
ABSTRACT

Title of Dissertation: FRONTIERS IN LATTICE CRYPTOGRAPHY
AND PROGRAM OBFUSCATION

Daniel Apon, Doctor of Philosophy, 2017

Dissertation directed by: Professor Jonathan Katz
Department of Computer Science

In this dissertation, we explore the frontiers of theory of cryptography along two lines.
In the first direction, we explore Lattice Cryptography, which is the primary sub-area of
post-quantum cryptographic research.

Our first contribution is the construction of a deniable attribute-based encryption scheme
from lattices. A deniable encryption scheme is secure against not only eavesdropping attacks
as required by semantic security, but also stronger coercion attacks performed after the fact.
An attribute-based encryption scheme allows “fine-grained” access to ciphertexts, allowing
for a decryption access policy to be embedded in ciphertexts and keys. We achieve both
properties simultaneously for the first time from lattices.

Our second contribution is the construction of a digital signature scheme that enjoys
both short signatures and a completely tight security reduction from lattices. As a matter of
independent interest, we give an improved method of randomized inversion of the G gadget
matrix, which reduces the noise growth rate in homomorphic evaluations performed in a
large number of lattice-based cryptographic schemes, without incurring the high cost of
sampling discrete Gaussians.

In the second direction, we explore Cryptographic Program Obfuscation. A program
obfuscator is a type of cryptographic software compiler that outputs executable code with
the guarantee that “whatever can be hidden about the internal workings of program code, is
hidden.” Indeed, program obfuscation can be viewed as a “universal and cryptographically-
complete” tool.

Our third contribution is the first, full-scale implementation of secure program obfus-
cation in software. Our toolchain takes code written in a C-like programming language,
specialized for cryptography, and produces secure, obfuscated software.

Our fourth contribution is a new cryptanalytic attack against a variety of “early” program
obfuscation candidates. We provide a general, efficiently-testable property for any two
branching programs, called partial inequivalence, which we show is sufficient for launching
an “annihilation attack” against several obfuscation candidates based on Garg-Gentry-Halevi
multilinear maps.

FRONTIERS IN LATTICE CRYPTOGRAPHY AND PROGRAM OBFUSCATION

by

Daniel Apon

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Examining Committee:
Professor Jonathan Katz, Chair
Professor Andrew Childs
Professor Nikhil Chopra, Dean’s Representative
Professor Dana Dachman-Soled
Professor William Gasarch

©Copyright by

Daniel Apon

2017

Acknowledgements

Dear Jon, they said I have to be succinct. Thank you for all the talks, and all the wisdom
you shared. There is no spoon; just read more books, listen to more music! I will always
enjoy our conversations together.

To Bill – Sokath! His eyes uncovered! – Thank you. Thank. You. Without your help, I
wouldn’t have had the opportunity to continue my education in such an amazing place.

This dissertation is funded in part by a generous grant from the Apon Foundation and
Viewers Like You. Mom, Dad: I love you very much!

Finally, I would like to thank all of my other, many co-authors, without whom I would
have never made quite this journey nor learned so much:

Jacob Alperin-Sheriff, David W. Archer, Dan Boneh, Brent Carmer, Chongwon Cho, Seung
Geol Choi, Nico Döttling, Karim ElDefrawy, Sanjam Garg, Yan Huang, Leo Fan, Adam
Foltzer, Kevin Lawler, Kevin Lewi, Wing-Ning Li, Feng-Hao Liu, Alex J. Malozemoff,
Pratyay Mukherjee, Mariana Raykova, Daniel S. Roche, Elaine Shi, Aishwarya Thiruven-
gadam, Daniel Wagner, and Arkady Yerukhimovich.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Figures vi

1 Introduction 1
1.1 Overview of Contributions . 3

1.1.1 Chapter 3 – Deniable Encryption 3
1.1.2 Chapter 4 – Short Signatures with Tight Security 4
1.1.3 Chapter 5 – 5Gen: A Framework for Prototyping Obfuscation . . . 4
1.1.4 Chapter 6 – Cryptanalysis of Indistinguishability Obfuscators . . . 5

2 Technical Background and Preliminaries 6
2.1 Non-Cryptographic Preliminaries . 7

2.1.1 Branching Programs . 7
2.1.2 Matrix Branching Programs . 8

2.2 General Cryptographic Definitions . 9
2.2.1 Digital Signatures . 9
2.2.2 Chameleon Hashing . 10
2.2.3 Fully Homomorphic Encryption 11
2.2.4 Multilinear Maps . 12
2.2.5 Indistinguishability Obfuscation 13

2.3 Lattice Cryptography Background . 13
2.3.1 Lattices . 13
2.3.2 Discrete Gaussian Distributions 14
2.3.3 Randomness Extraction and the Matrix Norm 15
2.3.4 Hard Lattice Problems . 16
2.3.5 Trapdoors and Sampling Algorithms 17
2.3.6 The “Gadget” Matrix G . 18
2.3.7 Subgaussian Random Variables 19
2.3.8 Weak Pseudorandom Functions and Learning with Rounding 20
2.3.9 Puncturable Homomorphic Trapdoor Functions 21

iii

3 Deniable Attribute Based Encryption for Branching Programs from LWE 25
3.1 Introduction . 25

3.1.1 Our Contributions . 28
3.1.2 Our Approach . 29
3.1.3 Future Directions . 34

3.2 New Definitions and Tools . 35
3.2.1 Flexibly Bi-Deniable ABE: Syntax and Deniability Definition . . . 35
3.2.2 Attribute Based Bitranslucent Set Scheme 37
3.2.3 Extended LWE and Our New Variant 40

3.3 Flexibly Bi-Deniable Attribute-Based Encryption (ABE) for Branching
Programs . 44
3.3.1 Encoding Schemes for Branching Programs 44
3.3.2 Construction of Flexibly Bi-Deniable ABE for Branching Programs 50
3.3.3 Parameter Setting . 67
3.3.4 From AB-BTS to Flexible Bi-Deniable ABE 68

4 Weak is Better: Tightly Secure Short (Lattice) Signatures from Weak PRFs 70
4.1 Introduction . 70

4.1.1 Improving the Boyen-Li Scheme 72
4.1.2 Our Techniques . 75
4.1.3 Open Problems . 80

4.2 Improved Signature Scheme With Tight Security 80
4.2.1 Parameters . 80
4.2.2 Construction . 81
4.2.3 Security . 83
4.2.4 Efficient Evaluation of g . 86

4.3 Reducing Trapdoor Growth . 88
4.3.1 Distribution Definition and Properties 88
4.3.2 How to Inject Verifiable Randomness 91
4.3.3 Using Chameleon Hash Functions 92

5 5Gen: A Framework for Prototyping Applications Using Multilinear Maps
and Matrix Branching Programs 94
5.1 Introduction . 94

5.1.1 Our Contributions . 97
5.1.2 Related Work . 98

5.2 Framework Architecture . 98
5.3 From Programs to MBPs . 99
5.4 A Library for Multilinear Maps . 105

5.4.1 The GGHLite Multilinear Map . 106
5.4.2 The CLT Multilinear Map . 108

5.5 Multi-Input Functional Encryption . 109
5.5.1 Optimizing Comparisons . 111
5.5.2 Order-Revealing Encryption . 113
5.5.3 Three-Input DNF Encryption . 116

iv

5.6 Program Obfuscation . 117
5.7 Experimental Analysis . 121

5.7.1 MIFE Experiments . 121
5.7.2 Program Obfuscation Experiments 123

5.8 Conclusions . 124
5.9 Parameter Selection . 125

5.9.1 GGHLite . 125
5.9.2 CLT . 126

5.10 Lattice Attack on Encodings . 127

6 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13 129
6.1 Introduction . 129

6.1.1 Our Contributions . 130
6.1.2 Technical Overview . 132
6.1.3 Roadmap . 138

6.2 Additional Notations and Preliminaries . 138
6.2.1 Notations . 138
6.2.2 Matrix Products . 139
6.2.3 Column Space of a Matrix . 141
6.2.4 Branching Programs . 143

6.3 Attack Model for Investigating Annihilation Attacks 145
6.3.1 Annihilation Attack Model . 145
6.3.2 Obfuscation in the Annihilation Attack Model 147
6.3.3 Abstract Indistinguishability Obfuscation Security 148

6.4 Partially Inequivalent Branching Programs 149
6.5 Annihilation Attack for Partially Inequivalent Programs 152
6.6 Extending the Abstract Attack to GGH13 Multilinear Maps 158

6.6.1 The GGH13 Scheme: Background 159
6.6.2 Translating the Abstract Attack to GGH13 160
6.6.3 Completing the Attack for Large Enough Circuits 161

6.7 Example of Partially Inequivalent Circuits 162
6.7.1 Simple Pairs of Circuits that are Partially Inequivalent 162
6.7.2 Larger Pairs of Circuits that are Partially Inequivalent 163
6.7.3 Universal Circuit Leading to Partially Inequivalent Branching Pro-

grams . 167
6.8 Some details on our implementation . 168

Bibliography 174

v

List of Figures

3.2.1 Security experiments for bi-deniable ABE 37
3.2.2 Security experiments for AB-BTS . 39

4.1.1 Comparison to other standard model lattice-based signature schemes in the
ring setting . 73

5.2.1 Framework architecture. We use cryfsm to compile a Cryptol program
(here denoted by prog.cry) to an MBP, which can either be used as input
into our MIFE implementation or our obfuscation implementation. Both
these implementations use libmmap as a building block, which supports
both the CLT (libclt) and GGHLite (libgghlite) mmaps. 98

5.4.1 Estimates for the size of a single encoding in megabytes (MB) produced
for security parameters λ = 80 and λ = 40 and varying the multilinearity
degree κ ∈ [2, 30] for the GGHLite and CLT mmaps. 106

5.5.1 Estimates of the ciphertext size (in GB) for ORE with best-possible semantic
security at λ = 80, for domain size N = 1012 and for bases d ∈ [2, 25]. We
compare GGHLite and CLT, with the DC-variant and MC-variant optimiza-
tions. 115

5.5.2 Estimates of the ciphertext size (in GB) for ORE with best-possible semantic
security at λ = 80, for varying domain sizes. The exponent e on the x-axis
denotes support for plaintexts in the range from 1 to N = 10e. We compare
GGHLite map (DC-variant), the CLT map, and the basic construction Πore

(described in Section 5.5.2). 115
5.6.1 Estimates for the ciphertext size (in GB) for point function obfuscation, for

domain sizes N = 280 = 2λ and N = 240 = 2λ. In the case of λ = 80,
the minimums are achieved at d = 19 for GGHLite and d = 8 for CLT. In
the case of λ = 40, the minimums are achieved at d = 9 for GGHLite and
d = 6 for CLT. 120

6.1.1 The Attack Landscape for GGH13-based Obfuscators. In all cases, the
multilinear map is [GGH13a]. © means no attack is known.× means a
prior attack is known, and we present more general attacks for this setting.
⊗ means we give the first known attack in this setting and⊗ means a
new attack is discovered concurrently to ours (namely [CGH16a]). 132

vi

Chapter 1

Introduction

In this dissertation, we study two frontiers in modern cryptography: lattice-based cryptog-

raphy and cryptographic program obfuscation. In the first direction, lattice cryptography

(based on Regev’s Learning with Errors and various, related problems) is the primary sub-

area of post-quantum cryptographic research. Much of the interest in lattices originates with

Gentry’s 2009 breakthrough lattice-based construction of Fully Homomorphic Encryption,

which is a type of encryption scheme that permits computation on encrypted data without the

need to decrypt first. The development of homomorphic computation techniques over lattices

has led to a number of highly expressive cryptosystems that were previously unachievable –

though, unfortunately, the resulting schemes tend to be quite inefficient in practice.

Our two contributions to lattice cryptography further the expressiveness of such cryp-

tosystems on the one hand, and address some of the practical deficiencies of lattices on the

other hand. Indeed as we describe in more detail in the sequel, in Chapter 3 we construct

the first deniable Attribute-Based Encryption scheme from LWE (and the first provably

quantum-secure such system); that is, an ABE that is resistant to so-called coercion attacks

after the fact. Further, in Chapter 4 we design the first lattice-based digital signature scheme

that simultaneously enjoys short signatures and a totally tight security reduction. These

properties are inherently valuable (perhaps, even necessary) in any real-world instantiation

1

of digital signatures whose security is based on the computational intractability of lattice

problems.

In the second direction, we study cryptographic program obfuscation. A program

obfuscator is a type of cryptographic software compiler that takes as input a program P and

outputs an obfuscated program O(P). The compiled program O(P) should compute the

same function as P, but the description of the code of O(P) should somehow “provably

hide the internal workings of the computation.” The notion of program obfuscation is quite

strong, theoretically speaking. Indeed, it is fair to say that indistinguishability obfuscation

(for all polynomial-size circuits) is “Crypto-complete” – in the sense that cryptographers

currently believe that essentially any realizable cryptographic system can be achieved given

a secure program obfuscator (plus other, simpler tools such as any one-way function).

The current status of obfuscation constructions, and their security, is somewhat complex.

In a breakthrough result in 2013, Garg, Gentry, and Halevi gave the first candidate construc-

tion of cryptographic multilinear maps. Shortly thereafter, Garg, Gentry, Halevi, Raykova,

Sahai, and Waters used these multilinear maps to propose the first candidate construction

of indistinguishability obfuscation. The difference between a regular cryptosystem and a

candidate cryptosystem, is that candidate systems do not have a traditional proof of security

(rather, they simply appear to be reasonable, by community opinion and by lack of concrete

attacks against them). Ultimately, this has led to an ongoing process where a scheme is

proposed, then an attack is found, then the scheme is patched, and the cycle continues.

That said, our two contributions to program obfuscation are as follows. In Chapter 5,

we report on the first full-scale, software implementation of an entire program obfuscation

toolchain. Our compiler takes as input program code (in a C-like language specialized for

cryptographic computation, called Cryptol) and produces an obfuscated version of that code.

And finally, in Chapter 6 we give a new, efficient, cryptanalytic attack against a large class

of “early” obfuscation candidates. This last work is part of the latest iteration of “attack” in

the candidate-attack-patch cycle for obfuscation candidates mentioned above.

2

In what follows, we briefly introduce each of these four contributions in further detail.

1.1 Overview of Contributions

1.1.1 Chapter 3 – Deniable Encryption

Deniable encryption (Canetti et al. CRYPTO ’97) is an intriguing primitive that provides a

security guarantee against not only eavesdropping attacks as required by semantic security,

but also stronger coercion attacks performed after the fact. The concept of deniability has

later demonstrated useful and powerful in many other contexts, such as leakage resilience,

adaptive security of protocols, and security against selective opening attacks. Despite its

conceptual usefulness, our understanding of how to construct deniable primitives under

standard assumptions is restricted.

In particular from standard lattice assumptions, i.e. Learning with Errors (LWE), we

have only flexibly and non-negligible advantage deniable public-key encryption schemes,

whereas with the much stronger assumption of indistinguishable obfuscation, we can obtain

at least fully sender-deniable PKE and computation. How to achieve deniability for other

more advanced encryption schemes under standard assumptions remains an interesting open

question.

In Chapter 3, we construct a flexibly bi-deniable Attribute-Based Encryption (ABE)

scheme for all polynomial-size Branching Programs from LWE. Our techniques involve

new ways of manipulating Gaussian noise that may be of independent interest, and lead to a

significantly sharper analysis of noise growth in Dual Regev type encryption schemes. We

hope these ideas give insight into achieving deniability and related properties for further,

advanced cryptographic systems from lattice assumptions.

3

1.1.2 Chapter 4 – Short Signatures with Tight Security

The Boyen-Li signature scheme (Asiacrypt’16) is a major theoretical breakthrough. Via a

clever homomorphic evaluation of a pseudorandom function over their verification key, they

achieve a reduction loss in security linear in the underlying security parameter and entirely

independent of the number of message queries made, while still maintaining short signatures

(consisting of a single short lattice vector). All previous schemes with such an independent

reduction loss in security required a linear number of such lattice vectors, and even in

the classical world, the only schemes achieving short signatures relied on non-standard

assumptions.

In Chapter 4, we improve on their result, providing a verification key smaller by a

linear factor, a significantly tighter reduction with only a constant loss, and signing and

verification algorithms that could plausibly run in about 1 second. Our main idea is to change

the scheme in a manner that allows us to replace the pseudorandom function evaluation

with an evaluation of a much more efficient weak pseudorandom function. As a matter of

independent interest, we give an improved method of randomized inversion of the G gadget

matrix, which reduces the noise growth rate in homomorphic evaluations performed in a

large number of lattice-based cryptographic schemes, without incurring the high cost of

sampling discrete Gaussians.

1.1.3 Chapter 5 – 5Gen: A Framework for Prototyping Obfuscation

Secure multilinear maps (mmaps) have been shown to have remarkable applications in

cryptography, such as multi-input functional encryption (MIFE) and program obfuscation.

To date, there has been little evaluation of the performance of these applications.

In Chapter 5, we initiate a systematic study of mmap-based constructions. We build

a general framework, called 5Gen, to experiment with these applications. At the top

layer we develop a compiler that takes in a high-level program and produces an optimized

matrix branching program needed for the applications we consider. Next, we optimize and

4

experiment with several MIFE and obfuscation constructions and evaluate their performance.

The 5Gen framework is modular and can easily accommodate new mmap constructions

as well as new MIFE and obfuscation constructions, as well as being an open-source tool

that can be used by other research groups to experiment with a variety of mmap-based

constructions.

1.1.4 Chapter 6 – Cryptanalysis of Indistinguishability Obfuscators

Annihilation attacks, introduced in the work of Miles, Sahai, and Zhandry (CRYPTO

2016), are a class of polynomial-time attacks against several candidate indistinguishability

obfuscation (iO) schemes, built from Garg, Gentry, and Halevi (EUROCRYPT 2013)

multilinear maps.

In Chapter 6, we provide a general efficiently-testable property for two single-input

branching programs, called partial inequivalence, which we show is sufficient for our variant

of annihilation attacks on several obfuscation constructions based on GGH13 multilinear

maps. We also give examples of pairs of natural NC1 circuits, which – when processed via

Barrington’s Theorem – yield pairs of branching programs that are partially inequivalent.

As a consequence we are also able to show examples of “bootstrapping circuits,” used to

obtain obfuscations for all circuits (given an obfuscator for NC1 circuits), in certain settings

also yield partially inequivalent branching programs. Prior to our work, no attacks on any

obfuscation constructions for these settings were known.

5

Chapter 2

Technical Background and Preliminaries

In this chapter, we introduce notation and also define the various cryptographic constructions.

We remark that Chapter 6 of this work (describing a new cryptanalytic attack) uses more

detailed and specialized notation and preliminaries, and so we defer the relevant background

for that part of this work until that chapter.

Notations. Let PPT denote probabilistic polynomial time. We use λ to represent the

security parameter, where “λ-bit security” means that security should hold up to 2λ clock

cycles. We assume that all of our procedures run efficiently, or more formally, in PPT with

respect to the security parameter λ.

We use bold uppercase letters to denote matrices, and bold lowercase letters to denote

vectors, where vectors are by default column vectors throughout the work. For an integer

n > 0, we use [n] to denote the set of integers {1, . . . , n}. We let |t| denote the number of

bits in a string or vector t. We denote the i-th bit value of a string s by s[i]. We use [·|·] to

denote the concatenation of vectors or matrices, and || · || to denote the norm of vectors or

matrices respectively. We use the `2 norm for all vectors unless explicitly stated otherwise.

We use ⊗ to denote the Kronecker product of two matrices.

6

2.1 Non-Cryptographic Preliminaries

2.1.1 Branching Programs

We recall the definition of branching program in [BV14, GV15]. A width-w branching

program BP of length L with input space {0, 1}` and s states (represented by [s]) is a

sequence of L tuples of form (var(t), σt,0, σt,1), where

• σt,0 and σt,1 are injective functions from [s] to itself.

• var : [L] → [`] is a function that associates the t-th tuple σt,0, σt,1 with the input bit

xvar(t).

The branching program BP on input x = (x1, ..., x`) computes its outputs as follows. At

step t, we denote the state of the computation by ηt ∈ [s]. The initial state is set to be η0 = 1.

In general, ηt can be computed recursively as

ηt = σt,xvar(t)(ηt−1)

Finally, after L steps, the output of the computation BP(x) = 1 if ηL = 1 and 0 otherwise.

As mentioned in [BV14], we represent states with bits rather than numbers to bound the

noise growth. In particular, we represent the state ηt ∈ [s] by a unit vector vt ∈ {0, 1}s. The

idea is that vt = 1 if and only if σt,xvar(t)(ηt−1) = i. Note that we can also write the above

expression as vt[i] = 1 if and only if either:

• vt−1[σ−1
t,0 (i)] = 1 and xvar(t) = 0.

• vt−1[σ−1
t,1 (i)] = 1 and xvar(t) = 1.

7

This later form will be useful since we can rewrite the above conditions in the following

formula. For t ∈ [L] and i ∈ [s],

vt[i] : = v[σ−1
t,0 (i)](1− xvar(t)) + vt−1[σ−1

t,1 (i)] · xvar(t)

= vt−1[γt,i,0](1− xvar(t)) + vt−1[γt,i,1] · xvar(t)

where we set γt,i,0 = σ−1
t,i (i) and γt,i,1 = σ−1

t,i (i), and γt,i,0, γt,i,1 can be publicly computed

from the description of the branching program. Hence, {var(t), {γt,i,0, γt,i,1}i∈[s]} is also a

valid representation of a branching program BP.

For clarity of representation, we will deal with width-5 permutation branching program,

which is shown to be equivalent to the circuit class NC1 [Bar89]. Hence, we have s = w = 5,

and the functions σ0, σ1 are permutations on [5].

2.1.2 Matrix Branching Programs

A matrix branching program (MBP) of length n on length-`, base-d inputs is a collection

of variable-dimension matrices Bi,j for i ∈ [n] and j ∈ {0, . . . , d− 1}, a “final matrix” P,

and an “input mapper” function inp : [`] → [n]. We require that, for each i ∈ [2, n] and

j ∈ {0, . . . , d− 1}, the number of columns of Bi−1,j is equal to the number of rows of Bi,j ,

so that the product of these matrices is well-defined. The evaluation of an MBP on input

x ∈ {0, . . . , d− 1}` is defined as

MBP(x) =


1, if

∏n
i=1 Bi,xinp(i) = P,

0, otherwise.

We note that numerous generalizations and extra properties [BLR+15, SZ14] of MBPs

have been explored in the literature– however, we will defer details beyond the above,

simplified definition of MBPs until the final chapter on cryptanalysis.

8

2.2 General Cryptographic Definitions

2.2.1 Digital Signatures

A signature scheme for message spaceM consists of three algorithms Σ = (Setup, Sign,Verify)

with details as follows:

• Setup(1λ): Given security parameter λ, the setup algorithm outputs signing key sk

and verification key vk.

• Sign(sk, µ ∈ M): Given secret key sk and message µ ∈ M, the signing algorithm

outputs a signature σ for the message.

• Verify(vk, µ, σ): Given verification key vk, a message µ and a signature σ, the verifi-

cation algorithm outputs 1 (accept) or 0 (reject).

Definition 2.2.1 (Correctness). We say a signature scheme Σ is correct, if for any message

µ ∈M and any (sk, vk)← Setup(1λ), we have

Pr[Verify(vk, µ, Sign(sk, µ)) = 1] = 1

We now recall the standard security definitions for digital signature schemes. Existential

unforgeability under adaptive chosen-message attack, or eu-acma, is as follows: For any

PPT adversary A, we consider the experiment ExptsigA (1λ):

1. Setup: A challenger runs the Setup(1λ) algorithm, and sends the verification key vk

to the adversary.

2. Query Phase: Proceeding adaptively, the adversaryA queries a sequence of messages

(µ1, ..., µm). On the i-th query, the challenger runs σi ← Sign(sk, µi), and sends the

result σi to A.

9

3. Forgery: Once adversary A decides that Query Phase is over, it outputs a mes-

sage/signature pair (µ∗, σ∗), where message µ∗ is not queried before.

We define the advantage of adversary A in attacking an IBE scheme Π as

Advsig
A (1λ) = Pr[Verify(vk, µ∗, σ∗) = 1]

where the probability is over the randomness of the challenger and adversary.

Definition 2.2.2 (Unforgeability). We say a signature scheme Σ is exisentially unforgeable

under adaptive chosen-message attack (eu-acma secure), if for all PPT adversaries A, we

have

Advsig
A (1λ) ≤ negl(λ)

2.2.2 Chameleon Hashing

We give the definition of chameleon hash functions due to Ducas and Micciancio [DM14],

(but looking forward) specialized to the lattice setting.

A chameleon hash function family is a set of three algorithmsCH = (Gen,Hash,Hash−1)

along with an efficiently computable input distribution Xn, Yn for each integer n, where

⊥ /∈ Yn. Except with negligible probability over the choice of (ek, td) ← Gen(1n), the

security requirements are:

Uniformity: For a fixed message µ, evaluation key ek, trapdoor td, (x ← Xn, y ←

Hashek(µ, x)) should be distributed within negligible statistical distance of (x ←

Hash−1
td (µ, y), y ← Yn)

Collision Resistance: Given only access to ek and public parameters, it should be hard

for any PPT algorithm A to output (µ, r) 6= (µ′, r′) such that Hashek(µ, r) =

Hashek(µ
′, r′) 6= ⊥.

10

We also note that the Ducas and Micciancio paper provides an explicit ring-based

construction that is highly efficient, and that this construction has a very straightforward

adaptation to general lattices and module lattices [LS15].

2.2.3 Fully Homomorphic Encryption

We recall the definition of (leveled) fully homomorphic encryption in the following. A

(leveled) FHE is a tuple of algorithms Π = (Setup,Enc,Eval,Dec) described as follows:

• Setup(1λ, 1d): Given input the security parameter λ and maximum supported depth d,

the setup algorithm outputs secret key sk and public key pk.

• Enc(pk, µ): On input pk and a message µ, the encryption algorithm outputs a cipher-

text ct.

• Eval(pk, C, (ct1, ..., ct`)): On input a boolean circuit C of depth ≤ d along with `

ciphertexts (ct1, ..., ct`), the evaluation algorithm outputs an evaluated ciphertext ct.

• Dec(sk, ct): On input some ciphertext ct and a secret key sk, the decryption algorithm

outputs a message µ.

Definition 2.2.3 ((leveled) FHE). We call a scheme Π = (Setup,Enc,Eval,Dec) described

above a (leveled) FHE scheme, if it satisfies:

Correctness: Let (sk, pk) ← Setup(1λ, 1d) and cti ← Enc(pk, µi), for i ∈ [`]. Let C be

any boolean circuit of depth ≤ d and ct← Eval(pk, C, (ct1, ..., ct`)). Then we have

Dec(ct, sk) = C(µ1, ..., µ`).

Semantic security: For any polynomial d = d(λ) and any two messages µ0, µ1, the follow-

ing distributions are computationally indistinguishable

(pk,Enc(pk, µ0)) ≈ (pk,Enc(pk, µ1))

11

where (pk, sk)← Setup(1λ, 1d).

Compactness: The size of the evaluated ciphertext, i.e. ct ← Eval(pk, C, (ct1, ..., ct`)),

should be independent of circuit C and `, but can depend on λ and d.

2.2.4 Multilinear Maps

Boneh and Silverberg [BS02] first proposed the concept of multilinear maps (mmaps), but

it was only in 2013 that Garg, Gentry, and Halevi [GGH13a] introduced the first plausible

construction of an mmap. Since then, mmaps have been shown to be powerful tools in

solving numerous problems in cryptography.

A multilinear map [BS02, GGH13a] (or graded encoding scheme) is a primitive for

producing randomized encodings of plaintexts that may be publicly added, multiplied, and

zero-tested but otherwise “do not reveal any information.” Encodings are associated with a

“level” that restricts the types of operations that may be performed on that encoding. More

formally, a degree-κ multilinear map is a tuple of algorithms (Setup,Encode,Add,Mult,

ZeroTest) where:

• Setup takes as input the security parameter, and outputs a private parameter sp and a

public parameter pp that, in particular, specifies a ring R.

• Encode takes sp, an element x ∈ R, and a level S ⊆ [κ], and outputs a level-S

encoding of x denoted JxKS .

• Add takes pp and two encodings JxKS , JyKS at the same level S, and outputs an

encoding Jx+ yKS .

• Mult takes pp and two encodings JxKS1
, JyKS2

for disjoint levels S1, S2, and outputs

an encoding Jx · yKS1∪S2
.

• ZeroTest takes pp and an encoding JxKU for U = [κ]. It outputs 1 if and only if x = 0.

12

Informally, an mmap is secure if the only information that an attacker can figure out from

the encodings of random elements is exactly the information that can be obtained from

running Add,Mult, and ZeroTest, and no more. (We defer further, formal definitions to the

final chapter on cryptanalysis, since we do not directly rely on them until then.)

2.2.5 Indistinguishability Obfuscation

A uniform PPT machine iO is called an indistinguishability obfuscator [GGH+13b] for a

circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible

function α such that the following holds: For all security parameters λ ∈ N, for all

pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

∣∣∣Pr
[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

2.3 Lattice Cryptography Background

2.3.1 Lattices

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose

linear span is Rm. The basis of Λ is a linearly independent set of vectors whose linear

combinations are exactly Λ. Every integer lattice is generated as the Z-linear combination of

linearly independent vectors B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zn×mq , we define

13

the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
q is a coset of Λ⊥q .

For an integer q ≥ 2, we use Zq to denote the ring of integers modulo q, and somewhat

abuse notation by also using Zq to explicitly represent the integers in (−q/2, q/2]. We

define |x| ∈ Zq by taking the absolute value of the representative in this range. In the

context of integer lattices in order to aid analysis, we also use the notation Z1 (implicitly

parameterized by some “bit-precision” q) to denote the set of rational representatives of Zq in

the range (−1/2, 1/2].A conceptually useful view here is that Z1 is a discrete approximation

(depending of q) of the torus T = R/Z.

2.3.2 Discrete Gaussian Distributions

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,

let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and

parameter σ. Next, we let ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ,

and let DΛ,σ,c(y) := ρσ,c(y)

ρσ,c(Λ)
. We abbreviate this as DΛ,σ when c = 0.

Multi-Dimensional Discrete Gaussians. We will also use the generalized multi-dimensional

(or m-variate) Discrete Gaussian distribution DZm1 ,Q, which denotes sampling a Z1-valued

m-vector with covariance matrix Q ∈ Zm×m1 . In order to sample from the distribution

DZm1 ,Q, proceed as follows:

- Sample t′ = (t′1, ..., t
′
m) ∈ Rm independently as t′i ← D1 for i ∈ [m].

- Find the Cholesky decomposition Q = LLT .

- Output the vector t := Lt′ as the sample t← DZm1 ,Q.

14

Recall that the Cholesky decomposition takes as input any positive-definite matrix

Q ∈ Rm×m and outputs a lower triangular matrix L so that Q = LLT . Further, we recall

the fact that the sum of two m-variate Gaussians with means µ1, µ2 and variances Q1,Q2 is

an m-variate Gaussian with mean µ1 + µ2 and variance Q1 + Q2.

Next we show a lemma that is useful when manipulating m-variate Gaussians via the

Cholesky decomposition.

Lemma 2.3.1. Let Im×m be the m-by-m identity matrix, R ∈ Rm×m, and Q
def
= a2Im×m −

b2RTR for positive numbers a, b such that a > b||RT ||. Then Q is positive definite.

Proof. To show that Q is positive definite, we need to show that for any column vector x of

dimension m, we have xT ·Q · x > 0. We prove this by unfolding the matrix Q:

xT ·Q · x = xT · (a2Im×m − b2RTR) · x

= a2xT Im×mx− b2xTRTRx

= a2||xT ||2 − b2||xTRT ||2

> b2||xT ||2 · ||RT ||2 − b2||xTRT ||2.

Since ||xT || · ||RT || ≥ ||xTRT ||, we can conclude xT ·Q · x > 0.

2.3.3 Randomness Extraction and the Matrix Norm

Let Sm denote the set of vectors in Rm whose length is 1. Then the norm of a matrix

R ∈ Rm×m is defined to be supx∈Sm||Rx||. Then we have the following lemma, which

bounds the norm for some specified distributions.

Lemma 2.3.2 ([ABB10]). With respect to the norm defined above, we have the following

bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then we have Pr[||R|| > 12
√

2m] <

e−2m.

15

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

We will use the following lemma to argue the indistinghishability of two different

distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al.

[DRS04].

Lemma 2.3.3 ([ABB10]). Suppose thatm > (n+1) log q+ω(log n). Let R ∈ {−1, 1}m×k

be chosen uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen

randomly from Zn×mq ,Zn×kq respectively. Then, for all vectorsw ∈ Zm, the two following

distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

2.3.4 Hard Lattice Problems

Learning With Errors. The LWE problem was introduced by Regev [Reg05], who

showed that solving it on the average is as hard as (quantumly) solving several standard

lattice problems in the worst case.

Definition 2.3.4 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n)

over Zq, the learning with errors problem LWEn,m,q,χ is to distinguish between the following

pairs of distributions:

{A, b = ATs+ e} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and e $← χm.

Regev [Reg05] showed that for q >
√
m/β′, an efficient algorithm for LWEn,m,q,χ for

χ = Dβ′q
(
and β′q ≥

√
nω(log(n))

)
implies an efficient quantum algorithm for approxi-

mating the SIVP and GapSVP problems, to within Õ(n/β′) approximation factors in the

worst case. (Improved reductions exist, but we will not need them explicitly in this work.)

16

Short Integer Solution. The SIS problem was first suggested to be hard on average by

Ajtai [Ajt99] and then formalized by Micciancio and Regev [MR04].

Definition 2.3.5 (SIS). For any n ∈ Z, and any functions m = m(n), q = q(n), β = β(n),

the average-case Short Integer Solution problem (SISq,n,m,β) is: Given an integer q, a matrix

A ∈ Zn×mq chosen uniformly at random and a real β ∈ R, find a non-zero integer vector

z ∈ Zm \ {0}, such that Az = 0 mod q and ||z|| ≤ β.

Micciancio and Regev [MR04] showed that solving the average-case SISq,n,m,β problem

for certain parameters is as hard as approximating the Shortest Independent Vector Problem

in the worst case to within certain γ = β · Õ(
√
n) factors.

For q ≥ β
√
nω(
√

log n), it has been shown that solving the SIS problem with non-

negligible success probability over the random choice of A is at least as hard as prob-

abilistically approximating the classic Shortest Independent Vectors Problem (SIVP) on

n-dimensional lattices to within Õ(β
√
n) factors in the worst case. [Ajt04, MR07, GPV08].

Analogous worst-case reductions exist for the more general case of module lattices, where

A ∈ Rd×m
q for some arbitrary ring of integers R algebraic number field K [LS15], which

essentially includes the above results as a special case.

2.3.5 Trapdoors and Sampling Algorithms

We will use the following algorithms to sample short vectors from specified lattices.

Lemma 2.3.6 ([GPV08, AP10]). Let q, n,m be positive integers with q ≥ 2 and sufficiently

large m = Ω(n log q). There exists a PPT algorithm TrapGen(q, n,m) that with overwhelm-

ing probability outputs a pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that A is statistically close

to uniform in Zn×mq and TA is a basis for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

17

Lemma 2.3.7 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n and s > ||TA||·w(
√

logm+m1).

There are two algorithms as follows:

• There is an efficient algorithm SampleLeft(A,B,TA,u, s): It takes in A ∈ Zn×mq ,

a short basis TA for lattice Λ⊥q (A), a matrix B ∈ Zn×m1
q , a vector u ∈ Znq and a

Gaussian parameter s, then outputs a vector r ∈ Zm+m1
q such that r ∈ Λu

q (F), where

F := (A|B), and is statistical close to DΛu
q (F),s.

• There is an efficient algorithm SampleRight(A,B,R,TB,u, s): It takes in A ∈

Zn×mq ,R ∈ Zm×nq , a matrix B ∈ Zn×nq , a short basis TB for lattice Λ⊥q (B), a vector

u ∈ Znq and a Gaussian parameter s, then outputs a vector r ∈ Zm+n
q such that

r ∈ Λu
q (F), where F := (A|AR + B), and is statistical close to DΛu

q (F),s.

• There is a deterministic polynomial time algorithm Invert(A,TA, b) that, given any

A ∈ Zn×mq with its trapdoor TA ∈ Zm×mq such that ||T|| · w(
√

log n) ≤ 1/β for

some β > 0, and b = sTA + x for arbitrary s ∈ Znq and random x← Dm
β , outputs

x with overwhelming probability.

• There is a PPT algorithm SampleD(T, c, s) that, given arbitrary c ∈ Rm and r ≥

||T̃ || · w(log n), generates a sample from DΛ+c,r (up to negl(n) statistical distance).

2.3.6 The “Gadget” Matrix G

We recall the gadget matrix G defined by Micciancio and Peikert [MP12]. We focus on the

case that the modulus q = 2k for ease of analysis.

We define

gt = [1, 2, 22, . . . , 2k−1] ∈ Z1×k
q

Then we have that

G = In ⊗ gt ∈ Zn×nkq

18

While G is used by Miccancio and Peikert to sample discrete Gaussians, in this work

we only use it for computing a simpler distribution (see Section 4.3 for details).

2.3.7 Subgaussian Random Variables

To analyze our distribution in Section 4.3, we make use of the notion of subgaussian

random variables. (For further details and full proofs, see [Ver12].) A random vector x is

subgaussian with parameter r > 0 if for all t ∈ R and all (fixed) real unit vectors u, its

(scaled) moment-generating function satisfies E[exp(〈u,x〉)] ≤ exp(Cr2t2) for an absolute

constant C (for our application, we may take C = 1). By a Markov argument, for all t ≥ 0,

we have

Pr[||x|| ≥ t] ≤ 2 exp(−t2/r2). (2.1)

Any B-bounded centered random vector x (i.e., E[x] = 0 and |X| ≤ B always) is

subgaussian with parameter B.

We recall the following additional properties of subgaussian vectors x [Ver12].

Homogeneity: If x is subgaussian with parameter r, then c·x is subgaussian with parameter

c · r for any constant c ≥ 0.

Pythagorean additivity: if x1 is subgaussian with parameter r1, and x2 is subgaussian

with parameter r2 conditioned on any value of x1 (in particular, if x2 is subgaussian

with parameter r2 and independent of x1), then x1 +x2 is subgaussian with parameter√
r2

1 + r2
2.

Euclidean Norm : Let x ∈ Rn be a random vector with independent coordinates that are

subgaussian with parameter r. Then for some (small) universal constant 0 < C, we

have Pr[||x||2 > C · r
√
n] ≤ 2−Ω(n)

19

2.3.8 Weak Pseudorandom Functions and Learning with Rounding

Here we give a basic definition of weak pseudorandom functions [DN02].

More formally, a weak pseudorandom function family (outputting a single bit) W−PRF :

{0, 1}λ × {0, 1}m → {0, 1} is considered secure if no probabilistic polynomial-time adver-

sary can distinguish a member of the family fk : {0, 1}m → {0, 1}, fk := W−PRF(k, ·)

(where k ← {0, 1}λ uniformly at random) from a truly random function with advantage

greater than negl(λ), given that it can observe

(x1, fk(x1)), . . . , (xm, fk(xm))

for any m ∈ poly(λ), where each x1, . . . , xm is sampled uniformly at random from {0, 1}m.

A concrete candidate weak pseudorandom function family is the learning with rounding

function family (LWRn,Q,p) [BPR12]. Functions in the family are indexed by a secret key

s ∈ ZnQ. For a given secret key s, the function is defined as

LWRn,Q,p(a) = b p
Q
〈a, s〉e,

where b·e denotes rounding to the nearest integer.

LWR has been shown to be a weak pseudorandom function under the better-known

LWE assumption with discrete Gaussian noise terms (and hence on worst-case shortest

vector problems on lattices) in a number of different results [BPR12, AKPW13, ASA16,

BGM+16, BLL+15]. While all of these results require the ratioQ/p to grow with the number

of samples revealed (meaning that hardness for non-a-priori bounded m = poly(λ) requires

assuming the shortest vector problem is hard to approximate to within a superpolynomial

ratio), there is a reduction [BGM+16] with a sample loss ratio of Q/p in security from LWE

with bounded uniform error to LWR. This latter result strongly suggests that LWR remains a

weak pseudorandom function for any Q/p = Ω(
√
n), and that the weaker reductions from

20

LWE with Gaussian error are likely all artifacts of the proof techniques used.

2.3.9 Puncturable Homomorphic Trapdoor Functions

We recall Alperin-Sheriff’s definition of Puncturable Homomorphic Trapdoor Functions

(PHTDFs).

pk ← Gen(1λ) takes as input a security parameter λ, which for a concrete instantiation

implictly defines parameters for a ring T representing a tag space, a trapdoor spaceR,

a tagged function space A, an index space X , an input space U and an output space

V , and then generates the public key for the PHTDF. R and U are associated with

parameterized efficiently sampleable distributions DR,β, DU ,s, with the distribution

details depending on the instantiation.

(a, r)← GenTrap(pk, t) generates a trapdoor r ← DR for the (pk, a), with t the tag

associated with a, r. We need the distribution of a to be statistically close to uniform

over A.

t← Tag(pk, a, r) is an auxiliary function which outputs the tag t associated with a and r

is a trapdoor for (pk, a).

fpk,a,x : U → V is a deterministic function indexed by pk, x ∈ X , a ∈ A.

Invertr,pk,a,x,s : V → U is a trapdoor-inverter indexed by x ∈ X , r ∈ R and pk, a ∈ A. If

fpk,a,x is not injective, then Invert is a probabilistic function, and the parameter s ∈ R

relates to the noise level Prop(u) of the inverse u output by Invert; in particular, we

want Prop(u) ≤ s. We require that Prop(r) = β should be small enough to allow

Invert to invert with parameter s when the tag t associated with a, r is invertible over

the ring T . If t is not invertible, then the trapdoor is considered punctured, and Invert

outputs ⊥.

21

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ],y), a∗ ← Evalfuncpk (g, {ai}i∈[κ],y) are deterministic trapdoor/function

homomorphic evaluation algorithms, respectively. The algorithms take as input some

function g : T κ × T w → T , a vector y ∈ T w, as well as functions ai ∈ A with

associated trapdoors ri ∈ R. The outputs are r∗ ∈ R and a∗ ∈ A.

Correctness. Let pk ← Gen(1λ), T̂ = {t̂i ∈ T }i∈[κ], T = {tj ∈ T }j∈[`], (ri, ai) ←

GenTrap(pk, t̂i). Let g : T κ × T ` → T and let t∗ := g(T̂ , T). We require that for all

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T), a∗ ← Evalfuncpk (g, {(ai)}i∈[κ], T),

we have that r∗ is (indeed) a trapdoor for (pk, a∗), and that t∗ is the tag associated with a∗.

This can be relaxed to a leveled notion similar to a leveled FHE; we omit the details.

Definition 2.3.8. We call a function g admissible with parameter s on the set of tags T̂ :=

{ti}i∈[κ], if whenever the initial trapdoors ri have noise levels βi ≤ βinit = ω(
√

log n), r∗

will have noise level β∗ ≤ s/ω(
√

log n) with overwhelming probability.

Security Properties. The following should hold for pk ← Gen(1λ), trapdoor and function

pair (r, a) with an invertible tag t:

(pk, r, a, x, u, v)
s
≈ (pk, r, a, x, u′, v′)

where x ∈ X is arbitrary, u← DU ,s, v := fpk,a,x(u), v′ ← V and u′ ← Invertr,pk,a,x,s(v
′).

The security game between an adversary A and a challenger C is parameterized by a

security parameter λ, as well as a function g : T κ × T w → T such that g is admissible with

some parameter s on some subset of tags S ⊆ T κ

1. C runs pk ← Gen(1λ) and then computes (ai, ri)← GenTrap(pk, t) for each i ∈ [κ].

A is given pk and {ai}.

22

2. A may make (a polynomial number of) inversion queries, sending some v ∈ V ,

x ∈ X and some y ∈ T w such that g(s,y) is invertible. Then C computes

r′ ← Evaltdpk(g, {(ai, ri)},y) as well as a′ ← Evalfuncpk (g, {ai},y), samples u ←

Invertr′,pk,a′,x,s(v), and returns u to A.

3. A(1λ) outputs tag sets y(1),y(2) ∈ T w which satisfy g(t,y) = g(t,y′) = 0, as well

as u(1), u(2), x(1)) 6= x(2), and wins if

fpk,a(1),x(1)(u
(1)) = fpk,a(2),x(2)(u

(2)),

where Prop(u(1)),Prop(u(2)),Prop(x(1)),Prop(x(2)) ≤ s and a(b) ← Evalfuncpk (g, {(ai)},y(b))

for b ∈ {1, 2}.

We say the PHTDF satisfies (ε = ε(λ), t = t(λ), g,S)-collision resistance when punc-

tured (CRP) security if every PPT adversary taking at most time t has success probability at

most ε in this game.

Concrete Instantiation. The instantiation in [Alp15] is written in terms of general lattices,

but as mentioned in that work, can easily be instantiated over rings or modules [LS15]. We

briefly recall the relevant results on security, leaving tag instantiation descriptions to later in

the work.

Theorem 2.3.9 ([Alp15]). Let g be admissible with parameter s. If there exists an adversary

A breaking CRPε,t,g,S security of the PHTDF, then there exists A′ running in time t that

solves SISn,q,β with advantage ε− negl(λ) for β = O(s2
√
n log q).

We will also need to recall the growth rate of the Prop(r) for the trapdoors used in this

instantiation as a result of homomorphic operations. In particular, we have

Homomorphic Addition of a1 and a2 with trapdoors r1, r2 induces a new trapdoor r∗ with

Prop(r∗) = Prop(r1) + Prop(r2)

23

Homomorphic Multiplication of a1, a2 with trapdoor r1, r2, tags t1, t2 induces trapdoor

r∗ with

Prop(r∗) = Prop(r1)G−1(a2) + Prop(t1)Prop(r2)

A key trick with homomorphic multiplication is to chain them together in a left-associative

manner, causing a quasi-additive growth in the trapdoors [BV14, ASP14].

24

Chapter 3

Deniable Attribute Based Encryption for

Branching Programs from LWE

3.1 Introduction

Deniable encryption, introduced by Canetti et al. [CDNO97] at CRYPTO 1997, is an

intriguing primitive that allows Alice to privately communicate with Bob in a way that

resists not only eavesdropping attacks as required by semantic security, but also stronger

coercion attacks performed after the fact. An eavesdropper Eve stages a cocercion attack

by additionally approaching Alice (or Bob, or both) after a ciphertext is transmitted and

demanding to see all secret information: the plaintext, the random coins used by Alice for

encryption, and any private keys held by Bob (or Alice) related to the ciphertext. In particular,

Eve can use this information to “fully unroll” the exact transcript of some deterministic

decryption procedure purportedly computed by Bob, as well as verify that the exact coins

and decrypted plaintext in fact produce the coerced ciphertext. A secure deniable encryption

scheme should maintain privacy of the sensitive data originally communicated between

Alice and Bob under the coerced ciphertext (instead substituting a benign yet convincing

plaintext in the view of Eve), even in the face of such a revealing attack and even if Alice

25

and Bob may not interact during the coercion phase.

Historically, deniable encryption schemes have been challenging to construct. Under

standard assumptions, Canetti et al. [CDNO97] constructed a sender-deniable1 PKE where

the distinguishing advantage between real and fake openings is an inverse polynomial

depending on the public key size. But it was not until 2011 that O’Neill, Peikert, and Wa-

ters [OPW11] proposed the first constructions of bi-deniable PKE with negligible deniability

distinguishing advantage: from simulatable PKE generically, as well as from Learning with

Errors (LWE [Reg05]) directly.

Concurrently, Bendlin et al. [BNNO11] showed an inherent limitation: any non-interactive

public-key encryption scheme may be receiver-deniable (resp. bi-deniable) only with non-

negligible Ω(1/size(pk)) distinguishing advantage in the deniability experiment. Indeed,

O’Neill et al. [OPW11] bypass the impossibility result of [BNNO11] by working in the

so-called flexible2 model of deniability. In the flexible of deniability, private keys sk are

distributed by a central key authority. In the event that Bob is coerced to reveal a key sk

that decrypts chosen ciphertext ct∗, the key authority distributes a faking key fk to Bob,

which Bob can use to generate a fake key sk∗ (designed to behave identically to sk except

on ciphertext ct∗). If this step is allowed, then O’Neill et al. demonstrate that for their

constructions, Eve has at most negligible advantage in distinguishing whether Bob revealed

an honest sk or fake sk∗.

A major breakthrough in deniable encryption arrived with the work of Sahai and Wa-

ters [SW14], who proposed the first sender-deniable PKE with negligible distinguishing

advantage from indistinguishability obfuscation (iO) for P/poly [GGH+13b]. The concept

of deniability has been demonstrated useful in the contexts of leakage resilience [DLZ15],

adaptive security for protocols, and as well as deniable computation (or algorithms) [CGP15,

1We differentiate between sender-, receiver-, and bi-deniable schemes. A bi-deniable scheme is both
sender- and receiver-deniable.

2We borrow the name “flexible” from Boneh, Lewi, and Wu [BLW15] as the original term “multi-
distributional” of O’Neill et al. [OPW11] is used to define a slightly different security property in the recent
work by De Caro et al. [CIO16] than we achieve here.

26

DKR15, GP15]. In addition to coercion resistance, a bi-deniable encryption scheme is a

non-committing encryption scheme [CFGN96], as well as a scheme secure under selective

opening (SOA) attacks [BHY09], which are of independent theoretical interest.

Very recently, De Caro, Iovino, and O’Neill [CIO16] gave various constructions of

deniable functional encryption. First, they show a generic transformation of any IND-secure

FE scheme for circuits into a flexibly receiver-deniable FE for circuits. Second, they give

a direct construction of receiver-deniable FE for Boolean formulae from bilinear maps.

Further, in the stronger multi-distributional model of deniable functional encryption – where

there are special “deniable” set-up and encryption algorithms in addition to the plain ones,

and where under coercion, it may non-interactively be made to seem as only the normal

algorithms were used – De Caro et al. [CIO16] construct receiver-deniable FE for circuits

under the additional (powerful) assumption of different-inputs obfuscation (diO).

De Caro et al. [CIO16] also show (loosely speaking) that any receiver-deniable FE

implies SIM-secure FE for the same functionality. Following [CIO16], we also emphasize

that deniability for functional encryption is a strictly stronger property than SIM security,

since fixed coerced ciphertexts must decrypt correctly and benignly in the real world. Finally,

we mention that in concurrent work, Apon, Fan, and Liu, in an unpublished work [AFL15],

construct flexibly bi-deniable inner product encryption from standard lattice assumptions.

This work generalizes and thus subsumes the prior results of [AFL15].

Despite the apparent theoretical utility in understanding the extent to which cryptographic

constructions are deniable, our current knowledge of constructing such schemes from

standard lattice assumptions is still limited. From LWE, we have only flexible and non-

negligible advantage deniable encryption schemes (or IPE from [AFL15]), whereas with the

much more powerful assumption of indistinguishability obfuscation (iO), we can obtain

at least fully-secure sender-deniable PKE and computation [CGP15, DKR15, GP15], or as

mentioned above even a multi-distributional receiver-deniable FE for all circuits from the

even stronger assumption of diO.

27

3.1.1 Our Contributions

In this work, we further narrow this gap by investigating a richer primitive – attribute-based

encryption (ABE) [GPSW06, BGG+14, GV15] – without the use of obfuscation as a black

box primitive. We hope that the techniques developed in this work can further shed light

on deniability for even richer schemes such as functional encryption [BSW11, GGH+13b,

BGG+14, GVW15a] under standard assumptions.

• Our main contribution is the construction of a flexibly bi-deniable ABE for poly-sized

branching programs (which can compute NC1 via Barrington’s theorem [Bar89]) from

the standard Learning with Errors assumption [Reg05].

Theorem 3.1.1. Under the standard LWE assumption, there is a flexibly bi-deniable

attribute-based encryption scheme for all poly-size branching programs.

Recall that in an attribute-based encryption (ABE) scheme for a family of functions

F : X → Y , every secret key skf is associated with a predicate f ∈ F , and every ciphertext

ctx is associated with an attribute x ∈ X . A ciphertext ctx can be decrypted by a given

secret key skf to its payload message m only when f(x) = 0 ∈ Y . Informally, the typical

security notion for an ABE scheme is collusion resistance, which means no collection

of keys can provide information on a ciphertext’s message, if the individual keys are not

authorized to decrypt the ciphertext in the first place. Intuitively, a bi-deniable ABE must

provide both collusion and coercion resistance.

Other contributions of this work can be summarized as:

• A new form of the Extended Learning with Errors (eLWE) assumption [OPW11,

AP12, BLP+13], which is convenient in the context of Dual Regev type ABE/FE

schemes that apply the Leftover Hash Lemma [DRS04] in their security proofs.

• An explicit, tightened noise growth analysis for lattice-based ABE for branching

programs. Prior work used the loose l∞ norm to give a rough upper bound, which is

28

technically insufficient to achieve deniability using our proof techniques. (We require

matching upper and lower bounds on post-evaluation noise sizes.)

The eLWE assumption above is roughly the standard LWE assumption, but where the

distinguisher also receives “hints” on the LWE sample’s noise vector e in the form of

inner products, i.e. distributions
{
A, b = ATs+ e, z, 〈z, e〉

}
where (intuitively) z is a

decryption key in the real system (which are denoted r elsewhere). Our contribution here is

a new reduction from the standard LWE assumption to our correlated variant of extended-

LWE, eLWE+, where the adversary requests arbitrary correlations (expressed as a matrix R)

between the hints, in the case of a prime poly-size modulus with noise-less hints. We show

this by extending the LWE to eLWE reduction of Alperin-Sheriff and Peikert [AP12] to our

setting.

3.1.2 Our Approach

At a high level, our work begins with the ABE for branching programs of Gorbunov and

Vinayagamurthy [GV15]. We will augment the basic ABE-BP = (Setup, Keygen, Enc, Dec)

with an additional suite of algorithms (DenSetup, DenEnc, SendFake, RecFake) to form our

flexibly bi-deniable ABE-BP. Doing so requires careful attention to the setting of parameters,

as we explain in the sequel.

We remark now that – due to reasons related to the delicateness of our parameter setting

– the ABE scheme of [GV15] is particularly suited to being made bi-deniable, as compared

to similar schemes such as the ABE for arithmetic circuits of Boneh et al. [BGG+14]. We

will explain this in what follows as well.

Intuition for Our New Deniability Mechanism. As in the work of O’Neill et al. [OPW11],

our approach to bi-deniability relies primarily on a curious property of Dual Regev type [GPV08]

secret keys: by correctness of any such scheme, each key r is guaranteed to behave as

intended for some 1− negl(n) fraction of the possible random coins used to encrypt, but

29

system parameters may be set so that each key is also guaranteed to be faulty (i.e. fail to

decrypt) on some negl(n) fraction of the possible encryption randomness. More concretely,

each secret key vector r in lattice-based schemes is sampled from an m-dimensional Gaus-

sian distribution, as is the error term e (for LWE public key A ∈ Zn×mq). For every fixed

r, with overwhelming probability over the choice of e, the vectors r, e ∈ Zmq will point in

highly uncorrelated directions in m-space. However, if the vector r and e happen to point

in similar directions, the error magnitude will be (loosely) squared during decryption.

Our scheme is based around the idea that a receiver, coerced on honest key-ciphertext

pair (r, ct∗), can use the key authority’s faking key fk to learn the precise error vector e∗

used to construct ct∗. Given e∗, r, and fk, the receiver re-samples a fresh secret key r∗ that

is functionally-equivalent to the honest key r, except that r∗ is strongly correlated with the

vector e∗ in ct∗. When the coercer then attempts to decrypt the challenge ciphertext ct∗

using r∗, the magnitude of decryption error will artificially grow and cause the decryption

to output the value we want to deny to. Yet, when the coercer attempts to decrypt any

other independently-sampled ciphertext ct, decryption will succeed with overwhelming

probability under r∗ if it would have under r.

We emphasize that to properly show coercion resistance (when extending this intuition

to the case of Dual Regev ABE instead of Dual Regev PKE), this behavior of r∗ should

hold even when ct and ct∗ embed the same attribute x. (Indeed, the majority of our effort

is devoted to ensuring this simple geometric intuition allows a valid instantiation of the

denying algorithms (DenSetup, DenEnc, SendFake, RecFake) without “damaging” the basic

operation of (Setup, Keygen, Enc, Dec) in the underlying ABE scheme.)

Then, given the ability to “artificially blow-up” the decryption procedure of a specific

key on a ciphertext-by-ciphertext basis, we can employ an idea originally due to Canetti et

al. [CDNO97] of translucent sets, but generalized to the setting of ABE instead of PKE, to

construct our new, flexibly bi-deniable ABE-BP scheme out of the framework provided by

the “plain” SIM-secure ABE-BP scheme of [GV15].

30

Highlights of the Gorbunov-Vinayagamurthy Scheme. In the ABE for (width 5) branch-

ing programs of [GV15], bits a are “LWE-encoded” by the vector

ψA,s,a = sT (A + a ·G) + e ∈ Zmq

where G is the gadget matrix [MP12].

The ciphertext ct encrypting message µ under BP-input x is given by

ct = (ψ0, ψ
c, {ψi}i∈[`], {ψ0,i}i∈[5], c),

and is composed of a Dual Regev ct-pair of vectors (ψ0, c) encrypting the ciphertext’s

message µ, an encoding ψc representing the (freshly randomized) encoding of the constant 1,

five encodings {ψ0,i}i∈[5] representing a (freshly randomized) encoding of the initial state of

a width-5, length-` branching program BP, and ` encodings {ψi}i∈[`] – one for each step of

the branching program’s evaluation, storing a constant-sized permutation matrix associated

with the i-th level of BP. Note that each “LWE encoding” ψ is performed under a distinct

public key matrix A,Ac, {Ai}, or {A0,i} respectively.

The (key-homomorphic) evaluation procedure takes as input a ciphertext sequence

ct = (ψ0, ψ
c, {ψi}, {ψ0,i}, c) and the public key pk = (A,Ac, {Ai}, {A0,i}), as well as the

cleartext branching program description BP and the BP-input x. It produces the evaluated

public key VBP and the evaluated encoding ψBP(x). Given a short secret key vector r ∈ Z2m

matching (some public coset u of) the lattice generated by [A|VBP] ∈ Zn×2m, the encoding

vector ψBP(x) (whose Dual Regev encoding-components (ψ0, c) also match coset u) can be

decrypted to the message µ if and only if BP(x) = accept = 0.

On the Necessity of Exact Noise Control. In order to push the intuition for our deniability

mechanism through for an ABE of the above form, we must overcome a number of technical

hurdles.

31

The major challenge is an implicit technical requirement to very tightly control the

precise noise magnitude of evaluated ciphertexts. In previous functional (and homomorphic)

encryption schemes from lattices, the emphasis is placed on upper bounding evaluated noise

terms, to ensure that they do not grow too large and cause decryption to fail. Moreover,

security (typically) holds for any ciphertext noise level at or above the starting ciphertexts’

noises. In short, noise growth during evaluation is nearly always undesirable.

As with previous schemes, we too must upper bound the noise growth of evaluated

ciphertexts in order to ensure basic correctness of our ABE. But unlike previous schemes, we

must take the step of also (carefully) lower bounding the noise growth during the branching

program evaluation (which technically motivates deviating from the l∞ norm of prior

analyses). This is due to the fact, highlighted above, that producing directional alignment

between a key and error term can at most square the noise present during decryption. Since

coercion resistance requires that it must always be possible to deny any ciphertext originally

intended for any honest key, it must be that, with overwhelming probability, every honest

key and every honest ciphertext produce evaluated error that is no less than the square root

of the maximum noise threshold tolerated.

In a little more detail – as we will later demonstrate in Section 3.3 – in dimension

m there is precisely an expected poly(m) gap in magnitude between the inner products

of (i) two relatively orthogonal key/error vectors r, eBP(x), and (ii) two highly correlated

key/error vectors r∗, eBP(x). The ability to deny is based around our ability to design r∗ that

are statistically indistinguishable from r in the attacker’s view, but where r∗ “punctures out”

decryptions of ciphertexts with error vectors pointing in the direction of eBP(x) in m-space

(error-vector directions are unique to each honest ct with overwhelming probability).

Crucially, this approach generically forces the use of a polynomial-sized modulus q

in the scheme.3 In particular, when error vectors e may (potentially) grow to be some

3One consequence of a poly-size modulus requirement is that the fully key-homomorphic scheme of Boneh
et al. [BGG+14], taken verbatim, can only be denied for up to NC0 functions using our approach. Past this,
attempts to produce fake keys in an identical manner to this work may be detected by a statistical test under
coercion.

32

superpolynomial magnitude in the dimension m of the public/secret keys, we totally lose

any efficiently testable notion of “error vector orientation in m-space” for the purposes of

Dual Regev type decryption.

Further, in order to “correctly trace and distinguish” different orientations throughout

the computation of an arbitrary branching program BP, we are required to make careful use

of multi-dimensional Gaussian distributions. These are sampled using covariance matrices

Q ∈ Zm×m that allow us to succinctly describe the underlying, geometric randomized

rotation action on error vector orientations in m-space with each arithmetic operation of

the BP evaluation in the overall ABE-BP scheme. (We use the geometrically-inspired term

“rotation matrix” to describe our low-norm matrices R for this reason.)

An additional subtlety in our new noise analysis is that we require the individual

multiplications of the ct evaluation procedure to have independently sampled error vectors

in each operand-encoding – and thus be “independently oriented” – in order for the overall

analysis to go through correctly. (While there could in principle be some way around this

technical obstacle in the analysis, we were unable to find one.) This appears to a priori

exclude a straightforward denying procedure for all circuits [BGG+14], where a gate’s input

wires’ preceding sub-circuits may have cross-wires between them. But it naturally permits

denying branching program computations, where at the i-th time-step, an i-th independently

generated ct-component is merged into an accumulated BP state, as with [GV15].

Finally, we mention that an inherent limitation in the techniques of Apon et al. [AFL15],

used to construct (the weaker notion of) flexibly bi-deniable inner product encryption from

LWE, is bypassed in the current work at the cost of supporting only BP computations of

an a-priori bounded length `. Namely, it was the case in [AFL15] that the length ` of

the attribute vectorw had to be “traded off” against the dimension m of the public/secret

keys. We suppress the details, other than to point out that this issue can be resolved by

artificially boosting the magnitude of the low-norm matrices used to generate error terms in

fresh ciphertexts from {−1, 1} up to {−Θ(m`),Θ(m`)}-valued matrices. This, of course,

33

requires knowing the length ` of the branching program up front. (Intuitively, this technical

change as compared to [AFL15] allows for a sharp inductive lower bound on the minimum

noise growth across all possible function-input pairs that might be evaluated in a given

instance of our bi-deniable ABE-BP scheme.)

3.1.3 Future Directions

The next, most natural question is whether bi-deniable functional encryption can be built out

of similar techniques (from only LWE), perhaps by leveraging our bi-deniable ABE for NC1

computations as a building block. We briefly sketch one possible approach and the obstacles

encountered. Recall that Goldwasser et al. [GKP+13] show to transform the combination of

(i) any ABE for a circuit family C, (ii) fully homomorphic encryption, and (iii) a randomized

encoding scheme (such as Yao’s garbled circuits) into a 1-key (resp. bounded collusion)

SIM-secure functional encryption scheme for C.

If we instantiate the Goldwasser et al. transformation with our deniable ABE, we get a

functional encryption scheme for NC1. We can then boost functional encryption for shallow

circuits to functional encryption for all circuits using the “trojan method” of Ananth et

al. [ABSV15]. As it turns out, it is easy to directly prove flexible receiver-deniability of the

final scheme, independently of but matching the generic results of De Caro et al. [CIO16]

for receiver-deniable FE.

Unfortunately, we do not know how to prove (even, flexible) sender-deniability of this

final scheme. Roughly speaking, the problem is that each ciphertext’s attribute in such a

scheme contains an FHE ciphertext ctFHE for its attribute, and this attribute leaks to the

attacker (resp. cocercer) on decryptions that succeed. In particular, there is nothing stopping

the coercer from demanding that the sender also provide randomness rS that opens the

attribute’s FHE ciphertext.

We speculate that a possible way around this obstacle would be to use an adaptively-

secure homomorphic encryption scheme for NC1 computations. Note that adaptively-

34

secure FHE is known to be impossible for circuits with ω(log(n)) depth due to a counting

argument lower bound by Katz, Thiruvengadam, and Zhou [KTZ13], but this leaves open

the possibility of an NC1-homomorphic encryption scheme with the necessary properties to

re-obtain (flexible) sender deniability for lattice-based FE. We leave this as an intriguing

open problem for future work.

3.2 New Definitions and Tools

In this section, we first describe our new notion of flexibly bi-deniable ABE, which is a

natural generalization of the flexibly bi-deniable PKE of [OPW11]. Then we define the

notion of a flexibly attribute-based bi-translucent set (AB-BTS), which generalizes the

idea of bi-translucent set (BTS) in the work [OPW11]. Using a similar argument as in the

work [OPW11], we can show that an AB-BTS suffices to construct bi-deniable ABE. In the

last part of this section, we define a new assumption called Extended LWE Plus, and show

its hardness by giving a reduction from the standard LWE problem.

3.2.1 Flexibly Bi-Deniable ABE: Syntax and Deniability Definition

A flexibly bi-deniable key-policy attribute based encryption for a class of Boolean circuits

C : {0, 1}` → {0, 1} consists a tuple of PPT algorithms

Π = (Setup,Keygen,Enc,Dec,DenSetup,DenEnc, SendFake,RecFake).

We describe them in detail as follows:

Setup(1λ): On input the security parameter λ, the setup algorithm outputs public parame-

ters pp and master secret key msk.

Keygen(msk, f): On input the master secret key msk and a function f ∈ C, it outputs a

secret key skf .

35

Enc(pp,x, µ; rS): On input the public parameter pp, an attribute/message pair (x, µ) and

randomness rS , it outputs a ciphertext cx.

Dec(skf , cx): On input the secret key skf and a ciphertext cx, it outputs the corresponding

plaintext µ if f(x) = 0; otherwise, it outputs ⊥.

DenSetup(1λ): On input the security parameter λ, the deniable setup algorithm outputs

pubic parameters pp, master secret key msk and faking key fk.

DenEnc(pp,x, µ; rS): On input the public parameter pp, an attribute/message pair (x, µ)

and randomness rS , it outputs a ciphertext cx.

SendFake(pp, rS, µ, µ
′): On input public parameters pp, original random coins rS , message

µ of DenEnc and desired message µ′, it outputs a faked random coin r′S .

RecFake(pp, fk, cx, f, µ
′): On input public parameters pp, faking key fk, a ciphertext cx, a

function f ∈ C, and desired message µ′, the receiver faking algorithm outputs a faked

secret key sk′f .

Correctness. We say the flexibly bi-deniable ABE scheme described above is correct,

if for any (msk, pp) ← S(1λ), where S ∈ {Setup,DenSetup}, any message µ, function

f ∈ C, and any attribute vector x where f(x) = 0, we have Dec(skf , cx) = µ, where

skf ← Keygen(msk, f) and cx ← E(pp,x, µ; rS) where E ∈ (Enc,DenEnc).

Bi-deniability definition. Let µ, µ′ be two arbitrary messages, not necessarily different.

We propose the bi-deniability definition by describing real experiment ExptRealA,µ,µ′(1
λ) and

faking experiment ExptFakeA,µ,µ′(1
λ) regarding adversary A = (A1,A2,A3) below:

36

1. (x∗, st1)← A1(λ)

2. (pp,msk)← Setup(1λ)

3. c′x∗ ← Enc(pp,x∗, µ; rS)

4. (f ∗, st2)← AKG(msk,x∗,·)
2 (pp, st1, cx∗)

5. skf∗ ← Keygen(msk, f ∗)

6. b← AKG(msk,x∗,·)
3 (skf∗ , c, st2, rS)

7. Output b ∈ {0, 1}
(a) ExptRealA (1λ)

1. (x∗, st1)← A1(λ)

2. (pp,msk, fk)← DenSetup(1λ)

3. c′x∗ ← DenEnc(pp,x∗, µ′; rS)

4. (f ∗, st2)← AKG(msk,x∗,·)
2 (pp, st1, c

′
x∗)

5. r′S ← SendFake(pp, µ, µ′, rS)

6. skf∗ ← RecFake(pp, fk, c′x,v
∗, µ′)

7. b← AKG(msk,x∗,·)
3 (skf∗ , c, st2, r

′
S)

8. Output b ∈ {0, 1}
(b) ExptFakeA (1λ)

Figure 3.2.1: Security experiments for bi-deniable ABE

where KG(msk,w∗, ·) returns a secret key skv ← Keygen(msk,v) if 〈v,w∗〉 6= 0 and ⊥

otherwise.

Definition 3.2.1 (Flexibly Bi-Deniable ABE). An ABE scheme Π is bi-deniable if for any two

messages µ, µ′, any probabilistic polynomial-time adversaries A where A = (A1,A2,A3),

there is a negligible function negl(λ) such that

AdvΠ
A,µ,µ′(1

λ) = |Pr[ExptRealA,µ,µ′(1
λ) = 1]−Pr[ExptFakeA,µ,µ′(1

λ) = 1]| ≤ negl(λ)

3.2.2 Attribute Based Bitranslucent Set Scheme

In this section, we define the notion of a Attribute Based Bitranslucent Set (AB-BTS), which

is an extension of bitranslucent sets (BTS) as defined by O’Neill et al. in [OPW11]. Our new

notion permits a more fine-grained degree of access control, where pseudorandom samples

and secret keys are associated with attributes x, and the testing algorithm can successfully

distinguish a pseudorandom sample from a truly random one if and only if the attribute

of the sample is accepted under a given secret key’s policy f – i.e. when f(x) = 0. This

concept is reminiscent of attribute-based encryption (ABE), and in fact, we will show in the

sequel how to construct a flexibly bi-deniable ABE from an AB-BTS. This is analogous to

37

the construction of a flexibly bi-deniable PKE from O’Neill et al.’s BTS. We present the

formal definition below.

Let F be some family of functions. An attribute based bitranslucent set (AB-BTS)

scheme for F consists of the following algorithms:

Setup(1λ): On input the security parameter, the normal setup algorithm outputs a public

parameter pp and master secret key msk.

DenSetup(1λ): On input the security parameter, the deniable setup algorithm outputs a

public parameter pp, master secret key msk and faking key fk.

Keygen(msk, f): On input the master secret key msk and a function f ∈ F , the key

generation algorithm outputs a secret key skf .

P - and U -samplers SampleP(pp,x; rS) and SampleU(pp,x; rS) output some c.

TestP(skf , cx): On input a secret key skf and a ciphertext cx, the P -tester algorithm

outputs 1 (accepts) or 0 (rejects).

FakeSCoins(pp, rS): On input a public parameters pp and randomness rS , the sender-faker

algorithm outputs randomness r∗S .

FakeRCoins(pp, fk, cx, f): On input a public parameters pp, the faking key fk, a ciphertext

cx and a function f ∈ F , the receiver-faker algorithm outputs a faked secret key sk′f .

Definition 3.2.2 (AB-BTS). We say a scheme Π = (Setup,DenSetup,Keygen, SampleP,

SampleU,TestP,FakeSCoins,FakeRCoins) is an AB-BTS scheme for a function family F if

it satisfies:

1. (Correctness.) The following experiments accept or respectively reject with overwhelming

probability over the randomness.

38

• Let (pp,msk) ← Setup(1λ), f ∈ F , skf ← Keygen(msk, f). If f(x) = 0 and

cx ← SampleP(pp,x; rS), then TestP(skf , cx) = 1; otherwise, TestP(skf , cx) =

0.

• Let (pp,msk)← Setup(1λ), f ∈ F , skf ← Keygen(msk, f), c← SampleU(pp; rS).

Then TestP(skf , c) = 0.

2. (Indistinguishable public parameters.) The public parameters pp generated by the two

setup algorithms (pp,msk)← Setup(1λ) and (pp,msk, fk)← DenSetup(1λ) should be

indistinguishable.

3. (Selective bi-deniability.) Let F be a family of functions. We define the following two

experiments: the real experiment ExptRealA,F(1λ) and the faking experiment ExptFakeA,F (1λ)

regarding an adversary A = (A1,A2,A3) below:

where KG(msk,x∗, ·) returns a secret key skf ← Keygen(msk, f) if f ∈ F and f(x∗) 6=

(a) (f ∗,x∗, st1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleU(pp; rS)

(d) st2 ← AKG(msk,x∗,·)
2 (pp, st1, c)

(e) skf∗ ← Keygen(msk, f ∗)

(f) b← AKG(msk,x∗,·)
3 (skf∗ , c, st2, rS)

(g) Output b ∈ {0, 1}
(a) ExptRealA (1λ)

(a) (f ∗,x∗, st1)← A1(λ)
(b) (pp,msk, fk)← DenSetup(1λ)
(c) c← SampleP(pp,x∗; rS)

(d) st2 ← AKG(msk,x∗,·)
2 (pp, st1, c)

(e) r′S ← FakeSCoins(pp, rS)
(f) skf∗ ← FakeRCoins(pp, fk, c, f ∗)

(g) b← AKG(msk,x∗,·)
3 (skf∗ , c, st2, r

′
S)

(h) Output b ∈ {0, 1}
(b) ExptFakeA (1λ)

Figure 3.2.2: Security experiments for AB-BTS

0; it returns ⊥ otherwise. We also require that f ∗ ∈ F .

We say the scheme is selectively bi-deniable forF , if for any probabilistic polynomial-time

adversaries A = (A1,A2,A3), there is a negligible function negl(λ) such that

AdvΠ
A(1λ) = |Pr[ExptRealA,F(1λ) = 1]−Pr[ExptFakeA,F (1λ) = 1]| ≤ negl(λ)

39

Remark 3.2.3. Correctness for the faking algorithms is implied by the bi-deniability prop-

erty. In particular, with overwhelming probability over the overall randomness, the following

holds: let (pp,msk, fk) ← DenSetup(1λ), f ∈ F , skf ← Keygen(msk, f), x be a string

and cx ← SampleP(pp, x; rS), then

• SampleU(pp;FakeSCoins(pp, rS)) = cx,

• TestP(FakeRCoins(pp, fk, cx, f), cx) = 0

• For any other x′, let c′ ← SampleP(pp, x′; r′S), then (with overwhelming probability)

we have

TestP (FakeRCoins(pp, fk, cx, f), c′) = TestP(skf , c
′).

It is not hard to see that if one of these does not hold, then one can easily distinguish the

real experiment from the faking experiment.

Remark 3.2.4. Canetti et al. [CDNO97] gave a simple encoding technique to construct

a sender-deniable encryption scheme from a translucent set. O’Neill, Peikert, and Wa-

ters [OPW11] used a similar method to construct a flexibly bi-deniable encryption from a

bi-translucent set scheme. Here we further observe that the same method as well allows us

to construct a flexibly bi-deniable ABE scheme from bi-deniable AB-BTS. We present the

construction in Section 3.3.4.

3.2.3 Extended LWE and Our New Variant

O’Neill et al. [OPW11] introduced the Extended LWE problem, which allows a “hint” on

the error vector x to leak in form of a noisy inner product. They observe a trivial “blurring”

argument shows that LWE reduces to eLWE when the hint-noise βq is superpolynomially

larger than the magnitude of samples from χ, and also allows for unboundedly many

independent hint vectors 〈z,xi〉 while retaining LWE-hardness.

40

Definition 3.2.5 (Extended LWE). For an integer q = q(n) ≥ 2, and an error distribution

χ = χ(n) over Zq, the extended learning with errors problem eLWEn,m,q,χ,β is to distinguish

between the following pairs of distributions:

{A, b = ATs+ e, z, 〈z, b− e〉+ e′} and {A,u, z, 〈z,u− x〉+ e′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , e, z $← χm and e′ $← Dβq.

Further, Alperin-Sheriff and Peikert [AP12] show that LWE reduces to eLWE with a

polynomial modulus and no hint-noise (i.e. β = 0), even in the case of a bounded number

of independent hints.

We introduce the following new form of extended-LWE, called eLWE+, which considers

leaking a pair of correlated hints on the same noise vector. Our security proof of the AB-BTS

construction relies on this new assumption.

Definition 3.2.6 (Extended LWE Plus). For integer q = q(n) ≥ 2,m = m(n), an error

distribution χ = χ(n) over Zq, and a matrix R ∈ Zm×mq , the extended learning with errors

problem eLWE+
n,m,q,χ,β,R is to distinguish between the following pairs of distributions:

{A, b = ATs+ e, z0, z1, 〈z0, b− e〉+ e, 〈Rz1, b− e〉+ e′} and

{A,u, z0, z1, 〈z0,u− e〉+ e, 〈Rz1,u− e〉+ e′}

where A
$← Zn×mq , s $← Znq , u $← Zmq , e, z0, z1

$← χm and e, e′ $← Dβq.

Hardness of extended-LWE+. A simple observation, following prior work, is that when

χ is poly(n)-bounded and the hint noise βq (and thus, modulus q) is superpolynomial in

n, then LWEn,m,q,χ trivially reduces to eLWE+
n,m,q,χ,β,R for every R ∈ Zm×mq so that Rz1

has poly(n)-bounded norm. This is because, for any r = ω(
√

log n), c ∈ Z, the statistical

distance between DZ,r and c+DZ,r is at most O(|c|/r).

41

However, our cryptosystem will require a polynomial-size modulus q. So, we next

consider the case of prime modulus q of poly(n) size and no noise on the hints (i.e. β = 0).

Following [AP12]4, it will be convenient to swap to the “knapsack” form of LWE, which

is: given H ← Z(m−n)×m
q and c ∈ Zm−nq , where either c = He for e ← χm or c

uniformly random and independent of H, determine which is the case (with non-negligible

advantage). The “extended-plus” form of the knapsack problem also reveals a pair of hints

(z0, z1, 〈z0, e〉, 〈Rz1, e〉). Note the equivalence between LWE and knapsack-LWE is proven

in [MM11] for m ≥ n+ ω(log n).

Theorem 3.2.7. For m ≥ n+ ω(log n), for every prime q = poly(n), for every R ∈ Zm×mq ,

and for every β ≥ 0, Adv
LWEn,m,q,χ
BA (1λ) ≥ (1/q2)Adv

eLWE+
n,m,q,χ,β,R

A (1λ).

Proof. We construct an LWE to eLWE+ reduction B as follows. B receives a knapsack-LWE

instance H ∈ Z(m−n)×m
q , c ∈ Zm−nq . It samples e′, z0, z1 ← χm and uniform v0,v1 ←

Zm−nq . It chooses any R ∈ Zm×mq , then sets

H′ := H− v0z
T
0 − v1 (Rz1)T ∈ Z(m−n)×m

q ,

c′ := c− v0 · 〈z0, e
′〉 − v1 · 〈Rz1, e

′〉 ∈ Zm−nq .

It sends (H′, c′, z0, z1, 〈z0, e
′〉, 〈Rz1, e

′〉) to the knapsack-eLWE+ adversaryA, and outputs

what A outputs.

Notice that when H, c are independent and uniform, so are H′, c′, in which case B’s

simulation is perfect.

Now, consider the case when H, c are drawn from the knapsack-LWE distribution, with

c = Hx for e← χm. In this case, H′ is uniformly random over the choice of H, and we

4We note that a higher quality reduction from LWE to eLWE is given in [BLP+13] in the case of binary
secret keys. However for our cryptosystem, it will be more convenient to have secret key coordinates in Zq , so
we extend the reduction of [AP12] to eLWE+ instead.

42

have

c′ = Hx− v0 · 〈z0, e
′〉 − v1 · 〈Rz1, e

′〉

=
(
H′ + v0z

T
0 + v1 (Rz1)T

)
e− v0 · 〈z0, e

′〉 − v1 · 〈Rz1, e
′〉

= H′e+ v0 · 〈z0, e− e′〉+ v1 · 〈Rz1, e− e′〉.

Define the event E = [E0 ∧ E1] as

E0
def
= [〈z0, e〉 = 〈z0, e

′〉] ,

E1
def
= [〈Rz1, e〉 = 〈Rz1, e

′〉] .

If event E occurs, then the reduction B perfectly simulates a pseudorandom instance

of knapsack-eLWE+ to A, as then v0 · 〈z0, e− e′〉 + v1 · 〈Rz1, e− e′〉 vanishes, leaving

c′ = H′e for H′ ← Z(m−n)×m
q and e ← χm as required. Otherwise since q is prime, the

reduction B (incorrectly) simulates an independent and uniform instance of knapsack-eLWE+

to A, as then either one of v0 · 〈z0, e− e′〉 or v1 · 〈Rz1, e− e′〉 does not vanish, implying

that c′ is uniform in Zm−nq over the choice of v0 (resp. v1) alone, independent of the choices

of H′ and x.

It remains to analyze the probability that event E occurs. Because e and e′ are i.i.d., we

may define the random variable Z0 that takes values 〈z0, e
∗〉 ∈ Zq and the random variable

Z1 that takes values 〈Rz1, e
∗〉 ∈ Zq jointly over choice of e∗ ← χm, and analyze their

collision probabilities independently. Since the collision probability of any random variable

Z is at least 1/|Supp(Z)|, we have that Pr[E] ≥ minCP [Z0] · minCP [Z1] = 1/q2 =

1/poly(n), and the theorem follows.

43

3.3 Flexibly Bi-Deniable Attribute-Based Encryption (ABE)

for Branching Programs

In this section, we present our flexibly bi-deniable ABE for bounded-length Branching

Program. We organize our approach into the following three steps: (1) first, we recall the

encoding scheme proposed in the SIM-secure ABE-BP of [GV15]; (2) Then, we present

our flexibly bi-deniable attribute bi-translucent set (AB-BTS) scheme, as was defined in

Definition 3.2.2. Our AB-BTS construction uses the ideas of Gorbunov and Vinayaga-

murthy [GV15], with essential modifications that allow us to tightly upper and lower bound

evaluated noise terms. As discussed in the Introduction, this tighter analysis plays a key

role in proving bi-deniability. (3) Finally, we show how to obtain the desired bi-deniable

ABE scheme from our AB-BTS. As pointed out by Canetti et al. [CDNO97] and O’Neill et

al. [OPW11], a bitranslucent set scheme implies flexibly bi-deniable PKE. We observe that

the same idea generalizes to the case of an AB-BTS scheme and flexibly bi-deniable ABE

in a straightforward manner.

3.3.1 Encoding Schemes for Branching Programs

Basic Homomorphic Encoding. Before proceeding to the public key evaluation algo-

rithm, we first described basic homomorphic addition and multiplication over public keys

and encoded ciphertexts based on the techniques in [GSW13, AP14, BGG+14].

Definition 3.3.1 (LWE Encoding). For any matrix A← Zn×mq , we define an LWE encoding

of a bit a ∈ {0, 1} with respect to a public key A and randomness s← Znq as

ψA,s,a = sT (A + a ·G) + e ∈ Zmq

for error vector e← χm and the gadget matrix G ∈ Zn×mq .

In our construction, all LWE encodings will be encoded using the same LWE secret s,

44

thus for simplicity, we will simply refer to such an encoding as ψA,a.

For homomorphic addition, the addition algorithm takes as input two encodingsψA,a, ψA′,a,

and outputs the sum of them. Let A+ = A + A′ and a+ = a+ a′

Add(ψA,a, ψA′,a′) = ψA,a + ψA′,a′ = ψA+,a+

For homomorphic multiplication, the multiplication algorithm takes as input two en-

codings ψA,a, ψA′,a, and outputs an encoding ψA×,a× , where A× = −AG−1(A′) and

a× = aa′.

Mult(ψA,a, ψA′,a′) = −ψ ·G−1(A′) + a · ψ′ = ψA×,a×

Public Key Evaluation Algorithm. Following the notation in [GV15], we define a public

evaluation algorithm Evalpk. The algorithm takes as input a description of the branching

program BP, a collection of public keys {Ai}i∈[`] (one for each attribute bit xi), a collection

of public keys V0,i for initial state vector and an auxiliary matrix Ac, and outputs an

evaluated public key corresponding to the branching program BP.

VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

where the auxiliary matrix Ac are used to encoded constant 1 for each input wire. We also

define matrix A′i = Ac −Ai as a public key used to encode 1 − xi. By the definition of

branching programs, the output VBP ∈ Zn×mq is the homomorphically generated public key

VL,1 at position 1 of the state vector for the L-th step of the branching program evaluation.

Recall that in the definition of branching programs, BP is represented by the tu-

ple {var(t), {γt,i,0, γt,i,1}i∈[5]} for t ∈ [L], and the initial state vector is set to be v0 =

(1, 0, 0, 0, 0). Further, for t ∈ [L], the computation is performed as vt[i] = vt−1[γt,i,0](1−

xvar(t)) + vt−1[γt,i,1] · xvar(t). It is important for the security proof (among other reasons) that

the evaluated state vector in each step is independent of the attribute vector.

45

Encoding Evaluation Algorithm. We define an encoding evaluation algorithm Evalct

that takes as input the description of a branching program BP, an attribute vector x, a

set of encodings for the attribute {Ai, ψi := ψAi,xi}i∈[`], encodings of the initial state

vector {V0,i, ψ0,i := ψV0,iv0[i]}i∈[5] and an encoding of a constant 1, i.e. ψc := ψAc,1.

The algorithm Evalct outputs an encoding of the result y := BP(x) with respect to the

homomorphically derived public key VBP := VL,1

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], {Ac, ψc})

As mentioned above, in branching program computation, for t ∈ [L], we have for all

i ∈ [5]

vt[i] = vt−1[γt,i,0](1− xvar(t)) + vt−1[γt,i,1] · xvar(t)

The evaluation algorithm proceeds inductively to update the encoding of the state vector for

each step of the branching program. Next, we need to instantiate this inductive computation

using the homomorphic operations described above, i.e. Add,Mult. Following the notation

used in [GV15], we define ψ′i := ψA′i,(1−xi) = sT (A′i+(1−xi)G)+e′i, where A′i = Ac−Ai,

to denote the encoding of 1−xi. This encoding can be computed using Add(ψAc
i ,1
,−ψAi,xi).

Then assuming at time t− 1 ∈ [L] we hold encodings of the state vector {ψVt−1,i,vt−1[i]}i∈[5].

For i ∈ [5], we compute the encodings of new state values as

ψi,t = Add(Mult(ψ′var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

where γ0 := γt,i,0 and γ1 := γt,i,1. We omit the correctness proof of the encoding here,

which is presented in [GV15].

Simulated Public Key Evaluation Algorithm. The simulation strategy was first devel-

oped in [BGG+14], and then adapted by Gorbunov and Vinayagamurthy [GV15] in branch-

ing program scenario. In particular, set Ai = AiRi − xiG for some shared public key

46

matrix A and low norm matrix Ri. Similarly, the state public keys At,i = ARt,i − vt[i]G,

and matrices Ac = ARc −G. The evaluation algorithm EvalSim takes as input the descrip-

tion of branching program BP, the attribute vector x, collections of low norm matrices

{Ri}i∈[`], {R0,i}i∈[5],R
c corresponding to input public key, initial state vector and comple-

ment matrices respectively, and a shared matrix A. It outputs a homomorphically derived

low norm matrix RBP:

RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)

In particular, let R′i = Rc
i −Ri for i ∈ [`]. We derive the low-norm matrices Rt,i for i ∈ [5]

as

1. Let γ0 := γt,i,0 and γ1 := γt,i,1.

2. Compute

Rt,i = (−R′var(t)G−1(Vt−1,γ0) + (1− xvar(t)) ·Rt−1,γ0)

+ (−Rvar(t)G
−1(Vt−1,γ1) + xvar(t) ·Rt−1,γ1)

(3.1)

We let RL,1 be the matrix obtained at L-th step corresponding to state value 1 by the above

algorithm. The correctness requires the norm of RBP remains small and the matrix VBP

output by Evalpk satisfies VBP = ARBP − BP(x)G. We refer to the counterpart in [GV15]

for the detailed correctness proof.

In order to achieve correctness and deniability, it is important for us to both lower and

upper bound the norm of ||RBP||. Here we apply the triangular inequality of the norm and

obtain the following lemma:

Lemma 3.3.2. Let Ri,j’s be the matrices defined as above. Then for every t ∈ [`], i ∈ [5]

and every error vector e ∈ Zmq , we have ||eT ·Rt−1,j|| − Θ(m1.5) · ||e|| ≤ ||eT ·Rt,i|| ≤

||e|| · ||Rt−1,j||+ Θ(m1.5) · ||e||, where j = γxvar(t) .

47

Proof. Recall the matrix Ri,j is computed as

Rt,i = (−R′var(t)G−1(Vt−1,γ0)+(1−xvar(t))·Rt−1,γ0)+(−Rvar(t)G
−1(Vt−1,γ1)+xvar(t)·Rt−1,γ1)

where xvar(t) ∈ {0, 1}. Without loss of generality, we assume xvar(t) = 1, thus we obtain

Rt,i = −R′var(t)G−1(Vt−1,γ0) + Rt−1,γ1 −Rvar(t)G
−1(Vt−1,γ1)

Since G−1(Vt−1,γ1) ∈ {0, 1}m×m, we know ||G−1(Vt−1,γ1)|| ≤ m. Since matrices

Rvar(t),R
′
var(t) were chosen uniformly at random in ∈ {−1, 1}m×m, we know that their

norm is bounded by Θ(
√
m) with high probability by Lemma 2.3.2. Therefore, we can

bound the norm of term ||R′var(t)G−1(Vt−1,γ0) + Rvar(t)G
−1(Vt−1,γ1)|| ≤ Θ(m1.5). By

applying the triangular inequality, it holds for every t ∈ [`], i ∈ [5] and vector e ∈ Zmq ,

||eT ·Rt−1,j|| −Θ(m1.5)||e|| ≤ ||eT ·Rt,i|| ≤ ||e|| · ||Rt−1,j||+ Θ(m1.5)||e||

where j = γxvar(t) .

By applying the above lemma inductively on the equation (3.1) of computing matrix

RBP for input length `, we can obtain the following theorem:

Theorem 3.3.3. Let BP be a length ` branching program, and RBP be the matrix as defined

above. Then we have ||eT ·R0,j||−2m1.5`||e|| ≤ ||eTRBP|| ≤ ||eT || · ||R0,j||+ 2m1.5`||e||

for some j ∈ [5].

Proof. Applying Lemma 3.3.2 inductively on input length `, we have

||eTRBP|| ≥ ||eT ·R`−1,j|| − 2m1.5||e|| ≥ · · · ≥ ||eT ·R0,j|| − 2m1.5`||e||

We can obtain the upper bound of ||eTRBP|| using similar computation.

48

Lemma 3.3.4. Let R is an m ×m be a matrix chosen at random from {−1, 1}m×m, and

u = (u1, ..., um) ∈ Rm be a vector chosen according to the m dimensional Gaussian with

width α. Then we have

Pr
[
||uTR||2 ∈ Θ(m2α2)

]
> 1− negl(m).

Proof. We know with overwhelming probability over the choice of u, all of its entries

have absolute value less than B = αω(logm). Also, we know that with overwhelming

probability, we have ||u||2 = Θ(mα2). We call a sample typical if it satisfies these two

conditions. Note that it is without loss of generality to just consider the typical samples,

from a simple union bound argument.

Then we consider a fixed typical choice of vector u = (u1, ..., um) ∈ Rm. We write

the inner product of uT · r where r = (r1, . . . , rm) is sampled uniformly from {−1, 1}m.

We observe that E
[
||uT · r||2

]
= E

[∑m
i=1 r

2
i u

2
i +

∑
i<j≤m rirjuiuj

]
=
∑m

i=1 u
2
i = ||u||2.

This is because each ri, rj are independent and have mean 0.

Now, for such a fixed u we denote random variables X1, . . . , Xm be i.i.d. samples of

rTu. It is not hard to see that

• ||uTR||2 = X2
1 +X2

2 + · · ·+X2
m, (one can view Xi as the i-th entry of uTR),

• E
[
||uTR||2

]
= m||u||2.

Next we claim that for each i, X2
i ≤ mB2ω(logm) with overwhelming probability. By

Hoeffding’s inequality, we have

Pr

∣∣∣∣∣∣
∑
j∈[m]

rjuj

∣∣∣∣∣∣ > t

 < 2e−
2t2

m·4B2 .

This is because each rjuj ∈ [−B,B]. (Recall that we consider a fixed u for the typical

case). By setting t =
√
mBω(logm), we have Pr[|Xi| > t] < negl(m). Thus X2

i ≤

mB2ω(logm) with overwhelming probability. So we can consider truncated versions of

49

X2
i ’s, where we cut out the large samples. This will only induce a negligible statistical

distance, and change the expectation by a negligible amount. For simplicity of presentation,

we still use the notation X2
i ’s in the following arguments, but the reader should keep in mind

that they were truncated.

Next again we apply Hoeffding’s inequality to the X2
i ’s to obtain

Pr
[∣∣||uTR||2 −m||u||2∣∣ > t′

]
< 2e

− 2t′2∑m
i=1

(mB2ω(logm))2 = 2e
− 2t′2
m3B4ω(logm) .

By taking t′ = m||u||2/2, we have

Pr
[∣∣||uTR||2 −m||u||2∣∣ > t′

]
< 2e

− ||u||4

2mB4ω(logm) .

Since u is typical, we know that ||u||2 = Θ(mα2). Also recall that B = αω(logm). So we

have

Pr
[
||uTR||2 ∈ Θ(m2α2)

]
> 1− 2e−

m
ω(logm) = 1− negl(m).

This completes the proof.

3.3.2 Construction of Flexibly Bi-Deniable ABE for Branching Pro-

grams

In this part, we present our flexibly bi-deniable AB-BTS scheme for bounded-length Branch-

ing Programs. We use a semantically-secure public key encryption Π = (Gen′,Enc′,Dec′)

with message space MΠ = Zm×mq and ciphertext space CΠ. For a family of branching

programs of length bounded by L and input space {0, 1}`, the description of BiDenAB-BTS

= (Setup,DenSetup,Keygen, SampleP, SampleU,TestP,FakeRCoins,

FakeSCoins) are as follows:

• Setup(1λ, 1L, 1`): On input the security parameter λ, the length of the branching program

50

L and length of the attribute vector `,

1. Set the LWE dimension be n = n(λ), modulus q = q(n, L). Choose Gaussian

distribution parameter s = s(n). Let params = (n, q,m, s).

2. Sample one random matrix associated with its trapdoor as

(A,TA)← TrapGen(q, n,m)

3. Choose `+ 6 random matrices {Ai}i∈[`], {V0,i}i∈[5],A
c from Zn×mq .

4. Choose a random vector u ∈ Znq .

5. Compute a public/secret key pair (pk′, sk′) for a semantically secure public key encryp-

tion (pk′, sk′)← Gen′(1λ)

6. Output the public parameter pp and master secret key msk as

pp = (params,A, {Ai}i∈[`], {V0,i}i∈[5],A
c,u, pk′), msk = (TA, sk

′)

• DenSetup(1λ, 1L, 1`): On input the security parameter λ, the length of branching program

L and length of attribute vector `, the deniable setup algorithm runs the same computation

as setup algorithm, and outputs

pp = (params,A, {Ai}i∈[`], {V0,i}i∈[5],A
c,u, pk′), msk = (TA, sk

′) fk = (TA, sk
′)

• Keygen(msk,BP): On input the master secret key msk and the description of a branching

program BP, BP = (v0, {var(t), {γt,i,0, γt,i,1}i∈[5]}t∈[L]).

1. Homomorphically compute a public matrix with respect to the branching program BP:

VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c).

51

2. Sample a low norm vector rBP ∈ Z2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, sq)

such that rTBP · [A|VBP + G] = u.

3. Output the secret key skBP for branching program as skBP = (rBP,BP).

• SampleP(pp,x): On input public parameters pp and attribute x,

1. Choose an LWE secret s ∈ Znq uniformly at random.

2. Choose noise vector e← DZmq ,α, and compute ψ0 = sTA + e.

3. Choose one random matrices Rc ← {−1, 1}m×m, and let ec = eTRc. Compute an

encoding of constant 1: ψc = sT (Ac + G) + ec.

4. Encode each bit i ∈ [`] of the attribute vector:

(a) Choose a random matrix Ri ← {−1, 1}m×m, and let ei = eTRi.

(b) Compute ψi = sT (Ai + xiG) + ei.

5. Encode the initial state vector v0 = (1, 0, 0, 0, 0), for i ∈ [5]

(a) Choose a random matrix R′0,i ← {−1, 1}m×m, and let R0,i = ηR′0,i, e0,i =

eTR0,i, where the noise scaling parameter η is set in Section 3.3.3.

(b) Compute ψ0,i = sT (Ai + v0[i]G) + e0,i.

6. Compute c = sTu+ e, where e← DZq ,s

7. Use PKE to encrypt randomly chosen matrices Rc, {Ri}i∈[`] and {R0,i}i∈[5]:

Ti ← Enc′(pk′,Ri),T
c ← Enc′(pk′,Rc),T0,i ← Enc′(pk′,R0,i)

8. Output the ciphertext

ctx = (x, ψ0, {ψi}i∈[`], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[`],T

c, {T0,i}i∈[5])

52

• SampleU(pp,x): Output a uniformly random vector ct ∈ Zmq ×Z`mq ×Z`mq ×Z5m
q ×Zq×

C`Π × CΠ × C5
Π.

• TestP(skBP, ctx): On input the secret key skBP for a branching program BP and a cipher-

text associated with attribute x, if BP(x) = 0, output ⊥, otherwise,

1. Homomorphically compute the evaluated ciphertext of result BP(x)

ψBP ← Evalct(BP,x, {Ai, ψi}i∈[`], {V0,i, ψ0,i}i∈[5], {Ac
i , ψ

c
i}i∈[`])

2. Then compute φ = [ψ0|ψBP]T · rBP. Accept ctx as a P-sample if |c − φ| < 1/4,

otherwise reject.

• FakeSCoins(rS): Simply output the P-sample c as the randomness r∗S that would cause

SampleU to output cx.

• FakeRCoins(pp, fk, ctx,BP): On input the public parameters pp, the faking key fk, a

ciphertext ctx and description of a branching program BP

1. If BP(x) 6= 0, then output skf ← Keygen(fk,BP).

2. Otherwise, parse ciphertext ctx as

ctx = (x, ψ0, {ψi}i∈[`], ψ
c, {ψ0,i}i∈[5], c, {Ti}i∈[`],T

c, {T0,i}i∈[5])

Compute e ← Invert(A,TA, ψ0). Then decrypt ({Ti}i∈[`],T
c, {T0,i}i∈[5]) respec-

tively using Dec(sk′, ·) to obtain {Ri}i∈[`],R
c, {R0,i}i∈[5]. Compute evaluated error

eBP ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

such that eBP = eTRBP.

53

3. Homomorphically compute a public matrix with respect to the branching program

BP: VBP ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5], {Ac
i}i∈[`]). Then sample a properly

distributed secret key rBP ∈ Z2m
q , using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)

4. Sample correlation vector y0 ← DZmq ,β2q2Im×m . Then sample correlation coefficient

µ← Dγ , and set vector y1 = (µeBP +DZm,Q)q, where

Q = β2Im×m − γ2α2RT
BPRBP (3.2)

5. Let y = (y0|y1), then sample and output the faked secret key sk∗BP = r∗BP as r∗BP ← y+

D
Λ+rBP−y,

√
s2−β2 , using SampleD(ExtBasis(A,TA,VBP + G), rBP − y,

√
s2 − β2),

where Λ = Λ⊥([A|VBP + G]).

The SampleP algorithm is similar to the ABE ciphertexts in the work [GV15], except

that we add another scaling factor η to the rotation matrices R0,i’s. This allows us to both

upper and lower bound the noise growth, which is essential to achieve bi-deniability. As we

discussed in the introduction, the FakeRCoins embeds the evaluated noise into the secret

key, so that it will change the decrypted value of the targeted ciphertext, but not others. Next

we present the theorem we achieve and a high level ideas of the proof. We describe the

intuition of our proof as follows.

Overview of Our Security Proof. At a high level, our security proof begins at the Fake

experiment (cf. Definition 3.2.1 for a formal description), where first a ciphertext ct∗ and

its associated noise terms e∗ are sampled, then a fake key r∗ is generated that “artificially”

fails to decrypt any ciphertext with noise vector (oriented close to) e∗. In the end, we will

arrive at the Real experiment, where an honest key r is generated that “genuinely” fails to

decrypt the honestly generated, coerced ciphertext ct∗. (Multi-ct coercion security follows

54

by a standard hybrid argument that repeatedly modifies respective r∗ to r for each coerced

ct∗ in order.) In order to transition from Fake to Real, we move through a sequence of

computationally- or statistically-indistinguishable hybrid experiments.

The first set of intermediate experiments (represented by H1 and H2 in our formal proof)

embeds the attribute x of the challenge ciphertext ct∗ in the public parameters, in a similar

fashion to the beginning of every SIM-secure proof of lattice-based ABE. Indistinguishability

follows via the Leftover Hash Lemma [DRS04]. (Note that the additional hybrid in our

proof is used to ensure that the random rotation matrices R employed by the LHL for public

key embedding of x are the exact same matrices R as used to generate the noise terms of

the coerced ct∗, and uses the security of any semantically-secure PKE for computational

indistinguishability.)

The next set of intermediate experiments (given by H3,H4, and H5 in our formal proof)

perform the “main, new work” of our security proof. Specifically, they “swap the order”

of the generation of the pk matrices {A}, the public coset u (in the public parameters and

in the coerced ciphertext), and the error vector(s) e in the coerced ciphertext components.

(An additional hybrid is used to toggle the order of a “correlation vector” y – a random,

planted vector used to allow for a more modular analysis of these steps.) In each case, we

give a statistical argument that the adversary’s view in adjacent hybrids is indistinguishable

or identical, using elementary properties of multi-dimensional Gaussians.

In the next step (given by H6), we apply the eLWE+ assumption to (roughly) change

every component of the coerced ciphertext ct∗ to uniform – except for the final c∗ component

used to blind the message µ.

In the final step (given by H7), we transition to the Real experiment by changing the c∗

component to uniform (in the presence of Dual Regev decryption under honest z), using our

sharper noise analysis as described above to show statistical indistinguishability of the final

decryption output of z on ct∗.

Theorem 3.3.5. Assuming the hardness of extended-LWEq,β′ , the above algorithms form a

55

secure attribute-based bitranslucent set schemem, as in Definition 3.2.2.

Lemma 3.3.6. For parameters set in Section 3.3.3, the AB-BTS defined above satisfies the

correctness property in Definition 3.2.2.

Proof. As we mentioned in Remark 3.2.3, the correctness of faking algorithms is implied

by the bi-deniability property. Therefore, we only need to prove the correctness of normal

decryption algorithm. For branching program BP and input x, such that BP(x) = 1, we

compute ψt,i for t ∈ [`] as

ψt,i = Add(Mult(ψ′var(t), ψt−1,γ0),Mult(ψvar(t), ψt−1,γ1))

= Add

(
[sT (−A′var(t)G−1(Vt−1,γ0) + (vt[γ0] · (1− xvar(t))) ·G) + e1],

([sT (−A′var(t)G−1(Vt−1,γ1) + (vt[γ1] · xvar(t)) ·G) + e2]

)
= sT

[(
−A′var(t)G

−1(Vt−1,γ0)−A′var(t)G
−1(Vt−1,γ1)

)︸ ︷︷ ︸
Vt,i

+
(
vt[γ0] · (1− xvar(t)) + vt[γ1] · xvar(t)

)︸ ︷︷ ︸
vt[i]

·G
]

+ et,i

At the end of the ciphertext evaluation, since BP(x) = 1, we can obtain ψBP = sT (VBP +

G) + eBP, where eBP = eTRBP. Recall that the secret key sk = rBP satisfying [A|VBP +

G] · rBP = u. Then for c− [ψ0|ψBP] · rBP, it holds that

c− [ψ0|ψBP]T · rBP = e− eTRBP · rBP

Now we need to compute a bound for the final noise term. By applying Theorem 3.3.3, we

obtain that

||eT || · ||RBP||+2m1.5`||e|| ≤ (2m1.5`+η
√
m)||e|| ≤ α

√
m(2m1.5`+η

√
m) ·sq

√
m ≤ 1

4

56

So by setting the parameters appropriately, as in Section 3.3.3, we have that

|c− [ψ0|ψBP]T · rBP| ≤ 1/4

and the lemma follows.

Lemma 3.3.7. Assuming the hardness of extended-LWEq,β′ , the AB-BTS scheme described

above is bi-deniable as defined in Definition 3.2.2.

Proof. First, we notice that because SampleU simply outputs its random coins as a uniformly

random ct, we can use ct itself as the coins.

We prove the bi-deniability property by a sequence of hybrids Hi with details as follows:

Hybrid H0: Hybrid H0 is the same as the view of adversary A in the right-hand faking

experiment in the definition of bi-deniability. We use the fact that algorithm Invert suc-

cessfully recovers e from ct with overwhelming probability over all randomness in the

experiment.

Hybrid H1: In hybrid H2, we switch the encryptions of matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c)

in the ciphertext to encryptions of zero.

Recall that in hybrid H0, we encrypt the randomness matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c)

using semantically secure PKE Π, i.e.

Ti ← Enc′(pk′,Ri), Tc ← Enc′(pk′,Rc), T0,i ← Enc′(pk′,R0,i)

In hybrid H1, we just set

Ti ← Enc′(pk′,0), Tc ← Enc′(pk′,0), T0,i ← Enc′(pk′,0)

to be encryptions of 0 ∈ Zm×m to replace encryptions of matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c).

57

Hybrid H2: In hybrid H2, we embed random matrices ({Ri}i∈[`], {R0,i}i∈[5],R
c) and

challenge attribute x∗ in the public parameters pp.

Recall that in hybrid H1 the matrices ({Ai}i∈[`], {V0,i}i∈[5],A
c) are sampled at random.

In hybrid H2, we slightly change how these matrices are generated. Let x∗ = (x∗1, ..., x
∗
`)

be the challenge attribute that the adversary A intends to attack. We sample matrices

({Ri}i∈[`], {R′0,i}i∈[5],R
c) uniformly random from {−1, 1}m×m and set R0,i = ηR′0,i,

which would be used both in the generation of public parameters and challenge ciphertext.

We set ({Ai}i∈[`], {V0,i}i∈[5],A
c) respectively as

Ai = ARi − x∗iG, V0,i = AR0,i − v0[i]G, Ac = ARc −G

where v0 = [1, 0, 0, 0, 0]. The rest of the hybrid remains unchanged.

Hybrid H3: In hybrid H3, we change the generation of matrix A and vector u in public

parameters pp.

Let A be a random matrix in Zn×mq . The construction of matrices ({Ai}i∈[`], {V0,i}i∈[5],A
c)

remains the same, as in hybrid H2. Sample error vectors e that would be used in algorithm

SampleP later. Then compute the error vector

eBP∗ ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

and choose a correlation coefficient µ ← Dγ , and set vector y1 = (µeBP∗ + DZm,Q)q,

where

Q = β2Im×m − γ2α2RT
BP∗RBP∗

Then let y = (y0|y1), where y0 ← DZmq ,β
2q2Im×m . Sample vector rBP∗ ← y+DZ2m−y,(s2−β2)q2I2m×2m

,

and compute matrix

VBP∗ ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5],A
c)

58

Set vector u in public parameters pp as u = [A|VBP∗] · rBP∗ . Since A is a random matrix

without trapdoor TA to answer key queries, we will use trapdoor TG to answer queries as

follows. Consider a secret key query for branching program BP such that BP(x∗) = 0. To

respond, we do the following computations:

1. First, we compute

RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5],R
c,A)

to obtain a low-norm matrix RBP ∈ Zm×mq satisfying ARBP − BP(x∗)G = VBP.

2. Then, we sample rBP using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

such that

rTBP · [A|VBP + G] = u

By Lemma 2.3.7, vector rBP is distributed as required.

The computation of answering P -sampler query, SampleP is the same as hybrid H1 with

error vectors e, For faking receiver coins, FakeRCoins, simply output the vector rBP∗

pre-sampled in the generation of vector u before.

Hybrid H4: In hybrid H4, we change the generation order of vector y and error vector e.

First sample vector y = (y0|y1) ← DZ2m,β2q2I2m×2m
and compute rBP∗ from y as in

previous hybrid. Next, we compute error term e as e = νyT1 RBP∗/q + DZm,Q′ , where

ν ← Dτ , τ = γα2/β2, and DZm,Q′ is sampled as L′DZm1 ,Im×m
for

Q′ = L′L′T = α2I− τ 2β2RT
BP∗RBP∗ (3.3)

59

Additionally, we modify the challenge ciphertext to be

ψ∗0 = sTA/q + e, ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = sTu+DZm,αIm×m .

Hybrid H5: In hybrid H5, we change the generation order of secret key rBP∗ and vector y.

We first sample matrix rBP∗ from discrete Gaussian distribution DZ2m,s2q2I2m×2m
, and set

vector u in public parameters pp to be u = [A|VBP∗] · rBP∗ , where

VBP∗ ← Evalpk(BP, {Ai}i∈[`], {V0,i}i∈[5], {Ac
i}i∈[`])

Then set y = (y0|y1) = rBP∗/2 + DZ2m,(β2−s2/4)q2I2m×2m
. The remainder of the hybrid

remains roughly the same. In particular, the challenge ciphertext ct∗ is generated in the

same manner as Hybrid H4. We break the noise term e into two terms e = e
(1)
0 + e

(2)
0 +

νyT1 RBP∗/q, where e(1)
0 ← DZm,β′Im×m , e

(2)
0 ← DZm,Q′−β′2Im×m and β′ = α/2.

Hybrid H6: In hybrid H6, we change how the challenge ciphertext is generated by using

the Extended-LWE+ instance.

First sample uniformly random vector b ∈ Zm and set the challenge ciphertext as

ψ∗0 = b/q + e
(2)
0 , ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = rTBP∗ [Im×m|RBP∗](b/q − e(1)
0) +DZm,αIm×m .

Hybrid H7: In hybrid H7, we change the challenge ciphertext to be uniformly random.

In algorithm SampleP, sample uniformly random vectors ct ∈ Zmq ×Z`mq ×Zmq ×Z5m
q ×Zq

and outputs ct.

Claim 3.3.8. Assuming the semantic security of PKE Π = (Gen′,Enc′,Dec′), hybrid H0

60

and H1 are computationally indistinguishable.

Proof. Observe there is only one difference between hybrids H0 and H1 occurs in the

challenge ciphertext, i.e. the encryption (under PKE Π) of the random matrices Si are

replaced by encryption of 0. If a PPT adversary A distinguishes between the H0-encryptions

of ({Ri}i∈[`], {R0,i}i∈[5], {Rc}) and the H1-encryptions of 0 with non-negligible probability,

then we can construct an efficient reduction B that uses A to break the semantic security of

PKE Π with similar probability.

Claim 3.3.9. Hybrids H1 and H2 are statistically indistinguishable.

Proof. Observe the only difference between hybrids H1 and H2 is the generation of matrices

({Ai}i∈[`], {V0,i}i∈[5], {Ac
i}i∈[`])

The random matrices ({Ri}i∈[`], {R0,i}i∈[5], {Rc
i}i∈[`]) are used in the generation of public

parameters pp:

Ai = ARi − x∗iG, V0,i = AR0,i − v0[i]G, Ac = ARc −G

and the construction of errors in challenge ciphertext

ei = eTRi, ec = eTRc, e0,i = eTR0,i

Then by Leftover Hash Lemma 2.3.3, the following two distributions are statistically

indistinguishable

(A, {ARi}i∈[`], {AR0,i}i∈[5], {ARc}, ẽ) ≈ (A, {Ai}i∈[`], {V0,i}i∈[5], {Ac}, ẽ)

where ẽ = ({ei}i∈[`], {e0,i}i∈[5], {ec}). Hence, hybrid H0 and H1 are statistically indistin-

guishable.

61

Claim 3.3.10. Hybrids H2 and H3 are statistically indistinguishable.

Proof. Observe there are three differences between hybrid H2 and H3: The generation of

matrix A and vector u in pp, challenge secret key skBP∗ and the computation methods to

answer secret key queries. By the property of algorithm TrapGen(q, n,m) in Lemma 2.3.6,

the distribution of matrix A in hybrid H2 is statistically close to uniform distribution, from

which matrix A in hybrid H3 is sampled.

For secret key queries regarding branching program BP, in hybrid H2, we sample vector

rBP, using

rBP ← SampleLeft(A,TA, (VBP + G),u, s)

While in hybrid H3, we sample vector rBP, using

rBP ← SampleRight(A,G,RBP,TG,u, sq)

By setting the parameters appropriately as specified in Section 3.3.3, and the properties of

algorithms SampleLeft and SampleRight in Lemma 2.3.7, the answers to secret key queries

are statistically close.

By Leftover Hash Lemma 2.3.3, the distribution ([A|VBP∗], [A|VBP∗] · rBP∗) and

([A|VBP∗],u) are statistically close. Hence, hybrid H2 and H3 are statistically indistin-

guishable.

Claim 3.3.11. Hybrids H3 and H4 are statistically indistinguishable.

Proof. The only difference between the two experiments is in the choice of y and e,

specifically, the choice of the y1 component of y = (y0|y1). We will show that the joint

distribution of (e,y1) is identically distributed in these two hybrids:

In hybrid H3, y1 is set as y1 = (µeBP∗+DZm,Q)q, where Q = β2Im×m−γ2α2RT
BP∗RBP∗

62

with e← DZm,α2Im×m and

eBP∗ ← Evalct(BP,x, {Ai, e
TRi}i∈[`], {V0,i, e

TR0,i}i∈[5], {Ac, eTRc})

Therefore, in hybrid H3, we may write the joint distribution of (e,y1) as T1 · DZ2m,I2m×2m
,

where T1
def
=

 αIm×m 0m×m

γαqRT
BP∗ qL

 for Q = LLT ∈ Zm×m via the Cholesky decomposi-

tion due to Lemma 2.3.1.

In hybrid H4, vector y = (y0|y1) is sampled as y = (y0|y1) ← DZ2m,β2q2I2m×2m
.

Then e is computed as e = νyT1 RBP∗/q + DZm,Q′ , where ν ← Dτ , τ = γα2/β2, and

Q′ = α2I − τ 2β2RT
BP∗RBP∗ . Then in hybrid H4, we may write the joint distribution of

(e,y1) as T2 · DZ2m,I2m×2m
, where T2

def
=

 L′ τβRBP∗

0m×m βqIm×m

 for Q′ = L′L′T ∈ Zm×m

via the Cholesky decomposition due to Lemma 2.3.1.

We claim equality of the following systems of equations:

T1T
T
1 =

 α2Im×m γα2qRBP∗

γα2qRT
BP∗ γ2α2q2RT

BP∗RBP∗ + q2LLT


=

 L′L′T + τ 2β2RBP∗R
T
BP∗ τβ2qRBP∗

τβ2qRT
BP∗ β2q2Im×m

 = T2T
T
2 .

This fact may be seen quadrant-wise by our choice of τ = γα2/β2 and the set-

tings of Q = LLT and Q′ = L′L′T in Equations (3.2) and (3.3). It then follows that

(T−1
2 T1)(T−1

2 T1)T = I2m×2m, implying T1 = T2Q
∗ for some orthogonal matrix Q∗. Be-

cause the spherical Gaussian DZ2m,I2m×2m
is invariant under rigid transformations, we have

T1 · DZ2m,I2m×2m
= T2Q

∗ · DZ2m,I2m×2m
= T2 · DZ2m,I2m×2m

, and the claim follows.

Claim 3.3.12. Hybrids H4 and H5 are statistically indistinguishable.

Proof. Observe the main difference between hybrids H4 and H5 is the order of generation

63

of vectors y and rBP∗: In hybrid H4, we first sample y = (y0|y1) ← DZ2m,β2q2I2m×2m

and set rBP∗ ← y + DZ2m−y,q2(s2−β2)I2m×2m
, while in hybrid H5, we first sample rBP∗ ←

DZ2m,s2q2I2m×2m
and set y = (y0|y1)← rBP∗/2 +DZ2m,(β2−s2/4)q2I2m×2m

. By setting param-

eters appropriately as in Section 3.3.3, these two distributions are statistically close.

Claim 3.3.13. Assuming the hardness of extended-LWE+
n,m,q,DZm,β′ ,R

for any adversarially

chosen distribution over matrices R ∈ Zm×mq , then hybrids H5 and H6 are computationally

indistinguishable.

Proof. Suppose A has non-negligible advantage in distinguishing hybrid H5 and H6, then

we use A to construct an extended-LWE+ algorithm B as follows:

Invocation. B invokes adversary A to commit to a challenge attribute vector x∗ =

(x∗1, ..., x
∗
`) and challenge branching program BP∗. ThenB generates RBP∗ by first sampling

({Ri}i∈[`], {R0,i}i∈[5], {Rc}) as in the hybrid, and computes

RBP ← EvalSim(BP,x, {Ri}i∈[`], {R0,i}i∈[5], {Rc},A)

Then it receives an extended-LWE+ instance for the matrix R = RBP∗ as follows:

{A, b = sTA + e, z0, z1, 〈z0, b− e〉+ e, 〈zT1 R, b− e〉+ e′}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , e, z0, z1

$← χn and e, e′ $← χ. Algorithm B aims

to leverage adversary A’s output to solve the extended-LWE+ assumption.

Setup. B generates matrices ({Ai}i∈[`], {V0,i}i∈[5], {Ac}) as specified in hybrid H1. Then,

B sets challenge secret key skBP∗ = rBP∗ = (r∗0|r∗1) = (z0|z1) from extended-LWE+

instance and computes vector u as in hybrid H5.

Secret key queries. B answers adversary A’s secret key queries as in hybrid H2.

64

Challenge ciphertext. B answers adversary A’s P -sample query by setting

ψ∗0 = b/q+e
(2)
0 +νyT1 RBP∗/q, ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

and c∗ = rTBP∗ [Im×m|RBP∗](b/q − e(1)) +DZm,αIm×m .

Faking receiver coin query. B answers adversary A’s faking receiver coin query by

outputting the extended-LWE instance’s vector skBP∗ = rBP∗ .

Output. B outputs whatever A outputs.

We can rewrite the expression of c∗′ to be

c∗
′
= ([A∗|A∗RBP∗]

(
z0
z1

)
)Ts/q +DZ1,α

= ((z0|z1)
(

A∗T

RT
BP∗A

∗T
)
)s/q +DZ1,α = z0A

∗Ts/q + z1R
T
BP∗A

∗Ts/q +DZ1,α

= 〈z0, b/q − e(1)〉+ 〈zT1 RBP∗ , b/q − e(1)〉+DZ1,α

We can see that if the eLWE+ instance’s vector b is pseudorandom, then the distribution

simulated by B is exactly the same as H5. If b is truly random and independent, then the

distribution simulated by B is exactly the same as H6. Therefore, if A can distinguish

H5 from H6 with non-negligible probability, then B can break the eLWE+
n,m,q,D(α/2)q ,α

′,Sf∗

problem for some α′ ≥ 0 with non-negligible probability.

Claim 3.3.14. Hybrids H6 and H7 are statistically indistinguishable.

Proof. Recall the only difference between hybrids H6 and H7 is the generation of challenge

ciphertext. In hybrid H7, we observe if ψ∗0 is chosen from uniform distribution, then by

Leftover Hash Lemma 2.3.3, it holds

ψ∗i = ψ∗T0 Ri/q, ψ∗0,i = ψ∗T0 R0,i/q, ψ∗c = ψ∗T0 Rc/q

65

is also uniformly random (in their marginal distribution). Therefore, it remains to show that

c∗ is still uniformly random even conditioned on fixed samples of (ψ∗0, {ψ∗i }i, {ψ∗0,i}i, {ψc}).

As calculated above, we can unfold the expression of c∗ as

c∗ = 〈z0, b/q − x(1)〉+ 〈zT1 RBP∗ , b/q − x(1)〉+DZ1,α

We note that b/q − x(1) = ψ∗0 − x(1) − x(2) − νRBP∗y1/q, thus if we show that

〈RBP∗z1, νRBP∗y1/q〉

is close to uniform distribution (modulo 1), then c∗ will also be close to the uniform

distribution (modulo 1), as c∗ is masked by this uniformly random number. Recall in hybrids,

we set y1 = z1/2 + (shift), so it is sufficient to analyze

〈RBP∗z1, νRBP∗y1/q〉 = ν〈RBP∗z1,RBP∗z1/q〉 = ν||R∗BP∗z1||2/q

By applying Lemma 3.3.2 inductively on matrix RBP∗ , we can obtain that

||R∗BP∗z1||2/q ≥
(||R0,jz1|| −Θ(m1.5)`||z1||)2

q

where R0,j ∈ {−1, 1}m×m. Since vector z1 is sampled from Gaussian with width sq, so its

two-norm is at least
√
m(sq) with overwhelming probability. Then by Lemma 3.3.4, the

distribution ν||R∗BP∗z1||2/q is a Gaussian distribution with width at least

d = τ
(ηsqm−Θ(m2`)sq)2

q
=
γα2(ηsqm−Θ(m2`)sq)2

β2q

We recall again that ν was sampled from a Gaussian with parameter τ = γα2/β2. By our

setting of parameters, we have d/ω(log(n)) ≥ 1. A Gaussian with such width is statistically

close to uniform in the domain Z1. This completes the proof.

66

This completes the proof of Lemma 3.3.7. Further, Theorem 3.3.5 follows from Lem-

mas 3.3.6 and 3.3.7. A (flexibly) bi-deniable ABE from LWE then follows.

3.3.3 Parameter Setting

The parameters in Table 3.3.1 are selected in order to satisfy the following constraints:

Parameters Description Setting

n,m lattice dimension n = λ,m = n2 log n

` length of input to branching program ` = n

q modulus (resp. bit-precision) smallest prime ≥ n1.5m2.5ω(log n)

α sampling error terms e, e 1
n2.5 log3 n

β sampling correlation vector y α/2

γ sampling correlation coefficient µ 1
n log1.5 n

s sampling secret key r 3β/2

η scaling parameter for R0,j Θ(m`)

Table 3.3.1: Parameter Description and Simple Example Setting

• To ensure correctness in Lemma 3.3.6, we have αsqm(η
√
m+ 2m1.5`) ≤ 1/4 .

• To ensure deniability in Hybrid H7, we have d/ω(log(n)) > γα2(ηsqm−Θ(m2`sq))2

β2qω(log(n))
> 1.

• To ensure large enough LWE noise, we need α ≥ (
√
n log1+δ n)/q.

• To apply the leftover hash lemma, we need m ≥ 2n log(q).

• To ensure that the matrix Q in FakeRCoins is positive definite, we have β ≥ αγ
√
η
√
m+ 2m1.5`;

To ensure that the matrix Q′ in the security proof is positive definite, we have α ≥

τβ
√
η
√
m+ 2m1.5`. This constraint will also imply that in the security proof, both Q′

and Q′ − β′Im×m are positive definite (note β′ = α/2).

67

• To ensure hybrids H3 and H5 are well-defined, we have s > β and β > s/2. Let

s := (3/2)β.

Regev [Reg05] showed that for q >
√
m/β′, an efficient algorithm for LWEn,m,q,χ for

χ = Dβ′q
(
and β′q ≥

√
nω(log(n))

)
implies an efficient quantum algorithm for approxi-

mating the SIVP and GapSVP problems, to within Õ(n/β′) approximation factors in the

worst case. Our example parameter setting yields a bi-deniable AB-BTS based on the

(quantum) hardness of solving SIVPÕ(n9.5), respectively GapSVPÕ(n9.5). (We write this term

to additionally absorb the (1/q2) loss from our LWE to eLWE+ reduction.) We leave further

optimizing the lattice problem approximation factor to future work.

3.3.4 From AB-BTS to Flexible Bi-Deniable ABE

We present the instantiation of a flexible bi-deniable ABE using our AB-BTS scheme

described above. We let

Σ′ = (Setup′,DenSetup′,Keygen′, SampleP′, SampleU′,TestP′,FakeRCoins′,FakeSCoins′)

be an AB-BTS scheme. Then the flexible bi-deniable ABE

Σ = (Setup,DenSetup,Keygen,Enc,DenEnc,Dec, SendFake,RecFake)

is:

• Setup(1λ): Run algorithm (pp′,msk′)← Setup′(1λ) in AB-BTS and set pp = pp′,msk =

msk′.

• DenSetup(1λ): Run algorithm (pp′,msk′, fk′) ← DenSetup′(1λ) in AB-BTS and set

pp = pp′,msk = msk′, fk = (fk′,msk′).

• Keygen(msk, f): Run algorithm sk′f ← Keygen′(msk, f) in AB-BTS and set skf = sk′f .

68

• Enc(pp,x, µ; (r
(1)
S , r

(2)
S)): On input the message µ ∈ {0, 1}, if µ = 0, then run ci ←

SampleU′(pp,x; r
(i)
S) for i = 1, 2, otherwise, µ = 1, run c1 ← SampleU′(pp,x; r

(1)
S) and

c2 ← SampleP′(pp,x; r
(2)
S). Output ctx = (c1, c2).

• DenEnc(pp,x, µ; (r
(1)
S , r

(2)
S)): On input the message µ ∈ {0, 1}, then run

ci ← SampleP′(pp,x; r
(i)
S) for i = 1, 2, otherwise, µ = 1, run c1 ← SampleU′(pp,x; r

(1)
S)

and c2 ← SampleP′(pp,x; r
(2)
S). Output ctx = (c1, c2).

• Dec(ctx, skf): If f(x) 6= 0, then output ⊥. Otherwise, parse ctx = (c1, c2) and run

bi ← TestP′(skf , ci) for i = 1, 2. Output 0 if the b1 = b2 and 1 if b1 6= b2.

• SendFake(pp, rS, µ, µ
′): If µ = µ′, return rS . If (µ, µ′) = (0, 1), then run

r
∗(2)
S ← FakeSCoins′(pp, r

(2)
S) and return (r

(1)
S , r

∗(2)
S). Else if (µ, µ′) = (1, 0),

run r∗(1)
S ← FakeSCoins′(pp, r

(1)
S) and return (r

∗(1)
S , r

(2)
S).

• RecFake(pp, fk, ctx, f, µ
′): Parse ctx = (c1, c2) and use fk to decrypt the ciphertext ctx

then obtain the plaintext µ. If µ = µ′, then run the honest key generation of the BTS

scheme, i.e. sk′f ← Keygen′(msk′, f). Otherwise, run sk′f ← FakeRCoins′(pp, fk, cµ+1, f).

Return sk′f .

Similar to the work by Canetti et al. [CDNO97] and O’Neil et al. [OPW11], the follow-

ing, desired theorem can be proven in a straightforward manner.

Theorem 3.3.15. Assume that Σ′ is a flexible bi-deniable AB-BTS, as in Definition 3.2.2.

Then Σ is a flexibly bi-deniable ABE, as in Definition 3.2.1.

69

Chapter 4

Weak is Better: Tightly Secure Short

(Lattice) Signatures from Weak PRFs

4.1 Introduction

The Boyen-Li lattice-based signature scheme [BL16] from Asiacrypt 2016, is a theoretical

breakthrough in terms of signature schemes with tight security reductions in the standard

model.

Previous schemes achieving a reduction loss in security independent of the number of

signing queries were either only proven secure in the random-oracle model [KW03, BLS01],

required large signatures (of size at least quadratic in the security parameter) [BKKP15], or

are insecure against quantum attacks [CW13, GHR99, BB08]. Their scheme manages to

achieve short signatures (consisting of a single lattice vector in Zmq) in the standard model

with a loss in security depending (up to a constant factor) only on the loss from the security

reduction of the pseudorandom function family (PRF) which underlies their scheme.

The starting point of their scheme is the Katz-Wang signature scheme, proven secure

in the random oracle model [KW03]. Viewed at a high level, this scheme requires a

pseudorandom function (PRF) PRFk, a hash function H modeled as a random oracle, and

70

a trapdoor function f . The signer computes a signature σ by inverting the trapdoor at

H(PRFk(µ)||µ), and the verifier accepts if f(σ) = H(b||µ) for some b ∈ {0, 1}. In the

security proof, the random oracle is programmed so that it can only invert the trapdoor

function f at f−1(H(PRFk(µ)||µ)), while learning f−1((H(1−PRFk(µ))||µ)) would allow

it to solve some hard problem. If the PRF is secure, the latter case will happen with

probability 1/2.

Boyen and Li notice that instead of using a random oracle, they can use the key-

homomorphic trapdoor functions of Boneh et al. to encode the bits of the PRF key in the

verification key [BGG+14]. To sign a message µ, they simply use the properties of the

key-homomorphic trapdoor functions to homomorphically evaluate the PRF on µ, setting

up the public key so they can only invert the trapdoor at b = PRFk,µ. This enables them to

gain tight security (with loss 1/2) in the same manner as Katz and Wang, without having to

resort to the random oracle heuristic.

Evaluation of non-trivial circuits over homomorphic trapdoor functions comes at a

price. In particular, while the Boyen-Li scheme can be instantiated with AES or any

other block cipher as the PRF, these appear to be less than ideal choices. The reason

for this is because block ciphers such as AES appear to require relatively high circuit

depth to evaluate homomorphically [GHS12b], which forces the scheme to be based on the

hardness of approximating SIS to within a subexponentially large factor. Unlike SIS with

polynomially large factors, this problem can be solved in subexponential time using the

BKZ algorithm [SE94, CN11].

As an alternative to assuming the subexponential hardness of SIS, they recall that a

function with a circuit in NC1 can be evaluated using the standard lattice-based homo-

morphic trapdoor constructions with only polynomial growth in the size of the underlying

trapdoor [BV14, GV15]. Those PRFs which are known to have an NC1 circuit are mostly

based on quantum insecure assumptions [NR99, NRR02].

The only potentially post-quantum PRF with an NC1 circuit that we are aware of is the

71

ring-LWE (RLWE) based PRF of Banerjee et al. [BPR12], and indeed, this PRF is used by

Boyen and Li for the quantum-secure instantiation of their scheme. The PRF of Banerjee

et al., along with the quantum-insecure PRFs referenced above 1, all have a linear security

loss in their reduction to the underlying hard problem on which they are based. As a result,

Boyen and Li are able to instantiate their signature scheme with an overall loss in security

linear in the underlying security parameter, but independent of the number of queries made

by the adversary, which is a first for standard model lattice-based signature schemes with

short signatures.

For completeness, we note that their paper also constructs a fully-secure IBE scheme

enjoying very similar properties, where it enjoys some additional relative advantage to other

such lattice-based schemes, as all such schemes require very large public keys (albeit not

as large as theirs). However, our focus in this work is on the signature scheme only, as our

main techniques do not transfer to the IBE setting.

4.1.1 Improving the Boyen-Li Scheme

Our main result is an improved version of the Boyen-Li signature scheme.

Better Parameters and Runtime. First, we improve greatly on the size of the public key

and the hardness assumptions required. While our public key is still large (compared to

some other lattice-based schemes), it is nevertheless a significant improvement over that of

Boyen and Li. Although they never explicitly state the size of the public key in their work,

it is clear that they need to encode the secret key for the PRF Banerjee et al. in the public

key [BPR12], and furthermore, that at least one matrix is required in the public key for each

bit of the PRF secret key in order to homomorphically evaluate the PRF using the ideas of

Brakerski and Vaikuntanathan discussed above. The nw log2 n = O(n2 log2 n) value we

give in Figure 4.1.1 then follows from the conditions required of the modulus of the PRF

1While they mention a DDH-based PRF construction by Jager that achieves a polylogarithmic loss in
security, the paper containing it has since been withdrawn.

72

Scheme Pub. Key Signature Reduct. Assumption(s)
R1×k
q mat. Rk

q vec. loss
[CHKP12] n n Q RSIS(n3/2)
[Boy10] n 1 Q RSIS(n7/2)
[MP12] n 1 Q RSIS(n5/2)
[BHJ+15] 1 d (Q2/ε)c RSIS(n5/2)
[DM14] d 1 (Q2/ε)c RSIS(n7/2)
[Alp15] 1 1 (Q2/ε)c RSIS(d2d · n11/2)
[BL16] nw log2 n 1 λ RSIS(w4n7/2),RLWE(wnw/2)

This work n log n 1 1 RSIS(n7/2), LWR(n)

To avoid clutter, we ignore constant parameters above. We write SIS(·) to specify the SIS
parameter, and LWE(·), LWR(·) to specify the LWE noise ratio and LWR rounding ratio,
respectively. For SIS parameters, we also ignore logarithmic parameters, i.e. we write the
parameter in Õ notation without the Õ. The comparison is in the ring setting because as
written, some of these schemes are only realizable in the ring setting. For those schemes
using confined guessing or variants thereof, d is a value satisfying 2Q2/ε < 2bc

dc for a
constant c = 2. For the Boyen-Li Scheme, w is a parameter representing the length of input
messages, and δ > 1 is such that the PRF of Banerjee et al. [BPR12] can be computed by
an NC1 circuit of depth δ logw.

Figure 4.1.1: Comparison to other standard model lattice-based signature schemes in the ring setting

scheme.

Furthermore, we contend that while our public key is indeed large compared to those

in [DM14, Alp15], the reduction loss in security in those schemes is so great as to make

their proofs of security somewhat vacuous, while our reduction loss in security is constant

(6). For an adversary making 240 queries and succeeding with advantage 2−40 (which would

be considered a practical “break” of the scheme), the reduction would yield an attack on

the underlying hard problems that succeeds with advantage only 2−280, which is almost

certainly too small to be considered practically meaningful. By contrast, an adversary

making 240 queries and succeeding with advantage 2−40 against our scheme would yield

an attack against the underlying hard problems with advantage 2−43, which is still quite

meaningful. For the other known standard-model lattice-based signature schemes, our public

key is bigger by at most a logarithmic factor.

We also gain significantly in terms of the size required for the modulus q (which itself

73

affects the size of the public key). They need to set the modulus to be at least q = ω(λ4(1+c)),

where the given PRF can be evaluated in depth d = c log λ, and it takes time Ω(λ2c+1) to

evaluate the PRF homomorphically, even in the ring setting. The specific values of c for

pseudorandom functions known to be in NC1 [BPR12, BP14, NR04, DS15] are not explicitly

investigated by Boyen and Li (or by the authors of the papers in which the PRFs appear).

However, the paper by Banerjee et al describes three sequential steps of a multi-product

of vectors, a discrete Fourier Transform, and a rounding step, each of which can be seen

to require at least log n depth (since each step depends on all n input bits) [RT92], which

suggests that c is at least 3.

Our scheme gains even further in terms of runtime, and we discuss this point further

below in Section 4.1.2.

Tighter and Weaker Assumptions. In addition to a much smaller SIS parameter of n7/2

versus what appears to be O(n7/2w12) = O(λ31/2) in the Boyen-Li paper (based on the

apparent depth of the underlying PRF), we avoid the need for relying on the very strong

and somewhat questionably quantum-safe2 assumptions like the hardness of RLWE for

subexponentially large error ratios. Instead, our additional assumption is the hardness of

the Learning with Rounding problem (LWR) over general lattices with a small (linear)

rounding ratio. LWR over general lattices remains very plausibly quantum-hard for even for

subexponential rounding ratios, and for the rounding ratio we require, we would expect any

efficient (quantum) attack on LWR to be adaptable into an efficient attack on essentially all

lattice-based cryptography; see Section 2.3.8 for some further justification.

2While no attacks on RLWE itself are known for subexponential large error ratios, Cramer, Ducas and
Wesolowski recently gave a quantum polynomial-time algorithm for approximating the worst-case shortest
vector on ideal lattices to within a factor of exp(Õ(

√
n)) [CDW16], making the reduction from RLWE to

worst-case ideal lattice problems essentially vacuous

74

4.1.2 Our Techniques

Our starting point is an investigation of the minimal security properties the function homo-

morphically evaluated in the Boyen-Li scheme must satisfy in order that the entire signature

scheme be secure, i.e. existentially unforgeable against adaptive chosen-message attacks

(eu-acma). We note that the adversary has the ability to choose which messages will be

(homomorphically) evaluated by the function when computing the signature by simply

asking the signing oracle to sign those messages. As a result, in order for the function’s

output to remain unpredictable by any means more successful than a random guess, the

function must indeed be a strong pseudorandom function.

However, we recall that by hashing the message with a chameleon hash function [KR00]

before signing, we can essentially eliminate an adversary’s ability to choose which messages

will be signed. In more detail, it has been shown [ST01] that a signature scheme that

is existentially unforgeable against an adversary who can only observe signatures for

(uniformly) random messages, can be turned into an euf-acma secure signature scheme

by applying a chameleon hash function to a concatenation of the message with some

auxiliary sampled randomness, signing the output of the chameleon hash function instead of

directly signing the message, and including the auxiliary sampled randomness as part of the

signature.

Weak Pseudorandom Functions. Once the ability of the adversary to choose messages

has been eliminated and the adversary is limited to observing signature on messages sampled

uniformly at random, we now see that the function being homomorphically evaluated

need only be a weak pseudorandom function (W–PRFs) [DN02]. In contrast to strong

pseudorandom functions, the output must only remain unpredictable against an adversary

who can observe the output of the function on any polynomial number of messages chosen

uniformly at random.

At a complexity theoretic level, there is very strong evidence that weak pseudoran-

75

dom functions are much simpler to compute than strong PRFs. In particular, Razborov

and Rudich [RR94] have shown that any candidate strong pseudorandom function fam-

ily computable in the complexity class AC0(MOD2) of polynomial-size (in parameter λ)

constant-depth circuit families with unbounded fan-in AND,OR and MOD2 gates can be

only superpolynomially hard. In particular, they can be attacked by an adversary of size h

with advantage at least 1/h for h = O(exp(poly(log n)). By contrast, there exist candidate

weak pseudorandom functions (that are plausibly exponentially hard) in this complexity

class [ABG+14].

Instead of using the candidate weak pseudorandom functions in AC0(MOD2), we instead

opt for using the Learning With Rounding (LWRn,q,2) function family, for modulus q =

2` [BPR12]. Each function in the family is indexed by a secret s← Znq , and on input a ∈ Znq

outputs

fs(a) = b〈a, s〉e2 = b2
q
〈a, s〉e mod 2.

Under the assumption that LWRn,q,2’s output is indistinguishable from a truly random

function (when evaluated on a sampled uniformly at random), known as the decisional-

LWRn,q,2 assumption, we can immediately see that the LWR function is a pseudorandom

function. It is also very easy to see that it is not a strong PRF, because one can learn the jth

most significant bit of the ith coordinate of s by making a query on input 2j−1ei, where ei is

the ith vector of the standard basis.

Efficient Homomorphic Evaluation of LWR. The main reason we opt for using LWR

as our weak PRF is that, viewed in the above manner, it is identical to the decryption

function for most lattice-based encryption schemes [Reg09]. Homomorphic evaluation of

the decryption function, of course, is better known in fully homomorphic encryption (FHE)

contexts as bootstrapping, where it is a central operation necessary to allow unbounded

homomorphic computation [Gen09]. A large body of work has focused on optimizing the

evaluation of this function for various fully homomorphic encryption schemes [GHS12a,

76

AP13, OvdPS15, HS15], but for our purposes, we are particularly interested in those works

focused on bootstrapping LWE ciphertexts using the Gentry-Sahai-Waters (GSW) [GSW13]

encryption scheme [ASP14, HAO15, DM15, CGGI16].

This interests stems from the extreme similiarities between homomorphic evaluations

over GSW ciphertexts and homomorphic evaluations over key-homomorphic trapdoor

functions. In particular, as has been noted implicitly by Gorbunov and Vinayagamurthy,

the cost of a given sequence of homomorphic operations in terms of error growth in GSW

ciphertexts is essentially identical to the cost of that same sequence of operations in terms of

trapdoor growth over key-homomorphic trapdoor functions [GV15].

As a result, algorithms using the GSW encryption scheme to boostrap LWE can in fact be

used in our context to homomorphically evaluate the LWR function over key-homomorphic

trapdoor functions. While FHE has generally become known for its inefficiency, and it is

indeed very very far away from being useful for its main intended use, a single bootstrapping

operation has recently moved much closer to efficiency. An implementation by Ducas and

Miccancio [DM15] in the ring setting was notably able to implement bootstrapping for

plausible security parameters in about 0.6 seconds. As homomorphic evaluation of the LWR

function should be the most computationally intensive part of signing and verifying, this

suggests plausibly being able to sign and verify in under a second.

We note that a more recent work by Chillotti et al. [CGGI16], to appear in Asiacrypt

2016, is faster than the work of Ducas and Micciancio for similar security parameters by a

factor of 12, but does not, strictly speaking, perform its evaluation over full GSW ciphertexts,

and hence we cannot reasonably extrapolate anything about the speed of our construction

from it.

In addition to the more standard primitives of chameleon hash functions and weak

pseudorandom functions (see below), we instantiate our signature scheme using Punc-

turable Homomorphic Trapdoor Functions (PHTDFs), which were introduced by Alperin-

Sheriff [Alp15] as an extension of the Gorbunov et al. definition of homomorphic trapdoor

77

functions [GVW15b] and the Boneh et al. definition of key-homomorphic trapdoor func-

tions [BGG+14]. PHTDFs give a formal way to encapsulate out repeatedly used properties

in lattice-based signature schemes, and avoid having to repeat technical arguments in each

new lattice-based signature schemes.

Reducing Trapdoor Growth Rates. In addition to the Boyen-Li scheme, key-homomorphic

trapdoor functions [BGG+14] have been at the heart of wide variety of cryptographic con-

structions in recent years, including attributed-based encryption and predicate encryption

schemes [BP14, GVW15a, GVW15b]. In the standard lattice-based construction, a key

operation is sampling a matrix X ∈ Zm×mq with small norm such that GX = U (mod q)

for the so-called “gadget” matrix G, which we denote G−1(U).

In all existing schemes using key-homomorphic trapdoor functions, G−1 is evaluated via

deterministic bit decomposition. While efficient (taking linear time) and fully parallelizable,

it has downsides when trying to limit the noise growth (or trapdoor growth), as each

column can have length as large as m. More concretely, when G−1 is evaluated in this

deterministic manner, for a (fixed) vector a ∈ Zm and random vector u ∈ Znq , we expect

that ‖〈a,G−1(u)〉‖ ≈ m
2
‖a‖.

However, G−1 can also be evaluated in a randomized manner (sampled). Indeed,

Miccancio and Peikert first defined and analyzed the gadget matrix G [MP12] with discrete

Gaussian sampling applications in mind. Using Gaussian sampling instead of deterministic

bit decomposition to evaluate G can reduce noise growth from m to
√
m [ASP14]. This

ultimately allows for basing the security of the given scheme on a harder problem and allows

for smaller parameters for real security against known attacks.

For several reasons, this randomization technique has not been used in schemes utilizing

key-homomorphic trapdoor functions. First, in all key-homomorphic trapdoor function-

based schemes, the function evaluated on the master public and secret key by the key-

generating authority when generating a given secret key (or signature) must correspond to

78

the function evaluated by a user holding that secret key (or signature) for a ciphertext (or a

set of trapdoor functions) that the given secret key is authorized to decrypt (or that the given

signature should be verifiable on). In particular, it necessary that both the key-generating

authority and the user perform each evaluation of G−1 in the same manner. If a randomized

version of G−1 is used, the bits used by they key-generating authority in evaluating G−1

will have to be transferred in some manner to the user holding the secret key. As many as

n bits are required in order for a single sample to be within 2−Ω(n) distance of the actual

discrete Gaussian distribution when using rejection sampling [GPV08]. One can also use

tables to help with the computation (which is advisable because rejection sampling does not

run in so-called “constant time”), but table lookups come with their own set of disadvantages

[DG14].

We present a much simpler randomized method of sampling G−1 which is nearly as fast

as bit decomposition and does not require the use of tables. We also discuss the manner

in which the randomness is transferred to the user. In some schemes, one is “stuck” with

using the trivial method of including the randomness in each signature as a separate element.

While this ultimately requires a signature with more elements on a conceptual level, the

reduction in the size of the modulus q and dimension n required for an equivalent level of

security that the randomized sampling allows us will more than make up for this addition,

resulting in less actual bits required per signature to achieve a given security level.

However, in schemes which already use a chameleon hash function to randomize the

input messages, including but not limited to [Alp15, MP12, Boy10, DM14], we show that

we do not need to include any additional elements in the signature. Instead, it is sufficient to

include the randomness in the scheme’s public key, and for the signing algorithm to “reuse”

it on all signatures it issues, without more than a negligible loss in effectiveness in reducing

the rate of noise growth.

79

4.1.3 Open Problems

While it provides massive improvements in the runtime of the signature scheme and improves

the size of the parameters somewhat over the Boyen-Li Scheme, our scheme still requires

a very large public key. The “holy grail” of achieving a standard-model signature scheme

with a tight reduction to a plausible hardness assumption, while keeping both signatures and

public keys small, remains open.

4.2 Improved Signature Scheme With Tight Security

In this section, we define our improved signature scheme, and prove security with a tight

reduction. We also discuss how to homomorphically evaluate our weak PRF in an efficient

manner.

To avoid the clunky notation that has characterized many lattice-based constructions

(and indeed, many cryptographic constructions in general), we write the scheme generically

in terms of the PHTDF cryptographic primitive, as well as in terms of a generic weak PRF

and chameleon hash function, and then focus on the homomorphic evaluation details in

Section 4.2.4.

4.2.1 Parameters

Here we discuss the basic parameters of the scheme and the requirements they need to satisfy.

All parameters in the scheme are parameterized by an underlying security λ. We have that

α,w = θ(λ). We will have that T = Zq. The form of the parameter κ ≥ 2 depends on the

concrete instantiation and evaluation of the PHTDF. We defer details to Section 4.2.4.

We need W–PRF : T κ−2 × T w−1 → {0, 1} be an (εW–PRF, tW–PRF)-secure weak pseu-

dorandom function, where T κ−2 is the keyspace and T w−1 is the input space.

For convenience reasons, we also need the PRF to be trivial in the (negligibly likely)

case that T k−2 = 0; formally, we need W–PRF(0, ·) = 0 for all y ∈ T w−1. This property is

80

satisfied naturally by LWR, and it and we can construct such a weak PRF from an arbitrary

weak PRF W–PRF′ by setting

W–PRF(s,y) := W–PRF′(s,y)⊕W–PRF′(0,y).

We also need CH = (Gen,Hash,Hash−1) to be a secure chameleon hash function family

such that the input space X is efficiently sampleable and grows in size as a (polynomial)

function inthe underlying security parameter λ and such that the output space Y = T w−1.

This can be achieved essentially without loss of generality, as long as there is an efficiently

computable embedding of the output space Y into T w−1. We use w − 1 instead w because

we will be appending a bit b to y ∈ T w−1 as input to the function g that will be evaluated

homorphically.

We define g : T κ × T w → T as

g((s, z(0), z(1)), (y, b)) = (1− z(b))−W–PRF(s,y). (4.1)

In the above equation, y ∈ T w−1 will be the output of a chameleon hash function, and

s ∈ T κ−2 will be the secret key for the weak PRF.

Finally, we need

PHT = (PHT.Gen,PHT.GenTrap,PHT.f, PHT.Invert,PHT.Evaltdpk,PHT.Evalfuncpk)

to be an (εPHT, tPHT, g,S) CRP-secure PHTDF family, where S = T κ−2.

4.2.2 Construction

We explicitly sample the tag encoded in the public key and add it to the signing key for use

in signing. We also make the use of a chameleon hash function explicit, and we implicitly

require the input space X for the chameleon hash function to satisfy shortness properties

81

(and be such that |X | = 2Ω(λ), which is indeed the case for the Ducas-Micciancio chameleon

hash function family construction.

Encoding the PRF secret key. Often, including in the instantiation we detail below in

Section 4.2.4, the way of encoding the weak PRF secret key s into the verification key

will be something other than its “natural representation,” and we abstract this out with the

additional utility function Encode : T κ → T `.

Gen(1λ) On input security parameter λ,

1. Choose v ← V , s← T κ−2. Set z(0) = 0, z(1) = 1.

Compute z̃ = Encode(s, z(0), z(1)) ∈ T `.

2. Compute (ek, td)← CH.Gen(1λ), pk ← PHT.Gen(1λ)

3. Compute {(ai, ri)← PHT.GenTrap(pk, z̃i)}i∈[`].

4. Output vk = (pk, a = {ai}i∈[`], ek, v), sk = (r = {ri}i∈[`], td, z)

Sign(vk, sk, µ) On input message µ ∈ {0, 1}α, secret key sk, verification key vk:

1. Sample the input randomness to the chameleon hash function x← X , compute

the output y = CH.Hash(x, µ), and then evaluate the weak pseudorandom

function at y to get b = W–PRF(s,y).

2. Perform the homomorphic evaluation of g over the PHTDF to get

r∗ ← Evaltdpk(g, (a, r), (y, b)), a∗ ← Evalfuncpk (g, a, (y, b)).

3. Invert the trapdoor function to compute u ← PHT.Invertr∗,pk,a∗,x,s(v). Output

σ = (u, x, b) as the signature.

Ver(vk, µ, σ) On input message µ ∈ {0, 1}α, verification key vk, signature σ = (u, x, b):

1. Compute y← CH.Hash(x, µ).

82

2. Compute a∗ ← Evalfuncpk (g, a, (y, b))

3. Verify that the PHT.Prop(x)

PHT.Prop(u) ≤ s, and that PHT.fpk,a∗,x(u) = v.

Correctness. Since b = W–PRF(s,y), we have that g(s, (y, b)) = 1−b−b = 1−2b = ±1

whenever b ∈ {0, 1}. Since this will always be an invertible element of the ring T = Rq,

we have that PHT.Invert will invert successfully, and so verification will succeed with all

but negligible probability.

4.2.3 Security

Security. We now prove that the signature scheme in Section 4.2.2 is secure.

Theorem 4.2.1. Let A be a PPT adversary which breaks eu-acma security of the scheme

in Section 4.2.2 in time t with advantage ε. Then there exists an A′ which runs in time

t+ poly(λ) and breaks the security of one of the weak PRF, the chameleon hash function

and the PHTDF with advantage at least ε/6.

Proof. We classify a successfully forging adversary into one of three mutually exclusive

categories, and show that each category of adversary can be used for a successful attack on

one of the cryptographic primitives underlying our scheme.

In more detail, our reduction then proceeds by guessing uniformly at random which of

these six categories our adversary belongs to and running the attack below corresponding to

that category of adversary. It is easy to see that if any adversary succeeds with probability

ε in breaking our scheme, then we will succeed in breaking one of the three, underlying

cryptographic primitives with advantage at least (ε − negl(λ))/6. This is because the

probability that the adversary is successful and the simulator’s guess is successful in each

case is at least (ε− negl(λ))/2. (Concretely, we will present three cases, and the simulator

may guess the correct sub-case matching the challenge bit b with probability 1/2 in each of

these three cases.)

83

To complete our proof, we proceed to describe these categories of adversaries and how

we use them to mount an “independent” attack on the underlying cryptographic primitives

that succeeds except with probability negligible in the underlying security parameter λ.

Weak PRF. First, we consider the case that, conditioned on having forged successfully,

the adversary outputs µ, σ = (u, x, b) such that W–PRF(z, (Hash(x, µ)) = b. For this

case, we use A to help us succeed in the underlying W–PRF security game against some

challenger.

We change our behavior in the signature scheme’s security game as follows:

1. Instead of encoding the challenger’s actual W–PRF secret key (which we do not

know), we set the secret key z = (s, zk−1, zk) in our scheme to a dummy secret key

of (0, 0, 0) in Gen, which will always allow us to sign regardless of the value of the

b = W–PRF(s,y).

Since the ai output by PHT.GenTrap are statistically close to uniform, independent of

the z encoded in them, and everything else in the public key is completely independent

of z, this change is statistically indistinguishable.

2. Given a query for message µ, we send a query to the W–PRF challenger, receiving

back a uniform random y ∈ T w−1, b = W–PRF(s,y) for some unknown s. We

then compute x ← Hash−1(µ,y) as usual. Since y is uniform, this is distributed

within negligible statistical distance of the manner it is chosen actual signature scheme.

Moreover, since by our condition on W–PRF we will have that g(z, (Hash(x, µ), b)) =

1− zκ−b − 0 = 1, we can invert successfully and sign as usual.

As a result, our behavior in this game is statistically indistinguishable from that in the real

game. At the end, if the adversary fails to output a valid signature, we choose a message

µ∗ and bit b∗ uniformly at random and send them to the W–PRF challenger as our guess.

Otherwise, if the adversary is successful and outputs a valid signature σ = (u∗, x∗, b∗), we

84

send that µ∗, b∗ to the challenger. Since the adversary will correctly predict b, we succeed in

guessing the output of the W–PRF at µ∗.

Otherwise, a successfully forging A outputs µ∗, σ∗ = (u∗, x∗, b∗) such that

W–PRF(z, (Hash(x∗, µ∗)) 6= b∗. In this case, we consider whether or not the forgery was

achieved based on a hash collision.

Chameleon Hash Collision. We consider the case thatA finds a hash collision by success-

fully outputting µ∗, σ = (u∗, x∗, b∗) such that Hash(x∗, µ∗) = Hash(x′, µ′) for some x′, µ′

it already queried on, conditioned on a successful forgery and an unsuccessful weak PRF

prediction. We now show how to use A to break the collision-resistance of the chameleon

hash function family. We change our behavior in the security game as follows:

1. In Gen, we receive the evaluation key ek for the chameleon hash function from a

challenger instead of generating it (along with a trapdoor) ourselves. The public key

itself remains exactly the same (although we no longer have td in our secret key), so

the adversary’s view does not change.

2. In Step 1 of Sign, we instead sample x ← X , and then compute y = Hash(x, µ).

By the uniformity property of the collision-resistance hash function, this is within

statistically negligible distance of the manner x and y are evaluated in the actual

scheme.

Since our behavior is statistically indistinguishable from that in the real game, A will

still output a forgery such that Hash(x∗, µ∗) = Hash(x′, µ′) for some previously output

x′, µ′. We can then send x′, x∗, µ′, µ∗, succeeding in breaking the collision-resistance of the

chameleon hash function.

PHTDF Collision When Punctured. Finally, ifA has forged successfully, but has neither

successfully predicting the weak PRF output nor output a successfull chameleon hash

85

collision, we can break collision-resistance when punctured (CRP)-security of the PHTDF.

We change our behavior in the security game as follows:

1. During Gen, we choose a message µ′ uniformly at random. Then, instead of choosing

v ← V , we invert the process, sampling u′ ← DU , x′ ← X . We then let y′ =

CH.Hash(x′, µ′), b = W–PRF(s,y′), and compute a′ ← Evalfuncpk (g, a, (y′, 1− b)).

Finally, we set v ← fpk,a′,x′(u
′), and hold onto u′ to use in forming our collision. By

the statisticial distributional equivalence of inversion property of the PHTDF, this

is statistically indistinguishable from having sampled v ← V as in the real security

game. Moreover, we have that g((s, z(0), z(1)), (y′, (1− b))) = 0.

If the adversary outputs a successful forgery (µ∗, σ∗ = (x∗, u∗, b∗)), where

W–PRF(s, (Hash(x∗, µ∗)) = 1− b, then because A has no knowledge of the x′ we sampled

above, with all but probability 1/|X | = negl(λ), x∗ 6= x′. If they are in fact not equal, we

can output u′, x′,y′, u∗, x∗,y∗ = Hash(µ∗, x∗) as our collision, breaking the CRP security

of the underlying PHTDF except with probability negligible in λ.

4.2.4 Efficient Evaluation of g

Here we discuss how to homomorphically evaluate the function

g(z, (y, b)) = (1− z2−b)−W–PRF(z,y)

using a cyclotomic ring-based instantiation of PHTDFs in a manner that is (somewhat)

efficient in terms of both time and noise growth, for the specific case that W–PRF is the LWR

function. This essentially boils down to efficiently evaluating the LWR function, as once

b = lwrk,Q,2 has been homomorphically computed, the remaining operations consist solely

of additions. Our method of evaluation is very close to that of Ducas and Micciancio [DM15],

but avoids any use of the general lattice setting for efficiency.

86

Lagrange Interpolation over Rq. To evaluate the rounding part of the LWRn,Q,2 function

homomorphically, we will need to be able to evaluate a function over Rq (where R = Om)

that sends ζ i to 0 when i ∈ [−Q/4, Q/4), and sends ζ i to 1 otherwise.

To homomorphically evaluate LWRn,Q,2 (where Q = 2` = O(λ) for ` = dlog2(λ)e), it

will be easiest to work directly over the 2`th cyclotomic ring R = O[2`]; this restricts us

to odd moduli q in the actual PHTDF instantiation over Rq. The actual evaluation process

will then be as described in the work of Ducas and Micciancio [DM15], using q = 3α

for some α. We restate the relevant result here for LWR, recall again that evaluating LWR

homomorphically over a PHTDF instantiated in the ring setting. is morally equivalent to

evaluating the decryption function. Note that the conditions on parameter s assumes the use

of the sampling ideas found Section 4.3 to minimize the size of parameter s, for modulus

q = 3α.

Theorem 4.2.2 ([DM15]). Let PHT be instantiated over Rq, where R = O[m], where q

and m are coprime. Then LWRn,Q,2 is admissible with parameter s = O(n1.5 logQ), and

can be evaluated with O(n logQ) homomorphic operations, with the secret key z ∈ ZnQ

encoded in κ− 2 = n logQ functions a1, . . . , aκ−2 with associated tags z̃1, . . . , z̃κ−2.

We finally have the following corollary for a concrete instantiation using the PHTDF of

Alperin-Sheriff (see Section 2.3.9).

Corollary 4.2.3 ([DM15]). Let PHT be instantiated over Rq, where R = O[m], where

q and m are coprime. Then the above signature scheme is secure as long as both of the

following hold:

• LWRn,Q,2 is secure for n,Q = O(λ)

• RSIS is secure over m with parameter β = Õ(n7/2).

87

4.3 Reducing Trapdoor Growth

Here we give a sampling algorithm that is nearly as efficient as bit decomposition, has

(slightly) lower rates of growth than samples generated as discrete Gaussians, and which

requires exactly 2 random coins per element of the vector being sampled.

We later show how to reduce the total number of random coins needed per signa-

ture/encryption etc. to O(λ).

4.3.1 Distribution Definition and Properties

Definition 4.3.1. Let q ≥ 2 ∈ Z. Let A ∈ Zn×mq such that linear combination of its columns

generate all of Znq , and let u ∈ Znq . We define BΛ⊥u (A),s as the distribution which outputs

z ∈ Zmq , where each element of z is chosen to be some integer x ∈ [−s, . . . ,+s] with

probability (s+1−|x|)
(s+1)2

, conditioned on Az = u.

For the remainder of Section 4.3, we focus only on BΛ⊥u (gt),p−1, where q = pk and gt is

the “gadget” vector gt = [1, p, . . . , pk−1] ∈ Z1×k
q .

Lemma 4.3.2. For all u ∈ Zq, BΛ⊥u (gt),p−1 is a centered subgaussian with parameter

(p− 1)
√
k.

Proof. Denote by g(j) the first j vectors of g. To show that the output z← BΛ⊥u ((g(j))t),1 is

centered, we proceed by induction on the first j vectors of z, with the inductive assumption

being that over the integers, 〈g(j), z〉 = u with probability max(0, p
j−|u|
p2j

). It is not difficult

to see that this inductive hypothesis immediately implies centering.

For j = 1, the condition is satisfied by the definition of the distribution. Now, we assume

our hypothesis is true for all k < j. Let x = (x̃ ∈ Zk−1
q , xk), and let Let y = 〈g(k),x〉 (over

the integers), and let y∗ = 〈g(k−1), x̃〉, so y = y∗ + xk. Let u = y mod pk−1 be the unique

coset representative of y in Zpk−1 , and let t be such that pk−1t+ u = y.

Then either y∗ = u, xk = t, or y∗ = u− sign(u)pk−1 and xk = t+ sign(u). As a result,

88

the probability over the choice of x that 〈g(k),x〉 = y is

ρ =
(pk−1 − |u|)(p− |t|) + (pk−1 − |u− sign(u)pk−1|)(p− |t+ sign(u)|)

p2k

=
pk − u− pk−1t

p2k
=
pk − y
p2k

.

Thus, the inductive assumption is true for j = k, so the distribution is indeed centered

conditioned on any u.

To see that it is subgaussian with parameter (p− 1)
√
k, it is sufficient to note that for

any x in the support of B, max‖u‖=1〈u,x〉 ≤ (p− 1)
√
k.

By the standard properties of subgaussian distributions and the form of the decomposition

of G, we immediately have the following corollary, which allows us to achieve noise growth

rate Õ((p− 1)
√
n) per multiply instead of Õ((p− 1)n) (assuming we can efficiently sample

the distribution).

Corollary 4.3.3. For all u ∈ Zq, q = pk BΛ⊥u (G),(p−1) is a centered subgaussian with

parameter (p− 1)
√
nk.

The following lemma is necessary for showing how to actually sample BΛ⊥u (G),p−1 in

practice.

Lemma 4.3.4. For x← Bk, 〈g,x〉 is uniformly distributed modulo q.

Proof. It is easy to see that the kth element of x randomizes the kth least significant mod-p

digit of 〈g,x〉+ q/2 modulo q, so 〈g,x〉 must be uniform modulo q.

Sampling the Distribution. The distribution can be sampled with two different ap-

proaches, or a hybrid of the two, in the same manner used for sampling a discrete Gaussian

distribution over Λ⊥u (G) as described in [MP12]. The advantage here is that instead of

having to sample any discrete Gaussians in each coordinate with the various disadvantages

89

thereof, we can sample BZ,p−1 in a very simple manner (and sample BZk,p−1 by sampling

each coordinate independently according to BZ,p−1).

Concretely, to generate a sample BZ,p−1, we receive 2 (pseudo)random elements in

[0, 1, . . . , p− 1], viewed as a single element r ∈ [0, 1, . . . , p2− 1], and set the output x to be

k with probability |p− k|p2, mapping values in [0, 1, . . . , p2 − 1] in the canonical manner.

In particular,

x =


−k if (p−(k)−1))(p−k)

2
≤ r < (p−k)(p−k+1)

2
and r < dp2/2e

k if (p−(k)−1))(p−k)
2

≤ p2 − 1− r < (p−k)(p−k+1)
2

and r ≥ dp2/2e

Given the above algorithm for sampling BZk,p−1, as stated, we have two options at

the extremes of storage/parallelism trade-offs, as well as various hybrids between the

two. The first is to precompute, sampling and storing many independent samples x ←

BZk,p−1. Assuming that values u for which samples ofBΛ⊥u (gt),p−1 are required are uniformly

distributed modulo q (which will generally be the case in our desired application), and that

we will require tq samples overall, by a coupon-collecting argument, we would have to

store about tq log q samples to ensure we have enough on average, and tq2 to ensure we

have enough with overwhelming probability. For the second approach, we sample each

coordinate one at a time in a randomized nearest-plane manner [GPV08, MP12]. Specifically,

for i = 1, . . . , k: choose xi ← BpZ+u,s, and let u← (u−xi)/p ∈ Z. This approach requires

log q steps, but this is essentially no worse than bit decomposition because sampling B is

so efficient. There is also a hybrid between the two approaches that involves choosing `

coordinates of x at a time for 1 < ` < k. For further details, see [MP12]. The key takeaway

is that we can avoid the additional time and/or space costs of rejection sampling (which is

potentially problematic in applications because it does not run in so-called “constant time”)

or storing tables of results that are required for sampling discrete Gaussians.

90

4.3.2 How to Inject Verifiable Randomness

Above, we showed how randomizing the computation of the homomorphic trapdoor func-

tions can significantly reduce noise growth without significantly increasing computation

time.

Here we discuss a semi-generic method of injecting verifiable randomness into the

homomorphic computation itself, that can be applied in essentially all cryptographic schemes

using key-homomorphic trapdoor functions. We also discuss a further optimized method of

randomness injection that applies to G-based signature schemes that use chameleon hash

functions to randomize the messages being signed.

Generic Method

The trivial method of injecting verifiable randomness into the homomorphic computation is

to simply include all of the random bits needed as part of the ciphertext or signature. While

this approach may be acceptable for very simple functions, for more complex functions it

will increase the size of the ciphertext or signature by an unacceptably large amount.

Instead, it is sufficient to simply include λ bits in each signature or ciphertext, where

λ is the desired security parameter, and to stretch those bits to the necessary length with a

pseudorandom number generator specified as a public parameter of the scheme in question.

Interestingly, a cryptographically secure pseudorandom number generator is not required

for this purpose, as we do not need the generated bits to be computationally indistinguishable

from random under all polynomial-time statistical tests. Instead, the role of the PRG here is

similar to that of the PRF used by Hohenberger and Waters [HW09] in their short, stateless

signature scheme, where they simply needed the output of the PRF to be randomly distributed

with respect to several non-adversarial statistical tests.

Indeed, for our bounds from Section 4.3.1 to hold for a given pseudorandom number

generator G, we simply need BΛ⊥u (gt) to remain a centered subgaussian with parameter
√
k

when the bits used in sampling B come from G(x), where x is a seed chosen uniformly

91

at random. As a result, any heuristic pseudorandom number generator suitable for Monte

Carlo simulations ought to be satisfactory.

4.3.3 Using Chameleon Hash Functions

While the method in Section 4.3.2 will already reduce the overall length of the outputs,

it does have the downside of having to include λ bits of randomness in each individual

signature or encryption. However, we can do better in signature schemes that already use

chameleon hash functions to randomize the messages being signed. In this case, we show

that it is sufficient to simply include an additional λ bits of randomness in the public key.

We stress that the signatures remain stateless, as we reuse the same λ bits of verifiable

randomness in the homomomorphic computation of each individual signature.

We now present a (semi)-formal transformation. While the conditions required of the

transformation seem very specific, they do apply to several previous lattice-based signature

schemes [DM14, Alp15] as well as to our scheme.

Let SIG = (Gen, Sign,Ver) be a secure lattice-based signature scheme which applies a

secure hash function ch = (Gen,Hash,Hash−1) to the messages and then deterministically

evaluates a G-based key-homomorphic trapdoor function requiring ` invocations of G−1

(meaning a total of 2`n2k2 random bits) in the signing and verification algorithms. We

construct SIG′ = (Gen′, Sign′,Ver′) as follows:

Gen′(1λ) Run Gen, sample λ random bits, choose some secure pseudorandom generator

PRG and output the λ random bits b along with a description of the pseudorandom

generator.

Sign′(µ) Run Sign, but evaluate the G-based key-homomorphic functions using the 2`n2k2

bits output by PRG(b). Output signature σ.

Ver′((µ,SIG)) Run Ver, but evaluate the G-based key-homomorphic functions using the

2`n2k2 bits output by PRG(b). Output the result of Ver.

92

For stating our result, it will be convenient to view the signature scheme as being

instantiated by a PHTDF which evaluates some function g admissible with parameter s. All

standard model lattice-based signature schemes that we are aware of which use G-based

trapdoors can be described in this manner.

Theorem 4.3.5 (Informal). If SIG is evaluates a function admissible with parameter s, then

SIG′ = (Gen′, Sign′,Ver′) evaluates a function admissible with parameter
√
s.

Proof. That the scheme remains secure is straightforward. The only change is the manner

in which G−1 is evaluated, and this depends only on the extra λ bits b in the public key

and the pseudorandom generator PRG. In particular, the evaluation is performed entirely

independently of the scheme’s secret key. As a result, this change leaks no additional

information, and so the scheme remains secure.

It remains to show that the function is admissible with parameter
√
s. If G−1 were

evaluated with truly random bits, this would informally follow by noting the growth rate of

G−1 in Corollary 4.3.3 versus the growth rate from bit decomposition.

First, consider an individual message query µ by the adversary. Since the scheme uses

chameleon hash functions, the actual (hashed) messages being signed are randomized, and

in particular, chosen in a manner independent of the λ random bits in the public key.

As a result, we may view the message as having been chosen first, and the λ random bits

as having been chosen subsequently and uniformly at random and independently. As a result,

as above, the probability that the function is admissible with parameter
√
s using PRG(b) as

our source of randomness is at most negligibly smaller than the probability that the function

is admissible with parameter
√
s using truly random bits as our source of randomness. To

reiterate, this is because a noticeable difference in the probabilities would mean that we

have a statistical test that is entirely independent of the seed b, and would thus break the

assumed pseudorandomness of PRG.

A simple union bound over the Q = poly(λ) message queries means that the scheme

remains correct except with negligible probability.

93

Chapter 5

5Gen: A Framework for Prototyping

Applications Using Multilinear Maps

and Matrix Branching Programs

5.1 Introduction

A multilinear map (mmap) [BS02] is an extremely powerful tool for constructing advanced

cryptographic systems including program obfuscation [GGH+13b], n-party non-interactive

key exchange [BS02], multi-input functional encryption [GGG+14, BLR+15], optimal

broadcast encryption [BWZ14a], witness encryption [GGSW13], and many others. The

recent emergence of candidate mmaps [GGH13a, CLT13, CLT15, GGH15] bring these

proposals closer to reality, although several of the current candidates have been shown to be

too weak for some of these applications, as discussed in Section 5.4.

Despite the remarkable power of mmaps, few published works study the efficiency of

the resulting applications, primarily due to the rapid pace of development in the field and the

high resource requirements needed for carrying out experiments. In this chapter we develop a

94

generic framework called 5Gen1 (available at https://github.com/5GenCrypto)

that lets us experiment with powerful applications of current and future mmaps. We focus

on two applications in particular: multi-input functional encryption (MIFE) and program

obfuscation, both of which can be instantiated with some of the existing mmap candidates

(see Section 5.4). Our framework is built as a multi-layer software stack where different

layers can be implemented with any of the current candidates or replaced altogether as new

constructions emerge.

The top layer of our framework is a system to compile a high-level program written in

the Cryptol language [Cry] into a matrix branching program (MBP), as needed for the most

efficient MIFE and obfuscation constructions. We introduce several novel optimizations for

obtaining efficient MBPs and show that our optimizations reduce both the dimension and

the total number of matrices needed.

The next layer implements several variants of MIFE and obfuscation using a provided

MBP. This lets us experiment with several constructions and to compare their performance.

The lowest layer is the multilinear map library, libmmap. We demonstrate our frame-

work by experimenting with two leading candidate mmaps: GGHLite [GGH13a, LSS14,

ACLL15] and CLT [CLT13, CLT15]. Our experiments show that for the same level of

security, the CLT mmap performs considerably better than GGHLite in all the applications

we tried, as explained in Section 5.7. (Although the GGH15 multilinear map [GGH15]

was not included in our implementation or experiments, we hope that future work might

integrate this multilinear map into our framework.)

Our framework makes it possible to quickly plug in new mmaps as new proposals

emerge, and easily measure their performance in applications like MIFE and obfuscation.

MIFE experiments. Recall that functional encryption [BSW11] is an encryption scheme

where the decryption key skf is associated with a function f . If c is the encryption of

1The name 5Gen comes from the fact that multilinear maps can be considered the “fifth generation” of
cryptography, where the prior four are: symmetric key, public key, bilinear maps, and fully homomorphic
encryption.

95

https://github.com/5GenCrypto

message m then decrypting c with the key skf gives the decryptor the value f(m) and

nothing else. An n-input MIFE scheme is the same, except that the function f now takes n

inputs. Given independently created ciphertexts c1, . . . , cn, with each ci an encryption of

a message mi and associated with “slot” i, decrypting these ciphertexts using skf reveals

f(m1, . . . ,mn) and nothing else.

One important application of 2-input MIFE is order-revealing encryption (ORE) [GGG+14,

BLR+15]. Here the function f(x, y) outputs 1 if x < y and 0 otherwise. Thus, the key skf

applied to ciphertexts c1 and c2 reveals the relative order of the corresponding plaintexts.

ORE is useful for responding to range queries on an encrypted database. For large domains,

the only known constructions for secure ORE are based on mmaps. We conduct experiments

on ORE using real-world security parameters where mmaps give the best known secure

construction.

We also experiment with 3-input MIFE. Here, we choose a DNF formula f that operates

on triples of inputs, which is useful in the context of privacy-preserving fraud detection

where a partially trusted gateway needs to flag suspicious transactions without learning

anything else about the transactions (see Section 5.5.3). Again, the best known construction

for such a scheme uses mmaps.

We use our framework to evaluate the implementation of these schemes using existing

mmaps for which they are currently believed to be secure. Clearly these systems are too

inefficient to be used in practice. Nevertheless, our experiments provide a data point for the

current cost of using them. Moreover, our framework makes it possible to easily plug in

better or more secure mmaps as they become available.

Obfuscation experiments. Roughly speaking, an obfuscator takes as input a program

and outputs a functionally equivalent program such that the only way to learn informa-

tion about the program is to run it. We experiment with several obfuscators built on the

obfuscator described by Barak et al. [BGK+14], including those inspired by Sahai and

Zhandry [SZ14] and Ananth et al. [AGIS14]. These improvements allow for obfuscation of

96

a point function with increased security at less than half the total obfuscation size reported

by Apon et al. [AHKM14]. We also implemented the Zimmerman [Zim15] obfuscator,

but we ultimately found that it was too inefficient for the settings that we consider in our

experiments.

5.1.1 Our Contributions

Summarizing, we make the following contributions:

• An optimizing compiler from programs written in the Cryptol language to MBPs,

which are used in many mmap applications including MIFE and obfuscation. Our

compiler uses optimizations such as dimension reduction, matrix pre-multiplication,

and condensing the input representation, and solves a constraint-satisfaction problem

needed to obtain the most efficient MBP. See Section 5.3 for details.

• A library providing a clean API to various underlying mmap implementations. This

allows researchers to experiment with different mmaps, as well as to easily plug future

mmaps into our framework. See Section 5.4 for more details.

• A general MIFE construction based on the scheme of Boneh et al. [BLR+15] using

real-world security parameters. We contribute optimized implementations of two-input

MIFE (in particular, order-revealing encryption) and three-input MIFE (in particular,

a functionality needed for privacy-preserving fraud detection), as well as performance

results that characterize our constructions. See Section 5.5 for details and Section 5.7

for evaluation results.

• Obfuscation constructions [BGK+14, SZ14, AGIS14, Zim15] using real-world secu-

rity parameters. We experiment with obfuscating point functions and evaluate their

performance. See Section 5.6 for details and Section 5.7 for evaluation results.

97

Figure 5.2.1: Framework architecture. We use cryfsm to compile a Cryptol program (here denoted
by prog.cry) to an MBP, which can either be used as input into our MIFE implementation or our
obfuscation implementation. Both these implementations use libmmap as a building block, which
supports both the CLT (libclt) and GGHLite (libgghlite) mmaps.

5.1.2 Related Work

Several groups have previously implemented mmaps [ACLL15, CLT13, CLT15] to exper-

iment with their performance. However, they did not go so far as experimenting with

cryptographic applications of mmaps beyond direct applications such as multi-party non-

interactive key exchange. The goal of our work is to explore the performance of more

advanced applications such as MIFE and obfuscation. An earlier work implementing ob-

fuscation [AHKM14] experimented with obfuscating point functions, and was only able to

successfully obfuscate a 14-bit point function.

Our work builds on the vast amount of previous work showing applications of mmaps—

most notably, MIFE [GGG+14, BLR+15] and obfuscation [BR14, BGK+14, PST13, AGIS14,

Zim15, AB15, GLSW15, BMSZ15, Lin16, LPST16, GMS16, MSZ16b, DGG+16].

5.2 Framework Architecture

Our framework incorporates several software components that together enable the construc-

tion of applications using mmaps and MBPs. In particular, we use our framework to develop

implementations of MIFE and program obfuscation. See Figure 5.2.1 for the framework

architecture.

The top layer of our framework, cryfsm, takes as input a program written in Cryp-

tol [Cry], a high-level language designed to express manipulations over bitstreams in a

98

concise syntax, and compiles the program into an MBP. This process, and the various

optimizations we introduce, are described in more detail in Section 5.3.

The bottom layer of our framework, libmmap, provides an API for using various mmaps,

which in our case includes the CLT (through the libclt library) and GGHLite (through

the libgghlite library) mmaps. The libmmap library, which we describe in Section 5.4, is

also designed to allow for a straightforward integration of future mmap implementations.

We combine the above components to realize various applications of mmaps and MBPs:

in particular, MIFE and program obfuscation. We demonstrate the applicability of our MIFE

implementation (cf. Section 5.5) through two examples: order-revealing encryption (ORE)

and three-input DNF (3DNF) encryption. We implement program obfuscation based on

two main approaches: the techniques described by Sahai and Zhandry [SZ14], and also the

scheme by Zimmerman [Zim15], which operates over arithmetic circuits, but only applies

to the CLT mmap.

5.3 From Programs to MBPs

One of our key contributions in this work is a compiler, cryfsm, that takes as input a

program written in Cryptol [Cry], a domain-specific language for specifying algorithms over

generic streams of bits, and produces an MBP for the given input program. cryfsm does

this by translating a Cryptol specification into a layered state machine, which can then be

transformed into an optimized corresponding MBP.

Our toolchain proceeds as follows. The user writes a Cryptol function of type [n] ->

Bit for some n (that is, the function takes n input bits and produces one output bit). This

function is interpreted as deciding membership in a language. The toolchain symbolically

evaluates this function to produce a new version of the function suitable for input to an SMT

solver, as explained in detail below. Queries to the SMT solver take the form of deciding

the prefix equivalence relation between two initial bitstrings, which is sufficient to build the

99

minimal layered state machine, which we then convert to an MBP.

Our solver-based approach results in a substantial dimension reduction of the correspond-

ing output MBPs that we tested. In contrast, the traditional approach would be to heuristically

optimize the state machine design in an attempt to achieve a best-effort optimization. The

dimension reduction we achieve recovers the most efficient known MBPs for several previ-

ously studied bit-string functions, including MBPs for point functions that are smaller than

the MBPs constructed from boolean formulas using existing techniques (e.g., [SZ14]). In

the remainder of this section, we describe the key steps in this toolchain, along with several

optimizations to the MBPs that we use throughout the remainder of this work.

Specifying functions in Cryptol. Cryptol is an existing language widely used in the

intelligence community for describing cryptographic algorithms. A well-formed Cryptol

program looks like an algorithm specification, and is executable. The Cryptol tool suite

supports such execution, along with capabilities to state, verify, and formally prove properties

of Cryptol specifications, and capabilities to both prove equivalence of implementation in

other languages to Cryptol specifications and automatically generate such implementations.

In our work, a user specifies an MBP in Cryptol, and then we use cryfsm to transform the

high-level specification into a minimal layered state machine, and further transform it into

an efficient MBP.

Minimal layered state machines. There is a standard translation from traditional finite

state machines to MBPs: create a sequence of matrix pairs (or matrix triples for three-symbol

alphabets, etc.) that describe the adjacency relation between states. If state i transitions

to state j on input symbol number b, then the bth MBP matrix will have a 1 in the ith row

and jth column and 0 elsewhere. For many languages of interest, this is inefficient: for an

automaton with |S| states, each matrix must be of size |S|2, even though many states may

be unreachable.

In the applications of mmaps that we study in this work, we consider functions on inputs

of a fixed length. Hence, for a positive integer n, we can take advantage of this property by

100

restricting ourselves to layered state machines of depth n, which are simply (deterministic)

finite state machines that only accept length-n inputs. Here, the ith “layer” of transitions in

the machine is only used when reading the ith digit of the input. As a result, layered state

machines are acyclic.

To generate minimal layered state machines, our compiler must introduce machinery to

track which states are reachable at each layer, which allows us to reduce the overall MBP

matrix dimensions. To do this, cryfsm computes the quotient automaton of the layered

state machine using an SMT solver to decide the state equivalence relation. The quotient

automaton is then used as the new minimal layered state machine for the specified function.

Then, from a layered state machine of depth n, we construct the corresponding MBP on

base-d inputs of length n in a manner essentially equivalent to the techniques of Ananth et

al. [AGIS14] for constructing layered branching programs. Intuitively, for each i ∈ [n]

and j ∈ [d], the ith matrix associated with the jth digit is simply the adjacency matrix

corresponding to the transitions belonging to the ith layer of the machine, associated with

reading the digit j. Then, the “final matrix” (that defines the output of the MBP being 1)

is simply the adjacency matrix linking the initial state to the final state of the layered state

machine.

Optimizations for MBP creation. Boneh et al. [BLR+15] describe a simple five-state

finite state machine appropriate for ORE applications, and describe the translation to MBPs

that produces 5 × 5 matrices at each depth. The MBP we build and use for our ORE

application differs from this one via three transformations that can be generalized to other

programs: change of base, matrix premultiplication, and dimension reduction. Of these,

matrix premultiplication and dimension reduction are a direct consequence of the technique

used by cryfsm for constructing MBPs and therefore automatically apply to all programs,

whereas choosing an input base remains a manual process because it must be guided by

outside knowledge about the performance characteristics of the mmap used to encode the

MBPs. While the change of base and matrix pre-multiplication optimizations are described

101

by Boneh et al., we introduce dimension reduction as a new optimization that is useful for

ORE yet generalizable to other applications.

For each optimization, we use the integer d to represent the “input base”, the integer n

to represent the length (number of digits) of each input, the integer N to represent the input

domain size (so, we have that dn ≥ N), the integer m to represent the length of the MBP,

and the integer M to represent the total number of elements across all the matrices of the

MBP.

At a high level, the optimizations are as follows.

• Condensing the input representation corresponds to processing multiple bits of the

input, by increasing d, to reduce the length of the MBP, at the expense of increasing

the number M of total elements.

• Matrix premultiplication also aims to reduce the parameter m, but without increas-

ing the parameter M .

• Dimension reduction aims to directly reduce the number M of total elements, but

may not be fully compatible with matrix premultiplication, depending on the function.

To help with the understanding of the intuition behind these optimizations, we use the

simple comparison state machine as a running example—however, we stress that these

optimizations are in no way specific to the comparison function, and can be applied more

generally to any function expressed as a layered state machine.

Condensing the input representation. The most immediate optimization that we apply is

to condense the representation of inputs fed to our state machines. MBPs are traditionally

defined as operating on bitstrings, so it is natural to begin with state machines that use bits

as their alphabet, but using larger alphabets can cut down on the number of state transitions

needed (at the potential cost of increasing the state space).

As an example, for evaluating the comparison state machine, this optimization translates

to representing the input strings in a larger base d > 2, and to adjust the comparison state

102

machine to evaluate using base-d representations. The resulting state machine consists of

d+ 3 total states.

A naive representation of an input domain of size N with a state machine that processes

the inputs bit-by-bit (in other words, d = 2) would induce an MBP length of m = 2 ·

dlog2(N)e and M = 50 ·m total elements (in two 5× 5 matrices). However, by using the

corresponding comparison state machine that recognizes the language when the inputs are

in base-d, we can then set m = 2 · dlogd(N)/ log2(d)e and M = 2 · (d+ 3)2 ·m.

Concretely, setting N = 1012, without condensing the input representation, we require

m = 80 and M = 2000 for the resulting MBP. However, if we represent the input in base-4,

we can then obtain m = 20 and M = 1960, a strict improvement in parameters.

Matrix premultiplication. Boneh et al. [BLR+15] informally describe a simple optimiza-

tion to the comparison state machine, which we explain in more detail here. The natural

state machine for evaluating the comparison function on two n-bit inputs x and y reads the

bits of x and y in the order x1y1x2y2 · · ·xnyn.

However, Boneh et al. show that a slight reordering of the processing of these input bits

can result in reduced MBP length without compromising in correctness. When the inputs

are instead read in the following order:

x1y1y2x2x3y3 · · · ynxn, (5.1)

then, rather than producing one matrix for each input bit position during encryption, the two

matrices corresponding to y1 and y2 can be pre-multiplied, and the result is a single matrix

representing two digit positions. Naturally, this premultiplication can be performed for each

pair of adjacent bit positions belonging to the same input string (such as for x2x3, y3y4, and

so on), and hence the number of matrices produced is slightly over half of the number of

matrices in the naive ordering of input bits.

As a result, for evaluating the comparison state machine, where n is the length of

103

the base-d representation of an input, applying this optimization implies m = n + 1, a

reduction from the naive input ordering, which would result in m = 2n, and a reduction

from M = 2 · (d + 3)2 · m to M = (d + 3)2 · m. When applying this optimization in

conjunction with representing the input in base d = 4, for example, setting N = 1012 only

requires m = 21 and M = 1029, a huge reduction in cost that was emphasized by Boneh et

al., and another strict improvement in parameters.

A new optimization: dimension reduction. We now describe a more sophisticated opti-

mization that can be applied to general MBPs which also results in a reduced ciphertext size.

As an example, we describe this optimization, called dimension reduction, as it applies to

the comparison function state machine (without applying the reordering of input bits from

matrix premultiplication), but we emphasize that the technique does not inherently use the

structure of this state machine in any crucial way, and can naturally be extended to general

MBPs.

Our new optimization stems from the observation that, for each bit position in the

automaton evaluation, the transitions in the automaton do not involve all of the states in the

automaton. This is the same observation that motivates the use of layered state machines

over finite state machines.

In particular, for the even-numbered bit positions, the transitions map from a set of d

states to a set of only 3 states. Similarly, for the odd-numbered bit positions, the transitions

map from a set of (at most) 3 states to a set of d states. As a result, the corresponding

matrices for each bit position need only be of dimension d× 3 or 3× d (depending on the

parity), as opposed to the naive interpretation of the Boneh et al. construction which requires

matrices of dimension (d+ 3)× (d+ 3).

Note, however, that the dimension reduction optimization is not fully compatible with

matrix premultiplication, since the effectiveness of dimension reduction can degrade if matrix

premultiplication is also applied. In particular, when applying matrix premultiplication to

the comparison state machine, we notice that there is less room for improvements with

104

dimension reduction, as the transitions for the position y1y2 correlate from a domain of d

states to a range of also d states.

In Section 5.5.1, we concretely show how to apply a mixture of these optimizations to

the comparison automaton, and then use these optimizations to obtain asymptotically shorter

ciphertexts for order-revealing encryption.

5.4 A Library for Multilinear Maps

In this section we describe our library, libmmap, which provides an API for interacting

with different mmap backends. In this work we implement GGHLite (libgghlite) and

CLT (libclt) backends2, although we believe that it should be relatively straightforward to

support future mmap implementations.

The libmmap library exports as its main interface a virtual method table mmap vtable,

which in turn contains virtual method tables for the public parameters (mmap pp vtable),

the secret key (mmap sk vtable), and the encoded values (mmap enc vtable). Ta-

ble 5.4.1 lists the available functions within each table. Each underlying mmap library must

export functions matching these function interfaces and write a wrapper within libmmap

to match the virtual method table interface. A user of libmmap then defines a pointer

const mmap vtable * which points to the virtual method table corresponding to the

mmap of the user’s choice (in our case, either clt vtable or gghlite vtable). In the

following, we describe the two mmap schemes we support within libmmap: libgghlite

(Section 5.4.1) and libclt (Section 5.4.2).

Figure 5.4.1 presents estimates for the size of an encoding using GGHLite and CLT for

security parameters λ = 80 and λ = 40. We describe our parameter choices for arriving at

these estimates in Section 5.9. As we can see, the CLT mmap produces smaller encodings

than GGHLite as we vary both λ and κ. This appears to be due to the growth of the lattice

2We also have a “dummy” mmap implementation for testing purposes.

105

vtable function comments

mmap pp vtable
fread/fwrite read/write public parameters

clear clear public params

mmap sk vtable
init/clear initialize/clear secret key

fread/fwrite read/write secret key

mmap enc vtable

init/clear initialize/clear encoding
fread/fwrite read/write encoding

set copy encoding
add implements Add
mul implements Mult

is zero implements ZeroTest
encode implements Encode

Table 5.4.1: Interfaces exported by the libmmap library.

2 5 10 15 20 25 30

0.001

0.01

0.1

1

10

100

Degree κ

E
nc

od
in

g
Si

ze
(M

B
)

GGHLite (λ = 80) CLT (λ = 80)
GGHLite (λ = 40) CLT (λ = 40)

Figure 5.4.1: Estimates for the size of a single encoding in megabytes (MB) produced for security
parameters λ = 80 and λ = 40 and varying the multilinearity degree κ ∈ [2, 30] for the GGHLite
and CLT mmaps.

dimension in GGHLite compared to the number of secret primes required by the CLT

scheme, among other factors.

5.4.1 The GGHLite Multilinear Map

Building off of the original mmap candidate construction of Garg et al. (GGH) [GGH13a],

Langlois et al. [LSS14] proposed a modification called GGHLite, along with parameter and

performance estimates for the resulting encodings of the scheme. More recently, Albrecht et

al. [ACLL15] proposed further modifications and optimizations on top of GGHLite, along

106

with an implementation of their scheme under an open-source license. In this work, we refer

to GGHLite as the construction from the work of Albrecht et al., as opposed to the original

work of Langlois et al.

Our GGHLite implementation. We use as our starting point the implementation of GGH-

Lite3 released by Albrecht et al. [ACLL15]. We modified this implementation to add

functionality for handling the reading and writing of encodings, secret parameters, and

public parameters to disk. We also extended the implementation to handle more expressive

index sets, which are used in MIFE and obfuscation, as follows.

Typically, multilinear maps only support “levels”, where each encoding is created with

respect to an integer i ∈ [κ] (for an mmap of degree κ). The GGHLite implementation

supports more advanced labelings of encodings, by allowing for a universe U of κ indices to

be defined, and each encoding can be created with respect to a singleton subset (containing

only one element) of this universe U . Multiplication of two encodings with respect to sets of

indices S1 and S2 produces an encoding with respect to the multiset union of S1 and S2. The

zero-testing parameter is then created to test for encodings which are labeled with respect to

U . However, this functionality is still not sufficiently expressive to match the needs of our

implementation and our definition of mmaps.

Consequently, we upgraded the handling of these encodings to support labelings of

an encoding with respect to any subset S of indices of the universe U . Then, when two

encodings labeled with two different subsets are multiplied, the resulting encoding is labeled

with respect to their multi-set union. Finally, as before, the zero-testing parameter allows to

check for encodings of 0 labeled at U , only.

Finally, we isolated and rewrote the randomness generation procedures used by GGHLite,

since the original implementation relied on the randomness obtained from the GMP library,

which is not generated securely. We split this into a separate library, libaesrand, which

uses AES-NI for efficient randomness generation, and which may be useful in other contexts.

3https://bitbucket.com/malb/gghlite-flint

107

https://bitbucket.com/malb/gghlite-flint

Attacks on GGHLite. Recently, Hu and Jia [HJ16] showed how to perform “zeroizing”

attacks on GGHLite, to recover the secret parameters given certain public encodings of 0.

However, since neither MIFE nor obfuscation publish any encodings of 0, these applica-

tions seem to be unaffected by the zeroizing attacks. More recently, Albrecht, Bai, and

Ducas [ABD16] gave a quantum break for GGHLite without using any encodings of 0 or the

public zero-testing parameter. Subsequently, Cheon, Jeong, and Lee [CJL16] showed how

to give a (classical) polynomial-time attack on GGHLite, again without using any encodings

of 0. However, their attack requires exponential time if the parameters of GGHLite are

sufficiently increased (by a polynomial amount).

In concurrent work, Miles, Sahai, and Zhandry [MSZ16a] gave a completely different

form of attack, known as an “annihilation” attack, on applications of GGHLite, specifically,

MIFE and program obfuscation. They show that provably secure instantiations of these

primitives from mmaps are in fact insecure when the mmap is instantiated with GGHLite.

Despite the annihilation attacks, our implementations of these primitives from GGHLite

still serve as a useful benchmark for the efficiency of GGHLite and for the efficiency of

future GGH-like schemes resistant to annihilation attacks, which will inevitably arise from

improvements to the GGH framework.

5.4.2 The CLT Multilinear Map

Coron, Lepoint, and Tibouchi [CLT13] proposed a candidate multilinear map over the

integers, which works over a composite modulus that is assumed to be hard to factor.

Our CLT implementation. Our implementation started with the implementation4 of CLT

in C++ by Coron et al. [CLT13]. We rewrote it in C and added functionality to save and

restore encodings and the public parameters. As in the GGHLite case, we also modified its

basic functionality to support indices instead of levels.

Furthermore, in our extension of CLT, we improve the efficiency of the encoding process

4https://github.com/tlepoint/multimap

108

https://github.com/tlepoint/multimap

which allows for us to apply the CLT multilinear map to the large parameter settings that

we consider in the remainder of this work. The original CLT implementation applies the

Chinese Remainder Theorem in the procedure that produces encodings of plaintext elements.

Our implementation employs a certain trade-off that allows for the application of the Chinese

Remainder Theorem in a recursive manner, resulting in more multiplications to compute the

encoding, but with the efficiency gain that the elements being multiplied are much smaller.

Experimentally, this yields a large speedup in the encoding time, more noticeably with

larger parameters. In particular, for λ = 80 and κ = 19, without this optimization, it takes

134 seconds to produce a CLT encoding, whereas with our optimization, this time drops to

33 seconds.

Attacks on CLT. Similarly to other candidate constructions for multilinear maps, the CLT

construction was not based on an existing hardness assumption but rather introduced a new

assumption. Subsequently Cheon et al. [CHL+15] demonstrated a zeroizing attack against

the construction of CLT, which succeeds in recovering the secret parameters of the scheme.

This attack was further extended in the work of Coron et al. [CGH+15a], which demonstrated

how it can be generalized and applied against some proposed countermeasures [BWZ14b,

GGHZ14] to the attack by Cheon et al. [CHL+15]. But again, as with the zeroizing attacks

on GGHLite, these results do not apply directly to the constructions we consider in this

work.

5.5 Multi-Input Functional Encryption

The notion of multi-input functional encryption (MIFE), introduced by Goldwasser et

al. [GGG+14], extends the concept of functional encryption [BSW11] so that a decryption

key is associated with a multi-input function which is evaluated over multiple ciphertexts.

More formally, a secret-key, fixed-key MIFE scheme for a function f , on m inputs and with

output in a rangeR, is a tuple of algorithms (Keygen,Encrypt,Eval) such that:

109

• Keygen(1λ) → (pp, sk). The algorithm takes as input the security parameter and

generates the public parameters pp and a secret key sk.

• Encrypt(sk, i, x) → ct. The algorithm takes as input the secret key sk, an input

position index i, and an input x, and outputs a ciphertext ct.

• Eval(pp, ct1, . . . , ctm) → z. The algorithm takes as input a secret key sk and m

ciphertexts ct1, . . . , ctm, and produces an output z ∈ R.

Correctness requires that for any inputs x1, . . . , xm, for (pp, sk)← Keygen(1λ), letting

cti = Encrypt(sk, i, xi) for each i ∈ [m], we have that

Eval(pp, ct1, . . . , ctm) = f(x1, . . . , xm).

Informally, an MIFE scheme is secure if the information revealed by a collection of

ciphertexts is exactly the information that can be obtained by running Eval, and no more.

We omit formal security definitions since we do not directly rely on them in this work.

Goldwasser et al. [GGG+14] gave a general MIFE construction that uses indistinguisha-

bility obfuscation in a black-box manner. Boneh et al. [BLR+15] proposed a secret-key

MIFE construction that is based directly on mmaps (instead of obfuscation) in order to

obtain better efficiency. A particular instantiation of this MIFE construction, where the

function used in the decryption key is the comparison function, results in a construction

for order revealing encryption (ORE), which allows comparisons over ciphertexts while

hiding all other information about the encrypted messages. More specifically, an ORE

scheme is a MIFE scheme with the function f(x, y) that outputs the ordering between x and

y. This ORE scheme achieves the optimal security definition for a scheme that allows the

comparison functionality over encrypted data, improving over the security level provided by

order-preserving encryption schemes.

MIFE implementation. We implemented the Boneh et al. [BLR+15] MIFE construction

on top of the libmmap library, and provide interfaces for Keygen, Encrypt, and Eval, which

110

perform the respective operations supported by MIFE. We parallelize the computation

performed during Keygen, but for Encrypt, we choose to sequentially construct the encodings

belonging to the ciphertext, and instead defer the parallelism to the underlying mmap

implementation for producing encodings, in the interest of reducing memory usage at

the cost of potentially increased running times. We note that, since CLT enjoys much

more parallelism than GGHLite when constructing encodings, this optimization causes the

Encrypt time for GGHLite to be less efficient. Finally, for Eval, we multiply encodings

in parallel for CLT, since the multiplication of CLT encodings natively does not support

parallelism. However, for GGHLite, we choose to multiply encodings sequentially, and

instead rely on the parallelism afforded by GGHLite encoding multiplication.

The ciphertexts produced by a call to Encrypt on an `-length input are split into `

components (one for each input slot), which can be easily separated and combined with

different components from other ciphertexts in a later call to Eval. Hence, with a collection

of full ciphertexts, an evaluator can specify which components from each ciphertext should

be passed as input to Eval, in order to evaluate the function on components originating from

different sources.

5.5.1 Optimizing Comparisons

In this section, we describe a case study of applying the optimizations detailed in Section 5.3

to the comparison function. We establish two distinct “variants” of the comparison function

which result in shorter ciphertext sizes. Both variants are built from a combination of

condensing the input representation into a larger base d > 2, followed by dimension

reduction, and optionally applying matrix pre-multiplication.

• DC-variant. The degree-compressed optimization is to first apply matrix pre-multiplication

to re-order the reading of the input bits as in Equation (5.1). Then, the dimensions of

the resulting matrices from the layered state machine are slightly reduced.

111

• MC-variant. The matrix-compressed optimization is to directly apply dimension

reduction in the normal interleaved ordering of the bits (as x1y1x2y2 · · ·xnyn). Here,

the dimensions of the matrices can be reduced to depend only linearly in the base

representation d, as opposed to quadratically.

We now discuss each optimization in more detail.

The degree-compressed variant (DC-variant). By optimizing the (layered) comparison

state machine, we obtain that not all matrices need to be of dimension (d+ 3)× (d+ 3). For

example, the first matrix need only be of dimension 1× d, and the second matrix need only

be of dimension d×(d+2). Also, the last matrix can be of dimension (d+2)×3. And finally,

each of the remaining intermediate matrices need only be of dimension (d+ 2)× (d+ 2).

Putting these observations together, the total number of encodings in the ciphertext is

M = d+ d(d+ 2) + 3(d+ 2) + (κ− 3)(d+ 2)2

= d2(κ− 2) + (d+ 1)(4κ− 6). (5.2)

The matrix-compressed variant (MC-variant). Note, however, that if we do not apply the

matrix pre-multiplication optimization, but instead apply dimension reduction directly to the

comparison state machine associated with the normal (not interleaved) ordering of the input

digits, then the first matrix is of dimension 1× d, the second matrix is of dimension d× 3,

and all other κ− 2 matrices are of dimension either 3× (d+ 2) or (d+ 2)× 3. Putting this

together, we have κ = 2n and

M = d+ 3d+ 3(κ− 2)(d+ 2)

= 3(κ− 2)(d+ 2) + 4d. (5.3)

Concretely, for a domain of size N = 1012, if we choose to represent the inputs in base

d = 5, then this implies n = 18 (since 12 ≤ log10(518) < 13), and hence with the matrix

112

pre-multiplication optimization along with the Cryptol optimization for dimension reduction,

we have κ = 19 and M = 845. Without applying matrix pre-multiplication and only using

dimension reduction with base d = 10, we have n = 12, κ = 24, and M = 832.

Experimentally for the mmaps we tested, we found that the matrix pre-multiplication

optimization produces shorter ciphertexts than applying dimension reduction without matrix

pre-multiplication. However, we only tested this for an input domain of N = 1012 and

security parameter λ = 80. As N grows larger, depending on the asymptotic behavior

of encoding sizes as κ increases and λ varies, future implementations of the comparison

state machine may find that one can produce shorter ciphertexts when applying dimension

reduction without matrix pre-multiplication.

5.5.2 Order-Revealing Encryption

To implement order-revealing encryption, we set our plaintext domain to the numbers in

the range [N]. By taking N = 1012, we found that selecting the base representation d = 5

and applying the matrix pre-multiplication optimization resulted in using only κ = 19 levels

of the underlying mmap, which achieved the shortest ciphertexts for this domain. In fact,

this construction yields the shortest known ciphertexts for ORE on a domain of size 1012, as

explained below.

An alternative (basic) construction. The closest competitor to our ORE construction in

terms of ciphertext size and overall efficiency is a construction due to Lewi and Wu [LW16],

which we refer to as the “basic” ORE scheme, described below.

Let [N] be the message space. Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure

pseudorandom function (PRF) and H : {0, 1}λ × {0, 1}λ → {0, 1} be a hash function

(modeled as a random oracle). Let CMP be the comparison function, defined as CMP(x, y) =

1 if x < y and CMP(x, y) = 0 if x > y. The basic ORE scheme Πore is defined as follows.

• Keygen(1λ)→ (pp, sk). The algorithm samples a PRF key k R←− {0, 1}λ for F , and a

random permutation π : [N]→ [N]. The secret key sk is the pair (k, π), and there are

113

no public parameters.

• Encrypt(sk, i, x) → ct. Write sk as (k, π). If i = 1, the ciphertext output is simply

ct = (F (k, π(x)), π(x)). If i = 2, then the encryption algorithm samples a nonce

r
R←− {0, 1}λ, and for j ∈ [N], it computes vj = CMP(π−1(j), y) ⊕ H(F (k, j), r).

Finally, it outputs ct = (r, v1, v2 . . . , vN).

• Eval(pp, ct1, ct2) → {0, 1}. The compare algorithm first parses ct1 = (k′, h) and

ct2 = (r, v1, v2, . . . , vn), then outputs vh ⊕H(k′, r).

Note that a single ciphertext from this scheme is precisely N + 2λ+ dlog2(N)e bits long.

For N = 1012 and λ = 80, this amounts to ciphertexts of length 116.42 GB.5

Choosing the best optimizations. Our goal is to construct an ORE scheme which achieves

shorter ciphertexts than the above construction, without compromising security. To do

this, we use our MIFE implementation for the comparison function, and we apply our

optimizations to make the ciphertext as short as possible.

We compare the ciphertext sizes for four different ORE constructions, obtained from ei-

ther using the GGHLite or CLT mmap, and by applying either the DC-variant or MC-variant

optimizations. For each of these options, we fix the input domain size N = 1012 and vary

the input base representation d ∈ [2, 25]. Using Equations (5.2) and (5.3), we can compute

the estimated ciphertext size as a function of d (since κ is determined by the choice of d and

N). See Figure 5.5.1 for the results. We find that, for N = 1012, the shortest ciphertexts

for ORE from GGHLite are obtained when d = 5 using the DC-variant optimization, and

the shortest ciphertexts for ORE from CLT are obtained when d = 4 using the DC-variant

optimization as well.

Under these settings, the DC-variant optimization for GGHLite reads the inputs in base

5, requiring κ = 19, to produce a total of 845 encodings per ciphertext, for a total size

5Clearly, increasing λ has a relatively unnoticeable effect on the overall ciphertext size for the settings of
N we consider.

114

2 5 10 15 20 25

10

100

1,000

Input Base d
C

ip
he

rt
ex

tS
iz

e
(G

B
) GGHLite (DC) CLT (DC)

GGHLite (MC) CLT (MC)

Figure 5.5.1: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security
at λ = 80, for domain size N = 1012 and for bases d ∈ [2, 25]. We compare GGHLite and CLT,
with the DC-variant and MC-variant optimizations.

8 9 10 11 12 13

0.01

0.1

1

10

100

1,000

Domain Size Exponent e

C
ip

he
rt

ex
tS

iz
e

(G
B

)

GGHLite CLT Basic

Figure 5.5.2: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security
at λ = 80, for varying domain sizes. The exponent e on the x-axis denotes support for plaintexts in
the range from 1 to N = 10e. We compare GGHLite map (DC-variant), the CLT map, and the basic
construction Πore (described in Section 5.5.2).

of 91.4 GB. For CLT, the DC-variant optimization reads in the inputs in base 4, requiring

κ = 21, to produce a total of 694 encodings, for a total size of 5.68 GB.

We also measure the ciphertext size as we vary the domain size; see Figure 5.5.2. We

measure the estimated ciphertext size for various domain sizes when using GGHLite, CLT,

and the Πore construction described above. The results for GGHLite and CLT are using the

optimal bases as detailed in Figure 5.5.1. We find that for N = 1011 and N = 1012, ORE

using the CLT mmap and GGHLite mmap, respectively, produces a smaller ciphertext than

Πore. This demonstrates that for certain domain sizes, our ORE construction produces the

smallest known ciphertexts (versus ORE schemes that do not require mmaps).

115

5.5.3 Three-Input DNF Encryption

We now explore the applications of MIFE to a function on three inputs, which we call the

3DNF function. For n-bit inputs x = x1 · · ·xn, y = y1 · · · yn, and z = z1 · · · zn, the 3DNF

function is defined as

3DNF(x, y, z) = (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧ yn ∧ zn) ∈ {0, 1}.

This function bears resemblance to the “tribes” function studied by Gentry et al. [GLW14],

who also use mmaps to construct tribe instances. We refer to a MIFE scheme for the 3DNF

function as a 3DNF encryption scheme, and we refer to each ciphertext as consisting of

three components, one for each input slot: the left encryption, middle encryption, and right

encryption. To the best of our knowledge, 3DNF encryption schemes do not appear to follow

directly from simpler cryptographic assumptions.

Application to fraud detection. An immediate application of 3DNF encryption is in the

fraud detection of encrypted transactions. Consider the scenario where a (stateless) user

makes payments through transactions that are audited by a payment authority. In this setting,

each transaction is associated with a string of n flags, represented as bits pertaining to a set

of n properties of the transaction. A payment authority, in the interest of detecting fraud,

restricts the user to make at most (say) ` = 3 transactions per hour, and wants to raise an

alarm if a common flag is set in all ` of the transactions made in the past hour (if less than

` transactions were made in the past hour, then the authority does not need to perform a

check).

To protect the privacy of the user, the length-n flag string associated with each transaction

can be sent to the payment authority as encrypted under a 3DNF encryption scheme, where

the stateless user holds the decryption key. Here, the user would send a left encryption for

the first transaction, a middle encryption for the second, and a right encryption for the third.

Then, since the payment authority cannot decrypt any of the flag strings for the transactions,

116

the privacy of the user’s transactions is protected. However, the payment authority can still

perform the fraud detection check by evaluating a set of ` transactions to determine if they

satisfy the 3DNF function. Since we require that the user is stateless between transactions,

this application fits the model for a 3DNF encryption scheme, and does not seem to directly

follow from simpler primitives.

Optimizing 3DNF encryption. Similar to the case of the comparison function, we can

apply the branching program optimizations to the 3DNF function as well, in order to reduce

the overall efficiency of the resulting 3DNF encryption scheme. We constructed a 3DNF

encryption scheme using our MIFE implementation, for n = 16 bit inputs at security

parameter λ = 80. We optimized the 3DNF encryption scheme by condensing the input

representation into base d = 4. Additionally, we applied the matrix pre-multiplication

optimization, which meant that our input bits were read in the order x1y1z1z2y2x2x3y3 · · ·

(the natural generalization of the interleaving of Equation (5.1) to three inputs). This resulted

in a setting of degree κ = 17 for the underlying mmap. Finally, we used cryfsm to generate

the corresponding MBP, which automatically applied the appropriate dimension reduction

optimizations. Under the CLT mmap, a left encryption is 637 MB, a middle encryption is

1.4 GB, and a right encryption is 680 MB.

5.6 Program Obfuscation

A program obfuscator [BGI+01, GGH+13b] is a compiler that aims to make a program

“unintelligible” while preserving its functionality. Formally, an obfuscator O is a tuple

of algorithms written as O = (obf, eval), where the obfuscation algorithm obf takes as

input a program prog (e.g., expressed as a Boolean circuit), and outputs an obfuscated

program obf(prog), and the evaluation algorithm takes an obfuscated program obf(prog)

and produces an output. An obfuscator is correct for a program prog if, for all valid inputs x

accepted by prog, we have that eval(obf(prog))(x) = prog(x).

117

VBB and pseudo-VBB security. An obfuscator O is virtual black-box (VBB) secure6 for a

program prog if for any efficient adversary A, there exists an efficient simulator S, given

only oracle access to prog(·), for which the quantity

∣∣Pr
[
A(1λ, obf(prog)) = 1

]
− Pr

[
Sprog(·)(1λ) = 1

]∣∣
is negligible. We say that an obfuscator O is pseudo-VBB secure (pVBB) for program prog

and obfuscator O′ = (obf ′, eval′) if O′ is both VBB secure and for every efficient adversary

A, there exists an efficient adversary B for which the quantity

∣∣Pr
[
A(1λ, obf(prog)) = 1

]
− Pr

[
B(1λ, obf ′(prog)) = 1

]∣∣
is negligible. In other words, if an obfuscator O is pVBB secure for a program prog and

obfuscator O′, then any efficient attack on the security of O translates directly to an efficient

attack on the VBB security of O′ for the program prog.

In our work, we construct a point function obfuscator that is pVBB secure for the

Sahai-Zhandry obfuscator [SZ14]. Our obfuscator operates identically to the Sahai-Zhandry

obfuscator, which is VBB secure, except that we discard half of the ciphertext that corre-

sponds to the second input in the “dual-input” branching programs that obfuscator uses.

Effectively, our obfuscator can be seen as operating on “single-input” branching programs,

which do not obtain VBB security, but do obtain pseudo-VBB security. We emphasize that

this distinction in security is purely definitional from an attacker’s point of view, as any

attack on our obfuscator immediately results in an attack on the Sahai-Zhandry obfuscator.

In this section we show how we use cryfsm and libmmap to build such a program

obfuscator. Apon et al. [AHKM14] gave the first implementation of program obfuscation,

using the CLT mmap [CLT13] and a program compiler based on the approaches of Barak et

6The reason we consider VBB versus indistinguishability obfuscation is that we consider point functions,
for which VBB obfuscators are believed to exist.

118

al. [BGK+14] and Ananth et al. [AGIS14]. We extend this codebase in the following ways:

• Multilinear maps. We integrate in libmmap to support both the CLT and GGHLite

mmaps.

• Program compilers. We support MBPs output by cryfsm, using the Sahai-Zhandry

obfuscator [SZ14].

Point function obfuscation. We evaluated our implementation by obfuscating point func-

tions, namely, functions that output 0 on a single (secret) input, and 1 otherwise. Previous

work [AHKM14] also evaluated obfuscation for point functions, but was only able to suc-

cessfully obfuscate 14-bit point functions with an mmap security parameter of λ = 60.

As noted by Bernstein et al. [BHLN15], the secret input of an n-bit point function can be

recovered by simply enumerating over all 2n possible inputs. In our experiments, we set

n = λ, and consider point function obfuscation for 40-bit and 80-bit inputs.

The MBP for a λ-bit point function is of length λ and consists of a total of 2λ matrices,

each of dimension 2 × 2. As a small optimization, we can apply dimension reduction to

obtain a branching program where the first pair of matrices need only be of dimension 1× 2.

The more significant optimization comes by condensing the input representation through

increasing the input base d.

The total number of encodings that we must publish in the obfuscation of a λ-bit point

function can be computed as M = 2 + 4 · d · `, where ` is the length of the MBP. We

estimate the ciphertext size for various choices of bases in Figure 5.6.1, which incorporates

our estimations for the size of a single encoding in GGHLite and CLT for λ = 40 and

λ = 80.

• For λ = 40, we find that the minimal ciphertext size for domain size N = 240 is

produced using MBPs under base 9 and length 13 for GGHLite, and base 6 and length

16 for CLT.

119

2 10 20 30 40 50 60 70 80

0.01

0.1

1

10

100

1,000

Input Base d
C

ip
he

rt
ex

tS
iz

e
(G

B
) GGHLite (λ = 80) CLT (λ = 80)

GGHLite (λ = 40) CLT (λ = 40)

Figure 5.6.1: Estimates for the ciphertext size (in GB) for point function obfuscation, for domain
sizes N = 280 = 2λ and N = 240 = 2λ. In the case of λ = 80, the minimums are achieved at
d = 19 for GGHLite and d = 8 for CLT. In the case of λ = 40, the minimums are achieved at d = 9
for GGHLite and d = 6 for CLT.

• For λ = 80, we find that the minimal ciphertext size for domain size N = 280 is

produced using MBPs under base 19 and length 19 for GGHLite, and base 8 and

length 27 for CLT.

Obfuscator implementation. Our implementation is in a mix of Python and C, with Python

handling the frontend and with C handling all the computationally expensive portions, and

provides interfaces to both obfuscate (obf) and evaluate (eval) an MBP. We parallelize the

encoding of the elements in the MBP by using a threadpool and delegating each encoding

operation to a separate thread. Once all the threads for a given matrix in the MBP complete,

we then write the (encoded) matrix to disk. Thus, the threadpool approach has a higher

RAM usage (due to keeping multiple encodings in memory as we parallelize) than encoding

one element at a time and letting the underlying mmap library handle the parallelization, but

is more efficient.

Other obfuscators. Our obfuscator is built upon improvements inspired by the Sahai-

Zhandry obfuscator, which is built on the general obfuscator described by Barak et al. [BGK+14]

and Ananth et al. [AGIS14]. In addition to these obfuscators, we also implemented the

Zimmerman [Zim15] obfuscator. However, because the Zimmerman obfuscator induces

a seemingly unavoidable lower bound on the degree of multilinearity for the inputs we

120

consider, we found that the Zimmerman obfuscator was not competitive with the obfuscator

we implemented. More specifically, the Zimmerman obfuscator requires that the degree of

multilinearity for the obfuscation of any program be at least twice the number of inputs that

the circuit accepts—a cost that may be insignificant when obfuscating other programs, but

was too high for point functions (even when we tried to increase the input base representation

to minimize this cost), and hence unsuitable for our purposes.

5.7 Experimental Analysis

All of our experiments were performed using the Google Compute Engine servers with a

32-core Intel Haswell CPU at 2.5 GHz, 208 GB RAM, and 100 GB disk storage.

5.7.1 MIFE Experiments

We evaluated our multi-input functional encryption constructions with two applications:

order-revealing encryption (ORE) (cf. Section 5.5.2) and three-input DNF (3DNF) encryp-

tion (cf. Section 5.5.3). In Section 5.5, we showed how we can accurately estimate the

ciphertext size from parameters derived from the input size and the security parameter λ,

and our experiments confirmed that these parameter estimates are reasonably accurate (all

within 1–2% of our reported values).

Additionally, we assessed the performance of the MIFE interface algorithms Keygen,

Encrypt, and eval, along with memory utilization during the Encrypt computation, which

was by far the most costly step. We note that, since the files that we are working with are

so large, a non-trivial amount of time was spent in the reading and writing of these files to

disk, and so an exact reproduction of our numbers may also need to mimic the disk storage

specification we use.

As another sidenote, we reiterate that our primary interest in selecting the parameters

for our applications is to create the most compact ciphertexts possible. As a result, some

121

λ mmap N d ` Encrypt eval |ct| RAM

40
CLT

1010 4 19 1 s 0.3 s 13 MB 17 MB
1012 4 22 3 s 1.6 s 18 MB 18 MB

GGH
1010 4 19 38 m 47 s 7.1 GB 23 GB
1012 4 22 52 m 68 s 9.6 GB 25 GB

80 CLT
1010 4 19 28 m 4 m 4.7 GB 5 GB
1012 4 22 37 m 6 m 6.0 GB 6 GB

Table 5.7.1: ORE experiments. “λ” denotes the security parameter of the underlying multilinear
map; “mmap” denotes the multilinear map; “N” denotes the domain size; “d” denotes the MBP base;
“`” denotes the MBP length; “Encrypt” denotes the running time of encryption; “eval” denotes the
running time of evaluation, “|ct|” denotes the size of the ciphertext; and “RAM” denotes the RAM
required to encrypt. We use “h” for hours, “m” for minutes, and “s” for seconds.

of our optimizations come with a cost of increased evaluation time, and hence, we believe

that it is possible to reduce our evaluation time (potentially at the expense of having larger

ciphertexts).

Experimental results. We summarize our MIFE experiments in Tables 5.7.1 and 5.7.2.

We evaluated the MIFE constructions for ORE with input domain sizes N = 1010 and

N = 1012, and for 3DNF encryption on 8-bit inputs, testing both GGHLite and CLT as the

underlying mmap. For each experiment, we report the computation wall time for Encrypt

and eval, the overall ciphertext size |ct|, along with the memory usage during the Encrypt

computation. The Keygenoperation varied from several seconds (for CLT with λ = 40)

to 145 minutes (for GGHLite with λ = 80). The encryption statistics measured were for

generating a complete ciphertext, containing all components, as opposed to containing only

the left or right (or middle) components.

Since the CLT mmap produces shorter encodings, the encryption and evaluation time

for the experiments using CLT were much faster than the corresponding experiments for

GGHLite. This is also partly due to the fact that CLT enjoys much more parallelism than

GGHLite. We also only present timings for CLT with λ = 80 because we ran out of RAM

during the encryption procedure when using GGHLite.

122

λ mmap N d ` Encrypt eval |ct| RAM

40
CLT 16-bit 4 17 0.6 s 0.2 s 7.4 MB 18 MB
GGH 16-bit 4 17 20 m 28 s 3.9 GB 22 GB

80 CLT 16-bit 4 17 12 m 3 m 2.5 GB 4 GB

Table 5.7.2: 3DNF experiments. See Table 5.7.1 for the column details.

5.7.2 Program Obfuscation Experiments

To evaluate our program obfuscation implementation, we chose a random secret 40-bit and a

random secret 80-bit point, and used cryfsm to create the corresponding MBPs for the point

functions associated with these points. We selected the input base representation for these

programs with the goal of minimizing the total obfuscation size for each obfuscated point

function (see Section 5.6 for our calculations). Like with MIFE, optimizing for obfuscation

or evaluation time could lead to different optimal input base representations.

Experimental results. We tested three settings for point function obfuscation: 40-bit inputs

with λ = 40, 80-bit inputs with λ = 40, and finally, 80-bit inputs with λ = 80. We also

obfuscated using both CLT and GGHLite for λ = 40, but only used CLT for λ = 80,

as the GGHLite experiment was too resource-intensive. Our results are summarized in

Table 5.7.3. As we observed in the MIFE experiments, we note that GGHLite performs

significantly worse when used in obfuscation compared to CLT. We also note that while

obfuscation takes a huge amount of time and resources, evaluation is much less resource-

intensive, for both GGHLite and CLT—a consequence of the fact that eval only requires

multiplying (encoded) matrices, which is highly parallelizable and also much less costly

than the encoding operation itself.

These results, while evidently impractical, are a huge improvement over prior work [AHKM14],

which took 7 hours to obfuscate a 14-bit point function with λ = 60, resulting in an ob-

fuscation of 31 GB. This improvement mainly come from (1) using a much tighter matrix

branching program representation of the program, and (2) operating over different sized

bases.

123

λ mmap N d ` obf eval |obf| RAM

40
CLT

40-bit 6 16 1.7 s 0.1 s 6.3 MB 1.7 GB
80-bit 7 29 6.6 s 0.3 s 21.7 MB 1.7 GB

GGH
40-bit 9 13 28 m 5.9 s 3.5 GB 38 GB
80-bit 6 31 56 m 39 s 13.7 GB 37 GB

80 CLT 80-bit 8 27 3.3 h 180 s 8.3 GB 11 GB

Table 5.7.3: Program obfuscation experiments. “λ” denotes the security parameter of the underlying
multilinear map; “mmap” denotes the multilinear map; “N” denotes the domain size; “d” denotes
the MBP base; “`” denotes the MBP length; “obf” denotes the obfuscation time; “eval” denotes the
evaluation time; “|obf|” denotes the obfuscation size; and “RAM” denotes the RAM required to
obfuscate (evaluation RAM usage never exceeded 1 GB). We use “h” for hours, “m” for minutes,
and “s” for seconds.

5.8 Conclusions

In this work, we presented 5Gen, a framework for the prototyping and evaluation of

applications that use multilinear maps (mmaps) and matrix branching programs. 5Gen

is built as a multi-layer software stack which offers modularity and easy integration of

new constructions for each component type. Our framework offers an optimized compiler

that converts programs written in the Cryptol language into matrix branching programs, a

representation widely used in mmap-based constructions. 5Gen includes a library of mmaps

available through a common API; we currently support the GGHLite and CLT mmaps, but

our library can be easily extended with new candidates. Leveraging the capabilities of our

compiler and mmap libraries, we implemented applications from two computing paradigms

based on mmaps: multi-input functional encryption (MIFE) and obfuscation.

We measured the efficiency of our MIFE and obfuscation applications with various

parameter settings using both the GGHLite and CLT mmaps. While the results show

efficiency that is clearly not usable in practice, they provide a useful benchmark for the

current efficiency of these techniques.

Constructing multilinear maps is an active and rapidly-evolving area of research. Our

5Gen framework provides an easy-to-use testbed to evaluate new mmap candidates for

various applications and is open-source and freely available at https://github.com/

124

https://github.com/5GenCrypto
https://github.com/5GenCrypto

5GenCrypto.

5.9 Parameter Selection

In this section, we discuss the parameter selection for both the GGHLite and CLT mmaps

that we consider in this work. Throughout, we use λ as the security parameter and κ as the

multilinearity parameter.

5.9.1 GGHLite

We now discuss the parameter selection used for the GGHLite mmap discussed in Sec-

tion 5.4.1. We discuss the various parameters, and where applicable, the values we set them

to and why. As we build off of the code from Albrecht et al. [ACLL15], many of these

parameter settings come directly from that work; we simply document them explicitly here.

• n: The dimension of the lattice. We set n by iteratively producing the below parameters

and then checking whether they satisfy the security parameter according to [APS15],

increasing n by a power of two each iteration (cf. [ACLL15, Section 4.4]).

• σ: The Gaussian parameter. We set σ = 4πn
√
e ln(8n)/π according to [LSS14,

Eq. (4)].

• `−1
g : The upper bound on the size of ‖g−1‖. We set `−1

g = 4
√
eπn/σ according

to [LSS14, Eq. (4)].

• `: The number of bits to extract from the level-κ encoding. We set ` = dlog2(8σn)e

according to the discussion in [ACLL15, Section 4.2].

• σ′: The Gaussian parameter for encoding values. We set σ′ = max

2n1.5σ
√
e log(8n)/π

7n2.5 ln1.5(n)σ


according to the discussion in [LSS14, Section 6].

• q: The modulus. Selected according to [ACLL15, Section 4.2, pg. 10].

125

https://github.com/5GenCrypto
https://github.com/5GenCrypto

5.9.2 CLT

We now discuss the parameter selection used for the CLT mmap discussed in Section 5.4.2.

As above, we discuss the various parameters, and where applicable, the values we set them

to and why.

• ρ: The bitlength of the randomness used for encodings. We set ρ = λ to avoid the

attack of Lee and Seo [LS14].

• α: The bitlength of the message slots gi. We set α = λ as suggested by [CLT13].

• β: The bitlength of the random hi values. We set β = λ to avoid a GCD attack similar

to [CLT13, Section 5.2].

• ρf : The maximum bitlength of the randomness in a level-κ encoding. For the specific

usecase of obfuscation we can set ρf = κ(ρ+ α).

• n: The number of secret primes pi. In Section 5.10 we show how to adapt the

lattice attack on encodings by Coron et al. [CLT13, Section 5.1] to the “general”

setting where no 0-level encodings of zero are available, and thus we need to set

n = ω(η log λ). However, rather than setting n to match some asymptotic, such as

ηλ, we consider the concrete costs of the various attacks to give an accurate estimate

of n. We use the approach detailed by Tancrède Lepoint [Lep14, Section 7.2] using

the more conservative estimate for the running time of the LLL algorithm [Lep14,

Section 7.2.5].

• η: The bitlength of the secret primes pi. We set η = ρf + α + β + log2(n) + 9

according to [CLT13, Lemma 8].

• ν: The bitlength of the image of the mmap. We set ν = η− β− ρf − λ− 3 according

to [CLT13, Lemma 8].

126

Note that n, η, and ν depend on each other. Thus, to compute these values we simply loop

until we reach a fixed point, using the requirement that β + α + ρf + log2(n) ≤ η − 9 and

ν ≥ α + 6, as detailed in [CLT13, Lemma 8].

5.10 Lattice Attack on Encodings

In this section we describe how to adapt the lattice attack on encodings by Coron et

al. [CLT13, Section 5.1] to our particular use of the CLT mmap.7 In particular, we consider

the case where an attacker has access to t > n level-1 encodings. Without loss of generality,

we assume a single z.

Let x0 =
∏n

i=1 pi. For j ∈ [t] consider the level-1 encoding x′j = xj/z mod x0 of secret

message mj = (mij)i, where xj ∈ Zx0 is such that xj mod pi = rijgi + mij . Note that

xj mod pi is of size ρ + α bits and can be considered as a level-0 encoding of mj . Let

x′ = (x′j)j and let x = (xj)j .

As detailed by Coron et al., we want to use x′ to relate the lattice of vectors u orthogonal

to x′ mod x0 to the lattice of vectors orthogonal to each “plaintext” vector si = (sij)j =

(rijgi +mij)j . We do so as follows.

By construction we have that

u · x′ ≡ 0 (mod x0)

⇐⇒ z(u · x′) ≡ 0 (mod x0)

⇐⇒ u · x ≡ 0 (mod x0),

where the last equivalence comes from the fact that z and x0 are coprime with high probabil-

ity. We can thus apply the attack detailed by Coron et al. [CLT13, Section 5.1] on vector x′

to directly recover the vectors si.

Now, given these vectors, we can recover pi for i ∈ [n] with high probability as
7We thank Tancrède Lepoint for detailing this adaptation.

127

follows [CHL+15]. Note that

x′1
si1
≡ x′2
si2

(mod pi)

⇐⇒ x′1si2 − x′2si1 ≡ 0 (mod pi).

Thus, we can compute gcd(x′1si2 − x′2si1, x0) to learn pi.

128

Chapter 6

Cryptanalysis of Indistinguishability

Obfuscations of Circuits over GGH13

6.1 Introduction

An obfuscator is a program compiler which hides all partial implementation details of a

program, intuitively. This is formalized via the notion of indistinguishability obfuscation

[BGI+01]: we say an obfuscator obf is an indistinguishability obfuscator if it holds for

every pair C0, C1 of functionally equivalent circuits (i.e. computing the same function) that

obf(C0) and obf(C1) are indistinguishable. A recent surge of results has highlighted the

importance of this notion: virtually “any cryptographic task” can be achieved assuming

indistinguishability obfuscation and one-way functions [SW14].

All known candidate constructions of indistinguishability obfuscation, e.g. [GGH+13b,

BGK+14, AB15], are based on multilinear-maps [GGH13a, CLT13, GGH15]1, which have

been the subjects of various attacks [CHL+15, CGH+15b, CFL+16, HJ16, CLLT16a].

Among them, the attacks (e.g. [GGH13a, HJ16]) on GGH13 [GGH13a] multilinear maps

required explicit access to “low-level” encodings of zero, or differently represented low-level

1The work of [AJN+16] might be seen as an exception to this: Assuming the (non-explicit) existence of
indistinguishability obfuscation, they provide an explicit construction of an indistinguishability obfuscator.

129

encodings of zero, in the form of an encoded matrix with a zero eigenvalue [CGH+15a]; such

low-level zero-encodings do not appear naturally in obfuscation constructions(except for a

few specially designed programs [CGH+15b]). Recently Miles, Sahai, and Zhandry [MSZ16a]

introduced a new class of polynomial-time2 attacks without requiring low-level zeros against

several obfuscation constructions [BR14, BGK+14, AGIS14, MSW14, PST14, BMSZ16],

when instantiated with the GGH13 multilinear maps.

More specifically, Miles et al. [MSZ16a] exhibit two simple branching programs (and

also programs padded with those) that are functionally equivalent, yet their BGKPS-

obfuscations (put forward by Barak et al. in [BGK+14]) and similar constructions [BR14,

AGIS14, MSW14, PST14, BMSZ16] are efficiently distinguishable.3 Additionally they

show that their attacks extend to any two branching programs with those two simple pro-

grams (respectively) padded into them. However, the branching programs considered there,

in particular the all-identity branching program, do not appear “in the wild”. More specif-

ically, obfuscation constructions for circuits first convert an NC1 circuit into a branching

program (e.g. via Barrington’s transformation) that possibly results in programs with com-

plex structures, even if one starts with simple circuits. This brings us to the following open

question:

Is it possible to attack obfuscations of complex branching programs generated from NC1?

6.1.1 Our Contributions

In this work, we are able to answer the above question affirmatively. In particular, our main

contributions are:

• We first define a general and efficiently-testable property of two single-input4 branch-
2Several subexponential-time or quantum-polynomial-time [CDPR16, ABD16, CJL16] attacks on GGH13

multilinear maps also have been considered. We do not consider these in this work.
3To avoid repetitions, from now on we will refer to the obfuscation constructions of [BGK+14, BR14,

AGIS14, MSW14, PST14] by BGKPS-like constructions.
4The branching programs, where any pair of matrices in the sequence depends on a single input location,

are called single-input branching programs. Such branching programs naturally evolve from Barrington’s
transformation on circuits.

130

ing programs called partial inequivalence (discussed below) and demonstrate an anni-

hilation attack against BGKPS-like obfuscations of any two (large enough) branching

programs that satisfy this property.

• Next, using implementation in Sage [S+16] (see Section 6.8 for details on the imple-

mentation) we give explicit examples of pairs of (functionally equivalent) natural NC1

circuits, which when processed via Barrington’s Theorem yield pairs of branching

programs that are partially inequivalent – and thus, attackable.

• As a consequence of the above result, we are also able to show that the “bootstrapping

circuit(s)” technique used to boost iO for NC1 to iO for P/poly, for a certain choice

of the universal circuit, yield partially inequivalent branching programs in a similar

manner – and are, thus, also attackable.

Our general partial inequivalence condition is broad and seems to capture a wide range

of natural single-input branching programs. However, we require the program to be large

enough.5 Additionally, we need the program to output 0 on a large number of its inputs.

Finally, our new annihilation attacks are essentially based on linear system solvers

and thus quite systematic. This is in contrast with the attacks of Miles et al. [MSZ16a]

which required an exhaustive search operation rendering it hard to extend their analysis for

branching programs with natural structural complexity. Therefore, at a conceptual level, our

work enhances the understanding of the powers and the (potential) limits of annihilation

attacks.

One limitation of our technique is that they do not extend to so-called dual-input

branching programs. We leave it as an interesting open question.

A Concurrent and Independent work. Concurrent and independent to our work,6 Chen et
5Note that, for our implementation we consider circuits that are quite small, only depth 3, and the resulting

Barrington programs are of length 64. However, using the implementation we then “boost” the attack to a
much larger NC1 circuits that suffice for the real-world attack (discussed in Section 6.6)to go through.

6The first draft of this work appeared online concurrently as their first draft [CGH16a]. At the same time
another independent work [CLLT16b] appeared that provided attacks against several CLT13 based obfuscators
for a broader class of programs.

131

al. [CGH16a] provides a polynomial time attack against the GGHRSW construction [GGH+13b]

based on GGH13 (and also GGH15 [GGH15]) maps that works for so-called “input-

partitioning” branching programs. Nonetheless, their attacks are not known to extend [CGH16b]

for complex branching programs evolved from NC1 circuits (e.g. via Barrington’s Transfor-

mation). Hence, our work stands as the only work that breaks obfuscations of NC1 circuits

based on GGH13 till date.

Change in Obfuscation Landscape. Given our work and the work of Chen et al. [CGH16a]

the new attack landscape against GGH13-based obfuscators is depicted in Figure 6.1.1. We

refer the reader to [AJN+16, Figure 13] for the state of the art on obfuscation constructions

based on CLT13 and GGH15 multilinear maps.

Branching
Programs

NC1 Circuits
(Barrington’s)

NC1-to-P/poly
[GGH+13b, App14]
[BGL+15, GIS+10]

GGHRSW [GGH+13b] ⊗ © ©
BGKPS-like constructions
[BR14, BGK+14, AGIS14]
[PST14, MSW14, BMSZ16]

× ⊗ ⊗

Obfuscations from weak
mmaps [GMM+16, DGG+16]

© © ©

Figure 6.1.1: The Attack Landscape for GGH13-based Obfuscators. In all cases, the multilinear
map is [GGH13a]. © means no attack is known.× means a prior attack is known, and we present
more general attacks for this setting.⊗ means we give the first known attack in this setting and⊗
means a new attack is discovered concurrently to ours (namely [CGH16a]).

6.1.2 Technical Overview

Below, after providing some additional backgrounds on multilinear maps and known attacks,

we provide a overview of our annihilation attacks.

Multilinear Maps: Abstractly. As a first approximation, one can say that a cryptographic

multilinear map system encodes a value a ∈ Zp (where p is a large prime) by using a

132

homomorphic encryption scheme equipped with some additional structure. In other words,

given encodings of a and b, one can perform homomorphic computations by computing

encodings of a+ b and a · b. Additionally, each multilinear map encoding is associated with

some level described by a value i ∈ {1 . . . κ} for a fixed universe parameter κ. Encodings

can be added only if they are at the same level: Enci(a) ⊕ Enci(b) → Enci(a + b).

Encodings can be multiplied: Enci(a) � Encj(b) → Enci+j(a · b) if i + j ≤ κ but is

meaningless otherwise. We naturally extend the encoding procedure and the homomorphic

operations to encode and to compute on matrices, respectively, by encoding each term of the

matrix separately. Finally, the multilinear map system comes equipped with a zero test: an

efficient procedure for testing whether the input is an encoding of 0 at level-κ. However,

such zero-test procedure is not perfect as desired when instantiated with concrete candidate

multilinear maps. In particular we are interested in the imperfection in GGH13 map.

An Imperfection of the GGH13 Multilinear Maps. Expanding a little on the abstraction

above, a fresh multilinear map encoding of a value a ∈ Zp at level i is obtained by first

sampling a random value µ from Zp and then encoding Enci(a + µ · p). Homomorphic

operations can be performed just as before, except that the randomnesses from different

encodings also get computed on. Specifically, Enci(a + µ · p) ⊕ Enci(b + ν · p) yields

Enci(a + b + (µ + ν) · p) and multiplication Enci(a + µ · p) � Encj(b + ν · p) yields

Enci+j(a · b+ (b · µ+ a · ν + µ · ν · p) · p) if i+ j ≤ κ but is meaningless otherwise. An

imperfection of the zero-test procedure is a feature characterized by two phenomena:

1. On input Encκ(0 + r · p) the zero-test procedure additionally reveals r in a somewhat

“scrambled” form.

2. For certain efficiently computable polynomials f and a collection of scrambled values

{ri} it is efficient to check if f({ri}) = 0 mod p or not for any choice of ri’s.7

This imperfection has been exploited to perform attacks in prior works, such as the one by

7One can alternatively consider the scrambled values as polynomials over {ri} and then check if f({ri})
is identically zero in Zp.

133

Miles et al. [MSZ16a].8

Matrix Branching Programs. A matrix branching program of length ` for n-bit inputs

is a sequence BP =
{
A0,
{
Ai,0, Ai,1

}`
i=1
, A`+1

}
, where A0 ∈ {0, 1}1×5, Ai,b’s for i ∈ [`]

are in {0, 1}5×5 and A`+1 ∈ {0, 1}5×1. Without providing details, we note that the choice

of 5 × 5 matrices comes from Barrington’s Theorem [Bar89]. We use the notation [n] to

describe the set {1, . . . , n}. Let inp be a fixed function such that inp(i) ∈ [n] is the input bit

position examined in the ith step of the branching program. The function computed by this

matrix branching program is

fBP (x) =


0 if A0 ·

∏`
i=1Ai,x[inp(i)] · A`+1 = 0

1 if A0 ·
∏`

i=1Ai,x[inp(i)] · A`+1 6= 0

,

where x[inp(i)] ∈ {0, 1} denotes the inp(i)th bit of x.

The branching program described above inspects one bit of the input in each step. More

generally, multi-arity branching programs inspect multiple bits in each step. For example,

dual-input programs inspect two bits during each step. Our strategy only works against

single-input branching programs, hence we restrict ourselves to that setting.

Exploiting the Imperfection/Weakness. At a high level, obfuscation of a branching pro-

gramBP = {A0, {Ai,0, Ai,1}`i=1, A`+1} yields a collection of encodings {M0, {Mi,0,Mi,1}`i=1,

M`+1}, say all of which are obtained at level-1.9 We let {Z0, {Zi,0, Zi,1}`i=1, Z`+1} denote

the randomnesses used in the generation of these encodings, where each Z corresponds

to a matrix of random values (analogous to r above) in Zp. For every input x such that

BP (x) = 0, we have that M0 �
⊙`

i=1Mi,x[inp(i)] �M`+1 is an encoding of 0, say of the

form Enc(0 + rx · p) from which rx can be learned in a scrambled form. The crucial

8Recent works such as [GMM+16, DGG+16], have attempted to realize obfuscation schemes secure
against such imperfection and are provably secure against our attacks. We refer to them as obfuscations from
weak multilinear maps (see Figure 6.1.1).

9Many obfuscation constructions use more sophisticate leveling structure, typically referred to as so-called
“straddling sets”. However we emphasize that, this structure does not affect our attacks. Therefore we will just
ignore this in our setting.

134

observations of Miles et al. [MSZ16a] are: (1) for every known obfuscation construction, rx

is a program dependent function of {Z0, {Zi,0, Zi,1}`i=1, Z`+1}, and (2) for a large enough

m ∈ Z the values {rxk}mk=1 must be correlated, which in turn implies that there exists a

(program-dependent) efficiently computable function fBP and input choices {xBPk }mk=1 such

that for all k ∈ [m], BP (xBPk) = 0 and fBP ({rxBPk }
m
k=1) = 0 mod p.10 Further, just like

Miles et al. we are interested in constructing an attacker for the indistinguishability notion

of obfuscation. In this case, given two arbitrarily distinct programs BP and BP ′ (such that

∀x,BP (x) = BP ′(x)) an attacker needs to distinguish between the obfuscations of BP

and BP ′. Therefore, to complete the attack, it suffices to argue that for the sequence of

{r′
xBP

′
k

} values obtained from execution of BP ′ it holds that, fBP ({r′
xBP

′
k

}mk=1) 6= 0 mod p.

Hence, the task of attacking any obfuscation scheme reduces to the task of finding such

distinguishing function fBP .

Miles et al. [MSZ16a] accomplishes that by presenting specific examples of branch-

ing programs, both of which implement the constant zero function, and a corresponding

distinguishing function. They then extend the attack to other related branching programs

that are padded with those constant-zero programs. The details of their attack [MSZ16a] is

quite involved, hence we jump directly to the intuition behind our envisioned more general

attacks.

Partial Inequivalence of Branching Programs and Our Attacks. We start with the

following observation. For BGKPS-like-obfuscations for any branching program BP =

{A0, {Ai,0, Ai,1}`i=1, A`+1} the value sx = rx mod p looks something like: 11

sx '
∏̀
i=1

αi,x[inp(i)]


`+1∑
i=0

(
i−1∏
j=0

Aj,xinp(j) · Zi,x[inp(i)] ·
`+1∏
j=i+1

Aj,xinp(j)

)
︸ ︷︷ ︸

tx

,

10This follows from the existence of an annihilating polynomial for any over-determined non-linear systems
of equations. We refer to [Kay09] for more details.

11Obtaining this expression requires careful analysis that is deferred to the main body of the chapter. Also,
by abuse of notation let A0,xinp(0)

= A0, A`+1,xinp(`+1)
= A`+1, Z0,xinp(0)

= Z0 and Z`+1,xinp(`+1)
= Z`+1.

135

where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} are the randomnesses contributed by the corresponding

encodings. Let x denote the value obtained by flipping every bit of x (a.k.a. the bitwise com-

plement). Now observe that the product value Λ =
∏`

i=1 αi,x[inp(i)] ·αi,x[inp(i)] is independent

of x. Therefore, ux = sx · sx = Λ · tx · tx. Absorbing Λ in the {Zi,0, Zi,1}`i=1, we have that

ux is quadratic in the randomness values {Z0, {Zi,0, Zi,1}`i=1, Z`+1}, or linear in the random

terms ZZ ′ obtained by multiplying every choice of Z,Z ′ ∈ {Z0, {Zi,0, Zi,1}`i=1, Z`+1}. In

other words if BP evaluates to 0 both on inputs x and x, the values revealed by two zero-test

operations give one linear equation where the coefficients of the linear equations are program

dependent. Now, if BP implements a “sufficiently non-evasive” circuit,(e.g. a PRF) such

that there exist sufficiently many such inputs x, x for which BP (x) = BP (x) = 0, then

collecting sufficiently many values {xBPk , uxBPk }
m
k=1, we get a dependent system of linear

relations. Namely, there exist {νBPk }mk=1 such that
∑m

k=1 ν
BP
k · uxBPk = 0. In other words,∑m

k=1 ν
BP
k · rxBPk · rxBPk = 0 mod p, where {νBPk }mk=1 depends only on the description of

the branching program BP .

We remark that, in the process of linearization above we increased (by a quadratic factor)

the number of random terms in the system. However, this can be always compensated by

using more equations, because the number of random terms is O(poly(n)) (n is the input

length) whereas the number of choices of input x is 2O(n) which implies that there are

exponentially many rx available.

Note that for any branching program BP ′ that is “different enough” from BP , we could

expect that
∑m

k=1 ν
BP
k ·r′xBPk ·r

′
xBPk
6= 0 mod pwhere r′

xBPk
are values revealed in executions

of an obfuscation of BP ′. This is because the values {νBPk }mk=1 depend on the specific

implementation of BP through terms of the form
∏i−1

j=0 Aj,x[inp(i)] and
∏`+1

j=i+1 Aj,x[inp(i)] in

sx above. Two branching programs that differ from each other in this sense are referred to

as partially inequivalent.12

What Programs are Partially Inequivalent? Attack on NC1 circuits. The condition we

put forth seems to be fairly generic and intuitively should work for large class of programs.

12Note that the only other constraint we need is that both BP and BP ′ evaluates to 0 for sufficiently many
inputs, which we include in the definition (c.f. Def. 6.4.2) of partial inequivalence.

136

In particular, we are interested in the programs generated from NC1 circuits. However, due to

complex structures of such programs the analysis becomes quite non-trivial.13 Nonetheless,

we manage to show via implementation in Sage [S+16] (c.f. Section 6.8) that the attack

indeed works on a pair of branching programs obtained from a pair of simple NC1 circuits,

(say C0, C1) (see Sec. 6.7 for the circuit descriptions) by applying Barrington’s Theorem.

The circuits take 4 bits of inputs and on any input they evaluate to 0. In our attack we

use all possible 16 inputs. Furthermore, we can escalate the attack to any pair of NC1

circuits (E0, E1) where Eb = ¬Cb ∧Db (b ∈ {0, 1}) for practically any two NC1 circuits

D0, D1 (we need only one input x for which D(x) = D(x) = 0). We now take again a

sequence of 16-inputs such that we vary the parts of all the inputs going into Cb and keep

the part of inputs read by Db fixed to x. Intuitively, since the input to Db is always the same,

each evaluation chooses the exactly same randomnesses (that is Zi’s) always. Hence in

the resulting system all the random variables can be replaced by a single random variable

and hence ¬Cb ∧Db can be effectively “collapsed” to a much smaller circuit ¬Cb ∧ 0 (0

refers to the smallest trivial circuit consisting of only identities). Finally, again via our

Sage-implementation we show that for circuits ¬C0 ∧ 0 and ¬C1 ∧ 0 the corresponding

branching programs are partially inequivelent.

As a consequence of the above we are also able to show examples of universal circuits

Ub for which the same attack works. Since the circuit D can be almost any arbitrary NC1

circuit, we can, in particular use any universal circuit U ′ and carefully combine that with C

to obtain our attackable universal circuit U that results in partially inequivalent Barrigton

programs when compiled with any two arbitrary NC1 circuits. The details are provided in

Section 6.7.3.
13Note that, the analysis of Miles et al. uses 2× 2 matrices in addition to using simple branching programs.

These simplifications allow them to base their analysis on many facts related to the structures of these
programs. Our aim here is to see if the attack works for programs obtained from NC1 circuits, in particular via
Barrington’s Theorem. So, unfortunately it is not clear if their approach can be applicable here as the structure
of the programs yielded via Barrington’s Theorem become much complex structurally (and also much larger
in size) to analyze.

137

6.1.3 Roadmap

The rest of this chapter is organized as follows. We provide basic definitions in Sec. 6.2. In

Sec. 6.3 we formalize our abstract-attack model that is mostly similar to the attack model

considered by Miles et al. [MSZ16a]. In Sec. 6.4 we formalize partial inequivalence of two

branching programs. In Sec. 6.5 we describe our annihilation attack in the abstract model

for two partially inequivalent branching programs. In Sec. 6.6 we then extend the abstract

attack to real-world attack in GGH13 setting. Finally in Sec. 6.7 we provide details on

our example NC1 circuits for which the corresponding branching programs generated via

Barrington’s Theorem are partially inequivalent.

Additionally, in Section 6.8 we provide some details on our implementations in Sage.

6.2 Additional Notations and Preliminaries

6.2.1 Notations

We denote the set of natural numbers {1, 2, . . .} by N, the set of all integers {. . . ,−1, 0, 1 . . .}

by Z and the set of real numbers by R. We use the notation [n] to denote the set of first n

natural numbers, namely [n]
def
= {1, . . . , n}.

For any bit-string x ∈ {0, 1}n we let x[i] denotes the i-th bit. For a matrix A we denote

its i-th row by A[i, ?], its j-th column by A[?, j] and the element in the i-th row and j-th

column by A[i, j]. The i-th element of a vector v is denoted by v[i].

Bit-Strings. The compliment of x ∈ {0, 1}n is denoted by x and defined as: x def
= 1n ⊕ x,

where ⊕ denotes the bitwise XOR operation. The hamming weight of x ∈ {0, 1}n denoted

by Ham(x) is equal to
∑

i x[i] .

Matrices. The transpose of A is denoted by AT . We denote matrix multiplications between

two matrices A and B by A ·B whereas scalar multiplications between one scalar a with

a matrix (or scalar) A by aA. A boolean matrix is a matrix for which each of its entries

138

is from {0, 1}. A permutation matrix is a boolean matrix such that each of its rows and

columns has exactly one 1. Concatenation of two matrices A,B of dimensions d1 × d2 and

d1× d′2 is a d1× (d2 + d′2) matrix denoted by [A | B]. For multiple matrices A1, A2, . . . , Am

the concatenation is denoted as [âi∈[n]Ai].

Vectors. Matrices of dimension 1× d and d× 1 are referred to as row-vectors and column-

vectors, respectively. Unless otherwise mentioned, by default we assume that a vector is

a row-vector. Any matrix operation is also applicable for vectors. For example, the inner

product a · b is a scalar defined as a · b def
=
∑d

i=1 a[i]b[i], where a and b are row and

column vectors of dimension d respectively. We define the vectorization of any matrix

M of dimension d1 × d2 to be a column vector of dimension d1d2 × 1 that is obtained by

concatenating the rows of the matrix M and then taking the transpose. We denote:

vec (M) =
[
M [1, ?] |M [2, ?] | · · · |M [d1, ?]

]T
.

Note that if M is a column-vector then vec (M) = M and if M is a row-vector then

vec (M) = MT .

6.2.2 Matrix Products

Below, we provide additional notation and background on matrix products that will be

needed in our technical sections.

Definition 6.2.1 (Matrix Tensor Product (Kronecker Product)). The Tensor Product of a

d1 × d2 matrix A and a d′1 × d′2 matrix B is a d1d
′
1 × d2d

′
2 matrix defined as:

A⊗B =


A[1, 1]B · · · A[1, d2]B

...

A[d1, 1]B · · · A[d1, d2]B


where A[i, j]B is a matrix of dimension d′1 × d′2 that is a scalar product of the scalar A[i, j]

139

and matrix B.

Property 6.2.2 (Rule of Mixed Product). Let A,B,C and D be matrices for which the

matrix multiplications A ·B and C ·D is defined. Then we have:

(A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D).

Property 6.2.3 (Matrix Equation via Tensor Product). Let A,X and B be matrices such

that the multiplication A ·X ·B is defined, then we have that:

vec (A ·X ·B) = (A⊗BT) · vec (X)

We define a new matrix product.

Definition 6.2.4 (Row-wise Tensor Product of Matrices). Let A and B be two matrices of

dimensions d1 × d2 and d1 × d′2 respectively. Then the row-wise tensor product of A and B

is a matrix C of dimension d1 × d2d
′
2 such that each row of C is a tensor product of rows of

A and B. Formally,

C = AbB where C[i, ?]
def
= A[i, ?]⊗B[i, ?].

The following fact is straightforward to see.

Fact 6.2.5 (Concatenation of Row-wise Tensors). Let A def
= [A1 | A2 | · · · | Am] and B def

=

[B1 | B2 | · · · | Bn] be two matrices, then we have:

AbB = [âi∈[m],j∈[n]Ai bBj].

Definition 6.2.6 (Permutation Equivalence). Let A,B be matrices with dimensions d1 × d2,

then A and B are called permutation equivalent if there exists a permutation matrix P such

that A = B · P . We denote by A
per
= B

140

Property 6.2.7. For any two matricesA andB of dimensions d1×d2 and d1×d′2 respectively

we have that:

AbB
per
= B b A

Proof. Let C def
= AbB then for any k ∈ [d2d

′
2] the k-th column of C can be written as:

C[?, k] =


A[1, j]B[1, i]

...

A[d1, j]B[d1, i],


where i = k mod d′2 and j = k−i

d′2
+ 1. For ` ∈ [d′2], define the matrix

D` = [C[?, `] | C[?, `+ d′2] | . . . | C[?, `+ d′2(d2 − 1)]].

Observe that we can express B b A as follows:

B b A = [D1 | . . . | Dd′2
] = (AbB) · P

where P is a permutation matrix that maps the k-th column of AbB to the d2(i− 1) + j-th

column where i = k mod d′2 and j = k−i
d′2

+ 1.

6.2.3 Column Space of a Matrix

Our attacks will require certain properties on the column space of certain matrices which we

elaborate on below.

Definition 6.2.8 (Column Space of a matrix). Let A be a matrix of dimension d1× d2. Then

the column space of A is defined as the vector space generated by linear combinations of its

columns, formally the column space contains all vectors generated as
∑d2

i=1 ciA[?, i] for all

choices of ci ∈ R. We denote the column-space of A by colsp (A).

141

Definition 6.2.9 (Null-space of a matrix). 14 Let A be a matrix of dimension d1 × d2. Then

the null-space of A consists of all vectors v of dimension 1× d1 for which v · A = 0. We

denote the null-space of A by nullsp(A).

We state some basic property of the above vector spaces.

Property 6.2.10 ([Ogu16]). Let A and B be two matrices of dimensions d1 × d2. Then the

following statements are equivalent:

• colsp (A) = colsp (B).

• nullsp(A) = nullsp(B).

• There exists an invertible square matrix C such that A · C = B.

Corollary 6.2.11. Since A
per
= B is a special case of item-3 in the above property, we have

that A
per
= B =⇒ colsp (A) = colsp (B).

Combining above corollary along with Property 6.2.7 we can get the following corollary.

Corollary 6.2.12. For any two matrices A and B having equal number of rows we have

that

colsp (AbB) = colsp (B b A)

Next we prove the following lemma that will be useful later in Sec. 6.7.

Lemma 6.2.13. Let A and B be two boolean matrices of dimensions d1 × d2 and d1 × d′2

such that both A and B have equal number of 1’s in each of its rows. Then we have:

colsp (A) ⊆ colsp (AbB) and colsp (B) ⊆ colsp (AbB)

14Traditionally such space is called left-null space or co-kernel.

142

Proof. For each column A[?, j] of A, we define the matrix Wj ∈ {0, 1}d1×d
′
2 as a row-wise

tensor product between A[?, j] and B:

Wj = A[?, j]bB.

Summing up the columns of Wj we get:

∑
j′

Wj[?, j
′] =


A[1, j]

∑
j′ B[1, j′]

...

A[d1, j]
∑

j′ B[d1, j
′]

 = c(A[?, j]).

for some integer c. Moreover we can write AbB as:

AbB = [W1 |W2 | . . . |Wd2].

Hence there is a linear combination of columns of AbB that generates the j-th column of

A for any j ∈ [d2]. This allows us to conclude that colsp (A) ⊆ colsp (AbB). Now similar

to the proof of the statement colsp (A) ⊆ colsp (AbB) we can prove that:

colsp (B) ⊆ colsp (B b A) .

From Corollary 6.2.12 we get that colsp (AbB) = colsp (B b A). This allows us to

conclude that colsp (B) ⊆ colsp (AbB).

6.2.4 Branching Programs

In this subsection, we recall definitions of branching programs.

Definition 6.2.14 (w-ary Input-Oblivious Matrix Branching Program [BGK+14]). A w-ary

input oblivious matrix branching program of dimension d, length ` over n-bit inputs is given

143

by a tuple,

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}w , A`+1)

where inp(·) : [`]→ [n]w is a function such that inp(i) is the set ofw bit locations of the input

examined in step i; Ai,b are permutation matrices over {0, 1}d×d andA0 ∈ {0, 1}1×d \(0d)T ,

A`+1 ∈ {0, 1}d×1 \ 0d are fixed bookend vectors such that:

A0 · A · A`+1 =

0 if and only if A = Id×d

1 otherwise.
(6.1)

The output of the matrix branching program on an input x ∈ {0, 1}n is given by:

A(x) =


1 if A0

(∏
i∈[`]Ai,x[inp(i)]

)
A`+1 = 1

0 if A0

(∏
i∈[`]Ai,x[inp(i)]

)
A`+1 = 0

,

where inp(i) denotes the set of locations that are inspected at step i of A and x[inp(i)]

denotes the bits of x at locations inp(i). A w-ary branching program is said to be input-

oblivious if the function inp is fixed and independent of the program A.

Remark 6.2.15. A 1-ary branching program is also called a single-input branching program.

Unless otherwise stated we will always assume that any branching program is single-input

and input-oblivious.

Barrington [Bar89] showed that all circuits in NC1 can be equivalently represented by a

branching program of polynomial length. We provide the theorem statement below adapted

to our definition of branching programs.

Theorem 6.2.16 (Barrington’s Theorem [Bar89]). For any depth-D, fan-in-2 boolean circuit

C, there exists an input oblivious branching program of matrix-dimension 5 and length at

most 4D that computes the same function as the circuit C.

Given a circuit C of depth D, Barrington’s Theorem provides yield a single-input

144

branching program of matrix dimension 5 implementing circuit C. We stress that the

specific implementation obtained by use of Barrigton’s depends on the specific choices made

in its implementation and therefore the obtained implementation is not unique. Sometimes

the branching program obtained via applying Barrington’s Theorem to a circuit is called

the Barrington-implementation of that circuit. We choose a specific one for our Sage-

implementation. The details are provided in Section 6.8.

6.3 Attack Model for Investigating Annihilation Attacks

Miles, Sahai, and Zhandry [MSZ16a] describe an abstract obfuscation scheme, designed to

encompass the main ideas of BGKPS-like-obfuscations [BGK+14, BR14, AGIS14, PST14,

MSW14, BMSZ16] for the purposes of investigating annihilation attacks. We use the same

abstract attack model as the starting point for our new attacks. Below, we first describe

the model, obfuscation in this model and what violating indistinguishability obfuscation

security means.

6.3.1 Annihilation Attack Model

We describe the abstract annihilation attack model. An abstract model is parameterized

with n arbitrary secret variables X1, ..., Xn, m random secret variables Z1, ..., Zm, a special

secret variable g. Then the public variables Y1, . . . , Ym are such that Yi := qi({Xj}j∈[n]) +

gZi for some polynomials qi. The polynomials are defined over a field F .15 An abstract

model attacker A may adaptively make two types of queries:

• Type 1: Pre-Zeroizing Computation. In a Type 1 query, the adversary A submits a

“valid” polynomial pk on the public Yi. Here, valid polynomials are those polynomials

15Looking ahead, the arbitrary variables represent the plain-texts (the branching program or circuit to
be obfuscated) of encoding, the random variables represent the randomness of encodings generated by the
obfuscator, the variable g represents the “short” generator g of the ideal lattice and the public variables
represent the encodings available to the attacker.

145

as enforced by the graded encodings.16

Then, we expand the representation of the (public) polynomial on Yi in order to

express pk as a polynomial of the (private) formal variables Xj, Zi, g stratified in the

powers of g as follows:

pk = p
(0)
k + g · p(1)

k + g2 · p(2)
k +

If pk is identically 0 or if p(0)
k is not identically 0, then the adversary A receives ⊥

in return. Otherwise, the adversary A receives a new handle to a new variable Wk,

which is set to be

Wk := pk/g = p
(1)
k + g · p(2)

k + g2 · p(3)
k +

• Type 2: Post-Zeroizing Computation. In a Type 2 query, the adversaryA is allowed

to submit arbitrary polynomials r of polynomial degree, on the Wk that it has seen so

far. We again view r({Wk}) as a polynomial of the (secret) formal variables Xj, Zi, g,

and write it as:

r = r(0) + g · r(1) + g2 · r(2) +

If r(0) is identically 0, then the adversary A receives 0 in return. Otherwise, the

adversary A receives 1 in return.

Comparing the Abstract Model to other Idealized Models. We briefly compare the

Abstract Model described above to the ideal graded encoding model that has traditionally

been used to argue about obfuscation security in prior works, e.g. as in the [BR14, BGK+14].

All adversarial behavior allowed within the Ideal Graded Encoding model is captured by

Type 1 queries in the Abstract Model and the Type 2 queries are not considered. The works

16For example, for a branching program obfuscation it must be a correct (and complete) evaluation of a
branching program on some specific input as directed by the inp function of the program.

146

of [GMM+16, DGG+16] argue security in this new model also referred to as the Weak

Multilinear Map Model.

6.3.2 Obfuscation in the Annihilation Attack Model

The abstract obfuscator O takes as input a single-input branching program A of length

`, input length n. We describe our obfuscation using notation slightly different from

Miles et al. [MSZ16a] as it suits our setting better and is closer to notation of branching

programs (Def. 6.2.4). The branching program has an associated input-indexing function

inp : [`]→ [n]. The branching program has 2`+ 2 matrices A0, {Ai,b}i∈[`],b∈{0,1}, A`+1. In

most generality, in order to evaluate a branching program on input x, we compute the matrix

product

A(T) = A0 ·
∏̀
i=1

Ai,x[inp(i)] · A`+1,

where x[inp(i)] denotes the bit of x at locations described by the set inp(i). Finally the

program outputs 0 if and only if A(T) = 0.

The abstract obfuscator randomizes its input branching program by sampling random

matrices {Ri}i∈[`+1] (Killian randomizers) and random scalars {αi,b}i∈[`],b∈{0,1}, then setting

Ã0 := A0 ·Radj
1 , Ãi,b := αi,b(Ri · Ai,b ·Radj

i+1), Ã`+1 := R`+1 · A`+1.

that are the abstract model’s arbitrary secret variables. Here Radj denotes the adjugate matrix

of R that satisfies Radj ·R = det(R) · I . Then the obfuscator defines the public variables to

be

Y0 := Ã0 + gZ0; Yi,b := Ãi,b + gZi,b; Y`+1 := Ã`+1 + gZ`+1,

where g is the special secret variable and Zis are the random variables. This defines the

abstract obfuscated program O(A) = {Yi}i. The set of valid Type 1 polynomials consists

147

of all the honest evaluations of the branching program. This is, the allowed polynomials are

px = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1,

for all x ∈ {0, 1}n.17

6.3.3 Abstract Indistinguishability Obfuscation Security

We define security of iO in the abstract model. Formally consider the following indistin-

guishability game consisting of three phases.

Set Up. The adversaryA comes up with a pair of matrix branching programs (A0,A1) that

are (i) functionally equivalent, (ii) of same length and (iii) input oblivious and some

auxiliary information aux. A outputs the pair (A0,A1) to the challenger.

Challenge. The challenger applies the abstract obfuscator O to a branching program, uni-

formly chosen as Ab ← {A0,A1} and returns the public variables {Y0, {Yi,b}, Y`+1},

generated by applying O to Ab, to the adversary.

Pre-zeroing (Type-1) Queries. In this phase the adversary makes several type-1 valid

queries pk and gets back handles {W1,W2, . . .}.

Post-zeroing (Type-2) Query. In this phase the adversary makes one type-2 query r with

some degree poly(λ) polynomialQ over the formal variables corresponding to handles

{W1,W2, . . .} and receives a bit as a response from the challenger. Finally A outputs

its guess b′ ∈ {0, 1}.

Definition 6.3.1 (Abstract iO Security). An abstract obfuscation candidate O is called an

indistinguishability obfuscator if for any probabilistic polynomial time adversary A the

17Looking ahead, the Zis are random noise component sampled in the encoding procedure of GGH13 maps
and g is a “short” generator of the ideal lattice. The abstract model is agnostic to the exact choice of those
variables, but only depends on the structure of the variables.

148

probability that A guesses the choice of Ab correctly is negligibly close to 1/2. Formally, in

the above game

|Pr[b = b′]− 1/2| ≤ negl(λ)

for any security parameter λ ∈ N, where the probability is over the randomness of A and

the challenger.

6.4 Partially Inequivalent Branching Programs

In this section, we provide a formal condition on two branching programs, namely partial

inequivalence, that is sufficient for launching a distinguishing attack in the abstract model.

In Section 6.5 we prove that this condition is sufficient for the attack.18

All the below definitions consider single-input branching programs, but they naturally

extends to multi-input setting.

Definition 6.4.1 (Partial Products). Let A = (inp, A0, {Ai,b}i∈[`],b∈{0,1} , A`+1) be a single-

input branching program of matrix-dimension d and length ` over n-bit input.

1. For any input x ∈ {0, 1}n and any index i ∈ [`+ 1] ∪ {0} we define the vectors φ(i)
A,x

as follows:

φ
(i)
A,x

def
=



(
A0 ·

∏i−1
j=1 Aj,x[inp(j)]

)
⊗
(∏`

j=i+1Aj,x[inp(j)] · A`+1

)T
∈ {0, 1}1×d2 if i ∈ [`](∏`

j=1 Aj,x[inp(j)] · A`+1

)T
∈ {0, 1}1×d if i = 0

A0 ·
∏`

j=1 Aj,x[inp(j)] ∈ {0, 1}1×d if i = `+ 1

,

18We note that this condition is not necessary. Looking ahead, we only consider first order partially
inequivalent programs in in this work and remark that higher order partially inequivalent programs could also
be distinguished using our techniques.

149

Additionally, define φ̃(i)
A,x for any such branching program as:

φ̃
(i)
A,x

def
=


[φ

(i)
A,x | 0d

2
] if i ∈ [`] and x[inp(i)] = 0

[0d
2 | φ(i)

A,x] if i ∈ [`] and x[inp(i)] = 1

φ
(i)
A,x if i = 0 or `+ 1

,

where inp is a function from [`] → [n] and that x[inp(i)] denotes the bit of x corre-

sponding to location described by inp(x).

2. Then the linear partial product vector φA,x and the quadratic partial product vector

ψA,x of A with respect to x are defined as:

φA,x
def
= [φ̃

(0)
A,x | · · · | φ̃

(`+1)
A,x] ∈ {0, 1}1×(2d+2`d2).

ψA,x
def
= φA,x ⊗ φA,x ∈ {0, 1}1×(2d+2`d2)2 ,

where x = x⊕ 1n is the compliment of x.

3. For a set of inputs X = {x1, x2, . . . , xm} the the linear partial product matrix ΦA,X

and the quadratic partial product matrix ΨA,X of A with respect to X are defined

as:

ΦA,X
def
=



φA,x1

φA,x2

...

φA,xm


∈ {0, 1}m×(2d+2`d2)

ΨA,X
def
= ΦA,X bΦA,X + ΦA,X bΦA,X =



ψA,x1 +ψA,x1

ψA,x2 +ψA,x2

...

ψA,xm +ψA,xm


∈ {0, 1}m×(2d+2`d2)2 ,

150

where X def
= {x1, x2, . . .}.

19

Definition 6.4.2 (Partial Inequivalence). Let A0 and A1 be two single-input matrix branch-

ing programs of matrix-dimension d and length ` over n-bit input. Then they are called

partially inequivalent if there exists a polynomial in security parameter sized setX of inputs

such that:

• For every x ∈ X , we have that A0(x) = A1(x) = 0 and A0(x) = A1(x) = 0.

• colsp (ΨA0,X) 6= colsp (ΨA1,X) .

Lemma 6.4.3. For any matrix branching program A we have that for any two inputs x, x′

the linear partial product vectors φA,x and φA,x′ contain the same number of 1’s.

Proof. Note that for any input x and index i, via definition of φ(i)
A,x, we have:

φ
(i)
A,x =

(
A0 · Px,1 ⊗ AT`+1 · Px,2

)
for some x dependent permutations Px,1 and Px,2. Note that A0 is a row vector and therefore

A0 · Px,1 is also a row vector. Since Px,1 is a permutation, we conclude that Ham(A0 ·

Px,1) = Ham(A0) where Ham(A0) is the hamming weight of the vector A0 (specifically,

the number of locations at which it is 1). Similarly, Ham(Px,2 · A`+1) = Ham(A`+1).

Hence, the Ham(φA,x) = Ham(A0)Ham(A`+1) which is independent of x. Consequently,

Ham(φA,x) = (`+ 2)Ham(A0)Ham(A`+1) which is also independent of x. This concludes

the proof.
19Note that in the above definition we add the row-wise tensors. Looking ahead, this is done to capture

the commutativity in the polynomial multiplications. Namely since for any two ring elements z1, z2 we have
z1z2 = z2z1, their coefficients add up. Also note that the sum in the above expression equivalently double
the coefficients of the quadratic terms z21 , z

2
2 . But, due to our choices of inputs x, x we would only have such

terms for the bookends which are nonetheless always stays the same (in fact they are independent of the actual
program) and does not affect the column-space.

151

6.5 Annihilation Attack for Partially Inequivalent Programs

In this section, we describe an abstract annihilation attack against any two branching

programs that are partially inequivalent. In this section, we show an attack only in the

abstract model and provide details on how it can be extended to the real GGH13 setting in

Section 6.6 . Formally we prove the following theorem.

Theorem 6.5.1. Let O be the generic obfuscator described in Sec. 6.3.2. Then for any

two functionally equivalent same length single-input branching programs A0,A1 that are

partially inequivalent there exists a probabilistic polynomial time attacker that distinguishes

between betweenO(A0) andO(A1) with noticeable probability in the abstract attack model

(violating Definition 6.3.1).

Proof of Theorem 6.5.1. Below we provide the proof.

Setup for the attack. The given branching programs A0 and A1 are provided to be

functionally equivalent and partially inequivalent. Therefore there exists a set X such that:

(1) for all x ∈ X,A0(x) = A0(x) = A1(x) = A1(x) = 0, and (2) colsp (ΨA0,X) 6=

colsp (ΨA1,X) . We will assume that the adversary has access to X as auxiliary information.

Challenge. A receives as a challenge the obfuscation of the branching program: A ∈

{A0,A1} by the challenger. Recall from the description of the abstract obfuscator that, the

obfuscation of program A = (inp, A0, {Ai,b}i∈[`],b∈{0,1} , A`+1), denoted by obf(A) consists

of the following public variables:

Y0 := A0 ·Radj
1 + gZ0, Yi,b := αi,bRi · Ai,b ·Radj

i+1 + gZi,b, Y0 := R`+1 · A`+1 + gZ0,

where the arbitrary secret variables are:

Ã0
def
= A0 ·Radj

1 , Ãi,b
def
= αi,b(Ri,b · Ai,b ·Radj

i,b), Ã`+1
def
= R`+1 · A`+1;

for random variables (i.e. Killian randomizers) R1, {Ri}, R`+1 and the random secret

152

variables are denoted by Z0, {Zi,b}i∈[`],b∈{0,1} , Z`+1 and the special secret variable is g. Via

change of variables we can equivalently write:

Y0 := (A0+gZ0)·Radj
1 ; Yi,b := αi,bRi ·(Ai,b+gZi,b)·Radj

i+1; Y`+1 := R`+1 ·(A`+1+gZ`+1).

Pre-Zeroizing Computation (Type-1 queries). On receiving the obfuscation of A ∈

{A0,A1}, obf(A) = {Y0, {Yi,b}, Y`+1} the attacker, in the pre-zeroizing step, performs a

“valid” Type-1 queries on all the inputs X,X where X = {x1, . . . , xm}, X = {x1, . . . , xm}.

That is, for any x ∈ {0, 1}n, and the abstract obfuscation obf(A), the attacker queries the

polynomial:

PA,x = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1.

Then, expressing PA,x stratified as powers of g we obtain:

PA,x = P
(0)
A,x({Yi}i) + g · P (1)

A,x({Yi}i) + ...+ g`+2 · P (`+2)
A,x ({Yi}i)

for some polynomials P (j)
A,x({Yi}i) (j ∈ {0, ..., `+ 1}). However, by Lemma 6.5.2 we have

that:

P
(0)
A,x = ρα̂xA(x)

for ρ def
=
∏

i det(Ri) (or ρI =
∏

iR
adj
i Ri) and α̂x

def
=
∏`

i=1 αi,xinp(i) . Since for x ∈ X we

have that A(x) = 0 , the polynomial P (0)
A,x is identically 0. Consequently, for each such

Type 1 query the attacker receives a new handle to a variable WA,x that can be expressed as

follows:

WA,x = PA,x/g = P
(1)
A,x + g · P (2)

A,x + ...+ g`+1 · P (`+2)
A,x .

153

Analogously, the attacker obtains handles WA,x. After obtaining handles

{(WA,x1 ,WA,x1), ...(WA,xm ,WA,xm)}

the attacker starts the post-zeroizing phase.

Post-Zeroizing Computation. The goal of post-zeroizing computation is to find a polyno-

mial Qann of degree poly(λ) such that following holds for some b ∈ {0, 1}:

(i) Qann(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) ≡ 0.

(ii) Qann(P
(1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) 6≡ 0.

Clearly, this leads to an attack on the obfuscation security(c.f. Definition 6.3.1) as A would

receive 0 from the challenger if and only ifQann(P
(1)
A,x1

, P
(1)
A,x1

..., P
(1)
A,xm

, P
(1)
A,xm

) is identically

zero, hence it would receive 0 if and only if Ab is chosen by the challenger in the challenge

phase. To find such Qann the attacker continues as follows. Observe that by Lemma 6.5.2,

for every x ∈ X we have that:

P
(1)
A,x = ρα̂x(φA,x · zT) (6.2)

P
(1)
A,x = ρα̂x(φA,x · zT) (6.3)

Next, multiplying the polynomials P (1)
A,x and P (1)

A,x (Eq. 6.2 and Eq. 6.3) we get:

P̃
(1)
A,x

def
= P

(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · zT)⊗ (φA,x · zT)

)
(6.4)

= ρ2α̂
(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
(6.5)

= ρ2α̂(ψA,x · zT ⊗ zT)

154

where α̂ def
= α̂xα̂x is now independent of input x.20 Similarly we can also have:

P̃
(1)
A,x

def
= P

(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · zT)⊗ (φA,x · zT)

)
= ρ2α̂

(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
= ρ2α̂(ψA,x · zT ⊗ zT)

However, since field multiplication is commutative, adding we get:

P̃
(1)
A,x + P̃

(1)
A,x = 2P

(1)
A,xP

(1)
A,x = ρ2α̂(ψA,x · zT ⊗ zT) + ρ2α̂(ψA,x · zT ⊗ zT)

= ρ2α̂(ψA,x +ψA,x) · (zT ⊗ zT)

Using the given conditions that ΨA0,X and ΨA1,X have distinct column spaces (and hence

distinct left-kernel) the attacker can efficiently compute (e.g. via Gaussian Elimination) a

vector vann ∈ {0, 1}1×m that belongs to it left-kernel, call it the annihilating vector, such

that for some b ∈ {0, 1} we have:

vann ·ΨAb,X = 0 but vann ·ΨA1−b,X 6= 0.

The corresponding annihilation polynomial Qann can be written as:

Qann
vann

(WA,x1 ,WA,x1 , . . . ,WA,xm ,WA,xm) = vann ·


WA,x1WA,x1

...

WA,xmWA,xm


Observe that the coefficient of g0 in the expressionQann

vann
(WA,x1 ,WA,x1 , . . . ,WA,xm ,WA,xm)

from above is equal to Qann
vann

(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

). Moreover this value for

20Here, we use the fact that the branching programs are single-input. For multi-input programs we do
not know how to make α̂ independent of x. The rest of the analysis does not require the programs to be
single-input.

155

A = Ab is:

Qann
vann

(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) = vann ·
ΨAb,X

2
· (z ⊗ z)T ≡ 0

but for A1−b:

Qann
vann

(P
(1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) = vann ·
ΨA1−b,X

2
· (z ⊗ z)T 6≡ 0.

Hence, the response to Type 2 query is sufficient to distinguish between obfuscation of Ab

and A1−b in the abstract model. This concludes the proof.

Evaluations of P (0)
A,x and P (1)

A,x. Below we provide a lemma that described what the terms

P
(0)
A,x and P (1)

A,x look like.

Lemma 6.5.2. For every x ∈ {0, 1}n, we have that:

P
(0)
A,x = ρα̂xA(x)

P
(1)
A,x = ρα̂x(φA,x · zT),

where ρ def
=
∏

i det(Ri) and α̂x
def
=
∏`

i=1 αi,xinp(i) and z is a vector consisting of the random

terms Z0, Zi,b, and Z`+1 used to generate the obfuscation terms Y0, Yi,b, and Y`+1 in an

appropriate sequence.

Proof of Lemma 6.5.2. For each x ∈ {0, 1}n note that:

P
(0)
A,x = Ã0 ·

∏̀
i=1

Ãi,x[inp(i)] · Ã`+1

= A0 ·Radj
1 ×

∏̀
i=1

(
αi,xinp(i)Ri · Ai,x[inp(i)] ·Radj

i+1

)
×R`+1 · A`+1

= ρα̂xA(x)

for ρ def
=
∏

i det(Ri) (or ρI =
∏

iR
adj
i Ri) and α̂x

def
=
∏`

i=1 αi,xinp(i) .

156

Also, note that for any x ∈ {0, 1}n we can express P (1)
A,x as:

P
(1)
A,x = Z0 ·Radj

1 ·
∏̀
j=1

Ãj,x[inp(j)] · Ã`+1

+
∑̀
i=1

(
Ã0 ·

i−1∏
j=1

Ãj,x[inp(j)] ·
(
αi,x[inp(i)]Ri · Zi,x[inp(i)] ·Radj

i+1

)
·
∏̀
j=i+1

Ãj,x[inp(j)] · Ã`+1

)

+ Ã0 ·
∏̀
j=1

Ãj,x[inp(j)] ·R`+1 · Z`+1

= ρα̂x

(
Z0 ·

∏̀
j=1

Aj,x[inp(j)] · A`+1

)

+ ρα̂x
∑̀
i=1

(
A0 ·

i−1∏
j=1

Aj,x[inp(j)] · Zi,x[inp(i)] ·
∏̀
j=1

Aj,x[inp(j)] · A`+1

)

+ ρα̂x

(
A0 ·

∏̀
j=1

Aj,x[inp(j)] · Z`+1

)
(6.6)

Now, define:

z0
def
= vec (Z0) ∈ {0, 1}d×1 , z`+1

def
= vec (Z`+1) ∈ {0, 1}d×1,

and

zi,b
def
= vec (Zi,b) ∈ {0, 1}d

2×1

Now, we set

zi =
[
zTi,0 | zTi,1

]
.

And finally set, as

z
def
= [z0 | z1 | . . . | z` | z`+1] ∈ {0, 1}1×(2`+2)d2

where z consists of all random secret variables involved in O(A). Next using the property

157

of tensor products (Property 6.2.3) we can rewrite Eq. 6.6 as:

P
(1)
A,x = vec

(
P

(1)
A,x

)
= ρα̂xvec

(
Z0 ·

∏̀
j=1

Aj,x[inp(j)] · A`+1

)

+ ρα̂x
∑̀
i=1

vec

(
A0 ·

i−1∏
j=1

Aj,x[inp(j)] · Zi,x[inp(i)] ·
∏̀
j=1

Aj,x[inp(j)] · A`+1

)

+ ρα̂xvec

(
A0 ·

∏̀
j=1

Aj,x[inp(j)] · Z`+1

)

= ρα̂x

(∏̀
j=1

Aj,x[inp(j)] · A`+1

)T

· z0

+ ρα̂x
∑̀
i=1

(
A0 ·

i−1∏
j=1

Aj,x[inp(j)]

)
⊗

(∏̀
j=i+1

Aj,x[inp(j)] · A`+1

)T

· zi,x[inp(i)]

+ ρα̂x

(
A0 ·

∏̀
j=1

Aj,x[inp(j)]

)
· z`+1 (6.7)

= ρα̂x

(
φ

(0)
A,x · z0 +

∑̀
i=1

φ
(i)
A,x · zi,x[inp(i)] + φ

(`+1)
A,x · z`+1

)

= ρα̂x

(
φ̃

(0)
A,x · z0 +

∑̀
i=1

φ̃
(i)
A,x · zi + φ̃

(`+1)
A,x · z`+1

)

= ρα̂x(φA,x · zT). (6.8)

6.6 Extending the Abstract Attack to GGH13 Multilinear

Maps

In this section, we show that an attack in abstract model described in Section 6.3.1 can be

translated to an attack in the GGH13 setting. This part of the attack is heuristic and analogous

to some of the previous attacks on GGH13 such as in [GGH13a, MSZ16a, CHL+15].

158

6.6.1 The GGH13 Scheme: Background

In the GGH13 scheme [GGH13a], the plaintext space is a quotient ring R/gR, where R

is the ring of integers in a cyclotomic number field and g ∈ R is a “small prime element.”

The space of encodings is Rq = R/qR for a large (exponential in the security parameter λ)

modulus q. We write [·]q to denote operations are done in Zq.

A uniformly random secret z1 . . . zk ∈ Rq is chosen, and used to encode plaintext values

as follows: A plaintext element a ∈ R/gR is encoded at the level-1 as u = [c/z]q, where

the numerator c is a “small” element in the coset of a; i.e. c = a+ gr for a small random

term r ∈ R, chosen from an appropriate distribution. We describe the GGH13 and our

attack assuming use of “symmetric” multilinear maps just for simplicity of notation. Note

that in our attacks we compute on provided multilinear maps encodings in a prescribed

manner. Furthermore, the z always vanish in our attacks. Therefore, the attack immediately

generalize to the “asymmetric GGH” setting, with many distinct choices of z’s and we

continue to use the “symmetric” notation for simplicity.

Addition and subtraction of encodings at the same level is performed by addition in

Rq, and outputs an encoding of the sum of the encoded plaintext values at the same level.

Multiplication of encodings at levels t1 and t2 yields a new level-t1 + t2 encoding of the

product of the corresponding plaintexts.

The level-k encodings of the zero plaintext, 0 ∈ R/gR, have the form u = [gr/zk]q.

Public parameter of the GGH13 multilinear maps include a public zero-testing parameter

pzt = [hzk/g]q, for a “somewhat small’ element h ∈ R, which is roughly of size
√
q. The

zero-test operation involves multiplying pzt by a level-k encoding u, and checking if the

result [pzt · u]q is much smaller than the modulus q. Note that if u is indeed an encoding of

zero then we have that [pzt · u]q = [hr]q. If h, r, are much smaller than q then we have that

this computed value will also be much smaller than q. On the other hand if u = [c/zk]q is

not an encoding of zero, then we have that [pzt · u]q = [c/g]q will be large.

159

6.6.2 Translating the Abstract Attack to GGH13

In this section, we assume that we are provided programs A0 and A1, set of inputs X and a

vector vann such that vann ·ΨA0,X · (z ⊗ z)T ≡ 0 and vann ·ΨA1,X · (z ⊗ z)T 6≡ 0. Recall

that vann is sufficient to complete an attack in the abstract model. Given the above we

describe an attack strategy of distinguishing between obfuscations of A0 and A1 generated

using GGH13 multilinear maps. We do this in two steps. In the first step, we will use the

abstract attack to compute an element u whose distribution depends on whether A0 was

used or A1 was used. We explain this step in this subsection below. The second step that

involves efficiently testing the distribution from which u is sampled is described in the next

subsection.

Our attack is provided an obfuscation of either A ∈ {A0,A1} and it proceeds as follows.

It mimics the abstract attack for the pre-zeroing computation queries by computing the

values using the provided encodings. Since only “valid” queries were made in the abstract

model, therefore the corresponding computation can be done locally. Specifically, for each

x ∈ X , we obtain [
PA,x

zk

]
q

=

[
P

(0)
A,x + gP

(1)
A,x + g2(. . .)

zk

]
.

Since, P (0)
A,x = 0, zero-testing on this value yields a value that is unreduced mod q. In

particular, zero-test reveals the value:

WA,x = h
(
P

(1)
A,x + g(. . .)

)
.

Using these values, we set u = vann · W̃A,X where

W̃A,X =


WA,x1WA,x1

...

WA,xmWA,xm



160

Note that if A = A0 then we have that u ∈ 〈ρ2α̂h2g〉, where ρ def
=
∏

i det(Ri) and

α̂
def
= α̂xα̂x both of which are fixed terms. On the other hand, if A = A1 then we have that

u 6∈ 〈ρ2α̂h2g〉 with overwhelming probability by Schwartz-Zippel Lemma.

6.6.3 Completing the Attack for Large Enough Circuits

In order to complete the attack we need to check if u obtained in the previous step is in

the ideal 〈ρ2α̂h2g〉 or not. Below we describe a method to compute several (heuristically)

linearly independent elements is in the ideal J = 〈ρ4α̂2h4g〉. Note that if u ∈ 〈ρ2α̂h2g〉

then u2 ∈ J as well. However, since g is prime, if u /∈ 〈ρ2α̂h2g〉 then u2 will not be in J .

LetX1, X2, . . . be disjoint sets of inputs such that for each iwe have thatXi∩(X∪X) =

∅, |Xi| = (2d + 2`d2)2 and that ∀x ∈ Xi we have that A(x) = A(x) = 0.21 Since, the

number of inputs is 2n for a large enough circuit we can define any polynomial number of

such sets Xi.

Note that for each i, since the number of equations is larger than the number of variables,

therefore ∃ai, bi such that ai ·ΨA0,Xi = 0 and bi ·ΨA1,Xi = 0. Therefore, for A ∈ {A0,A1}

we can conclude that (ai · W̃A,Xi)(bi · W̃A,Xi) ∈ J = 〈ρ4α̂2h4g〉 where

W̃A,Xi =


WA,xi,1WA,xi,1

...

WA,xi,mWA,xi,m


andXi = {xi,1, xi,2, . . . , xi,m}. Repeating this process for each choice of i we obtain several

elements in J . Note that these values are linearly independent except that some of these

values (possibly all of them) might actually be in J ′ = 〈ρ4α̂2h4g2〉. However, this doesn’t

affect our attack because u2 is in J ′ as well.
21Since the programs are functionally equivalent we have this condition.

161

6.7 Example of Partially Inequivalent Circuits

In this section, we show examples of pairs of NC1 circuits such that the corresponding

Barrington-implemented22 branching programs are partially inequivalent and therefore are

subject to the abstract annihilation attacks shown in Section 6.5. Note that here we extend

the notion of partial inequivalence from branching programs to circuits in a natural way.

Unless otherwise mentioned, partial inequivaelnce of circuits specifically imply that the

corresponding branching programs generated via applying Barrngton’s Theorem are partially

inequivalent.

6.7.1 Simple Pairs of Circuits that are Partially Inequivalent

Consider the following pair of circuits (C0, C1) each of which implements a boolean function

{0, 1}4 → {0, 1}:

C0(x)]
def
= (x[1] ∧ 1)

∧
(x[2] ∧ 0)

∧
(x[3] ∧ 1)

∧
(x[4] ∧ 0),

C1(x)
def
= (x[1] ∧ 0)

∧
(x[2] ∧ 0)

∧
(x[3] ∧ 0)

∧
(x[4] ∧ 0).

Define the set X def
= {0, 1}4. Now, we provide an implementation (see Appendix 6.8 for

more details on the implementation) in Sage[S+16] that evaluates the column spaces of

matrices produced via applying a Barrington-implementation to the above circuits. The

outcome from the implementation led us to conclude the following claim:

Claim 6.7.1. Let AC0 ,AC1 be the Barrington-Implementation of the circuits C0, C1 respec-

tively, then we have that: colsp
(
ΨAC0

,X

)
6= colsp

(
ΨAC1

,X

)
.

Remark 6.7.2. We emphasize that we use branching programs generated with a particular

Barrington-implementation that makes a set of specific choices. We remark that Barrington’s
22Recall that by Barrington-implementation of a circuit we mean the single-input branching program

produced as a result of Barrington Theorem on the circuit. Also we implicitly assume that the branching
programs are input-oblivious.

162

construction can be implemented in many different ways. However, since in this section we

aim to find one concrete example for which the condition of our abstract attack satisfies,

we restrict ourselves to this specific program. We refer the reader to Appendix 6.8 for

the details of our implementation. Throughout this section we refer to this particular

Barrington-implementation.

The circuits presented above are of constant size. Looking ahead, though, they are

partially inequivalent and hence (by Theorem 6.5.1) are susceptible to the abstract attack

that does not translate to a real-world attack in GGH13 setting immediately. For that we

need to consider larger (albeit NC1) circuits which we construct next based on the above

circuits.

6.7.2 Larger Pairs of Circuits that are Partially Inequivalent

We construct pairs of NC1 circuits (in fact, exponentially many of them) that build on the

constant-size circuits described in Sec. 6.7.1.

Consider any pair of functionally equivalent NC1 circuits (D0, D1) and an input x? ∈

{0, 1}n such that D0(x?) = D1(x?) = D0(x?) = D1(x?) = 0. Now define the circuits

E0, E1 each of which computes a boolean function {0, 1}n+4 → {0, 1} as follows:

E0(y)
def
= ¬C0(x) ∧D0(x′),

E1(y)
def
= ¬C1(x) ∧D1(x′)

(¬C is the circuit C with output negated) such that for each y ∈ {0, 1}n+4 we have y = x◦x′

(◦ denotes concatenation) where x ∈ {0, 1}4 and x′ ∈ {0, 1}n. Define the input-sequence

Y
def
= {x ◦ x? | x ∈ {0, 1}4} (consisting of 16 inputs). Then we show the following

statement.

Lemma 6.7.3. Let AE0 ,AE1 be the Barrington-implementations of E0, E1 respectively,

163

then we have that: colsp
(
ΨAE0

,Y

)
6= colsp

(
ΨAE1

,Y

)
.

Proof. As a first step, similar to Claim 6.7.1 we also verify the following claim via our

Sage-implementations (c.f. Appendix 6.8 for more details on the implementation).

Claim 6.7.4. Let A¬C0∧0,A¬C1∧0 be the Barrington-implementations of the circuits ¬C0 ∧

0,¬C1 ∧ 0 respectively, then we have that: colsp
(
ΨA¬C0∧0,X

)
6= colsp

(
ΨA¬C1∧0,X

)
.

Now, recall (Def. 6.2.4) that any branching program A has the following representation:

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1).

Let us call the “core” of A as: A′ def
= {A1,b, . . . , A`,b}b∈{0,1}.23 For any such A′ we define

the inverse as A′−1 def
= {A−1

`,b , A
−1
`−1,b, . . . , A

−1
1,b}b∈{0,1}. Furthermore, for any permutation

matrix ρ ∈ S5 (recall that Barrington-implementation works with matrices in the symmetric

group S5). we define an operation on A′:

ρ(A′)ρ−1 =
{

(ρ · A1,b), {Ai,b}i∈[`], (A`,b · ρ−1)
}
b∈{0,1}

Now recall that using the construction from Barrington’s Theorem with the above notations

we can write for any choice of E ∈ (E0, E1) (where E = C ∧D)

A′¬C∧D︸ ︷︷ ︸
ΦA¬C∧D,Y

= (ρ(A′¬C)ρ−1)︸ ︷︷ ︸
M0

◦ (%(A′D)%−1)︸ ︷︷ ︸
M1

◦ (ρ(A′¬C)−1ρ−1)︸ ︷︷ ︸
M2

◦ (%(A′D)−1%−1)︸ ︷︷ ︸
M3

(6.9)

where ρ,% ∈ S5 are specific to the Barrington-implementation (see Appendix 6.8 for the

exact values we used) and fixed for a particular implementation. Now we can split the linear

partial matrix of A¬C∧D into four parts:

23The order of the matrices are taken into account here and the evaluation of branching program depends on
that. So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentions we
assume that the set {Ai,b}i∈[`],b∈{0,1} is ordered as {A1,b, . . . , A`,b}b∈{0,1}

164

ΦA¬C∧D,Y
def
= [M0 |M1 |M2 |M3]

where each Mi is corresponding to a part of the core A′C∧D as shown in Eq. 6.9. However,

since we have Dx? = 0 for all y = x ◦ x? in Y and for any two inputs y1, y2 ∈ Y the

sub-input to the circuit D (corresponding to parts M1 and M3) is same (equal to x?) clearly

when i is in the range of M1 or M3 we get that:

φ
(i)
A¬C∧D,y1

= φ
(i)
A¬C∧D,y2

.

which implies that M1,M3 ∈ T where T is a family of all “trivial matrices” with columns

which are either all 0 or all 1 as follows:



· · · 1 · · · 0 · · ·

· · · 1 · · · 0 · · ·
...

...

· · · 1 · · · 0 · · ·


Again, using Barrington’s Theorem for the circuit ¬C ∧ 0 we have that:

A′¬C∧0︸ ︷︷ ︸
ΦA¬C∧0,X

= (ρ(A′¬C)ρ−1)︸ ︷︷ ︸
N0

◦ (%(ID)%−1)︸ ︷︷ ︸
N1

◦ (ρ(A′¬C)−1ρ−1)︸ ︷︷ ︸
N2

◦ (%(ID)−1%−1)︸ ︷︷ ︸
N3

(6.10)

for X = {0, 1}4 where we again have N1, N3 ∈ T that follows using similar arguments.

Moreover, using again the fact that for any y = x ◦ x? in Y we have that D(x?) = 0,

the core of D would always evaluates to ID on any choice of y ∈ Y . Hence when i lies

in the range of M0,M2 the partial vectors φ(i)
A¬C∧D,Y

are independent of the part of the

program corresponding to the ranges of M1,M3. Therefore, we can conclude that the i-th

partial vectors corresponding to ranges M0,M2 would be equal to the i-th partial vectors

165

corresponding to ranges N0, N2. Hence,

M0 = N0 and M2 = N2

On the other hand, via exactly the same analysis for the inputs Y = {y | x ◦ x?}x∈{0,1}4 we

have that:

ΦA¬C∧D,Y
= [M0 |M1 |M2 |M3]

ΦA¬C∧0,X
= [N0 | N1 | N2 | N3]

where M1,M3, N1, N3 ∈ T and

M0 = N0 and M2 = N2.

Hence we conclude:

colsp (ΨA¬C∧D,Y) = colsp
([
âi,j[Mi bM j]

]
+
[
âi,j[M i bMj]

])
(6.11)

= colsp
([
τ | âi,j∈{0,2}[Mi bM j]

]
+
[
τ ′ | âi,j∈{0,2}[M i bMj]

])
(6.12)

for some τ, τ ′ ∈ T . Note that, in the above equations the first step follows from Fact 6.2.5.

In the second step we first observe that for τ, τ ′ ∈ T and any matrix Mi,M i we have

that colsp (τ bMi) = colsp (Mi) (resp. colsp
(
τ bM i

)
= colsp

(
M i

)
). Also applying

Lemma 6.4.3 it is straightforward to verify that each of the matrices {Mi,M i}i∈[3]∪{0} has

the same number of 1’s in each row. Hence, then we use Lemma 6.2.13 to obtain the final

expression. Similarly we get:

166

colsp (ΨA¬C∧0,X) = colsp
([
âi,j[Ni bN j]

]
+
[
âi,j[N i bNj]

])
(6.13)

= colsp
([
σ | âi,j∈{0,2}[Ni bN j]

]
+
[
σ′ | âi,j∈{0,2}[N i bNj]

])
(6.14)

for some σ, σ′ ∈ T .

Using the facts, Mk = Nk and Mk = Nk for k ∈ {0, 2} from Eq. 6.12 and Eq. 6.14 we

get:

colsp (ΨA¬C∧D,Y) = colsp (ΨA¬C∧0,X) .

Now combining this equation with Claim 6.7.4 the lemma follows.

6.7.3 Universal Circuit Leading to Partially Inequivalent Branching

Programs

In this section we present constructions of (NC1) universal circuits that, when compiled

with two arbitrary distinct (NC1) but functionally equivalent circuits as inputs, then the

obfuscations of the Barrington-implementation of the compiled circuits are distinguishable

by the abstract attack.

For any circuit C, its description is denoted by a bit-string, abusing notation slightly we

use the same symbol C to represent the description of C.

Definition 6.7.5 (Universal Circuits). An universal circuit U is a boolean circuit that

computes a function {0, 1}λ × {0, 1}n → {0, 1} which takes two inputs, a λ-bit circuit-

description of some boolean circuit C : {0, 1}n → {0, 1} and a n-bit input x to output

C(x). We denote U(C, x)
def
= C(x). We also denote the compiled universal circuit with the

description of C hard-coded into it by U [C].

167

Theorem 6.7.6. There exists a family of NC1 universal circuits U = {U1, U2, . . . , Uv} of size

v = O(poly(λ)) such that: given two arbitrary functionally equivalent NC1 circuits G0, G1

that computes arbitrary boolean function {0, 1}n → {0, 1} satisfying (i) |G0| = |G1| = v

and (ii) there exists an input x? such that G0(x?) = G1(x?) = G0(x?) = G1(x?) = 0; then

for at least one i ∈ [v] the Barrington-implementations of the circuits Ui[G0] and Ui[G1]

are partially inequivalent.

Proof. Our construction of the family U is similar to the construction of circuits E0, E1

constructed in Section 6.7.1

Construction of the family U . Given a universal circuit U ′ we construct a family of NC1

universal circuits U = {U1, . . . , Uv} where each Ui is described as follows for any circuit

G : {0, 1}n → {0, 1} we define Ui[G]

Ui[G](y, x) = ¬C(y)∧U ′i(G, x) where C = (y[1]∧G[i])
∧

(y[2]∧0)
∧

(y[3]∧G[i])
∧

(y[4]∧0),

as the circuit from {0, 1}n+4 → {0, 1}. Since the given circuits must have different de-

scriptions, they differ by at least one bit location, say ith location. Clearly, assuming that

G0[i] = 1 and G1[i] = 0 the circuit Ui[Gb] is the same as the circuit Eb as described in

Sec. 6.7.2. Hence applying Lemma 6.7.3 we conclude that, if G0[i] = 1 and G1[i] = 0 then,

colsp
(

ΨAUi[G0]
,X

)
6= colsp

(
ΨAUi[G1]

,X

)
,

where X = {x ◦ x? | x ∈ {0, 1}4}.

6.8 Some details on our implementation

In this section we provide details on our Barrington-implementation and discuss some

optimizations in the Sage-code.

168

Overview of Barrington’s Programs [Bar89]. Barrington’s construction works over

permutations in the symmetric group S5. We assume that permutations are represented as

matrices for all practical purpose. A Barrington-implementation specifies permutations

α,β,γ,ρ,% ∈ S5 such that the following holds:

• α,β are 5-cycles.

• γ = αβα−1β−1 and one can verify that γ is also a cycle.

• ρ · γ · ρ−1 = α.

• % · γ · %−1 = β.

We define some syntaxes for branching programs. Some of them are redefinitions from

Sec. 6.7.2 (provided in the proof of Lemma 6.7.3 as it uses some details on Barrington-

implementations).

Core of a Branching Program. Recall (Def. 6.2.4) that any branching program A has the

following representation:

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1).

Let us call the “core” of A as: A′ def
= {A1,b, . . . , A`,b}b∈{0,1}.24 For any such A′ we define

the inverse as A′−1 def
= {A−1

`,b , A
−1
`−1,b, . . . , A

−1
1,b}b∈{0,1}. Furthermore, for any permutation

matrix ρ ∈ S5 we define an operation on A′:

ρ(A′)ρ−1 =
def
=
{

(ρ · A1,b), {Ai,b}i∈[`], (A`,b · ρ−1)
}
b∈{0,1}

γ-computation. Any branching program AC = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1) is said to

24The order of the matrices are taken into account here and the evaluation of branching program depends on
that. So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentioned
we assume that the set {Ai,b}i∈[`],b∈{0,1} is ordered as {A1,b, . . . , A`,b}b∈{0,1}

169

be γ-computes a boolean circuit C if the following holds:

∏̀
i=1

Ai,x[inp(i)] =

 γ when C(x) = 1

ID5×5 when C(x) = 0

If AC0 ,AC1 γ-computes C0, C1 then one can construct AC0∧C1 that γ-computes C =

C0 ∧ C1 as follows:

A′C0∧C1 = (ρ(A′C0)ρ
−1) ◦ (%(A′C1)%

−1) ◦ (ρ(A′C0)
−1ρ−1) ◦ (%(A′C1)

−1%−1)

and with the same bookends.25

Let us also define the operation (A′) ·γ as (A′) ·γ def
= {A1,b, . . . , A`b ·γ}b∈{0,1} that has

the final pairs right-multiplied with γ. Then one can construct another branching program

A¬C that γ-computes the circuit ¬C as follows:

A′¬C = (A′
−1
C) · γ

Since any boolean circuit can be converted to a circuit containing only NOT (¬) and AND

(∧) gates Barrington’s theorem [Bar89] follows.

Our Barrington-implementation. In our implementations the branching programs are

single-input and input-oblivious. We stress that the input-obliviousness comes automatically

from our choice of circuits.

We choose the following permutations for our implementation:

25Our input function is a fixed one and designed as suggested by Barrington’s Theorem. Namely to compute
a program of size 4 on 2-bit input, αβα−1β−1 we use input function inp = (1→ 1, 1→ 2, 3→ 1, 4→ 2),
that is the first position of the program reads the first bit, the fourth position the second and so on. Similarly
for AND operation the input-functions can be extended with adjusted indexes. For more details we refer to
Barrington’s result [Bar89].

170

α
def
= (1→ 2→ 3→ 4→ 5) =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0



β
def
= (1→ 3→ 5→ 4→ 2) =



0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0



γ
def
= (1→ 3→ 2→ 5→ 4) =



0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0



ρ
def
= (α→ γ) = (1→ 1, 2→ 3, 3→ 2, 4→ 5, 5→ 4) =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0



171

%
def
= (β → γ) = (1→ 1, 3→ 3, 5→ 2, 4→ 5, 2→ 4) =



1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0


We fix the bookends to:

A0
def
=

[
1 0 0 0 0

]
and A`+1

def
=



0

1

1

1

1



Source Code and Experimental Set-Up. We provide an implementation in Sage [S+16].

The sage-executable file named implementations.sagews and a corresponding pdf file

(implementations.pdf) of our source-code can be found at https://people.eecs.

berkeley.edu/˜pratyay85/Implementations.zip. The code can be run on

the SageMath cloud server (https://sagemath.cloud/). The approximate perfor-

mance for the 2 circuits on the SageMath cloud are given below:

Circuit Approx time Approx memory

C
3100 sec (∼ 55 min-

utes)
4 GB

¬C ∧ 0 33400 sec (∼ 10 hours) 9 GB

Optimizations. Our source-code is not low-level optimized. However, to run the quadratic

attack in practical time we required some algorithmic optimization in order to get the

172

https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://sagemath.cloud/

program terminated in reasonable time. In particular, since the number of columns for

the quadratic partial matrix, ΨA,X becomes squared compared to number of columns in

the linear matrices ΦA,X ,ΦA,X , even for the case of the simplest circuits (AC or A¬C)

the estimated time to compute directly ΨA,X as (ΦA,X b ΦA,X + ΦA,X b ΦA,X) becomes

huge. Instead, we first remove the columns that are all-zero in both ΦA,X ,ΦA,X since the

corresponding random variables zi,b appear in neither of the linear partial matrices. Then we

observe that, even after performing that removal, there are many columns that are all-zero in

exactly one of ΦA,X ,ΦA,X . Hence we first collect those that appear in both and then those

appear in one of them. Let us call these three parts MX ,MX and MX,X . Then we have:

Φ?
A,X = [MX |MX,X] Φ?

A,X
= [MX |MX,X]

where Φ?
A,X (resp. Φ?

A,X
) is the same as ΦA,X (resp. ΦA,X) but without some all 0 columns

(those appear in none).

Then we compute

N = MX b ΦA,X +MX b ΦA,X + ΦA,X b ΦA,X + ΦA,X b ΦA,X

per
= ΨA,X

by combining Fact 6.2.5 with the above observation. This reduced the number of row-

wise tensor product by at least 2 (even after removing the all-zero columns) as we are not

computing tensor products from both directions for the matrices containing columns that

appear only once.

173

Bibliography

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-

order graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,

TCC 2015, Part II, volume 9015 of LNCS, pages 528–556. Springer, Heidel-

berg, March 2015.

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in

the standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110

of LNCS, pages 553–572. Springer, Heidelberg, May 2010.

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-

stretched NTRU assumptions - cryptanalysis of some FHE and graded encod-

ing schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,

Part I, volume 9814 of LNCS, pages 153–178. Springer, Heidelberg, August

2016.

[ABG+14] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen.

Candidate weak pseudorandom functions in ac0 (mod2). In Moni Naor, editor,

Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,

January 12-14, 2014, pages 251–260. ACM, 2014.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan.

From selective to adaptive security in functional encryption. In Rosario

174

Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume

9216 of LNCS, pages 657–677. Springer, Heidelberg, August 2015.

[ACLL15] Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie, and Adeline Langlois.

Implementing candidate graded encoding schemes from ideal lattices. In Tetsu

Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453

of LNCS, pages 752–775. Springer, Heidelberg, November / December 2015.

[AFL15] Daniel Apon, Xiong Fan, and Feng-Hao Liu. Bi-deniable inner product

encryption from LWE. IACR Cryptology ePrint Archive, 2015:993, 2015.

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai.

Optimizing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn,

Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 646–658. ACM

Press, November 2014.

[AHKM14] Daniel Apon, Yan Huang, Jonathan Katz, and Alex J. Malozemoff. Implement-

ing cryptographic program obfuscation. Cryptology ePrint Archive, Report

2014/779, 2014. http://eprint.iacr.org/2014/779.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev.

Universal constructions and robust combiners for indistinguishability obfusca-

tion and witness encryption. In Matthew Robshaw and Jonathan Katz, editors,

CRYPTO 2016, Part II, volume 9815 of LNCS, pages 491–520. Springer,

Heidelberg, August 2016.

[Ajt99] Miklós Ajtai. Determinism versus non-determinism for linear time RAMs

(extended abstract). In 31st ACM STOC, pages 632–641. ACM Press, May

1999.

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di

Matematica, 13:1–32, 2004. Preliminary version in STOC 1996.

175

http://eprint.iacr.org/2014/779

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning

with rounding, revisited - new reduction, properties a nd applications. In

Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,

Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages

57–74, 2013.

[Alp15] Jacob Alperin-Sheriff. Short signatures with short public keys from homomor-

phic trapdoor functions. In Public-Key Cryptography - PKC 2015 - 18th IACR

International Conference on Practice and Theory in Public-Key Cryptogra-

phy, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, pages

236–255, 2015.

[AP10] Joël Alwen and Chris Peikert. Generating shorter bases for hard random

lattices. Theory of Computing Systems, 48(3):535–553, 2010.

[AP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM security for

identity-based encryption. In Marc Fischlin, Johannes Buchmann, and Mark

Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 334–352. Springer,

Heidelberg, May 2012.

[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear

time. In CRYPTO (1), pages 1–20, 2013.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial

error. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,

volume 8616 of LNCS, pages 297–314. Springer, Heidelberg, August 2014.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom func-

tions. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,

volume 8874 of LNCS, pages 162–172. Springer, Heidelberg, December 2014.

176

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness

of learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.

http://eprint.iacr.org/2015/046.

[ASA16] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions

from lwe to lwr. Cryptology ePrint Archive, Report 2016/589, 2016. http:

//eprint.iacr.org/2016/589.

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial

error. In CRYPTO (1), pages 297–314, 2014.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching pro-

grams recognize exactly those languages in nc1. J. Comput. Syst. Sci.,

38(1):150–164, 1989.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and

the SDH assumption in bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,

Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-

homomorphic encryption, arithmetic circuit ABE and compact garbled circuits.

In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,

volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit

Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating

programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages

1–18. Springer, Heidelberg, August 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.

Protecting obfuscation against algebraic attacks. In Phong Q. Nguyen and

177

http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2016/589
http://eprint.iacr.org/2016/589

Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages

221–238. Springer, Heidelberg, May 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.

Succinct randomized encodings and their applications. In Rocco A. Servedio

and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM Press,

June 2015.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen.

On the hardness of learning with rounding over small modulus. In Theory of

Cryptography - 13th International Conference, TCC 2 016-A, Tel Aviv, Israel,

January 10-13, 2016, Proceedings, Part I, pages 209–224, 2016.

[BHJ+15] Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph

Striecks. Confined guessing: New signatures from standard assumptions. J.

Cryptology, 28(1):176–208, 2015.

[BHLN15] Daniel J. Bernstein, Andreas Hülsing, Tanja Lange, and Ruben Niederhagen.

Bad directions in cryptographic hash functions. In Ernest Foo and Douglas

Stebila, editors, ACISP 15, volume 9144 of LNCS, pages 488–508. Springer,

Heidelberg, June / July 2015.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility

results for encryption and commitment secure under selective opening. In

Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35.

Springer, Heidelberg, April 2009.

[BKKP15] Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, and Jiaxin Pan. Tightly-secure

signatures from chameleon hash functions. In Jonathan Katz, editor, PKC 2015,

volume 9020 of LNCS, pages 256–279. Springer, Heidelberg, March / April

2015.

178

[BL16] Xavier Boyen and Qinyi Li. Towards tightly secure lattice short signature and

id-based encryption. In Advances in Cryptology - ASIACRYPT 2016 - 22nd

International Conference on the Theory and Application of Cryptology and

Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part

II, pages 404–434, 2016.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Ste-

infeld. Improved security proofs in lattice-based cryptography: Using the

rényi divergence rather than the statistical distance. In Advances in Cryptol-

ogy - ASIACRYPT 2015 - 21st International Conference on the Theory and

Application of Cryptology and Information Security, Auckland, New Zealand,

November 29 - December 3, 2015, Proceedings, Part I, pages 3–24, 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien

Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim

Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 575–

584. ACM Press, June 2013.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and

Joe Zimmerman. Semantically secure order-revealing encryption: Multi-input

functional encryption without obfuscation. In Elisabeth Oswald and Marc

Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages

563–594. Springer, Heidelberg, April 2015.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil

pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS,

pages 514–532. Springer, Heidelberg, December 2001.

[BLW15] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom

functions privately. IACR Cryptology ePrint Archive, 2015:1167, 2015.

179

[BMSZ15] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-

zeroizing obfuscation: The case of evasive circuits. Cryptology ePrint Archive,

Report 2015/167, 2015. http://eprint.iacr.org/2015/167.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-

zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.

In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,

Part II, volume 9666 of LNCS, pages 764–791. Springer, Heidelberg, May

2016.

[BNNO11] Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio

Orlandi. Lower and upper bounds for deniable public-key encryption. In

Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073

of LNCS, pages 125–142. Springer, Heidelberg, December 2011.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully

secure short signatures and more. In Public Key Cryptography, pages 499–517,

2010.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic

pseudorandom functions. In Advances in Cryptology - CRYPTO 2014 - 34th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part I, pages 353–370, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions

and lattices. In EUROCRYPT, pages 719–737, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all

circuits via generic graded encoding. In Yehuda Lindell, editor, TCC 2014,

volume 8349 of LNCS, pages 1–25. Springer, Heidelberg, February 2014.

180

http://eprint.iacr.org/2015/167

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to

cryptography. Cryptology ePrint Archive, Report 2002/080, 2002. http:

//eprint.iacr.org/2002/080.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions

and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS,

pages 253–273. Springer, Heidelberg, March 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as

PKE. In Moni Naor, editor, ITCS 2014, pages 1–12. ACM, January 2014.

[BWZ14a] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast en-

cryption from multilinear maps. Cryptology ePrint Archive, Report 2014/195,

2014. http://eprint.iacr.org/2014/195.

[BWZ14b] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps

against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014.

http://eprint.iacr.org/2014/930.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable

encryption. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of

LNCS, pages 90–104. Springer, Heidelberg, August 1997.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering

short generators of principal ideals in cyclotomic rings. In Marc Fischlin and

Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of

LNCS, pages 559–585. Springer, Heidelberg, May 2016.

[CDW16] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger

class relations and application to ideal-svp. IACR Cryptology ePrint Archive,

2016:885, 2016.

181

http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2014/195
http://eprint.iacr.org/2014/930

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure

multi-party computation. In 28th ACM STOC, pages 639–648. ACM Press,

May 1996.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and

Hansol Ryu. Cryptanalysis of the new CLT multilinear map over the integers.

In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,

volume 9665 of LNCS, pages 509–536. Springer, Heidelberg, May 2016.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.

Cryptology ePrint Archive, Report 2016/870, 2016.

[CGH+15a] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-

manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi.

Zeroizing without low-level zeroes: New MMAP attacks and their limitations.

In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,

Part I, volume 9215 of LNCS, pages 247–266. Springer, Heidelberg, August

2015.

[CGH+15b] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, He-

manta K. Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Ti-

bouchi. Zeroizing without low-level zeroes: New MMAP attacks and their

limitations. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-

ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,

Part I, pages 247–266, 2015.

[CGH16a] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branch-

ing program obfuscators. Cryptology ePrint Archive, Report 2016/998, To ap-

182

pear in EUROCRYPT 2017, 2016. http://eprint.iacr.org/2016/

998.

[CGH16b] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branch-

ing program obfuscators. Personal Communication, 2016.

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure

two-party computation from indistinguishability obfuscation. In Yevgeniy

Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of

LNCS, pages 557–585. Springer, Heidelberg, March 2015.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or

how to delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010,

volume 6110 of LNCS, pages 523–552. Springer, Heidelberg, May 2010.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or

how to delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012. Prelimi-

nary version in Eurocrypt 2010.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien

Stehlé. Cryptanalysis of the multilinear map over the integers. In Elisabeth

Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056

of LNCS, pages 3–12. Springer, Heidelberg, April 2015.

[CIO16] Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional

encryption. In Public-Key Cryptography - PKC 2016 - 19th IACR Interna-

tional Conference on Practice and Theory in Public-Key Cryptography, Taipei,

Taiwan, March 6-9, 2016, Proceedings, Part I, pages 196–222, 2016.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for

NTRU problems and cryptanalysis of the GGH multilinear map without a low

183

http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/998

level encoding of zero. Cryptology ePrint Archive, Report 2016/139, 2016.

http://eprint.iacr.org/2016/139.

[CLLT16a] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Ti-

bouchi. Cryptanalysis of GGH15 multilinear maps. In Matthew Robshaw and

Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages

607–628. Springer, Heidelberg, August 2016.

[CLLT16b] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Ti-

bouchi. Zeroizing attacks on indistinguishability obfuscation over clt13. Cryp-

tology ePrint Archive, Report 2016/1011, To appear in PKC 2017, 2016.

http://eprint.iacr.org/2016/1011.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical

multilinear maps over the integers. In Ran Canetti and Juan A. Garay, editors,

CRYPTO 2013, Part I, volume 8042 of LNCS, pages 476–493. Springer,

Heidelberg, August 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multi-

linear maps over the integers. In Rosario Gennaro and Matthew J. B. Rob-

shaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286.

Springer, Heidelberg, August 2015.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.

In ASIACRYPT, pages 1–20, 2011.

[Cry] Cryptol. http://cryptol.net/. Accessed: 2016-05-02.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system

groups. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,

184

http://eprint.iacr.org/2016/139
http://eprint.iacr.org/2016/1011
http://cryptol.net/

USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes

in Computer Science, pages 435–460. Springer, 2013.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete

gaussians for lattice-based cryptography on a constrained device. Appl. Alge-

bra Eng. Commun. Comput., 25(3):159–180, 2014.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukher-

jee. Obfuscation from low noise multilinear maps. Cryptology ePrint Archive,

Report 2016/599, 2016.

[DKR15] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure,

universally composable, multiparty computation in constant rounds. In Yev-

geniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume

9015 of LNCS, pages 586–613. Springer, Heidelberg, March 2015.

[DLZ15] Dana Dachman-Soled, Feng-Hao Liu, and Hong-Sheng Zhou. Leakage-

resilient circuits revisited - optimal number of computing components without

leak-free hardware. In Elisabeth Oswald and Marc Fischlin, editors, EU-

ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 131–158. Springer,

Heidelberg, April 2015.

[DM14] Léo Ducas and Daniele Micciancio. Improved short lattice signatures in the

standard model. In Juan A. Garay and Rosario Gennaro, editors, Advances

in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of

Lecture Notes in Computer Science, pages 335–352. Springer, 2014.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic

encryption in less than a second. In Advances in Cryptology - EUROCRYPT

2015 - 34th Annual International Conference on the Theory and Applications

185

of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,

Part I, pages 617–640, 2015.

[DN02] Ivan Damgrard and Jesper Buus Nielsen. Expanding pseudorandom functions;

or: From known-plaintext security to chosen-plaintext security. In Moti Yung,

editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,

Proceedings, volume 2442 of Lecture Notes in Computer Science, pages

449–464. Springer, 2002.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to

generate strong keys from biometrics and other noisy data. In Christian Cachin

and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages

523–540. Springer, Heidelberg, May 2004.

[DS15] Nico Döttling and Dominique Schröder. Efficient pseudorandom functions

via on-the-fly adaptation. In Rosario Gennaro and Matthew Robshaw, editors,

Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume

9215 of Lecture Notes in Computer Science, pages 329–350. Springer, 2015.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009. http://crypto.stanford.edu/craig.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan

Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-

input functional encryption. In Phong Q. Nguyen and Elisabeth Oswald,

editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,

Heidelberg, May 2014.

186

http://crypto.stanford.edu/craig

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps

from ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors,

EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, Heidelberg,

May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,

and Brent Waters. Candidate indistinguishability obfuscation and functional

encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer

Society Press, October 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear

maps from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,

TCC 2015, Part II, volume 9015 of LNCS, pages 498–527. Springer, Heidel-

berg, March 2015.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure

attribute based encryption from multilinear maps. Cryptology ePrint Archive,

Report 2014/622, 2014. http://eprint.iacr.org/2014/622.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption

and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,

editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures

without the random oracle. In Jacques Stern, editor, Advances in Cryptology -

EUROCRYPT ’99, International Conference on the Theory and Application

of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Pro-

ceeding, volume 1592 of Lecture Notes in Computer Science, pages 123–139.

Springer, 1999.

187

http://eprint.iacr.org/2014/622

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully

homomorphic encryption. In Public Key Cryptography, pages 1–16, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of

the AES circuit. In CRYPTO, pages 850–867, 2012.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Ak-

shay Wadia. Founding cryptography on tamper-proof hardware tokens. In

Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326.

Springer, Heidelberg, February 2010.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,

and Nickolai Zeldovich. Reusable garbled circuits and succinct functional

encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,

45th ACM STOC, pages 555–564. ACM Press, June 2013.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistin-

guishability obfuscation from the multilinear subgroup elimination assumption.

In Venkatesan Guruswami, editor, 56th FOCS, pages 151–170. IEEE Com-

puter Society Press, October 2015.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from

instance independent assumptions. In Juan A. Garay and Rosario Gennaro, ed-

itors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 426–443. Springer,

Heidelberg, August 2014.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srini-

vasan, and Mark Zhandry. Secure obfuscation in a weak multilinear map

model. In TCC 2016-B, 2016.

188

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation

without the vulnerabilities of multilinear maps. Cryptology ePrint Archive,

Report 2016/390, 2016.

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure

MPC from indistinguishability obfuscation. In Yevgeniy Dodis and Jes-

per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages

614–637. Springer, Heidelberg, March 2015.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In Ari Juels,

Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM

CCS 06, pages 89–98. ACM Press, October / November 2006. Available as

Cryptology ePrint Archive Report 2006/309.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. In Richard E. Ladner and

Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May

2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-

based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,

volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry:

Efficient ABE for branching programs. In Tetsu Iwata and Jung Hee Cheon,

editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 550–574.

Springer, Heidelberg, November / December 2015.

189

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate en-

cryption for circuits from LWE. In Rosario Gennaro and Matthew J. B. Rob-

shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523.

Springer, Heidelberg, August 2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully

homomorphic signatures from standard lattices. In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,

Portland, OR, USA, June 14-17, 2015, pages 469–477, 2015.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages

and optimizing bootstrapping in GSW-FHE. In Public-Key Cryptography -

PKC 2015 - 18th IACR International Conference on Practice and Theory in

Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,

Proceedings, pages 699–715, 2015.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and

Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of

LNCS, pages 537–565. Springer, Heidelberg, May 2016.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Advances in

Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part I, pages 641–670, 2015.

[HW09] Susan Hohenberger and Brent Waters. Short and stateless signatures from the

RSA assumption. In Shai Halevi, editor, Advances in Cryptology - CRYPTO

2009, 29th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in

Computer Science, pages 654–670. Springer, 2009.

190

[Kay09] N. Kayal. The complexity of the annihilating polynomial. In Computational

Complexity, 2009. CCC ’09. 24th Annual IEEE Conference on, pages 184–193,

July 2009.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of the

Network and Distributed System Security Symposium, NDSS 2000, San Diego,

California, USA. The Internet Society, 2000.

[KTZ13] Jonathan Katz, Aishwarya Thiruvengadam, and Hong-Sheng Zhou. Feasibility

and infeasibility of adaptively secure fully homomorphic encryption. In Kaoru

Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS,

pages 14–31. Springer, Heidelberg, February / March 2013.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes

with tight security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and

Trent Jaeger, editors, Proceedings of the 10th ACM Conference on Computer

and Communications Security, CCS 2003, Washington, DC, USA, October

27-30, 2003, pages 155–164. ACM, 2003.

[Lep14] Tancrède Lepoint. Design and Implementation of Lattice-based Cryptography.

PhD thesis, Université du Luxembourg, May 2014.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded

encoding schemes. In EUROCRYPT, 2016.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability

obfuscation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung,

Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume

9615 of LNCS, pages 447–462. Springer, Heidelberg, March 2016.

[LS14] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over

the integers. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,

191

Part I, volume 8616 of LNCS, pages 224–240. Springer, Heidelberg, August

2014.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions

for module lattices. Des. Codes Cryptography, 75(3):565–599, 2015.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient

multilinear maps from ideal lattices. In Phong Q. Nguyen and Elisabeth

Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 239–256.

Springer, Heidelberg, May 2014.

[LW16] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions,

applications, and lower bounds. In CCS, 2016.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample

complexity of LWE search-to-decision reductions. In Phillip Rogaway, editor,

CRYPTO 2011, volume 6841 of LNCS, pages 465–484. Springer, Heidelberg,

August 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,

faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-

CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg,

April 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions

based on Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer

Society Press, October 2004.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions

based on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Prelim-

inary version in FOCS 2004.

192

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against

arithmetic attacks. Cryptology ePrint Archive, Report 2014/878, 2014. http:

//eprint.iacr.org/2014/878.

[MSZ16a] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear

maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In

Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume

9815 of LNCS, pages 629–658. Springer, Heidelberg, August 2016.

[MSZ16b] Eric Miles, Amit Sahai, and Mark Zhandry. Secure obfuscation in a weak

multilinear map model: A simple construction secure against all known attacks.

Cryptology ePrint Archive, Report 2016/588, 2016.

[NR99] Moni Naor and Omer Reingold. Synthesizers and their application to the paral-

lel construction of pseudo-random functions. J. Comput. Syst. Sci., 58(2):336–

375, 1999.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient

pseudo-random functions. J. ACM, 51(2):231–262, 2004.

[NRR02] Moni Naor, Omer Reingold, and Alon Rosen. Pseudorandom functions and

factoring. SIAM J. Comput., 31(5):1383–1404, 2002.

[Ogu16] Arthur Ogus. Row equivalence of matrices (lecture notes).

https://math.berkeley.edu/˜ogus/old/Math_110-07/

Supplements/week6.pdf, 2016. Online; accessed 30 September 2016.

[OPW11] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key

encryption. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,

pages 525–542. Springer, Heidelberg, August 2011.

193

http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
https://math.berkeley.edu/~ogus/old/Math_110-07/Supplements/week6.pdf
https://math.berkeley.edu/~ogus/old/Math_110-07/Supplements/week6.pdf

[OvdPS15] Emmanuela Orsini, Joop van de Pol, and Nigel P. Smart. Bootstrapping BGV

ciphertexts with a wider choice of p and q. In Public-Key Cryptography -

PKC 2015 - 18th IACR International Conference on Practice and Theory in

Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,

Proceedings, pages 673–698, 2015.

[PST13] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation

from semantically-secure multi-linear encodings. Cryptology ePrint Archive,

Report 2013/781, 2013. http://eprint.iacr.org/2013/781.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation

from semantically-secure multilinear encodings. In Juan A. Garay and Rosario

Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–

517. Springer, Heidelberg, August 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM

STOC, pages 84–93. ACM Press, May 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.

[RR94] Alexander A. Razborov and Steven Rudich. Natural proofs. In Frank Thomson

Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth

Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,

Québec, Canada, pages 204–213. ACM, 1994.

[RT92] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial

computation. SIAM J. Comput., 21(5):896–908, 1992.

[S+16] W. A. Stein et al. Sage Mathematics Software (Version 7.3). The Sage

Development Team, 2016. http://www.sagemath.org.

194

http://eprint.iacr.org/2013/781

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved prac-

tical algorithms and solving subset sum problems. Mathmatical Programming,

66:181–199, 1994.

[ST01] Adi Shamir and Yael Tauman. Improved online/offline signature schemes.

In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual

International Cryptology Conference, Santa Barbara, California, USA, August

19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer Science,

pages 355–367. Springer, 2001.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:

deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,

pages 475–484. ACM Press, May / June 2014.

[SZ14] Amit Sahai and Mark Zhandry. Obfuscating low-rank matrix branching

programs. Cryptology ePrint Archive, Report 2014/773, 2014. http:

//eprint.iacr.org/2014/773.

[Ver12] Roman Vershynin. Compressed Sensing, Theory and Applications, chap-

ter 5, pages 210–268. Cambridge University Press, 2012. Avail-

able at http://www-personal.umich.edu/˜romanv/papers/

non-asymptotic-rmt-plain.pdf.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald

and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,

pages 439–467. Springer, Heidelberg, April 2015.

195

http://eprint.iacr.org/2014/773
http://eprint.iacr.org/2014/773
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Overview of Contributions
	Chapter 3 – Deniable Encryption
	Chapter 4 – Short Signatures with Tight Security
	Chapter 5 – 5Gen: A Framework for Prototyping Obfuscation
	Chapter 6 – Cryptanalysis of Indistinguishability Obfuscators

	Technical Background and Preliminaries
	Non-Cryptographic Preliminaries
	Branching Programs
	Matrix Branching Programs

	General Cryptographic Definitions
	Digital Signatures
	Chameleon Hashing
	Fully Homomorphic Encryption
	Multilinear Maps
	Indistinguishability Obfuscation

	Lattice Cryptography Background
	Lattices
	Discrete Gaussian Distributions
	Randomness Extraction and the Matrix Norm
	Hard Lattice Problems
	Trapdoors and Sampling Algorithms
	The ``Gadget'' Matrix G
	Subgaussian Random Variables
	Weak Pseudorandom Functions and Learning with Rounding
	Puncturable Homomorphic Trapdoor Functions

	Deniable Attribute Based Encryption for Branching Programs from LWE
	Introduction
	Our Contributions
	Our Approach
	Future Directions

	New Definitions and Tools
	Flexibly Bi-Deniable ABE: Syntax and Deniability Definition
	Attribute Based Bitranslucent Set Scheme
	Extended LWE and Our New Variant

	Flexibly Bi-Deniable Attribute-Based Encryption (ABE) for Branching Programs
	Encoding Schemes for Branching Programs
	Construction of Flexibly Bi-Deniable ABE for Branching Programs
	Parameter Setting
	From AB-BTS to Flexible Bi-Deniable ABE

	Weak is Better: Tightly Secure Short (Lattice) Signatures from Weak PRFs
	Introduction
	Improving the Boyen-Li Scheme
	Our Techniques
	Open Problems

	Improved Signature Scheme With Tight Security
	Parameters
	Construction
	Security
	Efficient Evaluation of g

	Reducing Trapdoor Growth
	Distribution Definition and Properties
	How to Inject Verifiable Randomness
	Using Chameleon Hash Functions

	5Gen: A Framework for Prototyping Applications Using Multilinear Maps and Matrix Branching Programs
	Introduction
	Our Contributions
	Related Work

	Framework Architecture
	From Programs to MBPs
	A Library for Multilinear Maps
	The GGHLite Multilinear Map
	The CLT Multilinear Map

	Multi-Input Functional Encryption
	Optimizing Comparisons
	Order-Revealing Encryption
	Three-Input DNF Encryption

	Program Obfuscation
	Experimental Analysis
	MIFE Experiments
	Program Obfuscation Experiments

	Conclusions
	Parameter Selection
	GGHLite
	CLT

	Lattice Attack on Encodings

	Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13
	Introduction
	Our Contributions
	Technical Overview
	Roadmap

	Additional Notations and Preliminaries
	Notations
	Matrix Products
	Column Space of a Matrix
	Branching Programs

	Attack Model for Investigating Annihilation Attacks
	Annihilation Attack Model
	Obfuscation in the Annihilation Attack Model
	Abstract Indistinguishability Obfuscation Security

	Partially Inequivalent Branching Programs
	Annihilation Attack for Partially Inequivalent Programs
	Extending the Abstract Attack to GGH13 Multilinear Maps
	The GGH13 Scheme: Background
	Translating the Abstract Attack to GGH13
	Completing the Attack for Large Enough Circuits

	Example of Partially Inequivalent Circuits
	Simple Pairs of Circuits that are Partially Inequivalent
	Larger Pairs of Circuits that are Partially Inequivalent
	Universal Circuit Leading to Partially Inequivalent Branching Programs

	Some details on our implementation

	Bibliography

