l21, u21] 1 . . . [l2n, u2n]

...
...

. . .

[ln1, un1] [ln2, un2] 1

























. (2.6)

As with non-interval matrices, the interval matrices must preserve the reciprocal nature
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of the comparisons. For an interval pairwise comparison matrix, this implies that uji = 1

lij
and

lji = 1

uij
for all i, j with i 6= j. Similar to the traditional AHP, the upper (or lower) triangular

portion of the pairwise comparison matrix contains all necessary information needed to determine

a priority vector.

At each level of the interval AHP, we generate a suitable ranking of the alternatives that

reflects the preferences of the DM at that level. The process of determining a priority vector is

different from the standard AHP. The eigenvector method cannot be applied directly to an interval

pairwise comparison matrix for obvious reasons. For interval AHP problems, we attempt to find a

priority vector w such that all ratios of the elements in w fall within the interval bounds given by

the pairwise comparisons. In general, there may be an infinite number of sets of weights satisfying

these interval bounds. The intent of interval AHP methods is to determine a way of finding a

priority vector that “best” represents the opinions of the DM.

Currently, there are several techniques for generating a set of weights for an interval pairwise

comparison matrix. One promising technique that is used for solving a variety of AHP problems

(including ones with interval judgments) is a linear programming (LP) approach recently intro-

duced by Chandran et al. [7]. In Chapter 4, this approach is presented, discussed, and expanded

so that it can handle all types of interval pairwise comparisons.
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Chapter 3

Application of the AHP - Greatest Sports Records

3.1 Sports Records Introduction

The questions posed in the Introduction were the same questions that Golden and Wasil [16]

asked themselves for many years. The friendly discussions and debates they had between one

another led them to produce their first study on the subject of determining the greatest sports

records in 1987. At that time, the application of a decision-making technique to an area as debated

as sports records was appealing to many within the general public. It was very well-received by

academics and sports followers alike, generating a fair amount of attention in a variety of national

media. For example, the study was the subject of Frank Deford’s commentary on NPR and Dave

Krieger’s article in the Chicago Tribune [22], and it served as a reference for Jack McCallum’s

exposition on sports records in Sports Illustrated [25]. Many people, including the authors, enjoyed

studying and analyzing a subject that has been a part of most of their lives since childhood. Why,

then, do we now produce another study of the greatest sports records?

The 1987 study [16] was limited with respect to the number of records and sports considered.

In total, 23 records from five different sports were examined in the entire study. Since the 1987

work, we have identified other records that we feel deserve to be measured against those 23. In his

2000 thesis [29], Richardson expanded the 1987 study by considering 42 records. In this study, we

attempt to rank more records by using a slightly different technique than those employed in the

studies of Golden and Wasil [16] and Richardson [29].

Our desire to expand the sports record study is based on one main reason–the environment

surrounding sports is very dynamic. The sports climate is constantly evolving with rule changes,

the advent of new technology, player trades between teams, and so forth. The well-known, some-

times overused saying that “records are made to be broken” embodies the dynamic of sports records
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succinctly and accurately. While sports records may not change from one day to the next, their

values and holders are not carved into stone. New athletes emerge and challenge the records; some

fall short of breaking a record, while others succeed in establishing new marks of their own. Given

some of the amazing sports occurrences of the past 17 years, we felt there was a need to update

the study to consider the new records that have been established since the release of the 1987 and

2000 studies. This need, combined with our own interests in comparing these new marks against

those set decades ago, inspired us to complete a new study.

3.1.1 Selection of Sports Records

Deciding which records to consider in this study was itself a difficult process. We have

selected a number of records from a variety of sports that we feel stand out above other records–

they are “great” rather than just “good” records. However, the nature of this study requires

some restrictions on these selections. The records we study are from professional sports played in

the United States that have a considerable public following and have quantifiable statistics. We

examine sports records from seven sports: baseball, football, basketball, golf, hockey, tennis, and

track and field.

Most of the major statistics in these sports are tied to some quantity that can compared

to other performances. For this reason alone, we are unable to include some of the best sporting

moments in history. One might argue that Don Larsen’s perfect game in the 1956 World Series,

the third great Muhammad Ali - Joe Frazier fight (the “Thrilla in Manilla”), and Joe Montana’s

pass to Dwight Clark’s in the back of the end zone to win the NFC Championship game in 1982

represent three examples of the most memorable moments in modern sports history. However, all

are phenomenal sports moments, not records. It is difficult to objectively compare these perfor-

mances to other similar pitching outings, boxing matches, or touchdown catches. Thus, we do not

consider performances such as these in our study.

In addition, we are restricted to select records where data are accurately recorded and can

be obtained easily through reliable sources. Baseball records have been kept officially since the
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early twentieth century and can be found for just about any player in virtually any category. One

could look up the batting average of an “Average Joe” from the 1920-something season simply by

visiting Major League Baseball’s web site [27]. In contrast, there are hundreds of professional soccer

leagues worldwide, making data gathering for soccer a cumbersome task. Although FIFA [15]

acts as the general ruling body for the sport, no one organization keeps track of all statistical

information regarding goals, assists, and saves that are needed for objective comparisons of soccer

records. There have been some amazing soccer performances, but there is no easy way for us to

obtain meaningful soccer data. Thus, the difficulty required in obtaining accurate, quantitative

information has guided us in selecting records for this study.

We only consider active sports records for our comparisons; no previously-held record, no

matter how significant or impressive, is studied here. When Bob Beamon long jumped over 29 feet

in 1968, his jump was viewed as super-human because the world long jump record at the time was

just under 27 feet, 5 inches. In 1991, though, Beamon’s record fell to Mike Powell by .05 meters.

Due to the magnitude of Beamon’s improvement over the previous mark (he jumped past the

previous record by nearly two feet) and the circumstances surrounding the jump (he experienced a

minor seizure after his jump), his performance will no doubt be more remembered over time than

that of Powell’s, even though Powell’s record is clearly a better jump. Another impressive record

was Babe Ruth’s single-season slugging average (0.847) set in 1920; this record was selected as

the greatest single-season record in the 1987 study. In 2001, Barry Bonds had a slugging average

of 0.863 and bettered Ruth’s mark. Beamon and Ruth, however, are no longer are the holders

of their respective records. No matter how impressive their records may have been, they are not

active records for consideration in this study.

To achieve meaningful comparisons, we did not compare all of the records with a single

analysis. Rather, we continued in the same spirit as the previous studies and broke the overall

goal of choosing the greatest sports record down into three manageable problem categories: single-

season, career, and single-event records. We selected 19 single-season records, 20 career records,

and six single-event records for the study. These records are given in Table 3.1 (single-season
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Record Holder (2004) Value Year Identifier

Baseball
Consecutive-game Joe DiMaggio 56 1941 DIMAGGIO

hitting streak
Lowest earned run average Bob Gibson 1.12 1968 GIBSON
Stolen bases Rickey Henderson 130 1982 HENDRSON
Batting average Rogers Hornsby 0.424 1924 HORNSBY
Home runs Barry Bonds 73 2001 BONDSHR
Slugging average Barry Bonds 0.863 2001 BONDSSA
Strikeouts Nolan Ryan 383 1973 RYAN
Runs batted in Hack Wilson 191 1930 WILSON

Basketball
Average assists per game John Stockton 14.5 1989-90 STOCKTON
Average rebounds per game Wilt Chamberlain 27.2 1960-61 WILTREB
Average points per game Wilt Chamberlain 50.4 1961-62 WILTSAVG

Football
Rushing yards Eric Dickerson 2105 1984 DICKRSON
Points Paul Hornung 176 1960 HORNUNG
Touchdown passes Dan Marino 48 1984 MARINO
Touchdowns Priest Holmes 27 2003 HOLMES

Golf
Consecutive tournament Byron Nelson 11 1945 NELSON

victories
Hockey

Assists Wayne Gretzky 163 1985-86 GRETZKYA
Goals Wayne Gretzky 92 1981-82 GRETZKYG
Points Wayne Gretzky 215 1985-86 GRETZKYP

Table 3.1: Active single-season sports records as of the end of the 2003-2004 season

records), Table 3.2 (career records), and Table 3.3 (single-event records).

3.1.2 Data Collection and Comments

We gathered data for this study from many reputable sources. Since most ruling bodies

maintain an accurate collection of current historical and statistical information on the Internet, we

obtained most data from each individual sport’s official web site. In some instances, we consulted

other sports web sites and a small collection of sports almanacs for verification purposes, especially

when the official site did not contain all information needed.

We note that the timing of the study dictated exactly what data were obtained. All data are

current through the end of the most recently completed season as of August 2004. Golf, baseball,

football, and tennis records and information are accurate through the end of 2003, while hockey

and basketball records and data are accurate through the 2003-04 regular season. Every record
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Record Holder (2004) Value Years Identifier

Baseball
Home runs Hank Aaron 755 1954 - 1976 AARON
Batting average Ty Cobb 0.367 1905 - 1928 COBB
Stolen bases Rickey Henderson 1406 1980 - 2003 HENDRSON
Consecutive games Cal Ripken Jr. 2632 1982 - 1998 RIPKEN
Hits Pete Rose 4256 1963 - 1986 ROSE
Slugging average Babe Ruth 0.690 1914 - 1935 RUTH
Strike outs Nolan Ryan 5714 1966 - 1993 RYAN

Basketball
Points Kareem Abdul-Jabbar 38387 1968 - 1989 JABBAR
Points per game Michael Jordan 30.1 1984 - 2003 JORDWILT

Wilt Chamberlain 30.1 1959 - 1973
Rebounds Wilt Chamberlain 23924 1959 - 1973 WILTREB
Assists John Stockton 15806 1984 - 2003 STOCKTON

Football
Points Gary Anderson 2346 1982 - Present ANDERSON
Passing yards Dan Marino 61243 1984 - 2000 MARINO
Rushing yards Emmitt Smith 17418 1990 - Present SMITH
Consecutive games with Johnny Unitas 47 1956 - 1960 UNITAS

a touchdown pass
Golf

Major professional Jack Nicklaus 18 1959 - 1986 NICKLAUS
victories

Major professional Patty Berg 15 1940 - 1962 BERG
victories

Hockey
Points Wayne Gretzky 2857 1979 - 1999 GRETZKY

Tennis
Grand slam Pete Sampras 14 1988 - 2002 SAMPRAS

singles titles
Grand slam Margaret Smith Court 24 1962 - 1977 COURT

singles titles

Table 3.2: Active career sports records through the end of the 2003-2004 season

in each of the three categories is based on the standard regular season played by all participants

in the sport. As is the standard practice in determining records, post-season performances were

excluded from consideration.

One key point must be mentioned regarding our selection of baseball records and all base-

ball data. We considered only Major League performances from the 1920 season onward when

determining baseball records and gathering statistical data. Following the 1919 season, several

fundamental rule changes drastically affected the game and therefore had an enormous impact on

players’ statistics. With the outlaw of “trick pitches” and the decision to use a larger number
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Record Holder (2004) Value Day Identifier

Basketball
Points Wilt Chamberlain 100 03/02/62 WILTPTS
Rebounds Wilt Chamberlain 55 11/24/60 WILTREB

Football
Points Ernie Nevers 40 11/28/29 NEVERS
Yards rushing Jamal Lewis 295 09/14/03 LEWIS
Yards passing Norm Van Brocklin 554 09/28/51 VBRKLN

Track and Field
Long jump (m) Mike Powell 8.95 08/30/91 POWELL

Table 3.3: Active single-event records through the end of the 2003-2004 season

of new “lively baseballs” in each game, the sport from 1919 on changed from favoring pitchers to

favoring hitters. In his recent book [35], Russell Wright discussed the sharp discontinuity in overall

earned run average (ERA), batting average, and stolen bases that occurred between the 1919 and

1920 baseball seasons brought about by these changes. A simple illustration of this fact can be

seen by examining the ERA of the Hall of Famer Walter Johnson, whose career spanned this time.

From 1907 to 1919, Johnson had only two seasons with an ERA greater than two (the maximum

of which was 2.22). However, after the rule changes, from 1920 until his retirement in 1927, he

had only two seasons with an ERA of under three (the minimum of which was 2.72). Baseball was

a different game after 1919. Therefore, we do not consider records or performances that occurred

before this year.

Because of this fact, sports aficionados will notice the omission of one impressive career

record: Cy Young’s 511 career wins. This record has survived for close to a century and will

most likely stand forever. Cy Young pitched from 1890 to 1911 when the game of baseball was

dramatically different. Today, only four active pitchers have close to half as many wins as Cy

Young (Roger Clemens, Greg Maddux, Tom Glavine, and Randy Johnson), and each of these men

has been pitching in the Major Leagues for almost 20 years. However, pitching in the twenty-first

century is significantly different than pitching in the late nineteenth and early twentieth centuries.

Though it may be one of the longest lasting records, we are simply unable to consider Cy Young’s

career win record as a part of this study.

The golf and tennis records were based on the four recognized major and grand slam tour-
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naments in these two sports, respectively. In men’s golf, there are four tournaments–the Masters,

the U.S. Open, the British Open, and the PGA Championship–commonly referred to as the ma-

jors. The four grand slam tennis events are the same for both men and women: the Australian

Open, the French Open, Wimbledon, and the U.S. Open. We used these groups of tournaments

to determine the victory totals for the four golf and tennis records.

3.1.3 Sports Methodology

The subject of great sports records and sports performances has inspired books [11, 30],

columns in magazines [25], newspaper articles [4, 9, 10, 22, 28], and postings on Internet web sites

and discussion boards [12, 13, 14, 18]. Most of the works and surveys that make an attempt to rank

sports records rarely use any kind of formal methodology. They often are solely built around the

opinions of the writer(s) and thus tend to become rather subjective. Since the sports world is built

on quantifiable data, a study ranking great records of different sports needs to use some method

that accounts for objective data. In this study, we use the analytic hierarchy process (AHP) to

capture both objective and subjective qualities of the records.

Following the methods described in Chapter 2, there are four main steps in applying the

analytic hierarchy process to sports records: 1) building a hierarchy for each of the three record

categories, 2) making the appropriate pairwise comparisons, 3) generating priority vectors, and 4)

synthesizing the local weights with respect to the overall goal.

Creating the hierarchy is often the most difficult step in the process. Building the hierarchy

for each record category required us to pinpoint different factors and subfactors that are good

measures of the “greatness” of sports records. When the first study was carried out in the mid

1980s, the decomposition of the problem into these factors and subfactors was carefully thought

through. Since our feelings towards the qualities possessed by great records has not changed over

the past two decades, we chose to use the same hierarchies created in the 1987 study for this

analysis. Sports have changed over time, but our “yard stick” for greatness remains unchanged.

Each hierarchy and the subfactors that influence the goal are described in detail in the sections
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that follow.

At this point in the standard AHP for our sports problem, every record would be pairwise

compared to the others at the subfactor level. Since the sample of single-event records we selected

was small in number (six), we were able to use this technique for the analysis of single-event records.

For single-season and career records, however, the number of alternatives we considered was rather

large, making the task of comparing alternatives time consuming. In this case, the comparisons can

be simplified by further dividing each subcriteria into a number of different categories or ratings.

Each record is placed in a category with other records that have similar qualities (for subjective

subfactors) or possess a similar value (for objective subfactors) with respect to the subcriterion in

question.

For the assignment of local priority weights within the single-season and career categories,

two techniques can be used: link elements or ratings mode. The link elements method requires

the DM to first pairwise compare the alternatives in each category beneath each subcriterion. The

categories are then “linked” together using one alternative in each category. Hierarchical synthesis

is then performed as for the standard AHP. Though the link elements feature uses individual

pairwise comparisons for the assignment of a priority vector, it requires far fewer comparisons than

the standard AHP. Richardson’s thesis [29] employed this technique for comparing the different

sports records.

The alternative to the link elements feature is the ratings mode introduced in Chapter 2. In

this study, we chose to use the ratings mode, since the assignment of weights to each alternative then

is much easier than for the link elements method. Instead of pairwise comparing the alternatives

directly, each alternative is assigned a rating beneath each subcriterion. The ratings beneath each

subfactor are pairwise compared to one another and weights are generated just as for the rest of

the hierarchy. For the alternative weights, each alternative receives the weight assigned to the

rating.

Our use of the ratings mode has its advantages and disadvantages. Since each record is

not pairwise compared with the other records, using ratings sacrifices some of the level of detail
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present in each subcriteria. For each rating, we make no distinction between the records within

that rating, even when it is sometimes possible. However, ratings allow us to not be overly

specific for the subjective subfactors. We are not required to determine an exact way to measure

aspects of records that are not well-quantified in nature (e.g., the degree of “glamorousness”).

Ratings also allow us (or a reader) to easily compute how records not included in the study might

stand up against the others. Using weights for the hierarchy and ratings, one simply needs to

determine which ratings would be assigned to the new record for each subfactor and synthesize

the contributions from each of these ratings to find the new record’s ranking.

The final two steps in applying the AHP to the sports record problem were carried out

using Expert Choice. Expert Choice is a graphical software package used for solving problems in

the AHP, providing tools for hierarchy creation, priority vector generation, and overall synthesis.

After all the comparisons are entered into the hierarchy, Expert Choice employs Saaty’s eigenvector

method (EM) [31] to determine the local weights. A multiplicative synthesis, much like finding

probabilities using a tree diagram, is carried out to determine and display the overall rankings of

the records.

With the framework for the problem in place, we can begin our critique of the great records

listed in the previous tables. In the sections that follow, we apply the analytic hierarchy process

to the sports record problem. In Section 3.2, we focus on single-season records. In Section 3.3, we

cover career records, and in Section 3.4, we analyze the single-event records.
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3.2 Single-Season Sports Records

Our first study analyzes records that were established in a single season. Season records

represent outstanding performances occurring game after game throughout a single year. They

indicate a level of season-long achievement and consistency never matched by any athlete in his or

her respective sport.

In our attempt to analyze as many records in as many different sports as possible, we have

carefully chosen marks that are popular and represent truly great achievements, regardless of the

sport. These 19 records are listed in Table 3.1. Nearly every record we considered was based on an

entire season’s worth of competition, be it a tally of the total number of a certain statistic (e.g.,

hockey goals) or a per-game average (e.g., average points per game in basketball). We note that

two records are exceptions: Joe DiMaggio’s 56-game hitting streak and Byron Nelson’s streak of

11 consecutive professional victories. These two records are season marks due to their length; both

streaks were set during the course of one season’s play.

3.2.1 Season Hierarchy

Following the four AHP steps described earlier, determining the best single-season sports

record began with constructing a hierarchy that takes into account the various factors that influence

a record’s greatness. In determining the criteria for the hierarchy, it was important that the metrics

accurately reflect the significance of each single-season record. The single-season hierarchy created

for the 1987 study served this purpose well, and we chose to use the same one for this study.

Our single-season hierarchy contains three branches directly beneath the main goal: Duration of

Record, Incremental Improvement, and Other Record Characteristics.

Duration of Record captures a time element possessed by each record through the subcrite-

ria Years Record has Stood (YRS) and Years Record is Expected to Stand (YRES). Incremental

Improvement allows quantitative comparisons between the athlete’s performance and those of other

athletes through the subcriteria Percent over Previous Record (PPR) and Percent over Contem-

porary Mark (POC). The Other Record Characteristics factor captures the subjective qualities of
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Incremental Improvement Characteristics
Other Record

Years Record
Expected to Stand

Years Record
Has Stood

Percent Over
Previous Record Contemporary Mark

Percent Over Glamour Purity

Single−Season Sports Record
Determining the best Active

Duration of Record

0.20.8 0.75 0.25 0.667 0.333

0.500 0.333 0.167

Figure 3.1: Single-season hierarchy with weights

Duration Improvement Other Priority

Duration 1 3

2
3 0.500

Improvement 1 2 0.333

Other 1 0.167

Table 3.4: Pairwise comparisons and weights for the first level criteria of the single-season hierarchy

each record through the subcriteria Glamour and Purity. This is illustrated in Figure 3.1.

After the hierarchy was constructed, we made pairwise comparisons between the factors

at each level of the hierarchy. These comparisons were carefully considered, as they are very

influential in generating overall weights. The hierarchy comparisons express our feelings towards

the relative importance each main factor plays in determining the greatest single-season records.

These judgments have not changed in the past 17 years. Therefore, we used exactly the same

comparison matrices for the factor and subfactor levels. In Tables 3.4 and 3.5, we show the

pairwise comparison matrices associated with the factor and subfactor comparisons, along with

the priority vectors generated from these matrices. We used Expert Choice to generate weights

for each matrix at each level in the hierarchy. These weights are also displayed on the hierarchy

in Figure 3.1.

We now explore each of these subfactors with a little more detail. We provide descriptions

of each subfactor and describe how each one impacts the greatness of each single-season record.
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Priority Priority Priority

YRS 1 4 0.800 PPR 1 3 0.750 Glamour 1 2 0.667

YRES 1 0.200 POC 1 0.250 Purity 1 0.333

Table 3.5: Pairwise comparisons and weights for the second level criteria of the single-season

hierarchy

3.2.2 Duration

• Years Record has Stood

The most important characteristic that distinguishes between good and great records

is durability, or, how long a record has been able to stand the test of time. A record that

has stood for several decades deserves serious consideration as a great record–it has survived

many challenges over the years. A new record that has been established only recently has yet

to prove its long-term value. Hack Wilson’s runs batted in (RBI) record is a good example of

being a durable record. This record has lasted since the depression era (1930) despite recent

challenges by Manny Ramirez (165 in 1999), Sammy Sosa (160 in 2001), and Juan Gonzalez

(157 in 1999), who had a good chance to break Wilson’s record when he had 101 RBIs at

the mid-season break. The game of baseball now has nearly double the number of teams and

players than in the 1930s, yet Wilson’s record has not been broken. On the other hand, the

single-season home run and slugging average records set by Barry Bonds in 2001 have only

lasted for two full seasons. Bonds’s records have not yet demonstrated that they are durable

records.

The Years Record has Stood subcriterion incorporates the objective quality of dura-

bility into our study. We calculate the years each record has stood by subtracting the year in

which the record was set from the year of the most recently completed season (2003 for foot-

ball, golf, and baseball; 2004 for basketball and hockey). These data, sorted in descending

order by years stood, are contained in Table 3.6.

We see that the the records fall into four natural ratings, based on whether the record

has lasted (a) greater than 50 years, (b) greater than 25 but less than 50 years, (c) greater
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Identifier Years Stood

Over 50 years
HORNSBY 79
WILSON 73
DIMAGGIO 62
NELSON 58
25 years to less than 50 years
HORNUNG 43
WILTREB 43
WILTSAVG 42
GIBSON 35
RYAN 30
10 years to less than 25 years
GRETZKYG 22
HENDRSON 21
MARINO 19
DICKRSON 19
GRETZKYA 18
GRETZKYP 18
STOCKTON 14

Less than 10 years
BONDSHR 2
BONDSSA 2
HOLMES 0

Table 3.6: Number of years elapsed since each single-season record was established

than 10 but less than 25 years, or (d) less than 10 years.

• Years Record is Expected to Stand

A second influential factor affecting the greatness of a record is how long we perceive

that it could last. Expected longevity is an important quality of a great record as it measures

a record’s potential for withstanding future challenges. Recent impressive performances or

the emergence of a promising athlete provide an insight to the potential susceptibility of a

record. For example, recent seasons of Randy Johnson suggest that Nolan Ryan’s single-

season strikeout record could possibly be surpassed in the near future. The fact that no one

in recent years has stolen half as many bases in a season as that of Rickey Henderson’s 138

stolen bases in 1982 leads us to believe that his record will last for many years.

The Years Record is Expected to Stand subfactor was split into three ratings: records

expected to last (a) more than 20 years, (b) at least 10 but less than 20 years, or (c) less
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More than 20 years 10 to 20 years Less than 10 years
DIMAGGIO HENDRSON BONDSHR
GIBSON STOCKTON DICKRSON
HORNSBY WILSON HOLMES
WILTREB BONDSSA MARINO
WILTSAVG GRETZKYP RYAN
NELSON GRETZKYG HORNUNG
GRETZKYA

Table 3.7: Three ratings groups for years each single-season record is expected to stand

than 10 years. To assign each record to a ratings group, we examined the best athletic

performances in each category from 1994 to 2004. Data regarding these challenges are con-

tained in Table A.1a through Table A.1e in Appendix A. These data provide a way for us

to subjectively evaluate how long we expect each record to remain active. Table 3.7 displays

our judgments.

3.2.3 Incremental Improvement

• Percent over Previous Record

The percentage by which a record broke the previous record is another important

measure of the greatness of a record. This subcriterion distinguishes those records that on a

percentage basis greatly improve on a previous record from those that barely beat the existing

record. During the 1985-86 hockey season, Wayne Gretzky had enough assists alone to break

George Esposito’s record of 152 points set during the 1970-71 season. Adding the points

Gretzky received from goals in 1985-86 gave him a total of 215, almost a 42% improvement

over Esposito’s record. In contrast, the 27 touchdowns Priest Holmes had during the 2003-04

football season added only one to Marshall Faulk’s 26 touchdowns in the 2000-01 season, only

about a 4% improvement.

The percentages for this subfactor are calculated by subtracting the previous record’s

value from the current record’s value, dividing the result by the previous record’s value, and

multiplying this quantity by 100. In Table 3.8, we display the records and their percentages

over the previous record, sorted in descending order. Again, following natural breaks in the
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Previous Previous Percent over
Identifier Value Year Holder Value Previous Value

50% or greater
NELSON 11 1923 Walter Hagen 4 175.00
WILTSAVG 50.4 1958-59 Bob Pettit 29.2 72.60
GRETZKYA 163 1970-71 Bobby Orr 102 59.80

30% to less than 50%
GRETZKYP 215 1970-71 Phil Esposito 152 41.45
DIMAGGIO 56 1922 George Sisler 41 36.59
MARINO 48 1961 George Blanda 36 33.33
GIBSON 1.12 1943 Spud Chandler 1.64 31.71

15% to less than 30%
HORNUNG 176 1942 Don Hutson 138 27.54
GRETZKYG 92 1970-71 Phil Esposito 76 21.05
WILTREB 27.2 1958-59 Bill Russell 23 18.26

5% to less than 15%
HENDRSON 130 1974 Lou Brock 118 10.17
WILSON 191 1927 Lou Gehrig 175 9.14
DICKRSON 2105 1973 O.J. Simpson 2003 5.09

Less than 5%
STOCKTON 14.5 1984-85 Isiah Thomas 13.9 4.32
BONDSHR 73 1998 Mark McGwire 70 4.29
HOLMES 27 2000 Marshall Faulk 26 3.85
BONDSSA 0.863 1920 Babe Ruth 0.847 1.89
HORNSBY 0.424 1922 George Sisler 0.420 0.95
RYAN 383 1965 Sandy Koufax 382 0.26

Table 3.8: Percent over previous single-season record

data, we divided this subfactor into five ratings: (a) 50% or better, (b) at least 30% but less

than 50%, (c) greater than 15% but less than 30%, (d) greater than 5% but less than 15%,

or (e) less than 5% over the previous mark. These groups are shown in Table 3.8.

• Percent over Contemporary Mark

Some records reflect a growing trend in the sport rather than a single great perfor-

mance (e.g., an emphasis on hitting more home runs). The Percent over Contemporary Mark

subfactor takes into account how a record compares to other marks from the year in which

the record was set. If a record is broken in a year when multiple athletes have outstanding

performances and possibly multiple people break the previous record, it might indicate that

the record is not that great. For example, in 1998, both Mark McGwire and Sammy Sosa

surpassed Roger Maris’s single-season home run record. Although breaking Maris’s record
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Contemporary Percent over
Identifier Value Year Contemporary Mark Contemporary

55% or greater
NELSON 11 1945 Sam Snead 3 266.67
DIMAGGIO 56 1941 Bruce Campbell 27 107.41
GRETZKYA 163 1985-86 Mario Lemieux 93 75.27
HENDRSON 130 1982 Tim Raines 78 66.67
WILTSAVG 50.4 1961-62 Walt Bellamy 31.6 59.49

40% to less than 55%
GRETZKYP 215 1985-86 Mario Lemieux 141 52.48
MARINO 48 1984 Dave Krieg 32 50.00
RYAN 383 1973 Bert Blyleven 258 48.45
GRETZKYG 92 1981-82 Mike Bossy 64 43.75
HORNUNG 176 1960 Gene Mingo 123 43.09

20% to less than 40%
HOLMES 27 2003 Ahman Green 20 35.00
GIBSON 1.12 1968 Luis Tiant 1.61 30.43
STOCKTON 14.5 1989-90 Magic Johnson 11.5 26.09
DICKRSON 2105 1984 Walter Payton 1684 25.00

Under 20%
BONDSSA 0.863 2001 Sammy Sosa 0.737 17.10
BONDSHR 73 2001 Sammy Sosa 64 14.06
WILTREB 27.2 1960-61 Bill Russell 23.9 13.81
HORNSBY 0.424 1924 Babe Ruth 0.378 12.17
WILSON 191 1930 Lou Gehrig 174 9.77

Table 3.9: Percent over contemporary mark for single-season records

was an amazing feat for both McGwire and Sosa, the fact that more than one person hit more

than 61 homers in 1998 when no one person had in the previous 37 years suggests maybe

something was special about that year. It detracted somewhat from McGwire’s record’s

greatness.

The data for this subcriterion are contained in Table 3.9. For each record, we give

the second best performance in the year that the record was established. These records are

broken down into four ratings groups based on the percentage that the record improved a

contemporary’s mark: (a) greater than 55%, (b) at least 40% but less than 55%, (c) at least

20% but less than 40%, or (d) less than 20% over the contemporary mark. These groups are

indicated in Table 3.9.
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Well Known Known Not Always Known Not Known
DIMAGGIO DICKRSON HORNSBY HORNUNG
BONDSHR GRETZKYP HENDRSON WILTREB

WILTSAVG WILSON GIBSON
GRETZKYG MARINO STOCKTON

GRETZKYA BONDSSA
HOLMES NELSON
RYAN

Table 3.10: Four ratings groups for glamour - single-season records

3.2.4 Other Record Characteristics

• Glamour

Public perception is another important factor that we need to take into account.

Records that are easily recognized by an average member of the sports community are likely

to be seen as superior to records that lie in obscurity. For example, most people who have

seen a baseball game could name the current single-season home run record holder, Barry

Bonds. Very few of them could also name the single-season slugging average record holder

(it’s also Barry Bonds), much less provide a definition for slugging average. Both records are

exceptional, but Barry Bonds will be remembered for hitting baseballs out of SBC Park into

McCovey Cove, not averaging 0.863 bases per at bat in 2001.

The Glamour subcriterion provides a subjective measure of how well-known a record

is. Four ratings are used to describe the level of glamour associated with a record: (a) records

that are well known by most people, (b) records that are known by avid fans but only might

be identified by an above-average person, (c) records that are not always known by avid fans

and not known by the average person, and (d) records that are not known or easily identified

by most people. In Table 3.10 we show the four groups.

• Purity

Some records are set entirely by the play of one individual, while other records de-

pend on assistance from teammates and, sometimes, opposing players. It was solely the

responsibility of Rogers Hornsby to be an efficient hitter each at-bat. He might have bene-
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Not Aided Slightly Aided Greatly Aided
DIMAGGIO NELSON HOLMES
GIBSON WILTREB DICKRSON
RYAN STOCKTON MARINO
HENDRSON GRETZKYA HORNUNG
HORNSBY GRETZKYP WILSON
BONDSHR GRETZKYG WILTSAVG
BONDSSA

Table 3.11: Three ratings groups for purity - single-season records

fited at times by facing weak pitchers, but it was still up to him to get hits. Dan Marino’s

single-season touchdown passes record required not only great execution on his part, but also

excellent pass protection, skilled receivers, and (perhaps) poor pass defenses.

The Purity subcriterion reflects whether or not an individual was aided in setting a

record. We divided this subcriterion into three ratings: (a) records not aided by others, (b)

records slightly aided by others, and (c) those greatly aided by others. The rating assigned

to each record is given in Table 3.11.

3.2.5 Single-Season Results

Once we had assigned all records to an appropriate rating for the six subfactors, we pairwise

compared the ratings to generate the local priority weights. The pairwise comparison matrices

using these judgments along with the priority vector generated for each one are contained in

Section A.1.2 of Appendix A. Using hierarchical synthesis, we obtained the weights for the 19

single-season records. The overall rankings for single-season records are given in Figure 3.2.

Three records stand out in Figure 3.2: Byron Nelson’s 11 consecutive professional victories,

Joe DiMaggio’s 56-game hitting streak, and Wilt Chamberlain’s 50.4 points per game average.

There is a “dead heat” between Nelson and DiMaggio’s streaks for the greatest single-season sports

record with only a few thousandths of a point separating the two records. Wilt Chamberlain’s 50.4

points per game average in the 1961-62 season was a close third. The weights for the remaining

16 records decrease somewhat continuously towards zero.

Although Nelson’s record is less known than DiMaggio’s record, most sports aficionados
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Figure 3.2: Overall rankings of the 19 single-season records

will not dispute the greatness of these two records. In comparison to the other season marks, these

two records required a greater amount of consistency from these two athletes over a season to set

the record. For the other single-season marks, a poor performance one night could be offset by a

great performance sometime later in the season. Since Nelson and DiMaggio’s records were both

streaks, an off night or an off weekend simply did not take place.

The records of Nelson and DiMaggio will likely last for a long time for several reasons. When

both marks were being established in the 1940s, they were generally well-followed by fans, and

their performances were popularized by the media. No doubt, the pressures that surrounded these

two athletes were significant and affected their performances to some degree. The short essays in

Sacred Records [11] give a few accounts of some the extreme pressures placed on these two men by

the general public. DiMaggio’s friend Lefty Gomez would often help him elude the public to try

to avoid the extra attention his streak was attracting. The amount of media attention these two

records received in the 1940’s would likely be dwarfed by the present-day media flurry that would

occur should either streak be challenged today. For example, when a baseball player approaches

hitting in 30 consecutive games, his progress is already closely monitored by national media (e.g.,
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Luis Castillo’s 35-game hit streak in 2002 or Albert Pujols’ 30-game streak in 2003). One can only

guess what might occur with the media should someone approach the 40- to 50-game marks. Most

likely, sports networks such as ESPN and Fox would have hourly updates of the player’s at-bats,

akin to the McGwire-Sosa-Bonds home run craze of the past decade or Ichiro Suzuki’s pursuit of

George Sisler’s single-season hits record during the late 2004 season. Public pressures would likely

be more burdensome on the athlete than they were 60 years ago.

One reason that Nelson’s record is practically untouchable is that winning 11 tournaments

in one year itself is considered highly improbable for a professional golfer. When Tiger Woods

had nine wins in 2000, it was the most wins by a golfer in a season in half a century–Sam Snead

had 11 wins in 1950. As unlikely is winning 11 events, having those 11 wins occur in 11 straight

tournaments is nearly impossible. Nelson himself recently noted the difficulties facing potential

challengers to his record today [24]. During the 1945 season, Nelson started his streak by winning

the Miami International Four Ball in March. He won the next 10 events in which he competed

until his streak was broken in the middle of August. His streak was aided by a few extended breaks

in the tournament schedule, one as long as two months (from early April to early June) [8]. In

addition, he skipped the St. Paul Open in late July. Tournaments on the PGA Tour today are

played almost every week from mid-January through November, and most top golfers today only

win two or three times a year. (Recent exceptions are Vijay Singh’s nine wins this year and Tiger

Woods’s nine wins in 2000 and eight wins in 1999.) Winning 11 times in a row in a single season is

out of reach for today’s top professional golfers. Thus, Nelson’s mark will likely never be equaled

again.

Among the remaining records, there are no big surprises. Wilt Chamberlain’s records for

the average number of points per game and the average number of rebounds per game were both

ranked high in the study. These two records fare well because they improve upon the previous

record and contemporary marks by a considerable amount. Wayne Gretzky’s single-season assist

record fared the highest of his three records because of the same two subcriteria. The baseball

records of Hornsby, Gibson, and Wilson are rated high because they have lasted for many years
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and should last several years into the future.

It might seem surprising that Barry Bonds’s home run record ranks low on our list. This

record has already been mentioned as one of the greatest records of all-time [10, 12, 20]. With our

criteria, it does not receive a large weight since it was only set three years ago. This record has

yet to be given time for challengers to show just how great a feat hitting 73 home runs may very

well be. When McGwire hit 70 homers in 1998, Barry Bonds was hitting around 40 home runs in

a season. Hardly anyone thought that Bonds would be the one breaking McGwire’s record, even

if they thought that McGwire’s mark could be broken. In addition, Bonds’s home run record does

not fare particularly well in other categories. For example, on a percentage basis, he only slightly

improved McGwire’s 70 home runs. Sammy Sosa’s 64 home runs in 2001 were close to Bonds’s

73, lowering Bonds’s mark with respect to contemporary performances. Thus, given our criteria,

Bonds’ record does not rank as one of the top records.

As of November 2004, only one record appears in jeopardy of being broken by a performance

in the 2004-05 season: Dan Marino’s 48 touchdown passes in a single-season. Through only eleven

games, Peyton Manning nine more touchdown passes (41) than the league leader did in the 2003-04

season (Brett Favre, 32). During his last two games in November of 2004, Manning threw a very

impressive 10 touchdown passes. At his current pace, he could reach as many as 60 touchdown

passes and easily surpass Marino’s 20-year-old record.

3.2.6 Comparison of Rankings to the Results of Previous Studies

In comparing our single-season record rankings to the results of Golden and Wasil [16] and

the results of Richardson’s thesis [29], we notice several similarities. While we cannot compare the

exact weights associated with each record in those studies to the weights here, we can still observe

the ordering of the records in those studies. In general, the rankings among all three studies are

consistent with one another. Very little shuffling occurs among the records that the studies have

in common. Only newly-set records make substantial moves in the rankings.

In Richardson’s thesis, the single-season records of Nelson and DiMaggio were also at the
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top of the single-season rankings. However, the gap between Nelson and DiMaggio given in our

study narrows. This is attributable mostly to the use of ratings for the Percent over Contemporary

Mark. Nelson’s 267% improvement over Sam Snead’s three consecutive wins in 1945 is more than

double DiMaggio’s 107% improvement over Bruce Campbell’s 27-game hitting streak in 1941. For

direct comparisons, Nelson’s record should receive more weight than DiMaggio’s. With the use

of ratings, Nelson and DiMaggio receive the same weight with respect to this subfactor because

they both greatly improved their contemporaries’ marks. The 1987 study did not include Nelson’s

record.

Babe Ruth’s single-season slugging average record ranked third in Richardson’s list of single-

season records and finished first in Golden and Wasil’s study. As mentioned earlier, Barry Bonds

surpassed Ruth’s slugging average in 2001. Here, Bonds’s slugging average record finishes next-to-

last in the rankings. Due to its short duration, its small relative improvement over Ruth’s record,

and Sammy Sosa’s good slugging average in 2001, Bonds’s slugging average record does not fare

as well as did Babe Ruth’s slugging average record in the two previous studies.

In our study, one of the biggest movers up the single-season rankings compared to Richard-

son’s thesis is Wayne Gretzky’s single-season assists record. Since only one player in the past

five years has had even half of the number of assists that Gretzky had during the 1985-86 season,

we now believe Gretzky’s record will remain unchallenged for the next 20 or so years. Gretzky’s

assist record has moved above Hack Wilson’s RBI record, Bob Gibson’s ERA record, and Wilt

Chamberlain’s average rebounds per game record.
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3.3 Career Sports Records

In our second study, we examined the ultimate measure of a player’s consistency, career

records. Often, career records are a better overall indicator of an athlete’s true talent than single-

season records because they require the athlete to not only produce outstanding performances

during one season, but to also repeat this performance year after year. Most career records we

examined consist of statistical measurements that span an athlete’s entire career, from rookie

season to retirement (e.g., scoring average). We also considered some career records that are based

on only a few years of one’s career (e.g., consecutive games played). The 20 career records that we

studied are given in Table 3.2.

3.3.1 Career Hierarchy

As with the season records, building the career hierarchy was the first task. We were satisfied

with the career hierarchy from the previous studies and therefore used the same hierarchy found

in Richardson’s thesis [29] and Golden and Wasil’s paper [16]. We note that the career hierarchy

is almost identical to the single-season hierarchy, with the one exception being the Incremental

Improvement factor. Since career records are set over long durations, anomalies that might occur

during a single season tend to average out over time. The need to compare career statistics relative

to an athlete’s contemporaries (which is not practical with regards to careers) is not accounted

for in the career hierarchy. Thus, we have only one subfactor beneath Incremental Improvement,

that is, Percent over Second Best. The Duration and Other Record Characteristics branches are

exactly as described in the single-season section.

The pairwise comparison matrices for the first and second levels of the hierarchy are the same

for career and single-season records. These matrices, along with the hierarchy weights generated

from them, are contained in Table 3.4 and Table 3.5. The hierarchy with these weights is illustrated

in Figure 3.3.
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Incremental Improvement

Percent Over
Second Best

Years Record
Expected to Stand

Years Record
Has Stood

Purity

Other Record
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Determining the best Active
Career Sports Record

Glamour

Duration of Record

0.8 0.2 1.0 0.667 0.333

0.500 0.333 0.167

Figure 3.3: Career hierarchy with weights

3.3.2 Duration

• Years Record has Stood

Great career records stand the test of time. Career records established decades ago

have been able to demonstrate that their marks have the ability to last over time, while

newly-established records have yet to show that they are not simply the result of a growing

trend. As with season records, this subfactor takes into account how long each career mark

has lasted in its sport.

The calculation of how long each record has stood was tricky for career records. For

many of the records, the new record-setter passed the previous record somewhat late in his or

her career and continued to add to his or her record for a few more seasons until retirement.

However, instead of using the exact year in which the new record was established, we used the

athlete’s retirement year as the starting point for the measurement of how long the record has

stood. This choice was made for two reasons. First, some records are based on the average

over an entire career. Simply exceeding the previous average does not guarantee that the

athlete will hold the record when he retires. Second, determining exactly when the record-

breaking activity occurred might not be possible or very easily identified for each record. To

maintain consistency, we used the retirement year for the calculation of this subfactor.

There were three exceptions. Over the past two decades, Jack Nicklaus continued to
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Identifier Years Stood

Over 50 years
COBB 75
RUTH 68
25 years to less than 50 years
UNITAS 43
BERG 41
WILTREB 31
AARON 27
COURT 26
10 years to less than 25 years
NICKLAUS 17
ROSE 17
JABBAR 15
RYAN 10

Under 10 years
RIPKEN 5
GRETZKY 5
MARINO 3
SAMPRAS 1
JORDWILT 1
STOCKTON 1
ANDERSON 0
HENDRSON 0
SMITH 0

Table 3.12: Years each career record has stood

play in some of the majors each year, but the last time he was a serious contender in a cham-

pionship was when he won the Masters in 1986. Thus, we used 1986 as his “retirement” year.

The other two records were unique because they were streaks: Johnny Unitas’ touchdown

passing record and Cal Ripken’s consecutive game streak. They both continued to play their

sport for several more years, yet they never added to their record after once their streak was

over. Thus, we used the year in which each streak ended when computing the years stood

for these two records.

The data show that the records fall into several natural groups, and at these breaks

we grouped the records into four ratings based on the length of time elapsed since the record

was set: (a) greater than 50 years, (b) greater than 25 but less than 50 years, (c) greater

than 10 but less than 25 years, and (d) less than 10 years. These groupings, along with the

data for this subfactor, are contained in Table 3.12.
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Greater than 20 years 10 to 20 years Less than 10 years
COBB JORDWILT AARON
RUTH STOCKTON JABBAR
RYAN UNITAS ANDERSON
HENDRSON NICKLAUS SMITH
ROSE MARINO
WILTREB SAMPRAS
GRETZKY BERG
RIPKEN
COURT

Table 3.13: Three ratings groups for years each career record is expected to stand

• Years Record is Expected to Stand

The Years Record is Expected to Stand subfactor represents the same measure for

career records as that used for season records. It is a subjective evaluation of how long we

feel each record will last. To make these decisions, we gathered data on several potential

athletes that could become record setters in the future. These data are given in Table A.2a,

Table A.2b, and Table A.2c in Appendix A.

Many of the career records are expected to last a very long time due to either the lack

of any realistic present-day challengers or the fact that some records simply require many

years of excellent play by an athlete before the athlete is able to amass enough statistics to

break the current record. As with the single-season records, we have grouped the 20 career

records into three ratings based on whether the record is expected to last (a) at least 20 years,

(b) more than 10 years but less than 20 years, and (c) less than 10 years. These groupings

are given in Table 3.13.

3.3.3 Incremental Improvement

• Percent Over Second Best

We also measure the amount by which a career record is better than its closest com-

petitor. In the Percent over Second Best subfactor, we compare the value associated with

each record to the value of the athlete with a total that is closest to the record’s value. Unlike

season records, it is important that we measure career records against all challenges to the
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Identifier Value Second Best Value Percent over second best

40% or greater
NICKLAUS 18 Walter Hagen 11 63.64
UNITAS 47 Dan Marino 30 56.67
STOCKTON 15806 Mark Jackson 10334 52.95
GRETZKY 2857 Mark Messier 1887 51.40
HENDRSON 1406 Lou Brock 938 49.89

15% to 40%
RYAN 5714 Steve Carlton 4136 38.15
RIPKEN 2632 Lou Gehrig 2130 23.57
MARINO 61243 John Elway 51475 18.98
SAMPRAS 14 Roy Emerson 12 16.67
BERG 15 Mickey Wright 13 15.38

5% to 15%
WILTREB 23924 Bill Russell 21620 10.66
COURT 24 Steffi Graf 22 9.09
RUTH 0.69 Ted Williams 0.634 8.83
AARON 755 Babe Ruth 714 5.74

Less than 5%
SMITH 17418 Walter Payton 16726 4.14
JABBAR 38387 Karl Malone 36928 3.95
ANDERSON 2346 Morton Andersen 2259 3.85
COBB 0.367 Rogers Hornsby 0.358 2.51
ROSE 4256 Ty Cobb 4191 1.55
JORDWILT 30.1 0

Table 3.14: Second-best performance to each of the career records

record, both before and after the record has been established. Consider Kareem Abdul Jab-

bar’s career points record. Though Jabbar’s total number of points was almost 7000 points

better than any player’s point total before him (a 22% improvement over Wilt Chamberlain),

he is now only slightly ahead of Karl Malone. The proximity to Malone’s point total reduces

the greatness of his record.

We searched the Internet and through sports almanacs to find the second-best career

performances for each career record. We show this data in Table 3.14. As seen in the table,

we used four ratings based on the percentage over the second best mark: (a) more than 40%,

(b) greater than 15% but less than 40%, (c) between 5% and 15%, or (d) less than 5%.

We gave Michael Jordan’s 30.1 career scoring average record a value of zero for the

Percent over Second Best subfactor. We artificially set this percentage to zero because two

different people hold the average points per game record. Records that stand alone, far ahead
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Well Known Known Not Always Known Not Known
AARON RYAN MARINO RUTH
ROSE JABBAR JORDWILT COBB
NICKLAUS HENDRSON STOCKTON WILTREB
GRETZKY SMITH UNITAS ANDERSON

SAMPRAS BERG
RIPKEN COURT

Table 3.15: Four ratings groups for glamour - career records

of any other performance, are much more indicative of a great achievement than those records

that are held by multiple players. The fact that Michael Jordan and Wilt Chamberlain both

hold a 30.1 per game scoring average makes it less impressive than the other 19 career records.

One interesting bit of information is that Michael Jordan’s second return from retirement

hurt his points per game average somewhat. At the time of Richardson’s thesis, Jordan

held a 31.5 point per game scoring average. When he returned to play with the Washington

Wizards for two seasons, his career average decreased to 30.1 points per game, bringing his

average back into a tie with Wilt Chamberlain.

3.3.4 Other Record Characteristics

• Glamour and Purity

The subfactors Glamour and Purity capture the same quality of greatness of career

records as they do for season records. They measure the degree to which each record is known

(Glamour) and the extent to which each record is a reflection of the athlete’s individual

performance (Purity). The four ratings used for Glamour are given in Table 3.15, while the

three ratings for Purity are given in Table 3.16.

3.3.5 Career Results

In order to determine the local weights beneath each subfactor, we performed the compar-

isons between each pair of ratings as described in the methodology section. The matrices containing

these comparisons are located in Appendix A (Section A.2.2). After making these comparisons, we

used Expert Choice to generate the priority vector for each subfactor and to synthesize the overall
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Not Aided Slightly Aided Greatly Aided
AARON GRETZKY ANDERSON
COBB JABBAR WILTREB
HENDRSON JORDWILT MARINO
RIPKEN SMITH UNITAS
ROSE STOCKTON
RUTH SAMPRAS
RYAN COURT
NICKLAUS BERG

Table 3.16: Three ratings groups for purity - career records

weights. In Figure 3.4, we display the rankings of the career records.

There were four records with a score greater than 0.600 at the top of the list of great career

records. Babe Ruth’s 0.690 career slugging average had the highest score, followed by Wayne

Gretzky’s 2857 hockey points, Jack Nicklaus’s 18 major tournament victories, and Ty Cobb’s 0.367

career batting average. Rickey Henderson’s 1406 stolen bases and Johnny Unitas’ 47 consecutive

games with a touchdown pass were near the top with scores just under 0.600.

In examining the overall results, there appears to be three distinct levels within the career

records: an upper level (records RUTH through UNITAS), a middle level (from STOCKTON

through WILTREB), and a lower level (from SAMPRAS through ANDERSON). The records in

the upper level soundly beat the closest marks. Four of the six records in the upper level were

better than the second place mark by nearly 50 percent or more. The two records that improved

the second place mark by only a small amount, RUTH and COBB, were given the biggest boost by

the duration that each record has lasted. RUTH and COBB have both lasted more than 25 years

longer than the rest of the career records; they both have been around for nearly three-quarters of

a century. The GRETZKY, HENDRSON, and NICKLAUS records were assigned the lowest two

ratings for the Years Record has Stood, getting very little contribution from this subfactor.

Babe Ruth’s career slugging average is a great record. A very small number of players

each baseball season have slugging percentage greater than 0.690, and maintaining that high of an

average for an entire career can be accomplished by only the best sluggers in the history of the

game. Barry Bonds now holds the record for the best single-season slugging average, and over the

last few seasons, he has consistently had a slugging average between 0.700 and 0.900. However,
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Figure 3.4: Overall rankings of the 20 career records

early in his career, Bonds did not have a slugging percentage close to what he had over the past

several seasons. This will hurt his chances of surpassing Ruth’s career record.

Wayne Gretzky’s points total record is a very recent record that fared well in the study.

Gretzky retired in 1999, yet, his record still finishes in second place. Gretzky’s record is among the

best records with respect to several subfactors including Percent over Second and Years Record is

Expected to Stand. His point total is so far ahead of the second place total set by Mark Messier

that the points associated with his total number of assists alone (1963) is greater than Messier’s

entire point total. In addition, the highest single-season point total scored by anyone in the NHL

has barely exceeded 100 points over the past several years. Given the length of time required to

amass 2,800 points, it seems that Gretzky’s record is likely to last more than 20 years into the

future. Though Gretzky’s record does not receive much weight with respect to duration, it benefits

greatly from several other subfactors and is worthy of its position near the top of the rankings.

Several of the popular career records could have new holders in the near future. Many fans
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expect Barry Bonds to continue playing and surpass Hank Aaron’s home run record within the next

two seasons. With eight victories in the majors before the age of 30, Tiger Woods could challenge

Jack Nicklaus’s hold on the record for the most men’s majors. Despite his current drought, should

Tiger have another run like his 2000 through 2002 seasons in which he won half of the majors in

those years (six), he could end up surpassing Nicklaus in the next decade. Kareem Abdul Jabbar’s

basketball points record is also within reach, as it could be passed by Karl Malone if continues

to play and remain healthy. As of the 2004-05 football season, Gary Anderson is still kicking for

the Tennessee Titans. Should he retire at the end of this season, his career football points record

could be broken next year by Morten Andersen, who is less than 100 points behind Anderson.

Some records could move slightly higher or lower in the rankings because of athletic per-

formances occurring during the 2004 season that might change the rating assigned to each record.

Emmitt Smith continues to add to his career rushing total, and, during the 2004-05 season, he

already has enough yards to make his total over five percent greater than Walter Payton’s second

best total of 16,726 yards. Brett Favre now holds the second-best mark for consecutive games

with a touchdown pass after he threw for a touchdown in his first eleven games of the 2004-05

season, giving him 36 through the end of November, 2004. When the study is updated to include

the present season, Johnny Unitas’ record will fall with respect to the Percent over Second Best

subfactor and therefore also fall in the overall rankings. The second best hockey point total is

now held by an active player (Mark Messier). However, in 2004, the players were locked out by

management, and the 2004-05 NHL season seemed unlikely as of late November, 2004. Gretzky’s

record is likely to retain the same rating for Percent over Second Best.

The two records set by women fared rather well in our overall rankings. Margaret Smith

Court’s 24 tennis grand slam singles titles and Patty Berg’s 15 major professional victories both

finished in the middle tier of records. Both records finished high with respect to duration; they have

been around for over a quarter of a century. They face different challenges in the future, however.

With Steffi Graf’s retirement, Court’s record should last for many years to come. Though several

promising young women in tennis today have the ability to win multiple grand slam tournaments,
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the off-court distractions of becoming a sports icon will likely prevent any current player from

winning more than 24 grand slam titles. On the other hand, Berg’s record seems within reach

of Annika Sorenstam. Currently, Sorenstam has half as many major victories as did Berg. If she

continues to lead the LPGA tour as she has in the past several years, with another 10 years or so

of competitive golf left in her career, she could challenge Berg’s record.

3.3.6 Comparison of Rankings to the Results of Previous Studies

In general, the records near the top of Richardson’s work and the 1987 study are the same

as those presented here. However, there are a few differences in the order at the top of the rankings

in this study, Richardson’s thesis [29], and the study of Golden and Wasil [16]. Our study ranks

Babe Ruth’s career slugging average as the greatest career record, while both Richardson and

Golden and Wasil have Ruth’s record as a close second. Ty Cobb’s career batting average tops

Richardson’s career list, while Johnny Unitas’ record for consecutive games with a touchdown pass

was deemed the greatest by Golden and Wasil. In our rankings, Cobb’s record finished fourth,

while Unitas’ record finished sixth.

There are very few differences between Cobb’s record and Ruth’s record. They both have

lasted for many decades, are expected to last for several decades to come, and are representative of

individual, rather than team-aided, performances. The only subfactor where Cobb’s record prevails

over Ruth’s is duration; Cobb’s career ended seven years earlier than Ruth’s career. However,

these records were both assigned the same rating because they have lasted significantly longer

than the other career records. Cobb’s record finishes lower than Ruth’s because it is only 2.5%

over Rogers Hornsby’s 0.358 career batting average, while Ruth’s record is almost 9% greater than

Ted Williams’s 0.634 career slugging average. For this subfactor, COBB and RUTH were assigned

different ratings. Therefore, Ruth’s record beats Cobb’s record in the final analysis.

Compared to Richardson’s results, Wayne Gretzky’s point record and Rickey Henderson’s

career stolen base record each moved up several places in our rankings. Gretzky’s record placed

second, only slightly ahead of Nicklaus’s majors, while Henderson’s record moved ahead of Unitas’
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record, Nolan Ryan’s career strikeout record, and Hank Aaron’s career home run record. Hender-

son’s record improved primarily because he continued to add to his career total until the end of

the 2003 season, and his record has become as well known as some of the other notable baseball

records. Gretzky did not hold the hockey career points record in 1987. At that time, Gordie

Howe’s hockey points record was good enough to rank fourth out of ten career records in Golden

and Wasil’s study. Gretzky’s career performance surpassed Howe by over 1000 points, more than

a 50% increase, and that has placed this record high in the overall rankings.

Most of the other records fared about the same in these new rankings as they did in the

previous two studies. Many records stayed in the same position relative to other career records,

while the few records that have been broken over the last several years have fallen near the bottom.

Overall, the studies are consistent in their rankings of the greatest career records.
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3.4 Single-Event Sports Records

The final category of sports records that we considered were single-event records, or records

that arise from a single unit of competition. A single unit of competition depends on the sport;

it could be a single game, a single sprint, a single jump, and so forth. Notably, all single-event

records arise from activity occurring on a single day.

Selecting single-event records was more difficult than for season and career records. Many of

the single-event records are obscure and unknown, remaining unrecognized by the general public

until an athlete ties or breaks the record. For example, while the single-game record for yards

gained rushing in a football game is well known, the record for the number of rushing attempts in

a game by a single running back will likely only become known if it is broken by an athlete today.

Some records that could potentially be included are broken on a somewhat regular basis. A

record that is broken often is not that great of a record because it would not be expected to last

for a long period of time. It seems that at least a few world records in swimming are set at each

major worldwide competition. For example, at the 2004 Summer Olympics, Michael Phelps set

the world record in the 400-meter individual medley for the fifth time in two years [1]. Including

records such as Phelps’s in this study, much less keeping track of the active holder and time of

other records that change often, is simply not always feasible.

Other popular records that we might consider are held by numerous individuals. Examples

of these include the number of home runs in a baseball game, the number of touchdown passes in

a football game, and most free throws made in one quarter of an NBA basketball game. Twelve

baseball players have hit four home runs in a single nine-inning baseball game. Since so many

players share the record, hitting four home runs in a game does not distinguish itself as a great

record. Such records do not fit well into our study.

We used many of the same single-event records as Richardson did in his thesis [29]. These

six records are listed in Table 3.3.
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Figure 3.5: Single-event hierarchy with weights

3.4.1 Single-Event Hierarchy

The single-event hierarchy also has the same structure as the single-season hierarchy, with

the only exception being the exclusion of the Percent over Contemporary Mark subfactor be-

neath Incremental Improvement. The pairwise comparison matrices used to generate the hier-

archy weights weights follow directly from the single-season and career record categories. The

single-event hierarchy with weights is shown in Figure 3.5.

For the small number of single-event records, we were able to directly pairwise compare the

records with respect to each subfactor, as described in Subsection 3.1.3. Thus, we employed the

traditional AHP to generate weights for each subfactor.

3.4.2 Duration

• Years Record has Stood

The Years a Record has Stood subfactor measures the length of time elapsed since

each single-event record was set. A record such as Ernie Nevers’ single-game points record for

football has lasted for three quarters of a century. For nearly 75 years, his record has demon-

strated that scoring 40 points in a football game is a great accomplishment. In Table 3.17,

we give the calculation for the number of years each record has lasted.

The pairwise comparisons for this subfactor were determined by creating a ratio for

each pair of alternatives based on the years the record has lasted. Since Jamal Lewis’s record
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Identifier Years Stood

NEVERS 74
VBRKLN 52
WILTREB 43
WILTPTS 41
POWELL 12
LEWIS 0

Table 3.17: Number of years each single-event record has lasted

was just set last year (2003), we assigned a value of nine to the pairwise comparisons with this

record. The pairwise comparison matrix and its priority vector can be found in Appendix A

in Table A.4.

• Years Record Expected to Stand

This subfactor captures our subjective feelings as to how long we believe each record

will last. We collected data for each record regarding top performances over the past 10

years. In Table A.3 in Appendix A, we document several recent single-event performances

from 1994-2004 that have challenged each current single-event record.

By examining these values, we judged how long we though each record would last

and compared the records. The pairwise comparison matrix that was created from these

comparisons is given in Table A.5.

3.4.3 Incremental Improvement

• Percent over Previous Record

The amount by which the current record surpasses the previous mark plays an im-

portant role in evaluating a record’s greatness. Simply scoring one more point or running

a tiny fraction of a second faster than the previous record’s value is not as impressive as

performances that greatly surpass the previous record on a percentage basis.

In Table 3.18, we give the value of each previous record holder, along with the percent-

age improvement of the current record’s value over the previous value. After computing the

percentages for this subfactor, we constructed the pairwise comparison matrix. This matrix
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Previous Previous Percent Over
Identifier Value Year Holder Record Previous Record

WILTPTS 100 1960 Elgin Baylor 71 40.85
NEVERS 40 1922 James Conzelman 30 33.33
VBRKLN 554 1949 Johnny Lujack 468 18.38
WILTREB 55 1960 Bill Russell 51 7.84
LEWIS 295 2000 Corey Dillon 278 6.12
POWELL 8.95 1968 Bob Beamon 8.9 0.56

Table 3.18: Single-event previous record holders

is given in Table A.6.

3.4.4 Other Record Characteristics

• Glamour and Purity

The Glamour and Purity subcriteria both follow from the two previous record cate-

gories. Some records are more recognizable than others by the average sports fan and are

more well known. In addition, each record provides a different indicator of an individual’s

talent than other records. These two subcriteria attempt to capture these qualities.

In the pairwise comparisons of the different records, we carefully evaluated the degree

to which each record is “glamorous” and “pure.” For these subcriteria, we assigned numer-

ical values for the comparison of the records with respect to these qualities. The pairwise

comparison matrices we generated, along with the weights derived from each matrix, are

given in Appendix A in Tables A.7 and A.8.

3.4.5 Single-Event Results

After the pairwise comparison matrices for each subfactor were generated, the local weights

were computed and synthesized using Expert Choice. This gave us the overall rankings for the

single-event records. Unlike the single-season and career records, these weights were normalized so

that they sum to one. In Figure 3.6, we display the overall rankings for the single-event records.

Similar to the single-season category, two records finished very close to each other, and far

ahead of the other records. Wilt Chamberlain’s 100 point performance in 1960 finished slightly
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Figure 3.6: Overall rankings of single-event records

ahead of Ernie Nevers’ 40 point football game in 1929 to be the greatest single-event sports record.

The remaining four records finished considerably further behind these two.

Both Chamberlain’s record and Nevers’ record look fairly safe given the present state of

each athlete’s respective sport. No one in the past decade has put up a close challenge to either

record. Even with the introduction of the 3-point line in the NBA in 1979 and the emergence

of some the most outstanding individual basketball players to ever play the game, Chamberlain’s

record has breezed through the past several decades virtually unchallenged. Nevers’ record is in a

similar position. When Nevers set his record, he had the opportunity to contribute points as both

a running back and as a place kicker; scoring his 40 points came about through six touchdowns

(TDs) and four point-after touchdown attempts. Now, obtaining five TDs in a game is something

that happens on average only once every couple of seasons. Acquiring the seven TDs or six TDs

with three two-point conversions in a game to surpass Nevers would be a very rare feat.

Mike Powell’s record received a lower weight in our ranking than it likely deserves. All

other records we consider in the study depend on an athlete’s performance on a team or against

other competitors. Powell’s long jump record is the only record that is limited by natural human

ability alone. In 1991, Powell jumped a mere 2 inches further than Bob Beamon’s 29 foot, 2.5
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inch jump. Because of this small improvement, his record suffers significantly in the Percent over

Second Best subcriterion. His record is very impressive nonetheless, as only Powell and Beamon

have ever long jumped over 29 feet. In addition, Powell’s record looks to be safe in the near future.

In the 2004 Summer Olympic games, the gold medal winning jump was over a foot behind Powell’s

leap. Powell’s jump speaks much of his inherent talent, and his record likely deserves to be ranked

higher.

3.4.6 Comparison to Rankings from Previous Studies

The single-event study is almost identical to the single-event records study from Richardson’s

thesis. Only the single-game football rushing record has been broken in the past five years, but it

was broken two times: first by Corey Dillon in 2001 and then by Jamal Lewis in 2003. Several of

the entries for the pairwise comparison matrices in this thesis were used directly from Richardson’s

study; in some categories, nothing had changed since his study was performed.

This study omitted one record that was considered by Richardson’s thesis, Susie O’Neill’s

world record in the 200m butterfly. At the time of the Richardson’s study, Susie O’Neill had

just broken Mary Meagher’s 18 year old 200m butterfly record, and her performance was a very

memorable moment in the world of women’s swimming. O’Neill’s record was broken by three

hundredths of a second in 2002 by Otylia Jedrzejczak. This new performance was not as significant

as was O’Neill’s, and thus we decided to not include it in this study.

With this omission and Jamal Lewis’s new record, the overall weights assigned to the records

changed slightly. The overall order remained the same, though NEVERS now has gained ground

and has a closer overall weight to WILTPTS. The remaining records have weights similar to those

given by Richardson’s thesis, with Lewis’s record receiving just over half of the weight Walter

Payton’s record had in 2000.
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Chapter 4

Interval AHP Introduction

The use of interval judgments in the analytical hierarchy process (AHP) has begun to grow

in many decision-making environments, providing an effective means for modeling the presence of

uncertainty in a decision maker’s (DM) judgments or representing comparisons in group decision

making. The most effective method for generating weights when interval comparisons are used,

however, is still under debate. The interval AHP problem is relatively new–only in the past

decade has it received much attention in the literature. Arbel and Vargas [3] produced one of

the first methods to solve interval AHP problems when they introduced Preference Programming

and Preference Simulation just over a decade ago. Since then, several attempts to either adapt

traditional AHP methods or invent new mathematical approaches have been proposed to address

the interval problem. Typical techniques usually employ a variant of the eigenvector method, a

statistical/simulation based approach, fuzzy set logic, or mathematical programming to generate

a priority vector from these judgments.

One method, a linear programming (LP) method recently introduced by Chandran et al. [7],

provides a promising approach for solving a variety of AHP problems. As demonstrated in that

paper, this LP model is very robust; it can be utilized for traditional, interval, and mixed (a

combination of traditional and interval) pairwise comparison matrices. In this thesis, however, our

focus is to further investigate only one of these problems: solving the AHP with interval judgments.

In particular, we concentrate on problems with inconsistent interval pairwise comparison matrices,

or problem instances where there is no set of weights that satisfy all interval judgments. This is

an extension of the method in Chandran et al. [7].

Inconsistencies in the AHP are not uncommon, nor are they necessarily seen as poor judg-

ments by the decision maker. Rather, they reflect the reality that uncertainty is widely prevalent

in decision making. Often, a DM is bombarded by vast amounts of information at once, making
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the process of determining the relative strength of one alternative over another difficult. This

confusion can obscure the comparison process, potentially giving rise to small contradictions in

the pairwise comparisons. Inconsistencies in the comparisons can occur, and they are not always

easily detected. Thus, any successful interval method for finding priority vectors should be able to

address their presence.

In its current form, the LP model [7] is unable to properly cope with inconsistencies. When-

ever an inconsistent interval pairwise comparison matrix is used with the LP method, the linear

program becomes infeasible. To address this shortcoming, we present a small revision to the model.

By introducing stretch factors for each interval and by adding an introductory “expansion” stage,

we extend the LP method so that it first finds the minimal stretching required to reach feasibility.

This expanded solution space (with some intervals widened) becomes nonempty. Having feasibility

ensured for these stretched intervals, we then proceed with the two-stage LP model.

The sections that follow introduce this new technique, demonstrate it on several sample

(inconsistent) interval pairwise comparison matrices, and compare it to other interval methods.

4.1 A Linear Programming Technique for Interval AHP Problems

Interval comparisons have begun to become more widely used in the analytic hierarchy

process. As described in Subsection 2.2.2, interval judgments are captured in a pairwise comparison

matrix having the form:

B =

























1 [l12, u12] . . . [l1n, u1n]

[l21, u21] 1 . . . [l2n, u2n]

...
...

. . .

[ln1, un1] [ln2, un2] 1

























. (4.1)

The interval limits in the lower triangular portion of (4.1) come from the reciprocals of

the interval bounds in the upper triangular entries. Priority vectors for interval matrices can be

determined in a number of ways. The following two subsections present one of these methods.
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4.1.1 LP Method for Intervals

One technique used to find a priority vector for AHP problems is based on the LP formu-

lation presented by Chandran et al. [7]. The LP method is centered around the idea that the best

priority vector will minimize the error ǫij between the actual weight ratios and the decision maker’s

judgments aij . The errors are related to each entry of the pairwise comparison matrix through the

multiplicative relationship wi

wj
= aijǫij for every i, j with i 6= j. The errors assume positive values

relatively close to one, with values greater than (less than) one indicating underestimated (over-

estimated) measurements. A logarithmic transformation of this error relationship and a change of

variables yields a set of simple, straightforward linear equalities and inequalities. These equations

become constraints in a two-stage LP that is used to determine an optimal priority vector.

When considering the presence of interval pairwise comparisons, measuring the error in each

judgment ratio wi

wj
is not explicit since the comparisons are intervals of the form [lij , uij ] rather

than single numbers. Therefore, in order to compute the error associated with each judgment, the

weight ratios are examined relative to the geometric mean of the interval endpoints through the

equation

wi

wj

= ǫij

√

lijuij . (4.2)

Following the non-interval case, error values greater than one are indicative of potentially under-

estimated interval bounds, while error values less than one indicate overestimated interval bounds.

The goal of the LP method is to minimize the total error in the pairwise comparisons. Com-

paring these errors relative to the geometric mean of the interval bounds, rather than arithmetic

mean, is important. The geometric mean is desired whenever interval judgments are used because

it preserves the reciprocal nature of the pairwise comparison matrix. Since uji = 1

lij
and lji = 1

uij
,

aij =
√

lijuij =

(√

1

uij

·
1

lij

)−1

=
1

√

ljiuji

=
1

aji

.

Because of this relationship, the errors are also reciprocal in nature, that is, ǫji = 1

ǫij
. If we

were to compute the errors relative to the midpoint of each interval, the reciprocal nature of

the error would not be present. Since the goal of our method is to minimize a measure of total
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error, the weights found when using the arithmetic mean would in turn be dependent on the

order in which the alternatives were assigned and compared. Using information from two different

pairwise comparison matrices representing the same comparison information might then result in

two different priority vectors.

To demonstrate this concept on a small scale, consider the following problem in the AHP.

Suppose that we have two alternatives, 1 and 2, and we believe that the relative importance of

alternative 1 to alternative 2 lies in the interval [2, 4]. To find a solution close to the arithmetic

mean of this interval, we derive the (normalized) weights w1 = 0.750 and w2 = 0.250. The error

value in this ratio is equal to one since w1

w2

= 0.750
0.250

= 2+4

2
, indicating ǫij = 1. Using the same

comparison information, we also know that the relative importance of alternative 2 to alternative

1 lies in the interval [1
4
, 1

2
]. If we attempt to find a solution close to the arithmetic mean of

this interval, we derive the (normalized) weights w1 = 0.7273 and w2 = 0.2727. The error value

associated with this ratio is also equal to one. This presents us with two different solutions for our

comparisons that possess the same total error. Which set of weights do we choose?

Rather than use the error relationship in Equation (4.2) for appropriate values of i and j,

which is a nonlinear equation in the three unknowns wi, wj , and ǫij , we take the natural logarithm

of both sides of the equation. In Equation (4.3), we give the transformed version.

lnwi − lnwj = ln ǫij + ln
√

lijuij . (4.3)

By introducing new variables in this transformed space, i.e., xi = lnwi and yij = ln ǫij , the error

relationship is linear.

In addition to these error equalities, we develop other constraints by utilizing the interval

judgments directly. Splitting each interval inequality of the form lij ≤
wi

wj
≤ uij into a pair of

inequalities yields two constraints for each i, j:

lij ≤
wi

wj

and uij ≥
wi

wj

. (4.4)

Other methods [19, 26] choose to linearize these constraints by multiplying both sides of the

inequalities by the weight wj . We, however, transform both inequalities to work in the natural
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logarithm space. This gives the following additive constraints for any i, j with i 6= j:

ln lij ≤ lnwi − lnwj and lnuij ≥ lnwi − lnwj .

The LP method has two separate stages. The objective functions for both stages examine

the error between the weight ratios and the geometric means of the intervals. Since each error ǫij

assumes values in an interval around one, the corresponding yij = ln ǫij can assume either positive

or negative values. However, since the errors are reciprocal, yij = −yji. By defining zij = |yij |, we

can capture the total error in a priority vector by summing up the zij variables.

The objective of the LP method’s first stage is to minimize the sum of the positive errors in

the priority vector. That is, it aims to minimize the sum of the zij ’s. This objective can be thought

of as a minimization of the sum of the overestimated comparisons. In the original non-transformed

space, it corresponds to minimizing the product of the errors greater than or equal to one.

We combine the constraints that are outlined previously with nonnegativity restrictions

on each zij . Since half of a pairwise comparison matrix contains all the comparison information

needed to create a priority vector, the values of i and j range over the upper triangular entries in

the pairwise comparison matrix. This gives us a linear program to solve for the priorities.

• Stage 1: Minimize the total sum of the error in the priority vector.

min
n−1
∑

i=1

∑

j>i

zij

s.t. xi − xj − yij = ln
√

lijuij ∀ i, j with i 6= j (4.5)

zij − yij ≥ 0 ∀ i < j (4.6)

zij − yji ≥ 0 ∀ i < j (4.7)

xi − xj ≥ ln lij ∀ i < j (4.8)

xi − xj ≤ lnuij ∀ i < j (4.9)

x1 = 0 (4.10)

zij ≥ 0 ∀ i < j (4.11)

xi, yij unrestricted ∀ i < j (4.12)

The constraints in Equations (4.5), (4.8), and (4.9) come directly from the previous dis-

cussion. Equations (4.6) and (4.7) represent zij = |yij | since one member of each (yij , yji) pair is

positive, and the sum of the zij are minimized. The constraint requiring x1 = 0 is arbitrary. Since
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an infinite number of solutions for this LP exist (the weights are not unique, only their ratios are),

we choose the solution where w1 = 1, without loss of generality.

It is possible for Stage 1 to have multiple optimal solutions, representing different sets of

weight ratios that all have the same total error. However, multiple sets of weights are not desired;

we prefer to have a single set of weights for a pairwise comparison matrix. To determine which

solution from this set is the best, we need to do more work. We create a stage to follow Stage 1 to

select a solution from the Stage 1 optimal solutions whose single maximum error zmax is minimal.

The second stage constraints follow directly from the first stage with the added requirement

that only Stage 1 optimal solutions are feasible in Stage 2. Letting z∗sum denote the Stage 1 optimal

objective value, we present the second stage.

• Stage 2: From the set of solutions that minimize the sum of the total error, find the solution

that has the minimum individual error maximum.

min zmax

s.t.

n−1
∑

i=1

∑

j>i

zij = z∗sum (4.13)

zmax ≥ zij ∀ i < j (4.14)

constraints (4.5)-(4.12).

The two-stage method is discussed in further detail and illustrated on several interval and mixed

pairwise comparison matrices in [7].

4.1.2 Extending the LP Method for Inconsistent Intervals

In its current form, the two-stage method has one big limitation. The presence of tight

intervals and inconsistencies in the interval judgments could pose problems for the linear program.

In these two cases, the convex set bounded by the interval constraints in Equations (4.8) and (4.9)

might cause the solution space to be empty, yielding no feasible priority vectors for the linear

program. To an LP solver, this infeasibility is the “solution” to the first stage. In reality, though,

the infeasibility of the linear program only indicates that there is no priority vector that can

completely satisfy all of the interval judgments.
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Inconsistent intervals should not prevent us from finding at least a candidate priority vector.

We would naturally prefer any solution (albeit a somewhat inconsistent one) to a warning about an

infeasible solution. Rather than receive such a message, we wish to have our method find solutions

that are closest to satisfying the interval bounds. From this set of close solutions, we wish to select

the solution that also minimizes the same total error and zmax as in the stages for the normal

interval LP method.

To allow solutions that do not satisfy the intervals, we must soften the constraints that are

too restrictive. The intervals need to have the ability to expand so that weight ratios can violate one

(or more) of the interval bounds as needed. To facilitate this expansion, we introduce multiplicative

“stretch factors” to the upper and lower interval bound inequalities. By multiplying each lower and

upper bound by designated stretch factors λij and γij such that λij ≤ 1 and γij ≥ 1, respectively,

the upper (lower) bound is given the ability to increase (decrease) and incorporate solutions with

weight ratios outside the original intervals. These stretch factors alter the inequalities given in

Equation (4.4).

wi

wj

≥ lijλij and
wi

wj

≤ uijγij . (4.15)

Each set of weights now has to satisfy these softer intervals, not the hard constraints. To be

consistent with our error measurements, we would like the stretch factors to also satisfy a reciprocal

relationship. When the stretch factors satisfy the relationship λij = 1

γij
, the geometric mean of

each interval is preserved. Keeping the geometric mean unchanged preserves the DM’s preference

structure and also allows the error in the soft intervals to be measured in the same manner as in

the two-stage interval LP method.

Interval stretching whenever inconsistent interval judgments are present is not a new con-

cept. Leung and Cao [23] proposed using multiplicative factors (1 + δ) and (1 − δ) for the upper

and lower interval bounds for a given tolerance parameter δ. Islam et al., [19] and Mikhailov [26]

both proposed additive modifications to the interval bounds. None of these methods impose any

extra restrictions on how these intervals are expanded.

In the transformed space, the reciprocal nature of the stretch factors is advantageous. Since
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we have ln λij = ln 1

γij
= − ln γij , we need to introduce only one stretch factor for each pair of

interval constraints for the formulation. Letting gij = ln γij and using xi = lnwi, the constraints

from (4.15) become additive in the transformed space, yielding

xi − xj ≥ ln lij − gij and xi − xj ≤ lnuij + gij . (4.16)

These equations can be directly compared to the constraints (4.8) and (4.9) in the original formu-

lation. Since gij ≥ 0 ∀i, j, the new solution space is nonempty for any set of interval bounds,

consistent or inconsistent. There will always exist gij ’s large enough to accommodate any incon-

sistencies in the judgments.

While stretching allows us to obtain a set of weights for any set of intervals, the added

flexibility in the intervals should not be used arbitrarily. Allowing the intervals to stretch too much

might seriously disregard the original judgments of the decision maker. Thus, solutions closer to

satisfying the original intervals are preferred to those further away. In order to find these solutions,

we introduce a preliminary stage (with a function similar to that of the Phase 0 for the simplex

method) that we call Stage 0. This stage seeks the total minimum interval stretching needed to

obtain a feasible set of weights. This is accomplished by using the new interval constraints (4.16)

and an objective function that minimizes the sum of the transformed stretch factors gij (the

product of the γij ’s in the non-transformed space). The output from this stage is a set of solutions

that become feasible when the interval limits are changed by this minimum amount. From this

set of solutions, we proceed as in Stage 1 and Stage 2 to minimize the total error in the priority

vector. The entire three-stage formulation follows:
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• Stage 0: Find the closest feasible solution(s) to the original simplex. Call the optimal value

of this stage g∗sum

min

n−1
∑

i=1

∑

j>i

gij

s.t. xi − xj − yij = ln
√

lijuij ∀i, j with i 6= j (4.17)

zij − yij ≥ 0 ∀ i < j (4.18)

zij − yji ≥ 0 ∀ i < j (4.19)

xi − xj + gij ≥ ln lij ∀ i < j (4.20)

xi − xj − gij ≤ lnuij ∀ i < j (4.21)

x1 = 0 (4.22)

zij , gij ≥ 0 ∀ i < j (4.23)

xi, yij unrestricted ∀ i < j (4.24)

• Stage 1: Proceed as before (see the earlier Stage 1) using the total minimal inflation value

(g∗sum) needed to obtain feasibility (added as constraint (4.25)). Denote the optimal solution

to Stage 1 as z∗sum

min
n−1
∑

i=1

∑

j>i

zij

s.t.
n−1
∑

i=1

∑

j>i

gij = g∗sum (4.25)

constraints (4.17)-(4.24).

• Stage 2: Continue as in the earlier Stage 2 by minimizing zmax, again accounting for the

minimal stretching required.

min zmax

s.t.

n−1
∑

i=1

∑

j>i

gij = g∗sum

n−1
∑

i=1

∑

j>i

zij = z∗sum (4.26)

zmax ≥ zij ∀ i < j (4.27)

constraints (4.17)-(4.24).
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With the completion of the three-stage process, a priority vector is given that contains

the ranking of the alternatives derived from the expanded interval comparisons. We refer to the

three-stage method as the LP with stretching, or LP-S.

4.1.3 Advantages of the LP-S

The original paper on the LP method contains an in-depth illustration of the benefits of

the two-stage method described in Subsection 4.1.1. Fortunately, the three-stage approach follows

as a natural extension of the two-stage method. After executing Stage 0, formulations for the two

remaining stages are almost identical to the original version. Allowing interval inflation adds to

the LP method’s robustness; the method can be applied to interval pairwise comparison matri-

ces regardless of whether the comparisons are consistent or inconsistent. If the optimal objective

function value of Stage 0 is zero, the remaining two stages reduce to the original LP method. Con-

sequently, Stage 0 serves as a sort of consistency test–a preliminary way for determining whether

or not interval stretching is necessary.

The LP-S method is also practical in nature. The idea behind measuring a priority vector’s

error relative to the comparisons is novel and straightforward. The interval stretching we present

is simple, but it performs well for finding solutions closest to the region defined by the original

intervals. The LP-S method can be easily implemented, and problems can be solved using freely

available optimization software. In addition, using linear programming allows the model to be

easily customized to incorporate specific preferences of the decision maker.

For example, if the DM decides that some intervals are more important than others, limi-

tations on the amount of stretching gij ’s can be added directly as constraints to force particular

interval comparisons to be satisfied. If the decision maker determines that he or she wants the

w2

w3

ratio to lie inside [l23, u23], then he or she could add a constraint to make the stretch factor

associated with this interval equal to zero (g23 = 0). Also, “stretching costs” can be incorporated

into the Stage 0 objective function to penalize the objective when particular intervals are stretched.

Instead of forcing the (2,3) interval to be satisfied through a constraint, the coefficient on g23 in
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the objective function can be increased so that the objective value will be greater when the (2,3)

interval is stretched instead of the other intervals. Either of these two techniques can easily be

used to include the preferences of the decision maker in ways other than the pairwise comparisons.

We realize that our formulation contains a rather large number of variables relative to some

of the the other interval methods. Some users might argue that the requirement of running three

separate stages can become cumbersome and complicated for generating solutions. However, once

the formulation is implemented one time for computational purposes, changing from one problem

to the next demands little to no more work than any of the other methods. The three stages

are nearly identical, so all the constraints can be implemented in a single text file with the three

objective functions listed at the top of the file. Changing from one stage to the next only requires

the appropriate objective function for the stage in question to be uncommented, the other two

objective functions to be commented so that they are not in use, and the previous stage’s optimal

objective value to be input as a constraint. The use of multiple objectives allows us to be more

critical of solutions than a single-stage LP. Furthermore, the use of three stages helps to reduce

the possibility of multiple optimal solutions. It simply gives better solutions than single-stage

methods.

The sections that follow present several interval pairwise comparison matrices and give

illustrations of our method in order to provide some justification for the above claims.

4.2 Simple Computational Example of LP-S Method

We first wish to present an example to show the entire LP-S formulation for a sample

interval pairwise comparison matrix. We present an infeasible interval pairwise comparison matrix

based on the interval pairwise comparison matrix first introduced by Arbel and Vargas [3]. By

arbitrarily altering the a14, a23, and a24 entries in that matrix, the LP model (without stretching)

has no feasible solutions, indicating the presence of an inconsistent set of intervals. This pairwise

matrix is given in (4.28).
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A =

























1 [2, 5] [2, 4] [1, 2]

1 [2.5, 3] [1, 1.5]

1 [ 1
2
, 1]

1

























. (4.28)

The matrix A does not appear to have any obvious inconsistencies. No entry stands out as being

incompatible with the other intervals. However, the presence of several tight intervals confines the

weight ratios to a small range of values that do not all agree with one another.

The formulation for the LP-S method takes the entries in the upper triangular portion of

A and creates the three linear programs as described in Section 4.1.2. We entered the formulation

into a text file for implementation in a linear optimization software package. The number of

variables and constraints is reasonably small for any pairwise comparison matrix acceptable for

the AHP. Thus, we were able to use the free optimization software program LINDO for generating

the weights for our method.

We have presented the formulation for this problem in its entirety with all constraints

explicitly detailed in Section B.1 in Appendix B. Upon running Stage 0, we found an optimal

objective function value of
∑∑

gij = 0.2232, indicating that some stretching is needed to obtain

a feasible set of weights. Using this value as a constraint in Stage 1, the optimal total error

was
∑∑

zij = 1.811. Finally, using both of these objective values as constraints in Stage 2, we

obtained the optimal zmax for Stage 2 of 0.661 and the optimal priority vector for this pairwise

comparison matrix: w = [0.423 0.259 0.106 0.212]T .

Along with the formulation in Appendix B, we have included the output found by executing

LINDO for the three stages. In comparing the output from Stage 0 with Stage 1, we notice the

impact of having multiple stages. Stage 0 terminates with an optimal value of 0.2232, and the

solution given by Stage 0 has only one nonzero stretch factor (g23 = 0.2232). Once Stage 1 is

completed, however, the optimal solution requires two intervals to be stretched (g12 = 0.2028 and

g23 = 0.0204). Stage 0 has multiple optimal solutions, but Stage 1 reduces the number of optimal

solutions. Stage 2 further ensures that the solution found from Stage 1 minimizes the maximum
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single error zmax.

4.3 Computational Comparisons

At the present time, there are only a few methods that can use an interval pairwise com-

parison matrix as its input and find a priority vector from the intervals. In addition to the LP-S

method, two methods appear to be successful at handling several varieties of pairwise comparison

matrices: Lexicographic Goal Programming (LGP) introduced by Islam et al. [19], and Fuzzy Pref-

erence Programming (FPP) introduced by Mikhailov [26]. The two subsections that follow present

a pair of computational experiments in which these three methods are compared with respect to

inconsistent interval AHP.

4.3.1 Computational Comparison I - Interval Stretching

In this subsection, we use the LP-S and four other methods to generate priority vectors

from a sample pairwise comparison matrix and compare these solutions with one another. For

this comparison, we use the same 4 × 4 inconsistent interval pairwise comparison matrix (4.29)

introduced by Kress [21] and studied further by Islam et al. [19]. We denote this by B.

B =

























1 [1, 2] [1, 2] [2, 3]

1 [3, 5] [4, 5]

1 [6, 8]

1

























(4.29)

In addition to the LP-S, LGP, and FPP methods, we used two traditional non-interval

methods for the computation of priority vectors: the eigenvector method (EM), and the logarithmic

least-squares (LLS) method. The weights for LP-S were found by optimizing the three stages in

our formulation, while the weights generated by the the LGP method were taken directly from [19].

For the FPP method, linear membership functions were used to create the formulation (which is

a linear program), and LINDO was used to perform the optimization. In order to employ the
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Method w1 w2 w3 w4 Objective 0 Objective 1
LP-S 0.3252 0.3636 0.2299 0.0813 1.792 2.740
LGP 0.3030 0.4545 0.1515 0.0910 1.792 3.197
FPP 0.318 0.4318 0.1932 0.0568 2.211 3.4225
EM 0.3016 0.4006 0.2279 0.0699 1.928 3.055
LLS 0.3127 0.3932 0.2229 0.0712 1.891 2.959

Table 4.1: Priority vectors generated from B and B̃ for the five methods

EM and LLS method, we created a non-interval matrix B̃ where each (i, j) entry of B̃ was the

geometric mean of the (i, j) interval bounds in B. These two techniques were used primarily for

general comparison purposes. For the three linear programming methods (LP-S, LGP, and FPP),

we have included the formulations created for this pairwise comparison matrix in Appendix B

(Section B.2).

In Table 4.1, we provide the priority vectors generated by the five methods. Columns two

through five contain the weights of the four alternatives. The Objective 0 column (representing

∑∑

gij) gives the Stage 0 objective function value for each solution, the implied sum of the stretch

factors associated with each solution. The Objective 1 column (representing
∑∑

zij) in the table

gives the value of the sum of the Stage 1 errors for each priority vector. For the LP-S method,

the values used to populate the table came directly from running the three stages in LINDO and

observing the optimal objective function values. In order to find the Stage 0 and Stage 1 values

for the other four methods, we inserted each weight into the LP-S formulation as a constraint and

observed the objective function values from Stages 0 and 1 induced by these solutions.

In comparing the solutions obtained by these methods, we see that the values assigned to

weights w1 and w4, in general, differ by only two to four hundredths of a point, while weights

w2 and w3 vary quite substantially among the methods. Though the solutions differ, all agree

on the rank ordering: w2 > w1 > w3 > w4. In addition, the total error (
∑∑

zij) for all other

solutions is greater than the error for the LP-S solution. The weights associated with LP-S have a

Stage 0 objective function value less than or equal to the sum implied by the weights of the other

four methods, indicating a smaller amount of stretching. Indeed, our solution does satisfy the two

objectives sought by the three-stage approach: minimal error with minimal stretching.
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Method γ12 γ13 γ14 γ23 γ24 γ34

LP-S 1.118 1 1.333 1 1.897 2.121
LGP 1.5 1 1.1099 1 1 3.604

Table 4.2: Numerical values of the six stretch factors for the LP-S and LGP solutions

One observation of particular interest is that the LP-S and LGP solutions have the same

Stage 0 optimal value. The LGP method also attempts to stretch the interval bounds to obtain

feasible solutions by employing the principles of goal programming to generate weights [19]. The

LGP begins with the inequalities from Equation (4.4) and adds a pair of nonnegative deviation

variables to each inequality. With these new variables, the LGP can find solutions that violate

the interval comparisons. The objective function of the LGP minimizes the sum of these deviation

variables in an attempt to find the solution closest to satisfying the interval comparisons. This

formulation can be seen in detail in Subsection B.2.2 of Appendix B.

The goal of the LGP is rather similar to the objective of our Stage 0. The LGP finds a

solution that satisfies the expanded intervals but goes no further. No attempt is made to measure

the “quality” of this priority vector. Therefore, the optimal amount of stretching that is returned by

LGP is not guaranteed to give a unique set of deviations nor a unique priority vector. Sometimes,

different combinations of intervals can be expanded so that they yield different feasible sets of

weights satisfying the same total optimal stretching.

The matrix B in (4.29) is one example where this occurs. In Table 4.1, we see that both

the LP-S and LGP methods return the same value for the minimum total stretching, but the two

priority vectors are quite different, especially for w2. This illustrates that there are at least two

(and likely more) ways in which the interval deviations can be distributed, each yielding a different

set of expanded intervals and a different priority vector. We observe these differences by examining

the values of the stretch factors associated with both solutions, given in Table 4.2.

The different values for the individual γij ’s associated with the LP-S and LGP solutions

were found from our optimization. The LP-S values came directly from the output of the Stage

2 values. Since the LGP does not use multiplicative stretch factors, we inserted the optimal LGP

solution into the LP-S formulation and observed the implied value for each stretch factor. These
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values were then verified through a comparison with the optimal solution given in Islam et al. [19].

The LP-S solution has a lower total error relative to the geometric mean, and it achieves this

through the alteration of four different intervals. The LGP solution requires a fewer number of

intervals to be inflated, but it possesses a greater total error.

The reason for the differences in the two solutions becomes apparent upon examining the

LGP formulation. The LGP method does not account for the possibility of multiple optimal interval

expansions. It finds the minimum total amount of alterations required for feasibility, but having

obtained its solution, it does not go further to measure how “good” the solution is. Therefore,

the LGP method, though it provides a solution that is as close to satisfying the original interval

bounds as the solution given by the LP-S method, does not detect multiple optimal solutions nor

discriminate amongst them. LP-S, through Stage 1, addresses this situation by providing a way

for the best solution to be found, given these minimal changes. The LP-S method not only finds

a close solution, but it also locates the closest solution with minimal error. This sample problem

demonstrates our model’s effectiveness and illustrates the benefits of having multiple stages for the

generation of a priority vector.

4.3.2 Computational Comparison II

For the second comparison, we used the relatively new Fuzzy Preference Programming

(FPP) method [26]. In recent years, fuzzy set logic has begun to receive a fair amount of attention

in the decision-making world. Fuzzy Preference Programming is based on using this logic to treat

each interval as a separate fuzzy set. Fuzzy sets are quite different from classical sets. Elements

can be partially in a set, and the degree to which they are included in a set is determined by a

membership function. This membership function assigns membership values to its elements based

on how “close” an element is to being in the classical set.

For the FPP, the membership value expresses the degree to which a ratio of weights wi

wj

lies inside the i, j interval. The membership value, denoted by λ, is determined by evaluating the

membership function at the value of the ratio. In the FPP, the membership functions are linear or
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nonlinear piecewise monotonic functions that are maximized at the center of each interval. With

additive deviation parameters appended to the upper and lower bounds of each interval, each

membership function can allow solutions that are outside the interval bounds.

Using a membership function for each interval in the upper triangular portion of a pairwise

comparison matrix, the FPP method results in a mathematical program to find a priority vector

that maximizes the minimum value of each membership function. Since in this thesis we are only

concerned with linear methods for generating weights, we focused solely on membership functions

of the linear variety for all computations using the FPP method. The FPP’s nonlinear membership

functions have some appeal, but they lead to nonlinear optimization formulations and would require

us to explore different, more time-consuming techniques for finding solutions.

The FPP method is nice, concise, and has a formulation that is easy to implement, and

it can be understood without knowing much about fuzzy sets. Switching from one problem to

another is easily done by changing only a small number of values in the formulation. In addition,

after the optimization software is finished with its computations, normalized weights are available

with no extra work. Our LP-S method has a longer formulation that requires more time to

create, and it requires three separate optimizations. Once solutions are obtained from Stage 2, the

weights generated by the LP-S have to be transformed back from logarithmic space and normalized.

Though these limitations are not major problems, the LP-S method requires slightly more work

to obtain weights than the FPP method.

Aside from the computational standpoint, the two methods differ in one key aspect: the

LP-S method prefers solutions close to the geometric mean of the intervals, while the FPP method

prefers solutions close to the arithmetic mean. We have already demonstrated that the geometric

mean preserves the reciprocal nature of the pairwise comparison matrix. For the example presented

in this subsection, we wish to demonstrate the consequences that arise when measuring solutions

with respect to the these means.

The AHP relies on the reciprocal nature of pairwise comparisons. Making comparisons to fill

either the upper or lower triangular portion of the pairwise comparison matrix is all that is required
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of the decision maker. No matter which order the alternatives are compared or what comparison

information is inserted into the formulation, the weights generated should remain the same. For

example, consider two identical decision makers. One DM might label three alternatives 1, 2, and 3,

while the other might label the same three alternatives c, b, and a. Provided their comparisons are

identical, the weights found by each DM should agree regardless of their different labels. Denoting

wi as a weight obtained by the first DM, and letting w̃i represent a weight obtained by the second

DM, the two decision makers should find the following equivalences between the weights:

w1 ←→ w̃c

w2 ←→ w̃b

w3 ←→ w̃a

We tested whether the LP-S and FPP methods are independent of problem formulation. To

conduct the experiment, we used two pairwise comparison matrices containing exactly the same

comparisons with the exception that for the second pairwise comparison matrix, the alternatives

were labeled differently. The pairwise comparison matrix that we examined was presented and

studied by Mikhailov [26]. We created a complimentary pairwise comparison matrix by reversing

the order of the alternatives and permuting the entries in the pairwise comparison to correspond

with this reversal. These two matrices are presented below.

C =

















1 [1, 2] c13

[ 1
2
, 1] 1 [2, 3]

1

c13

[ 1
3
, 1

2
] 1

















C̃ =

















1 [ 1
3
, 1

2
] 1

c13

[2, 3] 1 [1
2
, 1]

c13 [1, 2] 1

















The interval entries in C are the same as those from the example in Mikhailov’s paper, where

different values of c13 are used to create a variety of problem instances. C̃ is the complimentary

matrix we built from the entries in C.

We compared the performance of our LP-S method versus the linear FPP method on seven

different intervals for the seven intervals of c13 provided by Mikhailov [26]. We provide the details

of one of these calculations on the most strongly-inconsistent example provided in [26], where
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w1(w̃c) w2(w̃b) w3(w̃a)
∑∑

gij

∑∑

zij zmax λ

LP-S on C 0.198 0.380 0.422 1.8971 2.9958 0.9986 N/A

LP-S on C̃ 0.422 0.380 0.198 1.8971 2.9958 0.9986 N/A
FPP on C 0.263 0.434 0.303 N/A N/A N/A 0.828

FPP on C̃ 0.412 0.400 0.188 N/A N/A N/A 0.788

Table 4.3: Priority vectors and objective function values for LP-S and FPP

c13 = [0.1, 0.3] =⇒ 1

c13

= [10
3

, 10]. Both methods were implemented in LINDO, and the values for

these computations are given in Table 4.3.

We see that the LP-S method is successful in preserving the weights regardless of the

reordering of the alternatives. The optimal values for Stages 0, 1, and 2 are equal for both C and

C̃, and the resulting weights are the same, permuted accordingly. The FPP method, however, was

not able to produce consistent sets of weights. It generated two different priority vectors for C and

C̃, and the two sets of weights had different membership values.

We repeated these computations for the other six intervals of this problem. The results

of these experiments are displayed in Table 4.4 for the LP-S method and Table 4.5 for the FPP

method. In every instance, the LP-S method returned the same weights for both C and C̃.

Therefore, we have only displayed the solutions and the first, second, and third stage optimal

values in Table 4.5 that come from C.

Table 4.5 shows that the FPP’s assignment of weights is dependent on the comparison

information used. In this table, we have highlighted the optimal membership value of the two

solutions, indicating the better priority vector for the given c13. For several values of c13, using the

matrix C̃ for the FPP gave a better set of weights than C, but sometimes the priority vector for C

was associated with a higher membership value. Thus, given any pairwise comparison matrix, it is

unclear as to which matrix to use for the computation of the priority vector for the FPP method.

As noted earlier, the different solutions are a direct result of the fact that the FPP mem-

bership functions are maximized at the arithmetic midpoint of each interval. The arithmetic mean

for corresponding intervals in C and C̃ are not reciprocals of one another. The maximum value of

a membership function on an interval in C occurs at a different ratio than from the corresponding

interval in C̃. The weights for the FPP, therefore, depend on which set of information is used in

70



LP-S

c13 w1(w̃c) w2(w̃b) w3(w̃a)
∑∑

gij

∑∑

zij zmax

[2, 6] 0.5011 0.3543 0.1446 0 0 0

[8, 10] 0.6031 0.3016 0.0954 0.2877 0.9485 0.3465

[0.1, 0.3] 0.1982 0.3804 0.4215 2.9958 1.8971 0.9986

[0.1, 0.9] 0.3214 0.3214 0.3572 0.7985 2.4465 1.0986

[0.5, 0.9] 0.3242 0.3962 0.2796 0.7985 1.6417 0.5472

[0.5, 1.5] 0.3463 0.4228 0.2309 0.2876 1.383 0.546

[1, 1.9] 0.3979 0.3979 0.2041 0.0512 0.9215 0.3466

Table 4.4: LP-S weights and objective function values for Mikhailov’s problem

FPP Linear (C) FPP Linear (C̃)

c13 w1 w2 w3 λ c̃13 w̃c w̃b w̃a λ

[2, 6] 0.462 0.385 0.154 1.077 [ 1
6
, 1

2
] 0.433 0.400 0.167 1.033

[8, 10] 0.625 0.292 0.083 0.958 [ 1

10
, 1

8
] 0.615 0.297 0.088 0.989

[0.1, 0.3] 0.263 0.434 0.303 0.828 [ 10
3

, 10] 0.413 0.400 0.188 0.788

[0.1, 0.9] 0.324 0.419 0.256 0.906 [10
9

, 10] 0.321 0.400 0.279 0.921

[0.5, 0.9] 0.324 0.419 0.256 0.906 [10
9

, 2] 0.321 0.400 0.279 0.921

[0.5, 1.5] 0.370 0.407 0.222 0.963 [2
3
, 2] 0.375 0.400 0.225 0.975

[1, 1.9] 0.395 0.401 0.204 0.993 [10
19

, 1] 0.396 0.400 0.204 0.996

Table 4.5: Weights and membership values for the FPP solutions for C and C̃

the formulation. A DM might make the same comparisons in a slightly different order and get en-

tirely different weights. The first example we illustrated in this subsection showed that generating

different sets of weights may not be the only problem. Sometimes, the inconsistency might be so

great that a different rank ordering might occur. For the example when c13 = [0.1, 0.3], we notice

that using the FPP on C yields w2 > w3 > w1, while using the FPP on C̃ yields w̃c > w̃b > w̃a.

This should not occur for one method using the same interval information.

Our method is not subject to these deficiencies. Our use of the geometric mean preserves

the preference structure of the DM and the reciprocal nature of his or her comparisons. In the

minimization of the total error with respect to the geometric mean, the same point of reference is

used for the measurement of this error no matter which comparisons are used. The weights will

be unchanged regardless of the problem structure. We see this consistency as a necessary feature

for any interval method.
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4.4 Concluding Remarks on Interval Methods

The debate over the most effective way to determine a priority vector for interval pairwise

comparison matrices will continue, as evidenced by the growing number of methods introduced in

recent years to address the interval problem. In this chapter, we have introduced the LP method

and presented a natural adaptation to it. The addition of stretch factors is a straightforward

extension to the LP model, and the three-stage formulation synthesizes a variety of techniques.

This new method, what we call the LP-S method, finds quality priority vectors and is flexible

enough to be applied to a wide variety of pairwise comparison matrices.

In this section of the thesis, we have also illustrated that there are a few problems with two

alternative methods (the LGP and FPP) used for generating weights for a inconsistent interval

pairwise comparison matrix. While these two methods are able to generate solutions, we have

documented some of the problems they encounter. We have also demonstrated how our LP-S

method avoids these problems. Through more experimentation, we aim to further explore the

LP-S method in search of other potential strengths and weaknesses. We believe that it holds much

promise in the future study of interval AHP problems.
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Chapter 5

Conclusions and Ideas for Future Work

In the first part of this thesis, we revisited the greatest sports record problem that was

examined by Golden and Wasil [16] and Richardson [29]. Using up-to-date data and the ratings

mode of the analytic hierarchy process, we ranked the greatest sports records of all time. We

found Byron Nelson’s 11 consecutive professional wins, Joe DiMaggio’s 56 consecutive-game hitting

streak, and Wilt Chamberlain’s 50.4 points per game average to be the three greatest single-season

sports records. Babe Ruth’s 0.670 career slugging average, Wayne Gretzky’s 2857 points, and Jack

Nicklaus’ 18 majors were the three greatest career sports records. Wilt Chamberlain’s 100 points

scored in a basketball game and Ernie Nevers’ 40 point football game were the greatest single-event

sports records.

In the future, it will be relatively easy to monitor the rankings with the ratings mode of

the AHP. As values and data associated with the records change, we will be able to update the

ratings and determine whether or not any records should receive an updated rating. We are also

always in search of additional great individual records that could be considered for our study, such

as Lance Armstrong’s six Tour de France victories or Edwin Moses’s 122 consecutive wins in the

400m hurdles. In future studies, we might consider team records such as the 21-game winning

streak of the New England Patriots in 2003-04 and the 33-game winning streak of the Los Angeles

Lakers in 1971-72. The ratings mode would allow these records to be easily incorporated into our

rankings.

We note that this study analyzes the greatest sports records of all time, not necessarily

the greatest athletes of all time. Though the records we considered in this study are remarkable

achievements themselves, they are not always indicators of the greatest athletes in a sport. De-

termining the greatest athletes of all time is an interesting area where we might apply the AHP
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in future work. Examples of these studies might include determining the greatest football quar-

terback, the best point guard in basketball, and the best professional golfer of all time. In such

focused studies, we would be able to more explicitly capture a variety of different sport-specific

performance indicators and better analyze how changes in sports over time have impacted the

determination of a great athlete in his or her respective sport.

In the second part of this thesis, we studied solution techniques for generating priority vec-

tors for interval AHP problems. We introduced the LP method, identified its major deficiency,

and modified the method to address this deficiency. By including stretch factors into the formu-

lation, we have given the LP method the ability to allow sets of weights that do not satisfy all of

the interval pairwise comparisons. This new LP-S method can be applied to all types of pairwise

comparison matrices: discrete, interval, and mixed; consistent and inconsistent. We have also

presented a case for why we believe the LP-S method is better than other interval techniques, and

we have compared the LP-S method to these techniques.

In future work, we plan to analyze the performance of the LP-S on all types of pairwise

comparison matrices and continue to compare its performance to other interval methods. We

would also like to explore the role our Stage 0 and Stage 1 objective functions play in measuring

the quality of solutions. We plan to investigate consistency measures like the geometric consistency

index [2] to help us determine acceptable values for total stretching and total error.
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Appendix A

Greatest Sports Records Appendix

A.1 Single-Season Records Data

Throughout the process of determining the greatest records in each of the three categories,

we gathered a lot of data to support our analyses. In this section, we include all single-season data

used for the study that could not be included in the text because of space considerations.

A.1.1 Recent Challengers to the Single-Season Records

In determining how long each record is expected to stand, we analyzed some of the best

athletic performances in each sport over the past ten years (1994-2004). Table A.1a through Ta-

ble A.1e list some of the most recent challenges to each record.

Basketball
Player Mark Year Player Mark Year
STOCKTON WILTSAVG

John Stockton 14.5 1989-90 Wilt Chamberlain 50.4 1961-62
John Stockton 12.6 1993-94 Tracy McGrady 32.1 2002-03
John Stockton 12.3 1994-95 Allen Iverson 31.4 2001-02
Mark Jackson 11.4 1996-97 Allen Iverson 31.1 2000-01
John Stockton 11.2 1995-96 Michael Jordan 30.4 1995-96
Andre Miller 10.9 2001-02 Kobe Bryant 30.0 2002-03
Jason Kidd 10.8 1998-99

WILTREB
Wilt Chamberlain 27.2 1960-61
Dennis Rodman 17.3 1993-94
Dennis Rodman 16.8 1994-95
Dennis Rodman 16.1 1996-97
Ben Wallace 15.4 2002-03
Dennis Rodman 15 1997-98
Dennis Rodman 14.9 1995-96

Table A.1a: Challengers to each single-season basketball record from 1994-2004
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Baseball
Player Mark Year Player Mark Year
DIMAGGIO HENDRSON

Joe DiMaggio 56 1941 Rickey Henderson 130 1982
Luis Castillo 35 2002 Kenny Lofton 75 1996
Vladimir Guerrero 31 1999 Brian Hunter 74 1997
Sandy Alomar 30 1997 Tony Womack 72 1999
Nomar Garciaparra 30 1997 Roger Cedeno 66 1999
Albert Pujols 30 2003 Rickey Henderson 66 1998
Eric Davis 30 1998 Tom Goodwin 66 1996
Luis Gonzalez 30 1999

BONDSHR GIBSON
Barry Bonds 73 2001 Bob Gibson 1.12 1968
Mark McGwire 70 1998 Greg Maddux 1.56 1994
Sammy Sosa 66 1998 Greg Maddux 1.63 1995
Mark McGwire 65 1999 Pedro Martinez 1.74 2000
Sammy Sosa 64 2001 Kevin Brown 1.89 1996
Sammy Sosa 63 1999 Pedro Martinez 1.9 1997
Luis Gonzalez 57 2001 Roger Clemens 2.05 1997
Alex Rodriguez 57 2002

BONDSSA RYAN
Barry Bonds 0.863 2001 Nolan Ryan 383 1973
Barry Bonds 0.799 2002 Randy Johnson 372 2001
Mark McGwire 0.752 1998 Randy Johnson 364 1999
Jeff Bagwell 0.750 1994 Randy Johnson 347 2000
Barry Bonds 0.749 2003 Randy Johnson 334 2002
Sammy Sosa 0.737 2001 Curt Schilling 319 1997
Mark McGwire 0.730 1996 Curt Schilling 316 2002

HORNSBY WILSON
Rogers Hornsby 0.424 1924 Hack Wilson 191 1930
Tony Gwynn 0.394 1994 Manny Ramirez 165 1999
Larry Walker 0.379 1999 Sammy Sosa 160 2001
Tony Gwynn 0.372 1997 Sammy Sosa 158 1998
Nomar Garciaparra 0.372 2000 Juan Gonzalez 157 1998
Todd Helton 0.372 2000 Albert Belle 152 1998
Barry Bonds 0.370 2002 Andres Galarraga 150 1996

Table A.1b: Challengers to each single-season baseball record from 1994-2004

Golf
Player Mark Year
NELSON

Byron Nelson 11 1945
Tiger Woods 6 1999-00
Peter Jacobsen 3 1995
David Duval 3 1998

Table A.1c: Challengers to the single-season golf record from 1994-2004
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Hockey
Player Mark Year Player Mark Year
GRETZKYG GRETZKYP

Wayne Gretzky 92 1981-82 Wayne Gretzky 215 1985-86
Mario Lemieux 69 1995-96 Mario Lemieux 161 1995-96
Pavel Bure 59 2000-01 Jaromir Jagr 149 1995-96
Pavel Bure 58 1999-2000 Jaromir Jagr 127 1998-99
Alexander Mogilny 55 1995-96 Mario Lemieux 122 1996-97
Joe Sakic 54 2000-01 Jaromir Jagr 121 2000-01

Joe Sakic 118 2000-01
GRETZKYA

Wayne Gretzky 163 1985-86
Mario Lemieux 92 1995-96
Ron Francis 92 1995-96
Jaromir Jagr 87 1995-96
Peter Forsberg 86 1995-96
Jaromir Jagr 83 1998-99
Peter Forsberg 77 2002-03

Table A.1d: Challengers to each single-season hockey record from 1994-2004

Football
Player Mark Year Player Mark Year
DICKRSON HORNUNG

Eric Dickerson 2105 1984 Paul Hornung 176 1960
Jamal Lewis 2066 2003 Gary Anderson 164 1998
Barry Sanders 2053 1997 Jeff Wilkins 163 2003
Terrell Davis 2008 1998 Priest Holmes 162 2003
Barry Sanders 1883 1994 Marshall Faulk 160 2000
Ahman Green 1883 2003 Mike Vanderjagt 157 2003
Ricky Williams 1853 2002 Emmitt Smith 150 1995

MARINO HOLMES
Dan Marino 48 1984 Priest Holmes 27 2003
Kurt Warner 41 1999 Marshall Faulk 26 2000
Brett Favre 39 1996 Emmitt Smith 25 1995
Brett Favre 38 1995 Priest Holmes 24 2002
Steve Young 36 1998 Terrell Davis 23 1998
Steve Beuerlein 36 1999 Emmitt Smith 22 1994

Table A.1e: Challengers to each single-season football record from 1994-2004
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A.1.2 Single-Season Ratings Pairwise Comparison Matrices

Each subfactor is sorted into three to five ratings, with each record being assigned one of

these ratings. The ratings are compared relative to each other, and the priority vector generated

from these comparisons is used to assign the local weights to each record. The matrices below

contain the pairwise comparisons for the single-season ratings and the priority vectors associated

with them.

Years Record Has Stood

Priority
Over 50 years 1 2 5 9 1.000
25 to 50 years 1 3 7 0.581
10 to 25 years 1 3 0.216
Under 10 years 1 0.088

Years Expected to Stand

Priority
Over 20 years 1 2 6 1.000
10 to 20 years 1 3 0.500
Under 10 years 1 0.167

Percent Over Previous Record

Priority
Over 50% 1 3 4 7 9 1.000
30% to 50% 1 2 3.5 7 0.461
15% to 30% 1 2 4 0.262
5% to 15% 1 1.5 0.130
Less than 5% 1 0.081

Percent Over Contemporary Mark

Priority
Over 55% 1 3 5 8 1.000
40% to 55% 1 2 5 0.408
20% to 40% 1 2 0.200
Less than 20% 1 0.101

Glamour

Priority
Well known 1 2 5 8 1.000
Known 1 3 6 0.578
Not always known 1 2 0.201
Not known 1 0.110

Purity

Priority
Not aided 1 2 6 1.000
Slightly aided 1 3 0.500
Greatly aided 1 0.167

A.2 Career Sports Records Data

This section contains the data used to assign a rating to each career record for the Years

Record is Expected to Stand subcriterion. We also give the pairwise comparison matrices and
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their respective priority vector for the five career ratings.

A.2.1 Current Challengers to Career Records

For estimating the length of time we expect each career record to stand, we researched

active players that either are (a) relatively close to passing the current active career record or (b)

young in their careers but could challenge the career record in the future. In Tables A.2a through

Table A.2c, we give the data we gathered.

Career Average per Years
Challengers Total Season 2001 2002 2003 Needed Age

Baseball
AARON

Hank Aaron 755
Barry Bonds 658 37 73 46 45 3 39
Sammy Sosa 539 36 64 49 40 6 35
Alex Rodriguez 345 35 52 57 47 12 28

COBB
Ty Cobb 0.370
Todd Helton 0.337 0.336 0.329 0.358 30
Nomar Garciaparra 0.323 0.289 0.310 0.301 30
Vladimir Guerrero 0.323 0.307 0.336 0.330 27

HENDRSON
Ricky Henderson 1406
Kenny Lofton 538 41 16 29 30 22
Barry Bonds 500 28 13 9 7 33 39
Roberto Alomar 474 30 30 16 12 31 35

RIPKEN
Cal Ripken 2632
Miguel Tejada 564 13 27

ROSE
Pete Rose 4256
Rickey Henderson 3055 122 86 40 15 10 45
Rafael Palmeiro 2780 154 164 149 146 10 39
Roberto Alomar 2679 105 193 157 133 15 35

RUTH
Babe Ruth 0.690
Todd Helton 0.616 0.685 0.577 0.630 30
Barry Bonds 0.602 0.863 0.799 0.749 39
Manny Ramirez 0.598 0.609 0.647 0.587 31

RYAN
Nolan Ryan 5714
Roger Clemens 4099 205 213 192 190 8
Randy Johnson 3871 242 372 334 125 8 40
Pedro Martinez 2426 202 163 239 206 17 32

Table A.2a: Active challengers to the baseball career records
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Career Average per Years
Challengers Total Season 2001 2002 2003 Needed Age

Basketball
JABBAR

Kareem Abdul-Jabbar 38387
Karl Malone 36928 1944 1788 1667 554 1 40
Shaquille O’Neal 20475 1861 2125 1822 1841 10 31
Tracy McGrady 10420 1489 1948 2407 1878 19 25

JORDWILT
Michael Jordan 30.1
Shaquille O’Neal 27.1 27.2 27.5 21.5 31
Allen Iverson 27.0 31.4 27.6 26.4 28
Karl Malone 25.0 22.4 20.6 13.2 40

WILTREB
Wilt Chamberlain 23924
Karl Malone 14968 788 686 628 367 12 40
Kevin Garnett 7493 833 981 1102 1139 20 28
Tim Duncan 6407 915 1043 1043 859 20 27

STOCKTON
John Stockton 15806
Gary Payton 8039 574 737 663 449 14 35
Jason Kidd 6738 674 808 711 618 14 31
Stephon Marbury 4830 604 666 654 719 19 27

Football
ANDERSON

Gary Anderson 2346
Morten Andersen 2259 103 98 117 106 1 43
John Carney 1433 110 113 130 102 9 39
Matt Stover 1364 97 115 96 134 11 35

MARINO
Dan Marino 61243
Brett Favre 45646 3804 3921 3658 3361 5 34
Drew Bledsoe 36876 3352 400 4359 2860 8 31
Peyton Manning 24885 4148 4131 4200 4267 9 27

SMITH
Emmitt Smith 17418
Jerome Bettis 12353 1123 1072 666 811 5 31
Curtis Martin 11669 1297 1513 1094 1308 5 30
Eddie George 10009 1251 939 1165 1031 6 30
Jamal Lewis 4757 1586 — 1327 2066 8 24

UNITAS
Johnny Unitas 47
Brett Favre 25 34

Table A.2b: Active challengers to the basketball and football career records
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Career Average per Years
Challengers Total Season 2001 2002 2003 Needed Age

Hockey
GRETZKY

Wayne Gretzky 2857
Mark Messier 1887 75 23 40 43 14 43
Joe Sakic 1402 88 79 58 87 18 34
Jaromir Jagr 1309 94 79 77 74 17 32

Golf
NICKLAUS

Jack Nicklaus 18
Tiger Woods 8 28
Nick Faldo 6
Ernie Els 3 34

BERG
Patty Berg 15
Juli Inkster 7 43
Annika Sorenstam 6 33
Se Ri Pak 4 26

Tennis
SAMPRAS

Pete Sampras 14
Andre Agassi 8 33
Gustavo Keurten 3 27
Lleyton Hewitt 2 22

COURT
Margaret Smith Court 24
Monica Seles 9 30
Serena Williams 6 22
Venus Williams 4 23

Table A.2c: Active challengers to the hockey, golf, and tennis career records
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A.2.2 Pairwise Comparisons for Career Ratings

Like the single-season records, we pairwise compared the ratings and generated weights for

these ratings using Expert Choice. These pairwise comparison matrices are contained below.

Years Record has Stood

Priority
Over 50 years 1 2 5 9 1.000
25 to 50 years 1 3 7 0.581
10 to 25 years 1 3 0.216
Less than 10 years 1 0.088

Years Expected to Stand

Priority
Over 20 years 1 3 7 1.000
10 to 20 years 1 2 0.317
Less than 10 years 1 0.150

Percent over Second Best

Priority
Over 40% 1 3 5 8 1.000
15% to 40% 1 2 5 0.408
5% to 15% 1 2 0.200
Less than 5% 1 0.101

Glamour

Priority
Well known 1 2 5 8 1.000
Known 1 3 6 0.578
Not always known 1 2 0.201
Not known 1 0.110

Purity

Priority
Not aided 1 2 6 1.000
Slightly aided 1 3 0.500
Greatly aided 1 0.167

A.3 Single-Event Records Data

A.3.1 Recent Challenges to the Single-Event Records

To make estimations as to how long we believe each single-event record will last, we collected

information regarding recent performances that came close to challenging each record. Table A.3

contains data regarding the best single-event performances from 1994-2004.
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Sport Identifier Player Mark Date

Basketball
WILTPTS Wilt Chamberlain 100

David Robinson 71 04/24/94
Tracy McGrady 62 03/10/04
Shaquille O’Neal 61 03/06/00

WILTREB Wilt Chamberlain 55
Dennis Rodman 32 01/22/94

Football
NEVERS Ernie Nevers 40

Clinton Portis 30 12/07/03
Shaun Alexander 30 09/29/02
James Stewart 30 10/12/97
Corey Dillon 24 12/04/97

LEWIS Jamal Lewis 295
Corey Dillon 278 10/22/00
Shaun Alexander 266 11/11/01
Mike Anderson 251 12/03/00
Corey Dillon 246 12/04/97

VBRCKLN Norm Van Brocklin 554
Boomer Esiason 522 11/10/96
Elvis Grbac 504 11/05/00
Vinny Testaverde 481 12/24/00

Track & Field
POWELL Mike Powell 8.95

Erick Walder 8.74 04/01/94
Ivan Pedroso 8.71 07/18/95
Melvin Lister 8.49 05/13/00
Jai Taurima 8.49 09/28/00

Table A.3: Recent challengers to the single-event records
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A.3.2 Pairwise Comparisons Matrices

In contrast to the single-season and career records, the single-event weights were found using

the standard AHP. With respect to each subcriterion, we made pairwise comparisons between each

pair of records. The resulting pairwise comparison matrices and the priority vectors associated

with each matrix are contained in Table A.4 through Table A.8.

• Years a Record has Stood

Priority
NEVERS 1 1.42 1.72 1.80 6.17 9 0.307
VBRKLN 1 1.21 1.27 4.33 9 0.224
WILTREB 1 1.05 3.58 9 0.191
WILTPTS 1 3.42 9 0.183
POWELL 1 9 0.074
LEWIS 1 0.021

Table A.4: Pairwise comparisons for Years Stood

• Years Expected to Stand

Priority
WILTPTS 1 1.2 1.5 3 4 7 0.311
NEVERS 1 1.2 2 3 5 0.237
WILTREB 1 2 2 5 0.199
POWELL 1 1.5 5 0.112
VBRKLN 1 3 0.104
LEWIS 1 0.037

Table A.5: Pairwise comparisons for Years Expected to Stand

• Percent over Previous Mark

Priority
WILTPTS 1 1.23 2.22 5.21 6.67 9 0.325
NEVERS 1 1.81 4.25 5.45 9 0.274
VBRKLN 1 2.34 3 9 0.172
WILTREB 1 1.28 9 0.100
LEWIS 1 9 0.089
POWELL 1 0.023

Table A.6: Pairwise comparisons for Percent over Previous
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• Glamour

Priority
WILTPTS 1 2.0 3.5 3.5 8.0 8.0 0.430
POWELL 1 1.8 1.8 4.0 4.0 0.217
WILTREB 1 1.0 2.3 2.3 0.123
LEWIS 1 2.3 2.3 0.123
NEVERS 1 1.0 0.054
VBRKLN 1 0.054

Table A.7: Pairwise comparisons for Glamour

• Purity

Priority
POWELL 1 2.0 4.0 4.0 5.0 7.0 0.426
LEWIS 1 2.0 2.0 2.5 3.5 0.213
WILTPTS 1 1.0 1.3 1.8 0.108
VBRKLN 1 1.3 1.8 0.108
NEVERS 1 1.6 0.086
WILTREB 1 0.059

Table A.8: Pairwise comparisons for Purity
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Appendix B

Interval AHP Appendix

B.1 LP-S Method on Example I

This section contains the formulation for the three stages of the LP-S method applied to the

sample problem presented in Subsection 4.2. The pairwise comparison matrix used for Example I

is found in Equation 4.28. The subsections that follow demonstrate and how we used the entries

in this matrix to create the Stage 0, Stage 1, and Stage 2 formulations for this example.

B.1.1 Stage 0 Formulation and Output

Stage 0 finds the minimum stretching required to remove the inconsistency among the inter-

vals. The objective function sums the stretch factors in the upper triangular entries of the pariwise

comparison matrix. To create the remaining formulation, we computed the natural logarithm of

the geometric mean of each interval in the upper triangular portion of the pairwise comparison

matrix. These values were used in the set of equality constraints. For the soft interval inequalities,

we computed the natural logarithm of both the upper and lower bound for these same intervals.

The remaining constraints are problem independent.

LINDO was used to optimize the linear program. Following the formulation, the output of

the solver is presented. We note that all values returned by LINDO are in the natural logarithm

space. They must be exponentiated to be returned to the normal weight space.

86



• Formulation

Min

3
∑

i=1

4
∑

j=i+1

gij

s.t. x1 − x2 − y12 = 1.1513 x1 − x2 + g12 ≥ 0.6931

x2 − x1 − y21 = −1.1513 x1 − x2 − g12 ≤ 1.6094

x1 − x3 − y13 = 1.0397 x1 − x3 + g13 ≥ 0.6931

x3 − x1 − y31 = −1.0397 x1 − x3 − g13 ≤ 1.3863

x1 − x4 − y14 = 0.34657 x1 − x4 + g14 ≥ 0.0

x4 − x1 − y41 = −0.34657 x1 − x4 − g14 ≤ 0.6931

x2 − x3 − y23 = 1.0075 x2 − x3 + g23 ≥ 0.9163

x3 − x2 − y32 = −1.0075 x2 − x3 − g23 ≤ 1.0986

x2 − x4 − y24 = 0.2028 x2 − x4 + g24 ≥ 0.0

x4 − x2 − y42 = −0.2028 x2 − x4 − g24 ≤ 0.4055

x3 − x4 − y34 = −0.34657 x3 − x4 + g34 ≥ −0.6931

x4 − x3 − y43 = 0.34657 x3 − x4 − g34 ≤ 0.0

z12 − y12 ≥ 0 x1 = 0

z12 − y21 ≥ 0 zij ≥ 0 ∀i, j

z13 − y13 ≥ 0 gij ≥ 0 ∀i, j

z13 − y31 ≥ 0

z14 − y14 ≥ 0

z14 − y41 ≥ 0

z23 − y23 ≥ 0

z23 − y32 ≥ 0

z24 − y24 ≥ 0

z24 − y42 ≥ 0

z34 − y34 ≥ 0

z34 − y43 ≥ 0
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• LINDO Output

LP OPTIMUM FOUND AT STEP 40

OBJECTIVE FUNCTION VALUE

1) 0.2232000

VARIABLE VALUE REDUCED COST

G12 0.000000 0.000000

G13 0.000000 1.000000

G14 0.000000 0.000000

G23 0.223200 0.000000

G24 0.000000 0.000000

G34 0.000000 0.000000

X1 0.000000 0.000000

X2 -0.693100 0.000000

Y12 -0.458200 0.000000

Y21 0.458200 0.000000

X3 -1.386200 0.000000

Y13 0.346500 0.000000

Y31 -0.346500 0.000000

X4 -0.693100 0.000000

Y14 0.346530 0.000000

Y41 -0.345443 0.000000

Y23 -0.314400 0.000000

Y32 0.314400 0.000000

Y24 -0.202800 0.000000

Y42 0.202800 0.000000

Y34 -0.346530 0.000000

Y43 0.346530 0.000000

Z12 0.458200 0.000000

Z13 0.458200 0.000000

Z14 0.458200 0.000000

Z23 0.458200 0.000000

Z24 0.458200 0.000000

Z34 0.346530 0.000000
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B.1.2 Stage 1 Formulation and Output

The Stage 1 formulation is exactly the same as Stage 0 with only one addition. The Stage 0

optimal solution is saved and entered as a constraint into the Stage 1 formulation. Only solutions

that satisfy the minimum stretching needed to remove the inconsistency are feasible in Stage 1.

This formulation is optimized to find the minimum total error.

• Formulation

Min

3
∑

i=1

4
∑

j=i+1

zij

s.t.

3
∑

i=1

4
∑

j=i+1

gij = 0.2232

x1 − x2 − y12 = 1.1513 x1 − x2 + g12 ≥ 0.6931

x2 − x1 − y21 = −1.1513 x1 − x2 − g12 ≤ 1.6094

x1 − x3 − y13 = 1.0397 x1 − x3 + g13 ≥ 0.6931

x3 − x1 − y31 = −1.0397 x1 − x3 − g13 ≤ 1.3863

x1 − x4 − y14 = 0.34657 x1 − x4 + g14 ≥ 0.0

x4 − x1 − y41 = −0.34657 x1 − x4 − g14 ≤ 0.6931

x2 − x3 − y23 = 1.0075 x2 − x3 + g23 ≥ 0.9163

x3 − x2 − y32 = −1.0075 x2 − x3 − g23 ≤ 1.0986

x2 − x4 − y24 = 0.2028 x2 − x4 + g24 ≥ 0.0

x4 − x2 − y42 = −0.2028 x2 − x4 − g24 ≤ 0.4055

x3 − x4 − y34 = −0.34657 x3 − x4 + g34 ≥ −0.6931

x4 − x3 − y43 = 0.34657 x3 − x4 − g34 ≤ 0.0

z12 − y12 ≥ 0 x1 = 0

z12 − y21 ≥ 0 zij ≥ 0 ∀i, j

z13 − y13 ≥ 0 gij ≥ 0 ∀i, j

z13 − y31 ≥ 0

z14 − y14 ≥ 0

z14 − y41 ≥ 0

z23 − y23 ≥ 0

z23 − y32 ≥ 0

z24 − y24 ≥ 0

z24 − y42 ≥ 0

z34 − y34 ≥ 0

z34 − y43 ≥ 0
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• LINDO Output

LP OPTIMUM FOUND AT STEP 31

OBJECTIVE FUNCTION VALUE

1) 1.812160

VARIABLE VALUE REDUCED COST

Z12 0.661000 0.000000

Z13 0.346500 0.000000

Z14 0.346530 0.000000

Z23 0.111600 0.000000

Z24 0.000000 1.000000

Z34 0.346530 0.000000

G12 0.202800 0.000000

G13 0.000000 1.000000

G14 0.000000 1.000000

G23 0.020400 0.000000

G24 0.000000 1.000000

G34 0.000000 1.000000

X1 0.000000 0.000000

X2 -0.490300 0.000000

Y12 -0.661000 0.000000

Y21 0.661000 0.000000

X3 -1.386200 0.000000

Y13 0.346500 0.000000

Y31 -0.346500 0.000000

X4 -0.693100 0.000000

Y14 0.346530 0.000000

Y41 -0.345443 0.000000

Y23 -0.111600 0.000000

Y32 0.111600 0.000000

Y24 0.000000 0.000000

Y42 0.000000 0.000000

Y34 -0.346530 0.000000

Y43 0.346530 0.000000

We note that this solution is different from the solution obtained in Stage 0. The value

for the total stretching is the same for these two stages (it has to be), while the variables

adjust to find the solution with the smallest total error.
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B.1.3 Stage 2 Formulation and Output

For the final stage, both Stage 0 and Stage 1 optimal objective values were entered as

constraints in Stage 2. As before, the Stage 2 formulation has the same form as Stages 0, with

only these two constraints and conditions for zmax added.

• Formulation

Min zmax

s.t.
3
∑

i=1

4
∑

j=i+1

gij = 0.2232
3
∑

i=1

4
∑

j=i+1

zij = 1.81216

x1 − x2 − y12 = 1.1513 x1 − x2 + g12 ≥ 0.6931

x2 − x1 − y21 = −1.1513 x1 − x2 − g12 ≤ 1.6094

x1 − x3 − y13 = 1.0397 x1 − x3 + g13 ≥ 0.6931

x3 − x1 − y31 = −1.0397 x1 − x3 − g13 ≤ 1.3863

x1 − x4 − y14 = 0.34657 x1 − x4 + g14 ≥ 0.0

x4 − x1 − y41 = −0.34657 x1 − x4 − g14 ≤ 0.6931

x2 − x3 − y23 = 1.0075 x2 − x3 + g23 ≥ 0.9163

x3 − x2 − y32 = −1.0075 x2 − x3 − g23 ≤ 1.0986

x2 − x4 − y24 = 0.2028 x2 − x4 + g24 ≥ 0.0

x4 − x2 − y42 = −0.2028 x2 − x4 − g24 ≤ 0.4055

x3 − x4 − y34 = −0.34657 x3 − x4 + g34 ≥ −0.6931

x4 − x3 − y43 = 0.34657 x3 − x4 − g34 ≤ 0.0

z12 − y12 ≥ 0 zmax − z12 ≥ 0

z12 − y21 ≥ 0 zmax − z13 ≥ 0

z13 − y13 ≥ 0 zmax − z14 ≥ 0

z13 − y31 ≥ 0 zmax − z23 ≥ 0

z14 − y14 ≥ 0 zmax − z24 ≥ 0

z14 − y41 ≥ 0 zmax − z34 ≥ 0

z23 − y23 ≥ 0 x1 = 0

z23 − y32 ≥ 0 zij ≥ 0 ∀i, j

z24 − y24 ≥ 0 gij ≥ 0 ∀i, j

z24 − y42 ≥ 0

z34 − y34 ≥ 0

z34 − y43 ≥ 0
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• LINDO Output

LP OPTIMUM FOUND AT STEP 47

OBJECTIVE FUNCTION VALUE

1) 0.6610000

VARIABLE VALUE REDUCED COST

ZMAX 0.661000 0.000000

G12 0.202800 0.000000

G13 0.000000 1.000000

G14 0.000000 0.000000

G23 0.020400 0.000000

G24 0.000000 1.000000

G34 0.000000 1.000000

Z12 0.661000 0.000000

Z13 0.346500 0.000000

Z14 0.346530 0.000000

Z23 0.111600 0.000000

Z24 0.000000 0.000000

Z34 0.346530 0.000000

X1 0.000000 0.000000

X2 -0.490300 0.000000

Y12 -0.661000 0.000000

Y21 0.661000 0.000000

X3 -1.386200 0.000000

Y13 0.346500 0.000000

Y31 -0.346500 0.000000

X4 -0.693100 0.000000

Y14 0.346530 0.000000

Y41 -0.345443 0.000000

Y23 -0.111600 0.000000

Y32 0.111600 0.000000

Y24 0.000000 0.000000

Y42 0.000000 0.000000

Y34 -0.346530 0.000000

Y43 0.346530 0.000000

The output from Stage 2 show that the solution to Stage 1 also minimized the maxi-

mum error for this example (it is not always the case). The overall priority vector associated

with the pairwise comparison matrix can be found by exponentiating x1, x2, x3, and x4 and

then normalizing the weights. These weights can be found in the text.
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B.2 Formulations for Computational Comparison I

The first computational comparison in the text presented the interval pairwise comparison

matrix found in Equation 4.29. For that matrix, we found a priority vector using five different

methods: LP-S, LGP, FPP, EM, and LLS. To illstrate the the differences in the linear programs

used by three of these methods, we have shown the formulations for the LP-S, LGP, and FPP

methods. and found a priority vector using five different methods. In this section, we have

included the formulations for the linear programming methods used to generate three of these

solutions: the LP method with stretching, Lexicographic Goal Programming, and Fuzzy Preference

Programming.

B.2.1 LP-S Stage 2 Formulation - Comparison I

We ran Stage 0 and Stage 1 for the LP-S method to find the minimum stretching and

minimum error for the pairwise comparison matrix used for this comparison. To save space, we

have only included the formulation for the third and final stage. The optimal values from these

two stages were entered as constraints in Stage 2, and the optimal priority vector was obtained

using LINDO. This priority vector is given in Table 4.1.
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Max zmax

s.t.

3
∑

i=1

4
∑

j=i+1

gij = 1.7918

3
∑

i=1

4
∑

j=i+1

zij = 2.7403

x1 − x2 − y12 = 0.34657 x1 − x2 + g12 ≥ 0

x2 − x1 − y21 = −0.34657 x1 − x2 − g12 ≤ 0.6931

x1 − x3 − y13 = 0.34657 x1 − x3 + g13 ≥ 0

x3 − x1 − y31 = −0.34657 x1 − x3 − g13 ≤ 0.6931

x1 − x4 − y14 = 0.89588 x1 − x4 + g14 ≥ 0.6931

x4 − x1 − y41 = −0.89588 x1 − x4 − g14 ≤ 1.0986

x2 − x3 − y23 = 1.3540 x2 − x3 + g23 ≥ 1.0986

x3 − x2 − y32 = −1.3540 x2 − x3 − g23 ≤ 1.6094

x2 − x4 − y24 = 1.4979 x2 − x4 + g24 ≥ 1.3863

x4 − x2 − y42 = −1.4979 x2 − x4 − g24 ≤ 1.6094

x3 − x4 − y34 = 1.9356 x3 − x4 + g34 ≥ 1.7918

x4 − x3 − y43 = −1.9356 x3 − x4 − g34 ≤ 2.0794

z12 − y12 ≥ 0 zmax − z12 ≥ 0

z12 − y21 ≥ 0 zmax − z13 ≥ 0

z13 − y13 ≥ 0 zmax − z14 ≥ 0

z13 − y31 ≥ 0 zmax − z23 ≥ 0

z14 − y14 ≥ 0 zmax − z24 ≥ 0

z14 − y41 ≥ 0 zmax − z34 ≥ 0

z23 − y23 ≥ 0 x1 = 0

z23 − y32 ≥ 0 zij ≥ 0 ∀i, j

z24 − y24 ≥ 0 gij ≥ 0 ∀i, j

z24 − y42 ≥ 0

z34 − y34 ≥ 0

z34 − y43 ≥ 0
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B.2.2 LGP Formulation - Comparison I

This subsection gives the specific formulation of the Lexicographic Goal Programming for

the pairwise comparison matrix from the first comparison. The weights that are returned by this

method are given in Table 4.1.

Min

3
∑

i=1

4
∑

j=i+1

pij + p′ij

s.t. − w1 + 1w2 + n12 − p12 = 0

w1 − 2w2 + n′

12 − p′12 = 0

−w1 + 1w3 + n13 − p13 = 0

w1 − 2w3 + n′

13 − p′13 = 0

−w1 + 2w4 + n14 − p14 = 0

w1 − 3w4 + n′

14 − p′14 = 0

−w2 + 3w3 + n23 − p23 = 0

w2 − 5w3 + n′

23 − p′23 = 0

−w2 + 4w4 + n24 − p24 = 0

w2 − 5w4 + n′

24 − p′24 = 0

−w3 + 6w4 + n34 − p34 = 0

w3 − 8w4 + n′

34 − p′34 = 0

p44 + n44 = 0
n
∑

i=1

wi + n44 − p44 = 1

wi ≥ 0 i = 1, 2, 3, 4

nij , pij , n
′

ij , p
′

ij ≥ 0 ∀i, j

We observe that the goal of the objective function of the LGP is very similar to the objective

function used by Stage 0 of the LP-S. The pij ’s and p′ij ’s serve a similar purpose as our stretch

factors by allowing solutions to violate the interval comparisons. Whenever pij or p′ij is positive,

the lower or upper interval endpoint for wi

wj
will be violated, respectively. Though the stretching for

the LGP is additive in nature, the magnitude of the minimum total stretching required to remove

the inconsistencies will be equal for the LGP and the LP-S.
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B.2.3 FPP Formulation - Comparison I

We also provide the formulation for the Fuzzy Preference Programming on the pairwise

comparison matrix in the first computational comparison. We employed linear membership func-

tions for the formulation, allowing us to use linear optimization techniques for generating a priority

vector. This formulation is given below.

Max λ

s.t. λ + w1 − 2w2 ≤ 1

λ− w1 + 1w2 ≤ 1

λ + w1 − 2w3 ≤ 1

λ− w1 + 1w3 ≤ 1

λ + w1 − 3w4 ≤ 1

λ− w1 + 2w4 ≤ 1

λ + w2 − 5w3 ≤ 1

λ− w2 + 3w3 ≤ 1

λ + w2 − 5w4 ≤ 1

λ− w2 + 4w4 ≤ 1

λ + w3 − 8w4 ≤ 1

λ− w3 + 6w4 ≤ 1

4
∑

i=1

wi = 1

wi ≥ 0 i = 1, 2, 3, 4

Each pair of constraints correspond to the two pieces of the linear membership function on

each interval. The λ that is maximized by the FPP is the membership value of the weight ratio

for each fuzzy set (interval comparison). The membership functions have been created so that

they assign membership values for weight ratios both inside and outside the interval comparisons.

Weight ratios inside the intervals are assigned membership values greater than one. Weight ratios

outside the intervals but inside the deviation parameters have membership values between zero and

one. Negative membership values are assigned to weight ratios far outside the interval comparisons.

The priority vector generated for this formulation can be found in Table 4.1.
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[17] González-Pachón, J. and C. Romero. “A method for dealing with inconsistencies in pairwise

comparisons.” European Journal of Operational Research 158, no. 2 (2004): 351-361.

[18] Hays, Graham. “Records to remember.” ESPN.com - Page 2.

http://sports.espn.go.com/espn/page2/story?page=hays/040803.

[19] Islam, R., M.P. Biswal, and S.S. Alam. “Preference programming and inconsistent interval

judgments.” European Journal of Operational Research 97, no. 1 (1997): 53-62.

[20] Justice, Richard. “The best ever?” The Houston Chronicle, July 12, 2004. http://www.lexis-

nexis.com.

[21] Kress, M. “Approximate articulation of preference and priority derivation - A comment.”

European Journal of Operational Research 52, no. 3 (1991): 382-383.

[22] Krieger, Dave. “Are these all-time greatest?” Chicago Tribune, June 26, 1988, C16.

[23] Leung, L. and D. Cao, “On consistency and ranking of alternatives in fuzzy AHP.” European

Journal of Operational Research 124, no. 1 (2000): 102-113.

[24] Lowitt, Bruce. “Nelson’s win streak worthy of the ranch.” St. Petersberg Times, October 19,

1999. http://www.lexis-nexis.com.

[25] McCallum, Jack. “The Record Company.” Sports Illustrated, January 1990, 57-81.

98



[26] Mikhailov, L. “A fuzzy approach to deriving priorities from interval pairwise comparison

judgements.” European Journal of Operational Research 159, no. 3 (2004): 687-704.

[27] MLB.com, Major League Baseball : The Official Site. http://www.mlb.com.

[28] Quinn, T.J. “How would sports’ greatest feats be viewed today?” Daily News, July 18, 2004.

http://www.lexis-nexis.com.

[29] Richardson, James S. “Ranking the greatest active sports records using the analytic hierarchy

process.” M.S. Thesis, University of Maryland, 2000.

[30] Russo, Christopher and Allen St. John. The Mad Dog 100: The Greatest Sports Arguments

of All Time. New York, NY: Random House, 2003.

[31] Saaty, Thomas L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.

[32] Srdjevic, B. “Combining different prioritization methods in the analytic hierarchy process

synthesis.” Computers & Operations Research, IN PRESS.

[33] Sugihara, K., H. Ishii, and H. Tanaka. “Interval priorities in AHP by interval regression

analysis.” European Journal of Operational Research 158, no. 3 (2004): 745-754.

[34] Wang, Y-M., J-B. Yang, and D-L. Xu. “Interval weight generation approaches based on con-

sistency test and interval comparison matrices.” Applied Mathematics and Computation, IN

PRESS.

[35] Wright, Russell O. A Tale of Two Leagues : How baseball changed as the rules, ball, franchises,

stadiums, and players changed, 1900-1998. Jefferson, NC: McFarland & Co., 1999.

99


